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Abstrac t 

Belief rev ision leads to tempora l nonmonotonicity, i.e., the set of 
be lie fs does not grow monoton icall y with time. Defau lt reasonIng 
leads to logica l nonmonotonicity, i.e ., the set of consequences does not 
grow monotonical ly with the set of premises. The connect ion between 
these forms of nonmonotonicity will be studied in this paper focus­
ing on syntax-based approaches. It is shown that a general form of 
syntax-based belief revision corresponds to a special kind of par t ial 
meet revision in the sense of the t heory of epistemic change, wh ich in 
turn is expressively equ ivalent to some vari ants of logics for defau lt 
reasoning. Add itionally, the computational complexity of the mem­
be rship prob lem in rev ised belie f sets and of the equivalent prob lem of 
derivabi lity in defau lt logics is analyzed, whi ch turns out to be located 
at the lower end of the polynomial hierarchy. 

"This is a revised and extended vers ion of a paper to appear in: J. A. Allen, R. 
Fikes, and E. Sandewall (eds.), Princip les of Know ledge Representation and Reasoning: 
Proceedings of the Second Internationa l Conf erence, Morgan Kaufmann, San Mateo, CA, 
199 1. 
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1 Introduction 

Belief revision is the process of incorporating new information into a knowl­
edge base while preserving consistency. Recently, belief revision has received 
a lot of attention in AI,I which led to a number of different proposals for dif­
ferent applications [Ginsberg, 1986; Ginsberg and Smith, 1987; Dalal, 1988; 
Gardenfors and Makinson, 1988; Winslett, 1988; Myers and Smith, 1988; 
Rao and Foo, 1989; Nebel, 1989; Winslett, 1989; Katsuno and Mendel­
zon, 1989; Katsuno and Mendelzon, 1990; Doyle, 1990]. Most of this re­
search has been considerably influenced by approaches in philosophical logic, 
in particular by Gardenfors and his colleagues [Alchourr6n et al., 1985; 
Gardenfors, 1988], who developed the logic of theory change, also called the­
ory of episiemic change, which will be briefly sketched in Section 2. This 
theory formalizes epistemic states as deductively closed theories and defines 
different change operations on such epistemic sets. 

Syntax-based approaches to belief revision to be introduced in Section 3 
have been very popular because of their conceptual simplicity. However, 
there also has been criticisms since the outcome of a revision operation relies 
an arbitrary syntactic distinctions (see, e.g., [Dalal, 1988; Winslett, 1988; 
Katsuno and Mendelzon, 1989])-and for this reason such operations can­
not be analyzed on the knowledge level. In [Nebel, 1989] we showed that 
syntax-based approaches can be interpreted as assigning higher relevance to 
explicitly represented sentences. Based on that view, one particular kind of 
syntax-based revision, called base revision, was shown to fit into the the­
ory of epistemic change. In Section 4 we generali ze this result to prioritized 
bases. It will be shown that the class of prioritized base revisions is identical 
with the class of belief revision operations generated by epistemic relevance 
orderings [Nebel , 1990]. 

The belief revision operations generated by epistemic relevance orderings 
do not satisfy all rationality postulates belief revision operations should obey, 
however. In Section 5 some interesting special cases of epistemic relevance 
are analyzed that lead to the satisfaction of a ll rationality postulates. In 
particular, we show that epistemic entrenchment as introduced in [Garden­
fors and Makinson, 1988] is a special case of epistemic relevance. 

Makinson and Gardenfors [1991] showed that there is a tight connec­
tion between belief revision and nonmonotonic logics. In Section 6 we will 
strengthen this resu lt. First, we show that the form of logical non monotonic­
ity observable when revising beliefs is a necessary consequence of temporal 
nonmonotonicity induced by belief revision. Second, we will prove that this 

ISee also [Brachman, 1990], in which "practical and well-founded theories of belief 
revision" are called for . 
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similarity can be strengthened to equivalence of expressiveness for particular 
nonmonotonic logics and belief revision operations in the case of proposi­
tionallogic. Poole's [1988] and Brewka's [1989; 1990] approaches are shown 
to be expressively equivalent to some forms of syntax-based belief revision 
approaches. An interesting consequence of this result is that the "absurd be­
lief state" that is inconsistent turns out to be more important than assumed 
to be in the theory of epistemic change. 

Additionally to the logical properties of belief revision and default rea­
soning, in Section 7 the computational properties are analyzed. As it turns 
out, the complexity of propositional syntax-based belief revision and default 
reasoning is located at the lower end of the polynomial hierarchy. 

2 The Theory of Epistemic Change 

In this section we will briefly survey some of the results of the theory of 
epistemic change in a setting of propositionallogic. 2 Throughout this paper, 
a propositional language 1: with the usual logical connectives (-', V, !\, ~ and 
t-+) is assumed. The countable alphabet of propositional variables a, b, c ... 
is denoted by L;, propositional sentences by v, W, x, y, z, . .. , constant truth 
by T, its negation by ..l, and countable sets of propositional sentences by 
A,B,C, ... and X,Y,Z, ... 

The symbol f- denotes derivability and Cn the corresponding closure op­
eration, i.e., 

Cn (A) ~ {x E 1: I A f- x} . (1) 

Instead of Cn({x}), we will also write Cn(x). Deductively closed sets of 
propositional sentences, i.e ., A = Cn(A), are denoted by capital letters from 
the beginning of the alphabet and are called belief sets. Arbitrary sets of 
sentences are called belief bases and are denoted by capital letters from the 
end of the alphabet. Systems of belief bases and belief sets are denoted 
by S. Finite belief bases Z are often identified with the conjunction of all 
propositions /\ Z. If S = {Xl, . . . , Xn} is a finite family of finite belief bases, 
then V S shall denote a proposition logically equivalent to (/\ X d V ... V 

(/\ Xn). As usual, we set V 0 = ..l. 
Sometimes, we will also talk about truth assignments and models of 

propositions and belief bases. A truth assignment is a function I: L; ~ {T, F}. 
A model I of a proposition x is a truth assignment that satisfies x in the clas­
sical sense, written FI x. A model of a belief base Z is a truth assignment 
that satisfies all propositions in Z, written FI Z. 

2The formulation in [Alchourr6n et aI., 1985; Giirdenfors, 1988] is more general in that 
only some specific properties are required for the underlying logic. 
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In [Gardenfors, 1988] three operations on belief sets are analyzed, namely, 
belief expansion, belief contraction, and belief revision. Expansion is the ad­
dition of a sentence x to a belief set A, written A + x, resulting in a new 
(possibly inconsistent) belief set, defined by 

A + x ~f Cn (A U {x} ). (2) 

Contraction is the removal of a sentence x from a belief set A resulting in 
a new belief set, denoted by A ..:. x, that does not contain x (if x is not a 
tautology), and revision is the addition of a sentence x to A, denoted by 
A + x, such that Cn(l..) =1= A + x whenever If ...,x. Although contraction and 
revision are not uniquely determined operations-the only commonly agreed 
criterion is that the changes to the original belief sets have to be minimal-it 
is possible to constrain the space of reasonable epistemic change operations. 
Gardenfors proposed sets of rationality postulates3 change operations on be­
lief sets should satisfy. The Gii1'denfors postulates for belief revision look as 
follows (A a belief set, x, y proposi tional sentences): 

(+1) A + x is a belief set; 

(+2) x E A + x; 

(+3) A + x ~ A + x; 

(+4) If...,x tf. A, then A + x ~ A + x; 

(+5) A + x = Cn(l..) only if f- ""x; 

(+6) If f- x f-t y then A + x = A + y; 

(+7) A+(xAy)~(A+x)+y; 

( + 8) If..., y tf. A + x, then (A + x) + y ~ A + (x A y). 

These postulates intend to capture the intuitive meaning of minimal 
change- from a logical point of view [Alchourr6n et ai., 1985; Gardenfors, 
1988]. (+1) states that revision of belief set always results in a belief set. 
(+2) formalizes the requirement that revision is always successful. (+3) gives 
an upper bound for a revised belief set. It should at most contain the conse­
quences of the original belief set and the new sentence. (+4) is the conditional 
converse of (+3). In case when x is consistent with the original belief set, the 
revised belief set shall at least 'contain the original belief base and the new 

3In order to avoid confusion , one should note that rationality in the sense of the theory 
of epistemic change means an idealization: "In this way the rationality criteria serve as 
regulative ideals. Actual psychological states of belief normally fail to be ideally rational 
in this sense" [Gardenfors, 1988, Section 1.2] . Further, this notion of rationality is quite 
different from the notion of economic rationality [Doyle, 1990]. 

3 



sentence. Together with (+3) this implies that for a sentence x consistent with 
the original belief set A, the revised belief set is the same as the expansion 
of A by x. (+5) states that inconsistency should be avoided when possible, 
and (+6) formalizes the requirement that revision shall be independent from 
the syntactic form of the sentence the belief set is revised by. While the first 
six postulates, also called basic postulates, are straightforward, the last two 
postulates are less obvious. They can be interpreted as generalizations of 
(+3) and (+4). 

Based on this framework, it is possible to analyze different ways of defin­
ing revision operations. In [Alchourr6n et at., 1985], so-called partial meet 
revisions are investigated. This notion is based on systems of maximal (w.r.t. 
to set-inclusion) subsets of a given belief set A that do not allow the deriva­
tion of x, called the removal of x and written A 1 x: 

Alx ~ {B~AIBllx,VC:BCC~A:::}Cf--x}. (3) 

A partial meet revision (on A for all x) is defined by a selection function S 
that selects a nonempty subset of A 1 -oX (provided A 1 -oX is nonempty, 0 
otherwise) in the following way:4 

A . def 
+X = (nS(Al-ox)) + x. (4) 

Such partial meet revisions satisfy unconditionally the first six postulates, 
also called basic postulates. Furthermore, it is possible to show that all re­
vision operations satisfying the basic postulates are partial meet revisions 
[Alchourr6n et al., 1985, Observation 2.5]. Actually, this and the other re­
sults cited below were proven for contraction. However, if contraction and 
revision satisfy their respective basic postulates, they are interdefinable by 
the Harper (5) and Levi (6) identity: 

A.:x 

A+x 

(A + -ox) n A, 
(A.: -ox) + X. 

(5) 
(6) 

Further, the eight Gardenfors postulates for contraction (see, e.g. [Alchourr6n 
et al., 1985; Gardenfors, 1988]) are equivalent to the revision postulates under 
these definitions in the following sense. The first six, seven, or eight contrac­
tion postulates are satisfied if and only if the first six, seven or eight, revision 
postulates for the corresponding revision operation are satisfied, respectively 
[Alchourr6n et al., 1985, Observations 3.1-3.2]. 

If some constraints are placed on the behavior of the selection function, 
it is possible to show that (+7) and (+8) are also satisfied. The key notion 

4 Note that all elements of A 1 -'X are belief sets and that the intersection of belief sets 
is a belief set again. 
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here is relatiorwlity of the selection function, i.e., there exists some relation 
~ over all subsets of a belief set A independent of x such that the selection 
functions always picks the "best" sets, i.e., for all x, 

S(Alx) = {B E (Alx)1 ve E (Alx): C ~ B} (7) 

in which case the revision operation is called relational revision. Any such 
revision satisfies the postulates (.:.1)- (.:.7) [Alchourr6n et al., 1985, Observa­
tions 3.1, 4.2, and 4.3]. If the relation is additionally transitive, then the 
revision operation is called transitively relational and (':'1 )-( .:.8) are satisfied. 
Furthermore, it can be shown that any revision operation satisfying (.:.1 )-( .:.8) 
is a transitively relational contraction [Alchourr6n et al., 1985, Corollary 4.5]. 

It should be noted that tW9 special cases of partial meet revisions are 
unreasonable [Alchourr6n et al., 1985; Giirdenfors, 1988] . The first special 
case is that S always selects all of the elements of A 1 -,x- leading to the so­
called full meet revision. In this case A + x = Cn( x) if -,x E A. This means 
we throwaway all the old beliefs if the new sentence is inconsistent with the 
belief set, which is clearly unreasonable. Although unreasonable, full meet 
revision is "fully rational" in the sense that it satisfies all the Giirdenfors 
postulates, as is easy to verify. 

The second special case is that S always selects singletons from (Al-'x) 
resulting in the class of so-called maxi-choice revisions. These revision oper­
ations have the property that A + x is a complete belief set-provided that 
...,x E A. This means yEA + x or ""y E A + x for every y E C. In other 
words maxi-choice revisions lead to an unmotivated inflation of beliefs. 

3 Syntax-Based Revision Approaches: Base Revi-. 
slons 

The theory sketched above captures the logical portion of minimal change 
giving us a kind of yardstick to evaluate approaches to belief revision. How­
ever, it still leaves open the problem of how to specify additional restrictions 
so that a revision operation also satisfies a "pragmatic" measure of minimal 
change. 

Two principal points of departure are conceivable. Starting with a belief 
base as the representation of a belief set, either the syntactic form of the 
belief base [Fagin et al., 1983; Ginsberg, 1986; Nebel, 1989] or the possible 
states of the world described by the belief base- -the models of the belief 
base-could be changed minimally [Dalal, 1988; Winslett, 1988; Katsuno 
and Mendelzon, 1989; Katsuno and Mendelzon, 1990]. The former approach 
seems to be more reasonable if the belief base corresponds to a body of 
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explicit beliefs that has some relevance, such as a code of norms or a scientific 
or naive theory which is almost correct. The latter view seems plausible if 
the application is oriented towards minimal change of the state of the world 
described by a belief set. In this paper, we adopt the former perspective. 
In order to distinguish operations on syntactic descriptions - on belief bases 
- from operations on belief sets, belief base changes are called base revision 

and base contraction. 
The idea of changing a belief base minimally could be formalized by se­

lecting maximal subsets of the belief base not implying a given sentence. If 
there is more than one such maximal subset, the intersection of the conse­
quences of these subsets is used as the result. Thus, using (Z 1 x) as the set of 
maximal subsets of Z not implying x as above, simple base revision, written 
as Z EB x, could be defined as follows [Fagin et al., 1983; Ginsberg, 1986; 
Nebel, 1989J: 

ZEBx clef ( n Cn(Y)) +x. (8) 
YE(Z!~x) 

The operation EB considers all sentences in a base as equally relevant. In 
most applications, however, we want to distinguish between the importance 
or relevance of different sentences. In [Fagin et ai., 1983J database priorities 
are assigned to propositions in order to reflect the distinction between facts 
and integrity rules. Ginsberg [1986J · and Ginsberg and Smith [1987J make a 
distinction between facts that can change and those that are "protected."s 

This idea of assigning different priorities to sentences can be formalized 
by employing a complete preorder with maximal elements, written x ::S y, on 
the elements of a belief base Z . In other words, we consider a reflexive and 
transitive relation such that for all x, y E Z we have x ::S y or y ::S x. For 
x ::S y and y i x, we will also write x -< y. Further, there exists at least 
one maximal element x, i.e., for no element y: x -< y. This relation will 
be called epistemic relevance ordering. It induces an equivalence relation, 
written x ~ y, as follows: 

x ~ y iff (x::S y and y ::S x). (9) 

The corresponding equivalence classes are denoted by z and are called degrees 
of epistemic relevance of Z. The set of equivalence classes Z/~ is denoted 
by Z. Since the preorder is complete, ::S is a linear order on Z. Further, 

5In particular, [Ginsberg and Smith, 1987] makes clear , however, tha t usually more 
than one level of protected sentences is needed. For instance, the rule that an object can 
only occupy one place is , of course, an undeniable truth in our commonsense view of the 
world, while the rule that a room becomes stuffy when the ventilation is blocked may well 
be violated by an open window. 
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there exists a maximal such degree because the preorder contains maximal 
elements. 

A belief base together with an epistemic relevance ordering will be called 
prioritized base. If the belief base is finite, we will also use the notation 
Z1, ... ,Zn to denote the n degrees of epistemic relevance of Z with the con­
vention that Z1 has highest relevance. 

Employing an epistemic relevance ordering, the prioritized removal of x 
from Z, written Z .jJ. x, will be defined as a system S of subsets of Z. Each 
element YES in turn is the union over a family consisting of subsets of all 
degrees of epistemic relevance, i.e., 

Y = U{Y:z}ZEZ where Yz ~ z. (10) 

Formally, Y E (Z .jJ. x) if, and only if, 

1. Y = UzEz Yz , 

2. for all z E Z, Yz ~ z, and 

3. for all Z E Z, Yz is set-inclusion maximal among the subsets of z such 
that lJy~z Yy Ii x. 

Intuitively, the elements of Z .jJ. x are constructed by selecting a maximal 
subset not implying x from the greatest degree of episterruc relevance, then 
a maximal subset of the next important degree is added such that x is not 
implied, and so on. Note, however, that this intuition about constructing 
the elements of Z .jJ. x may fail in the general case. Since we did not place 
restrictions on the relevance ordering, it can happen that there are infinitely 
ascending chains of degrees of epistemic relevance. Nevertheless, also in 
this case the existence of elements of Y's satisfying the above conditions is 
guaranteed by Zorn's lemma. 

A prioritized removal operation selects by definition a subset of the max­
imal subsets of a base not implying a given proposition. 

Proposition 1 Given a base Z and a relevance ordering :::SJ for all x: 

(Z.jJ.x) ~ (Zlx). (11) 

Thus, it makes sense to use .jJ. instead of 1 in the definition (8). The 
resulting operation is called prioritized base revision, denoted by EB. This 
operation, is identical to simple base revision in case that there is only one 
degree of epistemic relevance. 

In the interesting special case when we are dealing with finite belief 
bases-which corresponds to prioritized logical databases investigated in [Fa­
gin et al., 1983J-the result of a prioritized base revision can be finitely rep­
resented. 
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Proposition 2 If Z is a finite belief base then 

(12) 

for every prioriiized base revision ffi on Z. 

Proof: Since Z is finite, there can be only a finite number of finite degrees 
of epistemic relevance, hence, Z JJ. --,x is a finite set of finite belief bases. In 
this case, the following equivalences hold 

n 

Cn(/\ xd ( 13) 
i=1 

n n Cn(xi), (14) 
i=1 i=1 

and the proposition follows immediately. -

In order to demonstrate how base revision works, let us assume the fol­
lowing scenario. Assume that a suspect tells you that he went to the beach 
for swimming and assume that you have observed that the sun was shining. 
Further, you firmly believe that going to the beach for swimming when the 
sun is shining implies a sun tan. If you then discover that the suspect is 
not tanned, there is an inconsistency to resolve. Supposing the following 
propositions: 

b "going to the beach for swimming" , 

s "the sun is shining", 

t "sun tan", 

the situation can be modeled formally by a prioritized base Z: 

ZI {((b /\ s) --d)}, 
Z2 {s}, 

Z3 {b}, 

Z ZI U Z2 U Z3' 

From this belief base t can be derived. If we later observe that --,i, the belief 
base has to be revised: 

Z ffi --,t n ( Cn(Z JJ. t)) + --,i 
Cn (V { {( (b /\ s) --+ t), s }}) + --,t 
Cn({((b/\ s) --+ t),s,--,t}). 
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In particular, we would conclude that b was a lie. 
A consequence of the definition of (simple and prioritized) base revision 

is that for two different belief bases X and Y that have the same mean­
ing, i.e., Cn(X) = Cn(Y), base revision can lead to different results, i.e., 
Cn(XEB x) =j:. Cn(YEB x). Base revision has a "morbid sensitivity to the syn­
tax of the description of the world" [Winslett, 1988], which is considered as 
an undesirable property. Dalal [1988] formulated the principle of irrelevance 
of syntax which states that a revision operation shall be independent of the 
syntactic form of the belief base representing a belief set and of the syntactic 
form of the sentence that has to be incorporated into the belief set (see also 
[Katsuno and Mendelzon, 1989]), i.e., revision operations shall operate on 
the knowledge level [Newell, 1982]. In the theory of epistemic change this is 
accomplished by the requirements that the objects to be revised are belief 
sets and that the result of a revision does not depend on the syntactical form 
of the sentence to be added (postulate (-i-6)). 

Obviously, base revision does not satisfy the principle of irrelevance of 
syntax-and is not a belief revision operation in the sense of the theory of 
epistemic change fo r this reason. Worse yet, abstracting from the syntactic 
representation of a belief base and considering the logical equivalent belief 
set leads nowhere. Simple base revision applied to belief sets is equivalent 
to full meet revision, thus , useless. For these reasons, it is argued in [Dalal, 
1988; Winslett, 1988; Katsuno and Mendelzon, 1989] that revision shall be 
performed on the model-theoretic level, i.e., by viewing a belief set as the set 
of models that satisfy a given belief base and by performing revision in a 
way that selects models that satisfy the new sentence and differ minimally 
from the models of the original belief base. In order to define what the 
term minimal difference means, we have to say something about how models 
are to be compared, though. In Dalal [1988], for instance, the "distance" 
between models is measured by the number of propositional variables that 
have different truth values. Katsuno and Mendelzon [1989] generalize this 
approach by considering complete preorders over models. 

In any case, it is impossible to define a revision operation by referring only 
to logical properties. Some inherently extra-logical, pragmatic preferences 
are necessary to guide the revision process. This is actually one of the basic 
messages of the theory of epistemic change. We have to make up our minds 
about the importance of propositions or sets of propositions in order to select 
among the alternatives which are logically possible. If we consider all of them 
as equally important and combine them (by using full meet revision), we end 
up with nothing. Similarly, in case of a model-theoretic perspective, we 
cannot consider all models as equally possible candidates for a revision, since 
this would lead to a similar result. 

As. argued above, for some applications it does not seem to be a bad idea 
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to derive preferences from the syntactic form of the representation of a belief 
set. Actually, from a more abstract point of view, it is not the particular 
syntactic form a belief base we are interested in, but it is the fact that we 
believe that a particular set of sentences is more valuable or justified than 
another logically equivalent set, and we want to preserve as many of the 
"valuable" sentences as possible. Using this idea it is possible to reconstruct 
base revision in the framework of the theory of epistemic change by employing 
the notion of epistemic relevance. 

4 Belief Revisions Generated by Epistemic Relevance 

The intention behind base revision is that all the sentences in a belief base 
X are considered as relevant- some perhaps more so than others . For this 
reason we want to give up as few sentences from X as possible, while with 
sentences that are only derivable we are more liberal. Formalizing this idea 
we employ as in the case of belief bases an epistemic relevance ordering, i.e. 
a complete pre-order with maximal elements on the entire belief set, with 
the intention of assigning the least degree of relevance to sentences that are 
only derivable. Based on these orderings, selection functions are constructed 
that select subsets that are maximally preferred with respect to epistemic 
relevance orderings. 

We start by defining a strict partial ordering expressing preferences on 
subsets X,Y E 2A , written as X~ Y, by 

X~Y iff ::Iv: ((XnvCYnv)andVw~v: (Xnw = Ynw)), (15) 

which in turn can be used to define a function S~ that selects all maximally 
preferred elements of A 1 x: 

S~(Alx) ~f {B E (Alx)1 VC E (Al x ): B 1:.. C}. (16) 

Note that such maximally preferred sets always exist as can be easily in­
ferred from the following lemma that relates maximally preferred sets to the 
elements of a prioritized removal. 

Lemma 3 Let A be a belief set with an epistemic relevance o1'dering:::S . Then 
for any sentence x: 

B is maximally preferred in (Alx) iff BE (A JJ. x) . (17) 

Proof: Note that Proposition 1 applies also to belief sets because any belief 
set is also a belief base by definition. Hence, for all A and epistemic relevance 
orderings on A, for all x : 

(A JJ. x) C (Alx) . (18) 
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Assume that Y E (A .u. x). Assume for contradiction that there is a set 
e E (A 1 x) such that Y ~ e. This means there exists a degree v such that 
Yv c e nv while for all w )- v we have Yw = en w. However, the set Yv is by 
definition of .u. a set-inclusion maximal subset of v such that (Uwrv Yw) U Yv 
does not imply x, hence, en v cannot be a proper superset of Yv' 

For the other direction, assume B is maximal w.r.t. ~ in (A 1 x). Set 
Y = Band Yz = B n z. Obviously, the following conditions are satisfied: 

1. B = Y = UzEA Yz , 

2. B n z = Yz ~ z, and 

3. B n z = Yz is set-inclusion maximal among the subsets of z such that 
Uytz(B n y) = Uutz Yy If x. 

Hence, B E (A .u. x) . • 

This means that 5.5. selects a nonempty subset of (Alx) provided (Alx) 
is nonempty, i.e., S-5. is a selection function as defined in Section 2, and it 
may be used to define a revision operation as done in equation (4). Revisions 
defined in this way will be called revisions generated by epistemic relevance. 
Analyzing the properties of such revisions, we note that they satisfy most of 
the Gardenfors postulates. 

Theorem 4 Revisions generated by epistemic relevance satisfy (+ 1) - ( + 7). 

Proof: Since S~ is a selection function, revisions generated by epistemic 
relevance satisfy -(+1)- (+6) by [Alchourr6n et al., 1985, Observation 2.3]. 

Further, we have by definition of the selection function that there exists 
a relation ~, defined by putting 

e ~ B iff B 1:- e, (19) 

such that for all x, 

S(Alx) = {B E (Alx)1 ve E (Alx) : e ~ B} (20) 

Hence, condition (7) given in Section 2 is satisfied . Thus, + is a relational 
partial meet revision, which by [Alchourr6n et al., 1985, Observations 3.1, 
4.2 and 4.3] satisfies (+7) .• 

Note that the relation 1:- is not transitive and therefore revisions gener­
ated by epistemic relevance do not satisfy (+8) in general. 6 The interesting 

6For a counter-example consult Section 6. 
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point about such revisions is that they coincide with prioritized base re­
vision as defined in Section 3. That any revision generated by epistemic 
relevance can be conceived as a prioritized base revision follows already from 
Lemma 3. In order to show the other direction of the correspondence, the 
following Lemma (adapted from [Nebel, 1989]) is helpful. 

Lemma 5 Let A be a belief set and x be sentence such that -,x E A. Let Z 
be any subset of A such that Z Ii -,x. Then 

(n{C E Al-,xl Z ~ C}) + x = Cn(Z) + x. (21) 

Proof: "2": Since by the assumption of the lemma Z ~ A and Z Ii -'X, 

(n{C E Al-,xl Z ~ C}) contains Z as a subset by definition. Further, since 
all elements of (A 1 x) are belief sets and the intersection of belief sets is a 
belief set again, (n{ C E A 1 -,x I Z ~ C}) contains Cn (Z), hence, the right 
hand side is a subset of the left hand side. 

"~": Assume the contrary, i.e., there is a sentence y that is an element 
of the left hand side of equation (21), but y Fj. Cn(Z U {x}). By the latter 
assumption Cn( Z U {-,y} U {x}) is consistent and -,x Fj. Cn( Z U {-,y}) 2 
Cn( Z U {-,y V -,x}). By the assumption of the lemma that -,x E A, we have 
(-,x V -,y) E A. Since also Z ~ A, there is at least one element in (A 1 -,x) 
that contains Z U {-,y V -,x}. Call this set B. 

From the first assumption that y E Cn((n{C E Al-,xl Z ~ C}) U {x}), 
we conclude (x -+ y) E Cn(n{C E A l-'xl Z ~ C}). However, the set 
B E (A 1 -,x) that contains Z and (-,y V -,x) cannot contain (x -+ y) because 
otherwise B f- -,x. 

By the fact that the intersection over a system of belief sets is already a 
belief set, we have Cn(n{ C E Al-,xl Z ~ C}) = n{ C E Al-,xl Z ~ C}. 

Finally, because B E {C E A 1 -,x I Z ~ C}, it cannot be the case that 
(x -+ y) E (n{C E Al-,xl Z ~ C}). Thus, we have a contradiction of our 
assumption. Hence, the left hand side must be a subset of the right hand 

side. -

It should be noted that if in the above · lemma the set Z is empty, the 
lemma describes the behavior of full meet revision. Another way to look at 
this lemma is that if the selection function selects elements of A 1 -,x by 
focusing on a particular set Z, then the result of the revision is the set of 
consequences of the union of Z and the new sentence. This result can be 
easily generalized to systems of focusing sets. 

Lemma 6 Let A be a belief set, and let x be a sentence such that -,x E A. 
Let S be a system of subsets of A, where Z Ii -,x for all Z E S. Then 

(n{C E Al-,xl:3Z E S: Z ~ C}) + x = (n Cn(Z)) + x. (22) 
ZES 
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Proof: 

(n{C E Al,xl 3Z E S: Z ~ C}) +x = 

Cn((n{C E Al-,xl 3Z E S: Z ~ C}) U {x}) (23) 

Cn( (n( u {C E Al-,xl Z ~ C})) U {x}) (24) 
ZES 

Cn ( ( n (n {C E A 1 -,x I Z ~ C})) U {x} ) (25) 
ZES 

Cn( n ((n{C E Al-,xl Z ~ C}) U {x})) (26) 
ZES 

= Cn ( n Cn ((n {C E A 1 -,x I Z ~ C}) U {x}) ) (27) 
ZES 

Cn ( n Cn (Z U {x} ) ) (28) 
ZES 

= Cn ( n Cn ( Cn (Z) U {x}) ) (29) 
ZES 

- Cn( (n Cn(Z)) U {x}) (30) 
ZES 

(n Cn(Z)) + x. (31 ) 
ZES 

Equation 23 is the application of the definition of the expansion of a belief 
set (2). (24)- (26) follow by set theory. (27) follows because for any system 
of belief sets S the following equation holds: 

Cn ( n (A U {x} ) ) = Cn (n Cn (A U {x} ) ) (32) 
AES AES 

The "~" direction is obvious. For the other direction assume a sentence y 
that is an element of the right hand side, i.e., such that for all A E S we 
have y E Cn(A U {x}). By the deduction theorem, (x ---+ y) E Cn(A) for 
'a ll A E S. Since A = Cn(A), it holds that (x ---+ y) E (nAES A), hence, 
y E Cn((nAES A) U {x}) = Cn(nAES(A n {x})). 

(28) is an application of Lemma 5. (29) follows from properties of Cn, 
(30) is another application of equation (32), and, finally, (31) is another 
application of the definition of the expansion of a belief set. -

Using this lemma, the correspondence between revision generated by epis­
temic relevance and prioritized base revision can be easily shown. 
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Theorem 7 For any revzswn operation -+- on a belief set A generated by 
epistemic relevance, there exists a corresponding prioritized base revision ffi 
on some base Z of A, and vice versa, such that for all x: 

A -+- x = zffi x. (33) 

Proof: Assume a belief set A and an epistemic relevance ordering ~ on 
A. By definition, any belief set is also a belief base. Applying Lemma 3, it 
follows that 

(34) 

Hence, for a given revision on A generated by epistemic relevance, there is 
a prioritized base revision on some base Z of A (namely, the base Z = Ar 
such that for all x: 

A -+- x = zffi x. (35) 

For the other direction, assume a prioritized belief base Z with degrees of 
epistemic relevance Z. Set A = Cn(Z) and set A = Zu {O}, where 0 = A- Z 
and 0 -...: z for all z E Z. Now we will show that 

S~(Ai·x) = {C E (Ai·x)j:3X E (Z .u- .x): X ~ C}. (36) 

"2": Let X E (z.u- .x) and let B E (Ai·x) such that X ~ B . Such 
a set B exists because X ~ Z ~ A and X If ·x. Then B must be maximal 
w.r. t. <t: in (A 1 .x). Assuming otherwise would mean that there is a degree 
z and the selected subset X-z ~ z was not maximal w.r.t. to the conditions 
in the definition of the elements of a prioritized removal, or there is another 
set D E (A 1 .x) that is identical to B for all priority z E Z but contains 
a larger subset of 0, which is impossible, however, because B is already a 
maximal subset of A. 

"~": Assume that B is an element of the left hand side of equation (36), 
i.e., B is a maximal element w.r.t . <t:. Consider the set X = B n Z. Assume 
for contradiction that X (j. (Z .u- .x). Since X If ·x, this means that there 
is set Y E (Z .u- .x) such that Uv>--z(X nv} c Uy>-z Yy for some degree z E Z. 
Now, since Y If ·X and Y ~ A, there must b~ a set C E (A 1 .x) that 
contains Y. By definition of <t:, we would then have B <t: C. Hence, B 
cannot be a maximal element w.r.t . <t: and we have a contradiction. Thus, 
the left hand side is a subset of the right hand side. 

Applying Lemma 6 to equation (36) we get 

(nS~(Ai'x))+x = ( n Cn(Y))+x, (37) 
YE(ZjJ-,x) 

7Note, however, that a smaller base would be sufficient as can be seen from the proof 
of Proposition 8. 
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i.e., for any prioritized base revision on Z there exists an equivalent revision 
on Cn(Z) generated by epistemic relevance. -

This means that prioritized base revision coincides with revision gener­
ated by epistemic relevance in the sense that the class of prioritized base 
revisions is identical with the class of revisions generated by epistemic rele­
vance. This abstract view on syntax-based revision may also answer some of 
the questions raised by Myers and Smith [1988]. They observed that some­
times base revision does not seem to be the appropriate operation because 
some derived information turns out to be more relevant than the syntacti­
cally represented sentences in a belief base, and we get the wrong results 
when using base revision. However, there is no magic involved here. Base 
revision leads to the right results only if the syntactic representation really 
reflects the epistemic relevance. For this reason, the notion of revision gener­
ated by epistemic relevance seems to be preferable over base revision because 
it avoids the confusion between surface-level syntactic representation and the 
intended relevance of propositions. 

The question of whether the correspondence between belief revision gen­
erated by epistemic relevance and prioritized base revision can be exploited 
computationally cannot be answered positively in the general case. Although 
Theorem 7 states that it is possible to compute a revision on a belief set A 
generated by epistemic entrenchment by performing a prioritized base revi­
sion on some base of A, this does not help very much because in the proof 
we used A itself as the base. For the case of belief sets that are finite mod­
ulo logical equivalence, however, a revision operation generated by epistemic 
relevance can be performed by a prioritized base revision on a finite base. 

Proposition 8 Let A be a belief set finite modulo logical equivalence. If-+­
is a revision on A generated by epistemic relevance, then there exists a finite 
prioritized base Z, such that for all x: 

A -+- x = zffi x. (38) 

Proof: Define Z such that it contains one representative z for each class of 
'logically equivalent sentences [z ] = {x E AI f- z t-+ x} . These representatives 
are chosen to be maximal elements w.r.t . ~ in [z] . The relevance ordering 
on Z is defined as the restriction of the epistemic relevance ordering on A. 

Since A is finite modulo logical equivalence, Z is finite. In order to show 
that (38) holds, it obviously suffices to prove the following condition: 

XE(ZJj..x) iff Cn(X)ES~(Al'x). (39) 

"=}": Assume X E (Z Jj. .x). First, we verify that Cn(X) E (Al.x). 
By definition of Jj. X does not imply ·x. Furthermore, Cn(X) is a maximal 
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subset of A. Assuming otherwise, i.e., Cn(X) U y If oX for some yEA, 
would mean that there is a sentence z E [y] such that Xu z If oX, which is 
impossible by the construction of Z and the defini tion of .lJ.. 

Second, Cn(X) must be maximal w.r.t. ~ in (Alox). Let us assume the 
contrary, i.e., there is a set B E S~(A lox) and Cn(X) ~ B. This means 
for some degree v: Cn(X) n v c B n v while for all larger degrees the sets 
are identical. Chose a proposition y E (B n v) - (Cn(X) n v). Let z E [y] 
be maximal w.r.t. ~. Note that z tf. X and that v ~ y ~ z. By this we 
conclude that B 2 (Uv>-zXv) U {z} I- ox. This means however, that there 
cannot be a set B that IS larger than Cn(X) w.r.t. ~. 

"¢::": Assume a set B E (A 1 ox) that is maximally preferred. Set 
X = B n Z. Because of the construction of Z, we have Cn (X) = B. Assume 
for contradiction that X tf. (Z .lJ. ox). This means for some degree v there is 
a sentence z E v such that z tf. X but (Uw>-vXw) U {z} If ox. However, in 
this case there is also a set C E (A lox) th~t contains (Uw>-v Xw) U {z} and 
which is therefore more preferred than B. • -

5 Epistemic Relevance and Entrenchment 

Although revisions generated by epistemic relevance do not satisfy all Gar­
denfors postulates, there are special cases that do so. A trivial special case 
is a revision generated by only one degree of epistemic relevance, which is 
equivalent to full meet revision. There are more interesting cases, however. 

Gardenfors and Makinson claim that the notion of epistemic entrench­
ment introduced in [Gardenfors and Makinson, 1988] is closely related to the 
notion of database priorities as proposed in [Fagin et ai., 1983]. Since the 
notion of database priorities is the finite special case of epistemic relevance 
orderings on belief bases as introduced in Section 3, which can in turn be 
used to generate belief revision operations, one would expect that epistemic 
entrenchment is closely related to epistemic relevance. Although the intu­
itions are clearly similar, the question is whether the different formalizations 
lead indeed to identical results. 

Epistemic entrenchment orderings, written as x ~( y, are defined over 
the entire set of sentences C and have to satisfy the following properties: 

(~(1) If x ~( y and y ~( z, then x ~( z. 

(~(2) If x I- y, then x ~( y. 

(~(3) For any x,y, x ~( (x 1\ y) or y ~( (x 1\ y). 

(~(4) When A =f. Cn(l.), then x tf. A iff x ~( y for all y E C. 

(~(5) If y ~f X for all y E C, then I- x. 
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Using such a relation, Gardenfors and Makinson define belief contraction 
generated by epistemic entrenchment, written A 2. X, by 

yEA 2. X iff yEA and (( x V y) ~( x or f- x) ( 40) 

and show that such a belief contraction operation satisfies all rationality 
postulates for contraction as well as the following condition [Gardenfors and 
Makinson, 1988, Theorem 4]: 

x~(y iff xf/-A2.(x!\y)or f-(x!\y). (41 ) 

Further, they show that any belief contraction operation satisfying all of the 
rationality postulates is generated by some epistemic entrenchment ordering 
[Gardenfors and Makinson, 1988, Theorem 5] . 

The question is now how to interpret these results in the framework 
of epistemic relevance orderings on belief sets. First of all, from (~(2), 
reflexivity follows. Second, from (~(2) and (~(3), it follows that either 
x ~( (x!\ y) ~( y or y ~( (x !\ y) ~(x. This means, :::S( is a complete 
preorder on.c. For the strict part of this ordering we will use the symbol 
-«' Further, from (:::s(2) it follows that there are maximal elements, namely, 
all sentences logically equivalent to T (and perhaps some other sentences as 
well) . Ignoring the minimal elements (the sentences that are not elements 
of the belief set (~(4)), the restriction of ~( to the sentences in a belief set 

can be considered as an epistemic relevance ordering as defined in the previ­
ous section. In this case, using interdefinability of revision and contraction, 
definition (40) coincides with a contraction operation that is defined by us­
ing the Harper identity (5) and a revision operation generated by epistemic 
relevance. 

Theorem 9 Suppose a belief set A ) an epistemic entrenchment ordering :::S() 
and the contraction operation 2. generated by :::S(. Let:::s be the epistemic 
relevance ordering that is the restriction of ~( to A) and let -+- be the revision 
generated by the epistemic relevance ordering ~. Then 

A 2. x = (A -+- -ox) n A. ( 42) 

'Proof: For the limiting case f- x, we have (A -+- -ox) Cn(~), hence the 
right hand side equals A. By (40) we also get for the left hand side A. 

For the case x f/- A, again (A U { -oX } ) n A = A. That the left hand side has 
the same value follows from (40) and the observation that by (~A) x f/- A 
and yEA implies x -« y, which in turn implies by y f- (x V y) and (~(2): 
x -« y ~( (x V y). 

For the principal case, x E A and If x, we will show that 

( 43) 
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If this condition is satisfied, then equation (42) holds obviously for the prin­
cipal case as well. 

"{=": Suppose yEA and x -<f (x V y). Note that because of ((x V y) 1\ 

(xV-,y)) f- x and (~f2) we have ((xVY)I\(xV-'y)) ~f x, which leads by our 
assumption and (~fl) to ((x V y) 1\ (x V -,y)) -<f (x V y). Because of (~f3), 
either (x V y) or (x V -,y) is less entrenched than the conjunction of them. It 
cannot be the former since that is strictly more entrenched, hence 

(x V -,y) ~f ((x V y) 1\ (x V -,y)) -<f (x V y). (44) 

Consider an arbitrary set B E S~(Alx). Assume that (xVy) E B. Then 
(x V -,y) ¢ B, or equivalently B U-{y} If x. Since B is a maximal subset 
of A not implying x, we have y E B. Thus, assume (x V y) ¢ B. Consider 
C = B n {z E AI (x Vy) ~f z}. Because B is a maximally preferred subset 
in (A 1 x), we must have C U {(xV y)} f- x, or, using the deduction theorem 
C f- ((x V y) ---+ x), hence C f- (-,y V x). By the compactness of propositional 
logic, there is a finite subset D ~ C such that AD f- (-,y V x), hence, by 
(~f2) A D ~f (-,y V x), which by (~f3) implies that there is a sentence v E D 
such that v ~f (-,y V x). By (44) we get v -<f (y V x) which is in contradiction 
to the construction of C, however. Thus, y is a member of every maximally 
preferred set in (Alx). 

"=}": Assume y E nS~(Alx). Assume for contradiction that we never­
theless have (x V y) ~f x. By the fact that x f- (x V -'Y), we conclude 

(x V y) ~f X ~f (x V -,y). ( 45) 

Since yEn S~ (A 1 x), every set B E S~ (A 1 x) must contain y and, hence, 
(x Vy), i.e., (x-V -,y) ¢ B. Consider the ~et C = B n {z E AI (x V -,y) -<f z}. 
Since no element of S~ (A 1 x) contains (x V -'Y), all such sets C must already 
contain propositions that together with (x V -,y) leads to the derivation of x, 
i.e., C U {(x V -,y)} f- x, or, by the deduction theorem C f- ((x V -,y) ---+ x), 
hence C f- (x Vy). By compactness, (~f2), and (~f3) we conclude that there 
exists a proposition v E C such that v ~f (x V y), and by the construction of 
C: (x V -,y) -<f (x V y), contradicting (45) : • 

Thus, the notion of epistemic entrenchment can indeed be viewed as a 
special case of epistemic relevance orderings-and, in the finite case, as a 
special case of database priorities. 

The next corollary makes explicit which of the conditions (~fl)-(~f5) 
are actually needed to lead to a fully rational revision operation generated 
by epistemic relevance. 

Corollary 10 Any revision generated by an epistemic relevance ordering ~ 
such that 
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1. if x f- y then x ~ y, and 

2. for any x,y: x ~ (x /\ y) or y ~ (x /\ y), 

satisfies all Gardenfors postulates. 

Proof: (~l1) is already entailed by the fact that ~ is a preorder. (~A) 
concerns only elements that are not in the belief set, and are therefore not 
related by ~. Further, as can be seen from the proof of Theorem 9, (~l5) 
is not necessary at all. We can always add a maximal degree that contains 
all logically valid sentences and remove them from other degrees without 
changing the outcome of a revision. -

Episteinic entrenchment orderings lead to "fully rational" contraction and 
revision, and, moreover all such belief change operations are generated by 
some epistemic entrenchment ordering. It is not obvious, however, how to 
arrive at such epistemic entrenchment orderings. While epistemic relevance 
can be easily derived from a given prioritized belief base, it is not clear 
whether there are natural ways to generate epistemic entrenchment order­
ings. In [Gardenfors and Makinson, 1988J it is proposed to start with a com­
plete ordering over the maximal disjunctions derivable from a belief base. 
Despite the fact that this does not sound very "natural", it also implies that 
a large amount of information has to be supplied, sometimes too much (see 
Proposition 17 in Section 7), in order to change a belief set. 

Interestingly, there is another special case of epistemic relevance that 
leads to a belief revision operation that satisfies all postulates . When all 
degrees of epistemic relevance of a prioritized belief base Z are singletons, 
then the prioritized base revision (as well as the corresponding partial meet 
revision and the epistemic relevance ordering on Cn( Z)) is called unambigu­
ous. 

Proposition 11 Let Z be a prioritized belief base such that all degrees of 
epistemic relevance are singletons. Then (Z .IJ. x) is a singleton iff If x. 

Proof: Note that (Z.IJ. x) =I 0 if and only if If x. 
- If Z If x then trivially (Z .IJ. x) = {Z}. 

For the case If x and Z f- x, assume for contradiction that X, X' E 
(Z .IJ. x) and X =I X'. By the definition of .IJ. there must be some degree 
z such that Xz =I X~. Let z be the greatest such class. Now, since the 
degrees of epistemic relevance are singletons, we either have (Uv;..z Xv U z) = 
(Uv;..z X~ U z) f- x or not. In both cases, X and X' would agree on whether 
they contain z. Hence, they cannot be different. -
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Note that even when (Z .lJ. x) is always a singleton (for If x), the cor­
responding selection function S~ does not necessarily select singletons from 
(Cn(Z) L x), i.e., the corresponding belief revision operation is not a maxi­
choice revision as defined in Section 2. 

Clearly, the epistemic relevance ordering on the belief set Cn (Z) cannot 
always be extended to an epistemic entrenchment ordering. Nevertheless, be­
lief revisions corresponding to unambiguous prioritized base revisions satisfy 
all rationality postulates. 

Theorem 12 Let::::; be an unambiguous epistemic relevance ordering on 
a belief set A. Then the revision generated by this ordering satisfies all 
Gardenfors postulates. 

Proof: By Theorem 4, the revision operation satisfies (+1)- (+7) . Thus, 
we only have to verify (+8) . By [Alchourr6n et at., 1985, Corollary 4.5] it 
suffice to show that the revision operation is transitively relational, i.e., using 
definition (19), we have to show that 1:- is transitive. 

Since::::; is an unambiguous epistemic relevance ordering on A, all degrees 
of epistemic relevance except for the least one are singletons. The least degree 
will be denoted by O. 

In order to show transitivity of 1:-, we first show that incomparability of 
two sets B, C E (AL ox), written BIIC and defined by 

BIIG iff B 1:- C and C 1:- B, 

is an equivalence relation on A L ox. Symmetry and reflexivity of II are 
immediate consequences of the definition. For showing transitivity, suppose 
B, C, D E (A L ox) and BIIGIID. If B = C or G = D, then BIID follows 
immediately. Therefore assume B =I=- C =I=- D. If BII G and B =I=- C, then there 
is a degree v E A such that 

B nv t=l=-1J C nvand Vw ~ v: (B n w = C n w). (46) 

Since all degrees except 0 are singletons, it follows that v = 0, i. e., B n (A -
0) = C n (A - 0). With the same argument, we conclude that C n (A - 0) = 
D n (A - 0), hence B n (A - 0) = D n (A - 0). Since Band D are maximal 
subsets of A, it cannot be the case that B no c D n 0 or B n 0 :J D n 0, 
hence BIID. 

From the fact that II is an equivalence relation, it follows straightforwardly 
that BIIC and C <t: D implies that B <t: D. For contradiction assume 
B 1:- D. Then we must have D <t: B because otherwise by transitivity of II 
we could conclude GIlD, which is a contradiction of the assumption. From 
D <t: B, the assumption that G <t: D and the transitivity of <t: it follows that 
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G ~ B, which again contradicts the assumption. With the same argument, 
it follows that B ~ G and G il D implies B ~ D. 

Now assume B 1:- G 1:- D. By considering cases, transitivity of ~ 
follows. (1) Assuming BIIG and GilD leads to BIID, hence, B 1:- D. (2) 
Assuming BIIG and D ~ G leads to D ~ B, hence B 1:- D . (3) Assuming 
G ~ B and GilD leads to D ~ B, hence B 1:- D. (4) Assuming G ~ Band 
D ~ G leads to D ~ B, hence B 1:- D. Thus, belief revisions generated by 
unambiguous epistemic relevance are transitively relational and satisfy for 
this reason (+8). • 

Although an unambiguous relevance ordering is not necessarily an en­
trenchment ordering, it is possible to generate an epistemic entrenchment 
ordering using (41) that leads to an identical revision operation because un­
ambiguous revisions are fully rational. Given an unambiguous prioritized 
base Z, the epistemic entrenchment ordering can be derived as follows. For 
every pair of propositions x, y E Gn(Z), determine {X} = Z .lJ. x and 
{Y} = Z .lJ. y, and set Y -<f x if and only if X ~ Y. The verification 
that this is indeed the right epistemic entrenchment ordering is left as an 
exercise to the reader. 

6 Belief Revision and Default Reasoning 

Doyle has remarked in [Doyle, 1990, App . AJ that "the adjective 'nonmono­
tonic' has suffered much careless usage recently in artificial intelligence, and 
the only thing common to many of its uses is the term 'nonmonotonic' itself." 
Doyle identified two principal ideas behind the use of this term, namely, 

[ . . . J that attitudes are gained and lost over time, that reasoning 
is nonmonotonic-this we call temporal nonmonotonicity- and 
that unsound assumptions can be the deliberate product of sound 
reasoning, incomplete information, and a "will to believe"- which 
we call logical nonmonotonicity. 

Formally, the term logical nonmonotonicity refers to nonmonotonicity found 
in. nonmonotonic logics, i.e ., given a deductive closure operation G( ·) of a 
nonmonotonic logic, 

x ~ Y =fo G(X) ~ G(Y) . (47) 

The notion of temporal nonmonotonicity refers to the development of a set 
of beliefs over time, where At will be used to refer to A at time point t: 

( 48) 
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Although these two forms of nonmonotonicity should not be confused, some­
times they turn out to be intimately connected. In particular, the temporal 
nonmonotonicity induced by belief revision, i.e., the fact that in general we do 
not have A ~ A + x, is related to logical nonmonotonicity induced by some 
forms of default reasoning. Further, there exists also a connection between a 
form of contraction and default reasoning, as we will see below. 

When reasoning with defaults in a setting as described in [Poole, 1988; 
Brewka, 1989], we are prepared to "drop" some of the defaults if they are 
inconsistent with the facts. This, however, is quite similar to what we are 
doing when revising beliefs in the theory of epistemic change. Propositions 
of a theory are given up when they are inconsistent with new facts. Since de­
fault reasoning leads to logical nonmonotonicity, one would expect that belief 
revision is nonmonotonic in the facts to be added, i.e., we would expect that 
Cn(x) ~ Cn(y) does not imply A + x ~ A + y. Indeed, as is well known, 
requiring monotony in the second operand of a belief revision operation is 
impossible in the general case. Exploring the space of possible revision op­
erations that imply monotony shows that the revision either violates one of 
the basic postulates or it is a trivial revision on Cn(0) or Cn(l.). 

Proposition 13 Let + be a belief l'evision opemtion defined on a belief set 
A. If for all x, y 

A + x ~ A + Y if Cn ( x) ~ Cn (y ), ( 49) 

then 

1. The opemtion + violates one of the basic Giirdenfors postulates, or 

2. A = Cn(0) and A + x = Cn(x), or 

3. A = Cn(l.) and A + x = Cn(x). 

Proof: Assume A =J Cn(l.) and a proposition x with -,x E A and If -,x. By 
(49) we would have A + T ~ A + x. Because of (+3) and (+4), A + T = A. 
By assumption, we thus have -,x E A + T. Now, by (+2) x E A-+- x. Because 
of (+5) and the assumption If -'X, -'X t/. A + x . Thus, either the requirement 
A + T ~ A + x or one of the basic postulates is violated. 

Let + a belief revision operation on Cn(0) and assume that all basic 
postulates are satisfied. Then by (+1)-(+3) it follows that Cn(x) ~ Cn(0) + 
x ~ Cn(0 U {x}) = Cn(x) and (49) is trivially satisfied. 

Assume A = Cn(l.). If f- -,x then clearly A -+- x = Cn(l.) = Cn(x) by 
(+1) and (+2). Thus, assume If -,x. By (+1) and (+2), we have Cn(x) ~ A + 
x. Now assume there is a proposition z E A + x such that z t/. Cn(x). By 
(49) we would have A + x ~ A + (-'z!\x). However, this would violate (+2) or 
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(+5). Thus, if the basic postulates and (49) are satisfied, Cn(1.) + x = Cn(x) . 
• 

Makinson and Gardenfors [1991J use this similarity of logical nonmono­
tonicity and the nonmonotonicity of belief revision in the second operand as 
a starting point to investigate the relationship between nonmonotonic logics 
and belief revision on a very general level. They compare various general 
conditions on nonmonotonic provability relations with the Gardenfors pos­
tulates. 

For the approaches to belief revision described in the previous section 
there is an even stronger connection to some models of nonmonotonic rea­
soning. Prioritized base revision, and hence partial meet revision generated 
by epistemic relevance, is expressively equivalent to skeptical provability8 in 
Poole's [1988J theory formation approach and Brewka's [1989J level default 
theories (LDT)-in the case of finitary propositional logic. 

A common generalization of both approaches are ranked default theo­
ries (RDT). A RDT 6 is a pair 6 = (V, F), where V is a finite sequence 
(VI, ... , V n ) of finite sets of sentences (propositional, in our case) interpreted 
as ranked defaults and F is a finite set of sentences interpreted as hard facts. 

An extension of 6 is a deductively closed set of propositions 

n 

E = Cn((U R i ) U F) (50) 
i=I 

such that for all i with 1 :::; i :::; n: 

2. Ri is set-inclusion maximal among the subsets of Vi such that 
(U~=I R j ) U F is consistent. 9 

A sentence x is strongly provable in 6, written 6r--x, iff for all extensions E 
of 6: x E E. 

Poole's approach is a special case of RDT's where V = (VI)' and Brewka's 
LDT's are RDT's with F = 0. Note, however, that the expressive difference 
between RDT's and LDT's is actually very small and shows up only if F 
is inconsistent. In this case, RDT's allow the derivation of 1. while this is 
impossible in LDT's. 

8 A correspondence to credulous derivability could be achieved if a notion of nondeter­
ministic revision as proposed in [Doyle, 1990] is adopted. 

9Note that this definition, which is similar to the definition of an extension in [Poole, 
1988], excludes inconsistent extensions. Nevertheless, the definition of strong provability 
implies that 1.. can be derived iff F is inconsistent. 
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Theorem 14 Let ~ = ((Vb"" V n ), F) be a RDT. Let Z = Ui=1 Vi be a 
prioritized base with degrees of epistemic relevance VI, ... , V n . Then for all 
x: 

~r-x iff x E (Zffi F). (51 ) 

Pro of: In the limiting case when F f- ~, zffi F = Cn(~). Further, in this 
case there is no extension of ~, hence ~r-x for all x E .c by the definition of 
strong provability. 

When F is consistent, then (Z .JJ. -,(/\ F)) is by definition a system S of 
subsets Y ~ Z such that 

1. Y = Ui=1 Yi, 

2. Yi ~ Zi, for all 1 ~ i ~ n, and 

3. for all 1 ~ i ~ n, Yi is set-inclusion maximal among the subsets of Zi 
such that U;=l Yj If -,(/\ F). 

Since the second condition of 3. is equivalent with the condition that 
(U;=l Yj) U F) is consistent, it follows that by definition for every exten­
sion E of ~ there exists a set Y E (Z .JJ. -,(/\ F)) such that E = Cn(Y U F) 
and vice versa, hence 

n E = n Cn(Y) + (/\ F), (52) 
E is an extension of D. YE(Z1J.~(/\F)) 

which completes the proof. -

This means that ranked default theories have the same expressive power 
as finitary prioritized base revision operations, which coincide with finitary 
belief revisions generated by epistemic relevance. 

It should be noted that in ranked default theories there is no requirement 
on the internal consistency of defaults. This means that the set Ui Vi may 
very well be inconsistent. In Theorem 14 that may lead to ..L E Cn(Z), 
i.e., the belief set to be revised is inconsistent. Although this might sound 
unreasonable in the context of modeling (idealized) epistemic states- in 
fact, inconsistency is indeed explicitly excluded by requirement (2.2.1) in 
[Gardenfors, 1988]-it does not lead to technical problems in the theory of 
epistemic change. Additionally, it is possible to give a transformation be­
tween reasoning in RDT's and prioritized base revision using only consistent 
belief sets. 

Corollary 15 Let ~ be a RDT as above. Then there exists a consistent 
prioritized base Z and a proposition y such that for all x 

~r-x iff x E (Zffi (y!\ F)) . (53) 
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Proof: Define Z as in Theorem 14. Transform every sentence in Z into 
negation normal form (i.e., into a formula that contains only 1\, V and -', and 
all negation signs appear only in front of propositional variables). Assuming 
without loss of generality that the alphabet of propositional variables E is 
finite, extend E to E' by adding for every propositional variable a a fresh 
variable a'. Now replace any negative literal -,a in aU sentences of Z by a', 
call the new belief base Z' and define 

def (54) y 

Since no sentence in Z' contains any negation sign, Z' is consistent. 
Let x any proposition over E, we will show that for any two belief bases 

Y and Y', where Y' is a transformed belief base according to the above rules, 
the following relation holds: 

Y f- x iff Y' u {y} f- x. (55) 

Assume Y f- x but Y' u {y} If x. This means Y' U {y} U -,x is satisfiable. 
Restricting the truth assignment of this belief set to E, we get one that 
must satisfy Y U {-,x} by construction of Y'. This is impossible, however. 
Conversely, assuming satisfiability of Y U {-,x}, a truth assignment can be 
extended to E' such that it satisfies Y U {y} U -,x, hence also Y' U {y} U -,x. 

That means that for any maximal subset Y ~ Z that is consistent with 
a given proposition x there exists a corresponding set Y' ~ Z', that is con­
sistent with y and x and maximal in Z'. Further adding y to Y' allows to 
derive the same propositions over E as can be derived from Y . • 

From the results above and the translation of (+8) to a condition on 
nonmonotonic derivability relations in [Makinson and Gardenfors, 1991], it 
follows that the derivability relation of RDT's w.r.t. the set of hard facts :F 
does not satisfy rational monotony (see [Makinson and Gardenfors, 1991]).10 
This condition can be phrased as follows: 

If x r-Y and x If-,z then ' x 1\ z r-Y (56) 

In plain words, if a proposition x permits the plausible conclusion y, this 
conclusion continues to hold for the stronger premise x 1\ z provided there 
is no plausible reason to deny z given the assumption x. Applying this 
cond ition to RDT's we consider the nonmonotonic derivability relation as 

10 Note that this result depends on the exact correspondence between RDT's and belief 
revision generated by epistemic relevance. In [Makinson and Giirdenfors, 1991; Giirdenfors, 
1990) the correspondence between Poole's logic and belief revision was only approximate 
because the defaults were assumed to be deductively closed . 
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parameterized by the defaults 1), written F~vx. For a counter-example 
to rational monotony, suppose a situation where two people of different sex 
meet the first time and try to get to know important facts about each other. 
Assume one person has the following background beliefs modeled as a set of 
defaults: 

1. Being a parent implies being married (p ---* m). 

2. Living alone implies being a bachelor (a ---* b). 

3. Wearing a ring implies being a dandy or being married (1' ---* (d V m)). 

All these defaults have the same priority. Further, suppose the postulate 
(b ~ -,m) and the facts p, a, and r. One extension, which contains m, is 
the consequential closure of the facts and rules 1 and 3. The other possible 
extension, which contains d, is the closure of the facts and rule 2. This means 
that (m V d) is a sceptical consequence: 

(b ~ -,m) 1\ p 1\ a 1\ l' ~v (m V d) . (57) 

If -,d is added to the facts the expected conclusion m does not follow, however. 
In this case one extension, which contains m and -,d, is generated by the facts 
and rule 1 and 3. The other possible extension is generated by the facts and 
rule 2 and contains -'m and -,d. Hence, 

-,dl\((b~-'m)l\pl\al\r) Ifv (mVd), (58) 

although 

((b~-'m)l\pl\al\r) Ifv d. (59) 

Another interesting observation in this context is that the addition of 
constraints to RDT's is similar but not identical to a belief contraction opera­
tion as defined in Section 2. Poole [1988] introduced constraints- another set 
of sentences-as a means to restrict the applicability of defaults. A ranked 
default theory with constraints is a triple ~ = (1), F,C), where 1) and Fare 
defined as above and C is a finite set of sentences interpreted as constraints. 
The notion of an extension is modified as follows. Instead of condition 2. it 
is required that 

2. Ri is set-inclusion maximal among the subsets of 1)i such that 
(Ui=l R i ) U F U C is consistent. 

It should be obvious that the addition of constraints is a generalization of 
the basic framework, i.e., for all F, 1), x: 

(1), F, 0) f- x iff (1), F) f- x. (60) 

26 



Provided the set F U C is consistent, which is the interesting case, skeptical 
derivability can be modeled as a form of contraction on belief bases (see 
[Nebel, 1989]). 

Theorem 16 Let 6 = ((VI, . . . , V n ), F, C) be an RDT with constraints such 
that F U C is consistent. Let Z = F U U~I Vi be a prioritized base with 
F, VI, ... ,Vn the degrees of relevance of Z. Then 

6r--x iff V (Z -lL -{/\ C)) f- x (61 ) 

Proof: If F U C is consistent, then every element Y E (Z -lL -,(/\ C)) contains 
F. Further, the subsets chosen from Vi are maximal subsets consistent with 
F and C, hence, the extensions of 6 correspond to sets Y E (Z -lL -,(/\ C)) 
and vice versa, such that E = Cn(Y). -

This goes some way to answering the question whether there is a counter­
part to contraction in nonmonotonic logics, raised in [Makinson and Garden­
fors, 1991]. Default reasoning with constraints in Poole's theory formation 
approach can be modeled by using base contraction. 

Trying to lift this result to belief sets, however, is impossible in the general 
case. Usually, ranked default theories with constraints do not allow the 
derivation of /\ C, and this property is independent from consistency of the set 
of facts :F with the set of defaults Ui 1)i. When contracting an inconsistent 
belief set, however, the contracted belief set contains the negation of the 
proposition used to contract the belief set. This property follows from the 
Harper identity (5) when we set A = Cn(1..): 

Cn ( 1..) .:.. z = (Cn ( 1..) -+- -, z) n Cn ( 1..) = Cn ( 1..) -+- -, z 2 Cn ( -, z ) ( 62) 

This means, provided we try to model derivability in such logics by belief 
contraction, in case when the defaults are inconsistent with the facts, a belief 
contraction would lead to the inclusion of the constraints-which may not 
be derivable in the corresponding default logic. Base contraction does not 
have this property because such operations remove more beliefs than belief 
contractions. In particular, while every contracted belief set A .: x contains 
Cn (A) n Cn ( -,x), a contracted base usually does not contain those beliefs 
(see also [Nebel, 1989]). 

7 Computational Complexity 

For the investigation of the computational complexity of belief revision, we 
consider the problem of determining membership of a sentence y in a belief 
set A = Cn(Z) revised by x, i.e., 

yEA -+- x. (63) 
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As the input size we use the sum of the size IZI of the belief base Z that 
represents A and the sizes Ixl and Iyl of the sentences x and y, respectively. 

This assumption implies that the representation of the preference rela­
tion used to guide the revision process should be polynomially bounded by 
IZI + Ixl + Iyl· Although this sounds like a reasonable restriction, it is not met 
by all belief revision approaches. Belief revision generated by epistemic en­
trenchment orderings [Gardenfors and Makinson, 1988], for instance, requires 
more preference information in the general case. An epistemic entrenchment 
ordering over all elements of a belief set can be uniquely characterized by 
an initial complete order over the set of all derivable maximal disjunctions 
(over all literals) [Gardenfors and Makinson, 1988, Theorem 7]. This set is 
logarithmic in the size of the set of formulas (modulo logical equivalence) in 
a belief set. However, the number of maximal disjunctions may still be very 
large. 

Proposition 17 The set of maximal disjunctions implied by a belief base 
has a worst-case size that is exponential in the size of the belief base. 

A similar statement could be made about revisions generated byepistemic 
relevance. It is, of course, possible to have a belief base Z that represents 
A and an epistemic relevance ordering over A that is not representable in a 
polynomial way w.r.t. IZI . However, if we consider only complete preorders 
over Z with the understanding that the degree of least relevant sentences is 
Cn( Z) - Z, then the ordering is represented in a way that is polynomially 
bounded by IZI and -i- can be computed by using the corresponding prioritized 
base revision. This means all "natural" epistemic relevance orderings are 
well-behaved. 

Analyzing the computational complexity of the belief revision problems, 
the first thing one notes that deciding the trivial case y E Cn(0) -i- x is 
already co-N P-complete,ll and we might give up immediately. However, 
finding a characterization of the complexity that is more fine grained than 
just saying it is N P-hard can help to understand the structure of the problem 
better. In particular, we may be able to. compare the inherent complexity 
of different approaches and, most importantly, we may say something about 
feasible implementations, which most likely will make compromises along 
the line that the expressiveness of the logical language is restricted and/or 
incompleteness is tolerated at some point. For this purpose we have to know, 
however, what the sources of complexi ties are. 

11 We assume some familiarity with the basic notions of the theory of N P-completeness 
as presented in the first few chapters of [G arey and Johnson , 1979). This means the 
terms decision problem, P, NP, co-NP, PSPACE, polynomial transformation (or many-on e 
reduction), polynomial Turing reduction, completeness w.r.t. polynomial transformability 
or Thring reducibility should be familiar to the reader . 
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The belief revision problems considered in this paper fall into complexity 
classes located at the lower end of the polynomial hierarchy. Since this notion 
is not as common as the central complexity classes, it will be briefly sketched 
[Garey and Johnson, 1979, Sect. 7.2]. Let X be a class of decision problems. 
Then pX denotes the class of decision problems L E pX such that there is a 
decision problem L' E X and a polynomial Turing-reduction from L to L', i.e., 
all instances of L can be solved in polynomial time on a deterministic Turing 

machine that employs an oracle for L'. Similarly, N pX denotes the class 

of decision problems LEN pX such that there is nondeterministic Turing­
machine that solves all instances of L in polynomial time using an oracle 
for L' E X. Based on these notions, the sets 61, E1, and II1 are defined as 
follows: 12 

6 P 
0 

EP -o - lIP 
0 P, (64) 

61+1 pE~ , (65) 

E1+1 NpE~ , (66) 

II1+1 co-E1+1· (67) 

Thus, Ei = N P, IIi = co- N P, and 6~ is the set of N P -easy problems. Further 
note that Uk >O 61 = Uk>O E~ = Uk>O II~ ~ PSPACE. 

The role ~f the "can-;nical" complete problem (w.r.t. polynomial trans-

formability), which is played by SAT for Ei, is played by k-QBF for E~. 

k-Q B F is the problem of deciding whether the following quantified boolean 
formula is true: 

~F(a,b, . .. ). (68) 
k alternating quantifiers starting with 3 

The complementary problem, denoted by k-QBF, is complete for II1 . 
Turning now to the revision operations discussed in this paper, we first of 

all notice that the special belief revision problem of determining membership 
for a full meet revision, called FM R-problem, is comparably easy. With re­
spect to Turing-reducibility, there is actually no difference to the complexity 
of ordinary propositional derivability, i.e., the FM R-problem is N P-equivalent. 

Proposition 18 FMR E 6~ - (Ei U lIn provided Ei =I IIi. 

Proof: If -+ is a full meet revision, x E Cn( Z) -+ Y can be solved by the 
following algorithm: 

if Z I!-,x 
then Z U {x} f- y 
else x f- y 

12The superscript p is only used to distinguish these sets from the analogous sets in the 
Kleene hierarchy. 
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From this, membership in 6.~ follows. 
Further, SAT can be polynomially transformed to FMR by solving x E 

Cn(x) -+ T, and unsatisfiability (SAT) can be polynomially transformed to 
FMR by solving 1- E Cn(0) -+ x. Hence, assuming FMR E NP U co-NP would 
lead to NP = co-NP .• 

The membership problem for simple base revision will be called SBR­
problem. This problem is obviously more complicated than the FMR­
problem. However, the added complexity is not overwhelming-from a the­
oretical point of view. 

Theorem 19 SBR is rr~-complete. 

Proof: We will prove that the complementary problem Z EB x If y, which 
is called SBR, is L;~-complete. Hardness is shown by a polynomial transfor­
mation from 2-QBF to SBR. Let a = al, ... , an, let b = bI, ... , bm , and let 
:3O,VbF(O"b) be an instance of 2-QBF. Set 

(69) 

Now we claim that 

Z EB T If -,F( a, b) iff :30, Vb F( a, b) is true. (70) 

Z EB T If -,F( a, b) if and only if there is an element Y E (Z 1 T) such that 

-,F(o', b) ¢ Y. Since every set of literals {II," .In } with Ii = ai or Ii = -'ai is 
consistent, -,F( a, b) ¢ Y if and only if the set {II, " . , In} ~ Y is inconsistent 
with -,F(o', b), i.e., {/I, ... ,in } f- F(o', b) . This, in turn is equivalent with the 
fact that there is a truth assignment to a such that F( a, b) is true for all 
truth-assignments to b. Thus, equivalence (70) holds. 

Membership of SBR in L;~ follows from the following algorithm that needs 
nondeterministic polynomial time using an oracle for SAT: 

1. Guess a set Y ~ Z. 

2. Verify that there is no z E Z - Y such that Y U {z} If -,x. 

3. Verify Yu {x} Ify . 

• 
This means that SBR is, on one hand, not much more difficult than FMR, 

and, on the other hand, apparently easier than derivability in most modal 
logics (e.g., J(, T, and 54), which is a PSPACE-complete problem [Garey 

30 



and Johnson, 1979, p. 262]. Asking for the computational significance of this 
result, the answer is somewhat unsatisfying. All problems in the polynomial 
hierarchy have the same property as the NP-complete problems, namely, that 
they can be solved in polynomial time if and only if P = N P. Further, all 
problems in the polynomial hierarchy can be solved by an exhaustive search 
that takes exponential time. This means the worst-case behavior of any SBR 
algorithm is most probably not better or worse than the worst-case behav­
ior of any propositional proof method. However, from the structure of the 
algorithm used in the proof one sees that even if we restrict ourselves to 
polynomial methods for computing propositional satisfiability-for instance, 
by restricting the expressiveness- there would still be the problem of deter­
mining the maximal consistent subsets Y. 

Having now a very precise idea of the complexity of the SBR-problem, we 
may ask what the computational costs of introducing priorities are. In other 
words whether the membership problem for prioritized base revision, called 
PBR-problem, is more difficult than SBR. 

Theorem 20 PBR is rr~-comple te. 

Proof: rr~-hardness is immediate by Theorem 19. Membership of PBR in 
rr~ also follows easily. The maximality test (step 2 in the algorithm used in 
the proof of Theorem 19) has to be performed as often as there are priority 
classes, which is polynomially bounded by IZI . 

• 
This means that we do not have to pay for introducing priority classes. 

In the case of default logics, the generalization from Poole's logic to RDT's 
does not increase the computat ion a l costs . Note also, that the computa­
tional complexity of derivability for Brewka's LDT's is not easier because the 
reduction in the proof of Theorem 19 applies to the special case :F = 0, as 
well. 

The membership problem for unambiguous prioritized base revision, the 
UBR-problem, turns out to be easier than SBR and PBR. 

Theorem 21 UBR E ~~ - (~i u rrn, provided ~i =I rri. 

Proof: In order to show that UBR E ~~, we specify an algorithm to compute 
ZEB x f- y, for EB based on singleton degrees of relevance: 

1. Initialize X = 0 and i = 1. 

2. Test X U Zj If -,x. If so, set X = Xu Zj. 

3. Increment i. 
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4. If there are only i-I degrees return with the result (X U {x} f-- y). 

5. Otherwise continue with step 2. 

Using an oracle for SAT, this algorithms runs in polynomial time. Thus, we 
have U BR E ~~. 

Using the same arguments as in the proof of Proposition 18 leads to 
FMR tJ. NP U co-NP provided NP =1= co-NP. • 

From the proof, we can infer that if we can come up with a polynomial 
algorithm for satisfiability (by restricting the propositional language to Horn 
logic, for instance), then unambiguous base revision will be itself polynomial. 
This result gives a formal justification for the claim made in [Nebel, 1989] 
that this form of revision is similar to the functionality the RUP system 
[McAllester, 1982] offers-in an abstract sense, thoughP The important 
point to note is that a feasible implementation of belief revision is possible if 
we restrict ourselves to polynomial methods for satisfiability by restricting the 
language or by tolerating incompleteness and by using a polynomial method 
for selecting among competing alternatives. 

Finally, it may be interesting to compare syntax-based revision ap­
proaches with model-based approaches, such as the one proposed by Dalal 
[1988]. In order to do so, we first need some definitions. Recall that a model 
I of a belief base Z is a truth assign.ment that satisfies all propositions in 
Z. mod(Z) denotes the set of all models of Z. 8(I,:1) denotes the number 
of propositional variables such that I and :1 map them to different truth­
values. Assuming that M denotes a set of truth assignments, gm(M) is the 
set of truth assignments :1 such that there is a truth-assignment I E M 
with 8(:1,I):::; m. If Z is a finite belief base, then Cm(Z) is some belief base 
such that mod(Cm(Z)) = gm(mod(Z)). Although Cm is not a deterministic 
function, all possible results are obviously logically equivalent. 

Now, model-based revision, written Z 0 x is defined by:14 

{

Cm(Z)U{X} fortheleastms.t. 
Z 0 x ~ Cm (Z) U {x} If ~ 

{ x } if Z f-- ~ or x f-- L 
(71 ) 

Interestingly, the membership problem for model-based revision, called M B R­
problem, has the same complexity as UBR and FMR. However, it is not 

13The RUP system provides the possibility to put premises into different likelihood 
classes. However, it seems to be the case that in resolving inconsistencies it could select 
non-maximal sets w.r.t. ~ [McAllester, 1990, personal communication]. 

14This definition is a slight extension of the definition given in [Dalal, 1988] that takes 
also care of the limiting cases when Z or x is inconsistent. 
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obvious whether a restriction of the expressiveness of the logical language 
would lead to a polynomial algorithm in this case. 

Theorem 22 MBR E ~~ - (Ei U IIiL provided Ei f IIi· 

Proof: Note that for any fixed i, Gi(Z) If x is a problem that can be solved 
in nondeterministic polynomial time by guessing two truth assignment T,:J 
and verifying in polynomial time that 

1. PI Z, 

2. ~.7 x, and 

3. 8(T,:J) :s i. 

Note further that solving Gi(Z) U {x} If y can be reduced to solving Gi(Z) If 
(x ---+ y). 

Let n be the number of different propositional variables in Z. Then it is 
obvious that l(Z) = gk+l (Z) for all k 2 n . 

Membership of M BR in ~~ follows from the following algorithm: 

1. Determine the least i, where 0 :s i :s n such that Gi (Z) If -,x. 

(a) If there is no such i , then return x r y. 

(b) Otherwise, return (Gi ( Z) U {x} r y) . 

Since n is bounded polynomially by IZI, this algorithms runs in polynomial 
time using an oracle for the problem Gi(Z) If x. 

MBR rt NPUco-NP provided NP f co-NP follows with the same argument 
as in the proof of Proposition 18 .• 

Reconsidering the complexity results, there appears to be an interesting 
pattern. Note that the best result for a belief revision problem we can hope 
for is membership in ~~ because the problem involves consistency and in­
consistency problems. While, the "fully rational" base revisions,t5 namely, 
FMR, UBR, and MBR (for the lat ter see [Dalal, 1988]) turn out to be in this 
class, base revisions that are not "fully rational" cannot be shown to be in 
this class. 

15This means base revisions such that the corresponding belief revision operations satisfy 
a ll the Giirdenfors pos tulates . 
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8 Summary and Outlook 

The class of prioritized base revision (a form of syntax-based approaches to 
belief revision) and the class of belief revision operations generated by epis­
temic relevance were shown to be identical, removing partially the restriction 
of the theory of epistemic change that states of beliefs have to be modeled 
as deductively closed sets of sentences. 

Further, epistemic relevance orderings on belief sets were shown to be a 
generalization of epistemic entrenchment orderings confirming the intuition 
spelled out in [Gardenfors and Makinson, 1988] that epistemic entrenchment 
is related to the notion of database priorities as introduced in [Fagin et ai., 
1983]. 

Complementing the results in [Makinson and Gardenfors, 1991], we 
showed that concrete models of non monotonic reasoning, namely, ranked 
default theories (RDT'S )- a generalization of Poole's logic without con­
straints [Poole, 1988] and Brewka's level default theories [Brewka, 1989; 
Brewka, 1990]-turn out to be expressively equivalent to prioritized base 
revision in the case of finitary propositional logic. In addition, some answer 
to the question raised in [Makinson and Gardenfors, 1991] whether contrac­
tion plays a role in nonmonotonic logics was given . The theory formation 
approach with constraints was shown to be equivalent- under some reason­
able assumptions-to base contraction. It is not possible to lift this result to 
belief contraction, however. 

Finally, the computational complexity of different base revision opera­
tions was investigated-where the results apply by the above mentioned cor­
respondences to reasoning in default logics, as well. 

The results confirm the intuition that unambiguous prioritized base revi­
sion is not harder but apparently less complex than general prioritized base 
revision [Doyle, 1990, Sect. 3.2], which in turn is not harder than simple base 
revision. An interesting point is that model-based revision as proposed by 
Dalal is still NP-easy. 

One of the open questions is, whether the correspondence between belief 
revision and the analyzed default logics holds for the infinite case as well. 
However, for this purpose the theory of epistemic change has to be extended 
so that belief sets cannot only be revised by sentences but also by other 
belief sets. Another interesting question in this context is whether there are 
natural postulates for belief revision operations that characterizes syntax­
based approaches completely. 

Finally, the observation that all "fully rational" revision operations ana­
lyzed in this paper share the property of being N P-easy suggests analyzing 
that class of revision operations in more detail in order to detect interesting 
and tractable special cases. 
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