
E
ffi

ci
en

t
P

ar
am

et
er

iz
ab

le
Ty

p
e

E
xp

an
si

o
n

fo
r

Ty
p

ed
F

ea
tu

re
F

o
rm

al
is

m
s

H
an

s-
U

lr
ic

h
K

ri
eg

er
,U

lr
ic

h
S

ch
äf

er

R
R

-9
5-

18
R

es
ea

rc
h

R
ep

or

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-18

Efficient Parameterizable Type
Expansion

for Typed Feature Formalisms

Hans-Ulrich Krieger, Ulrich Schäfer

December 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saar-
brücken is a non-profit organization which was founded in 1988. The share-
holder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft,
GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry of Education, Science, Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal
is to construct systems with technical knowledge and common sense which -
by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops
for shareholders and other interested groups in order to inform about the current
state of research.
From its beginning, the DFKI has provided an attractive working environment
for AI researchers from Germany and from all over the world. The goal is to
have a staff of about 100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Efficient Parameterizable Type Expansion
for Typed Feature Formalisms

Hans-Ulrich Krieger, Ulrich Schäfer

DFKI-RR-95-18

A version of this paper has been published in: Proceedings of
the 14th International Joint Conference on Artificial Intelligence,
IJCAI-95, August 20–25, 1995, Montreal, Canada.

This work has been supported by a grant from The Federal Ministry
of Education, Science, Research and Technology (FKZ ITWM-
Verbmobil 01 IV 101 K/1).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Deutsche Forschungszen-
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an ac-
knowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a licence with payment of fee to Deutsches Forschungszentrum
für Künstliche Intelligenz.
ISSN 0946-008X

E�cient Parameterizable Type Expansion

for Typed Feature Formalisms

Hans�Ulrich Krieger Ulrich Sch�afer

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� ���	� Saarbr
ucken� Germany
phone� �
� ��� ��	��	�� fax� �
� ��� ��	���
�

fkrieger�schaeferg�dfki�uni�sb�de

Abstract

Over the last few years� constraint�based grammar formalisms have be�
come the predominant paradigm in natural language processing and com�
putational linguistics� From the viewpoint of computer science� typed
feature structures can be seen as a record�like data structure that allow
the representation of linguistic knowledge in a uniform fashion�
Type expansion is an operation that makes the idiosyncratic and inher�
ited constraints de�ned on a typed feature structure explicit and thus
determines its satis�ability� We describe an e�cient expansion algorithm
that takes care of recursive type de�nitions and permits the exploration of
di�erent expansion strategies through the use of control knowledge� This
knowledge is speci�ed on a separate layer� independent of grammatical
information� The algorithm� as presented in the paper� has been fully im�
plemented in Common Lisp and is an integrated part of the typed feature
formalism TDL that is employed in several large NL projects�

Acknowledgements� This paper has bene�ted from numerous people at vari�
ous workshops where parts of it have been presented� in particular� the EAGLES
workshop on Implemented Formalisms �Saarbr�ucken�� the workshop on Imple�
mentations of Attribute�Value Logics for Grammar Formalisms at the European
Summer School in Language� Logic� and Information �Lisbon�� the workshop on
Neuere Entwicklungen der deklarativen KI�Programmierung at KI�	
 �Berlin��
the International Conference on Computational Linguistics� COLING��� �Ky�
oto�� and the International Joint Conference on Arti�cial Intelligence� IJCAI���
�Montreal��

�

Contents

� Introduction �

� Preliminaries �

� Algorithm �

��� Basic Structure �
��	 Indexed Prototype Memoization � � � � � � � � � � � � �
��� Detecting Recursion � � � � � � � � � � � � � � � � � � �
��
 Example ��
��� Declarative Speci�cation of Control Information � � � �	
��� How to Stop Recursion � � � � � � � � � � � � � � � � � ��

	 Applications �	

� Theoretical Results �	

� Comparison to other Approaches ��

 Summary ��

� Introduction

Over the last few years� constraint�based grammar formalisms �Shieber �	���

have become the predominant paradigm in natural language processing and
computational linguistics� While the �rst approaches relied on annotated phrase
structure rules �e�g�� PATR�II �Shieber et al� �	�
��� modern formalisms try
to specify grammatical knowledge as well as lexicon entries entirely through
feature structures� In order to achieve this goal� one must enrich the expressive
power of the �rst uni�cation�based formalisms with di�erent forms of disjunctive
descriptions� Later� other operations came into play� e�g�� �classical� negation�
However the most important extension to formalisms consists of the incor�

poration of types � for instance in modern systems like TFS �Zajac �		
�� CUF
�D�orre and Dorna �		
�� or TDL �Krieger and Sch�afer �		��� Types are ordered
hierarchically as is known from object�oriented programming languages� a fea�
ture heavily employed in lexicalized grammar theories like Head�Driven Phrase
Structure Grammar �HPSG� �Pollard and Sag �	���� This leads to multiple
inheritance in the description of linguistic entities� In general� not only is a
type related to other types through the inheritance hierarchy� but is also pro�
vided with feature constraints that are idiosyncratic to this type� Hence� a type
symbol can serve as an abbreviation for a complex expression and an untyped
feature structure becomes a typed one� If a formalism is intended to be used
as a stand�alone system� it must also implement recursive types if it does not
provide phrase�structure recursion directly �within the formalism� or indirectly
�via a parser�generator��� In addition� certain forms of relations �like append�
or additional extensions of the formalism �like functional uncertainty� can be
nicely modelled through recursive types�
Now� because types allow us to refer to complex constraints through the

use of symbol names� we need an operation that is responsible for deducing the
constraints that are inherent to a type� This means� reconstructing the idiosyn�
cratic constraints of a type� plus those that are inherited from the supertypes�
We will call such a mechanism type expansion �TE� or type unfolding�� Thus
TE is faced with two main tasks�

�� making some or all feature constraints explicit �TE is a structure�building
operation�

� determining the global consistency of a type or more generally� of a typed
feature structure �if this is possible�

�For instance� ALE employs a bottom�up chart parser� whereas TFS relies entirely on type
deduction� Note that recursive types can be substituted by de�nite clauses �equivalences��
as is the case for CUF� such that parsing�generation roughly corresponds to Prolog	s SLD
resolution�

�It is worth noting that our notion of TE shares similarities with A
�t�Kaci	s sort unfolding
�A
�t�Kaci et al�
���� and Carpenter	s total well�typedness �Carpenter
���� Ch� ��� However�
the latter notion is not well�de�ned for true recursive typed feature structures in that such
structures cannot be totally well�typed within �nite time and space�

Types not only serve as a shorthand� like templates� but also provide other
advantages which can only be accomplished if a mechanism for TE is available�

� Structuring Knowledge

Hierarchically�ordered types allow for a modular way of representing lin�
guistic knowledge� Generalizations can be put at the appropriate levels
of representation� Type expansion� then� is responsible for gathering the
distributed information that is attached to the type symbols�

� Saving Memory

In practice� it is not possible to hold huge lexica in full detail in memory�
However� only the idiosyncratic information of a lexicon entry needs to
be represented� Type expansion is employed in making the constraints
imposed by lexical types explicit�

� Efficient Processing

Working with type symbols only or with partially expanded typed feature
structures minimizes the costs of copying during processing and speeds
up uni�cation� This can only be accomplished if the system makes a
mechanism for type expansion available�

� Type Discipline

Type de�nitions allow a grammarian to declare which attributes are ap�
propriate for a given type and which types are appropriate for a giv�
en attribute� therefore disallowing one from writing inconsistent feature
structures� Again� type expansion is necessary to determine the global
consistency of a given description�

� Recursive Types

Recursive types give a grammar writer the opportunity to formulate cer�
tain functions or relations as recursive type speci�cations� Working in the
type deduction paradigm forces a grammar writer to replace the context�
free backbone through recursive types� Here� parameterized delayed type
expansion is the key to controlled linguistic deduction �Uszkoreit �		���

� Anytime Behaviour

Complex architectures for NL processing require modules that can be
interrupted at any time� returning an incomplete� nevertheless useful result
�Wahlster �		
�� Such modules are able to continue processing with only
a negligible overhead� instead of having been restarted from scratch� Type
expansion can serve as an anytime module for linguistic processing�

In the next section� we introduce the basic inventory to describe our own
novel approach to TE� We then describe the basic structure of the algorithm�
present several improvements� and show how it can be parameterized w�r�t�
di�erent dimension� Finally� we have a few words on theoretical results and

�

compare our treatment with others� Further detailed material on this theme
can be found in the PhD thesis of the �rst author �Krieger �		�a� and the
master�s thesis of the second �Sch�afer �		���

� Preliminaries

In order to describe our algorithm� we need only a small inventory to abstract
from the concrete implementation in TDL �Krieger and Sch�afer �		�� and to
make the approach comparable to others� First of all� we assume pairwise
disjoint sets of features �attributes� F � atoms �constants� A� logical variables
V � and types T � In the following� we refer to a type hierarchy I by a pair
hT ��i� such that � � T � T is a decidable partial order� i�e�� � is re�exive�
antisymmetric� and transitive� A typed feature structure �TFS� � is essentially
either a ��term or an ��term �A��t�Kaci �	���� i�e��

� ��� hx� ���i j hx� ���i

such that x � V � � � T � � � ff�
�
� ��� � � � � fn

�
� �ng� and � � f��� � � � � �ng�

where each fi � F and �i is again a TFS� We will call the equation f
�
� � a

feature constraint �or an attribute�value pair��� � is interpreted conjunctively�
whereas � represents a disjunction� Variables are used to indicate structure
sharing�
Let us give a small example to see the correspondences� The typed feature

structure

hx� cyc	list � ffirst
�
� ��rest

�
� xgi

should denote the same set of objects as the following two�dimensional attribute�
value matrix �AVM� notation�

x

�
� cyc	list
first �
rest x

�
�

It is worth noting that for the purpose of simplicity and clarity� we restrict
TFS to the above two cases� Actually� our algorithm is more powerful in that it
handles other cases� for instance conjunction� disjunction� and negation of types
and feature constraints�
A type system � is a pair h�� Ii� where � is a �nite set of typed feature

structures and I an inheritance hierarchy� Given �� we call � � � a type
de�nition�

�It should be noted that we de�ne TFS to have a nested structure and not to be �at �in
contrast to feature clauses in a more logic�oriented approach� e�g�� �A
�t�Kaci et al�
����� in
order to make the connection to the implementation clear and to come close to the structured
attribute�value matrix notation�

�

Our algorithm is independent of the underlying deduction system�we are
not interested in the normalization of feature constraints �i�e�� how uni�cation
of feature structures is actually done� nor are we interested in the logic of types�
e�g�� whether the existence of a greatest lower bound is obligatory �TFS �Za�
jac �		
�� ALE �Carpenter and Penn �		��� or optional as in TDL �Krieger and
Sch�afer �		��� We assume here that typed uni�cation is simply a black box and
can be accessed through an interface function �say unify	tfs�� From this per�
spective� our expansion mechanism can be either used as a stand�alone system
or as an integrated part of the typed uni�cation machinery�
We only have to say a few words on the semantic foundations of our approach

at the end of this paper� This is because we could either choose extensions of fea�
ture logic �Smolka �	�	� or directly interpret our structures within the paradigm
of �constraint� logic programming �Lloyd �	��� Ja�ar and Lassez �	����

� Algorithm

The overall design of our TE algorithm was inspired by the following require�
ments�

� support a complete expansion strategy

� allow lazy expansion of recursive types

� minimize the number of uni�cations

� make expansion parameterizable for delay and preference information

� make expansion incremental to serve as an anytime module

Before we describe the algorithm� we modify the syntax of TFS to get rid of
unimportant details� First� we simplify TFS in that we omit variables� This can
be done without loss of generality if variables are directly implemented through
structure�sharing �which is the case for our system�� Hence conjunctive TFS
have the form h�� ff�

�
� ��� � � � � fn

�
� �ngi� whereas disjunctive are of the form

h�� f��� � � � � �ngi�
Given a TFS �� type	of ��� returns the type of �� whereas typedef ��� then

obtains the type de�nition without inherited constraints as given by the type
system � � h�� Ii� We call this TFS a skeleton� It is either h�� f��� � � � � �ngi or
h�� ff�

�
� ��� � � � � fn

�
� �ngi� where � are the direct supertype�s� of � �

Because the algorithm should support partially expanded �delayed� types�
we enrich each TFS � by two �ags�

�� �expanded����true� i� typedef �type	of ���� and the de�nitions of all its
supertypes have been uni�ed with �� false otherwise�

�

� expanded����true� i� �expanded����true and expanded��i��true for all
elements �i of TFS �� false otherwise�

Hence �expanded is a local property of a TFS that tells whether the de��
nition of its type is already present� while expanded is a global property which
indicates that all substructures of a TFS are �expanded� Clearly� atoms and
types that possess no features are always expanded� The exploitation of these
�ags leads to a drastic reduction of the search space in the expansion algorithm�

��� Basic Structure

The following functions brie�y sketch the basic algorithm� It is a destructive
depth��rst algorithm with a special treatment of recursive types that will be
explained in Section
�
�

expand	tfs is the main function that initializes TE� The while loop is execut�
ed until the TFS � is expanded or so�called !resolved" �see keyword �resolved�
predicate in Section
���� Several passes may be necessary for recursive TFS�

expand	tfs��� ��
while not �expanded	p��� or

resolved	p��� or
no uni�cation occurred in last pass�

depth	�rst	expand����
�� or types	�rst	expand���� resp� ��

depth	�rst	expand and types	�rst	expand recursively traverse a TFS� Which of
both functions is employed� can be speci�ed by the user� The visited check is
done by comparing variables �actually� structure�sharing in the implementation
makes variables obsolete�� types	�rst	expand is de�ned analogously by �rst
expanding the root type of a TFS� and then processing the feature constraints�

depth	�rst	expand��� ��
if � has been already visited in this pass
then return

else

if � � h�� f��� � � � � �ngi
then

for every � � f��� � � � � �ng �
depth	�rst	expand ���

else do �� � � h�� ff�
�
� ��� � � � � fn

�
� �ngi ��

for every � � f��� � � � � �ng �
depth	�rst	expand ����

�

if not �expanded���
then unify	type	and	node��� ��

od�

unify	type	and	node destructively uni�es � with the expanded TFS of � � The
index � speci�es which !prototype" of � is chosen �see Section
�
��

unify	type	and	node��� �� ��
if � � ��
then unify	tfs �negate	tfs �expand	type��� ���� ��
else unify	tfs �expand	type��� ��� ���
 �expanded��� � true�

We adapt Smolka�s treatment of negation for our TFS �Smolka �	�	�� Note that
we only depict the conjunctive case here�

negate	tfs�� � h�� ff�
�
� ��� � � � � fn

�
� �ngi� ��

return

h	� fh��� fgi�
h	� ff�
gi� h	� ff�

�
� negate	tfs����gi� � � � �

h	� ffn
gi� h	� ffn
�
� negate	tfs��n�gigi�

��� Indexed Prototype Memoization

The basic idea of memoization �Michie �	��� is to tabulate results of function
applications in order to prevent wasted calculations� We adapt this technique to
the type expansion function� The argument of our memoized expansion function
is a pair consisting of a type name �or a name of a lexicon entry or a rule� and an
arbitrary index that allows access to di�erent TFS of the same type which may
be expanded in di�erent ways �fully expanded or partially w�r�t� to a certain
speci�cation�� Such feature structures are called prototypes �
Once a prototype has been expanded according to the attached control in�

formation� its expanded version is recorded and all future calls return a copy of
it� instead of repeating the same uni�cations once again�

expand	type��� index � ��
if protomemo��� index � unde�ned
then � � expand	tfs�typedef �����

protomemo��� index � � ��

�

return copy	tfs���
else return copy	tfs�protomemo��� index ���

Most of these computations can be done at compile time �partial evaluation��
and hence speed up uni�cation at run time� The prototypes can serve as !basic
blocks" for building a partially expanded grammar�

Some empirical results indicate the usefulness of indexed prototype mem�
oization� Figure � contains statistical information about the expansion of a
mid�size HPSG grammar with approx� 	## type de�nitions� About
�# addi�
tional lexicon entries and rules have been expanded from scratch� i�e�� all types
are unexpanded �are skeletons� at the beginning� The type and instance skele�
tons together consist of about 	### nodes� whereas the resulting structures have
a total size of approx� �#### nodes �nodes undergoing garbage collections are
not counted��
The measurements show that memoization speeds up expansion by a factor of

� here �or �# if all types except the lexicon entries are pre�expanded which seems
to be the optimal setting at run time�� These factors are directly proportional
to the number of uni�cations� The time di�erence between the memoized and
non�memoized algorithm may be even bigger if disjunctions are involved �in the
ideal case exponential�� The sample grammar contains only a few disjunctions�

algorithm depth��st�expand types��st�expand depth��st�expand types��st�expand

memoization yes yes no no

time �secs� �� j ��� �� j ��� ��� ���

uni�cations �	��� j ���
�� �	��	 j ������ ������ ����	�

number of ��� �cons� ��� �cons� ���� �avm� ���� �avm�
calls to ��� cat
type ��	 �di�
list� ��
� sem
expr ���� sem
expr
expand�type ��
 �di�
list� ��� morph
type ��	
 term
type ���� term
type

��� morph
type
� nmorph
head ���� �cons� ��
� �cons�
�� with types ��� atomic
w� �� sort
expr ���� w�
type ��	� w�
type
pre�expanded ��� rp
type 	� atomic
w�
�� agr
feat
�� agr
feat

��� conj
w�
type �� rp
type ��� semantics 	�	 semantics
��� var
type �� subw�
inst ��� indexed
w� 	�� indexed
w�

� � � � � � � � � � � �

Figure �� E�ciency of depth��rst vs� types��rst expansion with�without indexed
prototype memoization�

��� Detecting Recursion

The memoization technique is also employed in detecting recursive types� This
is important in order to prevent in�nite computations� We use the so�called
!expand stack" of expand	type to check whether a type is recursive or not �see

	

Section
���� Each call of expand	type��� index � will push � onto the expand
stack� This stack then is passed to expand	tfs �
If a type � on top of the expand stack also occurs below in the stack

��� �n� � � � � ��� �� 	m� � � � � 	��� we immediate know that the types �� �n� � � � � ��
are recursive� Furthermore� these types form a strongly connected component
�SCC� of the type dependency �or occurrence� graph� i�e�� each type in the SCC
is reachable from every other type in the SCC� Examples for such SCCs are
�cons list� and �state
 � in the example below �Section
����
Testing whether a type is recursive or not thus reduces to a simple �nd

operation in a global list that contains all SCCs� The expansion algorithm
uses this information in expand	tfs to delay recursive types if the expand stack
contains more than one element� Otherwise� prototype memoization would loop�
If a recursive type occurs in a TFS and this type has already been expanded

under a subpath� and furthermore no features or other types are speci�ed at this
node� then this type will be delayed� since it would expand forever �we call this
lazy expansion�� An instance of such a recursive type for which type expansion
stops is the recursive version of list � as de�ned below�

��	 Example

In the following� we de�ne a �nite automaton A as a family of recursive type
de�nitions� A consists of two states and accepts the language L�A� � a��a$b���

The input is speci�ed through a list under path input � cf� the de�nition of
type ab below� The distributed �or named� disjunction �Eisele and D�orre �		#�

headed by %� in type state
 is used to map input symbols to state types �and
vice versa�� De�ning FA this way provides a solid basis for the integration of
automata�based allomorphy �e�g��
�level morphology� and morphotactics within
the same constraint�based formalism �cf� �Krieger et al� �		
���

list � fcons � h ig

cons �

�
first �
rest list

�
we abbreviate cons via h� � �i

non��nal �

�
� input h
 � � i
edge

next
�
input �

�
�
�

�In �Krieger
���b�� it is shown that this special kind of encoding allows us to reconstruct
all the nice properties of �nite automata�regular expressions �viz�� closedness under intersec�
tion� union� complement� concatenation� and Kleene closure� in terms of operations of the
underlying feature calculus�

�#

�nal �

	
input h i
edge undef

next undef

state� �

	
non��nal

edge �	 fa� fa� bgg
next �	 fstate� � �nalg

ab �

�
state�

input h a� b i

�

Fig�
 shows a trace of the expansion of type ab� The algorithm is depth	
�rst	expand without any delay or preference information� In this trace� we
assume that it was not known before that the types cons� list � and state
 are
recursive� hence the SCCs will be computed on the �y�

step expand�type in type under path expand stack

 cons ab input�rest �ab�
� list cons rest �cons ab�
� cons list � �list cons ab� � �cons list� new SCC� delay cons

� cons ab input �ab�
� state� ab � �ab�
� state� state� next �state� ab� � �state� � new SCC� delay state�

� �nal state� next �state� ab�
� non��nal state� � �state� ab�
� cons non��nal input �non��nal state� ab�

� state� ab next �ab�

Figure
� Tracing the expansion of type ab� ab is consistent� hence the �nite
automata accepts input h a� b i�

The result of expand	type�ab� is the following feature structure�

expand�type
ab��

�
�������������

ab

input h
 a � � h � b � � h i i i
edge

next

�
�������

state�

input �

edge �

next

�
��
�nal

input �

edge undef

next undef

�
��

�
�������

�
�������������

If we ran our automaton on the input abb�

��

abb �

�
state�

input h a� b� b i

�

it would be rejected� expand�type�abb�� fail�

��� Declarative Speci�cation of Control Information

Control information for the expansion algorithm can be speci�ed globally� locally
for each prototype� as well as for a speci�c expand	tfs call� The following control
keywords have been implemented so far�

� �expand�function fdepthjtypesg��rst�expand speci�es the basic expansion al�
gorithm�

� �delay f � ftype j �type �pred ��g fpathg� � g� speci�es types at path to
be delayed� path may be a feature path or a complex path pattern with
wildcard symbols �� �� 	� feature and segment variables� pred is a test
predicate to compare types� e�g�� � or� �checked in unify	type	and	node��

� f�expandj�expand�onlyg f � ftype j �type �index �pred ���g fpathg� � g� There
are two mutually exclusive modes� concerning the expansion of types� If
the �expand�only list is speci�ed� only types in this list will be expanded
with the speci�ed prototype index � all others will be delayed� If the �expand
list is speci�ed� all types will be expanded �checked in unify	type	and	
node��

� �maxdepth integer speci�es that all types at paths longer than integer will
be delayed anyway �checked in unify	type	and	node��

� �attribute�preference fattributeg� de�nes a partial order on attributes that
will be considered in the functions depth	�rst	expand and types	�rst	
expand � The substructures at the attributes leftmost in the list will be
expanded �rst� This non�numerical preference may speed up expansion if
no numerical heuristics are known�

� �use�fconjjdisjg�heuristics ftjnilg �Uszkoreit �		�� suggested exploiting nu�
merical preferences to speed up uni�cation� Both keywords control the use
of this information in functions depth	�rst	expand and types	�rst	expand �

� �resolved�predicate fresolved�pjalways�falsej� � � g This slot speci�es a user de�
�nable predicate that may be used to stop recursion �see function expand	
tfs�� Such a predicate might su&ce in practice to guarantee a terminating
expansion without violating correctness� The default predicate is always�
false which leads to a complete expansion algorithm �if no other delay
information is speci�ed��

�

� �ask�disj�preference ftjnilg If this �ag is set to t� the expansion algorithm
interactively asks for the order in which disjunction alternatives should be
expanded �checked in depth	�rst	expand and types	�rst	expand�� This
option is useful during the debug phase of a grammar�

� �ignore�global�control ftjnilg Speci�es whether globally speci�ed �expand�
only� �expand� and �delay information should be ignored or not�

Let us give an example to show how control information can be employed�
Note that we formulate this example in the concrete syntax of TDL�

defcontrol verb

�� delay all subtypes of sign under spec� path pattern

�� � matches INHERITED and TO�BIND

���delay ��sign Subsumes� SYNSEM�NONLOCAL���SLASH��

�� attribute preference during expansion by this order

��attribute�preference SYNSEM DTRS SUBCAT HEAD�

��use�disj�heuristics T�

��ignore�global�control T�

�� expand type local with index initial

�� 	 matches all paths in type local

��expand ��local initial� 	���

�� these control specs are used for type verb with index

�index
�

��� How to Stop Recursion

Type expansion with recursive type de�nitions is undecidable in general� i�e��
there is no complete algorithm that halts on arbitrary TFS and decides whether
a description is satis�able or not �see also Section ��� However� there are several
ways to prevent in�nite expansion in our framework�

� The �rst method is part of the expansion algorithm �lazy expansion� as
described before�

� The second way is brute force� use the �maxdepth slot to cut expansion at
a suitable path depth�

� The third method is to de�ne �delay patterns or to select the �expand�only
mode with appropriate type and path patterns�

� The fourth method is to use the �attribute�preference list to de�ne the
!right" order for expansion�

� Finally� one can de�ne an appropriate �resolved�predicate that is suitable
for a class of recursive types�

�

� Applications

In Section
��� we have already mentioned an NL application in which type
expansion was employed� viz�� in the formulation of the interface between al�
lomorphy and morphotactics �Krieger et al� �		
�� Let us quickly present two
other areas that pro�t from type expansion� parsing�generation as type expan�
sion and distributed parsing with partially expanded information�
Parsing and generation can be seen in the light of type expansion as a uniform

process� where ideally only the phonology �for parsing� or the semantics �for
generation� must be given� for instance�

Parsing�

�
phrase
PHON h �John� �likes� �bagels� i

�

Type expansion together with a su&ciently speci�ed grammar then is respon�
sible in both cases for constructing a fully speci�ed feature structure which is
maximal informative and compatible with the input structure�
Distributed parsing is a strategy which reduces the representational over�

head� given one grammar which cospeci�es syntax and semantics� proper con�
straints �i�e�� �lters� are separated from purely representational constraints� The
resulting subgrammars are then processed by two parsers in parallel �Diagne et
al� �		��� This presupposes that we can properly handle partially expanded
typed feature structures�

� Theoretical Results

It is worth noting that testing for the satis�ability of feature descriptions admit�
ting recursive type equations�de�nitions is in general undecidable� �Rounds and
Manaster�Ramer �	��� were the �rst to have shown that a Kasper�Rounds logic
enriched with recursive types allows one to encode a Turing machine� Later�
�Smolka �	�	� argued that the undecidability result is due to the use of corefer�
ence constraints� He demonstrated his claim by encoding the word problem of
Thue systems� Hence� our expansion mechanism is faced with the same result
in that expansion might not terminate�
However� we conjecture that non�satis�ability and thus failure of type expan�

sion is semi�decidable� The intuitive argument is as follows� given an arbitrary
recursive TFS and assuming a fair type unfolding strategy� the only event under
which TE terminates in �nite time follows from a local uni�cation failure which
then leads to a global one� In every other case� the unfolding process goes
on by substituting types through their de�nitions� Recently� �A��t�Kaci et al�
�		
� have formally shown a similar result by using the compactness theorem
of �rst�order logic� However� their proof assumes the existence of an in�nite
OSF clause �generated by unfolding a ��term�� Furthermore� they have not
addressed disjunction�

��

Thus� our algorithmmight not terminate if we choose the complete expansion
strategy� However� we noted above that we can even parameterize the complete
version of our algorithm to ensure termination� for instance to restrict the depth
of expansion �analogous to the o��line parsability constraint�� The non�complete
version always guarantees termination and might su&ce in practice�
Semantically� we can formally account for such recursive feature descrip�

tions �with respect to a type system� in di�erent ways� either directly on the
descriptions� or indirectly through a transformational approach into �rst�order
logic �see �Krieger �		�c� for a transformational approach of typed feature struc�
tures into de�nite equivalences�� Both approaches rely on the construction of
a �xpoint over a certain �downward� continuous function�� The �rst approach
is in general closer to an implementation �and thus to our algorithm� in that
the function which is involved in the �xpoint construction corresponds more or
less to the uni�cation�substitution of TFS �see for instance �A��t�Kaci �	��� or
�Pollard and Moshier �		#��� The latter approach is based on the assumption
that TFS are only syntactic sugar for �rst�order formulae� If we transform these
descriptions into an equivalent set of de�nite clauses� we can employ techniques
that are fairly common in logic programming� viz�� characterizing models of a
de�nite program through �xpoints� Take� for instance� our cyc	list example
from the beginning to see the outcome of such a transformation �assume that
cyc	list is a subtype of list��

�x � cyc	list�x�
 �y� z � list�x� �
first�x� y� � rest�x� z� �
y

�
� � � z

�
� x

Under the least �xpoint interpretation� cyc	list will be assigned an empty de�
notation �assuming a rational tree domain�� whereas the greatest �xpoint in�
terpretation leads to a non�empty denotation� containing even in�nite feature
trees ��Krieger �		�c� is a detailed investigation of this and other related areas��

� Comparison to other Approaches

To our knowledge� the problem of type expansion within a typed feature�based
environment was �rst addressed by Hassan A��t�Kaci �A��t�Kaci �	���� The lan�
guage� he described� was called KBL and shared great similarities with LOGIN�
see �A��t�Kaci and Nasr �	���� However� his expansion mechanism was order
dependent in that it substituted types by their de�nition instead of unifying
the information� Moreover� it was non�lazy� thus it will fail to terminate for
recursive types and performs TE only at de�nition time as is the case for ALE

�In both cases� there is� in general� more than one �xpoint� but it seems desirable to choose
the greatest one� as it would not rule out� for instance� cyclic structures or types which are
not �grounded� on atoms�

��

�Carpenter and Penn �		��� However� ALE provides recursion through a built�
in bottom�up chart parser and through de�nite clauses� Allowing TE only at
de�nition time is in general space consuming� thus uni�cation and copying is
expensive at run time�
Another possibility one might follow is to integrate TE into the typed uni�

�cation process so that TE can take place at run time� Systems that explore
this strategy are TFS �Zajac �		
� and LIFE �A��t�Kaci �		
�� However� both
implementations are not lazy� thus hard to control and moreover� might not
terminate� In addition� if prototype memoization is not available� TE at run
time is ine&cient� cf� Fig� ��� A system that employs a lazy strategy on demand
at run time is CUF �D�orre and Dorna �		
�� Laziness can be achieved here by
specifying delay patterns as is familiar from Prolog� This means delaying the
evaluation of a relation until the speci�ed parameters are instantiated�

� Summary

Type expansion is an operation that makes constraints of a typed feature struc�
ture explicit and determines its satis�ability� We have described an expansion
algorithm that takes care of recursive types and allows us to explore di�erent
expansion strategies through the use of control knowledge� E&ciency is ad�
dressed through specialized techniques� �i� prototype memoization reduces the
number of uni�cations� and �ii� preference information directs the search space�
Because our notion of type expansion is conceived as a stand�alone module�
one can freely choose the time of its invocation� e�g�� during typed uni�cation�
parsing� etc�
The algorithm� as presented in the paper� has been fully implemented within

the TDL�UDiNe system �Krieger and Sch�afer �		�� Backofen and Weyers �		��

and is an integrated part of Disco �Uszkoreit et al� �		���
We are convinced that our approach is also of interest to those who are

working with �possibly recursive and hierarchically�ordered� record�like data
structures in other areas of computer science�

References

�A��t�Kaci and Nasr �	��� Hassan A��t�Kaci and Roger Nasr� LOGIN� A logic
programming language with built�in inheritance� Journal of Logic Program�
ming�
����'
��� �	���

�A��t�Kaci et al� �		
� Hassan A��t�Kaci� Andreas Podelski� and Seth Copen
Goldstein� Order�sorted feature theory uni�cation� Technical Report

�
Digital Equipment Corporation� DEC Paris Research Laboratory� France�
May �		
� Also in Proceedings of the International Symposium on Logic
Programming� Oct� �		
� MIT Press�

��

�A��t�Kaci �	��� Hassan A��t�Kaci� An algebraic semantics approach to the e�ec�
tive resolution of type equations� Theoretical Computer Science� ���
	
'
���
�	���

�A��t�Kaci �		
� Hassan A��t�Kaci� An introduction to LIFE�programming with
logic� inheritance� functions� and equations� In Proceedings of the Internation�
al Symposium on Logic Programming� pages �
'��� �		
�

�Backofen and Weyers �		�� Rolf Backofen and Christoph Weyers� UDiNe�a
feature constraint solver with distributed disjunction and classical negation�
Unpublished documentation note� �		��

�Carpenter and Penn �		�� Bob Carpenter and Gerald Penn� ALE�the at�
tribute logic engine user�s guide� version
�#� Technical report� Laboratory
for Computational Linguistics� Philosophy Department� Carnegie Mellon Uni�
versity� Pittsburgh� PA� August �		��

�Carpenter �		
� Bob Carpenter� The Logic of Typed Feature Structures� Tracts
in Theoretical Computer Science� Cambridge University Press� Cambridge�
�		
�

�Diagne et al� �		�� Abdel Kader Diagne� Walter Kasper� and Hans�Ulrich
Krieger� Distributed parsing with HPSG grammars� In Proceedings of the
�th International Workshop on Parsing Technologies� IWPT���� pages �	'
��� �		�� Also available as DFKI Research Report RR�	���	�

�D�orre and Dorna �		
� Jochen D�orre and Michael Dorna� CUF�a formalism
for linguistic knowledge representation� In Jochen D�orre� editor� Computa�
tional Aspects of Constraint�Based Linguistic Description I� DYANA� �		
�

�Eisele and D�orre �		#� Andreas Eisele and Jochen D�orre� Disjunctive uni�ca�
tion� IWBS Report �
�� IWBS� IBM Germany� Stuttgart� �		#�

�Ja�ar and Lassez �	��� Joxan Ja�ar and Jean�Louis Lassez� Constraint logic
programming� In Proceedings of the
�th ACM Symposium on Principles of
Programming Languages� pages ���'��	� �	���

�Krieger and Sch�afer �		�� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�a
type description language for constraint�based grammars� In Proceedings of
the
�th International Conference on Computational Linguistics� COLING�
��� pages �	
'�		� �		��

�Krieger et al� �		
� Hans�Ulrich Krieger� John Nerbonne� and Hannes Pirker�
Feature�based allomorphy� In Proceedings of the

st Annual Meeting of the
Association for Computational Linguistics� ACL��
� pages ��#'���� �		
� A
version of this paper is available as DFKI Research Report RR�	
�
��

��

�Krieger �		�a� Hans�Ulrich Krieger� TDL�A Type Description Language for
Constraint�Based Grammars� Foundations� Implementation� and Applica�
tions� PhD thesis� Universit�at des Saarlandes� Department of Computer
Science� September �		��

�Krieger �		�b� Hans�Ulrich Krieger� Typed feature formalisms as a common
basis for linguistic speci�cation� In Machine Translation and the Lexicon�
Springer� Berlin� �		�� Lecture Notes in Arti�cial Intelligence �	�� A version
of this paper is available as DFKI Research Report RR�	��
	�

�Krieger �		�c� Hans�Ulrich Krieger� Typed feature structures� de�nite equiv�
alences� greatest model semantics� and nonmonotonicity� In Proceedings of
the �th Meeting on Mathematics of Language� MOL�� �		�� Also available as
DFKI Research Report RR�	��
#�

�Lloyd �	��� J�W� Lloyd� Foundations of Logic Programming� Springer�
nd
edition� �	���

�Michie �	��� Donald Michie� !Memo" functions and machine learning� Nature�

�������	'

� �	���

�Pollard and Moshier �		#� Carl J� Pollard and M� Drew Moshier� Unifying
partial descriptions of sets� In P� Hanson� editor� Information� Language� and
Cognition� Vol�
 of Vancouver Studies in Cognitive Science� pages
��'

�
University of British Columbia Press� �		#�

�Pollard and Sag �	��� Carl Pollard and Ivan A� Sag� Information�Based Syn�
tax and Semantics� Vol� I� Fundamentals� CSLI Lecture Notes� Number �
�
Center for the Study of Language and Information� Stanford� �	���

�Rounds and Manaster�Ramer �	��� William C� Rounds and Alexis Manaster�
Ramer� A logical version of functional grammar� In Proceedings of the ��th
Annual Meeting of the Association for Computational Linguistics� pages �	'
	�� �	���

�Sch�afer �		�� Ulrich Sch�afer� Parametrizable type expansion for TDL� Master�s
thesis� Universit�at des Saarlandes� Department of Computer Science� �		��

�Shieber et al� �	�
� Stuart Shieber� Hans Uszkoreit� Fernando Pereira� Jane
Robinson� and Mabry Tyson� The formalism and implementation of PATR�
II� In Barbara J� Grosz and Mark E� Stickel� editors� Research on Interactive
Acquisition and Use of Knowledge� pages
	'�	� AI Center� SRI International�
Menlo Park� Cal�� November �	�
�

�Shieber �	��� Stuart M� Shieber� An Introduction to Uni�cation�Based Ap�
proaches to Grammar� CSLI Lecture Notes� Number �� Center for the Study
of Language and Information� Stanford� �	���

��

�Smolka �	�	� Gert Smolka� Feature constraint logic for uni�cation grammars�
IWBS Report 	
� IWBS� IBM Germany� Stuttgart� November �	�	� Also in
Journal of Logic Programming� �
���'��� �		
�

�Uszkoreit et al� �		�� Hans Uszkoreit� Rolf Backofen� Stephan Busemann� Ab�
del Kader Diagne� Elizabeth A� Hinkelman� Walter Kasper� Bernd Kiefer�
Hans�Ulrich Krieger� Klaus Netter� G�unter Neumann� Stephan Oepen� and
Stephen P� Spackman� DISCO�an HPSG�based NLP system and its ap�
plication for appointment scheduling� In Proceedings of COLING���� pages
�
�'��#� �		�� A version of this paper is available as DFKI Research Report
RR�	��
��

�Uszkoreit �		�� Hans Uszkoreit� Strategies for adding control information to
declarative grammars� In Proceedings of the ��th Meeting of the Association
for Computational Linguistics �ACL�� pages

�'
��� �		��

�Wahlster �		
� Wolfgang Wahlster� VERBMOBIL�translation of face�to�face
dialogs� Research Report RR�	
�
�� German Research Center for Arti�cial
Intelligence �DFKI�� Saarbr�ucken� Germany� �		
� Also in Proc� MT Summit
IV� �
�'�
�� Kobe� Japan� July �		
�

�Zajac �		
� R(emi Zajac� Inheritance and constraint�based grammar for�
malisms� Computational Linguistics� ���
����	'��
� �		
�

�	

