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AbstractOne of the basic questions of research in Distributed Arti�cial Intelligence (DAI) is howagents have to be structured and organized, and what functionalities they need in order tobe able to act and to interact in a dynamic environment. To cope with this question is thepurpose of models and architectures for autonomous and intelligent agents.In the �rst part of this report, InteRRaP, an agent architecture for multi-agent systemsis presented. The basic idea is to combine the use of patterns of behaviour with planningfacilities in order to be able to exploit the advantages both of the reactive, behaviour-basedand of the deliberate, plan-based paradigm. Patterns of behaviour allow an agent to reactexibly to changes in its environment. What is considered necessary for the performance ofmore sophisticated tasks is the ability of devising plans deliberately. A further importantfeature of the model is that it explicitly represents knowledge and strategies for coopera-tion. This makes the model suitable for describing high-level interaction among autonomousagents.In the second part, the loading-dock domain is presented, which has been the �rstapplication the InteRRaP agent model has been tested with. An automated loading-dockis described where the agent society consists of forklifts which have to load and unloadtrucks in a shared environment.
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PrefaceDistributed Arti�cial Intelligence (DAI) is the sub�eld of AI concerned with concurrency inAI computations. Bond and Gasser [BG88] divide the world of DAI in two primary arenas:Research in Distributed Problem Solving (DPS) investigates how the work of solving a par-ticular problem can be divided among a number of \nodes" or modules that cooperate at thelevel of dividing and sharing knowledge about the problem and about its solution. The sec-ond arena, called Multiagent systems (MAS), deals with coordinating intelligent behaviouramong a collection of (possibly pre-existing) autonomous intelligent agents. Emphasis isplaced on how these agents coordinate their knowledge, goals, skills and plans jointly totake action or to solve problems. Like modules in a DPS system, agents in a multiagentsystem must share knowledge about problems and solutions. However, apart from theseissues, they also have to reason about the process of inter-agent coordination itself.For a long time, the problem of agent coordination was by the metaphor of the coop-erating expert society, for which Hewitt, in his early ACTORS work, raised the raised thebroad research question of \ what should be communication mechanisms and conventionsof civilized discourse for e�ective problem solving by a society of experts?" ([Hew77]). Thecooperating expert paradigm dominated the research in DAI for more than a decade. Inthe �eld of agent architectures it provided the basis for developments like Lenat's \Be-ings" ([Len75]), Hewitt's ACTORS (cf. e.g. [Hew73]), and for blackboard systems such asHEARSAY ([EHRLD80]) or the DVMT testbed ([CL88]).Since the late eighties, research in Multiagent Systems has paid more attention to partic-ular concepts that are of relevance for the coordination in dynamic agent societies, such ascooperative planning ([LBS92, Jen92, KvM91]), conict resolution [Kle90, Syc88], and nego-tiation, ([Syc89, DL89, ZR91]). The purpose of particular agent models was now to providea framework for integrating instances of these concepts required to deal with a particulardomain of application.In addition to this, there are quite a few more good reasons to concentrate on the agentarchitecture in the �rst place, and to use one of its instantiations in order to describe theactual process of problem solving:� The architecture provides a valuable general guideline for the methodology of thedesign and the implementation of an application.� The modules of the agent model precisely structure the classes of operational knowl-edge.� The execution model which is implicit to the architecture avoids programming fromscratch.� Application-independent, prede�ned mechanisms such as negotiation protocols (e.g.the Contract Net) are directly available.� The emergent functionality of the society can be predicted up to a certain level byregarding the basic patterns of interaction of the instantiated agents.v



vi LIST OF FIGURES� An agent architecture provides a basis for the investigation of special strategies andof extensions of the modules.The InteRRaP Agent ModelThe agent model InteRRaP, which is presented in the following, is an extension of theRATMAN model [BM91]. InteRRaP was developed in order to meet the requirementsof modeling dynamic agent societies such as interacting robots. Its main feature is that itcombines patterns of behaviour with explicit planning facilities. Patterns of behaviour onthe one hand allow an agent to react quickly and exibly to changes in its environment.On the other hand, the ability to devise plans is generally regarded necessary to solvemore sophisticated tasks. InteRRaP has been evaluated using three applications: (1) theimplementation of a society of cooperating vehicles in a loading-dock [MP93], (2) the MARSsystem, a simulation of cooperating transportation companies [KMM93a], and (3) COSMA,a distributed appointment scheduling manager [Sch92].The InteRRaP ArchitectureWhile the novel feature of RATMAN - the idea of structuring a knowledge base accordingto the complexity of the knowledge contained - was commonly accepted, there was onemain point of criticism of the system, namely the lacking separation between aspects ofthe knowledge used in the and the functionality shown by the model: the hierarchicallystructured levels of knowledge were not only constructed using the concepts of the lowerlevels, but they were also used to trigger activities at these lower levels.InteRRaP clearly draws the separation between the pure knowledge base and the func-tional part, while preserving the hierarchical structure of the model. Thus, the two parts ofthe InteRRaP model are� the hierarchical agent knowledge base, and� the multi-stage control unit.Figure 0.1 shows the InteRRaP model in more detail.
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LIST OF FIGURES viiThe Agent Knowledge BaseThe lowest level of the Agent KB contains the world model of the agent. It is organized asa taxonomical knowledge base. This kind of knowledge represents the objects in the worldand the relationships which hold among these objects (which corresponds to the standardT-Box/A-Box structures). The second level describes the patterns of behaviour and thebasic actions an agent can perform. A plan library, given as a set of skeletal plans, ismodeled at the third level. The plans are de�ned recursively starting from basic actions,patterns of behaviour, or uninstantiated subplans. Finally, knowledge about cooperationand coordination, such as communication and negotiation protocols, and joint plans (whichare basically multi-agent plans) is represented at the highest layer of the hierarchy.The Control UnitThe agent control reects the hierarchical structure of the knowledge base. It shows theoperational ow as discussed in the RATMAN model [BM91], from the world interfacelevel, where sensoric data is perceived, up to the behaviour-based level, to the plan-basedand cooperation levels, and back again to the interface level, where �nally actions in theworld are performed. On the other hand, it was built according to the idea of combiningthe rational, plan-based paradigm with the concept of behaviour-based, reactive systemsand situated actions [Bro86, Suc87, Ste90]. The four components of the InteRRaP agentcontrol as shown in �gure 4 are the world interface, the behaviour-based component (BBC),the plan-based component (PBC), and the cooperation component (CC).Instead of discussing the single levels one by one (see [MP93] for a detailed description),at this stage, the ow of control and information through the di�erent stages will be outlined.The lowest level reects the input/output interface of the agent, the perception of changesin the world, and the receiving of messages. This information passes a �rst �lter and owsinto the world model of the agent. It is the basic information used by the BBC. There, itmay either directly trigger a certain pattern of behaviour (e.g. the pattern \avoid collision"which has the agent moving aside)1.If there is no need for such a fast response, or if the situation is too complex to be copedwith by the BBC, control is shifted up to the plan-based component. This componentcontains the agent's facilities for planning and local decision-making. If the actual situationrequires cooperation and coordination with other agents (such as resolving a blocking conictbetween two forklift agents in a narrow shelf), the PBC passes control to the CC, where acooperative solution of the problem is worked out (for example a joint plan for resolving theconict). In any case, the order for the next working step is passed to the next lower level:� a joint plan is transformed into a set of single-agent plans together with a set ofsynchronization commands (representing the constraints among the plans) and passedto the PBC.� a pattern of behaviour is activated by the PBC.� the performance of basic actions or the sending of messages via the world interface isactivated by the BBC.Finally, note that each component of the agent control has access to its corresponding layerin the agent knowledge base and to all lower layers, but not to higher layers. For example,a pattern of behaviour has never access to the representation of plans.1Note that, since patterns of behaviour may be concurrently active, the BBC needs a hard-wired controlmechanism for coordinating these patterns. This must not be confounded with the deliberate mechanismsfor decision-making located at the plan-based and the cooperation layer.



viii LIST OF FIGURESSo far, we have given a brief overview of the InteRRaP agent model which underlies ourapplications. The report at hand is divided in two parts. The �rst part provides a thoroughintroduction to the InteRRaP agent model. The single modules of an InteRRaP agentand their interplay are discussed. Part two presents the loading-dock domain, which hasbeen the �rst application our agent model has been tested with.



Chapter 1IntroductionOver the past few years, Distributed Arti�cial Intelligence (DAI) has been recognized asa suitable approach for describing complex and dynamic distributed systems. Researchin DAI explores [BG88] either how a group of intelligent and autonomous computationalsystems (agents) coordinate their knowledge, goals, plans, and skills (multi-agent systems,agent-centred approach) in order to achieve certain goals, or how the solution of a speci�cproblem can be distributed among a set of nodes (distributed problem-solving, problem-centred approach).One of the basic questions of research in Distributed Arti�cial Intelligence (DAI) is howagents have to be structured and organized, and what functionalities they need in order toact and interact coherently in a dynamic environment, and thus, in order to bring about anemerging functionality of the system as a whole. To cope with this question is the purposeof models and architectures for autonomous and intelligent agents.1.1 Agent ModelsWhen it comes to develop models of agents, there are two basic paradigms. One is theparadigm of behaviour-based, reactive agents. The other is the paradigm of plan-based,deliberate agents (see e.g. [WD92] for examples of both directions). Advantages and short-comings of both approaches have been thoroughly discussed, and it has been widely acceptedinside the DAI community, that an agent should have both reactive and deliberate abilities.In the �rst part of this report, we introduce the InteRRaP1 agent architecture. In-teRRaP is a further development of the agent architecture RATMAN [BM91]. It extendsRATMAN by the following aspects:� Whereas RATMAN described a purely rational2 agent, InteRRaP is a hybrid agentarchitecture3 The basic data structures are patterns of behaviour and plans. Theformer allow an agent to react exibly to changes in its environment, but, moreover,are a suitable means of expressing all activities which do not require the agent to havean explicit representation in the form of a plan, such as activities containing proceduralknowledge, or the performance of routine tasks. The latter are often necessary if moresophisticated tasks have to be performed.� InteRRaP provides a clear separation of control and the agent knowledge.1Integration of Reactive Behaviour and Rational Planning2Here, the word rational has the meaning of logic-based. Compare the discussion in chapter 2 for a moredetailed discussion of the di�erent meanings of rationality.3See chapter 7 as well as [HR89, SH90, CGHH89, GI89, Oga91, Fer92, Had93] for recent examples ofhybrid agent architectures. 1



2 CHAPTER 1. INTRODUCTION� InteRRaP preserves the hierarchical knowledge base which was commonly regardedas the novel feature of the RATMAN model. Furthermore, the agent control unit isorganized hierarchically, too. It consists of the world interface, the behaviour-basedcomponent, the plan-based component, and the cooperation component.� Cooperation knowledge and control are represented as an explicit part of the model.In the �rst part of this report, the components of the model and the interplay of thecontrol modules are described.1.2 A Motivating ExampleTo give the reader a �rst idea of the general principle of how the concepts of patterns ofbehaviour and plans are to be understood, and of how their use can be combined to yieldexible and intelligent behaviour, we will provide an example from "everyday" life:Imagine you are sitting in your o�ce and reading your mail which - for you - israther a routine pattern of behaviour than a real intellectual e�ort. Suddenly, youstart feeling tired and you feel that having a cup of co�ee might be a good idea.Of course, you do not run around randomly until you encounter a cup of co�eewaiting for you. Instead, your planning component takes control and decides togo to the co�ee bar at the other end of the corridor. Your planner devises anabstract plan: leave your room, walk down the corridor, enter the co�ee bar, getco�ee, go back to your room. Now you start the execution of the plan: walkingstraight down the hallway is a routine task you learned as a little child. Thus,you have an unconscious mechanism of execution for doing this kind of actionat your disposal, a pattern of behaviour.Suddenly, while you are walking down the corridor, a door opens, and an eagercolleague of yours rushes out of his o�ce and gets in your way. Instinctively,you step aside and avoid a collision without leaving your current behaviour - thisis a case of an exceptional situation which can be handled from within the activepattern of behaviour. However, when you reach the door to the co�ee bar andbecome aware of the fact that it is locked, you �nd yourself in a situation youractive pattern of behaviour cannot cope with. Thus, from inside it, again theplanner has to be activated to �nd a solution to this situation, which might be togo and look for the secretary in order to get the key to the co�ee bar.1.3 The ApplicationIn the second part of the report, we show how a multi-agent system for the simulation ofa robotics application can be designed using InteRRaP: a group of automated forklifts ismodeled which have to load and unload trucks in a loading dock. The concepts presentedin the �rst part of the report are made clear by means of a detailed example. Although weregard the scenario primarily from a multi-agent perspective, aspects of traditional roboticssuch as perception and path-planning [Bro86, FD90, ST92, Lat92] have to be considered.For several reasons, the �eld of interacting robots has turned out to be a rewarding test-bed for evaluating architectures and mechanisms of DAI: Firstly, in these environments,control and information are inherently distributed. Secondly, the domain is highly dynamicand complex, and therefore requires both exible and intelligent behaviour of agents. Thus,it is a touchstone for architectures and methods from both behaviour-based and plan-basedapproaches. Thirdly, there is a wide range of possible interactions among the members



1.4. OVERVIEW 3of robot societies, ranging from mere collision avoidance to actually cooperating robots(cf. [MP93]).1.4 OverviewThe report is structured as follows:� Part one describes the InteRRaP agent architecture. After briey outlining ourterminology in chapter 2, we present a general conceptual agent model in chapter 3.In chapter 5, we describe the process of decision-making, which closely correspondsto prioritizing goals and patterns of behaviour. The contribution of the InteRRaParchitecture to the �eld of dynamic planning is discussed in chapter 6. Chapter 7provides an overview of related work.� Part two presents the loading dock application. The domain, the problems involved,and the aspects which make the domain suitable for a DAI approach are explainedin chapter 8. Chapter 9 provides a detailed description of how the loading dock wasmodeled using the InteRRaP architecture. Chapter 11 explains the ow of controlamong the modules of the model by means of an example. In chapter 12, we give detailsof the current state of the implementation and reprot preliminary results. Chapter 13includes the conclusion and an outline of important future work.
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Chapter 2Terminological RemarksTerms such as \deliberate", \plan-based", \rational", \behaviour-based", or \reactive",which we use in our work in order to describe properties of agents and systems of agentshave many connotations in DAI research. Therefore, in the following, we should like toexplain the meanings we attribute to these notions.2.1 Deliberate, Plan-based, and Rational AgentsThe term rationality has been used in the literature in order to address very di�erent phe-nomena. In [BIP88], Bratman de�nes rational behaviour as "the production of actions thatfurther the goals of an agent, based upon [its] conception of the world." Here, rationality isused in the sense of goal-directed behaviour, fairly independent from the agent having a spe-ci�c type of representation of the world. In game theory [LR57, Ros85], rationality is usedin a narrower sense. An agent which is individual rational will always do the thing whichproduces the best result with respect to a local utility function. Agents acting according tothis principle are called utility maximizers. Finally, the standard AI meaning of rationalitydi�ers from the one de�ned by Bratman in that it places emphasis on how the conceptionthat an agent has of its world is represented, and on according to what principles an agentmakes its decisions. Thus, a rational agent is de�ned as an agent who has a logic-basedrepresentation of the world and who uses logical methods of inference as a means of makingdecisions.An agent is called deliberate if it possesses an explicit representation of its mental state,of its beliefs, goals, and plans [Fer92], and if it has abilities to reason about its mental statein order to determine how to behave at a given point in time. Thus, the term deliberativesubsumes the qualities of being directed towards a goal and of representation.Plan-based agents also have explicit representations of their mental state. Although -unlike deliberate - the term plan-based does not suggest that and how agents reason aboutthe representation of their knowledge, we use "deliberate" and "plan-based" as synonyms,because plan-based agents virtually always have the ability of reasoning about the structureof their plans [FHN71].In this report, we will prefer the terms "deliberate" and "plan-based" to "rational", sincethey express better the intended meaning.2.2 Behaviour-based versus Plan-based AgentsWe draw a distinction between plan-based and behaviour-based agents by applying thecriterion of representation: plan-based agents maintain explicit symbolic representations oftheir plans and are able to reason about the structure of these plans [FHN71]. Behaviour-7



8 CHAPTER 2. TERMINOLOGICAL REMARKSbased agents are described by patterns of behaviour which, unlike plans, do not have aninternal structure but are considered as black boxes [Suc87, Ste90]. Patterns of behaviourare closely linked to their execution. In this respect, the relationship between plan-basedand behaviour-based agents corresponds to that between the declarative and the proceduralparadigm [Win75]: the activities of behaviour-based agents are represented procedurallywhereas plan-based agents are built according to the declarative paradigm1.2.3 Behaviour-based and Reactive AgentsIn the literature, \behaviour-based" is often used as a synonym for \reactive". Behaviour-based agents are considered to be stimulus-response systems which are triggered by externaltrigger conditions [Fer89, Ste90]. Our de�nition of behaviour includes this relationship: sincea pattern of behaviour is always linked to performing actions in the world, behaviour-basedagents must be reactive in a sense that they can recognize changes in the environment andadapt to them.However, we feel that the behaviour-based paradigm has more to o�er than just describ-ing reactive agents: to us, patterns of behaviour are a viable way to express any activity anagent can do without much reection - and without providing an explicit plan structure forit. For example, walking down a hallway or driving a car are examples of such \hard-wired"routine tasks. Patterns of behaviour o�er a possibility to perform these routine tasks moreor less subconsciously. Minor events may be tackled from inside the behaviour, whereas inthe case of unforeseen situations either di�erent patterns of behaviour or explicit delibera-tion (i.e. planning) have to be activated. Thus, patterns of behaviour can be regarded ascompiled multiplans, i.e. sets of plans submitted to an intelligent execution mechanism.

1In [GL86], the use of procedural knowledge is proposed by the authors. This closely corresponds to theprocedural aspect we attribute to patterns of behaviour.



Chapter 3A Conceptual Agent ModelIt is the aim of a conceptual model of an agent to de�ne an abstract interpreter for the agent,and thus, to describe what determines the behaviour of an agent in a dynamic environment.We draw a distinction between two basic kinds of decisions an agent has to make. Firstly,the agent has to decide what goals to pursue. This process is modeled by the descriptivelayer of the model (which we also call the macro model). Secondly, the agent has to decidewhat mechanisms and strategies to use in order to achieve its goals. This is called theexecution layer (micro model). To draw the distinction between these two layers has turnedout to be very useful, since it allows a conceptual separation between problems and themethods used to solve them. It allows us to model and to compare di�erent (plan-basedand behaviour-based) strategies for one and the same situation. In �gure 3.1, the conceptual
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10 CHAPTER 3. A CONCEPTUAL AGENT MODEL3.1 The Descriptive Layer3.1.1 Patterns of ActivityAn agent has a set of script-like patterns of action PA and patterns of interaction PI atits disposal which describe classes of situations the agent is faced with. In the following,we will refer to elements of the set PA [ PI as patterns of activity. When de�ning thesepatterns, we make a clear conceptual distinction between the declaration part (describing therepresentation, recognition, evaluation of situations and the expected outcome of executingthe patterns) and the execution part itself, which is represented by a pointer to a set ofmethods. The basic idea of these patterns is that their declaration contains informationwhich de�nes when they are applicable, suitable, and which helps an agent to evaluatetheir expected utility against alternative patterns. Therefore, the de�nition of a pattern ofactivity contains information about� What are the external preconditions for the pattern to become active? We call thisextrinsic impact the situational context of a pattern. For example, the situationalcontext for a blocking conict between two agents is that one agent stands in front ofthe other one1.� What is the mental state the agent must be in in order to make the pattern suitable,i.e. what goals does the agent currently pursue which a�ect the patterns, what beliefsmust it have about itself, and other agents? For example, for a blocking conictto exist, it is not su�cient to say that another agent stands in front of that agent.Additionally, the agent itself must have the goal to move to the �eld which is currentlyoccupied by the other one. The achievement of this goal is blocked by the conict.� What are the postconditions of the execution of the pattern, i.e. what holds true afterit has been executed?� What are the termination conditions, i.e. what are criteria for determining a successfultermination of pattern execution?� What are the failure conditions, i.e. conditions that enforce to stop the executionbefore it has been completed?� Information about the participants (only in case of a pattern of interaction): are therespecial requirement to be placed on a partner to be involved in the execution of thepattern. This information can be used for instance in order to choose appropriatecooperation partners.� Criteria for an a priori evaluation of a pattern of activity. Since committing to acertain pattern may start a lengthy and costly process of (inter)action, it is veryimportant for the agent to be able to evaluate the pattern against other, possibly localalternatives. Evaluation critria are e.g. the expected utility of executing the pattern,the probability of success, or the urgency of the performing the pattern (e.g. howurgent it is to resolve a currently existing conict).� The description of the execution. In the simplest case, in the description of a pattern,execution is represented only by a pointer to an executable piece of program code,together with a speci�cation of the arguments of the program call. However, for acouple of reasons, a more structured description seems useful. This subject will be1Strictly speaking, we de�ne patterns of interaction from a local, agent-based point of view. Therefore,the situational context for a blocking would be described rather as \another agent stands in front of me".



3.2. THE EXECUTION LAYER 11treated in more detail in section 4.2.2, where we discuss our preliminary considerationstowards an abstract description language for patterns of behaviour, which are thefunctional counterparts to the concept of patterns discussed in this chapter.� Information about the capability context. Since agents are often de�ned as genericagents, which may be instantiated with di�erent capabilities by the designer of aconcrete system, for di�erent con�gurations of agents, di�erent patterns and di�erentexecution mechanisms are available. The capability context de�nes for which agentcon�gurations the pattern can be used. For example, patterns may be used only byagents who have facilities to communicate, to reason about other agents' goals, to planaso.We do not claim that the above listing contains all the criteria which might be desirablein order to give a complete description of a pattern. On the other hand, not all the slotsdiscussed above may be required in order to de�ne a pattern in the speci�c case.Our characterization of patterns treats them as abstract actions. Therefore, our e�ort todescribe them bears similarity to much of the work done in AI planning (see chapter 6 andchapter 7), where plan steps are described by using preconditions, during conditions, postconditions, and so forth. In fact, what we aim at by providing this information is enablingthe appropriate control module in the agent model (see next chapter), which can be thebehaviour-based, plan-based, or cooperation module, to make decisions which patterns topursue and which patterns to drop. A central issue of our future work is to de�ne an abstractspeci�cation language for the patterns, which can be used by the system designer to de�nethese patterns on a higher level, and independent from using a rule-based programminglanguage such as OPS-5, which currently serves us as the implementation language for thepatterns of behaviour. We expect that this abstract language will contain basically thefeatures discussed in this section.3.1.2 Situational Context and Mental ContextTwo contexts are especially important to deterrmine how an agent is to behave. Therefore,they will be discussed in more detail in this section: the situational context (extrinsic impact)de�nes the patterns which are applicable in a certain situation. The mental context (intrinsicimpact) describes which patterns are suitable for the agent with respect to the achievement ofits current goals, and against the background of the agent's current beliefs about other agentsand about its own capabilities. This distinction reects a main feature of Lewin's theoryof personality [Lew35]: it says that the behaviour of an individual depends on propertiesof its personality (which we represent in a simpli�ed form by the agents' goals and by thedecisions derived from these goals) on the one hand, and on situational conditions, on theother. Together, the two contexts describe a pre-selection and reduce the set of patternsPA [PI to a subset of active patterns P � PA [PI . In a decision step, one pattern p 2 P ischosen for execution2. Evaluation information contained in the pattern declaration is usedto make this choice.3.2 The Execution LayerIf a certain pattern p has been selected, the agent has the choice among a setM of di�erentpossible mechanisms for the execution of p. These mechanisms may be either behaviour-based or plan-based. Again, depending on the situational and mental context, only a subsetM 0 � M is suitable in a certain situation. One of these mechanisms, let us say m 2 M 0 is2If we assume concurrency, a set P 0 � P of patterns can be executed in parallel.



12 CHAPTER 3. A CONCEPTUAL AGENT MODELchosen and executed. Since new subgoals are derived from this decision, the mental contextmay be changed. By executing the pattern p using mechanism m, the external situation(and thus, the situational context) is changed, and by this feedback, the loop of the agentcycle is closed.Mechanisms of Execution: an ExampleLet us look at an example taken from the loading-dock domain which is presented in moredetail in the second part of this report, to see behaviour-based and plan-based mechanisms ofaction and interaction. A basic behaviour-based mechanism of activity is randomness. In a�nite search space, making random moves is a (mostly ine�cient, but) safe way to achievea goal [Ste90]. Randomness is also very useful in resolving conicts, especially in symmetricsituations, for example, a situation where two agents are standing in front of each other.In these situations, following other, deterministic, strategies often cannot resolve conicts,since both agents are likely to perform symmetrical actions at the same time, and since,in case a conict solution is negotiated, there are no arguments one agent can put forwardwhich could not be used by the other agent with the same right. Game theory [ZR89]proposes to toss a coin in these cases - which exactly corresponds to applying the principleof randomness.Forklift agents can use potential �eld methods or weighted randomness in order to reachtheir destination and in order to avoid collisions. We consider these mechanisms to bebasically behaviour-based, but it is hard to �nd a clear separation line between these andplan-based mechanisms. De�nitely plan-based methods are representation-based path plan-ning algorithms (e.g. the Voronoi algorithm ([OY82]), as well as the generation of joint plansin order to resolve conict situations or to achieve transportation goals cooperatively.3.3 An Abstract Agent InterpreterFigure 3 can be regarded as the graphic description of an agent interpreter. An agentinterpreter explains the behaviour of an agent as a function the agent's capabilities, of theactual external situation, and of the mental state of the agent. We describe the agent'scapabilities by� a set of patterns of action / interaction the agent can recognize,� a set of methods the agent has at its disposal in order to execute the patterns,� preselection functions �P and �M for patterns and methods, respectively, and� decision functions �P and �M for patterns and methods, respectively.In the following, we give a more formal de�nition of these notions. Let Sta be thesituational context for agent a at time t, and let Gta be a's mental context at time t. Wede�ne an agent a as a tuplea = (P;M; (�P ; �M); (�P ; �M)),where� P = PA [ PI is a set of patterns of action / interaction as presented in chapter 3,� M = SM(p) is a set of methods available for the patterns p 2 P ,� �P : 2P �S�G 7! 2P , �M : 2M �S�G 7! 2M , are preselection functions, which mapsets of patterns and methods into one of their subsets.



3.3. AN ABSTRACT AGENT INTERPRETER 13� �P : 2P � S � G 7! P � G, �M : 2M � P � G 7! M � G are decision functionswhich select one element from the sets od patterns an methods, respectively, andwhich modify the mental context of the agent by generating the goal (commitment)of pursuing / executing the selected pattern.What we still need is a function which explains the e�ect the execution of an action hason the situational context. For this purpose, we de�ne a function Exec :M �S 7! S whichdescribes how the execution of a method changes the actual state of the world.Now, we can de�ne the behaviour of agent a at time t as follows.De�nition 1 (Agent Interpreter) Given an agent a = (P;M; (�P ; �M); (�P ; �M)), itssituational context Sta and its mental context Gta at time t, the (external) behaviour of agenta at time t can be determined asBehta ::= Exec(�M(M 0; St; G0t)jM ; St)with� M 0 ::= �M (M(p); St; G0),� G0 ::= �P (P 0; St; Gt)jG,� P 0 ::= �P (P; St; Gt), and� p 2 P is computed as p ::= �P (P 0; St; Gt)jP .�jG means the state of G resulting from applying �P (P; S;G) and �M(M;S;G), respec-tively.The e�ect of Agent a's actions on the situational context at time t+ 1 is determined bythe function Behta de�ned above. Similarly, the new mental context of agent a at time t+1is computed asGt+1a ::= �M (M 0; St; G0)jG,where M 0, G0 are as de�ned above.It is important to note that the above agent interpreter does not de�ne the state of theworld resulting by the actions made by all agents. It merely de�nes how the world changesby the behaviour of a single agent derived in one agent cycle.If we have multiple agents, the world changes by actions performed by each of theseagents. In order to describe such a system, our model is to be extended similar to [HM90,HM92]. There, a distributed system is described as a �nite set fp1; : : : ; png of processors(agents) that are linked by a communication network. The system as a whole is describedby the set of possible runs R. A run r 2 R of the system describes the execution of thesystem as a whole, from time 0 until the execution has �nished. The knowledge ascribed tothe single processors is described as a Kripke structureM = (S; �;K1; : : : ;Kn), where S is aset of states (possible worlds), � is a truth assignment for the primitive propositions of thelogical language underlying, and Ki is a binary relation on elements of S, for i = f1; : : : ; ng.The intended meaning of the K relation acording to agent i is the following: (s; t) 2 Ki ifin world s in structure M , agent i considers t a possible world.Given a state s, the knowledge of an agent can be de�ned by an operator K:(M; s) j= Ki� i� (M; t) j= � for all t satisfying (s; t) 2 Ki.



14 CHAPTER 3. A CONCEPTUAL AGENT MODELSince we are not interested in a description of the system as a whole at this stage, butrather concentrate at describing the single agent and its interaction with the environment,our approach seems su�cient for us. The agent recognizes the behaviour of other agents andinteractions with other agents by means of perception and receiving messages. Perceptiondirectly models the situational context.The agent interpreter developed in this section describes an abstract, conceptual modelof an agent. Therefore it serves primarily to understand how the agent is to work, and, atthe current stage of our work, not so much as a direct basis for the implementation of theagent.In the following, we will show how the model is implemented by de�ning a functionalagent model. The functional model describes the information processing and the controlunits of the agent; in order to provide e�cient processing, it is designed using a layeredarchitecture.3.4 Designing AgentsThe conceptual model described above helps the designer of a multi-agent system modelingagents which behave adequate with respect to the domain to be modeled: if the applicationrequires rather reactive, behaviour-based agents, the designer can meet this requirement byde�ning patterns which mostly depend on the situational context, and which are, if at all,inuenced only to a small extent by the current goals of an agent. Furthermore, behaviour-based methods of execution are likely to be used by these agents. On the other hand, if thecomplexity of the application makes deliberate, plan-based agents desirable, the designershould put more emphasis on the goal context. Execution then should focus on mechanismssuch as planning and, in the case of agent interaction, negotiation.



Chapter 4The InteRRaP Agent ModelIn this section, we explain the key ideas of the InteRRaP agent model and its basicfunctional structure. InteRRaP is a further development of the RATMAN agent modeldeveloped by M�uller et al. [BM91]. The main idea of RATMAN was to describe the knowl-edge rational agent by a hierarchical knowledge base, and to use a general-purpose reasoningmechanism to de�ne the knowledge processing in the agent model. InteRRaP extends thisidea in two ways: on the one hand, it provides a clear separation among the control andthe knowledge parts of the agent. On the other hand, the control mechanism provided bythe InteRRaP model is much more general. Its main feature is that it allows to combinethe use of patterns of behaviour with deliberate planning facilities. Therefore, InteRRaPdoes not force us to model rational agents �a la RATMAN. One the one hand, patterns ofbehaviour allow an agent to react exibly to its environment, and to perform routine taskswithout having an explicit symbolic representation of how the task is to be performed. Dueto the latter feature, we can characterize patterns of behaviour as abstract actions havingprocedural character, which makes them much more than what is generally understood byreactive, behaviour-based systems (see e.g. [Ste90]).Planning, on the other hand, allows an agent to act in a goal-directed manner. Moreover,in a multi-agent context, planning is necessary to coordinate actions of agents. For instance,agents should be able to devise joint plans ([ZR91, M�ul93]) to cope with special situations,or they should at least be able to exchange partial global plans (see [DL89]). In addition,since we consider communication in the light of speech act theory [Sea69] as planned com-municative action, protocols for communication and negotiation should be represented interms of plans.4.1 The Overall StructureFigure 4.1 shows the components of the InteRRaP agent model and their interplay. It con-sists of two basic parts: the hierarchical agent knowledge base, and the multi-stage controlunit. The control unit is structured hierarchically in four sub-modules, the world interface,the behaviour-based component (BBC), the plan-based component (PBC), and the cooper-ation component (CC). The four control components exchange goals, plans, and informationvia communication. Section 4.2 contains a thorough description of the individual modules.Their interplay is discussed in section 4.4.The agent knowledge base is also designed in a hierarchical manner. It consists of fourcomponents, namely the agent's world model, the behavioural knowledge, the local plan-ning knowledge, and the cooperation knowledge. For a detailed discussion of the individualmodules of the knowledge base we refer to section 4.3.15



16 CHAPTER 4. THE INTERRAP AGENT MODEL
E  N  V  I  R  O  N  M  E  N  T

wwoorr lldd
iinn tteerr ffaaccee

HHiieerraarrcchh iiccaall
AAggeenntt   KKBB

AAggeenntt

AAAAAA
AAAAAA

Behaviour-based
Component

BBC

AAAAA
AAAAA
AAAAA

Plan-based
Component

PBC

Acting Communi-
cation Perceiving

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

Acting Communi-
cation

Perceiving

AAAAA
AAAAA
AAAAA
AAAAA

Cooperation
Component

CC

World Model

Patterns of 
Behaviour

Cooperation
 Knowledge

Local
Plans

control flow

information flowFigure 4.1: The InteRRaP Agent Model4.2 The Agent Control UnitIn the following, the individual components of the agent control unit are described in moredetail. The ow of control among these modules is de�ned in section 4.4.4.2.1 The World InterfaceThe world interface bears the agent's facilities for perception, action, and communication.Its basic structure is displayed in �gure 4.2. In the following, we will explain the single
Action

Translator   Module

Sending

Receiving

Information 
Assessment

Module

Perception

E  n  v  i  r  o  n  m  e  n  t

Perception
Buffer

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

BBC

execute(Action)
send(Msg)

done(Action, Status)
received(Msg)

AAA
AAA

AAAAAA
AAAAAA

World
 Model

beliefs

current
perceptionFigure 4.2: The InteRRaP World Interfacecomponents of the world interface in more detail.



4.2. THE AGENT CONTROL UNIT 17Performing ActionsThe actions component controls the e�ectoric capabilities of the agent. Obviously, thesecapabilities are very domain-dependent. In the case of a robot, they are programs to controlthe arm movements, to control the speed and the direction of forward motion, and so on. Indomains such as the transportation domain [KMM93b], where the agents do not manipulatethe world in a physical sense, the actions component may be superuous, at all.CommunicationThe communication unit bears the agent's communicative facilities. It controls the phys-ical realization of sending and receiving messages1. Since our communication concept islanguage-independent, outgoing messages have to be transformed from the agent's internallanguage into a knowledge interchange format (often called interlingua) which is understoodby all agents. Corresponding to this, incoming messages must be transformed into the localagent language. This transformation is done by the translator module. In our current imple-mentation, agents written in PROLOG, LISP, and MAGSY [FW92] are able to communicatewith each other. A translator module for OZ agents [WHS93] is under development.Perception and SensingThe perception part of the world interface controls the vision and sensing facilities of theagent. Again the concrete implementation of this module heavily depends on what kinds ofagents we want to model. In the case of a real robot environment, the perception part mayinclude the transformation and processing of the data obtained by a video camera. Sensoricinformation can be received for example by laser or ultrasonic sensors. If we deal with asimulated scenarion, perception may be implemented by simulation, too; this may be done,for example, by the reception of messages from the simulated world model.Information AssessmentIn order to be useful in an agent's database, the information the agent receives or perceivesmust be transformed into an explicit representation, which is stored into the world model.Obtaining a high-level knowledge-based world model from low-level information has turnedout to be a very di�cult problem in AI since its early beginnings (see [Win84, RK91] foran overview). It implies all the problems of object and scene recognition computer vision isfaced with, and for which no generally satisfying solutions have been achieved up to now.Information assessment also touches the issues of the attribution of credibility and of beliefrevision: an agent who maintains a world model that consists of what the agent believes ofthe world, and who receives a new piece of information from the world, has to whether, andin how much, it is willing to believe in the information. On the other hand, the incominginformation may modify the agent's mental attitude towards its previous beliefs, and mayforce these to be revised.In conclusion, the subject of information assessment is important and very di�cult. Sincewe have not focussed on the issue of knowledge representation, up to now, we deal with thismodule in a quite straightforward way. Firstly, we assume the presence of a module whichtransforms low-level data in a symbolic representation of the world ("symbolic sensors").Secondly, we assume that an agent believes all the information it receives - i.e. we modelan uncriticial agent. The �rst assumption is reasonable since our applications - the loading1In our implementation, it is realized via UNIX port socket communication according to the TCP/IPprotocol.



18 CHAPTER 4. THE INTERRAP AGENT MODELdock, the transportation domain, and the COSMA schedule manager - only simulate real-world execution. Therefore, the messages received and the information perceived are alreadytransmitted in a quite high-level format. The second assumption makes sense in our contextbecause we are currently less interested in examining lying agents (as done for example byZlotkin and Rosenschein [ZR91]) than in examining self-interested, but in principle honestagents2, which can be classi�ed as non-antagonistic agents.4.2.2 The Behaviour-based ComponentIn the following, the behaviour-based component of InteRRaP is explained in more detail.The BBC implements the basic behaviour of the agent and the execution and decisioncomponent. It has access to a set of executable patterns of behaviour which are structuredaccording to a two-dimensional hierarchy (stored in the hierarchical knowledge base). Theposition of a pattern in the hierarchy is an important factor to determine its priority (Seechapter 5 for a more detailed discussion of priorities of patterns of behaviour and goals).The BBC is closely linked to the world interface, and thus, to the actions and changes inthe world. Patterns of behaviour can be activated both by external trigger conditions andby the plan-based component.The structure of the behaviour-based component is shown at �gure 4.3. It consists of two
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4.2. THE AGENT CONTROL UNIT 19procedures. This kind of patterns of behaviour are abstract (pre-compiled) actions which canbe activated by the planner. They are appropriate in order to activate routine behaviours,which do not require deep reection or planning. Examples for such routine tasks arestarting a car, or walking along a hallway, or moving straight ahead from one landmark toanother.Representation Whereas there has been done much work in the representation of plans,the question how to represent patterns of behaviour has been explored much less systemati-cally for a couple of reasons: on the one hand, since it is one basic property of PoB that theyhave no explicitly represented internal structure,there seems to be no need for the agent itselfto know about their representation. On the other hand, for designing PoB, and for allowingthe planner to reason about PoBs as abstract actions, it seems very reasonable to think ofrepresenting them. Designing a pattern of behaviour requires a clear understanding of theactivation conditions, the outcome of the execution, of termination and failure conditionsof the pattern. Apart from this information, the planner needs to decide whether a certainPoB should be activated in order to reach a certain goal, or whether it should be preferredto generate a plan for the goal. In order to do this, heuristic information such asIf there is a pattern of behaviour available, always use it, because it tends to bemore e�cient than planning the goal in more detail!may be used. However, patterns of behaviour may be very complex so that it is oftenconvenient to be able to evaluate the utility of their execution against alternatives a priori.Thus, the description of a pattern of behaviour should contain some information whichallows such a priori evaluation of the consequences of executing the pattern. For example,using a weighted randomness behaviour in order to get from one landmark to another iscertainly more exible than planning the way down to a deeper level. However, it may alsotake the agent a longer time to reach its destination. In criticial applications, where hardtime constraints have to be taken into consideration, it may be a hard requirement to planmore. Thus, an estimation of the time or the cost needed for executing a PoB, as well as anestimation of the probability of success (which can of course be improved while the agentis processing) may be valuable information for the plan-based component in order to assesshow promising the use of a pattern of behaviour really is.The BBC ControlThe control component of the BBC has the task of coordinating the patterns of behaviour.Since the organization of the patterns provides the general possibility of concurrency, i.e. sev-eral patterns may be active in parallel, but only one pattern may be executed at a time, acoordinating instance is required. This corresponds to the organization of the conceptualagent model (see chapter 3) where the situational context and the mental context may acti-vate a set of patterns of activity, one of which has to be chosen for execution by a decisioninstance.What is actually required for this purpose is a priority mechanism for patterns of be-haviour. Since patterns of behaviour correspond to goals of an agent, this a�ects the areaof goal prioritization. Di�erent strategies for attributing strategies to goals are described inchapter 5. The basic idea is to structure the patterns of behaviour into a two-dimensionalhierarchy (see �gure 5.2). One dimension of the hierarchy de�nes a goal prioritization. Low-er level goals (i.e. patterns of behaviour for handling situation which might endanger thephysical well-being of the agent) have a higher static priority than higher-level goals (forexample cooperation with other agents The second dimension describes goal expansion. Itreects the actual state of processing of a certain goal, and is described in more detail in



20 CHAPTER 4. THE INTERRAP AGENT MODELchapter 5. Now, the priority of a goal (and thus, of the pattern of behaviour that is asso-ciated with the goal) is determined by combining a static priority (which is extracted formthe hierarchy structure) with a dynamic part. The dynamic aspect corresponds to the factthat the relative importance of a goal may change over time. It is discussed in section 5.1.2.In each cycle of the agent interpreter, the control mechanism selects one pattern (theone with the highest priority) and executes it. In the next subsection, we will look in moredetail at the process of executing patterns of behaviour.Execution and ControlAccording to the decision of the BBC control, a certain PoB is executed. The body ofa pattern of behaviour is an executable (compiled) procedure which is called by the BBCcontrol. In the body of the PoB there are activation calls to the acting and perceivingmodules of the world interface. These are sent to the interface and result in the performanceof actions in the physical environment or in the sending of messages to other agents. On theother, in the execution of a PoB, there can be a call to the PBC. In section 4.5, the interfacebetween BBC and PBC is described in more detail. Chapter 11 shows the interplay amongthe modules by means of a concrete example.An Example: The OPS-5 WayIn this section we will briey outline and discuss a straightforward way to de�ne patternsof behaviour and a control mechanism for these patterns by using the features of the rule-based programming language OPS-5 [For82]. OPS-5 is based on a forward-chaining ruleinterpreter using the RETE match algorithm which works on a working memory containingfacts of the form( name ^ attr1 val1 : : : ^ attrn valn ).Rules of the form( p cond1: : :cond k--> action1: : :actionj )can be de�ned by the programmer.OPS-5, and its multi-agent extension MAGSY [FW92] which is used as the basis systemin our group, has a couple of features which make it a suitable tool for designing patternsof behaviour:� It supports concurrent activation of di�erent rules. Several rules can be active ata time; in fact, each rule whose conditions are matched by the data in the workingmemory is included in the conict set. A control mechanism chooses the rules thatactually \�re".� The algorithm used as the basic control structure of the OPS-5 rule interpreter is astraightforward and e�cient implementation of a mechanism for goal prioritization.It was designed in order to select from the conict set the rule with the highestpriority. The prioritization mechanism is a dynamical one. It uses the criteria of



4.2. THE AGENT CONTROL UNIT 21refraction, recency, and speci�city in order to determine the rule with the currentlyhighest priority.� Using the MEA strategy [For82] which emphasizes the �rst condition of a rule, rulescan be grouped to rule sets. Thus, a pattern of behaviour does not correspond toa single rule. Rathermore, it makes sense to implement it as a whole set of rules.The grouping is obtained by de�ning a working memory element context using thecommand( literalize contextname : symbol3priority : integerstatus : symbol: : : ).The context element can be used in order to group rules in a very simple way. Usingthe MEA strategy, each rule of the rule set must have as the �rst condition( context ^ name pob xyz )This has the e�ect that this rule can only �re if the context with name pob xyz isactive. A context is activated by a( make context ^ name pob xyz )command in the action part of another rule.� OPS-5 allows one to describe reactive behaviour in an intuitive and elegant mannerby using the forward-chaining rule interpreting mechanism.However, by our experience, there are also some problems with OPS-5.� OPS-5 (with the exception of vector attributes) only allows the de�nition of at datastructures. There is no convenient way to represent objects whose description couldbest be covered by using a complex record structure. The description of a shippingcompany as an OPS-5 agent (see [KMM93a]) is an example for such an object.� Whereas OPS-5 is very well suited for describing rule-based behaviour, it is totallyinconvenient when it comes to model procedural knowledge, algorithms with a �xedsequential ow of control. We have solved this problem by integrating C++ functionsinto our OPS-5 code. However, a language which o�ers this kind of programmingfacilities from within it would be desirable.� The data-driven structure of OPS-5 does not support the modeling of goal-directedbehaviour.� Except the hand-knitted context management which we mentioned above, OPS-5 o�ersno built-in way of structuring rules into rule sets, which forces the programmer tospend much programming e�ort and to be very careful when designing rule sets.� In chapter 9, we will propose a hierarchical organization of patterns of behaviour whichmakes use of attribute inheritance. Of course, OPS-5 does not support modeling thiskind of inheritance. Thus, the language is not well-suited as an abstract de�nitionlanguage for patterns of behaviour (see section 4.2.3). A language whose concepts3The possibility of using type declarations for literals is a feature of MAGSY and is not part of standardOPS-5.



22 CHAPTER 4. THE INTERRAP AGENT MODELare based on the object-oriented principles, such as C + +, SMALLTALK, or OZ[WHS93] should be preferred for this purpose.The structural weakness of the language has been the reason why we started to reectupon a more abstract language for the speci�cation of patterns of behaviour. This issue willbe discussed in the following subsection.4.2.3 Towards a General Speci�cation Language for Patterns of BehaviourAbove, we have motivated the necessity of developing a general language that allows oneto describe patterns of behaviour on a high level, and, as a longer-term vision, to compilethis abstract description down to LISP or OPS-5 code that can be executed on a physicalmachine.In this section, we present a �rst approach towards such a more abstract descriptionlanguage. We start from a more informal structuring of patterns of behaviour according tosome of the criteria already mentioned for general patterns of activity in chapter 3. We thenoutline how this description can be extended to a high-level speci�cation language.We de�ne a pattern of behaviour by the following attributes:� The name of the pattern, which serves as a reference for calling it.� The static priority. This is one of fphysical; task-oriented; social; optimizationg. Werefer to chapter chapter 5 for a more detailed discussion of this issue.� A description of the participants. If the PoB is merely local, the only participant isself which stands for the agent itself. Note that in general, patterns of behaviour canalso concern other agents.� The situational context of the pattern. It describes the conditions which have tohold true in the external world (the environment of the agent) in order to be ableto execute the pattern. Only patterns whose situational context matches the currentexternal situation can become active.� The mental context of the pattern. It de�nes the goals of the agents that are a�ectedby the pattern, for example, what goals are supported by executing the pattern? Onlypatterns whose mental context matches the current goals of the agents can becomeactive.� A set of postconditions. These are conditions which hold after the PoB has beensuccessfully executed. Postconditions can be used by a classical planner to reasonabout the suitability of a certain pattern of interaction.Note that - in contrast to thetermination conditions de�ned below, postconditions may also be conditions whichare not intended by the agent when executing the PoB.� A set of termination conditions. These are conditions which enforce to stop the exe-cution of the pattern of behaviour, because its goal is reached. For example, searchingan object can be terminated when the agent has found the object. The pattern of be-haviour goto landmark can be terminated directly if the current position of the agentis equal to the goal landmark. Termination conditions are very useful since it is nottrivial for a classical planner to realize that one of its current goals has been achievedby coincidence (for example by an action that has been performed by another agent).This problem contains the frame problem [MH90] - which is the problem of represent-ing and computing which actions do not change when performing an action - and therami�cation problem [Fin87] - which is the problem of representing and computing all



4.2. THE AGENT CONTROL UNIT 23e�ects an action has. In practice, using termination conditions is a solution to theseproblems.� A set of failure conditions. Basically for the same reasons as the ones mentioned above,it is useful to recognize when the execution of a PoB has failed, either because thegoal corresponding to the pattern is regarded no longer achievable, because the agentdoes not pursue that goal any longer.� Last, but not least, the actual execution part of the pattern has to be represented.It is a pointer to an executable piece of code (for example, a set of OPS-5 rules or aC++ procedure) together with the parameters necessary to instantiate the procedurecall.During the execution of the patterns, from time to time, the bbc-control checks whetherthe failure or termination conditions hold. If so, the execution is �nished.This informal description implies to de�ne a pattern of behaviour as a frame-like struc-ture as shown in �gure 4.4. As a language for the description of the context and conditions,formula in First Order Predicate Logics, Horn Logics, or a terminological language can beused . At a later stage, a precompiler could be built which translates descriptions of patternsof behaviour generated in a frame language into lower-level code which can be executed.( PoB :name <PoBName>:super <PoBName> ;; name of generalization:static <physical, task-oriented, social, optimization>:participants [:add] <names of participants>:sit context [:add] <set of (first-order) formula>:mental context [:add] <set of goal formula>:postcond [:add] <set of (first-order) formula>:termcond [:add] <set of (first-order) formula>:failcond [:add] <set of (first-order) formula>:exec descr <proc name> <param1> : : : <paramk> )Figure 4.4: Abstract Description of a Pattern of BehaviourHowever, we need to gain more practical experience before we can claim to have found arepresentation of the patterns of behaviour which covers all the important aspects of theirdescription and execution. Experience in planning shows that there seems to be no univer-sally accepted mechanism for representing abstract actions. New slots, such as evaluationinformation, interdependencies with other patterns of behaviour, incompatibilities with cur-rent commitments aso., could be integrated, leading to the de�nition of a very complex andexpressive, but also possibly confusing language. In the examples at hand, we will use theformalism introduced above for modeling the patterns of behaviour.4.2.4 The Plan-based ComponentThe PBC contains a planning mechanism which is able to devise local single-agent plans.The plans are hierarchical skeletal plans whose nodes may be either new subplans, or exe-cutable patterns of behaviour, or primitive actions. Thus, the plan-based component mayactivate patterns of behaviour in order to achieve certain goals.



24 CHAPTER 4. THE INTERRAP AGENT MODELFunctionality of the PBCLet us start with de�ning the external functionality of the component. The PBC shall beable to� Devise a plan for a goal and control the correct execution of the plan. This is the\standard mode" of the planner when it is requested by a pattern of behaviour.� Only devise, but not execute a plan for a goal. The plan structure is returned to theBBC. This functionality can be helpful when the agent is asked by another agent totell it a plan for a certain goal.� Evaluate a plan. This is required for two reasons. Firstly, as we will see, the plangenerator component of the PBC may return a set of alternative plans. Thus, it is aninternal functionality of the PBC to decide which plan to choose. For this purpose,however, expected utilities must be assigned to plans. Secondly, the PBC will producejoint plans. Since joint plans are negotiated between the partners, plans proposed byother agents have to be evaluated by an agent in order to decide whether to acceptsuch a plan or whether to reject it. This is the external need for plan evaluation.� Interpret a plan. If an agent receives a plan by another agent, it has to execute(interpret) this plan - without generating a plan itself. Therefore, the PBC must beable to interpret incoming plans and to control their execution.This functionality leads to four di�erent contents of messages which may be passed betweenthe BBC and the PBC. They are shown in �gure 4.5 and displayed in the overview table4.10.BBC ! PBC :do(Goal) ;; make plan for Goal and control its execution.plan(Goal) ;; make plan for Plan.eval(PlanList) ;; compute expected local utility for Plans in Planlist.interpret(Plan) ;; control execution of Planretract(Goal) ;; Goal is no longer current goal, plan obsolete.done(PoB, Status) ;; pattern of behaviour finished (Status 2 fsuccess; failg).PBC ! BBC :done(fGoal, Plang, Status) ;; goal done/ plan interpreted (Status 2 fsuccess; failg).planned(Goal, Plan) ;; returns plan for goalevaled(Planlist, Eval) ;; returns evaluation for plan.activate(PoB) ;; activation of a pattern of behaviour.Figure 4.5: The Interface between BBC and PBCInternal Structure of the PBCIn the following, the di�erent subcomponents of the PBC and their interplay are explained.Figure 4.6 shows the internal structure of the plan-based component. It consists of a planningcontrol module PBC control, of a plan generator module, a plan evaluator module, and aresource handler module. The individual components are explained in the following.The PBC Control The PBC control is the \head" of the PBC. It consists of the PBCinterface, the plan interpreter, and a set of goal stacks. The interface receives messagesfrom and sends messages to the BBC. The plan interpreter controls the processing andthe decomposition of a plan. For example, it transforms speci�c control structs of the
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foreign KBFigure 4.6: The Plan-Based Componentplanning language (such as while e do a) in a format which can be understand by the BBC.Furthermore, based on the information brought about by the plan evaluator, it decides whichgoal to plan next. For this purpose, it maintains a set of goal stacks. This is necessary,because the planner may be called by several concurrent patterns of behaviour. Thus, foreach goal, one goal stack is maintained for each goal. In each cycle, the interpreter choosesone of the goal stacks and processes the top goal of this stack. Processing a goal meanseither:� to pass the goal to the plan generator, or� to activate a pattern of behaviour.The Plan Generator The plan generator has access both to a plan library and to astandard from-scratch planning algorithm (see e.g. [AKPT91]). The plan generator is calledby the pbc-control by sending a commandmake plan(Goal, ?Planlist).Generation of a plan means either choosing a suitable plan from the plan library, or, if sucha plan is not available, devising a plan from scratch. The plan library consists of a set ofentriesplan-lib ::=( lpb-entry1,: : : lpb-entryk ).



26 CHAPTER 4. THE INTERRAP AGENT MODELEach entry of the plan library is a tuplelpb-entry(Goal, Type, Body) .Goal is the reference name of the entry and speci�es which goal (or rather: which plan stepcorresponding to a certain goal) is expanded by the speci�c entry. Type can be either s forskeletal plan or b for executable pattern of behaviour. For Type = s, the Body of the entryconsists of a list of plan steps, which specify the expansion of the entry plan step. If Type= b, the Body denotes the name of an executable pattern of behaviour.The Plan Evaluator The plan evaluator is able to associate utilities with plans. If itreceives a list of alternative plans, it returns a list of evaluated plans. The evaluation isused by the plan interpreter in order to decide which of the alternative plans to pursue.Obviously, these utilities are estimations rather than exactly predictable values, becausethe real utility of a plan can often only be determined after it has been executed. Planevaluation is a complex matter for itself, and quite a few syntactic (for example, the numberof actions an agent has to execute) and semantic criteria (for example, estimating the costimplied by certain actions) can be de�ned and applied. In this paper, we will not deal withthis matter in more detail.The Resource Handler Finally, the resource handler module de�nes the interface to theresources an agent may need in order to devise its plans. Similar to [BS92], we feel thatmany actions of an agent can be expressed in terms of obtaining resources and obtainingresources from other agents / modules. An important resource needed by the planner isknowledge. For example, in order to determine the next plan step, an agent may haveto know its current position - which is contained in the world model layer of the agentknowledge base. In general, answering the question where to �nd a certain resource is nota trivial problem. In the case of knowledge, which may be distributed within a multi-agentsystem, the problem can be considered as a problem of search in distributed data-bases.Viewed under this perspective, the resource handler module serves as a monitor fordatabase retrieval. It contains information which is necessary to decide, whether the infor-mation can be found in the agent knowledge base, or whether it has to be retrieved in anexternal knowledge base. This concept allows us to hide the information how to get from acertain resource from the pbc-control or the plan generator. Using the resource request callrr(Resource, Value),the resource handler can be commissioned to provide a certain resource, whose value isreturned to the caller.4.2.5 The Cooperation ComponentThe CC contains a mechanism for devising joint plans. It has access to protocols, a joint planlibrary, and knowledge about communication strategies stored in the cooperation knowledgelayer of the KB. Figure 4.7 shows the structure of the cooperation component.The basic parts the CC consists of are the CC control, the joint plan generator, the jointplan evaluator, the joint plan translator, and the resource handler. They are explained inmore detail in the following.The CC ControlThe role of the control component of the cooperation layer can be compared with the roleplayed by the PBC control in the plan-based layer. One the one hand, the CC control serves
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Figure 4.7: The Cooperation Componentas an interface between the CC and the PBC. On the other hand, it coordinates the workof the other submodules of the component. The two functionalities are described in thefollowing.Interface Functions From the perspective of the plan-based component, the cooperationcomponent o�ers four basic functionalities.� It can devise a plan for a goal which is passed to it by the PBC. This functionalitycan be accessed by a message plan(Goal). This facility corresponds to the one alsocontained in the PBC. However, at the CC level, plans can be devised which describeactivities of more than one agent. In the case of a plan(Goal) call, the cooperativeplan is passed directly to the PBC, without any further translation or interpretation.This functionality is needed if the agent is asked by another agent for a plan whoseexecution will achieve a certain goal.� Using the the do(Goal) call, the CC may plan a goal and control its execution. Thisalso corresponds to the process activated in the PBC by the do(Goal) call.� The cooperation component shall be able to interpret a given cooperative plan. Thisis necessary in the case that the agent has received a joint plan by another agent. Theinterpretation functionality can be activated by the PBC sending a interpret(JPlan)message to the CC. JPlan stands here for a cooperative or joint plan.� The cooperation component must be able to evaluate a cooperative plan in the sameway as the plan-based component evaluates a single-agent plan. This is important sincejoint plans can be subject to negotiation, and since an agent has to decide whether itshall accept or reject a plan which has been proposed by another agent (see below).



28 CHAPTER 4. THE INTERRAP AGENT MODELThe evaluation functionality is activated by the plan-based component by sending amessage eval(JPlan) to the CC. It is implemented in the joint plan evaluator module.The functionalies o�ered by the PBC and the CC are displayed in the overview table 4.5.Coordination Function The CC control obtains the above mentioned requests from thePBC and monitors their execution. For this purpose, it coordinates the activities of the othersubmodules of the CC, namely the joint plan generator, the joint plan evaluator, the resourcehandler, and the joint plan translator. When the CC control receives a message do(Goal),it orders the plan generator to make a plan for this goal. The plan generator returns (in thecase of success) a list of plans for the respective goal. The CC control passes this list to theplan evaluator, where the utilities of the single plans are computed (see the discussion below).If information or additional resources are required during the computation process, theseare provided by the resource handling module. The plan evaluator returns an evaluatedlist of joint plans for the goal. The CC control selects the best plan and interprets it.Interpretation here means the monitoring of the execution of the plan. Since the plansgenerated by the CC are plans for multiple agents, they cannot be directly interpreted bythe plan-based component. Rather, the joint plan is transformed into a single-agent planby the joint plan translator. The output of the plan translator is a sequence of single-agentplan steps (which can be again plans or patterns of behaviour) which can be interpreted bythe plan interpreter of the PBC as described in section 4.2.4.In the following, the individual modules which are coordinated by the CC control aredescribed.The Joint Plan GeneratorSimilar to the generator of the PBC, the joint plan generator is responsible for devising ajoint plan for an interactive situation. It does this based on the goals of the agent itself,and, if these are available, based on the goals of the other agent(s) participating in theinteraction. It has two alternatives to devise a plan. For a couple of standard situations,ther are prede�ned joint plans in the joint plan library. A subset of the joint plans in thelibrary are negotiation protocols. For other cases, a plan has to be devised from scratch, orat least has to be speci�ed so far that prede�ned plans or protocols can be used as subplans.The Joint Plan EvaluatorSince joint plans are subject to negotiation, the agent must be able to evaluate a joint planwhich has been proposed to it by another agent. On the other hand, in order to generate\reasonable" joint plans itself, the agent must have a measure for what is a reasonableplan. It is the task of the joint plan evaluator to determine whether a plan is reasonable byattributing a utility for the plan. The evaluator accepts as input a list[P1; : : : ; Pk]of joint plans proposed for achieving a goal, and outputs a list of evaluated plans[(P1; e1); : : : ; (Pk; ek)]where ei is the utility ascribed to Pi. The implementation of the evaluation function dependson the representation of the plans. As we already mentioned for the case of single agent plans,the (a priori) evaluation of plans is very di�cult to do, especially in the case of hierarchical,non-linear plans, where it is not known at planning time what e�ects the plan will have, andhow expensive its execution will be. In the case of multi-agent plans, there is an additionaldimension: What should the utility be an agent ascribes to a joint plan? Should it be the



4.2. THE AGENT CONTROL UNIT 29estimated local utility for the agent itself? Should it be the global utility? Or should eventhe utility of the other agents be taken into consideration? The e�ects di�erent evaluationstrategies may have on the negotiation behaviour of the agents is discussed in the following.Evaluation Strategies In the simplest case, agents only consider the utility a joint planhas for themselves. In game theory, this behaviour is called \individual rational" (seee.g. [LR57, Ros85]. A characteristics of negotiations among individual rational agents isthat the solutions found are - in the best case - pareto-optimal solutions3.The second alternative, using the global utility of a plan in order to evaluate it is a �neidea, since it obviously leads to good global solutions. Unfortunately, in most interestingDAI domains, either the agents are not able to compute the global utility due to theirincomplet knowledge, or the agent are not really interested in �nding a globally optimalsolution, but in �nding a solution which maximizes their local utility.The third alternative, trying to maximize one's own utility but taking into considerationthe utility a joint plan has for the other agents, is a very interesting one for a couple of rea-sons. Firstly, an agent who generates proposals for joint plans can considerably shorten thetime needed for negotiation if it tries to propose plans which are acceptable for both agents.Therefore, it seems worth at least trying to estimate whether a plan could be acceptable forthe partners. Secondly, if we introduce long-term criteria for decision-making in negotiation,an agent will probably take it badly if it is continuously faced with inacceptable proposalsdevised by its negotiation partner. Depending on the negotiation strategy it uses, this agentmight also start to make proposals which are inacceptable for the other agent, as well4.In conclusion, taking into consideration the utility a a plan has for another agent seemsto be stringent if reasonable negotiation behaviour shall be modelled.The Joint Plan TranslatorDepending on the representation of a plan, it is often not possible to use the same languagefor describing (multi-agent) plans and protocols at the cooperation layer, and for describingtheir local counterparts, the subplans which are executed by the plan-based component.For example, if two agents i and j who are facing each other directly devise a joint planfro changing positions, a joint plan may be that i should move one �eld to the right, thenone �eld ahead, and then one �eld to the left, whereas agent j moves one �eld ahead (seechapter 11 for a more detailed treatment of this example, as well as �gure 10.1 for a graphicaldisplay of the scene). However, it is not su�cient to give the plan-based component of agenti only the i-projection of the joint plan, namely \move to the right, move ahead, move tothe left". The joint plan contains also the plan constraints, i.e. the interdependence of plansteps performed by di�erent agents. In our example, agent j may only start performing itsplan after agent i has moved to the right. On the other hand, i must wait before it canmove again to the left until j has performed its action walk ahead.It is the task of the joint plan translator to transform a joint plan into a single-agent planby projecting the agent's part of the joint plan and by adding plan steps which guaranteethat the constraints contained in the original joint plan are satis�ed during plan execution.The organization of the translator depends on the way joint plans and single agent plansare represented. In chapter 11, we will show the functionality of the tranlator module bymeans of the loading dock example.3A solution S for a problem P among n agents is pareto-optimal if there is no solution S0 for P so thatnot at least one agent has a worse local utility for S0 than it has for S.4This would be the case if the agent used the winning strategy in the prisoners' dilemma [Axe84] tourna-ment, namely to cooperate as long as the partner cooperates and to defect as soon as the partner does.



30 CHAPTER 4. THE INTERRAP AGENT MODELThe Resource HandlerThe role of the resource handler is the same as already discussed in the case of the plan-based component in section 4.2.4. According to the principles of modularity and informationhiding, the modules of the cooperation component should not have to care where to get acertain resource or a certain piece of information from: it is the task of the resource handlerto administer the local resources of an agent, and to look up for a certain piece of knowledgein the appropriate part of the agents knowledge base. If a certain resource or informationcannot be obtained locally, but the resource handler has information about how and fromwhom the resource information may be gained, the CC control can use this information inorder to obtain the resource via an appropriate protocol.4.3 The Hierarchical Knowledge BaseThe knowledge base is structured in a hierarchical manner as it has been proposed in theRATMAN agent model [BM91]. It consists of four layers which basically correspond to thestructure of the agent control, namely the world model layer, the behavioural knowledgelayer, the planning knowledge layer, and the cooperation knowledge layer. The individuallayers are discussed in the following subsections.4.3.1 The World ModelThe lowest layer contains the world model of the agent. It contains what the agent believesto be the current state of the static and dynamic world. The knowledge5 in the world modelis organized according to a taxonomy of classes. Since our classi�cation is rather functional,and therefore does not draw a distinction between object-level and meta-level knowledge, theworld model layer contains both object-level knowledge and meta-level knowledge, i.e. bothfactual knowledge about the state of the world and epistemic and auto-epistemic knowl-edge. For example, the knowledge a transportation agency has about its own capacities andcapabilities is represented using the taxonomical knowledge representation system KRIS[BH90].4.3.2 Behavioural KnowledgeLayer two de�nes the primitive actions and the patterns of behaviour. Moreover, it containscontrol knowledge which is used by the BBC-Control in order to maintain the patterns ofbehaviour. According to the RATMAN agent model [BM91], primitive actions are represent-ed as precondition-action-postcondition triples. The representation of patterns of behaviourhas been discussed in detail in section 4.2.2. It ranges from simple condition-action pairs (forsimple reactive patterns of behaviour) to a description in an abstract speci�cation language.4.3.3 Local Planning KnowledgeLayer three contains local plans and knowledge which is speci�c for planning. The repre-sentation of plans has been discussed in section 4.2.4 and will be shown in more detail bymeans of an example in chapter 11. In our applications, plans are stored as hierarchicalskeletal plans [BKL92] in a plan library. Thus, the planning component can �nd our whether5In the following, we will use both the terms knowledge and belief in order to refer to the information keptin the world model. Note, however, that in general all the information an agent has is unsecure. Therefore,it is more adequate to speak of the beliefs of an agent instead of its knowledge. However, for certain piecesof information, for example for "facts" the agent actually perceives, or for attributes of an agent such as thecurrent position of a forklift, it is desirable and also acceptable to say that the agent knows them.



4.3. THE HIERARCHICAL KNOWLEDGE BASE 31there is a skeletal plan for the current goal in the plan library. Plans are represented astree structures whose leaf nodes contain only patterns of behaviour (abstract actions) andprimitive actions which may be directly executed using the primitives o�ered by the worldinterface.4.3.4 Cooperation KnowledgeFinally, layer four contains knowledge of and strategies for cooperation. This knowledgecomprises joint plans for coordinating the actions of multiple agents. The plans are stored ina joint plan library and accessed similar to the way single-agent skeletal plans are accessed inthe plan library. In addition, negotiation protocols are stored in the cooperation knowledgemodule. These protocols are represented as tree structures whose leafs are plans which canbe executed by the plan-based component. Moreover, the decision layer of the negotiationmodel is described here by means of di�erent negotiation strategies among which the designerof the system - or, if possible, the agent itself - can choose (compare [SS93] for a descriptionof possible strategies for the case of appointment scheduling negotiation).Finally, for di�erent patterns of cooperation, such as blocking conict resolution (in theloading dock), exchanging orders, o�ering empty rides (transportation domains), coopera-tion-speci�c partner information is stored. Thus, it is described whether another agent isconsidered a good partner for a speci�c kind of interaction. This is done based on thecooperation history, i.e. based on the experiences the agent has gained on the occasion ofearlier encounters with other agents.4.3.5 Inter-layer RelationshipsThere are two kinds of relationships between the individual layers of the hierarchical agentknowledge base. Firstly, information may be passed from layer to layer. The basic idea isthat information contained in lower layers is \visible" for the higher layers, but not vice versa.For example, the plan-based component can access information about the world model,whereas the behaviour-based component does not have access to planning or cooperationinformation. Note that this enables us to describe negotiation protocols explicitly (by aplan) and implicitly, from a local point of view, by a pattern of behaviour. For example, thecontractor or manager roles in a contract net protocol can be de�ned in a straightforwardmanner by patterns of behaviour.Secondly, higher-level data structures are constructed in terms of lower level ones. Figure4.8 shows how this works. On top, cooperation knowledge is de�ned by joint plans andnegotiation protocols. These protocols are represented by graphs (in special cases also bytrees), whose inner nodes are decision nodes, and whose leaf nodes describe parts of theprotocol which are local plans. For example, leaf nodes of the contractor part of a contractnet protocol [DS83] are subplans for computing and sending a bid for an o�er, for executingthe order if it has been granted to the agent, and for reporting the state of a�airs tothe manager after the execution has been �nished. These subplans are de�ned one layerbelow, namely at the planning knowledge layer of the knowledge base. Analogously to jointplans and negotiation protocols, local plans are de�ned as tree structures whose inner nodesdenote decision and expansion (for example labeled as AND and OR nodes), dependingon the plan language), and whose leaf nodes are executable patterns of behaviour. Thepatterns of behaviour are again de�ned one layer below, at the behavioural layer of theagent knowledge base.Note that, in �gure 4.8, the patterns of behaviour are represented as structured boxes.This is to denote two essential characteristics of patterns of behaviour, which distinguishthem from plans: one the one hand, patterns of behaviour are regarded as \black boxes",from the point of view of the planner. They represent procedures which are activated and
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Figure 4.8: Structure of the Hierarchical Knowledge Baseexecuted without reasoning about their internal structure. On the other hand, patterns ofbehaviour are compiled multi-plans whose external e�ects are situated: in di�erent situa-tions, one and the same pattern may produce di�erent behaviour - which can be explainedas taking di�erent paths through the compiled tree-structure, caused by situative decisionsmade at several internal nodes in the behaviour6. Moreover, if we view patterns of behaviourfrom the perspective of the layer below them, the world model, their output is the activa-tion of primitive actoric and communicative acts - which are de�ned in the layer below.Therefore, the relationship between PoBs and plans is similar to the relationship betweenthe data structures at the world model layer and the patterns of behaviour.Finally, there is the question whether there is a ow of information amon the levels of theknowledge base in the same way as it happens in the control unit, and if so, how is this owof information de�ned? Up to now, in our system, there is no information passed explicitlybetween di�erent layers of the KB. If the KB is changed, then this is done by an appropriatelayer on the side of the control component, for example by a pattern of behaviour whichobserves the world and changes a knowledge base entry at the behavioural knowledge levelif a certain situation in the world occurs.A slightly di�erent proposal would be to organize the knowledge base as a hierarchicalblackboard structure. For each layer of the structure, administration demons (similar tothe knowledge sources in standard blackboard systems [Len75]) are de�ned. Each demon isable to transform the knowledge at its layer based upon information it receives from lowerlayers.Thus, similar to the way this happens in the control unit, very speci�c information con-tained in the lower layers of the knowledge base could be transformed into more general andmore abstract information at lower layers of the knowledge base. This way, the functionalhierarchy provided by the InteRRaP agent KB could be enhanced by an additional di-6From the point of view of the design of patterns of behaviour for a concrete domain, it is clear that thestructure of the patterns must be designed - just as any (good) program should have a clear structure. Thisis a further motivation for developing an abstract speci�cation language for PoB.



4.4. THE FLOW OF CONTROL 33mension, the dimension of speci�city and abstraction. This, however, remains to be futurework.4.3.6 Coupling Agent Control and Knowledge BaseUp to this stage, we have described the two basic parts of an InteRRaP agent, namely itscontrol module and its knowledge base. Of course, the knowledge contained in the knowledgebase is used by the modules of the control unit in order to make decisions and in order todetermine how the agent should behave in a given situation. Since both the knowledgebase and the contol unit are hierarchically structured, it is a nontrivial question how theinteraction between the two parts are de�ned, i.e.� Which control modules have access to which parts of the database?� If a control module can use information from more than one part of the knowledgebase, how does it know where is should search for certain pieces of information?In the following, we provide brief answers to these questions.Knowledge Base AccessThe question which control modules may retrieve inormation from which layers of the knowl-edge base is answered by using a simple mechanism: a control layer has access to its corre-sponding knowledge layer, and to knowledge contained in layers below this layer. Thus, theworld interface has access only to the world model, the BBC has access to the world modeland to the behavioural knowledge, and so on.Information RetrievalThe knowledge in the agent KB is divided in four parts. Therefore, if the agent has to lookup for a certain piece of information in the database, the question arises of in which part ofthe knowledge base this information should be retrieved.The way we are solving this problem is by providing a resource handler module for eachof the control modules. The resource handlers have access to the knowledge base interfaceand put queries to the knowledge base. The structured design of the knowledge base allowsone to use indexing techniques which greatly enhance the access to certain information keptat some speci�c layer of the knowledge base. Knowledge is indexed acording to its content.The beliefs of an agent about the world are kept in the world model part, local plans arekept in the planning knowledge part, joint plans and protocols are kept in the cooperationknowledge part of the agent knowledge base. Thus, in many cases the appropriate layer canbe chosen according to the characteristics of the information to be retrieved.In order to yield intelligent and exible behaviour, the di�erent modules of the In-teRRaP agent have to be coupled by de�ning an appropriate control mechanism. In thefollowing section, we provide such a mechanism.4.4 The Flow of ControlThe ow of control in InteRRaP is determined by two directions, which are described inthe following.



34 CHAPTER 4. THE INTERRAP AGENT MODEL4.4.1 Bottom-up ControlFirstly, there is a bottom-up direction which describes how the agent processes informationwhich is coming in through the world interface, i.e. changes in the world which the agentperceives, or messages sent by another agent. Per default, this information is handled bythe behaviour-based component. There, immediate reactions on the new situation may betriggered. However, if the situation is too complex, because the task to be solved requiresmore sophisticated reasoning, or because a highly constrained conict is to be resolved,the control is passed to the plan-based component. We call this kind of shift of controlcompetence-driven, since module n is able to recognize its own limitations, and passes onthe actual task to module n+ 17. If the agent can tackle the situation by a local plan, thebottom up ow of control stops here. Otherwise,if the task requires explicit coordinationwith other agents, control is passed on to the CC. There, the actual problem is solved usinga joint planner, and several negotiation protocols which may be used in order to retrieveinformation from other agents, or in order to coordinate common activities.4.4.2 Top-Down ControlAfter the incoming information about a situation has di�used from the lower levels of con-trol to the higher ones, and after a way of tackling the situation has been worked out bythe appropriate control layer, the solution di�uses back top-down through the control hier-archy. Joint plans devised by the CC are translated into a single-agent plan enhanced bysynchronization commands, negotiation protocols are decomposed into local partial proto-cols which are basically single-agent plans. These plans are passed to the PBC where theyare interpreted. As we have seen in section 4.2.4, single-agent plans are structured as treeswhose leaf nodes correspond to executable patterns of behaviour. Once the plan interpreterhas reached such a leaf node, it activates the corresponding pattern of behaviour. Thus,control is shifted to the behaviour-based component. Finally, the pattern of behaviour di-rectly triggers the primitive e�ectoric and communcative facilities which are provided bythe world interface, and which are directly transformed into the performance of actions andthe sending of messages in the physical world.4.4.3 IntegrationAs we have seen, the ow of control can be described by two phases, a bottom-up phase,where information and control ow from lower layers up to higher layers in the hierarchy,and by a top-down phase, where they ow back down from the higher layers to the lowerlayers where they result in the execution of primitive actions or the sending of messages toother agents.Note that this ow of control does not always have to occur throughout all the layersof the agent. Rather, caused by the competence-driven control mechanism, short-cuts arepossible in many cases. Figure 4.9 shows the di�erent possible ows of control in the InteR-RaP model. The thickness of the arrows corresponds to the frequency control follows therespective ow. The behaviour-based level can cope with a considerable number of situationby activating appropriate patterns of behaviour. For a smaller number of situations, moresophisticated reasoning or more goal-directed activities are required, which are provided bythe PBC. Finally, for a couple of highly constrained, interactive situations, the cooperationcomponent has to be activated.7This philosophy requires that the individual layers are able to estimate whether they are capable ofperforming a certain task. Whereas this is a severe problem in general, it seems to be a reasonable assumptionwhen we consider a special application.
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WIF Figure 4.9: The Flow of ControlSo far, we have described the general ow of control in the InteRRaP model. Inthe following, we will de�ne this ow of control in a more precise manner. We de�ne theinterface among the moduls of the control unit as a communication structure, according tothe functionalities of the di�erent modules of the agent control de�ned in sections 4.2.1,4.2.2, 4.2.4, and 4.2.5, and according to the general control model we have presented in thissection.4.5 The Communication StructureAs we have described above, the control unit of an InteRRaP agent consists of a set ofmodules among which control is shifted and which can access the hierarchical agent KB. Inthis section, the interplay among these modules is described by outlining the internal com-munication structure of the agent. The basic idea is to treat inter-module communicationbasically the same way as inter-agent communication, namely by de�ning a set of commu-nication primitives denoting the intended semantics of messages [Sea69, BM92, LBS92].4.5.1 Message FormatsThe format of a message among two modules Sdr and Rcp ismsg = (ID, Ref, Sdr, Rcp, Type, Content).The control modules communicate by sending and receiving messages. Examples for basicmessage types are accept, command, demand, inform, modify, propose, re�ne, reject, request.Complex protocols can be constructed starting from these communication primitives.4.5.2 Contents of MessagesThe content of messages sent among modules reects the functionality of the modules. Table4.10 speci�es the an overview of the possible contents of messages which are exchangedamong the modules of agent control. Most of the slots de�ning the interface among themodules have been discussed in the respective subsections in this chapter. Therefore, we



36 CHAPTER 4. THE INTERRAP AGENT MODELWorld BBC PBC CCInterfaceWorld done(Action, Status)done(MSG, Status)Interf. received(MSG)execute(Action) do(Goal)send(MSG) plan(Goal)BBC eval(PlanList)retract(Goal)interpret(Plan))done(PoB, Status)activate(PoB) do(Goal)done(fGoal, Plang, plan(Goal)PBC Status) eval(JPList)planned(Goal, Plan) interpret(JPlan)evaled(PList, Eval) done(Plan, Status)retract(Goal)interpret(Plan)CC done(fGoal, Plang, Status)planned(Goal, JPlan)evaled(JPList, Eval)Figure 4.10: Communication Interface of the Control Moduleswill not provide a more detailed explanation of the table in this place. Note, however,that we use basically the same speech-act oriented communication model for intra-agentcommunication as the one employed for communication between di�erent agents.



Chapter 5Decision-MakingIn this section, we will go into more detail in how agents draw the decisions as to whichgoals to pursue in a certain situation. Thus, we will take a closer look at the \decision" boxin �gure 3.An agent is characterized by the set of goals it can possibly have and by the mechanismsit possesses in oder to achieve these goals. The goals are structured in a two-dimensionalgoal hierarchy. This goal hierarchy is explicitly represented and can be accessed by thedecision component within the decider. The �rst direction of the goal hierarchy is thedimension of goal prioritization. It incorporates a kind of subsumption architecture [Bro86].The second dimension is the dimension of goal re�nement or goal expansion. It describeshow goals split up into subgoals and patterns of behaviour. This dimension is characterizedby a plan language which allows to build a plan consisting of subplans, executable patternsof behaviour, and primitive actions. Such a plan language has been discussed in chapter4.2.4 and ists use is shown exemplariliy in chapter 11.5.1 Goal PrioritizationAs we have seen in section 3, an agent may have a bulk of possible goals with respect to itscurrent situational and mental context. These goals are called active goals1. However, sincewe assume that an agent is a sequential machine, it can only pursue a single goal at a time.Therefore, a crucial decision an agent has to make is which goal to pursue next.This decision is obtained using a mechanism of goal prioritization. With each activegoal, a priority is associated using a priority function P : G ! N , where G is the set ofgoals, N is the set of integers.. The goal with the highest priority is pursued in the nextcycle. The priority of goals is computed by taking into consideration two components: astatic component, and a dynamic component. The latter component respects the fact thatthe priority of a goal depends on the current situation (situational context) and on the setof currently active goals of an agent (mental context).5.1.1 Static PriorityIn order to determine the static prioritization of a goal, we use a model which has been pro-posed by the psychologist Maslow (in [Gor77], pg.33f): Maslow has classi�ed the importanceof human needs in a pyramid which has �ve levels. The Maslow pyramid is shown in �gure5.1. Maslow claims that the lower-level needs have higher priority than the higher-levelneeds, and that the former must be satis�ed before a human starts satisfying the latter. Forexample, if you are very hungry, you will do anything (for example shoot a bu�alo) in order1Rather, we should speak about active patterns which create goals. However, in our model, we assumethat there is a one-to-one mapping between patterns and (top-level) goals (see �gure 5.2).37
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Figure 5.1: The Maslow Pyramid of Human Needsto satisfy this physical need. Especially, you will \overwrite" your need for security and forperforming your everyday tasks. On the other hand, you will only satisfy your social needs,for example help other people, after your physical and security-relevant needs are satis�ed(for example after you have eaten parts of the bu�alo and stored the rest of the meat forfuture meals).We applied this model to the goals of an agent. The basic needs of agents can beregarded as the basic (top-level) goals (sometimes, the notion of intention is used for this,too, e.g. [BS92]). We call level four the level of optimization, since at this stage, an agenthas to reect on its own behaviour, and on how it can be optimized. We are very carefulwith level �ve, since we feel that self-realization and creativity are not even subjects forcurrent research in AI. Therefore, we refrain from instantiating this level in our model.For example, the mapping of the goals of an agent to the levels of the Maslow pyramid isprovided by the vertical dimension of �gure 5.2. Physical goals are to keep physically unhurtby avoiding collisions. Security-relevant goals are to perform the tasks given to the agent,and to resolve situations of conict with other agents. Social goals are the goals of helpingother agents and of passing information, and optimization goals are e.g. the re�nement ofexisting plans, and the exploring of an unknown environment.Lower-level goals are of higher priority than higher-level goals. Thus, an agent willexplore interesting things - but it will do only if there is no current transportation task tobe performed. This kind of static prioritization is often useful and wanted. However, thereare two problems with this kind of goal selection:� Often, a higher-level goal is coniging with a lower-level goal. In these cases, thehigher-level goal should be able to inhibit the lower-level goal from being pursued.� Consider �gure 5.2: if we assume that a forklift is currently busy with performing atask \load truck", according to the static priorities of the goals, it will never engagein any cooperation. This, however, is certain not what we want. Here, a more exiblemechanism of prioritization is required.We see that there are two kinds of relationships among di�erent layers in a goal hierarchy:�rstly, lower-level goals must be satis�ed before higher-level goals are pursued. Secondly,



5.2. THE INTERRAP GOAL HIERARCHY: AN EXAMPLE 39higher-level goals can have higher priorities than lower-level goals and can even suppressthese. The former e�ect is covered by our Maslow pyramid. For the latter type of relation-ship, Brooks [Bro91] provides two mechanisms he calls suppression and inhibition. In ourcontext, inhibition means that a higher-level goal can totally eliminate a lower-level goal.Suppression can be regarded a concept similar to what we mean by dynamic prioritization.We will discuss this in more detail in the following subsection.5.1.2 Dynamic PrioritiesAt this stage, we enhance our static model for goal prioritization by a dynamic aspect.What we want to obtain is a model according to which an agent pursues goals in the orderof their relative importance. The principle idea is that the relative importance of a goal isexpressed in terms of a \degree of satisfaction": if an agent adopts a new goal, the degreeof satisfaction of this goal is instantiated. Depending on time constraints, the degree ofsatisfaction decreases over time - the importance of the goal grows. If the agent is workingon the goal, the degree of goal satisfaction increases - the relative importance decreases.Reasonable decisions arise from combining the static priority described above with thedynamic mechanism:De�nition 2 (Priority Function) Let G be the set of goals an agent may have, G 2 G.The priority function f : G ! N is de�ned as f(G) = fstat(G)+ fdyn(G), where fstat : G !N is the static part, fdyn : G ! N is the dynamic part of the priority function.Thus, in general, lower-level goals are more likely to be chosen than higher-level goals.However, if a higher-level goal has a high relative importance, it may be preferred to alower-level goal.Unlike for static prioritization, we do not provide a formal model for the dynamic prior-itization, since we feel that the criteria are highly domain- dependent. Rather, we proposethat the dynamic component is computed by applying heuristic criteria, such as time con-straints on goals, availability and scarcity of resources, or the current stage of processing ofa goal.5.2 The InteRRaP Goal Hierarchy: an ExampleFigure 5.2 shows in an exemplary manner the two-dimensional goal hierarchy for a concreteexample, namely the description of a forklift in the loading dock. The vertical dimensionis organized according to the di�erent layers of the Maslow pyramid. The horizontal layerrepresents the goal expansion hierarchy. It incorporates a plan language by means of whichthe top-level goals are split in subgoals. The execution mechanism can use the goal expansioninformation in order to assign appropriate execution methods to a goal. In �gure 5.2,a simple plan language is used which allows conjunction as the only way to build morecomplex plans from simple plans and patterns of behaviour. The goals at level 0 correspondto the basic patterns of action and interaction an agent may have. At levels i, i � 1, thebasic goals are more and more expanded according to the plan language. Note that eachnode in the expansion tree corresponds to a certain stage of execution of the respective top-level goal. Therefore, as long as we have a plan language which does not allow disjunctiveconstructs, inside the expansion of a single top level goal, at most one goal pursued at apoint in time. Thus, inside one layer of the Maslow pyramid, decisions have to be madeonly between alternatives at level 0.
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5.4. DISCUSSION 415.4 DiscussionIn this section, we have developed a two-dimensional goal hierarchy as a data structurewhich allows an agent to decide what goals to pursue next. But there is more than that: thegoal hierarchy can be regarded as a �rst step to an agent development tool for the designerof a multi-agent system. Our long-term vision is that the goal hierarchy represents a genericagent model. A designer can de�ne possible goals, their priorities, and their implementation.A major criticism of the model is that, in complex real-world domains, enumerating allthe goals an agent may have, and thus also describing all the situations an agent may haveto react to, may be too expensive, or even impossible. Although our current experiencewith three scenarios - which we regard as having \real world" size - does not con�rm thisassumption, we think that we have to take serious this objection in so far as it concerns therepresentation and recognition of possible situations. A good example is the representationof potential collisions between agents in the loading dock. Informally, the situational contextfor such a threatening collision of two agents can be described from the point of view of oneof these agents as follows:A potential collision situation with an agent ai exists if that agent is constantlyapproaching me, or if there is a �eld where the trajectories calculated in ad-vance by linear interpolation of the current movement of myself and of agent aiintersect.Let us only consider the �rst part of the situational context: \an agent is constantly ap-proaching me". Apart from the problems of de�ning the semantics of constant movementin terms of our simple model of perception, there are in�nitely many ways how an agentmay approach another one. It may approach from di�erent angles, with di�erent speeds,in di�erent regions (for example in a wide hallway or in a large shelf). For di�erent kindsof \approaching", di�erent mechanisms may be required, such as making a random moveif the threatening collision is constated in a wide hallway, or negotiating a joint plan if ithappens in a narrow shelf region.We regard the concept of abstraction to be the clue to solving these general problems.Therefore, the basic idea for coping with representing and recognizing all these di�erenttypes of situations is to de�ne a third dimension for our goal hierarchy: the dimension ofgoal specialization. It corresponds to a specialization / generalization hierarchy of situationswhich may possibly occur. Since situations are de�ned as specializations of other, moregeneral situations (similar to the data model of an object-oriented class hierarchy), both thedescription and the recognition of situations can be performed in a clearer and more conomicway. Figure 5.3 shows an example for the specialization dimension of the conict situationblocking, which describes the situation where one agent blocks another agent's way. Theidea is to associate di�erent - more or less e�cient mechanisms of interaction to di�erentsituations. The more the agent knows about the current situation, the more goal-directedit can act, and the more e�cient methods for avoiding the conict can be employed. Whatis important is that there is a not necessarily e�cient, but but robust and safe \emergencybehaviour" which serves as a backtrack point for the agent either if the situation requires toreact quickly, or if other, more sophisticated mechanisms of avoiding / resolving the conictfail. For example, if all the agent can recognize is that there is an agent standing in frontof it, the only mechanism it can use is a very simple one, namely making one or a couple ofrandom moves (which can also consist in doing nothing at all). If it can recognize where theencounter is to happen, more specialized methods for blocking resolution can be employed.For example, if it occurs in the region around the truck, the other agent will probably waitfor a possibility to load or unload a box from the truck. Thus, it does not make much senseto start an explicit method for conict resolution, but it can be better just to wait until
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Figure 5.3: Example: Specialization Hierarchy of a Blocking Situationthe other agent is gone. If the blocking happens inside a shelf region, a cooperative methodfor resolving it can be used - a joint plan is proposed and negotiated. If, in addition, theagent knows which one of the two agents involved in the conict stands inside the shelf, itcan directly conclude whether or not it has to move away. If the conict happens in a widehallway, a local treatment via random moves is often the most appropriate one.Note that the simple random move strategy, which is used as default, is su�cient forresolving the conict in all relevant cases [Chu74] - although it may take a long time untilit �nishes successfully. In conclusion, using a hierarchical representation for the situationsthe agent may be faced with is a promising approach for coping with the complexity ofreal-world domains. The extension of the two-dimensional goal hierarchy (see �gure 5.2) bythe additional dimension of goal specialization is subject to our future work.



Chapter 6Planning in DynamicEnvironmentsPlanning is, without any doubt, one of the central issues in Arti�cial Intelligence. Moreover,most researchers believe that the facility to devise plans is the key property of intelligentsystems. Therefore, a great deal of research has been settled in the area of AI planning (see[AHT90, AKPT91] for an overview). Most of these traditional approaches describe modelsof how a single agent can plan its actions in a static environment, i.e. in an environmentwhich does not change except by actions performed by the agent itself.However, the step from idealized, single-agent to realistic, multi-agent domains [BG88],and from closed systems to open systems [Hew85, HI91] has shown in a drastical mannerthe limitations of classical AI planning: what is required, are agents� that can act in a goal-directed manner,� that can react to unforeseen changes and events in their environment,� that can maintain their bounded resources and use them in a reasonable manner,� and that can exibly handle requests for cooperation made by other agents.These criteria are covered by the notion of agents who are able to plan dynamically.So far, we have presented how InteRRaP agents can perform their tasks using plansand patterns of behaviour, and how the use of these concepts can be combined to yield anappropriate overall behaviour of the agent. In this section, we will go into more detail asto is how the InteRRaP model supports dynamic planning, i.e. what makes the modelespecially suited to tackle highly interactive and dynamic domains such as the roboticsdomains described in [MP93]. A comprehensive example for aspects of dynamic planningin InteRRaP is given in chapter 11 by means of the loading dock application.There are two basic points which contribute to making the system exible: �rstly, thedesigner of the system has the possibility to de�ne both behaviour-based and plan-basedmechanisms for achieving certain goals. Secondly, due to the exible ow of control, a newsituation can be tackled at an appropriate layer. For example, a threatening collision canbe avoided by a pattern of behaviour unnoticed by the planner that keeps on planning thepath of the agent in the meantime.6.1 Behaviour-based vs. Plan-based MechanismsWhat makes planning in dynamic environments such a di�cult task is that the probabilityof getting a plan accomplished smoothly decreases if the number of agents rises. Let us make43



44 CHAPTER 6. PLANNING IN DYNAMIC ENVIRONMENTSthis clearer informally by means of an example.Let us have a look at the goto landmark planstep in the above example. As is shown in �gure 11.1, agent i has two alternatives forreaching a given landmark. Firstly, it can use a pattern of behaviour, i.e. at a certain levelof abstraction, this is a routine task for the agent which does not require deep reection.Secondly, the agent can further decompose the plan step by �rst determining its actuallocation and then planning a list of moves the last of which leads to the goal landmark (thisis accomplished by the predicate gen moves).The choice the agent makes between these two alternatives is crucial for how it canmaster the task. On the one hand, if it chooses the plan, after a brief planning time, it canwalk straight ahead to the goal landmark. A pattern of behaviour for this task is likely tobe less goal-directed; for example, it may use a weighted random function1. However, let usnow assume that another agent, say j, blocks the way of agent i, and let us �rst considerthe case that the agent has chosen the plan-based processing of the goto landmark subgoal.In this case, i notices that a speci�c plan step goto field(From, To) cannot be executed,since �eld To is not free. As a consequence of this, the PBC has to be activated again. Theoriginal plan must be modi�ed, an alternative way has to be planned, or a negotiation withagent j is initiated where a joint plan to resolve the conict is devised. This is, of course, avery costly and complex process considering the fact that also the new plan is likely to beinterrupted.What we would prefer is to shift some intelligence into the execution. This is doneby de�ning a pattern of behaviour goto landmark beh which somehow �nds a way to thegoal landmark, and which is able to handle some exceptional situations from within it.For example, while walking straight ahead, a common exceptional situation is that anotheragent blocks the way. Thus, the behaviour can cope with this situation by trying to take asquare aside randomly. In most cases, applying this strategy will be su�cient to resolve theconict. What is important is that the pattern of behaviour is able to recognize situations itcannot cope with, i.e. it has self-monitoring capabilities. In these situations, the behaviour-based component calls teh plan-based component. This leads us to the second crucial pointwhich explains the dynamci planning facilities in InteRRaP: the exible interplay amongthe control modules. It is explained by means of an example in the following section.6.2 Planning as an Interplay of Control Modules6.2.1 The Bottom-up ControlThe �rst phase of the planning process is de�ned by the bottom-up direction of control,which has already been discussed in section 4.4 describes the ow of control from the worldinterface up to the cooperation componentWorld Interface and BBCAs it has been described in section 4, incoming information is stored in the agent's perceptionbu�er and in the world model part in the world model. Such information can be, for example,the existence of another agent inside an agent's range of perception. This informationcan be used by patterns of behaviour in the BBC in order to recognize certain conictsituations. Thus, the bottom-up direction of the interaction between the world interfaceand the behaviour-based component is implemented via shared memory - that means, theworld model and the perception bu�er.1We use randomness as an important means to keep the system deadlock-free.



6.2. PLANNING AS AN INTERPLAY OF CONTROL MODULES 45BBC and PBCThe blocking situation in a narrow shelf is recognized by a pattern of behaviour. It is aspecial case of the general blocking situation. The pattern of behaviour recognizes that itis not competent in this situation, but that it is better to pass on control to the PBC2. Itdoes this by sending a request messagedo(resolve shelf conflict((self, Agent)))to the PBCPBC and CCThe pbc control recognizes that solving a blocking conict requires a joint plan. Therefore,it calls the cooperation component. This one devises a joint plan, and initiates a negotiationwith the other agent on the join plan. In the simplest case, negotiation may consist of directlyaccepting the �rst plan proposed. However, an iterated process of plan modi�cation andplan re�nement may be necessary in order to come to a mutually accepted plan.6.2.2 The Top-Down ControlThe second phase of the planning process is top-down. It starts from the plan-based or - inthe case of an interactive plan - from the cooperation component and ends in the executionof actoric and communicative primitives by the world interface.CC and PBCThe resulting joint plan is translated by the CC in a single-agent plan which is augmentedby synchronization commands. For example, a very simple joint plan for two agents i andj changing places isJP = [[[walk aside(i, north)], []],[[walk ahead(i)], [walk ahead(j)]],[[walk aside(i, south)], []]].The plan JP has three phases. Phase describes that agent i must �rst walk aside. In phasetwo, i and j may concurrently walk ahead. Phase three, where agent i steps to the otherside again, can only start after agent j has executed the walk ahead action. This joint planis translated into the following single agent plan P for agent j:P = [walk aside(north),send synch(j, ready), ;; send message to agent jwalk ahead,on receive(j, ready) do ;; wait until j has performed walk aheadwalk aside(south),send synch(j, ready)].The synchronization commands ensure that the precedence constraints expressed by thejoint plan are respected in the execution. This plan is passed to the PBC.2This is what we mean by competence driven activation.



46 CHAPTER 6. PLANNING IN DYNAMIC ENVIRONMENTSPBC and BBCThe PBC executes the plan by activating patterns of behaviour for the leaf steps of the plan,such as send synch, walk ahead etc. For example, in the case of the walk ahead pattern,the activation is performed via arequest(bbc, activate(walk ahead))command.BBC and World InterfaceThe pattern of behaviour which has been selected by the plan-based component now becomesactive. When it is chosen by the bbc-control mechanism, its execution part is performed.In the case of a walk ahead in a real robotics environment, execution means to launch a(possibly hard-coded) control program which has the robot take one step ahead. If executionis only simulated, it means sending a walk ahead message to the world process. Accordingto the de�nition of the communication interface between the BBC and the World Interface(see section 4.5),the BBC performs this activation by sending a messagerequest(wif, execute(walk ahead))to the world interface. After having executed the action, the world interface reports ainform(bbc, done(execute(walk ahead), Status))to the BBC. The Status parameter describes the outcome of the action. In this case, Status2 f success, failg.6.3 ConclusionIn this section, we described two features of the InteRRaP model which makes it possibleto cope with the caveats of dynamic planning. Firstly, the use of patterns of behaviour allowsa shift of intelligence from planning to execution. Thus, the di�cult and time-consumingprocess of revising a current plan can be often omitted. Secondly, the modular structure ofcontrol and the exible interplay among the individual modules of the control unit allowsto cope with unforeseen events at the appropriate level.In conclusion, patterns of behaviour are exible, but maybe less e�cient mechanisms,whereas plans lead to intelligent solutions, but are likely to fail in a dynamic environment.The crucial point is to �nd the appropriate granularity, i.e. to �nd criteria for deciding whatshould be done by de�ning a pattern of behaviour, and what should rather be performedby devising and executing a plan. Apart from intuitive criteria, which are useful but def-initely insu�cient, empirical results gained by testing di�erent con�gurations and decisionstrategies in a concrete scenario will provide valuable information. We refer to section 12for a discussion of that issue.



Chapter 7Related WorkIn this section, we will take look at important work done in the area of agent models,knowledge representation, dynamic planning, and agent interaction, which is closely relatedto what we do. However, due to the variety of related �elds, it is impossible to provide adetailed overview of the �elds in this reports. Thus, we will restrict ourselves to discussingthe research which we feel is mostly related to ours.7.1 Agent ArchitecturesAgent architectures for DAI have been basically inuenced by three seminal research pro-jects: the HEARSAY speech understanding system [FL77],which introduced the blackboardarchitecture, BEINGS' cooperating experts paradigm[Len75], and the work done by CarlHewitt in the ACTORS system [Hew73, Hew77, AH85]. In contrast to the former projects,ACTORS is still the subject of ongoing research in DAI. ACTORS can be regarded asa precursor of concurrent object-oriented programming systems. ACTORS have a set ofbehaviours which are triggered by receiving a message. However, the ACTORS paradigmdescribes very �ne-grained agents. For example, it does not support the representation ofhigher-level constructs for communication and cooperation. Moreover, planning facilitiesare not an integral part of the architecture. Thus, the model is rather an elegant model ofconcurrent computation [Woo92] than an agent model in our sense.Since the late eighties, quite a few agent architectures have come up whose developmentwas coupled with aDAI testbed, the �rst of which has been MACE [GBH87]. Other examplesare CooperA [ALS89], the high-level operating system AGORA [BAF+87], MAGES [BFS91],MICE [DM90], MCS/IPEM [DCJL91], RATMAN [BM91],and DASEDIS [BS92].[SMH90] propose to view an agent to consist of a mouth (the communicator), e head,and a body. The head reasons about the functions of the body and exerts the agent control.The body describes the application-oriented processing facilities and knowledge of the agent.Whereas this agent architecture is useful in its generality, it obviously requires concretiza-tion and re�nement. We consider the InteRRaP as a re�nement of this head-mouth-bodyarchitecture. The mouth corresponds to the world interface in InteRRaP. The agent con-trol module and the application-independent parts of the hierarchical knowledge base canbe regarded as a re�nement of the head; the functionality of the body is represented by theapplication-speci�c part of the agent knowledge base.ARCHON [Wit92] has been developed as an architecture for Multiagent Systems forindustrial applications. Therefore, the model mainly concentrates on aspects of cooperation(which are covered in the so-called ARCHON layer of the model), and is not aimed atde�ning the functionality of the individual system..In the area of micro models of deliberate agents, important work has been done byShoham (see [Sho93] for an overview). Similar to Shoham, our model de�ning the behaviour47



48 CHAPTER 7. RELATED WORKof an agent in terms of its mental state (beliefs, goals, commitments). However, our systemarchitecture is more �ne-grained and provides an explicit description of a behaviour-basedpart.What is common to all the models mentioned above is that they embody architectures forrational agents with an explicit symbolic representation of the knowledge, skills, goals, andplans of the agents. At the other end of the scale, there are biological approaches (behaviour-based architectures). These (e.g. the work of Maturana as well as [Hub88, KHH89, Fer89,Ste90] describe the individual agent as very simple stimulus-response systems and focus onthe behaviour of systems consisting of large numbers of these agents.Finally, [Kae90, Fer92, Had93] are current approaches towards hybrid agent architec-tures, which come close to our basic ideas. [Kae90] proposes to regard an agent as organizedvertically in two components, the action component and the perception component. The ac-tion and perception modules themselves are structured horizontally (cf. [Bro86]) in varioussubmodules, which correspond to several partial functionality such as reacting, planning,learning, modelling etc. Each submodule of the action component has access to all submod-ules of the perception component. However, Kaelbling's model does not provide a structuredknowledge base. Like the PRS system [GL87], Kaelbling's system is discussed in more detailbelow in the context of dynamic planning.In his brilliantly written dissertation [Fer92], Ferguson presents an architecture for dy-namic, rational, mobile agents, called Touring Machines. His model basically describes adynamic layering of a number of deliberative and nondeliberative control functions calledmodelling, planning, and reacting. There are several similarities between Ferguson's ideasand ours. However, there are quite a few considerable di�erences:� In contrast to InteRRaP and similar to [Bro86], he proposes a horizontal couplingof the control layers with the perception and action subsystems, i.e. each control mod-ule has direct access to perception and action. This leads to a control architecturewhich di�ers considerably from ours, using a set of global censor and suppressor rulesto be de�ned for application at the input and ouptut of each layer. Censor rulesserve as �lters between the agent's sensors and its control, suppressor rules serve as�lters between the output of the control layers and the actuators. Censors are usedto prevent certain information from being transmitted to selected control layers. Thesuppressors can check whether actions proposed by several layers might conict witheach other. The bidirectional connections among control modules and their hierarchi-cal organization in InteRRaP allows us to obtain one direction of control for free.This is covered by the goal priorization dimension of the InteRRaP goal hierarchy(see �gure 5.2). The opposite direction (top-down control) is covered by the top-downactivation mechanism (see section 4.4). Since InteRRaP has a vertical architecturefor perception and action, suppression can be exerted by direct communication amongthe modules. This is not possible in Ferguson's horizontal architecture, because onecontrol component (for example the reactive one) cannot see what actions anothercomponent (say the planner) proposes.� The Touring Machine model does not account for cooperative agent interaction in thesense of collaboration towards the achievement of common goals. The modeling layerM is restricted to cope with unforeseen situations such as conicts among agents. InInteRRaP, the functionality of layerM is covered by the plan generator componentscontained in the PBC and the CC. The cooperation component is an extension of Fer-guson's model since it allows us to maintain knowledge and strategies for cooperation,and it could thus be designed as a fourth layer C of the Touring Machine model.� We feel that our notion of patterns of behaviour is much stronger than the situation-action rule sets in Ferguson's reactive layer, since it includes procedural knowledge and



7.2. KNOWLEDGE REPRESENTATION 49routine behaviour, which is not merely reactive, but which allows a shift of intelligencefrom planning into the execution.� Finally, Ferguson's model does not provide an explicitly layered knowledge base.Haddadi [Had93] proposes an RDR (\Reasoning, Deciding, Reacting") architecture. Itsmain components are an agenda, an intentional structure, and the procedures realizingthe reasoning, deciding, and reacting facilities of the agent. However, in her model, bothreactive, deliberative, and goal-directed features are based on the same symbolic, script-likerepresentation. The focus in the model seems to be rather on the deliberate, rational partthan on the reactive part.7.2 Knowledge RepresentationApproaches concentrating on describing decisions of an agent as a function of its mentalstate (beliefs, goals, intentions) (see [CL90, RG91]), provide a great deal of formal andsemantical clearness. The focus of our work is de�ning architectures for building concretemulti-agent applications. From this pragmatic point of view, and for the time being, amore straightforward way of handling the mental attitudes attributed to our agents seemssu�cient to us. At a later stage of development, it can be extended to a formal logicalmodel similar to the ones listed above. The work of Halpern and Moses done in formallyde�ning several types of knowledge in distributed systems [HM90, HM92] and its relationto our research were discussed in detail in section 3.3.Another �eld of research which is of interest for knowledge representation in multi-agentsystems are terminological logics, also known as concept languages or descriptive logics[BBH+90, WS92]. By the example of the transportation domain [FKM+93], we evaluatedthe applicability of the KRIS system for knowledge representation and inference [BH90]. Itturned out that KRIS is well-suited for the representation of static knowledge such as objecttaxonomies1. However, for the time being, there are some problems:� Most languages which were explored (e.g.ALC) turned out to be not expressive enoughto model the relevant features of the domain.� KRIS does not provide the possibility of modeling knowledge and beliefs of agents asmodalities. This, however, is crucial if we want to draw a distinction between whatholds in the world and what an agent believes to hold. Currently, there are researche�orts to integrate modal operators for knowledge and belief into the language ALC[Lau93].� A formal treatment of dynamic scenarios such as the loading dock presented in thispaper crucially requires coping with changing, possibly inconsistent knowledge, andthus requires some form of nonmonotonic reasoning. Up to now, this is beyond thescope of KRIS. However, the recent integration of defaults [BH92] is regarded as a�rst step into this direction. Unfortunately, �rst results with the default extension ofKRIS reveal that the system e�ciency seems not yet tractable for practical use.These problems caused us not to use KRIS as a knowledge representation tool for our currentimplementation of the loading dock. However, there are continuing tight contacts betweenthe two research groups, and we hope to be able to use the results achieved in the TACOSproject, which will allow us to represent changing and inconsistent knowledge and beliefs ofagents.1In the concrete case, KRIS was used to model di�erent kinds of goods, trucks, and the can transportrelation between trucks and goods.



50 CHAPTER 7. RELATED WORK7.3 Agent InteractionThe topic of agent interaction is one of the basic �elds of research in DAI. Much attention hasbeen paid to the study of multi-agent interaction in DAI, psychology, economics, cognitivescience, and sociology (e.g. organizational theory). Di�erent types of interaction, such asavoidance and resolution of conicts, competition, and cooperation have been described. Asregards the understanding of \interaction", there are di�erent points of view: For instance,Sycara [Syc87] described interaction as positive or negative interference among the goals ofdi�erent agents. She called this relationship goal interaction. In many interesting multi-agent domains, such as robotics, where plans are not only devised, but also physicallyexecuted, there is an additional dimension, which can be characterized by the term physicalinteraction. Physical interaction implies the necessity to react quickly to unforeseen eventscaused by other agents. It will be discussed in the area of dynamic planning.Research in conict resolution which a�ects our work has been done by [Syc89, Kle90].Sycara proposes to resolve conicts between agents by a mediator. In cases where such amediator is available, this is of course useful. However, for the sake of generality, we do notassume the existence of such a mediating process a priori. We prefer a centralized conictresolution strategy where one of the agents is elected to be the mediator, i.e. to generateproposals. This enhances the robustness of the system in the case of a break down of themediator. Similar to social laws, we regard a central mediator as an additional feature forincreasing the e�ciency of the system in cases when it is available.The SIPE system [Wil88] considers conicts occuring in the processes of executing plansin parallel branches.Seminal work in describing architectures and protocols for exchanging and processingdistributed knowledge, goals, and plans has been done by [DS83, Ros85, CL88, CML88,DL89, DM91]. Purely cooperative agents have been modeled by [ZR89, Jen92]. Actually,all of the research mentioned before describes rational, plan-based interaction. So far,hardly any attention has been paid to the scope and the mechanisms which are availablefor behaviour-based agent interaction. Havingmade explicit both behaviour-based and plan-based concepts in InteRRaP allows us to develop and to compare both paradigms also forthe topic of agent interaction.7.4 NegotiationOne of the most di�cult topics in the research on agent interaction inside DAI has beennegotiation. Apart from voting mechanisms, negotiation is the central technique neededin order to allow autonomous agents to �nd mutually acceptable or bene�cial agreementson some matter. The contract net model [DS83] introduced a simple negotiation protocolamong autonomous agents. It has been enhanced by a sophisticated economical modelby [Mal87]. Rosenschein et al. [RG85, ZR89, ZR92] consider negotiation from the cornerof game theory. They distinguish between goal-oriented, task-oriented and worth-orienteddomains. Most of their past research has dealt with how agents can agree on some formof coordinated action, and on what forms of protocols should be used for this purpose.Recently, there have been attempts to improve the shortcomings of local decision-makingand to guarantee the honesty of agents in voting protocols by introducing a tax system whichis proportional to the utility an agent receives for a deal [ER92].Sycara has suggested to combine the use of Case-Based Reasoning [Syc89] and decision-theoretic such as preference analysis [KR76] or the use of heuristic methods like texturemeasures [SRSF90] to generate proposals and to reach decisions. Over the past few years,starting with [SF89], the idea of using of constraints to express interrelations among a groupof agents has become quite popular (cf. [SRSF90]).



7.5. SOCIAL LAWS 51As regards possible purposes of negotiation, [Syc89, KT93] have described negotiationfor conict resolution. Negotiation aimed at implementing cooperative action has beendescribed by [Les91] (FA/C paradigm), DurfeeLesser89 (exchange of partial global plans),[CML88] (multi-stage negotiation) and [vM90, KvM91] (plan coordination).All the above approaches towards modelling negotiation have concentrated on describingthe protocol and decision layers of negotiation. They do not deal with the question for whatkind of interaction negotiation is required, and what kind of interaction local and behaviour-based mechanisms can be used.7.5 Social LawsAn alternative approach to increase the robustness of a system is to decrease the numberof possible conict situations in it. For this purpose, Shoham and Tennenholtz [ST92] haveproposed the use of social laws. We regard this as a valuable possibility to optimize theperformance of an agent society and as a feature that can be used on top of a basic agentarchitecture such as InteRRaP rather than as an alternative to our concept.7.6 Plan RecognitionPlan recognition [Kau91] is an important �eld for agents acting in a dynamic environment.An agent can only react in an intelligent way to a situation if it takes into considerationthe current and future behaviour of other agents. Plan recognition is one possibility to inferthe presumable future behaviour of anotehr agent (i.e. its current plans) abductively fromits previous behaviour. However, plan recognition is a di�cult �eld of research on its own.Since we assume that agents can communicate, and thay they - in our application - willingto reveal their goals to other agents, we use communication in order to exchange the goalsof agents.7.7 Dynamic PlanningA great deal of our work a�ects the area of dynamic planning. Classical AI planners [FHN71,Wil88] usually consist of a plan generation module and a plan interpretation module. Plansbasically are sequences of primitive actions. Since in many real-world domains, informationcomes in incrementally, other approaches have tried to interleave plan construction and planexecution (e.g. [DL86]). George� and Lansky [GL86] have proposed the use of precompiledmethods in order to be able to cope with real-time constraints. A more drastical treatmentof the reactivity requirement is postulated by [Bro86, Kae90, Suc87]. Recently, architecturesfor reactive planning have been proposed [GL87, McD90] which have shown new ways tointegrate aspects of deliberate planning and reactive behaviour.This development has lead to a general architecture for these kind of systems. A reactiveplanning system consists of a planner and a reactor module [Par93]. There exist di�erentpossibilities how to de�ne the interplay among these modules: either there is a behaviour-based component which can call a planner (e.g. Newell's SOAR system[Wal91]), or thereis a planner with an associated mechanism for interrupt handling and replanning [PR90].Approaches described by [CGHH89] and [LH92] seem to be closer to our model, since theplanner and the behaviour-based component (reactor) run in parallel: in [CGHH89] theplanner can adjust (overwrite) decisions of the behaviour-based part; in [LH92], the reactorcan even be rewired by the planner, i.e. new patterns of behaviour can be learned fromplans. However, there is a static control hierarchy in these approaches, which, in addition,is restricted to a single level of depth.



52 CHAPTER 7. RELATED WORKThe InteRRaP model presented in this report provides a modular, layered organizationboth of control and of the agent knowledge base. Bottom-up control is competence-driven,i.e. a module (for example the behaviour-based component) shifts control to the next highercomponent (the plan-based component) if the task to be performed exceeds its competence.Top-down control is activation-driven. For example, as it has been described in section4, the plan-based component can activate a pattern of behaviour in the behaviour-basedcomponent.



Part IIThe Loading-Dock Application
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Chapter 8The Domain8.1 The DomainThe application described in this section deals with the simulation of an automated loadingdock. In the loading dock, there are shelves with di�erent types of goods. Automatedforklifts have to load and unload incoming trucks. Figure 8.1 gives an idea of the structureof the scenario. The forklifts need to have capabilities for perceiving their environment.
Figure 8.1: The Loading-Dock Multi-Agent ScenarioThey must be able to recognize the relevant objects in the domain, such as the truck, theshelves, the boxes, and other forklifts. Moreover, they must be equipped with the ability tograsp a box and to load it on a truck or to store it in a shelf. Thus, the scenario is basicallya robotics application. A typical real-world application for this kind of scenario are FlexibleTransport Systems (FTS). These are characterized by the fact that the movements of therobots are not arbitrary, but that they are directed by guiding lines or by tracks. The simplegrid representation of the world, which is discussed in more detail in section 9, turns out tobe compatible to the idea of modeling groups of exible transport vehicles.The nature of the application involves several di�cult and interesting problems, whichwe discuss in section 8.2. The relevance of concepts and methods from Distributed Arti�cialIntelligence for tackling these problems is outlined in section 8.3. Finally, motivated by55



56 CHAPTER 8. THE DOMAINthese considerations, we briey describe the main ideas of our approach to modeling theloading dock application in section 8.4.8.2 The ProblemsThe main feature of the scenario is its immense physical dynamics. The actions of theforklifts moving around in the scenario must be coordinated, collisions have to be avoided,deadlock situations (such as cyclic waiting situations between forklifts) must be recognizedand resolved. In addition, although we did not primarily think of aspects of cooperationwhen �rstly looking at the loading dock domain, it contains quite a few examples for prob-lems where a cooperative approach seems reasonable. Moreover, since the number of forkliftsis not �xed, new ones may be added and existing ones may be disposed of. Thus, there isan open planning problem which is very hard to solve.The problem of perception and mechanical control is still of great relevance for researchin robotics [vP93]. The extraction and interpretation of sensoric data is still a considerableproblem. The use of video cameras involves all the problems of object and scene recognition.The use of ultrasonic sensors in multi-robot scenarios is problematic, because the existenceof many agents equipped with ultrasonic sensors makes the sensors themselves obsolete- the agents "shoot" each other with the sensors (a way to tackle this might be to usedi�erent frequences). At present, laser sensors are regarded as the approriate sensor type,in practice. They allow a very precise measurement of distance, and thus of the position ofa robot, and are factually insensitive to interference caused by other robots using the samesensoric technology.The central planning of the activities and the paths for a group of robots is a very seriousproblem. Experience in robotics (see [Bro86, Lat92, vP93]) has shown that it is in fact notviable. Coordination of robots requires decentralization. This consideration leads us to thefollowing section, where we will discuss in how far concepts and methods from DAI can helpus any further.8.3 DAI AspectsSome of the problems discussed above are at the same time arguments in favor of a DAIapproach. As we have discussed in the previous section, the hard problems imposed by thedomain make a decentralized approach reasonable, even more, we feel that such an approachis required to cope with the complexity of the system, which is caused by the variety of thepossible interactions occurring among the robots in the scenario.By a decentralization of information and control, which means giving the forklifts facil-ities for reasoning and communication, the forklifts are able to avoid collisions, to resolveblocking situations based upon their local point of view and on their own knowledge aboutthe state of the world - in conclusion, the dynamics of the system as a whole can be reducedto the dynamics caused by local encounters among single agents. As has been shown byearlier projects in DAI [CL87, GBH87, KMM93a], this leads to a considerable reduction ofproblem complexity.What makes the DAI approach useful in this case, is the inherent distribution of in-formation and control in the loading dock. There are physically distributed entities with acertain complexity - the forklifts. Thus, modeling these as agents is very natural - as naturalas modeling them as objects in an object-oriented design approach.So far, we have motivated the "D" in "DAI" - but, what do we need the "AI" for? Again,there are several answers to this question. Firstly, the open planning problem and the localview confront us with incomplete, possibly even inconsistent knowledge (we should rather



8.4. THE BASIC APPROACH 57call it belief) the agents have about their environment. This, however, is exactly the pointwhere non-AI approaches fail. Research in non-monotonic reasoning, fuzzy theory, or neuralnets o�ers at least �rst approaches towards this issue, although it has been recognized thatthere is no easy way out of this problem.Secondly, in order to behave reasonable, agents need to have commonsense knowledge. Aforklift which is in a conict with another one can greatly bene�t from knowing the topologyof the environment (for example: in which direction is the exit from the shelf corridor?) aswell as knowing something about the goals ascribed to other agents ( does the other agentreally want to enter the shelf corridor, or is it already on its way back?). Thus, representingthe knowledge agents have about the world, about themselves, and about other agents is acrucial point.Thirdly, the loading dock is a good example for an application where computers andmen might co-exist and collaborate. Human employees might work in the loading docktogether with the forklift agents. This makes the use of high-level communication facilitiessuch as speech acts a reasonable approach. Whereas we could argue that a much simplercommunication language would be su�cient in the case of inter-robot communication, thingsshould be viewed slightly di�erent in the light of man-machine communication.Finally, since the forklift agents act in a goal-directed manner, it makes sense to ascribegoals to their behaviour, and to allow the agents to reason about their own goals as wellas about the goals of other agents. This information can be used by the agents in order tonegotiate cooperative solutions for goal conicts, for example in the form of a joint plan.8.4 The Basic ApproachMotivated by the considerations made in the previous section, we will now briey describeour approach towards modeling the loading dock domain. It will be explained in moredetail in chapter 9. The basic idea is to design the scenario as a multi-agent domain. Thismeans that there is no central instance, which might coordinate the activities of the forklifts.Instead, the forklifts are considered to be the only agents in the system. They are equippedwith problem-solving facilities, with actoric abilities (they can turn around, move around inthe loading dock, take hold of goods, and store them), with perception, and with the abilityto communicate with other agents.Loading and unloading orders are given to the agents (by the human user, or directlyby the incoming truck). The agents have patterns of behaviour and planning facilities attheir disposal which allow them to achieve their local tasks appropriately. Moreover, theycan use both behaviour-based and plan-based methods of interaction in order to avoid andto resolve conicts with other agents. Behaviour-based methods are often local, plan-basedmethods are mostly cooperative in a sense that the goals of the other agents are taken intoconsideration when the planning is done. Coordination using communication is achieved byusing communication and negotiation protocols.In the next chapter, we will describe in more detail how the loading dock has been mod-eled as a multi-agent scenario, how the agents are designed, which patterns of behaviour andwhich plan-based mechanisms for action and interaction they use, and how agent interactionin the scenario is tackled. We will show how the agent architecture InteRRaP that hasbeen introduced in the �rst part of this chapter can be used as a basis for designing theforklift agents in a way that they satisfy the three main requirements which are put forwardby the application: reactivity, goal-directed behaviour, and the ability to interact (cooperate)with other agents.



Chapter 9Modelling the Loading-Dock usingInteRRaPIn this chapter, we describe how the forklifts are modeled as InteRRaP agents. We presentthe behaviour-based and plan-based mechanisms for action and interaction which are em-ployed by the agents in order to achieve their goals and to cope with situations whereconicts with other agents occur.9.1 Representation of the WorldThe world - which means the loading dock itself - is designed according to a raster-basedrepresentation. It is represented as a set of �elds which are arranged in a rectangular formto the loading dock. If we map this representation to a real-world loading dock, the size ofthe single squares should be about 2� 2 meters.The individual squares are described as objects which have certain attributes. Squarescan be either empty (ground) or non-empty (occupied). If they are non-empty, they caneither bear a static object (or a part of such an onject), or an agent may occupy thesquare. Static objects are boxes, shelves, and the truck. There is a hierarchical relationshipbetween squares and objects, e.g. a shelf object consists of a set of square objects which aretopologically related.There are some constraints which hold in the world, and which have to be respected bythe agents when they perform their actions:� Moves of agents must keep them within the boundaries of the loading dock.� A box must only be stored at a truck �eld or at a shelf �eld, but not on a ground �eld.� An agent must not walk through shelves, boxes, other agents, or the truck.� An agent can keep at most one box at a time.The Simulated World In the simulation, the "true" state of the world is represented bya world process. The world process receives action request by the agents, checks whetherperforming the action would violate the consistency conditions imposed by the above con-straints, and, if this is not the case, updates the state of the world, triggers the visualizationof the action in the graphical simulation window, and the agent that the action was ex-ecuted sucessfully. Moreover, using the world process, a concept of active perception isimplemented. This is explained in more detail in section 9.2.2.58



9.2. THE FORKLIFT AGENTS 599.2 The Forklift AgentsSince the forklifts are the acting units in the scenario, modeling them as the agents in amulti-agent system seems a very natural matter. In the following, whenever we speak aboutagents, we mean the forklift agents. In this section, we will describe the functionality ofthe agents, their actoric, sensoric, and communicative features, and the structure of theirgoals and their knowledge. Thus, what we describe in the following basically represents thefunctionality of the InteRRaP world interface (see �gure 4).9.2.1 Actoric FacilitiesSince the agent is to act in a physical environment, it needs facilities to manipulate theenvironment, to perform physical actions. The forklift can perform the following basicactions, which are directly implemented as primitives in the world interface:� The agent may move to the square �eld in front of it, provided that the �eld is empty.This is represented by a primitive action walk ahead.� An agent may turn around by an angle �. In our implementation, � can be only+90� or �270�. We represent this by actions named turn right and turn left,respectively. There are no constraints for this action, so an agent can always turnaround.� An agent may grasp a box standing in a shelf or on the truck. This is expressed by aprimitive action grasp the agent may perform. However, grasping something is onlypossible if the object to be grasped is directly in front of the agent.� Analogously to the grasp action, the agent can put a box either in an empty shelf oron an empty truck �eld, if that �eld is directly in front of the agent. This is representedby a put action.Executing in the simulation is realized by sending a request for executing this action to theworld process described above.9.2.2 Sensoric FacilitiesThe basic sensoric facilities of the forklifts are implemented by means of a simple modelof perception which is based on the rastered representation of the world we have discussedabove. An integral part of the perception module in the world interface is the perceptionbu�er. It contains the information the agent currently perceives. From a logical point ofview, this bu�er is part of the world model part of the knowledge base. Its importancestems from the fact that it allows the agent to check whether it currently sees something,and thus to draw a distinction whether it believes a fact to be true because it has perceivedthis fact earlier or because another agent has told it the fact, or because the agent currentlyperceives the fact - which is interpreted in our model as de facto knowledge1.Range of PerceptionThe basic idea is that agents are equipped with a certain range of perception. This speci�es�elds which can be seen by the agents. The range of perception can be de�ned in the processof agent con�guration. Figure 9.1 shows di�erent examples for ranges of perception. Figure1If we assume noisy perception, we would rather let the perceived information pass through the informationassessment module, where a certain mental attitude is associated with it, and treat it as "normal" beliefswith a certain credibility.



60 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAP
AA
AA
AA

AA
AA

AA
AA

AA
AA

(1) (2)

(3)Figure 9.1: Example: Range of Perception(9.1.1) shows a very simple but important case. The agent can only perceive the squaredirectly in front of it. Thus, the agent resembles to a man who gropes one's way througha totally dark room, having to rely on the sensoric facilities of its hand and of what he hasmemorized by earlier experience. This case is important because it bears most of the desiredcomplexity of the system which would be achieved by allowing a larger range of perception,but keeps the implementation of perception very economical. Therefore, we started withagents that have a range of perception of only one �eld. Figure (9.1.2) shows an agent whohas a range of perception of 3 � 3 squares in front of it. This allows an agent to searchthrough a shelf while wlking through the shelf corridor without having to turn around everytime it wants to look at a certain shelf square. It also allows to recognize conicts not onlywhen directly facing another agent. Thus, a very simple form of collision avoidance can beinvestigated, since the two agents have to be careful not to move at the same time to a �eldseparating one of them from the other.However, in order to examine methods of collision avoidance in practice, a range ofperception as shown in �gure (9.1.3) is desired2. The length of the range of perception isdependent on the moving direction of the agent. This allows the agent to recognize and toreact to potential frontal collisions very early. So far, we have not implemented this solution,since it is very expensive in the simulation. The subject of the complexity of perception isdiscussed in more detail below.Perceiving Other Agents:Since the forklifts do not operate in a real world, but in a simulated one, the problem ofbecoming aware of what other agents are currently doing is a non-trivial problem, whichgoes back to the philosophical question whether perception should be viewed rather as anactive or as a passive process, i.e. whether the world "tells" an agent that something haschanged or whether the agent has to look \actively" for what is going on. Which perspectiveone prefers is basically a matter of taste.We decided to solve the problem by implementing an active perception concept which2We thank Prof. Dr. E.von Puttkamer for suggesting us this solution



9.2. THE FORKLIFT AGENTS 61initiates from the simulation world. Each time an agent performs an action, the new rangeof perception of the agent is computed and is sent to the agent. On the other hand, theworld has to check whether by the consequences of the performed action, something haschanged within the range of perception of other agents. If so, the changes are transmittedto these agents, too.An alternative solution would be that the agents themselves "look" at the world fromtime to time, for example before they execute an action. This would happen by sending tothe world an update request. However, in our view, the former view corresponds better tothe paradigm of situated agents. For example, when another agent approaches, our agentshould at least notice it - and be able to react. This is not guaranteed when we leave thedecision whether to look or not to look to the control of the agent. However, as we alreadynoted, this decision is a philosophical one, and it is mainly a matter of personal taste whichone is preferred.Complexity of PerceptionIt is a consequence of the concept of active perception which is implemented by the simu-lation world that the computation of the new perception situation is done in a centralizedmanner by the world process, and is therefore quite expensive. Moreover, the complexity ofperception functionally depends on the number of agents in the scenario, and on the rangeof perception of the individual agents. For any action performed by an agent in the world,the simulation world has� to compute the new range of perception for the agent and send a description of the�elds covered by the range of perception by the agent.� to check for any other agent in the scenario whether by the action performed, some-thing inside the range of perception of this agent has changed. If so, send this agentwhat has changed.Assume that an agent has a range of perception of m squares. Assume further that for eachagent, its range of perception is stored as a list of square descriptions by the world. Then,recomputing the range of perception can be done in a time linear to m. Additionally, letthere be n agents in the scenario. For each other agent, we have to check whether the actionhas changed something in its range of perception. This can be done with a complexity ofO(m � n) steps . Since n agents can perform actions concurrently, the total complexity ofthe active perception algorithm for n agents and a range of perception of m is O(n2 �m) inthe worst case.Thus, the implementation of the concept can be regarded as tractable in general. How-ever, the number of agents and the range of perception are critical factors for the e�ciencyof the concept. The simulation world may become a bottleneck if there are too many agentsin the scenario having a large range of perception. In our implementation, we found thata range of perception of 9 squares for about 10 agents can be managed by the simula-tion world process, if we employ some algorithmic optimization. We will not discuss theseimprovements in more detail here because this is not the focus of our work.9.2.3 Communicative FacilitiesAs we have seen above, perception is modelled as communication with the world. At a higherlevel, agents also need to communicate with other agents. The world interface provides twobasic facilities for sending and receiving messages. An agent can send a message to anoth-er agent using a communicative action send msg(Id, Ref, From, To, Type, Content).



62 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAPThe receiving of a message is implemented asynchronously, i.e. the agent can receive mes-sages at any logical point in time. Type and content of a message are speci�ed at higherlayers according to speech act theory. This issue has been discussed in section 4.5.9.2.4 Tasks and GoalsUp to now, we have described the functionality of an agent in the loading dock. In thissection, we will explain what motivates an agent to start its activities. There are two centralnotions in his context, namely tasks the agent receives, and goals the agent derives from thesetasks.TasksA forklift agent may receive tasks from the human user of the simulation. In a real-worldimplementation, the tasks could be provided by an order form carried by the truck. Tasksare of of the formtransport(Who, What, Where)Who speci�es the agent to whom the order is addressed. What speci�es the box which is tobe transported. Where denotes the destination. A box can either be transported from thetruck to the shelf, or from the shelf to the truck.In our model, we assume that tasks are dedicated to individual agents. Examiningmodels of task decomposition and task allocation is an interesting subject on its own. Weinvestigated it by the example of the transportation domain (see [KMM93b]). In the loadingdock example, we are more interested in how the individual agent solves tasks dedicated toit, and study the interactions among agents solving tasks of their own, which are caused bythe shared environment.GoalsThe agent uses an intentional structure in order to maintain and control its activities. Thisstructure is the InteRRaP goal hierarchy described in section 5. There are two basic sortsof goals, namely top level goals, and derived goals. Top level goals are goals which directlyemerge from external or internal events but whose origin is not caused by existing goals ofthe agent. Derived goals are speci�ed according to the goal expansion dimension of the goalhierarchy. They describe how a goal can be achieved by decomposing it into subgoals.The receiving of a task t triggers the emergence of a new top-level goal goal(t) inside anagent. This view gives expression to the close correspondence between patterns of behaviourand goals - a goal emerges inside the agent corresponding to the activation of a pattern ofbehaviour. Goals and plans for their achievement are the basic objects to be exchangedamong the modules of the agent control and thus, they are the objects the agent reasonsabout. In the following, the patterns of behaviour for forklift agents are described in moredetail. The instantiation of the plan-based component is described in section 9.5.9.3 Behaviour-based ModelingIn this section we will describe the behaviour-based component of a forklift agent in theloading dock scenario. According to section 4.2.2, it consists of a control component, ofa unit which maintains a set of patterns of behaviour, and of a resource handler which isthe local interface to the agent knowledge base and to the resources the agent has at itsdisposal. The built-in control mechanism which decides which of a set of active patterns maybe executed has been described in section 5. For the description of patterns of behaviour,



9.3. BEHAVIOUR-BASED MODELING 63we will use the speci�cation language presented in section 4.2.2. Following the goal prioritydimension of the agent goal hierarchy (see �gure 5.2), we will discuss in an exemplarymanner the patterns of behaviour the agent has at its disposal, starting with lower-level,physical goals, up to patterns of behaviour corresponding to social and optimization goals.For reasons of comprehensiveness, the e�ect of executing a pattern of behaviour (the actualprocedure which is executed) is described informally.9.3.1 Physical LayerThe physical layer of goal prioritization contains the situations the agent has to react toimmediately in order to avoid being damaged. Figure 9.2 shows a pattern of behaviourwhich treats a threatening collision with an other agent that approaches3. The e�ect of thepattern is to have the agent take one step aside in order to avoid this collision whenever thisis possible. Note that the general pattern avoid collision does not take into consideration( PoB :name avoid collision:static physical:participants self; A: agent:sit context curr pos(self; (X1; Y1)) ^ curr pos(A; (X2; Y2))^ approaches(A; (X1; Y1)) ^ dist((X1; Y1); (X2; Y2)) � dmin^ is neighbour field((X;Y ); (X1; Y1)) ^Bel(self; free((X;Y ))):mental context true:postcond curr pos(A; (X1; Y1)) _ curr pos(A; (X;Y )):termcond curr pos(A; (X;Y )):failcond :9F:(is neighbour field((X;Y ); F ) ^Bel(self; free(F ))):exec descr /* turn around if necessary, and move to field (X, Y). The primitive *//* actions are implemented by sending the world interface a *//* message request(wif, execute(Action)) */) Figure 9.2: Pattern of Behaviour avoid collisionthe agent's goals, but randomly selects a free square. A specialization of this general patternis shown in �gure 9.3. If the agent has the current goal of moving to one of the neighbour�elds, and this �eld is not occupied, then the agent will select this �eld. The fact that the( PoB :name avoid collision 1:super avoid collision:mental context :add curr goal(self; goto field(X;Y ))) Figure 9.3: Specialization of the avoid collision Patternpattern of behaviour avoid collision 1 is a specialization of the pattern avoid collisionis represented by a slot :super in the declaration of avoid collision 1. The specializationinherits from its generalization all the contents of the slots. However, these default valuesmay either be overwritten or in the case of the context and condition description, extendedby additional conditions. The latter case is indicated by the keyword :add. In this case, the3Free variables in the formula are interpreted as being existentially quanti�ed. Shared variable namesinside one pattern refer to the same object.



64 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAPnew condition is computed as the conjunction of the condition of the generalization and theconditions for the specialization. In the case of �gure 9.3, the mental context is specializedby the new condition curr goal(self, goto field(X, Y)). Since the mental context in�gure 9:2 is true, there is no di�erence to write:mental context :add curr goal(self; goto field(X; Y ))or only:mental context curr goal(self; goto field(X; Y )).However, if we are going to de�ne a pattern avoid collision shelf which works exactly theway the avoid collision pattern does, but becomes active only if the conict happens in anarrow shelf, we can do this by writing( PoB :name avoid collision shelf:super avoid collision:sit context :add region type((X1; Y1); shelf): : :)As a result of this, the situational context for pattern avoid collision shelf evaluatesto :sit context curr pos(self; (X1; Y1)) ^ curr pos(A; (X2; Y2))^ approaches(A; (X1; Y1)) ^ dist((X1; Y1); (X2; Y2)) � dmin^ is neighbour field((X; Y ); (X1; Y1)) ^Bel(self; free((X; Y )))^ region type((X1; Y1); shelf)If we had written:sit context region type((X1; Y1); shelf)instead, the old de�nition for sit context would have been overwritten by the new one,which obviously would not have been the intended meaning. A reasonable execution de-scription for the pattern of behaviour avoid collision shelf would be to pass the controlfor the situation on to the planner by sending a messagerequest(pbc, do(avoid collision shelf(self, A))),since it seems reasonable to try to avoid the conict cooperatively, for instance by �nding ajoint plan, which is generated by the cooperation component.9.3.2 Task-oriented LayerThe task-oriented layer of the hierarchy describes the patterns of behaviour which help anagent do its \business as usual", i.e. to perform the transportation tasks. Figure 9.4 showsthe top-level pattern of behaviour treat transportation task of the task-oriented layer.The pattern becomes active if the agent has a transportation task transport(B, S, D),where B is a box, S is the source, D the destination, and if the task is the next one to beperformed by the agent. Since a plan is to be used in order to achieve the top-level goal, allthe pattern has to do is sending arequest(pbc, do(transport(B, S, D)))



9.3. BEHAVIOUR-BASED MODELING 65message to the plan-based component, and then waiting for the acknowledgement of thePBC, which can be either \success" or \fail". Note that the agent's mental context doesnot play any role for activating the pattern. However, by the activation of the pattern, acorresponding goal transport(B, S, D) arises. Thus, although the agent receives tasksfrom the environment, the BBC and the PBC communicate only on the basis of goals, andnot of tasks. The absence of a speci�c constraint on the mental context in this case entailsthat even if the agent currently believes that it is not possible to achieve the goal, yet it hasto activate the planner and at least try. Only if the planner also fails to �nd a solution, thepattern may fail. However, if the agent perceives that the goal cannot be achieved (denotedby the predicate Perc(...)4), for example by perceiving that the box is not located at �eldS, the behaviour fails. This is an example for the di�erent consequences which arise fromthe agent believing in a fact in contrast to the agent perceiving a fact.( PoB :name treat transportation task:static task oriented:participants :local:sit context received task(transport(B; S;D)):mental context curr goal(self; transport(B;S;D)):postcond Bel(self;:possible(transport(B; S;D)) _Bel(self; curr pos(B;D)):termcond Perc(curr pos(B;D)) _msg received(pbc; done(transport(B;S;D); ok)):failcond msg received(pbc;done(transport(B; S;D); fail))^ Bel(self;:possible(transport(B;S;D))):exec descr /* pass the whole goal of transporting the box to the *//* plan-based component and wait for the confirmation.*/) Figure 9.4: Pattern of Behaviour treat transportation taskAs we will see in chapter 11, in the course of performing the transportation task, thePBC activates further lower-level patterns of behaviour in order to achieve some subgoals.One of these patterns is described below, namely the pattern region search. This patternperforms searching a box in a spatially limited region R, which may be, in our case, a shelfof the same type as the box. The pattern does not require that the agent knows somethingabout the location of the box. The pattern is activated when the agent currently has thegoal of searching a box which it has to transport to a truck, and if the agent is in a shelfregion which has the same type as the box to be searched. The execution of the patternkeeps on either until the agent has found the box and stands in front of it, or until it hasexamined all reachable �elds without success. In the latter case, the agent believes that boxB is not in region R (according to the postcondition).9.3.3 Social LayerA typical pattern of behaviour at the social layer is shown in �gure 9.6: if an agent is askedby another acquainted agent, say A, whether it knows the location of a certain box, say B,and if the agent believes that the box B is at location (X; Y ), it replies this to agent A.There are a couple of things worth noting here.� The :participants slot contains a role declaration: apart from the keyword selfwhich always denotes the agent who uses the pattern of behaviour, there is a decla-ration A : acquainted agent. By declaring a role taxonomy, we can de�ne patterns of4Perc(p) holds true for a formula p if PERCBUFFER j= p.



66 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAP( PoB :name region search:static task oriented:participants :local:sit context curr pos(self; (X;Y )) ^ region((X;Y );R; shelf) ^ has type(R; T ):mental context Goal(self; search box(B)) ^ has type(B;T ):postcond curr pos(self; (X 0; Y 0)) ^ region((X 0; Y 0);R; ) ^(:found(Box) =) Bel(self;:curr region(B;R))):termcond Perc(field((X1; Y1); shelf;R)) ^ curr pos(B; (X1; Y1))^ curr pos(self; (X2; Y2);O) ^ faces(((X2; Y2);O); (X1; Y1)):failcond :Perc(box(B;F )) ^(8F 0:(field(F 0; shelf;R) ^Bel(self; reachable(F 0))) =) looked up(F 0;B)):exec descr /* Move along the shelf and look whether you see the box, first *//* in one direction, then in the other one. *//* If you have perceived the box, move in front of it */) Figure 9.5: Pattern of Behaviour region search( PoB :name give box info:static social:participants self ;A : acquainted agent:sit context message received(A;query(location(Box)))):mental context Bel(self; curr pos(Box; (X;Y )):postcond Bel(self;Bel(A; curr pos(Box; (X;Y )):termcond message sent(A; inform(location(Box;(X;Y )))):failcond message received(A; retract(query(location(Box)))):exec descr /* send the other agent a reply containing the current position of the box */) Figure 9.6: Pattern of Behaviour give box infointeraction where the participants in a certain pattern must ful�l certain role condi-tions. An alternative way would be to add a new slot - called :participant desc -where predicated required for possible participants in the interaction could be de�ned.Thus, the role declaration would be replaced by:participants self ;A : agent:participant desc acquainted(self; A).� Again, we could consider the pattern give box info as a specialization of a moregeneral pattern of behaviour give info, or even more general, reply to question,which would allow us a hierarchical de�nition of interactive situations making use ofthe inheritance of properties.� In the de�nition of the pattern, there is no explicit information about how the exe-cution of the give box info pattern corresponds to the execution of other patterns ofbehaviour. The actual control structure is according to chapter 5. Using the purelystatic priority algorithm, an agent would only answer a question of another agent ifthere are no active goals (patterns of behaviours) at lower levels of the agent's goalhierarchy, i.e. on the physical or task-oriented layers. This, however, would meanthat an agent who has the goal to search a box for itself, would not respond to aquestion asked by another agent until the goal was no longer active. As discussed in



9.3. BEHAVIOUR-BASED MODELING 67chapter 5, this undesired behaviour can be omitted by de�ning for each goal a degreeof satisfaction, and to compute the relative importance of that goal as a combinationof the static priority and the degree of satisfaction5.� Finally, note that what �gure 9.6 shows is a reactive, interactive pattern of behaviour.In previous approaches, \behaviour-based" was mostly uni�ed with \local", \withoutcommunication". However, in our approach, answering a simple question which doesnot require sophisticated planning but which can be done by simply looking up acorresponding fact in the world model part of the knowledge base, can be performedusing a pattern of behaviour. In addition, if the pattern of behaviour does not �nd animmediate response, it may decide to pass control to the planner.� Note that we do not have to de�ne the case that the agent realizes that it actuallydoes not know the position of the box as a failure condition. This insight wouldcause the agent to retract the belief which establishes the goal context, and thereforeautomatically �nish the active pattern. If we liked an even clearer separation betweenconditions that must hold as preconditions and conditions which must hold during theexecution of the pattern, we might extend the description of a pattern of behaviourby a during condition.9.3.4 Optimization LayerThe optimization layer of the behavioural hierarchy contains patterns which are used inorder to improve the behaviour of the agent in the world. The example we provide heredescribes how an agent which does not have a current task to perform can explore a regionwhich it did not know before, but which seems interesting to the agent. In our application,a region is interesting if it is a shelf region. Curiosity is an important property of an agentwhich can be chosen as an option during the con�guration of the agent.( PoB :name explore interesting region:static optimization:participants :local:sit context :received task( ; ; ) ^ curr pos(self; (X;Y )) ^ in region((X;Y );R; ):mental context Bel(self;:been to((X;Y ))) ^Bel(self; interesting(R)):postcond curr pos(self; (X 0; Y 0)) ^ region((X 0; Y 0);R; ):termcond 8F 0:((field(F 0; ;R) ^Bel(self; reachable(F 0))) =) Bel(self; been to(F 0))):failcond false:exec descr /* explore all reachable fields in the region and store the information */) Figure 9.7: Pattern of Behaviour explore regionApart from the patterns of behaviour described up to now, several other ones exist.For example, there is a pattern of behaviour for the resolution of blockings, for whichwe implemented several specializations. The pattern of behaviour region search has aspecialization region memo search which can be applied if the agent believes to know theregion where the object to be search is6. In this case, a more e�cient search strategy canbe applied.5There are other approaches towards solving this problem. For example, Ferguson proposes in his disser-tation to use special control rules to resolve this kinds of inter-layer conicts.6It can only do so if it has the ability to memorize information about �elds it has visited before. Thiscan be de�ned during the con�guration of the agent.



68 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAP9.4 Behaviour-based MethodsUp to now, we have paid little attention to the methods that are actually applied by theagent for local problem-solving and interaction when executing a pattern of behaviour. Wewill discuss the issue of behaviour-based interaction in more detail in section ??, below. Inthis section, we will give an overview of the behaviour-based methods an agent can employin order to achieve its local goals.9.4.1 RandomnessThe importance and the theoretical power of making random moves is expressed for the caseof an individual walking around randomly in a �nite room by the random-walk theorem[Chu74] which says that starting from any point in a �nite room, using a random walkstrategy, any point can be reached arbitrarily often. Of course, the practical value of thistheorem is limited by the fact that it may take arbitrarily long to reach a certain point.However, combining it with other methods makes it a powerful mechanism.The idea of random behaviour is to choose randomly one of a set of alternative actionsan agent is able to do in a certain situation. Formally, such a random choice function isde�ned as follows:De�nition 3 (Random Choice Function) Let A be an agent, ACTA be the set of ac-tions which can be performed by A. Let S be the set of possible situations, G the set ofpossible goals. Let S 2 S be the current situation, ACTA;S � ACTA be the set of actions Acan perform in situation S.Then, fA : 2ACTA;S 7�! ACTA;S is a random choice function if fA is equally distributed,i.e. if for each a 2 ACTA;S ; p(f(ACTA;S) = a) = 1jACTA;S j .9.4.2 Weighted RandomnessA shortcoming of random strategies is that they are uninformed, i.e. they do not use anyknowledge about the world to direct the choice of an agent. By weighting the randomfunction according to the potential usefulness of an action according to the current situationand the current goals of an agent, a more goal-directed acting of an agent may be achievedwhile the advantages of random interaction methods, such as their nondeterminism, arepreserved. For this purpose, a dynamic weighting function has to be introduced whichdetermines the probability with which an alternative is selected from the set of alternativeactions an agent is able to execute in a certain situation.De�nition 4 (Weighted Random Choice Function) Let A be an agent, ACTA be theset of actions which can be performed by A. Let S be the set of possible situations, G the set ofpossible goals. Let S 2 S be the current situation, G � G the set of current goals of the agent.a) ! : S � 2G �ACTA 7�! [0; 1] is a weight function if Pa2ACTA !(a) = 1.b) f!A : 2A�! 7�! ACTA is a weighted random choice function with weight function ! iff!A is !-distributed, i.e. if for each a 2 ACTA; p(f(ACTA) = a) = !(S; a).A random choice function fA can be regarded a special case of a weighted random choicefunction with !(ai) = !(aj) for each ai; aj 2 ACTA;S ; !(ak) = 0 for ak 2 ACTAnACTA;S.Due to the knowledge which is implicit in the weight function, results achieved usingweighted random methods are clearly superior to results using simple random functions.



9.4. BEHAVIOUR-BASED METHODS 69Interaction strategies based upon weighted random moves do not su�er from the drawbacksof hill-climbing strategies such getting caught by local optima (cf. next subsection).However, apart from the problems of using random methods in general for modelingintelligent agents mentioned above, there are two main objectives against using this kind ofinteractive methods. Firstly, maintaining and adjusting the weight function is a non-trivialtask, since it requires knowledge about what are good and what are bad alternatives to take.Secondly, encoding all the problem-solving knowledge into a single function seems no goodAI style. Small changes in the domain may require redesigning the weight function fromscratch.Therefore, in a next step, we introduce heuristic methods which make explicitly use ofthe toplogical knowledge of the agents.9.4.3 Heuristic MethodsThe use of heuristic rules and methods in order to come to a decision is one of the basicproblem-solving techniques in classical AI [Win84, RK91]. Many of these techniques �t intoour concept of behaviour-based concepts since they de�ne the behaviour of the agent in directdependence on its local knowledge, on the external situation, and on its mental context. Inthis section, we present two di�erent kinds of these heuristics, namely hill-climbing-likemethods, and the simulated annealing heuristics. The latter are able to avoid the typicaldrawbacks of hill-climbing by allowing moves that lead to a temporary deterioration of theagent's situation.The Gradient Field MethodUsing the gradient �eld method for making the agents' behaviour goal-directed has beenproposed by Steels [Ste90]. In robotics, it is well-known as a model for robot path planning( see also [Lat92], where it is named potential �eld method ). Indeed, this method is astandard search strategy in AI where it is also known by the name \steepest-ascent hillclimbing"[RK91]. Actually, it is a deterministic version of the weighted random choicemethod described above. In any situation, an agent follows the steepest ascent of a givengradient function. Whereas by dropping the random part, the gradient model is appropriateto explain the behaviour of an agent trying to maximize its local utility, it has quite a fewserious drawbacks:� By eliminating the random element, it su�ers from the typical hill-climbing problemssuch as local optima, plateaux, and ridges. In order to tackle these problems, however,a combination of gradient search and random strategies may be used.� Again, the whole knowledge of an agent is encoded in one single function, namely thegradient, which may be criticized.� Computing and maintaining the gradient in a dynamic environment, where also thegoal an agent pursues may alter its location, is computationally expensive, since itrequires the simulation of a di�usion mechanism, which has to be performed for anypoint in the scenario. This is a considerable overhead.Simulated AnnealingThe simulated annealing strategy [KJV83] is a variation of the gradient-method in a sensethat under certain circumstances, some downward moves are allowed. This method re-quires the maintenance of an annealing schedule which is crucial for its success, and thecomputation of probabilities for transitions into a higher state. Thus, simulated annealing



70 CHAPTER 9. MODELLING THE LOADING-DOCK USING INTERRAPavoids some of the drawbacks of standard hill-climbing. However, it is nothing more than aheuristic and is not safe from the problems which are also inherent to the above approaches.9.4.4 DiscussionIn conclusion, according to our experience, the behaviour-based methods pursued up to nowsu�er from two main drawbacks, the lacking cognitive adequacy and the bounded scope. Theproblem of lacking adequacy means it is not intuitive that the criteria of these functionsare appropriate to model the complex decision processes and preference structures in anintelligent agent. The bounded scope of these methods seems to be a very serious problemif the methods are used to achieve cooperative behaviour. However, where the behaviourof agents is not too complex, and where no sophisticated mechanisms of interaction occur,the methods under consideration up to now o�er a convenient way to describe action andinteraction of agents. In the following section, we will present the modeling of the plan-basedcomponent of the forklift agents.9.5 Plan-Based Modeling9.5.1 Single-agent PlansA (single-agent) plan can be described by a set of plan steps and a set of relationships(constraints) among these plan steps. The type of constraints we will restrict ourselves tofor single-agent plans are precedence constraints describing that some plan steps have to beexecuted before others. However, in the general framework, arbitrary predicates among theplan steps are allowed.De�nition 5 (Single-Agent Plan) A single-agent plan P is de�ned as P = (S;C), where� S = fs1; : : : ; sng is a set of individual plan steps.� C = fc1; : : : ; ckg is a set of predicates, denoting the constraints among elements of S,ci � Sj, i 2 f1; : : : ; kg, j 2 f1; : : : ; ng.Representation of Single-Agent Plans; the Plan Language P0 Single-agent plansare represented by sequences of plan steps. The sequence represents the precedence con-straints among the plan steps in the single agent plan.De�nition 6 Let a be an agent. Let S = fs1; : : : ; sng be a set of primitive plan steps. Thena plan Pa for agent a is represented as Pa = (Name; Type; Body) with� Name denotes the reference name of the plan.� Type 2 fs; bg denotes the execution type of the plan step (b stands for "executablepattern of behaviour", s stands for "(skeletal) plan".)� Body2 Pi is a well-formed plan body with respect to a plan language Pi. Body denotesthe actual description of the plan steps.In the following, we will de�ne the plan language P0 which describes admissible bodiesof single-agent plans. P0 is a propositional plan language; it does not permit the use ofindividual variables.De�nition 7 (P0) Let S = fs1; : : : ; sng be a nonempty set of primitive plan steps. Theplan language PS0 is de�ned as follows:



9.5. PLAN-BASED MODELING 71� ? 2 PS0 (empty plan body).� s 2 PS0 for a primitive plan step s 2 S.� Let s1; s2 2 PS0 . Then s1; s2 2 PS0 (sequential composition of plan steps).� Let s1; s2 2 PS0 . Then s1; s2 2 PS0 (disjunctive composition of plan steps).� Let s1; s2 2 PS0 , let e be an arbitrary predicate. Then if e then s1 else s2 2 PS0(conditional branch).� Let s 2 PS0 , let e be an arbitrary predicate. Then while e do s 2 PS0 (while-loop).We will use single-agent plans of type P0 as the basic building blocks in order to model thebasic plan steps of joint plans in section 10.2.2.9.5.2 Planning in the Loading DockAt the plan-based layer of a forklift agent, the plans for the complex transportation tasksperformed by the agent are de�ned. There are two top-level tasks a forklift agent canexecute: �rstly, it can load a truck, i.e. fetch a box from a shelf, carry it to the truck, storeit on the truck, and return to the forklift's wating zone. Secondly, it can unload a truck,i.e. fetch a speci�ed box from the truck, carry it to the corresponding shelf, store it in theshelf, and again return to the waiting zone. As soon as the agent receives such a task, apattern of behaviour is activated, and thus, the agent adopts the goal of performing thetask. The agent's plan library contains skeletal plans for achieving the transportation goal.In chapter 11, an example is provided which uses a slightly simpli�ed representation of therepresentation of the goals.Apart from the ability to exploit the presence of skeletal plans stored in a plan library,the forklift agent is equipped with elementary modeling facilities. These help the agent copewith situations for which neither a skeletal plan nor an executable pattern of behaviour arespeci�ed. In our implementation, modeling means the from scratch generation of new plans.Currently, this feature is available only for small subgoals of an agent, such as for examplefor planning dynamically how to move from one landmark to another. For this purpose,apart from a pattern of behaviour, a set of plan steps are generated dynamically whichdescribe how the goal of reaching a landmark is splitted in a sequence of goals describingmoves between �elds.At a later stage of the development of the system, the crude modeling facilities providedby the InteRRaP model so far can be extended by more sophisticated mechanisms formodel generation and for describing the agent's focus of attention7.
7Ferguson has even joined predictive and reective modeling facilities of an agent in a seperate layer ofthe agent architecture [Fer92]. In contrast to this, InteRRaP associates modeling facilities with di�erentlayers of the agent, namely with the plan-based layer, as far as local modeling is concerned, and with thecooperation layer, as far as the treatment of conicts is concerned.



Chapter 10Agent InteractionThere are several interesting aspects of interaction among agents in the loading dock. Mostof the interaction taking place in this scenario are of physical nature, i.e. interactions whichare caused by the movements of the forklifts in the loading dock. Therefore, the situationalcontext dominates the description of most of the patterns of interaction, e.g. the ones foravoiding collisions or for resolving blockings. However, since the forklifts have goals toachieve, also the goal context has to be taken into consideration. This will be outlined inthe following by means of a small example.10.1 An ExampleIn �gure 10.1, two typical situations of interaction between two forklift agents are shown,as they occur in the loading dock. In �gure (10.1.1), there is a potential frontal collision
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(1) (2)Figure 10.1: Interaction in the Loading Dockbetween two forklifts. Figure (10.1.2) shows a typical deadlock situation caused by goalconicts: agent a1 wants to take box b1 and blocks agent a2's way out of the shelf area. a2has just �nished his task to put box b2 to the shelf. In both situations, behaviour-based aswell as plan-based mechanisms of interaction may be used. However, compared to situation(10.1.1), situation (10.1.2) seems less suited to be tackled by behaviour-based methods such72



10.2. MECHANISMS OF INTERACTION 73as making random moves, since a solution to the conict requires taking the goals of theagents into consideration. For example, agent a1 wants to reach a �eld behind agent a2 inorder to put a box, there. So why should a1 move out of the corridor before it has reachedits goal? The fact that both agents strive after minimizing their local costs (which might begiven by the number of actions they perform in order to reach a goal) often requires the useof mechanisms for negotiation and persuasion. During this negotiation, a joint plan for theagents can be devised. For example, a clever solution for situation (10.1.2) is a cooperativeone: agent a2 should do the job of transporting box b1 to the shelf for a1. On the otherhand, negotiating a joint plan for collision avoidance in the �rst case seems like using asledgehammer to crack a nut.10.2 Mechanisms of InteractionIn the loading dock domain, agents use several both plan-based and behaviour-based meth-ods to coordinate their activities. In the following, we will provide a short sketch of thesemechanisms. For a more detailed discussion, we refer to [M�ul93].10.2.1 Behaviour-based Mechanisms of InteractionBehaviour-based methods of interaction are methods which do not require devising a plan. Inmost cases, these methods have local nature, i.e. they do not involve communication betweenagents. However, as we will see, behaviour-based \public" mechanisms exist. Basically,there are two behaviour-based methods of interaction used in the loading dock domain,randomness and what we call \spontaneous communication". These will be discussed in thefollowing.RandomnessThe use of randomly chosen actions has been discussed before in the context of the de-scription of the behaviour-based component. Also when it comes to deal with interactivesituations, i.e. situations where the activites of several agents have to be coordinated, ran-domness is an important tool. Random actions are used in the loading-dock in order toresolve blocking conicts among forklifts, if other, more sophisticated methods - such asthe generation of joint plans which is described in the following section - fail. Randomnesshas turned out to be very useful as a means of coordination in symmetrical situation (see�gure 10.1 for an example). As �rst results show, randomness should not be employed asthe default technique when programming the forklift agents. For example, whereas threeforklifts started simultaneously in the scenario can perform their tasks (each should load abox to the truck) within a few minutes (depending on their a priori knowledge) if they areequipped with planning facilities, in the case of agents which are only moving randomly ittook half an hour - until the �rst of them had successfully �nished its task.Spontaneous CommunicationBy spontaneous communication, we mean communication between agents which is triggeredby simple situative and/or mental patterns, and for the enforcement of which there is notmuch deliberation and refelction necessary. In this section, we will describe two applica-tions of spontaneous communication between agents: its use for a goal-driven exchange ofinformation, and for conict resolution.



74 CHAPTER 10. AGENT INTERACTIONExchange of Information A further behaviour-based mechanism of interaction that isused by the forklift agents has been mentioned in the above section 9.3. In �gure 9.6, apattern of behaviour was shown that describes how an agent could provide another agentwith information upon request. On the other hand, a pattern of behaviour query box infois implemented which allows an agent who has a transportation task and who searches abox to ask another agent whether that one knows the box. The de�nition of the patternquery box info is shown in �gure 10.2. Since the pattern is triggered by the presence( PoB :name query box info:static social:participants self ;A : agent:sit context Perc(agent(A; (X;Y )):mental context Goal(self; search box(B)) ^ :Bel(self; curr pos(B; ( ; ))):postcond message received(A; inform(location(B; (X;Y ))) =) Bel(self; curr pos(Box; (X;Y ))):termcond message received(A; inform(location(B; (X;Y )))):failcond message received(A; inform(dont know(location(B)))_ timeout:exec descr send the other agent a query query(location(B)) and wait for an answer */) Figure 10.2: Pattern of Behaviour query box infoof another agent, we would prefer to classify it as a behaviour-based one, although themental context of the agent also plays a role - the pattern is only activated if the agenthas the goal of searching a box and does not know the location of the box. Note that thesecond part of the mental context - that the agent's knowledge base does not contain abelief of the form Bel(self; curr pos(B; ( ; ))) in fact requires the agent to draw knowledgebase inferences. Therefore, we could say that the pattern query box info is not purelybehaviour-based. However, since the inferential abilities of our agents are currently restrictedto simple knowledge base matching (see chapter 3.3 for a discussion of this point), the agentcan check very quickly whether it believes in a certain fact. Thus, we can argue that thepattern is rather behaviour-based than requiring actual deliberation.Conict Resolution A second application of spontaneous communication is employedfor conict resolution. In the case of a blocking conict that cannot be resolved by simplyapplying random moves, before agents get involved in a possibly lengthy negotiation process,they try to resolve the conict by giving signals to each other, which we regard as a specialform of spontaneous communication. An agent who realizes that there is a blocking conictwith another agent �rst sends this agent a request go away1 . This is clearly behaviour-based, since the communicative act is triggered by the existence of a blocking conict.The recipient of the go away message checks whether moving away from its currentposition would clash with its local goals. If this is not the case, the agent will move awayfrom the �eld; otherwise, it will reject the request. Note, however, that the process ofinterpreting the go away request and checking whether there are possible goal conicts canbe a very complex one. Thus, the term \behaviour-based" is suitable for representing theaction of sending a signal, but not for characterizing its interpretation.1In a road tra�c scenario, this could be reached by a horn signal. However, since the semantics of thatsignal is \Watch out! I have the goal to get to the place where you are standing!", we prefer using a speechact in this case.



10.2. MECHANISMS OF INTERACTION 7510.2.2 Plan-based Interaction via Joint PlansIn this section, we will develop the concept of joint plans as a means of deliberate interactionamong autonomous agents. We will outline how agents can agree on the execution of a jointplan by a process of negotiation. Due to reasons of space, we will only give a brief overviewof the subject. A detailed de�nition of joint plans and joint plan negotiation can be read in[M�ul93].Joint PlansIntuitively, joint plans are plans that may be devised and/or executed by several agents.Depending on the complexity of the underlying plan language, joint plans can have verydi�erent shapes: in the most simple case, they are de�ned as sequences of actions which arelabelled by the name of the agent who performs the respective action. Extensions of thislanguage can be made by allowing non-linear plans (see e.g. [Sac75] for the case of single-agent plans), by introducing variables, by specifying roles for of agents, and by allowingconstructs for parallelism in multi-agent plans. In [M�ul93], we de�ne plan languages whichcontain these extensions.A single-agent plan consists of a set of plan steps and of a set of constraints among theseplan steps (see chapter. A multi-agent plan extends this theory by a set of agents whichlabel the plan steps, and by providing a set of constraints among the actions of di�erentagent. A joint plan JP can be formally de�ned as follows:De�nition 8 (Joint Plan) A joint plan is a quadruple JP = (A; S; F; C), where� A = fa1; : : : ; amg is a set of agents.� S = fs1; : : : ; sng is a set of plan steps.� F : A ! 2M(S) is a function which maps each agent in A to the subset of plan stepsin S executed by that agent. Since elements of S may occur multiply in one plan, therange of F is the multiset M of S.� C = Cl [ Cg is a set of predicates denoting the plan constraints. The components ofC are interpreted as follows:{ Cl = Ca1 [ : : : [ Cam is the set of local constraints among the plan steps ofa1; : : : ; am. Cai � Skai, k � jSaij.{ Cg = fCg1; : : : ; Cgmg, m � 1, Cgi � Sai � : : :� Saj , 1 � i � j � m is a set ofglobal constraints, i.e. constraints between plan steps of di�erent agents ai; : : : ; aj.Representation of Joint PlansIn this section, we present the representation of joint plans used in the loading dock scenario.De�nition 9 shows the general structure of a joint planDe�nition 9 Let A = fa1; : : : ; akg, k � 1, be a set of agents. Then a joint plan JP isrepresented as JP = (Name; Type; Body) with� Name denotes the reference name of the plan.� Type 2 fs; bg denotes the execution type of the plan step (b stands for "executablepattern of behaviour", s stands for "(skeletal) plan".)� Body2 Pi is a well-formed plan body with respect to a plan language Pi. Body denotesthe actual description of the plan steps.



76 CHAPTER 10. AGENT INTERACTIONNote that the plan language that describes the plan body is not prescribed by de�nition 9.Rather, it can be provided as a parameter.We start the de�nition of our plan language with the set S = fs1; : : : ; skg of primitiveplan steps. The si 2 S are atomic propositional formula. In the following, we de�ne theexemplary plan language P2. It de�nes one step of a joint plan as a list of single agent plans,one plan being provided for each agent participating in the execution of the joint plan. Alanguage for bodies for single-agent plans has been speci�ed by de�nition 7. For the case ofjoint. multi-agent plans, we extend this basic language by an additional language constructj which allows us to represent plan steps which are executed simultaneously by two agents2.This leads to the de�nition of plan language P 00:De�nition 10 (Plan Language P 00) Let ai; aj 2 A be agents. Let plan language P0 beaccording to de�nition 7. Then, the plan language P 00 is de�ned recursively as follows:� s 2 P0 �! s 2 P 00.� Let s; t 2 P 00. Then, sijtj 2 P 00 for agents ai, aj 2 A (simultaneous composition ofplan steps).sijtj denotes a composite plan step which as de�ned by agents ai and aj simultaneouslyexecuting the plan steps s and t, respectively.Now, we can de�ne plan language P2 for joint plans. The semantics of one step of ajoint plan is that it describes sequences of actions which can be performed concurrently bythe di�erent agents taking part in the plan.De�nition 11 (P2) Let A = fa1; : : : ; amg be a set of agents, S = fs1; : : : ; sng be a set ofprimitive plan steps. The plan language P2 is de�ned as follows:� [] 2 P2 (empty plan step).� Let l1; : : : ; lm be plan bodies of type P 00, so that for each li, i � m{ agent ai performs plan body li (i.e. all plan steps in li are labelled by agent ai, or{ li contains only plan steps labelled by agent ai and simultaneous composition plansteps s1ks2. In the latter case, agent ai performs either s1 or s2.Then [l1; : : : ; lm] 2 P2The separation between two plan steps expresses that there are precedence constraintsamong these plan steps (see also the example in chapter 11).OperationalizationJoint plans are operationalized in the cooperation component (see section 4.2.5). The com-ponent itself contains a joint plan generator which can devise joint plans from scratch.Moreover, a library of joint plans for standard situations is contained in the cooperationknowledge level of the hierarchical KB. An example for this can be found in chapter 11.Since the joint plans cannot directly be executed by the plan-based component, they haveto be transformed into a sequence of single-agent plan by the joint plan translator compo-nent of the CC (see chapter 4.2.5). For details of this process, we refer to [M�ul93]. Agentsagree on a joint plan for a certain pattern of interaction by a process of negotiation. Thisis described in the following section.2The operator j can be easily extended to plan steps executed simultaneously by n > 2 agents.



10.2. MECHANISMS OF INTERACTION 77Negotiation on Joint PlansSince we deal with autonomous agents, the agreement on a joint plan has to be reached byan iterative process of negotiation. The process of devising and executing a joint plan isdescribed as a process in six phases, namely1. The initiation and information phase.2. The plan generation phase.3. The plan negotiation phase.4. The plan con�rmation phase.5. The plan execution phase.6. The execution evaluation phase.After the subject of negotiation has been agreed on and the goals of the agents which area�ected have been exchanged (phase 1), plan negotiation itself starts with the generationof an initial plan (phase 2). The proposed plans are evaluated by the agent (using the planevaluation module in the plan-based component, see chapter 4.2.4). Plans can be rejected,accepted, modi�ed, and re�ned until either a mutually agreed on plan has been devised, oruntil no alternatives are left. The speech acts used for negotiation are the ones described in[SS93].An additional quality can be gained by splitting up the plan negotiation phase in threesubphases; during the �rst phase, agents agree on an uninstantiated skeletal plan, i.e. onwhat is to be done in general. In phase two, the allocation of roles is negotiated (who shalldo what?). Finally, phase three leads to an agreement on the framework conditions such ascost and time conditions. Backtracking between these phases may occur. This structuringof the plan negotiation process helps reducing the high complexity of plan evaluation. Aswe know from human joint planning (such as project planning), it is often useful to knowwhat a reasonable plan looks like, even before it is clear who will take which role in thatplan. However, this kind of negotiation requires a plan language of type P4 which providesvariables for roles and objects (see [M�ul93]).



Chapter 11An Examplelabelexample In this chapter, we will explain by means of an example how the conceptspresented in this report allow the InteRRaP agent to cope both with its routine tasksand with unforeseen events in an intelligent and exible manner. For this purpose, let usconsider the following example: an agent, say agenti, gets an order to load a truck, say t1with a certain box, say b23. This happens by sending the agent a request messagerequest(agenti, load truck(t1, b23)).In the following, we will provide a trace of planning and plan execution achieved by theInteRRaP model.11.1 The Plan LibraryLet us �rst consider what the plan library of the agent looks like. In section 4.2.4, wede�ned the library by a list of entries which can be referenced by a name of a goal. Figure11.1 shows a fragment of the library for the current goal. In the example, the plan librarylpb entry(load truck(T, B), s,[do(fetch box(B)), do(store box(B, T))])lpb entry(fetch box(B), s,[rr(box position(B, ?Pos)), do(goto landmark(Pos)), do(get(B))]).lpb entry(fetch box(B), b,[pob(random search(B))]). ;; pattern of behaviour: : :lpb entry(goto landmark(L1), b,[pob(goto landmark beh(L1))])lpb entry(goto landmark(L1), s,[rr(where am i(?L0)), do(gen moves(L0, L1))]): : : Figure 11.1: Exemplary Plan Libraryembodies a very simple plan language which represents a single-agent plan as a sequenceof subplans, resource requests, and patterns of behaviour. The plan library speci�es a tree-like plan structure. Note that for several plan steps, there exists more than one possibilityto continue. For example, the plan step goto landmark can be treated either by furtherplanning (basically by generating a list of moves from one �eld to the next), or by activatinga pattern of behaviour goto landmark beh which can be directly executed.78



11.2. PERFORMING ROUTINE TASKS: TRACE OF PLANNING AND EXECUTION7911.2 Performing Routine Tasks: Trace of Planning and Ex-ecutionFigure 11.2 shows the overall processing of the order request by agent i. The original requestrequest(agenti, load truck(t1, b23))is handled by a pattern of behaviour treat order beh located in the BBC. Due to thelimited space, we will not explain the structure of the patterns of behaviour and the waythey work in more detail. Let us here assume that the pattern of behaviour recognizes thatthe whole goal should be treated by a planner1. Thus, as shown in �gure (11.2.1), the BBCsends a request(pbc, do(load truck(t1, b23))) to the PBC. Now, the planning processinside the PBC starts (see below for a more detailed description). Since the PBC has beencalled by a do command, plans are (1) devised and (2) their execution is monitored by theplanner.
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(4)Figure 11.2: Example: Processing the load truck GoalThis monitoring is shown exemplarily in �gure (11.2.2): whenever the planner has foundan executable pattern of behaviour or a primitive action (see section 4.2.4), it activates thecorresponding pattern of interaction. In the example, the pattern of behaviour for movingto a certain landmark is activated by sending a messagerequest(bbc, activate(goto field beh((7, 4)))).The pattern of behaviour is executed and reports its (successful) termination by sending amessageinform(pbc, done(goto field beh((7, 4))))to the PBC.1In fact, the behaviour could call the planner only for a part of the goal.



80 CHAPTER 11. AN EXAMPLEFinally, the PBC has planned and processed the whole load truck task. It reportsthis to the calling pattern of behaviour treat order beh. This is shown in �gure (11.2.3).Control shifts back to the BBC, and, as displayed in �gure (11.2.4), a message is sent to theuser denoting that the task has been successfully completed.Up to now, we have seen the collaboration between PBC and BBC from a global point ofview. In the following, we will explain the processing inside the PBC in more detail. Figure11.3 shows the trace of the planning process for the goal load truck(t1, b23)./* In the following, PC means planning control, PE plan evaluator, PG plan generator, RH resource handler *//* ?X means that variable X is output variable. curr. goal shows the top of the goal stack. */BBC ! PBC: request(pbc, do(load truck(t1, b23))).curr. goal (PC): do(load truck(t1, b23)).PC ! PG: make plan(load truck(t1, b23), ?Planlist).PG ! PC: Planlist = [[do(fetch box(b23)), do(store box(t1, b23))]].curr. goal (PC): do(fetch box(b23)). /* Evaluation is omitted, since no alternative plans */PC ! PG: make plan(fetch box(b23), ?Planlist).PG ! PC: Planlist = [[rr(box position(b23, ?Pos)), do(goto landmark(Pos)), do(get(b23))],[pob(random search(b23))]]. /* Planlist = [p1, p2] */PC ! PE: evaluate([p1, p2], ?EvPlans).PE ! PC: ?EvPlans = [(p1, 10), (p2, 3)]. /* Plan p1 has higher utility than plan p2 */curr. goal (PC): rr(box position(b23, ?Pos)). /* First subgoal of p1 */PC ! RH: box position(b23, ?Pos).RH ! PC: Pos = (7, 4)).curr. goal (PC): do(goto landmark((7, 4))).PC ! PG: make plan(goto landmark((7, 4), ?Planlist)).PG ! PC: Planlist = [[pob(goto landmark beh((7, 4)))], [rr(where am i(?ActPos)),do(gen moves(ActPos, (7, 4)))]]. /* Planlist = [p3, p4] */PC ! PE: evaluate([p3, p4], ?EvPlans).PE ! PC: ?EvPlans = [(p3, 12), (p4, 5)]. /* Plan p3 has higher utility than plan p4 */curr. goal (PC): beh(goto landmark beh((7, 4))). /* Pattern of behaviour has been selected */PBC ! BBC: request(bbc, activate(goto landmark beh((7, 4)))).: : :BBC ! PBC: inform(pbc, done(goto landmark beh((7, 4)))).: : :PBC ! BBC: inform(bbc, done(load truck(t1, b23))).Figure 11.3: Example: the Interplay between BBC and PBC11.3 The Handling of Unforeseen EventsSo far, we have seen how InteRRaP agents can perform their tasks using plans and patternsof behaviour, and how the use of these concepts can be combined to yield an appropriateoverall behaviour of the agent. In chapter 6, we discussed issues of dynamic planning inthe InteRRaP model. In this section, we will provide a detailed example for how theInteRRaP model supports dynamic planning, i.e. what makes the model especially suitedto tackle highly interactive and dynamic domains such as the robotics domains describedin [MP93]. In the following, this issue will be informally discussed by means of the aboveexample.Let us have a look at the goto landmark plan step in the above example. As is shown in�gure 11.1, agent i has two alternatives for reaching a given landmark. Firstly, it can use apattern of behaviour, i.e. at a certain level of abstraction, this is a routine task for the agentwhich does not require deep reection. Secondly, the agent can further decompose the planstep by �rst determining its actual location and then planning a list of moves the last ofwhich leads to the goal landmark (this is accomplished by the predicate gen moves).



11.3. THE HANDLING OF UNFORESEEN EVENTS 81The choice the agent makes between these two alternatives is crucial for how it canmaster the task. On the one hand, if it chooses the plan, after a brief planning time, it canwalk straight ahead to the goal landmark. A pattern of behaviour for this task is likely tobe less goal-directed; for example, it may use a weighted random function2. However, let usnow assume that another agent, say j, blocks the way of agent i, and let us �rst considerthe case that the agent has chosen the plan-based processing of the goto landmark subgoal.In this case, i notices that a speci�c plan step goto field(From, To) cannot be executed,since �eld To is not free. As a consequence of this, the PBC has to be activated again. Theoriginal plan must be modi�ed, an alternative way has to be planned, or a negotiation withagent j is initiated where a joint plan to resolve the conict is devised. This is, of course, avery costly and complex process considering the fact that also the new plan is likely to beinterrupted.What we would prefer is to shift some intelligence into the execution. This is doneby de�ning a pattern of behaviour goto landmark beh which somehow �nds a way to thegoal landmark, and which is able to handle some exceptional situations from within it.For example, while walking straight ahead, a common exceptional situation is that anotheragent blocks the way. Thus, the behaviour can cope with this situation by trying to take asquare aside randomly. In most cases, applying this strategy will be su�cient to resolve theconict. What is important is that the pattern of behaviour is able to recognize situations itcannot cope with, i.e. it has self-monitoring capabilities. In these situations, for instance iftwo agents block their ways in a narrow shelf, the BBC calls the PBC3 by sending a requestmessagedo(resolve shelf conflict((self, Agent)))to the PBC. The pbc control recognizes that solving a blocking conict requires a joint plan.Therefore, it calls the cooperation component. This one devises a joint plan, and initiatesa negotiation with the other agent on the join plan. In the simplest case, negotiation mayconsist of directly accepting the �rst plan proposed. However, an iterated process of planmodi�cation and plan re�nement may be necessary in order to come to a mutually acceptedplan. The resulting joint plan is translated by the CC in a single-agent plan which isaugmented by synchronization commands. For example, as already shown in chapter 6, avery simple joint plan for two agents i and j changing places isJP = [[[walk aside(i, north)], []],[[walk ahead(i)], [walk ahead(j)]],[[walk aside(i, south)], []]].The plan JP has three phases. Phase describes that agent i must �rst walk aside. In phasetwo, i and j may concurrently walk ahead. Phase three, where agent i steps to the otherside again, can only start after agent j has executed the walk ahead action. This joint planis translated into the following single agent plan P for agent j:P = [walk aside(north),send synch(j, ready), ;; send message to agent jwalk ahead,on receive(j, ready) do ;; wait until j has done walk aheadwalk aside(south),send synch(j, ready)].2We use randomness as an important means to keep the system deadlock-free.3This is what we mean by competence driven activation.



82 CHAPTER 11. AN EXAMPLEThe synchronization commands ensure that the precedence constraints expressed by the jointplan are respected in the execution. This plan is passed to the PBC which executes it byagain activating appropriate patterns of behaviour. Figure 11.4 provides an overview of howthe shelf conict situation is processed by shifting control and sending messages betweenthe behaviour-based, the plan-based, and the cooperation component, starting from therealization of the situation to the execution of the mechanims for conict resolution thathas been chosen by the cooperation component of the agent. In �gure (11.4.1), the conict
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Figure 11.4: Example: Resolution of a Conict Situationis recognized by pattern of behaviour in the BBC. Control is passed to the PBC whichrecognizes that solving the conict is beyond its capacities, and shifts control up to the CC.The CC generates a joint plan, and passes this plan to the PBC in the form of a sequenceof synchronized single agent plans. Figures (11.4.2) and (11.4.3) show how one such plan(which may also be a partial protocol) is processed by the PBC. The PBC interprets theplan, and, if the current plan step is an executable pattern of behaviour, activates the BBCwhich executes the behaviour (by sending messages to the world interface - this has beenomitted in the �gures) and reports success or failure to the PBC. This continues until theplan is processed which is again reported to the CC by the PBC. Finally, as shown in �gure(11.4.4) the whole joint plan is processed. The CC has performed its original goal, and shiftsback control to the PBC, then from there to the BBC. The conict has been resolved, andthe agent can keep on with performing its standard task - loading or unloading the truck.11.4 DiscussionIn conclusion, patterns of behaviour are exible, but maybe less e�cient mechanisms, where-as plans lead to intelligent solutions, but are likely to fail in a dynamic environment. Thecrucial point is to �nd the appropriate granularity, i.e. to �nd criteria for deciding what



11.4. DISCUSSION 83should be done by de�ning a pattern of behaviour, and what should rather be performedby devising and executing a plan. Apart from intuitive criteria, which are useful but def-initely insu�cient, empirical results gained by testing di�erent con�gurations and decisionstrategies in a concrete scenario will provide valuable information. We refer to the followingsection for a discussion of that issue.



Chapter 12Implementation and PreliminaryResultsIn this section we will provide an overview of the loading dock implementation and reportpreliminary results we have obtained using the actual implementation.12.1 The Test-bedA prototype of the loading dock scenario described in section 8 has been developed inour group. Starting from two separate implementations - a purely behaviour-based agentwritten in MAGSY [FW92] (a multi-agent extension of OPS-5) and a purely plan-basedagent written in PROLOG - we now start merging the features to a single agent whichincorporates both behaviour-based and plan-based facilities. The testbed runs under UNIXon a network of SUN SPARC stations. Agents can be run distributed on any available localmachine. Thus, there is no real limitation on the number of agents except the messagetransmission capacity of the local net.12.1.1 The AgentIn order to reduce the process communiation overhead, we refrained from implementing eachof the control modules as a physical process on its own. Rathermore, the agent is physicallyde�ned by two UNIX processes, a MAGSY process which contains the world interface andthe behaviour-based component modules, and by a PROLOG process which realizes theplan-based component and the cooperation component. This partition is straightforwardsince there is a very tight coupling of the patterns of behaviour and the primitives for theexecution of actions and for the sending of messages contained in the world interface onthe one hand, and a similarly tight conceptual connection between the (local) plan-basedcomponent and the (interactive) cooperation component, on the other hand. Together, thetwo latter modules form the rational, deliberate part of the agent.The communication primitives used by the agents are implemented in C++ on top ofUNIX process communication facilities using port sockets. The underlying low-level protocolis TCP/IP. This basis allows agents written in di�erent languages to communicate when runas processes under UNIX. What is required is only a communication layer which transformsmessages from one language into a knowledge interchange language, and back from theinterlingua to local language format. This allows the agent to form their messages usinghigh-level language structs (speech acts). So far, these modules are available for MAGSY(behaviour-based part of the agent), PROLOG (plan-based part of the agent), and LISP(interface to the KRIS system which is to be used to model parts of the world knowledge84



12.2. PRELIMINARY EXPERIENCES 85and of the cooperation knowledge). A module for the OZ concurrent constraint language[WHS93] is under development.12.1.2 The Simulation WorldThe simulation world is represented by a PROLOG process. It contains the current, \objec-tive" state of the world, and serves to determine whether actions performed by agents havesucceeded or not. Moreover, it maintains the visualization of the scenario via a graphicaluser interface. Agents perform actions by sending messages to the world process. The worldcomputes its new state, and acknowledges the performance of the action. Moreover, it sendsto agents changes in their range of perception caused by actions they or other agents haveperformed.12.2 Preliminary ExperiencesIn this section, we describe a series of tests we did using our experimental testbed. Section12.2.1 describes the experimental setting. In section 12.2.2, the results of the experimentare provided. They are discussed in section 12.2.3.12.2.1 The Experimental SettingThe aim of the experiment we did was to �nd out how agents having di�erent facilities andabilities can perform certain kinds of tasks in the loading dock, and how the performanceof the agents was inuenced by varying their number. Since the physical coupling betweenthe MAGSY and the PROLOG part is not yet ready to use, we performed our experimentsusing the MAGSY part of the agent, and allowed the MAGSY agent - in some con�gurations- to use a landmark-based algorithm for path planning written in C. The parameters of theexperiment are explained in the following.The Statical Setting: In the loading dock, there are shelves of di�erent types (fred;blue; yellowg), and a set of boxes distributed in the shelves or on the truck. Boxes havetypes corresponding to the shelves. In the experiment, we do not address the boxes by theiridentities but by their colour. For example, an agent receives the task of loading a blue boxonto the truck. This means that it can pick up the �rst blue box it sees. The loading dockitself has a size of 15� 20 squares. There is one truck and six shelves of size 2� 6 squares,two of which are red, blue, and yellow, respectively.The experiment was run on six SUN SPARC stations at the maximum (in the case ofnine forklifts).Number of Agents: We carried through our experiment with three di�erent numbersof agents, namely 3, 6, and 9 agents. Each of the agents has a range of perception of one�eld, i.e. it can perceive the square just in front of it. Moreover, agents in our experimentdo not make use of their facilities of gaining information about the location of boxes bycommunicating with other agents. This will be subject to a later series of tests.Agent Con�guration: We experimented using �ve di�erent types of agents. These areexplained in the following.Type 1: Complete Static and Dynamic Knowledge Type 1 agents have completeknowledge about the initial state of the world. This includes the position of shelves andtrucks as well as the knowledge where the boxes stand in the scenario. However, the dynamic



86 CHAPTER 12. IMPLEMENTATION AND PRELIMINARY RESULTSknowledge is updated only by perception. Thus, if agent a1 believes that a blue box is atsquare (12; 16), but agent a2 has removed the box from there, then a1 will not realize thisuntil it reaches the �eld and preceives that the blue box is no longer there. Type 1 agentsuse a path planner in order to �nd their way to the place where they believe there is abox. If they do not �nd a box there, they plan their way to where they believe there mightbe another box. Finally, if they do not �nd a box, at all, they start an exhaustive searchthrough all appropriate shelves.Type 2: Complete Static Knowledge In contrast to type 1 agents, type 2 agentshave static knowledge, but no initial knowledge about the location of boxes. Therefore,all an agent can do if it receives a task \load a blue box on the truck", is going to a blueshelf and starting an exhaustive search (see the pattern of behaviour region search de�nedin chapter 9) until it has found the box. For �nding their way to the shelves, agents use apath planner.Type 3: Weighted Randomness Type three di�ers from type two in that it doesnot employ a path planning algorithm for reaching a goal poin. Instead, it uses the weightedrandomness method presented in chapter 9. Thus, it choses its next action so that it getsnearer to its goal with a high probability (75%) in the experiment.Type 4: Weighted Randomness with Curiosity Type 4 agents are like type threeagents, with the di�erence that they are curious. If they discover an interesting region, theystart searching in this region (see also the pattern of behaviour explore region). In theexperiment, a shelf is regarded an interesting area.Type 5: Random Walker Finally, type 5 agents are random walkers. These agentsstart without having any knowledge about the scenario, but are able to perceive the world,to memorize what they see, and to construct a model of the world. Thus, the longer theyare moving through the scenario, the more they perceive, and the more e�cient methodsthey can use. Note that the curiosity feature is very important in order to improve theperformance of type 5 agents, since it allows them to explore interesting regions muchfaster. In our experiment, however, agents remain random walkers - they keep on makingrandom moves until they have found the box1.Task Characteristics: We did the experiment with two di�erent load characteristics.In the �rst case, the position of the boxes and the transportation tasks were randomlygenerated, and thus, equi-distributed. In the second case, we experimented with a clusteredstructure. Agents had to search boxes located in a small area. What we expect is that theprobability of conicts between agents is much higher in the second type of scenario setting.Measure of Performance: In the experiment, the following variables were measured inorder to judge the performance of the system:� The CPU time needed by the forklift agents in order to perform the task.� The number of primitive actions fwalk ahead; turn left; turn right; get box; put boxgwhich were carried out by the agents in order to reach their goals.� The number of conicts among the agents. In our experiment, an agent notices aconict with another agent if that one stands on the �eld in front of it. Since no1Or until the next system crash appears - whatever comes earlier!



12.2. PRELIMINARY EXPERIENCES 87communication was used in the experiments, the conict rate was computed from anagent-based point of view.For each variable, we recorded the minimum, maximum, and average value per agent as wellas the sum over all the agents.12.2.2 ResultsTable 12.1 displays the run-time results for three agents. The columns show the results forthe di�erent con�guration types presented above. T1 means type 1 agents, T2 type 2 agents,and so on. For agents of type 1 and type 2, we experimented with clustered (denoted by cl:)and equidistributed (denoted by eq: in the table) task characteristics. For type 3, 4, and 5agents, we only show the results in the case of equidistribution.n = 3 T1 T2 T3 T4 T5tasks eq: cl: eq: cl: eq: eq: eq:CPU time min 30.5 54.6 38.4 99.8 38.8 60.7 300.63�max 67.9 148.8 192.6 230.1 192.2 515.8 -sum 161.9 282.2 378.9 524.5 373.9 942.1 -avg 54.0 94.1 126.3 174.8 124.6 314.1#Steps min 35 53 38 92 30 40 245�max 71 165 277 214 167 275 -sum 174 296 470 519 308 557 -avg 58 98.7 156.7 173 102.7 185.7 -# Conicts min 0 1 0 3 0 0 0�max 3 4 3 6 0 0 -sum 5 9 5 14 0 0 -avg 1.7 3 1.7 2.8 0 0 -Table 12.1: Experiment for Three Forklift AgentsThe values for the random walker (T5) are furnished with an asterisk (�). They meanthe solution achieved by the �rst agent who was able to achieve its goal using the randomwalk strategy. Of course, the exact numbers are only interesting in comparison with theperformance of the other agent con�gurations.Figure 12.2 shows the results of the experiments carried out for six agents. For this testset, we have compared the behaviour of agents of type 1 and type 2, using a both clusteredand equi-distributed test sets.In table 12.3, the results of the experiment for nine forklift agents can be found. As inthe case of six agents, we restricted ourselves to agent types 1 and 2.12.2.3 DiscussionThere are some intereting remarks which can be made as regards the tests described above.� Obviously, type 1 agents perform best of all, whereas the random walk agents havea very poor performance. This shows what we expected, namely that randomness isnot a good default strategy - provided that the agent has some knowledge available.



88 CHAPTER 12. IMPLEMENTATION AND PRELIMINARY RESULTSn = 3 T1 T2tasks eq: cl: eq: cl:CPU time min 26.2 78.2 25.3 74.5max 201.4 207.6 349.56 225.5sum 494.7 808 887.4 740.0avg 82.5 134.7 147.9 123.3#Steps min 27 75 31 65max 204 201 327 200sum 508 763 806 679avg 84.7 127.2 134.3 113.2# Conicts min 1 2 1 2max 4 8 5 5 -sum 13 29 17 22avg 2.2 4.8 2.8 3.7Table 12.2: Experiment for Six Forklift Agentsn = 3 T1 T2tasks eq: cl: eq: cl:CPU time min 32.0 48.7 28.1 66.6max 155.6 321.1 408.4 627.0sum 872.1 1289.7 1631.7 2451.8avg 96.6 143.3 181.3 272.4#Steps min 38 54 32 53max 125 324 405 563sum 773 1249 1609 2132avg 85.9 127.2 178.8 236.9# Conicts min 1 1 1 3max 7 18 9 25sum 29 74 37 87 -avg 3.2 8.2 4.1 9.7Table 12.3: Experiment for Nine Forklift Agents� Type four agents take a longer time in order to achieve their goal than type threeagents. The property of curiosity, which is very important if the agent has to orientitself in an unknown area, does not pay o� in the experiment, since it requires goal-directed behaviour.� In general, agents behave worse if tasks are clustered than if tasks are equidistributed.



12.2. PRELIMINARY EXPERIENCES 89� The intelligent strategies yield relatively bad results in the clustered case compared totheir behaviour in the non-clustered case. This is because agents �nd their way to thedestination quite quickly, and thus, all of them will arrive in the shelf area at aboutthe same time.� The number of conicts per agent seems to grow approximately linear with the numberof agents in the non-clustered case. In the clustered case, the number increases muchfaster. This is shown graphically in �gure 12.1 for the case of type 1 and type 2 agents.� The agents using randomness and weighted randomness are less sensitive to conictsthan the plan-based agents.
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Figure 12.1: Conict Rates for Di�erent Numbers of AgentsIn conclusion, this �rst test series has shown the results of di�erent agent con�gurationsin the loading dock. The relationship between the number of agents in the scenario and thenumber of conicts has been investigated. However, the domain o�ers a wid variety of furtherpossible experiments. Firstly, the combination of behaviour-based and plan-based methodsis an ideal area for empirical investigation. Secondly, up to now, we have only regardedhomogeneous agent scoieties, i.e. all the agents started with the same con�guration. Itwould be interesting to see how di�erent types of agents behave in direct competition, andhow the system as a whole is a�ected by varying the composition of the agent society. Forexample, it could be interesting to see whether we could con�rm the empirical results ofKephart et al. [KHH89] that it is sometimes better to have not only smart agents2. Thesekinds of experiments will be the subject of our future work.2In our current experiment, we already noticed a phenomenon which can be interpreted this way: ifwe assume a clustered task characteristics, in societies consisting of smart agents (types 1 and 2) conictprobability tends to be higher than in societies with less \intelligent" agents; this is due to the more goal-directed behaviour of the former ones.



Chapter 13Conclusion and OutlookIn this report, we have presented the InteRRaP agent model and have evaluated it bymeans of a robotics application, the loading dock domain. By our work, we have madethe following contribution: InteRRaP makes it possible to exibly combine features ofbehaviour-based and plan-based agents. Thus, the designer of a MAS can choose amonga large spectrum of mechanisms available for action and interaction, depending on therequirements imposed by the application domain. Especially, we o�er patterns of behaviourfor modeling reactive agents and for modeling procedural \routine tasks", as well as aplanning mechanism for single- and multi-agent planning. By de�ning a exible interplaybetween a behaviour-based and a plan-based component, our agents are robust and can copewith many situations.We presented a two-dimensional goal hierarchy as a data structure which allows anagent to decide what goals to pursue next. But, what is more, the goal hierarchy canbe regarded as a �rst step to an agent development tool for the designer of a multi-agentsystem. Our long-term vision is that the goal hierarchy will represent a generic agent model,which can be instantiated by a designer by de�ning possible goals, their priorities, and theirimplementation.Of course much work remains to be done: Firstly, up to now, there is no general theory ofthe relationship between the situational context, the mental context, and the possible goalsof an agent (i.e. the preselection module in �gure 3). Whereas the situational context canbe implemented in a very elegant manner using the forward-reasoning facilities of OPS-5, itis not yet clear how the current goals of an agent interfere with new goals.Secondly, in this paper we have said much about the decision as to which goal to pur-sue, but only little about the decision as to which mechanism should be chosen for theexecution. We are implementing with several (both behaviour-based and plan-based) mech-anisms of action and interaction in the implementation of the loading dock; �rst results willbe obtainable, soon (see [M�ul93]).Finally, the task of �nding a good compromise between solving problems by usingbehaviour-based and using plan-based mechanisms is a challenge. First experiments con-�rm that, the more plan-based our agents are, the more we are faced with standard AIproblems such as the frame problem. On the other hand, the more reactive (in the senseof \behaviour-based") they are, the less intelligent they behave in (possibly highly con-strained) \standard" situations requiring more or less �xed sequences of actions, as well asin complex interactions with other agents. Here, the concept of InteRRaP pays o� sinceit allows us to experiment with various mechanisms for solving problems at di�erent levelsin the problem hierarchy (see �gure 11.1). A great deal of our future work will consistin extensively experimenting with di�erent con�gurations of the scenario. Our hope is todiscover more general rules which describe the scope and the limitations of behaviour-basedand plan-based approaches. 90
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