Densification of powders by particle
deformation

H. F. Fischmeister and E. Arzt

Based on a previous experimental study of particle
deformation during powder compaction, a model is
developed for describing the densification behaviour
of an irregular packing of spherical particles. Using
the radial density function of a ‘random dense
packing’, the increase in both the average size and
the number of contact faces are calculated, A simple
criterion for local yielding allows the compaction
pressure to be determined for relative densities up to
90%. Tn the final stage of compaction, particle
deformation, now constrained by neighbouring
contacts, is modelled by extrusion into the remaining
pore space. A compaction equation encompassing
both stages is presented: its application to non-
spherical powders elucidates the rale of particle
shape during powder densification. PM/0150
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LIST OF SYMBOLS

@ average contact area

¢ slope of the RDF, according to Scott® ¢ = 155
D relative density (volume fraction of the metal

phase)
Dy relative fill density
[ average contact force

Ju i volume fractions of *hard’ and *sait’ phase
function (RDF)
= average number of sphere centres located
within radius r from the centre of an arbitrary

G{r) intcgrated radial densily

reference sphere
I coelficient of linear strain hardening

Hy(D) microhardness at contact flat, at density D

geametrical constant
Ly length of triple lines/unit volume
P compaction pressure

P, number of triple points (intersections of triple
lines with plane of polish)/unit area of polished

section
R original particle rading

R' radius of spherical particles after fictitious growth

{in units of the original particle radius R)

R" radius of the truncated spheres which are lormed
when the material of overlap is unifarmly
distributed over the particle surface (in units of ~

the original particle radius R)

§ hall the distance between the surfaces of the
reference  sphere and of a particle in s

neighbourhoaod
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So surface portion on the reference sphere occupied
by any initial neighbour = 22R(R’' —1)

S(s) surface portion on the reference sphere occupied
by a sphere which, before compaction, was by 2s
too far to touch the reference sphere
= 2rR(R'—1—35)

V(R hall the volume of overlap between a refer.
ence sphere and any initial neighbour
=m. (R~ 12(2R' +1)/3

V(s) half the volume of overlap between a reference
sphere and a sphere which, before compaction,
was by 2s too far to touch the reference sphere
=n.(R'—1-8)*QR +1+5)3

Z average coordination number

Z, average coordination number before compaction

£ cquivalent linear strain

o)  stress—strain relationship for a powder material

oy flow stress
o, yield stress

Present descriptions of the pressure—density relation-
ship during the compaction of metal powders appear
inadequaie becauge of oversimplification or the compiete
lack of a physical model. Obviously, the highly irregular
shape of many industrial powders puts a general strict
lreatment of powder compaction beyond present reach.
In recent years, however, spherical powders have
come into commercial use in increasing quantities, and
the compaction behaviour of such geometrically simple
powders is not an unreasonable objective for theoretical
modelling ~ at least if the treatment is restricted to spheres
of a single size.

In trying to model compaction, it is helpful to
distinguish three stages: during the Sfirst stage restacking
(rearrangement, sliding} of particles occurs as discussed ina
previous study.! When this rearrangement is complete, a
given particle has a certain number of contacting
neighbours (‘coordination number’). Almost from the
beginning, and largely concurrently with restacking,
particles which have already formed contacts will deform
plastically. Progressive flattening brings the particle centres
closer to ecach other, producing overall densification,
During this process, further neighbours are brought close
enough to form additional contacts — an effect which up to
now has been largely neglected, This is the second stage of
densification; it can be described by the model to be
presented here. Finally, as the compact approaches full
density, its compressibility diminishes drastically (third
stage).

Stage 1

As has been shown previously,! particle rearrangement is
limited to the very beginning of compaction and does not
contribute significantly to the densification of spherical
powders. It is therefore omitted from the present theory,

Stage 2
At any moment during compaction the resistance of the
powder to further densification will be determined by the
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number and size of the contact areas hetween the particles.
A theoretical relationship between density and compaction
pressure can be derived by dividing the problem into the
following segments, which will be treated in tur

L  Geomeiry

The density of the compact is determined by the amount of
particle flattening, which cun be churacterized by the
average contact area and the average coordination
number. The connection between these quantities depends
on the initial gcometry of the particle packing,

2 Plasticity

The size of a given contact area depends on the local
contact force and on the yield properties of the powder
material.

3 Force transmission

The compaction pressure is prapagaled within the powder
as a set of contact forces. In this model we use an
expression for the averape contact force as a function of
external pressure.

Stage 3
Finally, neighbouring contacts on one particle will start to
impinge, impeding the simple deformation mode which
characterized the earlier stage of compaction. As
compaction proceeds, more and more contacts will
impinge, making an increasing fraction of the volume
harder to compress. In the treatment proposed here, the
magnitude of this volume is nssessed by means of the ‘triple
lines' which form where three particles join by mutual
impingement of adjacent contucts. It will be demonstrated
that in this final stage the densificaion behaviour is
governed by the constraints exerted by neighbouring
contacts and that the asymptotic approach to theoretical
density can be modelled with a formula from extrusion
theory, ]
In summary, the gradually increasing resistance to
densification will be explained quantitatively by the growth
of contact areas, the creation and subsequent growth of
additional contacts, the change of plastic properties of the
powder material during compaction (strain hardening),
and, finally, the increasing constramnt under which particle
deformation has to proceed.

AVERAGE CONTACT AREA AND
COORDINATION NUMBER v. DENSITY
Experimentally it hus been found that the number of
particle contacts at a given sphere increases approximately
linearly with the compaction pressure.! The external
pressure is therefore sustained by an increasing number of
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1 Integrated radial density functions (RDF) for (/aft)
regular and (right) random packing of equal sphares
(schamatically); RDF is number of sphare centres
located within distance r from reference sphere; in
the narrow range of interest, RDF for a ‘random
danse packing’ according to Scott® can be approxi-
mated by a straight line; A is particle radius
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particle contacts and the resistance of the powder to
further densification is raised more than would be expecled
from a simple two-sphere model, This important (eature of
powder compaciion is Lhe consequence of the distribution
ol initial centre-to-centre particle distances. It cannot be
modelled by assuming regular (lattice type) packings as in
the models of Pelzel> and Kakar and Chaklader;>* a
continuously increasing coardination is conceivable only
for an irrcgular particle structure,

A convenient way of characterizing an irregular packing
is by means of the integrated ‘radial densily function’
(RDF), which states the number of particle centres located
within a sphere of radius # around an arbitrary reference
sphere (Fig. 1). Scott™f has determined the RDF for a
‘dense randotn packing’ of equal spheres; since his packing
has virtually the same coordinetion number and density as
a bed of spherical powder particles before compaction,' we
shall use his result for the present theory. In the range of
interest, Scott’s RDF® can be well approximated by

7
G(r) Z"_H(ZR 1)..........(1)
Zy =73, which corresponds to the initial coordination
number; ¢ = 15-5; and R is the particle radius,

Starting from this RDF for the initlal particle packing,
we assume that during densification all centre-to-centre
distances shrink by the same relative amount. Under these
conditions, which could be termed ‘homogeneous densifi-
cation’, the shape of the RDF will remain unchanged.

The treatment of homogeneous densification is
facilitated if, instead of letting the centre-to-centre distances
shrink, we let the particles grow around their fixed centres,
which resulls in a geometrically equivalent situation. A
short calculation yields the new particle radius R’ (in units
of the original radivs R) for a given relative density D

3
R’(D):/BD—.......,......(2)

Dy is the relative fll density (for monosize spheres
Dy ~ 0-64, see Scottf),

As a result of this size change, initially contacting spheres
will now averlap (Fig. 2), In the powder, this corresponds
to the squeezing out of material from the contact zones.
For lack of an analytic plasticity treatment of the
deformation problem, we shall distribute the excess material
evenly over those parts of the sphere surfuces that are not
taken up by the contacts. This redistribution produces a
further increase in the sphere radivs from R’ 1o R”, except
at the contacts where the spheres are truncated.

The new particle radius can be caleulated from a balance
of volume

d =1
VU(R')Za'I"“J‘ Vis) ds

s=10

=(1"—R'}[dna'l—sq(fz')zn—cR'f lS(s)ds]. . (3)
re=d

{a) (t) {c)

2 How the modsl works: in a packing of equal spheres
{2) we let tha particles grow around fixed centres
until a certain density D is reached (new particla
radius R’ (b); overlapping material is then deposited
on free surfaces of apheres (new radius of
truncated’ spheres fi") {¢); value of RDF for sphere
centres at r=2R" determines current coordination
number, average contact area is function of R”
{equation (b))
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where

ValR) =2 (R'— 1) is half the volume of the overlap
i(2R‘+I] between a refercnce sphere and
’ any initial neighbour after
growih from R =1 to R’
Zy is the initial coordination
number
25 is the dislance between the
surfaces of the relercnce sphere
and of a particle in its neigh-
- bourhood
V(.s']=5|"R’—l~s]z ;;s hallf the volume ?{ ovcrzjap
; etween a reference sphere and a
X 2R+ 1 +5) sphere with a cent?c-to-cantrc
distance of 2(1+5)
Se(Ry=2nR' (R —1) s (he surlpce portion of the
reforence sphere occupied by
any initial neighbour
8(s) = 2nR(R'—1~5) is the surface portion on the
reference sphere occupied by a
sphere with a centre-lo-centre
distance of 2(1 +3)
¢ =155 iy the slope of the RDF

The left hand side of equation {3) consists of the volume of
overlap between the reference sphere and its initial
neighbours plis the contribution from newly formed
contacts, which are created at a rate determined by the
RDF of the packing. The right hand side of equation (3)
states the volume of material which can be deposited on
the sphere surfacc not taken up by contacts (injtial and
new). Equation (3) does not take inlo account the increase
in coordination and the decrease of free surface area while
the spheres are growing by addition of the excess material,
These second order effects could be included by applying
cquation (3) jteratively.'” Since the present level of
sophistication allows 2 stage 2 model to be built which
works up to densitics of about 80%; (when triple line
formation sets in and & new mechanism becomes active, to
be discussed below), the simplifications appeur to be
reasonable,
Integrating and solving equution (3} for R" yield

R* = R4 PR = 1P2R + 1) o(R' — 13K + 1)
e L2RTAR = 2Z(R™~T) = o(R'— 1)7]
The average contact area can be calculated as a function of
RH
#(R")
R!
Z, the average coordination number, is equal to the

number of spheres located within r = 2R’ from the
reflcrence sphere, ie. the value of the RDF atr=2R'

ZR) = GRR) = Zo+e(R 1), . . . . . .. (§)

(Equation {6) is rather more realistic than taking the value
ol the RDF at r = 2R, as suggested by an incautious use

» 3—27;_ BR = 1)Zy+c+cRPQR —H]*  (5)

¥ .Satting_Z.J =73 and ¢ = 155, equation (5) can be upproximaled
by

u(D)

= R (D—Dyn (£4%) Tor D <09
which s close to the result of Kakar and Challuder®

aby 2

i ST SR

r= " 3p, P~ Dol
for regular sphere packings. In the present model, there js an
mmporiant additional increase in the resistance to denmsification

which results from the increase in coordination (equation (6)) and
flow stress (equution (9)),
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RELATIVE DENSITY

3 Avarage contact area betwaean particles v. relative
density of compact, obtained from measuremants
for spherical bronze powder' (g isostatic, O die
compaction) and caleulated according to equation (5)

of the model. During contact deformation in an actual
powder, most of the material will stay in the vicinity of the
contacts, and the formation of new contacts will therefore
be due mainly to the shrinkage which corresponds to the
sphere growth from R to R')

Thus we have arrived at complete expressions relating
the average contact arca and the average coordinution
number (o the relative density. Agreement  with
experimental results obtained in our earlier study for a
spherical bronze powder! is close up to a density of about
90% (Figs. 3 and 4). Beyond this density level, the
impingement of adjacent contacts (as discussed below)
introduces a new deformation mode in the mode.
Therelorc the overestimation of the contact area above
D =09 (dotted I[ine) is of no consequence. The
coordination numbers predicted by cquation {6) ure Jow at
high densitics because of the limitations of equation (3)
mentioned above; again, the discrepancy concerns only the
region where contact impingement will necessitale a new
model in any case,

As will be scen below, it is the product ¢Z which
determines the resistance of the compact to further
densification. Equation (5) happens to predict uZ with
good accuracy throughout the whole course of compaction
(Fig. 5), although at high densities this appears to be
fortuitous,

CONTACT AREA v, CONTACT FORCE

When two spherical particles are pressed against each
other, the deformation is at first elastic, According to the
Van Mises criterion the material should begin to vield
when the mean pressure on the contact area reaches a
value of about 11 x the vield stress g, of the material.” A(
this stage the region of plasticity is rather small, but as the
contact force is further raised, the plastic domain soon
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RELATIVE DENSITY
4 Average coordination number v. relative density,

bronze powder' (@ isostatic, O die compaction)
and calculatad accarding to aquation (6)
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RELATIVE DENSITY

B Product average coordination number x average
contact area calculated from equation (5) campared
with measured values' (@ compacts from sieved,
nearly monosize powder. + unsieved powder with
wider size distribution)

extends over the whole contact area,

The continuum-mechanical treatment of this de-
formation problem, despite its axial symmetry, presents
serious difficulties which have not yct been resolved.
Prandtl® has calculated the slip-line field for the basically
similar (bul two-dimensional) case of a frictionless
cylindrical punch penetrating the flat face of an ideally
plastic solid. He has found the onset of plastic low to
occur at a mean pressure of about 2:97w,, Similar analyses
due to Hencky® and Tshlinsky!? arrive at essentially the
sume result. Therefore, it seems reasonable to adopt as a
pragmatic criterion for yielding (se¢ also Kakar and
Chakladert)

N ()

where f'is the contact [orce,

This relation was verified by indentation experiments by
Tabor,” who found, however, that cven in materials
incapable of work hardening the numerical factor increased
slightly with the size of the indentation. This was ascribed
to the increasing constraints exerted by the displaced
material,

In & packing of simultaneously deforming particles there
will "be even more pronounced constraints [rom
neighbouring contacts, Sundstrém and Fischmeister! ! have
shown that such a ‘geometrical hardening’ is an
inescapable consequence of the way in which a particle
compact deforms, and that in the final stages of
compaction it will play a role at least as important as the
strain hardening of the particle material,

STRAIN HARDENING OF THE POWDER
MATERIAL

Tabor” further obscrved that a linear relation as in

240
o
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160} /
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RELATIVE DENSITY

6 Microhardness at contact flats v. relative density:
bronze powder, dise compacted (Q) and calculated
from squations (8) and (10)
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STRAIN

7 Stress-strain characteristic of fully dense bronze
compacts (after Stromgran®) and linear fit used in
model: @, = 200 MN m~?, linear strain hardening
coafficiant h =

equation (7) holds also for work hardening materials i the
flow stress of the deformed material at the edge of the
indentation is inserted,

In the bronze powder compacts studied earlier,
microhardness measurements were performed in the centre
of the contact flats to assess the amount of strain hardening
that had taken place up to differenl stages of compaction
(Fig. 6). Similar results have been reported by James'> for a
variety of different materials,

For the bronze powder the stress—strain characteristic
o(g) bad been determined from incremental compression
tests performed on forged, fully dense specimens’? (Fig. 7).
The equivalent strain & in the deformed sphere can be
assessed by viewing the fictitious growth of the spheres
from R = R' to R = R" as a plastic deformation process

RﬂRll_Rf
S )]

f=In—nr

R R
The flow stress g; is oblained by inserting this strain in the
stress—-strain relation o(e) of the particle material, which for
the bronze powder (Fig. 7) can be fitted by

oiD) =@ =o,(1+h8) . . . . . . . . . . (9

where o, == 200 MN m~? and h = 6, To test the validity of
the strain assessment (equation (8)) the expected micro-
hardness was computed according to

Hy(Dg)
H{Dy=""r—0l®) . . . . . . . . . . . (0
P a,(Dy) (

and compared with cxperimental results (Fig, 6). The
agreement is good in the density range (D < 09) for which
the model is intended.

COMPACTION PRESSURE v. AVERAGE
CONTACT FORCL

The compaction pressurc is propagated in a powder as a
set of forces acling at the points of contact between the
particles, Congidering the large number of particles and the
randomness of the packing, it seems permissible to replace
the actual force system by equal forces corresponding to
the statistical mean. Then the lollowing relationship can be
derived !*

4nR?
fZDp,..............(ll)
Equation (11) evokes a simple interpretation: the average
contact force is the compaclion pressure x the average
contact area, which is approximated by the sphere surface
divided by ZD. A similar equation has been propased by
Coble and Ellis.!®

Powder Metnllurpy 1983 VYol 26 No. 2
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COMPACTION PRESSURE, GN  mi?

8 Experimental compaction data for spherical bronze
powder (@ isostatic, O die compacted) and curves
calculated according to equation (12), model of
uncanstrained deformation (———) and equation
(18}, final model including constraint hardening

)

MODEL OF UNCONSTRAINED
DEFORMATION (STAGE 2)

Now we have all the elements for a first model of powder
compaction, which will be called ‘model of unconstrained
deformation’, because the deformation of each contact is
assumed to occur independently of and without constraint
from neighbouring contacts. Tt will break down at densities
close to full density,

The pressure required to further dansify a compact
which hus achieved relative density D, average contact area
a, average coordination number Z, and flow stress oy cun
be calculated by substituting equation (7) into equation (11)

3 «(D)Z(D)
4 RT
All the terms involved have already been expressed as
functions of refative density.

In Fig. 8 the compaction dala for the spherical bronze
powder are compared with calculations according to
cquation (12). The agreement is excellent throughout the
technical pressure range. It is only in the very last stage of
densification (stage 1) that the extremely strong increase in
deformation resisiance remains to be explained. Obviously
normal strain hardening (for which a reasonable strength
increase would be no more than twofold) cannot account

p(D) = DaD) . . . . . ... .2
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{b) RELATIVE DENSITY

9 & formation of triple line in spherical powdar:
contact areas impinge on sphers surface {third
sphere transparent for hetter illustrations): and b
length of triple lines/unit valume v. ralative density
(@ isostatic, O die compacted, O spacific edge
langth of stack of tetrakaidecahedra, particle radius
R=143um
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for the fact that the compact will become incompressible at
full density. A first explanatary indication is provided by
Sundstrém and Fischmeister,'! who emphasize the
tmportance of ‘gecometrical hardening’. In the following
medel for the final stage of densification this concept is
developed further.

GEOMETRICAL CONSTRAINTS AND
CONSTRAINT HARDENING (STAGE 3)
The growth of contact areas and the increase of the
coordination number during densification will, at a certain
stage, bring meighbouring contact flats on a given sphere
surface close enough to form a triple line (Fig, 9a). On
metallographic section the length Ly of the triple lines/unit
volume can be determined by counting the triple points
(intersections of triple lines with the plane of polish)/unit
area's

Lv — ?..PJ\ - . . . f . . i . (13)

where P, is the number of triple points/unil area.

The increase of Ly in the bronze powder compacts is
shown in Fig, 9h. In terms of the model, the formation of
the first triple lines is to be expected as soon as the spheres
have grown to a size which produces triple overlaps in a
‘close’ arrangement of three spheres, ie. at R = §\ﬁ This
corresponds to a relative density of about 90%, which is
not only in good agreement with measured triple line
length (Fig, 9b), but also coincides with the density level at
which the actual behaviour of the compacts starts to
deviate from calculations based on unimpeded
deformation.

Triple lines impede the further growth of contact areas.
These constraints may raise the deformation resistance far
beyand that expected from the model of unconstrained
deformation. It is suggested that this last stage of
compaction be termed the stage of ‘constraint hardening’
(where ‘hardening’ is used in its literal sense, ie. to
deseribe the increase in deformation resistance of the
porous body as a whole),

A criterion for yielding under these constraints can be
borrowed [rom the theory of extrusion'® and adapted to
the present geometry

a(Z(1)
a(1)Z(1)~ a(D)Z(D)
Here the logarithmic extrusion ratio has been expressed in
terms of the contact area and the coordination number at
density D and at full density D=1, k is a geometrical

constant; k = 2 leads to good agreement between theory
and experiment.

COMPLETE COMPACTION FORMULA
Throughout compaction, the compact can be considered to
cansist of two kinds of regions: zones where the material is
‘hard’ (owing to triple lines) and regions where the
deformation is still unconstrained. The volume fractions of
these regions change conversely during compaction,

In order to combine both deformation mechanisms, we
employ a linear mixture rule whose validity is well
substantinted.'? Tt states that the resistance ta deformation
of a two-component material may be expressed as a linear
combination of the properties of the compouents

e I £)

where f, and f, in this context denote the volume fractions
of the ‘harder’ and ‘softer' component, and p, and p, mean
the yield criteria (equations (14) and (12)) for constrained
and unconstrained deformation, respectively, The volume
fraction of the harder component can be assessed by the
specific length Ly of the triple lines

L+(D)

'mm:fﬂﬁ"" T . -

(D) = ka;In . (14)
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where Lv(1) is the value of Ly extrapolated to full density,
The chpice of numerical value is not very critical. If,
according to our previous study,! a stack of telra-
kaidecahedra (truncated octahedrs) with edge length L is
used 1o approximate the fully dense compact, then Ly(1) is
given by

3
)=——=I"2=206R"?
Ly(1) 2ﬁ

Combining equations (12) and (15)-(17) leads to the final
compaction equation

3
#0) = 001|225 o1 o

a(1)Z(1)
a(1)Z(1)—a(D)Z(D) |

The algebraic struclure of this equation reflects the
contributions of the two densification mechanisms. From
the beginning of compaction up to a rclative density of
about 90%, triple lines do not form, f, = 0, and the second
term in parentheses remains without importance. After the
first triple lines evolve, the extrusion term rapidly gains
importance until finally it takes complete control of the
densification process. The final predominance of the second
term accounts for the asymptotic character of the approach
to full density.

For the practical application of equation (18), the
following approximate cxpressions are useful

+2£,(D)In . (18)

a(D)Z(D):Rz%&[wﬂ(D—Du)’-{-lG]. C .. (19)

fD)=1953D—092° . . . . . . . . .. (0

e=222YD/Dy—1? . . . . . . . . . ..(@D

As can be seen in Fig, 8, equation (18) is in close agreement
with measurements on isostatically compacted bronze
particles (solid symbols). Less perfecl agreement is to be
expecled for axial compaction in a die {open symbols)
where the pressure is reduced by friction.

DISCUSSION

In equation (18), the characteristics of the flow and strain
hardening behaviour of the particle material are collected
in the first term, The second term is purely gcometrical. It
contains the initial density, the initial coordination number,
and the slope of the RDF of the particle packing. In the
cnse of monosize spheres, these quantities are all known
and cannot be adjusted to fit the model to measurements,
Thig is important because, in view of the smooth and
simple shape of all compaction curves, the fact that a
maodel equation can be fitted to experimental values by
adjusting free parameters is almost worthless as verification
of the madel. Conversely, the good fit provided by
equation (18) withowt adjustable parameters gives strong
support to the conceptual basis of the model proposed in
the present paper.

However, the model as conceived is limited to monosize
spheres and it appears difficult to develop an equally
stringent treatment for powders of varying particle size,
and especially of irregular shape. From a pragmatic point
of view, onc might hope that the effects of not-too-large
deviations in size and shape might *average out’ and try to
apply the compaction function derived for monosize
spheres also to less restricted powders.

Distributions of size and shape would affect the
parameters Dy, Z,, and ¢. Test calculations in which these
quantities were varied one at a time showed that the shape

Fischmeister and 4rz¢ Densification of powders by particle deformation 87

1-Q
1
09r o N
,/53/%
e -
o8k /_A/ //ﬁ’ ]
07 P -
i / -~ // |
= 3 s Q/ |
g ogl- s | -
= s I
e s §
g i
05 Vi -
Ve
Vs
O‘ﬁi i N
OIE T I T i a
N 1] I 7 i o ST T 2
+ 1'_ 1' - 4; 7 ii ]
 p— — e o
I T I8 T Fé ra T
; l, f,] i’ {I‘, /’ ‘]’l IBB
[ a2 05 075 1 15 2 3 4 8

P/ %

10 Compaction data for @ bronze powder, spherical,
after Fischmeister et al'. A Atomet 28 iron
powder, irregular, aftar Hewitt et al®™, 0O
aluminium, irregular, after Haewitt et al¥, v
stainless steel, irregular, after James,” plotted in
coordinates designed to give straight lines for
powders which densify saccording to modael:
abscissa is shown for different rates h of linear
strain hardening

ol the compaction curve is not very sensitive ta ¢ Newly
formed contacts have small areas and will not contribute
much to the deformation resistance unless they appesar in
very large numbers. Noting that the decisive quantity in
equation (LB) is the product aZ, the idea suggests itself that
an increase in Z might often be offset by a decrease in a.
Mensurements were made of aZ on compacis of bronze
powder with a size distribution from 100 to 350 um, The
results (shown as crosses in Fig 5) are indeed found to
coincide with those described earlier, which had been
obtained with a narrow size fraction ol the same powder.

The monosize sphere model allows only one initial
density, that of the random dense sphere packing
Dy = 0-64. If Dy, is allowed to vary, it strongly aflects the
course of the compaction curve because it enters the
compsction equation via equation (2). In fixing D, at 0:64,
the present treatment negates particle rearrangement
before cantact flattening, As has been shown in a previous
study,' this is not a serious simplification in the case of a
spherical powder of a ductile material, but it would become
so for irregular powders.

Plotting the compaction curves of various powders as
reported in the literature in a net of curves generaled from
equation (18) by variation of D, showed that in the range
of intermediate pressures, where particle rearrangement
should have come to an end, most powders conformed well
with the course of these calculated curves. For the regions
of fit, onc could determine an effective value of Dy which
would signify the density at the moment from which
densification proceeds by contact deformation alone. This
partial coincidence with the sphere model might of course
be fortuitous. Two observations sugpest that il is not: first,
the values of ‘effective Dy’ all fell into a narrow range, close
to but ncver above the theoretical value of 0'64; second, the
initial deviation (before confluence with the model curve)
was found to correlate quite clearly with the irregularity of
particle shape. This suggests that differences due to particle
shape and size distribution become less and less important
as the powder particles are squeczed (ogether, making the
compaction behaviour of widely different powders
converge towards that of spheres with progressively
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deforming contacts. If this is true, it should be revealing to
plot compaction curves in such a way that the deviation
from ‘'spherc behaviour' as well as the ultimate
conformance with this behaviour could be seen and
interpreted. A graph paper was constructed by graphical
inversion of equation (18), on which contact flattening
would produce u straight line (Fig. 10). Different values of
Dy will produce only parallel shifts of the line, In order to
accommodate differences in the plastic flow behaviour af
the particle material, the abscissa is graded for compaction
pressure normalized by yield stress. A linear strain
hardening law is assumed in the manner of equation (9). A
grid of curves at the bottom of Fig. 10 allows the yield
stress normalized pressure to be transformed so us to take
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care of strain hardening. The practical procedure is
indicated by a sample trace in Fig. 10: for a material with a
strain hardening rate h =5, a pressure of 5% the yield
Stress- would be entered vertically above the point where
the horizontal for h =5 is intersected by the grid curve
corresponding to pfo, = 1-5.

Figure 10 shows the behaviour of our spherical bronze
powder together. with three other powders of different
particle shape, for which data on compaction as well as
strain hardening could be found in the literature. Figure 11
shows the degres of approximation involved in the
assumption of linear strain hardening,

We believe that compaction curves plotted in the way of
Fig. 10 (which expands their initial portions) reveal the
rearrangement behaviour of the powder and the degree to
which particle geometry hinders densification by contact
flattening. The particle shape of the Aiomet iron powder
allows it to approach ‘spherclike’ behaviour when the
relatively fine rugosity of the particle surfaces has been
squeczed flat. The more irregular shapes of the aluminlum
and stainless steel particles lead to more persistent
deviations from the compressibility which would have been
achieved with a more equiaxial structure. If verified, this
interpretation of the difference in compaction behaviour
would suggest ways of improving compressibility without
too much sacrifice of green strenpth, and plots in the
menner of Fig, 10 would give a quantitative indication of
the scope for improvement by particle shape control, By
analysing a large number of powders along these lines, one
could develop more differentiated interpretations of the
deviation of various parts of the compaction curves from
spherelike behaviour,

While these ideas are still hypothetical, we fee] that they
illustrate the type of practical conelusions which could be
drawn from a well developed physical model for the
densification of powders.
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