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Representing Grammar, Meaning and Knowledge 

Abstract 

John Nerbonne * 
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Stuhlsatzenhausweg 3 
D-6600 Saarbrucken 11, Germany 

nerbonne@dfki.uni-sb.de 

Among the expertises relevant for successful natural language understanding are grammar, 
meaning and background knowledge, all of which must be represented in order to decode 
messages from text (or speech) . The present paper is a sketch of one cooperation of grammar 
and meaning representations- with some remarks about knowledge representation- which 
allows that the representa,tions involved be heterogeneous even while cooperating closely. 
The modules cooperate in what might be called a PLURALIST fashion, with few assumptions 
about the representations involved . In point of fact, the proposal is compatible with state­
of-the-art representations from all three areas. 

The paper proceeeds from the nearly universal assumption that the grammar formal­
ism is feature-based and insufficiently expressive for use in meaning representation. It then 
demonstrates how feature formalisms may be employed as a semantic metalanguage in or­
der that semantic constraints may be expressed in a single formalism with grammatical 
constraints . This allows a tight coupling of syntax and semantics, the incorporation of 
nonsyntactic constraints (e .g., from knowledge representation) and the opportunity to un­
derspecify meanings in novel ways- including, e .g . , ways which distinguish ambiguity and 

u nderspecification ( vagueness). . 
We retain scepticism vis-a.-vis more ASSIMILATIONIST proposals for the interaction of 

these-i .e., proposals which foresee common formalisms for grammar, meaning and knowl­
edge representation. While such proposals rightfully claim to allow for closer integration, 
they fail to account for the motivations which distinguish formalisms-elaborate expressive 
strength in the case of semantic representations, monotonic (and preferably decidable) com­
putation in the case of grammar formalisms, and the characterization of taxonomic rea'3oning 
in the case of knowledge representation. 

Keywords : disambiguation, natural language processing, knowledge representation, feature 
formalism 

• Thanks to Rolf Backofen for discussion of the ideas presented here. 
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1 Introduction 
Subsystems and interfaces in natural language processing (NLP) systems are important but 
not well understood. While this paper cannot claim to shed any definitive light on the 
general problem, it will illustrate different strategies of integration using as example the 
semantics module and its interfaces, especially the interfaces to grammar and knowledge 
representation . We ultimately find that a PLURALIST strategy- in which modules with 
no shared formalism cooperate-is practically more auspicious and theoretically defensible. 
An important diatribe in this paper is that one should study the semantics module if one 
wishes to understand the genuine problems of modularity in NLP. This follows from the 
radically different, and expressively richer formalism which semantics forces us to employ. A 
second key thesis concerns the nature of interfacing expressively stronger with expressively 
weaker components: here we argue that, if information from the stronger component must 
be expressed in the weaker, then the weaker should be used as a metalinguistic specification 
of the stronger, and we illustrate this using the grammar/semantics interface. The only 
alternative appears to be a special-purpose translation procedure. 

1.1 General Considerations on NLP Modularity 

There are two very general views about linking NLP modules which are to cooperate closely. 
The "pluralist" view generally sees NLP as a field with a history of results a.nd a stock of 
variously successful techniques and systems for solutions of selected problems. These a.re 
potential modules. One might point in 1992 to finite-state morphology, inheritance lexicons, 
feature grammars, logic-based semantics, and taxonomy-based knowledge representations 
as examples of these techniques, and to KIMMO, DATR, PATR-II, QLF, and KL-ONE as 
respective examples of systems which are more or less available for use in attacking problems 
of interest. 1 Since no single effort is likely to redo all of this successfully, part of the task 
in NLP system building must be the linking of heterogeneous systems. In this view NLP 
system building is not radically different from other sorts. 

Opposed to pluralism is an ASSIMILATJONIST view, which argues from peculiarities of 
N LP to the need for closely coupled modules. This view finds justification in psycholinguistic 

I Cf. Karttunen 1983, Evans and Gazdar 1990, Shieber et al. 1983, Alshawi and others July 1989, and 
Bl'achman and Schmolze 1985 for descriptions of these systems. 
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studies which show, e.g., that semantic interpretation influences (human) parsing and even 
phonetic decoding. 2 But parallel to cognitive motivations there are purely technical reasons 
as well for preferring to couple modules closely, i.e., allowing "cross talk" between modules. 
Importantly this allows one to resolve ambiguities flexibly: e.g., in attempting to resolve 
parsing ambiguities using information from knowledge representation , it can be advantageous 
to deploy knowledge representation sources early, so that parse hypotheses incompatible with 
these need not be pursued. Clearly, a loose level of integration can be attained even using 
radically heterogeneous modules, but the cost involved is special-purpose code which is 
capable of translating selected partial results of one module and shipping them to another. 
Preferable would be a tight coupling, i.e., one which allow arbitrarily close cooperation 
without special. interpretation or control. It is difficult to see how this could be achieved 
without requiring a homogeneous formalism. 

Each view of NLP modularity runs a risk: pluralism supports cross talk poorly and runs 
the risk of multiplying formalisms unnecessarily. To be sure, the latter is a risk one can 
"insure" against , especially through careful metatheoretical work, but it remains . Assimi­
lationism, on the other hand, requires the development of an all-encompassing formalism , 
the reimplementation of old results in a new formalism, and finally, in seeking to overcome 
modular boundaries, it runs the (albeit again insurable) risk of abandoning modularity en­
tirely. 

The above are practical, engineering considerations. The scientific merits of expressing 
theories of language understanding incorporating various components in a unified descriptive 
language may ultimately devolve to questions of the maturity of the subfields involved. It 
is certainly not common practice in linguistics today. 

1.2 Grammar, Meaning and Knowledge 

The very general remarks above can be illustrated concretely in the case of grammar, mean­
i ng and knowledge representat ions. We proceed from standard (and state-of-the-art) as­
sumptions in each case: that grammar is represented in a feature description language (like 
PATR-II or one of its descendants), meaning in a logic including a representation for gen­
eralized quantifiers (like QLF), and knowledge in a taxonomic logic (like KL-ONE) . These 
formalisms are useful subjects because they are well-studied and the tasks they perform are 
well-understood. See the references above (note 1) for introductions and explanations of 
these. 

Standard feature structure description languages may be regarded as variants of the 
quantifier-free predicate calculus with identity (cf. Johnson 1988 and Smolka 1988). Taxo­
nomic logics of the KL-ONE variety add restricted types of quantification that keep them 
within the limits of decidability (by guaranteeing that definitions are not applied recursively­
cf. Baader and Hollunder 1990). Meaning representation lanaguages are designed for the 
representation of natural language meanings (albeit sometimes within a restricted domain); 
as such, they invariably go well beyond not only decidable logics, but even first-order. Cf. 
Scha 1976, Schubert and Pelletier 1982, Zeevat et aJ. 1987 and Alshawi and others July 1989 
for a representative sample of meaning representation proposals for computational seman­
tics, all of which involve non-first-order expressive capacity. 

There have been a number of works which try · to specify the relationships between these 
and which suggest interfaces of various sorts. Nebel and Smolka 1990 demonstrate that 
feature structure description languages and taxonomic knowledge representations are ex­
tremely close conceptually. Backofen et al. 1991 provide a concrete suggestion for an inter­
face. Bobrow 1979 provides for semantic interpretation directly in KL-ONE, and 

2Cf. Clark and Clark 1977, 45-79 for a summary of early studies . 
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Nebel & Smolka '90 

Backofen et al. '91 

KR 

FSD 

Nerbonne 1992, 

MR 

Bobrow 1979 

Allgayer and Reddig 1991 

Figure 1: A triad of NLP formalisms-knowledge representations, feature structure descrip­
tions, and meaning representations-and some works which attempt to relate them. The 
close affinities of feature logics and taxonomic logics was explored by Nebel and Smolka 
1991, which led to a concrete proposal by Backofen et al. 1991 for an interface. Bobrow 
1979 proposed using a taxonomic logic as a semantic representation language, and Allgayer 
and Reddig 1990 support that with proposals for radically extending the taxonomic logic 
to include expressive devices familiar in meaning representation. Zeevat 1991 proposes de­
riving semantics using higher-order feature description, and Nerbonne 1992 proposes a view 
in which standard feature description languages function as metalinguistic specifications on 
meaning representations. 

Allgayer and Reddig 1990 suggest KL-ONE enhancements which make this more plausible. 
Zeevat 1991 considers higher-order feature structure description languages in order to rep­
resent meanings, and Nerbonne 1992b proposes using standard FSD's to express semantic 
constraints metalinguistically. 

Given the relative expressive strengths of the logics involved, it should be clear that 
the most difficult tasks are those involving interfacing the expressively very rich meaning 
representation to the other (weaker) formalisms, and this indeed is the first conclusion I 
wish to argue for. Since meanings cannot be expressed in first-order logic, both PATR-ll 
derivatives (normally involving a subset of first-order) and KL-ONE (always a subset of first 
order) are poor candidates for meaning representation. 

Schemes which claim to provide homogeneous formalisms for NLP should be tried on 
this count: can they genuinely provide for meaning representations of a significantly rich 
sort? Those who argue for representing semantics (directly) in feature description languages 
or taxonomic logics should be required to demonstrate their treatment of higher-order in­
formation, such as generalized quantifiers. 

We turn now to a proposal for a fairly tight interface between syntax and semantics (fea­
ture structure description languages and meaning representation languages) which exploits 
all of the expressive richness of the latter even while remaining within the bounds posed by 
the former. The key is a level of indirection. 

2 Feature Structure Descriptions and Meaning Representations 
Syntax/Semantics interfaces using unification-based or feature-based formalisms may be 
found in Shieber 1986, Pollard and Sag 1987, Fenstad et al. 1987, and Moore 1989. The 
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SEMANTICS [] ] , where ~ = [l] 

S 

NP VP 

Sam walks 

[ SEMANTICS [l] s 1 
[

SEMANTICS [IJ [ ~~~rnATE walk] 1 
SUBJ-SEM~ 

Figure 2: A sketch of the semantic derivation of Sam walks , walk (s) as this would proceed 
using unification. Unification applies to syntactic and semantic representations alike, elimi­
nating the need to compute these in distinct processes, and unification is employed to bind 
variables to argument positions, eliminating the need for (a great deal of) ,B-reduction as 
used in schemes derived from Montague and the lambda calculus. 

p rimary initial reason fo r invest igating feature- based syntax/semantics inte rfaces was that 

they harmonize so well with the way in which syntax is normally described; this close 
harmony means that syntactic and semantic processing (and indeed other processing, see 
below) can be as tightly coupled as one wishes- indeed , there needn 't be any fundam ental 
distinction between them at all. In feature-based formalisms, the structure shared among 
syntactic and semantic values constitutes the interface in the only sense in which this exists . 

2.1 A Simple Illustration 

The fundamental idea is simply to use feature structures to represent semantics.3 . 

If one wishes to compute the semantics of a sentence such as Sam walks, one first defines 
a feature SEMANTICS which must be lexically provided for in the case of Sam and walks, 
and which can be computed from these (together with other information) in the case of the 
sentence. Figure 2 provides an illustration of how this works. 

In Nerbonne 1992b and Nerbonne 1992a several advantages of the unification-based view 
of the syntax/semantics interface over standard views are pointed out. The unifi ca.t ion-based 
view sees the interface as characterized by a set of constraints to which nonsyntact ic inform a­
tion may contribute, including phonological and pragmatic information . Let t he sema.ntics 
of intonation and and that of deixis serve as examples where nonsyntactic information of 
these two sorts crucially constrains semantic interpretation. See Nerbonne 1992a for more 
detailed presentation of these examples, and see Fenstad et al. 1987, pp.12-17 for a general 
discussion of the distinction between the constraint-based and the homomorphic views of 
the relation between syntax and semantics. 

The nature of feature-based semantics is clarified in Nerbonne 1992b: semantic features 

3Sections 2 and 3.1 summarize material presently in Nerbonne 1992a and Nerbonne 1992b 
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Semantic Representation Logic 

walk(s) 

describe 

[
PREDICATE walk ] 
ARG s 

denote 

Feature Structure Descriptions 

(Set-Based) Model Theory 

thQse walking 

0' 
conventionally 
model 

Extralinguistic Reference 

Figure 3: The relatiQn .of feature-based semantics tQ semantic representatiQn lQgic , mQdel 
theQry, and the extralinguistic .objects .of discQurse. A simpler, but ultimately unsatisfactQry 
view, WQuid eliminate the semantic representatiQn lQgic. 

(directly) describe lQgical fQrms, nQt mQdel structures. Of CQurse, the IQgical fQrms denQte 
in turn elements within the mQdel structure. Figure 3 provides a graphic renditiQn .of this 
view, and the Appendix of this paper is a brief illustration of the technique. 

There are further advantages in the view .of semantics prQcessing as manipulation .of lQgi­
cal fQrm descriptions. These include (a) a characterizatiQn .of semantic ambiguity (as opposed 
to underspecification), which in turn provides a framework in which tQ describe disambigua­
tion, and (b) the opportunity to underspecify meanings in a way difficult tQ reconcile with 
.other views . The fQrmer PQint is develQped belQw and the latter in NerbQnne 1992b, which 
demQnstrates mQre cQncretely hQW a semantics alQng these lines may functiQn . A brief 
sketch illustrating the integratiQn of disambiguation is provided in the next sectiQn, and 
SQme CQncrete details .of the relatiQn between feature system and semantic representatiQn 
language are elabQrated in the Appendix. 

The feature-based view furthermQre allows syntactic and semantic informatiQn tQ be 
bundled in cQmplex, but useful ways. These all .ow the very simple statements of syn­
tax/semantics relationships that make HPSG attractive; cf., e.g., Pollard and Sag 1987, 
whose SUBCATEGORIZATION PRINCIPLE (p .7l) actually accQunts fQr a gQQd deal of seman­
tics prQcessing, since it effects the unificatiQn .of cQmplement semantics with an argument 
PQsitiQn within head semantics. (The cQmputatiQn shQwn in Figure 2 is a. CQnseq uence .of 
the Sub categorization Principle.) Cf. NerbQnne 1992a fQr further d iscussi oll. 

3 Two-Level Representations, Disambiguation and Knowledge Rep­
resentation 

One consequence of the metalinguistic view of semantic specification is that there are tWQ 
levels .of semantic representatiQn-an .object language in which meanings are expressed and a 
metalanguage in which CQnstraints .on meanings are expressed. The first sectiQn belQw argues 
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that this is a desirable bifurcation of semantic responsibility, while the second demonstrates 
its applicability to disambiguation and points out futher issues involved in disambiguation . 

3.1 Object Language and Metalanguage 

A puzzle is presented in Nerbonne 1992a which the metalinguistic view of semantics spec­
ification solves neatly, but which is quite puzzling on any view which eschews two levels 
of semantic representation. It concerns the distinction between vagueness and ambiguity­
i.e., the difference between the noun bank (ambiguous between the '$-home' and 'riverside' 
meanings) on the one hand, and glove on the other . We examine the word glo ve, since, like 
bank, it can refer only to quite distinct categories of objects-left-hand gloves or right-hand 
gloves. This distinction is crucial in quantification and anaphora. Thus three gloves ignores 
the distinction between left- and right-hand gloves in a way that three banks may not (this 
cannot refer to a pair of financial institutions and a riverside); similarly Sam bought a bank 
and Bob sold one cannot describe a situation involving a financial institution on the one 
hand and a riverside on the other; i.e: , it allows only a pair of the four possible combinations 
of the two meanings. The vague (or underspecified glove) is less restrictive; any of the four 
possible combinations of meanings can be at play in the following example: 4 

Sam lost a glove and Bob found one 

If we allow that semantics makes metalinguistic specifi cations , then it specifies that bank 
has the meaning [PRED {$-HOME,RIVERSIDE}]' using metalinguistic di sjunct ion. Under 
the (quite reasonable) assumption that there is no single object- language predicate denoted 
by this disjunction, we can explain the quantificational and anaphoric facts . Glove, on the 
other hand, is unambiguous, even if its semantics may be equivalent to an object-language 
disjunction: [PRED glove], where the object-language disjunction holds : 

glove(x ) ..... le ft-glove(x) V right-glove(x) 

The standard solution here is to postulate distinct lexical items for ambiguity, but this 
solution essentially denies purely semantic ambiguity, reducing it to lexical ambiguity, and it 
fails to generalize to the view of the lexicon as a disjunction of words, common in the feature­
based theories (cf. HPSG, Pollard and Sag 1987 p.147). Under the view of the lexicon as a 
disjunction of words (or word descriptions), the postulation of lexical items distiri ct only in 
semantics reduces to the postulation of a single item with disjunctive semantics, since: 

(PI 1\ ... 1\ Pn 1\ q) V (PI 1\ ... 1\ Pn 1\ r) ..... (PI 1\ . .. 1\ Pn 1\ (q V 1')) 

The solution offered is consistent with the view that multiple lexical entries are involved , 
but it immediately suggests a more perspicuous representation (ip analogy to the right-hand 
side of the biconditional); it differs only in insisting that there be two levels of semantics: 
a level which constrains semantic representations, and the level of semantic representations 
themselves. Lexical ambiguity involves underspecification at the first level; lexical vagueness 
is underspecification at the second .s 

Thus, given a level of semantic representation together with a metalinguistic level at 
which constraints on semantic representation are expressed, a notion of semantic ambiguity 
as opposed to semantic underspecification may be characterized. This is furth er justification 

4 C f. Zwicky and Sadock 1975 for a discussion of anaphora as a test o f ambiguity. 
s While there is not space here to anticipate all the reactions to this argument, I would like to note that the 

quantification facts show that this is not an issue of semantic grain, in the sense in which this is debated , 
e.g., in situation semantics and possible worlds semantics. Cf. Barwise and Perry 1983, Barwise 1989. Thus 
it will not do simply to point to logics in which there may be a relation of material equivalence, but no 
relation of logical equivalence between the left and right sides above. This is so because natural language 
quantification is insensitive to clistinctions finer than material equivalence. 
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bought books In May 

In Spanish 

Figure 4: Disambiguation may even require the recognition of distinct constituent struc­
tures. Note that the proper names Spanish and May are not syntactically distinct, nor do 
that belong to distinct logical types-each denotes an entity. But they do denote objects 
of different SORTS, as this term is used in sortal logic, since May is a time and Spanish a 
language. The link to knowledge representation, especially of the kind encoded in KL-ONE, 
is justified by the emphasis on sorts-taxonomies, or conceptual hierarchies-which distin­
guishes knowledge representation schemes such as KL-ONE. 

for the view that semantic processing involves the manipulation of semantic representation­
which in turn further justifies the postulation of this level of representation in addition to 
the level at which meanings are directly modeled. The more general claim on which this 
argument hinges is that the characterization of ambiguity in a representation L1 is always 
with respect to a second representational system L 2 . The scheme proposed here distinguishes 
two levels of semantics and is thus capable of characterizing ambiguity; systems with a single 
level are not . 

3.2 Disambiguation 

DISAMBIGUATION is the process of determining (i) which of potentially many meanings was 
intended in an utterance, but also (ii), with respect to a particular application, which facet 
is relevant to an NL interaction. The former is a response to the ambiguity of natural 
language, while the latter exists even where no ambiguity does. We illustrate these in turn 
below. Disambiguation occupies computational linguists more than theoretical linguists, and 
is extremely important in applications in which there many be uncertainty about input­
e.g., speech. Like parsing itself, at least some disambiguation seems to be automatic, so 
that untrained speakers are not aware of needing to disambiguate structures . The example 
below, graphed in Figure 4, suggests how unobtrusive the process is: 

(1) a. Who bought books in Spanish? 
b. Who bought books in May? 

This sort of example is convenient because it shows how pervasive the effects of disam­
biguation may be-reaching even into the parsing component. It is simultaneous misleading 
if it suggests that genuine disambiguation tasks need to be accompanied by such striking 
consequences. For even if disambiguation MAY be accompanied by striking consequences in 
application independent ways, the need for disambiguation arises in NLP interface efforts 
in ways that need have no purely linguistic ramification whatsoever. In particular , NL in­
terfaces need to be sensitive to application distinctions which do not correspond to natural 
language ambiguities. 

Consider the DISCO application, that of consulting with multiple agents who plan ship­
ping. Here the phrase Schmidts Ladung 'Schmidt's freight' certainly denotes freight which 
stands in some relation to Schmidt. For example, we may imagine the freight contracts in 
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Entity 

Object 

Concrete 

~ 
Eventuality 

Time 

~ 
Year Month ... 

Abstract 

~ ~ 
State Process 

~ ~ 
Book Activity Event 

~ 

Figure 5: A sort hierarchy which distinguishes enough classes in the domain to illustrate 
sortal disambiguation for the sentences in (1) (in the text) . The hierar.chy here is better 
portrayed not as a tree, but as a directed graph-in which sorts inherit on more than one 
path back to the root . For example, states and activities might best be viewed as subsorts of 
both eventualities and nondiscretes, which would include physical substances (water, flour) 
as well. The move to non-tree-structured hierarchies does not affect the points here however, 
about the interaction of grammar, semantics and knowledge representations. 

the application as organized into a small database, where the freight contract is the basic 
tuple. 

Order Nr. Contractor Agent Destination ? 

457 Schmidt 
574 Schmidt 
745 Schmidt 
475 Schmidt 

Thus the phrase Schmidts Ladung could designate freight which Schmidt contracted to 
have shipped, freight for which he is the freight agent, freight being sent to him, and perhaps 
even freight which stands in yet another relation to him (as owner, inspector, as packer, 
etc. ). Now it is unlikely that the relation expressed by the German possessive construction 
(genitive + N) is ambiguous, and it is unthinkable that the construction is ambiguous to 
just this degree and in just this fashion. 

Taxonomic reasoning may fruitfully be applied both to the resolution of linguistic ambi­
guity and to resolution of application-specific distinctions. We consider these in turn . At the 
heart of taxonomic reasoning is the imposition of a sort hierarchy on the domain, illustrated 
in Figure 5 for the case where we found linguistic ambiguity. 

In addition to the provision of a sort hierarchy, sortal disambiguation requires a character­
ization of which sorts are appropriate for which (argument positions of) relations. We would 
then allow that in translate into (at least) two relations, one temporally relating eventualities 
to times, and the other relating documents to media (but not to times). Schematically: 
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Lexical Item relation 

temporal-Ioc 
use-medium 

Argument1-Sort 

Eventuality 
Document 

Argument2-Sort 

Time 
Medium 

Finally, we must enforce the sortal compatibility restrictions. For many applications, it 
is desirable to enforce these as early as possible, so that unnecessary processing is avoided. 
As the example in Figure 4 suggests, an enforcement of sortal compatibility as early as parse 
time would be useful (and recall that, e.g., speech applications will rely on disambiguation 
to prune unlikely hypotheses). This raises the question of how well these constraints can be 
integrated into other processing-which of course depends on whether they can be expressed 
in the formalisms of other modules. Here then is a concrete instance of the question of how 
one relates knowledge representation to grammatical and semantic formalisms. 

As the point of Section 2 was the demonstration that semantics could be formulated 
in an indirect fashion in feature formalisms, so we shall show here that the same is true 
of knowledge representation- at least within bounds. Cf. Moens et al. 1989 for an earlier 
proposal along the same lines. That is , once we've taken the step to representing the 
semantics of in in a typed feature description language: 

[ 

PRED temporal-location 1 
THEME 
LOCATION 

Then we can also represent the sortal information, relying on unification to enforce 
sortal compatibility, and thus integrating sortal disambiguation with the unification used in 
parsing. The following feature structure description represents the ambiguous lexical item 
m : 

FORM m 

SEMANTICS 

[ 

PRED temporal-location 1 
THEME [Eventuality 1 
LOCATION [Time 1 

[ 

PRED expressive-means 1 
THEME [Document 1 
LOCATION [Medium 1 

The representation for the word May, whose semantics is of the sort Month, and therefore 
also of the sort Time, can successfully unify with the (location argument of) the first al­
ternative semantics for in, but not the last, for which an argument of the sort Medium is 
expected. Thus the PP in May seeks to attach where its first argument will be of the sort 
Eventuality-and this can be a VP attachment, since VP's denote eventualities, but not an 
NP with the head noun books, since this denotes objects of an incompatible sort. 

Although we shall not present the details of the treatment ofthe resolution of application­
specific distinctions, it should be clear that the same techniques apply. In the example 
Schmidts Ladung, the relation between Schmidt and the freight is potentially disambiguated 
by information about whether Schmidt is a shipper, a customer, or the recipient of a cus­
tomer's shipment. Nor shall we attempt on the basis of this example to argue that sortal 
restrictions must come from the domain and NOT from the lexicon-the dilemma seems 
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spurious, since the lexicon must in some way be accommodated to the domain for serious 
applications anyway. Cf. lida et al. 1989 on the relation between lexicon and disambiguation 
in complex applications. 

3.3 Emerging Issues in Disambiguation 

Thus the feature formalism allows the integration of constraints from knowledge representa­
tion as well. There are several qualifications needed, however. First, the feature formalism 
cannot faithfully represent all of the sorts of richer KL-ONE-like languages, in particular 
not those which allow quantified sort defintions, e.g., definitions such as: 

Parent(x) ...... :3 y.Child-Of(y, x) 

Some KL-ONE derivatives allow these without relinquishing decidability, but they are not 
foreseen in feature formalisms . On the other hand I am unsure of how important this sort 
of example is-i.e., how frequently one must appeal to sorts of this complexity. 

A second qualification is that this sort of treatment will not allow the enforcement of 
constraints which derive from inferences based on earlier utterances-in order to accomplish 
this a genuine integration into the semantics representation language would be required. We 
have in mind the kind of inference possible when information about an individual accumu­
lates during the course of a conversation, but which may be demonstrated even in a single 
sentence: 

(2) Sam talked for two hours in the library and read books for one . 

The interesting phrase is the for one, and the interesting question is how we account for its 
VP attachment. Of course, the sortal explanation is available- we simply postula.te that 
for denotes a relation between eventualities and durations, but that it denotes no relation 
between books and durations. But this information cannot be available on the basis of the 
lexical item one-it must be inferred on the basis of previous content (and the anaphoric 
link). 

One can, as always, attempt alternative explanations, but the ones which immediately 
come to mind are unconvincing. One could postulate that the choice of attachment site 
depends on a parallelism to the first clause, but that is not necessary (a). Or one could 
hypothesize that the VP atachment is strongly preferred. But the N-structures of the form 
N+ PP-for are quite possible (b) : 

(3) a. He spent two years at lSI. His project for one was on graphics, and 
he worked independently for the other. 

b. Sam looked for gifts for his kids. He saw books for one 
and T-shirts for the other. 

Thus we conclude that a proper account of disambiguation should go beyond the encoding in 
feature structures illustrated above, and that a more thoroughgoing integration of semantic 
representation and disambiguating mechanisms is ultimately required . The presentation 
above stills shows how a great deal of disambiguating information can be integrated into the 
feature systems and thus arbitrarily deep into a modern NLP system , even if it turns out to 
be incomplete. 

A third qualification about the usefulness of feature-based disambiguation concerns a fun­
damental pitfall of sortal disambiguation, i.e., that it needs to distinguish between asserted 
and presupposed sortal information. This is quite clear in the case of application-specific dis­
tinctions, and arguably necessary for linguistic ambiguities as well. We examine the case of 
application-specific distinctions first. We argued above that Schmidt's freight might be un-
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derstood on the basis of a variety of application-specific relations, including 'freight-shipper', 
'freight-contractor', etc. In deciding which of these is relevant, it is legitimate to examine 
the sort to which Schmidt belongs (shipper, contractor, etc.). But notice that in a phrase 
such as Schmidt's freight the relation between Schmidt and the freight is presupposed, not 
asserted. It would clearly be wrong to apply disambiguation techniques to cases where the 
relation is asserted or questioned, but not presupposed, e.g., in Is this freight Schmidt's? 
or If Schmidt sends freight, then his freight will arrive today. (In the latter case, one can 
imagine blithely disambiguating his freight to the 'freight-recipient' relation on the basis of 
Schmidt's being listed only as recipient-but this would clearly lead to errors.) The case 
of genuine linguistic ambiguity is similar, but arguably different, in that sortal mismatches 
remain peculiar enough even in assertion to warrant perhaps being categorized as ill-formed . 
This tack would regard the following as ill-formed: 

The book is for one hour. 
Is the book for one hour? 
The book cannot be for one hour . 
The book is in May. 
Is the book in May? 
It would be impossible for the book to be in May. 

While the examples are undoubtedly peculiar, it still seems wrong to regard them as ill­
formed as opposed to unusually formulated or simply concerned with unusual circumstances. 
Presented with a sentence such as one of these, it would seem that the appropriate reac­
tion would be to try to interpret it metaphorically or , if possible, to clarify it with a user. 
This conclusion suggests that both sorts of disambiguation- that of resoving genuine am­
biguities and that of resolving application-specific distinctions- benefit from the distinction 
between assertion and presupposition , which therefore ought to be part of a comprehensive 
disambiguation scheme. 

A fourth and final general comment about disambiguation concerns the need for some 
kind of COERCION when determining appropriate sorts. Consider the following sequence of 
uses of the adjunct 8 am: 

(4) a. The train departs tomorrow at 8 am 
b. The 8 am departure 
c. The regular 8 am departure 
d. The 8 am train 
e. The 8 am passengers 
f. The 8 am crew 
g. The 8 am stops 

While it is straightforward to recognize a relation between a particular departure and a 
particular time (a, b), we need a further level of abstraction to recognize a relation between a 
regularly occurring event and a time of day (c), and yet further relations to interpret (d )-(g). 
One could simply list these additional relations, but that would not jibe with the intuition 
that the latter relations are parasitic on the earlier ones, e.g., the intuition that we refer 
thus to the 8 am passengers only because they travel on the train that departs (or arrives) 
at 8 am. Formally, this amounts to the coercion of a temporal relation (Pustejovsky 1991), 
and disambiguation would appear to benefit from it. 

4 Summary and Conclusions 
The purpose of the present paper has been the investigation of the interaction and proper 
division of labor between grammar, meaning and knowledge representation in natural lan-
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guage processing. We examined disambiguation as an area in which all three components 
have a potential role to play-grammar because it stands to benefit from disambiguation, 
and semantics and knowledge (domain) representation as the source of disambiguating in­
formation . 

We formulated a proposal for encoding semantic and domain information in feature 
structures, arguing, e.g., that "semantic" feature structures are best conceived as constraints 
on logical form. This is equivalent to the view that the feature description language functions 
as a formalized metalanguage for an arbitrary semantic representation language. This view of 
the use of semantic feature structures recommends itself by the relatively few assumptions it 
makes about the nature of the semantic representation language itself-in particular, it need 
not be limited to the expressive power of the feature logic metalanguage. A further advantage 
for this view is the opportunity it affords for the characterization of semantic ambiguity. In 
an appendix we illustrate the proposal using an application to the language of generalized 
quantifiers. Nerbonne 1992b, using the relatively rich HPSG formalism, demonstrated a 
feature-based approach to the characterization of scopally underspecified formulas which 
eschews the level of "quasi-logical forms" . 

We demonstrate the applicability of this approach to problems of disambiguation, noting 
however, that serious gaps in the t reatment nonetheless arose-primarily due to the weakness 
of the feature formalism. A more comprehensive treatment must await further research. 
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Appendix: An Illustration 
This appendix repeats (and simpl ifies) material from Nerbonne 1992b and is provided here 
only for the sake of concrete illustration. 

We illustrate the view that semantics involves the accumulation of constraints expressed 
about a semantic representation language, by applying the view to a well-known semantic 
representation language, the language of generalized quantifiers; second, by developing its 
metalanguage within the feature description language used in HPSG; and third by demon­
strating its application to the problem of scope ambiguity. 

Logic-A Generalized Quantifier Language 

To illustrate the approach we shall first need a target semantic representation language. 
Here we deliberately use a popular semantic representation scheme-a version of the lan­
guage of generalized quantifiers; this is a kind of lingua franca among theoretically oriented 
computational linguists. We emphasize that the overall scheme-that of employing feature 
structure descriptions as a formalized metalanguage for a semantic representation logic-is 
general, and could easily be applied to other logics, e.g., first order logic , higher-order or 
intensional logics, discourse representation structures, or a language of situation theory. It 
could even be applied to nonlogical representations, but that would be harder to motivate. 

A BNF for a Language of Generalized Quantifiers- LGQ 

(var) ::= Xo I Xl I 

(const) ::= Co I CI I 

(pred) ::= Po I PI I 

(term) ::= (var) I (const) 

(atomic-wft) ::= ((pred)(term)*) 

(conn) ::= /\ I V I +-+ 

(det) ::= V I :3 I MOST I ... 

(g-quant) ::= (det) (var) (wfl) 

(wIT) ::= (atomic-wIT) 
I ((wff)(conn)(wff)) 
I (.(wft)) 
I ((wff) -> (wft)) 
I ((g-quant) (wff)) 

There is one detail about this syntax definition which may seem peculiar to non-computational 
semanticists. The definition foresees quantified formulas not in the Barwise-Cooper notation 
(cf. Barwise and Cooper 1981) where the quantified formula normally had A-terms in the 
restrictor and scope, but rather in the notation more frequently used in computational lin­
guistics, in which these positions are filled by open formulas. The formula below highlights 
the difference: 

Barwise and Cooper Notation 
Vx(Ay.man(y), Az.mortal(z)) 

PresentN otation 
(Vx man(x) mortal(x)) 

This is generally preferred in order to keep the visual complexity offormulas (the number 
of A's) at a minimum. Cf. Moore 1981 for an early use; and Dalrymple et al. 1991 , pp.414-17 
for model-theoretic definitions of the alternative forms. 

We turn now to the description of expressions in this language using a typed feature 
description language of the sort common in grammar processing. 

Metalogic-AVM Specifications for LGQ 

III this section we employ typed feature logic (often referred to as ATTRIBUTE-VA LUE MA­

TRICES or AYMs) to provide a set of type definitions for expressions in the logi cal lan­
guage just presented . We shall not present the typed feature logic formally, relying on 

15 



(Carpenter to appear 1992) for definitions. The initial specifications are limited to very 
vanilla-flavored uses of the feature description scheme, and we shall warn when more par­
ticular assumptions are made (Section 5) . 

(var) ::= Xo 1 xII · . . 

(atomic-wft) ::= ((pred) (term)*) 

(g-quant) :: = (det)(var)(wff) 

(wff) ::= 
1 ((wff)(conn)(wff)) 

··· 1 (...,(wft)) 

.. ·1 ((wff) --+ (wff)) 

. ·· 1 ((g-quant) (wff) ) 

[ 
var ] 
INDEX 

atomic-wff 
PRED [pred] 
FIRST [term] 

N-TH [term] 

[ 

gen-quant 1 
DET [det] 
VAR [var] 
REST [wffJ 

[ 

connective-wff 1 
CONN [conn] 
WFFI [wffJ 
WFF2 [wffJ 

[
negation ] 
SCOPE-WFF [wffJ 

[

implication 1 
ANTE [wffJ 
CONSEQ[wffJ 

[ 

q-wff 1 
QUANT [gen-quant] 
SCOPE [wffJ 

We shall make use of TYPE predicates, e.g., var(x), which holds iff X is of type var. It is 
easy to note the absence of several expression types from the set of feature-structure types 
defined; for example, terms, predicate and individual constants have not been defined here. 
That is because we rely on TYPE information for distinctions which are not realized in one 
or more distinct attributes. Figure 6 illustrates the type hierarchy we assume. Of course, we 
can express the type hierarchy in the language of typed feature descriptions-and in this way 
obtain a specification fully equivalent to the BNF. For example, in Carpenter to appear 1992 
we can specify that 

term( x) +-+ var( x) V const( x) 

For the purposes of this paper, we may rely on the informal presentation in Figure 3. 

Use of Semantic Descriptions- Examples 

Some simple examples of the kinds of metalinguistic specifications allowed are illustrated in 
Figure 7. These would be compiled in ways suggested by Figure 2; i.e., we imagine that con­
struction principles (or grammatical rules) may have a semantic correlate which constrains 
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Expr 

Term Connective Gen-Q Pred Neg Det 

/\11\/\11\ 
Var Const v WALK :3 

Wff 

a-wff ---wff ~-wff conn-wff q-wff 

Figure 6: A type hierarchy for the domain of expressions in the language of generalized 
quantifiers as defined in the text. Carpenter 1992 provides the theory of typed feature 
structures within which a hierarchy such as this functions . 

the semantic representation which is the meaning of the construction. Of course, as we 
noted above, there is no reason that only syntax should have the privilege of constraining 
meaning. 

The use of feature structures as a metalinguistic level of semantic representation allows 
greater freedom in semantic explanations. This may be illustrated with respect to the rep­
resentation of argument positions in atomic formulas and their specifications in the current 
scheme. The semantic representation language LGQ uses order-coding to represent which 
arguments are bound to which argument positions, while the metalanguage (feature struc­
ture descriptions) identifies this using features (FIRST, etc.). The first bit of freedom we 
might exercise concerns the identification of argument positions. Nothing would stand in 
the way of using more contentful-sounding role names to pick these out. For example, we 
might alter the feature specifications in such a way as to allow the following: 

atomic-wff I 
PRED send 
SOURCE x 
THEME y 
GOAL z 

In this case the simplest generalization would appear to be that allowing any name to 
designate a semantic role. We would again represent roles as features, postponing any more 
detailed representation until it is motivated: 
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[ 

atomic-wff 1 
PRED walk 
FIRST j 

q-wff 
gen-quant 
DETV 

QUANT VARITJ [ ~~~EX y ] 

REST [ ~~~~-ctld 1 
FIRST IT] 

SCOPE[wifJ 

walk(j) 

(Vy child(y) 
walk(y)) 

(Vy child(y) 4» 

(Vy child(y) 
walk(y) 1\ talk(y)) 

Figure 7: Feature structure descriptions used as metalinguistic descriptors of expressions in 
LGQ. Note the use of under specification in the last example. The underspecified description 
is compatible with many, including semantically contradictory formulas. 

(atomic-wfi) ::= ((pred)(pair)*) 

atomic-wff 
PRED [pred] 
ROLE l [term) 

ROLEn [t erm) 

Although we will not make use of this representation below, it illustrates a degree of 
freedom allowed by the present semantic representation scheme but absent from simpler ones. 
It would moreover appear to suffice for all the syntactic purposes for which so-called thematic 
roles are deployed (cf. Jackendoff 1972,29-46; Roberts 1991; Dowty 1991; Wechsler 1991). 

On the other hand, there are purely semantic grounds for preferring keyword-coding to 
order-coding as a way of identifying argument positions. Two such reasons often adduced 
are (i) that the ORDER of arguments in relations is never used semantically, and thus that 
every alternative ordering leads to a perfectly equivalent logic, so that the keyword-coding 
suffices; and (ii) that the use of keyword coding allows us to make sense of anadic predication 
(i.e., using the same predicate with a variable number of arguments). On the latter point, 
see Creary and Pollard 1985. 

An extension of the illustration provided here may be found in Nerbonne 1992b, which 
furthermore demonstrates how, using more expressive mechanisms of the HPSG feature 
formalism (Pollard and Sag 1987), scope ambiguity may be characterized at the level of 
feature structures. 
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