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Abstract

Belief revision leads to temporal nonmonotonicity, 1.e., the set of
beliefs does not grow monotonically with time. Default reasoning
leads to logical nonmonotonicity, i.e., the set of consequences does not
grow monotonically with the set of premises. The connection between
these forms of nonmonotonicity will be studied in this paper focus-
ing on syntax-based approaches. It is shown that a general form of
syntax-based belief revision corresponds to a special kind of partial
meet revision in the sense of the theory of epistemic change, which in
turn is expressively equivalent to some variants of logics for default
reasoning. Additionally, the computational complexity of the mem-
bership problem in revised belief sets and of the equivalent problem of
derivability in default logics is analyzed, which turns out to be located
at the lower end of the polynomial hierarchy.

*This is a revised and extended version of a paper to appear in: J. A. Allen, R.
Fikes, and E. Sandewall (eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference, Morgan Kaufmann, San Mateo, CA,
1991.
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1 Introduction

Belief revision is the process of incorporating new information into a knowl-
edge base while preserving consistency. Recently, belief revision has received
a lot of attention in AI,' which led to a number of different proposals for dif-
ferent applications [Ginsberg, 1986; Ginsberg and Smith, 1987; Dalal, 1988;
Gardenfors and Makinson, 1988; Winslett, 1988; Myers and Smith, 1988;
Rao and Foo, 1989; Nebel, 1989; Winslett, 1989; Katsuno and Mendel-
zon, 1989; Katsuno and Mendelzon, 1990; Doyle, 1990]. Most of this re-
search has been considerably influenced by approaches in philosophical logic,
in particular by Girdenfors and his colleagues [Alchourrén et al., 1985;
Girdenfors, 1988], who developed the logic of theory change, also called the-
ory of epistemic change, which will be briefly sketched in Section 2. This
theory formalizes epistemic states as deductively closed theories and defines
different change operations on such epistemic sets.

Syntax-based approaches to belief revision to be introduced in Section 3
have been very popular because of their conceptual simplicity. However,
there also has been criticisms since the outcome of a revision operation relies
an arbitrary syntactic distinctions (see, e.g., [Dalal, 1988; Winslett, 1988;
Katsuno and Mendelzon, 1989])—and for this reason such operations can-
not be analyzed on the knowledge level. In [Nebel, 1989] we showed that
syntax-based approaches can be interpreted as assigning higher relevance to
explicitly represented sentences. Based on that view, one particular kind of
syntax-based revision, called base revision, was shown to fit into the the-
ory of epistemic change. In Section 4 we generalize this result to prioritized
bases. 1t will be shown that the class of prioritized base revisions is identical
with the class of belief revision operations generated by epistemic relevance
orderings [Nebel, 1990].

The belief revision operations generated by epistemic relevance orderings
do not satisfy all rationality postulates belief revision operations should obey,
however. In Section 5 some interesting special cases of epistemic relevance
are analyzed that lead to the satisfaction of all rationality postulates. In
particular, we show that epistemic entrenchment as introduced in [Girden-
fors and Makinson, 1988] is a special case of epistemic relevance.

Makinson and Gardenfors [1991] showed that there is a tight connec-
tion between belief revision and nonmonotonic logics. In Section 6 we will
strengthen this result. First, we show that the form of logical nonmonotonic-
ity observable when revising beliefs is a necessary consequence of temporal
nonmonotonicity induced by belief revision. Second, we will prove that this

1See also [Brachman, 1990], in which “practical and well-founded theories of belief
revision” are called for.



similarity can be strengthened to equivalence of expressiveness for particular
nonmonotonic logics and belief revision operations in the case of proposi-
tional logic. Poole’s [1988] and Brewka’s [1989; 1990] approaches are shown
to be expressively equivalent to some forms of syntax-based belief revision
approaches. An interesting consequence of this result is that the “absurd be-
lief state” that is inconsistent turns out to be more important than assumed
to be in the theory of epistemic change.

Additionally to the logical properties of belief revision and default rea-
soning, in Section 7 the computational properties are analyzed. As it turns
out, the complexity of propositional syntax-based belief revision and default

reasoning is located at the lower end of the polynomial hierarchy.

2 The Theory of Epistemic Change

In this section we will briefly survey some of the results of the theory of
epistemic change in a setting of propositional logic.? Throughout this paper,
a propositional language £ with the usual logical connectives (-, V, A, — and
<) is assumed. The countable alphabet of propositional variables a,b,c...
is denoted by ¥, propositional sentences by v,w,z,y,z, ..., constant truth
by T, its negation by L, and countable sets of propositional sentences by
A, B0 ... and X, Y. Z. ..

The symbol I denotes derivability: and Cn the corresponding closure op-
eration, 1.e.,

Cn(A) ¥ {zeL|AF 2} (1)

Instead of Cn({z}), we will also write Cn(z). Deductively closed sets of
propositional sentences, i.e., A = Cn(A), are denoted by capital letters from
the beginning of the alphabet and are called belief sets. Arbitrary sets of
sentences are called belief bases and are denoted by capital letters from the
end of the alphabet. Systems of belief bases and belief sets are denoted
by S. Finite belief bases Z are often identified with the conjunction of all
propositions A Z. If S = {X,,..., X,,} is a finite family of finite belief bases,
then VS shall denote a proposition logically equivalent to (AX;)V ...V
(A Xn). As usual, we set V0 = L.

Sometimes, we will also talk about truth assignments and models of
propositions and belief bases. A truth assignmentis a function Z: ¥ — {T,F}.
A model T of a proposition z is a truth assignment that satisfies  in the clas-
sical sense, written =7 . A model of a belief base Z is a truth assignment
that satisfies all propositions in Z, written =7 Z.

2The formulation in [Alchourrén et al., 1985; Girdenfors, 1988] is more general in that
only some specific properties are required for the underlying logic.



In [Gardenfors, 1988] three operations on belief sets are analyzed, namely,
belief expansion, belief contraction, and belief revision. FEzpansion is the ad-
dition of a sentence z to a belief set A, written A + z, resulting in a new
(possibly inconsistent) belief set, defined by

Atz ¥ Cn(AU{z)). (2)

Contraction is the removal of a sentence z from a belief set A resulting in
a new belief set, denoted by A = z, that does not contain z (if z is not a
tautology), and revision is the addition of a sentence = to A, denoted by
A i z, such that Cn(L) # A + z whenever I/ —~z. Although contraction and
revision are not uniquely determined operations—the only commonly agreed
criterion is that the changes to the original belief sets have to be minimal—it
is possible to constrain the space of reasonable epistemic change operations.
Gardenfors proposed sets of rationality postulates® change operations on be-
lief sets should satisfy. The Gdrdenfors postulates for belief revision look as
follows (A a belief set, z,y propositional sentences):

(+1) A & z is a belief set;

(+2) z € A { =;

(43) Aiz C A+ x;

(+4) If ~z ¢ A, then A+ 2z C A } z;

(+5) A+ z = Cn(1L) only if F —z;

(+6) If Fz & y then A+ 2 = A + y;

(+#7) A+ (eAy) C(A+z)+y;

(+48) f ~y g A+ z,then (A+z)+yC A+ (zAy).

These postulates intend to capture the intuitive meaning of minimal
change—from a logical point of view [Alchourrén et al., 1985; Gérdenfors,
1988]. (41) states that revision of belief set always results in a belief set.
(+2) formalizes the requirement that revision is always successful. (+3) gives
an upper bound for a revised belief set. It should at most contain the conse-
quences of the original belief set and the new sentence. (+4) is the conditional
converse of (+3). In case when z is consistent with the original belief set, the
revised belief set shall at least ‘contain the original belief base and the new

3In order to avoid confusion, one should note that rationality in the sense of the theory
of epistemic change means an idealization: “In this way the rationality criteria serve as
regulative ideals. Actual psychological states of belief normally fail to be ideally rational
in this sense” [Gardenfors, 1988, Section 1.2]. Further, this notion of rationality is quite
different from the notion of economic rationality [Doyle, 1990].



sentence. Together with (43) this implies that for a sentence z consistent with
the original belief set A, the revised belief set is the same as the expansion
of A by z. (45) states that inconsistency should be avoided when possible,
and (46) formalizes the requirement that revision shall be independent from
the syntactic form of the sentence the belief set is revised by. While the first
six postulates, also called basic postulates, are straightforward, the last two
postulates are less obvious. They can be interpreted as generalizations of
(+3) and (+4).

Based on this framework, it is possible to analyze different ways of defin-
ing revision operations. In [Alchourrén et al., 1985], so-called partial meet
revisions are investigated. This notion is based on systems of maximal (w.r.t.
to set-inclusion) subsets of a given belief set A that do not allow the deriva-
tion of z, called the removal of z and written A | z:

Alz ¥ {BCA|BYa,NC:BCCCA= CFz). (3)

A partial meet revision (on A for all z) is defined by a selection function S
that selects a nonempty subset of A | —z (provided A | -z is nonempty,
otherwise) in the following way:*

Aiz ¥ (NS(AL-2)) +2. (4)

Such partial meet revisions satisfy unconditionally the first six postulates,
also called basic postulates. Furthermore, it is possible to show that all re-
vision operations satisfying the basic postulates are partial meet revisions
[Alchourrén et al., 1985, Observation 2.5]. Actually, this and the other re-
sults cited below were proven for contraction. However, if contraction and
revision satisfy their respective basic postulates, they are interdefinable by
the Harper (5) and Levi (6) identity:

Azz =2 {Ag-z)NA, (5)
Ajz "2 (AZ52) L2 (6)

Further, the eight Gdrdenfors postulates for contraction (see, e.g. [Alchourrén
et al., 1985; Gardenfors, 1988]) are equivalent to the revision postulates under
these definitions in the following sense. The first six, seven, or eight contrac-
tion postulates are satisfied if and only if the first six, seven or eight, revision
postulates for the corresponding revision operation are satisfied, respectively
[Alchourrén et al., 1985, Observations 3.1-3.2].

If some constraints are placed on the behavior of the selection function,
it is possible to show that (+7) and (+8) are also satisfied. The key notion

4Note that all elements of A | -z are belief sets and that the intersection of belief sets
is a belief set again.



here is relationality of the selection function, i.e., there exists some relation
C over all subsets of a belief set A independent of z such that the selection
functions always picks the “best” sets, i.e., for all z,

S(Alz) = {Be(Alz)|VC € (Alz):CC B} (7)

in which case the revision operation is called relational revision. Any such
revision satisfies the postulates (=1)—(=7) [Alchourrén et al., 1985, Observa-
tions 3.1, 4.2, and 4.3]. If the relation is additionally transitive, then the
revision operation is called transitively relational and (=1)-(=8) are satisfied.
Furthermore, it can be shown that any revision operation satisfying (=1)-(=8)
is a transitively relational contraction [Alchourrén et al., 1985, Corollary 4.5).

It should be noted that two special cases of partial meet revisions are
unreasonable [Alchourrén et al., 1985; Gardenfors, 1988]. The first special
case is that § always selects all of the elements of A | ~z—leading to the so-
called full meet revision. In this case A + z = Cn(z) if -z € A. This means
we throw away all the old beliefs if the new sentence is inconsistent with the
belief set, which is clearly unreasonable. Although unreasonable, full meet
revision is “fully rational” in the sense that it satisfies all the Gardenfors
postulates, as is easy to verify.

The second special case is that S always selects singletons from (A | —z)
resulting in the class of so-called mazi-choice revisions. These revision oper-
ations have the property that A + z is a complete belief set—provided that
-z € A. Thismeans y € A + z or ~y € A } z for every y € L. In other
words maxi-choice revisions lead to an unmotivated inflation of beliefs.

3 Syntax-Based Revision Approaches: Base Revi-
sions

The theory sketched above captures the logical portion of minimal change
giving us a kind of yardstick to evaluate approaches to belief revision. How-
ever, it still leaves open the problem of how to specify additional restrictions
so that a revision operation also satisfies a “pragmatic” measure of minimal
change.

Two principal points of departure are conceivable. Starting with a belief
base as the representation of a belief set, either the syntactic form of the
belief base [Fagin et al., 1983; Ginsberg, 1986; Nebel, 1989] or the possible
states of the world described by the belief base- the models of the belief
base—could be changed minimally [Dalal, 1988; Winslett, 1988; Katsuno
and Mendelzon, 1989; Katsuno and Mendelzon, 1990]. The former approach
seems to be more reasonable if the belief base corresponds to a body of



explicit beliefs that has some relevance, such as a code of norms or a scientific
or naive theory which is almost correct. The latter view seems plausible if
the application is oriented towards minimal change of the state of the world
described by a belief set. In this paper, we adopt the former perspective.
In order to distinguish operations on syntactic descriptions — on belief bases
— from operations on belief sets, belief base changes are called base revision
and base contraction.

The idea of changing a belief base minimally could be formalized by se-
lecting maximal subsets of the belief base not implying a given sentence. If
there is more than one such maximal subset, the intersection of the conse-
quences of these subsets is used as the result. Thus, using (Z | z) as the set of

maximal subsets of Z not implying = as above, simple base revision, written
as Z @ z, could be defined as follows [Fagin et al., 1983; Ginsberg, 1986;
Nebel, 1989]:

Zoz € () Cn(Y))+a (8)
Y €(Z|-z)

The operation @ considers all sentences in a base as equally relevant. In
most applications, however, we want to distinguish between the importance
or relevance of different sentences. In [Fagin et al., 1983] database priorities
are assigned to propositions in order to reflect the distinction between facts
and integrity rules. Ginsberg [1986) and Ginsberg and Smith [1987] make a
distinction between facts that can change and those that are “protected.”®

This idea of assigning different priorities to sentences can be formalized
by employing a complete preorder with maximal elements, written z < y, on
the elements of a belief base Z. In other words, we consider a reflexive and
transitive relation such that for all z,y € Z we have * < y or y < z. For
z 2y and y A z, we will also write ¢ < y. Further, there exists at least
one maximal element z, i.e., for no element y: = < y. This relation will
be called epistemic relevance ordering. It induces an equivalence relation,
written = ~ y, as follows:

z~y iff (zXyandy <X2z). 9)

The corresponding equivalence classes are denoted by Z and are called degrees
of epistemic relevance of Z. The set of equivalence classes Z/~ is denoted
by Z. Since the preorder is complete, < is a linear order on Z. Further,

SIn particular, [Ginsberg and Smith, 1987] makes clear, however, that usually more
than one level of protected sentences is needed. For instance, the rule that an object can
only occupy one place is, of course, an undeniable truth in our commonsense view of the
world, while the rule that a room becomes stuffy when the ventilation is blocked may well
be violated by an open window.



there exists a maximal such degree because the preorder contains maximal
elements.

A belief base together with an epistemic relevance ordering will be called
prioritized base. If the belief base is finite, we will also use the notation
Zyy...,Z, to denote the n degrees of epistemic relevance of Z with the con-
vention that Z; has highest relevance.

Employing an epistemic relevance ordering, the prioritized removal of
from Z, written Z || z, will be defined as a system S of subsets of Z. Each
element Y € S in turn is the union over a family consisting of subsets of all
degrees of epistemic relevance, i.e.,

Y = |(J{¥s}sez where Yz C = (10)
Formally, Y € (Z | z) if, and only if,
1. Y =U;z Y5
2. forallze Z, Y5 CZ, and

3. for all 7 € Z, Y5 is set-inclusion maximal among the subsets of Z such

Intuitively, the elements of Z || z are constructed by selecting a maximal
subset not implying z from the greatest degree of epistemic relevance, then
a maximal subset of the next important degree is added such that z is not
implied, and so on. Note, however, that this intuition about constructing
the elements of Z ||  may fail in the general case. Since we did not place
restrictions on the relevance ordering, it can happen that there are infinitely
ascending chains of degrees of epistemic relevance. Nevertheless, also in
this case the existence of elements of Y’s satisfying the above conditions is
guaranteed by Zorn’s lemma.

A prioritized removal operation selects by definition a subset of the max-
imal subsets of a base not implying a given proposition.

Proposition 1 Given a base Z and a relevance ordering <, for all x:
(Zyz) C (Zl2). (11)

Thus, it makes sense to use |} instead of | in the definition (8). The
resulting operation is called prioritized base revision, denoted by & . This
operation, is identical to simple base revision in case that there is only one
degree of epistemic relevance.

In the interesting special case when we are dealing with finite belief
bases—which corresponds to prioritized logical databases investigated in [Fa-
gin et al., 1983]—the result of a prioritized base revision can be finitely rep-
resented.



Proposition 2 If Z is a finite belief base then
Zdz = COn((V(Z Y -2))Az), (12)
for every prioritized base revision & on Z.

Proof: Since Z is finite, there can be only a finite number of finite degrees
of epistemic relevance, hence, Z || -z is a finite set of finite belief bases. In
this case, the following equivalences hold

&
=
=3
b

I

Ca({zyy .. s2s}) (13)

-
1l
A

»
~~
<=
8

I

é Cn(z;), (14)

-
Il
A

and the proposition follows immediately. ®

In order to demonstrate how base revision works, let us assume the fol-
lowing scenario. Assume that a suspect tells you that he went to the beach
for swimming and assume that you have observed that the sun was shining.
Further, you firmly believe that going to the beach for swimming when the
sun is shining implies a sun tan. If you then discover that the suspect is
not tanned, there is an inconsistency to resolve. Supposing the following
propositions:

b = “going to the beach for swimming”,
s = “the sun is shining”,
= "*“pun ‘tan",

the situation can be modeled formally by a prioritized base Z:

zZi = {((bns) = t)},
Z; = {s},

Z3z = {b},

Z = ZiUZyU Z,.

From this belief base ¢ can be derived. If we later observe that —t, the belief
base has to be revised:

zé-t = ((Cn(Z 4 1)) +

= Cn(V{{((bAs) > 1),s}}) +
= Cn({((bAs) —t),s,t}).

8



In particular, we would conclude that b was a lie.

A consequence of the definition of (simple and prioritized) base revision
is that for two different belief bases X and Y that have the same mean-
ing, i.e., Cn(X) = Cn(Y), base revision can lead to different results, i.e.,
Cn(X& z) # Cn(Y® z). Base revision has a “morbid sensitivity to the syn-
tax of the description of the world” [Winslett, 1988], which is considered as
an undesirable property. Dalal [1988] formulated the principle of irrelevance
of syntaz which states that a revision operation shall be independent of the
syntactic form of the belief base representing a belief set and of the syntactic
form of the sentence that has to be incorporated into the belief set (see also
[Katsuno and Mendelzon, 1989]), i.e., revision operations shall operate on
the knowledge level [Newell, 1982]. In the theory of epistemic change this is
accomplished by the requirements that the objects to be revised are belief
sets and that the result of a revision does not depend on the syntactical form
of the sentence to be added (postulate (+6)).

Obviously, base revision does not satisfy the principle of irrelevance of
syntax—and is not a belief revision operation in the sense of the theory of
epistemic change for this reason. Worse yet, abstracting from the syntactic
representation of a belief base and considering the logical equivalent belief
set leads nowhere. Simple base revision applied to belief sets is equivalent
to full meet revision, thus, useless. For these reasons, it is argued in [Dalal,
1988; Winslett, 1988; Katsuno and Mendelzon, 1989] that revision shall be
performed on the model-theoretic level, i.e., by viewing a belief set as the set
of models that satisfy a given belief base and by performing revision in a
way that selects models that satisfy the new sentence and differ minimally
from the models of the original belief base. In order to define what the
term minimal difference means, we have to say something about how models
are to be compared, though. In Dalal [1988], for instance, the “distance”
between models is measured by the number of propositional variables that
have different truth values. Katsuno and Mendelzon [1989] generalize this
approach by considering complete preorders over models.

In any case, it is impossible to define a revision operation by referring only
to logical properties. Some inherently extra-logical, pragmatic preferences
are necessary to guide the revision process. This is actually one of the basic
messages of the theory of epistemic change. We have to make up our minds
about the importance of propositions or sets of propositions in order to select
among the alternatives which are logically possible. If we consider all of them
as equally important and combine them (by using full meet revision), we end
up with nothing. Similarly, in case of a model-theoretic perspective, we
cannot consider all models as equally possible candidates for a revision, since
this would lead to a similar result.

As argued above, for some applications it does not seem to be a bad idea

9



to derive preferences from the syntactic form of the representation of a belief
set. Actually, from a more abstract point of view, it is not the particular
syntactic form a belief base we are interested in, but it is the fact that we
believe that a particular set of sentences is more valuable or justified than
another logically equivalent set, and we want to preserve as many of the
“valuable” sentences as possible. Using this idea it is possible to reconstruct
base revision in the framework of the theory of epistemic change by employing
the notion of epistemic relevance.

4 Belief Revisions Generated by Epistemic Relevance

The intention behind base revision is that all the sentences in a belief base
X are considered as relevant—some perhaps more so than others. For this
reason we want to give up as few sentences from X as possible, while with
sentences that are only derivable we are more liberal. Formalizing this idea
we employ as in the case of belief bases an epistemic relevance ordering, i.e.
a complete pre-order with maximal elements on the entire belief set, with
the intention of assigning the least degree of relevance to sentences that are
only derivable. Based on these orderings, selection functions are constructed
that select subsets that are maximally preferred with respect to epistemic
relevance orderings.

We start by defining a strict partial ordering expressing preferences on
subsets X,Y € 24, written as X < Y, by

X<Y iff 35 (XNTCYND)andVw > o:(X Nw=Y Nw)), (15)

which in turn can be used to define a function S< that selects all mazimally
preferred elements of A | z:

S<(Alz) ¥ {Be(Alz)|VC € (Alz):B £ C}. (16)

Note that such maximally preferred sets always exist as can be easily in-
ferred from the following lemma that relates maximally preferred sets to the
elements of a prioritized removal. '

Lemma 3 Let A be a belief set with an epistemic relevance ordering <. Then
for any sentence x:

B is mazimally preferred in (Alz) iff B € (Al a). (17)

Proof: Note that Proposition 1 applies also to belief sets because any belief
set is also a belief base by definition. Hence, for all A and epistemic relevance
orderings on A, for all z:

(Alz) S (Alz). (18)

10



Assume that Y € (A |} ). Assume for contradiction that there is a set
C € (Alz) such that Y <« C. This means there exists a degree ¥ such that
Yy € CN© while for all W > ¥ we have Y = C Nw. However, the set Y5 is by
definition of |} a set-inclusion maximal subset of ¥ such that (Ug.3 Yz) U Y5
does not imply z, hence, C N T cannot be a proper superset of Y3.

For the other direction, assume B is maximal w.r.t. < in (A | z). Set
Y = B and Yz = BN Z. Obviously, the following conditions are satisfied:

L. B = Y = U?EXYE’

2. BNz=Y;C7Z and

3. BNz = Y5 is set-inclusion maximal among the subsets of Z such that

Uyzz(B ny) = U?t? Yy 2.

Hence, Be (A z). =

This means that S< selects a nonempty subset of (A | z) provided (A | x)
is nonempty, i.e., S< is a selection function as defined in Section 2, and it
may be used to define a revision operation as done in equation (4). Revisions

defined in this way will be called revisions generated by epistemic relevance.

Analyzing the properties of such revisions, we note that they satisfy most of
the Gardenfors postulates.

Theorem 4 Revisions generated by epistemic relevance satisfy (+1)—(+7).

Proof: Since S< is a selection function, revisions generated by epistemic

relevance satisfy (+1)-(46) by [Alchourrén et al., 1985, Observation 2.3].
Further, we have by definition of the selection function that there exists
a relation C, defined by putting

CCB iff B£C, (19)
such that for all z,
S(Alz) = {B€e(Alz)|VC € (Alz):CC B} (20)

Hence, condition (7) given in Section 2 is satisfied. Thus, + is a relational
partial meet revision, which by [Alchourrén et al., 1985, Observations 3.1,
4.2 and 4.3] satisfies (7). ®

Note that the relation £ is not transitive and therefore revisions gener-
ated by epistemic relevance do not satisfy (+8) in general.® The interesting

8For a counter-example consult Section 6.

11



point about such revisions is that they coincide with prioritized base re-
vision as defined in Section 3. That any revision generated by epistemic
relevance can be conceived as a prioritized base revision follows already from
Lemma 3. In order to show the other direction of the correspondence, the
following Lemma (adapted from [Nebel, 1989]) is helpful.

Lemma 5 Let A be a belief set and = be sentence such that ~x € A. Let Z
be any subset of A such that Z tf ~z. Then

(N{CeAl-z|Z2CC})+z = Cn(Z)+a. (21)

Proof: “2”: Since by the assumption of the lemma Z C A and Z ¥/ -z,
(N{C € A|-z|Z C C}) contains Z as a subset by definition. Further, since
all elements of (A | ) are belief sets and the intersection of belief sets is a
belief set again, (N{C € A | -z| Z C C}) contains Cn(Z), hence, the right
hand side is a subset of the left hand side.

“C”: Assume the contrary, i.e., there is a sentence y that is an element
of the left hand side of equation (21), but y &€ Cn(Z U {z}). By the latter
assumption Cn(Z U {-y} U {z}) is consistent and -~z ¢ Cn(Z U {-y}) 2
Cn(Z U {-y V —z}). By the assumption of the lemma that -z € A, we have
(mz V —~y) € A. Since also Z C A, there is at least one element in (A ] —-z)
that contains Z U {-y V —z}. Call this set B.

From the first assumption that y € Cn((N{C € Al-z|Z C C})U {z}),
we conclude (z — y) € Cn(N{C € A | -z| Z C C}). However, the set
B € (A| —z) that contains Z and (—y V —z) cannot contain (z — y) because
otherwise B I —z.

By the fact that the intersection over a system of belief sets is already a
belief set, we have Cn(N{C € Al-2|Z CC})=N{C € A|l-z|Z C C}.

Finally, because B € {C € A| -~z|Z C C}, it cannot be the case that
(z = y) € (N{C € Al -z| Z C C}). Thus, we have a contradiction of our
assumption. Hence, the left hand side must be a subset of the right hand
side. m

It should be noted that if in the above lemma the set Z is empty, the
lemma describes the behavior of full meet revision. Another way to look at
this lemma is that if the selection function selects elements of A | =z by
focusing on a particular set Z, then the result of the revision is the set of
consequences of the union of Z and the new sentence. This result can be
easily generalized to systems of focusing sets.

Lemma 6 Let A be a belief set, and let x be a sentence such that -z € A.
Let S be a system of subsets of A, where Z t/ =z for all Z € S. Then

(MMCeAl~al3zes:zcCY)+z = () Cn(2) +2.  (22)

ZeS
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Proof:

(N{CeAl-2|32€5:2CCY) +a=

= On((N{C € Al-z|3Z € $:Z S C})U{a}) (23)
- ( (U{cealmalzcCh)ua}) 1)
Z€eS

(¢ € Al=al 2 SCh) U a}) (25)

zZ

¢ e Al-al 2 YU ) (26)

(1
fal
- o (e el zecpu)) e
{1
[

= On Cn ZU {:1:})) (28)
ZeS
= Cn[ ) Cn(Cn(2)U {x})) (29)
ZeS
= ((Zns Cn(Z ) U {m}) (30)
‘
Zes

Equation 23 is the application of the definition of the expansion of a belief
set (2). (24)-(26) follow by set theory. (27) follows because for any system
of belief sets S the following equation holds:

Cn((1(AU{z})) = Cn([) Cr(AU{z})) (32)

A€S A€S

The “C” direction is obvious. For the other direction assume a sentence y
that is an element of the right hand side, i.e., such that for all A € S we
have y € Cn(A U {z}). By the deduction theorem, (z — y) € Cn(A) for
all A € S. Since A = Cn(A), it holds that (z — y) € (Naes A), hence,
y € Cnl(Maes A) U {z}) = CnlNaes(A 0 {}))

(28) is an application of Lemma 5. (29) follows from properties of Cn,
(30) is another application of equation (32), and, finally, (31) is another
application of the definition of the expansion of a belief set. ®m

Using this lemma, the correspondence between revision generated by epis-
temic relevance and prioritized base revision can be easily shown.

13



Theorem 7 For any revision operation + on a belief set A generated by
epistemic relevance, there exists a corresponding prioritized base revision @
on some base Z of A, and vice versa, such that for all x:

Aiz = Zz. (33)

Proof: Assume a belief set A and an epistemic relevance ordering < on
A. By definition, any belief set is also a belief base. Applying Lemma 3, it
follows that

S<(Al-z) = (A | -=z). (34)

Hence, for a given revision on A generated by epistemic relevance, there is
a prioritized base revision on some base Z of A (namely, the base Z = A)”
such that for all z:

Aiz=2&z. (35)

For the other direction, assume a prioritized belief base Z with degrees of
epistemic relevance Z. Set A = Cn(Z) and set A = ZU{0}, where 0 = A—Z
and 0 < Z for all 7 € Z. Now we will show that

S<(Al-z)={Ce€(Al-=z)|IX € (Z | -z): X C C}. (36)

“D”: Let X € (Z |} —~z) and let B € (A | ~z) such that X C B. Such
a set B exists because X C Z C A and X I/ —=z. Then B must be maximal
w.r.t. < in (A|-z). Assuming otherwise would mean that there is a degree
z and the selected subset X3 C Z was not maximal w.r.t. to the conditions
in the definition of the elements of a prioritized removal, or there is another
set D € (A ] —z) that is identical to B for all priority Z € Z but contains
a larger subset of 0, which is impossible, however, because B is already a
maximal subset of A.

“C”: Assume that B is an element of the left hand side of equation (36),
i.e., B is a maximal element w.r.t. <. Consider the set X = BN Z. Assume
for contradiction that X ¢ (Z | —z). Since X I/ -z, this means that there
is set Y € (Z |} ~z) such that Ug, (X NY) C Uyys Yy for some degree z € Z.
Now, since Y I/ =z and Y C A, there must be a set C € (A | -z) that
contains Y. By definition of <, we would then have B <« C. Hence, B
cannot be a maximal element w.r.t. < and we have a contradiction. Thus,
the left hand side is a subset of the right hand side.

Applying Lemma 6 to equation (36) we get

(Nss(ALl=2))+z = ( N Cn(Y)) +z, (37)

YE(ZU—IJ:)

"Note, however, that a smaller base would be sufficient as can be seen from the proof
of Proposition 8.
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i.e., for any prioritized base revision on Z there exists an equivalent revision
on Cn(Z) generated by epistemic relevance. ®

This means that prioritized base revision coincides with revision gener-
ated by epistemic relevance in the sense that the class of prioritized base
revisions is identical with the class of revisions generated by epistemic rele-
vance. This abstract view on syntax-based revision may also answer some of
the questions raised by Myers and Smith [1988]. They observed that some-
times base revision does not seem to be the appropriate operation because
some derived information turns out to be more relevant than the syntacti-
cally represented sentences in a belief base, and we get the wrong results
when using base revision. However, there is no magic involved here. Base
revision leads to the right results only if the syntactic representation really
reflects the epistemic relevance. For this reason, the notion of revision gener-
ated by epistemic relevance seems to be preferable over base revision because
it avoids the confusion between surface-level syntactic representation and the
intended relevance of propositions.

The question of whether the correspondence between belief revision gen-
erated by epistemic relevance and prioritized base revision can be exploited
computationally cannot be answered positively in the general case. Although
Theorem 7 states that it is possible to compute a revision on a belief set A
generated by epistemic entrenchment by performing a prioritized base revi-
sion on some base of A, this does not help very much because in the proof
we used A itself as the base. For the case of belief sets that are finite mod-
ulo logical equivalence, however, a revision operation generated by epistemic
relevance can be performed by a prioritized base revision on a finite base.

Proposition 8 Let A be a belief set finite modulo logical equivalence. If +
s a revision on A generated by epistemic relevance, then there exists a finite
prioritized base Z, such that for all z:

Aiz = Zo. (38)

Proof: Define Z such that it contains one representative z for each class of
logically equivalent sentences [z] = {z € A| F z & z}. These representatives
are chosen to be maximal elements w.r.t. < in [z]. The relevance ordering
on Z is defined as the restriction of the epistemic relevance ordering on A.

Since A is finite modulo logical equivalence, Z is finite. In order to show
that (38) holds, it obviously suffices to prove the following condition:

Xe(Z|-z) iff Cn(X)e S<(Al-z). (39)
“=": Assume X € (Z | —z). First, we verify that Cn(X) € (A ] -z).
By definition of | X does not imply —z. Furthermore, Cn(X) is a maximal
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subset of A. Assuming otherwise, i.e., Cn(X) Uy I/ -z for some y € A,
would mean that there is a sentence z € [y] such that X U z I/ =z, which is
impossible by the construction of Z and the definition of |}.

Second, Cn(X) must be maximal w.r.t. < in (A]—-z). Let us assume the
contrary, i.e., there is a set B € S<(A | —z) and Cn(X) <« B. This means
for some degree 7: Cn(X)Nv C B N7 while for all larger degrees the sets
are identical. Chose a proposition y € (BN7v) — (Cn(X) N7D). Let z € [y]
be maximal w.r.t. <. Note that z ¢ X and that v ~ y X 2. By this we
conclude that B D (Upz X5) U {2z} F —z. This means however, that there
cannot be a set B that is larger than Cn(X) w.r.t. <.

“&<”: Assume a set B € (A | —z) that is maximally preferred. Set
X = BN Z. Because of the construction of Z, we have Cn(X) = B. Assume
for contradiction that X & (Z || —~z). This means for some degree T there is
a sentence z € T such that z € X but (Ugwy Xw) U {2} I/ —~z. However, in
this case there is also a set C' € (A|-z) that contains (Ugyy Xw) U {2} and
which is therefore more preferred than B. ® e

S Epistemic Relevance and Entrenchment

Although revisions generated by epistemic relevance do not satisfy all Gar-
denfors postulates, there are special cases that do so. A trivial special case
is a revision generated by only one degree of epistemic relevance, which is
equivalent to full meet revision. There are more interesting cases, however.

Gardenfors and Makinson claim that the notion of epistemic entrench-
ment introduced in [Gardenfors and Makinson, 1988] is closely related to the
notion of database priorities as proposed in [Fagin et al., 1983]. Since the
notion of database priorities is the finite special case of epistemic relevance
orderings on belief bases as introduced in Section 3, which can in turn be
used to generate belief revision operations, one would expect that epistemic
entrenchment is closely related to epistemic relevance. Although the intu-
itions are clearly similar, the question is whether the different formalizations
lead indeed to identical results.

Epistemic entrenchment orderings, written as ¢ <. y, are defined over
the entire set of sentences £ and have to satisfy the following properties:

(Rel) If z <. y and y X, 2, then z X, z.

(%2) If z F y, then z <X, y.

(2e3) For any z,y, ¢ X (z Ay) or y = (z Ay).

(Z¢4) When A # Cn(L), then z ¢ A iff z <, y for all y € L.
(%5) Ify Xz forall y € £, then F z.
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Using such a relation, Gardenfors and Makinson define belief contraction
generated by epistemic entrenchment, written A < z, by

yeAfziffye Aand ((zVy) Aczor  z) (40)

and show that such a belief contraction operation satisfies all rationality
postulates for contraction as well as the following condition [Gardenfors and

Makinson, 1988, Theorem 4]:
z=<.y ff cdA<(zAy)or F(zAy). (41)

Further, they show that any belief contraction operation satisfying all of the
rationality postulates is generated by some epistemic entrenchment ordering
[Gardenfors and Makinson, 1988, Theorem 5).

The question is now how to interpret these results in the framework
of epistemic relevance orderings on belief sets. First of all, from (X.2),
reflexivity follows. Second, from (<.2) and (<.3), it follows that either
z 2 (zAy) Zcyory =X (zAy) X z. This means, <, is a complete
preorder on L. For the strict part of this ordering we will use the symbol
<. Further, from (=<.2) it follows that there are maximal elements, namely,
all sentences logically equivalent to T (and perhaps some other sentences as

well). Ignoring the minimal elements (the sentences that are not elements
of the belief set (=.4)), the restriction of =<, to the sentences in a belief set

can be considered as an epistemic relevance ordering as defined in the previ-
ous section. In this case, using interdefinability of revision and contraction,
definition (40) coincides with a contraction operation that is defined by us-
ing the Harper identity (5) and a revision operation generated by epistemic
relevance.

Theorem 9 Suppose a belief set A, an epistemic entrenchment ordering <.,
and the contraction operation < generated by <,. Let < be the epistemic
relevance ordering that is the restriction of <, to A, and let + be the revision
generated by the epistemic relevance ordering <. Then

Atz = (Ai-z)NA (42)

Proof: For the limiting case - z, we have (A + =z) = Cn(L), hence the
right hand side equals A. By (40) we also get for the left hand side A.

For the case z € A, again (AU{—-z})NA = A. That the left hand side has
the same value follows from (40) and the observation that by (<%.4) z ¢ A
and y € A implies z <, y, which in turn implies by y F (z V y) and (X.2):
z <y 2 (2Vy).

For the principal case, z € A and i/ z, we will show that

y€()S<(Alz) iff y€ Aandz <, (zVy). (43)
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If this condition is satisfied, then equation (42) holds obviously for the prin-
cipal case as well.

“«": Suppose y € Aand z <, (z V y). Note that because of ((z V y) A
(zV-y)) F z and (X2) we have ((zVy)A(zV-y)) <. z, which leads by our
assumption and (X1) to ((z Vy) A (z V -y)) < (z V y). Because of (<X.3),
either (z Vy) or (z V —y) is less entrenched than the conjunction of them. It
cannot be the former since that is strictly more entrenched, hence

(zV-y) 2 (zVy) Az V-y)) < (zVy) (44)

Consider an arbitrary set B € S<(A| ). Assume that (zVy) € B. Then
(z V-y) € B, or equivalently B U {y} I/ z. Since B is a maximal subset
of A not implying =, we have y € B. Thus, assume (z V y) ¢ B. Consider
C=Bn{z € A|(zVy) X z}. Because B is a maximally preferred subset
in (A|z), we must have CU {(z V y)} - z, or, using the deduction theorem
CF ((zVy) — z), hence C F (-y V z). By the compactness of propositional
logic, there is a finite subset D C C such that AD F (-y V z), hence, by
(22) AD = (myVz), which by (<.3) implies that there is a sentence v € D
such that v X, (-yVz). By (44) we get v <, (y V) which is in contradiction
to the construction of C, however. Thus, y is a member of every maximally
preferred set in (A | z).

“=": Assume y € N S<(A]z). Assume for contradiction that we never-
theless have (z V y) <. z. By the fact that z F (z V —y), we conclude

(e Vy) <25 (@Y ). (45)

Since y € NS<(A]x), every set B € S<(A|z) must contain y and, hence,
(zVy),ie., (zV-y) ¢ B. Consider the set C = BN{z € A|(zV ~y) <, z}.
Since no element of S<(A ] z) contains (z V —y), all such sets C' must already
contain propositions that together with (z V —y) leads to the derivation of z,
ie., CU{(zV -y)}F z, or, by the deduction theorem C F ((z V ~y) — z),
hence C' F (zVy). By compactness, (<X.2), and (X.3) we conclude that there
exists a proposition v € C such that v <, (z Vy), and by the construction of
C: (zV ~y) <. (z Vy), contradicting (45). »

Thus, the notion of epistemic entrenchment can indeed be viewed as a
special case of epistemic relevance orderings—and, in the finite case, as a
special case of database priorities.

The next corollary makes explicit which of the conditions (=<.1)-(=X.5)
are actually needed to lead to a fully rational revision operation generated
by epistemic relevance.

Corollary 10 Any revision generated by an epistemic relevance ordering <
such that
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1. ifz by thenz <y, and
2. forany z,y: z X (zAy) ory X (zAy),
satisfies all Gardenfors postulates.

Proof: (=X.1) is already entailed by the fact that < is a preorder. (<X.4)
concerns only elements that are not in the belief set, and are therefore not
related by <. Further, as can be seen from the proof of Theorem 9, (<.5)
is not necessary at all. We can always add a maximal degree that contains
all logically valid sentences and remove them from other degrees without
changing the outcome of a revision. ®

Epistemic entrenchment orderings lead to “fully rational” contraction and
revision, and, moreover all such belief change operations are generated by
some epistemic entrenchment ordering. It is not obvious, however, how to
arrive at such epistemic entrenchment orderings. While epistemic relevance
can be easily derived from a given prioritized belief base, it is not clear
whether there are natural ways to generate epistemic entrenchment order-
ings. In [Gardenfors and Makinson, 1988] it is proposed to start with a com-
plete ordering over the maximal disjunctions derivable from a belief base.
Despite the fact that this does not sound very “natural”, it also implies that
a large amount of information has to be supplied, sometimes too much (see
Proposition 17 in Section 7), in order to change a belief set.

Interestingly, there is another special case of epistemic relevance that
leads to a belief revision operation that satisfies all postulates. When all
degrees of epistemic relevance of a prioritized belief base Z are singletons,
then the prioritized base revision (as well as the corresponding partial meet
revision and the epistemic relevance ordering on Cn(Z2)) is called unambigu-
ous.

Proposition 11 Let Z be a prioritized belief base such that all degrees of
epistemic relevance are singletons. Then (Z || z) is a singleton iff i/ z.

Proof: Note that (Z | z) # 0 if and only if I/ 2.
~ If Z i/ z then trivially (Z | z) = {Z}.

For the case I/ z and Z F z, assume for contradiction that X, X’ €
(Z U z) and X # X'. By the definition of | there must be some degree
z such that X7 # X7. Let Z be the greatest such class. Now, since the
degrees of epistemic relevance are singletons, we either have (Up,3 X5 UZ) =
(Us»z X5 UZ) F 2 or not. In both cases, X and X’ would agree on whether
they contain Z. Hence, they cannot be different. ®
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Note that even when (Z |} z) is always a singleton (for I/ z), the cor-
responding selection function S< does not necessarily select singletons from
(Cn(Z) | z), i.e., the corresponding belief revision operation is not a maxi-
choice revision as defined in Section 2.

Clearly, the epistemic relevance ordering on the belief set Cn(Z) cannot
always be extended to an epistemic entrenchment ordering. Nevertheless, be-
lief revisions corresponding to unambiguous prioritized base revisions satisfy
all rationality postulates.

Theorem 12 Let <X be an unambiguous epistemic relevance ordering on
a belief set A. Then the revision generated by this ordering satisfies all
Gdrdenfors postulates.

Proof: By Theorem 4, the revision operation satisfies (+1)-(+7). Thus,
we only have to verify (8). By [Alchourrén et al., 1985, Corollary 4.5] it
suffice to show that the revision operation is transitively relational, i.e., using
definition (19), we have to show that & is transitive.

Since < is an unambiguous epistemic relevance ordering on A, all degrees
of epistemic relevance except for the least one are singletons. The least degree
will be denoted by 0.

In order to show transitivity of &, we first show that incomparability of
two sets B,C € (A] —z), written B||C' and defined by

B||C iff B# CandC £ B,

is an equivalence relation on A | -z. Symmetry and reflexivity of || are
immediate consequences of the definition. For showing transitivity, suppose
B,C,D € (A]| —z) and B||C||D. If B =C or C = D, then B||D follows
immediately. Therefore assume B # C' # D. If B||C and B # C, then there
is a degree 7 € A such that

Bnog#pCNvandVu > v:(BNw = CNw). (46)

Since all degrees except 0 are singletons, it follows that v =0, i.e., BN (A —
0) = CN(A—0). With the same argument, we conclude that C N (A —0) =
DN (A—-0), hence BN(A—0)=DnN(A-0). Since B and D are maximal
subsets of A, it cannot be the case that BN0 C DN0or BN0 D DNO,
hence B||D.

From the fact that || is an equivalence relation, it follows straightforwardly
that B||C and C <« D implies that B < D. For contradiction assume
B & D. Then we must have D < B because otherwise by transitivity of ||
we could conclude C||D, which is a contradiction of the assumption. From
D < B, the assumption that C' < D and the transitivity of < it follows that
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C < B, which again contradicts the assumption. With the same argument,
it follows that B <« C and C||D implies B < D.

Now assume B & C &£« D. By considering cases, transitivity of <
follows. (1) Assuming B||C and C||D leads to B||D, hence, B &« D. (2)
Assuming B||C and D <« C leads to D < B, hence B &« D. (3) Assuming
C <« B and C||D leads to D < B, hence B « D. (4) Assuming C < B and
D « C leads to D < B, hence B &« D. Thus, belief revisions generated by
unambiguous epistemic relevance are transitively relational and satisfy for
this reason (+8). ®

Although an unambiguous relevance ordering is not necessarily an en-
trenchment ordering, it is possible to generate an epistemic entrenchment
ordering using (41) that leads to an identical revision operation because un-
ambiguous revisions are fully rational. Given an unambiguous prioritized
base Z, the epistemic entrenchment ordering can be derived as follows. For
every pair of propositions z,y € Cn(Z), determine {X} = Z | z and
{Y} =2 | y, and set y <, = if and only if X < Y. The verification
that this is indeed the right epistemic entrenchment ordering is left as an
exercise to the reader.

6 Belief Revision and Default Reasoning

Doyle has remarked in [Doyle, 1990, App. A] that “the adjective ‘nonmono-
tonic’ has suffered much careless usage recently in artificial intelligence, and
the only thing common to many of its uses is the term ‘nonmonotonic’ itself.”
Doyle identified two principal ideas behind the use of this term, namely,

[...] that attitudes are gained and lost over time, that reasoning
is nonmonotonic—this we call temporal nonmonotonicity—and
that unsound assumptions can be the deliberate product of sound
reasoning, incomplete information, and a “will to believe”—which
we call logical nonmonotonicity.

Formally, the term logical nonmonotonicity refers to nonmonotonicity found
in nonmonotonic logics, i.e., given a deductive closure operation C(-) of a
nonmonotonic logic,

XCY # CX)cCCy). (47)

The notion of temporal nonmonotonicity refers to the development of a set
of beliefs over time, where A, will be used to refer to A at time point t:

t1 <ty 75 Atl C Atz (48)
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Although these two forms of nonmonotonicity should not be confused, some-
times they turn out to be intimately connected. In particular, the temporal
nonmonotonicity induced by belief revision, i.e., the fact that in general we do
not have A C A + z, is related to logical nonmonotonicity induced by some
forms of default reasoning. Further, there exists also a connection between a
form of contraction and default reasoning, as we will see below.

When reasoning with defaults in a setting as described in [Poole, 1988;
Brewka, 1989], we are prepared to “drop” some of the defaults if they are
inconsistent with the facts. This, however, is quite similar to what we are
doing when revising beliefs in the theory of epistemic change. Propositions
of a theory are given up when they are inconsistent with new facts. Since de-
fault reasoning leads to logical nonmonotonicity, one would expect that belief
revision is nonmonotonic in the facts to be added, i.e., we would expect that
Cn(z) € Cn(y) does not imply A + 2 C A + y. Indeed, as is well known,
requiring monotony in the second operand of a belief revision operation is
impossible in the general case. Exploring the space of possible revision op-
erations that imply monotony shows that the revision either violates one of
the basic postulates or it is a trivial revision on Cn((}) or Cn(L).

Proposition 13 Let + be a belief revision operation defined on a belief set
A. If for all z,y

A+rzCA+y if Cn(z)C Cn(y), (49)
then
1. The operation + violates one of the basic Gardenfors postulates, or
2. A= Cn(0) and A  z = Cn(z), or
3. A= Cn(L) and A  z = Cn(z).

Proof: Assume A # Cn(L) and a proposition z with -z € A and I/ ~z. By
(49) we would have A + T C A + z. Because of (+3) and (#4), A + T = A.
By assumption, we thus have -z € A + T. Now, by (+2) z € A + z. Because
of (+5) and the assumption I/ ~z, -z ¢ A + z. Thus, either the requirement
A+ T C A + z or one of the basic postulates is violated.

Let  a belief revision operation on Cn(f) and assume that all basic
postulates are satisfied. Then by (+1)-(+3) it follows that Cn(z) C Cn(0) +
z C Cn(PU {z}) = Cn(z) and (49) is trivially satisfied.

Assume A = Cn(L). If F -z then clearly A + 2 = Cn(L) = Cn(z) by
(+1) and (4+2). Thus, assume t/ =z. By (+1) and (+2), we have Cn(z) C A
z. Now assume there is a proposition z € A + z such that z ¢ Cn(z). By
(49) we would have A + 2 C A 4 (—zAz). However, this would violate (+2) or

22



(+5). Thus, if the basic postulates and (49) are satisfied, Cn(L) + z = Cn(z).
L]

Makinson and Gardenfors [1991] use this similarity of logical nonmono-
tonicity and the nonmonotonicity of belief revision in the second operand as
a starting point to investigate the relationship between nonmonotonic logics
and belief revision on a very general level. They compare various general
conditions on nonmonotonic provability relations with the Gardenfors pos-
tulates.

For the approaches to belief revision described in the previous section
there is an even stronger connection to some models of nonmonotonic rea-
soning. Prioritized base revision, and hence partial meet revision generated
by epistemic relevance, is expressively equivalent to skeptical provability® in
Poole’s [1988] theory formation approach and Brewka’s [1989] level default
theories (LDT)—in the case of finitary propositional logic.

A common generalization of both approaches are ranked default theo-
ries (RDT). A RDT A is a pair A = (D, F), where D is a finite sequence
(Ds,...,D,) of finite sets of sentences (propositional, in our case) interpreted
as ranked defaults and F is a finite set of sentences interpreted as hard facts.

An eztension of A is a deductively closed set of propositions

E = on(UR)UF) (50)

=1
such that for all z with 1 <17 < n:
1. R: € D;,

2. R; is set-inclusion maximal among the subsets of D; such that
(Uj=1 R;) U F is consistent.’

A sentence z is strongly provable in A, written Apvz, iff for all extensions £
of A: z € E.

Poole’s approach is a special case of RDT’s where D = (D;), and Brewka’s
LDT’s are RDT’s with F = (. Note, however, that the expressive difference
between RDT’s and LDT’s is actually very small and shows up only if F
is inconsistent. In this case, RDT’s allow the derivation of L while this is
impossible in LDT’s.

8A correspondence to credulous derivability could be achieved if a notion of nondeter-
ministic revision as proposed in [Doyle, 1990] is adopted.

9Note that this definition, which is similar to the definition of an extension in [Poole,
1988], excludes inconsistent extensions. Nevertheless, the definition of strong provability
implies that L can be derived iff F is inconsistent.
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Theorem 14 Let A = ((D1,...,Dy),F) be a RDT. Let Z = Ui, D; be a
prioritized base with degrees of epistemic relevance Dy,...,D,. Then for all
Z

Abz iff z€(ZdF). (51)

Proof: In the limiting case when F L, Z& F = Cn(L). Further, in this
case there is no extension of A, hence Apvz for all z € £ by the definition of
strong provability.

When F is consistent, then (Z | =(A F)) is by definition a system S of
subsets ¥ C Z such that

1' Y= U?:l }/i’
2. Y, C Z,foralll << n,and

3. for all 1 < < n, Y, is set-inclusion maximal among the subsets of Z;

such that Ui_; ¥; 17 ~(A F).

Since the second condition of 3. is equivalent with the condition that
(Ui=; Yj) U F) is consistent, it follows that by definition for every exten-
sion E of A there exists a set Y € (Z § =(AF)) such that E = Cn(Y U F)
and vice versa, hence

N E=r (] OGu¥)+(AF), (52)

E is an extension of A YE(ZUﬁ(/\ F))

which completes the proof. m

This means that ranked default theories have the same expressive power
as finitary prioritized base revision operations, which coincide with finitary
belief revisions generated by epistemic relevance.

It should be noted that in ranked default theories there is no requirement
on the internal consistency of defaults. This means that the set |J; D; may
very well be inconsistent. In Theorem 14 that may lead to L € Cn(Z),
l.e., the belief set to be revised is inconsistent. Although this might sound
unreasonable in the context of modeling (idealized) epistemic states—in
fact, inconsistency is indeed explicitly excluded by requirement (2.2.1) in
[Gardenfors, 1988]—it does not lead to technical problems in the theory of
epistemic change. Additionally, it is possible to give a transformation be-
tween reasoning in RDT’s and prioritized base revision using only consistent
belief sets.

Corollary 15 Let A be a RDT as above. Then there exists a consistent
prioritized base Z and a proposition y such that for all z

Abz iff ©€ (26 AF)). (53)
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Proof: Define Z as in Theorem 14. Transform every sentence in Z into
negation normal form (i.e., into a formula that contains only A, V and -, and
all negation signs appear only in front of propositional variables). Assuming
without loss of generality that the alphabet of propositional variables ¥ is
finite, extend ¥ to ¥’ by adding for every propositional variable a a fresh
variable a’. Now replace any negative literal —a in all sentences of Z by d/,
call the new belief base Z’ and define

y o N (—a & d). (54)
a€L

Since no sentence in Z’ contains any negation sign, Z’ is consistent.

Let z any proposition over ¥, we will show that for any two belief bases
Y and Y’, where Y’ is a transformed belief base according to the above rules,
the following relation holds:

YEhz iff YU{y}F a. (55)

Assume Y F z but Y’ U {y} I/ z. This means Y’ U {y} U -z is satisfiable.
Restricting the truth assignment of this belief set to ¥, we get one that
must satisfy Y U {-z} by construction of Y’. This is impossible, however.
Conversely, assuming satisfiability of Y U {-z}, a truth assignment can be
extended to X’ such that it satisfies Y U {y} U -z, hence also Y’ U {y} U ~z.

That means that for any maximal subset Y C Z that is consistent with
a given proposition z there exists a corresponding set Y’ C Z’, that is con-
sistent with y and z and maximal in Z’. Further adding y to Y’ allows to
derive the same propositions over ¥ as can be derived from Y. ®

From the results above and the translation of (+8) to a condition on
nonmonotonic derivability relations in [Makinson and Giardenfors, 1991], it
follows that the derivability relation of RDT’s w.r.t. the set of hard facts F
does not satisfy rational monotony (see [Makinson and Gardenfors, 1991]).1°
This condition can be phrased as follows:

If zhvy and zpf—z then z A zpy (56)

In plain words, if a proposition z permits the plausible conclusion y, this
conclusion continues to hold for the stronger premise z A z provided there
is no plausible reason to deny z given the assumption z. Applying this
condition to RDT’s we consider the nonmonotonic derivability relation as

10Note that this result depends on the exact correspondence between RDT’s and belief
revision generated by epistemic relevance. In [Makinson and Gardenfors, 1991; Girdenfors,
1990] the correspondence between Poole’s logic and belief revision was only approximate
because the defaults were assumed to be deductively closed.
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parameterized by the defaults D, written Fppz. For a counter-example
to rational monotony, suppose a situation where two people of different sex
meet the first time and try to get to know important facts about each other.
Assume one person has the following background beliefs modeled as a set of
defaults:

1. Being a parent implies being married (p — m).
2. Living alone implies being a bachelor (a — b).
3. Wearing a ring implies being a dandy or being married (r — (d vV m)).

All these defaults have the same priority. Further, suppose the postulate
(b & —m) and the facts p, a, and r. One extension, which contains m, is
the consequential closure of the facts and rules 1 and 3. The other possible
extension, which contains d, is the closure of the facts and rule 2. This means
that (m V d) is a sceptical consequence:

(be-m)ApAaAr by (mVd). (57)

If —d is added to the facts the expected conclusion m does not follow, however.
In this case one extension, which contains m and —d, is generated by the facts
and rule 1 and 3. The other possible extension is generated by the facts and
rule 2 and contains -m and —~d. Hence,

“dA((be m)ApAaAr) Kp (MmVA), (58)
although
(b -m)ApAaAr) By, d (59)

Another interesting observation in this context is that the addition of
constraints to RDT’s is similar but not identical to a belief contraction opera-
tion as defined in Section 2. Poole [1988] introduced constraints—another set
of sentences—as a means to restrict the applicability of defaults. A ranked
default theory with constraints is a triple A = (D, F,C), where D and F are
defined as above and C is a finite set of sentences interpreted as constraints.
The notion of an extension is modified as follows. Instead of condition 2. it
is required that :

2. R; is set-inclusion maximal among the subsets of D; such that
(UL; Ri) U FUC is consistent.

It should be obvious that the addition of constraints is a generalization of
the basic framework, i.e., for all 7, D, z:

(D.F R & (PF)kz (60)
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Provided the set F UC is consistent, which is the interesting case, skeptical
derivability can be modeled as a form of contraction on belief bases (see

[Nebel, 1989]).

Theorem 16 Let A = ((Dy,...,D,),F,C) be an RDT with constraints such
that F U C 1is consistent. Let Z = F U UL, D; be a prioritized base with
F,Ds,...,D, the degrees of relevance of Z. Then

Abz iff \/(Z4-(\C)Fa (61)

Proof: If FUC is consistent, then every element Y € (Z || ~(AC)) contains
F. Further, the subsets chosen from D; are maximal subsets consistent with
F and C, hence, the extensions of A correspond to sets Y € (Z | ~(AC))
and vice versa, such that £ = Cn(Y). =

This goes some way to answering the question whether there is a counter-
part to contraction in nonmonotonic logics, raised in [Makinson and Garden-
fors, 1991]. Default reasoning with constraints in Poole’s theory formation
approach can be modeled by using base contraction.

Trying to lift this result to belief sets, however, is impossible in the general
case. Usually, ranked default theories with constraints do not allow the
derivation of A C, and this property is independent from consistency of the set
of facts F with the set of defaults |J; D;. When contracting an inconsistent
belief set, however, the contracted belief set contains the negation of the
proposition used to contract the belief set. This property follows from the
Harper identity (5) when we set A = Cn(L):

Cn(L) - z=(Cn(L) + ~2)N Cn(L) = Cn(L) + ~z 2 Cn(-2) (62)

This means, provided we try to model derivability in such logics by belief
contraction, in case when the defaults are inconsistent with the facts, a belief
contraction would lead to the inclusion of the constraints—which may not
be derivable in the corresponding default logic. Base contraction does not
have this property because such operations remove more beliefs than belief
contractions. In particular, while every contracted belief set A = z contains
Cn(A) N Cn(—z), a contracted base usually does not contain those beliefs

(see also [Nebel, 1989]).

7 Computational Complexity

For the investigation of the computational complexity of belief revision, we

consider the problem of determining membership of a sentence y in a belief
set A = Cn(Z) revised by z, i.e.,

y€E Az (63)
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As the input size we use the sum of the size |Z| of the belief base Z that
represents A and the sizes |z| and |y| of the sentences z and y, respectively.

This assumption implies that the representation of the preference rela-
tion used to guide the revision process should be polynomially bounded by
|Z|+ |z|+|y|. Although this sounds like a reasonable restriction, it is not met
by all belief revision approaches. Belief revision generated by epistemic en-
trenchment orderings [Gardenfors and Makinson, 1988], for instance, requires
more preference information in the general case. An epistemic entrenchment

ordering over all elements of a belief set can be uniquely characterized by
an initial complete order over the set of all derivable mazimal disjunctions

(over all literals) [Gardenfors and Makinson, 1988, Theorem 7]. This set is
logarithmic in the size of the set of formulas (modulo logical equivalence) in
a belief set. However, the number of maximal disjunctions may still be very
large.

Proposition 17 The set of mazimal disjunctions implied by a belief base
has a worst-case size that is exponential in the size of the belief base.

A similar statement could be made about revisions generated by epistemic
relevance. It is, of course, possible to have a belief base Z that represents
A and an epistemic relevance ordering over A that is not representable in a
polynomial way w.r.t. |Z|. However, if we consider only complete preorders
over Z with the understanding that the degree of least relevant sentences is
Cn(Z) — Z, then the ordering is represented in a way that is polynomially
bounded by |Z| and + can be computed by using the corresponding prioritized
base revision. This means all “natural” epistemic relevance orderings are
well-behaved.

Analyzing the computational complexity of the belief revision problems,
the first thing one notes that deciding the trivial case y € Cn(0) + z is
already co-NP-complete,!' and we might give up immediately. However,
finding a characterization of the complexity that is more fine grained than
just saying it is NP-hard can help to understand the structure of the problem
better. In particular, we may be able to compare the inherent complexity
of different approaches and, most importantly, we may say something about
feasible implementations, which most likely will make compromises along
the line that the expressiveness of the logical language is restricted and/or
incompleteness is tolerated at some point. For this purpose we have to know,
however, what the sources of complexities are. '

'We assume some familiarity with the basic notions of the theory of NP-completeness
as presented in the first few chapters of [Garey and Johnson, 1979]. This means the
terms decision problem, P, NP, co-NP, PSPACE, polynomial transformation (or many-one
reduction), polynomial Turing reduction, completeness w.r.t. polynomial transformability
or Turing reducibility should be familiar to the reader.
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The belief revision problems considered in this paper fall into complexity
classes located at the lower end of the polynomial hierarchy. Since this notion
is not as common as the central complexity classes, it will be briefly sketched
[Garey and Johnson, 1979, Sect. 7.2]. Let X be a class of decision problems.
Then PX denotes the class of decision problems L € PX such that there is a
decision problem L’ € X and a polynomial Turing-reduction from L to L', i.e.,
all instances of L can be solved in polynomial time on a deterministic Turing

machine that employs an oracle for L’. Similarly, NPX denotes the class

of decision problems L € NPX such that there is nondeterministic Turing-
machine that solves all instances of L in polynomial time using an oracle
for L' € X. Based on these notions, the sets A}, ¥¥, and II} are defined as

follows:1?

AP = ¥ =1 = P, (64)
AR, = PE, (65)
.. = NP (66)
sy = ©0-Bf.y. (67)

Thus, £§ = NP, II} = co-NP, and A} is the set of NP-easy problems. Further
note that U0 A = Ukso Bk = Ukso IT; € PSPACE.

The role of the “canonical” complete problem (w.r.t. polynomial trans-
formability), which is played by SAT for X7, is played by k-QBF for XF.
k-QBF is the problem of deciding whether the following quantified boolean
formula is true:

3@Vbh.., F(d,b,...). (68)
N e
k alternating quantifiers starting with 3

The complementary problem, denoted by k—QBF, is complete for II%.
Turning now to the revision operations discussed in this paper, we first of
all notice that the special belief revision problem of determining membership
for a full meet revision, called FMR-problem, is comparably easy. With re-
spect to Turing-reducibility, there is actually no difference to the complexity
of ordinary propositional derivability, i.e., the FMR-problem is NP-equivalent.

Proposition 18 FMR € A} — (2 UIIY) provided X # I15.

Proof: If + is a full meet revision, z € Cn(Z) + y can be solved by the
following algorithm:
if ZY -z
then ZU {z} Fy
else zFy

2The superscript p is only used to distinguish these sets from the analogous sets in the
Kleene hierarchy.
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From this, membership in A} follows.

Further, SAT can be polynomially transformed to FMR by solving z €
Cn(z) + T, and unsatisfiability (SAT) can be polynomially transformed to
FMR by solving L € Cn(0) + z. Hence, assuming FMR € NP U co-NP would
lead to NP = co-NP. =

The membership problem for simple base revision will be called SBR-
problem. This problem is obviously more complicated than the FMR-
problem. However, the added complexity is not overwhelming—from a the-
oretical point of view.

Theorem 19 SBR is II5-complete.

Proof: We will prove that the complementary problem Z & z / y, which
is called SBR, is ¥5-complete. Hardness is shown by a polynomial transfor-
mation from 2-QBF to SBR. Let @ = ay,...,ay,, let b=by,...,bn, and let
3@ Vb F(@,b) be an instance of 2-QBF. Set

-

Z = {ay,...,0,,00y,...,7a,,~F(@,b)}. (69)
Now we claim that

Z@ T -F(@b) iff 3@VbF(a,b) is true. (70)

-

Z & Tl —~F(a,b) if and only if there is an element Y € (Z | T) such that
-F(a, E) ¢ Y. Since eve