
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-92-14

Intelligent User Support in Graphical
User Interfaces:

1 . InCome: A System to Navigate through
Interactions and Plans

Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces

Markus A. Thies, Frank Berger

March 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel. : (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Daimler Benz ,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Krupp-Atlas , Mannesmann-Kienzle , Philips,
Sema Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently , there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community . There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Intelligent User Support in Graphical User Interfaces:

1. InCome: A System to Navigate through Interactions
and Plans

Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object-Oriented User
Interfaces

Markus A. Thies, Frank Berger

DFKI-RR-92-14

The paper 'InCome: A System to Navigate through Interactions and Plans' is published in H.-J.
Bullinger: Human Aspects in Computing: Design and Use of Interactive Systems and
Information Management, Elsevier Science Publishers B.V., 1991

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following : a notice that such copying is by
permission of Deutsches Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr Kunstliche Intelligenz.

InCome: A System to Navigate through
Interactions and Plans

Th. Fehrle
IBM Laboratory Boblingen

Schonaicherstr. 220
I

W -7030 Boblingen
Germany

M. A. Thies
German Research Center for AI (DFKI)

Stuhlsatzenhausweg 3
W-6600 Saarbrucken

Germany
thies@dfki .uni-sb.de

Abstract

This paper presents a frontend to an intelligent help system based on plans
called InCome (Interaction Control Manager). It visualizes user actions previously
executed in a specific application as a graph structure and enables the user to
navigate through this structure. A higher level of abstraction on performed user
actions shows the dialog history, the interaction context and reachable goals. Finally,
the user is able to act on the application via InCome by performing undo mechanisms
as well as specifying user goals infered already by the help system.

1

Contents

1 Introduction 3

2 Concepts of InCome 3

3 User Interface of InCome 4

4 System Architecture 6

5 Conclusions 6

2

1 Introduction

Some effort in the research area of intelligent user support has led to plan- based help
systems (cf. [6], [7], [1]), that deduce reachable user goals from interactions performed
by a user within an application. The fundamental knowledge of such intelligent help
systems is represented by plans describing sequences of actions, that have to be executed
to reach a specific goal. Based on that technique intelligent help systems can answer user
questions concerning the dialog context as well as suggest ways to fulfil a goal. Currently
implemented plan-based help systems support the user when interacting with command
oriented operating systems. InCome expands the scope of such help systems to window
oriented interaction styles and Direct Manipulation Interfaces (DMI). Many applications
offer a comfortable interface but show a deep complexity of implemented objects and
actions without offering a suitable user assistance. To provide a sophisticated user support
(to inform the user how to proceed in the actual task or how to resume a suspended dialog
while working on different tasks in" parallel) new approaches are required. To support a
user in using a DMI, intelligent help systems must have knowledge about actions, plans
and goals as well as the actual state of the interaction context between the user and the
application. A sequence of actions must be deducible to reach intended goals of the user .
Help information should be easily accessible without changing interaction style.

2 Concepts of InCome

InComel provides a graphical visualization of the actual dialog context, the dialog history
and possible future interactions. InCome gives the user a quick and helpful reminder on
the system state to resume suspended applications. It supports the user in leaving system
states unfamiliar to him and in exploring actions which would be executable next. InCome
meets the following demands (cf. [5]):

• Adequate visualization of user interactions.

• Display of different levels of abstraction selected by user interactions.

• Graphical navigation services.

• Visualization of possible future interactions.

• Semantic undo/redo capabilities.

• Display of embedded, overlapped and interrupted plans.

An application system using InCome consists of at least the logical part of the applica­
tion, a presentation manager for the communication between user and application, a plan
recognizer/generator knowing predefined hierarchical plans and InCome itself (cf. fig. 1,
InCome modules are shaded).

1 InCome is developed as part of the joint project PLUS (Plan-based User Support) between the IBM
Laboratory Boblingen, the IBM Deutschland GmbH and the DFKI

3

Graphlcs­
oriented

Representatlo

Hierarchical
Interaction

History
. < .. :.::::.:.:.::::::::

~
~

Interaction
History

Tutorial
Mode

Figure 1: Architecture of InCome

3 User Interface of InCome

Plan
Recog­
nition /

Generation

Plan LIbrary

While the user interacts with the application the plan recognizer tries to map these actions
to plans and makes assumptions about goals intended by the user. These assumptions
are sent to InCome which builds up an internal representation of them and displays it as
a graph structure on the screen. The instances of the two object classes plans and actions
are visualized as nodes. To reflect the sequence of actions in a plan the objects belonging
to the same plan are connected with arcs. A goal is visualized by a goal-banner. The
displayed interaction structure involves different levels of the plan hierarchy. So the user
can easily recognize which actions lead to a specific goal.

The overall structure resembles a directed graph from top to bottom to model the
chronological order of the performed interactions. Additionally different colors are used
for the nodes to distinguish interactions in the past and in the future.

The positioning of the different objects on the screen is performed by an incremental
deterministic layout algorithm. This guarantees that the relative positions of the already
visualized performed interactions are not influenced by adding new interactions to the
graphical representation. This minimizes the c9gnitive stress of the user to recognize
visualized interaction structures.

In DMI there is a high degree of plan interactions such as plan-overlapping, plan­
inien'upiion, and plan-embedding. For example, plan-embedding occurs in a plan hier­
archy where frequently used sequences of actions are extracted and combined to a plan
which can be later used as a subplan in higher-level plans, as for example when performing
generic operations, such as choosing a menu selection or selecting a graphical object with
the mouse.

InCome runs in its own window. The presented nodes are selectable via mouse clicks

4

(ins-a~-lape (S) 1

(]

Figure 2: Windows of InCome

""

VI C - Overview

Determine Fil
det-fs-size (C)

fl,nsert Tape of th U ins - as-tape(S)

"" flln~ert New Entri U ins-entry-net(S.

"" fl Select Directari U sel-dirs(S}

""

and actions are offered in pulldown menus following the interaction style standard imple­
mented by the user interface management system. User actions possible in InCome are
divided into three categories:

• Graphical navigation includes actions like overview, scrolling and searching specific
nodes. The overview window contains the whole visualized interaction structure by
performing operations to display it on a reduced scale. It supports several navigation
aids (e.g., indirect and direct positioning of the standard window of InCome).

• Hierarchical navigation supports the user in viewing different levels of plans. A plan
can be a subplan of a higher level plan. Plans can be opened to see the underlying
sequences of actions or subplans. On the other hand, actions that are associated to
the same goal can be combined and represented as one plan. In addition, InCome
provides the ability to focus on plans comparable to a fish-eye view. Every object
out of interest is abstracted to such a level that the focused plans are not effected.

• InCome allows the user to act on the application remotely by offering him a tutorial
mode and access to undo-mechanisms and redo-mechanisms. In general, the user
expresses reachable goals to be guided to by InCome. If the user selects a reachable
goal and activates the tutorial mode, InCome requests a sequence of actions from
the plan generator and visualizes this sequence in a to-do-list shown to the user in
a separate window. Then InCome supervises the executed user actions by marking
performed actions in the to-do-list and showing the next steps necessary to reach
the selected goal. If the user has performed an action that compromises the selected

5

goal, InCome informs the user about this situation to allow a backtracking with an
undo leading to the system state valid before.

On the other hand InCome provides an automatic execution of all actions in the
to-do-list by sending stepwise actions to the functional interface of the application.
If additional information is required, e.g., unspecified parameters, the application
interacts with the user.

InCome offers an interface to the undo-mechanism that must be implemented by
the application. To be able to handle two different principles of undo- mechanisms
(cf. [3]) (functional vs. system-state oriented), InCome uses an extended functional
approach by supporting the resetting to explicit freezing points via an application

function.

Selecting an executed plan out of the standard window of InCome and activating
the function redo, the user repeats the execution of the underlying sequence of
actions with either the same parameters or new parameters. In both cases InCome
sends the underlying sequence to the functional interface of the application. Both
types of redo can also be recorded and reused by executing analogical sequences of
interactions in future sessions with the application (command recording).

4 System Architecture

The system architecture of InCome is splitted into three components interacting with
the user and one component building up the internal representation of the interaction
history (cf. fig. 1). The parser generates the hierarchical interaction history from a syn­
tactically formalized plan-based interaction history coming either from the plan recog­
nizer/generator or from the interaction history. The hierarchical navigation module pro­
duces the graphics-oriented representation of the interaction history which is afterwards
interpreted by the graphical navigation module to generate the several displays like the
standard window, the overview window and the linear dialog history. This module also
implements the graphical navigation aids.

Activating the tutorial mode causes the appropriate module either to extract a valid
sequence of actions from the hierarchical interaction history or to request it from the
plan recognizer/generator. The redo and undo modes generate the appropriate sequences
of actions and send them to the functional interface of the application. InCome is a
separate application and is implemented in Smalltalk/V PM running on an IBM PS/2
under OS/2.

5 Conclusions

InCome provides the user a quick and helpful reminder on the system state to resume
suspended applications. It assists the user in leaving system states unfamiliar to him.
The combination of undo- and redo-mechanisms on a high level of interaction abstraction
supports him in exploring alternative actions which would have been executable next.
The combination of the undo- / redo-mechanisms with the high level visualization of
interactions gives the user the opportunity to perform an undo-redo on a semantic level

6

(semantic undo / semantic redo) because he can activate it on plans rather than on single
actions.

The presented interaction control manager InCome can be integrated in a user interface
design environment like UIDE (cf. [2], [4]) in such a way, that on user demand the tutorial
mode of InCome presents an animation of the necessary user steps to reach the specified
user goal.

Bibliography

[1] G. Fischer, A. Lemke, and T. Schwab. Knowledge-based help systems. In Proceedings
CHI-85, San Francisco, CA, 1985.

[2] J. D. Foley, C. Gibbs, W. C. Kim, and S. Kovacevic. A knowledge-based user interface
management system. In CHI'88 Human Factors in Computer Systems, Conference
Proceedings, Washington, D.C., 1988.

[3] M. Rathke. Undo/redo - szenarien und anforderungen fiir eine anwendungsneutrale
implementierung. In M. Paul, editor, GI - 17. Jahrestagung Computerintegrierter
Arbeitsplatz im Bum, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
Springer.

[4J P. Sukaviriya and J. D. Foley. Coupling a ui framework with automatic generation
of context-sensitive animated help. In Proceedings of ACM SIGGRAPH 1990 Sympo­
sium on User Interface Software and Technology (UIST'90), pages 152-166, Snowbird,
Utah, October 1990.

[5] M. A. Thies. Interaction Control Manager: Ein System zum Navigieren durch In­
teraktionen und Plane. Master's thesis, Fakultat Informatik, Universitat Stuttgart,
Deutschland, 1990.

[6] W. Wahlster, D. Dengler, M. Hecking, and C. Kemke. SC: The SINIX consultant. In
P. Norvig, W. Wahlster, and R. Wilensky, editors, Intelligent Help Systems for Unix
- Case Studies in Artificial Intelligence. Springer, Heidelberg, 1990.

[7] R. Wilensky, Y. Arens, and D. Chin. Talking to UNIX in english: An overview of UC.
Communications of the ACM, 27(6), June 1984.

7

Plan-Based Graphical Help in Object-Oriented
User Interfaces

Markus A. Thies and Frank Berger
German Research Center for Artificial Intelligence (D FKI)

Saarbriicken Site, Stuhlsatzenhausweg 3

DW -6600 Saarbriicken 11
Germany

{thies, berger }@dfki.uni-sb.de
© Copyright IBM Deutschland GmbH 1992

Abstract

This paper describes the system PLUS, a plan-based help system for applica­
tions offering an object-oriented user interface. Our plan recognition process is
based on a predefined static hierarchical plan base, which is modeled using a goal
plan language. This language is designed to especially cope with the problems aris­
ing when plan recognition is performed in a graphical user interface environment
whose interaction is based on a user-directed dialog by means of direct manipula­
tion - so-called Direct Manipulation User Interfaces. The plan hierarchy is entered
using the interactive graphics-oriented plan editor PlanEdit+. The plan recognition
module PlanRecognizer+ builds a dynamic plan base by mapping user actions to
plans stored in the static plan base. The dynamic plan base contains hypotheses
about tasks the user is pursuing at the moment. These plan hypotheses serve as a
basis to offer various kinds of assistance to the user. A central component of our
graphical help is the module InCome+. InCome+ visualizes user actions previously
executed in an application as a graph structure and enables the user to navigate
through this structure. A higher level of abstraction on performed actions shows the
dialog history, the interaction context, and reachable goals. InCome+ offers special
features like task-oriented undo und redo facilities and a context-sensitive tutor. A
substantial extension of the graphical user assistance is the integration of animated
help within PLUS. Animation sequences are generated in the context of the tasks
the user is currently working on.

8

Contents

1 Introduction 10

2 The PLUS System 11

3 The Plan Editor 13

4 The Module InCome+ 15

5 Animated Help 20

6 Acknowledgements 20

9

1 Introduction

The overall objective of PLUS is the design and the implementation of a plan-based help
system. Rather than doing basic research, the state-of-the-art methods of several fields
in Artificial Intelligence like Knowledge Representation and Plan-based Systems should be
incorporated. In the context of plan-based help systems, a plan is a sequence of actions
that have to be executed to complete a given task, thereby achieving a specific goal. Unlike
known help systems that where mostly developed for command-based interfaces (see, e.g.,
[Finin 83], [Fischer et al. 85], [Wilenskyet al. 88], [Wahlster et al. 90], [Bauer et al. 91]),
PLUS is designed to cope with applications that offer graphical user interfaces, whose main
interaction principle is based on a user-directed dialog by means of direct manipulation (cf.
[Shneiderman 83], [Shneiderman 87]) - so-called Direct Manipulation User Interfaces
(DMI).

A special feature of such a DMI-environment is the flexibility of the user in performing
tasks within an application. There usually exists neither a definite action sequence for
the execution of a plan nor a fixed number of actions required for accomplishing a given
task. Moreover, in a DMI-environment it is possible to work on different tasks in parallel
and to switch between them arbitrarily. For an expert user, this flexibility makes it easier
and more comfortable to handle such a system. An unexperienced user, however, may
easily get confused and encounter difficulties when working with the application. In such a
situation, he may want to ask a human expert for help. The help system that is developed
within PLUS, should replace such an expert. In contrast to manuals or static online help
facilities usually supplied with an application, the PLUS help system is able to deal with
the user's problems in a context-dependent manner by giving him advise related to the
tasks he is performing at the moment.
In order to meet these demands, the following help strategies are designed within PLUS:

• Passive help:
The user explicitly requests help.
Context sensitive help information is generated.

• Active help:
The user gets help without explicitly requesting it.
E.g., the system offers the user an optimized interaction sequence to reach a specific
goal.

• Cooperative help:
The user gets help when he runs into an error condition.
The system suggests possible corrections or recommends alternative solutions to the
user.

• Implicit help:
The system adapts itself by, e.g.,
- changing the screen layout,
- focusing the user's attention,
- setting defaults.

10

The PLUS prototype has been developed using a Smalltalk system. The design of
the prototype follows progressive methods in application development and concepts of
object-oriented software development (cf. [Wisskirchen 90], [Booch 91]).

2 The PLUS System

The main module of a plan-based help system is a plan recognizer. While the user
interacts with the application, the plan recognizer tries to map the performed actions to
plans, thereby making assumptions about the goals intended by the user. These plan
hypotheses form the basis for offering various kinds of help to the user.

There exist two different approaches for plan-based systems. On the one hand, there
are systems that generate plans during run-time using a plan generation system (see, e.g.,
[Bauer et al. 91]). This approach is also called plan recognition from first principles. On
the other hand, there are systems that use a predefined plan-base as an input for the plan
recognition component (plan recognition from second principles). The plan recognizer
used within PLUS is based upon the second approach.

Coping with different DMI-events, we use a two-level plan recognition approach. With
this two-level approach we are able to process the low-level events without stressing the
actual plan recognition process.

The first level processes low-level events like mouse-clicks and keystrokes. Upon the
first level, we protocol the user's favourite interaction styles - does he mostly use the
mouse or does he prefer 'short-paths' - and build up a simple user model to reflect the
user's preferences (user modelling see, e.g., [Kobsa & Wahlster 89] [Rich 89]).

First, the user model can be employed for adapting help information to the user's habit
by considering his prefered interaction styles, and second, it allows to detect alternative
interaction principles that are unknown to the user. Moreover, while generating help
sequences, the first level of the plan recognition is used to determine the most effective
interaction technique to perform a specific action.

The results of this first plan recognition level are application-specific actions performed
by the user by, e.g., selecting pulldown items. These actions are recorded within a Dialog
History that serves as an input for the second level plan recognition process, realized
through the module PlanRecognizer+.

Using a spreading activation algorithm, PlanRecognizer+ tries to map actions stored in
the dialog history to plans in the predefined hierarchical plan base. We use a hierarchical
plan base to offer a user-adequate assistance on a suitable abstraction level, and in order
to guarantee an efficient plan recognition process. Logically coherent action sequences
may be part of various plans. Therefore, it is obvious to combine them to an independent
plan, and to define this plan as a subplan in the corresponding, more abstract plans.
Thereby, we obtain a plan hierarchy with several layers. This so-called static plan base is
interactively entered using the graphics-oriented plan editor PlanEdit+ (cf. section 3).

The spreading activation algorithm builds up the so-called dynamic plan base at run­
time. The dynamic plan base contains hypotheses about plans and goals the user is pur­
suing at the moment. Together with a knowledge base containing common help strategies
extended by rules and facts about generic interface concepts, these hypotheses serve as a
basis for the help component and for InCome+ (cf. figure 1).

11

ATN-based
Event Handler

Help Component
- active
- passive
- cooperative
-Implicit

InCome+

Animation

Figure 1: PLUS System Architecture

DMI-environments enable users to perform tasks in a very flexible way. Due to this ,
the number of considered plan hypotheses may increase without additional mechanisms
to reduce their number. Therefore, we provide the following focussing methods:

• We introduced a time frame concept that splits plan hypotheses into different classes,
considering the time stamps of their last activation. This classification serves as an
instrument to decide, which plans are presented to the user if he requests help.

• For each plan a list of cancel actions/goals may be specified. The execution of a
cancel action or the achievement of a cancel goal immediately dismisses the respec­
tive plan hypothesis. E.g., if the user explicitly removes an object used within a
plan, this plan is dismissed.

• For each plan a list of views may be specified. A plan is only activated, if it is
performed within one of its associated views. This concept supplies an additional
cancellation mechanism. If a view is closed, all plans associated with that view can
be dismissed.

The term view describes windows having a specific type. E.g. , a window representing
hierarchical information like father-child-relations about some data (hierarchical view)
or a window showing vertical information like predecessor and successor relations of the
same data (vertical view). By introducing views, specific actions may only be possible in
specific views. E.g., connecting nodes that are on the same level of abstraction within
a hierarchy is possible in the vertical view. In contrast, building father-child-relations is

12

only possible in the hierarchical view. In addition to the restriction of actions to views,
plans may also be restricted to be performed completely within a specific view.

To enter the static hierachical plan base, the interactive graphics-oriented plan editor
PlanEdit+ is used, which is described in more detail in the next section.

3 The Plan Editor

The plan hierarchy comprises three types of objects, actions, plans, and goals. It IS

organized as follows (cf. figure 2):

• The lowest layer consists of the actions the user can perform when interacting with
the application. Actions may be parts of plans.

• A plan is defined by a set of actions and/or subgoals. Each plan is associated with
exactly one goal that is reached, if the plan is completed.

• A goal may be achieved in different ways, each of them describing an alternative
plan. Some of them may be suboptimal or wrong. Goals may be contained as
subgoals within more abstract plans.

Goal layer

Plan layer

Goal layer

Plan layer

Action layer

o
o
o

Figure 2: Plan Hierarchy

o 0 0

For each type of object in our planbase, certain properties may be defined. Therefore,
we developed the plan description language GPL + (Goal Plan Language). By means
of GPL + we are able to model several problems closely related to DMI environments
like optionality, multiple selection, iteration, parallelity, and multiple views on objects.
Besides, features common to plan recognition like parameter and temporal constraints,
plan cancellation and plan interactions can be modeled. In addition, the elements of the
plan base may be supplied with hierarchy information, thereby defining the structure of
the plan hierarchy.

Grounded on the structure of our plan base - an object hierarchy with specific prop­
erties per element - we decided to chose an object-oriented internal representation for

13

the plan base. In order to offer the plan designer a comfortable input tool, we devel­
oped the graphics oriented plan editor PlanEdit+, that allows to build up the plan base
interactively within a DMI environment.

Figure 3 shows the PlanEdit+ main window, in which the biggest part of the interaction
takes place. The elements of the plan base are displayed as graphical objects. Each object
consists of an icon representing the element's type and the element's name. The Type
Box in the lower left corner of the main window contains icons for the three types of
elements contained in the plan base: actions, plans and goals. These icons can be used
to generate new elements of the respective types. The properties of the elements may be
defined within a series of dialog boxes.

rl
G Prep Prot Root GPrepBootParam

I I
Prep ProtRoot Prep BootParam

I rl I I
CrProtRoot GPrep CompBootParam RelnltBoot

I
Prep

I I I
SelDlrs

Figure 3: PlanEdit+ Main Window

The contents of the main window may get involved, if the plan base grows. Therefore,
we added a second window type that enables us to separately examine the structure of
previously defined plans and goals, and to easily modify their properties. Figure 4 shows
an example of a plan window.

14

I
Conf

" ",er"'"
Prep RevArp

M I
I ReinitRevArp(Server)

InsEntryNet(Server Client)

GPrepBootRle(Ont

Figure 4: Different Window Types

In the m a in window, the elem ent s of the plan base may be arranged arbitrarily without

considering the structure of the plan base. Within a plan window, however, the layout of
the objects corresponds to the logical sequence of the elements within the plan, as defined
through the sequence constraints.

After the plan base is completely specified by using PlanEdit+, a corresponding
Smalltalk module modeling the internal object-oriented representation of the static plan
base is generated.

4 The Module InCome+

One of the central components for graphical help within the system PLUS is the In­
teraction Control Manager InCome+ (cf. [Thies 90], [Fehrle & Thies 91]). It provides a
graphical visualization of the current dialog context, the dialog history, and possible fu­
ture interactions. InCome+ gives the user a quick and helpful reminder on the system
state to resume suspended tasks. It supports the user in leaving system states unfamiliar
to him and in exploring actions (cf. [Paul 89]) that can be executed next to complete
unfinished tasks. InCome+ meets the following demands:

• Adequate visualization of user interactions,

• Display of different levels of abstraction selectable by the user,

• Visualization of possible future interactions,

• Graphical navigation services,

15

• Display of plan interactions, like embedded, overlapping, and interrupted plans, and

• Task-oriented (semantic) undo/redo capabilities.

PlanRecognizer+ and the plan completion component form the backbone of InCome+.
The plan completion component generates, on demand, a valid sequence of actions for
plan hypotheses that are contained in the dynamic plan base. Several constraints defined
within the hierarchical plan base are satisfied. E.g., sequence constraints are solved and
already known parameter values are propagated according to parameter constraints.

PlanRecognizer+ notifies InCome+ about the ongoing plan recognition process. Upon
the incoming data, InCome+ generates an internal representation of the interaction con­

text and displays it as a graph structure on the screen. The instances of the object classes
action, plan, and goal are represented as nodes. An action is represented by a single sheet
of paper and a plan is represented by a stack of papers. The visualized structure resembles
a directed graph reflecting the chronological order of the performed interactions from top
to bottom. Objects belonging to the same plan are connected by arcs. The sequence is
ended by a goal banner representing the associated goal (cf. figure 5).

,.- -- -.....

New entries for C into network inserted.

f)p;~· J;·IJ'~M~~U.~,. c.l. ,;::: i l

Figure 5: Visualized Elements within InCome+

InCome+ runs in its own window. The presented nodes are selectable via mouse clicks.
User actions provided by InCome+ can be divided into four categories:

• Graphical navigation,

• Hierarchical navigation,

• Tutor activation, and

16

• Remote application interaction.

Graphical Navigation includes actions like scrolling} overviewing, and searching for
specific nodes. The overview window (cf. figure 6) contains the whole visualized interaction
structure by performing operations to display it on a reduced scale. Within the overview
window several additional navigational actions like direct and indirect positioning of the
standard window of InCome+ are possible.

Hierarchical navigation supports the user in viewing plans in different abstraction
levels. InCome+ is able to generate a visualization of the different plan interactions that
are handled during the plan recognition process.

Figure 7 shows an interaction context where plan PrepBootParam(C}S) and PrepPro­
tRoot(S} C) overlap each other with the plan Prep (C) S) . Plan PrepRootFile is embedded
within plan PrepRevUp as shown in figure 8.

InCome+ supports actions for expanding and collapsing plans. Expanding equals to a
movement down in the hierarchy and collapsing equals to a movement up in the hierarchy.
Expanding and collapsing of plans are realized within InCome+ by grouping sequences of
actions together to plans or by replacing plans with their sequences of actions. Besides
the step-wise vertical movement within the interaction hierarchy an additional feature is
provided that works comparable to Fish-Eye Lenses. In the Fish-Eye mode, every object
out of interest is abstracted to such a level that the focused plans are not effected.

fl [] InsEntryNet(S,q
Y New entries for C

fl [] DlkStdBootPath(S,
y Standard boot

fl [] CrStdBootPath(S,q
U .. Standard boot path

-¥

[]
OetFsSize(S,q •
File system size for •.... •

file MavlgaUon

. Yiew

Figure 6: Linear History and Overview

17

Figure 7: Overlapped Plans

r" ,

: (] : , . , , ,

IlnsEnt~et(S,C) I
\,~ ; i . :
~ . :

I ChkPaU,CC s) I

Figure 8: Embedded Plans

Tutor activation is done through selecting a goal and activating the tutorial mode.
The user is guided by the system to reach the goal. After activating the tutorial mode
InCome+ requests an optimal sequence of actions for reaching the selected goal. In this
context optimal means the most efficient sequence of actions to reach a goal. The plan
completion component generates this sequence by considering the different constraints

18

defined in the hierarchical plan base. Already known argument values are propagated.
The sequence of actions is textually represented in a separate window like a to-do-list
(cf. figure 9). The tutor of InCome+ supervises the executed user actions by marking
performed actions in the to-do-list and showing the next steps necessary to reach the
selected goal (cf. figure 10). If the user has performed an action that compromises the
selected goal, InCome+ informs the user about this situation to allow a backtracking by
performing undo operations leading to the previously valid system state.

Figure 9: Tutorial Mode

CrStdBootPath(S. q
Standard boot path for C created.

CrBootFile(S. q
Create Boot Rle for C.

!!::::,•

!~-.. .

Figure 10: Tutorial Mode and Performed Actions

Remote application interaction is provided through the access to undo- and redo­
m echanisms of the application. InCome+ provides an interface to these mechanisms.
To be able to deal with two different undo principles (Junction-oriented vs. state-oriented;
see also [Rathke 87], [Rathke 89], [Yang 90]), InCome+ uses an extented function-oriented
approach by handling freezing-points (cf. [Paul 89]). Freezing-points are snap-shots of sys­
tem states that are saved within the application. It is possible to reset the application
state to one of these freezing-points by activating the corresponding application function .
By representing the interaction context in a more abstract way than by the linear dialog
history the user can perform undo-actions and redo-actions on plans rather than on ac­
tions. We call this undoing on a semantic level. An undo of tasks without reversing tasks
following them is not supported ('freies undo', cf. [Rathke 87]).

The linear dialog history is presented in a separate window. The visualization empha­
sizes reversible actions and freezing-points that are set within the application. The lower
left window in figure 6 represents the linear dialog history. The arrows on the right side
of the actions mark reversible actions.

19

5 Animated Help

An outstanding claim in providing graphical user assistance is the coupling of animation
and help. Conventional help systems and knowledge-based help system reach their limits
as soon as the user needs assistance in performing interactions. E.g., the user addresses
questions of the form: "How do I include object A into container-object B?" or "Please
show me, how do I get objects X, Y, and Z visualized.". A generated textual help could
possibly sound: "Move mouse to the position of object A and press left mouse button.
Now move the mouse with pressed mouse button to the position of the container object B.
Release mouse button.". It is obvious that an animated presentation of these interaction
steps would be more adequate.

First approaches in combining animation and help are found in the system GAK
(Graphical Animation from Knowledge, cf. [Neiman 82]) and in the animated help exten­
tion of Cartoonist (cf. [Sukaviriya & Foley 90]). Within the PLUS project an animation
component will be developed that, in contrast to the above mentioned systems, reaches
a closer relation to the current task the user is pursuing. By coupling the animation
component with the plan recognizer and the plan completion component of PLUS, the
animation component can generate a sequence of animated interactions for a specific plan
hypothesis.

The generation of animation steps is done in two phases. First, the plan hypothesis
is completed through the plan completion component. A valid action sequence for the
plan is now available as input for the animation component which incrementally gener­
ates animation steps using a deductive procedure. The animation component accesses a
knowledge base which defines for each action specific pre- and post-conditions. Informal
examples of such pre-conditions could be "to perform an action against an object, it must
be selected" or "an object can only be selected, if it is visible". An incremental generation
is necessary to cope with the possibly changed screen contents after an animation step.

Representing generic interface concepts allows us to generate also navigational anima­
tion steps (e.g., steps to scroll the visible area wi thin a window).

An animation is initiated in the PLUS system by selecting a goal and activating the
corresponding menu function. The animation steps are done by imitating user actions and
by sending them to the user interface in such a way that it responds to these' animation
inputs' exactly as if they were performed by the user.

6 Acknowledgements

The research presented here has been carried out in the PLUS project which is con­
ducted cooperatively by the IBM Laboratory Boblingen, the IBM Germany GmbH, and
the DFKI. Following research scientists are involved in the project: Prof. Dr. Wolfgang
Wahlster (DFKI), Frank Berger (DFKI), Markus A. Thies (DFKI), Dr. Thomas Fehrle
(IBM Laboratory), and Volker Scholles (IBM Laboratory).

Special thanks to Wolfgang Wahlster and Thomas Fehrle for their valuable remarks
on this paper.

20

Bibliography

[Bauer et al. 91] M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Kohler, and
G. Merziger. Integrated Plan Generation and Recognition - A Logic-Based Ap­
proach. In: W. Brauer and D. Hernandez (eds.), Verteilte Kiinstliche Intelligenz
und kooperatives Arbeiten. 4. Internationaler GI-Kongress Wissensbasierte Sys­
teme, Berlin, Heidelberg, 1991. Springer. Also DFKI Research Report RR-91-26.

[Booch 91] Grady Booch. Object Oriented Design with Applications. Redwood City,
California, USA: The Benjamin/Cummings Publishing Company, 1991.

[Fehrle & Thies 91] Th. Fehrle and M.A. Thies. InCome: A System to Navigate through
Interactions and Plans. In: H.-J. Bullinger (ed.)' Human Aspects in Computing:
Design and Use of Interactive Systems and Information Management, Amsterdam,
London, New York, Tokyo, 1991. Elsevier Science Publishers B.V.

[Finin 83] T. W. Finin. Providing Help and Advice in Task Oriented Systems. In: Proc.
IJCAI-83, p. 176- 178, Karlsruhe, Deutschland, 1983.

[Fischer et al. 85] G. Fischer, A. Lemke, and T. Schwab. Knowledge-based Help Sys­
tems. In: Proceedings CHI-85, San Francisco, CA, 1985.

[Kobsa & Wahlster 89] A. Kobsa and W. Wahlster (eds.). User Models in Dialog Sys­
tems. Symbolic Computation. Berlin, Heidelberg, New York: Springer, 1989.

[Neiman 82] D. Neiman. Graphical Animation from Knowledge. In: Proceedings of
AAAI, 1982.

[Paul 89] H. Paul. Exploratives Agieren in interaktiven EDV-Systemen. In: B. Endres­
Niggemeyer, T. Herrmann, A. Kobsa, and D. Rosner (eds.), Interaktion und Kom­
munikation mit dem Computer. Informatik Fachbericht 238. Berlin: Springer Ver­
lag, 1989.

[Rathke 87] M. Rathke. UNDO/REDO -·Szenarien und Anforderungen fur eine an wen­
dungsneutrale Implementierung. In: M. Paul (ed.), GI - 17. Jahrestagung Comput­
erintegrierter Arbeitsplatz im Buro, Berlin, Heidelberg, New York, London, Paris,
Tokyo, 1987. Springer.

[Rathke 89] M. Rathke. Erweiterung interaktiver Anwendungen um Undo-Mechanismen.
In: Software Ergonomie: Aufgabenorientierte Systemgestaltung und Funktion­
alitat, GI Band 32, Stuttgart, 1989. Teubner.

[Rich 89] E. Rich. Stereotypes and User Modeling. In: Kobsa and Wahlster
[Kobsa & Wahlster 89], p. 35-51.

[Shneiderman 83] B. Shneiderman. Direct Manipulation: A step beyond programming
Languages. IEEE Computer, 16, 1983.

[Shneiderman 87] B. Shneiderman. Designing the User Interfaces: Strategies for effec­
tive Human-Computer Interaction. Massachusetts: Addison Wesley, 1987.

21

[Sukaviriya & Foley 90] P. Sukaviriya and J. D. Foley. Coupling A UI Framework with
Automatic Generation of Context-Sensitive Animated Help. In: Proceedings of
ACM SIGGRAPH 1990 Symposium on User Interface Software and Technology
(UIST'90), p. 152-166, Snowbird, Utah, October 1990.

[Thies 90] M. A. Thies. Interaction Control Manager: Ein System zum Navigieren
durch Interaktionen und Plane. Master's Thesis, Fakultat Informatik, Universitat
Stuttgart, Deutschland, 1990.

[Wahlster et al. 90] W. Wahlster, D. Dengler, M. Hecking, and C. Kemke. SC: The
SINIX Consultant. In: P. Norvig, W. Wahlster, and R. Wilensky (eds.), Intelli­
gent Help Systems for Unix - Case Studies in Artificial Intelligence. Heidelberg:
Springer, 1990.

[Wilensky et al. 88] R. Wilensky, D. N. Chin, M. Luria, J. Martin, J. Mayfield,
and D. Wu. The Berkeley UNIX Consultant Project. Computational Linguistics,
14:35-84, 1988.

[Wisskirchen 90] P. Wisskirchen. Object-Oriented Graphics. From GKS and PHIGS to
Object-Oriented Systems. Symbolic Computation. Berlin, Heidelberg: Springer­
Verlag, 1990.

[Yang 90] Y. Yang. Current Approaches & New Guidlelines for Undo Support Design.
In: H.-J. Bullinger and B. Shackel (eds.), Human-Computer Interaction - INTER­
ACT'90, North-Holland, 1990. Elsevier Science Publishers B.V.

22

Deutsches
Forschungszentrum
far KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKl Veroffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-08
Wolfgang Wahlster. Elisabeth Andre.
Som Bandyopadhyay. Win/ried Gra/. Thomas Rist :
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-Jiirgen Biirckert. Jurgen Muller.
Achim Schupeta : RATMAN and its Relation to
Other Multi-Agent Testbeds
31 pages

RR-91-10
Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron. John Nerbonne . Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer. JiUgen MUller: A Two Level
Representation for Spatial Relations, Part I
27 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-1S
Bernhard Nebel. Gert Smolka:
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel. Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
John Nerbonne. Klaus Netter. Abdel Kader Diagne.
Ludwig Dickmann. Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommilments of Limited Agents
15 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: Akquisition und
Reprlisentation von technischem Wissen fUr
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo. D . Dengler. M. Hecking.
J. Koehler. G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach-
17 pages

RR-91-27
A. Bernardi. H. Boley. Ph. Hanschke.
K. Hinkelmann. Ch . Klauck . O. Kuhn.
R . Legleitner. M. Meyer. M. M. Richter.
F. Schmalhofer. G. Schmidt. W. Sommer :
ARC-lEC: Acquisition. Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. Harald Trost. Hans Uszkoreit :
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural LangUage Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger. John Nerbonne :
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger. J. Nerbonne :
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen. Lutz Euler. Gunther Gorz:
Towards the Integration of Functions. Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader. Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
Winfried Graf. Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-0 1
Werner NUll : Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bieisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg:
DODA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DATR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf. Markus A. Thies:
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seilen

RR-92-11
Susane Biundo, Dietmar Dengler, Jana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsoberflachen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies, Frank Berger

22 pages

RR-92-1S
Winfried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR-92-17
Hassan Ai1-Kaci, Andreas Podelski, Gerl Smolka :
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

DFKI Technical Memos

TM-91-01
Jana Kohler: Approaches to the Reuse of Plan
Schemata in Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann: Bidirectional Reasoning of Horn
Clause Programs: Transformation and Compilation
20 pages

TM-91-03
Otto Kahn, Marc Linster, Gabriele Schmidt:
Clamping. COKAM, KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
Harold Boley (Ed.):
A sampler of RelationallFunctional Definitions
12 pages

TM-91-0S
Jay C. Weber, Andreas Dengel, Rainer Bleisinger:
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM-91-06
Johannes Stein: Aspects of Cooperating Agents
22 pages

TM-91-08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Buschauer, Peter Pol/er, Anne Schauder, Karin
Harbusch: Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter Wazinski : Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation
28 pages

TM-92-01
Lijuan Zhang :
Entwurf und Implementierung eines Compilers zur
Transformation von Werksttickreprasentationen
34 Seilen

OFKI Oocuments

D-91-01
Werner Stein, Michael Sintek: Relfun/X - An
Experimental Prolog Implementation of Relfun
48 pages

0-91-02
Jorg P. Maller: Design and Implementation of a
Finite Domain Constraint Logic Programming
System based on PROLOG with Coroutining
127 pages

D-91-03
Harold Boley, Klaus Elsbernd, Hans-Giinther Hein,
Thomas Krause: RPM Manual: Compiling
RELFUN into the Relational/Functional Machine
43 pages

0-91-04
DFKI Wissenschaftlich-Technischer J ahresbericht
1990
93 Seiten

0-91-06
Gerd Kamp: Entwurf, vergleichende Beschreibung
und Integration eines Arbeitsplanerstellungssystems
fUr Drehteile
130 Seiten

0-91-07
Ansgar Bernardi, Christoph Klauck. Ra/f Legleitner
TEC-REP: Reprasentation von Geometrie- und
Technologieinformationen
70 Seiten

0-91-08
Thomas Krause: Globale DatenfluBanalyse und
horizon tale Compilation der relational-funktionalen
Sprache RELFUN
137 Seiten

0-91-09
David Powers , Lary Reeker (Eds.):
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-91-10
Donald R. Steiner, Jiirgen Maller (Eds.) :
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or IS US-$).

0-91-11
Thilo C. Horstmann:Distributed Truth Maintenance
61 pages

0-91-12
Bernd Bachmann:

Hieracon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel, Christof Peltason.

Kai von Luck
131 pages

0-91-14
Erich Achilles. Bernhard HoLlunder, Armin Laux,
J6rg-Peter Mohren: X'}?JS: ~owledge
~presentation and lilference System
- Benutzerhandbuch -
28 Seiten

0-91-15
Harold Boley. Philipp Hanschke . Martin Harm.
Knut Hinkelmann . Thomas Labisch. Manfred
Meyer. Jorg Maller, Thomas Oltzen. Michael
Sintek, Werner Stein. Frank Steinle:
JlCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

0-91-16
Jorg Thoben. Franz Schmalhofer, Thomas Reinartz:
Wiederholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile
134 Seiten

0-91-17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung filr die Abeitsplanung
86 Seiten

0-91-18
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seiten

0-91-19
Peter Wazinski : Objektlokalisation in graphischen
Darstellungen
110 Seiten

Irnelllgem vser :5upp~on In Grapnlcal user Interfaces:

1. InCome: A System to Navigate through Interactions and Plans

Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object-Oriented User Interfaces

Markus A. Thies, Frank Berger

R-R-· 9~2-: 1 4
Research Report

