
DFKI ResearchReport93-22
Weak Looking-Ahead and its Applicationto Computer-Integrated Process PlanningManfred A. Meyer and J�org P. M�ullerApril 1993

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz GmbHErwin-Schr�odinger-Stra�eD-6750 Kaiserslautern, GermanyTel.: + 49 (631) 302-3211Fax: + 49 (631) 302-3210

Weak Looking-Ahead and its Applicationto Computer-Integrated Process PlanningManfred A. Meyer and J�org P. M�ullerGerman Research Center for Arti�cial Intelligence (DFKI)P. O. Box 20 80, D-W-6750 Kaiserslautern, Germanyemail: meyer@dfki.uni-kl.de, jpm@dfki.uni-sb.deAbstractConstraint logic programming has been shown to be a very useful tool for know-ledge representation and problem-solving in di�erent areas. Finite Domain extensionsof PROLOG together with e�cient consistency techniques such as forward-checkingand looking-ahead make it possible to solve many discrete combinatorial problemswithin a short development time. In this paper we present the weak looking-aheadstrategy (WLA), a new consistency technique on �nite domains combining the com-putational e�ciency of forward-checking with the pruning power of looking-ahead.Moreover, incorporating weak looking-ahead into PROLOG's SLD resolution givesa sound and complete inference rule whereas standard looking-ahead itself has beenshown to be incomplete. Finally, we will show how to use weak looking-ahead ina real-world application to obtain an early search-space pruning while avoiding thecontrol overhead involved by standard looking-ahead.
This paper will also be published by Gordon and Breach Publishers in the Proceedings ofthe Sixth International Conference on Industrial and Engineering Applications of Arti�cialIntelligence and Expert Systems (IEA/AIE-93), Edinburgh, Scotland, June 1st{4th, 1993.1

Contents1 Introduction 32 Finite Domain Consistency Techniques 32.1 Forward-Checking - The Principle : 42.2 Forward-Checking - Properties and Drawbacks : : : : : : : : : : : : : : : : : 42.3 Looking-Ahead - The Principle : 52.4 Looking-Ahead - Properties and Drawbacks : : : : : : : : : : : : : : : : : : 53 The Theoretical Background of WLA 64 Using Weak Looking-Ahead for Tool-Selection 74.1 The Problem Domain : 84.2 The Lathe-Tool Selection Problem : 84.3 The Variables : 94.4 The Constraints : 104.5 A FiDo Program for Tool Selection : 114.6 Trace and Assessment of Program Execution : : : : : : : : : : : : : : : : : : 125 Conclusion 15

2

1 IntroductionMany problems in di�erent areas such as Operations Research, Hardware Design, and Arti-�cial Intelligence applications can be regarded as constraint satisfaction problems (CSPs).Logic programming o�ers a convenient way of representing CSPs due to its relational,declarative and nondeterministic form. Unfortunately, standard logic programming lan-guages such as PROLOG tend to be ine�cient for solving CSPs, since what could be calledconstraints in PROLOG is used only in a passive a posteriori manner, leading to symptomssuch as late recognition of failure, unnecessary and unintelligent backtracking and multiplecomputation of the same solutions.There have been intensive research e�orts in order to remedy this. One of them, which hascaught increasing attention over the past few years, is the Constraint Logic Programmingapproach: By integrating a domain concept for logic variables and consistency techniquessuch as forward-checking or looking-ahead into PROLOG, the search space can be restrictedin an a priori manner. Thus, a more e�cient control strategy can be achieved, preservingthe 'clean' dual PROLOG semantics.When using these consistency techniques to implement real-world applications, it turnedout that forward-checking and looking-ahead as provided in most �nite-domain PROLOGextensions are not totally satisfactory: forward-checking itself often does not give anypruning at all until variables become singletons, whereas standard looking-ahead forcesstrong pruning of the search-space but induces serious control overhead.In this paper we present a consistency technique on �nite domains, which combines thee�ciency of forward-checking with the pruning power of standard looking-ahead: The basicidea of thisweak looking-ahead (WLA) strategy is to apply looking-ahead only once to aconstraint and to use forward-checking for further restricting the domains of its arguments.What makes this paper more than "just another paper about just another consistencytechnique" is the way weak looking-ahead came into being, which stood in a close relationto a real-life application: In the ARC-TEC project at DFKI we have been developing aknowledge-based system (�CAD2NC, [Boley et al., 1991]) generating workplans for latheCNC machines. It transforms CAD-like geometries of rotation-symmetric workpieces intoabstract NC programs using declarative term representations for all processing steps. Afterwe decided to solve the subproblem of selecting appropriate lathe tools for the variousprocessing steps by using constraints, we experimented with several consistency algorithms.Soon we realized that on one hand, forward-checking is too weak for some applications wherean earlier pruning of the search space is desired. On the other hand, using looking-ahead forthis application is a bit like breaking the buttery on the wheel. These observations entailedthe wish for a new technique which causes only little more cost than forward-checking, butwhich can achieve much better pruning results in many cases.2 Finite Domain Consistency TechniquesOver the past years, increasing attention has been paid to using constraints in logic pro-gramming [Ja�ar et al., 1986; Ja�ar and Lassez, 1987; Ja�ar and Michaylov, 1987; van Hen-tenryck, 1989] for it presents a very powerful incorporation of the advantages both of logic3

programming (declarativity, relational form, nondeterminism) and consistency techniquesfor constraint solving problems. By using consistency techniques it is possible to overcomethe basic shortcomings of logic programming languages, which are mainly caused by theirpoor, mostly backtracking-like control strategies. Techniques such as forward-checking andlooking-ahead are used to restrict the domains of variables in an active manner and toachieve an a priori pruning of the search space.In this section, we will give a short informal description of both forward-checking andlooking-ahead according to [van Hentenryck, 1989]). In the next section, we present theweak looking-ahead method which is essentially based on these techniques.2.1 Forward-Checking - The PrincipleThe idea of forward-checking is formally expressed by the forward-checking inference rule(FCIR). Informally, a constraint C can be used in a forward-checking manner as soon asall except one of its domain-variable arguments, say X, are instantiated to a ground value.Then, C is called forward-checkable. C can be considered a unary predicate C 0(X), and theset of possible values that can be given to X can be restricted to those elements a satisfyingC 0(a).For example, let C(X;Y;Z) be X \= Y + Z, with X = 4, Z = 1 and Y ranging overf1; 2; 3g. Then C 0(V) � V \= 3. Thus, the domain of Y can be restricted to the set f1; 2g.Furthermore, if the domain of a variable becomes singleton, the variable is instantiatedto the singleton value. Thus, other constraints can become forward-checkable, keepingconstraint propagation going on.2.2 Forward-Checking - Properties and DrawbacksForward-checking has turned out to be one of the most popular consistency techniques forseveral reasons:� Forward-checking is a technique which can be easily implemented. For example, [deSchreye et al., 1990; M�uller, 1991] use PROLOG systems with coroutining facilitiesto implement it, whereas [Hein, 1992; Stein, 1992] show how forward-checking can beintegrated into PROLOG by adding a set of new WAM instructions.� It yields reasonable pruning results for many applications, keeping the computationalcosts fairly low.� There exist sound and complete proof procedures based on normal SLD resolutioncombined with forward-checking (see [van Hentenryck, 1989]).The main drawback of forward-checking is its strong applicability precondition: A predicatecan be executed by the FCIR only if all except one of its variables are instantiated to aground value. Thus:� For predicates with many arguments and/or many variables, at a given point ofcomputation, there is only a relatively small probability that forward-checking can beapplied to them. 4

� Especially when computation starts, it is very often the case that no constraint isforward-checkable. That means that choices have to be made, i.e. variables are in-stantiated in a more or less random manner. Thus, the devil of backtracking whichwe would like to exorcize by the use of consistency techniques, returns through theback door.� Some constraints, such as =; >;< should not be executed by forward-checking atall, because they embody a great deal of structural information about the relationbetween their arguments1.2.3 Looking-Ahead - The PrincipleLooking-Ahead [van Hentenryck, 1987a; van Hentenryck, 1987b; Mackworth, 1977; Lau-riere, 1978] o�ers a powerful possibility to reduce the number of values that can be assignedto variables of a constraint, even if this constraint is not yet forward-checkable.For every domain variable X appearing as an argument of an N -ary constraint C, andfor every value within the domain of X, it must be checked whether there exists at leastone admissible value from the domain of each domain variable Y appearing in C so thatthe constraint C is satis�ed. The arguments of C which are no domain variables must beground.For example, let C(X;Y;Z) be X > Y +Z, whereX, Y , and Z range over f1; 2; 3; 4g. Usinglooking-ahead, the domains can be immediately restricted to X = f3; 4g; Y = Z = f1; 2g.Note that if we used forward-checking instead, no pruning at all would be achieved sinceno forward-condition would be ful�lled. From now on, each time a value is removed fromone of the domains, looking-ahead has to be repeated.2.4 Looking-Ahead - Properties and DrawbacksBy using looking-ahead, the search space can be pruned at an early stage of computation.However, the trouble with standard looking-ahead is that it is a very expensive methodof ensuring arc-consistency. Therefore, for most applications it is considered inappropriate[de Schreye et al., 1990; Dechter, 1989]. Nevertheless, it would be a shame to forgo all thebene�ts brought about by the strong pruning capabilities of the Looking-Ahead InferenceRule (LAIR). In the next section, we present weak looking-ahead, which can be regardeda compromise between forward-checking and looking-ahead. Let us assume that, in ourabove looking-ahead example, we would perform the �rst looking-ahead step as shown, butafter that, we would not do any more looking-ahead, but instead solve the (now simpli�ed)problem by normal resolution or by forward-checking. This procedure expresses the mainidea of the weak looking-ahead strategy which we will point out in more detail in thefollowing.1For example, the information that two variables X and Y are equal should not only be used if X orY are ground. Rather, the equality constraint should be maintained from the moment it has been stated(see [M�uller, 1991]). 5

3 The Theoretical Background of WLAThe basic theoretic work in the area of using consistency techniques in logic programminghas been done by van Hentenryck [van Hentenryck, 1989]. This research has contributeda great deal to both forming a solid framework and preserving the logic part of the pro-gramming languages developed while achieving a much better control behaviour than thatachieved by standard logic programming languages such as PROLOG. This is an aspect ofcrucial signi�cance, because, to quote Ja�ar and Michaylov [Ja�ar et al., 1990]: "Forsakingthe logic in PROLOG in order to remove some limitations of the language is like throwingout the baby with the bath water."In this section, we will give a formal de�nition of the weak looking-ahead inference rule,and we will present the basic formal properties such as soundness and completeness of theproof procedure de�ned on top of WLA. The terminology we use and the sense we use itare basically the same as in [van Hentenryck, 1989].The weak looking-ahead strategy combines the use of LAIR and FCIR. A similar techniquehas been informally proposed in [de Schreye et al., 1990] as "�rst-order looking-ahead".We present a generalized technique we call weak looking-ahead. This name seems moreappropriate for expressing what the underlying algorithm really does. The basic idea ofWLA is that each constraint can be selected by the looking-ahead part not more than once,and that this should happen at an appropriate time. After this, only the FCIR (or normalinference) can be applied to it. This idea is covered by the following de�nitions.De�nition 1 An atom p(t1; :::; tn) is called WLA-checkable if p is a constraint and� p(t1; :::; tn) is lookahead-checkable and has not yet been selected by the WLA, or� p(t1; :::; tn) is forward-checkable and has already been selected by the WLA.De�nition 2 (WLA) Let P be a program, Gi = ?�A1; :::; Ak; :::; Am a goal and �i+1 asubstitution. Gi+1 is derived by the WLA along with �i+1 from Gi and P if Ak is WLA-checkable with x1; :::; xn being the WLA variables in Ak and the following holds:� If Ak is lookahead-checkable and the WLA has not been applied to Ak in the actual proof,then:For each xj, the new domain ej is ej = fvj2dj j 9v12d1; :::; vj�12dj�1; vj+12dj+1; :::; vn2dnsuch that �(Ak) with � = fx1 v1; :::; xn vng is a logical consequence of Pg.For each xj, if ej has become a singleton, i.e. ej = fcg, then the new value yj is theconstant c, otherwise a new variable ranging over ej. �i+1 then is de�ned as �i+1 =fx1 y1; :::; xn yng.Gi+1 is either ?- �i+1(A1; :::; Ak�1; Ak+1; :::; Am), if at most one yj is a domain variable,or Gi+1 is ?-�i+1(A1; :::; Am), otherwise.� If Ak is forward-checkable, then:Let xd be the forward variable inside Ak. Then, the new domain e is de�ned as e = fa 2d j P j= Akfxd agg 6= ;. 6

�i+1 is de�ned as �i+1 = fxd cg, if e = fcg, i.e. e has become a singleton. Otherwise,�i+1 = fxd yeg, where ye is a new domain variable ranging over e.Gi+1 = ?- �i+1(A1; :::; Ak�1; Ak+1; :::; Am):Properties of Weak Looking-Ahead The main point of the above de�nition is point 6,which uses SLDFC resolution (SLD resolution with forward-checking, cf. [van Hentenryck,1989]), whose soundness and completeness have been proved, in order to �nish the proofafter some prepruning has been done by using the LAIR in a de�nite way. Thus, if we wantto prove soundness and completeness of the WLA, we basically have to check the LAIRpart. Since this part gets involved not more than once for each goal, and since this happensas early as possible (due to point 2 of the de�nition), the disadvantages of the LAIR suchas its incompleteness and the high computational overhead can be avoided.Proposition 1 (Soundness of WLA) Let P be a program, and let Gi be the goal ?-A1; :::; Ak; :::; Am, and Ak be WLA-checkable. Let the goal Gi+1 be derived by WLA alongwith �i+1 from Gi and P as Gi+1 = ?-�i+1(A1; :::; Ak�1; Ak+1; :::; Am). Gi is a logical con-sequence of P i� Gi+1 is a logical consequence of P .The next result concerns the completeness of WLA. This means that we can de�ne acomplete proof procedure using weak looking-ahead.De�nition 3 (SLDW-resolution) A �rst-order resolution proof procedure is called SLDW-resolution, if it uses weak looking-ahead for WLA-checkable goals and normal SLDD-derivation(SLD-derivation with domain variables) for other goals.We can prove the completeness of such a proof procedure by making use of the completenessof the FCIR, showing that by applying the LAIR not more than once to each goal, nosolutions are lost. The completeness result is expressed by the following proposition:Proposition 2 (Completeness of WLA) P be a logic program, G be a goal. If thereexists an SLDD-refutation of P[fGg, then there also exists an SLDW-refutation of P[fGg.Moreover, if � is the answer substitution from the SLDD-refutation of P[fGg, and � is theanswer substitution from the SLDW-refutation of P[fGg, then � � �.For the proofs of the propositions 1 and 2 we refer to [M�uller, 1991]. In the next sectionwe will demonstrate weak looking-ahead by an example from our application domain.4 Using Weak Looking-Ahead for Tool-SelectionIn this section we will show the usability of the weak looking-ahead inference rule by anexample from the concrete domain of the ARC-TEC project at DFKI that constitutes anAI approach towards implementing the idea of computer-integrated manufacturing (CIM).Along with conceptual solutions, it provides a continuous sequence of software tools forthe Acquisition, Representation, and Compilation of TEChnical knowledge (cf. [Bernardiet al., 1991]). It combines the kads knowledge-acquisition methodology [Wielinga et al.,7

1992], the kl-one representation theory [Brachman and Schmolze, 1985], and WAM com-pilation [Hein and Meyer, 1992] and constraint-handling technologies [Meyer et al., 1992].For its evaluation, an expert system for production planning has been developed.4.1 The Problem DomainThe input to the production planning system is a very low-level description of a rotational-symmetric workpiece as it comes from a CAD system. Geometrical description of theworkpiece's surfaces and topological neighborhood relations are the central parts of thisrepresentation. If possible at all, production planning with these data starting from (nearly)�rst principles would require very complex algorithms. Thus, planning strategies on sucha detailed level are neither available nor do they make sense. Instead human planners[Schmalhofer et al., 1991] have a library of skeletal plans in their minds. Each of theseplans is associated with a more or less abstract description of a (part of a) workpiece,which are called workpiece features [Klauck et al., 1991]. Such a feature is de�ned by itsassociation to a corresponding manufacturing method.The generation of an abstract feature description of the workpiece is the �rst step of theproduction planning process. The obtained features characterize the workpiece with respectto its production. In a second step the skeletal plans (associated to the features) areretrieved and merged resulting in an abstract NC program, which is then transformed intocode for the concrete CNC machine.4.2 The Lathe-Tool Selection ProblemThe application problem we are dealing with for the rest of this paper will be to �ndappropriate lathe tools to manufacture the workpiece. According to the shape, the materialand other attributes of the lathe part to be manufactured, the workplan consists of a numberof di�erent steps. A typical workplan may provide one step for roughing, another step for�nishing and a third (facultative) step for doing the �ne �nishing of the lathe part. However,a workplan can be muchmore complicated. For each processing step, appropriate tools haveto be chosen.This tool selection heavily depends on a lot of geometrical (e.g. the edge-angle) as wellas technological parameters (e.g. material, process etc.). Moreover, the tool system itselfconsists of subparts that have to be combined, e.g. the tool holder, the material of theplate and its geometry. In practice, there are a lot of restrictions, 'which holder to use forwhich plate', 'which kind of plate geometry to use for which workpiece contour' and so on.Figure 1 shows a typical lathe workpiece together with the selected tools for the di�erentmanufacturing features and lathe-turning steps.The lathe-tool selection problem can naturally be formulated as a constraint satisfactionproblem (CSP). To keep things simple, we may assume that a lathe tool consists of two basicparts: the cutting plate, which actually cuts the material, and the tool holder, which servesto hold the cutting plates. We can exchange either the cutting plate only or both plateand holder. In our application, we are now concerned with �nding a well-suited tool|orrather: a number of well-suited tools|starting from a set of constraints which describe theactual problem, i.e. information about the process to be performed, about the lathe part8

Figure 1: An example workpiece with its selected lathe toolsto be processed, and internal information about the compatibility of holders and cutting-plates as well as about holder and plate geometries. Tool selection will then result in aset of possible holder/tool combinations for each skeletal plan or manufacturing feature.Using this information, the planning layer can �nally perform the optimizations necessaryto obtain a (sub)optimal workplan.4.3 The VariablesWhen formalizing the tool selection problem as a CSP, the �rst thing we have to do isto restrict the number of input parameters, which crucially determines the complexity ofthe problem, since each parameter corresponds to a variable in the constraint net. For oursmall example we will use the following variables:� Holder: This variable denotes the tool holder. In the beginning, it ranges over thedomain of all holders. During constraint propagation, it will be restricted to the setof holders which can currently be chosen.� Plate: This variable denotes the cutting plate to be chosen. Analogously to the holdervariable, it ranges over the set of all cutting plates and will be restricted subsequently.� Process: This variable corresponds to the actual kind of processing.� WP-material: This variable contains the material of the lathe workpiece.� Beta-Max: This variable denotes the maximal angle � appearing within the range ofone feature of the workpiece.22In general, each of these features corresponds to a single working process.9

� Edge-Angle: This variable embodies the most important geometrical attribute of acutting-plate, its edge-angle ".� TC-Edge-Angle: The tool cutting edge-angle � is a geometrical characteristic of thetool holder. It denotes the angle between the horizontal cutting direction and themarginal cutting axis of the holder.Figure 2 gives a better understanding of the geometrical items introduced above.
χ β

ε

TC-Edge-Angle
Edge-Angle

Beta-Max

cutting direction

rotation axis

lathe part

holder cutting plate

βFigure 2: The Angle Constraint4.4 The ConstraintsHaving identi�ed the problem variables, the constraints can be put on the variables. In thefollowing, we will consider only the most important constraints:� holder tcea(Holder, TC-Edge-Angle): This constraint describes the functional re-lation between a holder and its tool-cutting edge-angle. It is represented as a primitiveor database constraint by enumerating all the possible combinations.� plate ea(Plate, Edge-Angle): This constraint is a database-constraint, too. Itdenotes the fact that each plate has its own edge-angle3.� compatible(Holder, Plate): This constraint expresses the compatibility conditionbetween tool holders and cutting plates.� hard enough(Plate, WP-Material): For materials with di�erent degrees of hard-ness, di�erent cutting-plates have to be used. Processing hardened steel, e.g., mayrequire ceramic or even diamond cutting plates, whereas aluminum can be cut withother, cheaper plates. Note, however, that hardness is just one of many attributes ofa material which are important in order to choose the right cutting plate.� process holder(Process, Holder): For the di�erent steps of processing, di�erenttypes of holders are appropriate.3Of course, we could have implemented the plate as a more complex data structure containing its edge-angle as an attribute. For the sake of uniformity, we implemented it as a constraint, just as we did withthe holder tcea constraint. 10

