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Abstract

We examine questions related to translating defaults into circum�

scription� Imielinski has examined the concept of preorder semantics

as an abstraction from speci�c systems of circumscription� We give

precise de�nitions� characterize preorder semantics syntactically and

examine the translatability of one default into preorder semantics� Fi�

nally� we give a rather bleak outlook on the translation of defaults into

circumscription�
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� Introduction� Outline and De�nitions

Outline� For the convenience of the reader� we repeat in the introduction
some de�nitions of �I�� and add some of our own�

Chapter � and � deal almost exclusively with �nite languages of propo	
sitional calculus� A noteworthy example is lemma ��
� which we formulate
stronger than needed to help the reader �nding better results than our own�

In chapter �� we give a syntactical characterisation of preorder semantics
for �nite languages of propositional calculus�

In chapter � we examine in detail the translation of one default into
preorder semantics and weak preorder semantics� The central result there is
proposition ����

A look at the many di�erent situations of proposition ��� makes the search
for translations of more than one default into preorder semantics seem quite
hopeless� This is somewhat in contrast with the rather simple description in
proposition ���� We should note� however� that our results in chapter � are
much more detailed than those in chapter �� and that the preorders of the
positive cases there are much more natural� so we have to invest into more
specialized proofs� whereas proposition ��� only gives the general picture� So�
after all� the problem of translating several defaults into preorder semantics
might not be hopeless� proposition ��� might give a hint where to look�

The situation changes again� when we look at translating defaults to cir	
cumscription in predicate calculus� What we feel to be a modular translation
in the spirit of �I� is made precise in de�nition ��
� The preorder of minimal
models is a rather special one� In particular� when minimizing� we can�t
change the domain� which stays �xed� That gives us immediately the sad re	
sult of lemma 
��� A normal closed default without prerequisites that can�t
be translated modularly into circumscription� Similar techniques give still
more negative results in the subsequent lemma and corollary�

So we feel that circumscription and defaults are rather orthogonal ways
of non	monotonic reasoning�

Our Lemmas ���
 and ���� seem to contradict Theorem 
�
�
�� of �I��
What is the solution� First of all� one can�t really tell� because �I� does not
always present precise de�nitions� Second� a look at the proof of Theorem

�
 in �I� will show that the E�V�m���s there may be formulae in the extended
language� So Thm� 
�
 and 
�� of �I� should read for clarity � � � � � seminormal
defaults without prerequisites in the extended language�� Third� this still
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leaves Lemma ��� c� in contradiction� As you will see� we use the �Ab�
there� A look back at the proof of Thm� 
�
 in �I� will show that the �Ab�
admitted in De�nition 
�� of �I� has disappeared� So �order semantics� in
Thm� 
�
 in �I� should be replaced by �order semantics without any �Ab���

Apart from the de�nitions in the introduction and Lemma ��� 	 ���� the
chapters can be read independently� there is very little crossreference� The
reader might �nd chapter � or 
 the easiest to begin with� We apologize for
the technical character of the paper and hope that reader will easily get the
spirit of constructing funny preorders�

De�nition �
� Let L� L�� etc� be languages� most of the time of �nite propo�

sitional calculus�

De�nition �
� A preorder is a re�exive and transitive binary relation� In

the rest of the paper� � will always denote a preorder� x will be called minimal

with respect to �� i� there is no x� �� x� x� � x�

De�nition �
� Let ML be the set of models of L� For m � ML� A �

formulae of L� m j� A means that A is valid in m� M�A	
� fm � ML


m j� Ag In the �rst order case� let dom�m	 be the universe� or domain of m�

i�e� the underlying set of the model�

De�nition �
� Let � � P�ML� � P�ML�� A� � � L� Then A j�� �
 �

�m � ��M�A���m j� � j	 � P�L� � P�L� is called an inference rule on L

�and written Aj	� for � � j	�A� most of the time	� Let j	 be an inference

rule on L� Then � � P�ML�� P�ML� is called a semantic representation of

j	 i� for all A�� � L Aj	� � A j�� � �

De�nition �
� Let � be a preorder on ML� ��A�
� fm � M�A�
 m is

minimal in M�A	� i�e� there is no m� �� m� m� � m� m� �M�A�g � A � L 	

If we work in di�erent languages� we will sometimes write �� for � inML�

etc�






��B� for B � ML is de�ned analogously�
Let A � formulae of L� � � formulae of L �in these cases� we will

frequently abuse notation and just say A� � � L etc��� We de�ne A j�� �

�� �m � ��A��m j� �� The empty order is de�ned by m � m� �� m�m��
and � 
� � will denote the following �important� preorder on ML � m � m�

�� �m j� � and m� j� �� or m�m��
For formulae and sets of formulae A� B� �� � we will freely use A�B�

A � B� A � � etc� to denote A � B� A � f�g etc� The meaning will always
be clear from the context�

De�nition �
� Let L � L�� Form �ML �orML�� let E�m� �� f� � m j� ��

� atomic or negation of atomicg� For m �ML� let E��m� �� E�m� 
L Let

pr � ML� � ML with pr�m�	 de�ned as that m with E��m�� � E�m�� the

latter formed in L�

De�nition �
� Let W � L� D �� A�B
C
� A�B�C � L �we say D � L�� Let

Ext�W�D	 be the �unique� if it exists	 extension of the default theory �W�D	

�see 
R�� Def��	� Furthermore� let �W�D� �D � i� � � Ext�W�D	� Let

Con�A�B	 mean
 A � B is consistent� Let � stand for anything false like

� � ���

De�nition �

 Let D be as above� We say

�	 D � MO�
Ab i� there is an extension L� of L� and 	 L�� Ab� �
 is a

modular translation of D into preorder semantics �POS	� i�e� a	 Ab � L� b	

� a preorder on ML� c	 � W�� � L � �W�D� �D � �� W �Ab j�� � 	

�	MO� meansMO�
Ab� Ab not necessaryMOAb meansMO�

Ab� L
� � L su�ces

MO means MOAb� Ab not necessary

If we have to be very clear� we say MO�� MO� for MO in L�� in L� etc�
We will use MO etc� freely as sets� or predicates� whatever seems more

natural�

�



De�nition �
	 Let L be a �rst order language� for simplicity with predicates

only� � � L� P � L� L � L�� �In the sense on circumscription� � will be the

set of ��oating� predicates which we vary� P will be minimized�	

Then �
� �L����P � a preorder on ML� will be de�ned as follows
 m � m� i�

�	 dom�m	 � dom�m�	 �	 �Q�m � �Q�m� for Q �� �� Q �� P �	 �P �m � �P �m��

Let S � ML�� call m � S minimal in S �m � ��S�� with respect to �
�

�L����P i� �	 m � S �	 there is no m� � S� m� � m� but not m � m�� i�e�

there is no m� � S s�t� i	 dom�m	 � dom�m�	 ii	 �Q�m � �Q�m� for Q �� ��

Q �� P iii	 �P �m� � �P �m� See 
L� for motivation�

De�nition �
�� Let L be a �rst order language� D a default in L� We say

that D has a modular translation into circumscriptive preorder semantics �D

� MCO�
Ab� i� there is L�
� L�D � L� a formula Ab
� AbD � L�� a set of

predicates �
� �D � L� a predicate P
� PD � L � such that for all W�� �

L W �Ab j��L����P
� i� �W�D� �D � �

� Preorder Semantics

Unless otherwise stated� we will work in this chapter with �nite languages of
propositional calculus�

The following Lemmas ��� and ��� are very simple� but central for the
further development�

Lemma �
� W � W� � ��W � 
M�W �� � ��W �� for W� W� � L�

Proof Let m � ��W �
M�W ��� Suppose there is m� 	 m� m� � M�W �� �
M�W �� by W � W �� thus m �� ��W �� Contrad�

Lemma �
� A� � j�� � � A j�� �� � for all formulae A� �� ��

�



Proof Suppose there is m � ��A�� m j� ����� Thus m �M�A� ��� by
Lemma ��� m � ��A � ��� but m j� �� Contrad�

Lemma �
� Let L be a �nite language of propositional calculus� and j	 an

inference rule on L� Then j	 satis�es for all A��� � � L a	 A � � � Aj	�

b	 A� �j	� � Aj	�� � c	 Th�j	�A�� � j	�A� d	 j	�A� � j	�Th�A��

i�

there is a semantic representation � � P�ML� � P�ML� of j	 such that a�	

��W � � W b�	 W � W � � ��W �� 
W � ��W � for all W�W� � ML �

Remark� The important properties are b� and b�� �

Proof� � � � Let � be a representation of j	� a� Let A � �� we have
to show Aj	�� By a��� ��M�A�� � M�A�� As A � �� m j� � for all m �
��M�A��� so A j�� �� By representation� Aj	�� The argument works for
inconsistent A� too� b� By representation� it su�ces to assume A� � j�� ��

and show A j�� � � �� Let W �� M�A � ��� W���M�A� and m � ��W ���
Suppose m �j� � � �� so m j� � � ��� By m � ��W �� � W � and m j� ��

m � W� By b�� m � ��W �� so by A� � j�� �� m j� � Contrad� c� Let B �
j	�A�� B � �� we have to show Aj	�� By representation again� A j�� B� As
B � �� A j�� �� so Aj	�� d� This is immediate from M�A� � M�Th�A���
� � � De�ne � as follows� Let X � ML� AX �� f�� �m � X�m j� �g
BX �� f�� AXj	�g � j	�AX� ��X��� M�BX � � We have to show that �
is a representation of j	� and a�� and b��� First� Aj	� � A j�� �� We use
AM�A� � Th�A� and d� to obtain ��M�A���� M�BM�A���� M�j	�AM�A���
� M�j	�Th�A��� � M�j	�A�� So A j�� � �� �m � ��M�A���m j� � �
�m � M�j	�A���m j� � � �j	�A�� � � � Aj	�� the last equivalence by
c�� a�� ��X� � X� Suppose m � ��X�� so m j� BX � By a� AX � BX and
m j� AX� So m � X� Remark� We use here that X �� AX is injective for
�nite propositional calculus� b�� X � X � � ��X �� 
 X � ��X�� Let m �
��X ��
X� we have to show m � ��X�� or m j� BX � Let � � BX � so AX j	��
As X � X �� AX � � AX � let AX � AX � �G� As m � X� m j� AX � AX � �G�

so m j� G� As AX � AX � �Gj	�� by b�� AX �j	G� � �We use here� that G
can be made one single formula�� Finally� as m � ��X ��� by de�nition of ��
m j� G� �� and by m j� G� we have m j� ��

�



Lemma �
� Let Y � P�A�� f � Y � Y such that for all W�W � � Y a	 f�W	

� W b	 W � W � � f�W �� 
W � f�W �� Then there is I and a preorder

� on AxI such that f�W	 � pr���pr���W ��� � see de�nition ��� for � and

pr � AxI � A with pr�	 x� i 
� �� x 	� In other words� f can be represented

by a suitable preorder on an extension of A� Remark
 We do not need A to

be �nite here �

Proof� We give two proofs� since both are constructive and might be
interesting to the reader� Both are shortenings of the author�s original proof�
a construction of trees� The proofs use �extreme� preorders� but help to
illustrate the general frame of preorder semantics�

Proof �� Fix a well	ordering of A� Fix m � A for the moment� Let
	 X� � � 	 �m 
 be an enumeration of fX � Y � m � X � f�X�g and
consider Fm�� �fX� � � 	 �mg � fg� g � �m �

S
fX� � � 	 �mg and

�� 	 �m�g��� � X�g
�If �m � �� take Fm�� f�g� The following claim � will then be trivial� and

we can proceed as in the other cases��
Claim �� LetB � Y� m � f�B�� Then there is gB � Fm with ran�gB�
B �

�� Proof� Consider � 	 �m� As m � f�B� and m � X� � f�X��� X� �B �� �
by b�� Using the well	ordering of A� let gB��� be the least elementx � X��B�

Let I �� f	 m� g� i 
� m � A� g � Fm� i � �� �g and de�ne �AxI as
follows� xm�g�i � x�m��g��i� i�

m�m� � g�g� and
a� x�x� � x �� m or b� x��m � x � ran�g� or c� x�x� � i�i�

Remarks� �� Condition m�m� � g�g� makes the construction �local�� we
only have to consider two �layers� of A at a time� �� Condition a� makes
every x �� m non	minimal in Am�g�� � Am�g��� �� Condition b� makes m the
�center of a star� in Am�g�i� any element of ran�g� prevents m to be minimal�

Claim �� f�B� � pr���pr���B��� for B � Y � Proof� � � � Let m � f�B��
By claim �� there is gB � Fm s�th� ran�gB� 
 B � �� By construction�
mm�gB�i is minimal in pr���B�� Suppose x�m��g��i� � mm�gB�i and x� � B � then
m�m� and g� � gB� x��m and x� �� m� � m can�t be� so a� is impossible�
x� � ran�g�� � ran�gB� and x� � B can�t be either� as ran�gB� 
 B � ��
so b� is impossible too� � � � Let m �� f�B�� By a� f�B� � B and by

�



de�nition pr���pr���B��� � B� So� if m �� B� m �� pr���pr���B���� Suppose
now m � B � f�B�� so B � X� for some � 	 �m� By de�nition of Fm�
g � Fm � g��� � B � X�� so ran�g� 
 B �� � for all g � Fm� Consider
mm��g�i� If m �� m�� mm��g���i 	 mm��g�i� If m�m�� take x � ran�g� 
 B� then
xm��g���i 	 mm��g�i � So� in both cases� mm��g�i is not minimal in pr���B�� and
m �� pr���pr���B����

Proof �� �Due to R� Keller� Let S �� P�A�� I��Sxf���g� De�ne 	

m�X� l 
 � 	 m��X �� l� 
 �� X�X� and
a� m �� X or b� m� � X � f�X� or c� m�m��l�l� for m�m� � A� X�X � � A�

l�l������
This is transitive� thus a preorder� We show m � f�W � � m � W �
�i � I� 	 m� i 
 minimal in WxI� � � � Suppose m � f�W � � W� let
i ��	 W� � 
 � Then 	 m��W �� l 
 � 	 m�W� � 
 implies W�W� and
�m� �� W or m�m��l�l�� by de�nition of � � So 	 m�W� � 
 is minimal
in WxI� � � � Suppose m � W and 	 m�W �� l 
 is minimal in WxI� i�e�
�m� � W �l� � �� � �� 	 m��W �� l� 
�	 m�W �� l 
 or m � m� � l � l���
Thus� for l �� l� �m� � W � 	 m��W �� l� 
�	 m�W �� l 
� and� by de�nition
of �� m � W � �m� � W �m� � W �� � m �� �W � � f�W ���� hence m � W �
W � W � � �m � f�W �� �m �� W ��� but m �� W � can�t be� as m � W � W ��

By b� then m � f�W ��

Proposition �
� Let L be a �nite language of propositional calculus� and

j	 an inference rule on L� Then j	 � MO� �in an obvious generalization

of De�nition ���	 i� j	 satis�es for all A��� � � L a	 A � � � Aj	� b	

A� �j	� � Aj	�� � c	 Th�j	�A�� � j	�A� d	 j	�A� � j	�Th�A��

Proof �� � Use the ideas of Lemma ��� and ���� �� � Let � � P�ML��
P�ML� be a representation of j	 by lemma ���� Extend L to L� so we can
de�ne � onML� by lemma ��
 with ��W � � pr���pr���W ��� �duplicate layers
if necessary�� We then have Aj	� � A j�� � �� �m�m � ��M�A�� �
m j� ��� �m�m � ���A�� m j� ��� the latter as ���A� � ��pr���M�A����
and pr�m��m coincide on L�






� Defaults and Preorder Semantics

We �rst summarize results on extensions for one default� They will be used
in the sequel without further mentioning� The proofs are all direct from the
de�nition in �R� and trivial�

Lemma �
� Consider �W�D � A�B
C
��

The extensions of �W�D� can be described as follows�
Case I� W � C� Th�W� is �the only� extension
Case II��� W �� C� W � A� The following little table gives the answer�

W � C � �B W � C �� �B
W � �B Th�W� impossible
Con�W�B� No Extension Th�W�C�

Case II��� W �� C� W �� A� Th�W� is �the only� extension
Remark� If � A� i�e� D � �B

C
� we will always be in Case I or II�� �

Proposition �
� MO � MOAb � MO� � MO�
Ab

Proof� The inequalities will be shown implicitly� by solving the di�erent
cases of proposition ���� The inclusions are either trivial or follow from
Lemma �����

Proposition �
� The modular translatability of one default of a �nite propo�

sitional language into preorder semantics is completely described by the fol�

lowing diagram of cases


General Default� D �� A�B
C
�

�Con�A�B�


MO ����a	

empty order

Con�A�B	


Con��A�


��



Con�A��C�


�MO� ����a	

� A� C


MO ����b	

empty order

� A


� B � C


MO �����	

�C 
� B

�� B � C


�MO ����	

� C � B


MO� �����	

�C 
� B

� B


MOAb ����c�

�� B


�MOAb �����	

�� C � B


Con�B�C	


�MO� ����b	

�Con�B�C�


MO� �����	

�MOAb �����	

For most positive cases� we have indicated the translating preorder� The

numbers show the proving lemmas�

Remark� On our way� we will meet a default translatable into preorder
semantics and weak preorder semantics� which is not equivalent to any set

��



of seminormal defaults in the same language �Lemma ���
 and ������
We turn to the proofs�

Lemma �
� If �W �W�D� �D � � W � � � then D is translated by the

empty order into POS�

Proof� W j�� � � W j� � � W � �� since ��W � �M�W ��

Lemma �
� If �W �W�D� �D � � W �C � �� then D is translated by the

empty order and Ab
�C into POS�

Proof W � C j�� � � W � C j� � � W � C � �� as ��W � C� �
M�W � C��

We can settle now � cases�

Lemma �
� a	 �Con�A�B� implies D � MO� b	 Con�A�B	� Con��A�� �

A� C implies D � MO� c	 Con�A�B	� � A� Con�B��C�� � B implies D �

MOAb

Proof a� The default can never �re� use Lemma ��
� b� The extension
will always be trivial� Lemma ��
 again� c� The extension will always be
Th�W�C�� use Lemma ����

Lemma �
� If D � MO� then �W�D	 has an extension for all W�

Proof Suppose �W�D� has no extension� so W is consistent� and Con�W�B��
Consider m j� W � B� m � ML� W���E�m�� M�W���fmg� so ��W �� �
fmg �� �� thusW � �j�� �� but Con�W��� Con�W��B� bym j�W ��B� W � � A�
W � � C � �B� so �W��D� has no extension and �W��D� �D � Contrad�

Lemma �

 If � A� �� B � C� then D �� MO�

��



Proof Con�B��C�� so let W �� B � �C� then �W�D� has no extension�
Finish by Lemma ����

Lemma �
	 a	 If Con�A�B	� Con��A�� Con�A��C� then D �� A�B
C
��MO�

Ab

�Imielinski	� b	 If � A� Con�B��C�� Con�C��B�� Con�B�C	 then D ��
A�B
C
��MO�

Ab

Proof �I owe this simpli�cation of my original proof to R� Keller�� Let
D �� A�B

C
� Suppose we have a translation �W�D� �D � � W�Ab j�� ��

By Lemma ���� W � � j�� � � W j�� � � �� So �W � ��D� �D �

� �W�D� �D � � �� �� Assume Con��A�� Con�A�B�C�� Con�A��C�� Let
W �� �� � �� A� � �� C� So �A�D� �D � � A � C � � by Con�A�B�C�� so
�A�D� �D C� ���D� �D ��� � by Con��A�� But �� A� C� as Con�A��C��
�� Assume Con��A�� Con�A�B��C�� Let W �� �� � �� A � ��C � �B��
� �� �� As � � B � A � B � �C� Con�� � B�� But �Con�� � B � C�� so
���D� has no extension and ���D� �D �� ���D� �D � � � �� as Con��A��
Suppose � � � �� Then � ��� But Con��� by Con�A��C�� �� Assume
� A� Con�B��C�� Con�C��B�� Con�B�C�� Let W��A� � �� �A� �B � �C�
� �� �� Again� �W � ��D� has no extension� �W � ��D� �D �� �A�D� �D
� � ���D� �D � �� � � by Con��B�� Again� Con���� b� follows now
immediately from �� a� Suppose Con�A�B�C�� then �� solves this case If
�Con�A�B�C�� then A �B � �C� so� as Con�A�B�� Con�A�B��C��

The remaining cases require more work� they all have a translation into
preorder semantics�

We start by examining more closely the preorder �C 
� B� introduced
by Imielinski� So this is the assumed preorder until further notice�

Lemma �
�� a	 �Con�W�B� � ��W � � M�W �� b	 �Con�W�B� implies

W j�� � � �W� �B
C
� �D �� c	 M�W�C	 � ��W ��

P roof a� is trivial� b� W j�� � � ��W � j� � ��M�W � j� �� W � �
by a� But �Con�W�B� � Ext�W� �B

C
� � Th�W �� So W j�� � � W � � �

�W� �B
C
� �D �� c� is trivial again�

Lemma �
�� Assume Con�W�B	� Then

a	 �m� �� m� j� W � B or �Con�W�B��C� �� ��W � � M�W � C� �

��



���W � � � � W � �C�

b	 ��m� j� W �B and Con�W�B��C� � ��W � �M�W �C� � fm� � m� j�

W �Bg � ���W � � fm� � m� j�W �Bg � W � �B�

Proof In both cases� the last implication is trivial�
a� � � �� � � � by lemma ���� c� � � � Let m � ��W �� m j� �C�

Assume m� �� m� j� W � B� By de�nition of �C 
� B� m�� m� � m�
Since m� �� m�� m �� m� or m �� m�� so m� 	 m or m� 	 m Contrad�

Assume �Con�W�B��C�� By Con�W�B�� let m� j� W � B� so m� � m� By
�Con�W�B��C�� m �� m� Contrad�

� � �� Assume ��m� j� W � B� Con�W�B��C�� Thus m� j� W � B � �C�
By assumption� there is no other m �M�W �B�� so m� must be minimal in
M�W�� but m� j� �C�
b� � � � By lemma ���� c� and uniqueness of m� j� W � B� � � � Let m �
��W �� assume m j� �B� By minimality of m� we must have M�W�B��fmg�
as m� is the only such� m�m��

Remark�
By augmenting L to L�� we can always force the existence of m� �� m� j�

W �B� This technique will be often used in the sequel�
We assume now � A and� furthermore� �m� �� m� j� W �B

or �Con�W�B��C�� piece together our above results and compare with
lemma ����
Let D �� A�B

C
� �B

C
�

Case �� �Con�W�B�� Then W j�� � � �W�D� �D � by lemma ���� b�
Case �� Con�W�B�� Then W j�� � � W�C � � by lemma ���� a�
Case ��� W � C� Then �W�D� �D � � W � � � W � C � �
Case ��� W �� C� W � C �� �B� Then �W�D� �D � � W � C � �
Case ��� W �� C� W � C � �B� No extension� �W�D� �D � � � � �� So�
the only thing that can go wrong is Case ���� thus�

Lemma �
�� Assume � A� Assume further that Con�W�B	 implies ��m� ��

m� j� W � B or �Con�W�B��C��� Then �C 
� B is a translation of D �
A�B
C
� i� � W � L �Con�W�B	� W �� C� W � C � �B � W � �C�

Lemma �
�� � A� � B � C implies D �MO by �C 
� B� �Imielinski	

�




Proof �Con�W�B��C� by � B � C� Con�W�B� and W � C � �B
together can�t be� for the same reason�

The condition in Lemma ���� is too nasty� let�s improve it�

Lemma �
�� � W � L �Con�W�B	� W �� C� W � C � �B � W � �C� i�

� B � C or � C � B�

Proof a� Con�W�B�� W �� C� W � C � �B � W � �C i� Con�W�B��
W � C � �B � W � �C i� Con�W�B� � �W � C � �B � W � �C� i�
Con�W�B�� �Con�W�C� � Con�W�B �C�� i� Con�W�B� � Con�W�C� �
Con�W�B � C�
b� � W � L �Con�W�B� � Con�W�C� � Con�W�B � C�� i� � B � C

or � C � B Proof� � � � is trivial� � � �� Let W �� ��B � C� Then
Con�W�B� i� �� B � C� Con�W�C� i� �� C � B �this is simple arithmetic�
and �Con�W�B � C�� Thus � B � C or � C � B�

This� together with lemma ���� proves�

Lemma �
�� Assume � A and Con�W�B	 implies ��m� �� m� j�W �B or

�Con�W�B��C�� Then �C 
� B is a translation of D � A�B
C
� i� � B � C

or � C � B�

We now establish a limit on what we can do in MO� if we add Ab�

Lemma �
�� Let � A� Con�B��C�� D �� A�B
C
�MOAb� Then � Ab� C�

Proof Let �W�D� �D ��W�Ab j�� �� ChooseW� �� �� So ��Ab j�� �

� ��� �B
C
� �D � � C j� �� as Con�B�� This is true for �Con�C� too� Thus

M�C� � ��Ab� � M�Ab�� and � C � Ab� Suppose Con�Ab � �C�� Choose
W� �� �C� So �C � Ab j�� � � ��C� A�B

C
� �D � � � � �� as Con�B��C��

Choose W� �� �C � Ab� So ��C �Ab� A�B
C
� �D � � �C �Ab � Ab j�� � �

�C�Ab j�� ��� � � byW�� So Con��C�Ab�B�� otherwise ��C�Ab�D�
would have an extension� Take m� j� �C � Ab � B� consider W	 �� E�m���
so M�E�m��� � ��E�m��� � fm�g� As we work in ML� E�m�� is a candidate
under consideration and we obtain E�m�� � E�m�� � Ab j�� � � m� j� ��

But� as m� j� �C�B� �E�m��� A�B
C
� �D ��� � � Contrad� Thus � Ab� C�

and we are �nished�

��



Lemma �
�� � A� Con�B��C�� Con��B�� D �� A�B
C

� MOAb implies �

�B � C�

Proof By lemma ����� � Ab � C� Let W �� �B� �B � C j�� � �
��B�D� �D � � �B � �� So M��B� � ���B � C� � M��B � C� and
� �B � C�

Lemma �
�
 Let � A� Con�B��C�� Con��B�� Then D �� A�B
C
��MOAb�

Proof Suppose D � MOAb� Let W� �� C � �B� �� Con�C � �B�B��
as B � �C � �B� � B � �C� but Con�B��C�� �� Con�C � �B��C�� as
�C��C � �B����B� and Con��B�� Furthermore� C��C � �B� � �B�
so �W��D� has no extension� Now W��Ab � �C � �B��C � C ��B �by
lemma ����� Ab�C� As W��Ab j�� � � �W��D� �D �� ��C ��B� � � Let
W� �� C��B� So C��B � �C��B��C j�� �� �W��D� �D �� C��B �
� and M�C � �B� � ��C � �B� � �� by the above� so �Con�C � �B�� But
by lemma ����� � �B � C� and Con��B�� so Con��B � C� Contrad�

We now leave the simple world of L and enlarge L to L�� The important
fact will be that we have several �layers� of ML in ML� � Let � � L� �L� we
will then have for each m � ML m��m� � ML�� each coinciding with m on
L� but m� j� �� m� j� ���

Lemma �
�	 Let � A� �� B � C� � C � B� Then D �� A�B
C
� is translated

by �C 
� B into ML��

Proof The extension of L to L� ensures for Con�W�B� the existence of
m� �� m� j�W �B� we can apply lemma �����

We next show that the default of lemma ���
 is not equivalent to any set
of seminormal defaults in the same language�

Lemma �
�� Let Th�W	 be maximal consistent� � a set of seminormal

defaults� Then Th�W	 is an �and the only	 extension of �W�D	�

��



Proof It is enough to show that Th�W� is a candidate in the de�ni	
tion of ��Th�W �� �see de�nition � in �R��� Condition D� and D� are triv	

ial� Condition D�� Let
Ai�B�i �����B

n
i

Ci
� �� Ai � Th�W �� �Bj

i �� Th�W �� so

Con�Th�W �� Bj
i �� and W � Bj

i by maximality� By seminormality� � Bj
i �

Ci� So W � Ci and Ci � Th�W ��

Lemma �
�� Let � A� �� B � C� � C � B� Then D �� A�B
C
� is not

equivalent to any set of seminormal defaults in the same language�

Proof Con�B � �C�� Extend B � �C to a maximally consistent set of
formulae� W� So Con�W�B�� W �� C� W � C � �B� as W�C is inconsistent�
So �W�D� has no extension and �W�D� �D �� If � were an equivalent set of
seminormal defaults� �W�D� �D � � �W��� �D � � W � � by lemma �����
But W is consistent Contrad�

There is just one positive case left� and� so far� we have only used the
trivial order or �C 
� B� The last case will be solved di�erently� We will
stop here for a moment and prove the remaining inclusions of proposition
����

Lemma �
�� Let pr �ML� � ML� and ��� �� be preorders on ML� � ML� �

Then ���A� � pr����B�� implies A j��� � � B j��� � for A� � � L�� B �

L��

Proof �� �� Assume A j��� �� let m � ���B�� we have to show m j� ��

pr�m� � ���A�� so pr�m� j� �� but m� pr�m� agree on L�� � � �� Assume
B j��� �� let m � ���A�� Thus� there is m� � ���B�� pr�m���m� Thus
m� j� �� and again m � pr�m�� j� ��

Lemma �
�� Let L� be any language� D �MOL�

Ab � Then there is an exten�

sion L� of L� and a preorder such that D �MOL� � Thus� MOAb � MO� �

and MO�
Ab � MO� �

��



Proof Let W � Ab j��� � � �W�D� �D �� Ab � L�� Extend L� to L�

by one additional formula� SplitML� into two layers of ML� � let pr� ML� �
ML� as usual�
De�ne �� as follows� m� �� m� i� �� m�� m� in the same layer and
pr�m�� �� pr�m�� and m� j� Ab or �� pr�m�� � pr�m�� and mi j� �Ab
or �� m�� m� are in di�erent layers� m� j� �Ab� m� j� Ab� pr�m�� �� pr�m��
or 
� m� � m� �

Explanation� Condition � erases all models non	minimal because of some
element inM��Ab�� Condition � makes all models of �Ab non	minimal Con	
dition � is technical� it ensures transitivity�

Transitivity is now easily checked by examining all possible cases and left
as a �trivial� exercise� So our conditions fully describe the preorder� We have
to show W � Ab j��� � � W j��� � for all W�� � L�� By lemma ����� it
su�ces to show ���W �Ab� � pr����W ���

Proof� � � � Let m � ���W � � m �j� �Ab� pr�m� � M��W � Ab��
Suppose there is m� 	� pr�m�� m� j� W � Ab� Let m� be in the same layer
as m� pr�m���m�� As m� j� Ab� and m� �� m� m� 	� m Contrad� � � �
Let m � ���W � Ab�� pr�m���m� So m� j� W � Ab� Suppose there is m� �
M��W �� m� �� m�� If m� �� m� by condition �� then pr�m�� �� m� and
pr�m�� j� W � Ab� By minimality of m� we have m�pr�m�� and m��m��
Condition � and � can�t apply� since m� j� Ab� So m��m�� and m� � ���W ��

There is one positive case left to show� Feeling comfortable now with
layers� we will do it next� and will be �nished�

Lemma �
�� Let � A� �Con�B�C�� Con�B��C�� Con�C��B�� Then D ��
A�B
C
�MO��

Proof Extend L to L�� so ML� has 
 layers of ML� Divide ML� into two
layers with � sublayers each�
De�ne a preorder � on ML� as follows� m� � m� i� �� mi � layer � and
m� j� B or �� mi � layer � and m� j� �C or �� m� � m� �
Transitivity is trivial� so this is indeed a preorder�
If W � �B� then Ext�W�D��Th�W�� so �W�D� �D � �� W � �� If
Con�W�B�� W � C � �B� so �W�D� has no extension� so �W�D� �D �

��



� � � �� Thus� we have to show� a� W � �B implies pr����W �� �ML�W ��
b� Con�W�B� implies ���W � � ��

On a�� � � � is trivial� � � �� Let m � ML� � m j� W� Let m� � layer
�� pr�m���m� By W � �B� m� j� W � �B� So m� is minimal in layer ��
and globally� so m� � ���W � and m � pr����W ��� On b�� As Con�W�B�
and � B � �C� Con�W��C�� Assume there is m � ���W �� If m � layer
�� by Con�W�B�� there is m� j� W � B� m� � layer �� So m� �� m� But�
remember� layer � consists of � sublayers� so there is always � of m�� and
m is not minimal� Contrad� If m � layer �� argue just the same way� using
Con�W��C�� So� ���W � � ��

� Defaults and Circumscription

In this chapter� we work in predicate calculus�

Lemma �
� Let dom�m	 be �nite� m � S �ML� Then �m� � ��S��m� � m

�the order as in de�nition ���	�

Proof� If not� construct a strictly descending chain of models m � m� 


m� 
 � � � in S� But �P �mi
� dom�m�� so that�s impossible�

Lemma �
� Let A �� �x� x��x �� x�� D �� �A
A
� then D ��MCO�

Ab�

Proof� Suppose D � MCO�
Ab� �x appropriate L�� �� P� Let W �� �� As

Con�W�A�� �W�A� �D � � A � � Let W � �� ��x�x � x� As �Con�W �� A��
�W �� A� �D � � W � � �� Now� W � Ab � Ab j�� � � A � �� so Ab j�� A�

Thus� in all minimal models of Ab� A is valid� Claim� A is valid in all models
of Ab� Proof� Suppose not� let m � M�Ab�� m j� �A� so dom�m��fxg� By
lemma 
��� there is m� � m� m� � ��Ab�� so dom�m���fxg� �remember�
the domain can�t change� and by Ab j�� A� we have m� j� A Contrad� So
Ab j� A� As W � � ��x�x � x and Ab j� A� there is no model of W��Ab� thus
� � � � W � �Ab j�� � �� W � � �� but Con�W�� Contrad�

The idea of the next lemma is� of course� the same as in lemma 
��� We
�x the extension of a predicate so it will be rigid under circumscription�

�




Lemma �
� Let P�P� be unary predicates� A �� �x� x��x �� x� � Px � Px���

D �� �A
A
� D �MCO�

Ab with L
���� Pm then P � � � or P � � Pm� the minimized

predicate� I�e�� to obtain a modular translation� we have to vary every other

unary predicate �

Proof� Suppose not� LetW �� �x�Px� P �x� � �x� x��y�y � x�y � x��
� �xPx�As Con�W�A�� �W�A� �D ��W�A � �� LetW � �� �x�Px� P �x�
� �x� x��y�y � x � y � x�� � ��xPx� As �Con�W

�� A�� �W �� A� �D � �
W � � �� Thus� W � Ab j�� A� Claim� A is valid in all models of W�Ab�
Proof� Suppose there is m � M�W � Ab�� m j� �A� so �P �m � fxg� As
m j� W� �P ��m � fxg� Again by lemma 
�� �and the second condition in W�
� there is m� � m� m� � ��W �Ab�� As P � �� �� and P � �� Pm� �P ��m� � fxg�
As m� j� W� �P �m� � fxg and m� j� �A Contrad� So W � Ab j� A� As
� W � �W and W �Ab j� A� W ��Ab j� A� so there is no model of W��Ab
��Con�W �� A��� Thus � � � � W � � Ab j�� � � W � � �� but Con�W��
Contrad�

Corollary �
� Let A and D be as in lemma ���� Suppose we can do pairing�

e�g� we have enough set theory� Then we can forget the arity of the pred�

icates and have to let every predicate P� vary in order to obtain a modular

translation �
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