
Deutsches
Forschungszentrum
fUr Kunstliche
Intelligenz GmbH

COLAB:

Research
Report

RR-93-08

A Hybrid Knowledge Representation and
Compilation Laboratory

Harold Boley,
Philipp Hanschke, Knut Hinkelmann, Manfred Meyer

January 1993

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens­
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

COLAB:
A Hybrid Knowledge Representation and Compilation Laboratory

Harold Boley, Philipp Hanschke, Knut Hinkelmann, Manfred Meyer

DFKI-RR-93-08

To appear in a special issue of Annals of Operations Research
3rd International Workshop on Data, Expert Knowledge and Decisions
Reisensburg Castle, September 1991

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that
all such whole or partial copies include the following: a notice that such copying is by permission of Deutsches
Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fOr KOnstliche InteUigenz.

COLAB:

A Hybrid Knowledge Representation and Compilation Laboratory

Harold Boley, Philipp Hanschke, Knut Hinkelmann, Manfred Meyer

DFKI
Kaiserslautern, Germany

{boley,hanschke,hinkelma,meyer}~dfki.uni-kl.de

Abstract

Knowledge bases for real-world domains such as mechanical engineering require expres­
sive and efficient representation and processing tools. We pursue a declarative-compilative
approach to knowledge engineering.

While Horn logic (as implemented in PROLOG) is well-suited for representing relational
clauses, other kinds of declarative knowledge call for hybrid extensions: functional dependen­
cies and higher-order knowledge should be modeled directly. Forward (bottom-up}.-reasoning
should be integrated with backward (top-down) reasoning. Constraint propagation should be
used wherever possible instead of search-intensive resolution. Taxonomic knowledge should be
classified into an intuitive subsumption hierarchy.

Our LISP-based tools provide direct translators of these declarative representations into
abstract machines such as an extended Warren Abstract Machine (WAM) and specialized
inference engines that are interfaced to each other. More importantly, we provide source-to­
source transformers between various knowledge types, both for user convenience and machine
efficiency.

These formalisms with thei r translators and transformers have been developed as part
of COLAB, a compilation laboratory for studying what we call, respectively, 'vertical ' and
'horizontal ' compilation of knowledge, as well as for exploring the synergetic collaboration of
the knowledge representation formalisms .

A case study in the realm of mechanical engineering has been an important driving force
behind the development of COLAB. It will be used as the source of examples throughout the
paper when discussing the enhanced formalisms, the hybrid representation architecture, and
the compilers.

Keywords and Phrases: Hybrid Knowledge Representation, Knowledge Compilation, Declara­
tive Programming, Taxonomic Reasoning, Constraint Propagation, Relational-Functional Compuation,
Bottom-up Deduction, Knowledge-Based Systems, Mechanical Engineering, NC-Programming

2

Contents

1 Introduction

2 The COLAB Representation and Compilation Architecture

2.1 The Representation Architecture

2.2 An Overview of Compilation

2.2.1 Vertical Compilation .

2.2.2 Horizontal Compilation

3 Taxonomic Reasoning

3.1 Formal Definitions

3.2 An Example ..

3.3 Characteristics

3.3.1 Decidability

3.3.2 Taxonomy Compilation

4 Constraint Propagation

4.1 Constraint Satisfaction and Local Consistency

4.2 Hierarchically Structured Domains and Hierarchical Arc-Consistency

4.3 Using the Constraint Component

4.4

4.3.1 Defining Domains .

4.3.2 Defining Constraints

4.3.3 Computing a Hierarchically Arc-Consistent Value Assignment.

Constraint Compilation

5 Relational-Functional Computation

5.1 A Brief Introduction to RELFuN ..

5.2 Relations Defined by Hornish Clauses

5.2.1 Open-World DATALOG

5.2.2 PROLOG-like Structures and Lists .

5.2.3 Varying-Arity Structures and Relationships

5.2.4 Higher-Order Relations

5.3 Functions Defined by Footed Clauses .

5.3.1 . DATAFUN as a Functional Database Language.

CONTENTS

5

7

7

8

8

9

11

12

15

16

17

18

19

19

20

21

22

22

23

24

27

27

28

28

29

29

30

30

30

CONTENTS

5.3 .2 Full RELFuN and Higher-Order Functions

5.4 Relational-Functional Compilation

6 Bottom-up Deduction

6.1 Hybrid Rules in COLAB

6.2 Bottom-up Evaluation of Hybrid Rules .

6.3 Goal-directed Bottom-up Evaluation

6.4 Tuple-oriented Forward Reasoning

6.5 Rule Compilation

7 The j.LCAD2NC Case Study

7.1 Feature Aggregation . . .

7.2 Skeletal-Plan Association

7.3 Skeletal-Plan Refinement

8 Conclusions

A The Knowledge Items of COLAB

B A Hybrid Knowledge Base

3

33

33

34

35

36

38

39

40

41

42

45

46

49

55

57

4 CONTENTS

5

1 Introduction

A long-term goal of our research is to understand the principles of building knowledge bases
(KBs) for real-world domains such as mechanical engineering (e.g., CAD/CAM). We feel that
it will be important to reuse much of the domain-specific knowledge in a KB for several task
categories such as both for (process) planning and quality control. After all, human experts
are mostly domain experts, capable of performing all kinds of tasks within their domain. For
instance, an NC-programmer can both write and debug programs because his domain models of
the application's objects and structures, the task environment, the programming and database
languages, the operating system, and the hardware equipment are reusable for both synthetic and
analytic tasks.

High reusability of KBs will require declarative and expressive representation languages as well
as flexible and efficient compilation tools for them. Declarative representations describe logically
what the knowledge expresses without at the same time prescribing imperatively how it is to be
used. Such a high descriptive level not only permits several uses of the same KB but also enhances
the readability, maintenance, and parallelization of KBs. Moreover, the orientation towards logic
(usually, variations of first-order predicate calculus) permits a clear semantics for representation
languages and eases the tough business of KB verification/validation. All this will be particularly
relevant as KBs are growing larger: it is becoming increasingly important to facilitate various
kinds of "knowledge analysis" analogous to data analysis.

If knowledge representation does not prescribe knowledge use, how is knowledge going to
be applied to the problems at hand? The answer of the declarative paradigm has traditionally
been a general-purpose control component for interpreting problem requests ('goals', 'queries')
with respect to a KB. Since the efficiency of language interpreters is normally not sufficient for
large KBs, some knowledge-based systems and expert-system shells have generalized the compi­
lation concept of ordinary programming languages: a declarative KB can be sta.tically (before
users input their queries) analyzed and accordingly rewritten into another, usually more efficient
(procedural), form . Compiled KBs often run in abstract machines such as PROLOG's War­
ren Abstract Machine (WAM); except for their increased efficiency, they are not a concern of
end-users. Advanced compilation methods thus enable users to write KBs declaratively while
achieving the same efficiency procedural paradigms are offering: knowledge compilation can make
the declarative paradigm a practical option for artificial intelligence (AI) programming.

As a step in that direction we have implemented a prototypical knowledge compilation labo­
ratory, COLAB, on the basis of LISP. Supported by a battery of compilation tools, it provides a
hybrid integration of four principal declarative representation languages, developing and extend­
ing well-known AI formalisms (Section 2). While Horn logic (as implemented in PROLOG) is
well-suited for representing (0) relational facts and rules, other kinds of declarative knowledge
call for several extensions: (1) functional dependencies/associations and higher-order knowledge
should be modeled directly (Section 5). (2) forward (bottom-up) reasoning should be integrated
with backward (top-down) reasoning (Section 6). (3) Constraint propagation should be used wher­
ever possible instead of search-intensive resolution (Section 4). (4) Taxonomic knowledge should
be collected into intuitive and efficient subsumption hierarchies (Section 3). We permit KBs to
consist of several types of items (marked by infixes or tags, Appendix A), refining the knowledge
kinds (0)-(4). This hybrid language will be construed as an 'extended-ABox' KL-ONE language

6 1 INTRODUCTION

in the tradition of KRYPTON [18] by collecting (0)-(3) into an affirmative component, whose
knowledge is structured by the 'type' system of (4), the taxonomic component.

Besides interpreting its hybrid language for interactive KB development, COLAB provides
source-to-code translators for compiling KBs down to efficient abtract machines. Some of these
translators employ a functionally extended WAM, called RFM. Also, COLAB provides source-to­
source transformers between various knowledge types, for both user convenience and machine
efficiency: 'hybrid' knowledge can be transformed to several 'homogeneous' forms and (with
interaction) vice versa, permitting tailored user representations and machine implementations.
For example, a hybrid KB whose items are forward and backward rules can be homogenized to
bidirectional rulesj conversely, an interactive transformer can split bidirectional rules according to
their actual use directions, proceeding from a more declarative to more procedural representations.
Both translators and transformers are being developed for studying the trade-offs between what
we call, respectively, 'vertical' and 'horizontal' compilation of knowledge (Section 2.2).

While vertical compilation has the obvious purpose of making KBs ultimately efficient, it
is often preceded by preparatory horizontal compilation steps, permitting, complexity-reducing
optimizations at the highest possible algorithmic level. Horizontal compilation can also help
hybrid shells to avoid the costly development of a complete vertical compiler and emulator (run­
time system) for each individual subformalism, with the associated problems of dynamic interfaces
between these run-time systems: by horizontally reducing a subformalism Fl (e.g. functional
nestings) to a subformalism F2 (e.g. relational conjunctions) we may circumvent the vertical
compiler for Flj if the Fl-to-F2 transformation (e.g. Horn clauses to constraints) is only partial
but works for the KBs of a particular domain, we still have the option to concentrate our vertical­
compiler development on F2 for speeding up the knowledge represented in those domain KBs.
Moreover, horizontal compilation is important for gaining flexibility in the very development of
future (hybrid) representation languages: since in the AI community it is not yet clear which
subformalisms should be part of an 'ideal' hybrid shell or whether one homogeneous formalism
could replace hybrid shells altogether, it is important to be able to 'save' the knowledge invested
in a hybrid subformalism Fl by its horizontal transformation to some subformalism F2, should
Fl be abandoned and F2 be kept. A related point concerns horizontal transformations between
specialized KB languages and a standard knowledge-sharing language such as KIF [30], permitting
knowledge reuse. Finally, horizontal compilers can support a team of developers of a KB: if there
are good transformation tools, everybody may freely use the language of their choice from the
hybrid shell, which may differ from the language in which the KB will be represented for fellow
developers or delivered to end users. On the other hand, horizontal transformation has the
potential disadvantage of perpetuating some dependence of a language on the (moving) target
language to which it is transformed; vertical compilation provides independence between languages
on the same level by separately translating them down to the next lower (more efficient) level.

Therefore, with COLAB we have provided a laboratory of vertical as well as horizontal
compilers, which enable the development, processing, and maintenance of knowledge formulated in
evolving hybrid, declarative languages. This 'coherence-through-compilation' approach to hybrid,
declarative KBs is at variance with the 'coherence-through-presentation' apprc;ach to hybrid,
procedural KBs found in many commercial expert-system shells.

In the domain of mechanical engineering we have realized a non-toy application probing the
declarative expressiveness of COLAB: The J.LCAD2NC system applies the "heuristic classifica-

................................ ·:~~TB :::::::: ~o~t~: ::::::: :::: :cl#.itl2#.on: ~f~~#¢p~ : ::::::::::::::::::::::::::: : ox

:::::\:}:::ftmmr1:\::::·:::}r/:::4.¥t#.~ffi~:¥.#.~:ilii.::I#.{::m~;q~J.~T - ABox
.. ,.,

:.::::.Wi%1~t~wr:///////·::::::·)))::)))t~t&ur£et::::):{::{{:?)::
tI: .:::::: :::: :::::::::::»»»»»I>·:· »»:::::::::::::» >:« ¥Y~f:~~t~~~l:««
:::::::p.**\yiii:it¢~iiig:w.:itl(:::::::::::::::::::::: ::: :: :: ::::::::~q@.w.r¢~t(lQiii@i(:::: : ::: : : : ::
:::::::re.tatiQns.::an~ff:UrictiQns.:::: :: ::::::::::::::::::: : :::::::: :::

.

Figure 1: The COLAB Representation Architecture

taxonomic part

affirmative part

7

tion" inference scheme to a subtask arising in CIM, namely computer-aided process planning
(CAPP), transforming a (declaratively represented) CAD-like workpiece geometry into a (declar­
ative representation of an~ NC-program for manufacturing the workpiece. Two versions of this
application have explored alternative uses of COLAB'S representation and compilation capabili­
ties , and have provided a challenging test environment for several COLAB developments. With the
second pCAD2NC version we have also reached a stable COLAB, demonstrating that our hybrid
declarative-compilative approach is viable for knowledge-based systems (Section 7, Appendix B).

2 The Co LAB Representation and Compilation Architecture

2.1 The Representation Architecture

The COLAB system has been designed as a compilation laboratory aiming at a synergetic collabor­
ation of different knowledge representation and reasoning formalisms. It is comprised of subcom­
ponents dealing with the different kinds of knowledge and that can also be used in a stand-alone
manner. The components are indicated in Figure 1 as dashed boxes. Dynamic cooperation of
the components is based on access primitives providing interfaces between the reasoning services.
In this paper we shall introduce also conceptually more involved integrations of the components
whose implementation encapsulates the access primitives, thus hiding them from hybrid KBs . A
hybrid KB of COLAB can be composed of items from all components which are managed as a
unit. An infix syntax (or a prefix tag) indicates the type of knowledge items and determines how
they are processed. This facilitates the development of knowledge modules that comprise different
kinds of knowledge, and thus employ more than one formalism.

Similarly as in terminological knowledge representation systems such as KL-ONE [20], the
COLAB representation architecture splits into two main parts, an affirmative part, sometimes
also called 'assertional', and a taxonomic part. We use the term 'ABox' to denote the assertional
formalism managed by the taxonomic component TAXON.

The former part provides efficient reasoning with different kinds of relational or functional

8 2 THE COLAB REPRESENTATION AND COMPILATION ARCHITECTURE

knowledge using tailored inference engines. For affirmative knowledge represented as net-like,
non-recursive relations, called constraint nets, COLAB supplies constraint propagation (Section
4) as an efficient reasoning mechanism. Relational knowledge in the form of Horn rules is processed
by forward (Section 6) and backward (Section 5) chaining. I.e., in a single query some rules can
be used for top-down problem decomposition and others for bottom-up deduction. The backward
component is also suited for expressing (non-deterministic) functional dependencies.

Taxonomic knowledge is represented by intensional concept definitions in the TBox formalism
of the taxonomic component. The concepts are automatically arranged in a subsumption hierarchy
(cf. Section 3) by the classification service. The structure of this 'hierarchy' (cf. Section 4) as
well as the 'content' of the concept definitions (cf. Section 3) is available via access primitives
to the other subcomponents. This permits more compact formulations of affirmative knowledge
by referring to concepts (cf. Section 7) and leads to more efficient processing if reasoning about
instances can be lifted to reasoning on the concept level (cf. Section 4).

2.2 An Overview of Compilation

COLAS, designed as a knowbdge compilation laboratory, provides several compilation tools for
its representation languages. All knowledge representation formalisms available in COLAB are
integrated in a LISP-based system, hence are available in one runtime environment. Each of
them provides an efficient inference engine tailored to the specific needs of that representation
formalism:

• efficient algorithms for various reasoning services of the terminological component (e.g.
subsumption, satisfiability test, or classification);

• an extended hierarchical arc-consistency algorithm for propagating constraints over hierar­
chically structured domains, working on an object-oriented (CLOS) representation of the
constraint net;

• a functionally extended higher-order Horn-clause prover based on SLY resolution for back­
ward chaining of valued clauses, interpreting/compiling functional values and nestings.

• a semi-naive evaluation strategy for forward rules which avoids multiple derivations of the
same facts, exploiting a generalized magic-set transformation to restrict the number of
derived facts.

2.2.1 Vertical Compilation

Run-time efficiency can be improved by pre-evaluating parts of the computation and optimizing
the data representation for the specific way data are accessed and modified. A native-code com­
piler for some procedural programming language generates the sequence of machine instructions
more specialized than t~ose which would be executed by a high-level interpreter for that language.
In principle, the same technique can be applied by defining a (software) abstract machine for which
the compiler will generate code. Such an abstract machine defines specialized abstract instruc­
tions working on data representations designed to support the efficient implementation of these

2.2 An Overview of Compilation 9

instructions. Such an abstract machine can then be realized by defining a low-level interpreter
for the abstract instructions which emulates the behavior of the abstract machine.

A very elaborate abstract-machine model for implementing logic programming and thus logic­
oriented knowledge-representation languages has been defined in [63], and is known as the Warren
Abstract Machine (WAM). In principle, the WAM, specially designed as an abstract machine
for evaluating Horn-clause programs using SLD-resolution, supports a set of instructions which
implement all aspects of the most time-consuming unification task. The compiler, then, has to
analyze the program and to generate those abstract unification instructions needed in each specific
case. Together with an efficient data representation supporting the variable bindings management
and the restoration of earlier computation states in case of backtracking, this results in a much
better runtime performance than an interpretation of the original source program.

For this reason, COLAB also uses such techniques and supports ' vertical compilation' tools
which translate a subset of the entire knowledge representation language vertically 'down' to an
extended WAM. The abstract instructions are then processed by a WAM emulator, also imple­
mented in LISP and hence available within the same runtime environment.

Currently, WAM-oriented vertical compilers are available for the relational-functional compo­
nent (see Section 5, [12]) as well as for the rule component (see Section 6, [35]).

Additionally, the semi-naive evaluation strategy for bottom-up rules (see Section 6) and the
hierarchical arc-consistency algorit hm for constraints (see Section 4) also make use of vertical
compilation techniques in order to translate the source KB into an internal representation more
suitable for efficient processing.

Finally, an abstract machine for efficient bottom-up deduction has been developed, which
is a modification of the Rete pattern match algorithm [26]. It has been extended to support
hybrid reasoning. In particular, a homogeneous interface to the WAM is available, because both
machines are implemented on equivalent levels of abstraction. The instruction sets and the term
representations are very similar.

All these compilation aspects will be discussed in more detail in the following sections on the
individual components of COLAB .

2.2.2 Horizontal Compilation

Besides the vertical compilation tools , which have been developed only for efficiency reasons,
COLAB provides a set of 'horizontal' compilation tools which perform knowledge transformations
in a source- to-source manner on the same level of abstraction.

As COLAB allows knowledge to be represented in a hybrid way by using the most appropriate
representation formalism for each piece of knowledge (knowledge item), such horizontal trans­
formers are very useful both for user convenience and runtime efficiency. They support, e.g., the
transformation of 'hybrid' knowledge to several 'homogeneous' forms and thus can also provide
something like normal forms for hybrid KBs.

COLAB KBs consist of a hierarchical system of knowledge items. Most knowledge items consti­
tute concept definitions, rules (bottom-up, top-down, or bidirectional), or constraint definitions.
Knowledge items can be distinguished syntactically; a summary of all COLAB knowledge items

10 2 THE COLAB REPRESENTATION AND COMPILATION ARCHITECTURE

is given in appendix A.

The main idea behind the COLAB architecture is to provide a set of interactive compilation
tools which allow COLAB users-knowledge engineers designing an application-to interactively
discover the best way of representing the kind of knowledge they are currently trying to implement.
For instance, it is possible in COLAB to abstractly represent I?ome piece of knowledge as rules
without saying whether they shall be processed using the backward chaining or the forward
chaining (bottom-up) component. Such bidirectional rules can later be interactively split into
more concrete forward and backward rules according to their optimal use directions.

By using such interactive knowledge-compilation tools the user can experiment with different
knowledge representations and is not forced to decide, in an early phase, once and for all, which
representation formalism to use for which subtask, as is usually the case with common expert­
system shells.

Horizontal knowledge-compilation tools partially or totally transform knowledge represented in
one COLAB component into a representation of another formalism. Examples for such horizontal
knowledge transformation in COLAB are:

• A source-to-source compiler for general rules with multiple conclusions into Horn rules for
top-down evaluation (see Section 6);

• a transformer for bidirectional rules into backward-chaining clauses (see Section 6);

• partially compiling Horn clauses into primitive and compound constraints (see Section 5)
and vice-versa (see Section 4);

• transliterating concept definitions into Horn clauses enhanced by a RELFuN implementation
of TAXON'S reasoning services (see Section 5).

Since the representation languages provided in COLAB differ in their expressiveness, not all
of these transformations can be realized as total mappings from one representation formalism
into the other. For instance, while the full compilation of primitive and compound constraints
into Horn clauses causes no problems, the opposite direction only works for a restricted class
of ijorn clauses (see Section 4). The various horizontal compilers available to the COLAB user
are discussed in more detail in the sections on the formalisms that constitute the source of the
compilation.

Besides these horizontal inter-formalism compilers there are also several transformation tools
that perform horizontal compilation of knowledge within a single formalism (intra-formalism
compilers). Examples of such intra-formalism compilers are

• the flattener for relational-functional clauses (see Section 5),

• the folding mechanism for primitive constraints (see Section 4),

• the implementation of bottom-up rules for goal-directed reasoning by an extended general­
ized magic-set strategy (see Section 6), and

• the concept-classification service that computes subsumption relations between concepts and
constructs the cover graph used by other COLAB components (see Section 3).

11

The following sections discuss the representation and compilation tools of COLAB from the
viewpoints of the four available components.

3 Taxonomic Reasoning

The taxonomic component, called TAXON, is a terminological knowledge representation system
belonging to the family of systems (e.g. [19, 17,40]) that originated with KL-ONE [20]. Two of
the main advantages of the formalisms of this family is their precise declarative semantics and
their adequacy for a human user. To make full use of the exact declarative semantics we employ
sound and complete algorithms for terminological knowledge representation as developed in [57]
and further elaborated e.g. in [38, 24,4].

The intended use of COLAB in the realm of mechanical engineering heavily influenced the
design of the taxonomic component. For example, in our sample application ((Section 7) it is
necessary to represent technological and geometrical aspects of lathe workpieces as well as more
abstract features relevant for production planning. Taxonomic formalisms usually allow only the
definition of concepts on an abstract logical level. But-and not only-in this application domain
there is a need for reference to more concrete notions. For example, the adequate definition of
geometric concepts requires to relate points in a co-ordinate system [5]. Similar motivations have
already led to extensions of KL-ONE. The MESON system provides "a separate hierarchy for
describing non-concepts (e.g., integer ranges and strings)" ([52], p. 8) which are given as user­
defined or machine-defined predicates. The "test" construct in CLASSIC also provides access
to concrete notions. In K-REP "the roles of concepts may in turn be other (complex) concepts,
as well as numbers, strings and ... arbitrary Lisp objects" ([44], p. 62). Schmiedel's Temporal
Terminological Logic [58] can also be seen in this light. In this case the concrete domain is given
by an extension of Allen's interval calculus [2].

In [4] a scheme for extending concept languages with concrete domains is~proposed. Already
on the scheme level it is shown how well-known reasoning algorithms of concrete domains can
be employed to get sound and complete algorithms for e.g. subsumption and realization [51]
provided the chosen domain is admissible. This scheme has been extended w.r.t. quantification
over attribute/role chainings and role interaction [31]. The taxonomic component TAXON of .
COLAB is an instance of a generalized version of this scheme that provides u nhanced means to •
specify the interaction of roles. ,:

The taxonomic component encompasses not only a formalism to deal with the intensional • '- ..
concept definitions. In addition, it possesses a formalism that is capable to instantiate concepts
by instances. For this very restricted use of taxonomic knowledge well understood reasoning
services such as membership test, realization, or consistency test are provided. T'hrough these
services, the affirmative part of COLAB has full access to the 'content' of the concept definitions. ~

This enables new integrations of affirmative and taxonomic knowledge representation formalisms. -~:- ::i
For example, the concepts can be regarded as an expressive, tailored vocabulary foriormulat· _;.l~ ,""

ing premises and conclusions of a rule (Section 7). This shows that the affi.rmative components . ,.~~~~;::""f'
are not restricted to use concepts purely as sorts in an extended unification. ::-:~, __ ~

.. ..:.;;:z
In the remainder of this section we shall formally define the taxonomic formalism- (Sec~iO!!;; -.. TI ...

3.1), give an example (Section 3.2), discuss compilation aspects, and r~late the <;<nIlRofltmt tOJn,e :: .. _,., "(f":·

12 3 TAXONOMIC REASONING

other formailsms of COLAB (Section 3.3).

3.1 Formal Definitions

As already mentioned, the terminological component encompasses two parts, called ABox (box
for assertional knowledge) and TBox (box for terminological knowledge). The concept definitions
in the TBox are strictly intensional, and, do not refer to instances. Thus, TBox reasoning is
reasoning about concepts independent of specific cases. Whereas the knowledge items of the
ABox correspond to specific cases (observations) in the world that instantiate the vocabulary.

Concepts can be seen as unary predicates that are constructed from other concepts, roles and
predicates using certain operators. Roles are binary predicates relating instances (Le., members of
concepts) to instances. We distinguish functional roles, which we call attributes, and many-valued
roles. The former may relate an instance to at most one other instance, the latter to an arbitrary
number. If we want to be unspecific we say role.

TAXON handles additionally abstract and concrete n-ary predicates, n > O. The abstract
predicates are atomic (i.e., not further defined). Concrete predicates belong to a concrete domain
which consists of a set dom(V) and a collection of concrete predicate names Pv that structure the
domain with fixed extensions pV ~ dom(V)n, where n is the arity of p. As usual, the superscript
V is sometimes omitted. A concrete domain is called admissible, if it satisfies the following
properties.

1. If p ~ dom(V)n is an n-ary predicate of the concrete domain, then there is apE Pv such
that pV = dom(V)n \ p.

2. There is a decision procedure for the satisfiability problem of finite conjunctions of these
predicates (with possibly shared variables). I.e., the algorithm has to check whether there
is an assignment of elements of the concrete domain to the variables in the conjunction such
that the conjunction is satisfied.

As an example consider the domain of rational numbers with comparison operators as predi­
cates. The former requirement is technical. For instance, it requires that if < is a predicate of this
concrete domain, then ~ must belong to the domain, too. The latter, requirement says that there
is an algorithm that performs the following task: Given a conjunction, say x < 1/\ x > y /\ Y = 1.1,
it checks whether the variables can be instantiated by rational numbers such that the conjunc­
tion becomes true. Because 1 > 1.1 does not hold, there is no such variable assignment in the
example. l

Definition 3.1 (TBox) There are five, pairwise disjoint, alphabets C, nnn, nnl, P, Pv of
names for concepts, many-valued roles, attributes, abstract predicates, and concrete predicates.
The letter "A" E nnl is a special attribute name.

A role chaining is an expression RIO ... 0 R m , m > 0, where 0 is an associative, binary, infix
operator, and each Rj E nnnUnnl is a role name. An attribute chaining is a role chaining where
ea~h role is an attribute. Concept terms are inductively defined. Every concept name C E C is a

1 See also the definition of a CSP in Section 4.

3.1 Formal Definitions 13

concept term. If sand t are concept terms, Ul, ••• ,Un are role chainings, and VI, V2 are attribute
chainings, then the following expressions are concept terms:

snt
sut
-,s

3UlI .. ·, Un·p

\:lUll • .. , Un.p

VI ! V2

VI 1 V2

(conjunction)
(disjunction)
(complement)
(exists-in restriction)
(value restriction)
(agreement)
(disagreement)

The expression P is called restrictor and has to match one of the following cases.

1. n = 1 and P is a concept term,

2. P is p or -,p where p is an n-ary predicate name,

3. P is an n-ary concrete predicate name.

A concept definition is a pair (C, t) written as C =conc t where C is a concept name and t is a
concept term. A terminology is a finite sequence of concept definitions Cl =conc tl, C2 =conc t2 ,
... , Ck =conc tk such that, for i = 1, ... , k, Ci does not occur in Ct =conc tll ... , Ci-t =conc
tj-lI t j. I.e. , the terminology does not contain cycles and there is at most one concept definition
per concept name.

A precise semantics for terminologies is obtained through a mapping of concept terms into
first-order formulas, which are interpreted in the usual way. There is only a slight complication
caused by the concrete domain. We require that each interpretation I for this formulas satisfies
the following conditions:

1. The domain dom(I) of the interpretation is disjoint to dom(V).

2. A concept name C is interpreted as unary predicate CI ~ dom(I), a name of a many-valued
role r E nnn is interpreted as a binary predicate rI ~ dom(I) X (dom(I) u dom(V)), an
attribute name f E nnt is interpreted as the graph of a partial function f : dom(I) 1---+

dom(I) U dom(V), a name for an n-ary abstract predicate pEP is interpreted as pr ~
dom(I)n, and a name of an n-ary concrete predicate p E P1) is interpreted as pI := p1) ~
dom(v)n

3. The special symbol T 1) (resp., T) is interpreted as dom(V) (resp., dom(I)) and the attribute
name A denotes the identity {(x, X)i x E dom(I)}.

Note that roles are the only link between the abstract and the concrete domain. It remains to
map concept terms .and concept definitions into first-order formulas. This is done by inductively
defining a family of mappings {tPx}x where x ranges over tuples of variables of the first-order
language.

Then the tPx are inductively defined as follows:

14 3 TAXONOMIC REASONING

1. 1/Jx : N 1----+ N(x), if N is a concept, role, or predicate name.

2. 1/Jx,y : co C' 1----+ 3z : (1/Jx,zc /\ 1/Jz,yC') where z is a fresh variable.

3. 1/Jx : s n t 1----+ 1/Jxs /\ 1/Jxt,
1/Jx : s U t 1----+ 1/Jxs V 1/Jxt, and
1/Jx : -'P 1----+ -.1/JxP /\ T(xt) /\ ... /\ T(xn) where x = (x}"", xn) and P is a concept term or
an abstract predicate.

4. 1/Jx : 'v'u}, ... , un.p 1----+ 3y}, ... , Yn : «1/Jx,Yl Ul /\ .•• 1\ 1/Jx,Yn un) => 1/JY1" ",YnP) where the Yi are
fresh variables.

A concept definition C = t is mapped to'v'x : (1/JxC ¢} 1/Jxt).

An interesting service provided by the taxonomic component is subsumption. A concept term
s subsumes a concept t iff 'v'x : (1/Jxt => 1/Jxs) is a theorem in the logical theory generated by
the terminology. The classification service computes the subsumption graph of the subsumption
relation, which is actually the cover graph of the relation. A concept t is satisfiable w.r .t. the
current terminology iff 1/Jxt is satisfiable in the logical theory generated by the terminology.

In the ABox formalism it can be stated that instances belong to concepts and furthermore the
relation-ship of the instances can be modeled by instantiating roles and predicates with them.

Definition 3.2 (ABox) There is an alphabet of instances, disjoint to the other alphabets. Let C
be a concept name, p a predicate name with arity n (either abstract or concrete) R a role name,
and the a, aI, ... an, b instances. Then the following expressions are assertions:

C(a)
R(a, b)

p(al,' . " an)
a=b
a:j;b

(membership assertion)
(role-filler assertion)
(predicate assertion)
(equality)
(negated equality)

Viewing instances as constants these assertions can be immediately read as closed formulas in our
first-order theory.

An ABox is consistent if it is consistent as a set of logical formulas (in the theory generated
by the terminology). An object a is a member of a concept (term) t, if 1/Jat is a logical consequence
of the current ABox (as a set of logical formulas). The realization of an object a is the set of
most specific concepts in the subsumption graph such that for each element C in this set a is a
member of C.

3.2 An Example 15

Figure 2: A Truncated Cone and a 'Biconic'

3.2 An Example

In Section 7 a prototypical process planning system is described that demonstrates the synergetic
cooperation of the components of COLAB. In this section we develop an idealized terminology
for this application in the domain of mechanical engineering.

The geometry, as the main ingredient of a CAD drawing, is given as a collection of rotational­
symmetric surfaces that are fixed to the symmetry axis of the lathe work. An important geometric
element is the truncated cone. Since the surfaces are fixed to an axis, they can be characterized
by four rational numbers rt, r2, Cl, and C2 (Figure 2).

But not all quadruples represent a truncated cone. So we have to restrict their values such
that the radii are positive and the quadruples do not correspond to a line, a circle, or even a
point. These restrictions are expressed by the four place predicate truncone-condi tion over the
concrete domain of rational numbers.

truncone =conc 3(rt. r2, Cl, C2). truncone-condi t ion.

This definition can be specialized to a cylinder by further restricting the radii as being equal
using equality on rational numbers and the conjunction operator n. Similarly, the definitions of
ascending and descending truncated cones, rings, etc. can be obtained by specialization. Trun­
cated cones that are not cylinders are defined as the most specific generalization of ascending and
descending truncated cones using t he disjunction operator U. An equivalent definition would be
not-cylinder =conc truncone n V(rl :I r2).

cylinder =conc truncone n V(rl = r2).
aBc-tc =conc truncone n V(rl < r2).
deBc-tc =conc truncone n V(rl > r2).
ring =conc truncone n V(Cl = C2).
aBc-ring =conc r i ng n aBc-tc.
deBc-ring =conc ring n deBc-tc.
not-cylinder =conc aBc-tc U deBc-tc.

To improve readability, infix notation has been used for the comparison operators in the value
restrictions.

16 3 TAXONOMIC REASONING

The application also needs concepts that describe more than a single surface. So it is necessary
to aggregate the primitive surfaces. For instance, a biconic comprises two neighbouring truncated
cones (Figure 2).

biconic =conc 31eft.truncone n 3right.truncone n
V(left 0 C2 = right 0 Cl) n V(left 0 r2 = right 0 rl)

Here the attributes left and right play the role of part-of attributes linking a biconic to its
components. Informally speaking, an object is a member of 31eft.truncone iff it has a truncated
cone as a filler for left. The expression V(left 0 C2 = right 0 CI) forces the right center of the
left truncated cone to be equal to the left center of the right truncated cone.

If the CAD model provides an explicit topological model, it can be more sensible to define a
biconic as

31eft.truncone n 3right.truncone n Vleft, right.neighbouring

where neighbouring is a binary, abstract predicate.

However, specializations of biconic are defined using the value restriction operator V. Infor­
mally speaking, an object belongs to Vleft.cylinder if it has no attribute filler or a cylinder
as attribute filler for left.

ascasc
hill
rshoulder
lshoulder
shoulder

=conc

=conc

=conc

=conc

=conc

biconic n Vleft.asc-tc n Vright.asc-tc.
biconic n Vleft.asc-tc n Vright.desc-tc.
biconic n Vleft.cylinder n Vright.asc-ring.
biconic n Vright.cylinder n V1eft.desc-ring.
lshou1der U rshou1der.

The next concept shows how two shoulders can be combined to a groove.

groove =conc 31eft.1shou1der n 3right.rshou1der n (left! right).

The concept classification service arranges the concepts as shown in Figure 3.

To represent a particular lathe work in a terminological system, the assertional formalism,
called ABox, is employed. It allows to instantiate the concepts with instances and to fill in their
attributes. A single truncated cone could for example be represented as:

Formally, numbers are not allowed in an ABox. But, we can replace a number, say 10, by a fresh
object name, a, and add an assertion PlO(a) to the ABox, where PIO is a unary predicate from
the concrete domain with the extension {10}. The realization service of the ABox computes the
set {cylinder} as the set of most specific concepts tCl belongs to.

3.3 Characteristics

What distinguishes terminological formalisms in the tradition of KL-ONE such as TAXON from
the other formalisms of COLAB? Firstly, these formalisms should be decidable, secondly, they
provide speCialized reasoning services such as the prominent classification service.

3.3 Characteristics 17

top

~/~
truncone groove biconic

/)otrli~ as~ ?U~ hill

cylinder asc\c)'n\ 7c-tc Ishoulder rshoulder

asc-ring desc-ring

Figure 3: The Subsumption Graph of the Sample Terminology

3.3.1 Decidability

Terminological formalism focus unary (concepts) and binary predicates (roles), and, furthermore,
the structure of the formulas in which these predicates may occur is rather restricted. As an
achievement of the particular restrictions in TAXON the reasoning problems associated with the
inference services are decidable and the formalism is still expressive enough to serve the needs
of realistic applications . In particular, TAXON enhances the expressive power of conventional
terminological logics by adding a facility to "ground" concept definitions: concrete domains.

Note, that terminological knowledge is represented independent of its intended use, there is no
operational semantics which has to be considered by a knowledge engineer. In particular, there
is no notion of left-to-right, top-down, or bottom-up evaluation of a KB or query as it is common
with rule formalisms.

These advantages are complemented with some limitations w.r.t. expressive power. For ex­
ample, in general it is not possible to deal with concrete domains (e.g., rational numbers) varying
size aspects (e.g., sequences) in one concept language in a reasonable way, without having an
undecidable subsumption problem [5]. Consequently, TAXON neither provides a transitive closure
operator nor the ability to have cyclic terminologies.

Another principal limitation is related to assertional reasoning in TAXON . For example, we
consider an additional truncated cone tC2 that neighbours the cylinder tCl of the previous section:

The realization service would derive that tC2 is an ascending ring. But it cannot detect that
they both form a 'biconic'-unless tCl and tC2 are aggregated to a single instance. Once there
is an object bi with assertions

left(bi, tcd. right(bi, tC2).

bi can be classified as an rshoulder.

But this generation of a new instance is not a standard operation in terminological reasoning
systems. The selection of instances that are composed to a new object does not depend on

18 3 TAXONOMIC REASONING

terminological knowledge. On the contrary, knowledge about aggregation of instances is part of
the assertional box. This can easily be seen in the case that the aggregation is not unique. To
illustrate this, let us consider a simple configuration example. Let a terminal be defined as a
keyboard connected to a screen. Suppose there are two keyboards k1 and k2 and two screens S1

and 82. If and how screens and keyboards are put together is not part of the terminological but
of the assertional component. So there must be a rule which describes under which particular
circumstances (for example because of customer requirements) k} and 82 are connected to form
a terminal tl'

3.3.2 Taxonomy Compilation

Probably, classification is the most prominent reasoning service of terminological knowledge repre­
sentation systems. We shall use the notions of horizontal and vertical compilation to cast different
perspectives on this reasoning service.

Vertical Compilation: This service analyses the terminology, extracts the inherent taxonomic
knowledge (Le., the subsumption relation), and stores it in a special data structure support­
ing efficient retrieval of the sub/super-concept relation.

Internally, concept terms are annotated to speed up later inferences: For example, in the
current implementation the restrictor of a value-restriction or an exists-in restriction is
classified. This information is used to efficiently detect redundancies and contradictions by
looking up the precomputed subsumption relation.

Horizontal Compilation: Classification transforms items of one high-level formalism into
another high-level structure, i.e., the subsumption relation. Both structures are used to
communicate with human users.

The constraint formalism of COLAS uses concepts to structure the domain of the constraint
predicates. At runtime the computed subsumption graph speeds up the inferences in cases
where reasoning on type/concept level can be used to avoid reasoning with large numbers
of tuples of instances. In [61] it is exemplified how reasoning with a (more general) sorted
logic can be done more efficiently than without sorts.

Making the subsumption relation explicit and showing it to the knowledge engineer can also
be seen as a knowledge-evolution service. It helps to detect unwanted or surprising conse­
quences of the current concept definitions. For example, in case of an unwanted subsumption
relation the engineer can then refine the respective knowledge items.

The classification precomputes the subsumption relation. Similarly, the other services (pre)com­
pute member-ship relations or check for disjointness, consistency, satisfyablity etc. Each of these
services may aid analyzing and compiling hybrid KBs refering to concepts, roles etc.

Summary of Characteristics

The decidability of the terminological logic enables sound and complete, terminating algorithms
to analyze the terminology as well as the assertional knowledge. The intuitive character of sub­
sumption as such and the precise, model-theoretic semantics enables simple, easy to understand

19

interfaces of the services, in particular the classification. This is an important prerequisite of
natural integrations of terminological reasoning with other knowledge representation paradigms.

Two possible integrations are described in Section 4 and Section 6.2. The latter can handle
varying size aspects and aggregation in the affirmative part of COLAB, which contains the ABox.
Another interesting way is constraint resolution. See [3] for a survey of related approaches.

4 Constraint Propagation

Many AI problems can be formulated as constraint satisfaction problems, starting with the Waltz­
Algorithm for arc-labeling and getting semantic descriptions of polyhedral scenes [62] . Since then
many applications have been developed and many AI problems have been formulated as constraint
satisfaction problems. Constraint satisfaction mechanisms are now widely used in expert systems
[27], in planning systems [23], or in logic programming [11]. Various approaches and algorithms
have been developed to tackle the constraint satisfaction problem (CSP). The computational
complexities of these algorithms heavily depend on the level of consistency they compute (cf.
[43]). To reduce the complexity, terminological knowledge can be used to structure the domains
of the variables occurring in the CSP.

The constraint component CONTAX [47] available in COLAB supports constraint propagation
methods to compute locally or globally consistent assignments of values from the given domains
to the variables of the CSP. Especially, CONTAX provides a mechanism for solving constraints
over hierarchically structured domains defined e.g. using TAXON (see Section 3) .

4.1 Constraint Satisfaction and Local Consistency

Given a set of n variables, each with an associated domain and a set of constraining relations each
involving a subset of the variables, a constraint satisfaction problem can informally be defined as
to find all possible n-tuples such that each n-tuple is an instantiation of the n variables satisfying
the relations. The constraining relations are called constraints. Constraints may be of any arity,
whereas many constraint systems restrict them to be unary or binary. The variables of the CSP
together with the constraints defined over them can be regarded as a constraint graph or constraint
net. More formally, the general constraint satisfaction problem can be defined as follows:

Definition 4.1 (CSP) Assume a finite set of variables V = {X}, ... , X n }, a finite set D
Dl U ... U Dn (domains) , and a finite set R of relations Ri are given, such that Ri ~ Dil x ... X Dik o ,
where Dij E {D}, ... , Dn} and ki is the arity of Ri. The constraint satisfaction problem is to fi~d
an assignment (J : V -+ D for the variables such that all constraints are satisfied simultaneously.

A common example of a constraint satisfaction problem is the graph-coloring problem. Since
graph-coloring is NP-complete, it is most unlikely that a polynomial time algorithm exists for
solving general CSPs. However, a number of algorithms based on local propagation have been
developed. These algorithms do not necessarily solve a CSP completely but they eliminate,
once and for all, local inconsistencies that cannot participate in any global solution. These
inconsistencies would otherwise have been repeatedly discovered by any backtracking solution.
Hence local consistency algorithms can play the role of a preprocessor for subsequent backtracking

20 4 CONSTRAINT PROPAGATION

search, or they can be coupled with case analysis or simple domain splitting to recover the complete
set of solutions to the CSP.

Constraint satisfaction algorithms can be classified by the level of consistency they establish
between the variab!es of the constraint net. A k-consistency algorithm removes all inconsistencies
involving all subsets of size k of the n variables. For example, the node, arc, and path consistency
algorithms detect and eliminate inconsistencies involving k = 1, 2, and 3 variables, respectively.
Freuder's generalization of those algorithms for k -+ n can be used to produce the complete set
of solutions to the CSP [28].

Local propagation computes arc- or path-consistency. Values not appearing in any solution
are eliminated. Local consistency gives an assignment of sets of values to the variables. Since
the constraints are not satisfied simultaneously by the same values, this relaxes the problem.
Every globally consistent solution is locally consistent too, but not vice-versa. By that relaxation
the complexity of algorithms is reduced to polynomial time. Thus, local propagation can be
used efficiently in large search spaces to pre-process and improve the behavior of backtracking
algorithms, which run over the reduced search space afterwards. Nevertheless, the pruning.effect
by local propagation depends on the kind of the problem: local propagation does not necessarily
reduce the search space at all. On the other hand, some special instances of the CSP can be solved
without any backtracking, provided there is some additional information about the structure of
the constraint net [45].

4.2 Hierarchically Structured Domains and Hierarchical Arc-Consistency

In many real world applications, objects can be clustered and grouped to classes according to some
of their properties. These classes often form a hierarchy, which can be described by the cover graph
of the subclass-superclass relation. Knowledge representation using such taxonomic hierarchies
enables efficient use of attributes and properties of the considered domains. The transitivity of
the subclass-superclass-relation guarantees the inheritance of properties from super- to subclasses;
subclasses can be seen as specializations.

Any arbitrary domain can be transformed into a directed acyclic graph (dag), which describes
the domain as a heterarchy-in the worst case only consisting of nodes. In principle, the algo­
rithms for solving any CSP, especially those dealing with large domains and hence large search
spaces, can make use of structuring the domains.

The domains and their hierarchical structure can be defined directly by enumerating the sub­
sumption links between classes. Moreover, the classes may declaratively be defined in terms
of concept definitions in the sense of terminological languages like KL-ONE, which then are
classified to get the subsumption graph. For this purpose, CONTAX employs the terminological
component TAXON (see Section 3) and its classification algorithms to structure the domain. The
classifier does not build a tree, usually, since one concept may be a subconcept of more than
one other. More likely, the resulting graph describing the domain of some constraint variables
becomes a dag representing a lattice.

To exploit the hierarchical structure of domains, the propagation algorithms had to be ex­
tended to deal with concepts instead of elements of a domain. The main aim is to reduce the
complexity measured by the number of evaluations of the constraining relations. Therefore,

4.3 Using the Constraint Component 21

CONTAX provides an extended and improved version of the hierarchical arc-consistency algorithm
(H AC) presented in [42]. It uses two new predicates, which evaluate the constraints between
arbitrary concepts by using inheritance mechanisms. Since the concepts represent a large number
of elements at once, this improves the efficiency of the propagation algorithm.

In [42] some assumptions about the constraints and hierarchies are made. The HAC algorithm
only deals with binary constraints over binary, single-rooted, strict trees as domains. For any
real-world CSP the restrictions made by HAC seem to be inappropriate. In addition to that,
it is useful-especially for large domains-to allow definitions of constraints between arbitrary
concepts. Since the hierarchies are seen as structured inheritance networks, we have to make clear
what inheritance means for constraints:

Definition 4.2 (inheritance of constraints) Let Rj ~ Dl X .•. X D; X •.. X Dk be a constraint,
- .I -

(d1 , •• . ,d;, ... ,dk) E Rj be a tuple in Rj. ThenJor all d; E D; the tuple (d1, ... ,d;, ... ,dk) E Rj
iff d; subsumes d;.

A locally consistent value assignment can be defined in terms of hierarchical arc-consistency.
For simplicity reasons, we only give the definition for binary constraints here. However, the actual
CONTAX implementation uses an extended notion dealing with n-ary constraints:

Definition 4.3 (arc-consistency) A value assignment <1 : V -- 2D of a set of values to each
variable of the constra'int net with <1(X;) = .b i ~ Di is arc-consistent iff Jor all variable pairs
(X;,Xj) and Jor all constraints Rij defined over them it holds that Jor each dEDi there exists at
least one dE Dj such that the pair (d,d) satisfies the constraint Rij, that is Rij(d,d) holds.

The image D of the value assignment <1 only includes the most universal concepts that establish
arc-consistency.

Hierarchical arc-consistency can now be defined based on the inheritance of constraints through
subsumption links in the cover graph of the domains:

Definition 4.4 (hierarchical arc-consistency) A value assignment <1 : V __ 2D with <1(Xi) =
D; ~ Di is hierarchically arc-consistent, iJ it is arc-consistent and most universal, i.e. Jor all
d E D; there does not exist a more general concept qED; subsuming d such that the assignment

- (X) = { (D k \ d) u {q}
<1 k <1(Xk)

is arc-consistent, too.

if
if

k = i
kii

The hierarchical constraint satisfaction problem (HCSP) then is to compute a hierarchical
arc-consistent value assignment which can then be further restricted using backtracking towards
a globally consistent value assignment satisfying all constraints simultaneously.

4.3 Using the Constraint Component

Using CONTAX to formalize and solve a constraint satisfaction problem involves the following
principal steps:

22 4 CONSTRAINT PROPAGATION

• Identify the variables and constraints that constitute the given problem and define the
domains over which the variables range,

• define the problem constraints and connect the variables and constraints to build the con­
straint net, and

• finally, propagate some initial value assignments through the constraint net to restrict the
domains of the variables and to achieve a solution for the underlying HCSP.

4.3.1 Defining Domains

In its simplest form, plain domains can be defined by simply enumerating all the elements be­
longing to the domain. For example, the knowledge item

alloy-steel = {low-alloy-steel. high-alloy-steel}.

introduces a new domain of some workpiece materials. Using the hierarchical structure of the
domain, knowledge items like

steel = {building-steel. alloy-steel. stainless-steel}.
material = {steel. cast. alu}.

define the hierarchical domains steel and material to be the unions of some more specialized
domains which have been defined before as plain or even hierarchical domains.

If some considered domain relates to a terminology defined using TAXON, the terminology
along with all its concepts will automatically be imported and used by CONTAX. The classified
concepts (i.e., the subsumption dag) can directly be used as the domain hierarchy for CONTAX,
where the TAXON ABox instances constitute the leaves.

4.3.2 Defining Constraints

CONTAX provides different types of constraints: primitive (or extensional), predicative and com­
pound constraints. All constraint types may be defined over any number of variables.

Primitive constraints are defined by enumerating all the tuples satisfying the constraint. This
kind of constraint can also be regarded as a database constraint. One step towards a more comfort­
able definition of constraints is to make use of non-leaf concepts when enumerating the relations.
Consider, for example, the following constraint defining compatibility between workpiece-material
and cutting-plates:

compatible(Material:material.Plate:plate) .- I
{(cast. cnmm) •... (alloy-steel. dnmm-41) •... (steel. dnmm-71) •... }.

Here the fact that all kinds of steel are compatible with the dnmm-71 plate is expressed by
simply including the 'abstract' tuple (steel dnmm-71) instead of all the tuples for different kinds
of steel. For the use of the hierarchical arc-consistency algorithm it is necessary that for each
argument position the domain is specified from which the values in that position may come from.

4.3 Using the Constraint Component 23

Some constraints occurring in a real-world application are difficult or even impossible to be
explicitly enumerated as primitive constraints. This is true, for example, for numerical constraints
which should be evaluated by the underlying LISP system. Therefore, constraints can also be
defined by providing a LISP function or lambda-expression which then will be evaluated to test
a given tuple for membership in the relation. Consider, for example, the <-180 constraint in the
j.LCAD2NC-II application:2

<_180(TCEA:angles, EA:angles, Alpha:angles) :­
lambda(TCEA, EA, Alpha. (180 > TCEA + EA + Alpha)).

Often it may happen that copies of the same constraint subnet occur between different vari­
ables of the CSP. Therefore, it becomes very useful to define this subnet as a compsmnd constraint
which itself represents an entire constraint net. In contrast to primitive or predicative constraints,
for compound constraints no domains have to be specified with the arguments; they can be com­
puted from the constraints in the body. Local variables of the constraint sub net that only serve
to connect local constraints need not to occur in the argument list. For example, the constraint
net used in the j.LCAD2NC case study (Section 7) has been defined as a single compound con­
straint named tooL.sel. The local variable Edge..Angle is determined by the variable Plate and
therefore need not to be visible from outside the tooLsel constraint:

tool_sel (Holder, Tool, Plate, Process ,.Direction, Cutting, Material,
Alpha,TC-Edge-Angle) :-

{holder-tool(Holder,Tool).
process-holder(Process.Holder),
holder-description(Holder,Direction.TC-Edge-Angle,Plate).
holder-cutting(Holder,Cutting) ,
process-material-tool(Process ,Material ,Tool) ,
plate-eangle(Plate,Edge-Angle) ,
process-eangle(Process,Edge-Angle),
tc-ea-al(TC-Edge-Angle,Edge-Angle,Alpha)}.

Although this looks very similar to a Horn clause, as in RELFuN (see Section 5) and the
rule component (see Section 6), the brackets '{' and '}' mark it as the definition of an entire
constraint net, and propagating this constraint net, e.g., by entering a goal

?- sol_of(tool_sel [Holder, Plate, roughing, cast, 80, TC-EA, EA]).

will result in a set of tuples all satisfying the constraints instead of only one (the first) solution
as computed e.g. by RELFuN for a pure relational formulation of the tool-selection problem.

4.3.3 Computing a Hierarchically Arc-Consistent Value Assignment

After having defined all variables , constraints, and their connections forming a constraint net ,
CONTAX is ready to perform its real job, namely to propagate value restrictions through the

2 Although the variables Alpha, Edge-angle, and TC-Edge-Angle range over finite discrete domains and it there­
fore would be possible to explicitly enumerate all tuples satisfying the <_180 constraint, in practice it is much more
comfortable and even more efficiently computable to define this constraint as a predicative constraint using the
underlying LISP system.

24 4 CONSTRAINT PROPAGATION

constraint net in order to compute a hierarchically arc-consistent value assignment. The basic
idea of the local constraint propagation algorithm is the following:

1. All constraints are pushed onto a queue Q of constraints that have to be revised, that is,
checked for hierarchical arc-consistency.

2. A constraint C(Xt, ... , Xn) E Q is selected to get revised and is deleted from Q. The
domains of the variables Xt, ... , Xn are then checked for hierarchical arc-consistency w.r.t.
C.

3. If the domain of some variable becomes empty, an inconsistency has been detected and the
propagation results in a failure.
Otherwise, if the domain of some variable X has been restricted due to the application
of some constraint, all other constraints et, ... , em connected with X have to be revised
again: Q +- QU{C1, ... ,Cm }

4. If the constraint queue Q is not empty, the process continues with step 2.
Otherwise, the current value assignment is hierarchically arc-consistent and is returned as
the result of the local propagation procedure.

Step 2 contains the very heart of the constraint propagation algorithm, namely, how to select
the next constraint from Q to revise. Here, a set of heuristics is used, for example, to prefer the
constraint with the maximally restricted variable domains.

If the local propagation succeeds, the resulting value assignment can further be checked for
global solutions by making choices (selecting values from the restricted domains) and using back­
tracking to enumerate all or any required number of solutions.

4.4 Constraint Compilation

The CONTAX component is implemented in an object-oriented fashion based on the Common
Lisp Object System (CLOS). Therefore, all constraints and variables are compiled into CLOS
objects. For each primitive or predicative constraint a CLOS object is created that represents
the constraint. Additionally, for each argument to the constraint one variable object is created
and linked to the constraint. When compiling compound constraints, variable objects are created
for all variables occurring in the constraint definition including local variables. Then the body
constraints that make up the compound constraint are linked to the variable objects according
to the constraint definition.

This vertical compilation process also involves some optimizations that result in a more efficient
propagation. For example, primitive constraints that are called with the same variable in different
argument positions can be folded, that is, a copy of the constraint will be created which definition
only contains those tuples for which the values at the considered argument positions have a non­
empty intersection . . Moreover, these values are replaced by their least upper bound within the
cover graph representing their domain.

Knowledge represented as constraints can also be horizontally compiled into Horn clauses.
This horizontal compilation process consists of the following steps:

4.4 Constraint Compilation 25

• Since the relational-functional component RELFuN does not currently support sorted Horn
clauses, the main task is to represent the domain structure as a collection of unary predicates:
Each definition of the form

dom = {ell! . .. , eln}.

is compiled into a set of n clauses, one for each elj, of the following form:

dom (X) : - elj (X) .

Additionally, for each leaf eli occurring in the domain definitions a fact of the form

eli (eli) .

has to be generated.3

By applying this scheme the domain definitions from the previous subsection 4.3 are com­
piled into:

alloy-steel(X) : - lov-alloy-steel(X).
alloy-steel(X) : - high-alloy-steel(X).
lov-alloy-steel(lov-alloy-steel).
high-alloy-steel (high-alloy-steel).

steel(X)
steel(X)
steel(X)

'- building-steel(X).
alloy-steel(X).

'- stainless-steel(X).

material(X) '- steel(X).
material(X) '- cast(X).
material (X) '- alu(X).

If some domains are represented using TAXON, the same compilation process has to be
performed for each element ofthe cover graph that will be computed by the TAXON classifier
for the considered domain .

• A primitive constraint of the form

p(A1 :domI •. . . ,An :doml) -­

{ (XI ,I •. . .• XI,n), ... ,
is compiled into a set of m clauses of the form

p(Xl •...• Xn) :- Xi,I(Xl) •...• Xi,n(Xn).

one for each tuple (Xi,I •.. . • Xi,n).4

By applying this scheme the primitive constraint from the previous sq.bsection 4.3 is com­
piled into:

3In the cases where eli represents a leaf, we could also generate just a fact of the form dom(eli) instead of
g~nerating a clause dom (X) : - eli (X) together with the eli self-application eli (eli).

fIn the cases where Xi ,j represents a leaf, the corresponding argument Xj can be replaced by Xi ,j and the
premise Xi ,j(ij) can be deleted .

26 4 CONSTRAINT PROPAGATION

compatible(Xl,X2) .- cast(Xl) , cnmm(X2).

compatible(Xl,X2) .- alloy-steel(Xl) , dnmm-4l(X2).

compatible(Xl,X2) .- steel(Xl) , dnmm-7l(X2) .

• A compound constraint of the form

is then simply compiled into a Horn clause of the following form:

By applying this scheme the compound constraint from the previous subsection 4.3 is com­
piled into:

tool_sel(Holder,Tool,Plate,Process,Direction,Cutting,Material,
Alpha,TC-Edge-Angle) :~

holder-tool(Holder,Tool) ,
process-holder(Process,Holder) ,

process-eangle(Process,Edge-Angle) ,
tc-ea-al(TC-Edge-Angle,Edge-Angle,Alpha) .

• Instead of propagating initial value assignments through a constraint net by using the soLof
built-in, the tupof built-in of RELFuN is used to compute the set of all solutions for a given
constraint. That is, each goal of the form soLof (Constraint) is compiled into the goal
tupof (Constraint).

By applying this scheme the sample call from the previous subsection 4.3 is compiled into:

?- tupof(tool_sel(Holder, Plate, roughing, cast, 80, TC-EA, EA».

While the horizontal compilation of constraints into Horn clauses works for the whole con­
straint language, that is, it can be seen as a total mapping from the constraint component into the
relational component, the same is not true for the compilation of Horn clauses into constraints.
This compilation direction is restricted to the subclass of (non-recursive) DATALOG programs.
Checking for a given set of Horn clauses whether this restriction is fulfilled is a non-trivial task
which requires a lot of dependency analysis whereas the transformation itself can be done in a
simple syntactic way. Moreover, since the hierarchical constraint satisfaction algorithm heavily
depends on explicit knowledge about the structure of the domains but COLAB users currently
cannot write order-sorted Horn clauses, for optimally exploiting the HAC algorithm the domains
and their structure (taxonomy) would have to be extracted from the unsorted Horn clauses , too.

27

5 Relational-Functional Computation

Logic or relational programming in PROLOG is now being employed in applications approaching
the size of ordinary databases [50]. Functional or applicative programming in LISP and more pure
but still efficient languages such as ML has served as a practical basis for symbolic algorithms [55].
Combining both programming styles can open new applications with inseparable database-like
and algorithmic operations. RELFuN ([13], [14]) is a logic-programming language with call-by­
value (eager), non-deterministic, non-ground functions, and higher-order operations. As part of
COLAB it is coupled with the terminological-reasoning, constraint-handling, and forward-rule
components.

In the following subsection we briefly introduce RELFuN (5.1). Besides its attempt at in­
tegrating basic notions of PROLOG and LISP, many of RELFuN'S extended cOftcepts can also
be transferred to relational and functional programming individually. The next subsection (5.2)
treats the extended relational subformalism, including higher-order relations. The subsequent
subsection (5.3) will then augment this by the extended functional subformalism and discuss its
benefits. The last subsection (5.4) will illustrate RELFuN'S (WAM) compiler.

5.1 A Brief Introduction to RELFuN

Many approaches are possible for combining logic and functional programming, as illustrated by
the collection [22]. RELFuN'S integrating concept is valued clauses, encompassing both PROLOG­
style Horn clauses (for defining relations) and directed conditional equations (for defining func­
tions). While the former start off from Horn logic, the idea for the latter is to regard a function
definition as a system of clauses each matching (in general, unifying) argument configurations and
returning corresponding values. Thus, the binary maximum function, based on the 'built-in'
relations "<", ">", and "=",

max(x, y) = { :
if x < y
if x = y
if x> y

will not be construed as clauses of a logic with 'user-defined' equality (shown on the left) but
as clauses that return the right-hand sides of the directed equations via a ("I:" -marked) premise
following after zero or more other premises (shown on the right):

eq(max(X,Y),Y) : - X < Y.
eq(max(X,X),X).
eq(max(X,Y),X) : - X > Y.

max(X,Y) '- X < Y I: Y.
max(X,X) '- t X.
max(X,Y) '- X > Y t X.

This means that function calls need not be embedded into eq calls with auxiliary request variables,
as in eq(max(2, 7) ,MaxA), eq(max(9,5) ,MaxB) , MaxA < MaxB, but can be written directly, as
in max(2,7) < max(9,5). We then interpret value-returning premises (after the ampersand) as
generalized Horn-rule premises: apart from being terms like Y they may be calls like * (-l,X)
or member(X, [-1, -3, -5]) and nestings like +(*(-l,X) ,3) or member(X ,rest([-1, -3, -5]».
Nestings are evaluated strictly call-by-value, as, classically, in, e.g., FP [6].

28 5 RELATIONAL-FUNCTIONAL COMPUTATION

The RELFuN notions of relation and function are amalgamated to an abstract operator con­
cept: functions are generalized to non-ground, non-deterministic operators, hence relations can
be viewed as characteristic functions. Our notion of relations as true-valued functions is like in
SLOG [29], except that RELFuN'S valued facts return true implicitly. Another amalgamating
notion is akin to LISP's "useful non-nil values": relation-like operators may on success return
a value more informative than true (e.g., we can let member return the list starting from the
element found). All kinds of RELFuN operators can be applied in generalized Horn-rule premises ,
which are usable uniformly to the left as well as to the right of the "t" -separator. Actually, such
premises constitute a valued conjunction, also permitted as a top-level query (e.g., member(X,L)
t member (X ,M) non-deterministically returns rest lists of M whose first element also occurs in L).
A special valued conjunction calling only relations to the left of "t" and having a single vari­
able to its right (e.g., member(X, [-1,2,-3,4,-5]), «X,O) t X) can be viewed as an indefinite
description or 1]-expression (e.g., 1](x)[x E {-1,2, -3,4, -5}t\x < 0]), also provided in other rela­
t ional/functional amalgamations (see [53]). It will be shown that certain RELFuN functions can
be inverted by calling them non-ground (by-value) on the right-hand side (rhs) of a generalized
PROLOG is-primitive, mimicking relations (incl. the above eq predicate).

5.2 Relations Defined by Hornish Clauses

5.2.1 Open-World DATALOG

First we consider DATALOG i.e., PROLOG without structures (constructor symbols applied to
arguments). This kernel language of deductive databases is also a subset of RELFuN. DATALOG
clauses have identical syntax and equivalent semantics in PROLOG and RELFuN. Queries to
RELFuN differ only as follows: they return the truth-value true instead of printing the answer
yes; they signal failure by yielding the truth-value unknown instead of printing no.

When we stay in the relational realm of RELFuN this makes not much of a difference since
true can be mapped to yes and unknown can be mapped to no. However, when proceeding to
RELFuN'S functional realm, queries will be able to return the third truth-value false: this is to
be mapped to those of PROLOG's no answers for which the closed-world assumption is justified.
In general, however, RELFuN does not make the closed-world assumption, and in the absence of
explicit negative information modestly yields unknown instead of 'omnisciently' answering no.

For example, given the ('object-centered', TBox-simulating) DATALOG knowledge base

subsumes(biconic,shoulder). 1. a shoulder is made of two cones
subsumes(shoulder,rshoulder). 1. a right shoulder is a kind of it
left(biconic,truncone). 1. the left part of a biconic is a truncated cone
right(biconic,truncone). 1. the right part of a biconic has the same type
left(rshoulder,cylinder). 1. etc.
right(rshoulder,ring).
left(Biconic,Truncone) .-

1. subsumes
subsumes(Super,Biconic),

.- subsumes(Super,Biconic), right(Biconic,Truncone)

inheritance via rules:
left(Super,Truncone).
right(Super,Truncone) .

a successful query like left (rshoulder, truncone) returns true in RELFu N and prints yes in
PROLOG; however, a failing query like left (lshoulder,truncone) yields unknown in RELFuN

5.2 Relations Defined by Hornish Clauses 29

but prints no in PROLOG. As with most real-life knowledge, what we know about production­
relevant geometries is inherently open-ended; RELFuN'S unknown reply agrees to the required
open-world semantics.

Assuming the Herbrand universe of the above KB only contains the constants occurring in
its facts, it could be horizontally compiled into a constraint system such as the one of Section
4 via the generation of all ground instances of its rules and the elimination of the left and
right recursions by unfolding them to simple fact accesses. The above facts encode taxonomic
knowledge (including 'functional' roles), while the rules are a dynamic special-purpose analogue
to static inheritance in KL-ONE-like classifiers; the usual way for representing this knowledge is
shown in Section 3. If our TBox constants (e.g. rshoulder and left) are themselves applied
as (unary and binary) relat ions in the ABox, the above TBox knowledge has a second-order
characteristics (cf. Subsection 5.2.4); for first-order (bidirectional) rules assertion' ally involving
rshoulder etc. see Section 6.

Later, in DATAFUN, certain relations such as subsumes will be reformulated as functions
such as subsumer (cf. end of Subsection 5.3.1). This allows to reformulate Horn rules such
as the left rule into rules which still define a relation but call a subfunction embedded in a
relation call: left(Biconic,Truncone) :- left(subsumer(Biconic) ,Truncone). To accom­
modate such functional (and is- 'equational') extensions in relat ional rules, we speak of hornish
rules or, generally, hornish clauses.

5.2.2 PROLOG-like Structures and Lists

Arguments to PROLOG relations must always be (passive) structures and can never be (active)
calls. RELFu N, on the other hand, does support both of these categories, hence has a notational
need to distinguish between them. We write round parentheses for 'active' operator calls and
square brackets for 'passive' structured terms. N-element RELFuN lists, as in LISP and PROLOG,
can be regarded as a short-hand for nested binary structures (we use the distingu1shed constructor
"cns" instead of the usual "."). For example, the list [a, b, c] reduces to the structure nesting
cns [a, cns [b, cns [c ,nil]]]. A vertical bar in lists causes their cns-reduction to end with the
element after the" I" (usually a variable) rather than with the distinguished constant nil. Thus,
[a, biZ] reduces to cns [a, cns [b , Z]].

5.2.3 Varying-Arity Structures and Relationships

Lists can be given a direct N-element interpretation because RELFuN permits varying-arity struc­
tures i.e., structures containing a vertical bar. We use tup as an N-ary list constructor (N ~ 0).
That is, [...] should be regarded as an abbreviation for tup [...]. This convention holds even
if [...] contains a "I" .

Unlike PROLOG we permit the vertical bar to follow directly after an opening square bracket,
both in lists and in (other) structures. For any list X, the list [I X] is the same as X; addition­
ally given a constructor c, the structure c [I X] exclusively uses the elements of the list X as its
arguments.

Proceeding from constructor terms to atomic formulas, we come to the LISP-inspired PRO-

30 5 RELATIONAL-FUNCTIONAL COMPUTATION

LOG extension of varying-arity relation applications i.e., clause heads and bodies directly con­
taining a "I". For example, using PROLOG's ternary list-concatenation relation apprel, we can
define an N-ary append extension (N > 0), binding its first argument to the result:

append ([]) .
append(Total,FrontIBack) :- apprel(Front,Inter,Total), append(InterIBack).

Thus, both structures and applications can be ended by a vertical bar followed by an ordinary
variable; equivalently, they could be ended by a "sequence variable" as used in KIF [30].

5.2.4 Higher-Order Relations

While PROLOG restricts constructors and relations to constants, RELFuN also permits them
to be variables or structures. This enables a restricted kind of higher-order operators, syntacti­
cally reducible to first-order operators, but more expressive and cleaner than PROLOG's use of
extralogical builtins like functor, "= .. ", and metacall as higher-order substitutes. .

Relation variables in queries enable to find all relationships between given arguments. In
the DATALOG KB (see Subsection 5.2.1) the query Attribute (rshoulder ,Filler) needs
only fact retrieval for the first two solutions binding Attribute to the relation left and
Filler to the object cylinder or, Attribute to right and Filler to ring; the query
Attribute (shoulder ,truncone) requires rule deduction for binding Attribute to left or
right. Such 'variable-attribute' queries are not conveniently expressible in usual object-centered
formalisms such as KL-ONE.

Relation variables in clauses permit the use of higher-order facts (recognized as such by the
context) like cut-direction(to-left) and cut-direction(to-right) to abstract rules like

turnable (X) '- lathe-tool(T), to-left(T,X).
turnable (X) '- lathe-tool(T), to-right(T,X).

to the single rule ("Turnable is that which can be cut in some direction by some lathe tool")

turnable (X) :- cut-direction(D), lathe-tool(T), D(T,X).

Here we apply cut-direction as a unary second-order relation over two binary relations, but
more general higher-order relations can be useful.

5.3 Functions Defined by Footed Clauses

5.3.1 DATAFUN as a Functional Database Language

Let us consider a database example containing the following DATALOG facts about the areas of
unit truncated cones (with radius and possible height equal to 1):

area(unit-cylinder,12.566370614359172).
area(unit-cone, 7.584475591748159).
area(unit-circle, 6.283185307179586).

1. 4 * pi
1. (1 + square-root(2)) * pi

1. 2 * pi

5.3 Functions Defined by Footed Clauses 31

Although these binary relations would permit requests like area (Truncone ,7 . 584475591748159),
their normal use direction is ofthe kind area(unit-cone,Area): to guarantee successful unifica­
tion, a rounded real number is better used as an 'output' argument than as an 'input' argument.
Indeed, in our opinion this DATALOG example should be rewritten functionally. For this we
extract the second argument from the DATALOG facts and use it as the so-called foot after a
":-t"-infix (equivalent to ":- t"):

area(unit-cylinder) :-t 12.566370614359172.
area (unit-cone) :-t 7.584475591748159.
area(unit-circle) :-t 6.283185307179586.

The resulting special DATAFUN clauses are called footed facts, here used for the pointwise def­
inition of the RELFuN function area mapping from truncated-cone symbols to real numbers.
The definition emphasizes the natural area use direction, as in area(uni t-cone), a function call
returning the value 7.584475591748159.

The main advantage of distinguishing an output argument of a relation as the returned value
of a corresponding function is the possibility of nested calls such as

+(area(unit-cylinder) ,area(unit-cone) ,area(unit-circle))

where the parenthesized inner applications are (not passive structures but) active function calls
that return their values to the ternary + use (cf. Subsection 5 .2.2); for reasons of conciseness,
program analysis, and variable elimination this is preferable to fiat relational conjunctions such
as

area(unit-cylinder,A1), area(unit-cone,A2), area(unit-circle,A3),
+(Area,A1,A2,A3)

The main disadvantage lies in the issue of inverted calls, which are easier and sometimes more
logically complete for 'usage-neutral' relations. However, RELFuN'S inversion method for func­
tions appears quite natural, and for its DATAFUN subset completeness problems do not arise.
A generalized form of PROLOG's is-primitive is employed to unify the values of a free function
call with the value to be used as t he argument of the inverse function, where a call is free if all
its (actual!) arguments are different free variables.

As a simple example of an inversion with just one free variable consider 7.584475591748159
is area(Truncone), the inverse function call corresponding to the above-discussed re­
lational inversion area(Truncone, 7.584475591748159). Independently from the context
(e.g., iIi an is-rhs) the free call area(Truncone) non-deterministically returns the values
12.566370614359172, 7.584475591748159, or 6.283185307179586, at the same time binding
Truncone to unit-cylinder, unit-cone, or unit-circle, respectively, in the textual order of
the area footed facts in the knowledge base. Within the above is-call only the second of the
returned values unifies with the left-hand side, so the inversion correctly binds Truncone to
unit-cone.

There are analogous DATALOG Horn facts about volume, which we think should be 'func­
tionalized' to DATAFUN footed facts as demonstrated for area. On a relational basis, we could
supply the ratio volume-per-area of a truncated cone, using the DATALOG rule

32 5 RELATIONAL-FUNCTIONAL COMPUTATION

volume-per-area(Truncone,Vpa) .- volume (Truncone ,V) , area(Truncone,A),
Vpa is I (V ,.A) .

This can be mimicked by the equivalent DATAFUN rule (with is-calls for V and A)

volume-per-area(Truncone) .- V is volume (Truncone), A is area(Truncone) t
I(V,A).

which may be condensed to the DATAFUN rule (without is-calls or auxiliary variables)

volume-per-area(Truncone) :-1: /(volume(Truncone),area(Truncone».

Rules containing an "I:" separator are called footed rules. The rule premises to the left of "t"
are called body premises and act exactly like the premises of a hornish rule. The premise to
the right of "t" is called a foot premise and differs from the other premises only in that its
value becomes the value of the entire rule. The most natural use of the DATAFUN database
would be functional calls like volume-per-area(unit-cylinder), returning the ratio for the
unit cylinder. However, these rule formulations could also be inverted or even be called freely to
enumerate all pairs of unit truncated cones and their volume-per-area ratios as in the relational
call volume-per-area(Truncone, Vparat) (delivering both informations as bindings) or the func­
tional call volume-per-area(Truncone) (delivering the first information as a binding and the
second one as a value).

While free calls for the inversion of the area and volume-per-area functions produce non­
deterministic results, the area and volume-per-area definitions themselves are deterministic.
In RELFuN non-deterministic function definitions are also allowed, which enumerate more than
one value even for ground calls.

For instance, the subsumes relation of the DATALOG example in Subsection 5.2.1 could
be extended and transcribed into a non-deterministic function subsumer, as in the following
DATAFUN example:

subsumer(shoulder)
subsumer(shoulder)

:-1: concave.
:-1: biconic.

subsumer(lshoulder) :-t shoulder.
subsumer(rshoulder) :-t shoulder.
left(biconic) :-t truncone.
right (biconic) :-1: truncone.
left (rshoulder) :-1: cylinder.
right (rshoulder) :-t ring.
left(Biconic) :-t left(subsumer(Biconic».
right (Biconic) :-t right(subsumer(Biconic».

In this KB the ground call subsumer(shoulder) non-deterministically returns the values concave
or biconicj finding a subsumer path from lshoulder to biconic, left (lshoulder) returns
truncone. Note that, e.g., the former relation left became a function that nests the (non­
deterministic!) subsumer function into the recursive left call. In pCAD2NC we will use a
function tool-select which both builds up a list recursively and tests it non-deterministically
(Section 7, Appendix B).

5.4 Relational-Functional Compilation

5.3.2 Full RELFli N and Higher-Order Functions

When enriching DATAFUN with structures and lists we arrive at full RELFu N (one can immedi­
ately transfer the relational varying-arity extensions). A simple but important definition permits
the use of tup as a se/J-passivating Junction:

tup(IZ) :-t tup[IZ]. (or tup(IZ) :-t [IZ]. or tup(I Z) : -t Z.)

Now, tup may also be called actively, evaluating its arguments in the usual call-by-value manner
and returning a passive list that uses the evaluated arguments as its elements.

Function variables in queries can be utilized much like the corresponding relation variables (see
Subsection 5.2.4). For example, given the DATAFUN version of the volume-per-~rea database
(see Subsection 5.3.1), the query F(unit-circle) asks for all unary properties of unit-circle,
enumerating the attribute F = area with the returned value 6.283185307179586, the attribute
F = volume with its value, etc.

Function variables in clauses give us the abstraction power of functional arguments in the
fashion of functional programming. Thus, revise is a ternary function applying any unary
function F to the Nth element of a list (for N greater than the list length or N less than 1 it
returns the list unchanged):

revise(F,N,[]) :-1; [].

revise(F,l,[HIT]) :-t tup(F(H) IT).
revise(F,N,[HIT]) :-t tup(Hlrevise(F,l-(N),T)).

An example combining higher-order operators with non-ground, non-deterministic calls is F-1 ,

the inversion of a unary function F; it can be defined as a function structure inv [F] which calls
F freely within an is-call only accepting F values that match the argument V of F-1 : ,

inv[F](V) '- V is F(X) t x.

Thus, inv[subsumer] (shoulder) calls shoulder is
subsumer(X), hence non-deterministically returns lshoulder or rshoulder because for these
arguments subsumer returns shoulder: inv [subsumer] is a (less efficient) substitute for a di­
rectly defined non-deterministic subsumee function.

5.4 Relational-Functional Compilation

We have developed a layered RELFu N compiler system, called RFM, ranging from full-to-kernel
language transformers (horizontal compilation) to a declarative classifier and a functionally ex­
tended optimizing WAM-code generator (vertical compilation), together with a minimally ex­
tended WAM emulator ([12], [15], [59]). There is also a (horizontal) translator to a r~lational
subset of RELFuN, henceforth to PROLOG. Referring to the above papers and their references,
we only give simplified illustrations here, restricted to first-order DATA FUN .

For instance, a rule with a nested call-by-value premise such as

34 6 BOTTOM-UP DEDUCTION

left(Biconic) :-t left(subsumer(Biconic)).

is first flattened, i.e. each embedded (call-by-value) expression is (recursively) replaced by a newly
generated variable, which becomes bound to the expression via an additional is-premise:

left(Biconic) :- _1 is subsumer(Biconic) t left(_l). 'I. variable _1 is nev

Full RELFuN can be transformed to this nestingless subset, coming closer to both the extended
WAM and to the relational subset.

For proceeding to relations (here, DATALOG), the flattend form is extrarged, i.e. an additional
first argument is introduced for holding functional values as relational bindings:

'I. _2 is nev

For proceeding towards the extended WAM, the flattened, still high-level, form is annotated,
obtaining a classified clause, which contains emulator-specific information:

fun*eva[% a functional (footed) clause vith evaluative (non-term) foot
perm[] , % clause-global annotations: no permanent-variable info
temp[[Biconic, [1, [1], [1]]], Ll, [1, [], [1]]]], % tvo temporary-variable infos
chunk [% head chunk consisting of tvo user literals
[usrlit[left[[Biconic,[first,safe,temp]]],[l,O,[]]], % var-occurrence info
usrlit[subsumer[[Biconic, [nonfirst,safe,temp]]] ,[l,O,[]]]], % is-rhs

[i,[]]], % compiled
chunk [% first

[refl-xreg[[_l,[first,unsafe,temp]]], % then returned value unified vith Xl
usrlit[left[[_l,[nonfirst,unsafe,temp]]],[l,O,[]]]], % foot recursion sets Xl

[1, []]]]

From this declarative basis we finally generate the following highly optimized and compacted
WAM instructions:

allocate(O), call(subsumer/l,O). deallocate(), execute(left/l)

In the RFM emulator, value returning is performed via the temporary register Xl. For unary
functions like left this permits the optimization of an inner call directly returning its value to an
outer call, as suggested by the source clause's nesting: no put instruction is needed for preparing
left/ 1 's argument register (and the variable _1 is eliminated, too) since subsumer /1 already
returns its value to Xl.

6 Bottom-up Deduction

The rule component of COLAB is a declarative logic programming system. Bottom-up evaluation
of logic programs implements the least fixpoint semantics. It is known to be complete, but it can
be very inefficient if bindings for some argument positions are given in the query. A top-down
strategy, however, would compute only the derivations necessary to answer the query. It applies
a rule in backward direction by unifying a query with the conclusion of a clause.

6.1 Hybrid Rules in COLAS 35

Cooperation of various formalisms in a hybrid system makes additional demands on the eval­
uation and compilation of rules. In COLAS there are integrations of bottom-up evaluation with
the top-down reasoning of RELFuN (Section 5) and the taxonomic reasoning in TAXON (Section
3). Each of these pairwise integrations is described independently in more detail in [37] and [32],
respectively. In this section a common framework from the viewpoint of bottom-up deduction
will be given.

Based on the basic bottom-up and top-down evaluation procedures the rule component of
COLAS offers two independent forward reasoning strategies: The first set-oriented approach in­
terprets bottom-up rules directly using a fixpoint computation (Subsection 6.2). The premises
are verified by look-up in the fact base. A generalized magic set transformation is implemented
for goal-directed reasoning, which is complete and efficient (Subsection 6.3). The second, tuple­
oriented scheme reasons forward to derive the consequences of an explicitly givell set of initial
facts. Rules are transformed to top-down evaluable RELFuN Horn clauses (Subsection 6.4). The
premises of triggered rules are tested by the backward reasoning proof procedure of RELFu N.
Both reasoning strategies are compiled into abstract machines (Subsection 6.5).

6.1 Hybrid Rules in COLAB

Horn clauses are the basic representation scheme of COLAS'S rule component. Horn clauses are
clauses with at most one positive literal. To 'allow more compact representations, in COLAS
deduction rules can have multiple conjoined conclusions. For conformity with logic programs, the
conclusion is written to the left of the antecedent :

Multiple conclusions make bottom-up evaluation more efficient. For top-down evaluation these
rules can easily be transformed into a sequence of Horn clauses with one conclttsion by a simple
horizontal compilation step. The conclusions C I , C2, ••• , Cn of such a deduction rule are literals
which are true if the conjunction of premises PI, . .. , Pm in the antecedent is satisfied - as opposed
to production rules (Cp. OPS5 [26]) where the conclusion consists of operations modifying the
working memory.

One major idea of declarative programming is the separation of logic from control shifting
the responsibility for control to the execution mechanism: the programmer should care as little
as possible about it. For knowledge representation in a rule system this means, in the ideal case,
that the application direction of a rule need not be visible to the knowledge engineer. On the
other hand, he may have in mind a specific operation mode. Therefore in COLAS there are three
types of relational rules, those which can be evaluated in both directions or those which can be
evaluated in bottom-up or top-down fashion only. Bottom-up and bidirectional rules have to be
range-restricted; this means that every variable in the conclusion has to be bound by a premise
of the rule. We use different kinds of arrows to distinguish the rule types:

<=
<-

for bidirectional rules
for bottom-up rules
for top-down rules , which are equivalent to RELFu N 's hornish clauses.

36 6 BOTTOM-UP DEDUCTION

A predicate p is said to be defined by rules, if it occurs in the conclusion of at least one
rule. All the rules defining a predicate p must be of the same type. Depending on the type of
rules defining a predicate p it is called either a bottom-up predicate, a top-down predicate, or a
bidirectional predicate. The antecedent of a rule is a conjunction of expressions, each of which is
of one of the following forms:

1. Atomic assertion p(t}, ... , tn), where p is an n-ary predicate defined by rules and tl, ... , tn
are terms or expressions.

2. Membership assertion C(t), where C is a concept and t is a term possibly containing vari­
ables.

3. Role-filler assertion R(t, s), where R is a role or attribute and t, s are terms.

4. Predicate assertion P(Ul (tl), .. " un(tn», where the Ui are possibly empty compositions of
attributes, the ti are terms, and P is an n-ary predicate from the concrete domain.

5. Attribute-term assertion C(t, Rl [SI], ... , Rn[sn]), i.e. an object-centered representation equiv­
alent to the conjunction C(t),Rl(t,sd,···,Rn(t,sn) of membership and attribute-filler as­
sertions for a single instance represented by the term t.

6. built-in expression for arithmetics, comparisons etc.

6.2 Bottom-up Evaluation of Hybrid Rules

Forward chaining - often called bottom-up evaluation - is a well-known strategy for evaluat­
ing logic programs. It implements the least fixpoint semantics and is known to be complete.
Compared to the naive evaluation method the so-called semi-naive evaluation eliminates a lot
of redundant derivations ([8], [9]). The objective of deriving at each iteration only new facts is
approximated by an differential function [7]: a rule is applied in iteration i if at least one of its
rule-defined premises is matched by a fact derived in iteration i - 1.

Algorithm 6.1 (Semi-naive Evaluation) Let F be the set of all facts, NVF be the list of new
facts derived in the current cycle, and PVF be the list of facts derived in the previous cycle.

1. Start with the initial facts F, set NVF := 0 and PVF:= F

2. For every clause, H +- P}, ... , Pm in n for which there is a substitution a, such that at
ieast one Pw is in PVF and all Pia, j E {l, ... ,m} \ i, are constructively implied by the
extended ABox AUF, set NVF:= NVF U {Ha}

3. If NVF = 0, then stop, else set PVF := NVF \ F, F := F U PVF, and NVF := 0, goto
2

In pure semi-naive evaluation the application of a rule in step 2 depends C only on the facts
in F. In a hybrid system the satisfaction of the rule premises additionally depends on the facts
in t.he ABox of the terminological component, the taxonomy and on the lemmas, which can be
proved by backward rules. For this extended test the term constructive implication has been used:

6.2 Bottom-up Evaluation of Hybrid Rules 37

Definition 6.2 (Constructive Implication) Let A be an ABox and F be a set of facts. Let
G, E be an expression, where G is a conjunction of membership assertions, role-filler assertions
and predicate assertions and E is a conjunction of rule-defined premises. Then AuF construc­
tively implies G, E by (the substitution) u iff (i) Gu is ground and (ii) Gu is logically implied by
A and the current terminology and (iii) each conjunct of Eu is either in F or can be proved by
the top-down proof procedure.

The cooperation of the bottom-up reasoning component and TAXON combines the general­
purpose reasoning power of rule-based systems with the inheritance abstraction provided by ter­
minological systems. Additionally it extends the reasoning capabilities of TAXON. Because termi­
nological systems provide decision procedures for their reasoning problems, it cannot be avoided
that they have a restricted expressiveness. Therefore, for example, we deal with varying size (see
Section 3.3) aspect by excluding them from the terminological formalism and deal with them in
the rule language.

Until now concept and role predicates have only been allowed in the antecedent of rules. But
for a restricted kind of rules, concept and role predicates are also allowed in rule conclusions.
Aggregation rules collect objects or values to form a new object if certain conditions hold for the
constituent parts. For example, the terminological component alone cannot detect that a cylinder
and a neighbouring ascending truncated cone form a shoulder, unless they are aggregated into a
single instance (cf. Section 3.3).

For a more detailed description of aggregation rules , the derivation of role values and the
specification of varying size aspects by rules see [32].

Example 6.3 Let the KB contain the following knowledge items together with the taxonomy of
Section 3: The first rule is an aggregation rule. Two neighbouring truncated cones are composed
to a biconic. Logically f is a skolem function which replaces the existentially quantified variable
representing the new instance. The second and the third rule specify kinds of cuts and how the
workpiece has to be hold in the lathe-turning machine. Two truncated cones are'neighbours in a
workpiece, if their coordinates and radii coincide, as specified by the fourth rule.

Rules:
biconic(f[X,Y] ,1eft[X],right[Y]) <= truncone(X) , truncone(Y), neighbour(X,Y).
cut(X,to-right,lengthvise) <= rshoulder(X).
chuck(right,clamping) <= vorkpiece(Y), cut(_,to-right,_), contour(Y,ascending).
neighbour(X,Y) :- c2(X,C), cl(Y,C), r2(X,R), rl(Y,R).

Atomic assertions:
vorkpiece(vpl). contour(vpl,ascending).

Role-filler assertions:
cl(tcl,O). c2(tcl,5). rl(tcl,lO). r2(tcl,lO).
cl(tc2,5). c2(tc2,5) . rl(tc2,lO). r2(tc2,15).

Membership assertions :
cylinder(tcl).
asc-ring(tc2).

Given the state of the KB as specified above, the first rule can be applied: The first and the
second premise are satisfied with substitution u = {tcl/X, tc2/Y}, because every cylinder and

38 6 BOTTOM-UP DEDUCTION

every asc-ring is a truncone (see Fig. 3). The third premise can be proved by the top-down
rule. The derived biconic f [tel, tc2] is realized as an rshoulder by the taxonomic component.
Then in the next cycle the second rule is triggered, because an rshoulder is also a shoulder. It
is derived that the shoulder is manufactured by lenghtwise cuts from left to right. This new fact
then triggers the third rule, which derives the kind of chucking fixture at the right end of the
workpiece.

This example shows, that it is not necessary to repeat the definition of a rule for every concept
in the terminology which describes an aggregate. The automatically computed subsumption graph
helps the knowledge engineer to find the most general level on which he can formulate a rule. For
example, instead of defining aggregation rules for hill, lshoulder, rshoulder etc. separately,
it is sufficient to do so only for a biconic, the most general composition of two neighbouring
truncated cones.

6.3 Goal-directed Bottom-up Evaluation

Because semi-naive bottom-up evaluation computes the least fixpoint of a logic program it is very
inefficient if bindings for some argument positions are given in the query. A top-down strategy,
however, would compute only the derivations necessary to answer the query. A drawback of most
top-down strategies, for example the one used by PROLOG, is that they are incomplete. To use
the efficient and complete bottom-up evaluation also for query answering, rewriting strategies
have been developed.

As pointed out by [10J there are two modes of information passing in evaluating a query in
a logic program. The first is called sideway information passing: by solving a premise predicate
variable bindings are obtained which can be passed to another premise in the same rule to restrict
the computation for that predicate. In the second mode information is passed to a rule from
the query by unification with the head of the rule. Since pure bottom-up evaluation does not
take into account a query, sideway information passing is the only information passing mode. To
support goal-directed reasoning and to simulate the second information passing mode in bottom­
up evaluation, the Magic Set rewriting strategy introduces auxiliary predicates and an additional
fact - called Magic Seed. The arguments of the seed fact are exactly the variable bindings of the
query. All rules, which can derive instantiations of the query, will get an additional premise that
can be satisfied by this fact. Thus, the variable bindings of the query are passed to the body of
the applicable rules at compile time. The rewriting algorithms restrict the number of deducible
facts to those relevant to answer the query. Generalized Magic Set (GMS) transformation, which
is also applied in COLAB extends the sideway information passing strategy from base predicates
to derived predicates.

Because of its horizontal compilation effort, GMS rewriting in COLAB is used only for query
forms known at compile time. Unforeseen queries are answered by the top-down strategy. The
GMS transformation can be applied only for rules having rule-defined predicates in their conclu­
sion; it cannot be used, e.g. for aggregation rules (see above). Premises with predicates defined
by another component of our hybrid knowledge representation system, are dealt with in the same
way as built-in. or base predicates.

6.4 Tuple-oriented Forward Reasoning 39

6.4 Tuple-oriented Forward Reasoning

While the bottom-up approach of the semi-naive strategy as described in Section 6.2 computes
all the consequences of the whole KB by a fixpoint operation, the objective of the tuple-oriented
approach is to compute only the derivations of an explicitly given set of facts. Another difference
to the set-oriented approach of Section 6.2 is, that the premises with rule-defined predicates are
proved by SLD resolution instead of a simple look-up in the fact base.

The tuple-oriented forward reasoning approach is implemented by a horizontal transformation
of the Horn rules to backward reasoning Horn clauses of RELFu N, thus performing forward rea­
soning in a backward reasoning system. This transformation is equivalent to the partial evaluation
of a forward reasoning meta interpreter as described in [36]. Every rule

is translated into a sequence of forward clauses following this pattern:

forward(PI , C)
forward(P2 , C)

forward(Pm, C)

P2 , · •• , Pm, retain(C).
PI, P3 , • • • , Pm, retain(C).

PI , "" Pm-I, retain(C).

Applying a forward clause corresponds to a one step forward execution of the original Horn
rule triggered by Pi. retain is a built-in operator asserting the derived fact if it has not already
been derived in a previous step. Because forward evaluation of a Horn clause can be triggered
by a fact unifying any premise of the clause, for every premise PI, ... , Pm of the original clause
a forward clause is generated. Exceptions are backward-defined premises and built-in operators
like is. This is an important difference to Yamamoto's and Tanaka's translation. for production
rules [64].

Various control strategies are available: depth-first and breadth-first enumeration of results,
and computing the derivations all at once. These strategies are themselves represented as Horn
clauses, so that they can be adapted for specific applications . For more details on this transfor­
mation approach see [35].

Example 6.3 (continued): Consider the rules of Example 6.3. The third rule

chuck(right,clamping) <= vorkpiece(Y), cut(_,to-right,_), contour(Y,ascending).

will be transformed to

forvard(vorkpiece[Y],chuck[right,clamping])
:- cut(_,to-right,_), contour(Y,ascending), retain(chuck[right,clamping]).

forvard(cut[_,to-right,J,chuck[right,clamping])
:- vorkpiece(Y), contour(Y , ascending) , retain(chuck[right,clamping]).

forvard(contour[Y,ascending],chuck[right,clamping])
'- vorkpiece(Y), cut(_,to-right,_), retain(chuck[right,clamping]).

40 6 BOTTOM-UP DEDUCTION

Starting forward chaining with the fact contour(vpl. ascending) will trigger the third forward
clause. The first premise workpiece(vpl) is unifiable with the corresponding fact. The second
premise can be proved by top-down evaluation using the first two bidirectional rules of Example
6.3. Thus the fact chuck (right. clamping) is derived, which is retained and can itself be used
to trigger any further rules.

6.5 Rule Compilation

In the previous subsections some of the horizontal rule compilation steps have already been

mentioned:

• Rules with multiple conclusions are transformed to Horn clauses with exactly one conclusion
for evaluation by the top-down proof procedure (Section 6.1) .

• Bottom-up rules are transformed according to the extended Generalized Magic Set rewriting
strategy to achieve goal-directed bottom-up reasoning (Section 6.3).

• Bidirectional rules are transformed to backward chaining forward clauses to derive the con­
sequences of an explicitly given set of facts (Section 6.4).

This subsection gives a short introduction into vertical compilation for the various bottom-up
reasoning strategies.

Vertical Compilation for Semi-naive Evaluation

An Abstract Machine for efficient execution of the semi-naive strategy has been developed [25].
It is a modification of the Rete pattern match algorithm [26], an implementation method for
production systems. The approach is based on a discrimination network, which keeps the state
of all partially instantiated rules. Rule premises are compiled into sequences of match operations
similar to unification operations of the WAM. Associated with each premise is a memory con­
taining the variable bindings found so far. These partial instantiations are propagated to find
applicable rules. In contrast to production systems the order of rule application in a deduction
system does not matter. Therefore, instead of maintaining a conflict set, rules can be applied as
soon as an instantiation is found.

The abstract machine has been extended by some special feature to support hybrid reasoning.
In particular, to prove premises with top-down predicates access to RELFuN 'S relational-functional
machine (RFM) is supported: the conjunction of top-down premises is compiled into an RFM
query. The interface is homogeneous, because both machines are implemented on an equivalent
level. The instruction set and the term representation are very similar.

Vertical Compilation into the' RFM

After source-to-source transformation of a rule system P into a set of clauses FP for tuple-oriented
forward reasoning (Section 6.4), the clauses of P and FP are compiled vertically into code for
an extended version of the RFM, a Warren Abstract Machine for top-down evaluation of logic

41

programs [63], which is capable to handle functional clauses of RELFuN, [12]. For a detailed
description of this compilation see [37].

The clauses obtained by horizontal transformation have one fundamental drawback: they
are represented with a single predicate symbol forvard. After compilation there is one large
procedure with costly search for an applicable clause. A special code area for forward clauses can
make this predicate implicit and clauses with the same trigger predicate can be grouped together
into one procedure. Thus, the single large forvard procedure is decomposed into one procedure
for each trigger predicate. Since a direct compilation of the forward clause in this way would
conflict with the original definition for the trigger predicate, a special code area is introduced -
besides the original code area of the WAM - for the compilation of forward clauses.

While values on the local and global stacks may be destroyed on backtracking, derived facts
must survive for the whole forward inference chain. Assertions of derived facts by 'the retain
operator can be rather inefficient if program code is altered dynamically. At machine level infor­
mation about derived facts can be held more compactly. Therefore the WAM is extended by a
special stack area for derived facts , called retain stack, and no reference from the retain stack to
any other memory cell is permitted. The operator retain is compiled into a sequence of WAM
operations pushing its argument - the derived fact - onto the retain stack. To accept a derived
fact, it must be ensured that it is not subsumed by any structure already existing on the stack.
Therefore the actual fact is matched against every entry on the retain stack. If this subsumption
test fails, the derived fact is pushed onto the retain stack.

7 The J.LCAD2NC Case Study

The J.LCAD2NC (micro-CAD-to-NC) case study has been conducted to test COLAB with a pro­
totypical application solving a simplified model version of a real-world problem. J.LCAD2NC-II is
a revised version of J.LCAD2NC-I, which was described in [16]. Both are knowledge.based systems
generating workplans for idealized lathe CNC machines. They transform CAD-like geometries of
rotational-symmetric workpieces into abstract NC programs, using declarative (term) represen­
tations for all processing steps:

Given the geometry of a rotational-symmetric workpiece, generate NC macros for
rough-turning the workpiece on an abstract CNC lathe machine.

The J.LCAD2N C models perform the most interesting central phases of the CAD-to- N C trans­
formation; writing a front end for converting real CAD data to our KB representation, and a back
end for converting our NC macros to programs for a real CNC machine would be a routine task.
The focus of this work is on exemplifying techniques of the hybrid, declarative COLAB system for
the central subtasks of CAD-to-NC transformations. Thus, the intention behind J.LCAD2NC-II
is not to provide a polished solution tuned for production: instead, it enables us to study how
AI techniques and formalisms can be combined to solve a non-toy problem. In J.LCAD2NC-II the
components of COLAB collaborate in a typical synergetic manner.

The whole NC-planning process of J.LCAD2NC-II is an instance ofthe "heuristic classification"
inference scheme [21] as illustrated in Figure 4. The input to a process planning system is a very

42

problem class
(workpiece features)

/ ... -.~
concrete problem
(workpiece data)

7 THE p,CAD2NC CASE STUDY

__ -:-;-_. principal solution
match (skeletal plans)

~-\
concrete solution

(NC program)

Figure 4: Clancey's Scheme Applied to Process Planning

'elementary' description of a workpiece as it comes from a CAD system. If possible at all, process
planning with these input data starting from (nearly) first principles would require very complex
algorithms. Thus, planning strategies on such a detailed level are neither available nor would
they make sense. Instead, human planners apparently store a hierarchically organized library of
prefabricated skeletal plans in their memories [56]. Each of these plans is accessed via a more
or less abstract description of a characteristic (part of a) workpiece, which is called a workpiece
feature [39]. The top-level feature thus associates a workpiece description (geometry/topology,
technology) with the corresponding abstract manufacturing method (NC program, tool change,
chucking). The first step of p,CAD2NC-II is the generation of an abstract feature description from
the elementary workpiece data; the features obtained characterize the workpiece w.r.t. its pro­
duction. In the second step, the skeletal plans (associated with the features) are retrieved. They
are merged and parameterized with concrete geometrical data and manufacturing information
(e. g. selection of appropriate tools and chucking fixtures), resulting in an NC-like program.

In the following subsections, each of the three phases is described in more detail. Appendix
B shows a representative portion of the p,CAD2NC-II KB.

7.1 Feature Aggregation

Process planning starts when data representing a workpiece are given to the p,CAD2NC-II system
(cf. Fig. 5). Geometrical descriptions of the workpiece's surfaces and topological neighbourhood
relations are the central parts of this representation. In the first phase an abstract feature tree is
generated out of these input data.

Following the distinction between concepts and instances, it is rather natural to define all the
possible features and surfaces as concepts in TAXON'S TBox and to represent a single case, i.e. a
workpiece, by assertions in the ABox. Examples of concept definitions have already been given
in Section 3. Fig. 6 shows part of the taxonomy of p,CAD2NC-II. The concept definitions are
listed in Appendix B. Although both surfaces and features are represented by concept definitions,
terminological and rule-based reasoning work together to derive the feature tree. The reasons have
already been explained in previous sections (3.3 and 6.2).

In the tradition of declarative pictures, graphics, and geometries in functional [55] and logic
programming [41, 34, 54], a term representation is used. Each surface region is represented by
a set of attribute terms (see Section 6.2) asserted individually in COLAS'S ABox, where they
become realized w.r.t. the taxonomy (cf. Section 3.1). For example, two neighbouring truncated

7.1 Feature Aggregation

radius

I • center
o 10 20 30 40 50 60 70 80 110 100 110 120 130 140 150 160 170 180 1110 200

Figure 5: A Sample Workpiece

~t~

~Ylinde~nc\o\ • k>ng1UrnlgsUrl~l\~ tc+llS+tc / /a ~ ~s+ \ +~s I '\
asc-tc ring V cone desc-tc ! ShOUlder! groove hi:1

1 \ ~s+tc 1 \ tc+~s ®8 III
+asC-rin

g
. desc-con~ / ~ \1 ~

~. desc-ring circle asc-cone .A. , rnose rshoulder Ishoulder Inose

T I \ ~
asc-drc'l- desc-drcle + It:n (II

Figure 6: Concept Hierarchy of Relevant Surfaces and Features

43

44 7 THE J.LCAD2NC CASE STUDY

cones cyl10 and trll of Fig. 5 are represented as two attribute-term assertions and a topological
neighbourhood relation. The attributes represent their coordinates and radii (see Section 3):

truncone(cyll0, 1. cyll0 is a truncone with
cl[110],c2[130],rl[50],r2[50]). 1. cl=110, ... , r2=50

truncone(trll,cl[130],c2[140],rl[50],r2[60]).
neighbour(cyll0,trll).

The realization service of TAXON will derive the most special concepts these instances belong
to. While trll is an ascending truncated cone, the instance cyl10 is specialized to a cylinder.

Most features cover a number of surfaces. This means that it is natural to define a feature
as consisting of simpler features (and having some additional requirements, e.g. neighbourhood).
Thus, finding such a feature means to find instances representing the components and to generate
a new instance aggregating the simpler features using e.g. part-of attributes . Therefore we use
the aggregation rules of Section 6.2.

It is not necessary to repeat the definition of every feature concept as a rule for every concept in
the terminology which describes an aggregate. The automatically computed subsumption graph
helps the knowledge engineer to find the most general level on which to formulate a rule. For ex­
ample, the definition of aggregation rules for 1 ts+, +1 ts, tc+ 1 ts+tc and longturningsurface
is sufficient to aggregate all the features of Fig. 6. Two sample aggregation rules are (see also
Appendix B):

longturningsurface(Featid, radius[Rad],
leftmost[Cyl],
rightmost[Cyl],
sof [Cyl])

<= cylinder(Cyl, cl[Zl], c2[Zr], rl[Rad]. r2[Rad]),
Featid is make-instance-name(lts.Cyl).

tc+lts(Featid. ground[Ltsid]. flank[Id2]. leftmost[Id2]. rightmost[R])
<= truncone(Id2. cl[Zl]. c2[Zl]. rl[Rado]. r2[Rad]),

neighbour(Id2, L).
longturningsurface(Ltsid. radius[Rad-lts].

leftmost [L] ,
rightmost[R],
sof[Seq-of-feat]).

Featid is make-instance-name(tc+lts.ld2.Ltsid).

The first rule defines the simplest form of a longturningsurface, consisting of a single
cylinder. The second one aggregates a truncone and a longturningsurface to a tc+lts.

To generate the feature abstraction, the rule system starts bottom up from the assertions
describing the workpiece and asserts the aggregated features that can be derived. As soon as a
new feature instance or some additional information about an already existing instance is asserted,
TAXON computes its most special concept associations using the realization service. This 'type'

7.2 Skeletal-Plan Association 45

information, resulting in new facts in the ABox, can again trigger rules to derive further features
building on the feature just found. From the workpiece facts about cy110 and trll and the rules
above it can be derived that lts-cy110 is a longturningsurface.

To simplify the implementation we have restricted the rule/taxonomy interface to atomic
instance names. So we use a built-in operation make-instance-name that generates new atomic
instance names such as lts-cy110. However, we have already seen that this less declarative
built-in can be avoided using struct ures as instance identifiers (cf. Example 6.3).

Knowing that lts-cy110 is a longturningsurface, the second rule can be applied, deriving
a new feature, lts+tc-lts-cy110-trl1. This new feature will be realized as being an rshoulder
by TAXON. The information that it is an rshoulder or any of its generalizations like shoulder
can be used to satisfy the premises of other rules. Thus, the result of the feature aggregation
phase is a feature tree.

The nodes of the tree are labeled with the features and surfaces of the workpiece. The label
of the root of the tree is the workpiece itself. The nodes Nt, . .. , Nn are sons of a node N if the
feature at node N is composed of the features or surfaces represented by nodes Nt, ... , Nn .

7.2 Skeletal-Plan Association

The next two phases of process planning are the association of skeletal plans with the generated
features of the feature tree and their refinement and merging. Skeletal plans are abstract de­
scriptions of the operations which have to be executed to manufacture the feature. This phase
is complicated by the fact that each feature can occur as part of other features, but each feature
instance should be manufactured exactly once.

Skeletal-plan association starts from the root node of the feature tree which represents the
entire workpiece, and tries to find a fitting skeletal plan. If one can be found, then this phase is
finished. If, for a feature F represented by a node N of the feature tree, no skeletal plan can be
found, skeletal-plan association is recursively applied to the subfeatures represented by the sons
Nt, ... , Nn of N, etc., until the surfaces of the workpiece are reached.

Skeletal plans are represented as footed clauses with function name gen-skp. The conditions
of the clauses are descriptions of the features or surfaces to which skeletal plans are applicable.
The value of the clause is the skeletal plan for this feature, which sometimes has to be merged
with the skeletal plans for the subfeatures. A skeletal plan is represented as a triple containing
the cutting direction (from right to left or from left to right), the kind of the cut (lengthwise or
contour) and the sequence of actions. In the following example the skeletal plan for an rshoulder
has to be merged with the plan for the longturningsurface, which is the ground of the shoulder:

46

J

7 THE J.lCAD2NC CASE STUDY

gen-skp(Fid) :- eylinder(Fid, []) t [skp].
gen-skp(Fid) :-

rshoulder(Fid, [ground [Lts], leftmost [Lshid], rightmost[Rshid]]),
truneone(Lshid, [el[Xl]]),
truneone(Rshid, [el[X2], e2[X3], rl[YI], r2[Yh]]) t
merge-skp(

[skp,
dir[to-right] ,
kind [lengthwise] ,
seq[
actions [

[to-right, lengthwise,

'I.

Yo

'I.

----------------------->/ Yh
---------------------->/ ______________________ 1 Yl

Xl X2 X3

geo[p[YI, Xl], p[YI, X2], p[Yh, X3]]]],
actions []]] ,

gen-skp(Lts». 'I. skeletal plan for Lts subfeature merged in

7.3 Skeletal-Plan Refinement

Skeletal-plan refinement combines as its most important tasks the merging of individual skeletal
plans and the selection of the appropriate tools.

Skeletal-plan merging is specified by the function merge-skp, which is defined by RELFuN'S
footed clauses, e.g. for merging unfixed with fixed (here, both) plans it contains the clause:

merge-skp([skp, dir[unfixed] , kind [contour] , eom[All, A12]],
[skp, dir[both], Kind, seq[A21,A22]]) :-

Dir is leftmost-dir(A21) t 'I. find the merge-point direction
merge-skp(tup(skp, 'I. reeurse with both skps fixed:

dir[Dir], kind [contour] , 'I. fix the direction
sequentialize(com[All, A12], Dir», 1. fix order of actions

[skp, dir[both], Kind, seq[A21,A22]]). 1. already fixed

The result is a skeletal plan, where the actions are merged in such a way that cuts with
equal directions are put together. For each subsequence of actions the kind of the cut is derived
such that a lengthwise cut is made only when all actions in the sequence can be performed by
lengthwise cuts. Otherwise the kind of the cuts for this sequence becomes contour.

Candidate tools for each of the cutting sequences are selected by the constraint-propagation
component of COLAB. Tool selection heavily depends on a lot of geometrical (e.g. edge-angle)
as well as technological parameters (e.g. material, process etc.) which restrict the choice of a
suitable tool system. Moreover, the tool system itself consists of some subparts which have to be
combined. For our prototypical application we only consider three of them, namely the holder,
the material and the geometry of the plate. In practice, there are a lot of restrictions, which
holder to use for which plate, which kind of plate geometry to use for which workpiece contour,
etc. As an example, the following COLAB item represents the definition of a primitive constraint

7.3 Skeletal-Plan Refinement

lathe-tools
/ ~

finishing-tools roughtum-tools

/ " / "
/Jm~ " irsa\oo Is /I~

derna terna serna ~~x

dnmg tnmg snmg enrng

dnrna tnrna snrna en rna

Figure 7: Part of the Hierarchical Domain of Lathe Tools

named holder-tool between the symbolic classes of holders and lathe tools.

holder-toolCHolder:holders, Tool:lathe-tools) '­
{Cpt,tnma), Cpt,tnmg), Cpt,tcma-41),

Cps,nmg), Cps,snma-41).
Cpc.cnmm-71), Cpc,cnmm-41), Cpc,cnmg), Cpc,cnma),

Css.finishing-tool)}.

47

All these restrictions, which need not be binary, constrain the search space for valid combina­
tions of values for the various problem variables. Therefore, it seems to be most natural to use a
constraint-propagation system to perform this subtask.

The fact that domains may be defined hierarchically, instead of explicitly enumerating all the
elements of the domain, is very useful for the application of CONTAX within J.LCAD2NC-II, since
the domains of lathe tools and holders can be hierarchically structured in a very natural way (see
Fig. 7 and Appendix B). The outcome of the propagation process then is the set of all globally
consistent assignments of values from the given domains to the problem variables such as holder
and tool.

In the J.LCAD2NC-II application, CONTAX is called for the longest possible sequence of actions
using a single tool to propagate through the constraint net the initial value assignments given for
that particular sequence. If no such tool can be found, elements are repeatedly eliminated from
the sequence via a backtracking function tool-select (cf. Appendix B). The constraint net itself
does not change during the whole J.LCAD2NC-II session; only the initial assignments differ from
feature to feature. Therefore it was possible to define and compile the whole constraint net used
for tool selection, too, before running the J.LCAD2NC-II system.

The following tuple shows the representation of an NC-like program generated for our sample
workpiece (cf. Fig. 8):

48

[skp,
dir[both] ,
kind [contour] ,
[seq,
actions [

7 THE J.LCAD2NC CASE STUDY

Figure 8: Example Workpiece with Contour Cuts

[tool [rcmx, tmaxp-prr30],
[to-right, contour, geo[p[40, 0], p[40, 80], p[60, 80]]],
[to-right, contour, geo[p[30, 0], p[30, 60], p[40, 60]]],
[to-right, contour, geo[p[30, 40], p[20, 40], p[20, 60], p[30, 60]]],
[to-right,
contour,
geo[p[60, 110], peso, 110], p[SO, 130], p[60, 140]]]],

[tool [rcmx , tmaxp-pr140],
[to-left,
contour,
geo[p[60, 110], peso, 110], peso, 130], p[60, 140]]],

[to-left, contour, geo[p[30, 40], p[20, 40], p[20, 60], p[30, 60]]],
[to-left, contour, geo[p[60, 160], p[30, 160], p[30, 200]]]]],

act ions []]]

It consists of two subsequences of contour cuts. The cutting direction is of type both, because
the first sequence consists of four cuts from left to right, while the second sequence consists of
three cuts from right to left. The two cutting sequences are performed with different tools. The
cutting kind for the whole action list has been fixed as contour.

49

8 Conclusions

Let us first conclude on all COLAB components and their cross-connections, and then come to
the main conclusions concerning COLAB as a whole.

The RELFu N language attempts to combine and extend programming concepts and techniques
that have accumulated in the relational (principally, PROLOG) and functional (prototypically,
LISP) communities. The relational/functional integration entails a continuing cross-fertilization
of the two language styles. For instance, relational (logical) variables are reused for enabling
non-ground function arguments and values. Conversely, varying-arity and certain higher-order
operators are transferred from the functional to the relational world. Thus, RELFuN provides a
tunable system of orthogonal relational/functional language extensions of a pure-PROLOG-like
kernel, which can be used in isolation and in free combination. The relational-functional language
and the bidirectional rule system share relational backward rules as a common representation;
this broad overlap has enabled an intensive reuse of compilation software and methods, discussed
in Section 6. RELFuN and CONTAX have (non-recursive) DATALOG clauses in common, which
permits horizontal compilation as sketched in Section 4. The connection of relational/functional
clauses to the taxonomic component is currently performed by calling TAXON from within rela­
tional rule premises, as applied in Section 7; another coupling currently investigated would employ
' concept-sorted' logical variables in clause conclusions [1]. Future research concerning RELFuN'S
expressive power is planned on a tighter incorporation of attribute assertions and finite domains ,
an introduction of knowledge items for deterministic functions and adaptation rules, and the addi­
tion of dynamic assertions or local definitions and modules. With respect to RELFu N 's efficiency,
we plan to improve the lower levels of the WAM compiler and to implement a more powerful
emulator.

The rule formalism combines forward and backward reasoning of Horn rules. It supports a
bottom-up strategy for fixpoint computation and a top-down proof procedure as in PROLOG.
Goal-directed bottom-up reasoning for query answering and tuple-oriented derivation of conse­
quences of a specified set of facts are achieved by horizontal rule transf"rmation. The control
strategy of the tuple-oriented forward reasoning mechanism is induced from the SLD-resolution
procedure of logic programming. The set-oriented bottom-up reasoning mechanism for query
answering makes it possible to integrate a deductive database system into COLAB. A common
rule set is used for both reasoning directions . This requires a declarative representation of bidi­
rectional rules. Especially, control information is not allowed in bidirectional rules themselves,
but the knowledge engineer has the opportunity to fix the direction of individual rules, which in
turn fixes the verification strategy of particular premises. The integration of the bottom-up and
a complete top-down strategy into a single run-time environment is one of the future research
topics for rule-based deduction. Additional evaluation strategies can be attained by horizontal
transformation.

The constraint formalism CONTAX provides efficient propagation methods for constraints over
hierarchically structured domains. Depending on the application, these domains and their struc­
ture can be defined directly or by providing concept definitions for the taxonomic component
which are then classified and result in the domain structure used to speed up the constraint
propagation. CONTAX uses an extended HAC algorithm and computes locally and globally con­
sistent value assignments . The main topic for future research in the constraint formalism will

50 8 GONGL USIONS

be on the abstraction of a more generic constraint solver over domains of different types (e.g.,
intervals, linearly ordered sets, compound variables) supporting specialized propagation methods,
the embedding of finite domain consistency techniques within the logic programming framework
[48,33,46,49]' as well as the integration of CONTAX as the constraint solver for concrete domains
within the taxonomic component [60].

The taxonomic component TAXON with its integrated concrete domains allows the definition
of a tailored vocabulary for an application (domain). With the decision procedures supplied for
the reasoning services this vocabulary can be analyzed and used by the affirmative formalisms .
For example, in Section 4 it has been shown how knowledge about the subsumption relation of
concepts structuring a domain can be used to speed up constraint propagation. Also, the tight
integration of forward reasoning and the taxonomic inferences, as exemplified in Section 7, has
demonstrated that these formalisms complement each other in a nice way:

• The forward reasoning component employs the realization service of the taxonomic com­
ponent to test complex premises that have been formulated in the tailored voc.abulary of
concepts .

• Conversely, the forward execution of the rules performs aggregations of compound instances ,
which cannot be carried out by the taxonomic component.

Further research related to the taxonomic formalism concerns the language constructs themselves
(more expressiveness, still efficient reasoning) and further uses of a tailored vocabulary of concepts
in affirmative formalisms such as the backward reasoning component [1].

COLAB as a hybrid system has already caused synergetic effects between the four main AI
representation formalism it combines. In the overlapping areas we often found a new solution
for one formalism by transcribing the solution of another formalism; for instance, algorithms for
feature aggregation were exchanged between a RELFuN and a forward-rule/taxonomic version.
In the complementary areas we have found natural hybrid solutions that require at least
the pairwise combination of formalisms; for instance, the feature-tree description for work pieces
alternates forward-rule aggregation and taxonomic classification.

A similar synergy was achieved for the compilation methods. The emphasis on horizontal com­
pilers has helped us in creating COLAB-wide abstractions such as bidirectional rules and a shared
ABox, and in experimenting with alternative information-preserving language nuclei such as 're­
lationalized' and 'footed' RELFu N. The development of vertical compilers was begun with the
RFM, whose LISP-implementation permitted fast extension for forward-rule execution and finite
domains, and whose WAM principles also produced new insights in the compilation/emulation of
taxonomies .

By supporting formalisms of different, sometimes even competing, subcommunities, COLAB
also permits to absorb novel techniques developed in any of the subfields covered. This already
happened, for example, by incorporating relational indexing techniques, a magic-set method for
bottom-up processing, an extended HAC algorithm, and a complete tableau-based classification
algorithm. Even when we will proceed toward a less hybrid language (see bel&w), we can still profit
from work done in the surrounding disciplines involved in the present hybrid COLAB system.

The above points concerning COLAB'S hybridness, declarativeness, and compilability also
mark essential differences to commercial expert-system shells: In their desire to present themselves

51

with a polished surface and to maintain compatible versions without using horizontal compilation,
they do not incorporate very recent scientific results; in their desire to keep their customers, they
do not regard declaratively formulated KBs, portable to other shells, as a number-one priority.
Further distinguishing characateristics of COLAB are its supply of fine-grained knowledge items
for hybrid modularization, its access primitives permitting its use as a toolbox with one to four
components on top of LISP, its in-depth testing in technical domains such as mechanical and
electrical engineering (see below), its flexible implementation by using a subset of COMM ON LISP
for rapid prototyping, and its free availability for research purposes. A final difference between
COLAB and commercial hybrid expert-system shells is COLAB'S KL-ONE/KRYPTON-inspired
'essential' (taxonomic-affirmative) hybridity and its development towards a further homogenized
formalism (see below).

Although this paper has presented COLAB exclusively using examples from or around me­
chanical engineering, recently the industrial TOOCON project has proved that our tool system
is equally applicable to electrical engineering: a prototypical configuration system for low-voltage
switch boards was written in COLAB by three people in six months. This reinforces our feeling ,
acquired by testing smaller examples in various areas, that COLAB is in fact a general system.

Future work on COLAB as a whole mainly concerns the issue of destilling a more homogeneous
formalism from the hybrid language without losing essential capabilities of the current version,
where a running J-lCAD2NC version should always be maintained. This includes further encapsu­
lation of the access primitives and a review 'of the knowledge items w.r.t. to two questions for each
item: (1) Does it belong to the kernel of the envisaged homogeneous language? (2) Is it suitable
as a formula that can be interpreted by a common semantics? In the new version, the uppermost
layer of knowledge items may abstract and join several items still separated in the current Co LA B,
perhaps horizontally splitting and compiling them back into lower-level knowledge items.

A homogeneous successor version of COLAB will be needed for global knowledge analysis
as planned in the VEGA project. For example, the classification service in COLAB analyzes
concept definitions (Section 3.3.2). In the successor version we would like to have similar services
that analyze both taxonomic and assertional knowledge in an analogous way. Since one aim of
VEGA is the development of such a homogeneous language suitable for knowledge validation and
exploration, we do not know at this time how much of the expressive power of COLAB can be
kept in spite of the homogenization. However, we feel that homogenizing the application-oriented
hybrid COLAB language is preferable to first developing a theoretical homogeneous language and
only then trying it on practical problems.

Acknow ledgements

The research presented in this paper and the development of COLAB have been carried out by
the knowledge-compilation group of the ARC-TEC project at the DFKI, supported by the BMFT
under grant ITW 8902 C4.

We thank Prof. Michael M. Richter for encouraging us computer scientists to go into the
real-world area of mechanical engineering. Thanks are also due to Andreas Abecker, Dennis
Drollinger, Klaus Elsbernd, Christian Falter, Martin Harm, Hans-Gunther Hein, Michael Herfert,
Bjorn Hofling, Christoph Jakfeld, Thomas Krause, Michael Kreinbihl, Thomas Labisch, Jorg

52 REFERENCES

Miiller, Thomas Oltzen, Bernd Reuther, Ralph Scheubrein, Michael Sintek, Harald Sohns, Werner
Stein, Stefan Steinacker, and Frank Steinle, who implemented main parts of the COLAB system
and the pCAD2NC application. We are also grateful to our colleagues Bernd Bachmann, Anne
Schoeller and Holger Wache who have chosen COLAB as the basic representation language for
the DFKI project TOOCON, supported by Daimler-Benz AG, and provided early feedback on
the design and functionality of the COLAB system, and to Otto Kiihn for carefully proofreading
the final draft. The anonymous reviewers also made helpful comments on the presentation of this
paper.

References

[1] A. Abecker. TAXLOG: Taxonomische Wissensreprasentation und Logische Programmierung. Projek­
tarbeit, 1993. In German.

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11) :832-843,1983.

[3] F. Baader, H.-J . Biirckert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept logics. Technical
Report RR-90-10 , DFKI, Kaiserslautern, Germany, 1990.

[4] F . Baader and P. Hanschke. A scheme for integrating concrete domains into concept languages. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence, 1991.

[5] F . Baader and P. Hanschke. Extensions of concept languages for a mechanical engineering application.
In Proceedings German Workshop on Artificial Intelligence, GWAI-92. Springer, September 1992.

[6] J . Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. CACM, 21(8):613-641, August 1978.

[7] I. Balbin and K. Ramamohanarao. A generalization of the differential approach to recursive query
evaluation. Journal of Logic Programming, 4:259- 262, 1987.

[8] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query processing strate­
gies. In Proceedings of the ACM SIGMOD Conference, pages 16- 52. ACM, 1986.

[9] F . Bancilhon and R. Ramakrishnan. Performance evaluation of data intensive logic programs. In
J . Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 441- 517. Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1988.

[10] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming, 10:255-299,
October 1991.

[11] H. Beringer and F. Porcher. A relevant scheme for Prolog extensions: CLP(conceptual theory) . In
Proc. of ICLP 89, pages 131-148, 1989.

[12] H. Boley. A relational/functional language and its compilation into the WAM . SEKI Report SR- 90- 05,
Universitiit Kaiserslautern, Fachbereich Informatik, April 1990.

[13] H. Boley. Extended logic~plus-functional programming. In Workshop on Eftensions of Logic Pro­
gramming, ELP '91, Stockholm 1991, LNAI. Springer, 1992.

[14] H. Boley. A "direct semantic characterization of RELFUN. In E. Lamma and P. Mello, editors,
Proceedings of the 3rd International Workshop on ELP '92, volume 660 of LNA/' Springer, 1993.

[15] H. Boley, K. Elsbernd, H.-G. Hein, and T. Krause. RFM manual: Compiling RELFUN into the
relational/functional machine. Document D- 91-03, DFKI, 1991.

REFERENCES 53

[16] H. Boley, P. Hanschke, M. Harm, K. Hinkelmann, T. Labisch, M. Meyer, J. Mueller, T. Oltzen,
M. Sintek, W. Stein, and F. Steinle. JlCAD2NC: A declarative lathe-workplanning model transforming
CAD-like geometries into abstract NC programs. Technical Report Document D-91-15 , University of
Kaiserslautern, DFKI, November 1991.

[17] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick . CLASSIC: A structural data
model for objects. In International Conference on Management of Data. ACM SIGMOD, 1989.

[18] R. J . Brachman, V. P. Gilbert, and H. J. Levesque. An essential hybrid reasoning system: knowledge
and symbol level accounts in KRYPTON. In Proceedings of the 9th International Joint Conference
on Artificial Intelligence, pages 532-539, August 1985.

[19] R. J . Brachman, V. P. Gilbert, and H. J . Levesque. An essential hybrid reasoning system: knowledge
and symbol level accounts in KRYPTON. In Proceedings of the 9th International Joint Conference
on Artificial Intelligence , pages 532-539, 1985.

[20] R. J . Brachman and J. G . Schmolze. An overview of the KL-ONE knowledge representation system.
Cognitive Science, 9(2):171- 216, 1985.

[21] W. J . Clancey. Heuristic classification. Artificial Intelligence , 27:289- 350, 1985.

[22] D. DeGroot and G. Lindstrom, editors. Logic Programming: Functions, Relations, and Equations.
Prentice-Hall , 1986.

[23] Y. Descotte and J .-C. Latombe. Making compromises among antagonist constraints in a planner.
Artifical Intelligence , 27:183- 217, 1985.

[24] F . Donini, B . Hol\under, M . Lenzerini, A. M . Spaccamela, D . Nardi , and W . Nutt . The complexity
of existential quantificatoin in concept languages. Research Report RR-91-02 , DFKI, January 1991.

[25] C. Falter. Compilation von Vorwartsregeln in einer hybriden Expertensystem-Shell. Diploma thesis,
University of Kaiserslautern, FB Informatik, 1992. In German .

[26] C . L. Forgy. OPS5 User's Manual. Carnegie-Mellon University, Department of Computer Science,
Pittsburgh, Pennsylvania 15213, 1981.

[27] F . Frayman and S. Mittal. COSSACK: A constraints-based expert system for~ configuration tasks.
In D. Sriram and R. Adey, editors, Knowledge Based Expert Systems in Engineering: Planning f3
Design. Computational Mechanics, 1987.

[28] E. Freuder. Synthesizing constraint expressions. Communications of the ACM, 21(11):958- 966, 1978.

[29] L. Fribourg. SLOG : A logic programming language interpreter based on clausal superposition and
rewriting. In 1985 Symposium on Logic Programming, pages 172-184. IEEE Computer Society Press,
1985.

[30] M. R. Genesereth and R. Fikes. Knowledge interchange format version 3.0 reference manual. Technical
Report Logic-92-1, Stanford University, Computer Science Department, Logic Group, June 1992.

[31] P. Hanschke. Specifying role interaction in concept languages. In Third International Conference on
Principles of Knowledge Representation and Reasoning (KR '92), October 1992.

[32] P. Hanschke and K. Hinkelmann . Combining terminological and rule-based reasoning for abstraction
processes. In Proceedings German Workshop on Artificial Intelligence, GWAI-92. Springer, September
1992.

[33] H.-G . Hein and M. Meyer. A WAM compilation scheme. In A. Voronkov, editor, Logic Programming:
Proceedings of the l,t and 2nd Russian Conferences, volume 592 of LNAI, pages 201- 214. Springer,
1992.

54 REFERENCES

[34] R. Helm and K. Marriott. Declarative graphics. In E. Shapiro, editor, Third International Conference
on Logic Programming (ICLP), LNCS 225, pages 513-527. Springer, July 1986.

[35] K. Hinkelmann. Bidirectional reasoning of horn clause programs: Transformation and compilation.
Technical Memo TM-91-02, DFKI, January 1991.

[36] K. Hinkelmann. Forward logic evaluation: Developing a compiler from a partially evaluated meta
interpreter. Technical Memo TM-91-13, DFKI, October 1991.

[37] K. Hinkelmann. Forward logic evaluation: Compiling a partially evaluated meta-interpreter into the
WAM . In Proceedings Gennan Workshop on Artificial Intelligence, GWAI-92. Springer, September
1992.

[38] B. Hollunder, W . Nutt, and M. Schmidt-SchauB. Subsumption algorithms for concept description
languages. In 9th European Conference on Artificial Intelligence (ECAI'90) , pages 348-353. Pitman
Publishing, 1990.

[39] C. Klauck, R. Legleitner, and A. Bernardi. FEAT-REP: Representing features in CAD/CAM. In
4th International Symposium on Artificial Intelligence: Applications in Infonnatics , Cancun , Mexiko,
1991. An extended Version is also available as Research Report RR-91-20, DFKI.

[40] A. Kobsa. The SB-ONE knowledge representation workbench. In Preprints of the Workshop on
Formal Aspects of Semantic Networks, 1989. Two Harbors, Cal.

[41] R. Kowalski . Logic as a computer language for children. In European Conference on Artificial Intel­
ligence (ECAI), pages 2- 10, 1982.

[42] A. Mackworth, J. Mulder, and W. Havens. Hierarchical arc consistency: Exploiting structured domains
in constraint satisfaction problems. Computational Intelligence, 1: 118- 126, 1985.

[43] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network consistency algo­
rithms for constraint satisfaction problems. Artificial Intelligence, 25:65- 73 , 1985.

[44] E. Mays, C. Apte, J . Griesmer, and J . Kastner. Experience with K-Rep: an object centered knowledge
representation language. In Proceedings of IEEE CAIA-88 , pages 62-67, 1988.

[45] P. Meseguer. Constraint satisfaction problems: An overview. AI Communications, 2(1) :3- 17, 1989.

[46] M. Meyer. Parallel constraint satisfaction in a logic programming framework . In Proceedings of
the International Conference on Parallel Computing Technologies (PaCT-91), pages 148- 157. World
Scientific Publishing Co., Singapore, September 1991.

[47] M. Meyer . Using hierarchical constraint satisfaction for lathe-tool selection in a CIM environment.
In Fifth International Symposium on Artificial Intelligence (ISAI'92) , pages 167- 177. AAAI Press,
December 1992.

[48] M. Meyer, H.-G. Hein, and J . Muller. FIDO: Finite domain consistency techniques in logic program­
ming. In A. Voronkov , editor, Logic Programming: Proceedings of the l,t and 2nd Russian Conferences,
volume 592 of LNAI, pages 294-301. Springer, 1992.

[49] M. Meyer and J. Muller. Weak looking-ahead and its application in computer-aided production
planning. In Seventh International Symposium on Methodologies for Intelligent Systems (ISMIS '9S) ,
LNAI. Springer, to appear 1993.

[50] C. Moss. Commercial applications of large Prolog knowledge bases. In H. Boley and M. M. Richter ,
editors, Proceedings of the International Workshop on Processing Declarative Knowledge (PDK '91),
volume 567 of LNAI, pages 32-40. Springer, 1991.

[5~] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. PhD thesis , University of
Saarbrucken, 1989.

55

[52] P. F . Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino, R. McGregor, W. S. Mark,
D. McGuiness, B. Nebel, A. Schmiedel, and J . Yen. Report on the workshop on term subsumption
languages in knowledge representation. AI Magazine, 11(2):16-23, 1990.

[53] L. C . Paulson and A. W. Smith . Logic programming, functional programming, and inductive defini­
tions. In P. Schroeder-Heister, editor , ELP '91, pages 283-309, Berlin, Heidelberg, New York, 1991.
Springer . LNCS 475.

[54] F. Pereira. Can drawing be liberated from the von Neumann Style. In M. van Caneghem and
H. Warren, editors, Logic Programming and its Applications, volume 2 of Ablex series in Artificial
Intelligence. 1986 .

[55] C. Reade. Elements of Functional Programming. Addison-Wesley, 1989.

[56] F . Schmalhofer, O. Kuehn, and G. Schmidt. Integrated knowledge acquisition from text, previously
solved cases, and expert memories. Applied Artificial Intelligence, 5:311- 337, 1991.

[57] M. Schmidt-SchauB and G. Smolka. Attributive concept descriptions with complements. Journal of
Artificial Intelligence, 47, 1991.

[58] A. Schmiedel. A temporal terminological logic. In Proceedings of the Eighth National Conference on
Artificial Intelligence, volume 2, pages 640- 645 . AAAI, 1990.

[59] W. Stein and M. Sintek . A generalized intelligent indexing method . In Workshop "Sprachen fur
KI-Anwendungen, Konzepte - Methoden - .Jmplementierungen" in Bad Ronne!, 12/92-1. Institute of
Applied Mathematics and Computer Science, University of Munster , May 1992.

[60] F . Steinle. HAMLET: Erweiterung eines Constraint-Systems urn Negation und Disjunktion und dessen
Anbindung an eine Konzeptbeschreibungssprache. Projektarbeit, 1993. In German.

[61] C. Walther. A mechanical solution of Schubert's steamroller by many-sorted resolution . Technical
Report A31-84, Universitat Karlsruhe, Institut fur Informatik I, Karlsruhe, Germany, 1984.

[62] D. E. Waltz . Generating semantic descriptions of scenes with shadows . Technical Report MAC AI­
TR-271 , MIT, Cambridge MA , 1972 .

[63] D. H. D. Warren. An abstract Prolog instruction set . Technical Note 309, SRI International, Menlo
Park , CA, October 1983.

[64] A. Yamamoto and H. Tanaka. Translating production rules into a forward reasoning Prolog program.
New Generation Computing, 4:97- 105,1986.

A The Knowledge Items of COLAB

Following is a summary of COLAB'S knowledge items and patterns sketching their infix syntax. In the
LISP implementation of COLAB, each knowledge item is distinguished by a prefix tag.

Fact (Tag: fact)
< Conclusion> .

ABox Assertion (Tag: asse)
asse < Assertion > .

Bidirectional Rule (Tag: rl)
< Conclusion >+ <= < Premise >+ .

56 A THE KNOWLEDGE ITEMS OF COLAB

Bottom-up Rule (Tag: up)
< Conclusion >+ <- < Premise >+ .

Top-down Rule (Tag: hn)
< Conclusion >+ "- < Premise >+ .

Hornish Clause (Tag: hn)
< Conclusion> "- < Premise >+ .
< Conclusion> .

Footed Clause (Tag: ft)
< Conclusion> "- < Premise >. &, < Value> .

Domain Definition (Tag: dd)
< Domain name> = { < Element > +}.

Primitive Constraint (Tag: pc)
< Constraint head> :- {< Tuple >+}.

Predicative Constraint (Tag: lC)
< Constraint head> : - laabda(< Parameters> . < Expression» .

Compound Constraint (Tag: cc)
< Constraint head> : - { < Constraint> +}.

Primitive Concept (Tag: prim)
< Concept name> : prim.

Role (Tag: rOle)
< Role name> : role.

Attribute (Tag: attr)
< Attribute name> : attr.

Open Family of Pairwise Disjoint Primitive Concepts (Tag: of am)
< Family name> =ofam {< Concept name >+} .

Closed Family of Pairwise Disjoint Primitive Concepts (Tag: cfam)
< Family name> =cfam {< Concept name >+}.

Concrete Predicate (Tag: cpred)
< Predicate name> =cpred lambda(< Parameters> . < Expression» .

Abstract Predicate (Tag: apred)
< Predicate name> =apred < arity > .

Concept Definition (Tag: cone)
< Concept name> =conc ' < Concept term> .

57

B A Hybrid Knowledge Base

This appendix presents a comprehensive selection of knowledge items of the J.lCAD2NC-II sample appli­
cation . It starts with the definition of the terminology, followed by feature-aggregation rules, constraint
definitions for tools selection, and function definitions for skeletal-plan association and refinement .

The following knowledge item introduces an open family, levels-of-composition, of concepts atomic,
. . . , h-Its , lts+, +lts, +lts+. These concepts are pairwise disjoint and are not restricted any further .
The same effect could be achieved using several primitive concept names and the boolean connectives n,
U, -' .

levels-of-composition =ofam {atomic, . .. , h-Its , lts+, +lts, +lts+}.

A truncated cone is given by two centers and two radii , and is prohibited to degenerate.

rl : attr .
r2 : attr .
Cl : attr .
C2 : attr.

truncone-condi t ion =cpred lambda(rl , r2 , Cl, C2 .
rl ~ 0 1\ r2 ~ 0 1\ (Cl = C2 1\ rl f. r2 V

Cl f. C2 1\ (rl > 0 V r2 > 0))) .
truncone =conc atomic n 3(rl ' r2 , Cl , c2) .truncone-condition.

Important specializations of truncated cones and the 'adjectives' ascending and descending.

ring =conc truncone n V(Cl = C2) .
cylinder =conc truncone n V(rl = r2) .
circle =conc ring n (V(rl = 0) U V(r2 = 0» .
cone =conc truncone n (V(rl = 0) U V(r2 = 0» .
ascending =conc V(rl ~ r2).
descending =conc V(rl ~ r2) .
asc-tc =conc truncone n ascending.
desc-tc =conc truncone n descending.
asc-ring =conc ring n ascending.
desc-ring =conc ring n descending.

A (workpiece) feature has at least a leftmost and a rightmost truncated cone.

leftmost : attr.
rightmost : attr .
t eature =conc 3leftmost.truncone n 3rightmost.truncone n

V(leftmost 0 Cl ~ rightmost 0 Cl) .

For a long-turning surface only necessary conditions can be expressed .

list : prim .
radius : attr.
sof : attr .
car : attr .
cdr : attr .
Its =conc h-l ts n feature n 3sof .list n 3(radius > 0) .

58 B A HYBRID KNOWLEDGE BASE

The definitions of a left and a right shoulder are more complicated (i.e., realistic) than in Section 3.2.

tc+lts =conc

Inose =conc
lshoulder =conc
Its+tc =conc

rnose =conc
rshoulder =conc

+It. n feature n
(leftaoat ! flank) n (rightmost! ground 0 rightmost) n
3flanlLtruncone n 3ground.lts .
tc+1t. n V'flank.aacending.
tc+1t. n V'flank.descending.
Its+nfeature n
(ri&htaost ! flank) n (leftmost! ground 0 lettmost) n
3flank.truncone n 3ground.lts.
1 ts+tc n V'flanlt.descending.
1 ts+tc n V'flanlt.ascending.

Grooves and hill comprise two shoulders or noses that share a ground .

lett
right
tc+lts+tc

up-step
down-step
hill
groove
insertion-condition

insertion

: att,.
: att,.

=conc

=COflC
=COIIC

=conc
=COIIC

=cptled

=conc

+lts+ n featuren
31eft.tc+lts n 3right.lta+tc n
(leftmost! left 0 lettmoat;) n
(rightmost! right 0 rightllPst) n
(left 0 ground! right 0 &rolllld).
tc+lta+tc n V'left .lnose n l1right .rshoulder.
tc+lts+tc n V'lett .lshouldc- n V'right.rnose.
tc+lts+tc n V'left.lnose n 'o#r.ight .rnose.
tc+lts+tc n V'left .lshoulder n V'right .rshoulder.
lambda(d2w, d .

d2w < 0.25 t\ d < 30).
groove n V'depth2width, depth.insertion-condition.

The following bidirectional rules aggregate surfaces and features Co build a feature tree. Features
derived by these rules are asserted into the ABox. The name of each feature is a new symbol generated by
the function make-instance-nam •. Attributes common to all features..~!are the leftmost and rightmost
surface the feature is covering. This is necessary to check neighbourhood bf surfaces and features. The first
three rules aggregate a longturningaurface and one or two trunCOll~, then some of the rules defining a

..

. '
'.:1:..... -:..

longturningsurface are presented . More complex features are not presented here.

lts+tc(Featid, ground [Ltsid], flank [Id2], leftmost[L], rightmost[Id2])
<= truncone(Id2, ci[Zl], c2[Zr], ri[Rad], r2[Rado]»,

neighbour(R,Id2),
longturningsurface(Ltsid, radius [Rad-lts],

leftmost [L] ,
rightmost [R] ,
sof[Seq-of-feat]) ,

Featid is make-instance-name(lts+tc, Ltsid, Id2).

tc+lts(Featid, ground [Ltsid], flank [Id2], leftmost [Id2], rightmost[R])
<= truncone(Id2, ci[Zl], c2[Zl], ri[Rado], r2[Rad]),

neighbour(Id2, L),
longturningsurface(Ltsid, radius [Rad-lts],

leftmost [L] ,
rightmost [R] ,
sof[Seq-of-feat]) ,

Featid is make-instance-name(tc+lts,Id2,Ltsid).

59

A tc+lts+tc is an aggregation of a tc+lts (which is a generalization of lshoulder and lnose) and
a 1ts+tc (which is a generalization of rshoulder and rnose) with a common ground. The following
rules represent the affirmative knowledge that two shoulders or two noses can be aggregated, but that
no nose can be combined with a shoulder. A tc+lts+tc can be taxonomically specialized to groove (an
aggregation of shoulders) or to a hill (an aggregation of noses) as can be seen in Fig. 6. A workpiece as
a whole is also a hill, if both its leftmost and rightmost surfaces are circles.

tc+lts+tc(Featid, left [Lshid], right[Rshid], leftmost[Idi], rightmost[Id3])
<= rshoulder(Rshid, ground [Id2],

flank [Id3] ,
leftmost[Rsleft],
rightmost[Rsright]),

lshoulder(Lshid, ground[Id2],
flank [Idi] ,
leftmost[Lsleft],
rightmost[Lsrigh]),

Featid is make-instance-name(tc+lts+tc,Idi,Id2,Id3) .

tc+lts+tc(Featid, left[Lnid], right [Rnid], leftmost[Idi], rightmost[Id3]»
<= rnose(Rnid, ground[Id2],

flank [Id3],
leftmost[Rsleft],
rightmost[Rsright]),

lnose(Lnid, ground[Id2],
flank [Idi] ,
leftmost [Lsleft],
rightmost[Lsright]),

Featid is make-instance-name(tc+lts+tc,Idi,Id2,Id3).

60 B A HYBRID KNOWLEDGE BASE

A longturningsurface is a section on the workpiece, over which a horizontal cut at height radius can
be made. It can have surfaces with radii less than the radius of the longturningsurface itself. The simplest
longturningsurface consists of a cylinder only.

10ngturningsurfaee(Featid, radius [Rad],
leftmost [Cyl] ,
rightmost [Cy1],
sof [Cy1])

<= ey1inder(Cy1, el[Zl], e2[Zr], rl[Rad], r2[Rad]),
Featid is make-instanee-name(lts,Cy1).

If a right shoulder occurs at the left end of the workpiece, then there is a longturningsurface. The
radius of the longturningsurface depends on the radius of the following ase-te . The attribute sof has as
value the list of all surfaces covered by the longturningsurface. The argument of the predicate sub-1ts ,
which is not listed here , is a subsection of a longturningsurface. It covers sections, where horizontal cuts
can be made over a complex furrowed contour.

10ngturningsurfaee(Featid, radius [Rad],
leftmost [Left] ,
rightmost [Rightm],
sof[Rshid I Seq-of-feat])

<= eire1e(Leftm, el[Z], e2[Z], rl[O] , r2[Rad-1im]),
neighbour(Leftm, Left),
rshoulder(Rshid, ground [_ground] ,

flank [_flank] ,

leftmost [Left] ,
rightmost[Right]),

sub-1ts(Right, Ase-te , Rad, Seq-of-feat),
ase-tc(Ase-te, el[Zl], e2[Zr], rl[Radl], r2[Rad2]),
neighbour(Rightm, Asc-te),
Rad2 > Rad,
Featid is make-instanee-name(lts,Leftm,Rightm).

Symmetrically, if a left shoulder occurs at the right end of the workpiece, then there is a longturning-

surface. The radius of the longturningsurface depends on the radius of the neighbouring desc-tc .

longturningsurface(Featid, radiua[Rad],
leftlllost [Leftm] ,
rightlllost[Right] ,
aof[Seq-of-feat]»

<= circle (Rightlll , c1[Z], c2[Z], r1[Rad-lilll], r2[O]),
neighbour(Right, Rightlll),
Ishoulder(Lshid, ground [Ground] ,

flank [Flank] ,
leftllloat[Laleft],
rightllloat[Right]),

sub-Its(Desc-tc, Laleft, Rad, Slsof),
desc-tc(Desc-tc, c1[ZI],c2[Zr], r1[Rad1] , r2[Rad2]),
neighbour(Desc-tc, Leftlll),
Rad1 > Rad,
apprel(Slsof, Lshid, Seq-of-feat),
Featid is lIIake-instance-name(lts, Leftlll, Rightm).

We omit the remaining rules defining longturningsurface , and also the definition of sub-Its.

61

The knowledge relevant for the lathe-tool selection phase is represented using the constraint formalism .
First, some finite domains are defined. Then, definitions of the constraints are given that link the variables
together. Finally, all constraints are grouped together as one compound constraint tooLsel that represents
all relevant knowledge. that const rains the selection of appropriate lathe-tools for the different workpiece
features:

The following COLAB specification represents some knowledge about the structure of the domain of
lathe-tools:

lathe-tools = {finishing-tools, roughturn-tools}.
roughturn-tools = {universal-tools, I11III71, nma, 11111141}.
finishing-tools = {universal-tools, I11III53, cma}.
universal-tools = {nmg, I11III52, rclllX} .
1111117i = {dnmm-71 , tDlllll\-71 , sDlllll\-71 , CDlllll\ -71} .
I11III41 = {tDlllll\-41, sDlllll\-41 , dnmm-41 , CDlllll\ -41} .
nma = {tnma, dnma, snma, cnma}.
nmg = {rnmg, tnmg, snmg, dnmg, cnmg}.
I11III52 = {tcllllll-52, dCIlllll-52, sCIlllll-52, cCIlllll-52, rCIlllll-52} .

The domain of the tool systems (holders) can also be hierarchically structured: The names of the hold­
ers result from a projection of the relevant criteria from the ISO names of workpieces. For example,
tmaxp-PTL90 means: The holder type is tlllaxp, the fixing system is p, the form of the cutting plate is t ,
the cutting direction is I (from right to left) , and the tool-cutting edge-angle is 90 degrees.

holders = {tmax-p, tmax-u}.

tlllax-p
pt

ps

= {pt. ps, pc, prJ pd} .
= {tmaxp-PTL90, tlllaxp-PTL80, tlllaxp-PTL45, tmaxp-PTl60,

tlllaxp-PTR90, tlllaxp-PTR80, tlllaxp-PTR45}.
= {tmaxp-PSL75, tmaxp-PSL45, tmaxp-PSl45, tmaxp-PSR75, tmaxp-PSR45}.

62 B A HYBRID KNOWLEDGE BASE

pc = {tmaxp-PCL96, tmaxp-PCL76, tmaxp-PCl66, tmaxp-PCR95,
tmaxp-PCR76, tmaxp-PCR66}.

pr = {tmaxp-PRL30, tmaxp-PRL40, tmaxp-PRR30}.
pd = {tmaxp-PDL93, tmaxp-PDR93}.

tmax-u = {st, ss, sr, tmaxu-SCl96, taaxu-SDL93}.
st = {tmaxu-STL90, tmaxu-STL76, tmaxu-STI60, tmaxu-STl46,

tmaxu-STR90, tmaxu-STR76}.
ss = {tmaxu-SSR76, tmaxu-SSl46, tmaxu-SSL76, taaxu-SSL4S}.
sv {tmaxu-SVL93, tmaxu-SVl72, t.axu-SVR93}.
sr = {tmaxu-SRI, tmaxu-SRI30}.

The domain of cutting processes simply consists of two elements:

processes = {roughing, finishing}.

The following definitions describe a part of the structure of the domain of workpiece materials:

materials
steel
cast
alloy-steel

= {steel, cast, alu}.
= {building-steel, alloy-steel, stainless-steel} .
= {gg, ggg}.
= {lov-alloy-steel, high-alloy-steel}.

Having defined the domains of all variables, constraints can be defined over these domains.

The constraint holder-tool describes the cutting-plates fitting to several holders for reasons of geom­
etry :

holder-tool(Holder:holders, Tool:lathe-tools) .­
{(pt,tnma), (pt,tnmg), (pt,tcaa-41),

(ps,nmg), (ps,snma-41),
(pc , cnmm-71), (pc , cnmm-41), (pc , cnmg), (pc,cnma),

(ss,finishing-tool)}.

The constraint process-material-tool specifies the usability of cutting-plates w.r.t. the working-process
to be done and the properties of materials. The constraint reflects the suitability of the cutting-plate
materials (which are implicitly contained in their names) for certain workpiece materials , e.g. short-cutting,
long-cutting, stainless, hard :

process-material-tool(Process:processes, Mat:materials, Tool:lathe-tools)
{(roughing,steel,mm71), (roughing,cast,mm71).

(roughing.cast.nma), (roughing.stainless-steel.mm41).
(roughing.alloy-steel,nma). (roughing.lov-alloy-steel.mmS2).
(processes.alu.nmg). (processes.steel.rcmx), (processes.cast.rcmx)}.

The constraint tc-ea-al gives expression to the requirement that the sum of the tool-cutting-edge angle ,
the edge-angle and the angle alpha must be less than 180 degrees.

tc-ea-al(TCEA:tc-edge-angles, EA:edge-angles, Alpha:acute-angles) '­
lambda(TCEA, EA, Alpha. (180 > TCEA + EA + Alpha».

63

Finally, a compound constraint toolJlel is defined that represents the conjunction of all relevant con­
straints for lathe-tool selection:

tool_sel(Holder,Tool,Plate,Process,Direction,Cutting,Material,
Alpha,TC-Edge-Angle) :-

{holder-tool (Holder ,Tool) ,
process-holder(Proceaa,Bolder) ,
holder-description(Bolder ,Direction,TC-Edge-Angle ,Plat e),
holder-cutting(Holder , Cutting) ,
process-material-tool(Process,Material,Tool) ,
plate-eangle(Plate,Edge-Angle) ,
process-eangle(Process,Edge-ingle),
tc-ea-al(TC-Edge-Angle,Edge-ingle,Alpha)}.

The knowledge represented in RELFuN describes the transformation of features into skeletal plans and ,
calling CONTAX' above-defined tool..sel constraint, their refinement into parameterized NC programs:

teat2nc() :-t insert-tools-in-skp(gen-skp(root-id(»).
Yo root-id returns the root teature identitier

Complex features are decomposed until skeletal plans can be retrieved for primitive features like
cylinder:

gen-skp(Fid) cylinder(Fid, []) t [skp].

gen-skp(Fid) '-
rshoulder(Fid, [ground [Lts], lettmost[Lshid], rightmost[Rshid]]),
truncone(Lshid, [c1[X1]]),
truncone(Rshid,

[c 1 [X2], c2 [X3] ,
r1[Yl], r2[Yh]]) t

merge-skp(
[skp,
dir[to-right] , kind [lengthvise],
seq[
actiona[

[to-right, lengthvise,
geo[p[Yl, X1], p[Yl, X2], p[Yh, X3]]]],

actions (]]] ,
gen-skp(Lts».

64 B A HYBRID KNOWLEDGE BASE

These primitive skeletal plans are merged resulting in complex ones:

merge-skp([skp, dir[unfixed] , kind [contour] , com[111, 112]],
[skp, di~[Dir], Kind, seq[121, 122]])

fix-dir(Dir) ,
seq[lall, la12] is sequentialize(com[111, A12] , Dir) t
tup(skp, dir[Dir], kind [contour] ,

tup(seq, append-act(lall, A21), append-act (A22, la12»).

Finally, the skeletal plan is being extended by inserting tool information obtained by constraint prop­
agation :

insert-tools-in-skp(Skp) .­
[skp, Dir, Kind,
[Act-type, actions[I Actl], actions[I Act2]]] is Skp t

tup(. . . insert-tools(appfun(Actl, Act2» . ..).

insert-tools([Act I Actrest]) .-
tool-select([], [Act I Actrest], Dir, Kind, 0, 0) t

The longest possible sequence of actions is being reduced by the non-deterministic tool-select func­
tion until an applicable tool can be found:

tool-select(Actlistl, [A21 I A22] , Dir, Kind, Alpha-max, Beta-max)
same-dir(A21, Dir) t
tool-select (appfun(Actlistl, [A21]), A22, Dir, Kind,

once (compute-alpha-angles (Alpha-max , A21»,
once (compute-beta-angles (Beta-max , A21»).

tool-select(Actlistl, Actlist2, Dir, Kind, Alpha-max, Beta-max) :-
Tool is cheapest()(contax-tool-select(Dir, Kind, Alpha-max, Beta-max» t
% cheapest is a global constant (currently the selection function first)
[[[tool I Tool] I Actlist1] , Actlist2].

Possible tool candidates for an action sequence are solutions of a propagation in the instantiated
constraint net . The function contax-tool-select initializes the data needed by the constraint net :

contax-tool-select(Dir, Kind, Alpha-max, Beta-max) :-t
cn-tool-sel(process(), Kind, vp-material(), quality(),

Alpha-max, Beta-max, Dir).
% process etc . are
% global constants

The function cn-tool-sel invokes the constraint propagation and returns a list of tool candidates,
failing if no candidates can be found (soLof is described in Section 4) :

cn-tool-sel(Process, Cut-kind, Wp-material, Quality, Alpha, Beta, Direction) :-t
get-cn-tools(% select relevant data (holder and cutting plate)

sol_of(tool_sel[Wp-material, Process, Cut-kind, Alpha, Beta,
Direction, lathe-tools, holders, plate-geometries,
edge-angles, tc-edge-angles]),

tool, holder).

.;.:-

I
Deutsches
Forschungszentrum
fOr KOnstllche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen kOnnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR·92·11
Susane Biundo. Dietmar Dengler. Jana Koehler:
Deductive Planning and Plan Reuse in a
Command Language Environment
13 pages

RR·92·13
Markus A. Thies. Franlc Berger:
Planbasierte graphische Hilfe in
objektorientierten Benulzungsoberflllchen
13 Seiten

RR·92·14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. FranJc Berger

22 pages

RR·92-15
Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenko. Berhard Nebel.
Hans-Jargen Profitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR·92·17
Hassan Aft-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except
if otherwise indicated.

RR·92·18
John Nerbonne: Constraint-Based Semantics
21 pages

RR·92·19
Ralf Legleitner. Ansgar Bernardi. Christoph
Klauck: PIM: Planning In Manufacturing using
Skeletal Plans and Features
17 pages

RR-92·20
John Nerbonne: Representing Grammar, Meaning
and Knowledge
18 pages

RR·92·21
Jorg-Peter Mohren. Jargen Maller
Representing Spatial Relations (part II) -The
Geometrical Approach
25 pages

RR·92·22
Jorg Wartz: Unifying Cycles
24 pages

RR·92·23
Gert Smolka. Ralf Treinen:
Records for Logic Programming
38 pages

RR·92·24
Gabriele Schmidt Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR·92·25
Franz Schmalhofer. Ralf Bergmann. Otto Kahn.
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations
12 pages

RR-92-26
Franz Schmillhofer. Thomas Reinartz.
Bidjan Tschaitschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems
16 pages

RR-92-27
Franz Schmillhofer. larg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu. Ansgar Bernardi. Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR-92-30
Rolf Baclcofen. Gert Smolka
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster
Automatic Design of Multimodal Presentations
17 pages.

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-3S
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp Hanschke:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to 0-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke. Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43 .
Christoph Klauck. Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-4S
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolfgang Finkler. Winfried
Graf, Thomas Rist. Anne Schauder. Wolfgang
Wahlster: WIP: The Automatic Synthesis of
Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-SO
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-S1
Hans-Jiugen Biircurt. Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-S2
Mathias Bauer. Susanne Biundo. Dietmar
Dengler. Jana Koehler. Gabriele Paul: pm -A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-S4
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-SS
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-S6
Armin Laux: Integrating a Modal Logic of
Knowledge into Tenninological Logics
34 pages

RR-92-S8
Franz Baader. Bernhard Hollunder:
How to Pref«r More Specific Defaults in
Tenninological Default Logic
31 pages

RR-92-S9
Karl Schlechta and David MaJcinson: On Principles
and Problems of Defeasible Inheritance
14 pages

RR-92~
Karl Schlechta: Defaults, Preorder Semantics and·
Circumscription
18 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre, Wolfgang
Finkler, Hans-Jurgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard
Nebel, Hans-Jurgen Profitlich, Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Tenninological Representation Systems
28 pages

RR-93-0S
Franz Baader, Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

DFKI Technical Memos

TM-91-12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially
Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Busemann: Prototypical Concept Fonnation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstiickreprasentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller, Jarg Muller , Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-OS
Franz Schmalhofer, Christoph Globig, Jarg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn , Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

DFKI Documents

D-92-07
Susanne Biundo. Franz Schmalhbfer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D-92-09
Gernod P. LaufkiJtter: ImplementierungsmOglich­
keiten der integrativen Wissensakquisitions­
methode des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser ffir attributierte Graph-Grammatiken
87 Seiten

D-92-11
Kerstin Becker: MOglichkeiten der Wissensmodel­
lierung fur technische Diagnose-Expertensysteme
92 Seiten

D-92-12
Otto Kuhn. Franz Schmalhbfer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung ffir Drehteile: eine
Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the
Applicability of Terminological Reasoning to
Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur
ReprlLsentation von Features in CIM
98 Seiten

D-92-15
DFKl Wissenschaftlich-Technischer
lahresbericht 1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten ffir naturlichsprachliche
Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen. Winfried Graf. Bob
Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling. Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch: Automatische.
Deskriptor-basierte Unterstutzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
GeschUtsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-23
Michael Her/ert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jilrgen Muller. Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations­
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm. Knut Hinkelmann. Thbmas Labisch:
Integrating Top-down and Bottom-up Reasoning
inCOLAB
40 pages

D-92-28
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell
zur ReprlLsentation von Nachrichtentypen
56 Seiten

D-93-02
Gabriele Schmidt. Frank Peters.
Gernod LaufkiJtter: User Manual of COKAM+
23 pages

COLAB: A Hybrid Knowledge Representation and Compilation Laboratory RR-93-08
Harold Boley, Philipp Hanschke, Knut Hlnkelmann, Manfred Meyer

Research Report

"

