
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-92-43

A Heuristic Driven Chart-Parser for
Attributed Node Labeled Graph Grammars

and its Application to
Feature Recognition in CIM

Christoph Klauck, Jakob Mauss

September 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, and Siemens.
Research projects conducted at the DFKI are funded by the German Ministry for Research and
Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland

Director

A Heuristic Driven Chart�Parser for
Attributed Node Labeled Graph Grammars
and its Application to
Feature Recognition in CIM

Christoph Klauck, Jakob Mauss

DFKI-RR-92-43

A short version of this paper will be published in the Proceedings of the Interna-
tional Workshop on Structural and Syntactic Pattern Recognition (SSPR’92).
This paper was also accepted in a short version ba the V International Symposium
on Artificial Intelligence (V ISAI’92).

This work has been supported ba a grant from The Federal Ministry for Research
and Technology (ITWM-8902 C4).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

A Heuristic Driven Chart�Parser for

Attributed Node Labeled Graph Grammars

and its Application to

Feature Recognition in CIM

Jakob Mauss and Christoph Klauck

DFKI GmbH� Projekt ARC�TEC�

P� O� Box ����� D��	
� Kaiserslautern

Phone� ��
��������
��
		 Fax� ��
��������
������

e�mail� klauck�dfki�uni�kl�de

Abstract

To integrate CA��systems with other applications in the CIM world� one
principal approach currently under development is the feature recognition pro�
cess based on graph grammars� It enables any CIM component to recognize
the higher�level entities � the so�called features � used in this component out
of a lower�data exchange format� which might be the internal representation
of a CAD system as well as some standard data exchange format� In this pa�
per we present a �made�to�measure� parsing algorithm for feature recognition�
The heuristic driven chart based bottom up parser analyzes attributed node
labeled graphs �representing workpieces� with a �feature��speci	c attributed
node labeled graph grammar �representing the feature de	nitions� yielding a
high level �qualitative� description of the workpiece in terms of features�

Contents

� Motivation �

� Attributed Node Labeled Graph Grammars �

� The Graph Parsing Procedure �

� Termination� Completeness� and Complexity ��

� Application to Feature Recognition in CIM ��

� Conclusion ��

List of Figures

� Two sample feature de�nitions �

� A simple workpiece graph and its derivation � � � � � � � � � � � � � � �

� Representing edges by tiepoints �

� A partial patch with three �lled roles � � � � � � � � � � � � � � � � � � ��

� Architecture of the parser ��

	 A workpiece and a part of the feature tree � � � � � � � � � � � � � � � ��

�

� Motivation

Research in feature
based CA�
systems like CAD �Computer Aided Design
� CAPP
�Computer Aided Process Planning
 or CAM �Computer Aided Manufacturing
� has
been motivated by the realization that geometric models represent a workpiece in
greater detail than can be utilized e�g� by a designer� strength calculator or process
planner� When CA�
experts view a workpiece� they perceive it in terms of their
own expertise� These terms� the so
called features� which are build upon a syntax
�shape description� topological graph containing geometry and technology
 and a
semantics �description of related informations� e�g� skeletal plans in manufacturing
or functional relations in design
� provide an abstraction mechanism to facilitate e�g�
the creation� manufacturing and analysis of workpieces� Features that are required
e�g� for design may di�er considerably from those required e�g� for manufacturing or
assembly� even though they may be based on the same geometric and technological
entities �cf� �FiSa ���
�

convex(a1.small-face, a2.small-face)

convex(big-face, small-face)
area(small-face) <= area(big-face)
area := area(small-face) + area(big-face)

big-face
small-face

p1

small-face
RARA

big-faceANGLE

a1.big-face = a2.big-face

a1 a2
ANGLE

a1

small-face
RARA

big-face

small-face
RARA

big-face

ANGLE
a2

p2

CORNER

Figure �� Two sample feature de�nitions

So representing features and recognizing them out of the �lower
level
 workpiece
description is a necessary step to bridge the gap between the several CA�
systems
and an important step towards truly Computer Integrated Manufacturing �CIM
�
The expected advantages of a close coupling of CA�
systems are� The information
interchange shall lead to better knowledge transfer� to shorter turnaround times and
to improved feedback� In the end� higher �exibility and generally better results are
expected�

In current research one method to represent and recognize features is based on
graph grammars �cf� �FiSa ��� ChHe ���
� This area is a well established �eld of
research and provides a powerful set of methods like parsing and knowledge about
problems� their complexity and how they could be solved e�ciently� The use of graph
grammars for feature descriptions facilitates the application of these results to the
area of feature recognition� So� in consideration of the feature characteristics� �made

to
measure� tools must be developed to make the recognition and representation

�

process very e�cient�

From this point of view we present in this paper a heuristic driven chart based
parser for parsing attributed node labeled graphs representing workpieces with at

tributed node labeled graph grammars representing the feature de�nitions� Parsing
yields a high level �qualitative
 description of the workpiece in terms of the so
called
features to support e�g� a feature based CAPP
system �cf� �Cha ��a� Cha ��b�
� The
nodes of a workpiece graph represent geometric primitive surfaces� the node label
decode the type of the surface� the attributes carry detailed geometric and techno

logic information and the edges decode the topology of the workpiece� i�e� two nodes
are adjacent if the corresponding surfaces touch each other�

Figure � shows two simple features and its associated productions� An ANGLE
consists of two connected atomic features �surfaces
� called big
face and small
face
within the ANGLE feature� Several constraints are speci�ed� like convex�big�face�
small�face� and a function is used to de�ne the ANGLE attribute area�

The complex feature CORNER is de�ned by two overlapping ANGLE features�
The two ANGLEs �a� and a�
 overlap with their big
face� say they share the same
surface as big
face� Additional their small
faces must be neighboring� The grammar
formalism introduced in the next section enables us to express two kinds of deep
relations between the components of nodes �black� neighboring� grey� overlapping
�

To become more acquaint with the e�ect of feature characteristics to our formal

ism� we brie�y introduce now the term feature and the most important characteristics
of its de�nition� Detailed description and the analogy to graph grammars can be
found e�g� in �Klau ����

We de�ne the term feature as a description element based on geometrical and
technological data of a product which an expert in a domain associates with certain
informations�

Some of the syntactical characteristics of features are�

�� Interaction� Areas of features can overlap �see �gure �
� This must be taken
into account by the formalism and by the parser�

�� Dependence of Dimensions� In dependence of the dimensions� the same struc

tures may be identi�ed as di�erent features� This is expressable by functional
constraints on attributes included in a feature de�nition�

�� Hierarchy� A complete feature description of a workpiece forms a hierarchical
structure of features� the output of our parser�

�� Qualitative Description� To describe a feature an expert uses only less geomet

rical and technological informations� he uses a qualitative description�

�� Ambiguity� A feature can often be derived in many syntactic di�erent but
semantic equivalent ways� We are interested in only one pregnant description
of the workpiece�

�

	� Similar Features� Features may be similar with respect to a has
parts or a is
a
hierarchy� A terse formulation and an e�cient treatment of such variants and
special cases is desired� In this work� the recognition of variants is supported by
using a chart� The treatment of special cases is simpli�ed by a close coupling
of parsing and taxonomic reasonig�

The above characteristics lead us to a �made
to
measure� grammar formalism� called
ANLGG �Attributed Node Labeled Graph Grammar
 introduced in the next section�

� Attributed Node Labeled Graph Grammars

In this section we will brie�y de�ne the terminology of attributed node labeled graph
grammars as used in this paper� shortly called ANLGG� Surveys and detailed intro

duction to graph grammars can be found e�g� in �Ehr ��
����

A node in our formalism ANLGG is a structure with two kinds of slots� called
role� and attribute� A node can be seen as a partial function mapping slots to
their corresponding values� An attribute value is an arbitrary atomic object� a role
value is always a node� Let cast�v
 be the set of all role values of the node v� and
cast��v
 be the transitive closure of the function cast� i�e� the set of all role values of
v and role values of role values of v and so on� including v� The nodes in cast�v
 are
assigned to v by an application of a graph grammar production as explained later in
this section� There may be edges between the nodes in cast�v
� therefor the node v

can also be seen as a graph� The nodes in cast��v
 are called components of v and
represent a hierarchy of features as mentioned in the previous section with v serving
as root
node� The leaves �atomic features
 of the hierarchy are given by the nodes
of a terminal graph �representing e�g� a workpiece
�

A path in a role r� is a �nite sequence � � �r� � � � rn� of roles and v��
 denotes the
component vn of v where v� �� v�r�
� v� �� v��r�
 � � � vn �� vn���rn
� The last element
in � may be an attribute� in this case v��
 denotes the corresponding attribute
value� Occasionally we use a superscript notation like in v� to indicate� that v� is a
component of v� For a given set V of nodes let V � denote the union

S
v�V cast��v
�

A �nite undirected node labeled graph graph� or graph for short is a �
tuple
g �� �V�E� S� �
 where

�The notion of role as used here is inspired by the notion of roles in KL�ONE like frameworks�
Like in KL�ONE� role values will be restricted to instances of a given sort or to one of its subsorts�
Additional� roles in our framework carry an implicit ����� number restriction �i�e� there�s only one
	ller at a time��

�

V is a �nite set of nodes� jV j is the number of nodes in g

E � V � � V � is a set of undirected edges

S is a �nite nonempty alphabet of node labels

� is a labeling function � � V � � S

For a given node v the label ��v
 is called the sort of v� Note� that E and � are
de�ned for V � � V � so the nodes itself possess graph structure�

For example the graph g� in �gure � below got two nodes V � fANGLE�� RA�g
and four edges� The node ANGLE� got two roles big�face and small�face and an
attribute area� cast�ANGLE�
 � fRA�� RA�g and ANGLE��big
face
 � RA� with
��RA�
 � RA �for RectAngular surface
� ANGLE���
 � ��� �� �
 where � � �big

face direction
vec�� is a path in big�face� V � of g� contains four nodes and the node
ANGLE� can also be seen as a graph with two nodes RA� and RA� and one edge�

A terminal graph is a graph g� � �V�� E�� S� ��
 where �v � V� � cast�v
 � �
and metasort ���v

 � terminal� For example g� in �gure � is a terminal graph� but
g�� g�� and g� are not�

The sorts in S are structured by a partial order �S� the sort hierarchy� a
subsumption hierarchy� If s� �S s� we say s� is a subsort of s�� There are no
assumptions or restrictions concerning inheritance� i�e� the relation between the
roles and attributes of a sort and those of its subsorts� The parser will just treat any
instance of s� like an instance of s�� but not vice versa� Sort hierarchies are used
here in order to reduce the number of productions needed to describe the domain�

In our paper an attributed node labeled �feature
 graph grammar� or ANLGG
for short� is a 	
tuple gg �� �S��S � P�R� sort�metasort
 where

S is the same alphabet as above

�S is a partial order of S� the sort hierarchy

P is a �nite set of productions

R is the �nite set of all role speci�cations of productions in P

sort is a total function sort� P 	R � S and

metasort is a total function metasort� S � fterminal� nonterminal� goalg

A production is a �nite� nonempty set p � fr
spec�� � � � � r
specng of role spec

i�cations� de�ning the right hand side of p� Each role speci�cation � p speci�es a
node such that the whole p speci�es a connected graph with certain relational and
functional constraints holding between the nodes� The speci�ed graph may be re

placed by a single node v� i�e� the production is applied to a graph gn leading to a
reduced graph gn�� by

 identifying n nodes vi � V �

n with ��vi
 �S sort�r
speci
� that satisfy the rela

tional and functional constraints given by r
speci� � � i � n�

	

 building Vn�� by removing these nodes from Vn and adding a new node v with
��v
 �S sort�p
� that has one role ri for each r
speci with the corresponding
removed node vi serving as role value� i�e� v�ri
 � vi� � � i � n and Vn�� �
fvg 	 Vn n cast�v
� The added v represents an instance of the left hand side of
p�

Additional we need an embedding rule that speci�es� what happens to the edges
of the removed nodes fv�� � � � � vng � cast�v
 and how the added node v is connected
to the remaining nodes Vn�� n fvg of the new graph gn��� We de�ne�

 En�� � En 	 f�v� v�j
 j ��v
�� v�j
 � En � v� � cast��v
 and v�j � V �

n n cast
��v
g

This embedding simply states� that the added node shares an edge with all nodes�
that have at least one connection with one of the removed nodes� Geometrical
interpreted it states� that two composed objects touch each other� if at least two
of their components do so� As a consequence of our embedding rule� the reverse
application of a production �i�e� from left to right
 is not uniquely de�ned�

area 12

reference_point (3, 0, 0)
direction_vec1 (0, 2, 0)
direction_vec2 (0, 0, 2)
direction_of_material +

reference_point (0, 2, 0)
direction_vec1 (0, 0, 2)
direction_vec2 (3, 0, 0)
direction_of_material +

reference_point (3, 0, 0)
direction_vec1 (0, 2, 0)
direction_vec2 (0, 0, 2)
direction_of_material +

reference_point (0, 0, 0)
direction_vec1 (0, 2, 0)
direction_vec2 (3, 0, 0)
direction_of_material -

g 0

RA
2

RA
1

RA
3

p1

y

RA RA

RA

x

z

1
g

1

2
3

p2p1
ANGLE

4

RA
3

small-face
RA2

big-face
RA1

g 3
CORNER

6

big-face
RA 1

big-face
RA1

small-face
RA3

a1 a2
ANGLE 4 ANGLE5

g 2
area 10area 12

ANGLE
4

ANGLE
5

big-face
RA 1

big-face
RA1

small-face
RA3

small-face
RA2

small-face
RA2

Figure �� A simple workpiece graph and its derivation

A role speci	cation is a �
tuple r
spec � �r� C�� C�� Cfunc
 where r is the
speci�ed role� C� and C� are �nite sets of path constraints� and Cfunc is a �nite set
of functional constraints and predicates �see e�g� �gure �
� A role may have several
speci�cations within a grammar� but not within a production� A path constraint
for a role r in a production p is a �
tuple ��� ��
 of pathes and denotes two nodes v�

and v�� as follows� Let v be a node added by an application of p and v� � v�r
� Then
v� �� v��
 and v�� �� v����
� The path constraint enforces v� and v�� to be connected
or to be identical �i�e� to overlap
 depending whether it occurs in C� or in C�� The
ability to express deep relations� i�e� relations between the components of the nodes
in a graph enables us e�g� to express an alignment of components and thereby to
reduce the ambiguity inherent to our grammar formalism�

�

A functional constraint of a r
spec of a production p is an expression of the
form a � f���� � � � � �n
� where a denotes an attribute value v�a
 of a node v added by
p and f is applied to the �role or attribute
 values v��i
� Analogous a predicate is
an expression of the form p���� � � � � �n
 and yields true when applied to the denoted
values v��i
� A node v� � cast�v
 satis�es a given r
spec of a role r if ��v�
 �S sort�r

spec
 and v� � v�r
 such that v satis�es all constraints and predicates given by r
spec�

For example� the two r
specs for big
face and small
face in production p� in �gure
� contain two predicates and one functional constraint each �only depicted once in
the �gure
� The r
spec for role a� in production p� contains a C� path constraint
��a� big
face�� �big
face�
� and� corresponing� a��s r
spec got a path constraint ��a�
big
face�� �big
face�
 to specify a shared� overlapping component for a� and a��

Let g� be a terminal graph� �g� � g� � � � �� gn
 a �nite� nonempty sequence of
successive applications of productions of a given gg such that gn contains only one
node vg and metasort���vg

 � goal� Then that sequence is called a derivation of
g� and the node vg is called a parse or feature tree of g�� where the nodes of this
feature tree are given by cast��vg
� Figure � shows an example of a derivation with
a gg containing the two productions p� and p� given in �gure ��

� The Graph Parsing Procedure

Before we describe the algorithm to derive all parses from a given terminal graph
some special data structures and orders will be de�ned�

RA1
a b

RA3
b

RA2 c
a

tps(RA1) =

tps(RA2) =

tps(RA3) =

{ a , b }

{ b , c }

{ a , c }

c

Figure �� Representing edges by tiepoints

To handle edges more easy by the parser we associate with every edge �v�� v�
 �
e � E� of a given terminal graph g� a �
tuple of tiepoints �tp� tp
 corresponding
to the two nodes v� and v� specifying the edge e� tps�v
 de�nes the set of all
tiepoints of the node v� If tp is a tiepoint then tp is its complement and vice versa�
The embedding rule de�ned in the previous section introduces new edges at each
application� But these new edges are de�ned in terms of the old ones� and depend
by recursion on the set E� of edges of the initial terminal graph� The parser doesn�t
represent the added edges explicit� but calculates the connections from the tiepoints

�

of the initial terminal graph using a global tiepoint
inheritance rule described below��

As a �rst heuristic extension to the given grammar we add to every production
p a total order �p� So p becomes an ordered sequence �r
spec�� � � �� r
specn� of role
speci�cations� The order decodes the strategy that the parser uses to build an
instance of the production� i�e� he will try to �nd role values for the roles speci�ed
by p in the sequence given by �p� The intention is to search for the most restricted
role values �rst in order to e�ect an early pruning� If r
speci � r
specj and the parser
can�t �nd a role value for r
speci� he will never try to �nd a role value for r
specj �
We constrain �p such that r
specj speci�es a connection or overlapping with at least
one of the role values speci�ed by r
speci� � � i � j� This insures that the subgraph
covered by a partial instantiation of a production is connected�

A patch is a partial �hypothesis� pp
 or complete �fact� cp
 instance of a pro

duction and consists of�

production the production� whose partial or complete instance the patch is�

sort the production�s sort �or one of it�s subsorts
�

tps the node�s tiepoint set�

r
spec the speci�cation of the role that the patch is searching a role value for�
empty� if the patch is complete�

Additional patches can have attributes and roles as de�ned above for nodes� The
slot sort of a patch is treated like an attribute� i�e� it can be changed by a functional
constraint to an appropriate subsort� We use a dotted notation� e�g� cp�tps denotes
the tps of a complete patch cp� Two patches are connected if their tiepoint sets
contain at least one complementary pair of tiepoints�

A cp is combinable with a pp i�

�
 cp�sort �S sort�pp�r
spec
�

�
 For each path constraint ��� ��
 � pp�r
spec�C� the patches referenced by pp��

and cp���
 are connected�

�
 if ��� ��
 � pp�r
spec�C�� then pp��
 � cp���
 and there are no further� un

speci�ed overlaps between cp and pp�

�
 and all constraints � pp�r
spec�Cfunc are satis�ed in the sense de�ned above�
The functional constraints are always satis�able by making them true� i�e� by
treating them as an assignment of the function value to the thereby de�ned
attribute�

�It would have been possible� and perhaps more elegant� to de	ne the embedding rule for
ANLGGs wholly in terms of tiepoint�inheritance� We have chosen the somewhat awkward de	�
nition given in section
 for reasons of compatibility with widespread graph grammar frameworks�
as presented e�g� in �Ehr �
�
���

�

The agenda is a set of patches� The chart contains all patches not contained
in the agenda� Its purpose is� to retrieve quickly the set of all patches� that are
combinable with a given patch� Its task is not� to retrieve exactly this set but a
likewise small� but complete superset of this� The super�uous patches can then be
eliminated by evaluating the constraints� The retrieval of patches is done by applying
the following four careful chosen access functions�

CP
tp�sort� � fcp � chart j cp�sort � sort and tp � cp�tpsg
yields the set of all complete patches cp of sort sort contained in the chart that
contain the tiepoint tp in its tps�

PP
tp�sort� � fpp � chart j sort�pp�r
spec
 � sort and � � �g
yields a set of pp �not necessary all pp
 of the chart� that are looking for a cp
of sort sort as next role value such that the cp satis�es a connection constraint
in pp�r
spec�C� if it contains tp in its tps� The function does not retrieve
all pp with this property� However it is guaranteed that each cp combinable
with a given pp contains at least one tp in its tps� such that for this tp pp �
PP�tp�cp�sort
� If the functions are implemented as �hash
 tables this restric

tion avoids super�uous multiple entries of partial patches�

These functions may be implemented as an array of hash tables with tp serving as
index and sort serving as key� The following two functions retrieve patches satisfying
a given overlap constraint�

CPov
cp
�� � fcp � chart j cp� � cast�cp
g

yields all complete patches of the chart that contain cp� as direct role value�

PPov
cp
�� � f�pp� ��
 j cp

� � pp��
 and ��� ��
 � pp�r
spec�C�g
yields all �
tuples �pp���
 of pp in chart such that pp is looking for a cp with
an overlap cp� � cp���
 speci�ed by pp�r
spec�C��

These functions may be implemented as hash tables with cp� serving as key�
Additional the chart contains two sets CP� and PP� containing all patches of the
chart� whose tps is empty�

As a second and most important search guiding heuristic we add a total order
�A for patches� its meaning will become clear below� The patch order �A may e�g�
depend on the state of the agenda and an underlying ordering of the patch sorts or
productions or attribute values or of a weighted combination of all� The weights may
be determined by neural networks as proposed in �SuEr ��� or by genetic algorithms
as proposed in �BGH ����

Let us now describe the parsing procedure� The parser consists of three rules
initialize� choose and combine that operate on two sets agenda and chart� The
agenda is initialized with one patch for each of the graph�s nodes and then choose
and combine are applied alternately until the agenda runs empty� If this happens
the chart i�e� CP� contains all possible parses �see �gure �
� In practise� the parser
will be stopped after the �rst parse is found�

��

parse graph�

initialize chart and agenda

until the agenda is empty do

choose a best patch from agenda

combine patch

add patch to chart

enduntil

initialize sets up an empty agenda and an empty chart� creates a cp for each node
v of the input graph with cp�tps � tps�v
 and adds it to the agenda�

choose picks up the most promising i�e� the �A greatest patch from the agenda�
�A is completely free in ordering the patches� i�e� every order will �nally lead to an
empty agenda� however the workspace and time needed to encounter a �rst parse
may crucially depend on the heuristic embodied by �A�

combine patch�

if patch is complete

then propose patch

continue�cp patch

else continue�pp patch

endif

propose combines a given cp with every production in predict�cp�sort�whose �rst
r
spec is satis�ed by the cp� For each such combination a new patch np is created
with np�tps � cp�tps and is added to the agenda� For each sort s � S predict�s�

� P yields the set of productions fp j s �S sort��rst�p

g� These sets depend on
the given graph grammar only and can be precalculated�

1

pp 2

3

4

5

cp3
cp5

cp4

cp2

cp1

a

b

c
de

a

b

c

e d

r-spec

Figure �� A partial patch with three �lled roles

continue�cp combines a given cp with all possible pp and continue�pp combines
a given pp with all possible cp contained in the chart creating a new patch for every
successful cp
pp combination and adds it to the agenda� For a production with n roles

��

n such binary combinations yield a cp that is a complete instance of the production�
The intermediate pp are generally used several times to build alternative instances�
so no derivation work has to be done twice��

The four chart access functions are used to retrieve candidates for the combina

tion with a given patch� i�e� the candidates can be received by simple union and
intersecting operations on the sets received by single �in the case of CPov recursive
iterated
 applications of these functions�

Take e�g� a look at �gure �� This pp is an instance of a production formed by
� role speci�cations� values for the �rst three roles are already found� The pp is
searching a role value for its fourth role r�� The r
spec for this role states� that any
candidate for the role needs a connection with r�� occupied here by cp� and a certain
component of the value for the third role r�� occupied here by cp�� The intersection
of pp�s tiepoint set pp�tps � fa� b� c� d� eg with the tps of the two already determined
neighbors of r� yields two sets of active tiepoints fag and fb� cg� Then the union
	s�subsorts�sort�r�		CP�a� s

 �CP�b� s
 	 CP�c� s

 yields the set of all cp in chart that
satisfy all C� constraints given for the fourth role�

In a similar fashion all other retrieval tasks can be done� using the four chart
access functions de�ned above� E�g� for a given cp the set 	s�supersorts�cp�sort		tp�cp�tps

PP�tp� s
 contains all pp such that cp is of an appropriate sort and satisfys at least
one of the C� constraints given for pp�s next role�

Note that a patch p� and a candidate p� retrieved from chart might overlap� i�e�
before combining them it has to be tested that the intersection cast��p�

 cast��p�

contains exactly the set of overlappings speci�ed by C�� even in the case of C� � ��
The above intersection will not only contain eventually speci�ed overlappings� but
also all components of such overlappings� These components are of course legal� i�e�
do not contribute to unspeci�ed� forbidden overlappings�

The tps of a newly created patch np is the union of cp�tps and pp�tps with
complementary pairs of tiepoints removed �i�e� without connections between cp
and pp
� Additional all tiepoints are removed that are contained in the tps of an
overlapping component but not simultaneously in cp�tps and pp�tps� This is the
tiepoint
inheritance rule mentioned above �and resembles the removal of comple

mentary literals in resolution calculus
�

For example� given the tiepoints from �gure �� the tps for the complete patch
ANGLE� in �gure � is calculated by�

fb� ag� fa� cg

fb� cg

ANGLE� is connected to RA�� since its tps fb� cg shares at least one complemen

�The combination of a pp with a cp corresponds roughly to the uni	cation of two terms in
uni	cation�based formalisms �like D�PATR�� But unlike uni	cation our combination is nondestruc�
tive� The involved pp and cp are not modi	ed and hence do not have to be copied before combina�
tion� This allows an e�cient implementation�

��

tary pair of tiepoints with RA��s tps fb� cg� The tps of ANGLE
 is calculated in the
same manner�

fa� bg� fb� cg

fa� cg

Finally� CORNER� inherits its tiepoints from ANGLE� and ANGLE
�

fb� cg� fc� ag

fg

If we would just remove complementary tiepoints� we would obtain in this last
step the set CORNER��tps � fb� ag� which is counterintuitive� CORNER� covers the
whole graph� so its not adjacent to any node and its tps should be empty therefore�
But b and c are tiepoints of the overlapping component RA�� and none of them is
contained in the tps of both ANGLEs� so� following our tiepoint
inheritance rule�
they have to be removed and we actually get an empty tps�

AGENDA

combine

choose
initializeGraph

Graph Grammar

ANLGG

CHARTcp

pp

Figure �� Architecture of the parser

add�to�chart patch adds a partial or complete patch to chart such that the
access functions work as speci�ed above� If they are implemented as tables a patch
causes in general several entries� e�g� a cp is entered in CP once for each of its
tiepoints and in CPov once for each of its role values� Note that it is su�cient to
enter a pp for the tiepoints of one of the already found neighbors of its next role�
not for all� as mentioned in the speci�cation of PP�

Introduction to chart parsing with string grammars may be found in �Ear ���
Win ���� ANLGGs as presented here are similar to plex grammars� also known as
hyperedge replacement systems� A parser for plex grammars� quite di�erent from the
one presented here� is given in �BuHa ���� The parsing procedure presented here is an
extension to the one introduced by R� Lutz in �Lut ���� Main di�erences are the use of
a search
guiding heuristic by ordering the agenda� the ability to specify overlappings�

��

the ability to specify overlapping and neighborhood not only for nodes� but also for
their components� and the use of sort hierarchies� Note also� that our total ordering
of the productions right hand sides causes an early pruning and determines uniquely
the order that the parser uses to build an instance� i�e� the instance is build once or
never� In �Lut ��� an instance of a production whose rhs consists of n nodes will in
the worst case be build in n� di�erent ways leading to n� copies of the same patch�

� Termination� Completeness� and Complexity

The agenda is initialized with one patch for each node of the input graph� The
number of patches that can be build from that by binary combinations via combine
is �nite� if the grammar does not allow in�nite chains of production applications�
Because every application of choose removes one patch from the agenda and combine
generates no patch twice� the agenda will run empty after a �nite number of pairwise
choose�combine applications�

After each such pairwise application the following chart invariant holds� For two
arbitrary patches cp and pp in chart the direct successor i�e� binary combination of
cp with pp is in agenda or in chart� When �nally the agenda runs empty this means�
every direct successor of any patch in chart is already in chart and by induction�
every successor� that can be generated by a �nite sequence of binary combinations
of the input nodes is in chart� in particular all possible parses�

Our formalism is expressive enough to cope with graph isomorphy which is well
known to be np
complete� This doesn�t mean� that every grammar formulated within
our framework has worse runtime� The strategy to avoid the combinatoric explosion
inherent to the problem is here to incorporate domain
speci�c heuristics ��A and
�p
 and sorts ��S
 to guide the parser�s search�

� Application to Feature Recognition in CIM

The parser has been implemented in Common Lisp and runs on SPARC stations
with ivory boards� We developed graph grammars representing expert knowledge of
our two experts in the turning and milling domain and tested the parser with several
workpieces�

The milling grammar� still under development� contains �� productions and a sort
hierarchy with �� sorts� Sort hierarchies proved to be very useful both for e�ciency
and readability of the grammar�

The workpiece in �gure 	 is represented by a graph containing �� nodes and
��� edges� The parsing took ���� seconds �CPU time
 to derive a �rst of �� pos

sible parses� ���� patches were generated� Further work is needed to improve the
heuristics guiding the parsers search in order to be able to deal with more complex

��

workpieces and to complete the graph grammar�

FACE

FRAGMENTED-PLANEFACE

FRAG-RECT-STEP

RECT-STEP FRAG-STEP

PLANEFACE STEP

ANLGG:

Sorthierarchy :

Productions :

RECT-STEP

step2

WORKPIECE

RECT-STEP

step1

RECT-OPEN-GROOVE

groove

FRAG-RECT-STEP

step1

FRAGMENTED-PLANEFACE

top

RECT-STEP

step2

RECT-ANGLE

angle2

RECT-OPEN-GROOVE

groove

STEP

step

PLANEFACE

bottom

PLANEFACE

border

PLANEFACE

top

PLANEFACE

bottom
PLANEFACE

border

RECT-ANGLE

angle1

Figure 	� A workpiece and a part of the feature tree

The turning grammar contains 	� productions and a sort hierarchy with �� sorts�
One of the more complex shapes generates ��� patches to derive all � possible parses
in ��� seconds �CPU time
� In early days of the grammar the parser generated
more than ���� patches� The reduction to ��� was mainly caused by tuning the �p

heuristic�

In our system PIM �Planning In Manufacturing� see �Leg ���
 the feature tree is
used to guide the re�nement and merging of skeletal plans associated with the sorts to
get an overall plan for the manufacturing of the workpiece suitable for NC
machines�

To represent knowledge about intended solutions within PIM� a manufacturing
expert associates with every feature a set of more or less detailed �fragments of

production plans� the so
called skeletal plans� A skeletal plan consists of a partly
speci�ed feature tree and constraints to trigger its application� and a partly speci�ed
plan� i�e� a list of actions�

The combination of features and associated skeletal plans represent the experi

ence of the expert� It is important to realize that this observation implies that the
application features and the skeletal plans depend on the concrete expert as well
as on the concrete working environment and may be di�erent for another expert or
another environment�

��

The underlying AI
method of PIM is heuristic classi�cation� Using the parser the
abstraction of the workpiece is done by recognizing features and building a feature

tree describing the given workpiece� The association step is realized via simple links
between features and skeletal plans� Using skeletal planning the re�nement is done
by merging skeletal plans and generating a complete process plan�

The idea of skeletal planning is straight forward� Find a �rst skeletal plan for
the given goal �i�e a skeletal plan� whose tree matches the root of the feature tree
�
The plan contains some plan
actions which are subgoals to be reached in order to
solve the whole problem� For every subgoal repeat the process until only elementary
actions remain� The sequence of elementary steps is the intended plan�

	 Conclusion

In this paper we presented the �made
to
measure� grammar formalismANLGG and a
heuristic driven chart based parser based on ANLGG for feature recognition in CIM�
This tool supports the integration of any CA�
system via features ��Klau ���
 with
any other CA�
system� The two possibilities to integrate heuristics as well as the use
of a chart and sorts helps to �nd quickly a good �rst solution� This is necessary to
support the communication between several CA� systems and to support the tasks
of the systems ��Leg ���
�

The presented algorithm and formalism can also be used in other domains that
have the same or similar characteristics �from the point of view of graph grammars

as the features in CIM�

References

�BGH ��� L�B� Booker� D�E� Goldberg� J�H� Holland� Classi�er Systems and Genetic
Algorithms� in� Arti�cial Intelligence� No� �� �����
 ���
����

�BuHa ��� H� Bunke� B� Haller� A parser for context free plex grammars� in� M� Nagl
�Ed��� Graph Theoretic Concepts in Computer Science� 	
�th Workshop �����
�
��	
����

�Cha ��a� T�C� Chang� Expert Process Planning for Manufacturing� Addison�Wesley
�����
�

�Cha ��b� T�C� Chang et al� Feature extraction and feature based design approaches
in the development of design interface for process planning� in� Journal of Intelli�
gent Manufacturing �����
 �
���

�ChHe ��� S�
H� Chuang� M�R� Henderson� Compound Feature Recognition by Web
Grammar Parsing� in� Research in Engineering Design� Springer
Verlag �����

���
����

�	

�Ear ��� J� Earley� An E�cient Context
Free Parsing Algorithm� in� Communcia�
tions of the ACM ����
 �����
 ��
����

�Ehr ��
��� H� Ehrig et al� Graph Grammars and Their Application to Computer
Science� �th
 �th International Workshop� Springer Verlag� LNCS ��� ���� ����
��� �����
����
�

�SuEr ��� C� Suttner� W� Ertel� Automatic Acquisition of Search Guiding Heuristics�
in� IJCAI��
 �����
 ���
����

�FiSa ��� S� Finger� S� Sa�er� Parsing Features in Solid Geometric Models� in�
ECAI��
 �����
 �		
����

�Klau ��� Ch� Klauck et al� FEAT
REP� Representing Features in CAD�CAM� in�
IV International Symposium on Arti�cial Intelligence� Applications in Informatics
�����
 ���
����

�Klau ��� Ch� Klauck et al� Feature based Integration of CAD and CAPP� in�
CAD���� Neue Konzepte zur Realisierung anwendungsorientierter CAD�Systeme�
Springer
Verlag� �����
 ���
����

�Leg ��� R� Legleitner et al� PIM� Skeletal Plan based CAPP� in� International Con�
ference on Manufacturing Automation� forthcoming �����
�

�Lut ��� R� Lutz� Chart Parsing of Flowgraphs� in� IJCAI��� �����
 ��	
����

�Mau ��� J� Mauss� Ein heuristisch gesteuerter Chart Parser f�ur attributierte Graph
Grammatiken� Diplomarbeit � Universit�at Kaiserslautern� �����
�

�Win ��� T� Winograd� Language as a Cognitive Process� Vol� I� Syntax� Addison

Weseley �����
 chart parsing� ��	
����

��

