
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-93-33

Plan Reuse versus Plan Generation:
A Theoretical and Empirical Analysis

Bernhard Nebel, Jana Koehler

June 1993

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/1 3
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA
Group, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are
funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence
and other related subfields of computer science. The overall goal is to construct systems
with technical knowledge and common sense which - by using AI methods - implement a
problem solution for a selected application area. Currently, there are the following research
areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There
exist many contacts to domestic and foreign research institutions, both in academy and
industry. The DFKI hosts technology transfer workshops for shareholders and other
interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI
researchers from Germany and from all over the world. The goal is to have a staff of about
100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director

Plan Reuse versus Plan Generation:
A Theoretical and Empirical Analysis

Bernhard Nebel, jana Koehler

DFKI-RR-93-33

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8901 8 and ITW 9000 8).

This report is a substantially revised and extended version of a paper that will
appear in Proceedings of the 13th International Joint Conference on Artificial
Intelligence, Chambery, France, September 1993.

© Deutsches Forschungszentrum fUr KOnstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr KOnstliche Intelligenz.

Plan Reuse versus Plan Generation:
A Theoretical and Empirical Analysis*t

Bernhard Nebel J ana Koehler
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
phone: +49 (681) 302-5254/-5259

e-mail: {nebellkoehler}@dfki.uni-sb.de

June 15, 1993

Abstract

The ability of a pla,nne r to reuse parts of old plans is hypothesized to

be a valuable tool for improving efficiency of planning by avoiding the
repetition of the same planning effort. We test this hypothesis from
an analytical and empirical point of view. A comparative worst-case
complexity analysis of generation and reuse under different assump­
tions reveals that it is not possible to achieve a provable efficiency
gain of reuse over generation. Further, assuming "conservative" plan
modification, plan reuse can actually be strictly more difficult than
plan generation. While these results do not imply that there won't be
an efficiency gain in the "average case," retrieval of a good plan may
present a serious bottleneck for plan reuse systems, as we will show.
Finally, we present the results of an empirical study of three different
plan reuse systems, which leads us to the conclusion that the utility
of plan-reuse techniques is limited and that these limits have not been
determined yet.

"This work was supported by the German Ministry for Research and Technology
(BMFT) under contracts ITW 8901 8 and ITW 9000 8 as part of the WIP project and
the PHI project .

tThis is a substantially revised and extended version of a paper that will appear in Pro­
ceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery,
France, September 1993 .

Contents

1 Introduction 1

2 Plan Modification in a Propositional Framework 2
2.1 Propositional STRIPS Planning 2
2.2 Plan Reuse and Modification. 4

3 The Complexity of Plan Modification 6
3.1 Modifying Arbitrary Plans 7
3.2 Modifying Plans When the Planning Instances are Similar 10
3.3 Conservative versus Arbitrary Modifications 12

4 Plan Retrieval and Matching 13
4.1 Matching Planning Instances. 14
4.2 Matching Blocks-World Planning Instances 17

5 Empirical Results 20
5.1 Plan Modification Systems 20
5.2 Application Domains 23
5.3 Experiments. 24

6 Conclusions 28

2

1 Introduction

Plan generation in complex domains is normally a resource and time con­
suming process. One way to improve the efficiency of planning systems is
to avoid the repetition of planning effort whenever possible. For instance,
in situations when the goal specification is changed during plan execution or
when execution time failures happen, it seems more reasonable to modify the
existing plan than to plan from scratch again. In the extreme, one might go
as far as basing the entire planning process on plan modification, a method
that could be called planning from second principles.

Instead of generating a plan from scratch, that method tries to exploit
knowledge stored in previously generated plans. The current problem in­
stance is used to find a plan in a plan library that-perhaps after some
modifications- can be (re-)used to solve the problem instance at hand. Cur­
rent approaches try to integrate methods from analogical or case-based rea­
soning to achieve a higher efficiency [22, 39J, integrate domain-dependent
heuristics [25J or investigate reuse in the general context of deductive plan­
ning [8, 33J.

Some experiments give evidence that planning based on second principles
might indeed be more efficient than planning from scratch [23,24 ,29,31, 39J.
However, it is by no means clear how far these results generalize. In fact,
it is not obvious that modifying an existing plan is computationally as easy
as generating one from scratch, in particular, if we adopt the principle of
conservatism [29, 31], that is to try to recycle "as much of the old solution
as possible" [39, p. 133J or to "produce a plan ... by minimally modifying
[the original planJ" [31, p. 196J.

Using a propositional planning framework, we show that modifying a plan
is not easier than planning from scratch. On the positive side modification
does not add any complexity to planning if we consider the general case.
However, there exist special cases when modifying a plan conservatively, i.e.,
by using as much of the old plan as possible, can be harder than creating
one from scratch. This means that conservative plan modification is not
uniformly as easy as plan generation. Further, we show that these results
also hold if we assume that the old and the new instance are similar. From
that we conclude that conservative plan modification runs counter to the idea
of increasing efficiency by plan reuse. A conservative strategy should only be
employed in a replanning context when it is crucial to retain as many steps
as possible.

Although it is impossible to prove that reusing plans leads to a speedup
in terms of worst-case complexity, it seems intuitively plausible that in the
average case plan reuse is more efficient than planning from scratch. How­
ever, finding a good reuse candidate in a plan library may be already very
expensive, leading to more computational costs than can be saved by reusing

1

the candidate. We show that the problem of matching planning instances is
N P-hard in the general case. We also consider some special cases that lead
to a simplification of this problem.

Finally, we present empirical results of the performance of three different
plan-reuse systems, namely, PRIAR [29, 31], SPA [23,24]' and MRL [34]. Con­
trary to the results reported by Kambhampati and Hendler [31], we observe
that in a large number of cases plan reuse leads to an increase in runtime.
The main reason for this fact seems to be that the planning systems under­
lying SPA and MRL use domain heuristics that lead to a highly efficient plan
generation process. As a matter of fact, it seems to be the case that plan­
reuse techniques are of limited utility, and these limits have not yet been
determined.

The paper is organized as follows. In Section 2, we define the notion of
propositional STRIPS planning following Bylander [9] and introduce a for­
mal model of plan modification. In Section 3, we analyze the computational
complexity of different modification problems relative to their corresponding
planning problems. In Section 4, we consider one of the possible bottlenecks
of plan-reuse techniques, namely, the retrieval and matching problem. Fi­
nally, in Section 5, we present our empirical findings and relate them to our
analytical results.

2 Plan Modification
Framework

.
In a Propositional

The computational complexity of different forms of planning has been recent­
ly analyzed by a number of authors [4,5,9, 10, 13, 14, 18, 19,21]. However,
the computational complexity of plan modification has not been investigated
yet . We will analyze this problem in the formal framework of proposition­
al STRIPS planning as defined by Bylander [9, 10]. As Bylander [9] notes,
this model of planning is "impoverished compared to working planners" and
is only intended to be a "tool for theoretical analysis." However, since we
are mainly interested in comparing plan generation with plan modification
from a complexity-theoretic perspective, this framework is appropriate for our
purposes.

2.1 Propositional STRIPS Planning

Like Bylander [9], we define an instance of propositional planning as a tuple
II = (P, 0, I, 9), where:

• P is a finite set of ground atomic formulae, the conditions,

2

• 0 is a finite set of operators, where each operator 0 E 0 has the form
+ - h o ,0 => 0+,0_, were

0+ ~ P are the positive preconditions,

0- ~ P are the negative preconditions,

0+ ~ P are the positive postconditions (add list), and

0_ ~ P are the negative postconditions (delete list).

• I ~ P is the initial state, and

• 9 = (9+,9-) is the goal specification with 9+ ~ P the positive goals
and 9- ~ P the negative goals.

P is the set of relevant conditions. A state is either undefined, written
..L, or a subset 5 ~ P with the intended meaning that pEP is true in
state 5 if pES, false otherwise. 0 is the set of operators that can change
states. I is the initial state, and 9 is the goal state specification, with the
intended meaning that all conditions p E 9+ must be true and all conditions
p E 9- must be false. A plan ~ is a finite sequence (01, . .. , On) of plan steps
0i E O. An operator may occur more than once in a plan. A plan ~ solves
an instance n of the planning problem iff the result of the application of ~

to I leads to a state 5 that satisfies the goal specification 9, where the result
of applying ~ = (01, . .. , On) to a state 5 is defined by the following function:

Result: (2P U ..L) x 0* -+

Result(5, 0)

Result(5, (0))

2P U..L

5

{
(IS U 0+) - 0_ if 0+ ~ 5 1\ 0- n 5 = 0
J... otherwise

Result (Result (5, (01)), (02, ... , On))

In other words, if the precondition of an operator is satisfied by a state,
the positive postconditions are added and the negative postconditions are
deleted. Otherwise, the state becomes undefined, denoted by Ll

As usual, we consider decision problems in order to analyze the compu­
tational complexity of planning. This move is justified by the fact that all
decision problems are at least as hard as the corresponding search problems,
i.e, the problem of generating a plan. 2

IThis is a slight deviation from Bylander 's [9] definition that does not affect the com­
plexity of planning . This deviation is necessary, however, to allow for a meaningful defi­
nition of the plan modification problem.

2We assume that the reader is familiar with the basic notions of complexity theory as
presented, for instance, by Garey and Johnson [20].

3

PLANSAT is defined to be the decision problem of determining whether
an instance II = (P, 0, I, 9) of propositional STRIPS planning has a so­
lution, i.e., whether there exists a plan ~ such that Result (I, ~) satisfies
the goal specification. PLANMIN [12] is defined to be the problem of de­
termining whether there exists a solution of length n or less, i.e., it is the
decision problem corresponding to the search problem of generating plans
with minimal length.

Based on this framework, Bylander [9, 10, 12] analyzed the computation­
al complexity of the general propositional planning problem and a number
of generalizations and restricted problems. In its most general form, both
PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions on the
form of the operators are necessary to guarantee polynomial time or even
N P-completeness.

2.2 Plan Reuse and Modification

As described in the Introduction, planning from second principles consists of
two steps:

1. Identifying an appropriate reuse candidate from a plan library.

2. Modifying this plan candidate so that it solves the new problem lll­

stance.

Assuming that the identification of a candidate is based on a (polynomial­
time) heuristic evaluation function, the modification problem clearly deter­
mines the complexity. However, even if we assume that the plan retrieval
process is supposed to identify the optimal candidate, this optimal candidate
can be found easily. One can tentatively modify each plan in the library and
select the plan that can be modified optimally. Since this amounts to "only"
linearly many plan modification operations in the number of plans stored
in the library, the computational complexity of modification determines the
complexity of reuse. Note, however, that this does not hold any longer if
we also consider (possibly exponentially many) mappings between proposi­
tions of the new problem instance and of the reuse candidate, as described
by Kambhampati and Hendler [29, 31] and Hanks and Weld [23, 24] . In this
case, which we consider in Section 4, the costs of reuse may also be influenced
by the retrieval problem.

Kambhampati and Hendler [31, p. 196] define the plan modification prob­
lem as follows (adapted to our framework of proposi tional STRIPS planning):

Given an instance of the planning problem II' = (P, 0, I', 9')
and a plan ~ that solves the instance II = (P,0,I,9), produce
a plan ~' that solves II' by minimally modifying ~ .

4

We will call this problem MODGEN.
By "minimal modification of a plan" Kambhampati and Hendler [31,

p. 195] mean to "salvage as much of the old plan as possible." Other authors
are less explicit about what they mean by modifying a plan, but the idea to
use as much of the old plan as possible for solving the new problem instance
seems to be customary in order to minimize the additional planning effort
[39, p. 133]. Of course, the part of the old plan that has been salvaged should
be executable, i.e., the preconditions of all operators should be satisfied in
the final plan. In order to guarantee this, we require that all operators are
executable (see the definition of the function Result).

Another conceivable interpretation of "minimal modification," namely, of
additionally adding as few plan st.eps as possible, is usually not considered.
The reason for not imposing t.his constraint is obvious. This requirement
would make modification as hard as finding an optimal plan, i.e., as hard
as PLANMIN, because in this case PLANMIN reduces to modification for
the limiting case of an empty modification candidate. Since most plan-reuse
systems are only aimed at arbitrary instead of optimal solutions, such a
requirement would in fact run counter to the idea of reducing planning effort.

Turning the above specified search problem into a decision problem leads
to what we will call the MODSAT problem:

An instance of the MODSAT problem is given by II' =

(P,O,I',Q') , a plan ~ that solves IT = (P,O,I,Q), and an inte­
ger k :::; I~I . The question is whether there exists a .plan ~' that
solves IT' and contains a subplan of ~ of at least length k?

In order to fully specify MODSAT, we have to define the meaning of
the phrase "~' contains a subplan of ~ of length k." For this purpose, we
define the notion of a plan skeleton, a sequence of operators and "wildcards,"
denoted by "*." The length of a plan skeleton is the number of operators, i.e.,
we ignore the wildcards. A plan skeleton can be derived from a plan according
to a modification strategy M by deleting and rearranging plan steps and
adding wildcards. A plan skeleton can be extended to a plan by replacing each
wildcard by a possibly empty sequence of operators. Now we say that plan
~' contains a subplan of ~ of length k according to a modification strategy
M iff a skeleton r of length k can be derived from ~ according to M and
r can be extended to ~'. In general, we will consider only polynomial-time
modification strategies, i.e., strategies such that verifying that the skeleton
r can be derived from the plan ~ is a polynomial-time problem. In the
following, we will consider three different plan modification strategies that
satisfy this constraint.

5

The first alternative we consider is to allow for deletions in the original
plan and additions before and after the original plan. Supposing the plan

the following plan skeleton could be derived from ~, for instance:

where r has length i + n - j + l. The corresponding modification problem
will be called MOD DEL.

The second alternative is to allow for deletion of plan steps in the old plan
and additions before, after, and in the middle of the old plan. Assuming the
same plan ~ as above, the following skeleton plan of length i + n - j + 1
could be derived:

The corresponding modification problem is called MODDELINS.
The final alternative is to count the number of plan steps in the plan

skeleton r that also appear in the old plan ~ without considering the order.
In other words, we view ~ and r as multisets and take the cardinality of the
intersection as the number of old plan steps that appear in the new plan.
The corresponding modification problem is called MODMIX. Although this
model of modification may seem to give away too much of the structure of the
old plan, "changing step order" is considered to be a reasonable modification
operation (see, e.g., [23, p. 96]).

Finally, it should be noted that although the framework we have defined
above deals only with linear plans, it can be easily modified to apply to
nonlinear planning, as well. Furthermore, all hardness results will apply to
nonlinear planning since linear plans are simply special cases of nonlinear
ones.

3 The Complexity of Plan Modification

First of all, there is the question of whether modifying a plan can lead to a
provable efficiency gain over generation in terms of computational complexity.
N<?t very surprisingly, this is not the case when there are no restrictions on the
original instance. However, it does not seem to be impossible to achieve an
efficiency gain if we require the old and new problem instance to be similar.

Second, one may ask the question whether plan modification is always
as easy as planning from scratch. This question comes up because of the
minimality requirement in the definition of the plan modification problem.
This requirement makes plan modification very similar to the belief revision

6

problem, i.e., the problem of changing a logical theory minimally in order to
accommodate a new information. As is well-known, most revision schemata
turn out to be computationally harder than deduction [16, 36] .3 A simi­
lar result [37, 17] holds for abduction, which may be viewed as "minimally
modifying the assumptions in a proof."

In the following, we provide answers to both questions, addressing first
the problem of modifying arbitrary plans and then the problem of modifying
plans for similar instances.

3.1 Modifying Arbitrary Plans

One almost immediate consequence of the definitions above is that plan mod­
ification cannot be easier than plan generation. This even holds for all restric­
tions of the PLANSAT problem (concerning, e.g., the form of the operators
[12] or more global properties [5]). If PLANSAT p is a restricted planning
problem, then MODSAT p shall denote the corresponding modification prob­
lem with the same rest.rictions.

Proposition 1 PLANSAT p tnmsforms poiyrwmially to MODSAT p for all
restrictions p.

Proof. The restriction of MODSAT p to empty old plans and k 0 IS

identical to PLANSAT p ' •

However, plan modification is also not harder than plan generation in the
general case.

Proposition 2 MODSAT is PSPACE-compiete .

Proof. Because of Proposition 1 and the fact that. PLANSAT is PSPACE­
complete [9, Theorem 1], MODSAT is PSPACE-hard.

MODSAT is in NPSPACE because (1) guessing a skeleton r of length k
and verifying that it can be derived from the old plan ~ and (2) guessing
step by step (with a maximum of 21P1 steps) a new plan ~' and verifying that
it solves the instance II' and extends r can be obviously done in polynomial
space. Since NPSPACE = PSPACE, it follows that MODSAT E PSPACE. •

This proposition could be t.aken as evidence that plan modification is not
harder than plan generation. However, it should be noted that the proposi­
tion is only about the general problem. So, it may be the case that there exist
special cases such that plan modification is harder than generation. Such a

3More precisely, revision is in most cases n~-complete . Assuming , as is customary, that
the polynomial hierarchy does not. collapse (see, e.g., [20, 28]), this implies that revising a
propositional theory is harder t.han doing deduction , which is n~ - or co-NP-complete.

7

case will not be found among the PSPACE- and NP-complete planning prob­
lems, however.

Theorem 3 IfPLANSATp is a restricted planning problem that is PSPACE­
complete or NP-complete, then MODSATp is PSPACE-complete or NP-com­
plete problem, respective/yo

Proof. PSPACE-hardness and NP-hardness , respectively, are obvious be­
cause of Proposition 1. Membership follows in case of PSPACE by Proposi­
tion 2. In case of NP, we initially guess (1) n (0 ::; n ::; I~I + 2) possibly
empty plans ~i such that I~il ::; I~I , (2) 2n states SI,· .. , S2n, and (3) n
polynomially bounded proofs that there exists plans from each state S2i to
state S2i+l for 1 ::; i ::; n - 1. Since PLANSATp is in NP, such proofs exist
(in most cases, these proofs will be plans). Then we verify in polynomial
time (1) that SI = I and S271 satisfies the goal specification 9, (2) that
Result(S2i-l, ~i) = S2i, (3) that the plan existence proofs are correct, and
(4) that (~1' *, ~2' *, ... , ~n-l' *, ~n) is a skeleton of length k that can be
derived from ~. This is obviously a nondeterministic algorithm that runs in
polynomial time. -

The converse of the above theorem does not hold, however. There exist
cases when plan generation is a polynomial time problem while plan modifi­
cation is NP-complete.

Theorem 4 There exists a polynomial-time PLANSAT p problem such that
the corresponding MODDELp and MODDELINSp problems are NP- complete.

Proof. The planning problem PLANSATi defined by restricting operators
to have only positive preconditions and only one postcondition can be solved
in polynomial time [9, Theorem 7]. Let PLANSATi,po.t be the planning
problem defined by restricting operators to have (1) only one postcondition
p, (2) the negated condit ion p as a precondition, and (3) any number of
additional positive preconditions. From the specification of the algorithm
Bylander [9] gives for PLANSATi , it is evident that PLANSATi,po.t can
also be solved in polynomial time (see also [5]) . We will show that the
corresponding modification problems MODDELi,po.t and MODDELINSi,po.t
are NP-complete.

For the hardness part we use a reduction from SAT, the problem of sat­
isfying a boolean formula in conjunctive normal form . Let V = {VI, . .. , vm }

be the set of boolean variables and let C = {Cl , ... , en} be the set of clauses.
Now we construct a MODDELi,po.t problem that can be satisfied iff there
exists a satisfying truth assignment for the SAT problem.

8

The set of conditions P contains the following ground atoms:

Ti, 1::; i ::; m, Vi = true has been selected
Fi, 1::; i ::; m, Vi = false has been selected
Si, 1::; i ::; m, the truth value for Vi has been selected
E i , 0::; i ::; m, enable evaluation
Gj, 1::; n ::; n, Cj evaluates to true.

Further, we assume the following set of operators 0:

0+ 0 - ::::} 0+, 0_ ,
ti {Ti}, 0 ::::} 0, {Td
Ji {Fi}, 0 ::::} 0, {Fi}
sti {Ti, Eo,···, Ern}, {Sd ::::} {Si}, 0
sJi {Fi' Eo, ... , Em}, {Si} ::::} {Si}, 0
ei 0, {Ed ::::} {Ei}, 0
pos · .

1,) {Ti' Eo, ... , Em}, {Gj} ::::} {Gj}, 0 if V· E c · 1)

negi,j {Fi' Eo, ... , Ern}, {Gil ::::} {Gj}, 0 if Vi E Cj.

Assume the following initial and goal state:

I {TI , ... , Tm, F l ,.·., Fm}

Q+ {Eo, ... , Em}

Q- {Tl , ... , Tm, Fl , ... , Fm}.

The instance TI = (P, 0, I, Q) is, for example, solved by the following plan
~:

Now consider the instance TI' = (P,O,I',Q') such that

I' I
Q~ {Eo, ... , Em, SI,"" Sm, GI ,···, Gn }

Q~ 0.

We claim that the SAT formula is satisfiable if, and only if, the plan ~
can be modified by deleting at most m operators and adding some operators
before and after the resulting skeleton r in order to achieve a new plan ~'
that solves TI'.

First, the operators sti and sj; can only be added after the original plan
because there are m + 1 operators ei at the end of ~ that produce the
preconditions for the above operators. Second, in order to achieve the part
of the goal specification that requires Si to hold for each i means that from
each pair {ti' Ji} one operator in ~ must be deleted.

9

Now assume that the SAT formula is satisfiable. In this case, we can
delete m of the ti and Ii operators such that the T/s and Fi'S correspond to
a satisfying truth assignment. Then it is trivial to construct a sequence of
POSi,/S and negi,/s that can be added in the end in order to achieve the goal
specification requiring Cj , for all 1 :::; j :::; n, to hold. Conversely, if such a
sequence can be found, then the values of Ti and Fi give a satisfying truth
assignment for the SAT formula.

Since sti, Sli' POSi,j' and negi,j cannot be added before any of the ei oper­

ators, the reduction applies to MODDELINSi'Po.t, as well.

Membership in NP follows since PLANSATj,po6t is in NP. Using the same
algorithm as described in the proof of Theorem 3 leads to a nondeterministic
polynomial-time algorithm for MODDELj,P06t and MODDELINSi,po6t. •

We were not able to identify a polynomial planning problem PLANSAT p

such that the corresponding MODMIXp problem becomes NP-complete. The
reason for that is that all known polynomial-time planning problems have a
particular simple st.ruct.ure. For all inst.ances of these problems, it is possible
to find plans that have the following property. Assuming there is a set of
operators {od such that each operat.or could be individually added to the
plan Do and (with some additional additions and deletions, which could be
determined in polynomial time) the resulting plans Doi still solve the plan­
ning instance, then it is possible to add all operators from {od collective­
ly to Do and extend this plan (in polynomial time) to a plan Do' that still
solves the instance. Hence, for all known polynomial-time planning prob­
lems PLANSAT p, an algorithm for MODMIXp would first generate a plan
to solve the planning problem instance and then try t.o ext.end this plan by
as many operators from the old plan as possible, resulting in a polynomial
algorithm that solves the MODMIXp problem.

3.2 Modifying Plans When the Planning Instances
are Similar

The results above could be considered as being not relevant for plan modifica­
tion in real applications because we made no assumption about the similarity
between old and new planning instances. The efficiency gain expected from
plan reuse, on the other hand, is based on the assumption that the new in­
stance is sufficiently close to the old one-which supposedly permits an easy
adaptation of the old plan to the new situation. Besides the fact that this
looks like a good heuristic guidance, there is the question whether small dif­
ferences between the old and the new instance lead to a provable efficiency
gain in terms of computational complexity. So it might be perhaps the case
that modification is easier than planning if the goal specifications differ only

10

on a constant or logarithmic number of atoms. Although this seems to be
possible, there is the conflicting intuition that small changes in the planning
instance could lead to drastic (and hard to compute) changes in the plans.

As it turns out, restricting the number of differing atoms does not lead to
a different picture than the one presented in the previous subsection. First
of all, Theorem 4 still holds for the restricted versions of the modification
problems MODDEL and MODDELINS, where we require the old and new
initial states to be identical and the old and new goal specification to dif­
fer only on one atom. We call these restricted versions of the modification
problem MODDELIG and MODDELINSIG, respectively.

Theorem 5 There exists a polyn.omial-time PLANSATp problem such that
the correspondin.g MODDELIG p and MODDELINSIG p problems are NP­
complete.

Proof. The transformation used in the proof of Theorem 4 is modified as
follows. A new atom B is added, which is assumed to be false in the initial
state I and not mentioned in the old goal specification 9. The new goal
specification 9' is:

Finally, the following operator is added:

The MODDELp and MODDELINSp problems generated by this modified
transformation obviously satisfy the constraint that the goal specifications
differ only on one atom. Further, the modified transformation has obviously
the same property as the original one, i.e., the generated MODSAT problems
can be used to solve the satisfiability problem.

Membership in NP is again obvious. •

Although this theorem confirms the intuition that small changes in the
goal specification can lead to drastic changes in the plan, it does not rule
out the possibility that there are some hard planning problems such that the
corresponding modification problems are easy if the goal specification is only
changed marginally. In order to rule out this possibility, we would need some­
thing similar to Proposi t ion 1. However, there appears to be no general way
to reduce PLANSATp problems to MODSATIGp problems. For this reason,
we will settle for something slightly less general. We will show that gener­
ating a plan by modifying a plan for a similar goal specification is at least
as hard as the corresponding PLANSAT problem. Hence, instead of the de­
cision problem MODSATIG, we consider the search problem MODGENIG.

11

Further, in order to allow for a "fair" comparison between PLANSAT and
MODGEN1G, we measure the resource restrictions of MODGEN1G in terms
of the size of the new planning problem instance-and ignore the size of the
old plan to be reused. 4 Under these assumptions, it is possible to specify a
Turing reduction from PLANSATp to MODGEN1G p '

Theorem 6 IfPLANSAT p is a restricted planning problem that is PSPACE­
hard or NP-hard, then the corresponding MODGEN1G p problem is PSPACE­
hard or N P -hard, respectively, even if we do not require to reuse a maximal
subplan. 5

Proof. Using an oracle for MODGEN1G p , we can generate a plan by modi­
fying it iteratively, starting with the empty plan and empty goal specification
and continuing by adding step by step one goal atom. Since the size of the
goal specification is linearly bounded by the problem instance, we would need
only linearly many calls. Supposing that the theorem does not hold would
imply that generat.ing a plan under rest.rictions p is easier than PLANSAT p,

which is impossible by definition.
In the above reduction, we did not rely on any particular property of the

MODGENIGp oracle. In particular, we did not make t.he assumption that
the oracle has to recycle a maximal reusable plan skelet.on. Hence, the result
holds for arbitrary modification strategies, even those t.hat are not required
to use a maximal subplan. -

It should be noted that the above theorems apply also to the modification
problems that are restricted to have a one-atom-difference between the initial
states.

3.3 Conservative versus Arbitrary Modifications

The hope that. recycling maximal subplans increases the efficiency of plan
reuse turns out to be unfounded, as the above results demonstrate. Our
results imply that conservative plan modification introduces some combina­
torics into the planning and reuse process. In particular, as a Corollary of
Proposition 2 it follows that is not possible to determine efficiently (i.e., in
polynomial time) a maximal reusable plan skeleton before plan generation
starts to extend the skeleton.

Corollary 7 It is PSPACE-hard to compute a maximal plan skeleton for
MODSAT instances.

4This is necessary to rule out such pathological situations as the one where modifying
an exponentially long plan appears to be polynomial while generating it is exponential.

5Note that the proof applies to all complexity classes closed under polynomial Turing
reductions. Hence, it also applies to the planning problems identified by Erol et at [18]-a
fact pointed out to us by Tom Bylander .

12

In other words, plan generation and plan modification cannot be sepa­
rated. For this reason, the planning process becomes actually more involved
when recycling as much of the old plan as possible. Instead of searching for
an arbitrary solution, a plan that contains a maximal subplan of the old plan
has to be sought.

Having a closer look at Kambhampati and Hendler's PRIAR framework
(which is described as addressing the plan modification problem by mini­
mally modifying plans) reveals that plan skeletons are derived in polynomial
time [31, p. 197] by a process called "annotation verification." Hence, by
Corollary 7, this process cannot by any means derive maximal applicable
plan skeletons. Further, the authors do not give any arguments that they
approximate such skeletons. In fact, the skeletons derived by PRIAR are not
even guaranteed to be applicable. SO, PRIAR does not seem to address the
problem of "minimally modifying plans," contrary to what the authors claim.

In fact, maximal reuse of an old plan only seems to make sense in a
replanning context if costs are charged for not executing already planned steps.
So, it seems to be the case that the two motivations for plan modification,
namely, replanning and 1'e 'U,sc may not be as similar as one might think. While
in plan reuse the effici ency of the planning process is t.he most important
factor, in replanning the minimal disturbance of the old plan may be more
important, leading to a more involved planning process.6

Plan modification in the PRIAR framework- and in other plan-reuse
systems- seems not to be a computational problem that has to be addressed,
but rather a solution, a heuristic technique. The "plan skelet.on" that is
reused is not the maximal applicable one, but the one t.hat the particular
planning algorithm perhaps can exploit in generating (l solution. In other
words, the old plan is used as an "entry point" into the search space of
possible plans, as made explicit by Hanks and Weld [23].

4 Plan Retrieval and Matching

As demonstrated by Theorem 6, we cannot hope for a provable speedup by
plan-reuse techniques in terms of computational complexity. Nevertheless,
one would expect a speedup in some cases. In fact, Bylander [11] shows
that plan modification for similar planning instances is in some sense more
efficient in the average case. The distributional assumptions Bylander makes
are questionable, however. Further, Bylander assumes a number of operators
that is exponential in the average size of the pre- and postconditions. Never-

6Kambhampati makes the same distinction in a later paper [30] . Based on arguments
concerning the search process of a planner, he also argues that guamnteeing that every
step that could be reused is reused could be computationally expensive-a conjecture
confirmed by Theorem 4.

13

theless, Bylander's result is some indication on the analytical side that plan
modification could be sometimes more efficient than planning from scratch.

On the empirical side, experiments in the blocks-world domain [23, 24,
29, 31] demonstrate that reusing a plan that solves an instance similar to
the one under consideration leads indeed to an efficiency gain in many cases
(see also Section 5). It should be noted, however, that in those experiments,
the reuse candidate was supplied manually. In order to apply the reuse tech­
nique in the general case, it is necessary to provide a plan library from which
a "sufficiently similar" reuse candidate can be chosen. "Sufficiently simi­

lar" could in this case mean that the reuse candidate has a large number of
goal atoms and atoms in the initial state in common with the new instance.
However, one may also want to consider reuse candidates that are similar to
the new instance after the atoms in the reuse candidate have been system­
atically renamed. As a matter of fact, every plan reuse systems contains a
matching component that tries to find a mapping between the objects of the
reuse candidate and the objects of the new instance such that the number
of common goal atoms is maximized and the additional planning effort to
achieve the initial state of the library plan is minimized (see also Section 5).
In the following, we will have a closer look at this matching problem.

4.1 Matching Planning Instances

In order to analyze the matching problem, we assume that the set of condi­
tions P has some particular structure. Let ° be a set of constants Ci, with
the understanding that distinct constants denote distinct objects, and let P
be a set of predicate symbols Pt of arity n, then P(O, P) is the set of all
ground atomic formulae over this signature. In domains, where there are
different types of constants, it can be useful to employ a many-sorted logic
instead of the unsorted logic we consider here. However, we will abstract
from this issue and consider only problems such that all constants have the
same type. As an example for such a domain, where an unsorted logic is
sufficient, consider the blocks-world where we have only blocks (of the same
size) and the predicates are universally applicable to all of these blocks.

We assume further that the operators are closed under substitution of
constants by constants, i.e., we require that if there exists an operator Ok

mentioning the constants {CI' ... ,cn } ~ 0, then there exists also an operator
01 over the arbitrary set of constants {ell,' .. ,dn } ~ ° such that 01 becomes
identical to Ok if the di's are replaced by c;'s. In other words, we assume
that the operators could be represented as ordinary STRIPS operators using
variables.

If there are two instances

n = (P(O, P), a,I, 9)

14

II' = (P(0',P'),0',I',9')

such that (without loss of generality)

o c 0'

P P'

° c 0' ,

then a mapping J.l from II to II' is an injective function

Although injectivity might not always be required, it is a safe condition. It
guarantees that distinct constants are mapped to distinct constants. The
mapping J.l is extended to ground atomic formulae and sets of such formulae
in the canonical way, i.e. ,

Il(Pt (CI, ... , cn)) Pt(J.l(ct} , . . . , /-l(Cn))

J.l ({ PI (...), .. . , Pm (...)}) {J.l(P1 (. . .)), ... ,11,(Pm(. . .))},

If there exists a biject'ive mapping Il from II to II' such that all goal and
initial-state atoms are matched, then it is obvious that a plan ~ for II can
be directly be reused for solving II': J.l(~) solves II'. In the case that J.l is not
a bijection or does not match all goal and initial-state atoms, J.l(~) can still
be used as a starting point for searching for a plan that solves II'.

Following Hanks and Weld [24J and Kambhampati and Hendler [29 , 31],
we define a match of a reuse candidate II with a new instance II' as a map­
ping J.l from II to II' that maximizes first the cardinality of (J.l(Q+) n g~) U

(J.l(g_)ng~) and second the cardinality of J.l(I)nI'. It should be noted that
in SPA and PRIAR the conditions for the initial-state match are slightly more
complicated. In SPA , the number of "open conditions" is minimized , i.e.,
violations of precondi t ions in the library plan are minimized. In PRIAR, the
number of "inconsistencies in the validation structure" of the library plan
is minimized. Since the absence of one atom in the initial state may lead
to several "open conditions" or "inconsistencies in the validation structure,"
our measure is slightly different from the ones used in SPA and PRIAR. Nev­
ertheless, it is certainly also a reasonable approximation of "the amount of
planning work necessary to .get the input initial world state to the state ex­
pected by the library plan" [24, p. 25J. While our purely syntactic criterion
is certainly inferior in predictive power, it is probably easier to compute than
the measures used in SPA and PRIAR because in our case it is not necessary
to consider the structure of the library plan.

The optimization problem defined above corresponds to the following
decision problem, which we call PMATCH:

15

Given two planning instances, II and II', and two natural numbers
k and n, decide whether there exists a mapping J.l from II to II'
such that 1(J.l(Q+) n Q~) U (J.l(Q-) n Q~)I = k, 1J.l(I) nI'1 ~ nand
there is no mapping J.l' with 1(J.l'(Q+) n Q~) U (J.l'(Q-) n Q~)I > k.

It should be noted that in order to select an optimal reuse candidate from
the plan library, this matching problem has to be solved for each potentially
relevant candidate in the plan library. Of course, one may use structuring
and indexing techniques in order to avoid considering all plans in the library.
Nevertheless, it seems unavoidable to solve this problem a considerable num­
ber of times before an appropriate reuse candidate is identified. For this
reason, the efficiency of the matching component is most probably crucial
for the overall system performance. Unfortunately, the matching problem is
an N P-hard problem.

Theorem 8 PMATCH is NP-hanl, even if the initial states are empty.

Proof. NP-hardness is proved by a polynomial transformation from the
subgmph isomorphism problem for directed graphs [20, p. 202]' which is NP­
complete. This problem is defined as follows:

Given two digraphs G = (VI, Ad, H = (V2' A2), does G contain
a subgraph isomorphic to H, i.e., do there exist subsets V ~ VI
and A ~ Al such that IVI = 1\121 and IAI = IA21, and there exists
a ono-to-one function 1: V2 --+ V satisfying (u, v) E A2 if and only
if (J(ll),f(v)) E A?

Given an instance of the subgraph isomorphism problem, we construct
an instance of PMATCH as follows.

0 0' \tl U V2

P p' {P}
I I' 0
Q- Q~ 0

Q+ {P(v,w)1 (v,w) E A2 }

Q~ {P(v,w)1 (v,w) E Ad.

Now it is obvious that G contains a subgraph isomorphic to H iff there exists
a mapping J.l such that Ip(Q+) n Q~I = IA21· •

It should be noted that NP-hardness of PMATCH holds even if we do
not require an optimal match of the initial state. Hence, the hardness result
applies immediately to the matching criterions used in SPA and PRIAR.

This NP-hardness result implies that matching may be indeed a bottle­
neck for plan reuse systems. In fact, it seems to be the case that planning

16

instances with complex goal or initial-state descriptions may not benefit from
plan-reuse techniques because matching and retrieval is too expensive.

One promising avenue of further research may be to look for good polyno­
mial approximation algorithms for the matching problem. Another way out
may be to characterize t hose planning instances for which matching can be
performed in reasonable time. For instance, one way to reduce the matching
costs is to introduce sort s in order to limit the number of possible matches.

In the following we will have a closer look at the matching problem in
the blocks-world domain. This domain is interesting for two reasons. First,
the instances are relatively simple, and may thus permit efficient matching.
Second, the blocks-world domain has been used extensively to illustrate the
benefits of plan reuse.

4.2 Matching Blocks-World Planning Instances

In general, a blocks-world planning instance consists of

• a set of blocks 0 = {bt , ... ,bn },

• the set of predicates P = {ontable(·), clear(·) , on(· , .)} ,

• operators Move(x, y, z) (move block x from y to z), Stack(x, y) (pick
up block x from the table and stack it on block y), and Unstack(x, y)
(unstack x from y),

• the initial state that should be complete (i.e., mention every true atom­
ic ground formula corresponding to the initial physical configuration of
blocks) and consistent (i.e, describing one possible physical configura­
tion of the blocks), and

• the goal state that specifies a set of ground atomic formulae to be
achieved.

Provided, the goal state is also a complete description of a physical con­
figuration, it is possible to visualize the initial state and goal state as in
Figure 1.

Most of the planning instances that have been used to demonstrate the
benefits of plan reuse techniques all have a particular simple structure. The
goal state is always one stack of blocks. As is easy to see, the matching
problem for such instances can be solved in polynomial time. In order to
maximize goal matching, the blocks in the smaller stack must be mapped to
the blocks in the larger stack respecting the order of the blocks. Obviously,
there are only linearly many such mappings. In fact, if the goal description
also contains atoms of the form ontable(.) and clear(·), then there are at
most two mappings with a maximal number of goal atoms in common. It

17

Initial State
on(A,B) clear(A)
ontable(B) clear(C)
ontable(C)

Goal State
on(C,B) ontable(A)
on(B,A) clear(C)

Figure 1: A Blocks-World Example

is then easy to identify the mapping that maximizes the match between the
initial states.

Proposition 9 PMATCH restricted to blocks-world planning instances,
where th e goal is a complete description of one stack, is a polynomial-time
problem.

However, this positive result does not generalize. If we drop the restriction
that the goal is one stack, the matching problem becomes again N P-hard.

Theorem 10 PMATCH restricted to blocks-world planning instances, where
the goal is a complete description of a set of stacks, is N P -hard.

Proof. In order to prove N P-hardness, we use a polynomial transformation
from the NP-complete problem of 3-dimensional matching (3DM), which is
defined as follows [20, p . 221]:

Given a set M ~ W x X x Y, where W, X, and Yare disjoint
sets having the same number q of elements, decide whether M
contains a matching, i.e., a subset N ~ M such that INI = q and
no two elements of N agree in any coordinate.

For convenience, we assume that there exists a function 9 that assigns a
unique index to all elements in W U X U Y such that

1 < g(w)

1 + q < g(x)
1+2q < g(y)

< q for all w E W,
< 2q for all x EX,
< 3q for all y E Y.

18

Given an instance of 3DM, we construct two planning instances

II (P(O , p),a,I, Q)

II' (P(O', P'), a' ,I', g')

in the following way (see also Figure 2):

1':

I:

~
5J EJ n,

~ [;J b

nz nz 1
0

c

m m
• .

c ,
• • . .

3xlMI

D
D nz

m
,
• .

[;] EJ [;]

3xlMI-3xq II 3xq

E;] ...

5J Ibz•3 1 Ib3•3 1

G':~ ~ ~ ...

~[;J[;J

I IMI

G: [;] [;]
EJ E;]
[;] E;]
I q

Figure 2: Reduction used in the proof of Theorem 10

1. For each triple (mi,I' mi,2, mi,3) E M, 1 :::; i :::; IMI, we set up a stack
of three blocks bi, I, bi,2, bi,3 in the goal description g', i.e., we add the
ground atomic formulae ontable(bi,d, on(bi,2' bi ,I), on(bi,3, bi,2), clear(bi,3)
to g~ .

2. For each block bi ,j appearing in the goal state g' , we add a stack of
g(mi ,j) + 1 blocks to the initial state description I' , where bi,j is the
top block of this stack.

3. We set up q stacks of three blocks Xj ,I , Xj,2, Xj,3, 1 :::; j :::; q, in the goal
state g, where x j,I is the bottom block and x j,3 is the top block.

4. For each block Xj ,k appearing in the goal state description g, a stack
of height 1 consisting of the block x j,k is added to the initial state
description I.

19

5. For each set Sh of. stacks with the same height h in the initial state
description I', we add jShj- 1 stacks of height h to the initial state I.

Now it is obvious that there exists a mapping J1. from II to II' that matches
j~h j goal atoms and jIj- q initial-state atoms iff there exists a 3-dimensional
matching. -

While this hardness result does not directly apply to the matching strate­
gies of SPA and PRIAR- these systems do not maximize matching of initial­
state atoms but minimize "open conditions" or "inconsistencies in the val­
idation structure," respectively- Theorem 10 is nevertheless an indication
that matching incurs considerable computational costs, even for moderately
simple goal structures. In fact, the problem-independent matching strategy
implemented in SPA runs in time exponential in the number of objects since
it simply evaluates all possible mappings. As we will see in the next section,
the runtime for matching one candidate to a planning instance is significant,
even for moderately complex planning instance containing only eight blocks.

5 Empirical Results

In order to complement our analytical results on the relationship between
plan reuse and plan generation, we conducted a number of experiments to
gain insight into the utility of plan-reuse techniques. We were particularly
interested in how the following factors influence the efficiency gains of plan­
reuse techniques:

• the underlying planning system: efficiency gains of plan reuse are mea­
sured relatively to the effort spent on solving the same problem by
planning from scratch, i.e, the efficiency of the underlying planning
system influences the savings we can expect to obtain by plan-reuse
techniques .

• similarity between the planning instances: the effort spent on matching
and plan modification depends supposedly at least partially on the
structural similarity between the reuse candidate and the new instance.

• the application domain: properties of the application domain can prob­
ably render matching and modification more or less difficult.

5.1 Plan Modification Systems

We considered the following three plan-reuse systems:

• PRIAR [29, 31],

20

• SPA [23, 24], and

• MRL [33, 34J.

PRIAR is, as all other plan plan-reuse systems we consider in this section,
based on a plan generation system that has been extended to cope with
the plan modification problem. PRIAR's generative part is derived from the
hierarchical, nonlinear planner NONLIN [38J. The key idea in extending the
generation part in order to deal with plan modification is to store the internal
causal dependency structure used during plan generation and to exploit this
structure, also called va.lidation structure, when a plan has to be modified.

After a match between the reuse candidate (Il,~) and the new planning
instance II' has been computed, a process called annotation verification com­
putes something similar to what we called plan skeleton. The computation of
this skeleton proceeds by removing "inconsistencies" in the validation struc­
ture. This skeleton is then expanded by a process called rFfilting in order to
solve II'.

Two points may be worth noting about PRIAR with respect to its perfor­
mance. First, the matching process is only briefly sketched by Kambhampati
and Hendler [29, 31J and the available empirical data on PRIAR's performance
[29 , 31] does not include the matching costs. Second, according to the de­
scription of PRIAR, the refitting process first tries to expand the computed
plan skeleton and retracts steps from the skeleton only if this expansion fails.
In other words, PRIAR is an "optimistic" system, relying on the assumption
that the plan skeleton can be expanded to a plan with high probability. As a
matter of fact , all experiments described by Kambhampati and Hendler have
the property that t.he skeleton can be expanded. 7

SPA is based on a lift.ed version of McAllester and Rosenblitt's [35J system­
atic nonlinear planning algorithm. In this framework, the planning process
is viewed as a search through a tree of partial plans. Plan generation starts
at the root of the tree (corresponding to the empty plan) and adds plan steps
and constraints, while plan modification starts at an arbitrary place in the
tree and can either add (going down in the tree) or delete constraints and
steps (going up in the tree). As in PRIAR, plan modification in SPA has three
different phases. In the first phase, a reuse candidate is matched against
the new planning instance. In the second phase, which is called fitting (this
should not be confused with the refitting process in PRIAR!), a plan skeleton
is computed. In the third phase, called adaptation, the skeleton is used to
find a plan to solve the new instance.

As described in the preceding section, plan ma.tching in SPA is based
on finding a mapping between the objects of the reuse candidate and the
new planning instance that maximizes the number of common goal atoms. If

7More generally, the blocks-world domain has this property.

21

several mappings lead to a best match, the initial preconditions from the reuse
candidate and the current plan specification are matched against each other
and a mapping that leads to a minimal number of unsatisfied preconditions
of operators in the reuse candidate is chosen.

Plan fitting modifies the reuse candidate in order to create a plan skeleton
by removing superfluous causal dependencies and marking all unsatisfied
conditions. Finally, the plan adaptation pro~ess tries to find a solution for the
new planning instance by extending the skeleton, i.e., adding new constraints
or plan steps, and reduction, i.e., removing constraints or plan steps. In
other words, SPA is less optimistic than PRIAR about the probability that an
extension of the plan skeleton leads to a solution anbd considers retractions
from the skeleton right from the beginning.

Finally, the third plan reuse system we consider is MRL, which is based on
the deductive (linear) planner PHI [6, 8J (implemented in SICSTUS PROLOG).

The underlying logic of this planning system is the interval-based modal
logic LLP [7J. It should be noted that in using this logic in a planning system
it becomes possible to specify temporary goals, i.e., goals that have to be
achieved at some point and not necessarily in the end, something which
could not be done in the usual STRIPS or TWEAK type planning systems (see
also [32]).

Plan gen.eration in PHI is performed by constructing proofs for plan spec­
ifications in a sequent calculus. During the proof, a plan (formula) is con­
structed satisfying the formal plan specification. The proofs are guided by
tactics, which support the declarative representation of control knowledge
and make deductive planning quite efficient. The search space considered
during the proof can be kept to a manageable size and only those deduction
steps are performed which sef'1l1 to be promising. Contrary to the two sys­
tems mentioned above, PHI is not a "complete" planner in the sense that it
will (eventually) find a plan if one exists. However, the currently implement­
ed tactics are sufficient for generating all "easy to find" plans. As a matter
of fact, it was possible to adapt the blocks-world planning instances without
changing or adding tactics. While the "incompleteness" of PHI may seem to
be a disadvantage, the guarantee that a "complete" planner will eventually
find a plan if one exists is only of limited value, since finding this plan may
simply take too much time (see for instance Figure 4).

The application domain of PHI is the UNIX mail domain, where objects
like messages and mailboxes are manipulated by actions like read, delete, and
save.

Plan reuse by the MRL system is based on a logical formalization of
the reuse process including the modification, representation and retrieval
of plans. The system is able to automatically reuse and modify sequential,
conditional, and iterative plans.

22

Plan modification in MRL proceeds in two phases: During the plan in­
terpretation phase the current planning instance and the specification of the
reuse candidate are semantically compared. This process is implemented as
a theorem proving attempt. The result of the plan interpretation phase is a
proof stating that the plan belonging to the reuse candidate can be reused
without modification, or a failed proof from which refitting information can
be extracted. Plan refitting starts with constructing a plan skeleton from
the reused plan according to the result of the proof attempt using the mod­
ification strategy MODDELINS. The plan skeleton is extended to a correct
plan by a constructive proof of the plan specification formula which was
instantiated with this skeleton.

5.2 Application Domains

For our experiments, we considered two different domains. The first appli­
cation domain is the blocks-world, or more precisely, a particular class of
blocks-world planning instances that has been used to explore the perfor­
mance of PRIAR and SPA. The second domain is the UNIX mail domain,
which we used only in connection with the MRL system, though.

Since there is a large collection of empirical data for the modification of
plans in the blocks-world domain available for the PRIAR system [29, 31]' it
seems to be a good idea to test other systems on the same examples. As a
matter of fact , a subset of Kambhampati and Hendler's examples has been
used in the empirical evaluation of SPA [24J.

The blocks-world planning instances used can be roughly categorized as
falling into two classes named "nbs" and "nbsl," where n is an integer pa­
rameter denoting the number of blocks which are involved:

• nbs inst.ances involve an initial stat.e in which all blocks are clear and
on the table and a goal state with one stack that contains all blocks
mentioned in the descript.ion of the initial state .

• nbsl instances have t.he same goal state as nbs instances, but in the
initial state some of the blocks are stacked on others.

Figure 3 gives as an example t.he configurat ion of blocks in the 8bsl blocks­
world planning instance.

Considering the 8bsl instance in more detail, it becomes obvious that
there are no "deadlocks" [21 J during plan generation. In other words, one can
easily generate an optimal plan by simply building up the goal stack starting
at the bottom block and it is never necessary to put a block temporarily on
the table before moving it to its final position. Further, this property holds
for all nbsl instances contained in PRIAR's planning instance collection. Most
probably, this property simplifies the generation and modification of plans

23

[ill IT]
w~[QJ~~[!]

Initial State

w
[Q]
[EJ
~
[I]
[KJ
ITJ
[!]

Goal State

Figure 3: The 8bs1 Example

since, e.g., a plan solving the 8bs instance also solves the corresponding
8bs1 instance. For this reason and because of the fact that optimal plans
can be found in polynomial time [21] for all blocks-world problem instances
containing only one stack in their goal description, we believe that the claim
[31, p. 198] that the "experiments in the blocksworld certainly bear out the
flexibility and efficiency of the incremental plan modification ... over a variety
of specification changes" is at least arguable.

In order to evaluate the effect different application domains can have on
plan reuse performance, we considered in addition to the blocks-world the
UNIX mail domain, which is quite different from the blocks-world. Typical
planning instances in the blocks-world incorporate a large number of objects
of the same type (blocks) but only a small number of different operators.
Typical planning instances in the mail domain involve few objects which are
of different type (e.g., mails and mailboxes) but a large number of different
operators (e.g., open or close a mailbox, read, save, and delete messages).

5.3 Experiments

We start with a brief review of PRIAR's performance data [29, 31]. Most
of the experiments are of the kind nbs -+ kbs1, i.e., a plan solving an nbs
problem is reused to solve a kbsl problem. Comparing the modification effort
with the effort spent on solving the same problem by planning from scratch,
very drastic and impressive savings were obtained as Figure 5 for the 7bsl,
8bs1, and 12bsl instances indicates.

In all examples considered by Kambhampati and Hendler, plan reuse by

24

the PRIAR system leads to savings between 30 and 90 % compared to planning
from scratch. Running other plan-reuse systems on the same examples led
to less drastic improvements. Sometimes the reuse effort turned out to be
even higher than the generation costs (see below).

Explanations for these quite positive results of plan-reuse techniques in
the PRIAR system could be that

• in measuring the plan-reuse costs the time for matching a reuse candi­
date to a new planning instance has not been considered;

• PRIAR is an "optimistic" system, i.e., it is based on the assumption
that the comput~d plan skeleton can be used in the final plan with
high probability (for all examples considered for the PRIAR system,
this probabi lity is identical to one);

• PRIAR's generative capabilities degrade much more quickly than its
capabilities of modifying a plan (see Figures 4 and .5), an observation
also already made by Hanks and Weld [24].

time
in"

1800

1600

1400

1200

1000

800

600

400

200

1 2 3 4 S 6 7 8 9 10 11 12 blocka

Figure 4: Pla.nning in PRJAR

(measured on an EXPLORER-II)

time
in.

1800 -,. _________ Plaming for 12bol

~1--_pIII----- Planning for IIboI
70

60

SO

40 .. ______ ... ~- Plannin& for7ba1

30

20

10

1 2 3 4 S 6 7 8 9 10 11 12 blocks

Figure 5: Savings with PRJAR:

nbs ---+ kbsl

In contrast to PRIAR, planning from scratch is much more efficient in
SPA and PHI as Figures 6 and 7 indicate, even when abstracting from the
differenc~ induced by the different platforms. PRIAR simply degrades very
quickly, while SPA and PHI show a more graceful degradation of performace
with the size of the problem instance. In particular, it is interesting to note
that SPA's performance is identical for solving nbs and nbs! instances, which
might be explained by our observation that a plan that solves an nbs instance
also solves the corresponding nbs! instance.

25

time
inS

100

90

80

70

60

50

40

30

20

10

time
in s

n-bs
n-bsl

\.6

\,4 blocks world

1.2

\.0 mail domain

0.8

0.6

0.4

0.2

1 2 3 4 5 6 7 8 9 10 11 12 blocks 1 2 3 4 5 6 7 8 9 \0 11 12 :::~~~ion.

Figure 6: Planning in SPA Figure 7: Planning in PHI

(mea.<;ured on a SOLBOURNE 602/128) (measured on a SOLBOURNE 602/128)

Figure 7 displays the performance of PHI for the blocks world instances
nbs as well as for the mail domain. As one might expect, planning in the mail
domain is more expensive since this domain contains more operators than
the blocks-world domain. As mentioned above, the efficiency of PIlI results
from the use of proof tactics, which result in a very efficient search strategy.

As we see in Figures 8 and 9, the efficiency of the plan generators in SPA

and MRL leads to significantly less drastic savings by plan-reuse techniques
than in the case of PRIAR.

Besides the influence of the efficiency of the plan generator on the sav­
ings that can be obtained by plan-reuse, we were also interested in how the
structural similarity of the reuse candidate with the new planning instance
influences the performance of the plan modification process. In order to
study this influence, we tested the SPA system on nbs --t kbs, nbs --t kbs1,
and nbs1 --t kbs1 modification tasks. Since the deviation in the initial state
increases and the number of "open conditions" to be resolved during plan
adaptation increases, we expected that plan adapt ion becomes more difficult
moving from the first kind of tasks to the latter kind of tasks.

In Figure 8, we give the results of the experiments described above for
the case k = 8. We also performed the same experiments with k = 7 and
k = 12, which led to a similar picture.

In all examples, matching shows an exponential run time behavior for
the domain-independent matching algorithm we used. 8 As a matter of fact,
even for a moderately sized domain containing only eight blocks, the match­
ing costs are already significant. For the 9bs --t 8bs1 example, the time of
matching is already significantly higher than the plan modification time.

8SPA also provides an application-dependent matching algorithm which is linear but
restricted to the blocks-world domain, where there is only one goal stack. Instead of this
more efficient method, we used the general matching algorithm in order to get an idea
about the matching costs in SPA in the general case

26

Figure 8a gives the performance for the easiest modification problem,
where the initial and the goal states differ only by the number of blocks
used. Here, SPA shows a performance similar to PRIAR. However, the sav­
ings are less drastic, but the total modification effort never exceeds the plan
generation effort. If a non-exponential matching algorithm would be used,
the modification effort would linearly decrease as the reused plan becomes
more and more similar to the desired solution.

lime
in.
18

16

14

12

10
'.

8

6

1 2 3 4 5 6 7 I blod<t

a) SPA: nbs --+ 8bs

lime
in.

40

35

30

25

20

15 .J--....,fI--..... - ...
10

1 2 3 4 5 6 7 I 9 blod<t

b) SPA: nbs --+ 8bs1

I!mo
1ft .

90

80

70

60

50

40

30

~l---~~--~-10

123 4 56

c) SPA: nbs1 --+ 8bs1

Figure 8: Matching and modification costs in SPA. The grey horizontal bar
gives the time for generating a plan for 8bs or 8bs1 from scratch. The dashed
line plots the time for plan modification and the dotted line plots the time
for matching using a problem-independent strategy. The solid line plots the
resulting time for matching and modification.

When the modification tasks become more difficult, since the reuse candi­
date and the new planning instance are structurally less similar, the savings
of plan modification bpcome less predictable. A phenomenon which we ob­
served is the occurrence of peaks in the plan modification effort.9

For the reuse of nbs1 problems to solve the 8bs1 problem the performance
of plan modification becomes worse. The peak is higher and the phenomenon
occurs for more reused planning instances. We have no explanation for this
phenomenon and furthermore it does not coincide with performance measures
reported in [24].

With our last experiment, we want to highlight the influence of the appli­
cation domain on the performance of plan-reuse techniques. Running MRL on
nbs -+ 8bs instances and on mail domain instances, we obtained the runtime
behavior displayed in Figure· 9. It should be noted that we used the same
proof tactics and order-sorted unification algorithm for both example sets.

The experiments demonstrate that the effort for planning from scratch

9The observed ru nt. ime behavior correlates linearly with the number of considered par­
tial plans . In ot.her words , the runt.ime peaks are not caused by any machine-dependent
features but by the plan-modification process.

27

ti ...
i ••
1.6

1,4

1.2

1.0

1.1

U
1,4

I.l

1.0

0 .• -1--....,."----
0.6

0,4

0.1

a) MRL: blocks world

u... i.,
1.6

1,4

1.2

2.0

1.1

U
1,4

1.2
1.0"1-~ ____ _

o.a 0-----... ::: ~ .. ~~>
0.2 _________

b) MRL: mail domain

Figure 9: Matching and modification costs in MRL. As above, the grey
horizontal bar indicates plan generation time, the dashed line plots the time
for plan modificat.ion, and the dotted line plots the time for matching. The
solid line plots the rf'sulting time for matching and modification.

and for plan modificat.ion is almost the same for both problems, but they dif­
fer significant.ly in t.he effort which has to be spent on matching. In the blocks
world, matching is much more expensive because the goal state description is
very homogeneous, i.e., all objects are of the same sort. This leads to many
different matching possibilities. In the mail domain we have fewer objects
and they are of different sorts, which makes matching less expensive since
the unification algorithm can benefit from the sort information- an obser­
vation supporting our conjecture that many-sorted logics in heterogeneous
domains can lead to a significant efficiency gain for the matching problem
(see Section 4.1).

The different matching costs lead to different relative performance figures
by plan reuse in MRL: in the mail domain, solving the current problem by
reusing a given plan leads to an efficiency gain, while solving the blocks world
problem by plan reuse is always more expensive.

6 Conclusions

Improving the efficiency of planning systems by adding capabilities to modify
existing plans has received some research interest recently. We considered the
relationship between plan reuse and plan generation from an analytical and
empirical point of view in this paper.

In analyzing the relative computational complexity of plan modification

28

versus plan generation, we showed that plan modification is as hard as plan
generation and sometimes modification is even harder than planning from
scratch. We also showed that. these results hold under the restriction that
the modification process has to account for only one changed atom in the goal
specification. In particular, we proved that deriving the maximal reusable
subplan is not easier than planning. Hence, we cannot hope for minimizing
planning effort by first identifying the maximal applicable subplan which is
then (minimally) extended by plan generation. In fact, in plan-reuse sys­
tems, plan modification is not attacked as a problem but considered as a
heuristic technique. This means that instead of using as much of the old
plan as possible these systems recycle as much of the old plan as the particu­
lar planning algorithm will per-haps be able to use in solving the new problem
instance. Hence, adopting the principle of conservatism in plan modifica­
tion only seems to make sense in a replanning cont.ext. where one wants to
minimize the perturbation of t.he original plan.

Although plan modificat.ion does not. lead t.o a provable efficiency gain in
terms of comput.at.ional compl<:'xit.y, it. seems intuitively plausible that reusing
old plans can sometimes (perhaps in a significant number of cases) lead to an
improvement in efficiency. However, in order to exploit. plan-reuse t.echniques
in the general case, it. is necessary t.o select an appropriat.e reuse candidate
from a plan library. The bottlenf'ck in retrieving such a candidate from the
library seems to be that the matching problem, the problem of matching the
objects of the reuse candidate to the objects of the new planning situation, is
already quite difficult. As we show, t.his problem is NP-hard in general. This
holds even for moderat.ely simple blocks-world planning inst.ances. Only in
the case that there is exactly one stack in the goal description, the matching
problem is solvable in polynomial time.

Complement.ing our analytical results by experiments with existing plan­
reuse systems, we noted that the relative efficiency gain of plan-reuse tech­
niques depends crucially on the efficif'ncy of the underlying planning system.
In particular, we noted that for the syst.ems SPA and MRL the relative savings
by plan-reuse techniques were significantly less drastic than with t.he PRIAR

system. One main reason seems t.o be that the plan generation systems used
in SPA and MRL are much more efficient than the generative component of
PRIAR. Furthermore, we noted that the structural similarity between the
reuse candidate and the new planning instance can have a significant influ­
ence on the performance of the plan modification process. As a matter of
fact, for a large number of structurally not too similar planning instances, the
reuse costs were higher than the costs of planning from scratch. Further, we
noted in this context that the costs of matching (only one candidate against
the new planning instance) can already be significant. Finally, we compared
the effect of different application domains on the reuse effort (in the MRL

system). Interestingly, the plan modification effort did not change, but the

29

matching costs were much higher in the blocks-world domain (with a large
number of objects of the same type) than in the mail domain (with fewer
ob jects that are of different types).

Summarizing, we conclude that plan-reuse techniques may be of a more
limited value than previously thought. First of all, it is not clear for which
type of domains and/or problems plan-reuse techniques lead to a predictable
efficiency improvement. As a matter of fact , in a large number of exper­
iments we observed that plan-reuse can be more expensive than planning
from scratch! Second, even if such domains and problems have been iden­
tified, there is still the problem of how to solve the retrieval and matching
problem efficient.ly.

Acknow ledgements

We would like to thank Christer Rickstrom, Tom Bylander, and Subbarao
Kambhampati, and two anonymous IJCAI referees, who provided helpful
comment.s on an ~arlier version of this paper. In particular, Tom's remarks
and questions heavily influenced the paper. We would also like to thank
Steven Hanks and Daniel Weld, who made their SPA system available to us
and answered our questions patiently.

References

[1] Proceedings of the 9th National Conference of the A merican Association
for Artificial Intellige.nce, Anaheim, CA, July 1991. MIT Press.

[2] Working Notes of the AAAI Spring Symposium "Computational Consid­
erations in Supporting Incremental Modification and Reuse", Stanford
University, Mar. 1992.

[3] Proceedings of the 1st In.t ernational Conference on A rtificial Intelligence
Planning Systems, Washington, D.C., 1992. Morgan Kaufmann.

[4] C. Backstrom and I. Klein. Parallel non-binary planning in polynomial
time. In IJCAI-91 [26], pages 268- 273.

[5] C. Backstrom and B. Nebel. Complexity results for SAS+ planning. In
IJCAI-93 [27]. To appear.

[6] M. Bauer, S. Biundo, D. Dengler, J. Koehler, and G. Paul. PHI - a logic­
based tool for intelligent help systems. In IJCAI-93 [27]. To appear.

[7] S. Biundo and D. Dengler. The logical language for planning LLP. DF­
KI Research Report, German Research Center for Artificial Intelligence
(DFKI), Saarbriicken, 1993. To appear.

30

[8] S. Biundo, D. Dengler, and J. Koehler. Deductive planning and plan
reuse in a command language environment. In ECAI-92 [15], pages
628- 632.

[9] T . Bylander. Complexity results for planning. In IJCAI-91 [26], pages
274- 279.

[10] T . Bylander. Complexity results for extended planning. In AIPS-92 [3].

[11] T . Bylander. An average case analysis of planning. In Proceedings of
the 11th National Conference of the American Association for Artificial
Intelligence, Washington, DC, July 1993. MIT Press. To appear.

[12] T. Bylander. The computational complexity of propositional STRIPS
planning. A rt~ficial Intelligence, 1993. To appear.

[13] D. Chapman. Planning for conjunctive goals. Artificial Intelligence,
32(3):333- 377, July 1987.

[14] S. V. Chenoweth. On the NP-hardness of blocks world. In AAAI-91 [1],
pages 623- 628.

[15] Proceedings of th e 10th EUTOpe(m Conference on A dificial Int elligence,

Vienna, Austria, Aug. 1992. Wiley.

[16] T. Eitel' and G. Gottlob. On the complexity of propositional knowl­
edge base revision, updates, and (Ounterfactuals. A T'fificial Intelligence,
57:227- 270, 1992.

[17] T. Eitel' and G. Gottlob. The complexity of logic-based abduction. In
P. Enjalbert, A. Finkel, and K. W. Wagner, editors, Proceedings Tenth
Symposium on Theoretical Aspects of Computing STA CS-93, pages 70-
79, Wiirzburg, Germany, Feb. 1993. Springer-Verlag.

[18] K. Erol, D. S. Nau , and V. S. Subrahmanian. On the complexity of
domain-independf'nt planing. In Proceedings of the 10th National Con­
ference of the American Association for Artificial Int elligence, pages
381- 386, San Jose, CA, July 1992. MIT Press.

[19] K. Erol, D. S. Nau, and V. S. Subrahmanian. When is planning decid­
able? In AIPS-92 [3], pages 222- 227.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability-A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

[21] N. Gupta and D. S. Nau. On the complexity of blocks-world planning.
Artificial Int elligence, 56(2):223- 254, 1992.

31

[22] K . .1. Hammond. Explaining alld reparIng plans t.hat. fail. Artificial
Int elligence, 45: 173- 228, 1990.

[23] S. Hanks and D. S. Weld. Syst.emat.ic adapt.at.ion for case-based planning.
In AIPS-92 [3], pages 96- 105.

[24] S. Hanks and D. S. Weld. The syst.emat.ic plan adapt.or: A formal foun­
dat.ion for case-based reasoning. Technical Report. TR 92-09-04, Univer­
sity of Washingt.on, Depart.ment. of Comput.er Science and Engineering,
Seat.tle, WA, Sept.. 1992.

[25] A. E. Howe. Failure recovery allalysis as a tool for plan debugging. In
AAAI Spring SYlllp. HEUSE '!)2 [2], pages 25-:30.

[26] ProCf'rdillgs of II/(· 1::2lh 11IIr,.,wlion(J1 Joinl Conlr1TlIrT on AdificialIn­
I rllig("1l cr, Sydlley, Austra,lia, Allg. 1991. Morgan I--:allflllanll.

[27] Frncf'f'dillg8 of Ilu' 1:1lh 11I1('"/"1/.{/liol)al Joinl C01l.frrrnCf' 011. Arl4i.cial In­
tr.lhgf'llCf', Chaml)('ry, Fra,lIef', Aug. 199:3.

[28] D. S. Johllson. A cat.alog of cOlllpkxit.y c1assf's. In J. van Leeuwen,
edit.or, H(l11dbool.: of Thrnrrli('{l.l Compulrr S6r1l.cr, Vol. A, pages 67-
161. MIT Press , I !)90.

[29] S. Kamhltalllpat.i . Flr:rihlr Rru,w' (Ind Modificalion i1l. Ihrmrchica/ Plan­
ning: A Valid(Jlioll 81.,../I('/u1'(' /3(JSf'd Approach. PhD t.hesis, Ulliversity
of Marylalld , Colkg(' Park , 1989.

[30] S. Kalllhilampati. Utility t.radf'offs in increment.al plall modification and
[(' us('. In AAAI Spring Symp. REUSE '92 [2], pagf'S 36- 41.

[31] S. Kamhhampati and .1 . A. Hendler. A validation-st.ructure-based t.heory
of plan modi firation and reuse . Artificial I1l.f.clligf'n('('., .5.5: 193- 2.58, 1992.

[32] H. Kaut.z and B. S('lmall . Planlling as sat.isfiabilit.y. In ECAI-92 [15],
pages 359-·36:3 .

[33] J. Koehlel'. Towards a logical t.reatment of plan reuse. In AIPS-92 [3],
pages 285- 286.

[34] J. Koehler. Flexible plan reuse in a formal framework. DFKI Re­
search Report., German Rf'search Cent.er for Art.ificial Intelligence (DF­
KI), Saarhriirken, 1993. To appear.

[35] D. McAllester and D. Rosenhlitt. Systemat.ic nonlinear planning. In
AAAI-91 [1], pages 634- 639 .

32

[36] B. Nebel. Belief revision and default reasoning: Synt.ax-based approach­
es. In J. A. Allen, R. Fikes, and E. Sandewall, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the 2nd
International Conference, pages 417- 428, Cambridge, MA, Apr. 1991.
Morgan Kaufmann.

[37] B. Selman and H. Levesque. Abductive and default reasoning: A com­
putational core. In Pmc(,p(ling8 of the 8th National Conference of the
American Association for Ad1ficial Intelligence, pages 343- 348, Boston,
MA, Aug. 1990. MIT Press.

[38] A. Tate. Generat.ing project networks. In ProCPP(i1:ng-" of thf'. 5th In­
ternrliional Joint C07lIf'1"f'7I.("(' on AT·t~fi:cial Int(ihgP1?Cf', pages 888- 893,
Cambridge, MA, Aug. U)77.

[39] M. M. Veloso. Aut.omatic st.orage, r('t.rif'val, alld r('play of multiple cas­
es using derivatiollal allalogy ill PROD ICY. III AAAI Spring Symp.
REUSE '92 [2], pag('s 1:~I - I:W.

33

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kOnnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92·27
Franz Schmalhofer. Jorg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR·92·29
Zhaohui Wu. Ansgar Bernardi. Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages
RR·92·30
Rolf Backofen. Gert Smolka:
A Complete and Recursive Feature Theory
32 pages

RR·92·31
Wolfgang Wahlster:
Automatic Design of Multimodal Presentations
17 pages

RR·92·33
Franz Baader: Unification Theory
22 pages

RR·92·34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR·92·35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment .
18 pages

RR·92·36
Franz Baader. Philipp Hanschke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR·92·37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

DFKI
-Bibliothek­
PF 2080
D-67608 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR·92·38
Philipp Hanschke. Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR·92·40
Philipp Hanschke. Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR·92·41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR·92·42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR·92·43
Christoph Klauck. Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR·92·44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR·92·45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR·92·46
Elisabeth Andre. Wolfgang Finkler. Winfried Graf.
Thomas Rist. Anne Schauder. Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR·92·47
Frank Bomarius: A Multi·Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR·92·48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity· Theoretic Perspective
15 pages

RR·92·49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR·92·50
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR·92·51
Hans·Jurgen Burckert. Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR·92·52
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR·92·53
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR·92·54
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR·92·55
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR·92·56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR·92·58
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR·92·59
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR·92·60
Karl Schlechta: Defaults. Preorder Semantics and
Circumscription
19 pages

RR·93·02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-JiJrgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR·93·03
Franz Baader. Berhmd Hollunder. Bernhard Nebel.
Hans-JiJrgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR·93·04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR·93·05
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR·93·06
Hans-Jargen Barckert. Bernhard Hollunder. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR·93·07
Hans-JiJrgen BiJrckert. Bernhard Hollunder. Armin
Laux: Concept Logics with Function Symbols
36 pages

RR·93·08
Harold Boley. Philipp Hanschke. Knut Hinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR·93·09
Philipp Hanschke. Jorg Wurtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR·93·10
Martin Buchheit. Francesco M. Donini. Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR·93·11
Bernhard Nebel. Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader. Karl SchlechJa:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren . Andreas Podelski,RaIfTreinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR-93-1S
Frank Berger. Thomas Fehrle . Kristof Klockner.
Volker SchOl/es. Markus A . Thies. Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka. Martin flenz. Jorg Wurtz : Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-20
Franz Baader. Bernhard flollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer. Jorg Muller :
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel. altmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer floch . Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR-93-33
Bernhard Nebel. Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

DFKI Technical Memos

TM-91-13
Knut flinkelmann : Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Interpreter
16 pages

TM-91-14
Rainer Bieisinger. Rainer floch . Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang : Entwurf und Implementierung eines
Compilers zur Transformation von
Werkstiickreprlisentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
JUrgen MUlier. Jorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer. Christoph Globig. Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn. Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn. Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles. Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

DFKI Documents

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur Reprasentation
von Features in CIM
98 Seiten

D-92-1S
DFKI Wissenschaftlich-Technischer Jahresbericht
1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.) : Verzeichnis von Soft­
warekomponenten flir natiirlichsprachliche Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen . Winfried Graf,
Bob Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein : Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Heifert: Parsen und Generieren der Prolog­
artigen Syntax von RELFUN
51 Seiten

D-92-24
Jiirgen MUller. Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seiten

D-92-27
Martin Harm. Knut Hinkelmann. Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

D-92-28
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell
zur Repr~ntation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke. Thom Fruhwirth: Terminological
Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt. Frank Peters.
Gernod LaufkOtter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann. Karin Harbusch(Eds.) :
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-0S
Elisabeth Andre. Winfried Graf, Jochen Heinsohn.
Bernhard Nebel. Hans-Jiirgen Profitlich. Thomas
Rist. Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jurgen MUller (Hrsg.) :
Beitrage zum Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbriicken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal chargeof25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores. Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse
53 Seiten

D-93-08
Thomas Kieninger. Rainer Hoch: Ein Generator mit
Anfragesystem ftiT strukturierte WOrterbiicher zur
Unterstiitzung von Texterkennung und Textanalyse
125 Seiten

Plan Reuse versus Plan Generation: A Theoretical and Empirical Analysis

Bernhard Nebel, Jana Koehler

RR-93-33
Research Report

