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AbstractA central problem in the study of autonomous cooperating systems is that ofhow to establish mechanisms for controlling the interactions between di�erent parts(which are called agents) of the system. One way to integrate such mechanismsinto a multi-agent system is to exploit the technique of cooperation or negotiationprotocols. In a protocol we distinguish to essential layers: the communication layerspecifying the possible ow of messages between di�erent agents, and the decisionlayer, which controls the selection of a message (speech-act) that the agent sends ina speci�c situation.In this report we �rst give a short introduction of our agent model InteRRapwhich provides the basis for the modeling of the di�erent scenarios considered inthe AKA-Mod project at the DFKI. The techniques we will discuss in the followingare located in the plan based component and in the cooperation component ofthis model. The domain of application is the MARS scenario (Modeling a Multi-Agent Scenario for Shipping Companies) which implements a group of shippingcompanies whose goal it is to deliver a set of dynamically given orders, satisfying aset of given time and/or cost constraints. The complexity of the orders may exceedthe capacities of a single company. Therefore, cooperation between companies isrequired in order to achieve the goal in a satisfactory way. This domain is ofconsiderable interest for studies with economical background as well as for researchprojects.We give a short summary of results from economical studies that are concernedwith the real-world situation in Germany in the transportation domain. They showthe need for the development of new techniques from the �eld of computer scienceto tackle the problems therein. Then, an overview on related research is presented.Two approaches are discussed in more detail: the �rst one being based on OR-techniques and a second one being based on the concept of partial intelligent agentsattempting to integrate techniques from OR and DAI. Both approaches are con-cerned with the situation in a single company. However, our purpose to handle thecase of distributed shipping companies requires additional mechanisms, e.g. to copewith the problems of task allocation and task decomposition in multi-agent systems.Mechanisms for distributed task decomposition and task allocation processesin multi-agent systems belong to the core of our studies. Therefore, we will �rstdiscuss techniques for these problems in a general setting and then describe theirimplementations in the MARS system. In this description, particular emphasis isplaced on the cooperation within a shipping company. Here, one company agent hasto allocate a set of orders its truck agents. The truck agents support the companyagents by giving cost estimations based on their route planning facility. Thus, thisprocedure provides the basis for the decisions of the company agents and is discussedin very detail.Finally, we present results from a series of benchmark tests. The test sets havealso been run with OR-based implementations and thus, give us the opportunity tocompare our implementation against these approaches.



1 Introduction1.1 Themes of DAIDistributed Arti�cial Intelligence (DAI) is the sub�eld of AI concerned with concurrencyin AI computations. Bond and Gasser [Bond & Gasser 88] divide the world of DAI intwo primary arenas: Research in Distributed Problem Solving (DPS) investigates howthe work of solving a particular problem can be divided among a number of \nodes"or modules that cooperate at the level of dividing and sharing knowledge about theproblem and about its solution. The second arena, called Multi-agent systems (MAS),deals with coordinating intelligent behaviour among a collection of (possibly pre-existing)autonomous intelligent agents. Emphasis is placed on how these agents coordinate theirknowledge, goals, skills and plans jointly to take action or to solve problems. Like modulesin a DPS system, agents in a multi-agent system must share knowledge about problemsand solutions. However, apart from these issues, they also have to reason about theprocess of inter-agent coordination itself.For a long time, the problem of agent coordination was dominated by the metaphor ofthe cooperating expert society, for which Hewitt, in his early ACTORS work, raised thebroad research question of \ what should be communication mechanisms and conventionsof civilized discourse for e�ective problem solving by a society of experts?" ([Hewitt 77]).The cooperating expert paradigm dominated the research in DAI for more than a decade.In the �eld of agent architectures it provided the basis for developments like Lenat's \Be-ings" ([Lenat 75]), Hewitt's ACTORS (cf. e.g. [Hewitt 73]), and for blackboard systemssuch as HEARSAY ([Ermann et al. 80]) or the DVMT testbed ([Corkill & Lesser 88]).Since the late eighties, research in Multi-agent systems has paid more attention toparticular concepts that are of relevance for the coordination in dynamic agent societies,such as cooperative planning ([Lux et al. 92, Jennings 92, Kreifelts & v. Martial 91]), con-ict resolution [Klein 90, Sycara 88], and negotiation, ([Sycara 89, Durfee & Lesser 89,Zlotkin & Rosenschein 91]). The purpose of particular agent models was now to providea framework for integrating instances of these concepts required to deal with a particulardomain of application.In addition to this, there are quite a few more good reasons to concentrate on the agentarchitecture in the �rst place, and to use one of its instantiations in order to describe theactual process of problem solving:� The architecture provides a valuable general guideline for the methodology of thedesign and the implementation of an application.� The modules of the agent model precisely structure the classes of operational knowl-edge.� The execution model which is implicit to the architecture avoids programming fromscratch.� Application-independent, prede�ned mechanisms such as negotiation protocols(e.g. the Contract Net) are directly available.� The emergent functionality of the society can be predicted up to a certain level byregarding the basic patterns of interaction of the instantiated agents.3



� An agent architecture provides a basis for the investigation of special strategies andof extensions of the modules.In the following we briey describe the INTERRAP Agent Model which provides thebasis for the modelings of the application we are concerned with in the project AKA-Mod at the DFKI. It turns out that this agent model is particularly suitable in agentdomains that show a dynamic behaviour, i.e. where the environment of the individualagent is constantly changing because other agents enter or leave the system or becausethe \physical" setting of the environment changes.The INTERRAP Agent ModelThe agent model INTERRAPis essentially an extension of the RATMAN model[B�urckert & M�uller 91]. INTERRAP was developed in order to meet the requirementsof modeling dynamic agent societies. A basic feature is that it provides means to combinereactive behaviour of an agents with explicit planning facilities. For the reactive part,Patterns of behaviour allow an agent to react quickly and exibly to changes in its envi-ronment. On the other hand, the ability to devise plans is generally regarded necessaryto solve more sophisticated tasks.So far, INTERRAP has been evaluated using three applications: (1) the implementa-tion of a society of cooperating vehicles in a loading-dock [M�uller & Pischel 93a], (2) theMARS system, a simulation of cooperating transportation companies [Kuhn et al. 93a],and (3) COSMA, a distributed appointment scheduling manager [Schupeta 92].The INTERRAP ArchitectureWhile the novel feature of RATMAN - the idea of structuring a knowledge base accordingto the complexity of the knowledge contained - was commonly accepted, there was onemain point of criticism of the model, namely the lacking separation between aspects of theknowledge used in the agents and the functionality shown by the model: the hierarchicallystructured levels of knowledge were not only constructed using the concepts of the lowerlevels, but they were also used to trigger activities at these lower levels.INTERRAP clearly draws the separation between the pure knowledge base and thefunctional part, while preserving the hierarchical structure of the model. Thus, the twoparts of the INTERRAP model are� the hierarchical agent knowledge base, and� the multi-stage control unit.Figure 1 shows the INTERRAP model in more detail.1.1.1 The Agent Knowledge BaseThe lowest level of the Agent KB contains the world model of the agent. It is organizedas a taxonomical knowledge base. This kind of knowledge represents the objects in theworld and the relationships which hold among these objects (which corresponds to thestandard T-Box/A-Box structures). The second level describes the patterns of behaviour4



E  N  V  I  R  O  N  M  E  N  T

wwoorrlldd
iinntteerrffaaccee

HHiieerraarrcchhiiccaall
AAggeenntt  KKBB

AAggeenntt

AAAAAA
AAAAAA
AAAAAA
Behaviour-based

Component
BBC

AAAAAA
AAAAAA
AAAAAA

Plan-based
Component

PBC

Acting Communi-
cation Perceiving

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

Acting Communi-
cation

Perceiving

AAAAA
AAAAA
AAAAA
AAAAA

Cooperation
Component

CC

World Model

Patterns of 
Behaviour

Cooperation
 Knowledge

Local
Plans

control flow

information flowFigure 1: The INTERRAP Agent Modeland the basic actions an agent can perform. A plan library, given as a set of skeletalplans, is modeled at the third level. The plans are de�ned recursively starting from basicactions, patterns of behaviour, or uninstantiated subplans. Finally, knowledge aboutcooperation and coordination, such as communication and negotiation protocols, andjoint plans (which are basically multi-agent plans) is represented at the highest layer ofthe hierarchy.1.1.2 The Control UnitThe agent control reects the hierarchical structure of the knowledge base. It shows theoperational ow as discussed in the RATMAN model [B�urckert & M�uller 91], from theworld interface level, where sensoric data is perceived, up to the behaviour-based level,to the plan-based and cooperation levels, and back again to the interface level, where�nally actions in the world are performed. On the other hand, it was built according tothe idea of combining the rational, plan-based paradigm with the concept of behaviour-based, reactive systems and situated actions [Brooks 86, Suchman 87, Steels 90]. Thefour components of the INTERRAP agent control as shown in �gure 1 are the worldinterface, the behaviour-based component (BBC), the plan-based component (PBC), andthe cooperation component (CC).Instead of discussing the single levels one by one (see [M�uller & Pischel 93a] for a de-tailed description), at this stage, the ow of control and information through the di�erentstages will be outlined. The lowest level reects the input/output interface of the agent,the perception of changes in the world, and the receiving of messages. This informationpasses a �rst �lter and ows into the world model of the agent. It is the basic informationused by the BBC. There, it may either directly trigger a certain pattern of behaviour(e.g. the pattern \avoid collision" which has the agent moving aside)1.1Note that, since patterns of behaviour may be concurrently active, the BBC needs a hard-wiredcontrol mechanism for coordinating these patterns. This must not be confounded with the deliberate5



If there is no need for such a fast response, or if the situation is too complex tobe coped with by the BBC, control is shifted up to the plan-based component. Thiscomponent contains the agent's facilities for planning and local decision-making. If theactual situation requires cooperation and coordination with other agents (such as resolvinga blocking conict between two forklift agents in a narrow shelf), the PBC passes controlto the CC, where a cooperative solution of the problem is worked out (for example a jointplan for resolving the conict). In any case, the order for the next working step is passedto the next lower level:� a joint plan is transformed into a set of single-agent plans together with a setof synchronization commands (representing the constraints among the plans) andpassed to the PBC.� a pattern of behaviour is activated by the PBC.� the performance of basic actions or the sending of messages via the world interfaceis activated by the BBC.Finally, note that each component of the agent control has access to its correspondinglayer in the agent knowledge base and to all lower layers, but not to higher layers. Forexample, a pattern of behaviour has never access to the representation of plans.So far, we have given a brief overview of the INTERRAP agent model which underliesour applications. In the report at hand we pay particular attention to the planningcapabilities of the agents that are part of our multi-agent system MARS for modelingthe Transportation Domain. The activities of these agents are controlled mainly by thePlan-based Component PBC and the Cooperation Component CC.2 The MARS Multi-agent Scenario2.1 The Transportation DomainIn a time of constantly growing world-wide economical transparency and interdependency,logistics and the planning of freight transports get more and more important both for eco-nomical and ecological reasons. For Germany, until the year 2000 an increase of transporttra�c of about 60% compared to that of 1992 is forecasted.One reason for this dramatic development of tra�c load is the usual annuary growth ofeconomy. But, additionally this development is driven by the political changes in Europe,such as the new Common Market of the countries of the European Community, whichbrings about a process of deregulation to the transportation companies. Like this hasalready happened in the USA, deregulation, which means for example the ability of theshipping companies to calculate free shipping rates will bring about new structures forthis branch of industry. The idea of the Common Market itself will lead to more ordersof small amount and will increase the portion of collective consignment in the globaltransportation process. A second political event which reinforces the e�ects mentionedbefore is the integration of the Eastern European countries into the economical process.mechanisms for decision-making located at the plan-based and the cooperation layer.6



Due to the geographical position this will have a particular impact for Germany, which isnow lying in the \middle of Europe".For the situation of today, we know from statistical studies that currently about 82%of the transportation orders are delivered by trucks (cf. [Blamauer 83]). This means,that if the forecasts for the future development turn out to be true and if there will beno essential change in the frame conditions of the transportation domain this will end upwith a complete collapse of tra�c.Rittman ([Rittmann 91]) states that more than one third of the trucks in the streets ofEurope are driving without carriage, since they are on their way to pick up goods oron their way back home. This also shows that the actual situation of planning in thetransportation domain is far from being satisfactory.On the one hand this is due to the role of the transportation process in the global in-dustrial and economical chain: producers and consumers both pursue the idea of utilizingthe roads (and the trucks) as depots. This strategy has e�ects like� decreasing volumes of the orders� higher frequency of delivery� higher cost of transport, and in the end� higher load of road tra�cAn essential improvement to this dilemma can be the exploitation of cooperation betweendi�erent members of this domain. In particular (and that is what we are focusing on inour project), this includes the cooperation of di�erent service logistics companies to raisethe load of the individual company.To check these statements and to get some feeling for the real-world cooperationmechanisms between shipping companies we contacted a medium size shipping company(which runs about 700 trucks) located in Saarbr�ucken. There we learned that in the past,the cooperative approach has already proven to be of great promise, when autonomouscompanies had founded joint organisations to coordinate their transportation activities.The reference company for our project is also participating in such an organisation, calledUNITRANS, which consisted of 39 di�erent shipping companies in the beginning. In theinterviews with our partner we �gured out to major types of cooperation between dif-ferent companies which motivated the cooperation mechanisms we have implemented inour MARS system: Namely, the unbooked leg cooperation and the cooperation for couplinglong-distance transportation and local distribution.Another aspect of the situation within a shipping company is the lack of dispositionsupport by computer systems in most of the companies. A technical reason for this mightbe the complexity of the disposition task, where even simpli�ed and quite abstracted in-stances of the problem can be proven to be NP-hard. Examples of this kind can be founde.g. in [Bachem et al. 92] for the depot delivery problem or in section 2.4 of the report athand for the problem of the routing of only one truck.Moreover, not only since just-in-time production has come up, planning must be per-formed under a high degree of uncertainty and incompleteness, and it is highly dynamic.Furthermore, the dispatchers usually have to deal with an open-ended, real-time problemwhere a large number of constraints is associated with each order. Thus, e.g. Standard7



Operations Research approaches (see [Bodin 83, M�uller-Merbach 70] for an overview) can-not cope with the dynamics of this domain.2.2 The (D)AI AspectsWhy is it adequate to use AI techniques and more speci�cally DAI approaches to tackle thetransportation problems described above? One reason is the complexity of the schedul-ing problem, which makes it very attractive for AI research2. However, there are alsomore pragmatic reasons: Commonsense knowledge (e.g. taxonomical, topological, tem-poral, or expert knowledge) is necessary to solve the scheduling problems e�ectively.Local knowledge about the capabilities of the transportation company as well as knowledgeabout competitive (and maybe cooperative) companies massively inuences the solutions.Moreover, since a global view is impossible (because of the complexity), there is a needto operate from a local point of view and thus to deal with incomplete knowledge with allits consequences.The last aspect leads to the DAI arguments:1. The domain is inherently distributed. Hence, it is very natural to look at it as amulti-agent system. However, instead of tackling the problem from the point of viewof the entities which are to be modeled and then relying on the emergence of theglobal solution, the classical approach to the problem is an (arti�cially) centralizedone.2. The task of centrally maintaining and processing the knowledge about the shippingcompanies, their vehicles, and behaviour is very complex. Moreover, knowledge isoften not even centrally available (real-life companies are not willing to share alltheir local information with other companies). Therefore, modeling the companiesas independent and autonomous units seems the only acceptable way to proceed.3. In real business, companies usually solve capacity problems by contacting partnersthat might be able to perform the problematic tasks. Then, the parties negotiate thecontract. However, task allocation, contracting, negotiating and performing jointactions are main topics in DAI research.2.3 The Scenario2.3.1 General DescriptionThe MARS scenario (Modeling a Multi-Agent Scenario for Shipping Companies) im-plements a group of shipping companies whose goal it is to deliver a set of dynamicallygiven orders, satisfying a set of given time and/or cost constraints The complexity of theorders may exceed the capacities of a single company. Therefore, cooperation betweencompanies is required in order to achieve the goal in a satisfactory way. This generalsetting can be seen in �gure 2.2At this year's International Conference on AI and Applications (CAIA'93), seven out of sixty-onepapers dealt with scheduling problems! 8



London

Ham burg

KaiserslauternSaarbr�cken

AA
AA

AAA
AAA
AA
AA
AA
AA
AA
AA

AAA
AAAAA
AA
AA
AA

AA
AA

AAA
AAAAAAA
AA
AA

AAFigure 2: The Domain of Distributed Shipping CompaniesThe common use of shared resources, e.g. train or ship, requires coordination betweenthe companies. Although each company has a local, primarily self-interested view, coop-eration between the shipping companies is necessary in order to achieve reasonable globalplans (see section 9).2.3.2 The Agent SocietyApart from internal system agents, which perform tasks such as the representation andvisualization of the simulation world, the MARS agent society consists of two sorts ofdomain agents, which correspond to the logical entities in the domain: shipping companiesand trucks. The general architecture used to model a single company is sketched in �gure3.In contrast to other approaches (e.g. Falk et al., cf. section 3) we decided to look upontrucks as agents. This view allows to delegate problem-solving skills to them (such asroute-planning and local plan optimization). Furthermore, we obtain a logical distribu-tion of the system even if we consider only a single company. Communication within thissystem may only occur between agents who are connected by an arc in �gure 3. It isenabled by direct communication channels between them.What should also become clear from this �gure is the hierarchical relationship betweenthe di�erent agents of the scenario: There is a Master-Slave relationship between theshipping company agents and their truck agents and a peer to peer relationship betweendi�erent company agents. According to this hierarchical relationships we de�ne di�erentmodes of cooperation between the agents in section 4.From a functional point of view the di�erent types of agents play di�erent roles in thetransportation scenario: 9
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Figure 3: Modeling of Shipping Companies as a Multi-Agent SystemThe company agent is responsible for the disposition of the orders that have beencon�ded to him. Thus, it has to allocate the orders to its trucks, while trying to satisfythe constraints provided by the user as well as local optimality criteria. The shippingcompanies can be regarded as experts for cooperation and cooperative problem solving.They are equipped with additional global knowledge which is needed for cooperatingsuccessfully with other companies.The truck agents represent the means of transport of a transportation company. Eachtruck agent is associated with a particular shipping company from which it receives ordersof the form "Load a goods g1 at location l1 and transport it to location l2". Given such anorder, the truck agent does the planning of the route ([Kuhn et al. 93a], see also section8) according to its geographical knowledge and it will inform the shipping company agentabout the delivery of the goods. Furthermore, it is able to support the shipping companyduring the disposition phase: The truck reports remaining capacities, planned routes andit is able to estimate the e�ort (and the e�ects)3 that are caused by an order.2.4 Analysis of the ProblemThe task of delivering several orders is basically a scheduling problem. What makes it evenharder is the two-dimensionality of task decomposition resulting from the special domain.First, the goods to be transported can be distributed to several means of transport, asthis could be e.g. trucks, trains, ships, or planes. In the following, we do not consider this3i.e. cost, time, security of transport, ... 10



terminological distinction. Instead, we map this di�erence of means of transport to thedi�erent capacities of trucks. The second dimension consists of �nding the route betweentwo cities on a road map which can be splitted up into sub-routes that can be taken atdi�erent times using di�erent conveyances.Routing and Scheduling Prolems similar to that of our group have been considered sincea long time ago. In di�erent settings some of them turn out to be (at least) NP -hard,some of them can be shown to be solvable in polynomial time. In this section we showthat the routing and the scheduling task described by the informal notion above can beshown to be NP -hard.Analysis of ComplexityIf we do not consider precedence relations between orders or time windows for the problemdescribed informally above we have to deal with a routing problem which can be de�nedas follows:De�nition The Routing Decision Problem RDPINSTANCE:Graph G = (V;E),Length l(e) 2 Z+0 for each e 2 E,Set of orders O = f oi=(si,ti,wi) j i = 1, . . . , m, with si 2 E being the startingpoint of oi, ti 2 E being the target point of oi, and wi 2 Z+ giving the weight (orvolume) of oi g,Trucks T = ft1, . . . , tm g,Function Capacity: T ! Z+ giving the capapcity of each truck, andBound B 2 Z+.QUESTION:Is there a disposition function D: O ! T and a routing of the trucks ti 2 T , suchthat all orders are delivered and that the sum of the length of the route of the trucksis at most B?This de�nition reects exactly the two-dimensionality of the problem as mentionedabove: Firstly, the orders have to be allocated to the trucks and secondly, a route for eachtruck has to be constructed. If we consider the routing problem for a set of distributedshipping companies we have to �nd in addition an allocation of the orders to the di�erentshipping companies S, i.e. a mapping D : O ! (S ! T ). However, as we will see thisdoes not contribute to the general complexity of the task. So, for reasons of simplicity werestrict ourselves in this subsection to complexity considerations for the RDP.We will prove the Routing Decision Problem (RDP) to be NP -complete in the follow-ing. Here,NP denotes the class of languages that can be recognized by a nondeterministicTuring Machine in polynomial time (cf. e.g., [Hopcroft & Ullman 79]). The proof is donein two steps. First, a polynomial time reduction of the Modi�ed Rural Postman Problemwhich is known to be NP -complete (cf. [Garey & Johnson 79]) to the RDP is given. Thisshows that the Routing Optimization Problem is at least NP -hard. Then, a nondeter-ministic polynomial-time algorithm for RDP is provided, showing that RDP itself belongs11



to NP .The Modi�ed Rural Postman Problem (MRPP) originates from the Rural PostmanProblem (RPP), which is de�ned as follows:De�nition The Rural Postman ProblemINSTANCE: Graph G = (V;E), Length l(e) 2 Z+0 for each e 2 E, Subset E 0 � E,and Bound B 2 Z+.QUESTION: Is there a circuit in G that includes each edge in E 0 and that hastotal length of at most B?The Rural Postman Problem remains NP -complete even if l(e) = 1 for all e 2 E. Thisinstance of the problem will be called the Modi�ed Rural Postman Problem (MRPP) inthe following.The �rst lemma states that the MRPP can be mapped in polynomial time to therouting decision problem where only one truck t is available and all orders cover exactlythe capacity of t. This shows that MRPP is polynomial-time reducible to RPP.Lemma 1: MRPP / RDPProof: Consider an instance i=(G,E',B) of the MRPP, with G = (V;E), E 0 � E, andB 2 Z+.To i, construct an instance i1=(G1,l1,T1,Capacity1,O1,B1) of the RDP as follows:G1 := G, i.e. V1 := V, E1 := El1(e) := 1 for all e 2 E1T1 := tCapacity(t) := c0O1 := f (e,c0) j e 2 E 0, and c0 := Capacity(t) gB1 := BClaim: MRPP(i) i� RDP(i1)i) If MRPP(i) holds then there exists a circuit c such that c contains all edges e 2 E 0,and such that the length of c is at most B.Circuit c is also a suitable route for truck t to deliver all orders oi 2 O1. Since thelengths of the edges in G1 and G are identical, l1(c) � B1.Thus, RDP(i1) holds.ii) Now, assume that RDP(i1) holds.The problem to prove MRPP(i) from RDP(i1) is that to deliver an order o=(e,c0)the truck need not necessarily go through edge e.12



However, suppose that there exists a route c (described by a sequence of edges) fort which satis�es l1(c) � B, and there exists an order o=(v1,v2,c0) with e = (v1, v2)=2 c.Because t delivers all orders, once it will visit v1 to pick up the goods of o1. Then,it will run through di�erent vertices v0' . . . vk' eventually arriving at v2 to delivero2.Since, c0 = Capacity(t), there did not occur a loading or unloading activity onthe route between v1 and v2. Thus, we can transform the route c to route c' bysubstituting the vertex v2 for the vertices v0' . . . vk' in c. It follows that the resultingcircuit c' is another valid route to deliver all orders in O1.Since, l1(e) = 1 for all e 2 E1, l1(c') � l1(c) � B.An inductive argument shows that by this procedure we can construct a circuit c inG which eventually contains each edge in E 0 and which satis�es l(c) � B.This proves that MRPP(i) holds.Obviously, the transformation of i to i1 can be done in polynomial time. Thus, MRPP ispolynomial-time reducible to MSDP. 2What is impicitly assumed in the construction of the proof of Lemma 1 is that thetrucks must not use intermediate storages during the delivery of an order. That is, theyare not allowed to pick up a speci�c order, transport it to some depot where it is droppedand another order (or a set thereof) is delivered. After that the truck returns to the depotpicks up its origial order and �nally, delivers it. This procedure may yield a considerableimprovement to routes. However, it is also clear that it brings about a more complicatedtask of planning a route for a truck. So we neglect the possibility of using intermediatestorages for the delivery process. This process is also underlying the algorithm used inthe proof of the following lemma.Lemma 2: RDP belongs to NPProof: A nondeterministic algorithm for solving RDP can be speci�ed as follows:INPUT:Graph G=(V,E)Length l(e) 2 Z+ for each e 2 ESet of orders O = f(si,ti,wi) j 1 � i � ngSet of Trucks T = ft1, : : :, tkgFunction Capacity: T ! Z+Bound B 2 Z+OUTPUT: RDP (G,O,T,Capacity,B)beginChoose - an ordering � of fsi,ti j (si,ti,wi) 2 Og and- a mapping D: O ! f1 : : : kgFor each truck tj 2 T dobegin Oj := f o 2 O j D(o) = jg13



If �(Oj) describes a suitable tour for tj then cj:=tour length(�(Oj))else cj:= B+1endC := Pkj=1 cjoutput(C � B)endThe sequence �(Oj) describes a suitable route for truck tj, if the following conditionshold:1. the pickup of an order must occur before its delivery, i.e. �(si,ti)2. the capacity constraints for truck ti are satis�ed, i.e.8 i: (wi + Pj:�(si;sj)and�(sj ;ti) wj � Capacity(ti)).In particular, this means that each single order dedicated to a truck must not exceedits capacity. Furthermore, if it transports goods for several orders at the same timeall must �t into its loading space.The evaluation of these conditions can obviously be computed in polynomial time. Todetermine the tour length the minimal distances between two successive locations in acircuit �(O) have to be summed up, which can also be done in polynomial time.Thus, the speci�cation above gives a nondeterministic polynomial time algorithm for theRDP. 2Lemma 1 and Lemma 2 provide the following result:THEOREM: RDP is NP -complete.In the proof of Lemma 1 we constructed an instance i1 of the RPP to an instance i ofthe MRPP such that MRPP(i) i� RPP(i1), where in i1 only one truck was used. Togetherwith Lemma 2 this gives the following statement.Corollary 1: The RDP remains NP -complete even if jTj = 1 and l(e) = 1 for all e 2 E.2 For the more general problem of routing for a set of distributed shipping companiesit can be shown analogously that the corresponding decision problem is NP -complete.Restricting this problem to considering one company shows that the reduction of theMRPP can be done in analogy to Lemma 1. Extending the algorithm used in the proofof Lemma 2 to choose in addition a distribution of the orders over the companies givesa nondeterministic algorithm to decide the routing decision problem for distributed ship-ping companies.In analogy to the de�nition of the Routing Decision Problem RDP we may de�ne theScheduling Decision Problem SDP where each order is associated with a time window de-termining temporal constraints for its delivery instead of being associated with a weightas in the RDP, and where each edge in E is labeled by the time needed to travel along thisline. The corresponding decision problem is stated by the question whether there exists14



a disposition function D and a schedule for the allocated orders by each truck such thatthe orders can be delivered within a certain time bound B.Obviously the RDP can be easily reduced to the SDP. Furthermore, the algorithmused in the proof of Lemma 2 can be modi�ed to solve the SDP, thus showing that SDPbelongs to NP , and hereby, SDP is NP -complete.The same argument shows that also the combination of both problems, namely the Routingand Scheduling Decision Problem is NP -complete. We conclude this section with thefollowing corollary which summarizes these statements.Corollary: Both, the Scheduling Decision Problem (SDP) and the Routing and Schedul-ing Decision Problem (RSDP) are NP -complete. 23 Related WorkThe problem of delivering a set of orders as it has been stated in this report is oftenregarded as a scheduling, a routing task, or a combination of both. These are the categoriesinto which this kind of problems is usually classi�ed (cf., e.g. [Bodin 83]).The di�erence between routing and scheduling tasks is that routing problems have norestriction on delivery time nor are there precedence relationships between stops. Hence,routing problems focus exclusively on the spatial or geometrical aspects of the problem.On the other hand, scheduling focuses exclusively on the time constraints of the problem.Routing and scheduling problems incorporate both spatial and temporal characteristics.By the problem statement of section 2.1, which is characterized by the fact thatorders may enter the system at any time an open scheduling or routing problem is de�nedwhere the exact instance is not known in advance. Usually, these problems are called theDynamic Vehicle Routing Problem (DVRP) or the Dynamic Vehicle Scheduling Problem(DVSP), respectively.Compared to the large number of papers dealing with static scheduling or routingproblems the dynamic problem instance has found considerably less interest. One sitewhere particular attention has been to it is the \Center for Transportation Studies" atMIT where solutions to this problem have been developed since the mid seventies. Anoverview of several of these approaches is contained e.g. in [Bodin 83].Most of the approaches presented there rely on applying OR-based methods. However,it turns out that there are problems with these approaches when the number of constraintsto deal with grows or when real-time response of the system is required. This is the caseif one wants to support with such a system a dispatcher who has to tell customers anestimated cost of an order at the phone. For this class of problems often knowledge-based approaches are used as e.g., by Bagchi and Nag. ([Bagchi & Nag 91]). They dealwith the problem that a vehicle scheduler at a centralized facility receives requests fromall over the country for truck capacities on speci�c dates and times. The scheduler hasto assign these loads originating from various parts of the countries to trucks obtainedfrom contract carriers. Bagchi and Nag solve this problem using a heuristic based on thecognitive rules of an experienced scheduler. Although their approach is a centralized onethere are some close similarities to the approach that we are pursuing and which will bedescribed in this report. Based on a study of the concepts of a human scheduler Bagchi15



and Nag have derived a set of rules which are used to build up a plan incrementally andto do some repairing if necessary. To implement these rules and to develop their dynamicload scheduling system EXLOAD they decided to use a rule-based expert system shell.Within their system, global optimisation is reduced to assigning a new shipment to acontract with minimal incremental cost caused by that insertion. This is based on aresult of Psaraftis ([Psaraftis 88]) who shows that in a dynamic scheduling environmentglobal minimization over a period of time is best achieved by minimizing the incrementalcost of each assignment.The system EXLOAD has been implemented on IBM 80386 personal computers. Thismeans that it can be used within almost any shipping company as a Disposition SupportSystem. However, Bagchi and Nag's approach covers only the situation for one dispatcherin one shipping company. So, we believe that a multi-agent approach used to combinean inter-company view with their solution to model the intra-company situation couldessentially extend this approach.In the rest of this section we will sketch two other approaches that describe a dis-tributed solution to the vehicle routing problem and which are both based on heuristicsusing the exchange of orders between agents to achieve an overall good solution.An OR-based distributed approach to modeling the transporta-tion domainIn [Bachem et al. 92] a parallel improvement heuristic for solving vehicle routing problemswith side constraints is presented. In their approach Bachem, Hofst�attler and Malich dealwith the problem that n customers order di�erent amounts of goods which are locatedat a central depot. The task of the dispatcher is to cluster the orders and to attach thedi�erent clusters to trucks which then in turn determine a tour to deliver the clusterallocated to them. This series of steps is shown by �gure 4.The solution to this problem is constructed using a procedure called Simulated Tradingprocedure. It starts with a set of feasible tours T1, ..., Tt0 which may e.g., be obtained bya conventional heuristic which is applicable to this domain. The tours are represented asan ordered list of costumers that have to be visited. Parallelism is achieved by that thedata of each tour Ti can be assigned to a single processor i (the tour manager) of a parallel(Multiple Instruction Multiple Data, MIMD) computer. To guide the improvement of theinitial solution, an additional processor, the stock manager is added to the system. Thetask of the stock manager is to coordinate the exchange of costumers orders between thedi�erent processors. To do this, it collects o�ers for buying and selling orders coming fromthe processors in the system. This architecture is shown by �gure 5. To provide a criteriato the stock manager which exchanges of orders could be the best ones a price system isintroduced: If processor p sells an order i (i.e., an order from the depot to customer i),its cost should decrease. This saving of costs is associated as the price Pr to i i.e.,Pr := cost(Tp) - cost(Tp	 fig)Tp := Tp	 figHere, the term Tp	 fig denotes the tour that evolves from Tp if customer i (or order i,respectively) is deleted from processor p's tour list. Accordingly, the price Pr for processorp buying a customer i is computed as the di�erence of costs for the old tour Tp and thecosts for the new tour Tp� fig, which evolves from the insertion of costumer i in Tp, i.e.16
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Figure 4: The Standard Vehicle Routing Problem of Bachem et al.
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Pr := cost(Tp� fig) - cost(Tp)Tp := Tp � figThe exchange of orders is synchronized by the stock manager according to levels ofexchange situations. At each level it asks each processor for a selling or buying order.Having done this, it updates a list of the o�ers and sends it to all tour managers. Eacho�er is associated with a quintuple (processor, Level, Selling or Buying, Costumer, Price).The stock manager maintains a data structure, called Trading Graph whose nodes arethe selling and buying o�ers of the processors. Furthermore, there exists an edge betweenvertices vi = (processor1, li, Selling, ci, Pri) and vj = (processor2, lj, Buying, ci, Prj) ifprocessor2 wants to buy customer ci from processor1. The edge is weighted (or labeled) bythe di�erence of the prices Prj - Pri, giving the global saving of an exchange of the orderbetween these tours. In this graph the stock manager now looks for a so-called tradingmatching i.e., a subset M of the nodes specifying admissible exchanges of orders betweentours.One problem here is, that with o�ering a selling of an order a processor believes thatthis order eventually will be bought by another processor, and it will base its future pricecalculations on its reduced tour. Thus, an admissible exchange must ensure, that witheach node vi 2M, all nodes of the processors selling or buying vi and which have a smallerlevel than vi have to be also in M.The gain of the matching is obtained by summing up the weights of the edges betweennodes in M. A trading matching is then de�ned to be an admissible matching whose gainis positive.Starting from this basic setting, Bachem et al. have implemented some variants ofthis approach. In one of these variants they tried for example, to reduce the numberof message between the tour managers and the stock managers or to reduce the stockmanager's role as a bottleneck in this procedure. Furthermore, they have tested theirimplementations using test sets provided by Solomon ([Desrochers et al. 92]). We haveadopted these test sets and we will describe the evaluations of the MARS system for thesetest sets in section 9.Apart from this comparison on the run-time level of the two approaches we would liketo make some remarks concerning the conceptual di�erences between this approach andours. What should have become clear from the above description is, that the solution ofBachem et al. to the Vehicle Routing Problem is primarily tailored to deal with staticproblems, i.e., the set of orders remains constant during the execution of the simulatedtrading procedure. Furthermore, because the processors rely on that the orders the o�eredfor selling will eventually be bought by another processor, there will be time periodswithout the system having a valid plan for the delivery of the orders. In our approach,which is based on negotiation protocols as described in section 4 there exists a validtour plan at any given time. Thus, we think that this meets better the requirements ofinterleaving the planning and the execution phase in the vehicle routing problem.Another di�erence is due to the di�erent domains we are paying attention to. WhileBachem et al. consider route planning and scheduling in one company, where the infor-mation in principle may be visible to all members of the scenario, the application domainthat we have in mind is a more general one. Between distributed shipping companiesthere are always competitive relationships implying that the companies try to hide asmuch information from another as possible. Negotiation protocols, which provide a way18



of a structured exchange of information between di�erent companies are therefor an ade-quate means to enhance companies with cooperation mechanisms which at the same timeallows them to maintain their autonomy and privacy.A Combination of OR-based methods and Multi-Agent SystemsOR-based approaches have been exploited successfully to solve static instances of the Ve-hicle Routing Problem. However, in order to be used in a dynamic environment thesemethods have to be enhanced with mechanisms providing a real-time behaviour of the cor-responding algorithms. Furthermore, usually OR-based methods are di�cult to use if thenumber of constraints is high (cf. [Golden & Assad 83, Psaraftis 88, Bagchi & Nag 91]).Falk, Spieck, and Mertens (cf. [Falk et al. 93]) pursue an approach based on theintegration of knowledge-based mechanisms and OR algorithms. This combination oftwo methodologies is expressed by the term Partial Intelligent Agents (PIAs) they useto denote components of distributed, cooperating systems having a hybrid structure, i.e.modules that include a "conventional" (usually OR-based) and a knowledge-based part.In the context of the transportation domain they consider tramp agent companies, i.e.shipping companies that are purely concerned with transportation tasks. These companiesusually operate from di�erent regional agencies which are autonomous in principle. Inthe modeling of Falk et al. each agency is represented by a dispatching PIA which isresponsible for the allocation of the orders of its agency to the trucks belonging to itmomentarily. The dispatcher knows the current location of its trucks and it bases itsdecision on this knowledge. Its objective function considers� maximizing the utilization of the trucks' capacity� minimizing the idle time and rides without carriage� minimizing the length of the route for a single orderBesides that, di�erent restrictions to the solutions, like time constraints formulated by theclients have to be considered. Of course, the goals for the objective function are partiallyconicting. Therefore, in a concrete situation it must be possible to specify which goalhas to be ranked highest.The responsibility of a particular dispatching PIA is dedicated to a speci�c geograph-ical region. When a truck passes from one region to another one the responsibility for theplanning of its route carries over to the dispatcher of the current region.In general, each dispatcher which tries to allocate an order considers only those truckshe is currently responsible for. But, there are situations for which the allocation canbe improved essentially by exploiting the cooperation between di�erent PIAs. Such asituation is shown by �gure 6.The process of cooperative planning for a new order is handled as follows: One PIA,namely the one which is responsible for the region where the starting point of the re-spective order lies in, is chosen to control the allocation to a particular truck, i.e. it isbecoming the Coordinator-PIA (C-PIA). In the cooperative process all PIAs take partwhich are responsible for a truck within a certain radius around the starting point orthe target point of the new order and are thus becoming Partner PIAs (P-PIAs) in thiscoordination process. 19
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Figure 6: Cooperation in the Tramp Agent Application Domain of Falk et al.Each P-PIA proposes a possible allocation of the order to its truck to the C-PIA whoevaluates all the proposals and which eventually chooses the best one.This procedure is basically an implementation of the Contract Net Protocol as pro-posed in [Davis & Smith 83]. However, the approach of Falk et al. does not only aim atusing the Contract Net for the task allocation process in this domain but also to use itfor the task decomposition process.To process a new order each PIA has available di�erent operators to modify its localplans, as there are insertion, moving,exchange of orders, reload of goods, and joining oftours. In a �rst round, the C-PIA asks for bids where only the insertion operator will beused. For the insertion of an order into their local plan all PIAs use a two stage Branchand Bound algorithm of Wilson (in [Bodin 83]) by which the order is inserted due to aminimal detour. If the bids of the P-PIAs show that no insertion can be done in a satis-factory way, the C-PIA initiates a new bidding round where bids including the operatorof moving orders are requested. If this does not result in a satisfactory solution the nextoperator is chosen, and so on.The work of Falk et al. was initiated by a Logistics Support Company who needed anew technology to provide planning tools to its customers. Compared to our modeling theapproach described above considers an instance of our domain, namely a single companywhich is geographically distributed. Thus, the dispatching agents are willing to exchangeall the information (in this case, the complete route plans) in a cooperation process. Afurther di�erence to our modeling is that the trucks are not modeled as agents. This mightbe motivated by the fact that the PIAs have to exchange their information about routes20



of the trucks, implying that they have to know them. This fact reduces the advantage ofmodeling a truck as an autonomous entity.Another di�erence in terms of the motivation for the research activities is that themodeling of the MARS system intended to study the applicability of DAI techniques toreal world applications. On the other hand, the group at the university of N�urnbergtried to �nd new mechanisms to solve the Dynamic Vehicle Routing Problem. From thispoint of view it is worth to mention that the architectures associated with these twoapproaches converge to the implementation of a multi-agent system providing hopefullygood solutions to the DVRP.The approaches discussed in this section are more or less aiming at the developmentof a disposition support system that can be used in a real-world company. All authorsagree that for this goal it is not suitable to integrate into such a system e.g. algorithmsthat solve the routing or scheduling exactly. Instead, they are looking for heuristics thatprovide a \good" solution in a reasonable amount of time. This is also the purpose for ourapplication. However, compared to the approaches presented in this section we considera more general scenario where we try to model shipping companies that are primarilyself-interested and only secondary cooperative.This latter aspect was also one of the reasons why we decided to choose the trans-portation domain as an application to study the applicability of DAI techniques. In mostof the approaches in the DAI �eld that are dealing with modeling cooperation agentsmostly are either cooperative or not, i.e. there is no reection about the conditions andthe motivation for agents participating in a cooperation process. This aspect also raisesquestions for the decision processes in the planning phase within the agents or questionsfor an appropriate choice of partners at the beginning of an cooperative act. This twofoldview on cooperation was formalized in the model of Pattern of Interaction in ([M�uller 93]).However, in the report at hand we concentrate on the more technical aspects of co-operation in the transportation domain. In section 2.4 we formalized the routing andscheduling problem of a set of distributed shipping companies. and gave a lower boundfor this problem. In the next section we �gure out two main steps in this distributionproblems, namely the task decomposition phase done by the company agents and theirtrucks and the phase of route planning which is done by the trucks.4 A DAI based Heuristic approach to Scheduling andRouting for Distributed Shipping CompaniesThe complexity theoretical results of section 2.4 show the intractability of the schedulingand routing optimization problem within the MARS scenario. In order to cope with thisproblems despite of this results and to keep them manageable in a computer implemen-tation usually heuristics are applied to solve the problem. However, this implies that ingeneral the solution constructed for a problem instance may be far from being optimal.Nevertheless, we also have chosen the goal to apply heuristic mechanisms to solve theproblem stated in section 2.1. We will present the ideas underlying them in the follow-ing. An evaluation of the algorithms based on these methods in comparison to other21



approaches is contained in section 9.Our approach to develop a heuristic algorithm for the scenario is based on exploitingtechniques from the �eld of DAI. This is motivated from looking at the real-world situation(cf. section 2.1): The description of the scenario reveals the autonomy of the agents asa necessary condition for a modeling that reects the real-world situation and that caneven support the dispatcher in a real shipping company.In the routing and the scheduling problem of the MARS scenario we distinguish dif-ferent phases as shown by �gure 7: The orders a client enters into the system have tobe �rst allocated to particular companies and then to a set of trucks belonging to thecompany agents. In this terms, this describes a pure process of task allocation in thesystem. However, if we allow the orders to exceed the capacities of the single companiesor trucks this process has to be combined with a process of task decomposition, i.e. theorder has to be split up into several sub-orders that can be allocated to the transportingunits.Besides these two processes for the task handling in this multi-agent system, there is a
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4.1 The Process of Task Decomposition and Task AllocationA multi-agent system (MAS)M is a pair M = (T , A ), where A = fa1, ..., ang denotesthe set of agents that comprise the system M, and T = ft1, ..., tlg describes the set oftasks that the society of agents is able to perform. These tasks are accomplished by thatthe agents perform a set of actions they are capable of. We call a task t an atomic taskfor agent a if it can be accomplished by the agent alone. Otherwise, we call the task acomplicated task for agent a.In general, the process of the task decomposition is as follows: Given a task t 2 T asinput, t has to be compiled into a set of atomic tasks Tt = ftt1, ..., ttmg � T that can beattached to particular agents.Usually, there may be several alternatives to compile a task into a set of subtasks accordingto di�erent possible solutions to a problem (or task) or to the set of agents that are actuallypart of the system. Thus, it is often suitable to implement the task decomposition processas an iterative process that gathers the information necessary in a series of steps.Furthermore, in general the two processes of task decomposition and task allocation haveto be closely interleaved, because a task may be atomic for one agent while it is complicatedfor another agent. For instance, carrying a table from a location A to a location B mightbe done either by one strong agent or by two weaker ones. If the task allocation processprefers the latter case, the task decomposition process must proceed, and in order toexpress the conjunction of the two agents for the accomplishment of the task, it has toadd constraints to the description of the new subtasks that must be satis�ed when thetask is �nally accomplished.Another process in a multi-agent system that can have impacts on the task decom-position and the task allocation processes is the process of planning. The multi-agentsystems that we are interested in can be characterized by the term dynamic multi-agentsystems. On one hand,we want to stress with this notion the fact that agents may enteror leave the system at any time which may result in a change of the topology or of thehierarchical structure of the multi-agent system. Important to mention in this context isthat we have no longer a system that is given a set of tasks at some starting time t andwhich will �nish after some while having ful�lled all the initial tasks. Instead, the agentshave to deal with a continuous stream of incoming tasks, imposing as a consequence thata new incoming task can force the system to modify plans (or decompositions) that havebeen worked out before, because the former solution suddenly looks less reasonable now oreven, does not work any more now. This may even include a rollback of actions that havebeen already executed4. In other words, the input of new tasks may imply the necessityof replanning sequences of actions for some of the agents.On the agent level the allocation of a new goal to some agents can involve that theseagents are no longer able to accomplish each task they have been committed to before.Rather, some of the tasks have to be retracted from the agents, and are thus open fordecomposition again.Therefore, a process for the decomposition of the tasks in a MASM should keep trackof at least the following parameters:4This might be not the case for actions that consume some limited resources, like fuel, etc.!23



1. The \state" ofM from the viewpoint of the agents, yielding e.g. information aboutthe current set of tasks in the system (i.e., which tasks are open for decomposition;which decomposition has been chosen for the other ones), and knowledge aboutpreferable decompositions.2. agents that are in general suitable for the accomplishment of a particular task3. agents that are actually available for the accomplishment of a particular task.The interleaving of the di�erent processes in a multi-agent system is inuenced bydi�erent paramaters, among them� the structure of the task� the topology of the multi-agent system� the roles of the individual agentsThe implementation of the coupling of the di�erent processes in multi-agent systems (aswell as in other kinds of distributed systems) often applies the technique of protocols bywhich the agents provide the information necessary for a process to each other.The most widely known protocol in this �eld is the Contract Net Protocol of Davis andSmith. Its applications cover almost the whole spectrum of multi-agent systems, ranginge.g. from the domain of distributed manufacturing systems (cf. [Parunak 87]) to thedomain of air tra�c control (cf. [Cammarata et al. 88]). In our application this protocolalso is considered. However, the applications have also shown the need for modi�cationsof the contract net protocol and for other protocols supporting cooperation of agents.In [Kuhn et al. 93b] we discussed di�erent models of task-decomposition and theirimplementation in form of protocols. The rest of this section gives a brief overview onthis discussion.4.2 The Contract Net ProtocolThe Contract Net Protocol (CNP) was introduced by Smith and Davis in a series ofpublications ([Davis & Smith 83, Smith 80]). The general idea is the following: A certaintask is given to a society of agents. One agent, called the manager, receives the task anddivides it into a set of subtasks. He announces them (in a sequence of announcements)to a set of eligible agents (chosen on the basis of his knowledge about the others). Theseagents process the task announcement, i.e., they rank the task relative to others currentlyunder consideration. When being idle at some time, they prepare bids for stored tasksand send the bids to the respective managers. The manager ranks the incoming bidsand after an expiring time he chooses the best one. An instantiation of the CNP for thedomain of a shipping company is shown by �gure 8.Though we think that the CNP is a very elegant way to coordinate agents in the taskallocation process, there is one big bottleneck with the approach. For many interestingapplications, there are quite a few good reasons to consider the central role of the manageras being too powerful: 24
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4.3 The Decentralized Task Decomposition ModelMotivated by the shortcomings of the Contract Net Model of task decomposition fordynamic agent societies described in section 4.2, we would like to approach one stage closerto the paradigm of a decentralized system by a model which we call the DecentralizedTask Decomposition Model (DTDM). In this model, the original structure of the contractnet is softened by shifting the task decomposition to the society of contractors: themanager receives a task and passes it as a whole to a set of eligible contractors. Thecontractors work out a bid for a part of the task, and pass it back to the manager. Now,the manager can synthesize a plan for the task from the bids for subtasks received bysome of the contractors, while rejecting the bids of other contractors. In section 5.2, wewill describe how negotiation between the manager and the contractors can help to �ndmore appropriate task decompositions which lead to better solutions to the overall task.Compared to the Contract Net Model, the DTDM yields a more exible behaviour ofthe system, since� The manager needs less knowledge about the di�erent contractors. Rather, eachcontractor may choose a subtask which seems appropriate to him. However, byknowing the subtasks o�ered by the contractors, the manager can have an importantcoordinating function.� Communication costs are reduced, because instead of announcing each subtask, themanager only announces the task as a whole.� By employing negotiation between the manager and the contractors, task decom-positions can be achieved which are both locally and globally acceptable.� The dynamic nature of the system can be handled more easily. The manager doesnot have to know the agents that are currently in the system to decompose a task intoa subtask. If the CNP is used and some relevant agents are missing or unavailablefor the solution of a task it may take several rounds of task announcements until asuitable task decomposition is found.However, for some domains, even the existence of a manager is not desired or justimpossible to assume. For these domains, the DTDM might be regarded not satisfactory.Therefore, in subsection 4.4, we introduce a model which provides a degree of decentral-ization which is even higher than in the case of the DTDM.4.4 The Completely Decentralized ModelIn the Completely Decentralized Model (CDM), the society of agents has to decomposeand to allocate the tasks and to synthesize a plan for carrying out the task without thehelp of a manager. This decentralized task decomposition and task synthesis can beviewed as a decentralized planning process. Agents may either propose whole plans orpartial plans to other agents, or they may construct a joint plan e.g. by using a systemof a circular letter which is sent from agent to agent, and which can be modi�ed by eachagent, until a complete plan is built which is accepted by all participants. The absenceof a central instance causes many new problems to occur: agents may have di�erent andeven inconsistent intentions, di�erent degrees of cooperativeness, very diverse amounts26



and types of knowledge and beliefs, and di�erent skills and abilities. Finding coordinatedplans requires such an agent society to communicate, to exchange goals, plans, arguments,and intentions, to cope with conicts etc.Negotiation [Durfee & Montgomery 90, Kreifelts & v. Martial 91] establishes a verypowerful tool for handling this kind of problem. By negotiation, conicts between agentscan be bridged, an agent can convince another agent of the bene�ts of his proposal, or theframe conditions for a joint plan and the joint plan itself, i. e. the task decomposition andallocation, can be agreed on. In section 5 we will give an overview on di�erent ways touse negotiation for task decomposition in Multi-Agent Systems. In the case of the CDM,we can say that to use some form of negotiation between agents is not a choice which isup to the agents (or to the designer of the agent society).5 Task Decomposition by NegotiationIn chapter 4 we introduced several models of task decomposition which di�ered by theirdegree of decentralization. There we supposed that agents would send proposals for taskdecomposition to other agents, and that these might either accept or reject the proposal.However, if we want to obtain a more realistic view on cooperation, aspects of nego-tiation should be integrated. By [Bussmann 92], negotiation in a multi-agent context isde�ned as the communication process of a group of agents in order to reach a mutuallyaccepted agreement on some matter. According to this de�nition, the task decompositionitself may be negotiated on. In this section we would like to outline how task decompo-sition can be negotiated in the models de�ned in section 4.5.1 Negotiation in the Contract Net ModelThe model for task handling based on the contract net is characterized by centralizedtask decomposition and centralized task synthesis. The manager splits a task into severalsubtasks and announces each subtask to one agent or a group of agents. In the originalContract Net Protocol, each agent may either make a bid for a subtask, or it may showno interest for doing that subtask. Thus, in order to �nd a suitable task decomposition,the manager needs profound knowledge of other agents' problem solving capabilities andeven of their internal representations. Otherwise, there is a considerable risk that for agiven subtask no contractor will be found.A more exible mechanism for task decomposition in the Contract Net model canbe achieved by allowing negotiation on the frame conditions of a subtask between themanager and the potential contractors. By this, satisfactory task decompositions can bereached even when the manager has no complete knowledge (or even wrong beliefs) of thepotential contractors. Figure 9, taken gives an example for this which is taken from theMARS domain.Example 1 Assume S1; S2 are shipping companies. S1 owns one truck with a loadingcapacity of 20 units, S2 owns one truck with a loading capacity of 10 units. A customer Chas a task T =\Transport 6 pallets each of �ve units from place A to place B!". Assumethat C has no knowledge about the loading capacities of S1 and S2, respectively. In thiscase, it may use a heuristics, namely to decompose the order in two equal parts T1 =27
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Figure 9: Example 1\Transport 3 pallets from A to B!" which it decides to send to S1 and T2 = \Transport3 pallets from A to B!" which it sends to S2.Using the normal CNP, S2 would recognize that it is not able to carry out the task (atleast not directly). Therefore, S1 would be granted T1 whereas T2 could not be carried out,at all.Negotiation in this context can be integrated if the companies report the managertheir free capacities. This may either be on request or they could do it on their own ifthey recognize that there is some capacity left that could be �lled up by a similar order.Although the �rst one of these alternatives can work in a computer implementation itseems to be unrealistic in a real-world setting of autonomous agents. However, the latteralternative has already some similarity to the unbooked leg cooperation in the MARSscenario (see section 5.4).If we allow negotiation between the customer and the potential contractors in theexample above, the following will happen:Example 1, contd.: S2 might tell C: \I cannot transport 15 units, but I can transport10 units." Now, C can use the knowledge obtained by the negotiation with S2 in order tochoose another task decomposition consisting of T 01 =\Transport 2 pallets from A to B"which it sends to S1, and T 02 =\Transport 4 pallets from A to B" which it sends to S2.Thus, an appropriate task decomposition can be found.5.2 Negotiation in the Decentralized Task DecompositionModelIn the decentralized task decomposition model of section 4.3, the manager is no longerresponsible for task decomposition. Instead, it sends the task as a whole to the potentialcontractors, each of which may cut a slice of the task for himself, and announce to themanager his interest in that particular part of the task. The manager now synthesizes aplan for the complete task from the proposals of the agents.28



In some ways, decentralized task decomposition models su�er from their locality. Thecontractors have only a local view, and they will choose subtasks without taking intoconsideration the behaviour of other agents. Therefore, it often happens that eitherthere are conicts between several contractors (e.g., some contractor wants to do the taskas a whole, which is certainly impossible), or that parts of the task are not chosen byany contractor. Negotiation can be considered as a solution to these problems: therecan be a negotiation between the manager and potential contractors in order to modifyannouncements of subtasks, which correspond to the task decomposition proposed by acontractor. Here, the manager can take advantage of his more global view obtained byknowing the o�ers of several contractors. On the other hand, contractors can negotiatewith each other. This is a step into the direction of a completely decentralized system,where no manager is required (cf. subsection 5.3) at all. How ever, we can imagine ahybrid solution where a manager announces the tasks and receives and synthesizes o�ersfor task decomposition, but where negotiation between contractors (e.g., in order to forma group solving a single subtask) is possible.Again, we would like to show by an example how task decomposition proposals madeby potential contractors can be modi�ed by negotiation in order to reach a better solutionof the overall task. The example is illustrated by �gure 10.
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Figure 10: Example 2Example 2 Again there are a customer C, two companies S1 and S2. S1 has two truckswith loading-capacities of 5 and 20 units, respectively, and S2 owns one truck with aloading capacity of 30 units. Now let the task T be \Transport 10 units from A to B".Both S1 and S2 receive T and check which parts of T they are capable and willing to carryout. Now assume that both S1 and S2 use a heuristics which says not to apply for a task ifthe truck which is to perform it cannot be loaded by more than 50% of its loading capacity.In this case, S1 would apply for transporting 5 units with his small truck, and S2 wouldnot apply for T , at all.If we allow negotiation, S1 could propose to C to transport 10 units, i. e. to carryout T completely, if C will pay more for it, and they could agree on a higher price forperforming T . 29



In conclusion, the use of negotiation in decentralized task decomposition models allowshigher exibility and a better performance of the system as a whole.5.3 Negotiation in the Completely Decentralized ModelAs described in section 4.4, by decentralizing the synthesis of tasks we obtain a completelydecentralized task model. Here, the manager has become superuous. Rather, the agentsociety decomposes the task in a set of subtasks and combines the solution to the subtasksto a plan for the task as a whole.In completely decentralized models negotiation is not only reasonable, but it is verynecessary, since it allows agents to cope with tasks without having complete knowledgeabout the abilities of others. Therefore, agents maintain models of other agents whichcontain their beliefs about the capabilities, intentions, and plans of these agents. Thepartner models are updated by messages received from other agents, and by perceivingthe behaviour of these agents. Lacking information needed for making decisions can beacquired from other agents by asking them questions.As we said before, negotiation between agents is performed via the sending of mes-sages. Agents may create plans for the task or for subtasks and send them to otheragents who can accept, reject, re�ne, or modify these plans (cf. [Durfee & Lesser 89,Kreifelts & v. Martial 91] as examples), thus �nally agreeing on a joint plan.5.4 Negotiation in the MARS ScenarioThe MARS scenario as shown by �gure 3 comprises two kinds of cooperation which aredistinguished according to the hierarchical relationship between the agents involved: At�rst, there is the cooperation between the company agent and its trucks, which have tosupport it in the task decomposition and task allocation phase. This form of cooperationis called Vertical Cooperation because the responsibility for the decision of the outcomeof the cooperation is dedicated to the company agent alone. The bidding process of thiscooperation will be discussed in detail in section 8.A second form of cooperation exists between di�erent shipping companies that nego-tiate about the exchange of orders to improve the task decomposition and task allocationthey have been choosing. This cooperation is called Horizontal Cooperation according tothe peer-to-peer relationship between the shipping companies. An example for a situa-tion where this form of cooperation provides an essential improvement for the overall taskdecomposition and task allocation is illustrated by �gure 11The invocation of the decentralized (and cooperative) task handling process will betriggered by the recognition of the cooperation pattern `avoidance of unbooked legs` or`coupling of local tra�c and long-distance transportation orders' by one of the companies.Figure 11 shows how these types of cooperation can be combined to obtain a solution forthe problem of task decomposition and task allocation in a situation with the set oforders fo1, o2, o3g for the shipping companies fC1, C2, C3g. To achieve the solution thatis displayed in the right part of the �gure the negotiation mechanism could proceed asfollows:� C1 asks C2 to take over the local distribution of o1 and he o�ers a free truck to C230



h
hh h
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withwithout CooperationDecomposition of a set of orders O1O2 O1 O3O1 O2O3C1 C2 C3 C1 C3C2Transports by C1 Transports by C2 Transports by C3Figure 11: Cooperation Between Shipping Companies in the MARS Scenario� C2 o�ers a free truck to C3� C3 asks C1 to take over the local distribution of o3 and he o�ers a free truck to C1� C1 agrees on doing the local distribution for o3, if C3 takes over order o1� C3 disagrees on that because it does not want to go to the location of C2� C1 updates his o�er to C2 concerning o1 and asks C2 to do the long-distance partof o1� C2 rejects because it has to deliver order o2� C1 asks C2 if it would be useful for him to have available the truck of C3� C2 accepts the truck o�ered and re-plans the route for the order o2Negotiation in this example is concerned with both kinds of real-world cooperation thatwe are integrating in our MARS scenario. Namely, these are negotiation for the couplingof inter- and intra regional tra�c and for the avoidance of rides without carriage. Toincorporate these forms of cooperation into our system this requires the integration of bothvertical and horizontal cooperation. One way to achieve the avoidance of rides withoutcarriage is the unbooked leg cooperation, where the agents try to improve the load of partsof their routes it this turns out to be unsatisfactory. As a consequence from the chosenmodeling of the scenario by our multi-agent system it follows that this cooperation mayrequire the interleaving of both, the vertical cooperation, and the horizontal cooperationbetween the agents. This is due to the roles of the truck and shipping company agents:only the truck agents know the routes, and can therefore give an estimation for the quality31



of a leg while on the other side only the company agents maintain contacts to di�erenttrucks or to other company agents.
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Truck                  Company: 
  
     ANNOUNCE:	 announce an unbooked leg.
     REVOKE: 	 	 revoke a previously announced unbooked leg.
     FINISH:	 	 Indicates the end of the validity of a previous announcement,
                      	 	 triggers the confirmation the leg to a suitable applicant.

Company                Truck:

     INSERT:	 	 if a suitable applicant has been elected, the truck shall update its plan.
     FREE: 	 	 response to a REVOKE, by which the company frees the truck from its 
                 	 	 obligation as regards a previously announced unbooked leg.
	
Company                Company:

     OFFER: 	 	 A company offers free capacity to another company.
     REVOKE: 	 	 A company revokes a previously offered unbooked leg.
     APPLY: 	 	 A company applies to an offer for an unbooked leg.
     GRANT: 	 	 A company grants the unbooked leg to a suitable applicant.Figure 12: Protocol Primitives for the Unbooked Leg CooperationFigure 12 shows a set of cooperation primitives to model a protocol for the unbookedleg cooperation. The protocol is initiated by a truck who recognizes an unbooked legin its route planned for the delivery of its orders. It announces this leg to its companyagent, which decides what it wants to do with this free capacity. One possibility is too�er it to eligible other company agents (e.g., partner companies) which may then applyfor it5. After an expiration time (e.g., when the truck has to start to deliver the nextorders in time) either the company agent chooses the best order among the applicationsand allocates it to the truck or it allows the truck to leave without an additional order.There may be other cases that make need for a revoke message for a previously announcedunbooked leg e.g., a new order received from the bulletin-board or that the truck couldrearrange its route and does not have the unbooked leg any more. All these cases aresynchronized by the company agent.The description of the protocol for the unbooked leg cooperation based on the speechact primitives of �gure 12 expresses the protocol or communication layer of this respectiveform of cooperation.In general a cooperation mechanism comprises two di�erent layers: the protocol layerwhich describes the possible sequences of messages that are exchanged in order to provideinformation to each other that is necessary to establish cooperation, and the decisionlayer that must be present in the agents in order to decide how to react on receiving amessage or which message should be sent next. Another decision that has to be takenis e.g., which agent should be asked for participation in a cooperation mechanism. Thelatter has been discussed in a quite general setting in [Haddadi & Sundermeyer 93].For the domain of the MARS scenario these two aspects of the decision layer have beenconsidered by [Russ & Vierke 93]. To support the decision of a company agent whether5Another possibility would be to keep it and to wait for a suitable order.32
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6 The Design of the Implementation6.1 Description of the Agent SocietyThe implementation of the MARS system was done using MAGSY, a rule-based devel-opment environment for multi-agent system applications [Fischer 93]. In MAGSY, anagent is a self-contained unit which has its own reasoning capabilities. Figure 13 showsthe architecture of the implementation. There are two types of agents in the system:agents for which there is a physical or logical instance in the domain of application, andsystem agents which were introduced for technical reasons. Agents for which there existsan instance in the domain of the application are introduced at three layers: the layer ofthe brokers, the layer of the shipping companies, and the layer of the trucks. The agentswhich represent shipping companies or trucks are explained in more detail in section 7and 8, respectively. All new orders which are speci�ed by a user are sent to a brokeragent. The user is allowed to specify time and cost constraints for an order as well as aset of shipping companies among which the broker agent should select the cheapest one toexecute the order. Therefore, the broker agents were introduced mainly to make it moreconvenient for a user to give orders to the system. Additionally, there were three systemagents introduced: the world agent, the clock agent, and an agent for the administrationof the agent society. The world agent implements the interface to the user and visualizesto him the actions of the truck agents, e.g. driving from one city to another one. Theclock agent maintains the simulation time and o�ers elementary services such as wathand alarm functions.6.2 An Extended Version of the Contract Net ProtocolThe contract net protocol has already been discussed in section 4.2. Several of its instanceswere described, starting with the central approach and discussing more sophisticateddecentralized instances of the contract net protocol. However, the pure contract netprotocol turns out to be not powerful enough when we have to deal with tasks thatexceed the capacity of a single truck. This implies that the tasks have to be decomposed,which cannot be done using the pure contract net protocol. Therefore, we use an extendedversion | called ECN protocol | where the two speech acts grant and reject are split upinto four new speech acts: temporal grant, temporal reject, de�nitive grant, and de�nitivereject.We describe communication and cooperation between two agents by specifying pat-terns of interaction [M�uller & Pischel 93b]. In the description of a pattern of interactionwe distinguish the protocol layer and the decision layer. We use a ow chart representa-tion to de�ne the protocol layer of a pattern of interaction from the point of view of asingle agent. Figure 14 shows the ow chart for the pure contract net protocol (a) fromthe managers (in this case the shipping company) point of view and (b) from the pointof view of a bidder (a truck). Figure 15 shows the ow charts of the protocol layer of theECN protocol, again, (a) from the manager's point of view and (b) from the point of viewof the bidders. The di�erence to the pure contract net protocol is that the bidders, i.e.the trucks, are allowed to give bids which do not cover the whole amount of an order.The communication procedure is as follows. The manager, i.e. the shipping company,announces an order to its trucks. It selects the best of the bids it receives for the order34
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and sends the truck which gave this bid a temporal grant. All other trucks get temporalrejects. If the best bid does not cover the whole amount of an order, the shipping companysubtracts the amount of the best bid from the amount of the order and reannounces thereduced order. This procedure is repeated until the shipping company gets a bid whichcovers the whole amount of the order which was �nally reannounced. At this moment theshipping company has a set of bids which cover the amount of the original order which wasgiven to the shipping company. The shipping company uses this set of bids to computeitself a bid for the whole task and gives this bid to the broker agent (see section 6.1).Only when the shipping company itself gets a de�nitive grant or a de�nitive reject, theshipping company passes this de�nitive grant or de�nitive reject to all trucks which gota temporal grants before.The trucks on the other hand must be able to cope with the temporal and de�nitivegrant or rejects messages. When a truck gets a temporal grant for the �rst time, it hasto make a backup of its local situation, i.e. the currently valid plan, because it must beable to restore this situation in case it gets a de�nitive reject. All subsequent temporalgrants and temporal rejects are handled as the grants and rejects in the pure contractnet protocol. If a truck gets a de�nitive grant for an order, it removes the copy of thecurrent situation which it created when getting the �rst temporal grant. On the otherhand, if a truck gets a de�nitive reject, it has to remove all the local information gatheredwhile receiving temporal grants and restore the current situation before it received the�rst temporal grant.7 The Shipping CompaniesIf the pure contract net protocol were used for task allocation, then the decisionfunction to select the bid of best quality would be straightforward: the truck which gavethe bid with least costs could be chosen to execute the task. In the ECN protocol whichis actually used to select a bid in a shipping company, the trucks are allowed to give bidswhich do not cover the whole order. In this case, the decision function must take care ofboth, costs and amount speci�ed in a bid.Therefore, the bids of the trucks are represented by triples(t; c; a)where t is an identi�cation of the truck giving the bid, c speci�es the costs of the bid, anda speci�es the amount which could be transported. If the trucks of a shipping companyare able to execute an order o, the shipping company will in general get a setf(t1; c1; a1); : : : ; (tn; cn; an)g; n 2 INof bids for o where o:amount = nXi=1 ai:The quality of two bids can be compared by using the function compare (see �gure16)6. For two bids (t1; c1; a1) and (t2; c2; a2), the �rst one will be preferred ifcompare(c1; a1; c2; a2) = true6The syntax of pseudocode is taken from [Bauer & W�ossner 81]36
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funct compare ( int new-costs, real new-amount,int best-costs, real best-amount ) bool:if new-costsnew-amount = best-costsbest-amountthen best-amount < new-amountelse new-costsnew-amount < best-costsbest-amount �Figure 16: Function to compare tow bids with respect to their quality.holds, i.e. the quality of bid 1 is judged better than the quality of bid 2.We will now analyse in more detail the decision procedure of the ECN protocol andits impacts on the overall system behaviour. If an order is consecutively announced to atruck and if the truck always gets a temporal grant, it will produce a sequence of bidsbt(o) = ((t; c1; a1); : : : ; (t; cn; an)); n 2 IN0where nXi=1 ai � o:amountNote that it may be impossible for a truck to ful�ll the whole order in its current situationbecause of constraints speci�ed with the order. As a special case n = 0, may hold, meaningthat the truck is not able to do any part of the order. Let bti(o) denote the i-th elementof the bid sequence bt(o), i.e. bti(o) = (t; ci; ai)De�nition 1 A sequence of bids s = ((t1; c1; a1); : : : ; (tn; cn; an)) is a valid bid sequencefor an order o i� 8i 2 IN : 1 � i � n : bti(o) 2 s) btj(o) 2 s; 1 � j < i:Lemma 1 The sequence of bids for an order o which is selected by the extended contractnet protocol using the decision function compare is a valid bid sequence for order o.Proof: Due to the de�nition of the extended contract net protocol a truck t can producebid bti(o) if it got temporal grants for all bids btj; 1 � j < i. 2In the ECN protocol, selecting the bid with the minimum costs per unit is a greedystrategy for task allocation. At a �rst glance, the task allocation problem looks likea fractional knapsack problem (for which it is a well-known fact that it can be solvedoptimally by a greedy strategy [Cormen et al. 92]) because the trucks are able to cutarbitrarily small pieces out of an order. However, from the following example we see thatthe task decomposition problem does in fact behave like the 0-1 knapsack problem forwhich is known that a greedy strategy will result in suboptimal solutions.38



Example: Assume that an order o of 70 units is announced to a shipping companywhich has four trucks at hand for doing the job. Assume further that these trucks wouldproduce the following bid sequences:bt1(o) (t1; 220; 40)bt2(o) (t2; 180; 30)bt3(o) (t3; 100; 20); (t3; 100; 20)bt4(o) (t4; 100; 20); (t4; 100; 20)In this example the ECN protocol will select the bid sequence:sECN (o) = (t3; 100; 20); (t3; 100; 20); (t4; 100; 20); (t4; 100; 10)which has total costs of 400 and costs per unit of 40070 � 5:71. Whereas the bid sequence:sopt = (t1; 220; 40); (t2; 180; 30)has total costs of 380 and costs per unit of 38070 � 5:43.Even though this example shows that the ECN protocol may produce a suboptimaltask allocation, one can easily see that such an example cannot be found for bid sequenceswith length of at most 2 elements. It shows that if at all it is always the last bid whichmakes the whole bid sequence suboptimal. This means that the whole problem is dueto the fact that the shipping company has to collect a bid sequence which covers thewhole amount of the order. Knowing that all but the last bid of every bid sequence areoptimal choices with respect to the current situation of the trucks gives room for furtherimprovements of the system.An important thing to note is that the trucks compute their bids with respect to theircurrent situation. The orders are announced to the shipping companies (and thus, to thetrucks) one by one. As more and more orders are announced to the shipping companies,the situation in the trucks will change incrementally. Hence, what might look like a goodtask decomposition in the current situation might turn out to be a bad one on the longrun and vice versa. Therefore, it does not make sense to do a time consuming brute forcecomputation to �nd an optimal solution in a speci�c situation which might turn out tobe a bad solution when time passes by.8 The TrucksWhen a new order is announced to the truck, it computes a bid according to its currentsituation. The bid states at which costs the truck is able to deliver the order. The currentsituation of a truck depends on:1. its current position.2. its currently valid local plan. 39
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FEAllowed cases:(A 6= C ^B 6= D)_(A = C ^B 6= D)_(A 6= C ^B = D)_(A = C ^B = D) Allowed cases:Start: (A 6= E ^B 6= E)_(A = E ^ B 6= E)_End: (C 6= F ^D 6= F )_ C =F _D = FD need not be present.Figure 17: Possible Extensions of a Plan.To determine the costs, the truck agent computes all possible extensions of its localplan and selects the best one. Figure 17 (a) and �gure 17 (b) show the possible extensionsof a plan. In our �rst prototype the cost function considered only the length of the detourof the truck caused by the new order. Here, an order is represented by the followingfeature structure [Henz et al. 93]:( order id : symbolfrom : symbolto : symbolarticle : symbolamount : real )whereid A unique identi�cation of the order.from The name of the city the order starts from.to The name of the city the order ends in.article The type of good.amount How much of the good has to be transported.A plan is a list of single plan-steps each of which speci�es that the truck has to go fromone city (from) to another one (to). Each plan step is represented by the following featurestructure:( plan-step id : symbolnext : symbolfrom : symbolto : symbol )where 40



id A Unique identi�cation of the plan step.next Symbolic reference to the next plan step in the list. nil is the symbolicreference the last plan step points to.from Name of the city the plan step starts with.to Name of the city the plan step ends with.Let T denote the set of all trucks, P the set of all plan steps, P� the set of all plans, andO the set of all orders.De�nition 2 A plan P = p1 : : : pn 2 P�; n 2 IN is a valid plan i�8i 2 IN : 1 � i < n : pi:next = pi+1:id ^ pi:to = pi+1:from:Let ext : ( T � IN �P� �O �! P� � IR(t; i; P; o) 7! (P 0; a)be a function which enumerates all extensions of a plan. There are two selector func-tions plan(ext(t; i; P; o)) and amount(ext(t; i; P; o) which select the extended plan and theamount which can be transported, respectively. Note, that it is possible that di�erentextensions of a plan can have di�erent amounts which can be transported because of thecapacity constraints which are speci�ed for each truck. A plan is a �nite sequence of plansteps, i.e.8t 2 T : 8P 2 P� : 8o 2 O : 9n 2 IN : 8i; j 2 IN : 1 � i � n ^ j > n :plan(ext(t; i; P; o)) 6= " ^ plan(ext(t; j; P; o)) = "where " denotes the empty sequence. The costs of a speci�c extension can be computedwith the help of the function:funct length (P�P ) int:if P = "then 0else P p � top(P );P�H � rest(P );distance(p.from, p.to) + length(H) �where distance(a; b) looks up the shortest distance between city a and city b in a map.Let E(P; o) = fext(i; P; o)ji 2 INgThe bid which is sent to the shipping company is then selected from the setB(t; P; o) = f(P̂ ; â)j 6 9( ~P ; ~a) 2 E(t; P; o) : compare(length( ~P ); ~a; length(P̂ ); â)gIf card(B) > 1 then one of these extensions can be chosen freely. if card(B) = 0, thenthe truck is not able to give a bid for the order and, therefore, gives a no-bid telling theshipping company that the truck is not interested in this order.41



Although the minimization of the distances is an important criterion for the touroptimization in a truck time constraints are equally important in practice. When time isintroduced, in general, an agent has to plan activities which have an earliest start time(EST), a duration (DUR) and a due date (DDA). The agent is not allowed to start theactivity before the earliest start time. For the due date two interpretations are possible.In the �rst one (we will call it strong interpretation) the activity has to be �nished beforethe due date. In the second one (we will call it weak interpretation) the activity has tobe started before the due date. This means that in the weak interpretation an activityis allowed to �nish after the due date. In the literature (e.g. [Desrochers et al. 92]),normally the weak interpretation for the time speci�cations of an order is assumed.The execution of an order by a truck can be divided into three phases: loading, drivingand unloading. All these phases consume time. In addition loading and unloading mayhave assigned earliest start times and due dates. Therefore, the feature structure of anorder must be extended to:( order id : symbolfrom : symbolto : symbolarticle : symbolamount : realest start : integerdur start : integerdda start : integerest end : integerdur end : integerdda end : integer )est start The earliest time when the loading of the truck can be started.dur start The estimated time for the duration of the loading of the truck.dda start The due date for loading the truck.est end The earliest time when the unloading of the truck can be started.dur end The estimated time for the duration of the unloading of the truck.dda end The due date for unloading the truck.Thus, a truck has to plan two di�erent types of activities: loading or unloading goodsin a city and driving from one city to another one. Therefore, the feature structurerepresenting plan steps is extended to:( plan-step id : symbolnext : symbolfrom : symbolto : symbolest : integer 42



duration : integerdda : integertype : f tour city g )whereid Unique identi�cation of the plan step.from City name of the city the plan step starts with.to City name of the city the plan step ends with.est Earliest start time of the plan step. The truck is not allowed to start the executionof this plan step before the point in time speci�ed in this �eld.duration The estimated duration of the plan step.dda Due date of the plan step. Either the truck has to �nish the execution of the planstep before the point in time speci�ed (strong interpretation; type = tour) or thetruck has to start the execution of the plan step before the point in time speci�ed(weak interpretation; type = city).type The type of a plan step may have the value city or tour. This distinction becamenecessary because a truck has to plan activities in cities, which need some amountof time. To be able to represent this intervals in time the plan steps of type citywere introduced.Let P = (p1; : : : ; pn) be a plan then the following assertions must be valid:p1:type = city ^ pn:type = city (1)8i 2 IN : 1 < i < n : pi:type = tour) pi�1:type = city ^ pi+1:type = city (2)8i 2 IN : 1 � i < n : pi:type = city) pi+1:type = tour (3)8i 2 IN : 1 � i � n : pi:type = city) pi:from = pi:to (4)8i 2 IN : 1 � i � n : pi:type = tour) pi:from 6= pi:to (5)An important thing to notice is that only for loading and unloading in the cities earlieststart times and due dates are speci�ed. Earliest start times and due dates for plan stepsof type tour must therefore be derived from the plan steps of type city. This is done bypropagating the restrictions for the earliest start times from the beginning of the plan toits end and the restrictions for the due dates from the end of the plan to its start. Whenthis is done the following consistency assertions must hold:8i 2 IN : 1 � i � n : ( pi:est + pi:duration � pi:lft if pi.type = tourpi:est � pi:lft if pi.city = city (6)8i 2 IN : 1 � i < n : pi:est + pi:duration � pi+1:est (7)8i 2 IN : 1 < i � n : ( pi� 1:dda � pi:dda� pi:duration if pi.type = tourpi� 1:dda = pi:dda if pi.type = city (8)43



These consistency conditions are exactly the conditions which have to be checked to decideif a speci�c extension of a currently valid plan ful�lls the time constraints.De�nition 3 A plan P is a valid plan with respect to its time constraints if it is a validplan and additionally satis�es the equations (1), (2), (3), (4), (5), (6), (7), and (8). Asa short hand we de�ne:time-valid(P )i� P is valid with respect to its time constraint.For reasons of e�ciency it is important that for a given extension the time constraintscan be checked by propagating the earliest start time restrictions speci�ed with the neworder from the �rst plan step modi�ed by the extension to the end of the extended plan.The same is true if the restrictions derived from the due dates are propagated from thelast modi�ed step to the beginning of the extended plan. The important point is thatone direction is su�cient and that no solutions are lost by treating the time constraintsin this manner.Because only one plan step represents all the loading and unloading activities in a city,to guarantee correctness, in our case, the most constraining restriction must be used forplanning. This means that valid solutions may be lost. On the one hand this was done tosimplify the planning procedure. On the other hand, one has to notice, that in practicenormally only the earliest start times and the due dates for loading and unloading areknown exactly because of opening times of the client's o�ce. The duration of an activityis not known exactly and can only be estimated. Therefore, a planning style which isvery tight with respect to the time constraints does is not reasonable in practice. Anotherreason for using just one plan step to represent all the activities within one city is thatthis single step may represent a whole subschedule for all the activities to be scheduled inthis city. This would just result in a more complicated planning procedure which wouldbe somewhat more di�cult to implement. For the examples we have tested up to now,there was no need for a detailed scheduling of the activities within a city. This is alsotrue for the benchmark tests we report on in section 9.When time constraints are speci�ed, it is no longer possible to compute the costs ofa plan extension only by the detour attached with it. In doing so, what could happenis that a truck would go quickly to the destination of an order just waiting there for thetime when it is allowed to deliver the order. Time spent on waiting is as expensive astime spent on driving! Therefore, we want now derive a selection strategy for the truckswhich takes this fact into account in a natural manner.De�nition 4 Let P = p1 : : : pn; n 2 IN; with time-valid(P). Functiongap(pi) =def pi:est� pi�1:est� pi�1:duration; 1 < i <= ngap(p1) = 0speci�es the waiting time of plan step pi.gap�(P ) = nXi=1 gap(pi)speci�es the waiting time of the whole plan P .44



Note, that8P = p1 : : : pn 2 P : time-valid(P ) : 8i 2 IN : 1 < i < n : pi:type = tour) gap(pi) = 0because the earliest start time of a plan step of type tour is derived from the earliest starttime of an order and therefore of a plan step of type city.We now assume that the function ext is extended to enumerate all plan extensionswhich are valid with respect to their time constraints. Then E(t; P; o) is also well-de�nedfor plans with time constraints. We now de�ne~B(t; P; o) =f(P̂ ; â)j 6 9( ~P ; ~a) 2 E(t; P; o) : compare( length( ~P )t:speed + gap�( ~P ); ~a; length(P̂ )t:speed + gap�(P̂ ); â) = truegIf card( ~B(t; P; o)) > 1, then one of the elements of ~B(t; P; o) can be chosen freely as abid to be sent to the shipping company. This is the strategy for selecting the best planextension in a truck. It produced the results presented in the next section.9 Results from a Benchmark TestIn order to evaluate the performance of our implementation, we ran extensive test serieswith benchmark data developed by [Desrochers et al. 92] at MIT. Up to now, this is theonly test data we could get from the outside and which gave us the possibility to comparethe performance of our system in an objective manner. Looking at the results, we have tostress that the problem which is given by the test data does not challenge the full powerof our system. In the test data, there is only one depot from where a set of clients hasto be served. In each example there are 100 orders for 100 clients where no client occurstwice. In the test data, it is assumed that only unloading at the location of the clientdoes need time. There are no time restrictions speci�ed for the process of loading a truck.Moreover, there is only a single transportation company modeled. Finally, it is assumedthat there is always a straight line connection between two cities.The problems which can be solved by our system are more general. Time restrictionsmay be speci�ed for loading and unloading the order. An order may have any city assource or destination. Last not least our system is designed to solve an open planningproblem where at any point in time new orders may be given to the system which has toreact to them and �nd a good solution for the currently valid situation.Optimal solutions can in general only be computed if a problem is treated as a closedplanning problem. In this case, when the planning processes is started all input data mustbe known. Throughout the planning process the input data is not allowed to change. Itis clear that for the benchmark given by [Desrochers et al. 92] algorithms exist whichperform more e�cient than our system for this speci�c problem, but these algorithms willnot be able to solve the more general problem our system is able to. Even though it wasvery interesting to �nd out how good our system was able to solve the benchmark problem.Because these solution was found straightforward using the problem solving techniquesdescribed in this report, it is very likely that we will be able to �nd additional cooperationstrategies between the truck agents, between truck agents and shipping company agents,and between shipping company agents which will even increase our already good results.45



The following table shows the raw data (for 5 out of 27 test sets) we got when weran the test series. A Column with the entry yes in the row Sorted represents the resultfor a test where a preprocessing of the input data was done, i.e. sorting with respectto the earliest start times. If this preprocessing is done the problem is seen as a closedplanning problem because all orders have to be known at the time when they have to besorted. The di�erences in the test runs if the input is sorted or not gives us an estimationhow the quality of the results our system is abel to produce will change if we look ata the closed planning problem or at the open case. One of our overall goals is to �ndcooperation techniques between the agents of the application domain, which will bringthe results of the open planning problem as close to the results we can get looking at theclosed planning problem where any (pre-)processing of the whole input data set is allowedto get a solution which is as close as possible to the globally optimal solution.Test Number of Number of Distance Time Waiting InputData Orders Trucks Needed SortedR102 25 7 614 1309 445 yesR102 50 12 1250 2247 497 yesR102 100 20 1961 3714 753 yesR102 100 23 2392 4181 789 noR104 25 5 564 1036 222 yesR104 50 9 1098 1834 236 yesR104 100 16 1646 3269 613 yesR104 100 19 2016 3395 379 noR105 25 7 681 1212 281 yesR105 50 10 1288 1919 131 yesR105 100 17 1988 3315 327 yesR105 100 20 2459 3797 338 noR106 25 7 720 1359 389 yesR106 50 10 1288 1919 131 yesR106 100 18 1959 3476 507 yesR107 25 5 598 1028 180 yesR107 50 9 1182 1829 147 yesR107 100 17 2011 3283 272 noR108 25 5 651 1041 140 yesR108 50 9 1081 1784 203 yesR108 100 14 1530 2872 332 yesR108 100 17 1905 3190 285 noTo make it possible for a reader to judge the quality of these results, we present the tablewhich was presented in [Desrochers et al. 92] for these 5 examples. If an entry is markedwith '-' then until now the globally optimal solution is not known. Unfortunately, we donot know the best suboptimal solution which has ever been found for these examples.46



Test Number of Number of DistanceData Orders TrucksR102 25 7 546.4R102 50 11 904.6R102 100 17 1434.0R104 25 4 416.9R104 50 - -R104 100 - -R105 25 6 526.0R105 50 9 891.7R105 100 - -R106 25 5 457.3R106 50 8 783.3R106 100 - -R107 25 4 423.0R107 50 7 703.2R107 100 - -R108 25 4 396.2R108 50 - -R108 100 - -When looking more closely at the data, it is very surprising, that the examples whichseem to be hard for the algorithm presented in [Desrochers et al. 92] (e.g. R104 and R108because only the �rst 25 out of the 100 orders could be solved optimally) seem to be theeasy ones for our system. To make this point clear, we do not believe that the solutionwhich was found in these cases is closer to the optimal solution than in the other examples| nor do we believe that the solution is farer away from the optimal solution than in theother cases. What we want to stress is that these cases are better solutions in qualitybecause there are less trucks driving, what will result in a better capacity utilization.Moreover, the overall distance which has to be driven by the trucks is smaller, there isless waiting time, and as a result the time needed for the execution of the whole set oforders is smaller. Therefore, the plans which were derived for these cases can be judgedto be better than the plans found for the other examples.One should be aware, that due to the NP-completeness of the problem for any algo-rithm which guarantees to �nd the optimal solution for any instance of these problems,there is an instance of such a problem which will result in an exponential run-time of thealgorithm when it tries to solve this problem. It is not clear if such problems will occur inpractice. Neither is it clear if the problem set speci�ed by [Desrochers et al. 92] is relevantto judge the practical applicability of an algorithm which tries to tackle these problemsin real life. If we look in to the real world domain, we see that plan execution is donewith high uncertainties. Sometimes, planning has do be done with incomplete knowledgeand on the basis of data which contain errors. All this makes a very tight planning ratherdoubtful. Our opinion is that for practical applications a system which is able to copewith the dynamics and the uncertainties of the real world environment is needed. Wethink that the system we have built up is a big step in this direction.To conclude this section we want to stress the point that we did not built up our systemlooking at this speci�c problem and trying to solve this speci�c problem optimally. What47



we did was looking at the domain of the application, extracting knowledge about entitiesin this real world application, and modeling these entities in our system in a naturalmanner. We are pleased that our system is already now able to produce results of thequality which was shown above. We belive that we will be able to enhance the quality ofthe results if we put more emphasis on the horizontal cooperation between the shippingcompany agents on one hand and between the truck agents on the other hand becausethe results which were presented in this section were produced by a pure hierarchicalapproach with no horizontal cooperation between shipping companies and trucks.10 ConclusionIn this report, we discussed di�erent mechanisms that can be used to implement task al-location and task decomposition processes in multi-agent systems and we described howthey can be integrated in MARS, a multi-agent system to implement a scenario of dis-tributed shipping companies. The MARS system shows that the multi-agent approachresults in a modeling for this domain that allows to reect to a large extent the real-worldsituation and thus, that is very natural. To enforce this e�ect, we have chosen two typesof agents, namely the company agents and the truck agents that have to cooperate indi�erent manners. According to the hierarchical relationship between the agents due tothe di�erent roles they play in the modeling we distinguished between vertical coopera-tion, denoting the cooperation between the truck agents and their company agents andhorizontal cooperation which occurs between di�erent company agents.As an example of a cooperation protocol involving both of these forms of cooperationwe presented the protocol for the unbooked leg cooperation. This shows how we canconstruct new and powerful cooperation mechanisms through the combination of simplecooperation protocols, e.g. two contract net protocols. Furthermore, it motivates theinvestigation of other simple cooperation protocols and the research for principles of howto choose protocols out of a library of generic protocols in order to obtain complex coop-eration mechanisms that can be used to implement a speci�c form of interaction betweenagents. This techniques can also improve the exibility of a multi-agent modeling for aspeci�c application when the agents are able to choose among di�erent protocols the onewhich seems to be the best for the current interaction.One major goal within our project is to evaluate the applicability of DAI techniquesto real-world applications. One of the domains we consider therefore is the domain ofdistributed shipping companies discussed in this report. Part of this evaluation task isthe comparison of implementations based on DAI methods to other ones using a di�erentparadigm. For the domain of the route planning, which is explicitly contained in theMARS scenario there exists a set of benchmark tests developed by Solomon and whichwas described in section 9. Although these test sets are designed for the evaluation ofsystems dealing with the static scheduling problem where the set of orders that have tobe scheduled is known in advance and does not change during the scheduling process, wedecided to take the opportunity and ran our system with these sets.Looking at the results of these tests, we see that our system did not succeed in computingthe optimal solutions for those examples where Solomon's system did. However, even thisimplementation could �nd optimal solutions only for 7 out of 29 instances. Moreover, wecan claim that our results are not too far away from Solomon's. Furthermore, we obtained48
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1. The symbol order speci�es that the sequence specifying the order does start withthis symbol.2. The name of the city in which the order starts. Due to the speci�cation of theproblem this is always the symbol DEPOT.3. The name of the city in which the order ends.4. The type of the goods which have to be transported. Here is always the symbolpaletten speci�ed. In fact, the planning procedure does unitil now not really careabout this symbol.5. The amount of goods which has to be transported.6. The earliest start time of the loading of the truck (always 0).7. The duration of the loading of the truck (always 0).8. The due date for loading the truck (always the same as the due date for unloadingthe truck).9. The earliest start time for the process of unloading.10. The duration of the process of unloading (some times also called: service time).11. The due date for the process of unloading the truck.12. A numer which speci�es the highes price which will be accepted for the order. It isset to a value that does not inuence the planning process.13. The name of the shipping company which should execute the order. Obviously thereis only one shipping company needed and this one is called PFALZEXPRESS.After the set of orders the plans which were produced by the system are shown in thesequence 25, 50 and 100 orders in any case the input is assumed to be sorted with respectto the earliest start time of the order. The last example show the plans which were foundwith the originally unsorted set of 100 orders. In this last case the problem viewed as anopen planning problem. At the end of each example a summary is given in a table.
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25 Orders (Sorted Input)PFA14 TRUCK/MOD-SERV/1605 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 30 0.0000000000DEPOT C 22 0 18 48 69.000000000C 22 18 10 48 58.000000000C 22 C 3 28 10 58 58.000000000C 3 38 10 58 51.000000000C 3 C 16 48 13 71 51.000000000C 16 61 10 71 43.000000000C 16 C 23 71 15 107 43.000000000C 23 97 10 107 25.000000000C 23 C 5 107 14 159 25.000000000C 5 149 10 159 6.0000000000C 5 C 26 159 10 182 6.0000000000C 26 172 10 182 0.0000000000C 26 DEPOT 182 33 230 0.0000000000order DEPOT C 26 6.0000000000 0 0 182 172 10 182order DEPOT C 5 19.000000000 0 0 159 149 10 159order DEPOT C 23 18.000000000 0 0 107 97 10 107order DEPOT C 16 8.0000000000 0 0 71 61 10 71order DEPOT C 22 11.000000000 0 0 201 0 10 201order DEPOT C 3 7.0000000000 0 0 202 0 10 202Total time needed: 215Waiting time: 42Maximal gap: 28Tatal distance to go: 113

54



PFA17 TRUCK/MOD-ELC3/4886 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 15 0 32 42 75.000000000C 15 32 10 42 55.000000000C 15 C 17 42 11 85 55.000000000C 17 75 10 85 36.000000000C 17 C 7 85 18 109 36.000000000C 7 103 10 109 33.000000000C 7 C 6 113 10 157 33.000000000C 6 123 10 157 7.0000000000C 6 C 18 133 10 167 7.0000000000C 18 157 10 167 5.0000000000C 18 C 8 167 25 198 5.0000000000C 8 192 10 198 0.0000000000C 8 DEPOT 202 21 230 0.0000000000order DEPOT C 18 2.0000000000 0 0 167 157 10 167order DEPOT C 7 3.0000000000 0 0 109 99 10 109order DEPOT C 17 19.000000000 0 0 85 75 10 85order DEPOT C 15 20.000000000 0 0 42 32 10 42order DEPOT C 8 5.0000000000 0 0 198 0 10 198order DEPOT C 6 26.000000000 0 0 199 0 10 199Total time needed: 223Waiting time: 36Maximal gap: 22Tatal distance to go: 127PFA19 TRUCK/MOD-ELC3/4881 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 79 0.0000000000DEPOT C 9 0 26 105 51.000000000C 9 95 10 105 42.000000000C 9 C 2 105 31 180 42.000000000C 2 136 10 180 32.000000000C 2 C 4 146 14 194 32.000000000C 4 160 10 194 19.000000000C 4 C 13 170 11 205 19.000000000C 13 181 10 205 0.0000000000C 13 DEPOT 191 15 230 0.0000000000order DEPOT C 9 9.0000000000 0 0 105 95 10 105order DEPOT C 13 19.000000000 0 0 205 0 10 205order DEPOT C 4 13.000000000 0 0 197 0 10 197order DEPOT C 2 10.000000000 0 0 204 0 10 204Total time needed: 206Waiting time: 69Maximal gap: 69Tatal distance to go: 97
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PFA21 TRUCK/MOD-ELC1/2979 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 44 0.0000000000DEPOT C 12 0 33 77 68.000000000C 12 67 10 77 56.000000000C 12 C 20 77 7 86 56.000000000C 20 84 10 86 39.000000000C 20 C 11 94 15 134 39.000000000C 11 124 10 134 23.000000000C 11 C 14 134 35 169 23.000000000C 14 169 10 169 0.0000000000C 14 DEPOT 179 11 230 0.0000000000order DEPOT C 14 23.000000000 0 0 169 159 10 169order DEPOT C 11 16.000000000 0 0 134 124 10 134order DEPOT C 20 17.000000000 0 0 86 76 10 86order DEPOT C 12 12.000000000 0 0 77 67 10 77Total time needed: 190Waiting time: 49Maximal gap: 34Tatal distance to go: 101PFA24 TRUCK/MOD-ELC1/2973 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 75 0.0000000000DEPOT C 10 0 32 107 16.000000000C 10 97 10 107 0.0000000000C 10 DEPOT 107 32 230 0.0000000000order DEPOT C 10 16.000000000 0 0 107 97 10 107Total time needed: 139Waiting time: 65Maximal gap: 65Tatal distance to go: 64PFA27 TRUCK/MOD-ELC2/2738 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 82 0.0000000000DEPOT C 19 0 15 97 21.000000000C 19 87 10 97 9.0000000000C 19 C 21 97 35 136 9.0000000000C 21 132 10 136 0.0000000000C 21 DEPOT 142 31 230 0.0000000000order DEPOT C 21 9.0000000000 0 0 136 126 10 136order DEPOT C 19 12.000000000 0 0 97 87 10 97Total time needed: 173Waiting time: 72Maximal gap: 72Tatal distance to go: 8156



PFA29 TRUCK/MOD-ELC2/2734 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 42 0.0000000000DEPOT C 24 0 36 78 32.000000000C 24 68 10 78 3.0000000000C 24 C 25 78 31 163 3.0000000000C 25 153 10 163 0.0000000000C 25 DEPOT 163 30 230 0.0000000000order DEPOT C 25 3.0000000000 0 0 163 153 10 163order DEPOT C 24 29.000000000 0 0 78 68 10 78Total time needed: 193Waiting time: 76Maximal gap: 44Tatal distance to go: 97Name: Dist.: Wait: Time: Stops:PFA29 97 76 193 2PFA17 127 36 223 6PFA19 97 69 206 4PFA27 81 72 173 2PFA14 113 42 215 6PFA24 64 65 139 1PFA21 101 49 190 4P 680 409 1339 25
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50 Orders (Sorted Input)PFA12 TRUCK/MOD-SERV/1437 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 112 0.0000000000DEPOT C 36 0 41 153 8.0000000000C 36 143 10 153 0.0000000000C 36 DEPOT 153 41 230 0.0000000000order DEPOT C 36 8.0000000000 0 0 153 143 10 153Total time needed: 194Waiting time: 102Maximal gap: 102Tatal distance to go: 82PFA14 TRUCK/MOD-SERV/1431 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 51 0.0000000000DEPOT C 39 0 42 93 16.000000000C 39 83 10 93 0.0000000000C 39 DEPOT 93 42 230 0.0000000000order DEPOT C 39 16.000000000 0 0 93 83 10 93Total time needed: 135Waiting time: 41Maximal gap: 41Tatal distance to go: 84PFA17 TRUCK/MOD-ELC3/4852 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 15 0 32 42 67.000000000C 15 32 10 42 47.000000000C 15 C 16 42 15 71 47.000000000C 16 61 10 71 39.000000000C 16 C 41 71 22 95 39.000000000C 41 93 10 95 30.000000000C 41 C 44 103 27 142 30.000000000C 44 132 10 142 23.000000000C 44 C 14 142 23 169 23.000000000C 14 165 10 169 0.0000000000C 14 DEPOT 175 11 230 0.0000000000order DEPOT C 14 23.000000000 0 0 169 159 10 169order DEPOT C 44 7.0000000000 0 0 142 132 10 142order DEPOT C 41 9.0000000000 0 0 95 85 10 95order DEPOT C 16 8.0000000000 0 0 71 61 10 71order DEPOT C 15 20.000000000 0 0 42 32 10 42Total time needed: 186Waiting time: 6Maximal gap: 4Tatal distance to go: 13058



PFA18 TRUCK/MOD-ELC3/4850 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 16 0.0000000000DEPOT C 43 0 25 41 144.00000000C 43 31 10 41 139.00000000C 43 C 45 41 13 79 139.00000000C 45 69 10 79 121.00000000C 45 C 17 79 6 85 121.00000000C 17 85 10 85 102.00000000C 17 C 38 95 10 151 102.00000000C 38 105 10 151 94.000000000C 38 C 6 115 11 162 94.000000000C 6 126 10 162 68.000000000C 6 C 49 136 22 184 68.000000000C 49 158 10 184 32.000000000C 49 C 8 168 7 191 32.000000000C 8 175 10 191 27.000000000C 8 C 32 185 11 202 27.000000000C 32 196 10 202 0.0000000000C 32 DEPOT 206 17 230 0.0000000000order DEPOT C 17 19.000000000 0 0 85 75 10 85order DEPOT C 45 18.000000000 0 0 79 69 10 79order DEPOT C 43 5.0000000000 0 0 41 31 10 41order DEPOT C 49 36.000000000 0 0 192 0 10 192order DEPOT C 38 8.0000000000 0 0 198 0 10 198order DEPOT C 32 27.000000000 0 0 202 0 10 202order DEPOT C 8 5.0000000000 0 0 198 0 10 198order DEPOT C 6 26.000000000 0 0 199 0 10 199Total time needed: 223Waiting time: 21Maximal gap: 15Tatal distance to go: 122
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PFA19 TRUCK/MOD-ELC3/4848 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 21 0.0000000000DEPOT C 40 0 33 54 87.000000000C 40 44 10 54 56.000000000C 40 C 24 54 8 78 56.000000000C 24 68 10 78 27.000000000C 24 C 23 78 11 107 27.000000000C 23 97 10 107 9.0000000000C 23 C 25 107 32 163 9.0000000000C 25 153 10 163 6.0000000000C 25 C 26 163 15 182 6.0000000000C 26 178 10 182 0.0000000000C 26 DEPOT 188 33 230 0.0000000000order DEPOT C 26 6.0000000000 0 0 182 172 10 182order DEPOT C 25 3.0000000000 0 0 163 153 10 163order DEPOT C 23 18.000000000 0 0 107 97 10 107order DEPOT C 24 29.000000000 0 0 78 68 10 78order DEPOT C 40 31.000000000 0 0 54 44 10 54Total time needed: 221Waiting time: 39Maximal gap: 14Tatal distance to go: 132
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PFA20 TRUCK/MOD-ELC2/2689 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 42 0.0000000000DEPOT C 28 0 5 47 123.00000000C 28 37 10 47 107.00000000C 28 C 2 47 10 70 107.00000000C 2 57 10 70 97.000000000C 2 C 31 67 11 81 97.000000000C 31 78 10 81 76.000000000C 31 C 51 88 14 157 76.000000000C 51 102 10 157 63.000000000C 51 C 35 112 19 176 63.000000000C 35 131 10 176 49.000000000C 35 C 4 141 14 190 49.000000000C 4 155 10 190 36.000000000C 4 C 13 165 11 201 36.000000000C 13 176 10 201 17.000000000C 13 C 27 186 7 208 17.000000000C 27 193 10 208 0.0000000000C 27 DEPOT 203 11 230 0.0000000000order DEPOT C 31 21.000000000 0 0 81 71 10 81order DEPOT C 28 16.000000000 0 0 47 37 10 47order DEPOT C 51 13.000000000 0 0 203 0 10 203order DEPOT C 35 14.000000000 0 0 183 0 10 183order DEPOT C 27 17.000000000 0 0 208 0 10 208order DEPOT C 13 19.000000000 0 0 205 0 10 205order DEPOT C 4 13.000000000 0 0 197 0 10 197order DEPOT C 2 10.000000000 0 0 204 0 10 204Total time needed: 214Waiting time: 32Maximal gap: 32Tatal distance to go: 102PFA22 TRUCK/MOD-ELC1/2924 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 105 0.0000000000DEPOT C 21 0 31 136 9.0000000000C 21 126 10 136 0.0000000000C 21 DEPOT 136 31 230 0.0000000000order DEPOT C 21 9.0000000000 0 0 136 126 10 136Total time needed: 167Waiting time: 95Maximal gap: 95Tatal distance to go: 62
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PFA24 TRUCK/MOD-ELC1/2920 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 43 0.0000000000DEPOT C 29 0 6 49 68.000000000C 29 39 10 49 52.000000000C 29 C 19 49 21 97 52.000000000C 19 87 10 97 40.000000000C 19 C 7 97 11 109 40.000000000C 7 108 10 109 37.000000000C 7 C 5 118 31 159 37.000000000C 5 149 10 159 18.000000000C 5 C 22 159 10 192 18.000000000C 22 169 10 192 7.0000000000C 22 C 3 179 10 202 7.0000000000C 3 189 10 202 0.0000000000C 3 DEPOT 199 18 230 0.0000000000order DEPOT C 5 19.000000000 0 0 159 149 10 159order DEPOT C 7 3.0000000000 0 0 109 99 10 109order DEPOT C 19 12.000000000 0 0 97 87 10 97order DEPOT C 29 16.000000000 0 0 49 39 10 49order DEPOT C 22 11.000000000 0 0 201 0 10 201order DEPOT C 3 7.0000000000 0 0 202 0 10 202Total time needed: 217Waiting time: 50Maximal gap: 33Tatal distance to go: 107PFA25 TRUCK/MOD-ELC1/2917 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 37 0 41 51 70.000000000C 37 41 10 51 65.000000000C 37 C 12 51 18 77 65.000000000C 12 69 10 77 53.000000000C 12 C 50 79 14 118 53.000000000C 50 108 10 118 23.000000000C 50 C 33 118 29 151 23.000000000C 33 147 10 151 0.0000000000C 33 DEPOT 157 34 230 0.0000000000order DEPOT C 33 23.000000000 0 0 151 141 10 151order DEPOT C 50 30.000000000 0 0 118 108 10 118order DEPOT C 12 12.000000000 0 0 77 67 10 77order DEPOT C 37 5.0000000000 0 0 51 41 10 51Total time needed: 191Waiting time: 15Maximal gap: 15Tatal distance to go: 136
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PFA26 TRUCK/MOD-ELC2/2699 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 23 0.0000000000DEPOT C 34 0 24 47 52.000000000C 34 37 10 47 41.000000000C 34 C 30 47 14 73 41.000000000C 30 63 10 73 32.000000000C 30 C 10 73 20 107 32.000000000C 10 97 10 107 16.000000000C 10 C 11 107 25 134 16.000000000C 11 132 10 134 0.0000000000C 11 DEPOT 142 25 230 0.0000000000order DEPOT C 11 16.000000000 0 0 134 124 10 134order DEPOT C 10 16.000000000 0 0 107 97 10 107order DEPOT C 30 9.0000000000 0 0 73 63 10 73order DEPOT C 34 11.000000000 0 0 47 37 10 47Total time needed: 167Waiting time: 19Maximal gap: 13Tatal distance to go: 108PFA27 TRUCK/MOD-ELC2/2697 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 13 0.0000000000DEPOT C 46 0 29 42 72.000000000C 46 32 10 42 56.000000000C 46 C 48 42 18 61 56.000000000C 48 60 10 61 29.000000000C 48 C 20 70 8 86 29.000000000C 20 78 10 86 12.000000000C 20 C 9 88 17 105 12.000000000C 9 105 10 105 3.0000000000C 9 C 47 115 9 127 3.0000000000C 47 124 10 127 2.0000000000C 47 C 18 134 18 167 2.0000000000C 18 157 10 167 0.0000000000C 18 DEPOT 167 30 230 0.0000000000order DEPOT C 18 2.0000000000 0 0 167 157 10 167order DEPOT C 47 1.0000000000 0 0 127 117 10 127order DEPOT C 9 9.0000000000 0 0 105 95 10 105order DEPOT C 20 17.000000000 0 0 86 76 10 86order DEPOT C 48 27.000000000 0 0 61 51 10 61order DEPOT C 46 16.000000000 0 0 42 32 10 42Total time needed: 197Waiting time: 8Maximal gap: 5Tatal distance to go: 129
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PFA28 TRUCK/MOD-ELC2/2694 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 79 0.0000000000DEPOT C 42 0 28 107 5.0000000000C 42 97 10 107 0.0000000000C 42 DEPOT 107 28 230 0.0000000000order DEPOT C 42 5.0000000000 0 0 107 97 10 107Total time needed: 135Waiting time: 69Maximal gap: 69Tatal distance to go: 56Name: Dist.: Wait: Time: Stops:PFA17 130 6 186 5PFA19 132 39 221 5PFA18 122 21 223 8PFA28 56 69 135 1PFA20 102 32 214 8PFA27 129 8 197 6PFA14 84 41 135 1PFA26 108 19 167 4PFA12 82 102 194 1PFA25 136 15 191 4PFA22 62 95 167 1PFA24 107 50 217 6P 1250 497 2247 50

64



100 Orders (Sorted Input)PFA10 TRUCK/MOD-ELC3/4617 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 38 0 21 31 160.00000000C 38 21 10 31 152.00000000C 38 C 15 31 11 42 152.00000000C 15 42 10 42 132.00000000C 15 C 45 52 5 79 132.00000000C 45 69 10 79 114.00000000C 45 C 17 79 6 85 114.00000000C 17 85 10 85 95.000000000C 17 C 87 95 6 104 95.000000000C 87 101 10 104 60.000000000C 87 C 44 111 24 142 60.000000000C 44 135 10 142 53.000000000C 44 C 73 145 27 194 53.000000000C 73 172 10 194 28.000000000C 73 C 22 182 4 198 28.000000000C 22 186 10 198 17.000000000C 22 C 27 196 10 208 17.000000000C 27 206 10 208 0.0000000000C 27 DEPOT 216 11 230 0.0000000000order DEPOT C 73 25.000000000 0 0 197 0 10 197order DEPOT C 38 8.0000000000 0 0 198 0 10 198order DEPOT C 27 17.000000000 0 0 208 0 10 208order DEPOT C 22 11.000000000 0 0 201 0 10 201order DEPOT C 44 7.0000000000 0 0 142 132 10 142order DEPOT C 87 35.000000000 0 0 104 94 10 104order DEPOT C 17 19.000000000 0 0 85 75 10 85order DEPOT C 45 18.000000000 0 0 79 69 10 79order DEPOT C 15 20.000000000 0 0 42 32 10 42Total time needed: 227Waiting time: 12Maximal gap: 12Tatal distance to go: 125
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PFA12 TRUCK/MOD-SERV/4326 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 12 0.0000000000DEPOT C 51 0 16 28 138.00000000C 51 16 10 28 125.00000000C 51 C 66 26 33 61 125.00000000C 66 59 10 61 105.00000000C 66 C 72 69 10 87 105.00000000C 72 79 10 87 90.000000000C 72 C 82 89 14 104 90.000000000C 82 103 10 104 64.000000000C 82 C 21 113 14 136 64.000000000C 21 127 10 136 55.000000000C 21 C 33 137 10 151 55.000000000C 33 147 10 151 32.000000000C 33 C 71 157 13 192 32.000000000C 71 182 10 192 27.000000000C 71 C 32 192 7 202 27.000000000C 32 199 10 202 0.0000000000C 32 DEPOT 209 17 230 0.0000000000order DEPOT C 51 13.000000000 0 0 203 0 10 203order DEPOT C 32 27.000000000 0 0 202 0 10 202order DEPOT C 71 5.0000000000 0 0 192 182 10 192order DEPOT C 33 23.000000000 0 0 151 141 10 151order DEPOT C 21 9.0000000000 0 0 136 126 10 136order DEPOT C 82 26.000000000 0 0 104 94 10 104order DEPOT C 72 15.000000000 0 0 87 77 10 87order DEPOT C 66 20.000000000 0 0 61 51 10 61Total time needed: 226Waiting time: 12Maximal gap: 12Tatal distance to go: 134
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PFA15 TRUCK/MOD-SERV/4316 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 65 0.0000000000DEPOT C 89 0 19 84 84.000000000C 89 74 10 84 75.000000000C 89 C 19 84 13 97 75.000000000C 19 97 10 97 63.000000000C 19 C 84 107 6 177 63.000000000C 84 113 10 177 52.000000000C 84 C 83 123 10 187 52.000000000C 83 133 10 187 36.000000000C 83 C 49 143 5 192 36.000000000C 49 148 10 192 0.0000000000C 49 DEPOT 158 27 230 0.0000000000order DEPOT C 84 11.000000000 0 0 198 0 10 198order DEPOT C 83 16.000000000 0 0 196 0 10 196order DEPOT C 49 36.000000000 0 0 192 0 10 192order DEPOT C 19 12.000000000 0 0 97 87 10 97order DEPOT C 89 9.0000000000 0 0 84 74 10 84Total time needed: 185Waiting time: 55Maximal gap: 55Tatal distance to go: 80
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PFA16 TRUCK/MOD-ELC3/4626 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 14 0.0000000000DEPOT C 13 0 15 29 136.00000000C 13 15 10 29 117.00000000C 13 C 40 25 25 54 117.00000000C 40 50 10 54 86.000000000C 40 C 24 60 8 78 86.000000000C 24 68 10 78 57.000000000C 24 C 68 78 12 93 57.000000000C 68 90 10 93 32.000000000C 68 C 56 100 18 146 32.000000000C 56 136 10 146 30.000000000C 56 C 25 146 12 163 30.000000000C 25 158 10 163 27.000000000C 25 C 78 168 14 189 27.000000000C 78 182 10 189 13.000000000C 78 C 4 192 2 197 13.000000000C 4 194 10 197 0.0000000000C 4 DEPOT 204 22 230 0.0000000000order DEPOT C 13 19.000000000 0 0 205 0 10 205order DEPOT C 4 13.000000000 0 0 197 0 10 197order DEPOT C 78 14.000000000 0 0 189 179 10 189order DEPOT C 25 3.0000000000 0 0 163 153 10 163order DEPOT C 56 2.0000000000 0 0 146 136 10 146order DEPOT C 68 25.000000000 0 0 93 83 10 93order DEPOT C 24 29.000000000 0 0 78 68 10 78order DEPOT C 40 31.000000000 0 0 54 44 10 54Total time needed: 226Waiting time: 18Maximal gap: 18Tatal distance to go: 128PFA17 TRUCK/MOD-ELC3/4624 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 75 0.0000000000DEPOT C 79 0 31 106 3.0000000000C 79 96 10 106 0.0000000000C 79 DEPOT 106 31 230 0.0000000000order DEPOT C 79 3.0000000000 0 0 106 96 10 106Total time needed: 137Waiting time: 65Maximal gap: 65Tatal distance to go: 62
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PFA18 TRUCK/MOD-ELC3/4622 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 64 0 34 44 100.00000000C 64 34 10 44 90.000000000C 64 C 63 44 11 68 90.000000000C 63 58 10 68 71.000000000C 63 C 12 68 8 77 71.000000000C 12 76 10 77 59.000000000C 12 C 91 86 11 105 59.000000000C 91 97 10 105 56.000000000C 91 C 11 107 7 134 56.000000000C 11 124 10 134 40.000000000C 11 C 14 134 35 169 40.000000000C 14 169 10 169 17.000000000C 14 C 101 179 13 195 17.000000000C 101 192 10 195 0.0000000000C 101 DEPOT 202 24 230 0.0000000000order DEPOT C 101 17.000000000 0 0 195 185 10 195order DEPOT C 14 23.000000000 0 0 169 159 10 169order DEPOT C 11 16.000000000 0 0 134 124 10 134order DEPOT C 91 3.0000000000 0 0 105 95 10 105order DEPOT C 12 12.000000000 0 0 77 67 10 77order DEPOT C 63 19.000000000 0 0 68 58 10 68order DEPOT C 64 10.000000000 0 0 44 34 10 44Total time needed: 226Waiting time: 13Maximal gap: 10Tatal distance to go: 143

69



PFA19 TRUCK/MOD-ELC3/4620 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 28 0.0000000000DEPOT C 53 0 11 39 141.00000000C 53 11 10 39 132.00000000C 53 C 28 21 8 47 132.00000000C 28 37 10 47 116.00000000C 28 C 70 47 7 60 116.00000000C 70 54 10 60 110.00000000C 70 C 31 64 13 81 110.00000000C 31 77 10 81 89.000000000C 31 C 10 87 15 107 89.000000000C 10 102 10 107 73.000000000C 10 C 55 112 31 150 73.000000000C 55 143 10 150 55.000000000C 55 C 95 153 31 197 55.000000000C 95 184 10 197 28.000000000C 95 C 60 194 5 202 28.000000000C 60 199 10 202 0.0000000000C 60 DEPOT 209 17 230 0.0000000000order DEPOT C 95 27.000000000 0 0 207 0 10 207order DEPOT C 60 28.000000000 0 0 202 0 10 202order DEPOT C 53 9.0000000000 0 0 208 0 10 208order DEPOT C 55 18.000000000 0 0 150 140 10 150order DEPOT C 10 16.000000000 0 0 107 97 10 107order DEPOT C 31 21.000000000 0 0 81 71 10 81order DEPOT C 70 6.0000000000 0 0 60 50 10 60order DEPOT C 28 16.000000000 0 0 47 37 10 47Total time needed: 226Waiting time: 8Maximal gap: 8Tatal distance to go: 138PFA21 TRUCK/MOD-ELC1/2644 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 87 0.0000000000DEPOT C 85 0 24 111 7.0000000000C 85 101 10 111 0.0000000000C 85 DEPOT 111 24 230 0.0000000000order DEPOT C 85 7.0000000000 0 0 111 101 10 111Total time needed: 135Waiting time: 77Maximal gap: 77Tatal distance to go: 48
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PFA22 TRUCK/MOD-ELC1/2642 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 88 0.0000000000DEPOT C 58 0 23 111 7.0000000000C 58 101 10 111 0.0000000000C 58 DEPOT 111 23 230 0.0000000000order DEPOT C 58 7.0000000000 0 0 111 101 10 111Total time needed: 134Waiting time: 78Maximal gap: 78Tatal distance to go: 46PFA24 TRUCK/MOD-ELC1/2638 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 81 0.0000000000DEPOT C 23 0 26 107 18.000000000C 23 97 10 107 0.0000000000C 23 DEPOT 107 26 230 0.0000000000order DEPOT C 23 18.000000000 0 0 107 97 10 107Total time needed: 133Waiting time: 71Maximal gap: 71Tatal distance to go: 52
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PFA26 TRUCK/MOD-ELC2/2475 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 37 0 41 51 109.00000000C 37 41 10 51 104.00000000C 37 C 48 51 7 61 104.00000000C 48 58 10 61 77.000000000C 48 C 20 68 8 86 77.000000000C 20 76 10 86 60.000000000C 20 C 9 86 17 105 60.000000000C 9 103 10 105 51.000000000C 9 C 47 113 9 127 51.000000000C 47 122 10 127 50.000000000C 47 C 18 132 18 167 50.000000000C 18 157 10 167 48.000000000C 18 C 6 167 10 192 48.000000000C 6 177 10 192 22.000000000C 6 C 94 187 6 198 22.000000000C 94 193 10 198 0.0000000000C 94 DEPOT 203 20 230 0.0000000000order DEPOT C 6 26.000000000 0 0 199 0 10 199order DEPOT C 94 22.000000000 0 0 198 188 10 198order DEPOT C 18 2.0000000000 0 0 167 157 10 167order DEPOT C 47 1.0000000000 0 0 127 117 10 127order DEPOT C 9 9.0000000000 0 0 105 95 10 105order DEPOT C 20 17.000000000 0 0 86 76 10 86order DEPOT C 48 27.000000000 0 0 61 51 10 61order DEPOT C 37 5.0000000000 0 0 51 41 10 51Total time needed: 223Waiting time: 7Maximal gap: 7Tatal distance to go: 136PFA27 TRUCK/MOD-ELC2/2473 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 68 0.0000000000DEPOT C 74 0 20 88 49.000000000C 74 78 10 88 40.000000000C 74 C 54 88 15 105 40.000000000C 54 103 10 105 26.000000000C 54 C 75 113 20 159 26.000000000C 75 149 10 159 18.000000000C 75 C 76 159 3 192 18.000000000C 76 162 10 192 0.0000000000C 76 DEPOT 172 27 230 0.0000000000order DEPOT C 76 18.000000000 0 0 192 0 10 192order DEPOT C 75 8.0000000000 0 0 159 149 10 159order DEPOT C 54 14.000000000 0 0 105 95 10 105order DEPOT C 74 9.0000000000 0 0 88 78 10 88Total time needed: 199Waiting time: 74Maximal gap: 58Tatal distance to go: 8572



PFA28 TRUCK/MOD-ELC2/2471 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 49 0.0000000000DEPOT C 97 0 15 64 79.000000000C 97 15 10 64 68.000000000C 97 C 99 25 6 70 68.000000000C 99 31 10 70 58.000000000C 99 C 86 41 3 73 58.000000000C 86 44 10 73 17.000000000C 86 C 92 54 3 76 17.000000000C 92 57 10 76 16.000000000C 92 C 39 67 17 93 16.000000000C 39 84 10 93 0.0000000000C 39 DEPOT 94 42 230 0.0000000000order DEPOT C 99 10.000000000 0 0 198 0 10 198order DEPOT C 97 11.000000000 0 0 204 0 10 204order DEPOT C 92 1.0000000000 0 0 194 0 10 194order DEPOT C 86 41.000000000 0 0 196 0 10 196order DEPOT C 39 16.000000000 0 0 93 83 10 93Total time needed: 136Waiting time: 0Maximal gap: 0Tatal distance to go: 86PFA29 TRUCK/MOD-ELC2/2469 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 20 0.0000000000DEPOT C 2 0 15 35 79.000000000C 2 15 10 35 69.000000000C 2 C 34 25 12 47 69.000000000C 34 37 10 47 58.000000000C 34 C 30 47 14 73 58.000000000C 30 63 10 73 49.000000000C 30 C 52 73 21 98 49.000000000C 52 94 10 98 39.000000000C 52 C 67 104 15 137 39.000000000C 67 127 10 137 14.000000000C 67 C 36 137 16 153 14.000000000C 36 153 10 153 6.0000000000C 36 C 81 163 28 192 6.0000000000C 81 191 10 192 0.0000000000C 81 DEPOT 201 21 230 0.0000000000order DEPOT C 2 10.000000000 0 0 204 0 10 204order DEPOT C 81 6.0000000000 0 0 192 182 10 192order DEPOT C 36 8.0000000000 0 0 153 143 10 153order DEPOT C 67 25.000000000 0 0 137 127 10 137order DEPOT C 52 10.000000000 0 0 98 88 10 98order DEPOT C 30 9.0000000000 0 0 73 63 10 73order DEPOT C 34 11.000000000 0 0 47 37 10 47Total time needed: 222Waiting time: 10Maximal gap: 8Tatal distance to go: 14273



PFA30 TRUCK/MOD-ELC6/2090 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 93 0 18 28 62.000000000C 93 18 10 28 60.000000000C 93 C 43 28 10 41 60.000000000C 43 38 10 41 55.000000000C 43 C 16 48 9 71 55.000000000C 16 61 10 71 47.000000000C 16 C 41 71 22 95 47.000000000C 41 93 10 95 38.000000000C 41 C 3 103 9 122 38.000000000C 3 112 10 122 31.000000000C 3 C 57 122 18 140 31.000000000C 57 140 10 140 25.000000000C 57 C 5 150 8 159 25.000000000C 5 158 10 159 6.0000000000C 5 C 26 168 10 182 6.0000000000C 26 178 10 182 0.0000000000C 26 DEPOT 188 33 230 0.0000000000order DEPOT C 3 7.0000000000 0 0 202 0 10 202order DEPOT C 26 6.0000000000 0 0 182 172 10 182order DEPOT C 5 19.000000000 0 0 159 149 10 159order DEPOT C 57 6.0000000000 0 0 140 130 10 140order DEPOT C 41 9.0000000000 0 0 95 85 10 95order DEPOT C 16 8.0000000000 0 0 71 61 10 71order DEPOT C 43 5.0000000000 0 0 41 31 10 41order DEPOT C 93 2.0000000000 0 0 28 18 10 28Total time needed: 221Waiting time: 4Maximal gap: 4Tatal distance to go: 137PFA31 TRUCK/MOD-ELC5/1525 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 79 0.0000000000DEPOT C 42 0 28 107 5.0000000000C 42 97 10 107 0.0000000000C 42 DEPOT 107 28 230 0.0000000000order DEPOT C 42 5.0000000000 0 0 107 97 10 107Total time needed: 135Waiting time: 69Maximal gap: 69Tatal distance to go: 56
74



PFA32 TRUCK/MOD-ELC5/1523 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 61 0.0000000000DEPOT C 62 0 25 86 51.000000000C 62 76 10 86 38.000000000C 62 C 88 86 17 103 38.000000000C 88 103 10 103 12.000000000C 88 C 98 113 4 143 12.000000000C 98 133 10 143 0.0000000000C 98 DEPOT 143 17 230 0.0000000000order DEPOT C 98 12.000000000 0 0 143 133 10 143order DEPOT C 88 26.000000000 0 0 103 93 10 103order DEPOT C 62 13.000000000 0 0 86 76 10 86Total time needed: 160Waiting time: 67Maximal gap: 51Tatal distance to go: 63PFA34 TRUCK/MOD-ELC5/1519 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 76 0.0000000000DEPOT C 100 0 17 93 12.000000000C 100 83 10 93 3.0000000000C 100 C 7 93 6 109 3.0000000000C 7 99 10 109 0.0000000000C 7 DEPOT 109 11 230 0.0000000000order DEPOT C 7 3.0000000000 0 0 109 99 10 109order DEPOT C 100 9.0000000000 0 0 93 83 10 93Total time needed: 120Waiting time: 66Maximal gap: 66Tatal distance to go: 34
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PFA36 TRUCK/MOD-ELC6/2099 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 15 0.0000000000DEPOT C 96 0 14 29 122.00000000C 96 14 10 29 102.00000000C 96 C 29 24 20 49 102.00000000C 29 44 10 49 86.000000000C 29 C 77 54 9 83 86.000000000C 77 73 10 83 73.000000000C 77 C 80 83 10 102 73.000000000C 80 93 10 102 50.000000000C 80 C 69 103 9 152 50.000000000C 69 142 10 152 14.000000000C 69 C 35 152 18 183 14.000000000C 35 170 10 183 0.0000000000C 35 DEPOT 180 36 230 0.0000000000order DEPOT C 96 20.000000000 0 0 205 0 10 205order DEPOT C 35 14.000000000 0 0 183 0 10 183order DEPOT C 69 36.000000000 0 0 152 142 10 152order DEPOT C 80 23.000000000 0 0 102 92 10 102order DEPOT C 77 13.000000000 0 0 83 73 10 83order DEPOT C 29 16.000000000 0 0 49 39 10 49Total time needed: 216Waiting time: 40Maximal gap: 30Tatal distance to go: 116
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PFA37 TRUCK/MOD-ELC6/2097 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 13 0.0000000000DEPOT C 46 0 29 42 96.000000000C 46 32 10 42 80.000000000C 46 C 65 42 40 83 80.000000000C 65 82 10 83 71.000000000C 65 C 50 92 12 118 71.000000000C 50 108 10 118 41.000000000C 50 C 8 118 22 156 41.000000000C 8 140 10 156 36.000000000C 8 C 61 150 16 172 36.000000000C 61 166 10 172 33.000000000C 61 C 90 176 9 186 33.000000000C 90 185 10 186 18.000000000C 90 C 59 195 13 210 18.000000000C 59 208 10 210 0.0000000000C 59 DEPOT 218 9 230 0.0000000000order DEPOT C 8 5.0000000000 0 0 198 0 10 198order DEPOT C 59 18.000000000 0 0 210 200 10 210order DEPOT C 90 15.000000000 0 0 186 176 10 186order DEPOT C 61 3.0000000000 0 0 172 162 10 172order DEPOT C 50 30.000000000 0 0 118 108 10 118order DEPOT C 65 9.0000000000 0 0 83 73 10 83order DEPOT C 46 16.000000000 0 0 42 32 10 42Total time needed: 227Waiting time: 7Maximal gap: 4Tatal distance to go: 150Name: Dist.: Wait: Time: Stops:PFA10 125 12 227 9PFA30 137 4 221 8PFA15 80 55 185 5PFA19 138 8 226 8PFA32 63 67 160 3PFA17 62 65 137 1PFA37 150 7 227 7PFA27 85 74 199 4PFA18 143 13 226 7PFA28 86 0 136 5PFA34 34 66 120 2PFA29 142 10 222 7PFA31 56 69 135 1PFA26 136 7 223 8PFA36 116 40 216 6PFA22 46 78 134 1PFA21 48 77 135 1PFA12 134 12 226 8PFA16 128 18 226 8PFA24 52 71 133 1P 1961 753 3714 100 77



100 Orders (Original Input)PFA10 TRUCK/MOD-ELC3/4656 2From: To: EST: DUR: LFT: Amount:DEPOT 0 0 77 0.0000000000DEPOT C 82 0 27 104 26.000000000C 82 94 10 104 0.0000000000C 82 DEPOT 104 27 230 0.0000000000order DEPOT C 82 26.000000000 0 0 104 94 10 104Total time needed: 131Waiting time: 67Maximal gap: 67Tatal distance to go: 54PFA11 TRUCK/MOD-SERV/4449 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 68 0.0000000000DEPOT C 74 0 20 88 9.0000000000C 74 78 10 88 0.0000000000C 74 DEPOT 88 20 230 0.0000000000order DEPOT C 74 9.0000000000 0 0 88 78 10 88Total time needed: 108Waiting time: 58Maximal gap: 58Tatal distance to go: 40

78



PFA13 TRUCK/MOD-SERV/4440 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 21 0.0000000000DEPOT C 40 0 33 54 118.00000000C 40 44 10 54 87.000000000C 40 C 24 54 8 78 87.000000000C 24 68 10 78 58.000000000C 24 C 76 78 8 99 58.000000000C 76 86 10 99 40.000000000C 76 C 42 96 8 107 40.000000000C 42 104 10 107 35.000000000C 42 C 55 114 26 150 35.000000000C 55 140 10 150 17.000000000C 55 C 25 150 10 163 17.000000000C 25 160 10 163 14.000000000C 25 C 78 170 14 189 14.000000000C 78 184 10 189 0.0000000000C 78 DEPOT 194 19 230 0.0000000000order DEPOT C 78 14.000000000 0 0 189 179 10 189order DEPOT C 76 18.000000000 0 0 192 0 10 192order DEPOT C 55 18.000000000 0 0 150 140 10 150order DEPOT C 42 5.0000000000 0 0 107 97 10 107order DEPOT C 40 31.000000000 0 0 54 44 10 54order DEPOT C 25 3.0000000000 0 0 163 153 10 163order DEPOT C 24 29.000000000 0 0 78 68 10 78Total time needed: 213Waiting time: 17Maximal gap: 11Tatal distance to go: 126
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PFA14 TRUCK/MOD-SERV/4436 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 37 0 41 51 89.000000000C 37 41 10 51 84.000000000C 37 C 48 51 7 61 84.000000000C 48 58 10 61 57.000000000C 48 C 20 68 8 86 57.000000000C 20 76 10 86 40.000000000C 20 C 91 86 17 105 40.000000000C 91 103 10 105 37.000000000C 91 C 21 113 14 136 37.000000000C 21 127 10 136 28.000000000C 21 C 33 137 10 151 28.000000000C 33 147 10 151 5.0000000000C 33 C 71 157 13 192 5.0000000000C 71 182 10 192 0.0000000000C 71 DEPOT 192 21 230 0.0000000000order DEPOT C 91 3.0000000000 0 0 105 95 10 105order DEPOT C 71 5.0000000000 0 0 192 182 10 192order DEPOT C 48 27.000000000 0 0 61 51 10 61order DEPOT C 37 5.0000000000 0 0 51 41 10 51order DEPOT C 33 23.000000000 0 0 151 141 10 151order DEPOT C 21 9.0000000000 0 0 136 126 10 136order DEPOT C 20 17.000000000 0 0 86 76 10 86Total time needed: 213Waiting time: 12Maximal gap: 12Tatal distance to go: 131
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PFA15 TRUCK/MOD-SERV/4433 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 42 0.0000000000DEPOT C 2 0 15 57 98.000000000C 2 15 10 57 88.000000000C 2 C 4 25 14 71 88.000000000C 4 39 10 71 75.000000000C 4 C 13 49 11 82 75.000000000C 13 60 10 82 56.000000000C 13 C 27 70 7 89 56.000000000C 27 77 10 89 39.000000000C 27 C 7 87 20 109 39.000000000C 7 107 10 109 36.000000000C 7 C 22 117 22 149 36.000000000C 22 139 10 149 25.000000000C 22 C 5 149 10 159 25.000000000C 5 159 10 159 6.0000000000C 5 C 26 169 10 182 6.0000000000C 26 179 10 182 0.0000000000C 26 DEPOT 189 33 230 0.0000000000order DEPOT C 27 17.000000000 0 0 208 0 10 208order DEPOT C 26 6.0000000000 0 0 182 172 10 182order DEPOT C 22 11.000000000 0 0 201 0 10 201order DEPOT C 13 19.000000000 0 0 205 0 10 205order DEPOT C 7 3.0000000000 0 0 109 99 10 109order DEPOT C 5 19.000000000 0 0 159 149 10 159order DEPOT C 4 13.000000000 0 0 197 0 10 197order DEPOT C 2 10.000000000 0 0 204 0 10 204Total time needed: 222Waiting time: 0Maximal gap: 0Tatal distance to go: 142
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PFA16 TRUCK/MOD-ELC3/4665 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 23 0.0000000000DEPOT C 34 0 24 47 58.000000000C 34 37 10 47 47.000000000C 34 C 30 47 14 73 47.000000000C 30 63 10 73 38.000000000C 30 C 52 73 21 98 38.000000000C 52 94 10 98 28.000000000C 52 C 35 104 16 143 28.000000000C 35 120 10 143 14.000000000C 35 C 36 130 10 153 14.000000000C 36 143 10 153 6.0000000000C 36 C 81 153 28 192 6.0000000000C 81 182 10 192 0.0000000000C 81 DEPOT 192 21 230 0.0000000000order DEPOT C 81 6.0000000000 0 0 192 182 10 192order DEPOT C 52 10.000000000 0 0 98 88 10 98order DEPOT C 36 8.0000000000 0 0 153 143 10 153order DEPOT C 35 14.000000000 0 0 183 0 10 183order DEPOT C 34 11.000000000 0 0 47 37 10 47order DEPOT C 30 9.0000000000 0 0 73 63 10 73Total time needed: 213Waiting time: 19Maximal gap: 13Tatal distance to go: 134PFA17 TRUCK/MOD-ELC3/4663 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 50 0.0000000000DEPOT C 68 0 43 93 33.000000000C 68 83 10 93 8.0000000000C 68 C 75 93 22 159 8.0000000000C 75 149 10 159 0.0000000000C 75 DEPOT 159 24 230 0.0000000000order DEPOT C 75 8.0000000000 0 0 159 149 10 159order DEPOT C 68 25.000000000 0 0 93 83 10 93Total time needed: 183Waiting time: 74Maximal gap: 40Tatal distance to go: 89
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PFA18 TRUCK/MOD-ELC3/4661 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 61 0.0000000000DEPOT C 62 0 25 86 32.000000000C 62 76 10 86 19.000000000C 62 C 85 86 7 111 19.000000000C 85 101 10 111 12.000000000C 85 C 98 111 17 143 12.000000000C 98 133 10 143 0.0000000000C 98 DEPOT 143 17 230 0.0000000000order DEPOT C 98 12.000000000 0 0 143 133 10 143order DEPOT C 85 7.0000000000 0 0 111 101 10 111order DEPOT C 62 13.000000000 0 0 86 76 10 86Total time needed: 160Waiting time: 64Maximal gap: 51Tatal distance to go: 66PFA19 TRUCK/MOD-ELC3/4659 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 60 0 17 27 123.00000000C 60 17 10 27 95.000000000C 60 C 15 27 15 42 95.000000000C 15 42 10 42 75.000000000C 15 C 16 52 15 71 75.000000000C 16 67 10 71 67.000000000C 16 C 23 77 15 107 67.000000000C 23 97 10 107 49.000000000C 23 C 73 107 6 123 49.000000000C 73 113 10 123 24.000000000C 73 C 18 123 44 167 24.000000000C 18 167 10 167 22.000000000C 18 C 94 177 14 198 22.000000000C 94 191 10 198 0.0000000000C 94 DEPOT 201 20 230 0.0000000000order DEPOT C 94 22.000000000 0 0 198 188 10 198order DEPOT C 73 25.000000000 0 0 197 0 10 197order DEPOT C 60 28.000000000 0 0 202 0 10 202order DEPOT C 23 18.000000000 0 0 107 97 10 107order DEPOT C 18 2.0000000000 0 0 167 157 10 167order DEPOT C 16 8.0000000000 0 0 71 61 10 71order DEPOT C 15 20.000000000 0 0 42 32 10 42Total time needed: 221Waiting time: 5Maximal gap: 5Tatal distance to go: 146
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PFA20 TRUCK/MOD-ELC2/2503 2From: To: EST: DUR: LFT: Amount:DEPOT 0 0 69 0.0000000000DEPOT C 87 0 35 104 35.000000000C 87 94 10 104 0.0000000000C 87 DEPOT 104 35 230 0.0000000000order DEPOT C 87 35.000000000 0 0 104 94 10 104Total time needed: 139Waiting time: 59Maximal gap: 59Tatal distance to go: 70PFA21 TRUCK/MOD-ELC1/2681 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 48 0.0000000000DEPOT C 70 0 12 60 42.000000000C 70 50 10 60 36.000000000C 70 C 77 60 13 83 36.000000000C 77 73 10 83 23.000000000C 77 C 80 83 10 102 23.000000000C 80 93 10 102 0.0000000000C 80 DEPOT 103 25 230 0.0000000000order DEPOT C 80 23.000000000 0 0 102 92 10 102order DEPOT C 77 13.000000000 0 0 83 73 10 83order DEPOT C 70 6.0000000000 0 0 60 50 10 60Total time needed: 128Waiting time: 38Maximal gap: 38Tatal distance to go: 60
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PFA23 TRUCK/MOD-ELC1/2677 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 13 0.0000000000DEPOT C 46 0 29 42 78.000000000C 46 32 10 42 62.000000000C 46 C 63 42 26 68 62.000000000C 63 68 10 68 43.000000000C 63 C 19 78 18 97 43.000000000C 19 96 10 97 31.000000000C 19 C 47 106 19 127 31.000000000C 47 125 10 127 30.000000000C 47 C 83 135 13 159 30.000000000C 83 148 10 159 14.000000000C 83 C 61 158 13 172 14.000000000C 61 171 10 172 11.000000000C 61 C 84 181 4 198 11.000000000C 84 185 10 198 0.0000000000C 84 DEPOT 195 21 230 0.0000000000order DEPOT C 84 11.000000000 0 0 198 0 10 198order DEPOT C 83 16.000000000 0 0 196 0 10 196order DEPOT C 63 19.000000000 0 0 68 58 10 68order DEPOT C 61 3.0000000000 0 0 172 162 10 172order DEPOT C 47 1.0000000000 0 0 127 117 10 127order DEPOT C 46 16.000000000 0 0 42 32 10 42order DEPOT C 19 12.000000000 0 0 97 87 10 97Total time needed: 216Waiting time: 3Maximal gap: 3Tatal distance to go: 143PFA25 TRUCK/MOD-ELC1/2672 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 51 0.0000000000DEPOT C 39 0 42 93 16.000000000C 39 83 10 93 0.0000000000C 39 DEPOT 93 42 230 0.0000000000order DEPOT C 39 16.000000000 0 0 93 83 10 93Total time needed: 135Waiting time: 41Maximal gap: 41Tatal distance to go: 84
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PFA28 TRUCK/MOD-ELC2/2508 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 85 0.0000000000DEPOT C 88 0 18 103 33.000000000C 88 93 10 103 7.0000000000C 88 C 58 103 7 111 7.0000000000C 58 110 10 111 0.0000000000C 58 DEPOT 120 23 230 0.0000000000order DEPOT C 88 26.000000000 0 0 103 93 10 103order DEPOT C 58 7.0000000000 0 0 111 101 10 111Total time needed: 143Waiting time: 75Maximal gap: 75Tatal distance to go: 48PFA29 TRUCK/MOD-ELC2/2506 2From: To: EST: DUR: LFT: Amount:DEPOT 0 0 76 0.0000000000DEPOT C 100 0 17 93 9.0000000000C 100 83 10 93 0.0000000000C 100 DEPOT 93 17 230 0.0000000000order DEPOT C 100 9.0000000000 0 0 93 83 10 93Total time needed: 110Waiting time: 66Maximal gap: 66Tatal distance to go: 34
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PFA30 TRUCK/MOD-ELC6/2127 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 11 0.0000000000DEPOT C 3 0 18 29 140.00000000C 3 18 10 29 133.00000000C 3 C 29 28 20 49 133.00000000C 29 48 10 49 117.00000000C 29 C 51 58 11 92 117.00000000C 51 69 10 92 104.00000000C 51 C 10 79 15 107 104.00000000C 10 97 10 107 88.000000000C 10 C 11 107 25 134 88.000000000C 11 132 10 134 72.000000000C 11 C 32 142 8 174 72.000000000C 32 150 10 174 45.000000000C 32 C 49 160 18 192 45.000000000C 49 178 10 192 9.0000000000C 49 C 53 188 16 208 9.0000000000C 53 204 10 208 0.0000000000C 53 DEPOT 214 11 230 0.0000000000order DEPOT C 53 9.0000000000 0 0 208 0 10 208order DEPOT C 51 13.000000000 0 0 203 0 10 203order DEPOT C 49 36.000000000 0 0 192 0 10 192order DEPOT C 32 27.000000000 0 0 202 0 10 202order DEPOT C 29 16.000000000 0 0 49 39 10 49order DEPOT C 11 16.000000000 0 0 134 124 10 134order DEPOT C 10 16.000000000 0 0 107 97 10 107order DEPOT C 3 7.0000000000 0 0 202 0 10 202Total time needed: 225Waiting time: 3Maximal gap: 3Tatal distance to go: 142
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PFA31 TRUCK/MOD-ELC5/1562 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 12 0.0000000000DEPOT C 66 0 49 61 91.000000000C 66 51 10 61 71.000000000C 66 C 72 61 10 87 71.000000000C 72 77 10 87 56.000000000C 72 C 79 87 16 106 56.000000000C 79 103 10 106 53.000000000C 79 C 69 113 13 152 53.000000000C 69 142 10 152 17.000000000C 69 C 101 152 43 195 17.000000000C 101 195 10 195 0.0000000000C 101 DEPOT 205 24 230 0.0000000000order DEPOT C 101 17.000000000 0 0 195 185 10 195order DEPOT C 79 3.0000000000 0 0 106 96 10 106order DEPOT C 72 15.000000000 0 0 87 77 10 87order DEPOT C 69 36.000000000 0 0 152 142 10 152order DEPOT C 66 20.000000000 0 0 61 51 10 61Total time needed: 229Waiting time: 24Maximal gap: 16Tatal distance to go: 155PFA32 TRUCK/MOD-ELC5/1560 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 64 0 34 44 44.000000000C 64 34 10 44 34.000000000C 64 C 65 44 14 83 34.000000000C 65 73 10 83 25.000000000C 65 C 67 83 34 137 25.000000000C 67 127 10 137 0.0000000000C 67 DEPOT 137 40 230 0.0000000000order DEPOT C 67 25.000000000 0 0 137 127 10 137order DEPOT C 65 9.0000000000 0 0 83 73 10 83order DEPOT C 64 10.000000000 0 0 44 34 10 44Total time needed: 177Waiting time: 25Maximal gap: 15Tatal distance to go: 122
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PFA33 TRUCK/MOD-ELC5/1558 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 10 0.0000000000DEPOT C 93 0 18 28 135.00000000C 93 18 10 28 133.00000000C 93 C 43 28 10 41 133.00000000C 43 38 10 41 128.00000000C 43 C 45 48 13 79 128.00000000C 45 69 10 79 110.00000000C 45 C 17 79 6 85 110.00000000C 17 85 10 85 91.000000000C 17 C 86 95 6 122 91.000000000C 86 101 10 122 50.000000000C 86 C 92 111 3 125 50.000000000C 92 114 10 125 49.000000000C 92 C 44 124 17 142 49.000000000C 44 141 10 142 42.000000000C 44 C 90 151 32 186 42.000000000C 90 183 10 186 27.000000000C 90 C 95 193 8 207 27.000000000C 95 201 10 207 0.0000000000C 95 DEPOT 211 12 230 0.0000000000order DEPOT C 95 27.000000000 0 0 207 0 10 207order DEPOT C 93 2.0000000000 0 0 28 18 10 28order DEPOT C 92 1.0000000000 0 0 194 0 10 194order DEPOT C 90 15.000000000 0 0 186 176 10 186order DEPOT C 86 41.000000000 0 0 196 0 10 196order DEPOT C 45 18.000000000 0 0 79 69 10 79order DEPOT C 44 7.0000000000 0 0 142 132 10 142order DEPOT C 43 5.0000000000 0 0 41 31 10 41order DEPOT C 17 19.000000000 0 0 85 75 10 85Total time needed: 223Waiting time: 8Maximal gap: 8Tatal distance to go: 125PFA34 TRUCK/MOD-ELC5/1556 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 65 0.0000000000DEPOT C 89 0 19 84 15.000000000C 89 74 10 84 6.0000000000C 89 C 57 84 48 140 6.0000000000C 57 132 10 140 0.0000000000C 57 DEPOT 142 29 230 0.0000000000order DEPOT C 89 9.0000000000 0 0 84 74 10 84order DEPOT C 57 6.0000000000 0 0 140 130 10 140Total time needed: 171Waiting time: 55Maximal gap: 55Tatal distance to go: 9689



PFA35 TRUCK/MOD-ELC5/1553 1From: To: EST: DUR: LFT: Amount:DEPOT 0 0 84 0.0000000000DEPOT C 41 0 11 95 25.000000000C 41 85 10 95 16.000000000C 41 C 54 95 6 105 16.000000000C 54 101 10 105 2.0000000000C 54 C 56 111 27 146 2.0000000000C 56 138 10 146 0.0000000000C 56 DEPOT 148 30 230 0.0000000000order DEPOT C 56 2.0000000000 0 0 146 136 10 146order DEPOT C 54 14.000000000 0 0 105 95 10 105order DEPOT C 41 9.0000000000 0 0 95 85 10 95Total time needed: 178Waiting time: 74Maximal gap: 74Tatal distance to go: 74PFA36 TRUCK/MOD-ELC6/2136 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 15 0.0000000000DEPOT C 96 0 14 29 108.00000000C 96 14 10 29 88.000000000C 96 C 28 24 18 47 88.000000000C 28 42 10 47 72.000000000C 28 C 31 52 20 81 72.000000000C 31 72 10 81 51.000000000C 31 C 50 82 34 118 51.000000000C 50 116 10 118 21.000000000C 50 C 97 126 44 192 21.000000000C 97 170 10 192 10.000000000C 97 C 99 180 6 198 10.000000000C 99 186 10 198 0.0000000000C 99 DEPOT 196 21 230 0.0000000000order DEPOT C 99 10.000000000 0 0 198 0 10 198order DEPOT C 97 11.000000000 0 0 204 0 10 204order DEPOT C 96 20.000000000 0 0 205 0 10 205order DEPOT C 50 30.000000000 0 0 118 108 10 118order DEPOT C 31 21.000000000 0 0 81 71 10 81order DEPOT C 28 16.000000000 0 0 47 37 10 47Total time needed: 217Waiting time: 0Maximal gap: 0Tatal distance to go: 157
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PFA39 TRUCK/MOD-ELC6/2130 0From: To: EST: DUR: LFT: Amount:DEPOT 0 0 22 0.0000000000DEPOT C 6 0 20 42 101.00000000C 6 20 10 42 75.000000000C 6 C 12 30 35 77 75.000000000C 12 67 10 77 63.000000000C 12 C 9 77 24 105 63.000000000C 9 101 10 105 54.000000000C 9 C 8 111 12 143 54.000000000C 8 123 10 143 49.000000000C 8 C 14 133 26 169 49.000000000C 14 159 10 169 26.000000000C 14 C 38 169 11 193 26.000000000C 38 180 10 193 18.000000000C 38 C 59 190 17 210 18.000000000C 59 207 10 210 0.0000000000C 59 DEPOT 217 9 230 0.0000000000order DEPOT C 59 18.000000000 0 0 210 200 10 210order DEPOT C 38 8.0000000000 0 0 198 0 10 198order DEPOT C 14 23.000000000 0 0 169 159 10 169order DEPOT C 12 12.000000000 0 0 77 67 10 77order DEPOT C 9 9.0000000000 0 0 105 95 10 105order DEPOT C 8 5.0000000000 0 0 198 0 10 198order DEPOT C 6 26.000000000 0 0 199 0 10 199Total time needed: 226Waiting time: 2Maximal gap: 2Tatal distance to go: 154Name: Dist.: Wait: Time: Stops:PFA10 54 67 131 1PFA34 96 55 171 2PFA20 70 59 139 1PFA28 48 75 143 2PFA31 155 24 229 5PFA13 126 17 213 7PFA32 122 25 177 3PFA23 143 3 216 7PFA29 34 66 110 1PFA39 154 2 226 7PFA21 60 38 128 3PFA36 157 0 217 6PFA14 131 12 213 7PFA11 40 58 108 1PFA17 89 74 183 2PFA33 125 8 223 9PFA15 142 0 222 8PFA25 84 41 135 1PFA30 142 3 225 8PFA35 74 74 178 3PFA18 66 64 160 3PFA19 146 5 221 7PFA16 134 19 213 6P 2392 789 4181 100 91


