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Abstract 

Cyclic definitions are often prohibited in tenninological knowledge representation languages, 

because, from a theoretical point of view, their semantics is not clear and, from a practical point 
of view, existing inference algorithms may go astray in the presence of cycles. In this paper we 
consider tenninological cycles in a very small KL-ONE-based language. For this language, the 

effect of the three types of semantics introduced by Nebel (1987, 1989, 1989a) can be 

completely described with the help of finite automata. These descriptions provide a rather 

intuitive understanding of tenninologies with cyclic definitions and give insight into the 

essential features of the respective semantics. In addition, one obtains algorithms and complexity 

results for subsumption detennination. The results of this paper may help to decide what k.ind of 

semantics is most appropriate for cyclic definitions, not only for this small language, but also 

for extended languages. As it stands, the greatest fixed-point semantics comes off best. The 

characterization of this semantics is easy and has an obvious intuitive interpretation. 

Furthennore, important constructs - such as value-restriction with respect to the transitive or 

reflexive-transitive closure of a role - can easily be expressed. 
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1. Introduction 

Cyclic definitions are prohibited in most terminological knowledge representation 
languages ( e.g., in KRYPTON ( Brachman et al. (1985) ), NIKL ( Kaczmarek et al. 
(1986) ) or LOOM (MacGregor-Bates (1987)) ) for the following reasons. From a theo­
retical point of view, it is not obvious how to define the semantics of terminological 
cycles. But even if we have fixed a semantics it is not easy to obtain the corresponding 
inference algorithms. 

On the other hand, cyclic definitions may be very useful and intuitive, e.g., if we 
want to express the transitive closure of roles ( i.e., binary relations ). For a role child, 
value-restrictions with respect to its transitive closure off-spring can be expressed by cyclic 
concept definitions if we take the appropriate semantics. For the same reason, recursive 
axioms are considered in data base research ( see e.g., Aho-Ullman (1979), Immerman 
(1982), Vardi (1982), Minker-Nicolas (1983), Wu-Henschen (1988) and Vielle (1989)). 
Aho-Ullman (1979) showed that the transitive closure ofrelations cannot be expressed in 
the relational calculus, which is a standard relational query language. They proposed to 
add cyclic definitions which are interpreted by least fixed-point semantics. This was also 
the starting point for an extensive study of fixed-point extensions of first-order logic ( see 
e.g., Gurevich-Shelah (1985,1986) ). 

A thorough investigation of cycles in terminological knowledge representation 
languages can be found in Nebel (1987,1989,1989a). Nebel considered three different 
kinds of semantics for cyclic definitions in his language 9£rr:r, namely, least fixed-point 
semantics, greatest fixed-point semantics, and what he called descriptive semantics. But, 
due to the fact that this language is relatively strong!, it does not provide a deep insight 
into the meaning of cycles with respect to these three types of semantics. For the two 
fixed-point semantics, Nebel explicates his point just with a few examples. The meaning 
of descriptive semantics - which, in Nebel's opinion, comes "closest to the intuitive 
understanding of terminological cycles" ( Nebel (1989a), p. 124 ) - is treated more 
thoroughly. But even in this case the results are not quite satisfactory. For example, the 
decidability of subsumption determination is proved by an argument2 which cannot be 
used to derive a practical algorithm, and which does not give insight into the reason why 
one concept defined by some cyclic definition subsumes another one. 

Before we can determine what kind of semantics is most appropriate for termi­
nological cycles we should get a better understanding of their intended meaning. The 
same argument applies to the decision whether to allow or disallow cycles. Even if cycles 
are prohibited, this should not just be done because one does not know what they mean 
and how they can be handled. 

In this paper, we shall consider terminological cycles in a very small KL-ONE­
based language which allows only concept conjunction and value-restrictions. For this 
language, the effect of the three above mentioned types of semantics can be completely 
described with the help of finite automata. These descriptions provide a rather intuitive 
understanding of terminologies with cyclic definitions and give insight into the essential 
features of the respective semantics. In addition, subsumption determination for each type 

IThe language allows concept and role conjunction, value-restrictions, number-restrictions and 
negation of primitive concepts. 

2Roughly speaking, the argument says that it is sufficient to consider only finite interpretations to 

determine subsumption relations. 
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of semantics can be reduced to a ( more or less) well-known decision problem for finite 
automata. Hence, existing algorithms can be used to decide subsumption, and known 
complexity results yield the complexity of subsumption determination. 

In the next section we shall recall some definitions and results concerning ordinals, 
fixed-points and finite automata which will be used in subsequent sections. Syntax and 
( descriptive) semantics of our small terminological language 'fLo is introduced in 
Section 3. In Section 4, alternative types of semantics - namely least and greatest fixed­
point semantics - are considered, which may be more appropriate in the presence of 
terminological cycles. We shall see that, from a constructive point of view, the greatest 
fixed-point semantics should be preferred since greatest fixed-point models can be 
obtained by a single limit process. In Section 5, the three types of semantics are 
characterized with the help of finite automata. The characterization of the greatest fixed­
point semantics is easy and intuitively clear. Subsumption with respect to greatest fixed­
point semantics, and - after some modifications of the automaton - also with respect to 
least fixed-point semantics can be reduced to inclusion of regular languages. For 
descriptive semantics, we have to consider inclusion of certain languages of infinite 
words which are defined by the automaton. Fortunately, these languages have already 
been investigated in the context of monadic second-order logic ( see Biichi (1960) ). In 
Section 6, we shall see how the inclusion problem for these languages can be solved. 
This yields a subsumption algorithm for descriptive semantics. Extensions of the results 
for gfp-semantics are considered in Section 7. In the first subsection we shall consider 
cycles in the larger language 'fL- of Levesque-Brachman (1987). The second subsection 
contains results about hybrid inferences. 

2. Formal Preliminaries 

In the introduction we have mentioned the "transitive closure" of a binary relation as a 
motivation for cyclic definitions. This notion can be formally defmed as follows: Let R be 
a binary relation on the set D, i.e., R c D x D. We define RO := { (d,d); d ED} and, for 
n 2:: 0, Rn+l := RoRn where "0" denotes composition of binary relations. The transitive 
closure of R is the relation Un~IRn and the reflexive-transitive closure is U~Rn. 

In the following subsections we shall recall some definitions and results concerning 
ordinals, fixed-points and finite automata. 

2.1 Ordinals3 

A partial ordering ~ on a set D is a well-ordering iff it is linear ( i.e., for all a, bin D we 
have a ~ b or b ~ a ) and well-founded ( i.e., there are no infinite strictly decreasing 
chains ao > al > a2 > ... ). Ordinals can be defined as the order types of well-ordered 
sets. There are finite ordinals such as 2, 6, 17. For example, 6 is the order type of the set 
{ 0, 1, 2, 3, 4, 5 } with the usual ordering on non-negative integers. The first infinite 
ordinal is (0, which is the order type of the non-negative integers { 0, 1, 2, ... }. Ordinals 
can be ordered as follows: a ~ (3 iff a is isomorphic to an initial segment of (3. For 
example,2 < 6 and the finite ordinals are exactly the ordinals which are smaller than (0. 

This ordering on ordinals is well-founded and linear. Hence any set of ordinals has a 

3See Rosenstein (1982) for the order-theoretic approach we use below. A set-theoretic definition of 
ordinals can be found e.g. in Halmos (1974). Some elementary properties of ordinals are also stated in 
Lloyd (1987). p.28-29. 
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least element and a least upper bound. 

If a is an ordinal then the successor a+ 1 of a is the least ordinal greater than a. An 
ordinal which is a successor of another ordinal is called successor ordinal. The other 
ordinals are called limit ordinals. For example, co is a limit ordinal, and 6 is a successor 
ordinal because 6 = 5+ 1 is the successor of 5. The successor co + 1 of co is the order typ 
of { 0, 1, 2, ... } u { 00 } where { 0, 1, 2, ... } is ordered as usual and all elements of 
{ 0, 1, 2, ... } are smaller than 00. A limit ordinal a can be obtained as the least upper 
bound of all smaller ordinals, i.e., a = lube { ~; ~ < a }). 

Properties for ordinals can be proved by transfinite induction. Let P be a property 
of ordinals. Assume that (1) P(O) holds; (2) if Pea) holds then P(a+ 1) holds; and (3) if 
A. is a limit ordinal and pea) holds for all a < A. then P(A.) holds. Then P(~) holds for all 
ordinals ~. 

2.2 Fixed-Points4 

Let D be a partially ordered set (poset ). The po set D is a complete lattice if all subsets C 
of D have a least upper bound lub(C) in D. In this case, any subset C has also a greatest 
lower bound glb(C) = lube { d E D; d is a lower bound of C }), and D has a least element 
bottom = lub(0) and a greatest element top = lub(D). 

Example 2.1. Consider D = 2S, the set of all subsets of the set S. If the elements of D 
are ordered by set inclusion, then D is a complete lattice W.f.t. this ordering. Least upper 
bounds are obtained by set union, and greatest lower bounds by set intersection. The 
least element of D is 0 and the greatest element is S. As a second example of a complete 
lattice, we may consider the n-fold cartesian product Dn ofD = 2S, which is ordered 
componentwise by inclusion: (AI, . .. ,An) ~ (BI, ... ,Bn) iff Al ~ BI, ... , and An c Bn. 
Union and intersection are likewise defined componentwise, top = (S, ... ,S), and bottom 
= (0, ... ,0). 

Let D be a poset and let T: D ~ D be a mapping. Then T is monotonic iff for all a, 
bin D, a ~ b implies T(a) ~ T(b). Afixed-point of T is an element fED such th(lt T(f) = 
f holds. If D is a complete lattice, then any monotonic mapping T: D ~ D has a fixed­
point. More precisely, T has a least fixed-point Ifp(T) and a greatest fixed-point gfp(T), 
and possibly other fixed-points, which lie between the least and the greatest fixed point. 
The least and the greatest fixed-point can be characterized in terms of ordinal powers of 
T. The ordinal powers Tia and T J,a are inductively defined as follows: 

(1) TiO := bottom and T J,O := top; (2) Tia+l := T(Tia) and T J,a+1 := T(T J,a); (3) If a 
is a limit ordinal then Tia := lube { TiP; ~ < a }) and T J,a := glb( { T J,P; ~ < a }). 

Theorem 2.2. ( least and greatest fixed-points r 
Let D be a complete lattice, and let T: D ~ D be a monotonic mapping. Then, for any 
ordinal a, Tia ~ Ifp(T) and T J,a ~ gfp(T). Furthermore, there exist ordinals ~, 'Y such 
that TiP = lfp(n and T J, Y = gfp(n. 0 

The ordinals ~, 'Y may be greater than co, but there are sufficient conditions under 
which they are less or equal co. Let D be a complete lattice, and let T: D ~ D be a 
mapping. Then T is upward ~continuous ( resp. downward ~continuous ) iff for any 

4See Lloyd (1987) , Chapter 1, §5 and Schmidt (1986), Chapter 6. An account of the history of 
related fixed-point theorems can be found in Lassez-Nguyen-Sonenberg (1982). 

5 



increasing chain do ~ d 1 ~ d2 ~ ... ( resp. decreasing chain do ~ d 1 ~ d2 ~ ... ) we have 
T(lub( { di; i ~ 0 })) = lube { T(di); i ~ 0 }) ( resp. T(glb( { di; i ~ 0 })) = glb( { T(di); i ~ 
o }) ). It is easy to see that any upward or downward co-continuous mapping is also 
monotonic. 

Theorem 2.3. ( fixed-points of continuous mappings) 
Let D be a complete lattice, and let T: D ~ D be an upward ro-continuous ( resp. 
downward ro-continuous ) mapping. Then Ifp(T) = Tiro = lube { Tn(bottom); n ~ 0 }) 
(resp. gfp(T) = T J..ro = glb({ Tfl(top); n ~ 0 }) ).5 0 

In Section 5.3 we shall need a slightly generalized version of Theorem 2.3 for 
downward ro-continuous mappings. 

Corollary 2.4. Let D be a complete lattice, and let T: D ~ D be a downward ro­
continuous mapping. Let d be an element of D such that d ~ T(d). Then d-gfp(T) := 
glb({ Tfl(d); n ~ 0 }) is a fixed-point ofT. More precisely, d-gfp(T) is the greatest fixed­
point of T which is less or equal d. 
Proof. Since T is downward ro-continuous and thus monotonic, d ~ T(d) yields d ~ 
T(d) ~ T2(d) ~ T3(d) ~ .... Hence T(glb({ Tfl(d); n ~ 0 })) = glb({ Tfl+l(d); n ~ 0 })) = 
glb( { Tn(d); n ~ 0 }).6 This shows that d-gfp(T) is a fixed-point, and obviously, d ~ 
d-gfp(T). If f is a fixed-point with d ~ f then T(d) ~ T(f) = f, since T is monotonic, and f 
is a fixed-point. Iterating this argument we obtain Tn(d) ~ f for all n ~ 0, and hence 
glb({ Tn(d); n ~ 0 }) ~ f. 0 

2.3 Automata and Words7 

Let L be a finite alphabet. The set of all ( finite) words over L will be denoted by L* and 
the empty word by E. A word W = <JO ... <In-l over L of length n can be seen as a mapping 
W of the finite ordinal n = { 0, ... , n-l } into L, namely, Wei) := <Ji for i = 0, ... , n-l. 
This motivates the following definition of infinite words. An infinite word W is a 
mapping of the ordinal ro into L. The set of all infinite words over L will be denoted by 
Lro. A given infinite word W: ro ~ L will sometimes be written as an infinite sequence 
W(0)W(1)W(2) .... 

A generalized finite automaton Jl = (L,Q,E) consists of a finite alphabet L, a finite 
set of states Q, and a finite set of transitions ( or edges) E ~ Q x L* x Q. A transition 
connects two states of Q and is labeled by a finite word over L. 

Example 2.5. (a generalized automaton ) 

L = { 0", 't } 

Q = {A, B, C} 

E = { (A,(J ,A), (A,E ,C), 

(A;t ,C), (B,'t ,B), 

(C,m,C) } 

E 

E 

5The notation "n ~ 0" is used as an abbreviation for "0 :$; n < ro". Here and in the following we 
use the convention that n, i, k range only over finite ordinals. 

6Since d = rO(d) ~ T(d) by assumption. 
7See e.g., Manna (1974), Hopcroft-Ullman (1979), and Eilenberg (1974). 
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The automaton is called "generalized" because transition labels may be arbitrary 
words, and not only symbols of the alphabet. However, it is well-known that any 
generalized fmite automaton can be transformed into an equivalent finite automaton8 ( see 
Manna (1974) or Hopcroft-Ullman (1979». Words of length greater than one can easily 
be eliminated by introducing intermediate states. In the example, we could introduce a 
new state C' and replace the transition (C,(H,C) by the two transitions (C,a,C') and (C', 
't,C). The elimination of c-transitions is more difficult ( see Hopcroft-Ullman (1979), p. 
26 ). In the example, we could simply join the states A and B to a new state AB with the 
transitions (AB,a,AB), (AB,'t,AB), (AB,'t,C). This transformation can be done in 
polynomial time. 

Let Jl be a generalized finite automaton and let p, q be states of .9t A finite path 
from p to q in Jl is a sequence p = PO, UI, PI. U2, P2, ... , Un, Pn = q, where for each i, 
1 ~ i ~ n, (Pi-I,Ui,Pi) is a transition of Jl. This path has the finite word UIU2 ... Un as 
label. As a special case, the empty path p from p to p has the empty word c as label. In 
the example, A, a, A, c, B, c, A, 't, C, a't, C is a finite path from A to C with label 
a'ta't. Obviously, a non-empty path (i.e., a path where n ~ 1 ) may also have the empty 
word as label. An infinite path starting with p is an infinite sequence p = PO, U 1, PI, U2, 
P2, ... , where for each i ~ 1, (Pi-I,Ui,Pi) is a transition of.9t The label UI U2U3 ... of this 
infinite path may be a finite or an infinite word. In the example, the infinite path A, a, A, 
c, B, c, A, c, B, c, A, c, B, c, A, ... has the finite word a as label, and the infinite path 
A, 't, C, a't, C, a't, C, ... has the infinite word 'ta'ta't ... as label. We shall sometimes 
omit some of the insignificant intermediate states in the description of a path. For 
example, assume that we are interested in those infinite paths starting with p where the 
state q is reached infinitely often. Such a path may be written as p, Wo, q, WI. q, W2, ... 
where Wo is the label of a path from p to q and the Wi for i ~ 1 are labels of non-empty 
paths from q to q. 

For two states p, q of the generalized finite automaton Jf., let L51(p,q) denote the set 
of all finite words which are labels of paths fom p to q. If it is clear from the context, we 
shall omit the index Jl. In Example 2.5, L(A,B) = (au't)* = I,* and L(A,C) = 
(au't)*'t(a't)* = {w't(a't)m; WE I,*, m ~ 0 }. The languages L(p,q) are regular, and 
on the other hand, any regular language can be obtained in this way. If the regular 
language L = L(Jl) is accepted by a set of tenninal state Chin, i.e., L = UtE QfinL(P,t), we 
can add a new state qfin to Jl, and transitions (t,c,qfin) for all t E Qfin. Then L = 
L(p,qfin). 

For a state q of the generalized finite automaton Jf., let U 5l(p) denote the set of all 
words which are labels of infinite paths starting with p. As for L, we shall often omit the 
index .9t Please note that U (p) may also contain finite words which are labels of infinite 
paths starting with p. In the example, U(A) = U(B) = I,* U I,ffi and U(C) is the singleton 
{ a'ta'ta't... }. 

3. A Small KL-ONE-based KR-Ianguage 

In KL-ONE-based knowledge representation languages ( KR-Ianguages ) we start with 
atomic concepts and roles and can use the language fomialism to define new concepts and 
roles. Concepts can be considered as unary predicates which are interpreted as sets of 
individuals whereas roles are binary predicates which are interpreted as binary relations 

8 Accepting the same regular languages. 
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between individuals. The languages differ in what kind of constructs are allowed for the 
definition of concepts and roles. The language considered in this paper will be called 
if.£o. It has only two constructs which can be used to define concepts: concept 
conjunction and value-restriction. 

Definition 3.1. ( concept terms and tenninologies ) 
Let C be a set of concept names and R be a set of role names. The set of concept terms 
of ifLo is inductively defmed. As a starting point of the induction, 

(1) any element of C is a concept term. (atomic terms) 
Now let C and D be concept terms already defmed, and let R be a role name. 

(2) Then C n D is a concept term. ( concept conjunction) 
(3) Then VR:C is a concept term. ( value-restriction) 

Let A be a concept name and let D be a concept term. Then A = D is a tenninological 
axiom. A terminology ( T-box ) is a finite set of tenninological axioms with the additional 
restriction that no concept name may appear more than once as a left hand side of a 
definition. 

A T-box contains two different kinds of concept names. Defined concepts occur on 
the left hand side of a terminological axiom. The other concepts are called primitive 
concepts .9 The following is an example of a T-box in this formalism: Let Man, Human, 
Male and Mos ( for "man who has only sons" ) be concept names and let child be a role 
name. The T-box consists of the following axioms: 

Man = Human n Male 
Mos = Man n Vchild: Man 

That means that a man is human and male. A man who has only sons is a man such 
that all his children are male humans. Male and Human are primitive concepts while Man 
and Mas are defined concepts. Assume that we want to express a concept "man who has 
only male off-springs", for short Mama. We can't just introduce a new role name off­
spring because there would be no connection between the two primitive roles child and off­
spring. But the intended meaning of off-spring is that it is the transitive closure of child. It 
seems quite natural to use a cyclic definition for Mama: A man who has only male off­
springs is himself a man, and all his children are men having only male off-springs, i.e., 

Mama = Man n Vchild: Mama. 

This is a very simple cyclic definition. In general, cycles in terminologies are 
defined as follows. 

Definition 3.2. (tenninological cycles ) 
Let A, B be concept names and let T be a T-box. We say that A directly uses B in Tiff B 
appears on the right hand side of the definition of A. Let uses denote the transitive closure 
of the relation directly uses. Then T contains a terminological cycle iff there exists a 
concept name A in T such that A uses A. 

The next definition gives a model-theoretic semantics for the language introduced in 
Definition 3.1. 

Definition 3.3. ( interpretations and models ) 
An interpretation I consists of a set dom(I), the domain of the interpretation, and an 

9For our language, roles are always primitive since we do not have role definitions. 
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interpretation function which associates with each concept name A a subset AI .of dom(l) 
and with each role name R a binary relation RI on dom(I), i.e., a subset of dom(l) x 
dom(l). The sets AI, RI are called extensions of A, R with respect to I. 
The interpretation function - which gives an interpretation for atomic terms - can be 
extended to arbitrary terms as follows: Let C, D be concept terms and R be a role name. 
Assume that CI and DI are already defined. Then 

(C n D)I .- CI (') DI, 
(V'R:C)I .- {x E dom(I); for all y such that (x,y) E RI we have y E CI }. 

An interpretation I is a model of the T -box T iff it satisfies 

AI == DI for all terminological axioms A == DinT. 

The semantics we have just definedlO is not restricted to non-cyclic terminologies. 
But for cyclic terminologies this kind of semantics may seem unsatisfactory. One might 
think that the extension of a defined concept should be completely determined by the 
extensions of the primitive concepts and roles. This is the case for non-cyclic 
terminologies. 

More precisely, let T be a T-box containing the defined concepts CI, ... , Cn, the 
primitive concepts PI, ... , Pm and the roles Rl, ... , Rk. A primitive interpretation J 
consists of a set dom(J), the domain of the primitive interpretation, and extensions PlJ, 
... , PmJ, RIJ, ... , RkJ of the primitive concepts and roles. An interpretation I of T 
extends the primitive interpretation J iff dom(l) == dom(J), PII == PlJ, ... , Pml == PmJ and 
R 1 I == Rl J, ... , RkI == RkJ. Such an extension I of J can be described by the n-tuple 
(ClI, ... ,Cnl) E (2dom(J)n, where 2dom(J) denotes the set of all subsets of dom(J). On the 
other hand, any primitive interpretation J together with an n-tuple A E (2dom(J)n yields 
an interpretation I of T.II Of course, we are mostly interested in extensions of J which 
are models of T. If T does not contain cycles, then any primitive interpretation can 
uniquely be extended to a model of T ( see e.g. Nebel (1989a), Section 3.2.4 ). If T 
contains cycles, a given primitive interpretation may have different extensions to models 
ofT. 

Example 3.4. Let R be a role name and B, P be concept names. 12 The terminology T 
consists of the single axiom B == P n VR:B. 
We consider the following primitive interpretation: dom(J) :== { a, b, c, d } ==: pJ, and RJ 
:== { (a,b), (c,d), (d,d) }. It is easy to see that this interpretation has two different 
extensions to models of T. The defined concept B may be interpreted as { a, b } or as 
{ a, b, c, d }. Note that individuals without RLsuccessors are in the extension (VR:C)J 
of a term VR:C, no matter how C may be interpreted.13 

The example also demonstrates that, with respect to the descriptive semantics 
defined above, the construction B == P n VR:B of the example does not express the 

I<Trhis semantics will be called "descriptive semantics" in the following. 
11 Any defined concept in T corresponds to a component of the tuple A.. If the defined concept B 

corresponds to the i-component of A, i.e., BI = (A)j, we shall say that index(B) = i. 
12We shall no longer use intuitive names for concepts and roles, since I agree with Brachman­

Schmolze (1985), p.176, that "suggestive names can do more harm than good in semantic networks and 
other representation schemes." Suggestive names may seemingly exclude models which are admissible 
with res~t to the formal semantics. 

1 This fact will be very important for the least fixed-point semantics. 
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value-restriction B = 'VR*:P for the reflexive-transitive closure R* of R. This implies that 
our definition of the concept Morna from above is not correct w.r.t. descriptive semantics. 

For these reasons we shall now consider alternative types of semantics for 
terminological cycles. 

4. Fixed-point Semantics for Terminological Cycles 

A terminology may be considered as a parallel assignment where the defined concepts are 
the variables, and the primitive concepts and roles are parameters. 

Example 4.1. Let R, S be a role names and A, B, P be concept names, and let T be the 
terminology A = Q n 'v'S:B, B = P n 'v'R:B. We consider the following primitive 
interpretation J, which fixes the values of the parameters P, Q, R, S: dom(J):= { ao, a}, 
a2, ... }, pJ := { aI, a2, a3, ... }, QJ := { ao}, RJ := { (ai+l,ai); i ~ 1 }, and SJ := 
{ (ao,ai); i ~ 1 }. 
For given values of the variables A, B, the parallel assignment A := Q n 'v'S:B, B:= P n 
'VR:B yields new values for A, B. If A and B are interpreted as the empty set, an 
application of the assignment T yields the values 0 for A and { al } for B. If we reapply 
the assignment to these values we obtain 0 for A and { aI, a2 } for B. 

In the general case, a terminology T together with a primitive interpretation J 
defines a mapping TJ: (2dom(J)n ~ (2dom(J)n, where n is the number of defined concepts 
in T. 

Definition 4.2. Let T be the terminology which consists of the concept definitions Cl 
= DI, ... , Cn = Dn, and let J be a primitive interpretation. The mapping TJ: (2dom(J)n ~ 
(2dom(J)n is defined as follows: 
Let A be an element of (2dom(J)n and let I be the interpretation defined by J and A. Then 

TJ(A) := (DII, . . . ,DnI). 

For the above example we have seen that TJ(0,0) = (0,{ al }) and TJ(0,{ al }) = 
(0,{ aI, a2 D. 

Obviously, the interpretation defined by J and A is a model of T if and only if A is a 
fixed-point of the mapping TJ, i.e., if and only if TJ(A) = A. In our example, the element 
({ a{) }, { a I, a2, a3, ... D of (2dom(J)2 is a fixed-point of TJ. If we extend J to I by 
defining AI := { a{) }, BI := { aI, a2, a3, ... }, we obtain a model of T. 

One may now ask whether any primitive interpretation J can be extended to a model 
of T, or equivalently, whether any mapping TJ has a fixed-point. The answer is yes, 
because (2dom(J)n, ordered componentwise by inclusion, is a complete lattice ( see 
Example 2.1 ) and the mappings TJ are monotonic. 14 Thus the following definition 
makes sense: 

Definition 4.3. ( three types of semantics for cyclic terminologies) 
Let T be a terminology, possibly containing terminological cycles. 
(1) The descriptive semantics allows all models of T as admissible models. 

14This can be easily proved; but it is also a consequence of Proposition 4.5 which states that 
these mappings are even downward ro-continuous. 
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(2) The least fLXed-point semantics ( lfp-semantics ) allows only those models of T which 
come from the least fIxed-point of a mapping TJ (lfp-models). 
(3) The greatest fixed-point semantics ( gfp-semantics ) allows only those models of T 
which come from the greatest fIxed-point of a mapping TJ ( gfp-models ). 

Any primitive interpretation J can uniquely be extended to a lfp-model ( gfp-model ) 
of T. In Example 3.4, the extension of J which interprets B as { a, b } is a lfp-model of 
T, and the extension which interprets B as { a, b, c, d } is a gfp-model of T. It is easy to 
see that, for cycle-free terminologies, lfp-, gfp- and descriptive semantics coincide ( see 
Nebel (l989a), p.137,138 ). 

The next question is how lfp-models ( gfp-models ) can be constructed from a 
given primitive interpretation. Nebel (1987,1989,1989a) claimed that the mappings TJ are 
even upward continuous, and that thus Ifp(TJ) = Ui~TJi(bottom), where bottom denotes 
the least element of (2dom(J»n, namely the n-tuple (0, .. . ,0). Unfortunately, this is not 
true. 

Proposition 4.4. In general, we may have Ifp(TJ) :;: Ui~TJi(bottom). 
Proof. We consider Example 4.1. It is easy to see that TJi(0,0) = (0, { ai, a2, ... , 
ai }). Thus Ui~TJi(0,0) = (0, { ai; i ~ 1 }) which is not a fixed-point, since TJ(0, { ai; 
i~ 1 })=({ ao},{ ai;i~ I}). 0 

In this example, the least fixed-point is reached by applying TJ once more after 
building the limit, i.e., Ifp(TJ) = TJ jw+l. In general, one may need even greater ordinals 
to obtain the least fixed-point. On the other hand, we shall now show that the greatest 
fixed-point can always be reached by co-iteration of TJ. 

Proposition 4.5. The mappings TJ are always downward ro-continuous. Conse­
quently, the greatest fixed-point may be obtain as gfp(TJ) = (li~OTJi(top), where top 
denotes the greatest element of (2dom(I»n, i.e., top = (dom(I), ... ,dom(I». 
Proof. Let J be a primitive interpretation, and let A (0) ~ A (1) ~ A (2) ~ ... be a 
decreasing chain in (2dom(J»n. We have to show that 

(lIe()TJ(A(k» = TJ( (lIe()A(k) ). 

For k ~ 0, let Ik be the interpretation of T defIned by J and A (k) and let I be the 
interpretation defined by J and A := (lk~OA (k). By Definition 4.2, it is sufficient to 
demonstrate that, for any concept term D, we have . 

(lIe() Dlk = DI. 

We proceed by induction on the size of D. 
(1) D = P for a primitive concept P. Then DI = pJ = Dlk for all k ~ ° and hence (lIe() Dlk 
= pJ = DI. . 
(2) D = Cifor a defined concept Ci. Then DI = Ai, and for all k ~ 0, Dlk = Ai(k).15 But 
Ai = (l~i(k) by definition of A. 
(3) D = En F for concept terms E, F. We have DI = EI (1 FI and by induction we get EI 
= (lL>O Elk and FI = (lL>O Flk. Hence DI = «(lL>O Elk) (1 «(lIe() Flk) = (lIe() (Elk (1 Flk) 
= (lIe() Dlk. 
(4) D = 'tIR:C for a role name R and a concept term C. By Definition 3.3, DI = { x E 

dom(I); Vy: «x,y) E RI ~ Y E CI) }, and hence, by induction and the definition of I, DI 
= { x E dom(J); Vy: «x,y) E RJ ~ Y E (lL>O Clk) }. That means that we have 

15Here Ai is the i-th component of the tuple A and Ai(k) is i-th component of the tuple A(k). 
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X E DI iff tly: ( (x,y) E RJ ~ tlk: y E Clk). 

It is well-known ( see e.g., Gallier (1986), p. 305 ), that a formula of the form tly: ( A 
~ tlk: B ), where k has no free occurrence in A, is equivalent to the formula tly:tlk: ( A 
~ B ). If we permute the quantifiers16 we get tlk:tly: ( A ~ B). This shows that 

x E DI iff tlk:tly: ( (x,y) E RJ ~ Y E Clk). 

Since { x E dom(J); tly: «x,y) E RJ ~ Y E Clk) } = DIk, we have shown that (lIeO DIk 
= DI. This completes the proof of the proposition. 0 

The two propositions show that, from a constructive point of view, the gfp­
semantics should be preferred. However, if dom(J) is finite, the greatest and the least 
fixed-point can be reached after a [mite number of applications of TJ. 

An important service terminological representation systems provide is computing 
the subsumption hierarchy. 

Definition 4.6. ( subsumption of concepts) 
Let T be a terminology and let A, B be concept names. 

A!;T B iff AI c BI for all models I of T, 
A !;lfp,T B iff AI c BI for alllfp-modeis I of T, 
A !;gfp,T B iff AI s:; BI for all gfp-models lofT. 

In this case we say that B subsumes A in T w.r.t. descriptive semantics ( resp. lfp­
semantics, gfp-semantics ). 

5. Characterization of the Semantics using Finite Automata 

Before we can associate a finite automaton .9lT to a terminology T we must transform T 
into some kind of normal form. It is easy to see that the concept terms tlR:(B n C) and 
(tlR:B) n (tlR:C) are equivalent. 17 Hence any concept term can be transformed into a 
finite conjunction of terms of the form tlRJ:tlR2: ... tlRn:A, where A is a concept name. 
We shall abbreviate the prefix "tlRJ:tlR2: ... tlRn" by "tlW" where W = RJR2 ... Rn is a 
word over RT, the set of role names occurring in T. In the case n = 0 we also write 
"tlE:A" instead of simply "A". For an interpretation I and a word W = RJR2 ... Rn, WI 
denotes the composition RJIoR2Io ... oRnl of the binary relations RJI, R2I, ... , RnI. The 
term EI denotes the identity relation, i.e., EI = { (d,d); dE dom(I) }. 

Definition 5.1. Let T be a terminology where all terms are normalized as described 
above. The generalized ( nondeterministic) automaton .9lT is defined as follows: The 
alphabet of .9lT is the set RT of all role names occurring in T; the states of .9lT are the 
concept names occurring in T; a terminological axiom of the form A = tlW J:A 1 n ... n 
tlWk:Ak gives rise to k transitions, where the transition from A to Ai is labeled by the 
word Wi. 

The next example illustrates Definition 5.1. 

16This is the point where the proof for the least fixed-point goes wrong. In this case we would 
have the quantifiers "Vy:3k:" which cannot be pennuted. 

17i.e., they have the same extension in any interpretation. 
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Example 5.2. ( A normalized terminology and the corresponding automaton) 

A =VR: An VS: D 

B = V RS: D n V S: C 

C=VR:C 

D=VS:DnP 

RQ~SE.® 
Ry 

~---cVR 
The primitive concepts are exactly those states in J'lT which don't have successor 

states. The automaton J'lT can be used to characterize gfp- and descriptive semantics and, 
after a modification, also lfp-semantics. 

5.1 Characterization of the gfp-Semantics 

Before we can show that subsumption w.r.t. gfp-semantics can be reduced to inclusion 
of regular languages, we need the following proposition which describes under what 
conditions an individual d of a gfp-model I is in the extension AI of a concept A. 

Proposition 5.3. Let T be a terminology and let J'lT be the corresponding automaton. 
Let I be a gfp-model of T and let A be a concept name occurring in T. For any d E 
dom(I) we have: dEAl iff for all primitive concepts P, all words W E L(A,P) and all 
individuals e E dom(I), (d,e) E WI implies e E pl. 
Proof. If A is a primitive concept, then L(A,A) = { £ } and L(A,P) = 0 for A "/:: P. 
Since £1 = ( (d,d); d E dom(I) }, the proposition follows immediately. 
Assume that A is a defined concept. The gfp-model I is given by a primitive interpretation 
J and the tuple gfp(TJ) = nk~OTJk(top). The defined concept A corresponds to a 
component of this tuple, i.e. , AI = (gfp(TJ»j for i = index(A). 
(1) Assume that deAl. Then there exists k ~ 0 such that d e (TJk(top»j. We proceed 
by induction on k . 
For k = 0, we have d e (top)j = dom(I), which is a contradiction. 
For k > 0 we have de (TJ(TJk-l(top»)j. Let the defining axiom for A be of the form A 
= ... n VW: B n ... and assume that VW: B is responsible for de (TJ(TJk-1(top»)j. 
That means that there exists e E dom(I) such that dWle and e e BJ = BI ( if B is a 
primitive concept) or e e (TJk-1(top»j ( if B is a defined concept and index(B) = j ). In 
the first case, B is a primitive concept and obviously, W E L(A,B). In the second case, 
we can apply the induction hypothesis to e e (TJk-1(top»j. Thus there exist a primitive 
concept P, a word Y E L(B,P) and an individual f E dom(I) such that eylf and f e pl. 
But then WY E L(A,P) and d(Wy)If. This completes the proof of the "if' direction. 
(2) Assume that there exist a primitive concept P, a word W E L(A,P) and an individual 
e E dom(I) such that dWle and e e pl. Let W be the label of the ( non-empty) path A, 
VO, Cl , ... , Cn-I, Vn, P. Since W = Vo ... Vn and dWle, there are individuals dl, ... , 
dn-I such that dVOldI . .. dn-l Vnle. We proceed by induction on n. 
For n = 0, W = Vo and the defining axiom for A is of the form A = ... n VW: P n ... . 
Thus d e (TJ(top»j. 
For n > 0, we know by induction that dl e (Th(top»j for some h > 0 ( where index(Cl) 
= j ). But then d e (Th+l(top»)j. This completes the proof of the proposition since AI = 
(gfp(TJ»j = nk~(TJk(top» j . 0 

For the terminology B = P n VR:B of Example 3.4, L(B,P) = R* = { Rn; n ~ 0 }. 
Hence it is an immediate consequence of the proposition that this terminology - if 
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interpreted with gfp-semantics - expresses value-restriction with respect to the reflexive­
transitive closure of R. In this case, the condition of the proposition says that d E BI if 
and only if for all n ~ 0 and all e such that d(RI)ne, e E pI holds. That means that for all e 
such that d(Un~(RI)n)e, e E pI holds. But Un~(RI)n is the reflexive-transitive closure 
ofRI. 

Proposition 5.3 implies that concepts are never inconsistent w.r.t. gip-semantics, 
i.e., for any terminology T and any concept A in T there exists a gfp-model I of T such 
that AI"# 0. Obviously, it is enough to take the gfp-model which is defined by a primitive 
interpretation J satisfying pJ = dom(J) for all primitive concepts P. 

The proposition can intuitively be understood as follows: The languages L(A,P) 
stand for the possibly infinite number of constraints of the form VW: P which the 
terminology imposes on A. An individual d is in the extension of A if and only if it 
satisfies all of these constraints. If a concept has to satisfy more constraints, its extension 
will become smaller. This motivates the following theorem which characterizes 
subsumption w.r.t. gfp-semantics. 

Theorem 5.4. Let T be a terminology and let 5lT be the corresponding automaton. Let 
I be a gfp-model of T and let A, B be concept names occurring in T. Subsumption in T 
can be reduced to inclusion of regular languages defined by 5lT. More precisely, 

A !;gfp,T B iff L(B,P) ~ L(A,P) for all primitive concepts P. 

Proof. (1) Assume that L(B,P) fl. L(A,P) for some primitive concept P, i.e., there is a 
word W such that W E L(B,P) \ L(A,P). Let W = R}R2 ... Rn for n ( not necessarily 
different) role names R}, R2, ... , Rn. We define the primitive interpretation J as follows: 
dom(J) := { do, ... , dn }; Q1 := dom(J) for all primitive concepts Q"# P; pJ := dom(J) \ 
{ dn }; RJ := { (di,di+l); 0 ~ i ~ n-1 and R = Ri+l } for all roles R. The definition of the 
role extensions implies that do yJdn iff y = W. 
Let I be the gfp-model defined by J. Since W E L(B,P), doWIdn and dn e: pI, we know 
by Proposition 5.3 that do e: BI. On the other hand, assume that do e: AI. By Proposition 
5.3, there exists a primitive concept Q, a word Y E L(A,Q) and an individual f E dom(l) 
such that dayIf and f e: QI. The definition of J implies that Q = P and f = dn. But then 
do yIdn yields Y = W. This contradicts our assumption that W e: L(A,P). Hence we have 
shown that do E AI \ BI which implies that A ~gfp,T B. 
(2) Now assume that A ~gfp,T B, i.e., there exists a gfp-model I and an individual d E 

dom(l) such that dEAl \ BI. Assume that L(B,P) ~ L(A,P) for all primitive concepts P. 

Since d e BI, Proposition 5.3 says that there exists a primitive concept P, a word WE 

L(B,P) and an individual e E dom(l) such that dWIe and e e: pl. But then L(B,P) c 
L(A,P) yields W E L(A,P) and thus d e: AI, which is a contradiction. 0 

In Example 5.2, B subsumes A w.r.t. gfp-semantics since L(B,P) = RSS* is a 
subset of L(A,P) = R * S S *. The theorem shows that the problem of determining 
subsumption w.r.t. gfp-semantics can be reduced to the inclusion problem for regular 
languages in polynomial time. 18 On the other hand, the inclusion problem for regular 
languages ( given by arbitrary nondeterministic automata ) can be reduced to the 
subsumption problem. Assume that 511 = (:E,Ql,El) and 512 = (:E,Q2,E2) are two non-

I8If we want to solve the subsumption problem A ~gfp.T B for a terminology T with k primitive 
concepts, we have to solve k inclusion problems for regular languages which are defined by a non­
deterministic automaton having the same size as the terminology. 
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deterministic automata defining the regular languages LI = L;;r1 (P1.ql) and L2 = 
L;;r2(P2,Q2). Without loss of generality we may assume that QI and Q2 are disjoint and 
that Jill and Jil2 are trim, i.e., any state can reach the terminal state qi and can be reached 
from the initial state Pi ( see Eilenberg (1974), p. 23 ). We consider the automaton Jil = 
(l:,QI u Q2 u { t } ,E), where t is a new state not occurring in QI U Q2 and E = E I U E2 
U { (q},t,t), (q2,t,t) }. Obviously, L;;r1 (PI,ql) = L;;r(PI,t) and L;;r2(P2,q2) = L;;r(P2,t). It 
is easy to see that Jil = JilT for a terminology T which has the states in QI U Q2 as its 
defined concepts and the state t as the only19 primitive concept. But then LI c L2 if and 
only ifp2 !;gfp,T Pl. 

Corollary 5.5. The problem of determining subsumption w.r.t. gfp-semantics is 
PSPACE-complete. 
Proof. We have seen that subsumption w.r.t. gfp-semantics can be reduced to inclusion 
of regular languages ( defined by a nondeterministic automaton) in polynomial time and 
vice versa. It is well-known that the inclusion problem for regular languages defined by a 
nondeterministic automaton is PSPACE-complete ( see Garey-Johnson (1979». 0 

This shows that, even for our very small language, subsumption determination 
w.r.t. gfp-semantics is rather hard from a computational point of view. On the other 
hand, Nebel (1989b) has shown that, even without cycles, this languages has a co-NP­
complete subsumption problem. 

5.2 Characterization of the Ifp-Semantics 

In order to get a characterization of lfp-semantics which is similar to the characterization 
of gfp-semantics in Proposition 5.3, we need two lemmata. 

Let J be a primitive interpretation of the terminology T, let A, B be defmed concepts 
in T, and let JilT be the generalized automaton corresponding to T. The least fixed-point 
of TJ can be obtained as Ifp(TJ) = TJ ja for some ordinal a. Without loss of generality 
we may assume that a is a limit ordinal. That means that Ifp(TJ) = UA<aTJ jA. Let I be 
the lfp-model of T defined by J. Assume that index(A) = i and index(B) = j, i.e., AI = 
(lfp(TJ»i and BI = (lfp(TJ»j- For an individual d E dom(I) we have dEAl if and only if 
there exists A < a such that d E (TJ jA)i. 

Lemma 5.6. Assume that d E (TJ jA)i, dWIe and that (A,W,B) is a transition of JilT. 
Then there exists 'Y < A such that e E (TJ j'Y)j. . 
Proof. The lemma is proved by transfinite induction on A. 
(1) For A = 0, (TJ jA)i = (bottom)i = 0. Hence there is no such individual d. 
(2) For A = 8 + 1, TJ jA = TJ(TJ jO). The definition of A in T is of the form A = ... n 
VW: B n ... and we have d E (TJ(TJ jO»i and dWIe. Thus e must be an element of 
(TJ jO)j and we can take 'Y = 8. -
(3) Let A be a limit ordinal. Then TJ jA = UO<A TJ jo, and thus d E (TJ jA)i iff there 
exists 8 < A such that d E (TJ to)i. If we apply the induction hypothesis to 8, we get 'Y < 
8 < A such that e E (TJ j'Y)j- 0 

Lemma 5.7. Assume that dE (TJ jA)i, dWIe and that W E L(A,P). Then we have e E 
pl. 

Proof. The lemma is proved by transfinite induction on A. 
(1) For A = 0, there is no such individual d. 

19In order to have this property the automata had to be trim. 
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(2) For A = 8 + 1, TJ jA = TJ(TJ jO). Let W be the label of the ( non-empty) path A, UO, 
C}, ... , Cn-I, Un, P. Since W = UO ... U n and dWIe, there are individuals dI, ... , dn-I 
such that dUoIdI ... dn_IUnIe. 
For n = 0, W = Uo and the defining axiom for A is of the form A = ... n "tW: P n .... 
Thus d E (TJ(TJ jO»i and dWIe imply e E pl. 
For n > 0, the defining axiom for A is of the form A = ... n "tUO: CI n. ... , and thus d E 

(TJ(TJ jO»i and dUOIdi imply dl E (TJ jO)k ( where the defined concept CI has index(CI) 
= k). The induction hypothesis for 0 yields e E pl. 
(3) Let A be a limit ordinal. Then TJ jA = UO<ATJ jo and thus d E (TJ jA)i iff there exists 
0< A such that d E (TJ jO)i. If we apply the induction hypothesis to 0 we get e E pl. 0 

We can now characterize lfp-semantics with the help of finite and infinite paths in 
the automaton JI.T. 

Proposition 5.8. Let T be a terminology and let JI.T be the corresponding automaton. 
Let I be the lfp-model of T defined by the primitive interpretation J and let A be a concept 
name occurring in T. For any do E dom(I) we have do E AI iff the following two 
properties hold: 
(PI) For all primitive concepts P, all words W E L(A,P) and all individuals e E dom(I), 
(do,e) E WI implies e E pl. 
(P2) For all infinite paths A, WI, C}, W2, C2, W3, C3, ... , and all individuals dI, d2, d3, 
... there exists n ~ 1 such that (dn-I,dn) e WnI. 
Proof. The case where A is a primitive concept is trivial. In the following, let A be a 
defmed concept. 
(1) Assume that do E AI = (lfp(TJ»i. Then there exists an ordinal A. such that do E 

(TJ jA)i, and thus property (PI) is an immediate consequence of Lemma 5.7. If (P2) does 
not hold then there exists an infinite path A, WI, CI, W2, C2, W3, C3, ... , and 
individuals db d2, d3, ... such that (dn-I,dn) E WnI for all n ~ 1. By Lemma 5.6, there 
exist ordinals A > Al > A2 > 1..3 > ... such that dn E (TJ jAn)jn ( for all n ~ 1 and 
appropriate indices jn ). But there can be_no such infinitely decreasing chain of ordinals 
since the ordering of ordinals is well-founded. 
(2) Assume that (PI) and (P2) hold. We define an ordering ">" on 3-tuples of the form 
(W,d,B) where B is a defined concept, W is the label of a path from A to B,20 and d is an 
individual with doWId. Let Pbe the set of all such tuples and let (V,d,B) and (W,e,C) be 
two elements of P. Then (V,d,B) > (W,e,C) iff W = VU where U is the label of a non­
empty path from B to C and dUIe. Obviously, ">" is a strict partial ordering, and 
property (P2) ensures that this ordering is well-founded. The following claim will be 
proved by noetherian induction21 on ">". 

Claim: For any (W,d,B) E Pthere exists an ordinal A < a such that 
de (TJ jA)j ( where index(B) = j ).22 

Proof of the claim. (2.1) Let (W,d,B) be a minimal element of P. Let the defining 

axiom of B be of the form B = ... n V'U: C n ... n V'V: P ... , where P is primitive and C 

defmed. The minimality of (W,d,B) implies that there does not exist an individual e with 

dUIe. Assume that dVIe. Since WV E L(A,P) and do(WV)Ie, property (PI) implies e E 

pl. This shows that d E (TJ(bottom»j. Hence we can take A. = 1. 

16 

2Or-or A = B this may also be the empty path. 
21See e.g., Gallier (1986), p. 9, 10, for the definition and justification of noetherian induction. 
22Recall that (l was a limit ordinal such that Ifp(TJ) = TJ in. 



(2.2) Assume that (W,d,B) is not a minimal element of P. Let the defining axiom of B 

be of the form B = "tUl: Cl n . .. n "tUn: Cn n ... n "tV: P ... , where P is primitive and 

the Ci are all the defined concepts in the definition of B. As in (2.1) we can show for all 

individuals e that dVIe implies e E pl. Assume that dUiIe and index(Ci) = k. We have 

(WUi,e,Ci) E P and (W,d,B) > (WUi,e,Ci). Hence, by the induction hypothesis, there 

is an ordinal A(i,e) < a. such that e E (TJ IA.(i,e»k. We define y:= sup{ A(i,e); where 1 S i 

S nand dUiIe }. Then we have yS a. and it is easy to see that de (TJI"f+-l)j. But then d 

E (TJla+l)j and since TJla is the fixed-point of TJ, d E (TJla)} Since a. is a limit 

ordinal, this means that there exists A < a. such that we have d E (TJ IA.)j. This completes 

the proof of the claim. 0 

If we apply the claim to (E,dO,A), we get dO E (TJ IA.)i for some A < a., and thus do E 

AI. 0 

As a consequence of P2 of the proposition, E-cycles in ~T - i.e., non-empty paths 
of the form B, E, ... , E, B - are important for the lfp-semantics. In particular, 
inconsistency of concepts can be described with the help of E-cycles. We say that the 
concept A of T is inconsistent w.r.t. lfp-semantics iff it has the empty extension in alllfp­
models ofT. 

Corollary 5.9. The concept A is inconsistent w.r.t. lfp-semantics if and only if there 
exists a path with label E from A to a state B which is the initial state of an E-cycle. 
Proof. (1) Assume that there is a path A, E, ... , E, B and a non-empty path B, E, ... , 
E, B. Thus we have an infinite path starting with A where all transitions are labeled by E. 
Since dEId for all lfp-models I and individuals d E dom(I), property (P2) of the 
proposition is never satified for A and arbitrary d. Hence A is inconsistent. 
(2) Assume that A is inconsistent W.Lt. lfp-semantics. We define a primitive 
interpretation J as follows: dom(J):= { do }, pJ := { do } for all primitive concepts P, 
and RJ := 0 for all roles R. 
Let I be the lfp-model of T defined by J. Since A is inconsistent, we have do e AI. The 
definition of J implies that property (PI) of Proposition 5.8 holds for A, do. Hence 
property (P2) cannot hold. That means that there exists an infinite path A, WI, CI, W 2, 
C2, W3, C3, ... , and individuals dl, d2, d3, ... such that (dn- l ,dn) E WnI for all n ~ l. 
The definition of J implies dn = do and W n = E for all n ~ 1. Hence there is an infinite 
path starting with A where all transitions are labeled by E, and since ~T has only finitely 
many states, there is a state B which occurs infinitely often in this path. 0 

An easy consequence of this corollary is that inconsistency of concepts w.r.t. lfp­
semantics can be decided in linear time. Starting from A, one has to search along 
E-transitions for an E-cyc1e. 

Because of the role E-cyc1es play for inconsistency, the automaton ~T has to be 
modified before we can express subsumption w.r.t. lfp-semantics. We add a new state 
Qloop to ~T, a transition with label E from Qoop to Qloop, and for each role R in T a 
transition with label R from Qloop to Qloop. For any state B of ~T lying on an E-cyc1e, 
we add a transition with label E from B to Qloop, and for any primitive concept P we add 
a transition with label E from Qoop to P. This modified automaton will be called 'Er. 

The effect of this modification is as follows: If A is inconsistent W.Lt. lfp­
semantics - i.e., by Corollary 5.9, there exists a path with label E from A to a state B in 
JlT which is the initial state of an E-cyc1e in JlT - then we have L1>r(A,P) = L* for all 
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primitive concept P, and U~(A) = r,* u r,oo in the automaton 'Br. That means that, for 
the smallest concepts, the languages are made as large as possible. 

Obviously, L ;;q.(B ,P) ~ L~(B ,P) and U ;;q.(B) ~ U ~(B) for all concepts B. More 
precisely, L~(B,P) = L)'tT(B,P) u { UY; U is afinite word in U)'tT(B) and Y E r,* } 
and U~(B) = U;;q.(B) u { UY; U is afinite word in U)'tT(B) and Y E r,* U r,oo }.23 

Theorem 5.10. Let T be a terminology and let tB-r be the corresponding modified 
automaton. Then A ~lfp,T B iff U~(B) ~ U~(A) and L~(B,P) c L~(A,P) for all 
primitive concepts P. 
Proof. (1) Assume that L~(B,P) SZL~(A,P), Le., there is a word W = RI ... Rn such 
that W E L~(B,P) \ L~(A,P). The primitive interpretation J is defined as follows: 
dom(J) := { do, ... , dn }; Q1:= dom(J) for all primitive concepts Q"# P; pJ := dom(J) \ 
{ dn }; RJ := { (di,di+I); 0 ~ i ~ n-l and R = Ri+I } for all roles R. The definition of the 
roles implies that do yJdn iff Y = W. Let I be the lfp-model defined by J. 
(1.1) If WE L)'tT(B,P), then doWIdn and dn ~ pI imply that do ~ BI because (Pt) of 
Proposition 5.8 is not satisfied. If W E L~(B,P) \ L)'tT(B,P), then W = UY where U E 
U ;;q.(B) (") r,* is the label of a path in J{T from B to a concept C which lies on an ~:-cycle 
in J{T. Since doUIdk for some k ~ nand dkCIdkCIdk ... , property (P2) of Proposition 5.8 
is not satisfied, which yields do ~ BI. 
(1.2) On the other hand, assume that do ~ AI. By Proposition 5.8, (PI) or (P2) is not 
satisfied. In the first case, there exist a primitive concept Q, a word Y E L;;q.(A,Q) and 
an individual f E dom(I) such that doyIf and f ~ QI. The definition of J implies that Q = 
P and f = dn. But then doyIdn yields Y = W. This contradicts our assumption that W ~ 
L~(A,P) since L)'tT(A,P) !;; L~(A,P). In the second case, there exists an infinite path 
A, WI. C}, W2, C2, W3, C3, ... in J{T and individuals eo = dO, eI, e2, e3, ... such that 
(em-I,em) E WmI for all m > O. The definition of J implies that there exists k ~ 0 such 
that WI ... Wk is a prefix of Wand Wk+I = Wk+2 = ... = c. That means that Ck is 
inconsistent, and thus by the definition of 'Br, WI ... WkU is in L~(A,P) for all words 
U. In particular, W E L~(A,P) which is a contradiction. 
Hence we have shown that do E AI\BI, which implies that A $gfp,T B. 
(2) Assume that U~(B) SZ U~(A) because there exists an infinite word W = RIR2R3 ... 
such that W E U~(B) \ U~(A). The primitive interpretation J is defined as follows: 
dom(J) := { do, d}, d2, ... }; pJ:= dom(J) for all primitive concepts P; RJ := { (di,di+I); 
i ~ 0 and R = Ri+I } for all roles R. Let I be the lfp-model defined by J. 
(2.1) IfW E U)'tT(B), then it is the label of an infinite path B, WI. CI. W2, C2, W3, 
C3, ... in J{T. Obviously, (P2) of Proposition 5.8 is not satisfied for do and B, which 
yields do ~ BI. If W E U~(B) \ U ;;q.(B), then W has a finite initial segment U which is 
the label of a finite path in J{T from B to a concept C which lies on an c-cycle in J{T. As 
in part (1.1) of the proof, we can deduce do ~ BI. 
(2.2) On the other hand, assume that do ~ AI. By Proposition 5.8, (PI) or (P2) is not 
satisfied. Since we have defmed pJ := dom(J) for all primitive concepts P, (PI) is always 
satisfied. Thus (P2) does not hold, i.e., there exist an infinite path A, WI, CI, W2, C2, 
W3, C3, ... in J{T and individuals eo = do, eI, e2, e3, ... such that (en-I,en) E WnI for all 
n > O. If the label WI W 2 W 3 ... of this infinite path is an infinite word, the definition of J 
implies that it is equal to W. Hence W E U ;;q.(A) which contradicts our assumption that 
W ~ U 2J..r(A). If the label WI W 2 W 3 ... of the infinite path is a finite word U, the 

230bviously, U is a finite word in U~iB) iff U is the label of a finite path in )'tT from B to a 
concept C which lies on an £-cycle in ;tr. 
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definition of J implies that U is a finite initial segment ofW. By the defmition of 1Jr, UV 
E U1Jr(A) for all infinite words V E r,ro. Hence WE U1Jr(A), which is a contradiction. 
Thus we have shown that do E AI \ BI, which implies that A $ gfp.T B. 
(3) Assume that U1Jr(B) ~ U1Jr(A) because there exists a finite word W such that WE 
U1Jr(B) \ U1Jr(A). From WE U1Jr(B) we can deduce that there is a prefix U = RI···Rn 
of W and a path with label U in 5lT from B to a concept C which lies on an ~>cycle in 
%. The primitive interpretation J is defined as follows: dom(J) := { do, d2, ... , dn }; pJ 
:= dom(J) for all primitive concepts P; RJ := { (di,di+I); 0 ~ i ~ n-1 and R = Ri+1 } for 
all roles R. Let I be the lfp-model defmed by J. 
(3.1) Obviously, the pair do, B doesn't satisfy (P2) of Proposition 5.8, and thus do ~ 
BI. 
(3.2) On the other hand, assume that do ~ AI. As in part (2.2) of the proof we can 
deduce that (P2) does not hold, i.e., there exist an infinite path A, WI. CI. W2, C2, W3. 
C3, ... in 5lT and individuals eo = dO, el. e2, e3, ... such that (ern-I.ern) E Wrnl for all m 
> O. The definition of J implies that there exists k ~ 0 such that WI ... Wk is a prefix of U 
and Wk+1 = Wk+2 = ... = E. That means that Ck is inconsistent, and thus by the 
definition of 1rr, WI .. . W k V is in U 'Br(A) for all words V E r,*. In particular, W E 
U 1Jr(A) which is a contradiction. 
Thus we have shown that do E AI\BI, which implies that A $gfp.T B. 
(4) Let U'Br(B) c U'Br(A), and L'Br(B,P) ~ L'Br(A,P) for all primitive concepts P. 
Assume that A $ gfp,T B, i.e., there exist a lfp-model I of T and an individual do E dom(l) 
such that do E AI \ BI. Now do ~ BI implies that (PI) or (P2) of Proposition 5.8 does 
not hold for do, B. 
(4.1) If (PI) does not hold, then there exist a primitive concept P, a word W E 

L~(B,P), and an individual e E dom(l) such that doW Ie and e ~ pl. Since L~(B,P) c 
L1Jr(B,P) c L'Br(A,P), we have W E L1Jr(A,P). For W E L~T(A,P), Proposition 5.8 
yields do ~ AI, which is a contradiction. Assume that WE L1Jr(A,P) \ L~T(A,P). That 
means that W = UV, and there is a path with label U in 5lT from A to a concept C which 
lies on an E-cycle. Now doWIe implies that there exists an individual f such that doUIf. 
Since fEIfEIf ... , property (P2) of Proposition 5.8 is not satisfied. This yields do ~ AI, 
which is a contradiction. 
(4.2) If (P2) does not hold, then there exist an infinite path B, WI. CI, W2, C2, W3. 
C3, ... in 5'l.T and individuals dl. d2, d3, ... such that (dn-I.dn) E WnI for all n > O. 
(4.2.1) First, we assume that the label WIW2W3 ... of this path is an infinite word W. 
Then we have W E U1Jr(B) ~ U1Jr(A).IfW E U~T(A), we immediately get do ~ AI, 
which is a contradiction. If W E U'Br(A) \ U~T(A), then there exists a finite initial 
segment U of W such that there is a pattI with label U in J'!r from A to a concept C which 
lies on an E-cycle. As in (4.1) this implies do ~ AI. This contradicts our assumption. 
(4.2.2) Assume that the label WIW2W3 ... of the. infinite path B, WI. CI, W2, C2, W3. 
C3, ... is a finite word W. We have W E U'Br(B) ~ U'Br(A). But WE U'Br(A) means 
that there exists a prefix U of W such that there is a path with label U in % from A to a 
concept C which lies on an E-cycle. As in (4.1) this implies dO ~ AI, which is a 
contradiction. 
This completes the proof of the theorem. 0 

In Example 5.2, B does not subsumes A w.r.t. lfp-semantics since U(B) contains 
the infinite word SRRR ... which is not in U(A). 

If we want to decide subsumption with the help of this theorem, we have to show 
how the inclusion "U'Br(B) ~ U1Jr(A)" can be decided. This problem can be split into 
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two subproblems. Let F ~ contain all finite words of U ~ and let I~ contain all infinite 
words of U~. Obviously, U~(B) C U~(A) iff F~(B) c F~(A) and I~(B) c 
I~(A). 

Lemma 5.11. Let 13 be an arbitrary generalized automaton. Then F~B) c FtB(A) can 
be decided by a PSPACE-algorithm. 
Proof. The generalized automaton 13 = (L,Q,E) is modified to a generalized automaton 
C= (L,Q u { Fin },E') where Fin is a new state and E' := E u { (C,E,Fin); CEQ and 
C lies on an E-cycle }. Obviously, this modification can be done in polynomial time. 

Claim: For all states A E Q we have F~A) = Lc(A,Fin). 
Proof of the Claim. (1) Assume that W E F2J(A). Then there exists an infinite path 
A, WI. CI. W2, C2, W3. C3, ... in '13 which has W as label. Since W is a finite word 
almost all labels Wi have to be empty. Let k ~ 1 be such that Wi = E for all i ~ k. Then W 
= WI ... Wk-l and there exist i, j such that k ~ i < j and Ci = Cj- That means that Ci lies on 
an E-cycle and W is the label of path from A to Ci. But then W E LdA,Fin). 
(2) Assume that W E Lc(A,Fin). That means that there exists a path in 13 with label W 
from A to a state C which lies on an E-cycle. Now W E F~A), since there is an infinite 
path A, W, C, E, C, E, ... with label W. 0 

The problem Lc(B.Fin) c Lc(A,Fin) is an inclusion problem for regular languages, 
which can be decided by a PSPACE-algorithm. 0 

Lemma 5.12. Let 13 be an arbitrary generalized automaton. Then I~B) k I~A) can be 
decided by a PSPACE-algorithm. 
Proof. The proof proceeds in three steps. 
(1) The generalized automaton 13 = (L,Q,E) can be modified in polynomial time to an 
ordinary finite automaton24 Yl= (L,QI,EI) such that the following properties hold: 
(1.1) Q k QI; (1.2) There does not exist an infinite path in Yl using only states of QI \ 
Q; (1.3) For all A, B in Q and all finite words W #- E, W E L2J(A,B) iff W E 
L}l(A,B).25 

Claim 1: For all states A E Q we have I~A) = I}l(A). 
Proof of the Claim. Let W be an infinite word in 12J(A), i.e., there exists an infinite 
path A, WO, Cl, WI, C2, W2. C3, ... in ~ which has W as label. Since W is an infinite 
word, there exist infinitely many indices 0 < ii < i2 < ... such that the words WO·· ,Wil-I, 
W iI '" W i2-1, ... are not empty. By property (1.3), WO ... W il-I E L}l(A,Ci l ), 
Wil ... Wi2-1 E L}l(Cil'Ci2), .... This shows that there exists an infinite path from A 
with label W in 51, i.e., W E I}l(A). 
On the other hand, let W be an infinite word in I}l(A), i.e., there exists an infmite path A, 
WO, Cl, WI, C2, W2. C3, ... in Yl which has W as label. By property (1.2), there exist 
infinitely many indices 0 < ii < i2 < ... such that Cil' Ci2, ... are in Q. By property 
(1.3), WO ... W il-I E L2J(A,Ci l), Wi l ... Wi2-I E L2J(Cil'Ci2), .... This shows that 
there exists an infinite path from A with label Win 13, i.e., W E I~A). 0 

(2) Without loss of generality we may now assume that all states of Yl lie on some 
infinite path. The other states can be easily eliminated in polynomial time. For a state A of 

24Where transitions are only labeled by symbols of the alphabet. 
25The additional states in Ql are intermediate states which are needed for the elimination of 

transitions which are labeled by words of length greater than 1. Obviously. these intermediate states 
cannot give rise to new infinite paths. For the elimination of E-transitions see Hopcroft-Ullman (1979). 
p. 26. Theorem 2.2. 
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.9L we define E5l(A) := UCEQ}L5l(A,C). 

Claim 2: For all states A, B E QI we have 15l(B) c 15l(A) iff E5l(B) c E5l(A). 
Proof of the Claim. Assume that W E 15l(B) \ 15l(A). Then all finite initial segments 
U of Ware in E5l(B). We cannot have all finite initial segments U of Win E5l(A) since, 
by Konig's Lemma, this would imply that WE 15l(A). 
On the other hand, assume that U E E5l(B) \ E5l(A). Since all states of .9L lie on some 
infmite path, the path with label U can be extended to an infinite path, i.e., U is the initial 
segment of some infinite word WE 15l(B). Now W e 15l(A) since otherwise we would 
have U E E5l(A). 0 

(3) Obviously, the languages E5l(A) are regular languages defined by .9l. Hence there is 
a PSPACE-algorithm which decides E5l(B) ~ E5l(A). 0 

The two lemmata together with the theorem show that subsumption w.r.t. lfp­
semantics can be decided by a PSPACE-algorithm. 

Corollary 5.13. The problem of determining subsumption W.r.t. lfp-semantics is 
PSPACE-complete. 
Proof. It remains to be shown that this problem is PSPACE-hard. This will be shown 
by reducing the inclusion problem for regular languages to the subsumption problem. 
Assume that .9LI = (E,QI,EI) and.9L2 = (L,Q2,E2) are two nondeterministic automata26 

defining the regular languages LI = L5l} (PI ,qI) and L2 = L5l2(P2,Q2). Without loss of 
generality we may assume that Ql and Q2 are disjoint and that .9Ll and .9L2 are trim ( see 
proof of Corollary 5.5 ). We consider the automaton .9L = (L,QI U Q2 u { t, f } ,E), 
where t and f are a new states not occurring in Q1 U Q2, and E = E1 U E2 U { (Q1,£,t) , 
(Q2,€,t) } u { (pI,€,f), (P2,€,f) } u { (f,cr,f); a E L }. Obviously, L5l

1
(Pl,QI) = 

L5l(PI,t) and L5l2(P2,Q2) = L5l(P2,t). In addition, U 5l(PI) = LCll = U 5l(P2). 
It is easy to see that .9L = JIT = tJ3r for a terminology T which has the states in QI U Q2 U 
{ f } as its defined concepts and the state t as the only primitive concept. 
ButthenLl cL2ifand only ifp2 !;lfp,T Pl· 0 

5.3 Characterization of the Descriptive Semantics 

Firstly, we shall prove a proposition for A-gfp-models ( see Corollary 2.4 ) which is 
similar to Proposition 5.3 for gfp-models. 

Proposition 5.14. Let T be a terminology and let .9LT be the corresponding automa­
ton. Let J be a primitive interpretation and let A be a tuple such that TJ(A) c A. Let I be 
the model of T defined by J and the tuple A-gfp(TJ) ( see Corollary 2.4 ). 
For any concept A and any individual dE dom(l) we have: dEAl iff the following two 
properties hold: 
(1) For all primitive concepts P, all words W E L(A,P), and all individuals e E dom(l), 
(d,e) E WI implies e E pl. 
(2) For all defined concepts B, all words W E L(A,B), and all individuals e E dom(l), 
(d,e) E WI implies e E (A)j (where j = index(B) ). 
Proof. The case where A is a primitive concept is trivial ( see the proof of Proposition 
5.3 ). Let A be a defined concept and let i = index(A), i.e., AI = (A-gfp(TJ»i. We know 
that A-gfp(TJ) = nIe()TJk(A). 
(1) Assume that deAl. Then there exists k ~ 0 such that de (TJk(A»i. We proceed by 

26Without loss of generality the transitions are only labeled by symbols of the alphabet. 
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induction on k. 
For k = 0 we have d e (A)i, d£Id and £ E L(A,A). 
For k > 0 we have d e (TJ(TJk-I(A)))i. Let the defining axiom for A be of the form A = 
... n "i/W: C n ... , and assume that "i/W: C is responsible for de (TJ(TJk-I(A))k That 
means that there exists e E dom(l) such that dWIe and e e CJ = CI ( if C is a primitive 
concept) or e e (TJk-I(A))m ( if C is a defined concept and index(C) = m ). In the first 
case, C is a primitive concept, and obviously W E L(A,C). In the second case, we can 
apply the induction hypothesis to e e (TJk-I(A))m. Thus there exist a primitive concept P 
(resp. a defined concept B with index j ), a word Y E L(C,P) (resp. Y E L(C,B) ) and 
an individual f E dom(l) such that eyIf and f e pI (resp. f e (A)j ). But then WY E 

L(A,P) ( resp. WY E L(A,B) ) and d(WV)If. This completes the proof of the "if' 
direction. 
(2) Assume that (1) or (2) does not hold. Then deAl follows as in the proof of 
Proposition 5.3. 0 

We can now characterize subsumption w.r.t. descriptive semantics. Infinite paths 
are still important but it is not enough to consider just their labels. The states which are 
reached ififmitely often by this path are also significant. An infmite path which has initial 
state A and reaches the state C infinitely often will be represented in the form A, VO, C, 
V I, C, V2, C, ... where the Vi are labels of non-empty paths from A to C for i = 0 and 
from C to C for i > O. 

Theorem 5.15. Let T be a terminology and let Jl.T be the corresponding automaton. 
Let A, B be concepts in T. Then we have A ~T B iff the following two properties hold: 
(PI) For all primitive concepts P, L(B,P) k; L(A,P) holds. 
(P2) For all defined concepts C and all infinite paths of the form B, VO, C, VI, C, V2, 
C, ... , there exists k ~ 0 such that VO ... Vk E L(A,C). 
Proof. (1) Assume that (PI) and (P2) hold. Let I be a model of T defined by the 
primitive interpretation J and a fixed-point A of TJ. Obviously, TJ(A) k; A and A = 
A-gfp(TJ). Let d be an individual such that d e BI. We have to show that deAl. By 
Proposition 5.14, d e BI means that (1) or (2) of the proposition does not hold. 
(1.1) Let P be a primitive concept, W E L(B,P) be a word and let e E dom(l) be a 
individual such that (d,e) E WI and e e pl. By (PI), W E L(A,P) and thus Proposition 
5.14 yields deAl. 
(1.2) Let CI be a defined concept, WI E L(B,C}) be a word and let el E dom(l) be a 
individual such that (d,q) E WII and el e (A)i

1 
( where il = index(Cl) ). Since I is the 

model defined by J and A, (A)i1 = CI I and we can proceed with Cl in place of A. 
Assume that we have already obtained a sequence Gr.-Wl,-el, ... , Ck, Wk, ek such that 
ei e Cil, ei-lWilei and Wi E L(Ci-l,Ci) for 1 ~ i ~ n (where eo := d and Co := B ). By 
Proposition 5.14, ek e Ckl means that (1) or (2) of the proposition does not hold. 
If (1) does not hold we get a primitive concept, a word W E L(Ck,P) and an individual e 
E dom(l) such that (ek,e) E Wi and e e pl. But then WI ... WkW E L(B,P) k; L(A,P), e 
e plandd(WI ... WkW)Ieimplyde AI. 
If (2) does not hold we get ek+l, Ck+l such that ek+l e Ck+lI, ekWk+lIek+l and Wk+l E 

L(Ck,Ck+l). 
If this second case holds for all k we get an infinite path B, WI, CI, W2, C2, W3, C3, ... 
and corresponding individuals el, e2, e3, ... with the above described properties. But 
then there is a concept C such that C = Ci for infinitely many indices i. That means that 
the above path is of the form B, VO, C, V I, C, V2, C, .... By property (P2), there 
exists k ~ 0 such that VO ... Vk E L(A,C). In addition, we know that there is an individual 
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em such that d(VO .. . V0Iem and em ~ CI = (A.)j ( where j = index(C) ). Thus Proposition 
5.14 yields d ~ AI. 
(2) Assume that A ~T B. This implies A ~gfp,T B and thus, by Theorem 5.4, property 
(PI) holds. Now assume that (P2) does not hold, i.e., there exists an infinite path of the 
form B, Va, C, VI, C, V2, C, ... such thatUo ... Vk ~ L(A,C) for all k ~ O. 
The primitive interpretation J is defined as follows: If V := VOV I V2 ... is an infinite word 
RIR2R3 ... , then dom(J) := { do, db d2, ... }; pJ := dom(J) for all primitive concepts P; 
RJ := { (di-l,di); i ~ 1 and R = Ri } for all roles R. If V := VOV I V2 ... is a finite word 
RIR2 ... Rs then dom(J) := { do, dl, . .. , ds }; pJ := dom(J) for all primitive concepts P; RJ 
:= { (di-bdi); 1 ~ i ~ s and R = Ri } for all roles R. 
Letjl ~h ~ ... be the indices such that doVa1dhVIJdjzV2J .... 
The tuple A is defined as follows: Let D be a defined concept in T and m = index(D). 
Then (A)m := dom(J) \ { e; There exist finite words W, V and an index k ~ 0 such that 

WV = VO ... Vk, W E L(B,D), V E L(D,C), doWJe and 

eVJdjk+l }. 

Claim: TJ(A) ~ A. 
Proof of the claim. Let D be a defined concept in T and m = index(D). Assume that e 
~ (A)m. We have to show that e ~ (TJ(A»m. 
By the definition of A, e ~ (A.)m means that there exist finite words W, V and an index k 

~ 0 such that WV = Va ... Uk, W E L(B,D), V E L(D,C), doWJe and eVJdjk+l' Without 
loss of generality we may assume that the path from D to C is not empty.27 Thus V = 
VIV2, there exists an individual e' with eVIJe ' and e'V2Jdjk+l' and the defining axiom 
for D is of the form D = ... n "IV 1: D' n .... Let m' be the index of D'. The definition of 

A yields e' ~ (A)m' and thus e ~ (TJ(A»m. 0 

Let I be the model of T defined by J and A-gfp(TJ). Let j be the index of B, i.e., BI = 
(A-gfp(TJ»j- We have do£Jdo, doU 1Jdh and E E L(B,B), V I E L(B,C). This shows that 
do ~ (A.)j and thus do ~ (A-gfp(TJ»j = BI. 
Assume that dO ~ AI. Because all primitive concepts have dom(l) as extension, 
Proposition 5.14 implies that there exist a defined concepts D, a word U E L(A,D) and 
an individual e E dom(l) such that doUIe and e ~ (A.)m (where m = index(C) ). Thus, 
by definition of A, there are finite words W, V and an index k ~ 0 such that WV = 
VO ... Vk, W E L(B,D), V E L(D,C), doWJe and eVJdjk+l' ButdoUJe and dOWJe imply 
V = W ( by the definition of the role extensions in J ). This shows that UV = WV = 
Va ... Uk is an element of L(A,C). This contradicts our assumption that (P2) does not 
hold. 0 

If we want to decide subsumption using this theorem, it remains to be shown how 
(P2) can be decided for given states A, B, C of a generalized automaton.28 For this 
problem we can't get an ad hoc reduction to an inclusion problem for regular languages. 
But the problem can be reduced to an inclusion problem for certain languages of infinite 
words which have already been considered in the context of monadic second-order logic 
(see Btichi (1960) and Eilenberg (1974), Chapter XIV). 

270therwise we could take UO ... Uk+l instead of UO ... Uk. 
28However, it may not be the best way to decide (P2) for each state C separately. For a fixed state 

C, it is easy to show that deciding (P2) is PSPACE-hard. It is not yet clear whether deciding the 
conjunction for all C is also PSPACE-hard. 
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6. Biichi Automata and Subsumption w.r.t. Descriptive 
Semantics 

Let .9l. = (L,Q,E) be a ( nondetenninistic ) finite automaton29 and let I, T be subsets of Q. 
We call.9l. together with I, T a Bitchi automaton. The language B;<l(I,T) C Lffi accepted 
by this automaton is defined as B ;<l(I,T) := { W E Lffi; W is the label of an infinite path 
starting from some state in I and reaching some state of T infinitely often ·}. 

Let L C L* be an arbitrary language of finite words. Then Lffi is the set of all 
infinite words W which can be obtained as W = WIW2W3 ... where WI, W2, W3, ... are 
non-empty words in L. The languages Lffi for regular L can be used for an alternative 
characterization of the languages accepted by BUchl automata. 

Theorem 6.1. (BUchi-McNaughton) 
(1) For any language L C Lffi the following two conditions are equivalent: 

(1.1) L = B;<l(I,T) for a BUchi automaton 5t 
(1.2) L is the finite union of languages H(Kffi) where Hand K are regular 
languages in L*. 30 

(2) The class of all languages accepted by BUchl automata is closed under the boolean 
operations union, intersection and complement. 

Proof. Se~ Eilenberg (1974), p.382, Theorem 1.4. The proof is constructive but it 
takes eight pages which shows that we are dealing with a hard problem. 0 

As an easy consequence of this theorem we get 

Corollary 6.2. The inclusion problem is decidable for the class of all languages 
accepted by BUchl automata. 
Proof. Obviously, Ll ~ L2 iffLl (\ (Lffi\ L2) "# 0. Thus the inclusion problem can be 
reduced to the emptiness problem since the proof of Theorem 1.4 in Eilenberg (1974) is 
effective, i.e., from given BUchi automata for Ll and L2 one can effectively construct a 
BUchi automaton for Ll (\ (Lffi\L2).31 
Let L = B;<l(I,T) for a BUchi automaton 5t It is easy to see that L"# 0 iff there exists i E 

I, t E T such that there is a path from i to t and a path from t to t. This is an easy search 
problem in a graph which can be done in time polynomial in the size of 5t 0 

The argument used in the proof of Corollary 6.2 does not yield the complexity of 
the inclusion problem. However, Sistla-Vardi-Wolper (1987) have shown that equality of 
languages accepted by BUchi automata can be decided with a PSPACE-algorithm. Since 
Ll ~ L2 iffLI (\ L2 = Ll, and since the automaton for th~ intersection can be constructed 
in polynomial time ( see Thomas (1989), proof of Lemma 1.2 ), we obtain a PSACE­
algorithm for the inclusion problem. On the other hand, inclusion of regular languages 
can be reduced to inclusion of languages accepted by BUchi automata as follows. Let L}, 
L2 be regular languages over L, and let # be a symbol not contained in L. Then Ll C L2 
iff Ll({#}ffi) C L2({#}ffi). By Theorem 6.1, Ll({#}ffi) and L2({#}ffi) are languages 
accepted by BUchl automata. Thus we have 

29;<l is not generalized, i.e. E ~ Q x LX Q. 
30The language H(KCI) consists of the infinite words WOWIW2W3 ... where Wo E H and WI, 

W2, W3, ... are non-empty words in K. 
31 However, this automaton may have a size which is exponential in the size of the initial 

automata ( see Pecuchet (1986) and Sistla-Vardi-Wolper (1987) for size bounds for the complememt 
automaton ). 
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Proposition 6.3. The inclusion problem for the class of all languages accepted by 
Btichi automata is PSPACE-complete. 0 

It remains to be shown that our problem (P2) from Section 5.3 can be reduced to an 
inclusion problem for languages accepted by Btichi automata. Let '13 = (r"Q,E) be a 
generalized automaton and let A, B, C be states in Q. We want to decide whether the 
following property holds: 

(P2) For all infinite paths of the form B, Uo, C, UI, C, U2, C, ... , there exists k ~ 0 
such that Uo ... Uk E L(A,C). 

Let # be a new symbol not contained in r, and let p, q be states in.9t We define the 
language Lp,q over the alphabet r, as 

Lp,q := { W; W E r,* is the label of a non-empty path from p to q }. 

For a language Lover r" the language L# over Ltt := r, u { # } is defined as 

L#:={W#;WEL}. 

Obviously, the languages Lp,q and Lp,q# are regular. Let 'V: r,#* ~ r,* be the 
homomorphism defined by '1'(0) = 0 for 0 E r, and '1'(#) = t. Then 'V-1(Lp,q) := { WE 
r,*; 'V(W) E Lp,q } and 'V-1(Lp,q)# are regular ( see Hopcroft-Ullman (1979), Theorem 
3.5 ). 

Lemma 6.4. (P2) holds for A, B, C iff (LB,C#)(Lc,c#)W c ('V-1(LA,c)#)(Lc,c#)w. 
Proof. (1) Assume that (P2) holds. Let W be an element of (LB,C#)(Lc,C#)W, i.e., W 
= Uo#U I#U2# ... , where Uo is the label of a non-empty path from B to C and the Ui for i 
?: 1 are labels of non-empty paths from C to C. By (P2) there exists k ?: 0 such that 
UO ... Uk E L(A,C). Hence UO ... Uk is an element of LA,C. But then UO# ... #Uk is an 
element of 'V-I (LA,c) and thus W = Uo#UI# ... Uk#Uk+I# ... E ('1'-1 (LA,c)#)(Lc,c#)W. 
(2) Assume that (LB,C#)(LC,C#)W ~ ('V-1(LA,C)#)(Lc,c#)w. Let B, UO, C, UI, C, U2, 
C, ... be an infinite paths starting with B and reaching C infinitely often. Then 
Uo#U I#U2# ... is an element of (LB,C#)(LC,C#)W c ('V-1(LA,c)#)(Lc,C#)W. Since the 
last symbol of any word in in 'V-I (LA,c)# is #, there exists k ~ 0 such that Uo# ... Uk# is 
an element of 'V-1(LA,c)#. But then Uo# ... Uk-l#Uk E 'V-1(LA,c), and Uo ... Uk E LA,C. 
o 

We know by Theorem 6.1 that (LB,C#)(Lc,C#)W and ('II-1(LA,c)#)(Lc,C#)W are 
languages accepted by Btichi automata. Thus, by Proposition 6.3, the inclusion problem 
(LB,C#)(LC,C#)W ~ ('V-1(LA,c)#)(LC,C#)W can be decided by a PSPACE-algorithm. 
This yields 

Corollary 6.5. Subsumption W.r.t. descriptive semantics can be decided with 
polynomial space using Btichi automata.32 0 

7. Extensions of the Results for the gfp-Semantics 

We shall now consider two extensions of the results for the gfp-semantics. In the first 
subsection, we shall allow an additional concept forming construct, namely exists-

32Using Theorem 5.15 above, Nebel recently was able to characterize equivalence of concepts 
w.r.t. descriptive semantics with the help of deterministic automata. This characterization also yields 
PSPACE-algorithms for equivalence and for subsumption w.r.t. descriptive semantics ( see Nebel 
(1990». However, it is still open whether these problems are PSPACE-hard. 
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restriction. In the second subsection, we shall introduce an assertional component into 
our KR-system, and consider hybrid inferences. 

7.1 The Language ~L- and gfp-Semantics 

In order to extend our language ~Lo to the language ~L- of Levesque-Brachman (1987), 
we have to add a fourth rule to the defmition of concept terms ( Definition 3.1 ): 
Let R be a role name. 

(4) Then 3R is a concept term. ( exists-restriction) 

For example, the concept Father can be defmed as 

Father = Man n 3child 

That means that a father is a man who has a child. The semantics of the exists­
restriction is defined in the obvious way, namely 

(3R)I:= { dE dom(I); there exists e E dom(l) such that (d,e) E RI }. 

Let T be a terminology of the language ~L- and let J be a primitive interpretation. 
The mapping TJ is defined as in Definition 4.2. It is easy to see that these mappings are 
still downward ro-continuous. Hence TJ has a greatest fixed-point which can be obtained 
as gfp(TJ) = (1~TJi(top). 

Any concept term of ~ L- can be transformed into a finite conjunction of terms of 
the form VRl:VR2: ... VRn:D, where D is a concept name or a term of the form 3R. As in 
Section 5, the prefix "VRl:VR2: ... VRn" will be abbreviated by "VW" where W = RIR2 
... Rn. Let T be a terminology of ~L-. The corresponding generalized (nondeterministic) 
automaton JlT is defined as in Definition 5.1. The only difference is that we also have the 
terms 3R occurring in T as states of JlT. These states are similar to the states P for 
primitive P in that they don't have successor states. We shall see that this similarity also 
extends to the characterization of gfp-semantics and of subsumption w.r.t. gfp­
semantics. 

Proposition 7.1. Let T be a terminology of ~L-, and let JlT be the corresponding 
automaton. Let I be a gfp-model of T, and let A be a concept name occurring in T. For 
any d E dom(l) we have dEAl iff the following two properties hold: 
(1) For all primitive concepts P, all words W E L(A,P), and all individuals e E dom(I), 
(d,e) E WI implies e E pl. 
(2) For all terms 3R in T, all words W E L(A,3R), and all individuals e E dom(I), (d,e) 
E WI implies e E (3R)I, i.e., there is f E dom(l) such that (e,f) E RI. 
Proof. The proof is very similar to the proof of-Proposition 5.3. 0 

Theorem 7.2. Let T be a terminology of ~L_,' and let JlT be the corresponding 
automaton. Let I be a gfp-model of T and let A, B be concept names occurring in T. Then 
we have: A !;gfp,T B iff L(B,P) k L(A,P) for all primitive concepts P in T, and 
L(B,3R) c L(A,3R) for all terms 3R occurring in T. 
Proof. (1) Assume that L(B,P) rz L(A,P) for some primitive concept P, i.e., there is a 
word W such that W E L(B,P) \ L(A,P). Let W = RIR2 ... Rn for n ( not necessarily 
different) role names Rl, R2, ... , Rn. We defme the primitive interpretation J as follows: 
dom(J) := { do, ... , dn, e }; Q1 := dom(J) for all primitive concepts Q"# P; pJ := dom(J) \ 
{ dn }; RJ := { (di,di+l); 0 ~ i ~ n-1 and R = Ri+l } U { (di,e); 0 ~ i ~ n } U { (e,e) } 
for all roles R. The definition of the role extensions implies that doyJdn iff y = W, and 
that (3RY = dom(J) for all roles R. 
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Let I be the gfp-model defined by I. As in part (1) of the proof of Theorem 5.4 one can 
show that do E AI\BI. This implies that A $gfp,T B. 
(2) Assume that L(B,3R) fZ.. L(A,3R) for some term 3R in T, i.e., there is a word W 
such that WE L(B,3R) \L(A,3R). Let W = RIR2 ... Rn for n (not necessarily different) 
role names RI, R2, ... , Rn. We define the primitive interpretation J as follows: dom(J) := 
{ do, ... , dn, e }; pJ := dom(J) for all primitive concepts P; SJ := { (di,di+I); 0 ::; i ::; n-1 
and S = Ri+1 } U { (di,e); 0::; i ::; n } U { (e,e) } for all roles S ~ R; RJ := { (di,di+I); 0 
::; i ::; n-1 and S = Ri+1 } U { (di,e); 0 ::; i ::; n-1 } u { (e,e) }. The definition of the role 
extensions implies that doyJdn iff y = W, that (3S)J = dom(J) for all roles S ~ R, and 
that (3R)J = dom(J) \ { dn }. 
Let I be the gfp-model defined by I. Since WE L(B,3R), doWIdn and dn ~ (3R)I, we 
know by Proposition 7.1 that do ~ BI. On the other hand, assume that do ~ AI. Since pI 
= dom(l) for all primitive concepts P, and (3S)1 = dom(J) for all roles S ~ R, Proposition 
7.1 implies that there exists a word Y E L(A,3R), and an individual f E dom(l) such that 
doyIf and f ~ (3R)I. By definition of J, we get f = dn, and thus Y = W. This contradicts 
our assumption that W ~ L(A,3R). Hence we have shown that dO E AI \ BI, which 
implies that A $gfp,T B. 
(3) The proof of the "if' direction is similar to part (2) of the proof of Theorem 5.4. 0 

The theorem shows that, with respect to subsumption, terms of the form 3R 
behave just like primitive concepts. As a consequence, we obtain 

Corollary 7.3. Subsumption determination in tfL- can be reduced in linear time to 
subsumption determination in tfLo. 
Proof. Assume that T is a T-box of 'f.L-. For any role R in T let PR be a new primitive 
concept. Now substitute any 3R term in T by PR. This yields a T-box TO of tfLo which 
has the same size as T. In addition, Theorem 7.2 implies that A!;T B iff A !;To B. 0 

Subsumption relations w.r.t. gfp-semantics in tfL- can thus be computed by a 
PSPACE-algorithm. Since tfLo is a sublanguage of tfL-, subsumption determination 
w.r.t. gfp-semantics. in tfL- is also PSPACE-hard. 

Corollary 7.4. The problem of determining subsumption w.r.t. gfp-semanticsin !FL­
is PSPACE-complete. 0 

The characterization of descriptive semantics for tfLo (Proposition 5.14 and 
Theorem 5.15 ) can be generalized to tfL- in an analogous way.33 For the lfp-semantics, 
one can also prove an analogous generalization of Proposition 5.8. But for subsumption 
one runs into new problems. The reason is that there is an additional source of 
inconsistency. 

Example 7.5. Consider the terminology T: A =- 'v'S:A, B = 'v'R:B n 3R. The concept 
B has the empty extension in all lfp-models of T. In fact, assume that J is a primitive 
interpretation, and let A be the least ordinal such that (TJ tA.h ~ 0 (where index(B) = 2 ). 
Evidently, A is a successor ordinal, i.e., A = a + 1 for some ordinal a. Let I be the 
interpretation of T defined by J and TJ ta. Now d E (TJ tA.h means that dE ('v'R:B)I n 
(3R)I. From d E (3R)I we get some individual e such that dRIe, and dE ('v'R:B)I yields 
e E BI. This contradicts the fact that BI = (TJ tah = 0 . . 
Since B is inconsistent w.r.t. lfp-semantics, we know that B !;lfp,T A. But U~(A) = 
{ SSS ... } ~ U~(B) = { RRR ... }. 

33i.e., the tenns 3R are treated like primitive concepts as in condition (2) of Proposition 7.1. 
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7.2 Extending ifLo by an Assertional Formalism 

A terminology ( T -box ) T restricts the number of possible worlds ( from all 
interpretations to the models of T ); a world description ( A-box) A describes a part of 
some world. KR-systems which allow both T-boxes and A-boxes are sometimes called 
hybrid systems. 

Definition 7.6. ( world descriptions) 
Let C be a set of concept names, R be a set of role names, and I be a set of individual 
names. A world description ( A-box) is a finite set of axioms of the form C(a) or R(a,b) 
where a, b are constants in I, C is a concept name, and R is a role name. 

For example, let Man be a concept name, child be a role name, and WILLY and 
BRIAN be individual names. Then Man(WILLY) and child(WILLY,BRIAN) can be part of a 
world description. That means that Willy is a man who has the child Brian. 

Definition 7.7. (interpretations and models) 
Let T be a T-box of ifLo and A be an A-box defined over the same sets of concept and 
role names. An interpretation of T ( see Definition 3.3 ) can be extended to an 
interpretation of T u A as follows: the interpretation function does not only assign 
subsets of dom(I) to concept names, and binary relations on dom(I) to role names, but 
also individuals of dom(I) to individual names, i.e., for any individual name a, aI is an 
element of dom(I). 
An interpretation I of T u A is a model of T u A iff I is a model of T and satisfies 

aI E CI for all axioms C(a) in A, (aI,bI) E RI for all axioms R(a,b) in A, and 
aI ~ bI for all individual names a ~ b in I (unique name assumption ).34 

A model I of T u A is a gfp-model ( lfp-model ) of T u A iff I is a gfp-model ( lfp­
model) of T. 

Let T be a T-box of ifLo. If we take a primitive interpretation J with pJ = dom(J) 
for all primitive concepts P, and RJ = dom(J) x dom(J), then gfp(TJ) = top by 
Proposition 5.3. This shows that the gfp-model of T defined by J is a model of T u A for 
any A-box A. Thus any combination T u A of a T-box of if Lo with an A-box is 
consistent w.r.t. gfp-semantics, and w.r.t. descriptive semantics. But such a combination 
need not have an lfp-model. In fact, if C is a concept in T which is inconsistent w.r.t lfp­
semantics ( see Corollary 5.9 ), and A contains an axiom C(a), then T u A does not have 
an lfp-model. 

An important service hybrid representation systems provide is computing instance 
relationships. 

Definition 7.8. ( instance relationship) 
Let T be a T-box of 1'Lo and A be an A-box defined over the same sets of concept and 
role names. Let a be an individual name in A, and C be a concept name in T. 

a E TuA C iff aI E CI or all models I of T u A, 
a E Ifp,TuA C iff aI E CI or alllfp-modeis I of T u A, 

a E gfp,TuA C iff aI E CI or all gfp-models I of T u A. 

34Note that we do not impose a closed world assumption; e.g., if D(b) is not in A, we may 
nevertheless have ~ E DI in a model I of T u A. 

28 



In this case we say that a is an instance of C in T u A w.r.t. descriptive semantics ( resp. 
Ifp-semantics, gfp-semantics ). 

In the following we shall only consider instance relationships with respect to gfp­
semantics. We have seen that aT-box T of 1'£0 gives rise to a generalized automaton JlT 
which has the concept names of T as states and the set of role names in T as alphabet. 
Without loss of generality we may assume that the transitions of JlT are labeled by 
symbols of the alphabet.35 An A-box A defines an automaton JlA as follows: the states 
of JlA are the individual names of A; the alphabet of JlA are the role names occurring in 
A; an axiom of the form R(a,b) gives rise to a transition from a to b with label R. 

We can now build the product automaton 1YruA = JlT x JlA of JlT and JlA ( see 
e.g., Eilenberg (1974), p. 17 ). The states of 1YruA are pairs (C,a) where C is a state of 
JlT and a is a state of JlA; 1YruA has a transition with label R from (C,a) to (D,b) iff JlT 
has a transition from C to D with label R, and JlA has a transition from a to b with label 
R. Obviously, W E L~uA «C,a),(D,b» iff W E L~(C,D) and W E L):lA (a,b). 

Theorem 7.9. Let T be a T-box of !FLo and A be an A-box defined over the same sets 
of concept an role names. Let b be an individual name in A and C be a concept name in T. 
Then bE gfp,TuA B iff for all primitive concepts P, and all words W E L~(B,P) there 
exist concepts E, F, a word U, and an individual name f such that 

(1) W E L):lT(E,P), 
(2) u E L~UA «F,f),(E,b» and F(f) is an axiom in A. 

Proof. (1) Assume that there is a primitive concept P and a word W = RI ... Rk E 
L;;q.(B,P) such that there do not exist E, F, U, f satisfying (1) and (2) of the theorem. Let 
M be a gfp-model ofT u A, and bM =: eo E dom(M). We want to construct a gfp-model 
I of T u A such that bl eo BI. 
(1.1) Without loss of generality we may assume that RM = ( (cM,dM); R(c,d) E A } for 
all roles R. This is true because making role extensions smaller only makes concept 
extensions larger W.r.t. gfp-semantics. Hence all axioms of the form C(e) remain 
satisfied if we restrict the role extensions to ( (cM,dM); R(c,d) E A }. 
(1.2) The primitive interpretation J is defined as follows: dom(J):= dom(M)u { e}, 
... , ek } where el, ... , ek are new individuals; RI := RM U { (ei-l,ei); 1 ~ i ~ k and R = 
Ri } for all roles R; Q1 := QM U ( el, .. . , ek } for all primitive concepts Q *" P; pI := pM 
U ( e I, . .. , ek-l }. Let I be the gfp-model of T defined by 1. The interpretation I of T is 
extended to an interpretation I of T u A by defining cI := cM for all individual names c. 
Obviously, bIWIek, W E L~(B ,P), and ek eo pI imply eo = bI eo BI. 
(1.3) It remains to be shown that I is in fact a gfp-model of T u A. Obviously, (cI,dI) E 
RI for all axioms R(c,d) in A. Assume that F(f) is an axiom of A, but fl e Fl. By 
Proposition 5.3, there exist a primitive concept Q, a word U E L):lT(F,Q), and an 
individual e such that flu Ie and e e QI. 
If fIUle does not use some ei ( i ~ 1 ) as intermediate individual, then we also have 
fMUMe and e e QM. Hence fM e FM which contradicts our assumption that M is a 
model of T u A. 
Otherwise, the definition of the role extensions implies that U = U I U2, flu lIeoU2Ie and e 
= ei for some i ~ 1. But now e e QI yields Q = P, e = ek, and U2 = W. Because U = 

35Proposition 5.3 and Theorem 5.4 show that, for gfp-semantics, we are only interested in regular 
languages of the form L~T(A,P). These languages do not change if we transform the generalized 
automaton into an ordinary automaton. 
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V I W E L5'lT(F,P), there exists a state E of 5lT such that V I E L5'lT(F,E) and W E 
L5'lT(E,P). In addition, flVlleo implies fMVIMeo = bl, and thus, by (1.1), we have VI E 
L5'lA (f,b). This shows that V I E L1>rUA «F,f),(E,b». But then E, F, V I, f satisfy (1) and 
(2) of the theorem. This contradicts our assumption. 
(2) Assume that b ~ gfp,TuA B, but the right hand side of the theorem holds. Let I be a 
gfp-model of T u A such that bl ~ BI. By Proposition 5.3, there exist a primitive concept 
P, a word W E L5'lT(B,P), and an individual e such that blWle and e ~ pl. For WE 
L5'lT(B,P) there exist concepts E, F, a word U, and an individual name f satisfying (1) 
and (2) of the theorem. But then U E L1>rUA «F,f),(E,b» and WE L.9l-r(E,P) yield UW 
E L5'lr(F,P) and flUlbl}6 Thus we have UW E L5'lr(F,P), fl(UW)Ie, and e ~ pl. This 
means that fI ~ FI, which contradicts our assumption that I was model of T u A since 
F(f) is an axiom in A. 0 

We shall now show how the property stated on the right hand side of the theorem 
can be decided for given b, B. 

We define Q(b) := { E; there exists a state (F,f) in 13ruA and a word U such that U 
E L1>ruA «F,f),(E,b)) and F(f) is an axiom in A }. Computing Q(b) for a give individual 
name b is a simple search problem in a graph; this can be done in time polynomial in the 
size of 13ruA. 

Lemma 7.10. The right hand side of the theorem holds for given b, B if and only if for 
all primitive concepts P, L.9l-r(B,P) ~ UEE Q(b)L.9l-r(E,P) holds. 
Proof. (1) Assume that L.9l-r(B,P) c UEE Q(b)L5'lT(E,P) holds, and let W be an element 
of L.9l-r(B,P). Then W E L.9l-r(E,P) for some E E Q(b). The definition of Q(b) yields F, f 
and a word V such that (1) and (2) of the theorem hold. 
(2) Assume that the right hand side of the theorem holds, and let W be an element of 
L5'lT(B,P) where P is primitive. Then we get E, F, U, f satisfying (1) and (2) of the 
theorem. This means that W E L.9l-r(E,P) and E E Q(b). 0 

The lemma together with the theorem shows that there is a PSPACE-algorithm for 
instance testing since the instance problem "b E gfp,TuA B?" can be reduced to an 
inclusion problem for regular languages in polynomial time. On the other hand, 
subsumption determination can be reduced to instance testing in linear time. 

Lemma 7.11. Let T be a T-box of 'fLo, and let C, D be concept names occurring in T. 
Let A be the A-box containing C(c) as the only axiom. Then we have c E gfp,TuA D if and 
only if C ~gfp,T D. 
Proof. (1) The "if' direction is trivial. 
(2) Assume that C ~ gfp,T D, i.e., there exists a gfp-model I of T such that CI is not 
contained in DI. That means that there exists an individual e E dom(I) such that e E CI \ 
DI. The interpretation I of T is extended to the interpretation I of T u A by defining cI := 
e. Obviously, I is a model of T u A, but cI ~ DI. This shows that c ~ gfp,TuA D. 0 

Since subsumption determination w.r.t gfp-semantics in 'fLo is PSPACE-complete 
we have thus proved 

Corollary 7.12. Instance testing w.r.t. gfp-semantics is PSPACE-complete. 0 

36Since I is a model of T u A, U E L5lA (f,b) implies PUlbl. 
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8. Conclusion 

We have considered a small terminological language because for this language the 
meaning of terminological cycles with respect to different kinds of semantics, and in 
particular, the important subsumption relation could be characterized with the help of 
finite automata. These results may help to decide what kind of semantics is most 
appropriate for cyclic definitions, not only for this small language, but also for suitably 
extended languages. 

As it stands, the gfp~semantics comes off best. The characterizations given in 
Proposition 5.3 and Theorem 5.4 are easy, and have an obvious intuitive interpretation. 
Furthermore, important constructs - such as value-restriction with respect to the 
reflexive-transitive closure of a role - can easily be expressed. The lfp-semantics is less 
constructive, and the modifications of the automaton which are necessary to characterize 
subsumption are not obvious. For the descriptive semantics one has to consider certain 
languages of infinite words which are more difficult and less intuitive than the regular 
languages which occur in the context of gfp-semantics. 

This research can be continued in two directions. First, one may try to extend the 
results to cyclic definitions in larger languages. As a first step in this direction, the results 
for gfp-semantics were extended in Section 7.1 to cycles in the language 1"£- of 
Levesque-Brachman (1987). Hybrid inferences such as "instance testing" can also be 
handled for gfp-semantics, as shown in Section 7.2. 

Secondly, one can use a larger language, but restrict cycles to the small language. 
One idea in this direction is to extend a given language by value-restrictions of the form 
V'L:P where L is a regular language over the alphabet of role names. In accordance with 
part (1) of Proposition 5.3, the semantics of this construct should be defined as (\iL:p)I 
:= { dE dom(I); for all words W ELand all individuals e E dom(I), (d,e) E WI implies 
e E pI }. For example, V'RR *:P would express value-restriction with respect to the 
transitive closure of the role R ( RR* is the regular language { Rn; n ~ 1 } ). 
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