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Abstract
Within this thesis novel computational tools for the rational design of synthetic
host-guest complexes (SHGC) were developed and applied that employ the con-
cepts of efficient virtual screening (VS) approaches. The first part describes the
development of a fast structure prediction tool for flexible SHGC. The tool was
validated on a test dataset comprising crystallographically determined SHGC.
In nine of ten cases near-native solutions were generated. The tool can be ap-
plied for VS. In the second part of the thesis computational techniques were
applied for designing SHGC based on β-cyclodextrins (β-CD). We performed a
structure-based inverse virtual screening for identifying modified β-CDs as recep-
tors for the anticancer drug camptothecin (CPT). Six of the proposed receptors
exhibited binding affinities which were significantly higher than for any other
CPT-receptor. Furthermore, we applied a combination of a similarity-based vir-
tual screening technique with a regression model (RM) for identifying novel high
affinity guest molecules of β-CD. Ten of the proposed guest molecules exhibited a
binding free energy of lower than -20 kJ mol−1. The last chapter describes a com-
parison of regression methods regarding their ability to generate predictive RM
for thermodynamical parameters (∆G, ∆H and ∆S) of β-CD-guest complexes.
∆G could be predicted in good agreement with experimental values, none of the
methods led to comparably good predictive models for ∆H. ∆S appears almost
unpredictable.

Kurzfassung
Im Rahmen dieser Arbeit wurden rechnergestützte Verfahren (RGV) zum geziel-
ten Entwurf von synthetischen Wirt-Gast Komplexen (SWGK) entwickelt und
eingesetzt. Dabei wurde ein Fokus auf schnelle virtuelle Screening (VS) Verfahren
gelegt. Der erste Teil beschreibt die Entwicklung eines Programms zur schnellen
Strukturvorhersage von flexiblen SWGK. Das Programm wurde auf einem Test-
datensatz an kristallographisch vermessenen SWGK validiert. Für neun von zehn
SWGK wurden nativ-ähnliche Lösungen gefunden. Das Programm kann für VS
eingesetzt werden. Der zweite Teil der Arbeit behandelt RGV zum gezielten Ent-
wurf von β-Cyclodextrin (β-CD) Komplexen. Mit Hilfe eines strukturbasierten
inversen VS wurden sechs modifizierte β-CD-Rezeptoren für den Krebsarzneistoff
Camptothecin (CPT) gefunden, die deutlich höhere Bindungsaffinitäten zu CPT
aufwiesen als alle bislang bekannten CPT-Rezeptoren. Zur Identifizierung neu-
er hochaffiner Gäste von β-CD wurde ein ähnlichkeitsbasiertes VS Verfahren in
Kombination mit einem Regressionsmodell (RM) eingesetzt. Zehn der mit Hil-
fe dieses Verfahrens vorgeschlagenen Moleküle wiesen eine Bindungsenergie von
unter -20 kJ mol−1 auf. Das letzte Kapitel beschreibt einen Vergleich von drei Re-
gressionsverfahren. Es wurde die Fähigkeit untersucht, vorhersagekräftige RM für
thermodynamische Parameter (∆G, ∆H und ∆S) von β-CD-Gast-Komplexen
zu generieren. ∆G konnte mit allen Methoden sehr gut vorhergesagt werden,
während ∆H nur begrenzt und ∆S unzureichend vorhersagbar war.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Supramolecular Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Non-covalent Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Molecular Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Host Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Computational Approaches in Supramolecular Chemistry . . . . . . . 15

1.1.4.1 Quantitative Structure Property Relationship . . . . . . . . . . 15
1.1.4.2 Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.4.3 De Novo Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.4.4 Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.4.5 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4.6 Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Ligand-Based Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Structure-Based Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Goals and Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Part I Development of a Virtual Screening Tool for Synthetic Host-Guest
Complexes

2 Flexible Docking of Guest Molecules into Synthetic Receptors
Using a Two-Sided Incremental Construction Algorithm . . . . . . . . . . . 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Modeling of Receptor Flexibility in Protein-Ligand Docking . . . . . 31
2.1.2 Structure Prediction Tools for Synthetic Host-Guest Complexes . 34

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.1 Details of the Chemical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1.1 Fragmentation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1.2 Interaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1.3 Scoring Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Algorithmical Details of the Structure Generation . . . . . . . . . . . . . 42
2.2.2.1 Precomputation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2.2 Complex Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



XVIII Contents

2.3 Validation by Means of Redocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Test Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Virtual Screening as a Virtual Test for Selectivity . . . . . . . . . . . . . . . . . . 70
2.4.1 Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.2 Design of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.3 Screening Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Part II Computational studies on β-cyclodextrin

3 Improved Cyclodextrin Based Receptors for Camptothecin by
Inverse Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.1 Camptothecin and Topoisomerase I . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.2 Pharmaceutical Formulations for Camptothecin . . . . . . . . . . . . . . 81
3.1.3 Cyclodextrins and Inclusion Complexes . . . . . . . . . . . . . . . . . . . . . 82

3.2 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Preparation of Camptothecin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.2 Preparation of the β-Cyclodextrin Core Structure . . . . . . . . . . . . . 86
3.3.3 Extraction and Preparation of Fragment Libraries . . . . . . . . . . . . . 87
3.3.4 Virtual Synthesis of β-Cyclodextrin Derivatives . . . . . . . . . . . . . . . 87
3.3.5 Applied Docking Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.6 Docking Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Combined Similarity and QSPR Based Virtual Screening for Guest
Molecules of β-cyclodextrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.1 Fingerprint-Based Similarity Tools . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.2 Graph- and Tree-Based Similarity Tools . . . . . . . . . . . . . . . . . . . . . 107
4.1.3 Similarity Tools Based on Shape or Structural Superimposition . 108

4.2 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Generation of a Support Vector Machine Regression Model . . . . 109
4.3.2 Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2.1 FUZZEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 The Screening Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.4 Binding Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents XIX

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 QSPR Study on the Predictability of Thermodynamic Properties. . . 127
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Assembling of the Dataset and Preparation of the Molecules . . . 128
5.2.2 Calculation and Processing of Molecular Descriptors . . . . . . . . . . 128
5.2.3 Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.3.1 Principal Component Regression . . . . . . . . . . . . . . . . . . . . 129
5.2.3.2 Partial Least Squares Regression . . . . . . . . . . . . . . . . . . . . 129
5.2.3.3 Support Vector Machine Regression . . . . . . . . . . . . . . . . . 130

5.2.4 Internal Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.5 Calculation of Molecular Similarity and Clustering of the

Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.1 FlexX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.1.1 Fragmentation and Base Fragment Selection . . . . . . . . . . . . . . . . 163
A.1.2 Base Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.1.3 Incremental Complex Construction . . . . . . . . . . . . . . . . . . . . . . . . . 164

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171





List of Figures

1.1 Schematic illustration of a host-guest complex. . . . . . . . . . . . . . . . . . . . 2
1.2 The first synthetic receptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The geometry of a hydrogen bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Molecular recognition of length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Molecular recognition of tetrahedral geometry. . . . . . . . . . . . . . . . . . . . . 9
1.6 Molecular recognition of thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Molecular recognition of size, shape and charge . . . . . . . . . . . . . . . . . . . 11
1.8 The interaction of noradrenaline with the binding site of the

β-adrenergic receptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 The first structural motif for a synthetic β-adrenergic receptor. . . . . . . 12
1.10 The second synthetic β-adrenergic receptor. . . . . . . . . . . . . . . . . . . . . . . 13
1.11 The third synthetic β-adrenergic receptor. . . . . . . . . . . . . . . . . . . . . . . . 14
1.12 The fourth synthetic β-adrenergic receptor. . . . . . . . . . . . . . . . . . . . . . . 15
1.13 Synthetic receptors for adenine as predicted by ConCept. . . . . . . . . . 19
1.14 Ligand- and structure-based virtual screening. . . . . . . . . . . . . . . . . . . . . 22

2.1 Two conformations of a synthetic receptor and the structural formula. 30
2.2 The structure generation of Corina. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 The complex between diethyl barbiturate and a synthetic barbiturate

receptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Algorithm flow chart of FlexR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Fragmentation scheme of FlexR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Interaction model of FlexR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 The FlexX interaction scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 The interaction surfaces are represented by discrete point sets. . . . . . . 40
2.9 The generation of molecular graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 The docking graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.11 Test for distance range overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.12 Illustration of outgoin atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.13 The distance range estimation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 47
2.14 The one-point placement algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.15 The computation of the fragment order. . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.16 Distance filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.17 Optimization of matches during the incremental construction. . . . . . . . 54



XXII List of Figures

2.18 Docking result of complex 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.19 Docking result of complex 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.20 Docking result of complex 3, rank 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.21 Docking result of complex 3, rank 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.22 Docking result of complex 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.23 Docking result of complex 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.24 Docking result of complex 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.25 Docking result of complex 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.26 Docking result of complex 8, rank 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.27 Docking result of complex 8, rank 263. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.28 Docking result of complex 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.29 Docking result of complex 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.30 Dependence of distance ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.31 The tautomeric forms of the selective synthetic receptor for creatinine. 71
2.32 Compound C01563. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.33 Compound C11261. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.34 Compound C01596. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.35 Compound C00380. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 The structure of human topoisomerase I in complex to DNA. . . . . . . . 81
3.2 Lewis structure of camptothecin in the lactone and carboxylate form. . 81
3.3 Schematic illustration of a cyclodextrin. . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Flip-flop hydrogen bonds on the secondary side of β-cyclodextrin. . . . . 84
3.5 Schematic modification scheme for mono and heptakis β-cyclodextrin. 85
3.6 Design of the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.7 Schematic drawing of the virtual synthesis of the β-cyclodextrin-library. 87
3.8 Dependence of the solubility of camptothecin on the concentration

of the β-cyclodextrin derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.9 Plot of the predicted binding energies of AutoDock against the

experimental binding free energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.10 Plot of the predicted binding energies of GlamDock against the

experimental binding free energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.11 Internal energy example (GlamDock). . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.12 Complex structure of compound 12 to camptothecin (GlamDock). . 101
3.13 Complex structure of compound 28 to camptothecin (AutoDock). . 102

4.1 Two fingerprint approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Schematic flow of the applied virtual screening method. . . . . . . . . . . . . 110
4.3 Schematic illustration of the nested cross-validation. . . . . . . . . . . . . . . . 112
4.4 Reduced graph representation of flurbiprofen. . . . . . . . . . . . . . . . . . . . . . 114
4.5 The matching between flurbiprofen and 4-phenoxybenzoic acid. . . . . . . 116
4.6 Descriptor selection for the training set. . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.7 Nested cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.8 Dependence of the predicted and experimental ∆G◦ values of the

screening hits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Figures XXIII

5.1 Plots of ∆G◦ against ∆H◦-T∆S◦ and ∆H◦ against T∆S◦. . . . . . . . . 138
5.2 Plot of the standard deviations of ∆G◦ against the standard

deviations of ∆H◦ (left side) and T∆S◦ (right side) for each cluster. . 140

A.1 Placement of the base fragments in FlexX. . . . . . . . . . . . . . . . . . . . . . 164
A.2 The incremental complex construction. . . . . . . . . . . . . . . . . . . . . . . . . . . 165





List of Tables

1.1 Representative literature examples of non-covalent interactions. . . . . . . 4
1.2 Non-covalent interactions together with the equations to calculate

their interaction energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The interaction geometries of FlexX and FlexR. . . . . . . . . . . . . . . . 41
2.2 Structural formulas of the complexes 1 - 5 . . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Structural formulas of the complexes 6 - 10 . . . . . . . . . . . . . . . . . . . . . . 59
2.4 All docking results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Building blocks selected by virtual screening of corresponding
β-cyclodextrin derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Binding constants K and binding free energies ∆G◦ for camptothecin
in 0.02M HCl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Known β-cyclodextrin guest molecules serving as query compounds. . . 113
4.2 Features of nodes and weighting scheme. . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Selected guest molecules derived from the virtual screening against

query 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4 Selected guest molecules derived from the virtual screening against

query 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5 Selected guest molecules derived from the virtual screening against

query 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6 Selected guest molecules derived from the virtual screening against

query 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7 Selected guest molecules derived from the virtual screening against

query 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.8 Structural series of benzoic acid derivatives. . . . . . . . . . . . . . . . . . . . . . . 125
4.9 Some structures predicted favorable binders by virtual screening

solely based on the QSPR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Comparison of the regression methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Dependence of q2 (∆G◦) to the number of components/descriptors

integrated into a model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Dependence of q2 (∆H◦) to the number of components/descriptors

integrated into a model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



XXVI List of Tables

5.4 Dependence of q2 (T∆S◦) to the number of components/descriptors
integrated into a model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Comparison of the regression methods for nested cross-validation
(∆G◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 Comparison of the regression methods for nested cross-validation
(∆H◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Comparison of the regression methods for nested cross-validation
(T∆S◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1 Selected descriptors of the QSPR model used in Chapter 4. . . . . . . . . . 167

C.1 The data used for the generation of the QSPR models in Chapter 5. . . 171
C.2 The generated structural clusters as used in Section 5.3. . . . . . . . . . . . 180



1

Introduction

The integration of computational methods into chemistry is of outstanding cur-

rent interest and high impact. The field of medicinal chemistry, for example,

has benefited enormously from computer science (Jorgensen, 2004; Bajorath,

2004). Concepts such as virtual screening nowadays take a substantial part in

the drug discovery process and significantly influence the field (Kitchen et al.,

2004; Lengauer et al., 2004). This thesis introduces novel computational tech-

niques that transfer the concepts of efficient virtual screening approaches from

the field of medicinal chemistry to supramolecular chemistry.

1.1 Supramolecular Chemistry

One of the major proponents of the field, Jean-Marie Lehn, described supramolec-

ular chemistry as the “chemistry beyond the molecule” (Lehn, 1988, 1995). Other

descriptions characterize supramolecular chemistry as the “chemistry of the non-

covalent bond,” or “the chemistry of molecular assemblies” (Steed & Atwood,

2000). An illustrative term is host-guest chemistry. This notion pinpoints the ma-

jor characteristic of the molecules of interest: one molecule – the host molecule –

has the potential to bind one or more molecules, termed guest molecules (see Fig-

ure 1.1). Host molecules are commonly larger than guest molecules and possess

a sizable central hole or cavity (Steed & Atwood, 2000). In the context of this

dissertation I use the term host molecule synonymously with synthetic receptor.

The guest molecule may be a mono-atomic ion, a small molecular fragment, or

a molecule such as a drug that fits into this cavity. The complex is held together

by reversible interactions, for example hydrogen bonds, dispersive interactions,

π-interactions, or hydrophobic effects (see Section 1.1.1). The host-guest complex

formation requires a complementarity of both complex partners with respect to

interactions and steric arrangement and results in a unique structural relationship

in most cases.
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+
host guest host-guest complex

 

Figure 1.1. Schematic illustration of a host-guest complex. The host molecule possesses a cavity to which

a guest molecule can bind. The host-guest complex formation involves a complementarity regarding shape

and interaction groups.

Supramolecular chemistry dates back to the late 1950s. The origins, however,

are to be found much earlier. Already in 1894, the lock-and-key principle by Emil

Fischer picked up the main characteristics of host-guest chemistry and is today

recognized as the major theoretical breakthrough thereof (see Section 1.1.2) (Fis-

cher, 1894). The three chemists Charles Pedersen, Jean-Marie Lehn and Donald

Cram developed the idea of imitating this principle from natural systems in a lab-

oratory. Pedersen discovered crown ethers (see Figure 1.2 a), which are synthetic

macrocycles with the ability to selectively bind cations (Pedersen, 1988). Based

on this work, Lehn constructed cryptands, which are three-dimensional analogs

of crown ethers and show a higher degree of preorganization (see Figure 1.2 b)

(Lehn, 1988). Donald Cram contributed the so-called spherands (see Figure 1.2

c), amongst others (Cram, 1988). All three were awarded with the Nobel prize in

chemistry in 1987 for their research in supramolecular chemistry.
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 Figure 1.2. The first synthetic receptors: Crown ethers were synthesized by Pedersen (a). The three-

dimensional analogs of crown ethers are called cryptands and were synthesized by Lehn. One of the first

contributions of Cram to the field of supramolecular chemistry were spherands (c).
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Since then, supramolecular chemistry has undergone huge developments and

is already applied technically. Although synthetic receptors in general cannot ri-

val their natural counterparts in terms of binding affinity and specificity, they do

exhibit numerous advantages over natural receptors that make them interesting

candidates for diagnostic (Bell et al., 1995), therapeutic (Schrader & Hamilton,

2005), analytical (Zadmard & Schrader, 2005), and separation purposes (Muder-

awan et al., 2006). Compared to natural receptors the three-dimensional struc-

ture of synthetic receptors is generally more stable at high temperatures and

non-physiological pH conditions. Their comparably low molecular weights and

their better tolerance by the human immune system predestines their use as

drug-delivery agents (Davis, 2004).

Furthermore supramolecular chemistry contributed to the understanding and

deciphering of molecular recognition and nowadays even impacts the structure-

based design of drugs (Brooijmans & Kuntz, 2003). The following sections intro-

duce the basic concepts of supramolecular chemistry and detail successful exam-

ples of supramolecular design.

1.1.1 Non-covalent Interactions

Traditional organic chemistry focuses on reactions that involve the formation

or the break of covalent bonds. Supramolecular chemistry concentrates on non-

covalent bonds (Schneider, 1991; Steed & Atwood, 2000). These types of inter-

actions are typically much weaker than covalent bonds (a single bond between

two carbons, for example, has an energy of 348 kJ mol−1) and their formation

is therefore reversible under standard conditions. Table 1.1 gives representative

examples of non-covalent interactions. In Table 1.2 the equations to calculate the

strength of non-covalent interactions are shown and illustrated.

Electrostatic Interactions (Ion-Ion)

Electrostatic interactions occur between charged interaction groups and are de-

scribed by Coulombs’s law. Within crystals the strength of this type of interaction

lies in the range of covalent bonds (100-350 kJ mol−1) (Steed & Atwood, 2000). In

solvents the strength of electrostatic interactions decreases, being a linear func-

tion of the reciprocal of the dielectric constant. In water, for example, the ion

pair Ca2+·SO2−
4 exhibits a binding free energy ∆G of -13.2 kJ mol−1 (Schneider

& Yatsimirsky, 2000). The strength of an electrostatic interaction is proportional

to 1
r
.1

1 with r equal to the distance between the two interacting entities
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Table 1.1. Representative literature examples of non-covalent interactions.

Interaction type Example ∆G in kJmol−1 Medium Lit.1

Ion-ion Ca2+ · · ·SO2−
4 -13.2 H2O a

Ion-dipole (-CH2)2O· · ·⊕N t-butyl -3 CHCl3 b

Dipole-dipole R2C=O· · ·O=CR2
2 -20 calc. in vacuo c

Hydrogen bond HOH· · ·OH2 -22 gas phase a

Cation-π K+ · · ·benzene -50 gas phase a

π-π adenine· · ·benzene −1.85± 0.15 CHCl3 a

Dispersive interactions -CH· · ·HC- -0.2 calc. in vacuo b

Hydrophobic interactions -CH2- · · · -CH2- -2.3 water b

1 a = Schneider & Yatsimirsky (2000), b = Schneider (1991), c = Steed & Atwood (2000)
2 parallel orientation

Ion-Dipole Interactions

The intermolecular interactions found in the complex of a sodium ion and a

crown ether are an example for a cation (sodium ion) dipole (carbon oxygen

bonds) interaction (Pedersen, 1988). This supramolecular system was in fact one

of the first host-guest systems described in supramolecular chemistry. The bond

energies of ion-dipole interactions vary in a range of 50-200 kJ mol−1 in the gas

phase (Steed & Atwood, 2000). The interaction energy clearly decreases in polar

solvents. The interaction energy of an ether group and tert-butylammomium in

trichlormethane, for example, amounts to about -3 kJ mol−1 (Schneider, 1991).

Ion-dipole interactions are directional interactions since they depend on the ori-

entation of the dipole. With an increasing distance the energy of a fixed dipole-ion

interaction decreases with a 1
r2 dependence, whereas the interaction energy be-

tween a freely rotating dipole and an ion decreases with a 1
r4 dependence.

Dipole-Dipole Interactions

Dipole-dipole interactions occur between molecules with permanent dipoles. A

permanent dipole exists if electrons of a chemical bond are permanently dis-

tributed in a non-uniform manner. The energy of dipole-dipole interactions lies

in the range of 5-50 kJ mol−1 in the gas phase and depends on the orientation of

the dipoles to each other. In an in vacuo calculation, two carbonyl groups that

orientate in a parallel manner show a binding free energy of -20kJ mol−1. A fixed

dipole-dipole interaction decreases with a 1
r3 dependence. Freely rotating dipoles
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Table 1.2. Non-covalent interactions together with the equations to calculate their interaction energy. Q,

electric charge; ε, dielectric constant; r, distance between the interacting entities; k, Boltzmann constant;

T , absolute temperature; h, Planck’s constant; v, electronic absorption frequency; α, electric polarizability.

Interaction type Illustration Interaction energy

Ion-ion

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

Q1Q2
4πε0r

Ion-dipole (fixed)

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

Qµ cos θ
4πε0r2

Ion-dipole (rotating)

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

Q2µ2

6(4πε0)2kTr4

Dipole-dipole (fixed)

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

µ1µ2(2 cos θ1 cos θ2−sin θ1 sin θ2 cos φ)
4πε0r3

Dipole-dipole (rotating)

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

µ2
1µ

2
2

3(4πε0)2kTr6

Dispersive interactions

r
Q

1
Q

2

r
Q

θµ

r
Qµ

rθ
1

µ
1 θ

2

µ
2

φ

r
µ

1
µ

2

r
α α

3hvα2

4(4πε0)2r6

Hydrogen bond energy roughly ∝ 1
r2

Cation-π energy roughly ∝ 1
rn , with n < 2

π-π complicated, short range

show a 1
r6 distance dependence. Aside from dipoles, quadrupoles and higher mul-

tipoles also show a similar type of interaction, generally of lower binding energy.

Hydrogen Bonding

A hydrogen bond is sometimes described as a particular type of a dipole-dipole

interaction (Steed & Atwood, 2000). However, this description was criticized sig-

nificantly, since only a very weak correlation between the strength of a hydrogen

bond and the dipole moment of the hydrogen bond acceptor was found (Buck-

ingham, 2000). Current research shows that a hydrogen bond should rather be

regarded as a combination of interaction types, such as electrostatic interactions
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N H O
N-H   O

C=O   H

Figure 1.3. The geometry of a hydrogen bond. The distance O - N is between 2.8 and 3.2 Å. The angle

N–H· · ·O is larger than 150o in most cases. The angle C=O· · ·H is typically in between 100◦ and 180◦.

(Stone, 2000), induction (Hodges et al., 1997), dispersive interactions (Wennmohs

et al., 2003), repulsive and charge transfer interactions (Mo, 2006). A hydrogen

bond is formed if a hydrogen atom that is attached to an electronegative atom

(hydrogen bond donor) is attracted by a partially negatively charged atom (hy-

drogen bond acceptor). Hydrogen bonds are highly directional and restrictive

regarding bond angle and length (see Figure 1.3). The binding energy of a hy-

drogen bond can differ enormously depending on the chemical surrounding of

the interacting atoms and the medium in which it formed. It lies in a range of

4-120 kJ mol−1 (Steed & Atwood, 2000). It should, however, be noted that strong

hydrogen bonds such as between F-H· · ·F− already exhibit a semi-covalent be-

havior. Hydrogen bonds play a crucial role in biological systems such as proteins

and the double-stranded DNA (Cooke & Rotellob, 2002). The hydrogen bond

interaction dominated binding energy of the Watson-Crick base pairing between

adenine and thymine (two hydrogen bonds) amounts to -8.5 kJ mol−1 in CDCl3,

whereas in the case of guanin and cytosin (three hydrogen bonds) it is equal to

-24.5 kJ mol−1 (Schneider & Yatsimirsky, 2000) although there is only one addi-

tional hydrogen bond. The reason for this lies in secondary interactions, which

are repulsive in the adenine-thymine pairing but favorable in the other.

Cation-π Interactions

Cations can interact with the π-face of an aromatic ring. The interaction results

from an attraction of the positive charge of the cation and the π-electron sys-

tem. This type of interaction highlights the role of supramolecular research for

the deciphering of natural molecular recognition phenomena, since it could be

investigated intensively on supramolecular model systems in the gas phase and

in aqueous solutions (Dougherty, 1996). The binding energy between a potassium

ion and benzene, for example, amounts to about -50 kJ mol−1 in the gas phase.
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Dougherty (1996) found a distance dependence of the interaction energy of 1
rn ,

with n < 2. In nature, cation-π interactions occur between the aromatic amino

acids phenylalanine, tyrosine, and tryptophan and cationic ligands or substrates.

The binding of the positively charged acetylcholine to the enzyme acetylcholine

esterase involves a cation-π interaction (Sussman et al., 1991), amongst others.

π-Stacking

The interaction between aromatic ring systems has been described as π-stacking

(Hunter & Sanders, 1990). π-π interactions are presumed to be caused by an over-

lap of π-orbitals of aromatic systems from different molecules. The term stacking

refers to the stacked arrangement of the aromatics. They are most favorable if an

electron poor aromatic, such as pyridine, interacts with an electron rich aromatic

(e. g. phenol). The energetic strength of a π-π interaction lies in the range 0 – 50

kJ mol−1 (Steed & Atwood, 2000). The binding free energy between benzene and

adenine amounts to about -1.85 kJ mol−1 in chloroform. In nature π-π interac-

tions occur, for example, between consecutive base pairs of the double-stranded

DNA.

Dispersive Interactions

Dispersive interactions result from the attraction of two temporarily induced

dipoles. They are non-directional and thus rather non-specific. The energy of

dispersive interactions amounts to less than 5 kJ mol−1 (Steed & Atwood, 2000).

The interaction energy between two C-H (carbon-hydrogen) groups, for example,

is -0.2 kJ mol−1 in an in vacuo calculation (Schneider, 1991). Since the strength of

this interaction decreases rapidly with the rising distance of the interacting atoms

(∝ 1
r6 ), this type of interaction is highly dependent on the shape complementarity

between the host and the guest molecules.

Hydrophobic Interactions

Hydrophobic interactions occur in polar solvents and result from a mixture of

entropic and enthalpic effects (Abraham, 1982; Smithrud et al., 1990). In water

and other polar solvents hydrophobic molecules aggregate and thus decrease the

hydrophobic surface that is exposed to the solvent. Water molecules are thereby

liberated and entropy increases. Simultaneously, novel attractive interactions are

formed between the hydrophobic molecules, and new hydrogen bonds are formed

between the deliberated water molecules. The interaction energy of two methylene

groups (-CH2-) amounts to -2.3 kJ mol−1 in water (Schneider, 1991).
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1.1.2 Molecular Recognition

Two molecules that are complementary regarding shape and interaction groups

exhibit the principle structural features for forming a supramolecular complex.

Molecular recognition describes the selective binding process of a guest to a host

molecule that accounts for particular physicochemical properties of the guest

(Lehn, 1988; Schneider, 1991). The term goes back to Emil Fischer who intro-

duced his lock-and-key principle in his breakthrough publication “Einfluss der

Konfiguration auf die Wirkung der Enzyme” (Fischer, 1894). In this article, he

investigated the specificity of the enzymes invertine and emulsin for the α- or

the β-form of glucosides, respectively. The illustrative comparison of the comple-

mentarity of a key to a lock corresponds to the way a small molecule binds to an

enzyme. While the necessity of shape complementarity is sufficiently covered by

this comparison, the need for interaction complementarity is however neglected.

That the isolated host molecule does not necessarily complement the shape of

the guest was only discovered years later. During the binding it can undergo

a so-called induced fit and adopts to the conformation leading to ideal shape

complementarity (Koshland, 1994).

Molecular recognition can be understood as an information storage system on

the supramolecular level (Lehn, 1988). The information is stored in the steric ar-

rangement of the complex, i. e. the architecture of the complex, or by the thermo-

dynamical properties of the complex. Usually molecular recognition is quantified

by determining the binding free energy of the complex. The ability of a chemical

entity to account for structural and chemical properties of another has received

considerable attention in supramolecular research. A score of examples is detailed

below.

Molecular Recognition of Length

Harada & Kataoka reported on a supramolecular system in which molecular

recognition based on length was observed (Harada & Kataoka, 1999). In their

study, polyanionic and polycationic block copolymers of varying chain lengths

were synthesized. In aqueous solution, exclusively oppositely charged pairs of

copolymers were formed that exhibited the same block length. These pairs then

formed larger core-shell-type assemblies with a narrow size distribution (see Fig-

ure 1.4).

Molecular Recognition of Geometry

Synthetic receptors with the ability to selectively recognize a guest molecule of

tetrahedral geometry were presented by Graf & Lehn (1975). The macrotricycles
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provided the chromatogram with two clearly
separated peaks corresponding to A-18 (elution
volume, 17.4 ml) and A-78 (elution volume,
15.3 ml), respectively (Fig. 1A). Then a given
amount of the cationic polymer C-18 was added
to this mixture so as to neutralize 0.5 equiva-
lents of Asp units in the solution. Complete
disappearance of the A-18 peak from the chro-
matogram was observed, with the A-78 peak
remaining totally intact without any change in
GFC peak intensity (Fig. 1B). A peak corre-
sponding to the PIC micelle was clearly ob-
served in the exclusion volume of the chro-
matogram. The chemical composition of the
fractionated PIC micelle was determined by 1H
nuclear magnetic resonance (NMR) in D2O
containing 1.0 M NaCl. The molar ratio for Asp
and Lys residues ([Asp]/[Lys]) in the PIC mi-

celles was determined to be 1.0, and the ob-
served ratio of PEG to Asp and Lys residues
was consistent with the calculated ratio, assum-
ing that the micelle exclusively includes paired
A-18 and C-18. However, addition of C-78 to
the mixture of A-18 and A-78 resulted in com-
plete selection of A-78, as shown in Fig. 1C.
NMR analysis of the micelle fraction also re-
vealed that PIC micelle formation involved
only A-78 and C-78. Thus, a pair of oppositely
charged block copolymers exclusively selects
matching partners with the same length of
charged segments upon micellization.

Chain length–dependent recognition
through micellization was further supported
by data from dynamic light scattering (DLS).
As summarized in Table 1, PIC micelles pre-
pared under charge-neutralized conditions
([Asp]/[Lys] 5 1) have a significant differ-
ence in their average DLS size between A-18/
C-18 and A-78/C-78 pairs: The former was
approximately 10 nm less in diameter than
the latter, reflecting differences in the micelle
association number.

Addition of either C-18 or C-78 to the mix-

ture of A-18 and A-78 resulted in the formation
of narrowly distributed PIC micelles with di-
ameters corresponding to those of micelles pre-
pared from the matched pair, as did the analo-
gous experiment for polyanion addition (Table
1). These results are consistent with GFC re-
sults shown in Fig. 1 and strongly suggest a
selective micelle formation mechanism that op-
erates through chain length recognition.

Because PIC micelles were confirmed to
have a narrow size distribution that was near-
ly monodisperse in nature, static light-scatter-
ing (SLS) measurements were then carried
out to determine the micelle weight-averaged
Mw as well as the micelle association num-
ber. All of the SLS results (the last column in
Table 1) were quite consistent with DLS
results, supporting selective formation of PIC
micelles between matched polymer pairs.
PIC micelles from A-18/C-18 had a Mw of
about 5 3 105 g/mol, which corresponds to
an association number of approximately 40
chains of both A-18 and C-18. The Mw in-
creased to 3 3 106 g/mol for the A-78/C-78
pair, corresponding to a total of 180 chains

Fig. 1. Chain length–dependent recognition of
block copolymers monitored by GFC. (A) A-18
(3.02 mg/ml, 6.06 mmol of Asp per milliliter) and
A-78 (1.22 mg/ml, 6.06 mmol of Asp per millili-
ter). (B) A-18 (3.02 mg/ml, 6.06 mmol of Asp per
milliliter), A-78 (1.22 mg/ml, 6.06 mmol of Asp
per milliliter), and C-18 (3.34 mg/ml, 6.06 mmol
of Lys per milliliter). (C) A-18 (3.02 mg/ml, 6.06
mmol of Asp per milliliter), A-78 (1.22 mg/ml,
6.06 mmol of Asp per milliliter), and C-78 (1.65
mg/ml, 6.06 mmol of Lys per milliliter). A Super-
dex 75 HR column (Pharmacia) and TSK gel
G3000PWXL ( Tosoh, Japan) were used for GFC
measurements. The eluent used was 10 mM
phosphate buffer with 50 mM NaCl (pH 7.4); the
flow rate was 0.3 ml/min. Detection was done by
refractive index at room temperature.

Fig. 2. Schematic model for chain length–dependent recognition through the formation of PIC
micelles.

Table 1. Size and Mw for mixtures of block copolymers. ND, not detected.

Polyanion Polycation
Average

diameter*
(nm)

Polydispersity
index*

Mw† (g/mol)

Matched pairs
A-18 C-18 31.5 0.0532 4.97 3 105

A-78 C-78 40.5 0.0265 3.12 3 106

Unmatched pairs
A-18 C-78 ND ND 3.95 3 104

A-78 C-18 ND ND 4.33 3 104

Addition of polycation to mixed polyanions
A-18 and A-78 C-18 30.8 0.0654 5.03 3 105

A-18 and A-78 C-78 40.3 0.0534 3.13 3 106

Addition of polyanion to mixed polycations
A-18 C-18 and C-78 30.9 0.0731 5.00 3 105

A-78 C-18 and C-78 40.9 0.0698 3.13 3 106

*Average diameter and polydispersity indices were obtained by cumulant analysis of DLS using a DLS-700 (Otsuka
Electronics, Japan) at 25.0° 6 0.1°C. †Molecular weights were determined by SLS using DLS-700 at 25.0° 6 0.1°C.
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Figure 1.4. The supramolecular system recognizes molecular length. In solution only oppositely charged

pairs of polymers with the same block length were found. As a result the core-shell type assemblies showed

a narrow size distribution. From Harada & Kataoka (1999).

shown in Figure 1.5 form extremely strong complexes with their guest molecules,

the tetrahedral ammonium ion and water, respectively.

Molecular Recognition of Thickness

Müller and Wenz described the ability of α-cyclodextrins to account for the

thickness of molecular guests (Müller & Wenz, 2007). In their study, a series

of bolaamphiphiles with increasing central thickness was synthesized (see Fig-

ure 1.6). The central thickness was calculated based on electron density maps

created by semiempirical calculations. An indirect proportionality of molecular

Figure 1.5. Both synthetic receptors shown in this figure account for the tetrahedral geometry of their

comprised molecular guests. From Lehn (1988).
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Synthesis of bolaamphiphilic guest molecules 1–4 : 4,4’-Bis(a-
minomethyl)tolane (1), (E)-4,4’-bis(aminomethyl)stilbene
(2), and (E)-4,4’-bis(aminomethyl)-a,a’-dibromostilbene (4),
were synthesized by DelNpine reaction of urotropine with
4,4’-bis(bromomethyl)tolane,[41] (E)-4,4’-bis(bromomethyl)-
stilbene,[42] and (E)-4,4’-bis(bromomethyl)-a,a’-dibromostil-
bene (5), respectively. 4,4’-Bis(aminomethyl)-bibenzyl (3)
was obtained by catalytic hydrogenation of the stilbene de-
rivative 2.

Determination of the binding data by ITC : Bolaamphiphiles
1–4 were sufficiently water-soluble to allow isothermal mi-
crocalorimetric titration with a-CD (ITC). The titration
curve was fitted by nonlinear regression, assuming a 1:1 stoi-
chiometry of the inclusion compound. The binding constant
KS and the molar binding enthalpy DH8 were obtained as
fitting parameters, from which the binding free energy DG8
and binding entropy DS8 were derived (Table 4). In addi-
tion, these binding data are plotted in Figure 4 as the func-
tion of the thickness ďeq of the guest. The tremendous influ-
ence of ďeq on the stability of the a-CD inclusion com-
pounds becomes evident. The tolane derivative 1 with a
somewhat loose fit showed surprisingly the highest binding
free energy while the dibromo compound 4 was not included
at all. This finding shows that some mobility of the guest
inside the CD cavity is essential for reaching a high binding
constant. Otherwise, the loss of entropy becomes too unfa-

ACHTUNGTRENNUNGvorable, as demonstrated by the data of the bibenzyl deriva-
tive 3. A similar influence of the mobility of the guest on
the binding free energy DG8 was already found for the in-
clusion of naphthalene derivatives in a-, b- and g-CD by
Schneider et al. 15 years ago.[43] On the other hand, for the
inclusion of alicyclic, alibicyclic and alitricyclic amphiphilic
guests in b-CD no upper limit for the size of the guest was
found, but the binding free energy increased linearly with
the size of the guest as well.[44] The steric constraints for
normal amphiphilic guests might be less pronounced than
for bolaamphiphilic ones. A normal amphiphile can still
move along the Cn axis to avoid steric hindrance, while the
location of a bolaamphiphile is locked in the CD because of
both hydrophilic head groups persisting to stay out of the
cavity. Therefore bolaamphiphiles are ideal guests for study-
ing thickness recognition in detail.

Scheme 2. Schematic drawings of bolaamphiphilic guests, dark gray: hy-
drophilic, light gray: hydrophobic, z : main axis of the molecule.

Table 4. Thermodynamic data of the inclusion of bolaamphiphilic guests
1–4 in a-CD in 50 mm phosphate buffer pH 3, measured by isothermal ti-
tration microcalorimetry.

Guest KS [m�1] �DG8
[kJmol�1]

�DH8
[kJmol�1]

�DS8
[Jmol�1K�1]

1 8880�329 22.54�0.38 25.87�0.09 11.2�1.3
2 708�7 16.28�0.10 21.85�0.03 18.7�0.3
3 59�2 10.13�0.29 19.31�0.50 30.8�1.9
4 no bind-

ing
– – –

Figure 4. ITC binding enthalpies DH8 and binding free energies DG8
(top), and binding entropies DS8 (bottom) as the function of the thick-
ness ďeq of the guest.
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Figure 1.6. Müller & Wenz investigated the molecular recognition of thickness. The central thickness of

the shown bolaamphiphiles increases from the first to the forth molecule. The molecular thickness correlates

indirectly with the binding affinity to α-cyclodextrin. The fourth molecule exceeds a threshold and no

complexation to the α-cyclodextrin cavity could be detected. From Müller & Wenz (2007).

thickness and the binding free energy ∆G to α-cyclodextrin was observed and

the absolute value of the binding free energy decreases from the first to the third

molecule (∆G0(1) = −22.54 kJ mol−1 ± 0.38, ∆G0(2) = −16.28 kJ mol−1 ± 0.10

and ∆G0(3) = −10.13 kJ mol−1 ± 0.29). No binding was detected for the forth

compound, since its thickness exceeded the diameter of the α-cyclodextrin cavity.

Molecular Recognition of Size, Shape, and Charge.

Hof et al. (2003) presented a biomimetic receptor for acetylcholine based on a

cavitand (see Figure 1.7). Four negatively charged carboxylate groups were po-

sitioned at the entrance of a deep pocket. For the tetramethylammonium cation

complex formation could be measured by NMR titrations (Ka = 3800 M−1 ±600),

whereas the larger tetrapropyl- and tetrabutylammonium did not show any

evidence of complex formation, presumably due to steric barriers. The posi-

tively charged molecules choline and acetylcholine were bound with high affinity
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Figure 1.7. The synthetic receptor accounts for size, shape and charge. High binding affinities were found

for the positively charged choline molecule (charge recognition) and adamantane, which shows a strong

shape complementarity with the deep pocket (shape recognition). From Hof et al. (2003).

(Ka = 25900 M−1 ± 700 and Ka = 14600 M−1 ± 1200), whereas the structurally

closely related but zwitterionic molecule L-carnithin only exhibited a weak bind-

ing affinity (Ka = 150 M−1 ± 10). Adamantane forms a 1:1 complex to the re-

ceptor as detected by 1HNMR, suggesting a strong shape complementarity with

the deep pocket of the receptor.

1.1.3 Host Design

Until recently, the design of supramolecular systems has often been the result

of longtime work, experience, time-consuming trial and error approaches or even

serendipity. Often, numerous optimization steps are accomplished before a suf-

ficient binding affinity of a synthetic receptor to a particular guest molecule is

achieved. The work of Schrader et al. towards a synthetic adrenaline receptor

offers insights into the steps involved in the rational design of a synthetic host

(Schrader, 1996, 1998; Herm & Schrader, 2000; Herm et al., 2001).

Over the years the Schrader group has presented successive generations of

synthetic adrenaline receptors, that aim to mimic the architecture of the na-

tive archetype, the β-adrenergic receptor. Figure 1.8 illustrates the presumed

binding mode of the neurotransmitter noradrenaline to the β-adrenergic recep-

tor (Schrader, 1996). The ammonium functionality of noradrenaline is bound via

Coulombic interactions and hydrogen bonds to an aspartate carboxylate group

of the receptor. Furthermore, the ammonium protons form out cation-π inter-
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Figure 1.8. The interaction of noradrenaline with the binding site of the β-adrenergic receptor. Within

this complex three types of interactions are found: π-stacking, cation-π interaction and hydrogen bonding.

Adopted from Schrader (1996).

actions with three electron-rich aromatic residues (Phe, Tyr, Trp). Each of the

hydroxyl groups of noradrenaline interacts through the formation of a hydrogen

bond to one of the serine hydroxyl groups. The aromatic catechol ring is buried

between two phenylalanine aromatic rings so that a double π-stacking is presumed

(Trumpp-Kallmeyer et al., 1992).

P

P
OCH3O

O

O

H3CO

O

para/meta

Figure 1.9. The first structural motif for a synthetic receptor that mimics the interaction properties of the

β-adrenergic receptor. The receptor is based on a bisphophonate motif in meta- or para-position. Adopted

from Schrader (1996).
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Figure 1.10. The second generation of synthetic receptors that mimic β-adrenergic receptors. To allow for

π-stacking of the receptor with the catechol moiety of noradrenaline aromatic groups were added. Adopted

from Schrader (1998).

Schrader started with a basic structural motif based on two phosphonate

groups and an aromatic ring (see Figure 1.9) (Schrader, 1996). The para-form

of the receptor exhibited strong binding affinities to 1,2-amino alcohols (R-

propanolol Ka = 66000 M−1 in DMSO). The major driving force for complex

generation is the formation of hydrogen bonds and electrostatic interactions be-

tween the amino and hydroxyl group of the guest molecules and the phosphonate

oxygens of the receptor. These interactions imitate the ammonium-aspartate in-

teraction in the native β-adrenergic receptor. Cation-π interaction – although

structurally plausible – could not, however, be experimentally verified.

The second generation of synthetic adrenaline receptors focused on the mimicry

of the double sandwich-type π-stacking in the natural counterpart (Schrader,

1998). The aim was to retain both phosphonate groups for selective binding of

the amino alcohol moiety, but also to provide a hydrophobic binding epitope for

the aromatic catechol ring of noradrenaline. Based on the first structural motif,

phosphonate esters with aromatic rings were synthesized (see Figure 1.10). For the

receptor shown in Figure 1.10, π-stacking was observed with D-(-)-threo-2-amino-

1-(4-nitrophenyl)-1,3-propanediol. However, the association constant was clearly

lower compared to the ones obtained for the first receptor (Ka = 18900 M−1 in

DMSO). Reasons for this were mainly seen in entropic disadvantages due to an

increase of rotational degrees of freedom.



14 1 Introduction

O O

PP

OO

NO2 NO2

O

O O

O

OMeMeO

Figure 1.11. The third generation of synthetic receptors that mimic β-adrenergic receptors. To increase the

preorganization of the receptor a macrocycle was introduced. Adopted from Herm & Schrader (2000).

This was tackled in the third generation. A new approach was introduced which

is based on the preorganization concept of the host molecule (Herm & Schrader,

2000). The novel synthetic host shown in Figure 1.11 consists of a macrocycle

based on aromatic building blocks and two attached phosphonate groups. In

order to obtain electron poor aromatics, two of the aromatic building blocks

had nitro groups as substituents. High binding affinities were measured for 1,2-

amino alcohols (e.g. R-propanolol Ka = 22, 500 M−1 in DMSO, Ka = 1, 250 M−1

in methanol) but no π-stacking could be detected for catecholamines. Herm &

Schrader (2000) assumed that the foreseen aromatic units could perhaps not

orientate in the appropriate manner due to steric barriers.

The fourth generation reverted to the original structural motif of the first re-

ceptor but held on to the preorganization concept of the third (Herm et al., 2001).

The novel macrocycle asserted an orientation of the aromatic parts for which a π-π

stack to the catechol ring of noradrenaline was observed (see Figure 1.12). Fur-

thermore, an isophtalamide group was inserted resulting in additional hydrogen

bonds to a phenolic hydroxyl group of the guest molecule. This synthetic receptor

finally was able to bind dopamine and noradrenaline in water with comparably

high affinity (Ka = 246 M−1 ± 38% and respectively Ka = 215 M−1 ± 12%).
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Figure 1.12. The fourth generation of synthetic receptors that mimic β-adrenergic receptors. This receptor

reverts to the original bisphosphonate motif and retains the macrocycle. Adopted from Herm et al. (2001).

1.1.4 Computational Approaches in Supramolecular Chemistry

Today, computational chemistry plays an important role in the development of

synthetic host-guest complexes. It comprises a variety of computational methods.

Some of these simulate the dynamical behavior of chemical systems (e. g. molecu-

lar dynamics). Others aim at the prediction of thermodynamical properties (e. g.

quantitative structure property relationships). Sometimes computational meth-

ods (e. g. ab initio calculations) provide precise access to properties that might

be inaccessible for experimental procedures (Connors, 1997; Lamb & Jorgensen,

1997; Lipkowitz, 1998). In the following sections representative computational

approaches are summarized together with their applications in supramolecular

chemistry.

1.1.4.1 Quantitative Structure Property Relationship

Quantitative structure property relationship (QSPR) techniques try to correlate a

property of a molecule or a molecular system to calculated structural descriptors

(Hansch & Fujita, 1964; Yang & Huang, 2006). As a result, statistical models are

obtained that are potentially able to predict a molecular property of interest on

the basis of molecular descriptors. Beyond this, the generated statistical models

can sometimes be interpreted and thus help to reveal the importance of particular

descriptors for the predicted property. A large variety of computable molecular
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descriptors is available for application in QSPR studies (Todeschini & Consonni,

2000). These descriptors account for example for simple one-dimensional proper-

ties such as molecular weight, or the occurrence of a defined fragment, for two-

dimensional properties such as the topology of a molecule, for three-dimensional

properties that describe molecular shape, and for elaborate quantum chemical

properties.

To generate a QSPR model, a set of molecules is required for which the consid-

ered property is already known, for example, from experimental measurements.

This set serves as the training basis for which a regression method generates the

QSPR model. Usually, the generation of a QSPR model involves a descriptor

selection that aims at reducing the number of descriptors that do not contribute

to the model generation, thus enhancing the interpretability and generalizability

of the model (Blum, 1997).

Katritzky et al. (2004) conducted a QSPR study, aiming at a QSPR model

for the prediction of binding free energies of host-guest complexes between β-

cyclodextrin and various guest molecules. Experimental binding free energies of

218 guest molecules served as the training set. QSPR regression models were built

on the basis of two different molecular descriptors derived from two different tools,

namely CODESSA-PRO [www.codessa-pro.com], which comprise a large vari-

ety of descriptors, and TRAIL (Solov’ev et al., 2000), which are fragment based

descriptors. In tenfold cross-validation, cross-validated squared linear correlation

coefficients r2
cv of 0.78 and 0.85, respectively were obtained for the predicted and

the experimental binding free energies. For the TRAIL descriptors, the training

set had to be reduced to 195 molecules since the remaining molecules exhibited

fragments of rare occurrence. Thus, the comparison appears unfair.

1.1.4.2 Docking

Computational docking addresses the questions whether two molecules (e. g. a

protein and a ligand) form a complex, how strong this complex is, and what the

complex looks like (Rarey et al., 2007). In principle, the docking algorithm con-

sists of two parts: first, the pose-generation algorithm, and second, the scoring

function, which facilitates a prediction of the binding free energy ∆G of the com-

plex. In contrast to time-consuming molecular dynamics simulations (see Section

1.1.4.5), docking tools are designed to provide solutions in the range of seconds to

minutes. This efficiency allows for so-called virtual screenings (see Section 1.2).

Therefore efficient algorithms are needed for both, the docking and the energy

assessment.
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The pose generation comprises the search for an optimal translation, orienta-

tion and conformation of the ligand within the binding site of the protein. Dif-

ferent algorithmic approaches have been proposed (Brooijmans & Kuntz, 2003).

Some generate conformational ensembles for the ligand before the placement and

then dock each single representative independently into the binding site (Halgren

et al., 2004; McGann et al., 2003). Others rely on the fragmentation of the ligand.

From the generated fragments, the ligand is reconstructed within the binding site

(Kuntz et al., 1982; Rarey et al., 1996a). Furthermore, evolutionary algorithms

have been proposed (Jones et al., 1997; Morris et al., 1998). Here, the confor-

mation, translation, and orientation of the ligand is coded into a virtual chro-

mosome. Genetic operations such as mutation and crossover (i.e. recombination)

act on these virtual chromosome and thus cast the search for an optimal pose

as an evolutionary process. During the binding process the protein is presumed

to remain rigid. However, several attempts were made to incorporate flexibility

on the receptor side (see Section 2.1.1) (Claussen et al., 2001; Wei et al., 2004;

Osterberg et al., 2002).

Basically, three different types of scoring functions are applied in current pro-

tein–ligand docking tools (Gohlke & Klebe, 2002): 1) Empirical scoring functions

are derived from experimental data by regression (Böhm, 1994). Here, a set of

protein-ligand complexes with a known structure and experimentally determined

binding affinities is exploited by regression analysis. As a result, the binding

free energies are decomposed into additive energy increments that are assigned

to chemical subgraphs. 2) Knowledge-based scoring functions follow the inverse

Boltzmann principle. Here, a geometrical relation between two atoms is consid-

ered as energetically more favorable the more frequently it was observed in crystal

structures. For this purpose, crystal structures of protein-ligand complexes are

analyzed to derive distance distributions for a defined set of atom-atom interac-

tions. The locations of the maxima are considered as optimal distances (Muegge

& Martin, 1999; Gohlke et al., 2000). Force field related scoring functions directly

apply the force field expressions (see Section 1.1.4.4) to assess the binding free

energies (Weiner et al., 1984; MacKerell et al., 1998). Only recently, a novel type

of scoring functions was proposed by Raha & Merz (2005). They report the appli-

cation of semi empirical quantum mechanics to estimate electrostatic interactions

and the solvation free energy during complexation. However, the performance of

this scoring function in a large scale virtual screening setting (see Section 1.2)

has still to be tested.

Recently, two studies were published in which docking was applied in supra-

molecular chemistry to identify optimally interacting host-guest systems. Both
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studies demonstrated the potential and the possible impact of docking meth-

ods for the optimization of synthetic host-guest systems (de Jong et al., 2002;

Corbellini et al., 2004). Details are given in Section 3.1.

1.1.4.3 De Novo Design

In contrast to docking tools, de novo design tools virtually construct an entirely

new guest molecule, following defined rules for the virtual synthesis (Schneider

& Fechner, 2005). In the case of guest molecules for protein binding sites, the

guest molecule is constructed under consideration of the properties of the protein

binding site. The respective algorithm aims at constructing guest molecules with

high binding affinity to the protein.

De novo tools differ in the approach for generating the molecules. Some tools

begin with a fixed fragment and then construct the molecule incrementally (grow-

ing strategy) (Degen & Rarey, 2006), others place fragments independently into

the binding site and subsequently link these fragments together (linking strat-

egy) (Eisen et al., 1994), and sometimes both types are combined (Böhm, 1992;

Wang et al., 2000). The advantage of de novo tools over docking tools is that

molecules can be generated that cannot be found in standard databases. Thus,

potentially new and patentable structures emerge. The major drawback is the

problem of synthetic feasibility. It often occurs that a generated molecule is not

synthesizable (Schneider & Fechner, 2005).

Recently, the de novo tool ConCept was introduced which is particularly tai-

lored to the de novo design of small synthetic receptors for given guest molecules

(Chen & Gilson, 2007). ConCept employs a design strategy based on an evolu-

tionary algorithm. Mainly, the method comprises two parts. In the first part, a

relatively simple energy function is used to guide an evolutionary algorithm, in

which a large number of candidate receptors is generated around a single rigid

conformation of a targeted guest molecule. Here both, a linking and a growing

strategy, are implemented for receptor construction. In the second part, the more

sophisticated M2 energy model (Gilson et al., 1997; Chang & Gilson, 2003) is

used to energetically assess the most promising candidates from the first part.

ConCept was applied for designing water-soluble synthetic receptors for ade-

nine. Four synthetic receptors were presented, all of which contain interaction

groups found in the native β-adrenergic receptor (see Figure 1.13) However, the

synthetic accessibility was not assessed.
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2.3. Illustrative Application: Design of Aqueous Ad-
enine Receptors.The methods provided by ConCept are
illustrated here in an application to the design of aqueous
adenine receptors. A stable conformation of adenine obtained
from a brief conformational search was used as a starting
point. Except as otherwise noted below, all parameters of
the algorithm were set to their default values (Table 1). Three
separate design runs were executed for the Grow and Link
methods, two were executed for the Cyclize method, and
one was executed for the Receptor Elaboration method. In
each case, the highest-ranked 2-3 receptors from each design
run, based upon the change inE in eq 1, were further assessed
with the M2 algorithm. Thus, M2 runs were carried out for
about 15 designed receptors in all. The chemistries used for
each design method are as follows:

Grow. Peptides were constructed with glycine as the initial
component and a chemical library comprising all 20 biologi-
cal L-R-amino acids. The design with the highest computed
affinity, Pep, is described in the Results.

Link. Formamide, acetamide and urea were used as initial
components, and the full library comprised imidazole,
carbazole,N-methylacetamide,N-methylformamide, acetal-
dehyde, acetamide, acetone, acetic acid, ammonia, an-
thracene, benzene, bromine, chlorine, cyclohexane, cyclo-
pentane, dimethylamine, dimethylether, ethane, fluorine,
formic acid, formaldehyde, iodine, methane, methanol,
methylaetate, methyl formate, methylamine, naphthalene,
o-phthalimide, phosphoric acid, propane, pyridine, sulfonic
acid, urea, and water. The best resulting receptor is termed
Link .

Cyclize.The initial monomers were glycine, toluene, 4-(1-
methyl-1-phenylethyl)phenol, calixarene, ethane, ethanol,
(2E)-but-2-ene, methanol, 4-aminobenzoic acid, 4-hydroxy-
benzoic acid, 3-hydroxybenzoic acid,R-glucose, and propan-
1-ol. In order to avoid excessively complex macrocycles,
switchesSmutation andSsecondwere set to disable single atom
mutation and formation of secondary links, and compounds
with rings were excluded from the library of components
used to modify the monomers. This library comprised

N-methylacetamide,N-methylformamide, acetaldehyde, ac-
etamide, acetone, acetic acid, ammonia, benzene, bromine,
chlorine, ethane, fluorine, formic acid, formaldehyde, iodine,
methane, methanol, methylacetate, methyl formate, methy-
lamine, phosphoric acid, propane, pyridine, sulfonic acid,
urea, and water. The Cyclize calculations yielded the novel
macrocyle Cyclo, discussed below. The algorithm also
happened to generateR- and â-cyclodextrin as potential
receptors for adenine, but these well-known receptors are
not discussed further.

Receptor Elaboration.A molecular clip24 was elaborated
by the Grow algorithm, using the same chemical library as
for the Cyclize runs, above. TheSsecondswitch was turned
off to avoid excessively complex designs. The best design,
termedmClip , is presented.

3. RESULTS

Figure 2 illustrates the interaction points (dots) and
interaction centers (spheres) computed for adenine and used
for the design of new receptors: blue and red indicate points
suitable for hydrogen bond acceptors and donors, and green
indicates points suitable for nonpolar groups. No nonpolar
interaction centers are present because adenine’s atoms are
significantly polar. Nonetheless, the design algorithm does
position nonpolar and/or aromatic groups above and below
the adenine plane, as detailed below.

3.1. Grow Method: Receptor Pep.According to the
initial design, receptorPep (WKGGWC) sandwiches the
adenine between two indole groups, while a salt-bridge
between the two chain termini holds the rest of the peptide
in what amounts to a cyclic conformation. Polar groups from
the peptide furthermore form hydrogen bonds with one edge
of the adenine molecule. Full M2 calculations, which include
extensive conformational analysis, predict that the most stable
conformation of the complex (Figure 8) is similar to that in
the design: in particular, the two indole groups are positioned
much as in the complex and are thus preorganized to bind
adenine. The lysine and cysteine side chains do not interact
closely with the adenine guest, so this design could probably

Figure 7. Chemical structures of the designed adenine receptors.

CONCEPT: SYNTHETIC RECEPTORS FORTARGETED LIGANDS J. Chem. Inf. Model. G

Figure 1.13. The four synthetic receptors were generated by means of the de novo tool ConCept for

adenine as the guest molecule. From (Chen & Gilson, 2007).

1.1.4.4 Energy Minimization

During energy minimization, the energy of a molecule or a complex of molecules is

calculated by means of a force field, which is an analytical function that depends

on the atom coordinates and the bonds of the considered molecules. This function

has a number of additive terms that represent potentials for assessing energetic

contributions of pairs of bonded and non-bonded atoms. Force fields are based on

classical mechanics where atoms are treated as rigid spheres and bonds as Hookian

springs. The principal assumption is that molecules tend to have standardized

values for bond angles and bond lengths. Force fields differ in the complexity of

the underlying parameter set and the type of interactions that are considered.

So-called cross terms can account for the coupling of different interactions. The

parameter sets are often derived from calibrations to experimental measurements,

but also from quantum chemical calculations. A frequently applied force field for

the optimization of small molecules is the MMFF94 force field (Halgren, 1998,

1999a,c,b), whereas the Amber force field is widely used for proteins and nucleic

acids (Weiner et al., 1984).

A force field minimization aims at finding minimum energy conformations of a

molecular system. The result of a force field minimization depends largely on the

choice of the minimization algorithm and the selection of an appropriate input
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geometry. If the input geometry is far away from the global optimum and local

minima are in between, no significant result can be expected.

1.1.4.5 Molecular Dynamics

Methods from the field of molecular dynamics are applied for simulating dynam-

ical properties of molecular systems. Forces that act on the atoms of the system

are calculated by means of a force field. The application of Newton’s second law

of motion allows for calculation of the changes of atom velocities from these forces

and thus atom movements can be deduced.

F = m · a = m · ∂2r

∂t2
(1.1)

where F is the force, m is the mass, a is the acceleration, r is the atom position

and t is the time. A trajectory of the dynamical behavior of a molecular system

is obtained by integrating discrete time-steps of the system.

Koehler et al. simulated the dynamics of α-cyclodextrin in aqueous solutions

and under crystalline conditions (Koehler et al., 1988). Their study gave detailed

insights into the conformational differences of both states.

1.1.4.6 Quantum Chemistry

In computational quantum chemistry, methods and principles from quantum me-

chanics are applied to molecules, their interactions, and reactions. The state of a

system, such as a molecule, is described by means of a wave function, which is the

eigenfunction of the Schrödinger equation (Schrödinger, 1926b,d,a,c). One of the

central postulates of quantum chemistry states that the properties of a system

can be unambiguously derived from its wave function. So-called ab initio meth-

ods are the most accepted methods in quantum chemistry. In these methods, only

natural constants are used. Thus, chemical bonds, atom types, hybridizations of

atoms, charges etc. are the direct result of ab initio calculations and require no

further fitted parameters. However, these calculations are very time-consuming

and generally only applicable for systems with at most 100 atoms. A slightly

different approach is described in density functional theory. Here, the properties

of a system are represented as a functional of the density (Hohenberg & Kohn,

1964; Kohn & Sham, 1965). In principle, this approach is exact, but the forms of

the functionals are unknown so that empirical or semi-empirical functionals are

needed. In many cases these assumptions allow for reliable calculations of molec-

ular or intermolecular properties in a clearly shorter range of time compared to

ab initio methods.
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Quantum chemical calculations can, for instance, provide insights into sys-

tems that might be inaccessible for experimental procedures. To provide just one

example, Raub & Marian (2007) studied the strength of hydrogen bonds on a rep-

resentative set of chemical subgraphs on the basis of second order Møller-Plesset

perturbation theory calculations (MP2). Furthermore, they split the entire bind-

ing energy into donor and acceptor atom contributions. These were implemented

into the scoring function of FlexX. As a result, the scoring function performed

clearly better than the original scoring function of FlexX with respect to the

correlation of predicted to experimentally determined binding energies (Raub

et al., 2007) of a dataset consisting of 800 protein-ligand complexes.

1.2 Virtual Screening

In the late 1980s, much effort was spent for the development of novel experimental

methods to overcome the lead structure discovery bottleneck in drug discovery

(Klebe, 2006). The idea to perform large-scale automation of drug screening orig-

inated from the advent of modern techniques such as computer-controlled robots,

miniaturization and highly sensitive electronic detection devices. A result was the

concept of high-throughput screening (HTS) (Smith, 2002).

In a typical high-throughput screen, miniaturized biological assays automati-

cally test hundreds of thousands of small molecular compounds for their affinity

towards a particular protein target. It was anticipated that this technique could

lead to an unprecedented number of novel lead structures, (Klebe, 2006); effec-

tively, however, the truth points in the opposite direction (Bolten & DeGregorio,

2002; Lahana, 1999) and a decline of productivity in drug development can be

observed (Booth & Zemmel, 2004). Several reasons for this were identified. The

gain in quantity and speed has the drawback of reduced accuracy (Bajorath,

2002). Aggregation and optical absorbance of the compounds, a reactivity, or

poor solubility can cause false-positive detection signals and result in low true-

hit rates (Jenkins et al., 2003). Furthermore, so-called frequent hitters, molecular

compounds that show up as hits in many different biological assays, considerably

perturb hit identification projects (Roche et al., 2002). Additionally, the costs

of HTS are relatively high. On average, the realization of one single HTS costs

approximately $75,000, not including the expenses for developing an appropriate

biological assay (Bajorath, 2002). Then, due to the high number of false positive

hits, additional laborious verification experiments are essential that increase costs

and time. Thus, the need for alternative techniques becomes evident.
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Figure 1.14. Ligand- and structure-based virtual screening. If one or more active drugs are known, a ligand-

based virtual screening is possible. Structure-based virtual screening needs the structure of the protein target.

In the first case the ranking is based on the similarities, whereas in docking ranking is based on the docking

scores. The most promising candidates of the ranking lists are submitted to experimental testing.

Virtual screening (VS) is one such attempt and can be understood as a virtual

analog to experimental high-throughput screening. The term VS encompasses a

score of computational techniques, each of which aims at reducing a huge virtual

library of potential drug candidates to a more manageable size (Walters & Mur-

cko, 2002). Basically, these methods can be categorized as being either ligand

based (also known as similarity based) or structure based (Lengauer et al., 2004).

In both cases VS is knowledge-driven and its outcome largely depends on the

amount and the quality of available data (Klebe, 2006). Whereas ligand-based

VS techniques require known active compounds as a starting point (see Section

1.2.1), structure-based methods depend on the availability of three-dimensional

protein structures (see Section 1.2.2). The compound libraries used for VS can

comprise molecules that do not necessarily exist. Thus, the considered chemical

space can be significantly larger than in HTS. Moreover the “virtual testing”

does not directly consume valuable substance material (Klebe, 2006). Methods

from both categories of VS techniques have produced success stories and retrieved

hits that led to lead candidates for the development of novel drugs (Klebe, 2006;

Kämper et al., 2007). Nevertheless, virtual screening methods often suffer from

crude assumptions or approximations.

In some recent studies, direct comparisons between VS and HTS were made

(Doman et al., 2002; Paiva et al., 2001; Polgár et al., 2005). In all three cases the

hit rates found for the VS methods were considerably higher than for HTS. How-

ever, it is widely agreed that HTS and VS should be regarded as complementary
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rather than as alternatives. In this manner both methods mutually reduce their

drawbacks. In fact, VS can help to lower the number of false positives of HTS

(Jenkins et al., 2003) and limit the costs by focusing the experimental testing to

promising candidate molecules.

1.2.1 Ligand-Based Virtual Screening

Ligand-based VS techniques rely on the assumption that structurally similar

molecules exhibit similar binding properties with respect to a given target (Mar-

tin et al., 2002). The methods depends on the availability of one or more com-

pounds (query structures) that are known to bind to the considered target pro-

tein. For all compounds of a database, similarities to each of the query struc-

tures are calculated. From these similarities ranking lists are derived where the

most similar structures are supposed to be the most promising candidates. Dif-

ferent approaches for describing similarity between molecules have been proposed

(Sheridan & Kerarley, 2002; Lengauer et al., 2004): some rely on the comparison

of molecular graph topology (Rarey & Stahl, 2001) (see Section 4.1.2), other tools

compare the three-dimensional shape of molecules (Grant et al., 1996; Lemmen

et al., 1998a) (see Section 4.1.3), and some generate so-called molecular finger-

prints (see Section 4.1.1). In general, ligand-based methods are significantly faster

than structure-based screening methods. Today, ligand-based VS is a standard

tool for the identification of new drugs for a given protein target (Kämper et al.,

2007).

1.2.2 Structure-Based Virtual Screening

Structure-based VS exploits the three-dimensional structure of the target pro-

tein. Commonly, docking methods are applied that generate complexes for all

molecules of a defined virtual database and the binding site of the considered

target protein (see Section 1.1.4.2). Ranking lists are derived from the esti-

mated scores. The compounds with the best scores are supposed to be the most

promising candidates for experimental verification. Aside from docking, structure-

based ligand design also comprises, for example, structure-based pharmacophore

searches. Here, a pharmacophore is derived from so-called interaction hot spots in

the binding site. Pharmacophore tools determine for each compound of a database

whether the compound fits into the pharmacophore model of the binding site

[unity, www.tripos.com]. Until recently, about 50 protein targets were used for

structure-based virtual screenings (Klebe, 2006). Considerable success studies

were reported in both academia and industry (Bajorath, 2002; Klebe, 2006).
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1.3 Goals and Outline of this Thesis

The aim of this thesis was to develop and to validate computational techniques

that assist experimentalists in the development of novel host-guest systems. A ma-

jor focus thereby was to transfer the concept of virtual screening to supramolec-

ular chemistry.

In Part I (Chapter 2) I will describe the development of a tool for the fast

and reliable structure prediction of hydrogen bond-based synthetic host-guest

complexes. The tool is based on the algorithms and data structures of the effi-

cient protein-ligand docking tool FlexX (Rarey et al., 1996a). FlexX considers

molecular flexibility only for the ligand and treats the receptor as rigid. How-

ever, for a number of synthetic receptors, this assumption cannot be carried over,

since they can exhibit a high degree of flexibility. Thus, novel algorithms were

developed that account for the molecular flexibility of both complex partners.

The algorithms were integrated into the tool FlexR. FlexR was tested on a

set of experimentally derived crystal structures of synthetic host-guest complexes

regarding its ability to generate near-native complex structures. Beyond this, the

tool was designed to be efficient enough to allow for virtual screenings.

Part II of this thesis (Chapters 3, 4, and 5) concentrates on β-cyclodextrin and

derivatives as host molecules. In Chapter 3, I describe a novel protocol for the

identification of tailored synthetic receptors for a given guest molecule based on

molecular docking. We chose camptothecin as a guest molecule and generated a

library of β-cyclodextrin based synthetic receptors that were sequentially docked

onto camptothecin. Selected receptors with promising properties regarding the

complexation of camptothecin were experimentally verified. The major driving

force of the complex formation between the β-cyclodextrin host and a guest

molecule are hydrophobic interactions (Wenz, 1994; Connors, 1997; Rekharsky

& Inoue, 1998). Since FlexR was particularly tailored towards hydrogen bond

based host-guest complexes, it could not be applied for β-cyclodextrin inclu-

sion complexes. Hence, two docking tools, AutoDock and GlamDock both

with a known capability of handling hydrophobic interactions were used. Chap-

ter 4 focuses on a virtual screening technique that uses information solely from

guest molecules. The method combines a ligand-based virtual screening technique

with a quantitative structure property relationship (QSPR) model that predicts

the binding free energy of the complex between the guest molecule to the syn-

thetic host. I applied this method for identifying novel guest molecules for β-

cyclodextrin. In Chapter 5 I evaluate three different regression methods, namely

principal component regression (PCR), partial least squares regression (PLSR)
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and support vector machine regression (SVMR) regarding their applicability for

the prediction of thermodynamical properties of complexes between various guest

molecules and β-cyclodextrin as the host. I identify reasons for differences in the

predictability of thermodynamical quantities.





Part I

Development of a Virtual Screening Tool for

Synthetic Host-Guest Complexes
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Flexible Docking of Guest Molecules into Synthetic

Receptors Using a Two-Sided Incremental

Construction Algorithm

This chapter describes a novel computational method which tackles the problem

of docking flexible guest molecules into flexible synthetic hosts. The developed

algorithms were implemented into the tool FlexR (Steffen et al., 2006). The

conformational sampling of the guest and the host molecule is handled by apply-

ing a new approach: the conformational spaces of both molecules are explored

simultaneously using information from the respective counter-molecule.

In Section 2.2 we introduce the algorithms of our method. We validate the

method by means of a test set, consisting of crystallographically determined

host-guest complexes in Section 2.3. Furthermore an application of the tool was

performed, in which we identified potentially competing guest molecules of the

selective creatinine receptor of Bell et al. (1995) from a database of molecular

compounds (see Section 2.4).

2.1 Introduction

During the development of a synthetic receptor, one of the major goals is to

achieve a high binding affinity to a considered guest molecule. In some cases it is

even more important to secure high selectivity of the receptor to this particular

guest. Thus, additional efforts often have to be expended until the receptor is

specific enough to discriminate between different guest molecules. Due to the

industrial relevance of synthetic receptors (see Section 1.1), the need for methods

that allow for faster, more rational development becomes apparent. This need

mirrors a recent trend in medicinal chemistry. In earlier times the discovery of

drugs was often a question of extensive work and sometimes luck (Kubinyi, 1999).

Nowadays, a wide range of diverse methods and tools are available that assist in

the fast and rational development of novel drugs. One of the methods which a

medicinal chemist has at his disposal employs so-called docking tools (see Section

1.1.4.2 and 1.2.2).
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Figure 2.1. Two conformations of a synthetic receptor in presence and absence of a guest molecule and the

structural formula. The conformation shown in dark grey represents the holo-form. The apo-form is shown

in white. The significant conformational change is induced by the guest molecule. Adopted from Kämper

et al. (2006).

Current state-of-the-art tools for docking are all able to handle the flexibility

of the ligand. The efficient and reliable modeling of the protein’s flexibility, how-

ever, still remains a challenging task (see Section 2.1.1). Despite the fairly rough

assumption of a rigid receptor, numerous success stories have been published in

which docking tools have led to novel drug candidates (Kämper et al., 2007).

This supports the applicability of the docking approach for the rational design

of novel drug molecules and thus makes docking to be an interesting candidate

as a method for the rational design of synthetic host-guest complexes. However,

for a number of synthetic receptors, the assumption of a rigid receptor cannot be

applied, since these molecules can exhibit a high degree of flexibility similar to the

guest molecules (Otto, 2006). In many cases not only the guest molecule but also

the synthetic receptor adapts its conformation during complex formation. This

process is often referred to as induced fit (Hamilton & van Engen, 1987). As an

example, consider the synthetic receptor for nucleotides of Hamilton & van En-

gen shown in Figure 2.1 (Hamilton & van Engen, 1987). Here, two experimentally

observed conformations of the receptor are superimposed to each other. The dark

grey representation shows the apo-form (non-complexed) (CSD-ID: FODTEX),

the light grey conformation is taken from the crystal structure of the complex to

a guest molecule (CSD-ID: FODTIB). A clear structural change induced by the

guest molecule can be seen in the naphthalene moiety, which undergoes a sig-
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nificant turn during complex formation. In the complexed state (holo-form) the

naphthalene part is oriented approximately parallel to the pyridine plane (161.6◦),

whereas in the uncomplexed state (apo-form) the angle between the two planes

changes to 127.5◦. The conformational changes that a synthetic receptor can un-

dergo in presence of a guest molecule are huge. The example shows that the

conformation seen in a particular complex is only one of many possibilities the

host can adopt with only a small difference in conformational energy.

In the following text I describe computational tools that are in some respects

related to the method presented in this chapter. In Section 2.1.1 I detail attempts

to implement receptor flexibility into protein-ligand docking tools. Section 2.1.2

summarizes recent computational tools that are particularly tailored for the struc-

ture prediction of synthetic host-guest complexes.

2.1.1 Modeling of Receptor Flexibility in Protein-Ligand Docking

The integration of receptor flexibility into protein-ligand docking tools is the sub-

ject of current research (Carlson, 2002; Brooijmans & Kuntz, 2003; Murray et al.,

1999). The analysis of experimentally determined protein-ligand complexes of the

same protein but different ligands reveals distinct types of flexibility that can be

observed on the protein side when different ligands are bound (Krebs et al., 2003;

Gerstein & Krebs, 1998). The flexibility of proteins can, for example, consist of

local side-chain rotations, smaller adaptations of single loops or large movements

of complete domains. The complexity of the protein’s flexibility and the concur-

rent need for efficiency of docking tools require the use of simplifications in the

implementation. In relevant literature, approaches were proposed that tackle the

problem of receptor flexibility in protein-ligand docking with different assump-

tions. Representative approaches are detailed in the following sections.

Use of a Soft Scoring Function

One of the simplest ways to implement a limited receptor flexibility is to soften

the criterion for the steric fit of a ligand and a receptor. In this manner, over-

laps of the van-der-Waals radii of two atoms are penalized less (Jiang & Kim,

1991; Ferrari et al., 2004). In a retrospective virtual screening scenario Ferrari

et al. (2004) studied the performance of the standard version of Dock (Lorber

& Shoichet, 1998; Shoichet et al., 1999) in comparison with a modified version

employing a soft scoring function. The soft scoring function was obtained by di-

minishing the repulsive term in the Lennard-Jones potential, allowing for close

contacts between the ligand and the protein.1 Compared to the original scoring

1 Ferrari et al. replaced the original Lennard-Jones 12-6 potential with a 9-6 potential
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function, the soft scoring approach performed significantly better with respect

to the enrichment of known active compounds on top ranks of a derived rank-

ing list. This is due to the fact that larger active ligands could not be docked

into the binding site because of steric clashes that are more strongly penalized

when the original scoring function was used. However, the flexibility represented

by this approach is reduced and therefore only slight conformational adaptations

are considered. Thus, the outcome of a ”soft docking” largely depends on the

degree of flexibility which a considered protein can undergo.

Integration of Side-Chain Flexibility

Some protein-ligand docking tools integrate the handling of side-chain flexibility.

The docking tool Gold presented by Jones et al. allows for the rotation of hy-

droxyl groups within the binding site (Jones et al., 1995, 1997). Leach presented

an algorithm based on the A∗-algorithm with dead-end-elimination (Leach, 1994).

For a given orientation of a ligand, i. e. the translation and rotation, the algo-

rithm finds the combination of the side-chain and the ligand conformations with

the lowest energy with respect to the energy function. Possible conformations

for a side-chain are represented by discrete low-energy states from a rotamer li-

brary. The latest version (V. 4.0) of AutoDock (http://autodock.scripps.edu/,

2007) integrates the optimization of side-chain torsion angles into the genetic al-

gorithm which optimized the ligand conformation in previous versions. However,

the number of considered torsions is limited due to the increasing complexity of

the conformational search space.

Integration of Hinge Movements

Sandak et al. presented an approach to handle the movement along hinges within

proteins (Sandak et al., 1998), in which hinges have to be manually assigned either

to the ligand or to the protein. Due to the limited number of allowed hinges, the

approach is of reduced applicability because alternative side-chain conformations

are not considered, for example.

Use of Multiple Protein Structures

Another approach for the consideration of receptor flexibility in docking is to

use multiple conformations of a protein, so-called ensembles. These ensembles

of protein conformations can be derived from available crystal structures, NMR

structures, molecular dynamic simulations, or homology models. In principle, each

docking program can be used to perform so-called cross-dockings (Kramer et al.,

1999; Osterberg et al., 2002; Murray et al., 1999). In cross-docking, the ligands are



2.1 Introduction 33

subsequently docked into all available conformations of the protein binding site.

This technique is rather time-consuming since the docking time increases with

each considered protein. Furthermore, only the available conformations of a pro-

tein are considered and no new conformations are generated. To circumvent these

drawbacks concepts for combining multiple protein structures were recently intro-

duced: Osterberg et al. (2002) attempted to combine the generated energy grids

of AutoDock for different superimposed protein conformations. They studied

four methods of combining multiple target structures within a single grid. The

combined grids derived by energy-based averaging turned out to be the best with

respect to docking and energy prediction accuracy. The problem of this method

is that the ligand cannot differentiate between two different states of a side chain

and possibly, interactions with both can occur simultaneously. Claussen et al.

(2001) introduced the computationally more advanced technique FlexE, which

is an extension for FlexX. In FlexE, superimposed protein structures are com-

bined to an ensemble representation. Similar parts (instances) of the integrated

proteins are clustered together whereas dissimilar parts remain as alternatives.

During the docking of a ligand, compatible instances of the protein are selected

to interact with the ligand. A so-called incompatibility graph evaluates whether

selected instances of the protein ensemble are compatible with each other. FlexE

is significantly faster than parallel docking into the integrated protein conforma-

tions. Furthermore, the implemented algorithm allows for the recombination of

protein parts to entirely new but still plausible conformations. However, a re-

cent study showed that in a virtual screening setting the way receptor flexibility

is modeled in FlexE has the drawback of reduced specificity. As a result, the

performance in a retrospective virtual screening study was worse than with the

standard FlexX docking (Polgár & Keserü, 2006).

Docking Based on Molecular Dynamics Simulation

Simulation methods, such as molecular dynamics simulation (see Section 1.1.4.5),

can be used to predict protein-ligand interactions while at the same time consid-

ering flexibility for both molecules. Molecular dynamics simulations are generally

very time-consuming. Today, protein trajectories of only 10 to 100 nanoseconds

can be simulated. Simulating the diffusion of a ligand into a protein’s binding

site would require significantly more time. Hence, the high computational costs

of the method require the introduction of simplifications. Mangoni et al. (1999)

introduced a simulation method that tackles the docking problem. They applied a

modified temperature coupling scheme to the ligand. Therein, a very high temper-

ature is used for the translational moves, whereas the internal degrees of freedom
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are coupled with a regularly low temperature (300K). Protein flexibility was sam-

pled only for binding site atoms by using the low temperature. As a test case,

phosphocholine was docked into the immunoglobulin McPC603 in the presence

of water molecules. In comparison to the crystal structure of the complex of these

molecules, a near-native solution was found. The computation time required for

a 100 ps simulation remained in the range of hours. Thus, an application of this

method in a virtual screening scenario appears inappropriate at the moment.

2.1.2 Structure Prediction Tools for Synthetic Host-Guest Complexes

In general, the chemical building blocks of synthetic receptors are clearly more

diverse than those of proteins. The problem of receptor flexibility can thus not

be handled with the same assumptions as those made for the proteins. In respec-

tive literature, some approaches have been proposed that tackle the problem of

structure prediction for synthetic host-guest complexes. Examples are detailed

below.

Corina

Corina is today known as one of the leading fast structure-generation tools for

druglike molecules (Sadowski & Gasteiger, 1993). A rather unknown feature of

Corina is the ability to predict the structure of synthetic host-guest complexes

based on cyclic or polycyclic synthetic hosts (Sadowski et al., 1992). The structure

generation works as follows: two-dimensional connection tables with annotated

stereochemistry are required as input for both molecules of the complex. Corina

starts with the generation of a reasonable low-energy conformation of the guest

molecule. It assigns standard values to all bond lengths and angles. Torsion angles

along rotatable bonds are set to preferred low-energy states. Corina detects

ring systems and assigns a standard conformation taken from a comprehensive

database of ring systems, to each of them. If atom-atom overlaps exist within the

generated conformation, they are removed by systematically modifying rotatable

torsion angles until no more overlaps exists. The essentially cyclic or polycyclic

host molecule is processed in a different manner. Initially, Corina identifies a

so-called superstructure of the host molecule. This superstructure represents the

topology of the molecule and is scaled according to the number and types of bonds

within the host. Then, Corina constructs the structure of the host molecule

along the edges of the superstructure (see Figure 2.1.2). A reduced force field

serves for a preliminary structure optimization. The complex structure is obtained

by putting the center of mass of the guest molecule onto the center of mass of the

host. Subsequently, Corina rotates the guest molecule in steps of 120◦ around
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The decisive first step 1s the reduction of the 
rmg system to its essential topologcal features of 
the molecular graph This topologxal superstruc- 
ture retams the number of macrocycles and the 
bridgehead atoms 

In the case of a monomacrocychc structure the 
superstructure is sunply a circle In polymacro- 
cychc structures the superstructure consists of a 
fusion of small rmgs with long bonds The length 
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Scheme 2 Maor steps m the construction of a polymacro- 
cychc structure Figure 2.2. The superstructure of the cryptand is a pyramid. The molecule is constructed along the edges

of this pyramid. A structure optimization is the performed by means of a reduced force field. From Sadowski

et al. (1992).

each the x-, y- and z-axes, resulting in 27 different positions. Each of these initial

configurations is submitted to a coarse orientation optimization, in which the

conformations of both molecules are kept rigid. Of all resulting structures, the

complete force field finally optimizes the one with the lowest energy by means

of a full geometry optimization. A SUN SPARC Station IPC CPU required 51

minutes for the computation of the complex structure shown in Figure 2.3. The

approach has a major problem: it is only applicable for symmetric cyclic host

molecules.

Tork

Tork predicts low-energy conformations of single organic molecules as well as

bimolecular host-guest complexes. It is based on a normal-mode analysis in bond-

angle-torsion coordinates. It focuses on a key subset of torsional coordinates to

identify natural molecular motions that lead the initial conformation to new en-

ergy minima. New conformations are generated via distortion along these modes

and their paired combinations, followed by an energy minimization. For com-

plexes, special treatment is accorded to the six coordinates that specify the po-

sition and orientation of one molecule relative to the other. Tork is efficient in
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Figure 2.3. The complex between diethyl barbiturate and a synthetic barbiturate receptor. Corina predicted

the complex structure within about 51 minutes.

the prediction of single molecule conformations. The generation of bimolecular

complexes is comparably slow. On a current state-of-the art PC (CPU: Pentium

III 733-MHz), the structure prediction for a complex between a cyclophane host

and menthol took approximately ten hours.

Momo

The Egert group has developed the software suite Momo which provides function-

ality for the conformational optimization of chemical structures (Gemmel et al.,

1999). Therein, the Supra-module (Söntgen, 2003) focuses on the structure pre-

diction of complexes between two molecules and functions as follows. First, con-

formations are generated for both molecules independently. This is either done

stochastically or systematically by generating all possible discrete conformers of

a molecule, in which the torsion angles are systematically varied by rotation in

defined step size. Each of the derived conformations is energetically assessed by

means of the Momo force field. The energetically most favorable conformer is

selected for each molecule. Minimal enclosing cuboids are constructed around the

selected conformers. Subsequently, initial complexes are generated. This is done

by testing all possible configurations on a virtual grid with adjustable step size in

which the two cuboids are in direct contact with each other. Finally, a complex

force field minimization is performed. The complexes with the lowest energies are

presented as the solution set. Momo is apparently inefficient. The generation of
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the complex structure between the two rigid molecules cytosine and guanine took

1 hour and 20 minutes when default values were applied (CPU: Intel Pentium

III, 350 MHz).

FlexR V 1.0

The first version of FlexR was developed by Kämper et al. (2006) It transfers

the concept of the protein-ligand docking tool FlexX (Rarey et al., 1996a) to

synthetic host-guest complexes (Kämper et al., 2006). FlexX is extended in the

sense that receptor flexibility is tackled. A preparatory step generates a set of

representative conformations of the synthetic receptor. In order to diminish the

complexity of the conformational sampling, the number of torsion angles are re-

duced to sets of preferred values. Those are derived from the Mimumba database

(Klebe & Mietzner, 1994). The conformational space of ring systems within the

molecule is sampled by means of Corina (Sadowski & Gasteiger, 1993). Con-

formers with intramolecular short contacts are discarded. The complex structure

is obtained by subsequently docking the guest molecule into each of the con-

formers of the host molecule. At this point, the standard FlexX algorithms are

applied (see Section A.1). In principle, the roles of the synthetic host and the

guest molecules can be exchanged. In fact, two docking directions are allowed,

namely forward and inverse docking. In forward docking the guest molecule is

flexibly docked into the generated receptor conformations, whereas in inverse

docking the synthetic receptor is sequentially docked around the conformations

of the guest molecule. This approach was successfully validated on a set of exper-

imentally determined complex structures which could be reproduced in a similar

manner. However, in cases in which both molecules of the complex exhibited a

high degree of flexibility the docking time increased dramatically. Nevertheless

this study proved the transferability of the FlexX concepts and hence served as

a profound basis for the work presented in this chapter.

2.2 Methodology

The new docking strategy for synthetic receptors extends our previously described

method (Kämper et al., 2006). The overall principle of the algorithm relies on the

incremental construction of the complex from fragments (Rarey et al., 1996a). To

model the molecular flexibility a discrete set of preferred torsional angles is used

for each rotatable bond (Klebe & Mietzner, 1994). These torsional angles have

been derived from a statistical analysis of the Cambridge Structural Database

(CSD) (Allen, 2002). In contrast to the first version of FlexR (Kämper et al.,
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interaction patterns (cliques)
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their estimated maximal match score 

Precomputation

Complex 
Construction

Generate initial configuration of two 
selected base fragments

Repeat until all solutions with the 
same estimated match score are found
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combinatorial phase
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Figure 2.4. Flow chart of the algorithm of FlexR.

2006) the structures of both molecules - the guest and the host - are built up

incrementally during docking time. Since the conformations of both molecules

are unknown initially, we cannot use the conformation of one molecule to di-

rect the generation of the conformation of the other molecule. Due to this fact

a precomputation phase is introduced that determines putative interaction pat-

terns between the two interacting molecules. These interaction patterns direct

the subsequent phase of the complex construction. A schematic flow diagram of

the algorithm is shown in Figure 2.4 and summarized below.

2.2.1 Details of the Chemical Model

The implementation of FlexR is based on the chemical model of FlexX (see

Section A.1). The major principles of the chemical modeling are detailed below.
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Figure 2.5. The molecules are cut at each acyclic single bond between non-hydrogen atoms (cutting is

denoted by pink dashed lines). In this way fragments are obtained.

2.2.1.1 Fragmentation Principle

Initially, the molecules are severed at each acyclic single bond between non-

hydrogen atoms and thus molecular fragments are obtained (see Figure 2.5).

Torsion angles at double bonds, bond lengths and bond angles are taken from

the input structure. The conformations of small ring systems up to a ring size

of ten atoms are computed with the program Corina (Sadowski & Gasteiger,

1993)

2.2.1.2 Interaction Model

The interaction model used in FlexX and FlexR has been adapted from LUDI

(Böhm, 1992). Each interacting group in the molecules is described by an inter-

action center and interaction surface (see Figure 2.6). Depending on the type and

the neighborhood of an interacting group an appropriate interaction surface and

an interaction center is assigned (see Table 2.1). Two interaction groups of differ-

ent molecules enter into an interaction if their interaction types are compatible,

e. g. an hydrogen bond donor and an hydrogen bond acceptor, and their surfaces

mutually lie on the center of the counter group (see Figure 2.7). For computa-

tional reasons the surfaces are represented by discrete point sets (see Figure 2.8)

(Rarey et al., 1996a).
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Figure 2.6. An interaction is represented by an interaction center and an interaction surface.

O H N

Figure 2.7. The FlexX interaction scheme. Two interaction groups enter into an interaction if their surfaces

mutually lie on the center of the counter group.

OO

Figure 2.8. The interaction surfaces are represented by discrete point sets.
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Table 2.1. The interaction geometries of FlexX and FlexR. The figures are provided by Stephan Raub.

interaction type charge ∆G in kJmol−1 r0 in Å

H-bond acceptor
neutral

ionic

−2.35

−4.15
1.9

sp2-H-bond-acceptor
neutral

ionic

−2.35

−4.15
1.9

COO−-H-bond-acceptor ionic −4.7 1.9

H-bond donor
neutral

ionic

−2.35

−4.15
1.9

metal-acceptor −2.35 2.0

lipophilic contact neutral −0.35 4.0− 4.8

aromatic interaction neutral −0.35 4.5
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2.2.1.3 Scoring Function

A scoring function based on the work of Böhm is used for fast energy evaluation

throughout the algorithm (Böhm, 1994; Rarey et al., 1996a).

∆G = ∆G0 + ∆GrotNrot

+∆Ghb

∑
HBonds

f (∆r, ∆α)

+∆Gio

∑
ion.int.

f(∆r, ∆α)

+∆Garo

∑
arom.int.

f(∆r, ∆α)

+∆Glipo

∑
lipo

f ∗(∆r) (2.1)

Six terms are included that describe neutral hydrogen bonds (∆Ghb), ionic in-

teractions (∆Gio), aromatic interactions (∆Garo), lipophilic contributions (∆Glipo)

and entropic costs (∆Grot∗N). Penalty functions (f and f ∗) are used that penalize

deviations from ideal interaction distances (∆r) and for directional interactions

also deviations from ideal angles (∆α) (for details see Rarey et al. (1996a)). In this

scoring scheme interactions are considered as being independent from each other,

such that the scores of the single interactions within a complex are summed up to

obtain the score of the entire complex. This allows for scoring partial solutions.

2.2.2 Algorithmical Details of the Structure Generation

The complex construction phase consists of two main steps that are sequentially

traversed:

• Precomputation

• Construction of the complex structure

2.2.2.1 Precomputation Phase

In the precomputation phase we collect putative interactions between host and

guest molecule which can be realized simultaneously. The search is performed by

first identifying putative interaction pairs between the molecules, then generating

a docking graph which comprises all identified putative interaction pairs, and

finally executing a clique search for finding maximal sets of interactions that can

be realized simultaneously.



2.2 Methodology 43

N
N

H

O

N

O

H N
O

O
H O

O
H

H1 H2

H3 H4

H5 H6

G3

G2

G1 G4

G5

G6

a

b

N
N

H

O

N

O

H N
O

O
H O

O
H

H1 H2

H3 H4

H5 H6

G3

G2

G1 G4

G5

G6

host

guest

host

guest

Figure 2.9. (a) Structural formula of the host-guest complex by Garcia-Tellado et al. (1990). Only polar

hydrogen atoms are shown for clarity. (b) Molecular graph representation of the complex. Nodes (circles)

represent atoms; edges represent chemical bonds between two atoms. Centers of directional short-range

interactions are labeled with unique identifiers. Atoms that do not exhibit directional interactions are depicted

in white. Hydrogen atoms at hydrogen donor sites and hydrogen-bond acceptors are shown in gray and red,

respectively. Apolar hydrogen atoms are not shown for clarity.

Generation of the Docking Graph

To illustrate the generation of the docking graph consider the complex shown in

Figure 2.9. From the molecular structures, first molecular graphs are derived in

which atoms are represented by nodes and edges denote covalent bonds between

atoms (see Figure 2.9 b). We define centers of directional short-range interactions

as atoms that can form hydrogen bonds or salt bridges. In the case of hydrogen-

donor interaction groups we regard the hydrogen atoms themselves as interaction

centers. Center of directional short-range interactions in the two molecules are

identified, labeled and colored according to their functionality (see Figure 2.9b).

From the molecular graphs of the host and the guest a docking graph is de-

rived (see Figure 2.10) similarly to the approach used by the program in DOCK

(Kuntz et al., 1982). A node represents a possible directional short-range inter-
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Figure 2.10. Generated docking graph of the complex by Garcia-Tellado et al. (1990) (left side). Nodes

are generated for each possible interaction pair. Two nodes share an edge if they are compatible, i.e.,

the corresponding interactions can be realized simultaneously. The clique exemplifies one possible complex

interaction pattern (right side).

action that can be formed between an atom of the host molecule and an atom of

the guest molecule. The node is labeled with the identifiers of both atoms (see

Figure 2.10). Edges between two nodes are inserted only, if two interactions can

be realized simultaneously. Two interactions can be realized simultaneously, if

the two corresponding interaction centers in the receptor are at about the same

distance as the two corresponding interaction surfaces in the guest molecule. In

this case, the two nodes representing both interactions are connected with an

edge in the docking graph (see Figure 2.11). The respective distance property is

checked by computing bounds on the maximal and minimal distances that can

occur between two centers of directional short-range interactions and their cor-

responding interaction surfaces, respectively, within the conformational space of

the molecules (see Paragraph Distance Range Estimation). The resulting graph

is then submitted to a maximal clique search using the Bron-Kerbosch algorithm

(Bron & Kerbosch, 1973). A clique is a subset of nodes (V ′) within an undi-

rected graph (G = (V, E)), in which all nodes are connected to every other node

of the subset V ′. A maximal clique is a clique to which no more nodes of the

graph can be added, such that the first proposition is still valid. For our work a

clique represents sets of interactions that can be realized simultaneously within

the same complex structure (see Figure 2.10, right side). However, it is important

to note that the generated cliques have to be further validated in the complex

construction step because, at this point, only simple distance constraints are con-
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Figure 2.11. The distance range between the interaction surfaces of the host atoms H2 and H5 exhibits

an overlap with the distance range between the interaction centers G3 and G4 of the guest molecule (left).

The same applies for the interaction centers H2 and H5 of the host molecule and the interaction surfaces

G3 and G4 of the guest molecule (right). This results in an edge between the corresponding nodes in the

docking graph.
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Figure 2.12. Given a fragmentation (ellipsoids) and a base fragment (red) all outgoing atoms (squares) are

defined. An outgoing atom is placed with the fragment of the same color.

sidered. Additional constraints, such as the exclusion of possible atom overlaps

are not taken into account. In cases in which the molecules exhibit a high de-

gree of flexibility degenerate cliques may occur. A degenerate clique is a clique

comprising a subclique of interactions that can be realized simultaneously plus

several interactions that cannot be realized. In order to deal with these cases not

only the maximal cliques that are contained in the docking graph but also their

subcliques are added to the clique list. Whether the generated cliques can yield a

valid complex structure is assessed in the complex construction step (see Section

2.2.2.2).

So far, in docking algorithms based on the incremental construction principle

(Rarey et al., 1996a; Kämper et al., 2006), only one molecule is constructed

incrementally. The alternative docking strategy presented here builds up both

molecules incrementally, guided by the calculated cliques.

Distance Range Estimation

Throughout the method intramolecular distances are used. For the generation

of the docking graph, distance ranges (i.e. the minimal and maximal distances)

between all pairs of centers of directional short-range interactions have to be

computed, as well as distance ranges between the corresponding interaction sur-

faces. The complex construction phase requires distance information as a basis

for filtering out inappropriate solutions. Here, we compute the distance range be-

tween the so-called outgoing atoms and the next targeted center of a directional

short-range interaction. An outgoing atom of a fragment is an atom that is placed

together with the fragment but actually belongs to an adjacent fragment in the

fragment tree (see Figure 2.12). These outgoing atoms are used as anchor points

for the adjustment of the appropriate torsion angles of a child fragment.
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Figure 2.13. Scheme of the distance range estimation algorithm. In the first two steps the marked torsion

angles (green arrows) are chosen in such a way that the distances between the outgoing atoms (red circles)

are minimal (left) or maximal (right), respectively. In the last step the torsion angles of the last added

fragments are set so that the distances between the queried atoms (a1 and a2) are minimal or maximal,

respectively.

The heuristic for the calculation of distance ranges is illustrated in Figure

2.13. Let two atoms a1 and a2 be given for which the distance range has to be

determined. First, the fragments to which the atoms belong are identified and the

shortest path in the fragment tree between these fragments is determined. In the

case that the number of fragments along this path is odd we start with the cen-

tral fragment and iteratively add the next two connected fragments until the two

outer fragments to which the atoms a1 and a2 belong are reached. Two different

procedures are applied for determining the minimal and the maximal distance,

respectively. For generating the minimal distance in each step the torsion angles

of the newly added two fragments are chosen for which the distance between
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the two corresponding outgoing atoms is minimal and no internal clashes exist.

For determining the maximal distance, here, the distance is set to the maximally

possible value. Note that transitivity holds for neither minimal nor maximal dis-

tances. Thus we cannot guarantee not to lose optimal solutions in this step. This

is repeated until the fragments of the atoms a1 and a2 are reached. In this last

step the torsion angles of the fragments containing the atoms a1 and a2 are set

such that the atoms are minimally or maximally distant, respectively.

The determination of the minimal and maximal distance between two corre-

sponding interaction surfaces of the considered atoms a1 and a2 differs from the

above mentioned algorithm only in the last step. When the last two fragments

are added, the distance between the midpoints of the corresponding surfaces are

adjusted for being minimal or maximal, respectively. Then both surfaces are dis-

cretized to point sets and all distances between the discrete interaction points are

calculated. The resulting distance ranges are stored in a distance matrix.

In the case that the examined fragment list has an even number of fragments

the distance analysis starts with the two central fragments. The corresponding

torsion angle between them is adjusted such that the appropriate outgoing atoms

are set to their minimal or maximal distance, respectively. With the exception of

small flexible rings all single fragments are treated as rigid and thus offer only

one conformation. If the two targeted atoms belong to the same fragment no

conformational analysis has to be performed and the distance between the atoms

and the surface can be calculated directly. In the case of a fragment consisting of

a small flexible ring several low-energy conformations are computed with Corina

(Sadowski & Gasteiger, 1993). All of them are considered iteratively within our

procedure.

2.2.2.2 Complex Construction

The precomputation phase results in a set of cliques each of which represents a

putative interaction pattern for the molecular complex between host and guest

molecule. We denote the interactions represented by a single clique as targeted

interactions. Complex construction essentially amounts to a heuristic optimiza-

tion of the complex configuration with respect to a specific score. Scores are

heuristic estimates of binding energies that mostly account for contributions by

directional interactions. Thus scores are minimized during the optimization and

the lowest score corresponds to the predicted most favorable solution. At first,

we determine for each clique a simple lower bound on the best attainable score.

This lower bound is calculated by simply adding the optimal scores for all partic-

ipating interactions. In the complex construction phase the cliques are processed
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sequentially in increasing order of this score. First, an initial configuration is gen-

erated (see Paragraph Generation of initial configurations). In the second step the

adaptive two-sided incremental complex construction algorithm (see Paragraph

Adaptive two-sided incremental complex construction) is applied. The algorithm

terminates if a solution is found that fulfills all targeted interactions of a clique.

If other cliques exist that exhibit the same estimated maximal interaction energy

the algorithm proceeds until all cliques with the same estimated score are pro-

cessed. From each of the cliques that lead to a valid complex structure the ten

best-scoring solutions are included in the solution set.

Generation of Initial Configurations

The docking process starts with the generation of initial configurations of two

selected fragments, one fragment from each molecule. The precomputation of

cliques facilitates the targeted generation of an initial configuration. For each

single clique of the clique list at first the two fragments are selected that accom-

plish as many of the targeted interactions as possible. In the following these two

fragments are called base fragments.

In the case that only one directional short-range interaction between the se-

lected base fragments is targeted, the one-point base fragment placement algo-

rithm is used as described in Kämper et al. (2006) (see Figure 2.14). In this

algorithm a number of discrete placements are generated by just using geometric

information of the two participating interaction surfaces. Therefore each vector

between the interaction center and the interaction points of one fragment is super-

imposed onto each vector between the interaction center and the corresponding

interaction points of the counter fragment. Then one fragment is rotated around

the superimposed vector in discrete steps of 30◦. If the two selected base fragments

exhibit more than a single interaction, one of the possible interactions is selected

for generating different sterically possible configurations with the one-point place-

ment algorithm. Then, only those configurations are retained for the next step in

which all targeted interactions between the base fragments are realized, i.e. the

interaction criterion is fulfilled (see Figure 2.7) and no atom overlaps between

the fragments exist. All complexes are assessed by means of the scoring function

(see Section 2.2.1.3). In order to reduce the number of highly similar structures

for all generated complexes a clustering procedure is applied (see 2.2.2.2). The

remaining initial configurations are then submitted to the subsequent adaptive

two-sided incremental construction algorithm. All of them exhibit the same direc-

tional short range interaction pattern, namely the targeted interactions between

the two base fragments.
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Figure 2.14. Illustrations of the one-point placement algorithm. Each vector between the interaction center

and the interaction points of one fragment is superimposed onto each vector between the interaction center

and the corresponding interaction points of the counter fragment. Then one fragment is rotated around the

superimposed vector in discrete steps of 30◦.

Computing the Fragment Order

After the initial configuration of the two base fragments has been computed, we

determine the build-up order for the remaining fragments of each molecule. Dur-

ing the adaptive two-sided incremental construction phase the remaining filters

of the clique are targeted that have not been achieved in the initial configuration.

Therefore the fragments of both molecules have to be added in a synchronized

manner.

The order in which the fragments are processed is computed with a greedy

heuristic. Given are the two fragment trees of the molecules and the list of inter-

actions that are targeted in the subsequent incremental construction phase (see

Figure 2.15). At first, the fragments to which the remaining targeted interactions

belong to are determined. The algorithm starts from the two root nodes a and

A and marks these nodes as visited. The distances for all remaining interactions

are computed. Here, we define the distance of an interaction as the sum of node

distances from the corresponding nodes to the nearest nodes of the fragment trees

that have been visited already. For instance, the distance of the interaction g-C

to the interaction a-A is in Figure 2.15 equal to 7 (five fragments for the host - b,

c, e, f , and g - and two fragments for the guest - B and C). The distance of the

interaction e-E to a-A is equal to 6. The interaction with the smallest distance

is selected as the next interaction. For the example of Figure 2.15 the interaction

e-E is selected prior to g-C. All unvisited nodes that are on the path from the

interaction nodes to the root nodes in their fragment trees are marked as visited.
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Figure 2.15. Example for the computation of the fragment order. Shown are the fragment tree represen-

tations of two interacting molecules. The nodes represent fragments; edges denote two covalently bound

fragments. Nodes depicted in grey comprise centers of directional short-range interactions. Dashed lines rep-

resent the targeted interactions. The applied algorithm determines the order of execution of both fragment

trees, such that all targeted interactions are reached synchronously (see text).

The fragments that have been visited in this step are stored in the fragment

order list in the reverse order of their visit. In the first step of our example the

fragment order for the receptor is computed to a-b-c-e and the order of the guest

is A-B-D-E. This procedure is repeated until no more interactions remain. In the

case there are still unmarked nodes in the fragment trees, they are visited in an

order where the terminal nodes are reached as early as possible.

Adaptive Two-Sided Incremental Complex Construction

In this phase both molecules are constructed, starting with the initial complexes,

in order to complete the whole complex structure. Here, we apply an iterative pro-

cedure which consists of three repetitive steps (Figure 2.4): a combinatorial step,

a filtering step and a greedy step. At the beginning of the two-sided incremental

construction the following information has already been computed:
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• the initial base fragment configurations

• the list of the remaining targeted interactions that have to be realized in the

final complex

• the order in which the remaining fragments have to be added to each of the

two molecules (see Paragraph Computing the fragment order)

• the distance ranges from any outgoing atom to its respective next targeted

interaction atom (see Paragraph Distance range estimation method).

For each of the remaining interactions the following procedure is iteratively

repeated. In the combinatorial step the molecule which requires fewer fragments

to reach the next targeted interaction is expanded combinatorially in torsion

space until the next targeted interaction group is reached. Partial solutions with

inter- or intramolecular clashes are discarded. The scoring function is applied for

obtaining an estimation of the energy of each partial solution. In order to reduce

the number of highly similar structures a clustering is performed (see Paragraph

Clustering).

If the molecule has reached the next targeted interaction group the algorithm

proceeds to the filtering step and the other molecule is incrementally built up in

torsion space until the targeted interaction is realized. Here, two kinds of filters are

applied (see Paragraph Applied filters in the complex construction phase). If none

of the (partial) solutions corresponds to the constraints of the currently processed

clique this particular clique is skipped as the interaction pattern represented by

the clique does not lead to a valid complex structure. In this case, the algorithm

proceeds to the next clique. All (partial) solutions that fulfill the mandatory

targeted interactions are submitted to the clustering procedure again.

After all interactions of the processed clique are realized and still fragments

remain, the algorithm proceeds to the greedy step. In this step the molecules

are expanded alternately. Here, maximally the 100 best-scoring partial solutions

are taken into the next construction iteration regardless of the absolute value of

the scores. This cycle is repeated until the entire complex is completely built up.

Finally all solutions are ranked by their scores.

Applied Filters in the Complex Construction Phase

In the filtering step of the complex construction, filters are applied in order to

direct the complex construction to solutions that exhibit the targeted interaction

pattern of the currently processed clique. These two types of filters are a distance

filter and an interaction pattern filter.

The distance filter (see Figure 2.16) is applied whenever the position of only

one interaction group of the next targeted interaction is known whereas the
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Figure 2.16. Distance filter. The distance from the current outgoing atom (red circle) to the targeted

interaction (dashed red circle) is calculated (blue). If this distance exhibits an overlap with the precomputed

distance range (green) the partial solution exhibits the potential to lead to the targeted interaction pattern

prescribed by the clique.

counter group of this particular interaction has not been placed yet. In such

a case the algorithm compares the current distances between the outgoing atom

(see Section 2.2.2.1) and the discrete surface points of the counter group with

the corresponding precomputed distance range. If the two distance ranges do not

overlap, the solution is discarded. Otherwise, the current construction state of the

complex exhibits the potential to fulfill all targeted interactions and is retained.

The interaction pattern filter verifies whether in a given (partial) solution all

targeted directional short-range interactions considered so far are realized at this

particular construction step. The filter is applied only when a fragment is placed

that comprises an interaction group, which should form an interaction with its

already placed counter group from the clique. A (partial) solution that does not

meet all requirements is discarded.

Optimization of Matches

The first interaction of the complex that is formed between the two base frag-

ments is in advantage compared to all following interactions. It is in the nature

of the one-point interaction placement algorithm that the geometry of the first

interaction is ideal with respect to the scoring function. All following interac-

tions that are found during the complex construction are discriminated in this

regard, as their arrangement is not necessarily ideal. Whenever a new directional

interaction is found one molecule is reoriented towards the other. In this step,

for each existing directional interaction - including the last one - four points are

considered (see Figure 2.17): the two corresponding interaction centers and one
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Figure 2.17. Optimization of matches using the interaction centers (green) and the closest discrete interac-

tion points (yellow circle) on the interaction surfaces (left). Whenever a new directional interaction is found

these points are used for an optimization of the placement (right).

point from each of the two interaction surfaces (yellow circles) that is the closest

to the counter interaction center. Then the selected interaction centers are super-

imposed onto the selected discrete interaction points. This step is combined with

an additional clash test. If a clash occurs the new position is disregarded and the

old position is kept.

Clustering

Highly similar (partial) solutions can be clustered to one representative solution.

This reduces the number of (partial) solutions while ensuring that no important

structural information is lost. After each construction step a complete-linkage

clustering algorithm is performed (Rarey et al., 1996a). Here, the distance be-

tween two (partial) solutions is measured by means of the root-mean-square de-

viation (RMSD) for all atoms that are placed in the current state. The RMSD

threshold has been set to 0.8 Å. For the purpose of the new algorithm an ad-

ditional clustering criterion is implemented. If only one interaction group of a

targeted interaction has been placed the two partial solutions are not clustered

if the distance between the two atoms exceeds a threshold. This guarantees that

partial solutions with different properties regarding the targeted interactions are

retained. For this distance the threshold has been set to 0.4 Å.
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2.3 Validation by Means of Redocking

A common test for the evaluation of a docking tool is to assess whether it is able to

reproduce native crystal structures. This test is referenced as redocking test. For

this purpose, crystallographically determined host-guest complex structures are

taken from a structural database. The crystal coordinates are used as reference

coordinates. From the crystal structure single Mol2 files are derived for the

guest and the host molecule. The docking tool obtains the single host and guest

molecules as input. For docking no information regarding the configuration of the

complex structure and the conformations of the single molecules is used from the

crystal. All generated solutions were scored by means of the integrated scoring

function of FlexR and sorted in increasing order of their scores. The best-scoring

solution, i.e. the one with lowest score, is on rank 1.

To assess whether a redocking run is successful we compare the generated

hydrogen-bond pattern of the predicted complex structure to the crystal structure

and furthermore we compute the RMSD of all predicted atom coordinates to the

reference atom coordinates. The RMSD value between two different molecules is

defined as follows:

RMSD(θ1, θ2) =

√∑n
i=1(x1,i − x2,i)2

n
(2.2)

where θ1 is the set of coordinates of complex 1, θ2 is the set of coordinates of

complex 2, n is the number of coordinates, x1,i is the ith coordinate of complex

1 and x2,i is the ith coordinate of complex 2. An RMSD value of below 2 Å is

commonly considered as a near-native prediction.

2.3.1 Test Dataset

In order to evaluate our docking strategy we assembled a set of ten experimen-

tally determined crystal structures of synthetic receptors and their comprised

guest molecules (see Tables 2.2 and 2.3) from the Cambridge Structural Database

(CSD) (Allen, 2002).

The Complexes

Within all of the ten selected test complexes hydrogen bonds are the main driving

force of complex formation. The host molecules differ in their degree of flexibility

and thus challenge our method in different ways. The most flexible host, i. e. the

host molecule of complex 7, consists of nine rotatable bonds. The host molecules
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of complexes 6 and 10 show the smallest degree of flexibility, each of which

has two rotatable bonds. The guest molecules include small heterocyclic rings or

ring systems and aliphatic carbonic acids as well as small cationic and anionic

molecules. All molecules are shown in Tables 2.2 and 2.3.

Glutaric acid receptor (complex 1). The receptor for glutaric acid was synthe-

sized by Garcia-Tellado et al. (1990). The complex formation was measured

in CDCl3. Within the complex four hydrogen bonds occur between host and

guest molecule.

Ammonium ion receptor (complex 2). Chin et al. presented a synthetic receptor

for the ammonium ion (Chin et al., 1999). The receptor can potentially be

applied as a ammonium sensing unit, which might for example be useful for

the detection of ammonia in air. In contrast to crown ethers that complexate

ammonium ions as well as potassium ions, this receptor shows a high selectiv-

ity towards the ammonium ion. This is due to the formation of three charged

hydrogen bonds to the guest molecule. The complex formation was measured

in CD2Cl2.

Tricarboxylic acid receptor (complex 3). A tripodal receptor based on a amidopy-

ridine motif was presented by Ballester et al. (2001). This receptor forms

a strong 1:1 complex with cis-1,3,5-cyclohexane tricarboxylic acid in 20%

THF/CHCl3. The complex of the same receptor to the trans-isomer of the

guest molecule is clearly less stable. Altogether six hydrogens bonds occur

within the complex.

Two-point binding receptor (complex 4). Pascal & Ho (1994) presented the di-

acidic two-point binding receptor for pyrazine. The two carboxyl groups form

hydrogen bonds to the nitrogens of pyrazine. The complex formation was

detected in CHCl3.

Barbiturate receptor (complex 5). Berl et al. (1999) presented a synthetic recep-

tor for barbiturates that was obtained by means of a dynamic combinatorial

synthesis scheme. The receptor is based on a dihydrazone motif. In the pres-

ence of dibutylbarbiturate the (Z/Z) dihydrazone isomer was the main prod-

uct of the combinatorial synthesis. Dibutylbarbiturate forms two single and

two bifurcated hydrogen bonds to host molecule. The complex formation was

detected in CDCl3.

Creatinine receptor (complex 6). The selective receptor for creatinine was pre-

sented by Bell et al. (1995). The complex formation involves a chromogenic

response that is caused by a proton transfer. This property enables the recep-

tor to be used a sensing unit for creatinine. The receptor extracts creatinine
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from water into chlorocarbon solvents. Three hydrogen bonds exist between

the two molecules out of which two are of charged nature.

Bisguanidinium receptor for phenyl phosphate (complex 7). The host molecule of

complex 7 consists of two guanidinium moieties separated by a hexahydrodi-

cyclopentapyridine spacer (Kneeland et al., 1993). The receptor was designed

to mimic the interactions of the binding site of the staphylococcal nuclease in

which phosphoesters are complexated by four hydrogen bonds. The complex

to the guest molecule phenyl phosphate was detected in aqueous DMSO.

Bis(guanidinium) receptor for sulphate (complex 8). The host molecule of com-

plex 8 is structurally related to the host in complex 7 and is also based on a

bisguanidinium motif. The receptor complexates sulphate by charged hydro-

gen bonds to each of the oxygen atoms of the guest. The complex was formed

out in aqueous hydrochlorid acid.

Caffeine receptor (complex 9). Waldvogel et al. (2000) presented a selective caf-

feine receptor. The receptor exhibits a triphenylenketal unit with three ureyl

side chains. Caffeine is bound in CD2Cl2 solution via bifurcate hydrogen bonds

to each of the ureyl units.

Receptor for guanidinium derivates (complex 10). The synthetic receptor of Bell

et al. (2002) complexates guanidinium derivatives in aqueous solution. Four

charged hydrogen bonds determine the structure of the complex.

Preparation of the Molecules

The molecules were prepared as follows: First, we extracted the structures of

the complexes from the CSD in the Mol2 file format. The protonation states

of the molecules were taken from of the respective input structures and checked

according to the corresponding paper. The atom and bond types as well as the

formal charges were assigned automatically by a rule-based heuristic and checked

manually. We replaced long aliphatic chains that do not contribute to the struc-

ture of the docked complex by methyl groups (denoted as R-groups in Tables

2.2 and 2.3). In the case of the host molecule of complex 5 only one half of the

dimeric receptor was used in docking. The other half was replaced by a methyl

group (denoted as an R-group in Table 2.2). Finally, the molecules were energy-

minimized with the Tripos force field (Clark et al., 1989). This was done in

order to obtain suitable bond lengths and angles. Thereby the aromatic ring sys-

tem of the receptor in complex 9 was set to be rigid in order to avoid out-of-plane

distortions.



58 2 Flexible Docking of Ligands into Synthetic Receptors

Table 2.2. Structural formulas of the complexes 1 to 5.
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Table 2.3. Structural formulas of the complexes 6 to 10.
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2.3.2 Results

The results obtained in the redocking experiment are summarized in Table 2.4.

As mentioned previously, in protein-ligand docking a commonly used criterion for

the evaluation of docking results is the RMSD value of a predicted complex struc-

ture compared to an experimentally determined crystal structure. Here, typically

an RMSD of below 2 Å is considered as a successful docking result. However,

the RMSD of the best-scoring solution is not necessarily the best criterion for

an assessment of docking solutions since it is highly dependent on the applied

scoring function. Sometimes only slight deviations between the scores of two so-

lutions prevent a solution with low RMSD at high rank (i.e. rank with a low

rank number). For this reason we also report the lowest RMSD within the ten

best-scoring solutions. Although we can demonstrate that our scoring function

directed the docking algorithm to reasonable solutions, the particular scores are

not tabulated since it is a known fact that they do not provide a reliable estimate

of the binding affinity in most cases. The scores for the solutions of a particular

clique do not vary much since all of them exhibit the same interaction pattern.

Figure 2.18. Docking result of complex 1 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). FlexR was able to reproduce the native crystal structure. A solution with an RMSD of 0.93

Å was found within less than 4 minutes on the first rank. The hydrogen-bond pattern corresponds to the

crystal structure.
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Figure 2.19. Docking result of complex 2 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). The predicted structure of complex 2 exhibits the native hydrogen-bond pattern as found in the

crystal structure. Only marginal deviations are found within the receptor structure. The RMSD of 1.17 Å

lies within the acceptable range of 2 Å. The symmetry of the system causes many identical cliques that all

have to be processed.

Table 2.4. Docking results. For each complex, we list the root-mean-square deviation (RMSD) of the best-

scoring solution, the best RMSD within the first ten best-scoring solutions and the CPU time. CPU times

are obtained on an Intel P4 Xeon 3.06 GHz.

ID RMSD [Å]1 Min. RMSD [Å]2 CPU time [MM:SS]

1 0.93 0.76 03:30

2 1.17 1.12 01:27

3 3.86 1.04 49:01

4 1.07 0.96 00:31

5 1.08 0.94 00:06

6 0.60 0.60 00:01

7 0.56 0.56 00:01

8 0.73 0.73 01:17

9 0.70 0.70 00:19

10 0.63 0.30 00:03

1
best-scoring solution

2
within first ten best-scoring solutions
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Figure 2.20. Docking result of complex 3 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). The solution found at rank 1 of complex 3 exhibits an RMSD that exceeds the defined threshold

of 2 Å, although the exact hydrogen-bond pattern of the crystal structure was reproduced. Due to the high

degree of flexibility and the symmetry of the system the computation took relatively long with about 50

minutes.

Figure 2.21. Docking result of complex 3 (rank 7, atom coloring) superimposed on the X-ray structure

(orange). The solution found at rank 7 shows a good agreement with the crystal structure and exhibits an

RMSD of 1.04 Å.
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Figure 2.22. Docking result of complex 4 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). For complex 4 a near-native solution was found on the top rank (RMSD 1.07 Å) that has the

same hydrogen-bond pattern as observed in the crystal structure. The deviation of the orientation of the

guest molecule is due to packing effects in the crystal structure where π stacking is observed with other

pyrazine molecules.

Figure 2.23. Docking result of complex 5 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). Complex 5 was predicted with an RMSD of 1.25 Å for the top-ranking solution. The exact

hydrogen-bond pattern of the crystal structure with two single hydrogen bonds and a bifurcate hydrogen

bond was found. A slight difference exists in the orientation of the two pyridine heterocycles of the receptor.

The structure was predicted within 6 seconds.
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Figure 2.24. Docking result of complex 6 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). No significant difference is found in the predicted structure of complex 6. The predicted hydrogen

bonds are in exact agreement with the crystal structure. Only the carboxylate group stands approximately

perpendicular to the orientation in the crystal structure. As there is no interaction to this group in the single

unit cell, this difference should not be considered a prediction error. The structure was predicted within a

second.

Figure 2.25. Docking result of complex 7 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). The predicted complex structure agrees almost perfectly with the crystal structure and the RMSD

is 0.56 Å. The computation took 1 second.
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Figure 2.26. Docking result of complex 8 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). Although the RMSD of the top ranking solution of complex 8 falls into the threshold of 2 Å the

predicted salt bridges do not correspond to the crystal structure. The structure prediction took 1 minute 17

seconds.

Figure 2.27. Docking result of complex 8 (rank 263, atom coloring) superimposed on the X-ray structure

(orange). The figures shows that in principle FlexRis able to find a near-native complex structure but was

not able to score it appropriately.
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Figure 2.28. Docking result of complex 9 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). In the predicted complex structure all three bifurcate hydrogen bonds of the crystal structure were

found. The RMSD is 0.70 Å. Despite the large and symmetric synthetic receptor the computation time was

rather low with 19 seconds.

Figure 2.29. Docking result of complex 10 (rank 1, atom coloring) superimposed on the X-ray structure

(orange). The predicted complex structure exhibits the bonding pattern of the crystal structure and has a

low RMSD of 0.63 Å. The computation time was 3 seconds.
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Following the defined RMSD criterion, for all of the complexes within our

test dataset our new docking method predicts a reasonable structure at one of

the first ten ranks. Furthermore, for complexes 1,2,4-7, 9 and 10 near-native

solutions were found at rank 1. For the complexes 2, 5, 6, 9 and 10 an almost

perfect prediction is obtained (Figures 2.19, 2.23, 2.24, 2.28 and 2.29). Complexes

4 and 7 exhibit slight deviations in the orientation of aromatic rings, whereas

in complex 1 mainly the alkyl part of guest molecule differs from the crystal

structure. The solution found at rank 1 of complex 3 exhibits an RMSD that

exceeds the defined threshold of 2 Å, although the exact hydrogen-bond pattern

of the crystal structure is reproduced (Figure 2.20). Nevertheless, the predicted

complex structure at rank 7 of complex 3 has an RMSD of 1.0 Å (Figure 2.21)

and is scored only slightly worse than the solution at rank 1. The best-scoring

solution generated for complex 8 falls within the defined threshold and could

thus be considered as near-native. However, regarding the generated hydrogen-

bond pattern the solution differs from the crystal structure. In the experimentally

determined structure six salt bridges are found of which four are bifurcate. None

of the ten best-scoring solutions exhibits this interaction pattern. Considering

all generated docking structures of complex 8, a solution is found at a low rank

(minimal RMSD of 0.48 Å observed on rank 263 as shown in Figure 2.27) that

offers the same hydrogen-bond pattern as observed in the crystal structure. This

supports the ability of our algorithm to generate a near-native structure for this

test case, but at the same time reveals some problems of our scoring function in

assessing them adequately.

Regarding the computation time, the results can be classified into three groups.

Complexes 4-7, 9 and 10 were generated in a couple of seconds. For complexes

1, 2 and 8 a couple of minutes were needed. Only the highly flexible complex 3

requires a longer computation time of about 49 minutes. In comparison to the

work by Kämper et al. (2006), most importantly, a significant acceleration has

been achieved for the two highly flexible complexes 1 and 3. Here, the computa-

tion time could be reduced by about a factor of 80 in case of complex 1 and to

about one forth in case of complex 3. To summarize, for five cases (complexes 1,

3, 5-7) the new docking algorithm is faster than the previous one and for four

cases it is marginally slower (complexes 2, 4, 8, 9).

2.3.3 Discussion

The redocking experiment showed that, in general, our docking strategy pro-

duces reliable predictions for complexes between synthetic receptors and guest

molecules. Our approach to tackle the flexibility of two molecules simultaneously
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successfully predicted all examples of our test set with respect to an RMSD of

below 2 Å. In a previous study we already showed the general transferability of

the FlexX concepts to the docking of synthetic host-guest systems. Here, ad-

ditionally we focused on the more efficient handling of systems in which both

molecules exhibit a high degree of flexibility. One limitation of our previous ap-

proach (Kämper et al., 2006) was observed for docking of complex 1, where the

docking times for forward and inverse docking exceeded several hours of CPU

time. The second limitation was observed for complex 3 where no forward dock-

ing was possible at all due to the large conformational space of the receptor.

The inverse docking strategy, however, worked but was comparably slow. Our

new method predicted these structures significantly faster and, at the same time,

near-native complexes were obtained. However, considering the complexes 2, 4,

8 and 9 our new method was slower than the method of Kämper et al. (2006),

although the computation time was still in the range of seconds to minutes.

The following parameters significantly influence the computation time used

for a complex:

• the number of possible interactions between the two molecules

• the flexibility of the molecules and

• the symmetry of the system.

The more interactions are possible the larger gets the docking graph. Flexible

molecules can cause unspecifically wide distance ranges between centers of direc-

tional short-range interactions and thus many interaction pairs are compatible.

This results in many edges in the docking graph. Consequently, the search for

cliques in the docking graph slows down. It should, however, be noted that in

none of the examples presented, the precomputation phase lasted longer than a

few seconds. Thus, the precomputation phase is not the rate-limiting step of the

algorithm. As the number of interactions and the flexibility of the molecules rises

further, this might be a limiting factor for the method.

Our method does not consider symmetry information of the molecules. Due to

this fact, many symmetrical cliques are generated if the molecules of the complex

exhibit symmetry. Currently, all of them are processed although no additional

information is gained and thus, the computation time for one complex rises with

dependence to the inherent symmetry of the complex. Consider complex 3 where

each of the molecules has threefold symmetry. By manually removing symmetric

cliques we can show that the computation can be accelerated by a factor of ten

without losing any information. The automatic detection of symmetries in syn-

thetic host-guest complexes thus speeds up the computation of such complexes
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Figure 2.30. Dependence of distance ranges. In this example, the maximal distance between atom a and

atom b2 can only be realized, if the distance between atom a and atom b1 is minimal. This shows the

dependency of distance ranges which is disregarded in the docking graph generation step. Here, the distance

ranges are treated as being independent from each other.

(Chen et al., 2006). In our tests, the number of cliques for the complexes has

varied from 2 for complex 4 to 360 for complex 3. In highly flexible complexes,

additionally, many degenerate cliques are generated that do not represent valid

complex structures. There are several reasons why this occurs. At first, in the

precomputation phase only distances between the centers of the particular direc-

tional short-range interaction are considered. Clashes of the remaining atoms are

not taken into account at this stage. Furthermore the estimated distance ranges

are treated as being independent from each other, although this assumption is

not valid in every case (Figure 20).

In our approach both molecules - synthetic receptor and the guest - are incre-

mentally constructed from fragments. As stated above, in the beginning no con-

formation is known and thus the guiding role of one molecule for docking the other

one is missing. In the precomputation phase our method needs the presence of

directional short-range interactions such as hydrogen bonds or salt bridges which

exhibit spatially much more constrained interaction geometries as lipophilic inter-

actions. The consideration of the latter in this step would lead to infeasibly large

docking graphs as generally many lipophilic interaction combinations are possi-

ble in common synthetic host-guest complexes. Furthermore, their geometrically

ambiguous nature would not allow for applying strict distance filters. However, it

is important to note that lipophilic interactions are assessed during the complex

construction since the scoring function considers them. The molecules involved

in synthetic host-guest systems that are solely based on lipophilic interactions

are generally less flexible. Thus, at least one molecule is commonly rigid and an

approach as proposed in Chapter 3 could be applied.
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The test set used in Kämper et al. (2006) consisted of complexes that have

been crystallized from aprotic solvents. Here, a complex has been integrated into

the test set that was crystallized from aqueous solution. Although the structural

influence of water, which is present in the crystal structure, is not tackled ex-

plicitly, near-native structures were generated. So far solvation is considered only

implicitly in the scoring function which has been parameterized on experimentally

derived protein-ligand complexes that have been crystallized from water.

Besides the forward and inverse docking strategy (Kämper et al., 2006) the new

docking algorithm is the second approach that transfers the concepts of the Flex*

program suite to the synthetic host-guest system and predicts near-native results

for all test cases. This underlines the reliability of the whole concept. Which of

the two methods is applied best for a given synthetic host-guest complex depends

on the flexibility of the molecules. In the case that only one molecule has to be

treated as flexible the approach introduced by Kämper et al. (2006) is the method

of choice. If both molecules are flexible our new algorithm should be applied.

2.4 Virtual Screening as a Virtual Test for Selectivity

The redocking experiment in Section 2.3 showed that, in general, our novel

method for the structure prediction of synthetic host-guest complexes produced

near-native solution for a representative set of test complexes. The ability of a

tool to generate near-native structures can be considered as a prerequisite for

an application as a virtual screening tool. To furthermore show its potential in

a virtual screening scenario, it is essential to test whether the tool is able to

reproduce experimentally proven selectivity of a synthetic receptor for a given

guest molecule. As an example we chose a synthetic receptor created by Bell

et al. (1995), which specifically binds creatinine. In our experiments we virtually

test its selectivity by means of two virtual screening scenarios described in the

following sections.

2.4.1 Test System

Creatinine is an intermediate metabolite in the muscles and is excreted from the

blood by the kidneys. The determination of the creatinine concentration in blood

serum and urine is a good indicator for the renal function.

A very simple and commonly used method of experimentally measuring the

concentration of creatinine is its reaction with picrate solution (Jaffé reaction),

which results in a red-colored product. However, the specificity of this reaction



2.4 Virtual Screening as a Virtual Test for Selectivity 71

N

N
N N

OH
NO2

O2N

N

NN

CH3

O
H

H
N

N N

O
NO2

O2N H

N

N

CH3

O
H

H+

-

+

Figure 2.31. The tautomeric form of the synthetic receptor which is shown on the right is stabilized by

the complexation of creatinine (Bell et al., 1995). The proton transfer involves a chromogenic response and

results in a brownish orange solution that indicates the presence of creatinine.

is poor and hence false-positive detections can occur. Other more advanced ap-

proaches use enzymes, which are apparently much more specific, but have the

drawback of low stability and higher costs.

Bell et al. (1995) presented the selective receptor for creatinine. This synthetic

receptor of creatinine is much more stable than proteins and secures specificity.

The dissociation constant of the complex in water saturated chloroform amounts

to 0.5 µM. The binding of the guest molecule creatinine goes along with a change

in the chromophore of the receptor. This chromogenic response is caused by a

proton transfer within the receptor molecule, stabilized by creatinine (see Figure

2.31). The receptor extracts creatinine from water into chlorocarbon solvents

and forms an intense brownish-orange-colored complex. This property enables

the receptor to be applied as a sensing unit for creatinine.

2.4.2 Design of the Study

In a first step, we test whether FlexR can identify creatinine as one of the best-

binding guest molecules of the creatinine receptor among a large set of molecules.

Having tested this ability we evaluate the selectivity of the synthetic host for

creatinine. To do so, we virtually screen for molecules that occur as metabolites in

human bodies and could thus potentially interfere with the detection of creatinine.

2.4.3 Screening Sets

Two screening sets are extracted from public databases. In order to challenge our

tool we apply filters, assuring that all selected molecules exhibit similar chemical

properties in comparison with the native ligand creatinine. This filtering step

helps to focus only on relevant molecules.
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The first set consists of molecules taken from the Zinc-database (Irwin &

Shoichet, 2005). The Zinc-database provides molecules from a large number of

chemical vendor catalogs. All molecules are present as three-dimensional struc-

tures with appropriate bond lengths and angles, as well as reasonable protonation

states. The molecules have been downloaded in the Mol2 file format. We apply

the following filter rules:

• molecular weight 80 - 140 g mol−1

• 1-3 hydrogen bond acceptors

• 1-3 hydrogen bond donors

• 0-2 rotatable bonds.

Finally, this set contains 5,371 molecules. These molecules serve as a decoy set.

The native ligand creatinine is added to the dataset as a test molecule in order

to verify its selective binding.

The second set of molecules is extracted from the Kegg database (Kanehisa

et al., 2006). The Kegg database links genomic and molecular information with

the aim to provide a reference knowledge base as the basis for understanding

higher order biological systems (Kanehisa et al., 2006). One of the integrated

modules is called Kegg Ligand and contains chemical compounds that occur in

organisms as metabolites. This set consists of 12,042 molecules. This second set

serves for the test in which potentially competing compounds are to be identified.

We again only extract molecules with a similar interaction potential as creatinine.

The criteria are as follows:

• 1-3 hydrogen bond donors

• 1-3 hydrogen bond acceptors

• 0-2 rotatable bonds.

We generate three-dimensional structures with standard bond length and angles

with Corina(Sadowski & Gasteiger, 1993). A Python script sets the molecules

to reasonable protonation states. This means that amines are protonated, and

acidic groups are deprotonated. In the end, this set consists of 1,181 molecules.

2.4.4 Results and Discussion

The first test intents to principally determine whether the native ligand creatinine

is among the best-scoring molecules of the derived ranking list of the first dataset.

In fact, creatinine is found to be among the first 5% of top-ranking molecules.

Together with the near-native redocking results presented in the last section, this

result can be considered a prerequisite for the selective recognition of creatinine.
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Figure 2.32. Compound C01563 (carbamate) was found on rank 2. The docking time was 1.6 seconds

We can assure that competitive molecules were within the test set, because the

decoy structures all were chosen to be similar to creatinine with respect to size

and interaction properties.

The second test intends to check whether FlexR can help to identify molecules

that could trigger a false-positive detection signal in the in vitro testing. All of

the tested molecules are metabolites from organisms and can thus potentially

occur in the blood sample used for the creatinine test. On the average the com-

plex structure prediction between a ligand and the creatinine receptor took ten

seconds. Creatinine was found to be within the first 4% of the derived ranking-

list of the virtual screening. Principally, this result confirms the strong affinity

of the receptor to creatinine. However, among the best-scoring solutions, several

potentially interfering compounds are found. As previously described, the chro-

mogenic response is due to the proton transfer within the creatinine receptor

which is stabilized by creatinine. Hence, each molecule that stabilizes this tau-

tomeric form of the synthetic receptor exhibits the potential to interfere with

the detection signal. Four high-scoring molecules are shown in Figures 2.32, 2.33,

2.34 and 2.35. Carbamate is a molecule occuring in the nitrogen metabolism,

maleamic acid accumulates in the nicotinate and the nicotinamide metabolism,

and cytosine is a part of the DNA and thus of high occurence in cells. All of these

molecules stabilize the receptor in a manner similar to creatinine. To give the

ultimate proof that these molecules will trigger a false-positive detection signal,

however, experimental verification is required.
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Figure 2.33. Compound C11261 (aminotriazole) was found on rank 35. The docking time was 1.9 seconds.

2.5 Conclusions and Outlook

We have developed a fast and fully automated method for predicting the struc-

ture of binary complexes between synthetic receptors and their comprised guest

molecules. Our new approach tackles the flexibility of both molecules simulta-

neously. We created a highly efficient adaptive two-sided incremental build-up

approach. We can significantly reduce the search space by building up of each of

the two molecules with respect to the counter molecule. In comparison to the work

presented by Kämper et al. (2006) we achieved a significant acceleration for com-

plexes that consist of highly flexible molecules. At the same time we maintained

the quality of the results. As shown our tool can be applied in a virtual screening

Figure 2.34. Compound C01596 (maleamic acid) was found on rank 48. The docking time was 24.0 seconds.
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Figure 2.35. Compound C00380 (cytosine) was found on rank 50. The docking time was 1.3 seconds.

scenario, for example to help experimentalists to identify molecules that could

possibly compete with the original molecule. This might give insights of how to

improve a synthetic receptor in order to increase its selectivity towards the given

guest molecule. This approach has the potential of opening up new scenarios for

the computer-assisted design of novel synthetic host-guest complexes.

There are a number of aspects which may be further developed in future

work concerning FlexR. The structure prediction of host-guest complexes with

macrocyclic host molecules is currently not possible. This is due to the miss-

ing possibility of building up macrocyclic molecules in an incremental manner,

an essential part of our algorithm. Work along this line has been conducted in a

master thesis. The results, however, showed that the efficient conformational sam-

pling of macrocyclic molecules is a demanding problem with no straightforward

solution. A further aspect involves the implementation of metallic guests in the

structure prediction of host-guest complexes. FlexR would have to consider the

coordination geometries of the metal ions. Although this is theoretically already

possible, almost all host-guest complexes with metal ions as guest molecules com-

prise a macrocyclic host molecule. One final aspect for the further development

includes the docking of entirely hydrophobic guests, since the described version of

FlexR focuses on only hydrogen bond based complexes. This class of complexes

is mainly formed in non-polar solvents. Host-guest complexes formed in polar sol-

vents are, however, much more demanding: in water, e. g., the main driving for

complex formation is usually hydrophobic interactions, because hydrogen bonds

in the complex always compete with water molecules. However, our algorithms

need directional interactions; otherwise, the geometric filters cannot be applied.
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Hydrophobic interactions are non-directional by nature and thus cannot be used

for guiding the complex construction. On the other hand, hydrophobic synthetic

receptors are usually designed to be rather rigid for entropic reasons, and thus

principally the protocols presented in Chapter 3 can be applied.
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Computational studies on β-cyclodextrin
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Improved Cyclodextrin Based Receptors for

Camptothecin by Inverse Virtual Screening

This chapter describes a novel protocol for the computer-aided optimization of a

synthetic receptor for a given guest molecule based on the inverse virtual screening

of receptor libraries (Steffen et al., 2007b). We chose the anticancer drug camp-

tothecin as the guest molecule and aimed at the identification of β-cyclodextrin

based synthetic receptors.

This project was accomplished in collaboration with the group of Dr. Joannis

Apostolakis from the Ludwigs-Maximillian University in Munich and the group

of Professor Dr. Gerhard Wenz from the Saarland University in Saarbrücken. All

experimental work was done by Caroline Thiele and Dr. Christian Strassnig.

3.1 Introduction

Synthetic receptors are molecules that specifically bind guest molecules. As men-

tioned in Section 1.1, they generally cannot rival proteins in terms of binding

affinity and specificity. However, they do exhibit numerous technical advantages

over their natural counterparts (see Section 1.1) (Schrader & Hamilton, 2005).

β-cyclodextrins have particularly proven to be in high demand within the pharma-

ceutical industry since their cavity is appropriate for binding druglike molecules

(Davis, 2004). Due to the industrial relevance, rational approaches for tailored

synthetic receptor design are of great current interest. As detailed in Section 1.2

virtual screening using protein-ligand docking tools is well established in the field

of computer-aided drug design. In this field, virtual screening is applied in order

to identify novel ligands for a given protein target (see Section 1.2.2) with the

potential of being used as drugs. However, the application of virtual screening as

a method for the design of novel synthetic host-guest complexes is entirely new.

Recently, studies have been published in which protein-ligand docking methods,

borrowed from the field of drug design, were applied to synthetic host-guest sys-

tems, aiming to identify optimally interacting systems. De Jong et al. (2002) per-
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formed a virtual screening for novel guest molecules of a β-cyclodextrin dimer by

means of the protein-ligand docking tool DOCK (Ewing & Kuntz, 1997) (de Jong

et al., 2002). Docking was applied to place energetically minimized ligand struc-

tures into the β-cyclodextrin dimer. In this way, about 110,000 substances were

virtually screened. 30 of the manually inspected top-ranking molecules were pro-

posed for further experimental verification. Despite the fact that the docking tool

neglected conformational flexibilities of both, the host and the guest molecule,

nine out of 30 proposed molecular guests were found to bind to the receptor

with high affinity. Corbellini et al. applied a similar approach when searching

for guest molecules of a molecular capsule (Corbellini et al., 2004). From about

30,000 virtually screened substances, a restricted number of the computation-

ally predicted binders were selected for experimental testing, which led to five

compounds demonstrating strong encapsulation as tested by NMR. These two

approaches demonstrate the potential and the possible impact of structure-based

virtual screening methods from drug design for the optimization of synthetic

host-guest systems. However, the more demanding issue is to look for a receptor

that will bind a given guest molecule with high affinity and specificity. While

this is clearly more difficult to address, it appears also to be the more relevant

for technical applications, such as complexation and controlled delivery of drugs.

This approach is referred to as inverse virtual screening as the docking direction

is inverted in comparison to common virtual screenings in drug design (Shoichet,

2004).

3.1.1 Camptothecin and Topoisomerase I

For this study, we chose camptothecin as the guest molecule for the design of a

tailored receptor by means of inverse virtual screening. Camptothecin (see Fig-

ure 3.2) and its derivatives represent a class of antineoplastic agents with a broad

spectrum of activity against several types of cancer including colorectal and ovar-

ian cancer (Takimoto et al., 1998). On the molecular level, this class of drugs

inhibits topoisomerase I (see Figure 3.1). Topoisomerases are nuclear enzymes

that play an important role in DNA replication and in transcription and recom-

bination (Slichenmyer et al., 1993). The enzymes catalyze a three-step process

in which they alter the linking of DNA. First, they cut one or both strands of

DNA. Second, they allow the passage of a segment of DNA through this break.

Finally, they reconnect the DNA break. The topoisomerase of type I only cuts

one strand of DNA, whereas the second type can cleave both strands (Berg et al.,

2002). The three-dimensional structure of topoisomerase I is shown in Figure 3.1.

Topoisomerase I consists of four domains, arranged around a central cavity that
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Figure 3.1. The structure of human topoisomerase I in complex to DNA (PDB reference code: 1A36).

binds the double-stranded DNA molecule. Camptothecin and derivatives inhibit

topoisomerase I by blocking the reconnection step of the cleavage reaction. This

results in an accumulation of a covalent reaction intermediate which is presumed

to cause cell death in the S-phase of the cell cycle (Liu et al., 2000). Since the

rate of cell replication in tumors is clearly higher than in normal tissues, camp-

tothecin can be applied to halt the tumor growth, whereas the nontumor cells

are not strongly affected.

3.1.2 Pharmaceutical Formulations for Camptothecin

Unfortunately the high therapeutic potential of camptothecin is hampered by its

low solubility and stability (Lundberg, 1998). Only the closed lactone form is ac-

tive in vivo (see Figure 3.2, left). In relevant literature attempts are described that
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Figure 3.2. Lewis structure of camptothecin in the lactone and carboxylate form.
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help circumventing these difficulties by means of pharmaceutical formulations:

Lundberg (1998) synthesized oleic acid esters of camptothecin analogs, which

can be inserted into liposomes or submicron lipid emulsions. This camptothecin

formulation proved to be very stable against the lactone ring opening and, more-

over, the cytotoxic activity was retained. Polyethylene glycol-conjugated camp-

tothecin derivatives were synthesized by Conover et al. (1998). These derivatives

are water-soluble prodrugs of camptothecin. Cytotoxic activity could be shown in

mouse models. It was suggested that this soluble transport form of camptothecin

could have a clinical application. Ertl et al. (1999) developed microspheres us-

ing poly-(d,l-lactide-co-glycolide) as a building block. These microspheres were

loaded with camptothecin. The study showed that the active lactone form of

camptothecin was maintained during preparation. Furthermore, a sustained re-

lease of camptothecin was achieved, which reduces local toxicity and prolongs

efficacy. Kang et al. (2002) introduced the use of β-cyclodextrin and derivatives

as solubilisants for camptothecin. Their formulation significantly increased solu-

bility and stability, and motivated the work presented in this chapter.

3.1.3 Cyclodextrins and Inclusion Complexes

Cyclodextrins are among the most relevant synthetic host molecules for aqueous

solutions (D’Souza & Lipkowitz, 1998). These molecules are cyclic oligomers of

α-d-Glucose. Basically, four types of cyclodextrins can be distinguished, namely

α-, β-, γ- and δ-cyclodextrins that correspond to 6, 7, 8 or 9 α-d-glucose units

(see Figure 3.3). All are approximately Cn symmetric (Sakurai et al., 1990), with

n equal to the number of glucose units. The production of cyclodextrins is con-

ducted by enzymatic degradation of amylose. For this purpose mainly cyclodex-

trin glycosyl-transferases (CGTases) of bacteria are used (Biwer et al., 2002). This

enzymatic conversion, however, is unspecific regarding the produced ring size of

the cyclodextrins and therefore, the single homologs are purified with selective

media for precipitation (Cramer & Henglein, 1958; Schmid, 1991).

The shape of cyclodextrins has been described as torus- or doughnut-like (see

Figure 3.3). The narrower side is called the primary side, since all primary hy-

droxyl groups1 of the glucose units point to this side. The wider side is called

the secondary side, reflecting the fact that the secondary hydroxyl groups2 of the

glucose units are located at this side (see Figure 3.3). Cyclodextrins have a strong

dipole moment because twice as many hydroxyl groups are located on the sec-

ondary side than on the primary side (Kitagawa et al., 1987; Sakurai et al., 1990).

1 Hydroxy groups bound to a carbon atom which is bound to one carbon atom
2 Hydroxy groups bound to a carbon atom which is bound to two carbon atoms
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Figure 3.3. Schematic illustration of a cyclodextrin. The number n of α-d-glucose units is equal to 6 for

α-, 7 for β-, 8 for γ and 9 for δ-cyclodextrins, respectively.

β-cyclodextrin exhibits so-called flip-flop hydrogen bonds between secondary hy-

droxyl groups of neighboring glucose units (see Figure 3.4). This restricts the

flexibility of the β-cyclodextrin core (Saenger et al., 1983; Betzel et al., 1984).

Cyclodextrins possess a cavity within the molecule. The exterior of the cyclodex-

trins, which is mainly influenced by the hydroxyl groups, is hydrophilic, whereas

lipophilic interactions dominate the cavity. This property enables cyclodextrins

to form relatively strong host-guest complexes with hydrophobic guests. Due to

the hydrophilic nature of the cyclodextrin’s exterior, these complexes are soluble

in water and thus cyclodextrins act as solubilisants (Wenz, 1994). Furthermore,

the inclusion into the cavity can increase the stability of the guest molecule for ex-

ample against chemicals (Ong et al., 1997), biochemical influences (Brown et al.,

1993), or photochemical reactions (Szejtli, 1984). The driving force of complex for-

mation is a combination of hydrophobic interactions, van-der-Waals interactions,

dipole-dipole interactions, hydrogen bonds, and changes in the solubilization of

the guest molecule and the cyclodextrin cavity (Connors, 1997). The release of wa-

ter molecules from the cavity is entropically favorable. In general, the higher the

shape complementarity of the cyclodextrin to the guest molecule, the lower the

binding free energy of the complex. The size of the molecules that can be bound
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Figure 3.4. View onto the secondary side of a β-cyclodextrin. The structure was taken as is from the CSD

(CSD-ID: BUVSEQ03) (Zabel et al., 1986). The red dashed lines denote hydrogen bonds between secondary

hydroxyl groups of neighbouring glucose units.

by a particular type of cyclodextrins, however, increases with the size of the cav-

ity. α-cyclodextrins bind alkyl-chains, whereas benzene is already too large for

them. The cavity of β-cyclodextrins can complexate more bulky molecules such

as adamantane, naphtaline, or various benzene derivatives. γ-cyclodextrins can

bind annelated ring systems and even buckyballs up to the size C60. The ability

of cyclodextrins to bind molecules of a particular size has been referenced as size

recognition (Müller & Wenz, 2007; Wenz et al., 2006a,b). Selectivities and affini-

ties of cyclodextrins can be further increased by means of chemical modifications

(Kitae et al., 1998). Particularly β-cyclodextrins are predestined to bind drug-

size molecules. Their hydrophobic cavity together with the hydrophilic exterior

designates their application as solubilisants for small hydrophobic molecules such

as drugs (Connors, 1997). Today, several β-cyclodextrins based drug formulations

are on the marketplace (Fenyvesi et al., 1984b; Davis, 2004). These include, for

example, formulations for furosemide (Fenyvesi et al., 1984a), prostaglandines

(Stuerzebecher et al., 1996), diclofenac (Fugen & Cuijing, 1998), tumor necrosis

factors (Stanton & Vincent, 2001), piroxicam (Banerjee et al., 2004), or camp-

tothecin (Kang et al., 2002). Other industrial applications were reported in the

food-industry, where cyclodextrins have been used to protect flavors or vitamins

from oxidation (Szejtli, 1980).
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Figure 3.5. Mono and heptakis β-cyclodextrin derivatives are generated. All candidate receptors are sequen-

tially docked onto camptothecin.

3.2 Aim of the Study

In this study we focus on the computer-assisted development of β-cyclodextrin

derivatives with a high affinity to the anti-cancer drug camptothecin by means of

inverse virtual screening. Top-ranking candidate receptors were synthesized and

experimentally tested. The study is considered as a proof principle for the appli-

cability of docking tools for a computer-aided optimization of synthetic receptors.

3.3 Methodology

First, a library of candidate receptors was defined (virtually synthesized). We as-

sured synthesizability by choosing a simple synthesis scheme of a well established

reaction for modifying the β-cyclodextrin core(see Section 3.3.4 and Figure 3.5).

The synthesis consists of nucleophilic displacement reactions of 6-O-iodo- or 6-

O-tosyl-β-cyclodextrin by a set of thiols (Karginov et al., 2006). Each member of

this virtual library is then sequentially docked onto camptothecin. This approach

is referred to as inverse virtual screening. Similar to the normal virtual screen-

ing scenario, we applied scoring functions for ranking the different candidates.

Selected top-ranking candidate receptors were synthesized and experimentally

tested. See Figure 3.6 for a general overview.

3.3.1 Preparation of Camptothecin

The crystal structure of a iodoacetyl derivative of camptothecin was obtained

from the Cambridge Structural Database (Allen, 2002) (ID: CAMPTC10) (McPhail



86 3 Improved Cyclodextrin Based Receptors for Camptothecin by Inverse Virtual Screening

thiol
fragments

ZINC CSD

campto-
thecin

experimental

selection within 
best 10% 

virtual
synthesis

docking

beta-CD
derivatives

beta-CD

Sigma-Aldrich

verification

ranking list 

Figure 3.6. Design of the study.

& Sim, 1968) and exported as a Mol2-file. The iodoacetyl-group was replaced

by a hydrogen atom to construct the unmodified camptothecin molecule. All

missing hydrogen atoms were added with Sybyl 6.7. Subsequently a force field

optimization was performed with the MMFF94s force field (Halgren, 1999a) un-

til gradient convergence (0.005 kcal mol−1 Å−1)). The structure was saved in the

Mol2 file format.

3.3.2 Preparation of the β-Cyclodextrin Core Structure

The crystal structure of β-cyclodextrin was obtained from the CSD (ID: BU-

VSEQ03) (Zabel et al., 1986) and exported as a Mol2 file. The structure is

derived from neutron diffraction. All deuterium atom positions were resolved. In

the case of a disordering of an atom over two sites of almost equal occupancy

only one position has been retained. The atom types of deuterium atoms were

changed to hydrogen atoms. All remaining atom types were visually inspected

and - if necessary - corrected according to the Sybyl atom type rules. All water

molecules present in the crystal structure were manually removed.
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Figure 3.7. Schematic drawing of the virtual synthesis of the β-cyclodextrin-library. The thiol-group (C-S-

H) of the fragment is superimposed onto one (mono) or respectively all seven (heptakis) primary hydroxyl

groups (C-O-H). The bond length s and the bond angle α are set to standard values (s = 1.82Å, α = 109◦).

Apolar hydrogen atoms are omitted for clarity.

3.3.3 Extraction and Preparation of Fragment Libraries

We extracted all compounds from the Sigma-Aldrich catalog and the Zinc

database (Irwin & Shoichet, 2005) that contained at least one thiol group by

means of the substructure search interfaces provided on the web pages of the

suppliers. As an additional filter we set the molecular weight range to 0 - 200

g mol−1 in order to limit the size of the fragments. Sigma-Aldrich provides com-

pounds as Structure Data Files (Sdf) (Dalby et al., 1992), whereas from

ZINC Mol2-files can directly be downloaded. The SD-files from Sigma-Aldrich

were converted to Mol2-files and, for each molecule, a low-energy conformation

was generated with Corina (Sadowski & Gasteiger, 1993). Subsequently we re-

moved all compounds with more than one thiol group. This was done in order

to secure non-ambiguous synthesis. Altogether we obtained 605 fragments from

ZINC and 318 fragments from the Sigma-Aldrich catalog, respectively. In the

last step reasonable protonation states were assigned to all fragments, i. e., acidic

groups are deprotonated, amines are protonated when they are not in conjugation

with an aromatic system.

3.3.4 Virtual Synthesis of β-Cyclodextrin Derivatives

The virtual library of β-cyclodextrin derivatives was defined with the help of a

Python script. This script virtually synthesized mono- and heptakis-substituted

β-cyclodextrins for each of the thiol group fragments described in the previous

section (see Figure 3.7). To do so, the script transforms each fragment in three-

dimensional space such that its thiol group is superimposed onto one or respec-

tively all seven primary hydroxyl groups of the β-cyclodextrin structure. Then
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the hydroxyl group and the hydrogen atom of the thiol group are removed and

a bond of standard length is added between the sulfur atom of the fragment

and the carbon atom of the β-cyclodextrin. Finally, the bond angle α is set

to 109◦. This type of construction guaranteed correct bond lengths and angles,

while rotatable torsion angles were optimized during docking. Altogether 1,846

mono- and heptakis-substituted β-cyclodextrin derivatives were generated with

this procedure.

3.3.5 Applied Docking Tools

The system of choice is dominated by hydrophobic interactions, which cannot be

handled by our tool FlexR (see Chapter 2). Due to this limitation we chose two

other docking tools that had proved effective in handling hydrophobic interactions

and tailored them for our needs. The applied docking tools AutoDock and

GlamDock are detailed below.

AutoDock

AutoDock (Morris et al., 1998) (Version 3.05) is an open-source software pack-

age for the automated docking of ligands into macromolecules. It has been suc-

cessfully applied in some recent virtual screening projects, for example for the

discovery of protein phosphatase 2C inhibitors (Rogers et al., 2006), for DNA

minor groove binders (Evans & Neidle, 2006), and for anti-SARS drugs (Wei

et al., 2006).

The search for the conformation of a ligand with minimal binding energy is re-

garded as an optimization problem. In AutoDock four optimization algorithms

are implemented out of which the Lamarckian genetic algorithm has been shown

to be the most effective and reliable (Morris et al., 1998).

Genetic algorithms imitate evolutionary processes, for finding the global op-

timum of a given optimization problem (Michalewicz, 1996). In protein-ligand

docking, the configuration of the ligand to the protein can be described by a

set of values, which define the translation, orientation, and conformation of the

ligand within the protein binding site. Each of these variables is referenced as a

state variable of the ligand and is coded into a virtual gene. The atomic coordi-

nates can be translated from the virtual genome of the ligand and correspond to

the phenotype. In the beginning of the evolutionary process, a set of randomly

distributed ligands is generated as the starting generation. Two genetic processes

allow for evolution: first, crossover recombinations of the genes of two ligands and

second, mutations, in which a gene changes its value by a random amount. Based

on predicted fitness scores only a restricted number of individuals is selected from
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the generated offsprings for the next evolution step. These fitness scores are cal-

culated by means of the energy function described below for a given state of the

ligand. For improving the efficiency of the search performance, Morris et al. have

extended the classical genetic algorithm by incorporating a local search method

(Morris et al., 1998). This variant is called Lamarckian genetic algorithm and

allows for the improvement of an individual’s fitness by local search optimization

of the phenotype, i. e. the atom coordinates corresponding to the genetic state.

The optimized position is mapped back into genome.

AutoDock uses a grid-based energy evaluation procedure which speeds up

the energy calculation for a given ligand state. For this purpose, a cubic grid

with a user adjustable grid size is virtually overlaid onto the binding site of a

protein. A set of representative probe atoms are iteratively put onto each grid

point. An energy function is used to precalculate an interaction energy for each

probe atom on each grid point with the protein’s binding site. These precalcu-

lated interaction energies are stored in a look-up table which can be rapidly ac-

cessed during docking time. The applied energy function is given in equation 3.1.
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∑
i,j

(
Aij

r12
ij

− Bij

r6
ij

)
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ij
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)
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∑ qiqj

ε(rij)rij

+∆GtorNtor
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∑
iCj

SiVje
(−r2

2δ2
) (3.1)

The five ∆G coefficients3 are derived from a linear regression analysis on a set

of 30 protein-ligand with experimentally determined binding free energies. The

terms iterate over all ligand-protein atoms pairs, and furthermore over all pairs of

ligand atoms that are more than two bonds apart from each other. The van-der-

Waals and the hydrogen bond energies are described by Lennard-Jones potentials.

In the case of the hydrogen bond energy a weight E(t) penalizes deviations from

ideal bond angles and lengths between the hydrogen bond donor and the acceptor

atom. The Coulombic electrostatic potential calculates electrostatic interaction.

The number of single rotatable bonds estimates entropic effects. The last term

3 vdW = van-der-Waals interaction, hbond = hydrogen bond, elec = electrostatic interactions, tor =

torsional energy, sol = solvation
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implements the calculation of desolvation energies based on the work of Stouten

et al. (1993).

GlamDock

The second tool we applied is called GlamDock (Karasz et al., 2004; Tietze

& Apostolakis, 2007). GlamDock was validated on benchmark sets from the

literature (Kellenberger et al., 2004) and was shown to perform better than state-

of-the-art methods on the Kellenberger dataset (Tietze & Apostolakis, 2007).

The current version of GlamDock relies on a Monte Carlo procedure based

on the matching of functional groups of the ligand with compatible interaction

spots in the binding site. Furthermore, GlamDock uses a local minimization

approach (Abagyan et al., 1994; Apostolakis et al., 1998). The search space for

the Monte Carlo optimization of the ligand consists of continuous degrees of free-

dom for the conformation of the ligand and discrete degrees of freedom that link

interaction groups of the ligand with interaction spots in the protein binding site.

These interactions spots are precalculated by means of interaction probes and the

energy function described below. The approach used for this precalculation is in

some respects similar to the Protomol procedure in Surflex (Jain, 2003) and

works as follows. Compatible interaction probes are uniformly placed around each

interaction group of the protein binding site in ideal interaction geometry. The

energy function (see below) scores the placed probes. The probes are clustered

in order to reduce the number of interaction spots. Only the k best-scoring rep-

resentatives of each cluster are retained and indexed. Each interaction group of

the ligand is assigned to the indices of compatible probes. A given point in the

search space is translated into a ligand conformation: first, by the adjustment of

the torsion angles, and second, by the rigid placement of the ligand in a manner

that optimally fulfills mapped interactions. In this step, the algorithm employs

Kabsch rotations (Kabsch, 1976). These Kabsch rotations minimize the distance

between interaction groups of the ligand and mapped interaction spots in the

binding site. After each rotation GlamDock removes unfulfilled mappings from

the list of targeted interactions and the procedure is reiterated. Subsequently

GlamDock performs a torsion space minimization with the full energy function

in order to relax the conformation in the field of the receptor structure. The re-

maining (fulfilled) mappings are coded back into the search space point, which

led to the particular placement. The best ranking conformation is predicted as

most favorable structure of the complex.

The integrated energy function ChillScore for the optimization is a contin-

uous-gradient approximation to the docking version of ChemScore (Baxter
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et al., 1998; Eldridge et al., 1997; Verdonk et al., 2003).

∆GChill = ∆G0 + fhbond∆Ghbond + flipo∆Glipo + fmetal∆Gmetal

+∆GrotNrot + ∆Gclash + ∆Gpocket (3.2)

It consists of seven terms that are summed up to the entire energy. These terms

consist of a hydrogen bond term (fhbond∆Ghbond), a lipophilic term (flipo∆Glipo),

an acceptor-metal interaction term (fmetal∆Gmetal), an entropic term that ac-

counts for the ligand flexibility (∆GrotNrot), a clash (atom-atom overlap) term

for ligand-protein and intra-ligand atoms (∆Gclash), and a term that penalizes

poses in which the center of geometry of the ligand is outside the defined binding

pocket (∆Gpocket).

3.3.6 Docking Protocols

As previously described, protein-ligand docking tools explore the conformational

space of a ligand within the binding site of a protein. Most state-of-the-art tools

tackle the protein as rigid during the simulated binding. In our work, we could

not make this assumption, since the conformations of the virtually generated

β-cyclodextrin derivatives were unknown and had to be generated during the

docking process. Camptothecin, however, is a relatively rigid molecule, whose

conformational space can be reasonably described by a single conformation. Due

to the enormous combinatorial complexity of the protein’s flexibility, today’s

docking-tools cannot handle the complete conformational space of a protein (see

Section 2.1.1). The conformational sampling of a synthetic receptor is, however,

computationally feasible during docking, since synthetic receptors are generally

only slightly larger than guest molecules. This suggests that we can interchange

the roles of ligand and receptor and perform an inverse docking of the recep-

tor onto the rigid guest molecule. In this particular case, we can further reduce

the conformational space of the host (β-cyclodextrin): the secondary hydroxyl

groups form so-called flip-flop hydrogen bonds to hydroxyl groups of neighboring

glucose units and restrict the flexibility of the macrocycle (see Figure 3.4). Only

the side-chains on the primary side exhibit a considerable degree of torsional

freedom. Hence, the conformational search was performed for the β-cyclodextrin

derivatives, whereas camptothecin was kept rigid in both docking tools.4

4 β-cyclodextrin is, however, a particular case. The rigid treatment of the macrocycle is not necessarily

reasonable in the case of other macrocyclic host molecules.
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AutoDock

Since AutoDock only provides solvation parameters for amino acid atom types

we reasonably mapped the atoms of camptothecin onto corresponding amino acid

atoms. We used the AutoDock Tools to generate grid maps for camptothecin

(Sanner, 1999). We therefore defined a 50·50·50 Å
3

cube around camptothecin.

The grid spacing was set to 0.375 Å. For each docking run the standard Auto-

Dock parameters were used. We only increased the number of energetic eval-

uations to 5 millions and the number of genetic algorithm runs (GA runs) to

100. The maximal possible number of torsions was set to 30. For the conforma-

tional optimization we chose the Lamarckian genetic algorithm. For the energy

evaluation in docking and ranking we used the dock score.

GlamDock

The docking protocol consists of five single docking runs each consisting of 650

Monte Carlo minimization (MCM) steps, with 15 steps of Levenberg-Marquardt

(Deo & Walker, 1995) minimization in torsion space (Bystroff, 2001) at each

MCM step. A maximum of 40 poses are finally post-minimized using 150 steps

of Levenberg-Marquardt. The scoring function for docking considers the energies

of the receptors, whereas for ranking a size penalizing variant of the scoring

function without internal energy was used. In contrast to AutoDock, Glam-

Dock does not constrain the receptor to dock around the ligand. It explicitly

allows conformations where the ligand lies on top of the β-cyclodextrin ring (see

Figure 3.11). Such conformations are mainly stabilized by the internal energy of

the receptor, which on average scales quadratically with its size (the number of

atoms). The size penalty has the effect of identifying more specifically interacting

complexes and does not necessarily correlate with binding affinity. The reason for

the size penalty was that initially both virtual screening results contained mainly

large hydrophobic receptors on top ranks.

3.4 Results

We generated a virtual library (1,846 entities) of 6-O-mono- and 6-O-heptakis-

substituted β-cyclodextrin derivatives from the β-cyclodextrin core and thiol

building blocks. The structure of the complexes between camptothecin and the

different derivatives was predicted using the two docking tools and the derivatives

were ranked according to the score5 of the complex.

5 Scores are used as heuristic estimates of ∆G◦. By convention, the lower a score, the more favorable

the interaction. Thus, the first rank corresponds to the complex exhibiting the lowest score.
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Usually, protein-ligand docking tools explore the conformational space of lig-

ands, e.g., drug molecules, while treating the protein as rigid (in its crystal

structure conformation) during the simulated binding. For our work this sim-

plification was not appropriate and the conformations of the virtually generated

β-cyclodextrin derivatives had to be generated during the docking process.

For AutoDock docking and ranking was performed based on the overall score

for AutoDock (dock score). In the case of GlamDock the scoring function for

docking considers the internal energies of the receptors, whereas for ranking a size

penalizing variant of the fitness score for GlamDock without internal energy

was used.

For the experimental verification we considered only compounds, which were

found by at least one docking tool within the top 10% of the respective ranking

lists. All potential candidates were visually inspected. We selected promising β-

cyclodextrin derivatives for synthesis and further experimental investigation (see

Table 3.1). Furthermore, the building blocks for synthesizing the β-cyclodextrin

derivative had to be commercially available. Interestingly, AutoDock favored

β-cyclodextrin derivatives with aromatic and hydrophobic side-chains, whereas

GlamDock mainly suggested derivatives forming hydrogen bonds to camp-

tothecin (see Table 3.1). The predicted affinity scores for the heptakis derivatives

were generally more favorable than for the corresponding mono derivatives for

both docking programs (see Table 3.2).

Nine heptakis-substituted β-cyclodextrin derivatives were synthesized by nu-

cleophilic displacement reactions in good yields. For a closer investigation of the

molecular interactions and for obtaining an estimate of binding affinities of the

insoluble heptakis-substituted β-cyclodextrins we also synthesized the nine cor-

responding mono derivatives, which were all soluble in water. Furthermore the

heptakis-substituted thiosulfate β-cyclodextrin (compound 20) was synthesized.

This molecule had an unfavorable predicted binding energy in docking and served

as a negative test.

The binding constants K for all synthesized β-cyclodextrin derivatives were

determined from the solubility isotherm. The remarkable increase of the solubil-

ity of camptothecin as the function of the concentration of the β-cyclodextrin

derivatives is demonstrated in Figure 3.8. The binding constants K were derived

from the slope (Kang et al., 2002). In order to assure comparability we addition-

ally measured the binding constants of the native β-cyclodextrin, hydroxypropyl-

β-cyclodextrin (HP-β-cyclodextrin) and randomly methylated β-cyclodextrin

(RDM-β-cyclodextrin), which were already investigated by Kang et al. (2002). It

should be noted that the value of K obtained for RDM-β-cyclodextrin (186 M−1)
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Figure 3.8. Dependence of the solubility of camptothecin on the concentration of the β-cyclodextrin deriva-

tives.

significantly differed from its literature value (909.7 M−1) (Kang et al., 2002).

This difference might be caused by different experimental protocols and different

substitution patterns of the randomly methylated β-cyclodextrin.

Out of the nine synthesized receptors five exhibit binding constants K clearly

superior to the ones of the native β-cyclodextrin and the two other known β-

cyclodextrin derivatives from Kang et al. (2002) (see Table 3.2 and Figure 3.8).

Heptakis[6-deoxy-6-(2-sulfanyl-ethane-sulfonic acid)]-β-cyclodextrin (compound

14) showed the highest value of K with 7,496 M−1. Since receptors 11, 15, 18 and

19 were insoluble in water, also the corresponding mono derivatives (compounds

21-29) were investigated. Among them, mono-[6-deoxy-6-(6-sulfanyl-9H-purine)]-

β-cyclodextrin (compound 28) showed the strongest binding affinity with 3,629

M−1, which is in the range of the heptakis-substituted β-cyclodextrin derivatives.

As predicted, the negative test example (compound 20) exhibits a comparably

low binding affinity with K = 370 M−1. A comparison of the binding free energies

∆G◦ values for the majority of the mono-substituted β-cyclodextrin derivatives

21 - 27 and 29 with unsubstituted β-cyclodextrin reveals, that one building block

causes a stabilization energy of about ∆G◦= -2 kJ mol−1 . The same comparison

for the heptakis-substituted β-cyclodextrins 12 - 17 show a decrease of binding

energy of ∆G◦= -(5 · · · 9) kJ mol−1 due to seven building blocks. This may suggest
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Figure 3.9. The predicted binding energies (AutoDock) are plotted against the experimental binding free

energy. The mono derivatives are depicted by circles, the heptakis derivatives are shown as triangles.

an additive effect on binding exerted by only three to four building blocks and

may be due to steric barriers. Remarkably, one 6-sulfanyl-9H-purine building

block in compound 28 leads to an exceptionally strong stabilization of ∆G◦= -7

kJ mol−1.

In Figures 3.9 and 3.10 we plot the binding energies predicted by the Auto-

Dock and the GlamDock scoring functions against the experimentally deter-

mined values. The heptakis derivatives are shown as triangles, the mono deriva-

tives as circles. HP-β-cyclodextrin and RDM-β-cyclodextrin were not considered

since no docking was performed due to the structural uncertainties (random sub-

stitution); for compounds 11, 15, 18 and 19 no binding free energy could be ex-

perimentally determined due to insolubility in water. The correlation coefficient

for AutoDock is equal to r=0.57 (residual standard error of the regression =

2.4 kJ mol−1), for GlamDock equal to r=0.82 (residual standard error of the

regression = 1.6 kJ mol−1). Compound 14 is an obvious outlier for both docking

tools, but particularly in the case of AutoDock. If this compound is omitted,

the correlation coefficient for AutoDock increases to 0.78 (residual standard

error of the regression = 1.7 kJ mol−1).
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Table 3.1. Building blocks selected by virtual screening of corresponding β-cyclodextrin derivatives.

ID IUPAC Name Lewis Structure CAS-No. Mono ID Hepta ID Tool 1

1 1-methyltetrazole-5-thiol

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

13183-79-4 21 11 AD

2 2-aminoethanethiol

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

60-23-1 22 12 GD

3 2-mercaptoacetic acid

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

68-11-1 23 13 GD

4 2-mercaptoethanesulfonate

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

3375-50-6 24 14 GD

5 2-mercaptopropanoic acid

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

79-42-5 25 15 GD

6 3-mercaptopropane-1,2-diol

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

96-27-5 26 16 GD

7 3-mercaptopropanoic acid

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

107-96-0 27 17 GD

8 9H-purine-6-thiol

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

50-44-2 28 18 AD

9 pyridine-2-thiol

SH N

N

N N

N

SH

SH
NH2

SH
OH

O

SH

O

OH

SH
S

OH

OO

SH OH

O

SH N
N

NN

SH OH
OH

2637-34-5 29 19 AD/GD

1 AD = AutoDock, GD = GlamDock
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Figure 3.10. The predicted binding energies (GlamDock) are plotted against the experimental binding

free energy. The mono derivatives are depicted by circles, the heptakis derivatives are shown as triangles.

3.5 Discussion

Due to the flexibility and the larger size of synthetic receptors in comparison

to ligands, virtual screening of receptors (inverse screening) is more complex in

general than the conventional virtual screening of ligands (de Jong et al., 2002).

For a given complex, the predicted binding free energy ∆G◦(predicted) consists

of three components, in principle:

∆G0(predicted) = ∆G0
R + ∆G0

L + ∆G0
RL (3.3)

where ∆G0
R is the change of energy in the receptor molecule, ∆G0

L is the change

of energy in the ligand upon complexation and ∆G0
RL is the interaction energy

of the complex. In ligand screening, the comparably large receptor structure is

normally treated as rigid and thus ∆G0
R is assumed to be zero. The estimated

binding energy of the system depends only on the interaction energy between the

ligand and the receptor (∆G0
RL) and additionally to a small extent on the change

of the internal energy of the flexible ligand (∆G0
L).
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Table 3.2. Binding constants K and binding free energies ∆G◦ for camptothecin in 0.02M HCl.

ID Compound K [M−1] ∆G◦ [kJ mol−1]

β-cyclodextrin 202±30 -13.2±0.5

HP-β-cyclodextrin 223±32 -13.4±0.4

RDM-β-cyclodextrin 186±12 -12.9±0.2

11 Heptakis-[6-deoxy-6-(1-methyl-5-sulfanyl-tetrazole)]-β-cyclodextrin insoluble -

12 Heptakis-[6-deoxy-6-(2-aminoethylsulfanyl)]-β-cyclodextrin 4821±572 -21.0±0.3

13 Heptakis-[6-deoxy-6-(2-sulfanyl acetic acid)]-β-cyclodextrin 1450±177 -18.0±0.3

14 Heptakis-[6-deoxy-6-(2-sulfanylethanesulfonic acid)]-β-cyclodextrin 7496±2002 -22.1±0.7

15 Heptakis-[6-deoxy-6-(2-sulfanylpropanoic acid)]-β-cyclodextrin insoluble -

16 Heptakis-[6-deoxy-6-(3-sulfanylpropane-1,2-diol)]-β-cyclodextrin 4106±475 -20.6±0.3

17 Heptakis-[6-deoxy-6-(3-sulfanylpropanoic acid)]-β-cyclodextrin 3134±364 -19.9±0.3

18 Heptakis-[6-deoxy-6-(6-sulfanyl-9H-purine)]-β-cyclodextrin insoluble -

19 Heptakis-[6-deoxy-6-(2-sulfanyl-pyridine)]-β-cyclodextrin insoluble -

20 Heptakis-[6-deoxy-6-sulfanylsulfonyloxysodium)]]-β-cyclodextrin 370±48 -14.65±0.32

21 Mono-[6-deoxy-6-(1-methyl-5-sulfanyl-tetrazole)]-β-cyclodextrin 465±55 -15.2±0.3

22 Mono-[6-deoxy-6-(2-aminoethylsulfanyl)]-β-cyclodextrin 498±69 -15.4±0.3

23 Mono-[6-deoxy-6-(2-sulfanyl acetic acid)]-β-cyclodextrin 493±61 -15.4±0.3

24 Mono-[6-deoxy-6-(2-sulfanylethanesulfonic acid)]-β-cyclodextrin 431±56 -15.0±0.3

25 Mono-[6-deoxy-6-(2-sulfanylpropanoic acid)]-β-cyclodextrin 419±53 -15.0±0.3

26 Mono-[6-deoxy-6-(3-sulfanylpropane-1,2-diol)]-β-cyclodextrin 531±79 -15.6±0.4

27 Mono-[6-deoxy-6-(3-sulfanylpropanoic acid)]-β-cyclodextrin 569±68 -15.7±0.3

28 Mono-[6-deoxy-6-(6-sulfanyl-9H-purine)]-β-cyclodextrin 3629±1567 -20.3±1.1

29 Mono-(2-mercapto-pyridine)-β-cyclodextrin 641±53 -16.0±0.2

In inverse screening the receptors were treated as flexible, whereas the guest

molecule was kept rigid (∆G0
L=0). Due to the large size of the receptor the

change of its internal energy (∆G0
R) contributes predominantly to the binding

energy. Self-inclusion of the receptor can lead to low-energy conformations of the

receptors with only little interaction to the guest molecule. This is shown in Figure

3.11, which depicts a complex with a predicted favorable score (GlamDock).

Camptothecin lies on top of the receptor. Instead, one of the hydrophobic side

chains is buried in the cyclodextrin cavity and leads to a favorable internal energy
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Figure 3.11. GlamDock docking result for a candidate receptor (Heptakis-[6-deoxy-6-(3-

(trifluoromethyl)benzenesulfanyl)]-β-cyclodextrin) and camptothecin with a predicted low binding free en-

ergy. Hydrogen atoms are omitted for clarity.

(∆G0
R), which compensates for the poor intermolecular interactions (∆G0

RL). This

leads to well scoring complexes that show little interaction between ligand and

receptor. Furthermore, the average interaction of a system increases quadratically

with the number of its atoms, and therefore receptors with large substituents are

generally scored more favorably than smaller receptors. There are at least three

different approaches to address this type of problem within the paradigm of fast

virtual screening:

a) score the complexes only according to the interaction between receptor and

ligand

b) add a term to the ranking function, which depends on the number of atoms,

to penalize large complexes

c) constrain the docking to allow only conformations with camptothecin in the

binding site of the receptor.

In approach (a) it is important to consider the intramolecular receptor en-

ergy ∆G0
R during the conformational sampling to avoid physically unreasonable

conformations of the receptor (e. g. atom-atom overlaps). However, the propor-
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tionality of the number of interactions to the size of the receptor remains and

leads to better scoring of unspecifically interacting hydrophobic receptors. The

second approach (b) reduces the latter problem, but is highly empirical and re-

quires the definition of more or less arbitrary weights for the size-dependent term.

Finally, in the last option (c) conformations as shown in Figure 8 are explicitly

forbidden, even though they may correspond to the most probable structure of

the complex.

In the current work, we chose two different combinations of these approaches.

In the screening with GlamDock we used approaches (a) and (b) by explicitly

adding a term penalizing the size of the receptor for the ranking, and only used

the intermolecular interaction energy ∆G0
RL for scoring. For AutoDock we used

approach (c) since the sampling region of the receptor is limited in such a way

that camptothecin is always within the binding cleft of the derivatives.

Overall, the results show that these two approaches have their particular ad-

vantages and disadvantages. The AutoDock approach led to the selection of

receptors which were highly hydrophobic, and could therefore not be measured.

On the other hand, it also led to the identification of compound 28, which is the

only mono derivative that can rival the heptakis-substituted derivatives in terms

of binding affinity. The GlamDock approach proposed receptors with smaller

and more hydrophilic side chains, in general, which show improved binding affin-

ity over β-cyclodextrin. Furthermore the scores correlate reasonably well with the

experimental binding affinities. It is interesting to note that one derivative (com-

pound 14) appears to be an outlier for both scoring functions. Both, AutoDock

and GlamDock significantly underpredict its binding affinity.

Nevertheless, in spite of the uncertainties of structure prediction, and the

modeling itself, the overall results suggest that at least the tendency of binding

affinity is reproduced. For AutoDock a residual standard error of 9.11 kJ mol−1

is reported in the literature for a set of 30 protein-ligand complexes (Morris

et al., 1998). Furthermore, with regression methods a cross-validated correlation

coefficient of 0.89 and a standard deviation of 2.38 were reported for a set of

218 complexes between β-cyclodextrin and different guest molecules (CODESSA-

PRO descriptors) (Katritzky et al., 2004). This correlation is clearly better than

those achieved in the present work, while the average error is comparable. It

should be noted that regression methods are not applicable for the current study

since no training data for generating the regression was available before. However,

the comparison suggests that our results on this system are probably the best

that can be achieved with simple modeling approaches.
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Figure 3.12. The figure shows the generated complex structure of compound 12 to camptothecin (Glam-

Dock). Hydrogen bonds are depicted by dashed red lines, strong hydrophobic interactions are shown as

dashed green lines. Apolar hydrogen atoms are omitted for clarity.

To exemplify the interactions involved in the complex formation of camp-

tothecin and the described β-cyclodextrin derivatives we discuss the predicted

complex structures of compounds 12 and 18 (see Figures 3.12 and 3.13). The

molecular structure of camptothecin offers several possibilities for intermolecular

interactions. The large hydrophobic area of camptothecin facilitates dispersive

interactions. Consequently, an enlargement of the hydrophobic cyclodextrin cav-

ity by hydrophobic side chains leads to higher binding affinity. This effect is

illustrated in Figure 3.12 where the hydrophobic parts of the cysteaminyl side

chains of compound 12 show a good shape complementarity and hydrophobic

interactions to the camptothecin ring system (dashed green lines). In addition,

camptothecin is also able to interact specifically by forming directional hydrogen-

bonds. The complex exhibits three intermolecular hydrogen bonds (dashed red

lines) of the ammonium groups to hydrogen bond acceptor atoms of camp-

tothecin. On the other hand, polar interacting groups pay a relatively high des-

olvation penalty in aqueous solution and are most probably not the main driving

force behind complex formation for the regarded system.
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Figure 3.13. The figure shows the generated complex structure of compound 28 to camptothecin (Auto-

Dock). The dashed pink line depicts a possible p-stack interaction. Hydrogen bonds are shown as dashed

red lines. Apolar hydrogen atoms are omitted for clarity.

Additionally we could show that aromatic building blocks, e.g. purine in com-

pound 28 and, to a smaller extent, pyridine in compound 29 increase complex

stability. This result might be best explained by the occurrence of π-stacking

(dashed pink line) between camptothecin and the heterocycle (see Figure 3.13).

In general hydrophobic interactions are the main driving force behind complex

formation in aqueous solution, while polar interactions are more responsible for

the specificity of the interaction. While a general size effect can be observed in the

data, specific effects are evident, since mono-substituted compounds exist, which

bind better than heptakis-substituted compounds and vice versa. Compound 28

binds better than all other mono-substituted derivatives and better than some of

the heptakis-substituted compounds. It is recognized by both affinity predictions

as the best of the mono-derivatized compounds. Inversely, an extension of the

cavity does not necessarily result in an increased binding affinity of the complex.

The heptakis-substituted thiosulfate β-cyclodextrin derivative (compound 20),

for example, exhibits ∆G◦ value of -14.62 kJ mol−1 to camptothecin and was also
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predicted to have a comparably low binding affinity. These two examples serve to

illustrate that rational design of the investigated system towards higher binding

affinities is indeed not trivial, yet possible.

3.6 Conclusions

We have investigated a rational optimization approach to synthetic receptor de-

sign. Our approach is complementary to the work of de Jong et al. (2002), who

described the identification of new ligands for a given host. Our results indicate

that inverse virtual screening can support the identification of novel receptors for

a given ligand and might open up novel possibilities for the tailored design of drug

delivery systems. Finally, it should be noted that this approach is not limited to

cyclodextrin derivatives and the idea of receptor design by means of inverse vir-

tual screening can be applied to other host classes. The rules for generating the

virtual library of hosts can, in principle, be arbitrarily expanded. Future work

might go along this direction.





4

Combined Similarity and QSPR Based Virtual

Screening for Guest Molecules of β-cyclodextrin

This chapter reports on the combination of a similarity-based virtual screening

technique with a quantitative structure property relationship (QSPR) model for

the identification of new guest molecules with high affinity to β-cyclodextrin

(Steffen et al., 2007a). Our technique provides a new and successful means for

the identification of novel guest molecules for synthetic receptors. The work has

been conducted in collaboration with the group of Dr. Joannis Apostolakis from

the Ludwigs-Maximilian University in Munich and the group of Professor Dr.

Gerhard Wenz from the Saarland University in Saarbrücken. All experimental

work was done by Anne Engelke.

4.1 Introduction

The rational design of novel host-guest systems is of particular interest in supra-

molecular chemistry (Lavigne & Anslyn, 2001). Recently, studies have been pub-

lished, in which structure-based docking tools were applied to synthetic host-guest

systems in order to identify optimally interacting systems (de Jong et al., 2002;

Corbellini et al., 2004). As previously described (see Section 3.1), both studies

performed a virtual screening for the identification of novel guest molecules. These

approaches demonstrated the potential and the possible impact of structure-based

virtual screening methods from drug design for the optimization of synthetic

host-guest systems. Another virtual screening technique solely uses information of

known guest molecules and is known as similarity- or ligand-based virtual screen-

ing (see Section 1.2.1). This technique relies on the assumption that structurally

similar molecules exhibit similar binding properties with respect to a given target

(Patterson et al., 1996; Martin et al., 2002). In general, these types of tools are

significantly faster compared to docking (Kämper et al., 2007). Researchers have

proposed a broad range of approaches to describe similarity between molecules
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Figure 4.1. The figure shows two different approaches to generate a fingerprint representation. a) Fingerprint

based on structural keys use a dictionary of substructures, each of which corresponds to a defined bit in the

bit string. b) Hashed fingerprints do not require a predefined dictionary as atom paths are generated on the

fly. A hashing function translates them into bits.

(Sheridan & Kerarley, 2002; Lengauer et al., 2004). Some representative examples

are detailed below.

4.1.1 Fingerprint-Based Similarity Tools

Fingerprint tools represent the fastest class of similarity tools. Here, the molecules

are represented as bit strings (see Figure 4.1). Commonly two different approaches

are used to generate a bit string representation of a molecule. The first uses a fixed

number of structural keys (substructures) and assigns each of them to a bit within

the bit string [MDL Information Systems, Inc. (http://www.mdli.com), Digital

Chemistry (http://www.digitalchemistry.co.uk)] (see Figure 4.1, a). If a given

structural key is present in a molecule, the corresponding bit is set to one; other-

wise the corresponding bit is set to zero. The second approach is called hashed fin-

gerprints [Daylight Chemical Information Systems (http://www.daylight.com)]

(see Figure 4.1, b). In contrast to fingerprints based on structural keys, hashed

fingerprints do not employ a predefined substructure dictionary. The hashed fin-

gerprints are generated by finding all possible linear paths of connected atoms

up to a defined length that occur within a molecule. Then, a hashing function

translates each path to a number of bits that are set to one. While the coding

step from a given atom path to the corresponding bits is unique, the step back-

wards from the bits to a path is ambiguous as different path can have the same
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bit pattern. Principally, this approach can result in false-positive hits, but does

not generate false negatives. In contrast to structural key based fingerprints, this

type can be applied to any kind of chemical structure, even if rather uncommon

substructures dominate. Besides these two approaches combinations of both are

reported. Unity [Tripos Inc. (http://www.tripos.com)], for example, uses a hybrid

of hashed fingerprints and structural keys.

The molecular similarity is commonly calculated by means of the Tanimoto

coefficient T (Tanimoto, 1957) on the basis of bit strings. T is defined as the

following ratio:

T =
c

a + b− c
(4.1)

with a equal to the number of bits set to one in molecule A, b equal to the number

of bits set to one in molecule B, and c equal to the number of bits that are set to

one in the bit strings of both molecules. The Tanimoto coefficient is in the range

between 0 and 1. The more similar two molecules are, the closer the corresponding

Tanimoto coefficient is to one. Besides the Tanimoto coefficient numerous other

similarity coefficients have been proposed (Leach & Gillet, 2003).

The comparison of bit strings is computationally very efficient and therefore

fingerprint methods can handle large libraries of molecules. However, bit strings

only roughly represent the overall molecular topology. Two molecules might ex-

hibit a high similarity if, for instance, both of them have many functional groups

or side chains in common, although they significantly differ in their molecular

structure. In comparison to graph- or shape-based similarity techniques the com-

puted similarity might thus not be directly visible.

4.1.2 Graph- and Tree-Based Similarity Tools

In graph-based similarity tools molecules are represented as graphs. Within these

graphs, nodes represent structural features, such as an atom or groups of atoms,

and edges denote their connectivity. The similarity is calculated on the basis of

a generated mapping between two such graphs. This mapping points to corre-

sponding parts of the two molecules. The tool Fuzzee, e. g., which was applied

for the study described in this chapter, belongs to this class of tools (see Section

4.3.2.1).

A very advanced tree-based similarity tool is called Ftrees (Rarey & Dixon,

1998). Here, molecules are described as trees, comprising nodes that correspond

to molecular fragments and edges that describe their connectivity. Each of these

nodes contains features, accounting for chemical and steric properties of com-
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prised fragments. The similarity between two molecules is calculated by matching

their two corresponding feature trees, while preserving their molecular topologies.

The method allows for combining connected nodes to a combined node, that rep-

resents the features of the contained nodes. In this way, a biphenyl system can

for example match a naphthalene ring system.

In general, tools of this class have the advantage that they directly depict cor-

responding parts of two molecules and the chemical similarity is clearly visible.

Furthermore, in contrast to three-dimensional descriptors they are independent

from the conformations of the molecules. Reduced graphs, which are very ab-

stract representations of molecules, allow for so-called scaffold hoppings (Böhm

et al., 2004), such that molecules of considerably different molecular structure, yet

similar physicochemical properties are considered similar (Barker et al., 2006).

4.1.3 Similarity Tools Based on Shape or Structural Superimposition

Molecular similarity can also be deduced from the comparison of the shape or

the three-dimensional structure of molecules. Basically, the aim of such methods

is to find and to quantify the maximal volume overlap of two molecules, whilst

potentially considering physicochemical features of the molecules.

The tool Rocs represents molecules by means of continuous functions that

are derived from atom-centered Gaussians (Grant et al., 1996; Rush et al., 2005).

This representation allows for the calculation of an alignment of two molecules, in

which Rocs maximizes the overlap of the volumes of the molecules. Optionally, a

chemical force field maximizes the overlap of parts of the molecules with identical

interaction properties.

Lemmen et al. (1998b) presented the tool FlexS, which superimposes the

structures of two molecules, using an incremental construction principle related

to FlexX. FlexS keeps the reference molecule in a rigid conformation. This con-

formation can for example be taken from a crystal structure. The test molecule

is treated as flexible. Similar to FlexX, FlexS cuts the test molecule into frag-

ments, out of which preferably rigid base fragments with many interaction groups

are selected. These base fragments are aligned to matching parts of the query

molecule. Subsequently, FlexS builds up the entire test molecule in an incre-

mental manner. During the incremental construction, a scoring function assesses

paired intermolecular interactions, as well as the steric overlap of the molecules.

The rather abstract representation of molecules in shape-based tools, which is

due the independence from atom types and bonding patterns, is predestinated to

allow for scaffold hoppings (Böhm et al., 2004). However, particularly in the case

of flexible molecules the major difficulty associated with three-dimensional shape
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descriptors is the problem of handling this flexibility. If only one conformation is

considered, shape-based similarity tools might not be able to find similarities as

the calculation is possibly based on non-corresponding conformations. The con-

sideration of multiple conformations per molecule, however has a direct influence

on the performance.

4.2 Aim of the Study

In this work, we have combined a graph-based similarity method with a quan-

titative structure property relationship (QSPR) model. This model provides the

means of estimating the binding free energy ∆G◦ of the similarity hits and is

then used as a second filter. The value of QSPR models for the prediction of

∆G◦ values of complexes between various guest molecules and β-cyclodextrin

was shown in two recent studies (Suzuki et al., 2000; Katritzky et al., 2004).

In both cases stable and well predictive models were generated on the basis of

computed molecular descriptors (see Section 1.1.4.1). This was motivation for us

to use this technique in combination with similarity screening to identify high

affinity guest molecules of β-cyclodextrin out of a given database of molecular

compounds.

4.3 Methodology

Figure 4.2 illustrates the workflow of our study. First a QSPR model for the

prediction of the binding free energy (∆G◦) of β-cyclodextrin inclusion complexes

was generated. Second, a similarity-based virtual screening was performed. Then,

the QSPR model was used for assessing molecules that were found by similarity-

based virtual screening. We selected molecules with a predicted high affinity for

β-cyclodextrin in order to experimentally verify our computations.

4.3.1 Generation of a Support Vector Machine Regression Model

We developed a support vector machine regression (SVMR) based QSPR model

that was trained to predict the binding free energy ∆G◦ of β-cyclodextrin in-

clusion complexes based on molecular descriptors (Tetko et al., 2005) and ex-

perimental data from literature. The molecules of our training dataset were

taken from Suzuki (2001). All 218 molecules form 1:1 inclusion complexes with

β-cyclodextrin. For all molecules the ∆G◦ values of the complexation to β-

cyclodextrin were experimentally determined. The molecules were drawn with
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Figure 4.2. Schematic flow of the applied virtual screening method.

reasonable protonation states with ISIS/Draw [www.mdli.com] and exported as

MOL files (Dalby et al., 1992). Corina (Sadowski & Gasteiger, 1993) was used

to generate low-energy three-dimensional structures in the SDF format (Dalby

et al., 1992). Finally, all molecules were visually inspected and, if necessary, cor-

rected. 1,666 molecular descriptors were calculated for each molecule by means

of the E-Dragon web server (Tetko et al., 2005; Todeschini & Consonni, 2000).

The descriptors account for simple molecular properties, from molecular weight

and topological features up to elaborate quantum chemical characteristics. For

the subsequent development of the QSPR model all properties were scaled to the

range -1 and 1 in order to avoid numerical problems and prevent a bias in the

descriptor space.

The theoretical background of SVMR has been described in detail by Drucker

et al. (1997) (see Section 5.2.3.3). In this work we use the LIBSVM implementa-

tion (Chang & Lin, 2001) with the linear kernel function and combine it with a

forward descriptor selection procedure. The latter helps to limit the number of in-

tegrated descriptors, which enhances the interpretability of the regression model.

Furthermore the risk of overfitting the model to the underlying data and thereby
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decreasing the predictivity of the model for non-training molecules is reduced, if

the number of integrated descriptors is limited. The forward descriptor selection

procedure is based on a greedy heuristic that works as follows. First, a regres-

sion model is generated for each single descriptor with tenfold cross-validation.

Second, the descriptor which gives the highest cross-validated squared linear cor-

relation coefficient r2
cv is chosen.1 Then, this descriptor is combined with each of

the remaining descriptors and the pair that leads to the regression model with

the highest r2
cv value is selected for the next descriptor extension step. This is

repeated until a maximum for r2
cv is reached. All descriptors at this stage are in-

tegrated into the final model. This model was used for the prediction of the ∆G◦

values of the inclusion complexes between β-cyclodextrin and the guest molecules

that were identified by virtual screening.

Internal validation of the QSPR model

The squared linear correlation coefficient r2
cv derived from the tenfold cross-

validation test is overoptimistic with respect to the prediction accuracy of unseen

data, especially since cross-validation was used to select the descriptors for the

model. A more realistic estimate of the predictivity of the final model generated

in the described manner can be obtained by means of a nested cross-validation

protocol (Ruschhaupt et al., 2004) (see Figure 4.3). Therefore the data is split

randomly into three equally sized subsets S1, S2 and S3. Out of each possible

pairing of the three subsets three combined subsets V1 (S1+S2), V2 (S1+S3)

and V3 (S2+S3) are built. Each of the latter serves as a training set for the gen-

eration of a QSPR model, which is obtained in the same manner as described

above by the tenfold cross-validation based descriptor selection protocol. This is

the inner loop of the nested cross-validation. The models generated in the inner

loop are then used to predict the respective remaining, unused subset (outer loop

- prediction set). The prediction quality of the model on these test sets is taken

to mirror the prediction quality for unseen data.

4.3.2 Virtual Screening

Five known β-cyclodextrin guest molecules with ∆G◦ values less than or equal

to -20 kJ mol−1 were selected as query compounds (Table 4.1). Three of them,

1 r2
cv is the Pearson correlation coefficient calculated for the predictions of all ten cross-validation runs

together. In principle, also the cross-validation coefficient as used in Chapter 5 could have been used.

Since the predictions made in this chapter were experimentally validated and not only theoretically,

we decided to use the simple and directly accessible Pearson correlation coefficient, which is a direct

output of the applied SVMR-tool.
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Figure 4.3. Schematic illustration of the nested cross-validation protocol. The data is divided into three

equally sized subsets. Then the model generation and the descriptor selection is done for each pair of subsets

(inner loop) based on tenfold cross-validation. The remaining subset serves as the prediction set (outer loop).

i. e. chlorpromazine (compound 3), flurbiprofen (compound 4) and ibuprofen

(compound 5) are drug molecules. The query compounds were prepared with the

same protocol as described for the preparation of the QSPR training set molecules

(see Section 4.3.1).

The screening dataset was downloaded from ZINC (Irwin & Shoichet, 2005) as

SD-files (Dalby et al., 1992). For reasons of direct and fast commercial availabil-

ity we chose the Sigma Aldrich subset. Altogether this subset contains 117,695

entries. The structures were taken as provided from ZINC (see Irwin & Shoichet

(2005) for closer details of their preparation protocol).

4.3.2.1 FUZZEE

The approach used for similarity screening is based on a variant of the graph

matching algorithm in the GMA program (Marialke et al., 2007). Direct graph

matching at the atomic level leads to the identification of chemically closely

related structures. In order to find molecules of different topology, but yet similar

physicochemical features it is preferable to perform the comparison on a more

abstract representation of the molecules, for example, at the level of functional

groups. The computational representation of molecules used in this work is related

to the reduced graphs used by Barker et al. (2006) and is illustrated in Figure

4.4.

Reduced graphs describe molecules as a collection of connected functional

groups or fragments. Each node in the graph represents a fragment in the
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Table 4.1. Known β-cyclodextrin guest molecules serving as query compounds. Experimental error of ∆G◦

within ± 0.3 kJ mol−1.

ID Structure CAS-No. ∆G◦ [kJ mol−1] Lit.

1

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

828-51-3 -24.9 Harrison & Eftink (1982)

2

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

1007-01-8 -20.8 Godinez et al. (1995)

3

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

69-09-0 -22.4 Hardee et al. (1978)

4

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

5104-49-4 -18.8 Ueda & Perrin (1986)

5

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O
15687-27-1 -22.6 Wenz1

1
The ∆G◦ value was determined within the laboratory of Professor Wenz, Saarbrücken according to

the protocol described in Section 4.3.4.

molecule. Edges between the nodes represent the connectivity of the correspond-

ing fragments. The fragments are obtained as follows: Rings containing up to

seven atoms form a fragment. Larger rings are fragmented according to the rules

for linear chains. Atoms that belong to more than one ring are assigned to each

of the respective fragments. Furthermore atoms with at least two non-hydrogen

neighbors form the basis of a fragment. The remaining atoms with only one

non-hydrogen neighbor are merged into their neighbor’s fragment, unless their

neighbor is member of a ring fragment. In this case, the atom forms a single

atom fragment. Two nodes are connected, if they share one or more atoms, or if

two of the contained atoms are connected to each other by a chemical bond. Each
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Figure 4.4. Reduced graph representation of flurbiprofen (left: atomic level; right: reduced graph represen-

tation.). Hydrogen atoms are omitted for clarity.

node is annotated with a number of features describing the atoms that constitute

the original fragment. The features used are shown in Table 4.2. Each feature has

Table 4.2. Features of nodes and weighting scheme.

index weight feature

1 1 carbon sp3

2 1 carbon sp1/sp2/ar

3 1 nitrogen sp3

4 1 nitrogen sp1/sp2/ar

5 1 Oxygen

6 1 Phosphorus

7 1 Sulphur

8 1 Halogens

9 1 other atom types

10 4 H-Bond donor base

11 4 H-Bond acceptor



4.3 Methodology 115

a weight and a value which counts the occurrences of the feature in the fragment.

The matching of two nodes in the comparison between two molecules yields a

weight given by the following equation:

sim(a, M(a)) =
11∑

k=1

Wkmin(ak, M(a)k) (4.2)

where a is the node in the first molecule, M(a) its match, k iterates over the

indices of the features listed in Table 4.2, Wk, ak, and M(a)k are the weight,

and the value of the corresponding feature in the first and the second node,

respectively.

The overall similarity (s) is given as the sum of all similarities between matched

nodes (cw), normalized over the maximum of the self-similarities of the compared

molecules.

cw(K, L, M) =
∑
a∈K

sim(a, M(a)) (4.3)

s(K,L, M) =
cw(K, L, M)

max(cw(K, K, I), cw(L, L, I))
(4.4)

where cw is the sum off all matched similarities, s is the overall similarity, K

and L are the ligands being compared, M is the mapping found by the algorithm,

and I is the identity mapping.

An example of a molecule matching is given in Figure 4.5, where the matching

parts of the molecules flurbiprofen and 4-phenoxybenzoic acid are depicted by

lines.

4.3.3 The Screening Protocol

For each of the five query compounds a virtual screening run was performed

against the screening dataset. Ranking lists were derived from the calculated

similarity scores. The top 150 molecules of each of the ranking lists were scored

by means of the generated QSPR model. The aim of our study was to search for

molecules with low ∆G◦ value in complex with β-cyclodextrin. From the screening

runs only those molecules were selected for which a lower or comparable ∆G◦

value with respect to the corresponding query structure was predicted. Finally,

we were interested in identifying novel molecular scaffolds and thus only molecules

with a significant change in the structure compared to the query structure were
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Figure 4.5. The matching between flurbiprofen (right) and 4-phenoxybenzoic acid (left). Hydrogen atoms

are omitted for clarity.

considered. Additionally we limited ourselves to molecules with a promising water

solubility, allowing for the experimental determination of ∆G◦ by isothermal

microcalorimetry. Furthermore the molecules had to be commercially available.

4.3.4 Binding Studies

Compound 5 was purchased from Avocado, 19 and 10 from Fluka, 6, 9, 15,

16, 18 and 20 from Sigma, 8, 12, 17 and 21 from Aldrich, 11 and 13 from

Acros Organics and 14 from ABCR. The ∆G◦ values of the complexes between

β-cyclodextrin and the compounds that were sufficiently water-soluble were mea-

sured with isothermal microcalorimetric titrations. All titrations were performed

by Anne Engelke from the group of Professor Wenz.

The microcalorimetric titrations were performed at a temperature of 25.0◦C

with an AutoITC isothermal titration calorimeter (MicroCal Inc., Northampton,

USA) using 1.4144 mL sample and reference cells, which were filled with distilled

water. The sample cell was filled with a 1.3 mM solution of the respective guest

in 25 mM phosphate buffer pH 6.79 and constantly stirred at 450 rpm. A 13 mM

solution of β-cyclodextrin was prepared in the same buffer. This solution was au-
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tomatically added by a syringe in 20 separate injections of 12.5 µL. The resulting

20 heat signals were integrated to yield the mixing heats, which were corrected

by the corresponding dilution enthalpies of β-cyclodextrin. The titration curve

was fitted by non-linear regression. Thereby a 1:1 stoichiometry of the inclusion

compound and the host molecule was appropriate. The binding constant KS and

the molar binding enthalpy ∆H◦ were obtained as fitting parameters, from which

the binding free energy ∆G◦ and binding entropy ∆S◦ were derived.

4.4 Results and Discussion

In the first step we generated a QSPR model for a dataset consisting of 218

molecules. For each of the molecules 1,666 descriptors were calculated with E-

DRAGON. The final model integrated 68 descriptors (see Appendix B). For ten-

fold cross-validation an r2
cv value of 0.95 and a root mean squared error (RMSE)

of 1.17 kJ mol−1 was obtained (see Figure 4.6). The observed correlation is in good

agreement with the one reported by Suzuki (2001) (r2
cv= 0.92) indicating that the

chosen regression methodology and the computed descriptors are appropriate for

this study. In contrast to Suzuki’s descriptors the E-DRAGON descriptors are

freely accessible.
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Figure 4.6. Descriptor selection for the training set. For 68 descriptors the maximal r2
cv value of 0.95 was

found. The RMSE is 1.17.
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(c) Subset S3

Figure 4.7. (a) Prediction of ∆G◦ for subset S1 by means of the regression model for validation set V3

(r2 = 0.85, RMSE = 1.98). (b) Prediction of ∆G◦ for subset S2 by means of the regression model for

validation set V2 (r2 = 0.84, RMSE = 2.32). (c) Prediction of ∆G◦ for subset S3 by means of the

regression model for validation set V1 (r2 = 0.85, RMSE = 1.89).

For the validation of our approach a nested cross-validation protocol was used.

As described in the methodology section, for each of the three validation sets

models were generated with the same procedure as applied for the entire final

model. Each model was then used to predict the ∆G◦ values of the corresponding

unused molecules. The mean r2 value of the three sets is 0.84±0.01 kJ mol−1. The

mean RMSE for the three sets is 2.06±0.23 kJ mol−1. In Figures 4.7 (a), 4.7 (b)
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Figure 4.8. Dependence of the predicted and experimental ∆G◦ values of the screening hits.

and 4.7 (c) the predicted ∆G◦ values of are plotted against the corresponding

experimental values.

We selected five known guest molecules as query structures for the virtual

screening. All similarity screening runs together took approximately 1 h on a sin-

gle Xeon 2.8 GHz CPU. This includes preprocessing of the database. After scoring

the top-ranking 150 molecules of each of the five virtual screenings by means of

the generated statistical regression model, the 16 most promising molecules re-

garding their predicted ∆G◦ value were selected for experimental testing (see

Tables 4.3, 4.4, 4.5, 4.6, 4.7).

Two molecules were insoluble and thus no experimental measurement could be

performed. Only one molecule displayed no binding affinity at all. Ten molecules

exhibited a binding free energy of about -20.0 kJ mol−1 or less. Five of them (10,

13, 17, 19, 20) showed a stronger binding affinity than the corresponding query.

Thus for three of the five screenings at least one ligand was found with a stronger

affinity to β-cyclodextrin than the corresponding query. This is a good result

considering that on average only 3.2 new compounds were experimentally tested

per query. The RMSE of the predicted values to the experimentally determined

values is 2.9 (where we only consider those molecules for which a binding free

energy could be measured). The correlation r2 is equal to 0.35 when all molecules

are considered (see Figure 4.8). However, the binding affinity of compound 21

is obviously strongly overrated by the QSPR model. r2 increases to 0.65 if the

data point of compound 21, an obvious outlier, was omitted. The measured ∆G◦

for this compound was clearly higher (less favorable) than the predicted value.

We attribute this discrepancy to repulsive forces caused by steric interactions
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Table 4.3. Selected guest molecules derived from the virtual screening against query 1.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)

[kJ mol−1]

T∆S◦(exp.)

[kJ mol−1]

1

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

828-51-3 1.00 - -24.9 -23.0 1.9

6

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

58096-29-0 0.74 -23.3 -23.5 -21.5 2.1

7

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH

N

S

Cl

N

N

S
NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

16200-53-6 0.73 -22.8 -21.9 -17.0 5.0

8

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH

F

O

OH
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N

N

S
NH2

O

OH
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O
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OHO
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OH
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OHO
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23635-14-5 0.73 -21.5 -21.4 -16.5 4.9

9

S
S

O

OH

OH

O

O

OH

O

OH

O

OH O

N
S

NH2

O
OH

O

O

OH
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O

OH

N

S
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N
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NH2

O

OH

O

OH

O

OH

OHO

O

OH

N
OH

OH

O

OHO

O
O

OH

OH

O

unknown 0.73 -21.0 no complex-

ation

no complex-

ation

no complex-

ation

due to the branched structure of this guest. The difference between the cross-

validated r2
cv and the r2 for the predicted ligands lies with the fact that we only

suggested compounds with a high binding affinity for experimental testing. Thus

the variance of the binding free energy of this data is lower compared to data

used as the training set, leading to lower r2 values. However, the accuracy, i. e.

the RMSE, is comparable to those obtained in the nested cross-validations.

We consider the combination of the similarity-based virtual screening tech-

nique and the QSPR model as an effective way to minimize the drawbacks of



4.4 Results and Discussion 121

Table 4.4. Selected guest molecules derived from the virtual screening against query 2.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)

[kJ mol−1]

T∆S◦(exp.)

[kJ mol−1]
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OH
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OHO
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1007-01-8 1.00 - -20.8 -10.7 10.2
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2792-42-9 0.79 -21.3 -23.0 -25.2 -2.1
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4942-47-6 0.74 -24.6 -28.8 -24.6 4.2

each of the two methods when independently used. The sole application of the

similarity tool lacks of a concrete estimation of the binding free energy. Although

the general principle of similarity is reasonable in many cases, certainly a slight

change in structure can have a significant (negative) influence on binding prop-

erties. This can be partly tested for by the application of the quantitative filter

in the second step. Consider, for example, a structural series of molecules which

was investigated in the group of Prof. Wenz some years ago (Table 4.8) (Höfler &

Wenz, 1996). All molecules are structurally related to 4-tert-butyl benzoic acid.

The overall similarity of each structure to 4-tert-butyl benzoic acid is in the

range of 0.96 to 0.83, the corresponding energies however differ significantly. The

QSPR model predicts the binding free energy values with an r2 value of 0.92 to

the experimental values. The application of the QSPR model thus helps to filter

out molecules with unfavorable binding energies. In fact, about half of the top-
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Table 4.5. Selected guest molecules derived from the virtual screening against query 3.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)

[kJ mol−1]

T∆S◦(exp.)

[kJ mol−1]
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21331-43-1 0.72 -18.8 unsoluble unsoluble unsoluble
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40172-65-4 0.68 -17.2 unsoluble unsoluble unsoluble

ranking molecules of each of the screenings were filtered out by the application

of the QSPR model.

Conversely, virtual screening based only on the output of a regression model

is problematic, because the predictions of QSPR models such as the one used are

generally relevant only for a limited neighborhood of the chemical space centered

around the training set of the model. Thus, the application of the QSPR model

alone leads to an unacceptable number of false-positive molecules that do not bind

to β-cyclodextrin. To demonstrate this point, we show selected molecules from

the screening set in Table 4.9. These molecules were filtered out by FUZZEE. The

QSPR model alone, however, predicts a comparably low binding energy. Although

not experimentally verified, those molecules do not exhibit the typical structural

and functional features of β-cyclodextrin ligands, and are partly simply too large

to fit into the cavity. This results from the fact that the QSPR model was only

trained on molecules that bind to β-cyclodextrin, while non-binding molecules are

not considered. In general, the chemical space of non-binders is too large, that

even including negative data into the regression model does not guarantee it is

sufficiently covered in quantitative models of affinity. Instead, our strategy in this

work has been the prior application of the similarity-based screening technique
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Table 4.6. Selected guest molecules derived from the virtual screening against query 4.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)
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to focus on molecules that exhibit the principal features of β-cyclodextrin ligands

and lie within the scope of the regression model.

While overall we consider the study successful in the sense that it identified

new ligands with high affinity to the targeted host molecule, it is important

to note that the combination of the similarity screening with a QSPR model

does not solve all problems. Compound 21 exhibits a significantly lower binding

affinity in the experimental testing than its predicted value. Even though the

QSPR model was trained on a chemically diverse set of molecules, obviously not

all features that are important for β-cyclodextrin binding have been taken into

account. In the case of compound 21 most probably the sterically demanding

tertiary butyl group diminishes the shape complementarity. Compound 9 did not

show any binding affinity in the experimental testing. This might be attributed

to the cis-standing methyl groups, leading to a too bulky shape that does not

fit into the β-cyclodextrin-cavity. To gain closer insights into the mechanisms of

molecular recognition certainly further experimental studies would be needed.
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Table 4.7. Selected guest molecules derived from the virtual screening against query 5.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)

[kJ mol−1]

T∆S◦(exp.)

[kJ mol−1]
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The concept of virtual screening should thus not be considered as a replacement

of experiments but as an effective way to focus on promising molecules.

4.5 Conclusions

The results validate both the ligand-based screening approach for identifying

novel compounds for a given synthetic receptor and the QSPR model for the

prediction of binding affinities. Their combination is a promising high through-

put alternative to structure-based virtual screenings for the identification of high

affinity guests for given receptors. The methodology is faster than docking, allow-

ing the screening of very large chemical libraries in a short time on a single CPU,

and does not require knowledge of the receptor structure. While β-cyclodextrin

was chosen as a test case because of its technical relevance and the availability

of enough ligands with experimentally determined ∆G◦ the applied methodology

can in principle be transferred to other systems. The quality of the results will
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Table 4.8. Structural series of benzoic acid derivatives. The similarity was computed against compound 19.

ID Structure CAS-No. Sim. ∆G◦(pred.)

[kJ mol−1]

∆G◦(exp.)

[kJ mol−1]

∆H◦(exp.)

[kJ mol−1]

T∆S◦(exp.)

[kJ mol−1]
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generally depend on the existence of sufficient experimental data for the genera-

tion of a reasonably accurate regression model.



Table 4.9. Some structures predicted as favorable binders by virtual screening solely based on the QSPR

model.

ID Structure ZINC-ID ∆G◦(pred.) kJ mol−1
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5

QSPR Study on the Predictability of

Thermodynamic Properties of Beta-Cyclodextrin

Inclusion Complexes.

This chapter describes the comparison of three different statistical regression

methods regarding their ability to establish reliable models for the prediction

of thermodynamical parameters on the basis of computed molecular descriptors

(Steffen & Apostolakis, 2007). Furthermore, a detailed analysis was performed

in order to understand the differences in the predictabilities. As in the previous

chapters, we focus on the host-guest systems between β-cyclodextrins as the host

molecule and different guest molecules. The work of this chapter was accomplished

in collaboration with Dr. Joannis Apostolakis, Ludwigs-Maximillian Universität

München.

5.1 Introduction

Several attempts have been made to study and to predict the binding free ener-

gies ∆G◦ of cyclodextrin inclusion complexes by means of computational methods

(Connors, 1997; Lipkowitz, 1998). Among them particularly statistical methods

based on multiple linear regression (Suzuki, 2001; Katritzky et al., 2004) or neural

nets (Liu & Guo, 1999) have proved to lead to robust prediction models. Here,

we moreover investigate the predictability of two additional thermodynamical

parameters that are of importance during complex formation in β-cyclodextrin

based host-guest complexes, i. e. the enthalpy change (∆H◦) and the entropy

change (∆S◦). This study is combined with a performance comparison of three

different types of statistical regression methods, namely principal components

regression (PCR) (see Section 5.2.3.1), partial least squares regression (PLSR)

(see Section 5.2.3.2) and support vector regression with forward feature selec-

tion (SVMR/FFS) (see Section 5.2.3.3). Whereas the first two methods are well

established in the field of chemoinformatics, the latter is a relatively new ma-

chine learning technique that has been successfully applied in some recent re-

search projects. Briem & Günther (2005), for example, developed support vector
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machine (SVM) models to predict the likeness of a molecular compound to be

a kinase inhibitor, Jorissen & Gilson (2005) described the application of SVM

models for virtual screenings, and Liu et al. (2006) employed SVMR to materials

optimization of sialon ceramics.

5.2 Methodology

For the present study, a new dataset of β-cyclodextrin guest molecules was assem-

bled from the literature.1 For all molecules the three thermodynamical parameters

∆G◦, ∆H◦ and T∆S◦ were available. This dataset served as a test and valida-

tion set for developing statistical prediction models with three different regression

methods, PCR, PLSR and SVMR/FFS.

5.2.1 Assembling of the Dataset and Preparation of the Molecules

We assembled a dataset consisting of 176 β-cyclodextringuest molecules (see Ap-

pendix C.1). These molecules are a subset of those collected by Rekharsky &

Inoue (1998). We applied the following selection criteria:

• The availability of experimental data derived from either calorimetric (cal) or

UV-spectroscopic measurements

• The availability of ∆G◦, ∆H◦ and T∆S◦ data

• All ligands with data that deviated from measurements of other groups were

excluded.

We drew two-dimensional Lewis structures of the molecules with ISIS-Draw

and exported them as MDL MOL files [MDL Information Systems, 1990-2002]

The protonation state of each molecule was manually set according to the pH-

value in which the measurement was performed. In the case no pH-data was

available a reasonable state was set. We used Corina (Sadowski & Gasteiger,

1993) for generating three-dimensional low-energy structures from the Mol-file.

We converted the structures to SD-files (Dalby et al., 1992). Finally, all structures

were manually inspected and - if needed - corrected.

5.2.2 Calculation and Processing of Molecular Descriptors

We calculated molecular descriptors for all molecules with the web service E-

DRAGON, which is part of the Virtual Computational Chemistry Laboratory

1 The dataset presented in Chapter 4 could not be used, since for those molecules only the ∆G◦ values

were available.



5.2 Methodology 129

(Tetko et al., 2005). As described in the previous chapter, E-Dragon calculates

1,666 different molecular descriptors (Todeschini & Consonni, 2000). These de-

scriptors are grouped into different categories ranging from simple atom-type

descriptors or fragment counts to more sophisticated topological, geometrical or

quantum chemical descriptors. In order to prevent numerical problems and to en-

sure the avoidance of a bias in the descriptor space we normalized all descriptor

values to the range between -1 and 1.

5.2.3 Regression Methods

The statistical methods used in this work exist in numerous implementations.

For PCR and PLSR the R-package PLS was used (Wehrens & Mevik, 2007). The

support vector machine regression was performed by means of LIBSVM, which

was developed by Chang & Lin (2001).

5.2.3.1 Principal Component Regression

In principal component regression (PCR), multiple linear regression is performed

on principal components. Principal components are linear combinations of the

descriptors in the data matrix and explain their variance. They are derived from

the covariance matrix of the calculated descriptors. The number of principal

components corresponds to the rank of the data matrix. Its maximal value is the

minimum of the number of data points (i. e. the molecules) and the number of de-

scriptors. The first principal component of a data matrix points into the direction

that maximizes the variance of the descriptors and corresponds to the eigenvector

of the largest eigenvalue of the covariance matrix. The second principal compo-

nent corresponds to the eigenvector of the second largest eigenvalue and points

into the direction that maximizes the variance the data and is orthogonal to the

first principal component, and so on for the remaining principal components. The

PCR model is generated on a subset of the components. The subset is built by

selecting the components in order of their ability to explain the variance in the

dependent variable, i. e. in the current study the thermodynamical parameters.

5.2.3.2 Partial Least Squares Regression

Partial least squares regression is very similar to PCR. In contrast to PCR, where

the covariance matrix of the data is used to generate the principal components,

in PLSR the principal components are derived from the cross-covariance between

the data matrix and the dependent variables (i. e. the quantity being predicted).

Hence, while in PCR the eigenvectors of the data covariance matrix are used to
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span the solution space; in PLSR the directions of maximal covariance between

data and the dependent variables are used.

5.2.3.3 Support Vector Machine Regression

Support vector machine regression (SVMR) is a straightforward variant of sup-

port vector machines (SVM) classification (Cortes & Vapnik, 1995). In classifi-

cation problems SVMs find the hyperplane that separates positive from negative

examples with a maximum margin. This margin is defined as the distance of

the closest data point from the separating hyperplane. In this way a statistical

model is generated that only depends on a subset of the training data, namely

those data points that are close enough to influence the size of the margin and

the orientation of the hyperplane. These are the most difficult examples in the

training set. They are called the support vectors, since they define the orienta-

tion of the separating plane. In support vector regression the same effect (namely

that the final model depends only on a subset of the data) is achieved by the

use of a so-called ε-insensitive cost function, which during model optimization

ignores errors up to a defined threshold. In other words, any training data being

predicted by the current model with an accuracy of up to ε can be neglected. As

in Chapter 4 we added a so-called forward feature selection procedure, which is

in some respect similar to the component extension in PCR and PLSR. Forward

feature selection increases the learning performance and the interpretability of

the regression model as only descriptors are selected that significantly improve

the SVMR model. The selection of descriptors incurs combinatorial explosion if

all possible subsets of all available descriptors would have to be considered. This,

of course, is not feasible if the number of descriptors is too large. To overcome

this problem forward feature selection uses the following greedy heuristic. For

each single descriptor a support vector regression model is trained with tenfold

cross-validation. The descriptor leading to the model with the highest r2
cv of the

predicted to the experimental values is selected as the start descriptor. Then this

descriptor is combined with each of the remaining descriptors and the best pair

is selected. This is repeated until the parameter r2
cv reaches a maximum. This is

used as a stopping criterion, at which the final model is obtained.

5.2.4 Internal Validation

In order to validate whether our model generation procedures can lead to a pre-

dictive model that provides reliable output, we performed the same nested three-

fold cross-validation protocol (Ruschhaupt et al., 2004) for each of the regression



5.3 Results and Discussion 131

methods as in Chapter 4. Therefore, we first split the whole training set into three

equally sized subsets by randomly assigning molecules of the training dataset to

one of the subsets (S1 and S2 consist of 59 molecules, S3 consists of 58 molecules).

Then, we generated three validation sets, each as a combination of two subsets

(V1 = S1 and S2, V2 = S1 and S3, V3 = S2 and S3), such that each of the

validation sets can be used as a training set for predicting the binding energies of

the remaining subset that is not included in the respective training set. We now

distinguish between the inner loop and the outer loop of the validation. Within

the inner loop models with increasing numbers of components (PCR/PLSR) or

descriptors (SVMR/FFS) are built for each of the validation sets by means of the

tenfold cross-validation protocol. In the outer loop we validate the component

or respectively the descriptor selection procedure by predicting the subsets S1,

S2 or S3 with the model of the inner loop, in which the respective subset was

not included. This kind of nested validation produces a reliable estimate of the

predictive power of our regression model for any molecule that is not included in

the training set.

5.2.5 Calculation of Molecular Similarity and Clustering of the Molecules

For clustering the molecules of our datasets and for the nearest neighborhood

analysis we calculated all pairwise molecular similarities by means of the graph

alignment algorithm of the similarity tool GMA (see Section 4.3.2.1) (Marialke

et al., 2007). The molecular similarity was calculated on the basis of a graph-

based alignment on the atomic level. The better the molecular graphs, i. e. the

topology and the atom types, of two molecules can be matched, the more similar

these two molecules are (with 1=identical and 0=dissimilar). On the basis of

these similarities we performed a complete-linkage hierarchical clustering. The

cluster tree was cut off at a threshold of a similarity of 0.7. Hence, within one

cluster only molecules are grouped that exhibit a similarity of 0.7 or higher.

5.3 Results and Discussion

In this work we studied the predictability of experimental thermodynamical data

from 176 guest molecules of β-cyclodextrin. For all molecules experimental mea-

surements for three fundamental thermodynamic quantities, i. e. the entropy

change (T∆S◦), the enthalpy change (∆H◦) and the binding free energy (∆G◦),

were present. Statistical models were developed to predict each of these param-

eters on the basis of computed molecular descriptors. We applied three different
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types of regression methods - principal component regression (PCR), partial least

squares regression (PLSR) and support vector machine regression with forward

feature selection (SVMR/FFS). For the validation and the closer assessment of

our models we performed tenfold cross-validation and a nested cross-validation

protocol.

Comparison of the regression methods

In Table 5.1 the results of the cross-validations are detailed. We discuss the cross-

validation parameter q2, which includes the prediction errors.

q2 = 1− σ2(∆y)

σ2(y)
(5.1)

where q2 is the cross-validation parameter, σ2(. . . ) is the variance of the respective

quantity in brackets, ∆y is the deviation between predicted and experimental

values, and y is the quantity being predicted (the experimental values).2

The highest cross-validation values q2 when applying PCR to predict ∆G◦,

∆H◦ and T∆S◦ are 0.71, 0.54 and 0.35, respectively (see Table 5.1). PLSR leads

to models with maximal q2 values for the three parameters of 0.74, 0.53 and 0.31,

respectively. The highest q2 values are obtained for SVMR/FFS with 0.89, 0.75

and 0.63, respectively.

The shape of the curve when plotting the number of components or descrip-

tors, respectively, against q2 is characteristic for each of the regression methods

(see Table 5.2 - left column for a representative example). PLSR directly steers

towards the maximal q2 value and thus reaches its peak with only a few compo-

nents. After this maximum, the q2 value decreases slightly and stays on a plateau

until it drastically drops down at one point. The curves for PCR look clearly

different. The maximum of q2 is reached with significantly more components and

in-between local minima exist. The differences in the shape of the curves can be

explained by the way the components are obtained. While in PLSR the com-

ponents are derived from the cross-covariance between the descriptors and the

predictors, in PCR the components are only derived from descriptor matrix. For

SVMR/FFS the q2 value increases continuously with each added descriptor un-

til it reaches a plateau with the maximal q2 value. This continuous increase of

the q2 value is due to the selection criterion of the FFS, which is to include the

descriptor that shows the highest improvement to cross-validation performance.

2 In this chapter we discuss the cross-validation parameters instead of the squared linear correla-

tion coefficients and the RMSE values. The cross-validation parameter gives a direct view on the

prediction errors and thus provides a concise means to discuss the quality of the prediction. The

cross-validation parameter is bounded between −∞ and 1. The closer it approaches to 1 the better.
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Table 5.1. Comparison of the regression methods for tenfold cross-validation. The maximal q2 values are

reported for each thermodynamical parameter.

Regression ∆G◦ ∆H◦ T∆S◦

method q2(max) q2(max) q2(max)

PCR 0.71 0.54 0.35

PLSR 0.74 0.53 0.31

SVMR/FFS 0.89 0.75 0.63

For the validation of the statistical models we performed the nested cross-

validation protocol described by Ruschhaupt et al. (2004). For each regression

method this procedure was performed three times resulting in nine different mod-

els and prediction assessments.

The PCR model predicts ∆G◦ values of the molecules in the outer loop with

a q2 of 0.69±0.03 to the experimentally determined ∆G◦ values, PLSR performs

with a q2 of 0.69±0.03 and SVMR/FFS with a q2 of 0.71±0.03 (see Tables 5.2

and 5.5). In the case of SVMR/FFS a drastic decrease of the q2 of the inner loop

in comparison to q2 of the outer loop can be observed. The maximal obtained q2

value in the inner loop is 0.87 whereas in the outer loop a q2 of only 0.74 was found.

PLSR and PCR show a more stable behavior and the q2 values of the inner and the

outer loops are comparable. It should, however, be noted that the correlations

presented here for the prediction of ∆G◦ are clearly below the one found in

Chapter 4 (r2
cv=0.95). Since we applied the same methodology (SVMR/FFS)

this finding is due to the different datasets.

The correlations obtained for the prediction of ∆H◦ and T∆S◦ (Tables 5.3

and , and Tables 5.4 and respectively) are clearly below the ones obtained for the

prediction of ∆G◦ for all regression methods. For both, ∆H◦ and T∆S◦, none

of the regression methods resulted in a q2 of above 0.5 in the outer loop. This

finding particularly shows the risk of overfitting the SVMR/FFS model to the

data as in the tenfold cross-validation even for ∆H◦ and T∆S◦ comparably good

correlations were obtained. The overfitting of the SVMR/FFS model is mainly

due to the forward feature selection algorithm which uses r2
cv for choosing the

next descriptor in the iteration. Thus, the execution of a nested cross-validation

is essential for getting a realistic estimate of the method’s predictivity.



Table 5.2. Dependence of the cross-validation coefficient q2 (∆G◦) on the number of compo-

nents/descriptors integrated into a model for the inner and the outer loop of the nested cross-validation for

all three methods.

inner loop outer loop

PCR

PLSR

SVM-R/FFS
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Table 5.3. Dependence of the cross-validation coefficient q2 (∆H◦) on the number of compo-

nents/descriptors integrated into a model for the inner and the outer loop of the nested cross-validation for

all three methods.

inner loop outer loop

PCR

PLSR

SVM-R/FFS
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Table 5.4. Dependence of the cross-validation coefficient q2 (T∆S◦) on the number of compo-

nents/descriptors integrated into a model for the inner and the outer loop of the nested cross-validation for

all three methods.

inner loop outer loop

PCR

PLSR

SVM-R/FFS
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Table 5.5. Comparison of the regression methods for nested cross-validation (∆G◦). The maximal q2 in the

inner loop (q2(max)-inner loop), the maximal q2 in the outer loop (q2(max)-outer loop) and the q2 of the

outer loop predicted by the model with the maximal q2 in the inner loop (q2(inner loop-max)-outer loop)

are shown.

Regression q2(max)- q2(max)- q2(inner loop-max)-

method inner loop outer loop outer loop

PCR 0.71±0.03 0.7±0.03 0.69±0.03

PLSR 0.71±0.03 0.7±0.01 0.69±0.03

SVMR/FFS 0.87±0.03 0.74±0.01 0.71±0.03

Table 5.6. Comparison of the regression methods for nested cross-validation (∆H◦). The maximal q2 in the

inner loop (q2(max)-inner loop), the maximal q2 in the outer loop (q2(max)-outer loop) and the q2 of the

outer loop predicted by the model with the maximal q2 in the inner loop (q2(inner loop-max)-outer loop)

are shown.

Regression q2(max)- q2(max)- q2(inner loop-max)-

method inner loop outer loop outer loop

PCR 0.49±0.07 0.48±0.02 0.48±0.02

PLSR 0.5±0.08 0.47±0.02 0.47±0.02

SVMR/FFS 0.73±0.08 0.43±0.02 0.4±0.08

Table 5.7. Comparison of the regression methods for nested cross-validation (T∆S◦). The maximal q2 in

the inner loop (q2(max)-inner loop), the maximal q2 in the outer loop (q2(max)-outer loop) and the q2

of the outer loop predicted by the model with the maximal q2 in the inner loop (q2(inner loop-max)-outer

loop) are shown.

Regression q2(max)- q2(max)- q2(inner loop-max)-

method inner loop outer loop outer loop

PCR 0.33±0.09 0.3±0.05 0.3±0.03

PLSR 0.32±0.10 0.29±0.04 0.29±0.04

SVMR/FFS 0.64±0.08 0.26±0.04 0.21±-0.09
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Predictability of different thermodynamic quantities

The relation between the three quantities is given by statistical thermodynamics

on the one hand (∆G◦= ∆H◦- T∆S◦), and the empirical finding of enthalpy-

entropy compensation on the other (Sharp, 2001). In Figure 5.1(left) the differ-

ence of ∆H◦ and T∆S◦ is plotted against ∆G◦. Except for two outliers (pentyl-

thiobarbituricacid and cyclobarbital) all points are located on the diagonal. This

indicates the consistency of the data. Furthermore we can observe the enthalpy-

entropy compensation effect (see Figure 5.1 right).

Surprisingly, for all regression methods the best predictions were obtained for

∆G◦. Particularly for T∆S◦ no predictive regression models could be generated

with any of the methods. One possible reason for the different predictability of

the three quantities has been given by Sharp (Sharp, 2001). In his analysis of

the thermodynamics of three different protein systems, Sharp suggested that the

most probable reason behind entropy-enthalpy compensation is the higher ex-

perimental error in the determination of ∆H◦ and T∆S◦ (Sharp, 2001). If ∆G◦

can be measured reliably, while there is significant error in the determination

of the ∆H◦ and T∆S◦, then the last two quantities will vary significantly and

in a correlated manner due to the thermodynamic equality ∆G◦= ∆H◦- T∆S◦.

This explanation would agree with the apparent difficulties, which we are facing

in predicting ∆H◦ and T∆S◦ in comparison to ∆G◦. Furthermore, it has been

observed that experimental parameters have a significantly higher influence on

∆H◦and T∆S◦ than on ∆G◦. Ross et al., for example, measured the thermo-
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Figure 5.1. Plot of the experimental ∆G◦ values against the difference between the experimental values

for ∆H◦ and T∆S◦ (left). Plot of the enthalpy-entropy compensation (right).
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dynamic parameters of the complex between cyclohexanol and β-cyclodextrin in

four different temperatures (288 - 318 K) (Ross & Rekharsky, 1996). While ∆G◦

is about the same in all measurements (16.3 ± 0.2 kJ mol−1), the ∆H◦ values vary

between -2.8 and -13.0 kJ mol−1 and T∆S◦ 13.2 and 3.6 kJ mol−1. The stronger

dependence of ∆H◦ and T∆S◦ on parameters of the experiment leads to higher

errors, particularly when data from different laboratories is used. This was the

case for the present study. Therefore, the explanation of different experimental

accuracies appears plausible.

We analyzed differences in the thermodynamical properties of structurally

closely related guest molecules, in order to obtain a more detailed view on the

reasons for the poor predictability of ∆H◦ and T∆S◦. To extend the experimental

data basis for this analysis, we integrated additional data if multiple measure-

ments for a guest molecule were listed in the Rekharsky review (Rekharsky &

Inoue, 1998). For those compounds for which we had independent data from

different publications we calculated the standard deviations for ∆G◦, ∆H◦ and

T∆S◦, and averaged these over all compounds. The respective values are 1.8

kJ mol−1, 2.1 kJ mol−1, and 2.7 kJ mol−1. Interestingly enough, the magnitude

of these values is entirely consistent with the common practice of determining

changes in entropy: the change of entropy is calculated from the difference of the

measured change in enthalpy and the measured change in the binding free energy.

If we assume independent errors in the two latter quantities, we can calculate the

expected error of the change of entropy by means of the laws of error propagation

- the root of the sum of the squares of the errors in enthalpy and entropy is 2.8

kJ mol−1. Noteworthy, the magnitudes of the experimental errors found here are

higher than what is generally reported in publications of experimental data. This

is mainly because they include the systematic error arising from the compila-

tion of data from different laboratories, whose experimental protocols most likely

differ. The tendency of the errors certainly agrees with the predictability of the

three quantities. However, the error is rather low compared to the overall aver-

age variance of the corresponding quantities. The data we used for the analysis

varies with standard deviations of 5.3 kJ mol−1, 9.6 kJ mol−1, and 8.5 kJ mol−1

for ∆G◦, ∆H◦ and T∆S◦. The average root mean square errors of the predicted

to the experimental values obtained with SVMR/FFS are 2.8 kJ mol−1 (∆G◦),

7.5 kJ mol−1 (∆H◦) and 7.4 kJ mol−1 (T∆S◦). While the prediction of ∆G◦ ap-

pears to be limited mainly by the experimental error (2.8 kJ mol−1 compared to

1.8 kJ mol−1), ∆H◦ and T∆S◦ are clearly poorly predicted, and this cannot be

only explained by the slightly higher values of the experimental error.
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Figure 5.2. Plot of the standard deviations of ∆G◦against the standard deviations of ∆H◦ (left side) and

T∆S◦ (right side) for each cluster. Circles stand for clusters in which the experimental measurements all

were performed within one laboratory. Triangles denote clusters containing data from different laboratories.

Next, we clustered the compounds of our dataset according to molecular sim-

ilarity. Clusters were built using a similarity threshold of 0.7 with a complete

linkage algorithm. In this way all structures within a cluster have a similarity of

0.7 or higher and thus are structurally closely related compounds (see Appendix

C.2). We then calculated the mean values for ∆G◦, ∆H◦ and T∆S◦ together with

their standard deviations for all molecules within a cluster. In Figure we plot the

standard deviations of ∆G◦ against the corresponding standard deviations of

∆H◦ and T∆S◦ within each cluster. In the majority of all cases, the points lie

below the diagonal, indicating that the variance in the experimental ∆H◦ and

T∆S◦ values is higher than the variance of the corresponding ∆G◦ values. This

result indicates a higher dependence of the enthalpy and the entropy values on

small structural changes in the ligand. This is nicely illustrated, for example,

by the calorimetrically derived thermodynamic data for inclusion complexes of

a range of sulfonamides (see Appendix Table C.2 - Cluster ID 39), which were

all found in one similarity cluster and where studied within one laboratory. The

standard deviation of the ∆G◦ values is relatively small with ±1.8 kJ mol−1. The

corresponding standard deviations of ∆H◦ and T∆S◦ however, are clearly higher

with ± 5.4 kJ mol−1 and ± 3.84 kJ mol−1, respectively.

Additionally, we attempted a nearest-neighbor prediction of ∆G◦, ∆H◦ and

T∆S◦ using the graph-based similarity of the molecules. This method is inde-

pendent from the E-Dragon descriptors and the regression methods. For each

molecule within the dataset the three thermodynamic quantities were predicted
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to be equal to those of the most similar compound within the set. We obtain q2

values equal to 0.50 for ∆G◦, 0.47 for ∆H◦ and 0.29 for T∆S◦. Except for a certain

loss of accuracy in the prediction of ∆G◦, the results are very similar to the results

from the regression based prediction. The principal trend of the predictability of

the thermodynamic quantities observed in the regression analysis can also be ob-

served in this analysis and again T∆S◦ is the least predictable thermodynamic

parameter. This analysis indicates that the poorer predictability of T∆S◦ (and to

a lesser extent of ∆H◦) for different ligands is due to a more complex dependence

of T∆S◦ on even small structural changes of the ligand. This explanation is also

consistent with the empirical observation of enthalpy-entropy compensation. The

relative insensitivity of ∆G◦ to small structural changes compared to the other

two quantities, would lead to the compensation effects in enthalpy and entropy

due to the equation ∆G◦= ∆H◦-T∆S◦, and inversely, given entropy enthalpy

compensation, changes in entropy will lead to smaller changes in free energy.

5.4 Conclusion

In this work we investigated the predictability of three important thermodynamic

quantities the free energy of binding, heat of formation and the entropy change

upon binding. To this end, we chose β-cyclodextrin with its guest molecules -

a very well studied system with a large amount of high quality binding data.

We could show that free energies of binding can be reliably predicted by means

of simple, commonly available molecular descriptors with all three linear regres-

sion methods studied in a comparable quality. The SVMR/FFS method has the

advantage that it leads to a (partly) interpretable model with comparably few de-

scriptors. However, in the application of SVMR/FFS it is important to perform

a nested cross-validation in order to obtain a realistic impression of its gener-

alization ability. The predictability of ∆G◦ obviously cannot be traced to the

predictability of ∆H◦, since the latter is reproduced with significantly lower ac-

curacy by the models analyzed in this work. T∆S◦ appears almost unpredictable.

An analysis of our results in the context of further data from the literature sug-

gests that the poor predictability of T∆S◦ and, to a smaller extent, of ∆H◦ is

due to a stronger dependence of those quantities on structural details of the com-

plex and only to a lesser extent on the larger experimental error. This would also

explain the well documented empirical finding of entropy-enthalpy compensation.
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Summary and outlook

Within this thesis novel computational tools were developed, validated and ap-

plied that transfer the concepts of efficient virtual screening approaches from

the field of medicinal chemistry to supramolecular chemistry. In the first part

I described the development of a fast and reliable structure prediction tool for

synthetic host-guest complexes. The method is based on the protein-ligand dock-

ing program FlexX. In contrast to protein-ligand docking both molecules, the

synthetic receptor and the guest molecule, had to be tackled flexible. In order to

handle this flexibility, I applied a novel docking strategy that uses an adaptive

two-sided incremental construction algorithm which incorporates the structural

flexibility of both, the guest molecule and the synthetic receptor. The algorithm

follows an adaptive strategy, in which one molecule is expanded by attaching its

next fragment in all possible torsion angles whereas the other (partially assem-

bled) molecule serves as a rigid binding partner. Then the roles of the molecules

are exchanged. Geometric filters are used to discard partial conformations that

cannot realize a targeted interaction pattern derived in a graph-based precom-

putation phase. The process is repeated until the entire complex is built up. The

algorithm was validated on a test dataset comprising ten complexes of synthetic

receptors and ligands. The method generated near-native solutions compared to

crystal structures. It is able to generate solutions generally within less than a

minute and can be used as a virtual screening tool, e. g. for searching for suitable

guest molecules for a given synthetic receptor in large databases of guests and

vice versa.

In the second part of the thesis efficient computational techniques were applied

for designing optimally interacting host-guest systems based on β-cyclodextrins.

I reported on the computer-aided optimization of a synthetic receptor for a given

guest molecule, based on inverse virtual screening of receptor libraries. As an ex-

ample, a virtual set of β-cyclodextrin derivatives was generated as receptor can-

didates for the anticancer drug camptothecin. I applied docking tools to generate
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camptothecin complexes of every candidate receptor. Scoring functions were used

to rank all generated complexes. From the candidates within the top 10% of the

derived ranking list candidates nine were selected for experimental verification.

The stabilities of the camptothecin complexes obtained from solubility measure-

ments of five of the nine β-cyclodextrin derivatives were significantly higher than

for any other β-cyclodextrin derivative known from literature. The remaining four

β-cyclodextrin derivatives were insoluble in water. In addition, corresponding

mono-substituted β-cyclodextrin derivatives were synthesized, which also showed

improved binding constants. Among them the 9-H-purine derivative was the best,

being comparable to the investigated hepta-substituted β-cyclodextrins.

The third project focused on the identification of novel guest molecules for β-

cyclodextrin. Here, I applied a combination of a similarity-based virtual screen-

ing technique with a quantitative structure property relationship model to re-

trieve new guest molecules with high affinity to β-cyclodextrin. Five known β-

cyclodextrin guest molecules were chosen as query molecules. A subset of the

ZINC database with 117,695 molecular entries served as the screening set. For

all five query compounds a virtual screening was performed by means of Fuzzee

- a graph-based molecular similarity algorithm. Ranking lists were derived from

the similarity scores. The 150 best-ranking molecules of each of the ranking lists

were then scored by means of a QSPR model. This model was built on the basis

of 218 β-cyclodextrin guest molecules with experimentally determined binding

data and 1,666 computed molecular descriptors with support vector machine re-

gression. The best-scoring and most-promising molecules of the five screening

runs that were commercially available were selected for experimental verifica-

tion. Altogether 16 compounds were purchased and their binding free energy to

β-cyclodextrin was determined by isothermal microcalorimetry. Ten molecules

exhibited a binding free energy of about or lower than -20 kJ mol−1. Five of these

molecules even had a higher binding affinity than their corresponding query struc-

tures. Two compounds were insoluble; only one molecule did not show any com-

plexation to β-cyclodextrin. This technique provides a new and very fast means

for the design of synthetic host-guest complexes.

In the last chapter of this thesis, I investigated the predictability of three

thermodynamic quantities related to complex formation. As a model system I

chose the host-guest complexes of β-cyclodextrin with different guest molecules. A

training dataset comprising 176 β-cyclodextrin guest molecules with experimen-

tally determined thermodynamic quantities was taken from the literature. I com-

pared the performance of three different statistical regression methods (principal

component regression PCR, partial least squares regression PLSR and support
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vector machine regression combined with forward feature selection SVMR/FSS)

with respect to their ability to generate predictive quantitative structure property

relationship models for ∆G◦, ∆H◦, T∆S◦ on the basis of computed molecular

descriptors. SVMR/FFS marginally outperformed PLSR and PCR in the predic-

tion of ∆G◦. PLSR performed slightly better than PCR. PLSR and PCR proved

to be more stable methods in a nested cross-validation protocol. Whereas ∆G◦

can be predicted in good agreement with experimental values, none of the meth-

ods led to comparably good predictive models for ∆H◦. T∆S◦ appears almost

unpredictable with the methods described here. I performed a detailed analysis

in order to understand the differences in the predictabilities. As a result I could

show that free energies are less sensitive to small structural variations of the

guest molecules than enthalpy or entropy. This property and the lower sensitivity

of ∆G◦ to different experimental conditions are possible reasons for its better

predictability.

Within this thesis a focus was put onto supramolecular complexes based on

hydrogen bonds on the one hand, and onto complexes involving β-cyclodextrins

on the other. However, there are multiple other classes of supramolecular sys-

tems that can be studied by means of computational tools in future work. For

example, a very exciting field of supramolecular chemistry is the field of molecu-

larly imprinted polymers. Therein, a polymer is synthesized in the presence of a

guest molecule. In this way, polymers posses cavities that are particularly tailored

towards the guest molecule of interest. Until now, relatively little attention has

been payed on the computer-assisted design of such polymers. A promising idea

would be to computationally identify appropriate monomers, which show good

interaction with the guest molecule. This could be achieved on the basis of a

virtual screening, in which a dataset of monomers is screened against the guest

molecule of interest. For this purpose I could apply the technology of FlexR,

in principle. A further direction for future work is the computational design of

template molecules for chemical reactions. These template molecules stabilize

two substrates in a manner that facilitates the reaction between the substrates

by stabilizing the transition state of the reaction. Here, a huge problem is the

release of the product. If it is too tightly bound it inhibits any further reaction.

A computational tool for the design of such template molecules should therefore

balance between a high binding affinity of the template molecule to the reaction

educts and a significantly lower one for the product.

In this thesis, I showed the usefulness of computational concepts taken from

the field of medicinal chemistry for supramolecular chemistry. Conversely, compu-

tational chemistry tools for medicinal chemistry can benefit from supramolecular
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chemistry. In general, contrasting the structural simplicity of synthetic receptors

against the complex nature of proteins can afford fruitful insights. For example,

the parametrization of scoring functions on experimental data of synthetic host-

guest complexes instead of on experimentally determined protein-ligand com-

plexes appears promising. In principle synthetic complexes could be designed

that avoid complex interaction interferences, but rather focus on particular in-

teractions.
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Appendix A

A.1 FlexX

Our tool FlexR is based on the protein-ligand docking tool FlexX (Rarey

et al., 1996a). The main data structures, algorithms and the underlying chemical

modeling have been taken over for our work. The algorithms used for the structure

prediction of protein-ligand complexes are summarized in the following sections.

A.1.1 Fragmentation and Base Fragment Selection

First, FlexX severs the ligand by cutting at each acyclic single bond. All ob-

tained acyclic fragments are treated as rigid. For cyclic fragments with up to ten

atoms multiple conformations are considered. These are generated automatically

by Corina (Sadowski & Gasteiger, 1993). From these fragments FlexX selects

so-called base fragments. Base fragments are single fragments or combinations of

connected single fragments with preferably many directional interactions and a

small number of discrete conformations. None of the base fragments is entirely

contained in another base fragment.

A.1.2 Base Placement

The complex construction starts with the placement of the base fragments (Rarey

et al., 1996b, 1997). For this step, FlexX employs two algorithms. The first, is

called triangle matching. Here, FlexX superimposes triangles built on interac-

tion centers of the ligand onto compatible triangles, which are derived from the

interaction surfaces within the protein binding site (see Figure A.1, a). Two tri-

angles are compatible if the corresponding interactions match, i. e. for example

a hydrogen bond donor interacts with a hydrogen bond acceptor. The calculated

transformation of the triangle is then applied for the entire base fragment. In

the case, the base fragment has less than three interaction centers, or if too few
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Figure A.1. Placement of the base fragments in FlexX. a) The triangle matching algorithm matches

triangles on the interaction centers of the base fragment with compatible triangles on the interaction

surfaces of the binding site. b) The line matching algorithm matches pairs of interaction centers of the base

fragment with compatible pairs of interaction points within the binding site. Due to geometric ambiguities

the base fragment is rotated around the line axis.

placements were obtained with triangle matching, FlexX uses a line matching

algorithm. In line matching, FlexX superimposes pairs of interaction centers of

the base fragment with compatible pairs of interaction points within the protein

binding site (see Figure A.1, b). Due to geometric ambiguities, the base fragment

is rotated around the axis between the pair. Both algorithms employ a hash ta-

ble to find compatible triangles or respectively pairs in an efficient manner. In

order to reduce the number of base placements, FlexX discards placements with

steric clashes. Furthermore, the placements are geometrically clustered. In this

way, FlexX avoids the generation of too similar placements.

A.1.3 Incremental Complex Construction

After the base placement, FlexX proceeds to the incremental complex con-

struction phase (see Figure A.2). Here, all remaining fragments are consecutively

placed in a precomputed order. Each fragment is added in a discrete number

of low-energy torsion angles. The torsion angles are taken from the Mimumba

database (Klebe & Mietzner, 1994). The FlexX-scoring function scores each

generated (partial) conformation of the ligand after a fragment was added. (Par-

tial) conformations exhibiting steric clashes are discarded. After each round only

the k best-scoring solutions submitted to a clustering procedure. The resulting
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Figure A.2. The incremental complex construction. Starting from a given base fragment placement, FlexX

incrementally constructs the ligand by consecutively adding the remaining fragments.

(partial) solutions enter into the next expansion step. This is repeated until the

ligand is entirely built up. All generated complete conformations of the ligand

are presented as the solution set.
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Appendix B

The following table shows the selected descriptors of the QSPR model used in

Chapter 4. The weights of the descriptors in the model as well as the selection

order of the descriptors are given.

Table B.1: Shown are the selected descriptors of the ap-

plied QSPR model used in Chapter 4, their weights in

the model and the selection order.

ID E-Dragon-ID weight selection order

1 ATS2p -4.865 1

2 nCb- 3.448 10

3 Ms 2.975 5

4 nArOH -2.968 4

5 BLTD48 2.663 34

6 R3u+ 2.533 6

7 EEig11r 2.472 7

8 MLOGP2 -2.387 9

9 L2s 2.383 2

10 RDF100m 2.351 12

11 BELe6 -2.148 26

. . . continued on next page



168 B Appendix B

Table B.1 . . . continued from previous page

ID E-Dragon-ID weight selection order

12 EEig06r 1.883 27

13 RTu -1.799 39

14 Mor22u -1.794 3

15 Mor03m 1.558 20

16 EEig10d 1.548 16

17 G3e -1.483 41

18 EEig09x 1.442 28

19 SPI -1.408 36

20 piPC07 -1.328 47

21 RDF050u 1.305 38

22 G2 -1.267 30

23 RDF050e 1.265 33

24 piPC08 1.22 44

25 X2 -1.211 50

26 Mor17p 1.182 8

27 S-107 -1.161 14

28 GGI5 -1.157 13

29 G3v 1.125 46

30 ATS6p -1.059 54

31 BIC1 0.966 23

32 Mor19p 0.958 18

33 DISPe -0.941 11

. . . continued on next page
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Table B.1 . . . continued from previous page

ID E-Dragon-ID weight selection order

34 C-031 0.909 35

35 Mor21v 0.888 22

36 R7u -0.861 56

37 H5p -0.842 37

38 IDET 0.835 66

39 nArNR2 0.827 43

40 nRCOOR -0.774 32

41 H-049 0.762 15

42 EEig14r 0.724 49

43 MATS5v 0.705 19

44 HATS8p 0.69 55

45 C-037 0.674 45

46 Mor12m -0.668 17

47 C-015 -0.663 21

48 Depressant-50 -0.614 52

49 Lop 0.613 42

50 T(O..F) -0.557 29

51 HATS6u 0.552 51

52 SIC1 -0.491 24

53 IAC -0.475 65

54 nPyrazoles 0.441 57

55 MAXDN -0.436 31

. . . continued on next page
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Table B.1 . . . continued from previous page

ID E-Dragon-ID weight selection order

56 ATS7m -0.373 60

57 ATS7p 0.301 67

58 D/Dr08 0.297 53

59 BLI -0.285 48

60 R6e+ -0.279 59

61 H7v 0.274 62

62 X1Av -0.256 64

63 ATS8v -0.252 63

64 ISH -0.224 25

65 C-022 0.224 61

66 RTe+ -0.188 58

67 nPyrazines -0.132 40

68 nArCOOR -0.069 68
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Table C.1 shows the assembled dataset for the generation of the QSPR models in

Chapter 5. For each molecule the three thermodynamic parameters ∆G◦, ∆H◦,

and T∆S◦ for the complex formation with β-cyclodextrin are listed. The data

for each of the molecules was taken from (Rekharsky & Inoue, 1998).

Table C.1: The data used for the generation of the QSPR

models in Chapter 5. All experimental values were taken

from Rekharsky & Inoue (1998).

Molecule ∆G◦ ∆H◦ T∆S◦

[kJ mol−1] [kJ mol−1] [kJ mol−1]

(+-)-cis-2-methylcyclohexanol -17.08 -9.9 7.2

(+-)-norphenylephrine -8.65 -20.7 -12

(+-)-octopamine -9.4 -15.86 -6.5

(+-)-trans-2-methylcyclohexanol -16.38 -8.66 7.72

(-)-anisodamine -13.3 -17.6 -4.3

(-)-anisodine -10.6 -11.6 -1

(-)-atropine -14.6 -19.5 -4.9

(-)-scopolamine -12.9 -17.9 -5

(1-methylhexyl)ammonium -10.7 2 12.7

. . . continued on next page



172 C Appendix C

Table C.1 . . . continued from previous page

Molecule ∆G◦ ∆H◦ T∆S◦

(1R,2R)-(-)-pseudoephedrine -10.49 -9.99 0.5

(1S,2R)-(+)-ephedrine -9.95 -8.79 1.2

(2,5-dimethoxyphenethyl)-ammonium -9.08 -9.39 -0.3

(2-methoxyphenethyl)ammonium -5.15 -13.5 -8.3

(3,4-dihydroxyphenethyl)-ammonium -8.58 -16.52 -7.9

(3,4-dimethoxyphenethyl)-ammonium -6.52 -2 4.5

(3-methoxyphenethyl)ammonium -10.39 -13.32 -2.9

(3-methylphenyl)acetate -6.1 -11.5 -5.4

(3-phenylpropyl)ammonium -11.29 -9.44 1.8

(4-hydroxyphenethyl)ammonium -10.58 -13.8 -3.2

(4-methoxyphenethyl)ammonium -10.78 -8.21 2.6

(4-methylphenethyl)ammonium -11.11 -6.84 4.3

(4-methylphenyl)acetate -9.17 -12.1 -2.9

(R)-(-)-2-butanol -6.4 4.9 11.3

(R)-(-)-2-hexanol -11.8 1.9 13.7

(R)-(-)-phenylephrine -9.1 -21.9 -12.8

(S)-(+)-2-pentanol -8.6 4.1 12.8

1-adamantaneacetate -28.7 -33.1 -4.4

1-adamantaneammonium -22.4 -22.1 0.3

1-adamantanecarboxylate -25.7 -23.9 1.8

1-adamantylmethylammonium -25.5 -17.2 8.6

1-adamantyltrimethylammonium -20.5 -24.5 -4

. . . continued on next page
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Table C.1 . . . continued from previous page

Molecule ∆G◦ ∆H◦ T∆S◦

1-benzylimidazole -14.92 -15.9 -1

1-bicyclo[2.2.1]hept-2-enecarboxylate -15.7 -7.5 8.1

1-bicyclo[2.2.1]heptanecarboxylate -16.7 -8 8.8

1-bicyclo[2.2.2]octanecarboxylate -21.9 -15.9 5.9

1-butanol -6.9 4.3 11.2

1-butylimidazole -12.5 -10.7 1.8

1-hexanol -13.3 0.4 13.7

1-methylcyclohexanol -17.47 -9.6 7.9

1-naphthaleneacetate -24.8 -4.6 20.2

1-naphthalenesulfonate -19.4 -6.2 13.2

1-pentanol -10.3 4.6 14.9

1-phenylimidazole -8 -39 -31

1-propanol -3.7 6 9.8

2,2-dimethyl-1-propanol -15.5 -8.8 6.3

2,3,6-naphthalenetrisulfonate -12.7 -12.9 -0.3

2,6-naphthalenedisulfonate -18.8 -11.7 7.1

2,7-naphthalenedisulfonate -13.9 -28.2 -14.3

2-(4-aminophenyl)-ethyl-ammonium -8.54 -8.7 -0.2

2-chlorophenol -13.1 -19 -6

2-methylcyclohexanone -15.7 -13.7 2.1

2-norbornaneacetate -20.8 -10.7 10.2

2-propanol -2.4 11.1 13.4

. . . continued on next page
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Table C.1 . . . continued from previous page

Molecule ∆G◦ ∆H◦ T∆S◦

3-(2-hydroxyphenyl)propionate -10.89 -15.1 -4.2

3-(4-hydroxyphenyl)propionate -14.11 -14.2 -0.1

3-O-methyldopamine -3.6 -13.4 -9.8

3-chlorophenol -13.1 -19 -5

3-methoxyphenylacetate -9.02 -12.3 -3.2

3-methylcyclohexanol -16.66 -8.74 7.93

3-nitrophenol -13.9 -12.1 1.8

3-noradamantanecarboxylate -21.1 -15.7 5.4

3-phenylbutanoate -14.72 -9.41 5.3

4-O-methyldopamine -9.78 -15.3 -5.5

4-amino-1-naphthalenesulfonate -9.7 -10 0.3

4-benzylpiperidine -18.83 -13.8 5.1

4-bromophenol -16.7 -12.2 4.5

4-chlorophenol -14.9 -11.9 3

4-hydroxycoumarin -13.1 -12 1.1

4-iodophenol -17 -16.1 0.9

4-methoxyphenylacetate -10.51 -8.22 2.3

4-methylphenol -13.7 -12.5 1.2

4-nitrophenol -13.8 -13.4 0.3

4-phenylbutanoate -15.06 -11.78 3.3

5-methylresorcinol -9.8 -21.2 -11.2

6-[(4-tert-butylphenyl)-amino]-2- -27.1 -25.3 1.8

. . . continued on next page
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Table C.1 . . . continued from previous page

Molecule ∆G◦ ∆H◦ T∆S◦

naphthalenesulfonate

D-glucose 1.3 1.6 0.3

L-alpha-O-benzylglycerol -12.03 -9.2 2.8

L-phenylalanine -7.2 -9 -1.8

L-phenylalanineamide -7.7 -9 -1.3

L-tryptophan -13.3 -0.8 12.5

L-tyrosine -8.7 -3.8 4.9

N-methylphenethylammonium -7.59 -7.3 0.3

acenocoumarin -14.7 -15.5 -0.7

adiphenine -19.6 -31.9 -12.3

amobarbital -17.7 -17.8 -0.1

aspartame -12 -11.7 0.3

barbital -13.9 -11.5 2.4

benzene -11.6 -3.5 8.1

benzoate -6.86 -10.5 -3.6

benzylalcohol -7.7 -13.8 -6.2

bromodiphenhydramine -19 -25.4 -6.4

butabarbital -16.9 -33.2 -16.4

butethal -16.8 -9.8 7

butylbarbituricacid -14.8 -15.8 -1.0

butylthiobarbituricacid -16.4 -20.4 -3.9

chlorcyclizine -19.4 -22.8 -3.4

. . . continued on next page
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Molecule ∆G◦ ∆H◦ T∆S◦

chlorpromazine -22.4 -26.8 -4.5

cinnarizine -19.8 -17.3 2.4

cis-1,2-cyclohexanediol -13.9 -9.8 4.2

cis-4-methylcyclohexanol -18.07 -9.5 8.55

cyclizine -17.6 -28.8 -11.2

cyclobarbital -17.9 -20.2 -4.8

cyclobutanol -6.5 3.7 10.2

cycloheptanol -19.08 -12.37 6.7

cyclohexanol -16.2 -4.9 11.1

cyclohexanone -15.5 -11.7 3.9

cyclooctanol -20.8 -16.4 4.4

cyclopentanol -12.76 -4.56 8.2

di-2-(1-adamantyl)ethylhydrogen- -30.5 -29.3 1.3

phosphate

dicumarol -20.5 -40.4 -20

diphenhydramine -17.5 -29.4 -11.9

diphenidol -17 -33.7 -16.7

diphenylpyraline -19.1 -27.8 -8.7

ethylthiobarbituricacid -14.0 -15.5 -0.3

flufenamicacid -18.1 -11.4 6.7

flurbiprofen -18.8 -23.3 -4.5

heptanoate -14.2 1.8 15.9

. . . continued on next page
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Molecule ∆G◦ ∆H◦ T∆S◦

heptylbarbituricacid -19.8 -32.0 -12.2

hexanoate -9.54 5.5 15

hexobarbital -16.4 -24.5 -8.2

hexylammonium -10.4 2.5 12.9

hexylthiobarbituricacid -20.0 -29.6 -10.2

hydroquinone -11.7 -17.1 -5.4

hydroxyzine -19.2 -24.2 -5

imidazole -1.6 -16 -14

meclizine -19.1 -22.6 -3.4

mephobarbital -18.1 -39.7 -21.6

methapyriline -14.5 -15.5 -1

methylorange (anion) -18.8 -15.9 3.1

methylred (anion) -20.5 -19.6 0.9

niflumicacid -15.5 -19 -3.5

octylammonium -15 -2 13

orphenadrine -17.7 -31.3 -13.5

pentanoate -5.3 8 13

pentobarbital -18 -23.2 -5.2

pentylthiobarbituricacid -19.2 -23.6 -6.7

phenethylammonium -7.43 -6.9 0.6

phenobarbital -18.3 -31.2 -12.9

phenol -11.3 -12.2 -1.2
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Molecule ∆G◦ ∆H◦ T∆S◦

phenprocoumon -16.2 -13.6 2.6

phenylacetate -7.1 -7.5 -0.4

phenylpropionate -12.27 -7.6 4.7

piroxicam -11.2 -10.5 0.7

proadifen -16.9 -29.5 -12.6

propylbarbituricacid -12.8 -11.6 1.3

propylthiobarbituricacid -14.1 -16.4 -2.2

prostaglandin E2 -18.7 -19.3 -0.6

resorcinol -11.6 -18.2 -6.5

secobarbital -18.6 -25.4 -6.7

sulfadiazine -15.7 -24 -8.3

sulfadimethoxine -15.92 -19.1 -3.2

sulfaethidole -18 -14.6 3.5

sulfaisoxazole -15.95 -28 -12

sulfamerazine -14.44 -16.5 -2.1

sulfamethizole -17.7 -27.6 -9.9

sulfamethoxazole -15.81 -22.5 -6.7

sulfapyridine -15.2 -33.9 -18.7

sulfathiazole -19.24 -29.8 -10.5

sulfathidole -18.1 -35.4 -17.3

sulfoisomidine -12.84 -15.6 -2.8

terfenadine -24.4 -20 4.4
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Molecule ∆G◦ ∆H◦ T∆S◦

thenyldiamine -13.2 -14.8 -1.6

thiopental -19.6 -25.7 -6.3

thiophenobarbital -20.5 -34.4 -14.0

trans-1,2-cyclohexanediol -11.4 -4.4 7.2

trans-2-hydroxycinnamic acid -14.7 -23.0 -8.9

trans-2-methylcinnamic acid -14.9 -12.1 3.5

trans-3-hydroxycinnamate -13.5 -21.3 -8.0

trans-3-methylcinnamate -14.4 -18.8 -4.6

trans-4-hydroxycinnamate -14.9 -20.5 -5.6

trans-4-methylcinnamate -15.2 -17.6 -1.9

trans-4-methylcyclohexanol -19 -9.1 9.9

triprolidine -13.8 -13.8 0

tropicamide -15 -25 -10

valerolactam -8 -3.7 4.2

warfarin -16.3 -11.6 4.8
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In order to investigate the influence of structural changes to thermodynam-

ical parameters we clustered the β-cyclodextrin guest molecules presented in

Rekharsky & Inoue (1998) and used in Chapter 5 according to molecular similar-

ity as calculated by Fuzzee. Clusters were built using a similarity threshold of

0.7 with a complete linkage algorithm. In this way all structures within a cluster

have a similarity of 0.7 or higher and thus are structurally closely related com-

pounds. In Table C.2 the clusters as well as the mean values for ∆G◦, ∆H◦ and

T∆S◦ together with their standard deviations for all molecules of the cluster are

given.

Table C.2: The generated structural clusters are shown as used in the discussion of

Section 5.3. Only clusters containing multiple data points are shown. The experimen-

tal data is taken from reference Rekharsky & Inoue (1998).

Cluster-ID 1

Molecules (+-)-cis-2-methylcyclohexanol (+-)-trans-2-methylcyclohexanol

(R)-(-)-2-butanol (R)-(-)-2-butanol

(R)-(-)-2-hexanol (S)-(+)-2-pentanol

1-hexanol 1-methylcyclohexanol

1-pentanol 1-propanol

2,2-dimethyl-1-propanol 2-propanol

3-methylcyclohexanol cis-4-methylcyclohexanol

cyclobutanol cycloheptanol

cyclohexanol cyclooctanol

cyclopentanol trans-4-methylcyclohexanol

�(∆G◦) = −14.81± 5.55 �(∆H◦) = −3.26± 6.81 �(T∆S◦) = 11.55± 5.23

. . . continued on next page
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Table C.2 . . . continued from previous page

Cluster-ID 2

Molecules (+-)-norphenylephrine (1R,2R)-(-)-pseudoephedrine

(1S,2R)-(+)-ephedrine (R)-(-)-phenylephrine

�(∆G◦) = −9.62± 0.74 �(∆H◦) = −15.39± 5.95 �(T∆S◦) = −5.74± 6.62

Cluster-ID 3

Molecules (+-)-octopamine (3,4-dihydroxyphenethyl)-ammonium

3-O-methyldopamine

�(∆G◦) = −7.63± 2.4 �(∆H◦) = −13.91± 4.42 �(T∆S◦) = −6.25± 3.92

Cluster-ID 4

Molecules (-)-anisodamine (-)-anisodine

(-)-atropine (-)-scopolamine

�(∆G◦) = −12.92± 1.45 �(∆H◦) = −16.92± 3.06 �(T∆S◦) = −4.0± 1.7

Cluster-ID 5

Molecules (1-methylhexyl)ammonium hexylammonium

octylammonium

�(∆G◦) = −12.03± 2.57 �(∆H◦) = 0.83± 2.47 �(T∆S◦) = 12.87± 0.15

Cluster-ID 6

Molecules (2,5-dimethoxyphenethyl)-ammonium

2-methoxyphenethyl)ammonium

(3-methoxyphenethyl)ammonium

�(∆G◦) = −8.86± 2.22 �(∆H◦) = −11.62± 1.83 �(T∆S◦) = −2.76± 3.24

. . . continued on next page
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Cluster-ID 7

Molecules (3,4-dimethoxyphenethyl)-ammonium

4-O-methyldopamine

�(∆G◦) = −9.0± 2.2 �(∆H◦) = −10.24± 7.2 �(T∆S◦) = −1.4± 5.24

Cluster-ID 8

Molecules (3-methylphenyl)acetate (4-methylphenyl)acetate

1-naphthaleneacetate 3-phenylbutanoate

4-phenylbutanoate phenylacetate

phenylpropionate trans-2-methylcinnamicacid

trans-3-methylcinnamate trans-4-methylcinnamate

�(∆G◦) = −13.41± 4.82 �(∆H◦) = −10.79± 4.17 �(T∆S◦) = 2.71± 6.83

Cluster-ID 9

Molecules (3-phenylpropyl)ammonium (4-methylphenethyl)ammonium

N-methylphenethylammonium phenethylammonium

�(∆G◦) = −9.49± 1.84 �(∆H◦) = −7.45± 1.21 �(T∆S◦) = 2.05± 1.35

Cluster-ID 10

Molecules (4-hydroxyphenethyl)ammonium (4-methoxyphenethyl)ammonium

�(∆G◦) = −10.68± 0.36 �(∆H◦) = −11.54± 3.1 �(T∆S◦) = −0.86± 3.44

. . . continued on next page
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Cluster-ID 11

Molecules 1-adamantaneacetate 1-adamantanecarboxylate

1-bicyclo[2.2.2]octanecarboxylate 2-norbornaneacetate

3-noradamantanecarboxylate heptanoate

hexanoate pentanoate

1-bicyclo[2.2.1]hept-2-enecarboxylate

1-bicyclo[2.2.1]heptanecarboxylate

�(∆G◦) = −20.99± 5.91 �(∆H◦) = −16.87± 11.36 �(T∆S◦) = 4.1± 6.52

Cluster-ID 12

Molecules 1-adamantaneammonium 1-adamantylmethylammonium

�(∆G◦) = −23.95± 2.19 �(∆H◦) = −19.65± 3.46 �(T∆S◦) = 4.45± 5.87

Cluster-ID 13

Molecules 1-adamantyltrimethylammonium

�(∆G◦) = −19.0± 2.12 �(∆H◦) = −21.6± 4.1 �(T∆S◦) = −2.6± 1.98

Cluster-ID 14

Molecules 1-benzylimidazole 1-phenylimidazole

�(∆G◦) = −11.46± 4.89 �(∆H◦) = −27.45± 16.33 �(T∆S◦) = −16.0± 21.21

Cluster-ID 15

Molecules 1-naphthalenesulfonate 4-amino-1-naphthalenesulfonate

�(∆G◦) = −14.55± 6.86 �(∆H◦) = −8.1± 2.69 �(T∆S◦) = 6.75± 9.12

. . . continued on next page



184 C Appendix C

Table C.2 . . . continued from previous page

Cluster-ID 16

Molecules 2,3,6-naphthalenetrisulfonate 2,6-naphthalenedisulfonate

�(∆G◦) = −15.75± 4.31 �(∆H◦) = −12.3± 0.85 �(T∆S◦) = 3.4± 5.23

Cluster-ID 17

Molecules 2-chlorophenol 3-chlorophenol

4-bromophenol 4-chlorophenol

4-iodophenol 4-methylphenol

benzylalcohol phenol

�(∆G◦) = −14.02± 3.18 �(∆H◦) = −14.37± 2.97 �(T∆S◦) = −0.18± 4.91

Cluster-ID 18

Molecules 2-methylcyclohexanone cyclohexanone

�(∆G◦) = −15.6± 0.14 �(∆H◦) = −12.7± 1.41 �(T∆S◦) = 3.0± 1.27

Cluster-ID 19

Molecules 3-(2-hydroxyphenyl)propionate 4-nitrophenol

trans-2-hydroxycinnamicacid

�(∆G◦) = −14.17± 1.79 �(∆H◦) = −18.9± 11.78 �(T∆S◦) = −4.7± 10.32

Cluster-ID 20

Molecules 3-(4-hydroxyphenyl)propionate L-tyrosine (protonated)

trans-4-hydroxycinnamate

�(∆G◦) = −12.44± 2.77 �(∆H◦) = −11.3± 7.54 �(T∆S◦) = 1.23± 5.22

. . . continued on next page
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Cluster-ID 21

Molecules 3-methoxyphenylacetate 4-methoxyphenylacetate

�(∆G◦) = −9.77± 1.05 �(∆H◦) = −10.26± 2.88 �(T∆S◦) = −0.45± 3.89

Cluster-ID 22

Molecules 3-nitrophenol hydroquinone

�(∆G◦) = −12.8± 1.56 �(∆H◦) = −14.6± 3.54 �(T∆S◦) = −1.8± 5.09

Cluster-ID 23

Molecules 5-methylresorcinol resorcinol

�(∆G◦) = −10.93± 0.99 �(∆H◦) = −20.07± 1.63 �(T∆S◦) = −9.07± 2.38

Cluster-ID 24

Molecules L-phenylalanine L-phenylalanineamide

�(∆G◦) = −8.22± 3.58 �(∆H◦) = −9.42± 2.78 �(T∆S◦) = −1.2± 5.47

Cluster-ID 25

Molecules acenocoumarin warfarin

�(∆G◦) = −15.5± 1.13 �(∆H◦) = −13.55± 2.76 �(T∆S◦) = 2.05± 3.89

Cluster-ID 26

Molecules adiphenine proadifen

�(∆G◦) = −18.25± 1.91 �(∆H◦) = −30.7± 1.7 �(T∆S◦) = −12.45± 0.21

. . . continued on next page
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Cluster-ID 27

Molecules amobarbital barbital

butabarbital butethal

butylbarbituricacid cyclobarbital

heptylbarbituricacid hexobarbital

mephobarbital pentobarbital

phenobarbital propylbarbituricacid

secobarbital

�(∆G◦) = −17.11± 1.78 �(∆H◦) = −24.07± 9.57 �(T∆S◦) = −7.05± 8.46

Cluster-ID 28

Molecules benzoate

�(∆G◦) = −6.33± 0.75 �(∆H◦) = −12.75± 3.18 �(T∆S◦) = −6.2± 3.68

Cluster-ID 29

Molecules bromodiphenhydramine diphenhydramine

diphenylpyraline orphenadrine

�(∆G◦) = −18.33± 0.84 �(∆H◦) = −28.48± 2.5 �(T∆S◦) = −10.13± 3.19

Cluster-ID 30

Molecules butylthiobarbituricacid ethylthiobarbituricacid

hexylthiobarbituricacid pentylthiobarbituricacid

propylthiobarbituricacid thiopental

thiophenobarbital

�(∆G◦) = −17.69± 2.81 �(∆H◦) = −23.66± 6.89 �(T∆S◦) = −6.23± 4.71

. . . continued on next page
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Cluster-ID 31

Molecules chlorcyclizine cinnarizine

cyclizine meclizine

�(∆G◦) = −19.06± 0.85 �(∆H◦) = −23.12± 4.11 �(T∆S◦) = −4.06± 4.85

Cluster-ID 32

Molecules cis-1,2-cyclohexanediol trans-1,2-cyclohexanediol

�(∆G◦) = −12.65± 1.77 �(∆H◦) = −7.1± 3.82 �(T∆S◦) = 5.7± 2.12

Cluster-ID 33

Molecules di-2-(1-adamantyl)ethylhydrogenphosphate

�(∆G◦) = −25.65± 6.86 �(∆H◦) = −22.7± 9.33 �(T∆S◦) = 3.0± 2.4

Cluster-ID 34

Molecules flufenamicacid niflumicacid

�(∆G◦) = −16.8± 1.84 �(∆H◦) = −15.2± 5.37 �(T∆S◦) = 1.6± 7.21

Cluster-ID 35

Molecules flurbiprofen

�(∆G◦) = −19.8± 1.41 �(∆H◦) = −19.1± 5.94 �(T∆S◦) = 0.7± 7.35

Cluster-ID 36

Molecules imidazole

�(∆G◦) = −2.0± 0.57 �(∆H◦) = −15.5± 0.71 �(T∆S◦) = −13.5± 0.71

. . . continued on next page
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Cluster-ID 37

Molecules methapyriline thenyldiamine

triprolidine

�(∆G◦) = −13.83± 0.65 �(∆H◦) = −14.7± 0.85 �(T∆S◦) = −0.87± 0.81

Cluster-ID 38

Molecules methylorange (anion)

�(∆G◦) = −19.8± 1.41 �(∆H◦) = −17.8± 2.69 �(T∆S◦) = 2.3± 1.13

Cluster-ID 39

Molecules sulfadiazine sulfaisoxazole

sulfamerazine sulfamethizole

sulfamethoxazole sulfapyridine

sulfathiazole sulfoisomidine

�(∆G◦) = −15.98± 1.92 �(∆H◦) = −22.91± 5.04 �(T∆S◦) = −6.94± 3.84
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