the same conditions as the reaction of $1^{[2]}, \mathbf{2}$ resisted hydrogenation and was recovered in 81% yield, whereas 6 furnished 5-amino-1-isoquinolinecarbonitrile 7 in 72\% yield, but no amide.

These results provided additional evidence in support of the proposed mechanism. Finally, we note that the orientation of nitration of 7-methoxy-6-methylisoquinoline derivatives is determined unambiguously without correlation methods or spectroscopic analysis ${ }^{[5]}$.

Received: July 20, 1981 [Z 197 [E]; revised: September 23, 1982
German version: Angew. Chem. 92 (1982) 875
[1] G. Procter, D. Britton, J. D. Dunitz, Helv. Chim. Acta 64 (1981) 471, and references cited therein.
[2] $1(259 \mathrm{mg}, 1.06 \mathrm{mmol})$ was hydrogenated in 10 mL anhydrous DMF with $201 \mathrm{mg} 10 \% \mathrm{Pd} / \mathrm{C}(3 \mathrm{~h})$. The catalyst was filtered off and removal of the solvent gave 225 mg crude material, chromatography of which on 7 g silica gel (Kieselgel 60) afforded $97 \mathrm{mg}(43.0 \%) 2, \mathrm{~m} . \mathrm{p} .=137.5-138.5^{\circ} \mathrm{C}(n-$ hexane). Elution with n-hexane/ethyl acetate ($1: 1$), and n-hexane/ethyl acetate $(1: 1 / 1: 2)$ gave 84 mg of the eluate, which after preparative thin layer chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.1: 1\right)$ yielded 31 mg (12.7\%) 3, m. p. $=104.5-106.0^{\circ} \mathrm{C}$ (benzene) [3], $13 \mathrm{mg}(5.7 \%)$ 4, m.p. $262.5-264.0^{\circ} \mathrm{C}$ (acetone) [3] and $34 \mathrm{mg}(17.2 \%) 5$, m. p. $=78.0-79.0^{\circ} \mathrm{C}(n-$ hexane).
[3] 3: IR (KBr): $1560,1630,1658,3340 \mathrm{~cm}^{-1}$; UV (EtOH): $\lambda_{\max }=212 \mathrm{~nm}$ $(\log \varepsilon=4.59), 252$ (4.42), 323 (sh, 3.50), 365 (3.58); 'H-NMR (CDCl_{3}): $\delta=2.37(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.60\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.56 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.95(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 8.13 ($\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$); MS: $m / z 231\left(M^{+}, 63 \%\right)$, 216 (54), 199 (100), 171 (57).-4: IR (KBr): 1490, 1590, 1635, 1690, 3190 $\mathrm{cm}^{-1} ; \mathrm{UV}(\mathrm{EtOH}): \lambda_{\text {max }}=217 \mathrm{~nm}(\log \varepsilon=4.39), 259(4.35), 345(3.17), 392$ (3.40); 'H-NMR ([D ${ }^{\text {slpyridine }): ~} \delta=2.37(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H})$, $7.64(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{I} \mathrm{H}), 11.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); MS: $m / z 214$ ($M^{+}, 100 \%$), 199 (63), 171 (56), 116 (15).
[4] H. Moll, H. Musso, H. Schröder, Angew. Chem. 75 (1963) 295; Angew. Chem. Int. Ed. Engl. 2 (1963) 212; H. Musso, H. Schröder, Chem. Ber. 98 (1965) 1526.
[5] S. F. Dyke in S. Coffey: Rodd's Chemistry of Carbon Compounds, 2nd ed., Elsevier, Amsterdam 1976, Vol. IV, Part F, Chapt. 27.

Synthesis and Structure of $\left[\mathrm{Zn}_{2}\left(\mathrm{~S}_{2} \mathrm{~N}_{2} \mathrm{CO}\right)_{6} \| \mathrm{AsF}_{6}\right]_{2}$ -Sulfur-Nitrogen Rings as Ligands in Coordination Compounds**

By Herbert W. Roesky*, Manfred Thomas, Mathias Noltemeyer, and George M. Sheldrick
 Dedicated to Professor Rudolf Hoppe on the occasion of his 60th birthday

5-Oxo-1,3 $\lambda^{4}, 2,4$-dithiadiazole 1 can be prepared by reaction of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnN}_{2} \mathrm{~S}_{2}\right]_{2}$ with carbonyl difluoride ${ }^{[1]}$. In order to clarify whether the coordination of the ligand to a metal atom takes place via oxygen, sulfur or nitrogen, we have investigated the reaction of 1 with the zinc complex 2 in liquid SO_{2}.

After removal of $\mathrm{SO}_{2}, 3$ precipitates as a colorless solid. 3 (m. p. $150^{\circ} \mathrm{C}$) is recrystallized from liquid SO_{2}; it is insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Owing to their modest donor properties, the ligands 1 in 3 are very readily replaced by water mole-

[^0]cules. In the IR spectrum of 3 the $\mathrm{C}=\mathrm{O}$ stretching vibration is observed at $1560 \mathrm{~cm}^{-1}$, i.e. it is shifted by $167 \mathrm{~cm}^{-1}$ to lower wave numbers compared to that of 1 . Thus, 1 should be coordinated to zinc via oxygen.

The X-ray structure determination shows that 3 crystallizes in the space group $\mathrm{P} \overline{3}$ with $a=b=1190.1$ (1), $c=665.1(1) \mathrm{pm}$ and $Z=1, \rho_{\text {cakc }}=2.37 \mathrm{Mgm}^{-3}$. The structure was solved by direct methods and refined to $R=0.046$ and $R_{\mathrm{w}}=0.049$ for 1498 independent reflections with $F_{0}>3 \sigma\left(F_{0}\right)$ and $\mathrm{Mo}_{\mathrm{K} \alpha}-$ radiation.

Fig. 1. Structure of $\left[\mathrm{Zn}\left(\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{CO}\right)_{6}\right]^{2+}$, atom numbering and interatomic distances [pm], standard deviations in brackets: $\mathrm{C}-\mathrm{N}(1)$ 134.7(3), $\mathrm{N}(1)-\mathrm{S}(1)$ 157.6(3), $\mathrm{S}(1)-\mathrm{N}(2) 157.0(3), \mathrm{N}(2)-\mathrm{S}(2) 161.7(2), \mathrm{S}(2)-\mathrm{C} 178.9(3), \mathrm{O}-\mathrm{C}$ 124.0(3).

In the $\mathrm{Zn}\left(\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{CO}_{6}^{2+}\right.$ cation (Fig. 1) Zn is octahedrally coordinated: The maximum distortion from 90° is $1.4^{\circ} . \mathrm{Zn}$ lies on the special position with $\overline{3}$ symmetry and As on a threefold axis. The ligand $1^{[2]}$ is planar within experimental error, and possesses no crystallographic symmetry. The $\mathrm{Zn}-\mathrm{O}-\mathrm{C}$ angle is 134.2°. The $\mathrm{C}-\mathrm{O}$ bond length in 3 $(124.0(3) \mathrm{pm})$ is somewhat longer than in the free ligand ($122.2(7) \mathrm{pm}$). The remaining bond lengths within the $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring show no significant change; the average $\mathrm{S}-\mathrm{N}$ bond length in the uncoordinated ligand 1 is 159.5 and in 3158.8 pm .

Received: April 5, 1982 [Z 2 IE] revised: July 14, 1982
German version: Angew. Chem. 94 (1982) 861
The complete manuscript of this communication appears in: Angew. Chem. Suppl. 1982, 1813-1818
CAS Registry numbers:
2, 83416-63-1; 3, 83416-61-9.
[1] H. W. Roesky, H. Wiezer, Angew. Chem. 87 (1975) 254; Angew. Chem. Int. Ed. Engl. 14 (1975) 258.
[2] H. W. Roesky, E. Wehner, E. J. Zehnder, H. J. Deiseroth, A. Simon, Chem. Ber. 111 (1978) 1670.

$\mathrm{Tl}(\mathrm{OtBu})_{3} \mathrm{Sn}:$

A Small Pentatomic Cage Molecule**

By Michael Veith* and Richard Rösler
It is known that heavy main-group elements in low oxidation states can occur as essential constituents of cage
[*] Prof. Dr. M. Veith, R. Rösler
Institut für Anorganische Chemie der Technischen Universität
Pockelsstrasse 4, D-3300 Braunschweig (Germany)
[**] This work was supported by the Forschungsmittel of the Land Niedersachsen.
molecules. Hence, e.g. $\mathrm{TIOCH}_{3}{ }^{[1]}$ and $t \mathrm{BuN}=\mathrm{Sn}^{[2]}$ form tetramers, which consist of cubane-like $\mathrm{Tl}_{4} \mathrm{O}_{4}$ and $\mathrm{Sn}_{4} \mathrm{~N}_{4}$ cages, respectively. In these compounds the main-group elements achieve a noble gas configuration through coordinative bonds.

We have now succeeded, for the first time, using Tl^{1} and Sn^{11}, in incorporating two low-valent elements from different main groups into a cage: for this purpose we made use of methods which we previously developed for the synthesis of Sn^{11} polycycles ${ }^{[2]}$. The pentatomic cage system 5 is obtained in high yield from the Tl^{I} and $\mathrm{Sn}^{\text {II }}$ molecular compounds $1^{[3 a]}$ and $2^{[3 b]}$ by allowing these to react with tert-butyl alcohol and subsequent reaction of the isolable intermediates of tetrameric $3^{[4]}$ and dimeric 4.

5 is sublimable at $40^{\circ} \mathrm{C} / 0.001$ torr, soluble in benzene, and displays only one signal ($\delta=1.32$) in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which indicates a highly symmetric molecule. The C_{3} symmetry of the molecule is confirmed by X-ray structural analysis (Fig. 1). Tl and Sn are held together by three $t \mathrm{BuO}$ ligands, which results in a trigonal bipyramid: three oxygen atoms form the triangle, whereas the metal atoms are situated on the vertices.

Fig. 1. Perspective representation of 5 with bond lengths [pm] and angles [${ }^{\circ}$]. Crystal data: hexagonal, space group $\mathrm{P}_{3} / \mathrm{m} ; a=994.4(5), c=1107(1) \mathrm{pm}$; $Z=2 ; \rho_{\text {exp }}=1.90 \mathrm{~g} \cdot \mathrm{~cm}^{-3} .352$ independent reflections, $R=0.053$. Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, by quoting the following number CSD 50257, the name of the author, and the journal citation.

Due to the "encircling" the tin and thallium atoms come as close as 330.6 (3) pm to each other. The relatively short $\mathrm{SnO}^{[2]}$ and TIO distances ${ }^{[5]}$ allow it to be presumed that an intramolecular ion pair, such as $\mathrm{Tl}^{\oplus}\left[(\mathrm{O} t \mathrm{Bu})_{3} \mathrm{Sn}\right]^{\ominus}$, is involved in 5. This description, however, only corresponds to a mesomeric structure. The good solubility in benzene, ease of sublimation, and, above all, the crystal structure clearly indicate the nonpolar character of the molecule. In
the crystal the molecules are arranged in a layer sequence $A B, A B, \ldots$, in which a statistical defect along the hexagonal axis is observed (crystallographic point symmetry of 5: $\mathrm{C}_{3 \mathrm{~h}}(3 / \mathrm{m})$). The bonding behavior in the cage molecule 5 can be described thus:

According to the structural determination, the two-electron donor bonds are indistinguishable from the two electron single bonds.

Procedure

tert-Butyl alcohol $(0.59 \mathrm{~g}, 0.008 \mathrm{~mol}$ resp. $1,2 \mathrm{~g}, 0.016$ $\mathrm{mol})$, is added dropwise to a solution of $1^{[3 \mathrm{ab]}}(3.26 \mathrm{~g}, 0.008$ moi) and $2^{[36]}$ ($2.58 \mathrm{~g}, 0.008 \mathrm{~mol}$), respectively, in diethyl ether (20 mL) at $-10^{\circ} \mathrm{C}$. Both solutions are stirred for 30 min and then combined. The reaction mixture is separated in vacuo whereby $3.9 \mathrm{~g}(90 \%)$ of colorless crystals of 5 sublime, which melt at $43^{\circ} \mathrm{C}$.

Received: June 25, 1982 [Z 73 IE]
German version: Angew. Chem. 94 (1982) 867
CAS Registry numbers:
1 , $83437-07-4 ; 2,54724-62-8 ; 3,22520-89-4 ; 4,3275-19-2 ; 5,83437-08-5$.
[1] L. F. Dahl, G. L. Davis, D. L. Wampler, R. West, J. Inorg. Nucl. Chem. 24 (1962) 357.
[2] M. Veith, J. Organomet. Chem. Libr. 12 (1981) 319.
[3] a) M. Veith, R. Rösler, J. Organomet. Chem. 229 (1982) 131; b) M. Veith, Angew. Chem. 87 (1975) 287; Angew. Chem. Int. Ed. Engl. 14 (1975) 263.
[4] H. Schmidbaur, M. Bergfeld, F. Schindler, Z. Anorg. Allg. Chem. 363 (1968) 73.
[5] S. Tachiyashiki, H. Nakayama, R. Kuroda, S. Sato, Y. Saito, Acta Crystallogr. B 31 (1975) 1483.

New Dihydropyrans: Lewis Acid Catalyzed Cycloadditions of α, β-Unsaturated Acyl Cyanides to Simple, Unactivated Olefins and Dienes: A Readily Accessible Route to Derivatives of Rose Oxide**

By Zeinhom M. Ismail and H. M. R. Hoffmann*

Cycloadditions of α, β-unsaturated carbonyl compounds to electron-rich olefins ${ }^{[1]}$ are classified as Diels-Alder reactions with inverse electron-demand and furnish 3,4-dihydropyrans: Typically, enol ethers react with α, β-unsaturated aldehydes on heating in an autoclave at $160-180^{\circ} \mathrm{C}$ (see e.g. formation of 3a in Table 1). Previously, intermolecular cycloadditions of simple alkenes to α, β-unsaturated carbonyl compounds were unknown ${ }^{[2]}$.

We have recently prepared a variety of α, β-unsaturated acyl cyanides ${ }^{[3]}$ and now report that they can be activated by AlCl_{3} to react with simple olefins at room temperature, giving novel dihydropyrans, e.g. 3b-3e, in good yield. Even isobutene, 1e, reacts with 2a to give 3 e having two quaternary centers.
[*] Prof. H. M. R. Hoffmann, Dr. Z. M. Ismail Institut für Organische Chemie, Universität Hannover Schneiderberg 1 B, D- 3000 Hannover 1 (Germany)
[**] This work has been presented in part at the EUCHEM Conference on Pericyclic Reactions in Ferrara, Italy, Sept. 27-Oct. 1, 1982. We thank the Niedersächsische Minister für Wissenschaft und Kunst and the Fonds der Chemischen Industrie for financial support.

[^0]: [*] Prof. Dr. H. W. Roesky, M. Thomas, Dr. M. Noltemeyer, Prof. G. M. Sheldrick
 Institut für Anorganische Chemie der Universität
 Tammannstrasse. 3, D-3400 Göttingen (Germany)
 [**] This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and by Hoechst AG.

