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Abstract

In Baader (1990a,1990b), we have considered different types of semantics for
terminologicial cycles in the concept language FL0 which allows only conjunction
of concepts and value restrictions. It turned out that greatest fixed-point semantics
(gfp-semantics) seems to be most appropriate for cycles in this language. In the
present paper we shall show that the concept defining facilities of FL0 with cyclic
definitions and gfp-semantics can also be obtained in a different way. One may
replace cycles by role definitions involving union, composition, and transitive
closure of roles.
This proposes a way of retaining, in an extended language, the pleasant features
of gfp-semantics for FL0 with cyclic definitions without running into the troubles
caused by cycles in larger languages. Starting with the language ALC of Schmidt-
Schauß&Smolka (1988) – which allows negation, conjunction and disjunction of
concepts as well as value restrictions and exists-in restrictions – we shall disallow
cyclic concept definitions, but instead shall add the possibility of role definitions
involving union, composition, and transitive closure of roles. In contrast to other
terminological KR-systems which incorporate the transitive closure operator for
roles, we shall be able to give a sound and complete algorithm for concept
subsumption.
Surprisingly, this algorithm can also be used to decide subsumption with respect to
concept equations, i.e., arbitrary equational axioms of the form C = D where C
and D are concept terms. This is so because concept terms of our extended
language can be used to encode finite sets of concept equations.
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1. Introduction

In knowledge representation (KR) languages based on KL-ONE (Brachman&Schmolze
(1985)), one starts with atomic concepts and roles, and can use the language formalism to
define new concepts and roles. Concepts can be considered as unary predicates which are
interpreted as sets of individuals whereas roles are binary predicates which are interpreted as
binary relations between individuals. The languages (e.g., FL  and FL¯ of Levesque&
Brachman (1987), TF and NTF of Nebel (1990a), or the AL-languages considered in Donini
et al. (1991)) differ in what  kind of constructs are allowed for the definition of concepts and
roles. Their common feature – besides the use of concepts and roles – is that the meaning of
the constructs is defined with the help of a model-theoretic semantics. Most of these languages
do not go beyond the scope of first-order predicate logic, and they usually have very
restricted formalisms for defining roles.

However, for some applications it would be very useful to have means for expressing
things like transitive closure of roles. For example, if we have a role child  (resp. i s -
direct-part-of) we might want to use its transitive closure offspring (resp. i s - p a r t -
of) in order to define concepts like “man who has only male offsprings” (resp. “car which has
only functioning parts”). Obviously, we cannot just introduce a new role offspring without
enforcing the appropriate relationship between offspring and child. Since the transitive
closure of binary relations cannot be expressed in first-order predicate logic (see
Aho&Ullman (1979)), the above mentioned languages cannot be used for that purpose.

There are two possibilities to overcome this problem. On the one hand, one may
introduce a new role-forming operator trans, and define its semantics such that, for any role
R, trans(R) is interpreted as the transitive closure of R. This operator is e.g. contained in
the terminological representation language LOOM (MacGregor&Bates (1987)). However,
LOOM does not have a complete algorithm to determine subsumption relationships between
concepts. This seems to be a severe drawback because computing subsumption relationships
is one of the major reasoning steps in KL-ONE-based KR-systems.

On the other hand, cyclic concept definitions together with an appropriate fixed-point
semantics can be used to express value restrictions with respect to the transitive closure of
roles (see Baader (1990a,b)). However, cyclic definitions are prohibited in most
terminological knowledge representation languages (e.g., in KRYPTON (Brachman et al.
(1985)), NIKL (Kaczmarek et al. (1986)) or LOOM (MacGregor&Bates (1987))) because,
from a theoretical point of view, their semantics is not clear and, from a practical point of
view, existing inference algorithms may go astray in the presence of cycles.

The first thorough investigation of cycles in terminological knowledge representation
languages can be found in Nebel (1987,1990a,1990b). Nebel considered three different kinds
of semantics – namely, least fixed-point semantics (lfp-semantics), greatest fixed-point
semantics (gfp-semantics), and what he called descriptive semantics – for cyclic definitions in
his language NTF. But, due to the fact that this language is relatively strong1, he does not

1The language allows concept and role conjunction, value restrictions, number restrictions and negation of

primitive concepts.
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provide a deep insight into the meaning of cycles with respect to these three types of semantics.

Baader (1990a,b) considers terminological cycles in a very small KL-ONE-based
language which allows only concept conjunctions and value restrictions. For this language,
which will be called FL0 in the following, the effect of the three above mentioned types of
semantics can be completely described with the help of finite automata. As a consequence,
subsumption determination for each type of semantics can be reduced to a (more or less) well-
known decision problem for finite automata. For the language FL0, the gfp-semantics comes
off best. The characterization of this semantics is easy and has an obvious intuitive
interpretation. It involves only regular languages over the alphabet of role names, and for
that reason subsumption can be reduced to inclusion of regular languages. This
characterization also shows that gfp-semantics is the appropriate semantics for expressing
value restrictions with respect to the transitive closure of roles.

However, the results obtained in Baader (1990a) have two major drawbacks which we
intend to overcome in the present paper. First, the language FL0 is too small to be sufficient
for practical purposes. As shown in Baader (1990b), the results can be extended to the
language FL¯ of Levesque&Brachman (1987), and it seems to be relatively easy to include
number restrictions. However, as soon as we also consider disjunction of concepts and exists-
in restrictions2, the unpleasant features which lfp-semantics had for FL0 (see Baader
(1990a,b)) also occur for gfp-semantics in this larger language. If we should like to have
general negation of concepts, least or greatest fixed-points may not even exist, thus rendering
fixed-point semantics impossible.

Second, the characterization of gfp-semantics for FL0  – though relatively easy and
intuitive – still involves concepts from formal language theory such as regular languages and
finite automata, that is, concepts which may not be very familiar in the area of knowledge
representation. In the present paper we shall show that the concept defining facilities of FL0

with cyclic definitions and gfp-semantics can also be obtained in a different way. One may
prohibit cycles and instead allow role definitions involving union, composition, and transitive
closure of roles. The regular languages which occur in the characterization of gfp-semantics
for FL0 can directly be translated into role definitions in this new language.

This proposes a way of retaining, in an extended language, the pleasant features of gfp-
semantics for FL0 with cyclic definitions without running into the troubles caused by cycles in
larger languages. Starting with the language ALC  of Schmidt-Schauß&Smolka (1988) –
which allows negation, conjunction and disjunction of concepts as well as value restrictions
and exists-in restrictions – we shall not allow cyclic concept definitions, but instead we shall
add the possibility of role definitions involving union, composition, and transitive closure of
roles. This yields the “transitive extension” ALCtrans  of ALC . In contrast to other
terminological KR-systems which incorporate the transitive closure operator for roles, we
shall be able to give a sound and complete algorithm for concept subsumption. The
connection between role definitions involving union, composition, and transitive closure of

2See Definitions 2.1 and 2.2 below. This construct is called “c-some” in Nebel (1990a), and “unrestricted

existential quantification” in Donini et al. (1991).
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roles on the one hand, and regular languages over the alphabet of all role names on the other
hand will be important for this algorithm. In particular, the quotient criterion for regular
languages (see Eilenberg (1974), Theorem 8.1) will be crucial for its termination.

In Section 2 we shall recall syntax and semantics of the language ALC , and the
characterization of gfp-semantics for the sublanguage FL0 given in Baader (1990a,b). This
section will also contain the alternative characterization of gfp-semantics for FL0 with the
help of role-forming operators. This characterization motivates the definition of the extension
of ALC given in the next section. In Section 3 we shall also recall by an example how a
subsumption algorithm for ALC works. It will then be shown how the ideas underlying this
algorithm may be generalized to our extension ALCtrans  of ALC, and what new problems
may appear. Section 4 describes the algorithm for the extended language, and contains the
proof of its completeness and soundness.

In Section 5 we shall show that the same algorithm can also be used to check
subsumption with respect to a restricted semantics which allows only finite models without
cyclic role chains. Considering this kind of semantics is motivated by the fact that usually, for
languages without cyclic definitions or role definitions using the transitive closure operator,
the existence of a model already implies the existence of a finite model without cyclic role
chains. In addition, for some applications (e.g., if we want to express something like lists of
arbitrary finite length) this semantics is more appropriate.

In Section 6 it will be shown that concept terms of ALCtrans  (as introduced in Section 3)
can be used to encode concept equations, i.e., arbitrary equational axioms of the form C = D
where C and D are concept terms (of ALC or ALCtrans). To be more precise, it will be
shown how a finite set E = {C1  = D1, ..., Cn = Dn} of concept equations can be transformed
into a concept term C of ALCtrans  such that for all concept terms D we have: D is consistent
w.r.t. E iff C ® D is consistent. This process of encoding explicit axioms into concept terms –
and thus making them only implicitly available – will be called “internalization” of concept
equations.3 As a consequence of this internalization the algorithm developed in Section 4 can
also be used to decide consistency and subsumption w.r.t. concept equations in ALCtrans ,
and thus also in ALC. Since cyclic terminologies of ALC are just sets of concept equations of
a very specific form, we thus also get a solution of the consistency and the subsumption
problem for terminological cycles in ALC, provided that descriptive semantics is used.

2. KL-ONE-based KR-languages

The language which we shall use as a starting point for the extension described in Section 3 is
called “attributive concept description language with unions and complements”, for short
ALC (Schmidt-Schauß&Smolka (1988)). The reason for choosing ALC was that it is large
enough to exhibit most of the problems connected with such an extension. Taking a larger
language (e.g., including number restrictions) would only mean more work without bringing
new insights. The sublanguage of ALC for which cyclic definitions where considered in
Baader (1990a,b) was called FL0  in Baader (1990b).

3This name is due to G. Smolka; see Baader et al. (1991).
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2.1 The Languages ALC and FL0

The next definition describes the syntax of the language ALC.

Definition 2.1. (concept terms and terminologies of ALC)
Let C be a set of concept names and R be a set of role names. The set of concept terms  of
ALC is inductively defined. As a starting point of the induction,
(1)  any element of C is a concept term.

(atomic terms)
Now let C and D be concept terms already defined, and let R be a role name.
(2)  Then C ® D, C Ω D, and ¬C are concept terms.

(conjunction, disjunction, and negation of concepts)
(3)  Then ∀R:C and ∃R:C are concept terms.

(value restriction and exists-in restriction)
Let A be a concept name and let D be a concept term. Then A = D is a terminological axiom.
A terminology (T-box) is a finite set of terminological axioms with the additional restriction
that no concept name may appear more than once as a left hand side of a definition.

The sublanguage FL0 of ALC  is defined as follows: part (2) of Definition 2.1 is
restricted to concept conjunction and part (3) to value restriction.

A T-box contains two different kinds of concept names. Defined concepts   occur on the
left hand side of a terminological axiom. The other concepts are called primitive concepts  4.
The following is an example of a T-box in the ALC-formalism. Let Man, Human, Male,
Father and Mos (for “man who has only sons”) be concept names and let child be a role
name. The T-box consists of the following axioms:

Man = Human ® Male
Mos = Man ® ∀child: Man

Father = Man ® ∃child: Human

That means that a man is human and male. A man who has only sons is a man such that
all his children are male humans. A father is a man who has at least one human child. The
first two axioms are axioms of FL0 . Male and Human are primitive concepts while Man,
Mos and Father are defined concepts. Assume that we want to express a concept “man who
has only male offsprings”, for short Momo. We cannot just introduce a new role name
offspring because there would be no connection between the two primitive roles child
and offspring. But the intended meaning of offspring is that it is the transitive closure of
child. It seems quite natural to use a cyclic definition for Momo: A man who has only male
off-springs is himself a man and all his children are men who have only male off-springs, i.e.,

Momo = Man ® ∀child: Momo.

This is a very simple cyclic definition. In general, cycles in terminologies are defined as
follows. Let A, B be concept names and let T be a T-box. We say that A directly uses B in T

4For the language ALC, roles are always primitive since it does not have role definitions.
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iff B appears on the right hand side of the definition of A. Let uses denote the transitive
closure of the relation directly uses. Then T contains a terminological cycle  iff there exists a
concept name A in T such that A uses A.

The next definition gives a model-theoretic semantics for the language introduced in
Definition 2.1.

Definition 2.2. (interpretations and models)
An interpretation  I consists of a set dom(I), the domain of the interpretation, and an interpre-
tation function which associates with each concept name A a subset AI of dom(I), and with
each role name R a binary relation RI on dom(I), i.e., a subset of dom(I) ≈ dom(I). The sets
AI, RI are called extensions of A, R with respect to I.
The interpretation function – which gives an interpretation for atomic terms – can be
extended to arbitrary terms as follows: Let C, D be concept terms and R be a role name.
Assume that CI and DI are already defined. Then

(C ® D)I := CI ∩ DI,  (C Ω D)I := CI ∪ DI,  and  (¬C)I := dom(I) \ CI,

(∀R:C)I := {x ∈ dom(I); for all y such that (x,y) ∈ RI we have y ∈ CI},

(∃R:C)I := {x ∈ dom(I); there exists y such that (x,y)  ∈ RI and y ∈ CI}.

An interpretation I is a model of the T-box T iff it satisfies AI = DI for all terminological
axioms A = D in T.

An important service most terminological representation systems provide is computing
the subsumption hierarchy.

Definition 2.3. (subsumption of concepts)
Let T be a T-box and let A, B be concept names.

A –T B   iff  AI ⊆ BI   for all models I of T .

In this case we say that B subsumes A in T.

Many of the existing subsumption algorithms for terminological KR-languages (see e.g.
Levesque&Brachman (1987), Schmidt-Schauß&Smolka (1988), Nebel (1990a), or Hollunder
et al. (1990)) do not work on T-boxes but on concept terms. For that reason they have to
“unfold” the T-box. Unfolding of a T-box means substituting defined concepts which occur
on the right hand side of a definition by their defining terms. This process has to be iterated
until there remain only primitive concepts on the right hand sides of the definitions.
Obviously, this procedure terminates if and only if the terminology is acyclic. This was one
more reason for prohibiting cyclic definitions. We shall say that a terminology is unfolded  iff
the right hand sides of its axioms only contain primitive concepts. Please note that the size of
the unfolded T-box may be exponential in the size of the original T-box (see Nebel (1990c)).

In the example, the unfolded definition of Mos would be

Mos = Human ® Male ® ∀child: (Human ® Male),

whereas unfolding of the definition of Momo would not terminate.

Let T be an acyclic terminology, and let A, B be defined concepts of T. Let A = C and
B = D be the corresponding unfolded definitions of A, B. Then we have
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A –T B  iff  CI ⊆ DI  for all interpretations I ,

which shows that subsumption with respect to acyclic terminologies can be reduced to
subsumption of concept terms. For concept terms C, D, the subsumption relation is defined as
C – D iff CI ⊆ DI for all interpretations I.

The semantics we have given in Definition 2.25 is not restricted to non-cyclic
terminologies. But for cyclic terminologies this kind of semantics may seem unsatisfactory.
One might think that the extension of a defined concept should be completely determined by
the extensions of the primitive concepts and roles. This is the case for non-cyclic
terminologies. More precisely, let T be a T-box containing the primitive concepts P1, ..., Pn

and the roles R1, ..., Rm. If T does not contain cycles, then any interpretation P1
I, ..., Pn

I, R1
I,

..., Rm
I of the primitive concepts and roles can uniquely be extended to a model of T. If T

contains cycles, a given interpretation of all primitive concepts and roles may have different
extensions to models of T. This phenomenon already occurs in the Momo-example from
above; with the consequence that our definition of the concept Momo is not correct if we use
descriptive semantics (see Baader (1990b), Example 2.3).

For these reasons, alternative types of semantics for terminological cycles in FL0 have
been considered in Baader (1990a,b), namely greatest fixed-point semantics (gfp-semantics)
and least fixed-point semantics (lfp-semantics). Roughly speaking, gfp-semantics (lfp-
semantics) means that, with respect to a given interpretation of the primitive concepts and
roles, the defined concepts are interpreted as large (small) as possible in gfp-models (lfp-
models) of the terminology (see Nebel (1990a) or Baader (1990a,b) for details). Please note
that, for cycle-free terminologies, lfp-, gfp- and descriptive semantics coincide

Subsumption with respect to gfp-semantics (lfp-semantics) is defined in the obvious
way, namely, A –gfp,T B (A –lfp,T  B)  iff  AI ⊆ BI  for all gfp-models (lfp-models) I of T.

2.2 Characterization of gfp-Semantics for FL0  using Regular Languages

Before we can associate a finite automaton AT to a terminology T of FL0  we must transform
T into some kind of normal form. It is easy to see that the concept terms ∀R:(B ® C) and
(∀R:B) ® (∀R:C) are equivalent. Hence any concept term of FL0 can be transformed into a
finite conjunction of terms of the form ∀R1:∀R2:...∀Rn:A, where A is a concept name. We
shall abbreviate the prefix “∀R1:∀R2:...∀Rn” by “∀W” where W = R1R2...Rn is a word over
RT, the set of role names occurring in T. In the case n = 0 we also write “∀ε:A”6 instead of
simply “A”. For an interpretation I and a word W = R1R2...Rn, WI denotes the composition
R1

I
°R2

I
°... °Rn

I of the binary relations R1
I, R2

I, ..., Rn
I. The term εI denotes the identity

relation, i.e., εI = {(d,d); d ∈ dom(I)}.

Let T be a terminology of FL0 where all terms are normalized as described above.

Definition 2.4. The generalized (nondeterministic) automaton AT is defined as follows:
The alphabet of AT is the set R T of all role names occurring in T; the states of AT are the

5This semantics will be called “descriptive semantics” in the following.
6“ε” denotes the empty word.
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concept names occurring in T; a terminological axiom of the form A = ∀W1:A1 ®  ... ®
∀Wk:Ak gives rise to k transitions, where the transition from A to A i is labeled by the word
Wi.

The automaton AT is called “generalized” because transitions are labeled by words over
the alphabet and not only by symbols of the alphabet. However, it is well-known that any
generalized finite automaton can be transformed into an equivalent finite automaton (see
Manna (1974), p. 9). Definition 4.1 will now be illustrated by an example.

Example 2.5. (A normalized terminology and the corresponding automaton)

A =    R: A       S: C    P RS

S

A C

P

R

S

S

ε
ε

B

Q

B =    RS: C        S: Q

C =    S: C     P

∀ ® ∀

∀ ®∀

∀ ®

®

A pair of states p, q of an automaton defines a regular language L(p,q), namely the set
of all words which are labels of paths from p to q. In the example, L(A,P) = R*S* = {RnSm;
n,m ≥ 0}, L(B,P) = RSS* = {RSSm; m ≥ 0}, L(C,P) = S* = {Sm; m ≥ 0}, L(A,Q) = L(C,Q) =
Ø, and L(B,Q) = S = {S}.

Above, we have already used the fact that regular languages can be described by
regular expression. The set of all regular expressions  over a finite alphabet is inductively
defined:
(1)  Ø and ε are a regular expressions denoting the empty set and the set {ε}, respectively.
(2)  Every symbol S of the alphabet is a regular expression and denotes the singleton {S}.
(3)  If h, k are regular expressions denoting the languages H, K, respectively, then hk, h ∪ k,
and h* are regular expressions denoting the languages HK = {UV; U ∈ H, V ∈ K}, H ∪ K,
and H* = ∪n≥0Hn = {U1…Un; n ≥ 0 and Ui ∈ H for 1 ≤ i ≤ n}, respectively.
In the following, we shall not distinguish between a regular expression and the language it
describes.

We are now ready to recall the characterization of the gfp-semantics given in Baader
(1990a,b).

Theorem 2.6.  Let T be a terminology of FL0, and let AT be the corresponding automaton.
Let I be a gfp-model of T, and let A, B be concept names occurring in T.
(1)  For any d ∈ dom(I) we have d ∈ AI  iff  for all primitive concepts P, all words W ∈
L(A,P), and all individuals e ∈ dom(I), (d,e) ∈ WI implies e ∈ PI.
(2)  Subsumption in T can be reduced to inclusion of regular languages defined by AT. More
precisely, A  –gfp,T B  iff  L(B,P) ⊆ L(A,P) for all primitive concepts P.

The theorem can intuitively be understood as follows: The language L(A,P) stands for
the possibly infinite number of constraints of the form ∀W: P which the terminology imposes
on A. The more constraints are imposed the smaller the concept is. In the example, C
subsumes A w.r.t. gfp-semantics since L(C,P) = {Sm; m ≥ 0} is a subset of L(A,P) = {RnSm;
n,m ≥ 0}, and L(A,Q) = L(C,Q). Part (1) of Theorem 2.6 motivates the definition of regular
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value restrictions7.

Definition 2.7. (A “regular extension” of FL0 )
(1)  Let L be a regular language over a give finite set of role names, and let C be a concept
term already defined. Then ∀L:C is a  regular value restriction. Its semantics is defined as
(∀L:C)I := {d ∈ dom(I); for all words W ∈ L and all e ∈ dom(I), (d,e) ∈ WI implies e ∈ CI}.
(2)  In the “regular extension” FLreg of FL0 we allow to use regular value restrictions and
concept conjunction as concept forming operators.

Part (1) of Theorem 2.6 implies that, with respect to gfp-semantics, cyclic terminologies
of FL0 can be expressed by unfolded – and thus necessarily acyclic – terminologies of FLreg.
The cyclic T-box of Example 2.5 corresponds to the following unfolded T-box of FLreg:

A = ∀R*S*:P

B = ∀RSS*:P ® ∀S:Q

C = ∀S*:P

On the other hand, it is easy to see that any unfolded terminology of FLreg can be
expressed by a possibly cyclic terminology of FL0. We shall demonstrate this by an example.
Consider the following unfolded T-box of FLreg.

A = ∀RR*:∀S*:P ® ∀S*:(P ® Q)

In the first step we use the fact that the concept terms ∀ε:B and B, ∀L:(B ® C) and
(∀L:B) ® (∀L:C), ∀K∀L:B and ∀KL:B, as well as (∀K:B) ® (∀L:B) and ∀(K ∪ L):B are
equivalent. This enables us to transform the terminology such that the right hand sides are
finite conjunctions of terms of the form ∀L:P where the primitive concept P occurs only once
in the conjunction. In the example, we get

A = ∀(RR*S* ∪ S*):P ® ∀S*:Q

We may now interpret the finite automata for the languages occurring in the regular
value restrictions as parts of a possibly cyclic terminology of FL0 . In the example, we have
the following two automata for the languages RR*S* ∪ S* and S* occurring in the definition
of A:

D E
R

ε
ε

SF

R

SG

initial state

final state

initial and
final state

Thus the above definition of A involving regular value restrictions can be transformed
into the following definitions in FL0.

7This method of extending a give formalism with the help of regular languages is also used in other areas;

see e.g., the functional descriptions that contain regular uncertainties which are described in Kaplan&Maxwell

(1988), or the extended temporal logic ETL f in Thayse (1989), Section 4.2.12.
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A = D ® G
D = ∀R:E ® F
E = ∀R:E ® F
F = ∀S:F ® P
G = ∀S:G ® Q

Part (1) of Theorem 2.6 ensures that the finally obtained T-box of FL0 , if considered
with gfp-semantics, really expresses the original T-box of FLreg. We have thus established a
1–1-correspondence between possibly cyclic terminology of FL0 and unfolded terminology
of FLreg.

As for ALC and FL0 , any acyclic terminology of FLreg can be transformed into an
equivalent unfolded terminology of FLreg. However, unlike the situation for FL0, unfolding
is also possible for cyclic T-boxes, if they are interpreted with gfp-semantics. We have seen in
Definition 2.4 above how to associate a generalized finite automaton AT to a terminology T
of FL0. In the same way we may associate a so-called Reg-graph GT to a terminology T of
FLreg. A Reg-graph is an even more generalized automaton where transitions may be labeled
by regular languages. Nevertheless, these Reg-graphs are just accepting regular languages
(see Manna (1974), p. 11; Manna calls Reg-graphs “generalized transition graphs”).

Example 2.8.  (a cyclic terminology of FLreg and the corresponding Reg-graph)

A B P

R*

RS*

SR*

ε
A =    R*: A       RS*: B

B =    SR*: B     P∀ ®
∀ ®∀

We have L(B,P) = (SR*)*, and L(A,P) = (R*)*(RS*)(SR*)*.

In the same way as for FL0, Theorem 2.6 can now be proved for FLreg, with GT in
place of AT. Part (1) of the theorem yields the representation by an unfolded T-box of FLreg.
For the example we obtain the following unfolded T-box:

A = ∀(R*)*(RS*)(SR*)*:P

B = ∀(SR*)*:P

Theorem 2.9.  Possibly cyclic terminologies of FL0  considered with gfp-semantics, un-
folded terminologies of FLreg, acyclic terminologies of FLreg, and possibly cyclic terminolo-
gies of FLreg considered with gfp-semantics have the same expressive power.

2.3 An Alternative Characterization of gfp-Semantics for FL0  using Role

Terms

In addition to the concept forming operators of FL0 , we shall now consider role forming
operators.

Definition 2.10.  (A “transitive extension” of FL0)
(1)  Let R be a finite set of role names. The set of role terms  is inductively defined as follows.
As a starting point of the induction, any role name is a role term (atomic role), and the symbol
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Ø is a role term (empty role). Now assume that R and S are role terms already defined. Then
R Ω S (union of roles), R°S (composition of roles), and trans(R) (transitive closure of a role)
are role terms.
(2)  In the “transitive extension” FLtrans  of FL0 we allow to use role terms instead of simply
roles in value restrictions.

The semantics of the role forming operators is defined in the obvious way.

Definition 2.11.  Let I be an interpretation. The interpretation function – which gives an
interpretation for atomic roles – can be extended to arbitrary role terms as follows: Let R, S
be role terms, and assume that RI and SI are already defined. Then

ØI := Ø,  (R Ω S)I := RI ∪ SI,  (R°S)I := RI
°SI,  and

(trans(R))I := ∪n≥1(RI)n, i.e., (trans(R))I is the transitive closure of RI.

In the following we want to demonstrate that acyclic terminologies of FLtrans  have the
same expressive power as possibly cyclic terminologies of FL0 considered with gfp-semantics.
By Theorem 2.9, we may consider acyclic terminologies of FLreg instead of possibly cyclic
terminologies of FL0.

In order to get a direct correspondence between the regular languages in value
restrictions of FLreg and the role terms in value restrictions of FLtrans  it is convenient to
restrict the regular value restrictions of FLreg to regular languages not containing the empty
word ε8. This can be done without loss of expressive power. In fact, if L is a regular language
containing ε, then L \ {ε} is also regular, and the concept terms ∀L:C and C ® ∀(L \ {ε}):C
are equivalent.

It is easy to see that regular languages not containing the empty word can be described
by so-called positive regular expressions where ε is not used, and where the plus operator is
used instead of the star operator. If h is a positive regular expression denoting the ε-free
language H, then h+ denotes the language H+ := HH* = ∪n≥1Hn. For example, the ε-free
regular language R*SR* can be denoted by the positive regular expression R+SR+ ∪ R+S ∪
SR+ ∪ S.

A role term R can now be translated into a positive regular expression ψ(R) by
replacing the empty role by the empty language, union of roles by union of languages,
composition of roles by concatenation of languages, and transitive closure of roles by the
operation plus on languages. Obviously, ψ is a bijection between role terms and positive
regular expressions, and thus we also have the mapping ψ-1 which translates positive regular
expressions back into role terms. For the example from above we have ψ−1(R+SR+ ∪ R+S ∪
SR+ ∪ S) = trans(R)°S°trans(R) Ω trans(R)°S Ω S°trans(R) Ω S.

A concept term C of FLtrans  can be translated into a concept term ψ(C) of FLreg by
replacing the role terms R in value restrictions of C by ψ(R). Accordingly, a concept term D
of FLreg is translated into a concept term ψ-1(D) of FLtrans , and we have ψ(ψ-1(D)) = D and
ψ-1(ψ(C)) = C.

8Alternatively, we could use the reflexive-transitive closure of roles instead of the transitive closure.



13

Lemma 2.12.   Let C be a concept term of FLtrans . Then we have ψ(C)I = CI for any
interpretation I.
Proof.   By structural induction on the definition of concept terms. The only interesting case
is the case C = ∀R:B where R is a role term and B is a concept term of FLtrans . We have ψ(C)
= ∀ψ(R):ψ(B), and we know by induction that ψ(B)I = BI. Thus CI = {d ∈ dom(I); (d,e) ∈ RI

implies e ∈ ψ(B)I}, and by the definition of the semantics for FLreg, ψ(C)I = {d ∈ dom(I);
for all words W ∈ ψ(R) and all individuals e ∈ dom(I), (d,e) ∈ WI implies e ∈ ψ(B)I}.
Hence it is sufficient to show that, for any d ∈ dom(I), the sets dψ(R) := {e ∈ dom(I); there
exists W ∈ ψ(R) such that (d,e) ∈ WI} and dR := {e ∈ dom(I); (d,e) ∈ RI} are equal.
This will be proved by induction on the size of the role term  R.
(1)  If R is the empty role, then ψ(R) is the empty language and we have dR = Ø = dψ(R).
(2)  If R is a role symbol, then ψ(R) = R, and dR = {e ∈ dom(I); (d,e) ∈ RI} = dψ(R) since the
positive regular expression R denotes the singleton {R}.
(3)  Let R = S Ω T for role terms S, T. We have RI = S I ∪ TI, ψ(R) = ψ(S) ∪ ψ(T), and by
induction dS = dψ(S)  and dT = dψ(T) . But then dR = dS ∪ dT = dψ(S)  ∪ dψ(T)  = dψ(R).
(4)  Let R = S°T for role terms S, T. We have RI = SI

°TI, and ψ(R) = ψ(S)ψ(T).
Assume that e ∈ dR. Because of (d,e) ∈ RI = SI

°TI there exists f such that (d,f) ∈ SI and (f,e)
∈ TI. That means that f ∈ dS and e ∈ fT. By induction, dS = dψ(S)  and fT = fψ(T) , and thus
there exist U ∈ ψ(S) and V ∈ ψ(T) such that (d,f) ∈  UI and (f,e) ∈ VI. But then UV ∈
ψ(S)ψ(T) and (d,e) ∈ (UV) I.
Assume that e ∈ dψ(R). Thus there exists W ∈ ψ(R) such that (d,e) ∈ WI. Since ψ(R) =
ψ(S)ψ(T) there exist U ∈ ψ(S) and V ∈ ψ(T) such that W = UV. From (d,e) ∈ WI we can
now deduce that there exists f such that (d,f) ∈ U I and (f,e) ∈ VI. That means that f ∈ dψ(S)

and e ∈ fψ(T) . By induction, dS = dψ(S)  and fT = fψ(T) , and thus f ∈  dS and e ∈ fT. This
means that (d,f) ∈ SI and (f,e) ∈ TI, which implies (d,e) ∈ RI.
(5)  Let R = trans(S) for a role term S. We have ψ(R) = (ψ(S))+  = ∪n≥1ψ(S)n, and RI is the
transitive closure of SI, i.e., RI = ∪n≥1(SI)n = ∪n≥1(Sn)I.
As in (4) above it is easy to show that for all n ≥ 1, dSn  = dψ(S)n, and thus dR = ∪n≥1dSn =
∪n≥1dψ(S)n = dψ(R).  o

If D is a concept term of FLreg, then C := ψ-1(D) is a concept term of FLtrans , and by
Lemma 2.12, ψ-1(D)I = CI = ψ(C)I = ψ(ψ-1(D))I = DI. As an easy consequence we get

Theorem 2.13.   Acyclic terminologies of FLtrans , acyclic terminologies of FLreg, and
possibly cyclic terminologies of FL0 considered with gfp-semantics have the same expressive
power.

3. Extensions of A L C

In the previous section we have seen that the expressiveness of possibly cyclic terminologies
of FL0 considered with gfp-semantics can also be obtained without involving cyclic
definitions. We just have to include the appropriate role forming operators into the language.
These role forming operators can now be included into the larger language ALC without
causing any of the troubles we should have with cyclic definitions in ALC.

Definition 3.1.  (transitive and regular extensions of ALC)
(1)  In the “transitive extension” ALCtrans  of ALC we allow to use role terms (as defined in
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part (1) of Definition 2.10) instead of simply roles in value restrictions and exists-in
restrictions. The semantics of ALCtrans  is given by Definition 2.2 and 2.11.
(2)  In the “regular extension” ALCreg of ALC we allow to use regular value restrictions and
regular exists-in restrictions in place of the usual restrictions of ALC.
The semantics of the regular value restrictions is defined as in part (1) of Definition 2.7. The
semantics of the regular exists-in restrictions will be defined in a way such that ¬(∃L:C) is
equivalent to ∀L:(¬C). That means that we define (∃L:C)I := {d ∈ dom(I); there exists a
word W ∈ L and an individual e ∈ dom(I) such that (d,e) ∈ WI and e ∈ CI}.

As in Section 2.3 above we can now translate positive regular expressions into role
terms and vice versa. It is easy to see that Lemma 2.12 also holds for concept terms of
ALCtrans , and thus we obtain

Proposition 3.2.   Acyclic terminologies of ALCtrans  and acyclic terminologies of ALCreg

have the same expressive power. In particular, subsumption in ALCtrans  can be reduced in
linear time to subsumption in ALCreg and vice versa.

This shows that we may restrict our attention to one of these two languages. The
definition of ALCtrans  is more intuitive, and thus ALCtrans  may be more appropriate if we
want to apply the language to actual representation problems. But ALCreg will turn out to be
more convenient for describing the subsumption algorithm. For that reason we shall only
consider ALCreg in the remainder of this paper.

Since we only allow acyclic terminologies of ALCreg, subsumption with respect to
terminologies can be reduced to subsumption of concept terms (see Section 2.1 above). As for
ALC, the subsumption problem for concept terms can further be reduced to the consistency
problem.

Definition 3.3.  A concept term C is called inconsistent  iff CI = Ø for all interpretations I. If
C is not inconsistent, it is called consistent .

For concept terms C, D and an interpretation I, we have CI ⊆ DI  iff  CI \ DI = Ø, i.e.,
iff (C ® ¬D)I = Ø. This shows that C is subsumed by D iff C ® ¬D is inconsistent. Since our
language ALCreg allows negation of concepts, the term C ® ¬D is also an admissible concept
term. Thus it is sufficient to have an algorithm which decides consistency of concept terms.
Let us first recall by an example how consistency can be checked for concept terms of ALC
(see Schmidt-Schauß&Smolka (1988), and Hollunder et al. (1990) for details).

3.1 An Example for the Consistency Test for ALC

Assume that C is a concept term of ALC which has to be checked for consistency. In a first
step we can push all negations as far as possible into the term using the fact that the terms
¬¬D and D, ¬(D ® E) and ¬D Ω ¬E, ¬(D Ω E) and ¬D ® ¬E, ¬(∃R:D) and ∀R:(¬D), as well
as ¬(∀R:D) and ∃R:(¬D) are equivalent. We end up with a term C’ in negation normal form
(nnf) where negation is only applied to concept names.

Example 3.4.  Let A, B be concept symbols, and let R be role a symbol. Assume that we
want to know whether the term ∃R:A ® ∃R:B is subsumed by ∃R:(A ® B). That means that
we have to check whether the term C := ∃R:A ® ∃R:B ® ¬(∃R:(A ® B)) is inconsistent.
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The negation normal form of C is the term C’ := ∃R:A ® ∃R:B ® ∀R:(¬A Ω ¬B).

In a second step we try to construct a finite interpretation I such that C’I ≠ Ø. That
means that there has to exist an individual in dom(I) which is an element of C’I. Thus the
algorithm generates such an individual b and imposes the constraint b ∈ C’I on it. In the
example, this means that b has to satisfy the following constraints: b ∈ (∃R:A)I, b ∈ (∃R:B)I,
and b ∈ (∀R:(¬A Ω ¬B))I.

From b ∈ (∃R:A)I we can deduce that there has to exist an individual c such that (b,c)
∈ R I and c ∈ AI. Analogously, b ∈ (∃R:B)I implies the existence of an individual d with (b,d)
∈ R I and d ∈ BI. We should not assume that c = d since this would possibly impose too many
constraints on the individuals newly introduced to satisfy the exists-in restrictions on b. Thus
the algorithm introduces for any exists-in restriction a new individual as role-successor, and
this individual has to satisfy the constraints expressed by the restriction.

Since b also has to satisfy the value restriction ∀R:(¬A Ω ¬B), and c, d were introduced
as RI-successors of b, we also get the constraints c ∈ (¬A Ω ¬B)I, and d ∈ (¬A Ω ¬B)I. Now c
has to satisfy the constraints c ∈ AI and c ∈  (¬A Ω  ¬B)I whereas d has to satisfy the
constraints d ∈  B I and d ∈ (¬A Ω ¬B)I. Thus the algorithm uses value restrictions in
interaction with already defined role-relationships to impose new constraints on individuals.

Now c ∈ (¬A Ω ¬B)I means that c ∈ (¬A)I or c ∈ (¬B)I, and we have to choose one of
these possibilities. If we assume c ∈ (¬A)I, this clashes with the other constraint c ∈ AI. Thus
we have to choose c ∈ (¬B)I. Analogously, we have to choose d ∈ (¬A)I in order to satisfy
the constraint d ∈  (¬A Ω ¬B)I without creating a contradiction to d ∈  BI. Thus, for
disjunctive constraints, the algorithm tries both possibilities in successive attempts. It has to
backtrack, if it reaches a contradiction, i.e., if the same individual has to satisfy
complementary constraints.

In the example, we have now satisfied all the constraints without getting a
contradiction. This shows that C’ is consistent, and thus ∃R:A ® ∃R:B is not subsumed by
∃R:(A ® B). We have generated an interpretation I as witness for this fact: dom(I) = {a, b, c};
RI := {(a,b), (a,c)}; AI := {b} and BI := {c}. For this interpretation, a ∈ C’I. That means that
a ∈ (∃R:A ® ∃R:B)I, but a ∉ (∃R:(A ® B))I.

Termination of the algorithm is ensured by the fact that the newly introduced
constraints are always smaller than the constraints which enforced their introduction.

3.2 Some Ideas for a Generalization to ALCreg

A consistency algorithm for ALCreg has to treat regular restrictions of the form ∃L:C and
∀L:C instead of simple restrictions ∃R:C and ∀R:C.

In order to satisfy a constraint of the form b ∈ (∃R:C)I the algorithm described above
introduces a new individual c which has to satisfy bRIc and c ∈ CI. This is not so easy if we
have to satisfy a regular constraint of the form b ∈ (∃L:C)I. All we know is that there has to
exist some word W ∈ L and an individual c such that bWIc and c ∈ CI. But we do not know
which W does the job, and if L is infinite, there are infinitely many canditates. Thus trying
them one after another will not do.
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As shown in Section 2.3, we may without loss of generality assume that L does not
contain the empty word. Thus the correct word W ∈ L has some role symbol R as its first
symbol. That means that there exists a word U such that W = RU. The alphabet of role
symbols over which L is built is finite, and thus there are only finitely many possibilities for
choosing a symbol R. Once we have chosen R, we still do not know which word U does the
the job. All we know about U is that it is an element of the set R-1L := {V; RV ∈ L}.

Definition 3.5.  Let L be a language and let W be a word. The left quotient  W-1L of L with
respect to W is defined as W-1L := {V; WV ∈ L}.

For a regular language L, the language W-1L is also regular (see Eilenberg (1974), p.
37), and obviously, this is also true for W-1L \ {ε}. For words U, V we have (UV)-1L =
V-1(U-1L). For example, let L be the regular language (RS)+. Then R-1L = S(RS)*, S -1L = Ø,
and (RS)-1L = S-1(R-1L) = (RS)*.

We can now choose between two possibilities: U can be the empty word (provided that
R ∈ L) or U can be nonempty (provided that R-1L \ {ε} ≠ Ø). If we assume U = ε, then the
new individual c has to satisfy bRIc and c ∈ CI, and the exists-in restriction is worked off. If
we assume U ≠ ε, then b(RU)Ic ensures the existence of an individual d such that bRId, dUIc,
and c ∈ CI. We still do not know the appropriate U, but the existence of such a word U and
an individual c with dUIc, and c ∈ CI can be expressed by the constraint d ∈ (∃(R-1L \
{ε}):C)I.

Thus we have seen how the treatment of exists-in restrictions in the consistency
algorithm for ALC can be generalized to ALCreg. We shall now turn to value restrictions.

Assume that we have a constraint b ∈ (∀L:C)I, and – to satisfy an exists-in-constraint
on b – we have introduced an individual c such that bRIc. Obviously, if R ∈ L, we have to
add the constraint c ∈ C I; but this is not sufficient for the following reason. Assume that U is
an element of R-1L \ {ε}, i.e., U is a nonempty word such that RU ∈ L. If, in some step of the
algorithm, an individual d is introduced such that cUId holds, then d has to satisfy the
constraint d ∈ C I (because b(RU)Id, RU ∈ L, and b has to satisfy b ∈ (∀L:C)I). We can keep
track of this possibility by imposing the constraint c ∈ (∀(R-1L \ {ε}):C)I on c.

Unlike the situation for ALC we can no longer be sure of the termination of the
algorithm. This will be demonstrated by the following example.

Example 3.6.  Let A be a concept name, and let R be a role name. Consider the following
concept term of ALCreg:  C := A ® ∃R:A ® ∀R+:(∃R:A).
(1)  We introduce an individual a0  which has to satisfy the constraints a0  ∈ AI, a0 ∈ (∃R:A)I,
and a0 ∈ (∀R+:(∃R:A))I.
(2)  Because of the exists-in restriction for a0 we introduce a new individual a1  such that
a0RIa1, and this individual has to satisfy the constraint a1  ∈ A.
(3)  Now the interaction between a0RIa1 and the value restriction a0  ∈ (∀R+:(∃R:A))I has to
be taken into account. Because of R ∈ R+ we obtain the constraint a1 ∈ (∃R:A)I. In addition,
we have R-1R+ \ {ε} = R+ ≠ Ø, which yields the constraint a1  ∈ (∀R+:(∃R:A))I. To sum up,
a1 has to satisfy the constraints a1  ∈ AI, a1 ∈ (∃R:A)I, and a1  ∈ (∀R+:(∃R:A))I, i.e., the
same constraints as previously a0 .
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If we continue with the constraints on a1 we get an individual a2 which, in the end, has to
satisfy the same constraints as a1. This yields an individual a3 , and so on. In other words, the
algorithm has run into a cycle.
On the other hand, we could just identify a0  with a1. This would yield the following
interpretation J:  dom(J) := {a0}; RJ := {(a0 ,a0)}; AJ := {a0}. It is easy to see that this
interpretation satisfies a0 ∈ CJ.

The phenomenon that such cycles may occur is not particular for this example. After
sufficiently long computation, the algorithm will always reproduce sets of constraints which
have already been considered. Basically, this is a consequence of the following fact, which in
turn is an easy consequence of the quotient criterion for regular languages (see Eilenberg
(1974), Theorem 8.1).

Proposition 3.7.   Let K be a finite set of regular languages. Then the set {W-1L \ {ε};
where L ∈ K and W is a word} is also finite.

However, it turns out that there are two different types of cycles: “good cycles” and
“bad cycles”. The cycle of Example 3.6 is a “good cycle”; its occurrence indicated that the
concept term under consideration is in fact consistent. The following example will
demonstrate how “bad cycles” may arise.

Example 3.8.  Let A be a concept name, and let R be a role name. Consider the following
concept term of ALCreg:  D := ¬A ® ∃R+:A ® ∀R+:(¬A).
(1)  We introduce an individual a0  which has to satisfy the constraints a0  ∈ (¬A)I, a0 ∈
(∃R+:A)I, and a0  ∈ (∀R+:(¬A))I.
(2)  Because of the exists-in restriction for a0 we introduce a new individual a1  such that
a0RIa1. But now we have R ∈ R+  as well as R-1R+ \ {ε} = R+ ≠ Ø. Thus we have to choose
between two possibilities for the constraint on a1.
(3)  First, we may take the constraint a1  ∈ AI (corresponding to the case U = ε from above).
But a0RIa1 together with the value restriction a0 ∈ (∀R+:(¬A))I yields a1 ∈ (¬A)I, and we
have a clash with a1 ∈ AI.
(4)  Thus we have to backtrack and choose the constraint a1 ∈ (∃R+:A)I (corresponding to
the case U ≠ ε from above). As before, a0RIa1 together with the value restriction on a0  yields
a1 ∈ (¬A)I and a1 ∈ (∀R+:(¬A))I. Thus a1  has to satisfy the same constraints as previously
a0. This shows that we have again run into a cycle; but this time the situation is different. In
fact, it is easy to see that the concept term D is inconsistent while the term C of Example 3.6
was consistent.

We may now ask what makes the difference between the cycle of Example 3.6 and that
of Example 3.8. In the second example we have postponed satisfying the exists-in restriction
for a0 by introducing the new exists-in restriction for a1 . It is easy to see that we should have
to postpone satisfying the restriction for ever because trying to actually satisfy it will always
result in a clash. In the first example however, we have already satisfied the exists-in
restriction before the cycle occurs.

Building up on these ideas the next section presents a formal description of an
algorithm for deciding consistency of concept terms of ALCreg.
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4 . An Algorithm for Testing Consistency of Concept Terms of
ALCreg

To keep our algorithm simple, we single out a special class of concept terms as normal forms.
A concept term C is called simple  iff C is a concept name, or a complemented concept name,
or if C is of the form ∀L:D or ∃L:D where L is a nonempty regular language not containing
the empty word. A conjunctive concept term has the form C1 ® ... ® Cn where each C i is a
simple concept term. A subconjunction  for C1  ® ... ® Cn has the form Ci1

 ® ... ® C im
. By

grouping together exists and value restrictions we can write conjunctive concept terms in the
form

A1 ® … ® Am ® ∃L1:E1 ® … ® ∃Lr:Er ® ∀K1:D1 ® … ® ∀Kk:Dk.

This concept term contains a clash  iff there exist Ai and A j such that A i = ¬A j, and it contains
an exists restriction iff r > 0. A disjunctive concept term has the form C1  Ω … Ω Cn where
each Ci is a conjunctive concept term.

It is easy to see that any concept term C0 can be transformed into an equivalent
disjunctive term. This transformation can be performed as follows: First, one can eliminate the
empty word from regular value and exists-in restrictions by using the fact that, for ε ∈ L, the
concept terms ∀L:C and C ® ∀(L \ {ε}):C (resp. ∃L:C and C Ω ∃(L \ {ε}):C) are equivalent.
In addition, the term ∀Ø:C is equivalent to A Ω ¬A for an arbitrary concept name A, and
∃Ø:C is equivalent to A ® ¬A. In a second step, we compute the negation normal form of the
concept term, that is, we bring the negation signs immediately in front of concept symbols by
rewriting the concept term via de Morgan’s laws and with rules ¬∀L:C  ⇒ ∃L:¬C and ¬∃L:C
⇒ ∀L:¬C. Then we transform this concept term into disjunctive form by applying (modulo
associativity and commutativity of conjunction and disjunction) the distributivity laws of
conjunction over disjunction on top level. A disjunctive concept term which can be obtained
by these transformations from the term C0 is called a disjunctive normal form of C0.

We now define so-called concept trees, which will be used to impose a control structure
on the algorithm. A concept tree is a rooted tree such that every node is equipped with the
following components: type, extended, concept-term, and value. The values for the
component type  range over the symbols “®”, “Ω”, “∃” and “∃Ω”, for the component extended

they range over the symbols “yes” and “no”, and for value they range over the symbols
“solved”, “clash”, “good cycle”, “bad cycle” and “null”. The values for the component
concept-term are concept terms. Given a node N in a concept tree we will access the content
of the corresponding component with N.component. A concept tree T is called extended if for
every node N in T one has N.extended = “yes”. Some of the edges of a concept tree may be
marked by a role name. See Figure 4.1 for an example of a concept tree.

4.1 The Algorithm

We are now ready to present the algorithm which decides whether a given concept term of
ALCreg is consistent. The algorithm proceeds as follows: First, a concept tree consisting of a
single node is created. Then, in successive propagation steps, new nodes are added until we
obtain an extended concept tree. The given concept term is consistent if and only if the
extended concept tree satisfies a certain condition, which can be checked easily.
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Figure 4.1  A concept tree

The algorithm uses several functions which will now be defined. The function
Consistency takes a concept term as input, creates a concept tree, and returns this tree as
argument to the function Extend-concept-tree. This function extends the concept tree by
iterated calls of the functions Expand-or-node, Expand-and-node, and Expand-∃-node until an
extended concept tree is obtained.

The function Consistency  takes a concept term C as input and creates a concept tree T. This
concept tree consists of the node root with root.type = “Ω”, root.extended = “no”, root.value =
“null”. The component root.concept-term contains the term C itself. Then the function
Extend-concept-tree is called with T  as argument.

The function Extend-concept-tree  takes a concept tree as argument and returns an extended
concept tree. It uses the functions Expand-or-node, Expand-and-node, and Expand-∃-node as
subfunctions. Here is the formulation of the function Extend-concept-tree in a Pascal-like
notation.
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Algorithm Extend-concept-tree (T)

if T is extended

then return T

elsif T contains a node N such that  N.type = “Ω ” and  N.extended = “no”

then Extend-concept-tree (Expand-or-node(T,N))

elsif T contains a node N such that  N.type = “® ” and  N.extended = “no”

then Extend-concept-tree (Expand-and-node(T,N))

else let N  be a node in T such that  N.type = “∃” and  N.extended = “no”

Extend-concept-tree (Expand-∃-node(T,N))

end Extend-concept-tree.

The function Expand-or-node  takes a concept tree T and a node N of type “Ω” occurring in T
as arguments and returns a concept tree T’. Suppose C1 Ω C 2 Ω … Ω C n is a disjunctive
normal form of N.concept-term. We modify T (and thereby obtain T’) such that N.extended
= “yes”, and the (newly created) nodes N i, 1 ≤ i ≤ n,  with N i.type = “®”, N i.extended = “no”,
Ni.concept-term = C i, and Ni.value = “null” are successors of N.

The function Expand-and-node  takes a concept tree T and a node N of type “®” occurring in T
as arguments and returns a concept tree T’. We modify T (and thereby obtain T’) such that
N.extended = “yes” and N.value is

m “clash” if N.concept-term contains a clash,

m “solved” if N.concept-term does not contain an exists restriction or a clash,

m “null” otherwise.

Furthermore, if N.value remains “null”, we create successors for N in the following way.
Suppose N.concept-term = A1  ® … ® A m ® ∃L1 :E1 ® … ® ∃Lr :Er ® ∀K 1:D1 ® … ®
∀Kk:Dk. Then for every i, 1 ≤ i ≤ r, the (newly created) node Ni with N i.type = “∃”,
Ni.extended = “no”, Ni.concept-term = ∃Li:Ci ®∀K1.D1 ® … ® ∀K k:Dk, and Ni.value =
“null” is a successor of N.

The function Expand- ∃-node  takes a concept tree T and a node N of type “∃”  occurring in T as
arguments and returns a concept tree T’. Suppose N.concept-term = ∃L:C ® ∀K1:D1 ® … ®
∀Kk:Dk. We have to distinguish between two cases.
Case 1.  Assume that there exists a predecessor node M of N such that M.type = “∃Ω” and
M.concept-term is equal to N.concept-term modulo associativity, commutativity, and
idempotency of conjunction. That means that we have detected a cycle. The decision whether
this cycle is a “good” one or a “bad” one depends on where the subterm ∃L:C of N.concept-
term comes from.
Case 1.1.  The restriction ∃L:C in N.concept-term comes from the ∃L:C restriction in
M.concept-term. That means that the ∃L:C restriction in M.concept-term has never really
been removed on the path from M to N, but only been modified to ∃(R 1

-1L \ {ε}):C,
∃((R1R2)-1L \ {ε}):C, and so on, until at node N the same restriction has been reproduced
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because of (R1R2...Rn)-1L \ {ε} = L.
In this case we modify T (and thereby obtain T’) such that N.extended = “yes” and N.value is
“bad cycle”.
Case 1.2.  The restriction ∃L:C in N.concept-term does not come from the ∃L:C restriction
in M.concept-term (i.e., it comes out of one of the ∀K i:D i restrictions of M.concept-term). In
this case we modify T (and thereby obtain T’) such that N.extended = “yes” and N.value is
“good cycle”.
Case 2.  Otherwise, we modify T (and thereby obtain T’) as follows. We change N.type from
“∃” to “∃Ω”, and N.extended from “no” to “yes”. In addition, we have to introduce new
successor nodes N’ for N. All these nodes get N’.type = “Ω”, N’.extended = “no”, and
N’.value = “null”. In order to describe the concept-term component of these successors we
need the following definitions:  Let R be a role name and let I := {i; 1 ≤ i ≤ k and R ∈ K i} and
J := {j; 1 ≤ j ≤ k and R-1Kj \ {ε} ≠ Ø}. Then DR := ‰j ∈ J ∀(R -1Kj \ {ε}):D j  ®  ‰i ∈ I Di.

For any role name R such that R-1L \ {ε} ≠ Ø we create a successor node N’ of N such that
N’.concept-term = DR ® ∃(R-1L \ {ε}):C. The edge from N to N’ gets the label R. In
addition, for any role name R such that R ∈ L we create a successor node N’ of N such that
N’.concept-term = DR ® C. The edge from N to N’ gets the label R.

We have now completed the description of the function Consistency. The first important
property – which can be shown with the help of Proposition 3.7 – is that a call of this function
always terminates.

Proposition 4.2.   Let C0 be a concept term. Then the call Consistency(C0) terminates.
Proof.   Assume that the algorithm Consistency does not terminate. Then an infinite concept
tree is generated since each call of Expand-or-node, Expand-and-node, or Expand-∃-node adds
new nodes to the concept tree. Since every node has only finitely many direct successors we
conclude with König’s Lemma that there exists an infinite path in this tree. This infinite path
contains infinitely many nodes N1, N2, … with N i.type = “∃Ω” and for all i < j, N i.concept-
term is not equal to Nj .concept-term modulo associativity, idempotency and commutativity.
The concept-term components of these nodes are different because otherwise we would have
Nj.value = “good cycle” or Nj .value = “bad cycle”, and thus Nj  would be a leaf.
On the other hand, let ∃L:C ® ∀K1:D1 ® … ® ∀K k:Dk be the value of the concept-term
component of one of these nodes Ni. It is easy to see (by induction on the length of the path
from the root to N i) that the languages L, K1 , ..., Kk are all elements of the set {W-1M \ {ε};
where M is a regular language occurring in one of the restrictions of C0 and W is a word},
which is finite by Proposition 3.7. In addition, the terms C, D1, ..., Dk are all subterms of C0.
But that means that there can be – modulo associativity, idempotency and commutativity of
conjunction – only finitely many different such terms, which yields a contradiction.  o

An instance of a concept tree T is obtained from T by keeping for any node N with
N.type ∈ {“Ω”, “∃Ω”} only one of its direct successors, and for all other nodes all their direct
successors. Such an instance is called successful  iff for every leaf N in this instance we have
N.value = “solved” or N .value = “good cycle”. Figure 4.3 shows all the instances of the
concept tree of Figure 4.1. The first instance is successful whereas the other two instances are
not successful.
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Figure 4.3   Instances of the concept tree of Figure 4.1

Now let T be the extended concept tree which is returned by the call Consistency(C0).
The existence of a successful instance of T is the criterion for consistency of C0.

Theorem 4.4.  Let C0 be a concept term and let T be the extended concept tree computed
by Consistency(C0). Then C0  is consistent if and only if there exists a successful instance of T.

Obviously, one can easily decide whether the concept tree computed by Consistency(C0)
contains a successful instance by using depth-first search. This finally yields the algorithm for
testing consistency of concept terms of ALCreg.

4.2 Proof of Soundness and Completeness

The proof of Theorem 4.4 will be devided into two parts, namely soundness and
completeness of the decision criterion it yields for consistency.

Proposition 4.5.   (soundness)
Let C0 be a concept term and let T be the extended concept tree computed by
Consistency(C0). If there exists a successful instance of T then C0 is consistent.

In order to prove the proposition we shall show how a successful instance can be used
to define an interpretation I satisfying C0

I ≠ Ø. Let S be a successful instance of the extended
concept tree computed by Consistency(C0). Then S yields the canonical interpretation I which
is defined as follows:
(1)  The elements of the dom(I) are all nodes N in S such that N.type = “®”
(2)  Interpretation of role names: Let N be an element of dom(I). Then N.type = “®”, and
N.value = “solved” or N.value = “null”.
If N.value = “solved”, then N is a leaf in S. In this case we define for any role name R, that N
does not have an R-successor in I.
If N.value = “null”, then there exist n > 0 direct successors N1, ..., Nn of N. For such a node
Ni we may have Ni.type = “∃” and N i.value = “good cycle”, or N i.type = “∃Ω” and N i.value =
“null”. Assume first that N i.type = “∃Ω” and N i.value = “null”. Then N i has exactly one direct
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successor Ni’ with N i’.type = “Ω”, and the edge from Ni to N i’ is labeled with some role name
Ri. In addition, Ni’ has exactly one direct successor N i” with N i”.type = “®”.
Now assume that Ni.value = “good cycle”. Then there exists a node M i such that M i is a
predecessor of Ni and M i.concept-term = N i.concept-term (modulo associativity,
commutativity, and idempotency). Let N i’ be the direct succcessor of Mi. Obviously, N i’.type
= “Ω”, and the edge from Mi to N i’ is labeled with some role name R i. In addition, Ni’ has
exactly one direct successor Ni” with N i”.type = “®”.
In both cases, the node N i” is an element of dom(I). We define the interpretation of the roles
such that (N,Ni”) ∈ R i

I for i = 1, ..., n; and these are the only role successors of the individual
N.
(3)  Interpretation of concept names: For a node N ∈ dom(I) we have that N.concept-term is
of the form A1 ® … ® A m ® ∃L1 :E1 ® … ® ∃Lr :Er ® ∀K 1:D1 ® … ® ∀K k:Dk. For a
concept name A we define N ∈ AI iff there exist an index i such that A = A i. Please note that
N.value ≠ “clash” because S was assumed to be a successful instance. Hence, if A = A i, then
there does not exist an A j with A j = ¬A. This shows that N ∈ (A1 ® … ® Am)I.

Before we can show that this canonical interpretation satisfies C0
I ≠ Ø, we need one

more definition. The depth  τ of a concept term in negation normal form is defined as:

m τ(A) = τ(¬A) = 0 if A is a concept name

m τ(∀L:C) = τ(∃L:C) = 1 + τ(C)

m τ(C ® D) = τ(C Ω D) = max {τ(C), τ(D)}

Lemma 4.6.   Let I  be the canonical interpretation induced by the successful instance S of T
= Consistency(C0), and let N ∈  dom(I). If the concept term G is a subconjunction of
N.concept-term, then N ∈ GI.
Proof.   The lemma is proved by induction on the depth τ(G).
τ(D) = 0. Then G is of the form A i1

 ® … ® A in
. By definition of the interpretation of

concept names we have N ∈ (A1 ® … ® Am)I, which implies N ∈ (Ai1
 ® … ® A in

)I.
τ(D) > 0. Let G = G1 ® … ® Gn. We have to show for all i, 1 ≤ i ≤ n, that N ∈ Gi

I. If τ(Gi) <
τ(G) we know by the induction hypothesis that N ∈ G i

I. Now suppose τ(Gi) = τ(G). Then Gi is
of the form ∀K:E or ∃L:E where τ(E) = τ(G) – 1.
(1)  First we assume that Gi = ∀K:E. For any M ∈ dom(I) and any W ∈ K we have to show
that (N,M) ∈ W I implies M ∈ EI. Let W = R1 ...R t be a word in K, and M1, ..., M t = M be
elements of dom(I) such that  N R1

I M1 R2
I ... R t

I Mt = M.
In the successful instance S there is a path from N to M1. On this path we have a direct
successor node N’ of N such that N’.type = “∃Ω” or N’.type = “∃”. By definition of the
function Expand-and-node, ∀K:E is a subconjunction of N’.concept-term.
Assume first that N’.type = “∃Ω” . The node N’ has a direct successor N” of type “Ω” which
is reached by an edge labeled with R1. The concept-term of the node N” is of the form C1 ®
∀(R1

-1K \ {ε}):E since R1
-1K \ {ε} ≠ Ø. Let D1  Ω ... Ω D r be a disjunctive normal form of

this term. Then the node M1 , which is a direct successor of N”, has one of these terms Di as its
concept term. Thus we get that ∀(R1

-1K \ {ε}):E is a subconjunction of M1 .concept-term.
If N’.type = “∃”  then N’.value = “good cycle”, and there exists a predecessor node O’ of
N’ such that O’.concept-term is equal to N’.concept-term (modulo associativity,
commutativity and idempotency of conjunction). Now the node O’ has a direct successor N”
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of type “Ω” which is reached by an edge labeled with R1, and we can proceed as above to get
that (R1

-1K \ {ε}):E is a subconjunction of M1 .concept-term.
Analogously, one can show that the concept term ∀((R1R2)-1K \ {ε}):E is a subconjunction
of M2.concept-term, ..., ∀((R1R2...R t-1)-1K \ {ε}):E is a subconjunction of Mt-1.concept-term.
The node Mt-1 has a direct successor node M’ on the path from Mt-1 to M t such that M’.type
= “∃Ω” or M’.type = “∃”. Assume that M’.type = “∃Ω” (as above the other case is similar). By
definition of the function Expand-and-node, ∀((R1R2...R t-1)-1K \ {ε}):E is a subconjunction
of M’.concept-term. The node M’ has a direct successor M” of type “Ω” which is reached by
an edge labeled with Rt . The concept-term of the node M” is of the form F = C t-1 ® E since R t

∈ (R1R2...R t-1)-1K \ {ε}. Let E1 Ω ... Ω Es be a disjunctive normal form of E, and F1  Ω ... Ω
Fr be a disjunctive normal form of F. The node M t, which is a direct successor of M”, has one
of the terms F i as its concept term. Since F = Ct-1 ® E, we have that Fi = M t.concept-term has
one of the terms E j as subconjunction. Obviously, τ(Ej) ≤ τ(E) < τ(∀K:E) = τ(G), and thus we
can apply the induction hypothesis to Mt  and E j. This yields Mt  ∈ Ej

I, and thus Mt  ∈ EI,
which is what we wanted to show.
(2)  Assume that G i = ∃L:E . In the successful instance S we thus have a direct successor
node N1’ of N such that ∃L:E is a subconjunction of N1’.concept-term and N1’.type = “∃Ω”
or N1’.type = “∃”.
Assume first that N1’.type = “∃Ω” . The node N1’ has a direct successor N1” of type “Ω”
which is reached by an edge labeled with some role R1. The concept term of N1” is either of
the form C1 ® E or of the form C1 ® ∃(R1

-1L \ {ε}):E. In the second case R1
-1L \ {ε} ≠ Ø,

and in the first case R1  ∈ L. Let D1 Ω ... Ω D r be a disjunctive normal form of N1”.concept-
term. Then the direct successor M1 of N1” has one of these terms Di as its concept term.
In the first case we can show by induction (as in the case “Gi = ∀K:E” above) that M1  ∈ EI;
and since (N,M1) ∈ R1

I and R1 ∈ L we have N ∈ (∃L:E)I.
In the second case we get that ∃(R1

-1L \ {ε}):E is a subconjunction of M1.concept-term.
If N1’.type = “∃” then N1’.value = “good cycle”, and there exists a predecessor node O1’
of N1’ such that O1 ’.concept-term is equal to N1 ’.concept-term (modulo associativity,
commutativity and idempotency of conjunction). Now the node O1 ’ has a direct successor
N1” of type “Ω”, and we can proceed as for the case “N1’.type = “∃Ω” ” above.
Now assume that we already have nodes M1, ..., M t ∈ dom(I) and roles R1, ..., Rt  such that N
R1

I M1 R2
I  ... R t

I Mt , (R 1R2...R t)-1L \ {ε} ≠ Ø, and ∃((R1R2...R t)-1L \ {ε}):E is a
subconjunction of M t.concept-term. As above we can now find a role Rt+1 and a node Mt+1 ∈
dom(I) such that M t R t+1

I
 Mt+1, and either Mt+1 ∈ EI, or (R1R2...R tRt+1)-1L \ {ε} ≠ Ø and

∃((R1R2...R tRt+1)-1L \ {ε}):E is a subconjunction of Mt+1.concept-term.
If we iterate this process, and finally get the first case for some t then we are done. Thus
assume that we always get the second case. Then we have an infinite sequence of nodes N,
M1, M2, M3, ..., and an infinite sequence of roles R1, R2, R3, ... such that N R1

I M1 R2
I M2

R3
I... and, for all t ≥ 1, (R1R2...R t)-1L \ {ε} ≠ Ø and ∃((R 1R2...R t)-1L \ {ε}):E is a

subconjunction of M t.concept-term. For all t ≥ 1 let Nt’ be the direct successor of M t of type
“∃Ω” or “∃” which has ∃((R1R2...R t)-1L \ {ε}):E as subconjunction of its concept term. Since
the successful instance S is finite, we have infinitely many indices t1, t2, t3, ... such that
Nti

’.type = “∃”, i.e., Nt i
’.value = “good cycle”. We assume that Nt1

’, N t2
’, ... are all the nodes

of type “∃” in the sequence N1’, N2’, N3’, ... . Let Ot i
’ be the predecessor node of N ti

’ such
that Ot i

’.concept-term and Nt i
’.concept-term are equal (modulo associativity, commutativity
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and idempotency of conjunction). For any i ≥ 1 we have that the nodes Nti+1’, ..., Nt i+1-1’ are
of type “∃Ω”  Thus there is a path in S from O ti

’ to N ti+1
’. Obviously, we have that the exists-

in restriction in the concept term of Nt i+1
’ comes from the exists-in restriction in Ot i

’. Since
Nti+1

’.value = “good cycle” this means that Ot i+1
’ has to be a strict predecessor of Ot i

’. But
this is a contradiction because we cannot have an infinite chain of strict predecessors Ot1

’,
Ot2

’, ... in S.
This completes the proof of the lemma.  o

Lemma 4.6 can now be used to prove Proposition 4.5 as follows. Let I be the canonical
interpretation induced by the successful instance S of T = Consistency(C0). The root of S has
type “Ω” and concept-term C0 . If C1 Ω ... Ω Cn is the disjunctive normal form of C0, then
there exists an i, 1≤ i ≤ n, such that the direct successor N i of the root has C i as its concept
term. We have Ni ∈ dom(I), and if we take C i as subconjunction of itself the lemma yields Ni

∈ C i
I. Thus we also have N i ∈ C0

I, which completes the proof of Proposition 4.5.

Proposition 4.7.   (completeness)
Let C0 be a concept term and let T be the extended concept tree computed by
Consistency(C0). If C0 is consistent then there exists a successful instance of T.
Proof.   Let I be an interpretation such that C0

I ≠ Ø. In order to prove the proposition we
show how this interpretation can be used to guide the search for a successful instance of T. To
that purpose we shall label nodes of T with elements of dom(I) such that a node N labeled by
b ∈ dom(I) satisfies

m b ∈ (N.concept-term)I

To begin with the labeling, we label the root of T with an element b0 of dom(I) satisfying b0

∈ C0
I. Because root.concept-term = C0 the above condition is satisfied.

Now assume that N is a node of type “Ω” which has already been labeled with the
individual b, and let N.concept-term = C. By induction we can assume that b ∈ CI. Let C1  Ω
... Ω Cn be the disjunctive normal form of C generated by the algorithm. Obviously, there
exists some i, 1 ≤ i ≤ n, such that b ∈ C i

I. The node N has direct successors N1, ..., Nn with
N1.concept-term = C1, ..., Nn.concept-term = Cn. We choose an arbitrary index i such that b
∈ C i

I. Now the node N i gets label b, and all the other nodes N j with i ≠ j remain unlabeled.
Assume that N is a node of type “®” which has already been labeled with the individual b,
and let N.concept-term = C. By induction we can assume that b ∈ CI. If N is a leaf there is
nothing to be done. Otherwise, we label all the direct successors N i of N with b. Since the
concept-term component of the nodes Ni are subconjunctions of C, we have b ∈ (Ni.concept-
term)I for all these successor nodes Ni.
Assume that N is a node of type “∃Ω”  which has already been labeled with the individual
b, and let N.concept-term = C. By induction we can assume that b ∈ CI. Obviously, the term
C is of the form C = ∃L:B ® ∀K1:D1 ® … ® ∀Kk:Dk. We consider the set

S(C) := {(c,W); c ∈ CI, W ∈ L, and there exists d ∈ BI with cWId}

Since we have b ∈ CI, this set is not empty. Let (c,W) be an element of S(C) where the length
of W is minimal, and let d ∈ BI be such that cWId.
Assume first that W = R for a role name R. Then N has a direct successor Ni such that
Ni.concept-term = DR ® B (see the definition of the function Expand-∃-node). It is easy to see
that d ∈ (DR ® B)I. Thus we may label the node Ni with d.
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Now assume that W = RU for a nonempty word U. From cWId we derive that there exists an
individual d’ such that cRId’ and d’UId. Since R-1L \ {ε} ≠ Ø there exists a direct successor
Ni of N such that N i.concept-term = DR ® ∃(R-1L \ {ε}):B (see the definition of the function
Expand-∃-node). It is easy to see that d’ ∈ (DR ® ∃(R-1L \ {ε}):B) I. Thus we may label the
node N i with d’.
Assume that N is a node of type “∃” which has already been labeled with the individual b.
Then N is a leaf, and there is nothing to be done.
This completes the description of the labeling process. The result of this process describes an
instance of T as follows: we just have to remove all the nodes without label. It remains to
be shown that this instance is successful. This is an immediate consequence of the following
claim.

Claim.   If N is a leaf which has been labeled by some individual b ∈ dom(I), then N.value =
“solved” or N.value = “good cycle”.
Proof of the claim.   If a leaf does not have value “solved” or “good cycle” it must have
value “clash” or “bad cycle”.
Assume that N.value = “clash” . Then N.type = “®” and N.concept-term is of the form A ®
¬A ® C’ for a concept name A and a concept term C’. Since N is labeled by b we know that b
∈ (A ® ¬A ® C’)I. But this is a contradiction since b cannot be both in AI and (¬A)I.
Now assume that N.value = “bad cycle”. In this case N.type = “∃” and there exists a
predecessor N0  of N such that N0.type = “∃Ω” and N0.concept-term is equal to N.concept-
term modulo associativity, commutativity and idempotency of conjunction.
Let N0, N1, ..., Nk-1 be all the nodes of type “∃Ω” on the path from N0 to N =: Nk, and let C0,
C1, ..., Ck denote their concept-term component. If C0 is of the form D0 ® ∃L:B, then for all
i, 1 ≤ i ≤ k, C i is of the form Di ® ∃((R1...R i)-1L \ {ε}):B since Nk.value = “bad cycle”.
For all i, 0 ≤ i ≤ k–1, let (c i,Wi) be the element of S(Ci) chosen in the labeling process, and let
mi be the length of the word Wi. For i = k let (ck ,Wk) be an element of S(Ck) such that the
length mk of Wk is minimal. Since C0 and Ck  are equal up to associativity, commutativity and
idempotency of conjunction, we must have m0  = mk.
We consider the step from N i to N i+1 more closely. We have c i ∈ (D i ® ∃((R1...R i)-1L \
{ε}):B)I and there exists di ∈ B I such that ciW i

Idi. Since the node N i+1 has Ci+1 = Di+1 ®
∃((R1...R i+1)-1L \ {ε}):B as its concept term we know that Wi = Ri+1U i for a nonempty word
Ui  Thus there exists di’ ∈ dom(I) such that c iRi+1

Idi’ and d i’U i
Idi. Obviously, |Ui| < |Wi| = m i.

By the definition of the labeling process, the node N i+1 gets di’ as its label. Thus d i’ ∈ C i+1
I

and since Wi ∈ (R1...R i)-1L \ {ε} we have Ui ∈ (R1...R i+1)-1L \ {ε}. This shows that the pair
(di’,U i) is an element of the set S(C i+1). Since the length mi+1 of W i+1 is minimal, we have
mi+1 ≤ |U i| < |Wi| = m i. Thus we have shown that m0  < m1 < ... < mk, which is a contradiction
since we know that m0 = mk.
This completes the proof of the claim, and thus the proof of the proposition.  o

To sum up we have now proved Theorem 4.4 which yields a decision criterion for
consistency of concept terms of ALCreg.

4.3 Some Remarks on the Implementation

In order to detect the “good cycles” and “bad cycles” in the calls of the function Expand-∃-
node one has to decide equality of regular languages. To be more precise, we have until now
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assumed that the regular languages in value and exists-in restrictions are given by positive
regular expressions, and we have not distiguished between the expressions and the languages
they describe.

If α is a positive regular expression for the regular language L then we know that R-1L
\ {ε} is also a regular language not containing the empty word. Thus there exists a positive
regular expression β describing this language. But of course, the expression “R-1α \ {ε}” is
not a regular expression. However, it is easy to see how a positive regular expression for R-1L
\ {ε} can be obtained from a given positive regular expression for L.9

The problem is that a given regular language not containing the empty word can be
described by different positive regular expressions. In order to detect the cycles in our
algorithm we thus have to decide whether two positive regular expressions describe the same
language. This is not a trivial problem. In fact, it can be shown that this problem is PSPACE-
complete (see Garey&Johnson (1979)). If one wants to avoid employing a decision procedure
for equivalence of positive regular expressions in each call of Expand-∃-node one can use the
following preprocessing step.

Let α1, α2, ..., αk be the positive regular expressions occurring in the concept term C0

which has to be tested for consistency, and let L1 , L2, ..., Lk be the regular languages
described by these expressions. We want to construct a finite automaton A which can be used
to accept the languages L1, L2, ..., Lk and all their left quotients.

If A is a finite automaton with a fixed set of terminal states, and q is a state in A then
we denote by L(q) the regular language accepted by A if q is taken as initial state.

Proposition 4.8.   Let α1, α2, ..., αk be positive regular expressions, and let L1, L2, ..., Lk

be the regular languages described by these expressions. Then one can construct a finite
deterministic and complete automaton A which satisfies the following properties:
(1)  For all i, 1 ≤ i ≤ k, there exists a state q i of A such that L i = L(qi).
(2)  For all state q, q’ of A we have L(q) \ {ε} = L(q’) \ {ε}  iff  q = q’.
(3)  Let q be a state of the automaton, let R be a symbol of the alphabet, and let q’ be the
state reached from q by the transition with label R. Then L(q’) = R-1L(q).
Sketch of the proof.   First one constructs nondeterministic automata A1 , A2 , ..., Ak  out
of the positive regular expressions α1 , α2 , ..., αk. Let B denote the disjoint union of these
automata. With the help of the well-known subset construction, B can now be transformed
into a complete and deterministic automaton. Please note that it is enough to construct all the
subsets which can be reached from the sets of initial states of the automata A1 , A2 , ..., Ak .
We have thus obtained an automaton satisfying (1) and (3) of the proposition. This
automaton can now be transformed into an automaton satisfying also property (2) of the
proposition. To that purpose one can use a process which is very similar to the usual
minimization of deterministic automata.  o

Because of the subset construction, the automaton A may be exponential in the size of
the expressions α1 , α2, ..., αk. But we already have another exponential preprocessing step,

9See e.g. Savage (1976) where this is described for regular expressions.
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namely unfolding of the original T-box. Unfolding of the T-box and constructing the
automaton A together also yield one exponential preprocessing step, and thus we are not
worse off than before.

Once we have the automaton A, we can use states of A instead of regular expressions
in the value and exists-in restrictions. Going from L to R-1L \ {ε} now just means that we
have to make a transition in A. Instead of testing equivalence of regular expressions we must
only test for physical identity of states of A .

5. Restricting the Semantics

Since ALC can be seen as a sublanguage of ALCreg
10, the algorithm given in the previous

section also yields a consistency test for concept terms of ALC. It is easy to see that for a
concept term C0  of ALC the extended concept tree T computed by Consistency(C0) does not
contain nodes with value “good cycle” or “bad cycle”. In fact, if N and N’ are nodes of type
“∃” or “∃Ω”, and if N’ is a successor of N, then the depth of N’.concept-term is smaller than
the depth of N.concept-term.

If S is a successful instance of T then S does not contain nodes of type “good cycle”.
This means that the canonical interpretation I defined by S does not contain so-called
assertional cycles11.

Definition 5.1.  Let I be an interpretation. Then we say that I contains an assertional cycle

iff there exists an individual d in dom(I) and a nonempty word W over the alphabet of all role
names such that dWId.

Since the canonical interpretation I defined by a successful instance S of an extended
concept tree is always finite we thus have

Proposition 5.2.   Let C0 be a concept term of ALC. Then C0 is consistent iff there exists a
finite interpretation I without assertional cycles such that C0

I ≠ Ø.12

For concept terms of ALCreg this proposition does not hold. As an example one can
take the concept term A ® ∃R:A ® ∀R+:(∃R:A) of Example 3.6. This term is consistent, but it
is easy to see that there does not exist a finite interpretation I without assertional cycles such
that (A ® ∃R:A ® ∀R+:(∃R:A))I ≠ Ø.

If one wants to avoid such cyclic models one can consider ALCreg with the following
restricted semantics: Instead of all interpretations we allow only finite interpretations without
assertional cycles. We shall call consistency with respect to this semantics “strong
consistency”.
Definition 5.3.  Let C0 be a concept term of ALCreg. Then C0  is called strongly consistent

10The restriction ∃R:C can be seen as an ordinary exists-in restriction in ALC, but also as a regular exists-in

restriction in ALCreg where R stands for the singleton set {R}.
11This name was introduced in Nebel (1990a).
12Of course, this proposition can also be obtained as a consequence of the algorithm described in Schmidt-

Schauß&Smolka (1988).
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iff there exists a finite interpretation I without assertional cycles such that C0
I ≠ Ø.

We shall now demonstrate by an example why this kind of semantics may be
interesting. Assume that we want to describe knowledge about procedures and correctness of
procedures within the language ALC reg. Let Procedure  and Locally_correct b e
primitive concepts, and let sub_proc be a role. A procedure with subprocedures can now
be described by the concept term

Procedure ® ∃sub_proc: Procedure.

The individuals of an interpretation are procedures which stand in a subprocedure
relationship given by the interpretation of the role sub_proc. By a subprocedure we mean a
procedure which has an explicit call in the procedure in question. A procedure is correct if it
is locally correct (i.e., the code explicitly given in this procedure is correct), and all its sub-
procedures are correct. Thus correct procedures can be expressed by the concept term

Procedure ® Locally_correct ®
∀(sub_proc)+: (Procedure ® Locally_correct).

Of course we assume that we have only finitely many different procedures in a given
programming environment. Under this condition, the following concept term can only contain
procedures which eventually call a recursive procedure:

Procedure ® ∃sub_proc: Procedure ® 
∀(sub_proc)+: (∃sub_proc: Procedure).

If our programming language does not allow recursive procedures this term should be
inconsistent. This can be achieved by restricting the semantics to finite interpretations without
assertional cycles, i.e., by considering strong consistency instead of consistency.

The algorithm described in Section 4 can also be used to decide strong consistency of
concept terms of ALCreg.

Theorem 5.4.  Let C0 be a concept term of ALCreg,  and let T be the extended concept tree
computed by Consistency(C0). Then C0  is strongly consistent if and only if there exists an
instance S of T such that for every leaf N of S we have  N.value = “solved”.
Proof.   As in Section 4.2 we have to prove soundness and completeness of this criterion.
(1)  The proof of soundness is trivial. In fact, if S is an instance of T such that for every leaf N
of S we have N.value = “solved”, then the canonical interpretation I defined by this successful
instance S is finite and does not contain assertional cycles. In the proof of Proposition 4.5 we
have shown that this interpretation I satisfies C0

I ≠ Ø.
(2)  Assume that I is a finite interpretation without assertional cycles such that C0

I ≠ Ø.
Similar to the proof of Proposition 4.7 we shall show how this interpretation can be used to
find an appropriate instance of T. The labeling process as defined in the proof of Proposition
4.7 is modified as follows. The nodes of type “∃”, “Ω”, and “®” are treated as before.
Let N be a node of type “∃Ω”  which has already been labeled with the individual b, and
let N.concept-term = C = ∃L:B ® ∀K1:D1 ® … ® ∀Kk:Dk. By induction we can assume that
b ∈ C I. For an individual c ∈ dom(I) we define

κ(c) := max{m; there exists d ∈ dom(I) with cWId and m = |W|}.
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This maximum always exists since I is finite and does not contain assertional cycles. Now we
choose c ∈ C I such that κ(c) is minimal. Such an individual exists since b ∈ CI. Since c ∈ CI

we have c ∈ (∃L:B)I, and thus there exists a word W and an individual d with cWId and d ∈
BI. We can now proceed with (c,W) as in the proof of Proposition 4.7.
The result of this labeling process describes an instance S of T as in the proof of
Proposition 4.7: we just have to remove all the nodes without label. It remains to be shown
that this instance is such that for every leaf N of S we have N.value = “solved”.
As before it is easy to show that S cannot have a leaf with value “clash”. Now assume that N
is a leaf of S such that N.value is “good cycle” or “bad cycle”. Thus there exists a predecessor
N0 of N such that N0.type = “∃Ω”, and N0 .concept-term is equal to N.concept-term up to
associativity, commutativity and idempotency of conjunction. Let N0 , N1, ..., Nk-1 be all the
nodes of type “∃Ω” on the path from N0  to N =: Nk , and let C0 , C1 , ..., Ck denote their
concept-term component. For all i, 0 ≤ i ≤ k–1, let c i be the element of C i

I chosen in the
labeling process, and let mi := κ(c i). For i = k let ck be an element of Ck

I such that mk := κ(ck)
is minimal. Since C0 and Ck  are equal up to associativity, commutativity and idempotency of
conjunction, we must have m0 = mk.
We consider the step from Ni to N i+1 more closely. By the definition of the labeling process
there exists a role Ri+1 and an individual di ∈ C i+1

I such that ciR i+1
Idi. Obviously, ciRi+1

Idi

implies κ(c i) > κ(di), and d i ∈ C i+1
I implies κ(di) ≥ κ(c i+1). Thus we have shown that m0  <

m1 < ... < mk , which is a contradiction since we know that m0 = mk.  o

6. Internalizing Concept Equations

Until now we have only allowed concept definitions in our T-boxes. That means that we have
considered equations of the form A = D where A is a concept name and D is a concept term.
The additional restriction was that each concept name occurs only once as left hand side of a
definition.

A concept equation is of the form C = D where C and D are arbitrary concept terms. An
interpretation I satisfies the equation C = D iff CI = DI holds. The interpretation I is a model
of the set E of concept equations iff satisfies all the equations in E. A concept term C is
consistent w.r.t. E iff there exists a model I of E such that CI ≠ Ø; and C is subsumed by D
w.r.t. E iff CI ⊆ DI holds for all models I of E.

Obviously, we have C is subsumed by D w.r.t. E iff the term C ® ¬D is inconsistent
w.r.t. E. Subsumption and consistency w.r.t. a T-box is a special case of this notion of
subsumption and consistency w.r.t. a set of concept equations because T-boxes are just sets of
concept equations of a very specific form.

Though we have defined subsumption and consistency with respect to finite sets of
concept equations it is always enough to consider only one concept equation of the simplified
form C = Top. Here Top denotes the concept term A Ω ¬A for an arbitrary concept name A.
Obviously, we have TopI = dom(I) for all interpretations I. An interpretation I satisfies a
concept equation C = D iff it satisfies (C Ω ¬D) ® (¬C Ω D) = Top, and it satisfies C1  = Top,
..., Cn = Top iff it satisfies C1 ® ... ® Cn = Top. This shows how a finite set of concept
equations can be encoded into a single equation of the form C = Top.
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In remainder of this section we shall show that consistency (and thus also subsumption)
of concept terms of ALCreg w.r.t. finite sets of concept equations can be reduced to ordinary
consistency of concept terms of ALCreg. That means that for this language concept equations
can be internalized into the term language. In order to show this result we need some
auxiliary definitions and facts.

Let I be an interpretation and let d be an element of dom(I). We define

gen(d) := { e ∈ dom(I); there exists a word W over the alphabet of role names with dWIe}

and say that an element of gen(d) is generated by d. Obviously, d ∈ gen(d), and e ∈ gen(d)
implies that gen(e) ⊆  gen(d). Our intention is now to restrict the domains of our
interpretations to such sets gen(d). We say that an interpretation I is rooted  iff there exists an
individual d ∈ dom(I) such that dom(I) = gen(d). In this case, d is called a root of I.

In order to show that it is sufficient to consider such rooted interpretations when
interested in consistency of concept terms, we need the following notion of restriction of an
interpretation. Let I be an interpretation, and let M be a subset of dom(I). Then the restriction

I|M of I to the subset M is the interpretation defined by
(1) dom(I|M) := M ∩ dom(I),
(2) AI|M := M ∩ AI for all concept names A, and
(3) RI|M := M ≈ M ∩ RI for all role names R.

Lemma 6.1.   Let I be an interpretation, and let M be a subset of dom(I). Then for all
concept terms C of ALCreg, and all elements d of dom(I) satisfying gen(d) ⊆ M we have

d ∈ C I  if and only if  d ∈ CI|M.

Proof.  The lemma is proved by induction on the structure of C.
(1)  C = A for a concept name A. We have AI|M = M ∩ AI by the definition of restriction, and
d ∈ M since gen(d) ⊆ M. This yields d ∈ AI iff d ∈ AI|M.
(2)  C = C1 ® C2 for concept terms C1 and C2 . By induction we have for i = 1, 2 that d ∈ C i

I

iff d ∈ C i
I|M. This yields d ∈ (C1 ® C2)I iff d ∈ (C1 ® C2)I|M.

(3)  The cases C = C1 Ω C2 and C = ¬D can be treated similarly.
(4)  C = ∃L:D for a concept term D and a regular language L over the alphabet of role
names. Assume first that d ∈ (∃L:D) I, i.e., there exists a word W = R1 ...Rn ∈  L and an
individual e ∈  DI such that dWIe. Thus there exist individuals d1, ..., dn-1  such that
dR1

Id1R2
Id2...dn-1Rn

Ie. Obviously, d, d1 , ..., dn-1 , and e are elements of gen(d), and thus of
M. But then we also have dWI|Me. In addition, e ∈ gen(d) yields gen(e) ⊆ gen(d) ⊆ M. Thus
we can apply the induction hypothesis to D and e, and get e ∈  DI|M. This shows d ∈
(∃L:D)I|M.
The other direction can be proved in a similar way.
(5)  The case C = ∀L:D can be treated similarly.  o

If we take M = gen(d) in the lemma we get

Proposition 6.2.   Let I be an interpretation, C be a concept term of ALCreg, and d be an
element of dom(I). Then we have
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d ∈ C I  if and only if  d ∈ CI|gen(d).

We are now ready to show how to internalize concept equations. As mentioned above it
is sufficient to consider only one concept equation of the form C = Top. Let R  denote the
finite alphabet of all relevant role names. By R* we denote the regular language of all words
over R.

Theorem 6.3.  The concept term D of ALCreg is consistent w.r.t. the concept equation C =
Top if and only if the concept term D ® ∀R*:C is consistent.
Proof.   (1)  Assume that I is an interpretation such that CI = dom(I) and DI ≠ Ø. Let d ∈
dom(I) be such that d ∈ DI. In order to prove that d ∈ (D ® ∀R*:C)I it is enough to show d
∈ (∀R*:C)I. Let W ∈ R* and e ∈ dom(I) be such that dWIe. Because CI = dom(I) we have e
∈ C I, which completes the proof of the “only-if” part of the theorem.
(2)  On the other hand, assume that I is an interpretation such that (D ® ∀R*:C)I ≠ Ø. Let d
∈ dom(I) be such that d ∈ (D ® ∀R*:C)I.
By Proposition 6.2 we also have d ∈ (D ®  ∀R*:C)I|gen(d). In particular, this yields d ∈
DI|gen(d). It remains to be shown that I|gen(d)  satisfies the concept equation C = Top, i.e., that
CI|gen(d) = dom(I|gen(d)). Let e be an element of dom(I|gen(d)) = dom(I) ∩ gen(d). That means
that there exists a word W ∈ R* such that dWIe. Since d ∈ (∀R*:C)I we get d ∈ CI, and by
Proposition 6.2 this yields d ∈ C I|gen(d). This completes the proof of the theorem.  o

As an immediate consequence of this theorem we get

Corollary 6.4.   The algorithm of Section 4 can be used to decide consistency and
subsumption of concept terms of ALCreg w.r.t. finite sets of concept equations.

We have already mentioned above that the (possibly cyclic) T-boxes of ALC can be
seen as specific sets of concept equations. For a cyclic T-box of ALC the semantics which we
have used for our sort equations coincides with what we have called “descriptive semantics”
in Section 2.

Corollary 6.5.   The algorithm of Section 4 can be used to decide consistency and
subsumption with respect to cyclic T-boxes of ALC , provided that these T-boxes are
considered with descriptive semantics.

This last corollary shows that the treatment of our transitive (or regular) extension of
ALC does not only provide an alternative to terminological cycles in ALC; it also yields a
solution of the consistency and the subsumption problem for cyclic T-boxes of ALC.

7. Conclusion

Augmenting ALC by a transitive closure operator for roles means not just adding yet another
construct to this languages, and thus getting a language and an algorithm which are only
slightly different from those previously considered. The transitive closure is of a rather
different quality. This is demonstrated by the following facts.

First, by adding transitive closure, we are leaving the realm of first order logic. This is
so because the transitive closure of roles cannot be expressed in first-order predicate logic
(see Aho&Ullman (1979)). Second, the algorithm depends on new methods, namely on the
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use of results from automata theory, and on a data structure, namely the concept trees, which
is more sophisticated than the one used in Schmidt-Schauß&Smolka (1988) or Hollunder et
al.(1990). This data structure was necessary for coping with the non-termination problem.
Third, adding features (i.e., functional roles) and agreements of feature chains (see
Nebel&Smolka (1989)) to FLreg would make the subsumption problem undecidable (see
Nebel (1990b) where this is shown for cyclic T-boxes of FL0 considered with gfp-semantics),
whereas adding features and agreements was never a problem for the languages considered
by Hollunder et al. (see Hollunder&Nutt (1990)).

The expressiveness of ALCreg (or equivalently ALCtrans) is also demonstrated by the
fact that concept terms of this language can be used to internalize concept equations. For that
reason, the algorithm developed in Section 4 can also be used to decide consistency and
subsumption w.r.t. concept equations in ALCreg, and thus also in ALC. In particular, we
thus get a solution of the consistency and the subsumption problem for cyclic T-boxes of
ALC, provided that these T-boxes are considered with descriptive semantics.
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