
Multi�Agent Planning

Using an Abductive

Event Calculus

Christoph G� Jung�� Klaus Fischer� Alastair Burt

�Graduiertenkolleg Kognitionswissenschaft� Universit�at des Saarlandes

Acknowledgements

We would like to thank Prof� Dr� J�org Siekmann for supervising the development
of the planning system that is described in this report�

We appreciate the work of Prof� Dr� Robert Kowalski and his group at the
�Imperial College�� London� They created the original formulation of the Event
Calculus and were the �rst to apply it to planning� The immediate inspiration for
our approach� however� has been the work of Lode Missiaen� Maurice Bruynooghe�
and Marc Denecker from the �KU�� Leuven� Besides their planning system CHICA�
they have also developed the foundations of SLDNFA�� the basic proof procedure
used in our implementation� EVE�

Further acknowledgements are due to the Programming Systems Lab of the
DFKI GmbH and its head Prof� Dr� Gert Smolka for the design and the implemen�
tation of the wonderful Oz calculus� the constraint�based implementation platform
of EVE� The group� especially Christian Schulte� were always ready to give as�
sistance� Without Christian�s backing and the discussions about constraint�based
programming and encapsulated search� EVE would have never come to life 	� � � and
what would have Adam said to that
��

Gero Vierke has been a valuable help by proof�reading this report�
Christoph G� Jung would also like to thank the Graduiertenkolleg Kognition�

swissenschaft at the Universit�at des Saarlandes for their unique support�

Contents

� Preface �

� Introduction ��
�� Logic �
��� Planning �
��� EVE�s Architecture �

� Theory of Time and Action� the Event Calculus ��
�� Requirements �
��� The Situation Calculus �
��� The Event Calculus by Kowalski � Shanahan � � � � � � � � � � � ��
��� The Event Calculus by Missiaen � � � � � � � � � � � � � � � � � � ��
��� The Simple Event Calculus of EVE � � � � � � � � � � � � � � � � ��
��� The Extended Event Calculus of EVE � � � � � � � � � � � � � � � ��
��� Remarks ��
��� Summary ��

� Theorem Proving with Abduction� SLDNFA� ��
�� Resolution� SLD ��
��� Negation As Failure� SLDNF ��
��� Constructive Negation ��

���� SLDCNF ��
����� SLDNF� ��
����� E�cient Negation in SLDNF� � � � � � � � � � � � � � � � � � ��

��� Abduction� SLDA ��
��� Negation and Abduction ��

���� SLDNFA ��
����� SLDCNFA ��
����� SLDNFA� �

��� Remarks ��
��� Summary ��

� The Event Calculus under SLDNFA� ��
�� Planning by Theorem Proving ��

��� Plan Analysis and Evaluation � � � � � � � � � � � � � � � � � � ��
���� Plan Synthesis and Modi�cation � � � � � � � � � � � � � � � � ��

��� Abductive Predicates and their Maintenance � � � � � � � � � � � � � ��
��� Treatment of Negations ��
��� SLD�Rule� Choice Points and Heuristics � � � � � � � � � � � � � � � � ��
��� Execution of the Simple Event Calculus of EVE � � � � � � � � � ��
��� Execution of the Extended Event Calculus of EVE � � � � � � � � ��
��� Summary ��

	 SLDNFA� by Constraint Logic Programming ��
�� The Oz calculus ��
��� Resolution in Oz ��
��� Negation As Failure in Oz ��
��� Constructive Negation in Oz ��
��� Abduction in Oz ��
��� Remarks ��
��� Summary ��

�

 The Constraint�Based Event Calculus 	�
�� Meta�Programming ��
��� Heuristics ��
��� Object�Oriented Abduction ��
��� The default Abducibles and the Knowledge Base Interface � � � � � � ��
��� Summary ��

� Object�Oriented Representation 	�
�� Representation of Properties ��
��� The Planning Service Class� EVE ��
��� The Event Class� UrEvent ��
��� The Default Abducibles ��
��� The Knowledge Base Object ��
��� Summary ��

� EVE in the Multi�Agent Blocksworld Domain
�

�� EVE in a Multi�Agent System
	
�� The InteRRaP Architecture ��
��� EVE within the Local Planning Layer � � � � � � � � � � � � � � � � � ��
��� EVE in the Loading Dock Domain ��
��� Summary �

�� Related Work ��
� Planning with a logical framework ��

�� Situation Calculus�Based Systems � � � � � � � � � � � � � ��
��� Planning using Temporal Logics � � � � � � � � � � � � � � � � ��
��� Event Calculus�Based Systems � � � � � � � � � � � � � � � ��

�� Procedural� Nonlinear Planning ��
�� Plan Graph Analysis ��
�� Multi�Agent Planning ��
�� Summary ��

�� Future Research ��
�� Planning in a Multi�Agent Architecture � � � � � � � � � � � � � � � � ��
��� Extensions to the Event Calculus � � � � � � � � � � � � � � � � � � ��

���� Maintenance ��
����� Events with Duration ��
����� Context�Dependent Conditions � � � � � � � � � � � � � � � � � ��
����� Probability in Planning ��
����� Sensing Actions ��
����� Hierarchical Planning ��
����� Generic Resources ��

��� Heuristics ��
��� Abduction � constraint logic programming � � � � � � � � � � � � � � ��
��� Summary ��

�� Conclusion ��

A EVE� Installation ��
A� Dependencies and Compilation ��
A�� A Counting Example ��
A�� Summary ��

B Axiomatisation of the Multi�Agent Blockworld �

�

C Axiomatisation of the Loading Dock Scenario ��

List of Figures ���

References ��	

Index ���

�

� Preface

Since its early beginnings� Arti�cial Intelligence research in the �eld of planning
���� has had to cope with the frame problem ���� ��� The �rst logic�based systems
using the Situation Calculus ��� showed that this theory of time and action has
not been able to solve the frame problem e�ciently� because� at least in its original
formulation� it is restricted to a linear form of planning�

Later approaches� however� have shown that a theory originally designed for
calculating database updates and narrative understanding� the Event Calculus
����� is capable of improving on these disappointing results� promising expressive
nonlinear temporal reasoning� and thus nonlinear planning�

In this report� we �rst focus on the clause�based evolution from the Situation
Calculus to the Event Calculus ���� ��� and derive two axiomatisations of
the Event Calculus that are suitable for nonlinear planning using a common
action representation based around preconditions and postconditions 	Section ���
The development is guided by the exploration of soundness and completeness issues
with respect to strong nonlinear plans as solutions�

The theorem proof procedure 	Section �� that underlies the theories of time
and action has to supply resolution ���� and negation as failure ���� in order
to analyse and evaluate plans� Plan synthesis and modi�cation can be achieved
through a formhypothetical reasoning introduced by the abduction principle ���
��� We therefore use a new proof procedure� SLDNFA�� derived from a description
in ���� that correctly merges the above three inference techniques with an extension
based on constructive negation ���� Its completeness concentrates on a least commit�
ment class of hypotheses and solution substitutions with clause programs restricted to
allow only �nite domain variables within negated goals� The main problems that this
algorithm is mainly faced with include the high interference between nonmonotonic

negation and abduction� In addition� we demonstrate how to improve the treatment
of negation in SLDNFA� for most calculi so that the �nite domain requirement
can be dropped� This holds� in particular� for proofs with the axiomatisations of
Event Calculus we use� We investigate this matter closely with respect to the
capabilities of SLDNFA� in Section ��

Based on the implementation platform Oz ��� a higher�order constraint�based

programming language o�ering many features� such as concurrency� abstraction� en�
capsulated search ���� and object orientation� we show how to realize the SLDNFA�

procedure by syntactical transformation functions 	Section �� that turn clause�based
programs into constraints ���� The selection rule is hereby handed out to the reduc�
tion strategy of Oz and is can be in�uenced by many constructs of the language�
Treatment of disjunctive choice points depends on the driver procedure that guides
the encapsulated search process� Again� transformation techniques that guide the
dynamic creation of choice points from within the computation spaces give us the
power to implement di�erent heuristics� We exemplary show such a mechanism
within the abduction step�

A discussion of some special issues of our implementation� EVE ���� follows in
Sections � and �� EVE represents a generic planning module written in Oz that can
be used in variety of Arti�cial Intelligence architectures� Object�oriented techniques
help to model the necessary concepts in planning and furthermore provide com�
fortable extensions like object�oriented abduction and an improved constraint�based
translation of the Event Calculus� Furthermore� the concurrent embedding of
the temporal reasoning process is investigated�

After a �rst evaluation of the EVE system in the multi�agent blocksworld do�
main 	Section ��� we explore its prototypical application within the agent archi�
tecture InteRRaP 	Section ��� Multi�agent systems are usually found in domains
that have real need for strong nonlinear planning services as o�ered by EVE� The

�

layered architecture InteRRaP deals with temporal reasoning on several levels
of abstraction but the focus of this section is the evaluation of EVE in the local
planning layer� We use the loading dock scenario� the main research environment of
InteRRaP� to discuss this initial integration�

A comparison between EVE and related planning approaches with respect to
e�ciency and expressiveness 	Section � follows and is continued with the pre�
sentation of the future research� especially in the �eld of distributed� multi�agent
planning� Besides the architectural considerations within multi�agent systems� we
describe possible extensions to the Event Calculus� an approach based generic

resources� and hierarchical planning through plan abstraction 	Section ��� Further�
more� some ideas that try to bring the notion of abduction and constraint�based
logical programming more closely together are described� A conclusion in Section
� summarises the overall contribution of our work and an appendix gives a short
installation guide 	Section A� and presents the axiomatisations of the scenarios we
used 	Sections B and C��

�

� Introduction

��� Logic

Logic can be perhaps best de�ned as a class of truth languages� Major syntacti�
cal units� the formulae� denote 	represent� truth values and from these values we
construct an equivalence semantics� j�j� Whereas classical logic restricts to the com�
mon truth values true � and false �� there exist today many extensions allowing
di�erent conceptions of truth 	 four�valued logic� fuzzy logic� etc���

Prime syntactical elements of a logical language are propositions that act like
statements uttered by humans� and logical connectives� e�g�� conjunction � � dis�
junction �� equivalence �� implication � � negation �� etc� The semantics of
the connectives is reasonably de�ned by in terms of the meta�logic level� e�g��
F� � F� j�j � 	 F� j� F��

What makes logic so attractive from a computational point of view is that� once
given a procedure that investigates the truth of a formula 	proof �
�� this does not
only yield a way of programming but also some machinery that allows to make
inferences close to human reasoning� It is not obvious to assume the existence of
such algorithms and much research has been spent to �nally obtain the encouraging
result that truth within the propositional and �rst�order logic framework is com�
putationally observable 	
	j��� Depending on the expressivity of logical languages
however� restrictions to this statement 	like on decidability� are unavoidable�

Provable formulae are called theorems of the appropriate proof algorithm� A way
to classify theorem proof procedures is via soundness and completeness� Soundness�
i�e�� correctness� guarantees that a formula con�rmed by the proof scheme is indeed a
valid� i�e� true� formula� 	
�j��� Completeness is only reached if every valid formula
is also a theorem 	
�j��� In contrast to validity� one speaks of an inconsistency� if
a formula denotes ��

The logic best explored so far is �rst�order logic or predicate logic� Entities 	mem�
bers� of a denoted domain or universe 	set� are described by atoms 	basic entities��
terms 	functions over entities�� and variables 	representatives for entities�� The al�
ready introduced propositions are expressed by predicates that represent relations
over entities� Finally� the combination of propositions with the logical connectives
forms the class of �rst�order logic formulae� A special class of connectives remains to
explain� universal	� and existential 	�� quanti�ers� Quanti�cation allows extended
formulae involving variables and introduces the abbreviations !F� !�F that describe
the quanti�cation of all free variables of the sub formula F � i�e�� variables that are
not in the scope 	any sub formula� of some quanti�er regarding F alone�

The universe and an appropriate interpretation of the atoms 	into the members
of the universe�� the terms 	into the functions over the universe�� and the predicates
	into the relations over the universe� build a structure� A structure is linking syntax
	formulae� to semantics 	truth values� by de�ning solutions of a formula as the
set of replacements of variables with entities that render the formula true� If the
solution set of a formula covers all possible replacements� the structure is said to be
a model of the formula� A formula is called satis�able� if there exists a structure such
that the solutions are not empty� Given a set of closed formulae� i�e�� containing no
free variables� one speaks of a theory� It can also be equivalently described by the
behaviour of its solutions in all structures�

Sound and complete proof procedures for �rst�order logic have been presented�
The computational power is equivalent to the Turing Machine concept� Undecid�
ability results from the Halting Problem therefore carry over to predicate logic�
In this report� we use a normalised clause syntax 	Figure uses Backus�Naur

Form to describe it�� derived from the completion form ����� to present the cal�

culi 	calculus�abstract computation �ow�� to describe the proof procedures and

variables V � X� Y� � � �

constants A � a� b� � � �

terms a s� t � A�"s�� A� V

predicates P � A�"s�� s�t����

conjunctions K� I � K � I� P

goals D�E � D � E� � "V �K� !D� !E � !D � !E� � "V �K��

�� "V �K�

clauses C � "V �A� "V � � D�� !C � "V �A� "V � � !D��

� � D � � !D

a�s is the type of tuples over type s� Depending on the context of s� this could also denote
concatenation� conjunction� or even a set�

Figure � Normalised Clauses C� !C

to de�ne transformation functions on� Clause programs are conjunctions over C� !C
with each clause having a di�erent head predicate 	left part of the equivalence ���
Variables never occur free� they have to reside in the scope of some quanti�er� Un�
de�ned predicates are represented by clauses with � as the body 	right part of the
equivalence ��� In general� one assumes that the set of the atom� function� and
predicate symbols is in�nite�

With negation� !C� clause syntax is nevertheless as expressive as �rst�order logic
since equivalence transformations exist ����� These transformations are rewritings
of formulae that preserve their semantics and thus form an important part of
proof algorithms� Procedures that are designed to work speci�cally with clause
programs require a special form of query� because they decide about the truth
of P � G		 P j� G� for a given program P 	also called theory� and a goal

G � 	� � D�� Examples are SLD 	resolution� and SLDNF 	including negation
treatment�� Extending the principles to hypothetical reasoning� SLDNFA� even
allows the generation of fact clauses Ab � "V � A� "V � �

V
X� �V X�s � such that

	P �Ab� j� G�
To obtain the functionality of programming languages that compute output val�

ues� proof procedures are usually not con�ned to verifying the existence of entities
which satisfy a goal� These algorithms also return information about the form of
the entities that satisfy the goal G� An important concept is equality on the syn�
tactic 	the predicate �� as well as on the semantic level� Theorem proving handles
the equality semantics via substitutions� replacements of variables with terms� and
uni�cation� a way of producing unifying substitutions that render the given terms
S and t equal� The orthogonality of substitution and equality can be seen from the
fact that for each satis�able conjunction of equality terms� there exists at least one
substitution which� when applied to the formula� turns it into a conjunction of triv�
ial equalities

V
s � s� Furthermore� each substitution represents per se a formulaV

X�s� its application to F is equivalent to the conjunction F �
V
X�s�

Soundness and completeness can now be extended to the answer substitution
set� This set is in general in�nite� but many of the answer substitutions share a

�

common structure� Thus the introduction of the most general uni�er 	MGU� that
forms a base for the answer substitution space of a uni�cation improves the com�
putational result without losing completeness� provided that the proof procedure is
fair� i�e�� it regularly expands competing parts 	introduced by disjunctive choice and
conjunctive selection� of the proof� Only minimal� structurally di�erent solutions are
generated with the MGU�

To describe a denotational semantics of �rst�order logic in a uniform way� formu�
lae are associated with an appropriate transition function over ordered structures�
Fix�points of the function turn out to be the models of the formula and the notions
of monotonicity and non�monotonicity are derived from the transition function to
the appropriate connectives and reasoning principles�

Modern approaches try to integrate the logical paradigm into all sorts of compu�
tational tasks instead of leaving it as a playground for mathematicians and logicians�
E�ciency and �exibility is mainly gained by restrictions to a logical sub language
or a special domain� One such approach is the use of constraint logic systems� where
the basic formulae are logical constraints�

Of course this section is not intended to fully� introduce the interested reader
into the world 	or better universe� of logic that has been developed over ���� years�
It only presents the key concepts that are used throughout this report and motivate
an important part of the approach that is used in EVE� For a complete overview
about �rst�order logic and its realisation through automation� ���� may be a good
choice� A perspective on constraint logical programming and its declarative seman�
tics can be found in ���� This paper also extends the uni�cation process to rational
trees and develops an appropriate abstract machine that covers most of its con�
cepts� These concepts are also the base for the Oz calculus� the constraint�based
implementation platform of EVE�

��� Planning

Computational research in planning� or general problem solving 	GPS�� started in
the late ���s ���� Since then� it has grown to a rather large discipline in Arti�cial

Intelligence research� GPS systems aim to arrange parts of a given resource spec�

i�cation into a plan that meets a given goal 	Figure ��� With todays knowledge
in complexity theory it is clear that solving this �problem of problem solving� is
necessarily NP�hard� and thus exponentially worse� Such a general approach will
therefore only be able to work e�ciently in certain classes of planning domains�

The more general the algorithm� the more e�ciency has to be incorporated from
additional domain�speci�c knowledge� so called heuristics� to guide the search for
the solution plan� These guidelines are a general tool borrowed from graph theory

and help to �nd optimal paths in a search tree based on the cost of the already
collected paths and an underestimation of the cost to the nearest goal leaf�

Whereas scheduling problems focus on possibly optimal� temporal coordination
of the given resources� common planning systems are faced with a more general
formulation born in means�end analysis research� Starting with the concept of a
state or situation usually represented in logic� 	e�g�� clause�based as in Figure �� a
plan consists of the collection and arrangement of actions or events� The types of the
events are also de�ned in logic in terms of conditions that each instance �places� onto

�and thus accurately� as the description of several expressions is vague because of some lacking
details�

�It is straightforward to reduce the travelling salesman task to a planning problem�
�There are several expressions� such as domain� model� soundness� completeness� goal� etc��

that appear in this report in several� slightly di�erent meanings due to the logical foundation of
planning� Indeed in the approach of EVE �see Section ���	 that has a planning theory on top of
a theorem proof layer� there is even a strong dependency between their meaninings� The actual
meaning� however� should be clear from the respective context�

�

initial
state

result
state

goal
expression

result
state

real world

abstraction

abstraction

hypothetical world

affectsExecution
Modification
Synthesis/

result

initial
plan

plan

subsumption !

Resource specification
(initial state and actions)

Figure �� The Task of Plan Generation

the state representation� if it is executed� Solution plans for the planning problem
are those that turn the start situation into some situation that is satisfying the given
logical goal expression� The resource speci�cation in the planning case is given by
a combination of the start situation and the collection of the allowed action types
which build the planning domain description�� Pure plan synthesis� or planning from
scratch� as shown in Figure � starts with an empty plan description # modi�cation

receives an input plan to complete and is computationally just as complex ����
This is not surprising as NP�hard� exponentially worse problems do not allow the
assumption that each solution for a subgoal is extendable to solve the whole task�

Situations are often represented by a knowledge base 	KB� whose prime logical
elements are called facts� propositions or properties analogue to logical terminology�
Based on the propositional syntax used in the KB� the conditions of event types
can now be distinguished into preconditions� properties that have to be subsumed�
i�e�� implicated� by the situation at execution time to yield success of the execution�
and postconditions or e�ects� properties that have changed� i�e� they are deleted or
retracted to obtain the result situation of execution� To gain expressivity� action
types can carry roles that are parameters of their conditions� Besides establishing
a type hierarchy 	from the type with the least to the type with the most speci�ed
roles�� roles further extend a plan to specify their instantiations� Also the goals
are de�ned in terms of the propositions from the KB which makes the success of
planning dependent on subsumption� Examples of a situation� an action type� a goal
and a plan are given in Figure ��

A �nite representation can only handle �nitely many details� The result of this
fact comnbined with the complexity of the real world is called the quali�cation

problem� which states that for each solution plan there are still uncountably many
exceptions that may lead to failure of its execution�

Planning systems can be classi�ed in several ways� First� soundness and com�
pleteness with respect to solution plans are an important means of classi�cation�
Soundness guarantees in this case that the generated solution plans are correct with
respect to the goal and the chosen execution model� Completeness is only guaran�
teed if the planning procedure is capable of generating all solution plans for the
given goal that are sound� It depends on the cost� here the relative amount of ex�
ecution e�ort� of the events whether solution plans are optimal� If no such cost
information is available� the plan with the least number of steps is� of course� the

�As you will see in section �� this is a weak distinction� Depending on the perspective of di�erent
theories� there are intersections between the notions of a plan� the start situation� and the domain
description�

�

Situation standing�p�� � free�p�� �
free�p�� � reach�p��p�� �
reach�p��p��

Action Type goto�From�To�

Preconditions� standing�From� � free�To� �
reach�From�To�

Postconditions 	added�� standing�To� � free�From�

Postconditions 	retracted�� standing�From� � free�To�

Goal standing�p��

Plan
goto(p1,p2) goto(p3,p4)

Figure �� Situation� Action Type� Goal� and Plan

goto(agent1,p1,p2)

goto(agent2,p3,p4)

Figure �� Nonlinear Multi�Agent Plan

prime candidate for the optimum�
Another distinction is introduced by the kind of treatment of the goal� Systems

that broadly expand the start situation by applying actions and in this way try
to reach the goal are called forward planning systems� Other approaches prune the
state space by a goal�driven expansion # backward planning� Both cases are uni�ed
if one chooses the space of plans rather than the space of states as the base for the
search� The choice between forward and backward planning is then a question of
heuristics�

The concept of time also divides planning approaches into several classes�
Whereas plans with a serial execution concept are called linear� there are application
domains� such as multi�agent domains 	see Section ��� in which it is convenient to
have nonlinear plans 	see Figure �� with concurrent or even parallel actions� Nonlin�
earity is obviously more general than linearity and� as we will explain in Section ��
it can be modelled by incomplete knowledge about the temporal ordering of events�
A further advantage of nonlinear to linear planning is the reduced search space
of plans� Each nonlinear plan is a representative of its linearisations 	completion
to a total� temporal order� and the planning process tries to keep the number of
temporal restrictions as small as possible� The opportunities for con�icts between
nonlinear branches� however� are increased� It depends on the appropriate planning
domain whether a linear or a nonlinear approach will be the better choice�

Sound nonlinear plans could be characterised by having at least one sound lin�
earisation 	weak nonlinearity�� Strong nonlinearity goes even further and demands
that all possible linearisations of a correct nonlinear solution be sound in the linear
meaning�

Adaption of human abstraction methods leads to hierarchical extensions� Plan�
ning problem solvers that support such methods do not only allow actions as prim�
itives for plans� They also allow whole plan structures as events as presented in

�

goto(p1,p2) goto(p2,p3) goto(p3,p4) goto(p4,p5)

goto(p1,p3) goto(p3,p5)

Figure �� Hierarchical Plan

initial
state

result
state

goal
expression

Analysis/
Evaluation

result
state

real world

abstraction

abstraction

hypothetical world

affects

subsumption ?

Plan

Execution

Resource specification
(initial state and actions)

Figure �� The Task of Plan Analysis

Figure �� This can be accomplished either by a concept of plan abstraction� as Sec�
tion ��� explains� or by a planning process that is carried out in several stages
according to goal hierarchy 	situation abstraction��

Finally� planning procedures di�er in the programming paradigm they use� Early
systems often relied on procedural algorithms that are implementable in most pro�
gramming languages� The approach of logic programming however is to use a logic
itself as the basis for a declarative programming language� It therefore requires
some theorem proof procedure as an �interpreter�� but key concepts� such as uni��
cation� are already de�ned and the resulting framework tends to be more �exible
and extendable� With EVE�s approach� it is even possible to obtain plan analysis

and evaluation 	see Figure �� from the same underlying framework� Together with
modi�cation� these tasks cannot be solved with most �xed procedural approaches
without much rewriting e�ort�

��� EVE�s Architecture

From a computational point of view� the architecture of the planning module 	Figure
�� described in this report� EVE� can be conceptually divided into three layers due
to its logical approach� A theory of time and action� the Event Calculus� resides
on the top level 	layer � and is designed to handle incomplete temporal knowledge
and thus reasoning about nonlinear plans 	see Section ���

Since EVE provides two versions of the calculus with di�erent computational
costs 	simple and extended�� their execution 	proof� with an underlying theo�
rem proving procedure 	layer �� is parametrisable in several ways� This layer
supports resolution� negation� and abduction in order to obtain plan analysis
as well as synthesis 	see Sections � and ��� In particular the nontrivial de�
pendency of soundness completeness of the theory layer 	with respect to solu�
tion plans� and of the proof layer 	with respect to goals� solution substitutions
and hypotheses� will be investigated in Section ���� Finally� the implementation
base 	layer �� for these two upper levels is represented by the Oz calculus ��

�

concurrency

Theory of time and action

Theorem prover

Programming Language

1

2

3

The Oz Calculus

resolution abduction

constraints

logical and functional programmingOOP

event preconditiontime

effect

E
V

E

O
z

EVE’s event calculus (smpl/ext)

search

negation as failure
constructive negation

EVE’s SLDNFA+ (smpl/ext)

Figure �� Computational Architecture of EVE

��� realised in EVE as a higher�order� constraint�based abstract machine support�
ing concurrency� object orientation� and encapsulated search�

As our approach has been to use as many logical resources from this constraint
calculus as possible� layer � is totally subsumed in the result of the sound trans�
formation functions 	Section �� that link the layers and �� There are furthermore
many features� such as object orientation� that improve customisation and the em�
bedding of EVE into various applications 	Sections � and ���

�

initiates�pickup�Agent�Block��Term��
Term�holding�Agent�Block�

terminates�pickup�Agent�Block��Term��
Term�handempty�Agent�� Term�ontable�Block�

precondition�pickup�Agent�Block��Term��
Term�handempty�Agent�� Term�ontable�Block�

Figure �� Action Type De�nition Planning Domain Axiomatisation

� Theory of Time and Action� the Event Calcu�

lus

We �rst present the basic properties that a theory of time and action has to pro�
vide to allow reasoning over collections of actions and thus be suitable for planning
purposes� Starting with the well�known Situation Calculus� it then progresses
chronologically� guided by the investigation soundness and completeness issues� to
describe two versions of the Event Calculus that are suited for nonlinear plan�
ning� The logical syntax employed is a slightly looser but still equivalent one for
clause programs of Figure � The axioms presented rely furthermore on some pre�
de�ned terms 		 in in�x notation� ���� ��� nil� and predicates 	member��� ������
to incorporate lists and boolean arguments�

��� Requirements

The following considerations describe the basic skills that a theory of time and
action has to preserve�

� Representation of property situation action types actions and
time�A theory suitable for logical planning has to de�ne the concepts of prop�
erties� situations� action types� actions as their instances� and time� Whereas
properties and action types are immediately de�ned in terms of logic� thus
forming the planning domain axiomatisation 	see Figure ��� the representa�
tion of situation and time is not necessarily explicit� A plan consists of action
instance choices and their temporal order�

� Sound and possibly complete reasoning over plans� Assisted from a
theorem proof procedure� the used theory T should be able to correctly 	with
respect to its execution model� calculate the overall e�ects E of a given plan
P in the planning domain D�

T �D � P
 E

Given some special e�ect as a goal� it should be furthermore able to accept
as many as possible plans that establish this e�ect�

� Nonmonotonicity� State transition caused by action execution is nonmono�
tonic� because properties can be added as well as retracted� Techniques to
circumvent inconsistent representations are necessary� Closely related is the
task of dividing the properties into the ones that change and the ones that re�
main untouched� the so�called frame problem ��� ��� this is manageable using
techniques for nonmonotonic reasoning����

�These are special atoms that represent a worst case
ag �see Section ���	� They have to be
distinguished from the �ary predicates � and ��

�This is a special� unary predicate to invert the value of a worst case argument� It has to be
distinguished from the connective ��

�

� Incomplete temporal knowledge� Nonlinearity can be modelled by partial
temporal order and thus we have incomplete knowledge� Whenever there is no
temporal relation between two actions� they should be executable in any order�
With strong nonlinearity� they are even ideally allowed to interleave each other
introducing concurrency or parallelism� A nonlinear theory of time and action
has to cope with this lack of information and nevertheless guarantee soundness
with respect to its execution model� Worst case assumptions therefore play
an important role�

� Sound and possibly complete hypothetical reasoning� The solution
plan P for goal E has to be constructed as a hypothetical result of a proof�
starting from some initial P� with P � P��

T �D � P�
P E

Again� the treatment of incomplete knowledge is required since P is derived
incrementally and proof steps that were taken when P is partially constructed
may later have to be retracted� Solutions should furthermore cover a reason�
able range of correct plans�

� Knowledge base� Finally� a KB containing the start situation to the planning
problem has to be interfaced� Integration of the propositions collected there
depends on the planning theory and the planning domain representation�

��� The Situation Calculus

The Situation Calculus has been one of the �rst paradigms in planning to solve
the frame problem correctly ���� Since its original formulation had some drawbacks
with respect to the representation� we present a revised proposal from ���� that is
more elegant and allows better comparison with the theories we present later� Fur�
thermore� the axiomatisations are in accordance with the concept of preconditions
being a function on action types within the planning domain description�

The basic idea of the Situation Calculus 	Figure �� is the representa�
tion of explicit situations S and their properties P through the holds predicate�
holds�P�S�� Following the action type de�nition scheme from the beginning of this
section� explicit events are associated with a type 	act���� Only time is left as be�
ing de�ned implicitly by the order of the situations� Reasoning about properties is
therefore situation�driven� If a situation S subsumes the preconditions of the type
Ty of an event E� the application of E to the situation will succeed and produce a
result situation� result�S�E��

The explicit situation representation performs the nonmonotonic state transition
by coupling the propositions with the situation terms� The solution to the frame
problem� the frame axiom� is expressed using negation to decide about property
propagation from situation to situation 	Figure ��� Negation can even simplify the
de�nition of the precondition check within the fails�� axiom�

This formulation� however� is not capable of dealing with incomplete temporal
knowledge� Holes in the plan structure� i�e� unde�ned intermediate situations� pre�
vent any reasoning about following states� Plan analysis as well as plan synthesis are
therefore restricted to linear planning using a linearity assumption� This assump�
tion postulates that conjunctive goals have to be solved in a sequence of complete
subgoal solutions� Optimal plans� however� require interleaved subgoal treatment�
as in the case of the famous Sussman Anomaly�

An interface to a knowledge base is easily provided as an equivalence to the start
situation�

�

P�S�E � holds�P�result�S�E���
�Ty�holds�P�S�� act�E�Ty�� �terminates�Ty�P���
�Ty�act�E�Ty�� initiates�Ty�P�� �fails�E�S���

S�E � fails�E�S��
�Pd�Ty �act�E�Ty�� precondition�Pd�Ty�� �holds�Pd�S���

Figure �� The Situation Calculus

situation

action

positive property

negative property

propagation

retraction

start end

pr fx

Figure �� Propagation of Properties in the Situation Calculus

Although it is not always obvious� the Situation Calculus is present in many
planning approaches including STRIPS� Typical characteristics of these systems
are their solution to the frame problem and the linearity assumption� Even linear
regression techniques that describe situation classes rather than concrete situations
in backward planning belong to these systems�

��� The Event Calculus by Kowalski � Shanahan

A far more �exible approach to the frame problem is provided by a theory originally
designed for maintenance of temporal databases and narrative understanding� the
Event Calculus ����� An adaption of the theory to the planning problem and the
commonly used representation of actions is presented in ���� 	Figure ��

The focus is no longer on an explicit representation of situations� but on action
type instances� that is the actions or events introduced by happens��� Furthermore�
there are terms describing points in time 	start���end��� with respect to these
events and a predicate denoting their temporal relation 	before���� Within this
this report� the simpli�ed assumption of events having ideally no duration is used
	start�E��end�E��� which is a common assumption throughout the literature�

The introduction of time points supports the task of modelling the change of
state 	Figure �� that is computed by a search for possible initiators of properties
and a more general solution to the frame problem� the persistence axiom represented
in terms of the clipped�� relation� Again� negation is a key technique that allows
us to formulate the following idea in a logical background�

A property holds true at a certain time point Tp if it is introduced by

��

P�Tp �holds�P�Tp��
�E�Ty � happens�E�� act�E�Ty��

initiates�Ty�P�� before�end�EI��Tp��
�fails�E�� �clipped�P�end�E��Tp���

E �fails�E��
�Ty�P � act�E�Ty�� precondition�Ty�P��

�holds�P�start�E����
Tp��Tp��P �clipped�P�Tp��Tp���
�E�Ty �happens�E�� act�E�Ty��
terminates�Ty�P�� �fails�E��

in�end�E��Tp��Tp����

Tp��Tp��Tp� �in�Tp��Tp��Tp���
before�Tp��Tp��� before�Tp��Tp���

Figure � The Event Calculus by Shanahan

fxprec

event

event

event

cl
ip

pe
d

properties that hold

initial event

Figure �� Propagation of Properties in the Event Calculus

some successful event E known to happen before Tp� and if it is not
terminated by some other successful event between end�E� and Tp�

Compared with the Situation Calculus� this is an equivalent approach to
linear planning� However� persistence further extends the original frame axiom by
reasoning about incomplete temporal knowledge and thus partially ordered events
in nonlinear planning�

But this version of the persistence axiom has a problem with strong nonlinearity�
It recognises only those persistence destroyers that are provable to be inside 	in���
the time interval within which the property must be preserved� Further completions
of the temporal order could thus add further such destroyers� The solution plans are
therefore characterised as being extendible to a correct� linear plan in at least one
way 	weak nonlinearity�� Strong nonlinearity as it is required in EVE�s intended
application domains 	see Section �� only accepts those plans that are correct in all
possible temporal extensions 	Figure ���

When proceeding from a situation�based to an event�based representation� the

�

Figure �� Strong Nonlinear Incorrectness

P�Tp �holds�P�Tp��
�E�Ty �happens�E�� act�E�Ty��

initiates�Ty�P�� before�end�E��Tp��
�fails�E�� �clipped�P�end�E��Tp�

E �fails�E��
�P�Ty �act�E�Ty�� precondition�Ty�P��

�holds�P�start�E����
Tp��Tp��P �clipped�P�Tp��Tp���

�EC�TyC � happens�EC�� act�EC�TyC��
terminates�TyC�P�� �fails�EC��

�out�end�EC��Tp��Tp����
Tp��Tp��Tp� �out�Tp��Tp��Tp���

before�Tp��Tp��� before�Tp��Tp��� Tp��Tp��

Figure �� Event Calculus by Missiaen

interface to a knowledge base is no longer straightforward� The metaphor of events
can nevertheless be kept because of a special initial action associated with a
special type initial� that is able to initiate all properties contained in the KB�

��� The Event Calculus by Missiaen

A reformulation of the persistence axiom is given in ����� Again� negation plays an
important role in the sound treatment of incomplete temporal knowledge �

A property holds true at a certain time point Tp if it is introduced by
some successful event E known to happen before Tp� and if it is not
terminated by some other successful event that is not provable to be
outside the interval speci�ed by end�E� and Tp�

Persistence destroyers are no longer events provable to reside inside the ap�
propriate time interval� They are rather de�ned as not being provable to happen
outside 	out��� the given range 	Figure ��� The reasoning ranges� therefore� over
all possible linearisations of the current� incomplete plan� A certain event is not
able to destroy the persistence of its own preconditions� thus the assumed identity
of start�E��end�E� is only approximately true� The de�nition of out�� handles
this fact by operating on an interval which is open to its right�

��

e2

e1

Figure �� Nontermination

Figure �� A Not Strong Nonlinear Solution

Reasoning about nonlinear structures is now sound even for the stronger notion
of nonlinearity but is faced with a termination problem that is shown in Figure ��
Both events e��e� are mutual destroyers of each others preconditions� A proof of
�fails�e�� thus depends on �fails�e��� and vice versa� causing an in�nite loop
within the computation� The situation of two interacting and concurrent actions
can occur both in plan analysis and plan synthesis tasks� Initial attempts to solve
the problem tried to recognise and linearise the events involved� This requires some
periodical check together with a decision about which linearisation to take�

The solutions that we propose for EVE try to put this knowledge into the
calculus itself� thus providing a �natural� treatment� In each case� however� the sound
result for strong nonlinearity is achieved through a loss of some solutions 	Figure
��� In this example� each linearisation of the plan is correct� but the property ���
does not provably hold at the end of the plan� It is common in the literature to
exclude such cases from the class of strong nonlinear solutions� A characterisation of
this class of solutions is yet to be formulated� but it seems like they require several
identical event streams� These special cases are not likely to be very important in
practical planning domains�

��

P�Tp �holdstrue�P�Tp��
�EI�TyI �happens�EI�� act�EI�TyI��

initiates�TyI�P�� before�end�EI��Tp��
�fails�EI�� �clippedtrue�P�end�EI��Tp���

P�Tp �holdsfalse�P�Tp��
�ET�TyT �happens�ET�� act�ET�TyT��

terminates�TyT�P�� before�end�ET��Tp��
�fails�ET�� �clippedfalse�P�end�ET��Tp���

E �fails�E��
�Ty�PD � act�E�Ty��

�posprecondition�Ty�PD�� �holdstrue�PD�start�E����
�negprecondition�Ty�PD�� �holdfalse�PD�start�E�����

Tp��Tp��P �clippedtrue�P�Tp��Tp���
�EC�TyC �happens�EC�� act�EC�TyC�

terminates�TyC�P�� �out�end�EC��Tp��Tp�� ��

Tp��Tp��P �clippedfalse�P�Tp��Tp���
�EC�TyC �happens�EC�� act�EC�TyC��

initiates�TyC�P�� �out�end�EC��Tp��Tp�� � �

Tp��Tp��Tp� �out�Tp��Tp��Tp���
before�Tp��Tp��� before�Tp��Tp��� Tp��Tp��

Figure �� The Simple Event Calculus of EVE

��� The Simple Event Calculus of EVE

We �rst present a very simple change to the Event Calculus from Section ��� to
avoid nontermination� It is based on the investigation that actions that are allowed
to fail should not necessarily appear while planning from scratch� Whenever the
planner introduces some event E� there is always the intention to establish a certain
goal that afterwards depends on the success of E� Furthermore� if the plan execution
mechanism does not involve any precondition check and always tries to execute some
portion of the action until it gets a failure report back� the failed events cannot just
be ignored because some of their e�ects could have taken place� Solution plans
therefore should be restricted respectively�

To incorporate these considerations into the calculus� it is necessary to imple�
ment a worst case assumption about the behaviour of actions� It is certainly obvious
that a failed action is not guaranteed to introduce any property the planner likes
to have installed� However� it is still able to serve as a possible destroyer of per�
sistence� Our rede�nition of the persistence axiom therefore omits the destroyer
success check� This strategy is reasonable as analysis 	evaluation� appropriately re�
stricts the accepted class of plans and synthesis 	modi�cation� tries to push even
failed events out of a possible destroyer role� In the case of Figure �� a linearisation
takes place in order to derive the success of e� or e��

Figure � presents the derived calculus together with the additional handling of
negative properties that are now dealt with symmetrically to the positive ones� Pre�
conditions can be distinguished into positive preconditions 	pospreconditions���
that should hold 	holdstrue��� at the start time of execution and negative precon�
ditions 	negpreconditions��� that should not hold 	holdsfalse��� to prove the
success� Negative properties can even be accessed in the start event knowledge base�
Knowledge bases that contain purely positive facts can be accessed via negation 	as
failure ��

As Section ��� discusses� our formulation is even suited to simplify complicated
parts of a proof procedure that otherwise runs into problems caused by nonmono�

��

tonicity� Applicable domains� however� are restricted to those that do not rely on
disablement of actions� e�g�� cooperative domains and planning from scratch tasks�

��	 The Extended Event Calculus of EVE

A restriction to cooperative planning or planning from scratch as in the case of
EVE�s simple calculus is not always wanted� e�g�� in negotiation planning or gen�
erally non�cooperative domains� Since it could be of use to intentionally render
the preconditions of an action unsatis�ed in order to get rid of the unwanted ef�
fects of this action	� a success check within the clipped�� axiom would still be
needed� With this support� the calculus is able either to render unwanted events
unexecutable or at least to recognise their failure�

As we have already mentioned� the in�nite�loop situations should be recognised
and solved within the calculus itself� A detection is easy to accomplish by the
addition of a list parameter L to fails��� holds��� and clipped��� This parameter
collects the events in whose nested success check the current proof branch is residing�
If fails�� is recognising events that already contained in L� this will indicate the
in�nite�loop situation�

What is the appropriate action on detection of a loop
 The worst case assump�
tion from our simpler approach has to be slightly modi�ed in order to let the ax�
iomatisation do the work� If one introduces a parameter W that indicates the worst
case either to be the success 	W���� or the failure 	W���� of the current fails��
call� the proof of the clause could just behave accordingly 	�� � � �� � ��� Since
each negation sign inverts the worst case� the parameter also swaps its value 	��

�W� # see Figure ���
The initial values for these two new parameters are obvious� L is nil as the

calculus has a priori not selected any nested fails�� goal� The initial worst case
W turns out to be the failure of each event that should install a wanted property�
W���� No matter how the loop situation looks like� it will now force the calculus
to recognise a persistence inconsistency and therefore initiate a re�nement on the
current temporal order of events�

��
 Remarks

Due to the di�erent computational expense of the two versions of the Event Cal�
culus� the EVE implementation includes both and allows the user to switch be�
tween them� Depending on the domain requirements� the user can freely choose the
resources he is willing to spend� Together with the parametrisable proof procedure at
the next layer� the EVE module becomes very �exible with respect to its resource
demands� Further e�ciency is gained by heuristics to prune the spawned search
space and guide the �execution� of the calculus� Since these are linked tightly to the
theorem proving algorithm� they are described in more detail in the appropriate
Sections � and ����

The representation of time and action within EVE relies on the ideal assumption
of events having no duration� As soon as duration must be modelled� a con�ict with
the notion of strong nonlinearity arises� This is caused by the non�existence of
de�nite limits on the lifetime of pre� and postconditions� Furthermore� additional
properties that arise as an event is expanded to sub events at a deeper abstraction
level� forming the the so�called during conditions� have to be considered� Section
��� discusses some of the questions related to this issue�

Amongst the improvements that ease the customisation of the temporal reason�
ing process is the ability to model context�dependent action types with dependen�

�The execution layer checks the preconditions�

��

P�Tp�L�W �holdstrue�P�Tp�L�W��
�EI�TyI �happens�EI�� act�EI�AI��

initiates�AI�P�� before�end�EI��Tp��
�fails�EI�L����W�� � �clippedtrue�P�end�EI��Tp�P�L����W���

P�Tp�L�W �holdsfalse�P�Tp�L�W��
�ET�AT �happens�ET�� act�ET�AT��

terminates�AT�P�� before�end�ET��Tp��
�fails�ET�L����W�� � �clippedfalse�P�end�ET��Tp�P�L����W���

E�L�W �fails�E�L�W��
�member�E�L�� W�����

�PD�A ��member�E�L�� act�E�A��
posprecondition�A�PD�� �holdstrue�PD�start�E��E�L����W����

�PD�A ��member�E�L�� act�E�A��
negprecondition�A�PD�� �holdsfalse�PD�start�E��E�L����W���

Tp��Tp��P�L�W �clippedtrue�P�Tp��Tp��L�W��
�EC�AC �happens�EC�� act�EC�AC��

terminates�AC�P�� �fails�EC�EC�L����W��� �out�end�EC��Tp��Tp���
Tp��Tp��P�L�W �clippedfalse�P�Tp��Tp��L�W��

�EC�AC �happens�EC�� act�EC�AC��
initiates�AC�P�� �fails�EC�EC�L����W��� �out�end�EC��Tp��Tp���

Tp��Tp��Tp� �out�Tp��Tp��Tp���
before�Tp��Tp��� before�Tp��Tp��� Tp��Tp��

Figure �� The Extended Event Calculus of EVE

cies between conditions�
 These can be transformed in a �rst approach into several
non�context�dependent types� � Because additional actions of course increase the
branching factor of the resulting planning search space� some dependencies would
be better described by role constraints 	see Sections ��� and A���� Further research
will try to incorporate some of the more sophisticated mechanisms to deal with
context�dependencies in the Event Calculus 	Section �����

��� Summary

In this section� we have outlined the general techniques a theory of time and action
has to provide to be suitable for nonlinear temporal reasoning� After introducing
the well known Situation Calculus� its inability to cope with the frame prob�
lem in nonlinear settings was shown� The Event Calculus� however� solves this
problem with the concept of persistence� Although designed for database updates�
it is as well suited for plan representation purposes� The original formulation from
���� has revealed some disadvantages in the �eld of strong concurrency that have
been improved on by ����� The possibility of in�nite reduction in this approach�
the main focus of this report� is handled proposing two derivates of the Event
Calculus� The �rst one� which is particularly simple to implement� is especially
suited for cooperative domains and planning from scratch� It incorporates a worst
case assumption about the action execution mechanism� The second alternative is
not restricted to any special domain� It thus regards failed events as irrelevant and
includes the critical failure checks for persistence destroyers� Termination� however�
can still be guaranteed by mutual dependency detection and an appropriate worst

�If Pre� holds at the start of the action� then Post� will hold at the end � � � If Pre� � � � then
Post� � � �

	One action with Pre� � Post�� the other action with Pre� � Post�� � � �

��

case assumption� In EVE� both methods can be switched which leaves the decision
about the resource consumption trade�o� to the user� In each case� completeness of
the solution plans is slightly restricted but remains su�cient all practical planning
applications�

��

� Theorem Proving with Abduction� SLDNFA�

Given a calculus� e�g�� the Event Calculus� in the clause syntax of Figure �
its interpretation requires an underlying theorem proving mechanism� Whereas for
clauses C 	without negation�� it su�ces to use pure resolution� negation and the hy�
pothetical reasoning behind abduction demand more sophisticated procedures� This
section introduces the necessary conceptual background� presents several algorithms
and discusses their soundness and completeness 	with respect to solution substitu�
tions hypotheses� to �nally enable the handling of clauses !C 	with negation� with
abductive inference�

��� Resolution� SLD

The concept of resolution goes back to ����� It is a refutation procedure that derives
a theorem T by showing that �T is unsatis�able� SLD ��� is a specialisation of this
principle by dealing with �rst�order clauses instead of arbitrary formulae� Given a
clause program CP � 	C� � � � ��Cn�� C�� � � � � Cn � C and a goal G � 	� � D� j�
j D� it consists of the construction of a transformation G � G�
sld G� � � �
sld Gm�
A proof of G succeeds by reducing it to Gm � � and deriving an appropriate
substitution � for the existentially quanti�ed variables ofD such that CP j� �	G��
CP j� G�

The interesting part is the resolution step 	see Figure �� that is responsible for
constructing each stage of the transformation 	Gx
sld Gy�� Based on the observa�
tion�

��� ��y	Gx� j�CP
�Gy

	 �i � � � � � � n ��y	Gx� j�Ci
�Gy

the resolution step tries to resolve a selected subgoal Gx�j of Gx with a clause
variant Ci�v � "Wv�B� "Wv� � Dv�� In usual clause�based systems� this leads to
uni�cation 	the unify function� of the clause head B and Gx�j to produce the most
general uni�er �y and Gy � �y	fGx��� � � � � Gx�j��� Dv� Gx�j��� � � � � Gx�mg�� Since the
normalised syntax that we chose realises uni�cation with the equality predicate ��
the uni�er is in this case only a variable replacement in the clause variant� Variants
	returned by the variant function� are unique variable renamings that introduce
new names not clashing with already introduced symbols� They are therefore used
to eliminate the quanti�ers # existential in the goal and universal in clauses # in
a sound manner�

If the notion of a goal set is used� it always means a conjunction of its members
and builds the base structure for resolution� Disjunctions are handled by nondeter�
ministic choice 	the choose function� to obtain several� purely conjunctive proof
stages that consist of a goal set and a substitution� Whenever a resolution step has
been computed� the resolution procedure must decide which of all still competing
stages 	resulting from di�erent disjunctive branches� to expand further with the
next resolution step� Let us call this decision the choice rule�

Selection of the appropriate subgoal to resolve next can� however� be determin�
istic� The rule that decides about this selection is the selection rule 	the select
function�� From its name follows the abbreviation SLD� Linear resolution with a

Selection rule for De�nite Clauses���
Note that the use of choose to �nd the right clause in the program with which to

resolve next is just a simpli�cation� Since there exists exactly one clause whose head
is able to match the selected goal # remember the unique de�nition of normalised
clauses # a deterministic comparison is also able to �nd it� In our completion
syntax� it is disjunction that introduces several de�nitions for the same predicate�

�
Better Selection rule driven Linear resolution for De�nite Clauses

��

Equality and truth values have a special status� Equality could be axiomatised
as a set of clauses� e�g�� CET � Clark�s equality theory� equivalent to the uni�cation
calculus� A better solution� however� is its immediate integration into the proof pro�
cedure that anyway has to provide some uni�cation scheme� A selected s�t subgoal
therefore triggers the built�in uni�cation procedure unify and is replaced by the
implications of the returned by the uni�er� Treatment of � and � is straightforward
due to the conjunctive semantics of the goal set # the fail function removes the
current proof stage from the already collected stages and the choice rule has to �nd
another candidate to continue the proof�

The soundness of the resolution principle with respect to tautologies and solution
substitutions follows from the correctness of the resolution step ��� ���

� � �m � � � � � ��

��	G� � ��m � � � � � ��	��	G��� j�CP

��m � � � � � ��	��	G��� j�CP

� � � j�CP
�� j�j � ��

	 CP � ��	G� j� � 	 CP j� �	G�

Completeness can only be guranteed if the choice rule is fair� This is also a require�
ment of all the following proof procedures� As already mentioned� the use of the
most general uni�er improves the proof procedure without a�ecting completeness�

��� Negation As Failure� SLDNF

Clauses C without negation form only a subset of �rst�order logic� To regain the
full expressivity ����� it is necessary to introduce the negation operator� !C� This
operation turns out to be nonmonotonic # the denotational semantics is not as
simple as in the SLD case� A way to incorporate it into clause resolution is through
negation as failure 	NF� ���� that relies on a closed world assumption and thus the
completion of a program�

Whenever the selection rule chooses a negated subgoal� the truth of this subgoal
can be demonstrated by the failure of a subordinate resolution proof on the positive
version of the goal� When applied to SLD� the resulting algorithm is called SLDNF
��� 	Figure ����

However� goals with variables remaining in the scope of some quanti�er give
rise to several correctness and completeness questions� As they are not instantiated�
they are treated as being universally quanti�ed by the nested proof and can never
obtain any value� Depending on the selection rule� one can expect incorrect solutions
as shown in Figure �� The double negation starts two nested proof attempts with
variable X� The innermost succeeds because there are two possible substitutions X�a
� X�b for q�X� to derive the � goal� On the next higher�level� this result is inverted
to a failure� Finally� the top level proof succeeds and is even able to unify X�c #
this is of course an incorrect result� With another selection rule that selects X�c

before � nq� the same query leads correctly to a failure�
A common restriction to guarantee coincidence of the proof procedure with the

semantics of negation is therefore to allow only expansion of ground 	i�e� completely
instantiated� negated goals� In our description� this test is done by F �V 	K� � �� But
now the completeness is restricted as seen in Figure ��� Selection of the negated

��� is here the combination of substitutions�
��With our clause notation using �� a constructive proof looks identical since the resolution step

acts as a equivalence transformation� Usually� clauses are de�ned using back implication� �� and
only admit the refutation approach in which the resolution step only computes an implication�

��

Gy� �y sldstep	Gx� CP �
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if Gx�j � D �E then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� choose	D�E�� Gx�j��� � � � � Gx�og�

elseif Gx�j � K � I then
�y � id
Gy � �y	fGx��� � � � � Gx�j���K� I�Gx�j��� � � � � Gx�og�

elseif Gx�j � � "V K then
�y � id
Gy � �y	fGx��� � � � � Gx�j���variant	K� "V �� Gx�j��� � � � � Gx�og�

elseif Gx�j � � then
fail

elseif Gx�j � � then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

elseif Gx�j � 	s�t� then
�y � unify	s� t�
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

elseif Gx�j � A	"s� then
CP � fC�� � � � � Cng
Ci � choose	C�� � � � � Cn�
	 "WvB	 "Wv� � Dv� � variant	Ci� "W �
�y � unify	Gx�j � B	 "Wv��
Gy � �y	fGx��� � � � � Gx�j��� Dv� Gx�j��� � � � � Gx�og�

�
end

Figure �� The SLD Step

�

Gy � �y sldnfstep	Gx� CP �
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if

� � � see the appropriate SLD cases

elseif Gx�j � �� "V K then
if F �V 	K� � � then a

if sldnf	� "V K�CP � then
fail

else
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

�
else
fail

�

�
end

aF�K	 are the free variables of K� F�V �K	 � F�K	 n �V

Figure ��� The SLDNF Step

X q�X� � X�a � X�b

X nq�X� � �q�X�
X r�X� � �nq�X�
� � �X	r�X� � X�c�

Figure �� In�soundness of Non�ground NF

��

X q�X� � X�a � X�b

X nq�X� � �q�X�
� � �X	nq�X� � X�c�

Figure ��� Incompleteness of Ground NF

goal could happen before the uni�cation X�c and therefore fail the of groundness
requirement� A further obstacle with respect to completeness is the inability of
providing a fair choice rule� since the top�level proof has to wait until the subordinate
negation as failure attempt delivers a result�

��� Constructive Negation

Although SLDNF is su�cient to interpret the Event Calculus as a clause pro�
gram� its completeness has to be improved in order to build the base for the hy�
pothetical reasoning that is introduced in Section ���� This can be obtained by the
technique of constructive negation ����

The basic idea is the extension of the equality maintenance system represented by
substitution and uni�cation to cope even with inequalities 	X �� s� and disjunctive
choice due to disuni�cation 	symmetrical procedure disunify to unify to derive
s �� t�� Substitution application to a formula is no longer straightforward� Whereas
pure equality is obtained by the appropriate variable replacements� inequality has
to somehow annotate the formula with its implications 	fF jj Xj �� sjg�� Finally�
uni�cation must be able to retain this information for an extended consistency check�
as soon as a substitution renders the annotation inconsistent� i�e�� the appropriate
equations are satis�able for all substitutions� the procedure fails�

����� SLDCNF

SLDCNF 	Figure ��� uses these extended mechanisms to resolve even non�ground
negations� Correctness is established by the collection of all relevant information
from the nested proof 	the conjunctive inversion of all solution substitutions �y �
�y
S
���� and by further maintenance in the equality system� The overall soundness

with a consistent solution substitution is obtained by the following lemma�

Lemma ��� �Malc�ev�s Lemma� Given an in�nite number of atom and function

symbols� each formula !��
V
��Xi�t� � is satis�able�

Proof� by induction over the sub formulae and by the in�nite number of closed
terms that can be assigned to each variable� �

Special cases such as the one in Figure �� no longer depend on any selection
rule� because the groundness restriction is removed� Construction of the complete
solution substitution space is not possible� because s �� t has in general in�nitely
many solutions whose enumeration is not practical� Thus even a fair choice rule can
no longer guarantee completeness because of the dependency of the top�level proof
on every solution of the subordinate negation proof�

����� SLDNF
�

The lack fairness introduced by the nested proof schemes and the rather com�
plex handling of the substitution formulae are reason to present another procedure�

��

Gy � �y sldcnfstep	Gx� CP �
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if

� � � see the appropriate SLD cases

elseif Gx�j � �� "V K then
�y � id
for 	�� � sldcnf	� "V K�CP �� �y � �y

S
����

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

�
end

Figure ��� The SLDCNF Step

 "V A� "V � � D j�j "V ��A � "V � � �D �

�	D � E� j�j �D � �E
�	� "V K� j�j "V �K
�	K � I� j�j �K � �I
�� j�j �
�� j�j �

Figure ��� The De Morgan�s Laws

SLDNF� 	Figure ���� This algorithm provides an interleaved proof of negated and
positive goals� The basic idea for handling negated goals is via equivalence trans�
formations based on De Morgan�s laws 	Figure ���� If the procedure is �nally able
to construct the negation normal form that lifts the negation signs to the deepest
level of primitive predicates 	truth values and equality�� the result will be sound as
well as complete� The application of the De Morgan�s laws is trivial except for two
cases�

First� there is the possibility that a substitution � renders both sub formulae
�	K� and �	I� of a negated conjunction �	K � I� equivalent to � # the simple
translation into �K��I has several equivalent solutions� which needlessly increases
the possibilities for backtracking 	choosing another branch at a choice point�� The
better approach is to choose �K � 	K � �I� which is still equivalent to �	K � I�
but produces real disjoint sub formulae�

Second� the result from De Morgan�s laws for the negated� existentially quanti�
�ed conjunctions� �� "V K with K � K	 "V �� produces universal quanti�cation � The
procedure is not able to cope with such formulae in in�nite domains� A �nite domain

assumption F about the local variables of the negated goal delivers the necessary
background theory�

F �
�

X� �V

fido�X� j�j 	 "V � "s� � � � � � "V � "sn�

�� "V K	 "V � j�j "V 	�K	 "V �� j�jF "V 	
�

X� �V

fido�X�� �K	 "V ��

j�jF �K	"s�� � � � � � �K	"sn�

��

The example in Figure �� shows the functionality of SLDNF�� but� for sim�
plicity� the derivation always takes the right choice and we present the results of
several steps in one line� Summarising the foregoing explanations� it can be stated
that a fair SLDNF� is sound and complete for programs that provide a �nite do�
main assumption for the variables involved in negated goals� A generalisation of the
�nite domain assumption to all variables� however� is not sound� because Malc�ev�s
lemma does no carry over to this case�

����� E�cient Negation in SLDNF�

In general� SLDNF�	� "V K� branches exponentially with the size of the domain
and number of variables� But much of the search space is immediately pruned in
most calculi by the expression K � K	 "V ��� itself� A better starting point for the
translation is therefore to distinguish parts Kg	 "V � in which global variables are
involved and Kl	 "V � in which only elements of "V appear� Restricting the instan�
tiations "s�� � � � � "sn for "V to the solutions of � "V 	

V
X� �V fido�X� � Kl	 "V �� delivers

�Kg	"s��� � � ���Kg	"sn� as the result of the transformation� Kl	 "V � could even de�
scribe some �nite domain and therefore su�ce to ground "V � i�e�� the �nite domain
assumption can be totally removed�

It is not necessary to restrict this improvement to the conjunctive level of K
alone� Nested� limited expansion of K can further enlarge Kl and thus the solution
space of the local variables� But there has to be a sound manner to deal with
disjunctions and negations to obtain local and global sub formulae Kl and Kg� ����

develops this technique to its limit by describing a general framework for sound
rewriting rules on arbitrary expansion depths 	delivering a contour of K��

��� Abduction� SLDA

Abduction has been proposed as being a quite di�erent inference principle to de�

duction� It extends the deductive facilities by providing hypothetical reasoning that
is especially used in diagnostic systems 	medical diagnosis� fault diagnosis� etc���
Compared to resolution� it aims to �nd a set of axioms Ab � f "V � A� "V � �V
X� �V X�s �g� also called facts� that enable the program CP to imply the goal�

	CP � Ab� j� G� The easiest way to extend the resolution step with clauses C to
generate this set is to allow the selected goal to serve as an abducible	assumption�
hypothesis�� This is of course not desirable for any literal� With no additional struc�
tural information� the space of possible hypotheses for a certain observation is too
large to be practically enumerable� One therefore takes assumptions from a pre�
de�ned set� the abductive predicates 	selected by the abductive function in our
algorithms�� Once assumptions are collected� further goals are also provable by
uni�cation with those already abduced facts� The additional mechanism to the res�
olution step is called the abduction step and the actual set of collected abducibles
is called abduction set� abduction state or residue�

An important question is the treatment of uninstantiated variables in the goal
to abduce� If one treats the result of such an abduction step as a clause by adding
it to the program CP � the variables would be universally quanti�ed� which is too
strong� In order to preserve correctness� either skolem terms have to be inserted
which requires an extended uni�cation algorithm or the assumptions have to be
separated from CP and variables are only allowed to appear quanti�ed as in the
procedure presented in Figure ���

What about the semantics of the abductive predicates
 Each domain tends to
put certain restrictions on the denoted relations� e�g�� re�exivity� symmetry� tran�
sitivity� or special structured arguments� This is ensured in the proof procedure

��K�	 denotes a function that produces an expression from its arguments�

��

Gy� �y sldnf�step	Gx� CP �
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if

� � � see the appropriate SLD cases

elseif Gx�j � �	D �E� then
�y � id
Gy � �y	fGx��� � � � � Gx�j����D��E�Gx�j��� � � � � Gx�og�

elseif Gx�j � �	K � I� then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� choose	�K�K � �I�� Gx�j��� � � � � Gx�og�

elseif Gx�j � �� "V K then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
for		� "WvKv� � variant	� "V K��
� � sldnf�	f

V
X� �Wv

fido�X�g� CP ��
�y � �y

S
��

Gy � �y	Gy

S
�Kv��

elseif Gx�j � �� then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

elseif Gx�j � �� then
fail

elseif Gx�j � 	s�t� then
�y � disunify	s� t�
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�

elseif Gx�j � �A	"s� then
CP � fC�� � � � � Cng
Ci � choose	C�� � � � � Cn�
	 "WvB	 "Wv� � Dv� � variant	Ci� "W �
�y � unify	Gx�j � B	 "Wv��
Gy � �y	fGx��� � � � � Gx�j����Dv� Gx�j��� � � � � Gx�og�

�
end

Figure ��� The SLDNF� Step

��

G� � f�q�X�� X�cg querya

CP � fX �q�X� � �Y r�X�Y��� program
X�Y �r�X�Y� � X�a � Y�a�g

FiDo � X� � X�a � X�c� �nite domain for negations

G� � f��Y r�X�Y�� X�cg negative resolution

G� � f�r�X�a���r�X�c�� X�cg FiDo negation

G� � f��X�a � �a�a�� ��X�c � �c�a�� X�cg negative resolution �
negative conjunction

G� � f��X�c � �c�a�� X�c jj X �� ag choice � disuni�cation

G� � fX�c jj X �� ag choice � disuni�cation

G	 � f� jj c �� ag uni�cation � success

aThe underlined goals are chosen by the selection rule for the next expansion step�

Figure ��� Example Proof with SLDNF�

��

Gy� Aby� �y sldastep	Gx� Abx� CP �
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if Gx�j � D � E then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� choose	D�E�� Gx�j��� � � � � Gx�og�
Aby � �y	Abx�

� � � analogue to the appropriate SLD cases

elseif Gx�j � A	"s� then
if abductive	A	"s�� then

Abx � fAb�� � � � � Abqg
Abk � choose	Ab�� � � � � Abq�
�y � unify	Gx�j � Abk�
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
Aby � �y	Abx�

or
Aby� �y �maintain	Abx

S
Gx�j�

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
�

or
CP � fC�� � � � � Cng
� � � analogue to the appropriate SLD case

�
end

Figure ��� The SLDA Step

��

through maintenance 	maintain� of the abducibles� It is responsible for uni�ca�
tion� consistency checking and the computation of an appropriate completion of the
abduction set� Maintenance can also be a further source of choice points�

In a similar way to resolution� the soundness of the solution assumptions is
proved by the following invariant�

��y	Gx� j�CP�Aby �Gy

For the whole abduction process can the be then stated�

� � �m � � � � � ��

	CP � Abm� j� �	G�

Completeness� however� is not as easy� As we have already mentioned� it is
inadvisable to take the whole hypotheses spaces as the base for completeness� Thus
we state a least commitment completeness 	given a fair choice rule� that eliminates
the in�nitely many possibilities that do not contribute to the goal in any way�

Ab 	CP � Ab� j� G	 �Ab� Ab j� Ab�� CP
slda�Ab G

Looking at the operational semantics of abduction� a closed world assumption
is no longer possible� Incorporating both abduction and negation is therefore not
trivial as the two interfere highly���

��� Negation and Abduction

����� SLDNFA

At �rst sight� it may not seem too di�cult to bring the results of the former proof
principles together� One has just to add an abduction step to SLDNF to obtain
SLDNFA 	Figure ���� However the introduction of new assumptions has to be
disabled when the proof is in the negative mode 	M � �� as we are only collecting
positive facts�

An important observation follows from investigating the search spaces in the
negative mode� Additional abducibles could increase these proof trees and render
previous NF proofs incorrect 	 �q�X� � q�X� �� To circumvent this and to obtain
a sound procedure� it is necessary to collect the already proved negations 	Nx��
As soon as new assumptions are added in positive mode� the members of Nx have
to be proved again 	reprove� under the current abduction state� More reasonable
behaviour would be obtained with a selection rule� that delays negations until the
abduction steps are done� Again� as with SLDNF� SLDNFA has limited complete�
ness because of the groundness restriction and problems with fairness� Furthermore�
nested negations do not re�enable the collection of new hypotheses� thus not all rel�
evant assumptions are generated�

����� SLDCNFA

The same approach works for extending SLDCNF with abductive features to SLD�
CNFA 	Figure ���� Nested negative proofs happen on a static abduction state and
a consistency check after additional assumptions has to be carried out to derive fur�
ther equality inequality information� Completeness is restricted� because the nested
proof scheme cannot guarantee fairness and the abduction state is frozen within
subordinate proofs�

��Uni�cation� indeed� is the base of the abduction step� The problems of nonground negation
thus are a special case of the general interference of negation and abduction�

��

Gy� Ny� Aby� �y sldnfastep	Gx� Nx� Abx� CP �M�
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

if Gx�j � D � E then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� choose	D�E�� Gx�j��� � � � � Gx�og�
Aby � �y	Abx�
Ny � �y	Nx�

� � � analogue to the appropriate SLD cases

elseif Gx�j � A	"s� then
if abductive	A	"s�� then

� � � analogue to the SLDA case

or
if M � � then
Aby� �y �maintain	Abx

S
Gx�j�

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
Ny � �y	Nx�
reprove	Ny� Aby� CP �

�
�

or
CP � fC�� � � � � Cng
� � � analogue to the appropriate SLD case

elseif Gx�j � �� "V K then
if F �V 	K� � � then
if sldnfa	� "V K� ��Abx� CP ��� then
fail

else
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�yg�
Ny � �y	Nx

S
fGx�jg�

Aby � �y	Abx�
�

else
fail

�

�
end

Figure ��� The SLDNFA Step

��

Gy� Ny� Aby� �y sldcnfastep	Gx� Nx� Abx�P �M�
Gx � fGx��� � � � � Gx�og
Gx�j � select	Gx��� � � � � Gx�o�

� � � see the appropriate SLDNFA cases

elseif Gx�j � A	"s� then
if abductive	A	"s�� then
� � � see the appropriate SLDNFA case

if M � � then
� � � see the appropriate SLDNFA case

�y � reprove	Ny� Aby� CP �
� � � see the appropriate SLDNFA case

elseif Gx�j � �� "V K then
�y � id
for 	�� � sldcnfa	� "V K�Abx� CP ���� �y � �y

S
����

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
Aby � �y	Abx�
Ny � �y	Nx

S
fGx�jg�

�
end

Figure ��� The SLDCNFA Step

����� SLDNFA�

Neither SLDNFA nor SLDCNFA can guarantee completeness of the abducibles
due to the frozen abduction state in nested proofs and the lack of fairness� To im�
prove this situation we need to introduce further assumptions in nested negation
proofs� The interleaved proof method of SLDNF� provides a better base to include
this into SLDNFA� 	Figure ���� The treatment of positive goals handles the addi�
tion of new assumptions� On the negative side� requests about the abduction state�
that is about negative abductive goals� require constructive negation� Since the pro�
cedure is even able to memorise the structure of the proof trees� a correctness check
following several abduction steps can be carried out more easily� Only branches that
involve accessing the abducibles need to be revisited� instead of reconstructing the
whole tree from scratch� Selection rules that prefer positive goals to negated ones
further reduce the number of restructuring tasks�

SLDNFA� is derived from a description ���� that is proved to be sound and
complete with respect to the least commitment solutions typical in the abduction
literature� The soundness result also holds for SLDNFA�� whereas overall com�
pleteness requires the �nite domain assumption from Section ��� and fairness�

A more e�cient treatment of negation as in SLDNF� is also possible in the
abductive case� but with some special considerations� Those parts of the goal that
migrate into the �nite domain enumeration are restricted not to change the ab�
duction state� Abductive parts should reside outside and thus contribute to the
constructive result of the negated goal proof�

�

Gy� Ny� Aby� �y sldnfa�step	Gx� Nx� Abx� CP �

� � � analogue to the appropriate SLDA cases

elseif Gx�j � A	"s� then
if abductive	A	"s�� then
� � � analogue to the appropriate SLDA case

Aby � �y	Abx�
Ny � �y	Nx�

or
Aby� �y �maintain	Abx

S
Gx�j�

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
Ny � �y	Nx�
Aby� �y � reprove	Ny� Aby� CP �

�
or
CP � fC�� � � � � Cng

� � � analogue to the appropriate SLDNF� cases

elseif Gx�j � �� "V K then
�y � id
Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
for		� "WvKv� � variant	� "V K��
f�� �g � sldnfa�	

V
X� �V fido�X�� �� Abx� CP ��

�y � �y
S
��

Gy � �y	Gy

S
�Kv��

Ny � �y	Nx

S
Gx�j�

� � � analogue to the appropriate SLDNF� cases

elseif Gx�j � �A	"s� then
if abductive	A	"s�� then
�y � id
for	Abk � Abx�� � disunify	Gx�j � Abk���y � �y

S
��

Gy � �y	fGx��� � � � � Gx�j��� Gx�j��� � � � � Gx�og�
Aby � �y	Abx�
Ny � �y	Nx�

�
or
CP � fC�� � � � � Cng

� � � analogue to the appropriate SLDNF� cases

�
end

Figure ��� The SLDNFA� Step

��

��	 Remarks

That the complexity of theorem proving problem is NP�hard tells us that there
will be no general� non�scalar improvement in the proof procedures applicable to all
queries� A major reduction of the amount of search can therefore only be obtained
with input�dependent guide rules� heuristics�

Whereas in the resolution case� heuristics are equivalent to dynamic control of
choice points� abduction needs a similar� but extended notion� A general strategy
is to �rst check the goal for uni�cation with already assumed hypotheses and only
later consider adding to the abduction set� Obeying this principle� a proof will
derive minimal abduction sets� which in turn usually reduces the proof complexity�
Furthermore the order of goal comparison within the current abduction state should
be dependent on the program and is often the major key to e�ciency� as in the
case of the Event Calculus 	see section ����� There are also environments that
require further choice in the maintenance of the abduction set� which should be also
be amenable to heuristic guidance�

A close inspection of the control �ow through the abduction steps can also be
a rewarding activity� Depending on the kind of calculus and the relations denoted
by the abductive predicates� the resource hungry consistency check of negated goals
is not always necessary� EVE�s Event Calculi are examples of this and some of
those checks may be left out 	see Section ���

��
 Summary

From resolution� negation as failure� constructive negation and abduction� we have
derived in this section a sound proof procedure SLDNFA�� which is complete at
least for the case of �nite universe negation� fair choice rules and least commitment
of hypotheses� After the presenting of the expansion steps of all the algorithms�
we discussed in detail the important practical problems that all these procedures
are faced with besides the theoretical questions of soundness and completeness�
Although SLDNFA� is generally restricted to �nite universe negation� we have
demonstrated a more e�cient handling of negation for most calculi�

��

� The Event Calculus under SLDNFA�

The SLDNFA� procedure presented above that supports resolution� negation� and
abduction can be used for the interpretation 	proof� with the Event Calculus

in order to solve the planning problems described in Section ���� The following
discussion focusses on the basic questions arise bringing the clause program and the
theorem proof procedure together�

��� Planning by Theorem Proving

����� Plan Analysis and Evaluation

From the above results regarding theorem proving together with our formulations
of the Event Calculus EC� the realisation of plan analysis and evaluation using
resolution and negation in SLDNF� would seem to be easy� Given an axioma�
tisation of the planning domain DOM describing preconditions and e�ects of the
existing action types 	via posprecondition��� negprecondition��� initiates���
and terminates���� one is now able to compute the overall properties that plan
P lan� consisting of happens��� act��� and before��� establishes at a certain point
in time�

	P lan �Dom � EC�

SLDNF

� Goal

Goal � holds�P�T�

A query with an uninstantiated property P requests the answer substitutions
that give a complete overview of the implicit situation at time point T� Partially
instantiated properties P are evaluation requests� i�e� one would like to know whether
there is an instantiation of property term that holds at time point T � Section ���
describes how to introduce a so�called �dummy� event that represents the overall
end of each plan and usually is used to bind T to get the overall e�ects�

Due to the three�level architecture using a theory of time and action and a theo�
rem proof procedure� the soundness and completeness results depend on a combina�
tion of the individual requirements of each of those layers� Whereas the concept of a
solution plan is determined by the plan execution model on which the appropriate
version of the Event Calculus relies� the �nite domain assumption for negations
on the SLDNF� level imposes limits at a more theoretical level 	see Section �����
Regarding the axiomatisation of the calculus� �nite domain negation requires a �nite
number of action types� their conditions� and the plan steps� and thus �nite plans�
Finally� fair handling of choice points 	Section ���� is also required to establish plan
	and property� soundness completeness at the top layer�

����� Plan Synthesis and Modi�cation

The harder problem of plan synthesis and modi�cation can be achieved with an
abductive proof procedure�

Dom � EC � P lani
SLDNFA��P lana
Goal

Goal � holds�P��T�� � holds�P��T�� � � � � � holds�Pn�Tn�

To construct a complete plan P lan � P lani
S
P lana from an initial abduction

set P lani� one has to introduce abductive predicates that are able to extend the
plan P lana 	Section ����� The choice rule has to be extended supporting e�cient
abduction and maintenance of hypotheses 	Section ����� Finally� a closer inspection

��

of the nonmonotonic interference within the proof reveals several opportunities for
customising SLDNFA� to save unnecessary computation 	Sections ��� and �����

Depending on the number of prede�ned assumptions� the planning task re�
sides somewhere between pure plan synthesis 	P lani � �� and plan modi�cation
	P lani �� ��� This is only approximately exact� as the start event that describes
the initial situation should be introduced in either case by the planning domain
de�nition and the initial abduction set 	Section �����

Bearing in mind the statements about SLDNFA� from Section �� the require�
ments of Section ��� for fairness� �nite plans� �nitely many action types� and
�nitely many conditions also hold in the case of plan synthesis� The following equa�
tion can be established for the overall planning procedure�

	P lan �Dom � EC�

SLDNF� Goal

	 �P lan� P lan j� P lan�� Dom � EC

SLDNFA�

�P lan�
Goal

On the one hand� this guarantees soundness with respect to the solutions of the
appropriate Event Calculus version 	�� P lan� � P lan�� On the other hand�
the least commitment of the abduction principle leads to a special form of plan
completeness� Each reasonable extension to an abduced plan that does not destroy
its special structure with respect to the goal can also form a solution� This is no
restriction� since in general these extensions that are not relevant for obtaining the
goal anyway� As in the general setting� dropping least commitment requirement only
leads to unwanted solutions�

��� Abductive Predicates and their Maintenance

Enabling abductive facilities within the logical �execution� of the Event Calcu�

lus requires some considerations with regard to abductive predicates and their
semantics� As we mentioned above� a plan in the Event Calculus consists of the
predicates happens��� act��� and before��� Thus� they also serve as abducibles
for plan synthesis purposes�

� happens��� a unary predicate� requires no special maintenance� It does not
need to be restricted in any way� Due to the de�nition of the calculus� it
contains either unique event constants or terms involving only existentially
quanti�ed variables�

� act�� is restricted to have a event as its primary argument 	introduced with
happens��� and a term that describes an action type with its roles as its
second argument� The denoted relation should is functional� i�e�� each event
is only allowed to have one action type associated with it� Note that act��
should not be responsible for introducing a concrete type for an event� This
is achieved by later uni�cations 	e�g�� in a postcondition�� axiom� with the
existentially quanti�ed type as an argument 	see Section �����

� before�� has time points related to existing events as both of its argu�
ments� The denoted relation is anti�symmetric and transitive� The best way
to maintain this predicate is by the calculation of the transitive closure
and failure on the detection of inconsistent assumptions� A default fact
that has to be included for each event E introduced by happens�E� is be

fore�start�E��end�E���

Furthermore� the initial situation is incorporated into the planning prob�
lem by representing it as an event� The domain Dom is responsible for
de�ning a special action type initial� that always succeeds 	because of

��

empty preconditions� and initiates the appropriate facts� The abduction set
is initialised with some default event and the facts happens�initial� �
act�initial�initial�� � before�start�initial��end�initial��� As soon as
happens�E� is abduced abduction maintenance is extended by a further default
fact� before�end�initial��start�E���

A similar method can be used to introduce an explicit time point for the implicit
end of the plan that is commonly needed to request information about the over�
all e�ects� The appropriate dummy event and its action type are called end�end��
The type needs neither preconditions nor e�ects as it only serves as an argument
for start�� in holds��� Again� the maintenance of before�� requires a default
assumption for each introduced event E� before�end�E��start�end���

��� Treatment of Negations

Sections ����� and ��� demonstrated how to improve the treatment of negation in
order to save search space while enumerating a �nite domain over local variables�
The Event Calculus is a perfect example which provides the ability to put some
subgoals into the enumeration part of SLDNF� and SLDNFA�� This even works
for all possibly negated goals with local variables 	for simplicity� we have chosen
to present them before the next resolution step occurs and exposes the quanti�ed
expression��

� �fails�E�� The local variable Ty is uniquely determined by act�E�Ty�� P is
member of the preconditions of Ty� act�� as well as precondition�� can be
moved into the enumeration part� if �nitely many action types and �nitely
many conditions are preserved�

� �clipped�P�Tp��Tp��� EC as the destroyer of persistence can only be an al�
ready abduced event� happens�E� spawns the appropriate search space and
migrates into the �nite domain enumeration� assuming that there are �nitely
many plan steps� The other goals� terminates��� �fails��� and out���
should remain in the global part of the goal� because they either involve global
variables or are able to introduce new hypotheses�

� �holds�P�Tp�� E as the destroyer of P is member of the abduced events�
The transformation and the corresponding requirements are similar to the
preceding case�

��� SLDRule� Choice Points and Heuristics

Though fairness of the choice rule is su�cient to obtain sound and relatively� com�
plete planning procedures from the combination of the Event Calculus and
SLDNFA�� e�ciency with respect to performance and optimal solutions is only
established if the choice and selection rules are further restricted�

As it can be seen from the formulation of the Event Calculus and the def�
inition of its abductive predicates� expanding the calculus in a depth��rst manner
	in both the selection and choice rules� is easy to implement and well suited to the
problem� Instantiations occur in a reasonable fashion according to the selection rule�
especially for negated subgoals� The complex treatment of negation and the main�
tenance of the abduction set are simple� There are however some opportunities to
vary the pure depth��rst approach to guarantee fairness and incorporate heuristics�

One important place to explore fair behaviour is the treatment of recursion due
to fails��� Both the simple as well as the extended Event Calculus of EVE
are designed to ensure termination on a static abduction set� But if abduction is

��

switched on� a depth��rst method for selection as well choice yields in�nite com�
putations� depending on the particular planning domain axiomatisation and goal�
e�g�� in the case of several actions that serve as mutual precondition initiators� This
is of course not fair and certainly does not produce a complete solution plan set�

The iterative deepening approach which postulates a proof depth limit that is
increased after covering the complete search space at a certain depth is most ap�
propriate here� Compared to the usual bounding measure of absolute proof depth�
abduction in the case of the Event Calculus allows an even smarter bound� the
number of yet abduced events by happens��� Besides fairness and thus complete�
ness relative to the de�nition of EVE�s calculi� this measure is also responsible for
yielding optimal plans with the fewest steps ��� Even with minimal and maximal
limits� EVE is able to implement correct solution management�

Heuristic knowledge� however� must also be applied at important choice points
and the abductive steps� Whereas plan analysis always tries to explore all the ex�
isting proof paths to get an overview about an implicit situation and thus demands
no extensive use of heuristics� synthesis is faced with the far more complex task of
generating the right action at the right place and requires the best possible guidance
in order to reach its solution fast and e�ciently�

The Event Calculus incorporates three di�erent places to in�uence depth�
�rst choice towards a more e�cient behaviour�

� Choice between a new abducible and a match with the already
collected assumptions� a general rule is to �rst check existing hypotheses�
Since complexity increases with additional hypotheses� the abduction step has
to respect this order 	extended least commitment��

�� Choice of abducibles to match the goal with� Finding a goal�initiating
event is best done by accessing the start situation and the already present
events �rst� The solution plans stay minimal� because it will be not necessary
to have a large number of events beside the knowledge base� but only if the
environment is suitable�

�� Choice of action type associations� Choosing a type for a certain event is
best not done� until there are certain property requirements� e�g�� postcon

dition����� In this case� the disjunctions introduced by the domain axioma�
tisation are a factor that can be in�uenced by domain�dependent heuristics�
Considerations here involve exploration of more abstract dependencies in the
conditions of actions than the calculus alone is able �nd by complex execution�
The heuristics are preferences or �lters on action types with respect to the
actual goal and the abduction state� As EVE does not provide any explicit
cost speci�cation in the actions itself� these guidelines have to take account of
weight of the actions implicitly�

��� Execution of the Simple Event Calculus of EVE

Omitting the success check in the persistence axiom 	Figure �� has� besides guar�
anteeing termination� a further side e�ect on the behaviour of the proof procedure�
The basic properties of the axioms that are involved in this observation can be
stated as follows�

� clipped�� no longer depends on a fails�� subgoal�

��the current version of EVE does not provide explicit speci�cation of the cost of actions� see
Section ���� for a discussion

��In fact� this renders the planning procedure goaldriven� and is thus an instance of backward
planning�

��

�� fails�� therefore only occurs in the negative mode as a subgoal of holds���

�� holds��� Nested� negated holds�� subgoals within fails�� turn positive
again and preserve the invariant ��

�� clipped�� also only appears negated by the same invariant ��

�� holds�� and fails�� as already proved goals will stay correct as long as their
clipped�� subgoals remain so�

�� clipped�� as a negated goal can only introduce out�� as a positive subgoal�

This leads to a lemma that reveals the positive e�ect of EVE�s simple theory of
time and action on the proof procedure�

Lemma ��� Any SLD�rule in SLDNFA� with a fair treatment of choice points

that prefers fails�� selection to clipped�� will� by executing the simple Event

Calculus of EVE and without any consistency check of already elaborated negated

goals� result in a planning procedure that is sound with respect to the worst case

assumption about failed events and strong nonlinearity� Completeness is restricted

to least commitment� �nite plans� �nitely many action types and �nitely many action

type conditions�

Proof� As completeness is not a�ected by omitting the repeated consistency proofs
of negated goals� we are focussing on soundness� Assume that a proof of the pro�
cedure succeeded and regard the collected negated goals whose expansion involves
the abduction state 	other negated goals are not a�ected by later abduction steps
and remain correct�� These are only of type fails�� and clipped��� Observation
� shows that general soundness only depends on the correctness of the clipped��

parts� As soon as some negated clipped�� goal is selected� there is no possibility
of selecting any further fails�� goals later� This is due to observation and the
restriction on selection rule� From this stage on� additional abductions inserted into
the abduction state can therefore only be of type before�� 	due to � and �� and thus
only extend the knowledge about the transitive� anti�symmetric ordering of events�
No further events are introduced into the solution plan� Suppose now encounter a
negated clipped�� goal to be proved� any further extension of the temporal relation
between the known events will not destroy this persistence anymore� since out��

has already considered all possible destroyers of the wanted property by reasoning
over all possible linearisations� �

This planning procedure delivers an algorithm also found in traditional ap�
proaches to nonlinear planning� one �rst expands the plan to match goals and
preconditions� later one �nds con�icts and resolves them� The advantage of the
logic�based version� however� is the additional capability to realise plan analysis�
evaluation and modi�cation gained by the �exibility of theorem proving� Axiomati�
sations are furthermore much easier to extend than �xed procedural approaches #
the intended research with respect to event duration and conditions 	Section ����
is an example for this�

��	 Execution of the Extended Event Calculus of EVE

The basic property that allows a simpli�ed proof procedure in the case of EVE�s
simple calculus� the independence of clipped�� from fails��� does not hold in the
extended version� Possible positive occurrences of fails�� and clipped�� goals
trigger abduction steps that intentionally destroy some persistence� Correctness of

��

already proved negated goals is therefore not self�evident # the consistency check
is required occur�

Close investigation of the general behaviour now reveals ine�ciency� Events E
that are recognised as initiators for a property P to hold could destroy another
persistence PE� The attempt to yield PE via failure of E spawns a search space
that is condemned to fail a priori as the persistence from E to P depends on the
success of E� Unrestricted abduction therefore leads to unnecessary computation� If
the proof procedure could predict the events E that will form the basis of persistence
checks� it would at least be possible to disable abduction in positive fails�E� goals�
Only events that are not �in use� 	perhaps within a modi�cation task� are tried for
failure in this case�

If the recognition of failure is alone su�cient� abduction could be generally
disabled within the expansion of positive fails�� goals� A similar situation as in
the simple calculus version arises�

� holds�� and negated fails�� goals as already proved stay correct as long as
the negated clipped�� subgoals remain so�

�� clipped�� can only introduce abductions by its out�� subgoal�

Lemma ��� Any SLD�rule in SLDNFA� with fair treatment of choice points that

prefers negated fails�� selection to negated clipped�� will� by executing the ex�

tended Event Calculus of EVE without any consistency check of elaborated

negated goals and restricting additional abductions not to happen within the sub�

goals of positive fails��� result in a sound plan procedure with respect to strong

nonlinearity� Completeness is restricted to least commitment� �nite plans� �nitely

many action types� �nitely many action type conditions and only the recognition of

failed events�

Proof� The argument is similar to that in the simple calculus case because of �
Positive fails�� and thus clipped�� goals can only occur during elaboration of
negated clipped�� after all the negated fails�� goals are expanded� Due to the
restricted abduction 	�� then� there is no possibility of introducing new events�
Only the before�� relation can be further speci�ed and will not destroy the proved
clipped�� negations and their subgoals because of the treatment of incomplete
temporal knowledge by out�� in the persistence axiom� �

Completeness is of course restricted to pure event failure recognition� More so�
lution plans can only be reached with the general abduction procedure� Another
approach dealing with the improvement of the problems of persistence is mainte�
nance ����� See Section ��� for its de�nition and perspectives�

��
 Summary

Execution of the Event Calculus with SLDNFA� demands certain customisa�
tion of the abduction step and the SLD�rules� e�g�� the de�nition of abductive predi�
cates� fairness by depth��rst expansion and iterative deepening� extended least com�
mitment and reasonable defaults� Besides incorporating domain�dependent heuris�
tics� EVE�s special versions of the calculus furthermore allow simpli�cation of the
proof procedure with respect to interference between abduction and negation� Based
on the treatment of event failure� the results are planning procedures with di�erent
classes of solution plan�

��

� SLDNFA� by Constraint Logic Programming

EVE�s integration of layer 	the Event Calculus� and � 	the SLDNFA� proce�
dure� into its implementation platform� Oz� is more sophisticated than just building
the theorem proof procedure and relevant data structures scratch� We have instead
chosen to tie this logical framework closely to the higher�order� constraint�based
setting of the Oz calculus� This is realised through transformation functions that
convert clause�based logic programs such as the Event Calculus into constraint
expressions such that� when interpreted with the machinery of the Oz calculus�
they produce a sound SLDNFA� proof procedure that is complete for �nite uni�
verse negation and fair treatment of choice points� This section introduces the basic
language constructs with their informal semantics and then incrementally describes
how the proof principles underlying SLDNFA� are preserved in the translation�

	�� The Oz calculus

A new generation of programming languages have been developed in the last decade�
These constraint logic programming 	CLP� languages mainly focus on bringing
logical approaches to the rest of the programming world by combining state�of�the�
art paradigms into its framework without loosing the great expressivity of logic�

An example of such a constraint language is Oz� developed at the Programming
System Lab at the Universit�at des Saarlandes� headed by Gert Smolka �� ��� The
corresponding constraint machine� DFKI Oz�

� explores the whole CLP suite�

� e�cient rational uni�cation� s�t�

� records� lists� numbers� etc�� are supported�

� conjunction� E� �E��

� conditional� if G then E� else E� fi�

� local variables� local V in E end

� computation spaces� a hierarchy of constraint stores allows information
inheritance from root to leaves�

� ask� no inconsistent state of the top�level computation space�

� abstraction� predicates� proc�A "V � E� end�

� and extends it with features still uncommon in logic languages�

� concurrency�threads� suspension resume of computations

� declarative as well as functional programming style� funj�jproc� cells
model state�

� object orientation� state and methods �Object method� "V ���

� Finally� it even introduces handling of

� disjunctions� or E� �� E� ro� on the top level� restricted to real dis�
joint� decidable situations� as well as in

� encapsulated search� provides a variety of search strategies ���� Disjunctive
constraints are applied by cloning the appropriate computation space and
distributing the sub constraints to the siblings� First�class computation
spaces make the results manageable from the upper level�

��

Besides the CLP systems having a clean� logical semantics making them suitable
for program veri�cation� the following deliberations represent reasons to use Oz as
the implementation base for EVE�

� Strong nonlinear planning is only of use� if the linearisation happens as late
as possible in the execution scheme� if necessary at all� Concurrency supports
simple and natural execution mechanisms in this respect�

�� The constraint�based platform does not require expensive implementation of
logical data structures� as the translation functions below show�

�� Concurrent� competing planning tasks give the system more �exible reactive
behaviour�

�� Object orientation is the basic key for structured� modular programming� In
EVE� it serves to model a transparent representation of actions� plans and
planning services�

�� The agent model InteRRaP ��� which provides EVE�s main application
	Section �� has been ported to Oz ����� Such agent�oriented and reactive
approaches require�

� the modularity of object orientation�

� the reactiveness of concurrency� and

� fair and controllable resource scheduling�

	�� Resolution in Oz

As just presented� the Oz calculus already provides treatment of conjunctions at
the top level� disjunctions by encapsulated search and even CET� � RAT equality�
Thus� the transformation from C clauses into Oz�constraints is straightforward� See
the translation scheme T� in Figure � �	�

We have already mentioned that we would like to take as much advantage of the
host language as possible� Clauses are therefore directly translated into appropri�
ate Oz�abstractions by replacing conjunctions� disjunctions� and equality assertions
by their immediate constraint�based equivalent� Universal quanti�cation of clauses
is implicitly represented by the concept of abstraction� each application of an ab�
straction� the constraint�based replacement of the resolution step� produces fresh
parameters� local produces a variant of its scope� Because encapsulated search re�
quires the use of unary queries in order to propagate solutions back to the top level�
we allow free variables F	D� in the body of a query� These are implicitly existen�
tially quanti�ed and mapped to the root variable Sol� A depth��rst� all�solutions
proof of the resultingOz program can then be computed by applying the prede�ned
abstraction Solvealleager�

�ForAll �Solvealleager Query�

proc�� solved�Sol�� �Browse �Sol�� end�

Of course� a translated version is more restricted than the general SLD case� the
selection rule and choice point preference depend on the order in which Oz treats
new conjunctions and disjunctions� Hence� the execution of conjunctions can be re�
garded as being concurrent�
 with preference given to a depth��rst� user�prede�ned

��For each translation function Ti�s on type s� there exists a homomorphous extension �Ti�s with
�Ti�s��s	 �	s��sTi�s�s	 and � the sequencing�conjunctive operation on s
��This holds true for the reduction strategy of Oz ��x� As the current development version of

the abstract machine adopts a sequential strategy with threading on demand� the behaviour of
the translated calculi changes accordingly�

��

T��V � T��V 	X� � X

T��A � T��A	a� � a

T��s � T��s	A�"s�� � T��A	A�� "T��s	"s��
T��s	A� � T��A	A�
T��s	V � � T��V 	V �

T��P � T��P 	A�"s�� � �A "T��s	"s��
T��P 	s�t� � T��s	s��T��s	t�
T��P 	�� � true

T��P 	�� � false

T��K � T��K	K � I� � T��K	K�T��K	I�
T��K	P � � T��P 	P �

T��D � T��D	D � E� � or T��D	D�
�� T��D	E�
ro

T��D	� "V K� � local "T��V 	 "V � in

T��K	K�
end

T� � T��C �
T�	 "V A� "V � � D� � declare

proc�A "T��V 	 "V ��
T��D	D�
end

T�	� � D� � declare

proc�Query Sol�
"T��V 	F	D��

in

Sol�� "T��V 	F	D���
T��D	D�
end

Figure �� Translation Scheme T� $ Resolution

��

T
�� �D � T

�� �D	
!D � !E� � or T

�� �D	
!D�

�� T
�� �D	

!E�

ro

T
�� �D	�

"V K� � local "T��V 	 "V � in

T��K	K�
end

T
�� �D	��

"V K� � �Solveonedepth

proc�� � �
"T��V 	 "V � in

T��K	K�
end

failed�

T� � T
�� �C �

T�	 "V A� "V � � !D� � declare

proc�A "T��V 	V ��

T
�� �D	

!D�

end

T�	� � !D� � declare

proc�Query Sol�
"T��V 	F	 !D��

in

Sol�� "T��V 	F	 !D���

T
�� �D	

!D�

end

Figure ��� T� $ Negation As Failure

order� Disjunctions create choice points� which are expanded as the driver procedure
for the search process 	Solvealleager in the example above� constructs the local
computation spaces�

In spite of the loss of global control� we have gained a lot� e�cient rational
uni�cation� concurrency� and the possibility of including the full computational
power of Oz into the problem speci�cation� We are now able to use logical as well
as functional approaches� even conditional expressions and therefore suspensions

are allowed # a method to reestablish in�uence over the data �ow in the calculus�

	�� Negation As Failure in Oz

Following the list proof procedures in Section �� the next extension is to deal with
�rst�order formulae in general by the introduction of negation� Let us �rst focus
on the notion of negation as failure and SLDNF� As in most implementations� a
negated goal proof recursively calls the proof procedure and inverts the success
failure result� In scheme T� 	Figure ���� we have accomplished this behaviour by
starting another encapsulated search within the current one� The application of
�Solveonedepth Q failed� only succeeds if the nested� depth��rst� and one�
solution proof of the abstraction Q fails� Note that the symbol � in Figure �� rep�
resents the return value of the actual proc expression bound to the abstraction to
negate� � produces an anonymous� fresh variable�

��

The groundness restriction is implicitly realized by the Oz code as the Solve

Combinator� the basic predicate that underlies each search procedure� returns� in
the case of a nonground negated call� a stable computation space S 	stable�S���
signfying that the information within the space hierarchy is not su�cient to guar�
antee correct distribution� Thus the uni�cation with failed will fail�

	�� Constructive Negation in Oz

First attempts to circumvent the groundness condition on negations by just delaying
them until the end of the positive proof did not succeed because of the concurrent
environment��� Whether a variable will ever be instantiated cannot be predicted
in the Oz calculus� Furthermore� when going over to abduction� a switch between
positive and negative goals has to be done without central control� This proof�
�mode� information and the corresponding implications have to handled locally by
the translation process�

To avoid the completeness problems of pure negation as failure� we propose
the use of constructive negation as in SLDNF�� The best way to handle this in
constraint�based technique is by compiling two� logically inverted versions of each
clause� Allowing the negation normal form requires the translation to introduce
inequality constraints�

Within Oz� which regards constraints as actors on a blackboard� inequality
maintenance follows from uni�cation� if X�Y then false else true fi� As soon
as the guard X�Y is entailed� the conditional could �re thus rendering the current
computation space inconsistent 	false�� Disentailment just removes the actor from
the blackboard 	true� which is correct� since the Oz calculus only allows further
monotonic extensions to the computation space�

In translating the negation normal form we apply De Morgan�s as described in
Section ���� Thus for the special cases �	K � I� becomes �K � 	K ��I� to produce
disjoint solutions� The translation also introduces the �nite domain assumption F

to handle universal quanti�cation 	see Section �����
The only task that nested� encapsulated search still has to perform is enumer�

ation of the �nite domain over the local variables� "s�� � � � � "sn� These substitutions
are applied to �K and build the new conjunctive goal to be further expanded�
Scheme T� 	Figures ��� ��� ��� uses this technique� given an appropriate unary Oz
abstraction FiDo�� for the domain enumeration�

The more e�cient treatment of negation that we propose for SLDNF� 	Section
������ can be also applied to the translation scheme T�� The parts of the negated
goal �� "V K that only depend on the local variables "V � Kl� could be moved into the
nested encapsulated search that enumerates the �nite domain� The general look�
ahead technique mentioned in Section ������ however� is not possible� because this
requires full access to the content of abstractions� Without this meta programming

support� our e�ort is only able to perform a much simpler precomputation during
translation�

	�� Abduction in Oz

We now describe the fully��edged SLDNFA� translation� The �rst extension to the
framework presented so far is the basic functionality of the abduction step included
in the MetaAbduction predicate 	Figure ��� to which the general requests will be
mapped to using term expressions� Remember that the separation of clauses from
the abduction set has the advantage of avoiding skolemisation and allows us to

�	This would be equivalent to a selection rule that prefers positive to negative goals�
�
We chose this rather canine name� because FD was already taken by prede�ned procedures in

Oz�

��

T� � T
�� �C �

T�	 "V A� "V � � !D� � declare

proc � A "T��V 	 "V � M �

case M of positive then

T�

�� �D
	 !D�

�� negative then

T�
�� �D

	 !D�

end

end

T�	� � !D� � declare

proc � Query Sol �
"T��V 	F	 !D��

in

Sol�� "T��V 	F	 !D���

T�

�� �D
	 !D�

end

Figure ��� T� $ Constructive Negation

T�

��P � T�

��P 	A�"s�� � �A "T��s	"s� positive �

T�

��P 	s�t� � T��s	s��T��s	t�

T�

��P 	�� � true

T�

��P 	�� � false

T�

��K � T�

��K	K � I� � T�

��K	K�T�

��K	I�

T�

��K	P � � T�

��P 	P �

T�

�� �D
� T�

�� �D
	 !D � !E� � or T�

�� �D
	 !D�

�� T�

�� �D
	 !E�

ro

T�

�� �D
	� "V K� � local "T��V 	 "V � in

T�

��K	K�

end

T�

�� �D
	�� "V K� � �ForAll

�Solvealleager

proc�� � "T��V 	 "V ���
�X� �V �FiDo T��V 	X��

end�

proc�� solved�S��

� "T��V 	 "V ����S� in

T�
��K	K�

end�

Figure ��� T�
� $ Constructive Negation

��

T�
��P � T�

��P 	A�"s�� � �A "T��s	"s� negative �

T�
��P 	s�t� � if T��s	s��T��s	t�

then false

else true fi

T�
��P 	�� � false

T�
��P 	�� � true

T�
��K � T�

��K	K � I� � or T�
��K	K�

�� T�

��K	K� � T�
��K	I�

ro

T�
��K	P � � T�

��P 	P �

T�
�� �D

� T�
�� �D

	 !D � !E� � T�
�� �D

	 !D� � T�
�� �D

	 !E�

T�
�� �D

	� "V K� � �ForAll

�Solvealleager

proc�� � "T��V 	 "V ���
�X� �V �FiDo T��V 	X��

end�

proc�� solved�S��

� "T��V 	 "V ����S� in

T�
��K	K�

end�

T�
�� �D

	�� "V K� � local "T��V 	 "V � in

T�

��K	K�

end

Figure ��� T�� $ Constructive Negation

��

proc�MemberDisj Term List�

case List of Head	Tail

then or Term�Head

�� �MemberDisj Term Tail� ro

else false

end

end

proc�MetaAbduction Term Mode AI AO�

case Mode

of positive then

or �MemberDisj Term AI�

AO�AI

�� �Maintain Term	AI AO� ro

�� negative then

�ForAll AI proc�� A�

if Term�A then false

else true fi

end�

AI�AO

end

end

Figure ��� The MetaAbduction Predicate

rely totally on existential quanti�cation� The Maintain predicate is responsible for
the abduction maintenance as well as the check for abducibility of goals 	this is
a simpli�cation of the abduction procedures in Sections ��� and ��� a bit�� The
Addition of new assumptions has to be restricted to the positive mode�

The full constructive translation scheme extending T� with abduction capabili�
ties and implementing the full SLDNFA� including the mapping of the abduction
step to the MetaAbduction predicate is given by T� 	see Figures ���������� A spe�
cial technique� however� remains to be described� the consistency check of negated
goals with respect to abduction negation interference� As the structure of the proof
is not collected and thus no e�cient check is possible� negated goals are �rst col�
lected as abstractions and delayed as long as possible to decrease the amount of
checking� Whereas a delay with respect to variable assignments is not possible� for
reasons given above� the propagation of the abducibles creates some linearisation in
the calculus and allows a delay with respect to accesses to the abduction set� The
result is several proof stages that are managed by the driver function in Figure ���
Stableness of the abducibles and the collected negated goals signi�es success�

The techniques for e�cient negation of T� are also applicable to T�� but follow
the considerations of Section ���� Whenever there are subgoals that involve only
local variables� but contribute to the abduction result� they have to reside in the
global part of the translation�

	�	 Remarks

As can be seen from the translation schemes� the selection rule and the choice
point preferences depend on the constraint solving mechanisms� By introducing
abductive control �ow� the user�prede�ned order of the applications is for the most
part responsible for the conjunctive behaviour of abductive predicates� That this is
not entirely the case� is due to the concurrent setting� a suspension only occurs� if
a decision about 	dis�entailment has to be delayed� Such suspensions can� however�

��

T� � T
�� �C �

T�	 "V A�"V � � !D� � proc�A "T��V 	 "V � M NC AI AO�

case M of positive then

or

�MetaAbduction T��s	a�"V �� M AI AO�

NC�nil

��

T�

�� �D
	 !D� NC� AI� AO�

ro

�� negative then

A�

in

�MetaAbduction T��s	a� "V �� M AI A��

T�
�� �D

	 !D� NC� A�� AO�

end

end

T�	� � !D� � proc�Query Sol NC AI AO�
"T��V 	F	 !D�� in

Sol�� "T��V 	F	 !D���

T�

�� �D
	 !D� NC� AI� AO�

end

Figure ��� T� � Abduction

be made explicit using conditionals checking for determinance� if �Det Var� then

Exp fi� indexDetThe suspension occurs until the appropriate variable Var is bound
and the conditional will then free the delayed constraint Exp�

Closely related to synchronisation is the question of heuristics� The �xed con�
straint solver rule is not suited for dynamic choice point preference��� The only
place where the abduction scheme T� is in general able to directly in�uence any
choice order is in the MetaAbduction predicate�

As minimality of the abducibles is one condition required of abduction� the
addition of new abducibles has been placed in the second disjunctive choice after
uni�cation with already assumed literals� This is of course can only be guaranteed�
if exactly this disjunction is solved in a depth��rst manner which depends on the
encapsulated search driver used�

Some control from within the local computation spaces in�uences the order of
uni�cation with current hypotheses� It works by reordering the appropriate abduc�
tion state� represented in our schemes by a list� before applying MemberDisj� Real
pruning of the search space is obtained by omitting some of these assumptions�
This is� of course� only sound in positive mode� The method could be extended to
arbitrary� important choice points that can be guided by accessible data structures
to install a broad opportunity for heuristics�

Recent research� however� has revealed some quite close relations between con�
straint logic programming and the concept of abduction� Section ��� tries to explain
the main ideas that could lead to improved translation functions�

��The encapsulated search is of course in
uenced by the driver function� but there is no intro
spection into the computation spaces from the upper level �or at least what introspection there is�
is very expensive	�

��

T�

��P � T�

��P 	A�"s�� N� AI� AO� � �A "T��s	"s� positive N AI AO�

T�

��P 	s�t� N� AI� AO� � T��s	s��T��s	t� N�nil AI�AO

T�

��P 	�� N� AI� AO� � true N�nil AI�AO

T�

��P 	�� N� AI� AO� � false N�nil AI�AO

T�

��K � T�

��K	K � I� N� AI� AO� � local A� N� N� in

T�

��K	K� N�� AI� A�� � T�

��K	I� N�� A�� AO�

�Append N� N� N�

end

T�

��K	P� N� AI� AO� � T�

��P 	P� N� AI� AO�

T�

�� �D
� T�

�� �D
	 !D � !E� N� AI� AO� � or T�

�� �D
	 !D� N� AI� AO�

�� T�

�� �D
	 !E� N� AI� AO�

ro

T�

�� �D
	� "V K� N� AI� AO� � local "T��V 	 "V � in

T�

��K	K� N� AI� AO�

end

T�

�� �D
	�� "V K� N� AI� AO� � N�proc�� N� A� A��

N���Map

�Solvealleager

proc�� � "T��V 	 "V ���
�X� �V �FiDo T��V 	X��

end�

fun�� solved�S��

proc�� N AI AO�

� "T��V 	 "V ����S� in

T�
��K	K� N� AI� AO�

end

end�

A��A�

end AI�AO

Figure ��� T�
� $ Abduction

�

T�
��P � T�

��P 	A�"s�� N� AI� AO� � �A "T��s	"s� negative N AI AO�

T�
��P 	s�t� N� AI� AO� � if T��s	s��T��s	t�

then false

else true fi

N�nil AI�AO

T�
��P 	�� N� AI� AO� � false N�nil AI�AO

T�
��P 	�� N� AI� AO� � true N�nil AI�AO

T�
��K � T�

��K	K � I� N� AI� AO� � or T�
��K	K� N� AI� AO�

�� A� N� N� in

T�

��K	K� N�� AI� A�� � T�
��K	I� N�� A�� AO�

�Append N� N� N�

ro

T�
��K	P� N� AI� AO� � T�

��P 	P� N� AI� AO�

T�
�� �D

� T�
�� �D

	 !D � !E� N� AI� AO� � local A� N� N� in

T�
�� �D

	 !D� N�� AI� A�� � T�
�� �D

	 !E� N�� A�� AO�

�Append N� N� N�

end

T�
�� �D

	� "V K� N� AI� AO� � N�proc�� N� A� A��

N���Map

�Solvealleager

proc�� � "T��V 	 "V ���
�mboxX��V �FiDo T��V 	X��

end�

fun�� solved�S��

proc�� N AI AO�

� "T��V 	 "V ����S� in

T�
��K	K� N� AI� AO�

end�

A��A�

end AI�AO

T�
�� �D

	�� "V K� N� AI� AO� � local "T��V 	 "V � in

T�

��K	K� N� AI� AO�

end

Figure ��� T�� $ Abduction

��

proc�Driver X Q AI AO�

A� N

in

�Q X N AI A��

�Expand N A� A��

end

proc�Expand N AI AO�

NO A�

in

�FoldL N

proc�� N��A� N� N��A��

�N� negative N� A� A��

N���Append N� N��

end

N�AI NO�A��

if NO�N A��A� then

AO�AI

else

�Expand NO A� A��

fi

end

Figure ��� Driver for Scheme T�

	�
 Summary

With the implementation platform Oz that is highly suited to nonlinear� declar�
ative planning within multi�agent domains� we have shown that it is possible to
realize theorem proving facilities in a constraint�based setting providing abstrac�
tion and encapsulated search� The translation schemes presented cover not only
basic resolution and negation principles� but also abduction� They solve soundness
and completeness problems in SLD�resolution� SLDNF�� and SLDNFA� using a
local rewriting approach that allows execution by the Oz abstract machine without
any further control� General heuristics that serve as dynamic guides to the choice
rule are not immediately a�ected by these transformation schemes� The abduction
step� however� can be controlled in several ways and serves as an example of how
to in�uence the search process from within the computation spaces�

��

	 The Constraint
Based Event Calculus

The search procedure underlying EVE is not just the result of a plain transfor�
mation like those presented in Section �� Besides additional techniques to in�uence
the behaviour of the calculus� it is necessary to handle the object representation
provided by EVE 	see Section ���

�� MetaProgramming

In Section ���� we pointed out that meta programming facilities in CLP are necessary
to achieve e�cient negation proofs�with or without the �nite domain restriction� But
there is another reason to use an extended treatment of constraint� it is possible to
control choices made in constraint solving�

In EVE� a �rst attempt towards structuring of conjunctions was implemented�
Again� the basic technique is abstraction and the idea is based on collecting and
delaying negated subgoals in T��

proc�Clause Vars PosSubGoals NegSubGoals CriticalNegSubGoals "A�
PosSubGoals��MetaSubGoal� Vars�		�MetaSubGoali Vars�	nil

NegSubGoals�	�MetaSubGoalj Vars�	nil

CriticalNegSubGoals�	�MetaSubGoalk Vars�	nil

� � �

end

fun�MetaClause Vars�

proc�� "A�
�Clause Vars AI AO�

end

end

Instead of directly exposing subgoals to the underlying constraint calculus� this
new scheme abstracts them using meta�level procedures 	MetaClause# "A are addi�
tional parameters including the abduction state propagation�� Besides positive and
negative subgoals� a more abduction�aware technique also marks the negations that
may be a�ected by further abduction steps 	CriticalNegSubGoals# those involv�
ing negative abductive goals� and separates them from other goals that either are
not a�ected by abduction or that are subgoals of such marked abstractions and are
therefore considered while checking the parents for correctness� An extended driver
procedure with the ability to select the next goal to solve is now necessary for the
execution� Research towards special purpose� complete meta programming facilities
is not the main aim of EVE� since� in any event� the underlying Oz system can be
relied upon to incorparate the latest techniques in constraint logic programming�

�� Heuristics

The control over the conjunction elaboration by using abstractions� as just pre�
sented� enables the incorporation of selection rules� As stated in Section ���� how�
ever� an approximate depth��rst approach for selection and choice in a bounded
search is fully su�cient for the purposes of the Event Calculus� Exceptions are
the choice points that are introduced by abduction and the domain description that
could be used to incorporate heuristics�

Whenever the abduction state or the content of the domain speci�cation is
accessed�Eve allows these guiding procedures to help� The approach is implemented
within the search process� since introspection into computation spaces from the
upper level is expensive� Thus heuristics turn out to be list�restructuring procedures

��

input state

output state

Abduction

Step

methods
addEvent()

setEvent()

setBefore()

getAllAfter()

getEvent()

getAllEvents()

Figure �� Object�Oriented Abduction

that are propagated into the search for planning� The lists constructed in this way
later serve to spawn some portion of the search tree # the default heuristic is thus
the identity procedure� Deleting elements from lists results in pruning of the search
space� To enable reasonably informed planning� contextual information� such as the
location of the choice point� the abduction state� the current goal� and the state of
the knowledge base are passed to the heuristic procedures�

�� ObjectOriented Abduction

The capability of EVE�s constraint platform� Oz� of bringing logic programming
and object orientation together also in�uences the implementation of the abduction
step in EVE� A list�based representation of abducibles is not only hard to maintain
and in�exible as an interface to the module� given a reasonable object system as
EVE provides 	Section ��� this would also require translating between list and
object based representations as data is passed between the top�level interface 	the
planning service� and the temporal reasoning calculus� Why not have an object
replacing the set of abducibles

That is� indeed� the EVE approach� Propagation of the abduction state is re�
placed by propagation of object state� Instead of accessing the maintenance pro�
cedure via terms� the abduction step is mapped to appropriate method calls� The
methods automatically handle abduction maintenance including the default ax�
ioms 	Section ���� in a far more e�cient way� e�g�� �Maintain before�start�E��

end�E����AI AO� is replaced by �AI setBefore�start�E�� end�E����� We call
this technique object�oriented abduction 	Figure �����

Since objects are conceptually global entities� their use in encapsulated search
and thus local computation spaces is problematical� Methods� in general� change
this global state� Problems naturally arise when competing branches of the search
tree try to modify this state� To handle this� rather than propagating an object�s
name� the pointer to the global structure� it is the object�s state that is propagated
as intermediate abduction results� As soon as access to the object is necessary� the
encapsulated calculus has to instantiate a local copy with which it can interact and

��

whose internals can be read out again to serve as the next abduction state� The
necessary state accessing methods that the internal data structures have to provide
are getState�� and setState�� 	see Section �����

�� The default Abducibles and the Knowledge Base Inter

face

Due to the special behaviour of the initial and end events with respect to the
action data structures� to be described later� their conditions have to be preserved
within the Event Calculus� Whereas end only serves for the description of time
points and thus the conditions of its type are empty� the initial� situation�s post�
conditions are mapped to the generic knowledge base interface�

In addition EVE assumes that the knowledge base is an object that provides a
method to disjunctively 	it is an equivalent to initiates�initial��P� � match its
contents with a property term� getfactdisj�P�� Again� this encounters the problem
of object communication within search� Since there is no possibility of distinguishing
state�changing from state�preserving methods 	the initial state should be frozen
and thus not changed during planning�� the state propagation technique of object�
oriented abduction has to be applied again� The state accessing methods therefore
also have to be supported by the knowledge base object� Furthermore� a dynamic
knowledge base can be made much more abduction�aware� Hypothetical reasoning
about the start situation� as requested by approaches discussed in Section ����
becomes possible�

EVE replaces terminates�initial�� by a constructive negation access to the
positive facts in the KB� This has the advantage of avoiding explicit termination
actions to install a holdsfalse��� If there is much information from the start
situation and the access to the knowledge base has not been improved for partial
instantiations on the properties� it is necessary to have a switch to dis� enable this
feature�

�� Summary

EVE extends the clause�based translation approach with a novel meta�
programming approach to achieve additional control over the computation �ow�
Furthermore� the incorporation of heuristic procedures that have in�uence on the
important choice points in the Event Calculus was presented� The extended the�
orem proving facilities are supplemented by the notion of object�oriented abduction
that resolves conceptual discrepancies between object orientation and encapsulated
search and provides a generic knowledge base interface�

��

� Object
Oriented Representation

In order for the computational layers to be usable� the rather crude representa�
tion must be given a user�friendly� customisable� interactive interface� that provides
access to the top�level as well as in the system internals� The object�oriented princi�
ples realized in Oz� one of the �rst logic languages to support OOP 	object�oriented
programming�� play an important role in this respect and form the base for EVE�s
service class and the hierarchy of plans and actions�

��� Representation of Properties

The Oz universe does is not restricted to atoms and �nite terms as in pure clause�
based logic� The full range of rational trees� records� numbers� tuples� lists are
prede�ned and handled e�ciently� It would thus be unwise to restrict ourselves to
the pure �rst�order term syntax�

A property denoting that entity robo� is holding entity blocka can thus be more
clearly de�ned as holding�agent�robo� object�blocka�� In fact EVE allows any
Oz term expression to be used as a property description� and relies on the built�in
uni�cation semantics� e�g�� lists do not behave like sets�

��� The Planning Service Class� EVE

Using a planner in a concurrent environment should not be restricted to interfacing
a single precompiled module that is locked during processing� In the case of EVE�
there exists a special class Eve 	Figure ���� prede�ning the state and methods needed
to build a concrete planner instance by inheritance� Such an object plays the role of
a planning module by accepting service calls� via method application� that request
plan analysis 	analysis���� synthesis 	synthesis���� evaluation 	evaluation���
or modi�cation 	modification���� Some information in those calls has to be pre�
served in order to perform the requested task 	e�g�� �Term� # solution generation
is done asynchronously by instantiation of the appropriate arguments 	e�g�� �Plan��
The method next�� is responsible for generating a further solution plan for the
previously speci�ed synthesis modi�cation problem�

If the accessed object is busy 	�Busy�True�� the environment always has the
choice of halting 	halt���� continuing 	continue��� or abandoning 	stop��� the
computation concurrently in progress� It is also possible to construct another in�
stance of Eve and request a search concurrent to the former one�

To interface an external knowledge base object� the user has to register it� set

KnowledgeBase��� The compatibility with the Event Calculus� however� places
special requirements on the KB object that are explained in detail in Sections ���
and ����

Finally� the service class includes many ways to in�uence the search process in
order to be �exible�

� The types of the domain events that are allowed to be abduced in synthesis
and modi�cation are registered with setAllowedActionTypes���

� The overall number of events that are allowed to be abduced during the plan�
ning process is restricted by an upper and a lower bound to get a fair and
thus relatively complete planning procedure 	see Section ����� These limits are
iteratively increased as the search goes on for further solutions� their initial
values� however� can be set with setActionBounds���

� Another parametrisation to the search� is a speci�cation of the version Event
Calculus to be used� The trade�o�s in terms of computational expense and

��

User

Interaction

Knowledge

Base

Action

Types, etc.

Event

search

encapsulated

in

Calculus

external interface internal interface

class EVE

halt()
continue()

analysis(!Plan ?Terms ?Busy)
evaluation(!Plan !Terms ?Sol ?Busy)
synthesis(!Terms ?Plan ?Busy)
modification(!Term !IP ?OP ?Busy)
next(?Plan ?Busy)

stop()
setAllowedActionTypes(!Alist)
setActionBounds(!Min !Max)
setKnowledgeBase(!KB)

setDebug(!DebugLevel)
setHeuristic(!HProc)

setExpense(!Expense)

Figure ��� the Plan Service Class Eve

expressivity are described in Section ���� setExpense�� switches between the
di�erent axiomatisations and proof procedures�

� the simple Event Calculus with the simpli�ed proof procedure 	see
Section ��� and �����

� the extended Event Calculus with the simpli�ed proof procedure 	see
Section ��� and �����

� the extended Event Calculus with the full proof procedure 	see Sec�
tion �����

� Heuristics are incorporated as procedures 	see Section ���� and introduced to
Eve with setHeuristic���

� Since there are many traps and pitfalls in designing planning domains� we
intend to integrate a user�friendly debugging tool into the Eve class that in�
teracts with the Oz Solver� a graphical search debugger implemented in the
latest Oz version� For the moment� the debugging consists only of control
and abduction �ow information whose level of detail can be selected with
setDebugLevel���

��� The Event Class� UrEvent

The planning facilities themselves� as well as the event 	action� and plan data struc�
tures and their types are realized as objects in EVE� Their functionality is concen�
trated in a generic class UrEvent 	Figure ���� whose services can be distinguished
by the following functionality�

� First there are de�nition methods that allow the modelling of new actions
and types� The basic step is the introduction of roles that serve as param�
eters to the event object� Because of their unique name� e�g�� �Event ad

dRoles�roles�agent������ one can refer to those roles in the condition def�
inition section�

�Event addConditions�negprecondition

��

User

Interaction

Event

Calculus

GUI

Execution

Procedure

Child

Events

Parent

Event

external interface internal interfaceclass UrEvent

addRoles(!RoleRecord)
getRole(!Role ?Value)
addConstraints(!ConstrList)

getAllAfter(!Event)
setBefore(!EventBefore !EventAfter)

setEvent(!Event !ActionObject)
getEvent(!Event ?ActionObject)

display()

setState(!State)
getState(?State)

addConditions(!CondType !CondList)
getConditions(!CondType ?CondList)
setExecution(!ExecProc !ExecParam)
execute(!SuccessProc)
executestop()
addEvent(?Event)
getAllEvents(?EventList)

Figure ��� The Event Class UrEvent

�busy�subject�evevar�agent�������

Subexpressions matching the pattern evevar�� Role ���� are replaced by
the appropriate value of role � Role �� Besides their appearance in condi�
tions� these expressions can also be used to describe the parameters to the
execution procedure 	setExecution��� that is registered and triggered in
the case of primitive action execution� The case of plans is more complex as
each plan contains several sub steps introduced with addEvent�� and asso�
ciated with a certain action type via setEvent��� Furthermore the tempo�
ral relation between these children is re�ned by setBefore��� To map the
roles of a plan to those of its child events� there exists a special method
setRoleMap��� � ��� Prole �� Event �� ERole ��� � ��� that is responsible
for unifying the value of � Prole � to the sub event � Event ��s value of
role � ERole �� Finally� the expressivity of the object system is increased by
placing constraining procedures via addConstraints�� on the di�erent roles�
Constraining procedures receive the complete role descriptions including their
values and are thus able to construct arbitrary Oz constraints around them�
These can be used to demand domain type restrictions 	like �nite domains�
etc�� or even do arithmetic 	see Section A����

� The second type of method calls allows interaction with the already de�ned
actions and plans� Whatever information the user has put into a de�nition is�
of course� accessible again 	getRole��� getConditions��� getAllEvents���
getEvent��� getAllAfter��� getEvent���� Undetermined values that are
published in this way can then be instantiated� A graphical overview of the
internal object structure is obtained with the display�� method 	see Figure
����� Perhaps the most important interaction� however� consists of execution
of actions or nonlinear plans� In the case of primitive actions� execute�� will
just trigger a registered procedure that reports its success� The nonlinear plan
execution scheme of EVE� however� takes advantage from the concurrent en�
vironment� All child events ready to execute are triggered via execute�� and
advised to give their success results back� As soon as such a substructure
sends a positive reaction� the next possible execution stage is computed and

��

Figure ��� A display�� Result

triggered until all children have been successfully executed� In the case of a
failure report� the early achievement of requested goals� or an interruption of
execution by the user 	executestop���� a symmetrical� recursive application
of executestop�� is started to notify the still active sub events� Linearisation
thus takes place� if necessary at all� on the deepest level within the execution
scheme�

� Additionally� there is the need for reading and writing the overall state
of an object� if it is interfaced or even changed during search� as explained in
section ���� The respective methods are called getState�� and setState��

and are only of internal use� Of course� the state propagation also covers the
sub event representation in nonlinear plans� Instead of pointing to a child
object� the plan rather contains its state� The methods that handle the as�
sociation of sub events 	setEvent��� getEvent��� respect this requirement
as they are also based on state access� Furthermore� the execution scheme
requires additional instantiations of child events�

From the uniform description of plans and actions� it can be seen that EVE
follows a hierarchical approach with the only distinction between the two being at
the execution level� However� to inherit this speci�c execution feature� there are two
subclasses of UrEvent available� UrAction and UrPlan�

The interactive de�nition of events and the treatment of roles needs an extended
inheritance mechanism� The straightforward mapping of types to classes and in�
stances to objects does not work because of EVE�s need for interactive de�nition�
Therefore� the inheritance procedure is able to treat any event object like its own
type� Instead of just relying on the defaults given by an appropriate class de�nition�
EveCreate has� in addition� to handle the �implanting� into the descendant of the
current object state that is dependent on recent� interactive method applications�
Uninstantiated� inherited roles� however� have to be decoupled from the values to

�

UrEvent

Grasp
Agent Box

UrPlan UrAction

Unload

Grasp
boxatruck1

subeventUnload

Grasp
Box

Agent Truck

rob2 rob2

rob2

Figure ��� An Example Event Hierarchy

fxprec

end

K
no

w
le

dg
e

B
as

e
IN

te
rf

ac
e

fxprec

initial

Figure ��� The Default Abductive State

which they are bound in the ancestor to provide a reasonable inheritance scheme�
An example hierarchy is given in Figure ����

��� The Default Abducibles

In the axiomatisation of the Event Calculus� we discussed the introduction of
initial and end events to implicitly represent situations 	Figure ���� Ubiquitous
in the planning problem� they are default sub events for members of class UrEvent�
The Event Calculi 	Section ���� and the UrEvent�s built�in rules handle their
conditions and the default assumptions mentioned in Section ����

��� The Knowledge Base Object

EVE expects the knowledge base that represents the initial planning state also to
be an object� To guarantee a functional interface between such arbitrary modules
and the translated Event Calculus� a few guidelines have to be followed� They
are shown in Figure ����

Whenever the initial event is chosen during execution of the Event Cal�

culus� the problem arises of accessing the content of the propagated knowledge
base using the property syntax 	initiates�initial� �Term��� A mapping from
properties to KB�s contents has to be done� This is� of course� up to the user as it
depends on the internal structure of his KB� The method getfactdisj�� is respon�
sible for incorporating the necessary transition disjunctively due to the behaviour
of intended initiates�� semantics�

��

User

Interaction

Event

Calculus

class

external interface internal interface

KnowledgeBase

setState(!State)
getState(?State)

getfactdisj(!Term)

Object

Eve
... arbitrary services ...

Figure ��� An EVE�Compatible Knowledge Base

The same considerations concerning objects in encapsulated search in the action
case arise again with respect to the knowledge base interface 	Section ����� State
related methods are necessary and are also called getState�� and setState���

��	 Summary

This section discussed the current object�based representation� its internal structure
and services� and its interface to user modules� the knowledge base� and the pre�
viously described logical layers of the planning process� We presented the planning
service class and the event class whose object system builds a base for interactiv�
ity� resource control� and �exible� hierarchical plan representation� Furthermore� the
requirements on a knowledge base to be compatible with EVE were explained�

��

Robo1 Robo2

A

B

C

Figure ��� the Multi�Agent Blocksworld

� EVE in the Multi
Agent Blocksworld Domain

One of the �rst ever scenarios for robot problem solving and thus planning was the
blocksworld ����� Di�erent blocks arranged on a desk must be rearranged by a robot
that is able to grasp exactly one of them� Relations of the blocks are described by the
terms ontable��� clear��� and on��� whereas the situation descriptions involving
the robot are handempty�� and holding��� Given a start situation and a goal
description� the planning task consists of choosing appropriate� sequenced instances
of the possible actions of the robot�

� If the robot hand is empty and a certain block is standing on the table� the
robot can Pickup the block�

� If the robot hand is empty and a certain block is standing on top of another
one� the robot can Unstack the �rst block from the second one�

� If the robot hand carries a certain block� the robot can Drop the block on the
table�

� If the robot hand carries a certain block� the robot is able to Stack it onto
some other one�

An important characteristic of this time�honoured scenario is the possibility of
goal interaction� when actions interfere with one another� Some researchers even
regard the problems of the blocksworld as being more complicated than common
real�world tasks� To demonstrate the nonlinear facilities of EVE we extend the
domain by allowing several robots to be involved 	Figure ���

The concrete axiomatisation of the domain can be found in Section B� Below we
list the major �ndings of our work applying EVE to the test problems of the multi�
agent blocksworld� More detailed performance benchmarks and the investigation of
the search processes with the latest Oz debugging tools will be the focus of future
research�

� Synthesis� modi�cation� analysis and evaluation are as sound and complete as
expected by the theoretical considerations�

� Nonlinear functionality is used� Whenever it is reasonable� several agents are
engaged in activity at the same time�

� The solution plans in synthesis modi�cation are enumerated according to the
number of steps they contain� Assuming uniform action execution costs� the
optimal plan is found�

� Solution management is handled reasonably by the bounded search # no
solutions are presented twice�

� If situations are symmetric to several agents� there will be also symmetrical
solution plans�

� Interesting problems like the Sussman Anomaly of which there are two versions
in the multi�agent blocksworld can be solved with speed�

� The search space has� however� a high branching factor and thus explodes early
depending on the number of abductions allowed� The pure� uninformed depth�
�rst approach takes far too long to be useful for hard� practical applications�

��

� EVE in a Multi
Agent System

Distributed Arti�cial Intelligence 	DAI� is an area within AI that is growing in
popularity� This is probably due to the common trend in computer science of divid�
ing complex problem solving into several� independent tasks 	Distributed Problem

Solving� that have to interact in order to build a globally correct solution� The
special contribution of DAI is now to model these autonomous problem�solving
capabilities as cognitive entities� the agents� that interact with their environment
	possibly including a human user� and each other� The result are the Multi�Agent
Systems 	MAS� that especially demand cooperative and thus communicative fa�
cilities from their elements in order to acquire the emergent functionality for the
top�level problem solution�

The corresponding agent architectures therefore require the integration of most
of the rather separate research questions of AI in order to model a cognitively
complete scheme� This is especially of the task of merging reactivity� the ability
to make fast decisions fast based on new perceptual data� and deliberation� the
possibility of obeying more abstract goals and developing long�term perspectives
for acting� Whereas reactive behaviour seems to be functionality that resides on
an unconscious level in cognitive systems # routine tasks that can be understood
as procedural knowledge # deliberation poses problem speci�cations that belong
to decision theory and planning� Finally� cooperation and communication seem to
complicate these questions by allowing social competence and the ability to exchange
beliefs about multi�agent plans�

One major factor in the development of EVE has always been its integration
into a MAS� EVE�s nonlinear execution model and the �exible� domain�independent
implementation make our planning system most suitable for that purpose� Our
future research activities will therefore focus on the integration of EVE into the
InteRRaP agent architecture� developed within the CoMMA�MAPS project� and the
exploration of their interplay� In this section� we brie�y present the key concepts of
InteRRaP and explain a �rst approach to placing the planning module within the
so�called local planning layer of the agent architecture� First evaluation results from
the loading dock scenario reveal the �exibility of the new agents and show some of
the critical questions that arise when bringing reactivity and deliberation together�

���� The InteRRaP Architecture

The major paradigm used in the pragmatic InteRRaP agent architecture ���� �� is
that of a layered architecture for integrating reactivity and deliberation 	Figure ����
Each layer introduces an extended abstraction level to the reasoning that happens
on its lower components�

� the Behaviour Based LayerBBL is responsible for performing routine tasks in
a procedural manner� Its processes are called patterns of behaviour and they
obey the input�output functional scheme that guarantees a reactive system�

� the Local Planning Layer LPL introduces the notion of long�term goals and
has the ability to develop intentions 	plans� that in�uence the BBL�s short�
term behaviour in order to match these goals�

� the Cooperative Planning Layer CPL represents the social competence of the
agent� It extends the agent�centred perspective of the LPL with the ability
of reasoning about other agents state of mind� communicating about own
intentions and developing joint activities�

��

E N V I R O N M E N T

Hierarchical
Agent KB

�������������������
�������������������
�������������������Sensors Communication Actors

w o r l d i n t e r f a c e (W I F)

k
n

 o
 w

 l
e

d
 g

 e

a
b

 s
 t

 r
 a

 c
 t

 i
o

 n

World Model

Social Model

Mental Model

����
����
����Behaviour-

based
Layer
BBL

����
����
����Local

Planning
Layer
LPL

����
����
����Cooperative

Planning
Layer
CPL

PS

PSSG

SG

PSSG

Agent Control Unit

information access

control flow

SG: situation recognition / goal activation

PS: planning, scheduling, execution

Legend:

Figure ��� The InteRRaP Architecture

��
SGi

PSi-1

PSi+1

��
PSi

SGi+1

SIT

(SIT, GOAL)

COM-
MIT

COMMIT
(SIT, GOAL)

KB

��
��
��

si
tu

at
io

n
re

co
g

n
it

io
n

��
��
��

g
o

al
 a

ct
iv

at
io

n

��
��
��

O
P

se

le
ct

io
n

��
��
��

sc
h

ed
u

lin
g

�
�
�

ex
ec

u
ti

o
nOPs

��COMMIT

SGi-1

���������
���������
���������information flow

main control flow

additional control flows

����
(SIT, GOAL)

Figure ��� A Layer within InteRRaP

The agent model is supplemented with a hierarchical knowledge base 	KB� that
provides the agents beliefs in several� layer�speci�c abstraction levels and the world
interface 	WIF�� the linking module between the agent and its environment�

The structure of each layer reveals some common design principles 	Figure ����
In particular the separation of functionality into the Situation Recognition � Goal
Activation 	SG� and Planning � Scheduling 	PS� and research into their interaction
have been an important topic within the development of this architecture� The
SG performs the task of receiving layer�speci�c signals that indicate a situation
change and derive new goals from their integration� These are now used to trigger
or recon�gure the PS process to develop or change the intentional structure within
the layer and therefore guide its execution� Raising signals is of course restricted to
happen only between a neighbouring layers� They consist of a part that is related
to the situation change and a part that carries information about goal activation�
In the following� we will see how EVE �ts into this framework by integrating it into
the LPL� The implementation was carried out within the ALADIN system ����� a
concrete InteRRaP skeleton that is also written in Oz�

��

Si
tu

at
io

n
R

ec
og

ni
tio

n

G
oa

l
A

ct
iv

at
io

n

Local Planning Layer

SG PS

Plan & Action
Library

EVE
Instance

Active
Plan

KB

KB

Execute BBL BehaviourActivate Goal
Execution Report

registered KB

synthesize/modify/stop

install/execute/stop/report

Figure �� EVE within the LPL

���� EVE within the Local Planning Layer

As the design of the generic layer 	in Figure ��� suggests� a planning module within
the local planning layer has to be a part of the PS process� We have already men�
tioned� that the CPL has been left out of this initial integration attempt that is
schematically shown in Figure �� The following places are instantiated�

� the KB with the mental model of the agent has been extended according to
Section ���� It is now possible to create clones of it within the search process
of the planning module� Initialisation of the agent will register the KB at the
planning process within PS�

� the SG process

� Situation Recognition reacts to changes within the knowledge base as
well as messages from the BBL� Recognised patterns include contextual
information of desires� execution results from commitments to the BBL
layer and explicit goal activation requests� These patterns are initialised
on creation of the agent�

� Goal Activation takes the output of Situation Recognition� forms new
goals expressed in EVE�s representation of properties and propagates
the commitment results from the BBL� It interfaces the PS process by
controlling the planning module and the active plan� As the current ap�
proach does not interleave execution and planning� new goals are queued
until the active plan is executed� If the active plan is empty� a new plan�
ning service to solve the conjunctive queued goals is activated� As soon
as a solution plan is presented� it is introduced as the new active plan
and its execution method is called� Results from the commitments are
mapped to appropriate method calls to the active plan to continue its
work� Success or failure of the active plan are given back to the initiator
of the respective goals� Initially� the goal queue is empty�

� the PS process

� a single EVEmodule 	see Section ���� builds the heart of the PS process�
It is concurrent to the rest of the agent�s components� but controlled by
SG� On demand� it will execute a plan service 	synthesis or modi�cation�

��

until either a solution has been generated or the service call is interrupted�
By looking up plan proposals in the plan library� prede�ned plans can
be stored indexed according to their intended goals and serve as a base
for modi�cation�

� the plan � action library contains the abstracted behaviours that serve
as commitments from LPL to BBL as well as a library of prede�ned
single�agent plans that are designed for the agent�s domain� The plans are
indexed with their intended goals� All the entries use the object�oriented
representation of Section ���� The execution method of primitive actions
is supplied with an interface to produce commitments to the BBL�

� the active plan is the single plan whose execution is in progress at the
moment� Its execution follows the procedure described in Section ��� and
the primitives trigger commitments for the BBL�

As the description of loading dock agents in Section ��� shows� this approach
works well as a straightforward basis for evaluation� but it also reveals some exten�
sions that are necessary in the architecture as well as in the planning system�

� The �frozen� knowledge base during planning prevents the planning process
from being reactive� A dynamic environment or even behaviours that are
initiated by the BBL may render the agent�s situation di�erent from the one
represented in the planning process� Solution plans that refer to the situation
that was valid when the service was called could be incorrect at execution
time� A reactive planning process that is able to guide the planning process
according to external signals 	Section ��� should replace the rather isolated
planning module�

� The false linearity assumption claims that conjunctive goals can be reached
by sequencing their respective partial solutions� By not interrupting the acti�
vated plan and queueing goals� our local planning layer uses this assumption�
however� A better scheme of interleaving execution and planning has to be
found to get rid of this strong restriction 	Section ����

� Cooperative facilities are ignored in modelling only the LPL� Future investi�
gations must show how the CPL could be constructed to include some tem�
poral reasoning based on EVE� There will be also a need for having several�
situation�independent planning processes at the LPL that produce multi�
agent plans in order to develop and communicate these intentions�

� The Event Calculus and our current EVE system does not take proba�
bility� cost and utility measures into account� These are� however� important
guidelines for rational agent design� Our goal is to incorporate these notions
either into a nonlinear planning process or into the concept of a layer 	Sections
��� and ����

���� EVE in the Loading Dock Domain

As MAS are especially suited to managing complex� but structured systems� such as
information networks and tra�c� the loading dock scenario 	Figure ��� provides an
appropriate test bed for agent architectures like InteRRaP and multi�agent planning
modules like EVE� It is basically an extension of the more abstract blocksworld task
to a more practical problem and furthermore introduces issues such as large�scale
distribution� robotics� and cooperation� The environment is is comprised of a closed
region� the loading dock� that consists of discrete �elds� Instead of blocks� the objects
to rearrange are boxes characterised by certain colours� Also the shelves indicate

��

Figure ��� The Loading Dock Scenario

with their colour the type of box that is allowed to be stored here� The only other
place� boxes can be placed on is the truck� The entities that are modelled via agents
are forklifts� Special parking areas mark the usual positions of agents without tasks�
Besides the restriction to the maximal load of one box and a limited perception
range� the agents have the ability to execute the the following actions�

� Walk Ahead� If the �eld in front of the agent is free� i�e�� no forklift� truck�
shelf� or box is blocking the way� the agent can move from its actual position
to the �eld in front without changing its orientation�

� Turn Left� Turn Right� An agent always has the ability to change its orienta�
tion in steps of �� degrees� The position� however� remains the same�

� Grasp� If the agent is not carrying any box� it is able to move its grippers
down to the truck or shelf �eld ahead� close them� and lift them up again� If
there was a box in front� the agent will now be carrying it�

� Drop� This will cause the agent to move its grippers down to the empty truck
or shelf �eld ahead and to open them� The grippers are moved up again
afterwards� If the agent was carrying a box� it will now be stored on the �eld
ahead�

Of course� this is not the kind of granularity that is inherent to the LPL� There
are some routine BBL behaviours that provide better abstractions for acting�

� GotoRect� Is a behaviour that moves the agent from its current position to a
place within the speci�ed area�

� Turn� Repeated execution of ���degree turns allows the de�nition of a be�
haviour that changes the orientation towards a de�ned direction�

� SearchBox� This routine will explore a shelf or the truck to identify a certain
box� The agent will be placed in front of the box� if this pattern succeeds�

� SearchPlace� Complementary to SearchBox� this procedure looks for a free
space on the truck or a shelf�

��

Tasks of the form load the truck with a green box� or unload one blue box from

the truck can now be posed to the agent society and are negotiated between the
agents� Eventually one agent takes temporary responsibility for ful�lling such an
atomic task� Since the BBL is not able to solve it with its short�term perspective�
the LPL is responsible for adopting it as a goal� From our axiomatisation 	Section
C� it can be seen that within this �rst evaluation we do not handle all the questions
that this scenario poses the agent� However our idealised model reveals the following
important considerations�

� Planning the above tasks within the loading dock domain works very well�
The behaviours provide a robust execution base for the generated solutions�

� Execution failure due to the abstracted problem description in planning is
handled adequately�

� The explicit reasoning at the LPL is far more �exible than the former method
of prede�ning a complete plan library� The tasks of the forklifts could be easily
enlarged by new ones without changing much within the domain axiomatisa�
tion�

� Since each action within the agent requires the same resources� the planning
process turns out to be a purely linear one�

� Since path planning is a rather special issue� we chose not to use only the
primitives within the planning layer� GotoArea is used to navigate to a certain
position which is not always possible� but works in many situations�

� We did not model incomplete knowledge due to the limited perception� Section
��� shows some way of introducing assumptions to cope with this during
planning time� The next point deals with gathering information at execution
time�

� Sensing actions like SearchBox and SearchPlace cannot be handled by the
current Event Calculus� Section ��� will present some techniques to cope
with their semantics�

� Cooperation of agents is ignored for the moment� Future work will try to
explore the usability of planning for this extended problem as well 	Section
���� Nonlinear facilities will play an important role within�

���� Summary

With our integration of the planning system EVE into the InteRRaP agent archi�
tecture� we have succeeded in bringing the �exibility and deliberation of planning
into the promising research of DAI� As our evaluation of the agents within the
loading dock scenario shows� there are a lot of architectural and algorithmic ques�
tions still to be answered in the merging of explicit temporal reasoning with reactive
facilities�

�

�� Related Work

Let us now compare the features of EVE with some well�known� related planning
systems in common use� The main criteria for our comparison are e�ciency� the
application domain� expressivity and �exibility�

���� Planning with a logical framework

������ Situation Calculus�Based Systems

Situation Calculus based planning systems can be divided into logical and pro�
cedural approaches� However� it is theoretically possible to build the most powerful
logical instance SIT using the clause formulation of Section ��� under SLDNF�

	the axiomatisation does not need any abduction�� In comparison to SIT� EVE is
superior due to its better handling of the frame problem which consequently endows
EVE with nonlinear and a far more �exible handling of plans�

Situation Calculus�based systems are restricted to the expressivity of SIT�
STRIPS ����� for example� is unable to solve problems such as the register swapping
problem� whereas the solutions of EVE�s planning procedure are sound as well as
complete 	see Section ��� Sub optimality caused by the linearity assumption that is
inherent to the Situation Calculus is not a problem for EVE�

������ Planning using Temporal Logics

There are attempts� such as the PHI planner in ����� that use modal logics with
a temporal� interval�based interpretation for temporal reasoning purposes� The
possible�worlds semantics 	Kripke structures� delivers a notion of situation as well
as situation transition due to action execution by the reachability�relation� In con�
junction with a representational solution for the frame problem 	local variables
with changing values per�situation�� modal logics allow one to realise the planning
process through deduction alone 	the PHI planner uses a modi�ed S� calculus��

Beneath the incorporation of tactical theorem proving that is also responsible
for guiding the actual planning process� the plan operators in PHI also provide a
more extensive framework than EVE� Conditionals and loops are standard tools
with which to build up the plan structures�

Since plans correspond to paths within a Kripke structure� they are however
condemned to be linear� As in the case of the Situation Calculus�based systems�
this is a major drawback in solving multi�agent planning problems� Furthermore�
the modi�cation of existing plans to �t certain goals requires more e�ort than the
a priori nonlinear approach of EVE� Interleaving of partial plans to the overall
solution is only possible by a two�stage process� ����

The thesis ���� describes an integration of the PHI planning system into the agent
architecture InteRRaP� A comparison to our work that is presented in Section �
reveals signi�cant overlap 	modelling of the loading dock� introduction of assump�
tions to deal with incomplete knowledge� error handling� as well as fundamental
di�erences 	 deduction vs� abduction� reactivity of the planning process� resource
management� etc��� The choice of EVE as the standard reasoning component for
InteRRaP has thus been con�rmed�

������ Event Calculus�Based Systems

A similarEvent Calculus�based system to EVE isCHICA ���� served as a model
for EVE� CHICA has some special concepts� such as localised planning� a way of
dividing not mutually depending actions types and properties� and search space
reduction strategies 	maintenance # see Section ����� Localised planning has been

��

recognised as not being an appropriate technique in common domains� Whereas
the adoption of search space reduction is planned for the future� EVE relies on its
special improvements to the calculus to get a reasonable behaviour� ���� even men�
tions some not identi�able� non�termination situations that have occured in their
implementation� We strongly suspect the undecidable� mutual destroyer situations
that are described in Section ��� and handled by our versions of the Event Calcu�
lus to be responsible for this phenomenon� Furthermore the advantages of the Oz
platform over the PROLOG base of CHICA include concurrency� object�oriented
features and the e�cient handling of constraints �

���� Procedural� Nonlinear Planning

Conventional� nonlinear planning approaches are most often based on procedural
descriptions as those in ���� Their computation tends to be divided into expansion
	insertion of new actions to install the current goal� and con�ict resolution 	check
for con�icts and linearisation to solve them� stages� EVE�s behaviour� depending on
the version of Event Calculus used� is very similar as we have outlined in Sections
��� and ���� Extended functionality� however� is gained by the logical approach of
the Event Calculus and the �exible background of theorem proving�

There are however a lot of improvements to these partial�order approaches to
achieve more practical planning� context�dependencies� treatment of sensing ac�
tions� probabilistic planning� etc� � Although EVE cannot provide such expressive
operations� we aim to integrate these notions into our logical framework 	Section
�����

���� Plan Graph Analysis

A new kind of semi�linear plan algorithms based on plan graph analysis is actually
beating the records because of astonishing results in well known domains�GRAPH�
PLAN ��� for example is a forward planning approach that uses a special situation
representation that even allows semi�linearity� As the actions are organised in sev�
eral stages that are internally concurrently� but linear with respect to one another�
this is a major restriction for multi�agent domains� Furthermore� depending on
the domain� forward planning and situation representation lead to an exponential
explosion of the search process # multi�agent environments� in particular� seem
encounter this problem� Besides� the approach is not� as it stands� able to allow
general plan modi�cation� because of the incremental �from scratch� behaviour that
is necessary to build the special situation representation�

���� MultiAgent Planning

Previous considerations related to multi�agent systems showed that decision making
is a key functionality of the cognitive entities we would like to model� Much work
has� of course� been put into the integration of planning into the agent�oriented
programming framework�

One way to look at the problem is the bottom�up perspective of robotics� Since
reactivity is the main criterion there� most approaches tend to adopt Operations�
Research methods and are based on Input�Output feedback loops� More sophisti�
cated research now tries to build hierarchies of abstractions on top of these rather
simple� procedural behaviours� We argue that somewhere within this evolution of
abstraction� the right place to integrate planning is found� The layered architecture
of Section � re�ects these considerations� Articles like ��� and ���� seem to share
this opinion�

��

Another top�down perspective� however� likes to look at MAS as distributed
problem solvers ����� The top�level solution for some complex task has to be puz�
zled together by the individual agent deliberation� Here� the major question is the
interaction between localised strategies with regard to the top�level goal� Enabling
a cooperative layer within our architecture InteRRaP now merges these two per�
spectives into a uni�ed framework�

Finally� there is some research from decision theory which continues to deliver
meta�theories about agent societies as well as decision guidelines for rationality� A
fact that is often left out within the other two approaches is the importance of
probability for only partially informed systems� We therefore strongly recommend
the incorporation of probability and utility into the agent architecture and or the
temporal reasoning processes�

A special usage of the Event Calculus with respect to robotics is reasoning
about sensor data� ���� The symmetrical treatment of past and future allows one
to unify plan recognition observation explanation and plan synthesis intention for�
mation� Although this provides some interesting background� a general abduction�
based agent is far more expensive with respect to a deductive� but truth�maintaining
one� A mixture of both inference mechanism would seem to o�er a good compromise�

���� Summary

This section has shown that EVE derives much advantage from the Event Cal�
culus on the one hand and its �exible architecture and representation on the other�
We have demonstrated that our framework is extendible to general multi�agent do�
mains and that it builds up a reasonable base for further extensions� which we
hope will provide a unique combination of expressive planning� decision�theoretic
reasoning and support for reactivity�

��

domain
axiomatization

concurrent, continuous inference processes

lower layer(s)

raise signalcontrol

upper layer(s)

theory syntax
change activation

raised signal

layer

Figure ��� A Layer of an Agent Architecture

�� Future Research

The main reason to choose the nonlinear Event Calculus as the reasoning strat�
egy for EVE is the intended application in multi�agent systems� Future research
will mainly focus on extending the current framework to �t its behaviour into the
requirements of this environment� We therefore �rst outline some considerations
regarding the ongoing integration of EVE into InteRRaP and later explain� how
the reasoning mechanism can be extended to capture many reasonable extensions
from practical planning� Finally� we will discuss some attempts to �nd tailor�made
heuristics in several planning domains and give an idea of how abduction and con�
straint logic programming can be uni�ed in a much more elegant way to produce
new translation functions from clause syntax into constraints�

���� Planning in a MultiAgent Architecture

Section � has introduced the fundamental concepts of our underlying agent archi�
tecture and a prototypical integration of the EVE planning module� An important
extension to the architecture that was implicitly employed there is the notion of
concurrency between individual layers� Hence� the planning process itself is loosely
linked to the LPL and its computation is done concurrently to the rest of the agent�
Communication between the di�erent functionalities can now be described as signal
sending� We would like to adopt this view for the whole architecture by modelling
all the computational facilities within an agent architecture as concurrent processes
with signal sending and receiving functionality 	Figure ���� This provides a very
broad basis for reactive systems although the maintenance of consistency has to be
inspected more closely�

Following this picture� the planning process has to develop its signal handling
abilities� Possible signals include the creation of a new planning task� resource man�
agement information and further changes in the agent�s environment� Normally�
planning tasks are treated in isolation from a dynamically changing environment�
The correctness of their results thus depends on the static information at the start
of the computation� A far more reactive planning scheme should be able to guide its
search with the supplementary information from the signals it receives� Although
this could mean throwing away large parts of the already explored search tree due
to some assumption that could not be hold� we argue that this will not happen in all
domains and only in special situations which would render the result of conventional
systems incorrect� The Event Calculus� in particular� should allow for mecha�
nisms to support reactivity because the notion of abduction and events together

��

with constraint programming techniques delivers enough information to deal with
incoming changes in the environment 	see Section �����

A question that we did not elaborate within our initial approach of bringing
planning and agent�oriented programming together is the decision making on the
cooperative layer� Of course� the use of plan structures could be adopted here� but
they have to be carefully divided into protocols� non�deterministic social rules of
communication� and strategies� decision functions that turn a protocol into a deter�
ministic intention to execute� The primitive actions on this level include speech acts
as well as synchronisation actions that wait for incoming communication� Both con�
tain the object�level plan structures of the LPL enriched with multi�agent facilities
as parameters� We propose that reasoning on the protocol strategy level happens
on the CPL and is guided by decision�theoretic considerations� The object�level
plan structures are generated� modi�ed� and analysed at the LPL� possibly with
the help of the generic resources approach of Section ���� Therefore� the local plan�
ning processes are able to be con�gured with certain contextual information that
allows them to switch between multi�agent and single�agent planning�

Execution of multi�agent plans requires the incorporation of translation func�
tions that turn the multi�agent plan into a set of object�level single�agent plans
including the necessary synchronisation and error�handling mechanisms� ��� intro�
duces such a function for linear settings� We would like to extend these schemes to
nonlinear plan structures with an extended error�handling mechanism�

The symmetrical treatment of past and future by the Event Calculus even
provides a uni�ed framework for realising plan recognition and plan generation�
��� presents an impressive example of how our approach could be also used to
reason about incoming sensor data� It is a question of e�ciency� whether the whole
architecture should be based on a global� abductive procedure� or be built within
a deductive framework with non�monotonic features to catch inconsistencies� We
think that a combination of deduction on the architectural level and abduction
within the planning processes is the most promising approach�

���� Extensions to the Event Calculus

������ Maintenance

Since the translation of the Event Calculus in EVE has turned out to spawn
huge search spaces to handle interaction of events 	see Section ��� there are sev�
eral possibilities for guiding the control �ow more accurately� Besides heuristics
	Section ����� there is also a approach within the calculus that uses the notion of
maintenance ���� instead of persistence� A problem with persistence is that it in�
sists that property of interest hold throughout a certain time interval� Maintenance
however allows the property to be terminated within the interval as long as it is
re�established later� Although this would� at �rst sight� seem to increase the search
space� investigation could nevertheless reveal potential for improving the overall
depth��rst behaviour�

������ Events with Duration

The current version of the Event Calculus regards events as ideally having no
duration� Real parallel� or at least concurrent� settings� such as multi�agent domains�
however� require the modelling of execution time intervals� The assumptions about
the lifetime of conditions no longer hold� Preconditions have to last� in the worst
case� until the end of event execution� Also the postconditions could be generated
from the start on� Their existence� however� cannot be guaranteed until the end
of execution� Furthermore� there is the possibility of properties coming into life

��

and dying again during execution 	during conditions # they represent abstracted
persistances�� We would like to exetnd the Event Calculus to capture all these
concepts� The worst case assumptions about conditions will have to covered as well
as the introduction of during conditions and a distinction between weak and strong

conditions will be needed so that the calculus will be able to reason about properties
that can be interrupted and reinstalled without a�ecting the success of an action�

������ Context�Dependent Conditions

Another extension in expressivity is gained by the introduction of context�dependent
conditions� As we have already mentioned in our discussion of the Event Calcu�
lus� postconditions that are strongly tied to certain preconditions could be mod�
elled by several action axiomatisations� The increase in the branching factor can be
avoided by using special mechanisms in the planning process� One of these resolves
persistence con�icts by simply switching the unwanted e�ect with one of its asso�
ciated preconditions o�� On the other hand� proving that a certain property holds
also requires the installation of its associated preconditions�

������ Probability in Planning

The action description need not be annotated with the condition dependencies alone�
Planning in uncertain environments often requires that certain goals hold with a
certain probability after execution of a plan� The notion of probability could there�
fore be introduced on the action level� One could replace persistence properties with
the concept of evidence for certain preconditions� Bayes rule can be used to calcu�
late the correct distributions for the time points� From these numbers� the resulting
distributions after action execution can be generated� ��� describes the technical
background of the BURIDAN algorithm� a partial�order planner that incorporates
these presented techniques�

������ Sensing Actions

Furthermore� the representation of sensing actions imposes some new requirements
on the temporal reasoning component� Sensing actions are special events that will
gather some information at execution time besides installing their e�ects� They
could serve to complete the knowledge that the planner needs to ful�l its task at
planning time� The generation of the plan� however� has to be done for all possible
outcomes of the environment sensing� Normally� this introduces several conditional
branches within the plan structure� For all combinations of the outcomes of the
sensing actions� the planner now has to establish the goal independently� Further
resolution techniques for persistence destruction could now be introduced by making
the contexts of destroyer and persistence inconsistent� How these mechanisms could
be integrated into our logical framework should be a topic of our future research�

�����	 Hierarchical Planning

A general heuristic in problem solving is the reuse of already generated solutions�
There are two ways of incorporating this heuristic into planning� First� one could
have a certain plan as a proposal to the problem solver which then tries its best to
modify it to meet the goal� This plan modi�cation or planning from second princi�

ples has also been recognised as a NP�complete problem ��� and can often be more
complex than the corresponding planning from scratch task 	the Event Calculus
and abduction show that plan synthesis and plan modi�cation are in general of the

��

p

effectsduringconditionspre-
conditions

d e

d ep

p d e

Figure ��� Plan Abstraction

same complexity�� EVE supports modi�cation� but an implementation of hierar�
chical planning by breaking up a plan into its primitive events 	see NOAH ����
��� and SIPE ����� is therefore often too complex�

A second method� already employed in EVE�s object system� is the abstraction
of events and plans to be basically the same � whether de�ned as primitives or
hierarchical events should be of no interest to the planner� Certainly one is losing a
lot of information depending on the kind of abstraction 	and risks con�icts during
execution�� but this signi�cantly speeds the planning process up� A good rule is
to calculate overall preconditions and postconditions for a plan� In the intended
strong nonlinear setting� this is too weak� on its own� to handle the dependencies
between parallel branches� which concludes in the additional introduction of during
conditions� During conditions are furthermore the abstracted version of persistences
that are not allowed to be destroyed in order to be successful�

The necessary computation of the overall conditions 	Figure ��� is not di�cult�
The Event Calculus is again a perfect tool to deliver these� Preconditions are the
collected preconditions of the children that have to be installed before the execution
of the plan� A registration of successful knowledge base accesses produces these
for free during either service involving the calculus� Overall e�ects consist of the
properties provable by the calculus at start�end� without those properties that
are introduced by the implicit start situation� This could be done by an analysis
that is also suited for inspection of properties within the plan and thus exploring
the during conditions�

This technique enables EVE to build plan libraries with reuse facilities at rela�
tively little expense� Learning AI systems based on planning are also possible�

�����
 Generic Resources

As can be seen from the speci�cation of the planning problem� the parts of the
resource description relevant to the problem have to be complete at planning time�
Decentralised multi�agent systems� however� are often faced with incomplete knowl�
edge about the environment� especially other cooperative agents that could help to
solve the goal� The abduction principle is again the key to realising far more �exible
behaviour based on hypothetical reasoning� If the facts that are introduced by the
start situation� i�e�� knowledge base� can also be used as hypotheses� planning could
involve a virtual resource amount reasonably treated by the minimality paradigm

��

GoalState

result plan
Plan Synthesis

with hypothetical
resources

plan

maximal
nonlinear

parametrizable
plan

Plan
modification

(real resources)

Figure ��� Generic resources

of abduction�
The execution of plans dealing with those generic resources ��� however� requires

an additional revision with respect to the currently available resource rates� Again
the abductive Event Calculus procedure provides the necessary functionality by
its modi�cation ability� First� virtual entities are replaced by roles� i�e�� parametri�
sations to the plan� Afterwards the plan is thrown into modi�cation together with
the actual situation and an instantiation as well as the elimination of con�icts is
obtained by the theory of time and action 	Figure ����

���� Heuristics

Probably best way of obtaining e�ciency is of course to permit domain�dependent
rules with EVE�s general heuristics framework� Development of more generally
usable techniques� such as way�planning could be of course part of those e�orts
mainly focussing on the intended application domain� the loading dock 	see Section
��� and serve as guidelines for the construction of heuristics within the Event
Calculus�

���� Abduction � constraint logic programming

So far� the translation functions that we have introduced in Section � use the
constraint�based platform as a deduction system and introduce the hypothetical
reasoning of abduction via rei�cation� i�e� the interpretation of certain terms as
sets and thus predicates� This can be seen from the list�based� explicit abduction
set that is passed through the constraint abstractions� A closer investigation of the
functionality of constraint logic programming approaches� however� reveals a deeper
relation between CLP and abduction 	Figure ����

Basically� a constraint�based proof procedure knows some special subset of logic
that it can handle e�ciently� The data structures that are necessary to handle this
reside in the constraint store� As soon as some element of this set is chosen 	a basic
constraint�� it is checked whether the constraint store entails 	implies� the basic
constraint� If not� the constraint is added to the store and will trigger an update of
the information within 	propagation�� If we compare this behaviour to abduction�
this is basically the same� an abductive predicate 	basic constraint� as a goal is
checked to match the already existing assumptions 	check on entailment�� If not
represented in the abductive state� it can serve as an additional hypothesis 	added
to the store� and thus maintenance 	propagation� of the abduction set will produce

��

empty constraint store program P

amplified store P G’

abduction set/hypothesis

propagation

store does not entail ϕ
P ϕ

goal G

,G’’

,G’’G’,

tell

selected a basic constraint

CLP proof tree

maintenance

Figure ��� CLP is Abduction

some new hull 	the new constraint store��
We therefore propose to get rid of the rei�cation approach and use the constraint�

based platform as an abductive inference procedure� Due to e�cient constraint han�
dling� new translation functions will produce more e�cient code that is also more
natural� The constraint metaphor can also be used as the basis for dynamically in�
�uencing the planning search process� Environmental change during planning could
be expressed as additional constraints 	perhaps through the introduction of some
new event� that could be posted to the local computation spaces already spawned�
Inconsistent assumptions within the abductive framework will cause the respective
computation spaces to collapse� The remaining front represents all the paths that
are consistent with the dynamic change and further expansion respects the new
situation� The search has thus been dynamically guided�

���� Summary

With its intended integration into the agent model InteRRaP� there are several issues
to explore within EVE apart from the design of the agent architecture� Investigating
the suitability of the Event Calculus in multi�agent� distributed and real�time
planning requires sophisticated techniques to be evaluated� Also extensions to the
planning procedure� such as during conditions� improved time treatment� hierarchi�
cal features� and generic resources� turn out to belong to these methods� Finally�
abduction and constraint logic programming seem to be related in a very close way�
Improved clause�to�constraint translations with abductive facilities will be possible�

��

�� Conclusion

Comprising the results of our reported work with the analysis of our test applica�
tions 	Sections � and ��� EVE has proved several facts related to planning� logic
programming� and multi�agent systems�

� The Event Calculus is� together with an abduction principle� highly suited
for nonlinear planning�

� The calculus can be improved to catch strong nonlinearity and to cope with
worst case assumptions�

� The abduction principle is a rich extension to theorem proving that allows
hypothetical reasoning for many purposes� such as planning�

� The Event Calculus behaves well under a theorem proof procedure� pos�
sibly given some restrictions�

� It is possible to implement full theorem proving facilities even with hypothet�
ical and nonmonotonic reasoning on a constraint�based platform�

� Modern� procedural paradigms and logical programming do not contradict
even in tightly logic�based approaches� New techniques� such as object�
oriented abduction� are possible�

� Oz provides a perfect base for distributed� nonlinear planning attempts�

� Object�orientation is the key for reasonable data structures� also in planning�

� EVE can be extended to an e�cient� distributed� multi�agent planning mod�
ule� The incorporation into agent architectures arises interestingDAI research
problems�

� Heuristics are necessary to guarantee e�ciency as the calculus in its current
formulations requires the construction of a rather large search space�

�

Declaration & Inclusion of subordinate

files

eve.oz

predicates.oz

sldnfa.oz

event_tools.oz

event_classes.oz

stateclass.oz

event_search.oz

constraint version

of the Event Calculus some tools within

encapsulated search

the sldnfa

driver procedure

interface between the

service object and

sldnfa
EVE: the service object

class

UrEvent, UrPlan:

event classes

tools for the event

methods

a class that defines

the object state access

event_calculus_tools.oz

event_calculus.oz
event_calculus_meta.oz
Meta-Level

of the Event Calculus

Figure ��� File Hierarchy

A EVE� Installation

After the theoretical and implementational issues� this section tries to give a short
overview and guide to the installation and the customisation of the EVE module�

A�� Dependencies and Compilation

The �les that come with the EVE distribution� their content and mutual
dependencies are shown in Figure ��� The only administrative task left to
the user is an optional precompilation of eveoz and its inclusion into his
source code� �feed �eveoz�� From then on� the important constants UrE

vent�UrPlan�UrAction�EveCreate and Eve are de�ned and allow interaction with
the EVE system that is exemplary described in the next section A��� A special
signi�cance is ascribed to StateClass that should serve as the parent for the user�s
knowledge base 	see Sections ��� and ���� to provide the state accessing methods
demanded for the interaction in encapsulated search�

A�� A Counting Example

The following example allows to get insight into the basic steps of user interaction
with EVE� Let us construct a counting domain in which the planning process is
used to modify a counter� The beginning is made by inclusion of the EVE system�

�feed eve

The next step should be the customisation of the chosen knowledge base� EVE�s
test environment therefore de�nes a very simple� list�based approach� Its implemen�
tation could of course be far more sophisticated� but the functionality su�ces to
show the basic abilities� Remember that StateClass introduces the basic state
access methods�

���

��

� KnowledgeBase

���

� a simple list based knowleddge base

���

declare KnowledgeBase

class KnowledgeBase from UrObject StateClass

attr

facts�nil

meth add�Fact�

if �IsList Fact� then

facts�
�Append

�facts

Fact�

else

facts�
�Append �facts �Fact��

fi

end

meth remove�Fact�

if �Member Fact �facts� then

facts�
�Filter �facts proc�� X�

if X�Fact then true

else false fi

end�

fi

end

meth getfactdisj�Fact�

�MemberDisj Fact �facts�

end

meth reset��

facts�
nil

end

end

KnowledgeBase stores its content in a simple list� There can be additions
	add���� deletions 	delete��� and a total reset�� of the knowledge base� get

factdisj�� is responsible for interfacing the KB within the Event Calculus #
it matches the members of the list disjunctively against the requested property� Now
let us introduce a KB object and its representation of the actual counter�s state that
is set to �

� new knowledgebase

declare ActualKnowledgeBase

create ActualKnowledgeBase from KnowledgeBase

end

�ActualKnowledgeBase �reset�� add��actual�������

Still lacking is the de�nition of a counting action� Its roles are the counter state
before 	fromn� and after 	ton� the counting operation and the direction in which it
counts 	direction���

��

declare Count

�EveCreate UrAction Count�

�Count addRoles�roles�fromn�� ton�� direction�����

�Count setId��Count���

�Count addExecutionParameters��count evevar�fromn��� eve

var�ton������

The conditions for Count are straightforward� Before its execution� the actual
counter must contain the fromn value� Afterwards� its content will be ton and no
longer fromn�

�Count addConditions�posprecondition �actual�evevar�fromn�������

�Count addConditions�pospostcondition �actual�evevar�ton�������

�Count addConditions�negpostcondition �actual�evevar�fromn�������

The relation between counting direction and counter�s states is given by the
following constraint that will furthermore restrict the values to be in range from
 � � � � and the directions up and down�

�Count addConstraints�proc�� Roles�

Rolesfromn�����

Roleston�����

or

Rolesdirection�up

�FD��� Rolesfromn � Roleston�

��

Rolesdirection�down

�FD�
� Rolesfromn � Roleston�

ro

end	nil��

Note that the disjunction is really disjoint� Whether the action is built on the
top�level or in encapsulated search� the behaviour in instantiations is reasonable� In
encapsulated search� Count even turns out to implicitly represent two types CountUp
and CountDown at once due to the disjunction semantics� Left to trigger the planning
process remain instantiation of planning service object� its connection to the KB�
registration of Count as a type of the planning domain and the synthesis request to
obtain a solution plan that counts from to ��

declare Planner TestPlan Busy

� new planner object

create Planner from Eve with init end

�Planner setKnowledgeBase�ActualKnowledgeBase KnowledgeBase��

�Planner setAllowedActionTypes��Count���

�Planner synthesis��actual���� Busy TestPlan��

A�� Summary

Installation and customisation of EVE is very simple� The given example shows the
basic steps to perform in order to connect the planning module to the application

��

domain� To get a complete overview about programming with EVE� we highly
recommend ����

��

B Axiomatisation of the Multi
Agent Blockworld

The following source code represents the multi�agent blocksworld domain and ex�
emplary de�nes a situation description using the list�based knowledge base object
known from the previous installation introduction from Section A�

���

� Action classes of the the blocksworld scenario

���

� the blocksworld generic actions

declare Pickup Stack Unstack Drop

�EveCreate UrAction Pickup�

�Pickup setId��Pickup���

�Pickup addExecutionParameters��pickup evevar�agent��� eve

var�block������

�Pickup addRoles�roles�agent�� block�����

�Pickup addConditions�pospostconditions

�holding�evevar�agent��� eve

var�block�������

�Pickup addConditions�negpostconditions

�handempty�evevar�agent����

clear�evevar�block����

ontable�evevar�block�������

�Pickup addConditions�pospreconditions

�handempty�evevar�agent����

clear�evevar�block����

ontable�evevar�block�������

�EveCreate UrAction Drop�

�Drop setId��Drop���

�Drop addExecutionParameters��drop evevar�agent��� eve

var�block������

�Drop addRoles�roles�agent�� block�����

�Drop addConditions�pospostconditions

�ontable�evevar�block����

clear�evevar�block����

handempty�evevar�agent�������

�Drop addConditions�negpostconditions

�holding�evevar�agent��� evevar�block�������

�Drop addConditions�pospreconditions

�holding�evevar�agent��� evevar�block�������

�EveCreate UrAction Stack�

�Stack setId��Stack���

�Stack addExecutionParameters��stack evevar�agent���

evevar�block���� eve

var�block�������

�Stack addRoles�roles�agent�� block��� block������

�Stack addConditions�pospostconditions

�clear�evevar�block�����

on�evevar�block���� evevar�block�����

handempty�evevar�agent�������

��

�Stack addConditions�negpostconditions

�clear�evevar�block�����

holding�evevar�agent��� eve

var�block��������

�Stack addConditions�pospreconditions

�clear�evevar�block�����

holding�evevar�agent��� eve

var�block��������

�EveCreate UrAction Unstack�

�Unstack setId��Unstack���

�Unstack addExecutionParameters��unstack

evevar�agent���

evevar�block����

evevar�block�������

�Unstack addRoles�roles�agent�� block��� block������

�Unstack addConditions�pospostconditions

�holding�evevar�agent��� evevar�block�����

clear�evevar�block��������

�Unstack addConditions�negpostconditions

�handempty�evevar�agent����

clear�evevar�block�����

on�evevar�block���� evevar�block��������

�Unstack addConditions�pospreconditions

�handempty�evevar�agent����

clear�evevar�block�����

on�evevar�block���� evevar�block��������

declare Planner ActualKnowledgeBase TestPlan

� new planner object

create Planner from Eve with init

end

� new knowledgebase

create ActualKnowledgeBase from KnowledgeBase

end

�Planner setKnowledgeBase�ActualKnowledgeBase KnowledgeBase��

� The KnowledgeBase delivers the start situation�

�ActualKnowledgeBase �reset�� add��on�blockb blocka�

ontable�blocka�

ontable�blockc�

clear�blockc�

clear�blockb�

handempty�robo��

handempty�robo���� ��

��

C Axiomatisation of the Loading Dock Scenario

This section presents the current axiomatisation of the loading dock domain� Pbc

Generic builds the parent type of all available actions� It incorporates an execution
procedure that will transmit commitments to the BBL� Inherited from this type
are the agent�independent action types that also could serve as a base axiomatisa�
tion for multi�agent planning� Finally� the agent�speci�c actions are de�ned as their
subtypes�
���

� Action classes of the loading dock scenario

���

local

��� The finite domains

PbcGeneric

Move

Turn

Grasp

Drop

in

��� The generic pbc�action

�EveCreate UrAction PbcGeneric�

�PbcGeneric setExecution�proc�� Parameters Success�

local Self ActivationParameter in

Parameters�Self	ActivationParameter	nil

�PBC�Control trigger�Self

ActivationPa

rameter

Success��

end

end��

��� general Move command

�EveCreate PbcGeneric Move�

�Move setId��Move���

�Move addRoles�roles�agent�� x��� y��� x��� y��� direction�����

�Move addExecutionParameters��activate�beh��Goto�rect�

args�rect�evevar�x����

evevar�y����

evevar�x����

evevar�y������

���

�Move addConditions�pospreconditions

� agent�agentname�evevar�agent���

x�evevar�x����

y�evevar�y�����

agentdirection�agentname�evevar�agent���

direc

tion�evevar�direction����

empty�x�evevar�x����

y�evevar�y�����

��

���

�Move addConditions�pospostconditions

� agent�agentname�evevar�agent���

x�evevar�x����

y�evevar�y�����

agentdirection�agentname�evevar�agent���

direction�unknown�

empty�x�evevar�x����

y�evevar�y�����

���

�Move addConditions�negpostconditions

� agent�agentname�evevar�agent���

x�evevar�x����

y�evevar�y�����

empty�x�evevar�x����

y�evevar�y�����

agentdirection�agentname�evevar�agent���

direction�evevar�direction�����

��

��� specialised for our agent

�EveCreate Move LocalMove�

�LocalMove setId��LocalMove���

�LocalMove getRole�agent �KB get�my�name �����

��� the Turn command

�EveCreate PbcGeneric Turn�

�Turn setId��Turn���

�Turn addRoles�roles�agent�� direction���

direction������

�Turn addExecutionParameters��activate�beh��Turn�

args�evevar�direction�����

���

�Turn addConditions�pospreconditions

�

agentdirection�agentname�evevar�agent���

direc

tion�evevar�direction��������

�Turn addConditions�pospostconditions

�agentdirection�agentname�evevar�agent���

direc

tion�evevar�direction��������

�Turn addConditions�negpostconditions

�

agentdirection�agentname�evevar�agent���

direc

tion�evevar�direction��������

��� specialised for our agent

�EveCreate Turn LocalTurn�

�LocalTurn setId��LocalTurn���

�LocalTurn getRole�agent �KB get�my�name �����

��

��� the Grasp command

�EveCreate PbcGeneric Grasp�

�Grasp setId��Grasp���

�Grasp addRoles�roles�agent�� agx�� agy�� direction��

box�� boxx�� boxy�� type�����

�Grasp addExecutionParameters��activate�beh��Get�box�

args�nil�

���

�Grasp addConditions�pospreconditions

�

agent�agentname�evevar�agent���

x�evevar�agx���

y�evevar�agy����

handempty�agentname�evevar�agent����

agentdirection�agentname�evevar�agent���

direc

tion�evevar�direction����

box�boxname�evevar�box���

boxtype�evevar�type���

x�evevar�boxx���

y�evevar�boxy����

���

�Grasp addConditions�pospostconditions

�

holding�agentname�evevar�agent���

boxname�evevar�box���

boxtype�evevar�type����

free�x�evevar�boxx���

y�evevar�boxy����

���

�Grasp addConditions�negpostconditions

�

handempty�agentname�evevar�agent����

box�boxname�evevar�box���

boxtype�evevar�type���

x�evevar�boxx���

y�evevar�boxy����

���

�Grasp addConstraints��proc�� Roles�

or

Rolesdirection�north

Rolesagx�Rolesboxx

�FD�
� Rolesboxy � Rolesagy�

��

Rolesdirection�south

Rolesagx�Rolesboxx

�FD��� Rolesboxy � Rolesagy�

��

Rolesdirection�east

Rolesagy�Rolesboxy

�FD�
� Rolesboxx � Rolesagx�

�

��

Rolesdirection�west

Rolesagy�Rolesboxy

�FD��� Rolesboxx � Rolesagx�

ro

end���

��� specialized for our agent

�EveCreate Grasp LocalGrasp�

�LocalGrasp setId��LocalGrasp���

�LocalGrasp getRole�agent �KB get�my�name �����

��� the Drop command

�EveCreate PbcGeneric Drop�

�Drop setId��Drop���

�Drop addRoles�roles�agent�� agx�� agy�� direction��

box�� boxx�� boxy�� type�����

�Drop addExecutionParameters��activate�beh��Put�box�

args�nil�

���

�Drop addConditions�pospreconditions

�

agent�agentname�evevar�agent��� x�evevar�agx��� y�evevar�agy����

agentdirection�agentname�evevar�agent��� di

rection�evevar�direction����

holding�agentname�evevar�agent��� boxname�evevar�box��� box

type�evevar�type����

free�x�evevar�boxx��� y�evevar�boxy����

���

�Drop addConditions�pospostconditions

�

box�boxname�evevar�box��� boxtype�evevar�type��� x�evevar�boxx���

y�evevar�boxy����

���

�Drop addConditions�negpostconditions

� holding�agentname�evevar�agent��� boxname�evevar�box��� box

type�evevar�type����

free�x�evevar�boxx��� y�evevar�boxy����

���

�Drop addConstraints��proc�� Roles�

or

Rolesdirection�north

Rolesagx�Rolesboxx

�FD�
� Rolesboxy � Rolesagy�

��

Rolesdirection�south

Rolesagx�Rolesboxx

�FD��� Rolesboxy � Rolesagy�

��

Rolesdirection�east

Rolesagy�Rolesboxy

��

�FD�
� Rolesboxx � Rolesagx�

��

Rolesdirection�west

Rolesagy�Rolesboxy

�FD��� Rolesboxx � Rolesagx�

ro

end���

��� specialized for our agent

�EveCreate Drop LocalDrop�

�LocalDrop setId��LocalDrop���

��

List of Figures

 Normalised Clauses C� !C �
� The Task of Plan Generation �
� Situation� Action Type� Goal� and Plan � � � � � � � � � � � � � � � � �
� Nonlinear Multi�Agent Plan �
� Hierarchical Plan �
� The Task of Plan Analysis �
� Computational Architecture of EVE � � � � � � � � � � � � � � � � � � �
� Action Type De�nition Planning Domain Axiomatisation � � � � � � �
� The Situation Calculus ��
� Propagation of Properties in the Situation Calculus � � � � � � � ��
 The Event Calculus by Shanahan � � � � � � � � � � � � � � � � � � �
� Propagation of Properties in the Event Calculus � � � � � � � � � �
� Strong Nonlinear Incorrectness ��
� Event Calculus by Missiaen ��
� Nontermination ��
� A Not Strong Nonlinear Solution ��
� The Simple Event Calculus of EVE � � � � � � � � � � � � � � � � ��
� The Extended Event Calculus of EVE � � � � � � � � � � � � � � � ��
� The SLD Step �
�� The SLDNF Step ��
� In�soundness of Non�ground NF ��
�� Incompleteness of Ground NF ��
�� The SLDCNF Step ��
�� The De Morgan�s Laws ��
�� The SLDNF� Step ��
�� Example Proof with SLDNF� ��
�� The SLDA Step ��
�� The SLDNFA Step ��
�� The SLDCNFA Step �
�� The SLDNFA� Step ��
� Translation Scheme T� $ Resolution � � � � � � � � � � � � � � � � � � ��
�� T� $ Negation As Failure ��
�� T� $ Constructive Negation ��
�� T�

� $ Constructive Negation ��
�� T�� $ Constructive Negation ��
�� The MetaAbduction Predicate ��
�� T� � Abduction ��
�� T�

� $ Abduction �
�� T�� $ Abduction ��
�� Driver for Scheme T� ��
� Object�Oriented Abduction ��
�� the Plan Service Class Eve ��
�� The Event Class UrEvent ��
�� A display�� Result �
�� An Example Event Hierarchy ��
�� The Default Abductive State ��
�� An EVE�Compatible Knowledge Base � � � � � � � � � � � � � � � � � ��
�� the Multi�Agent Blocksworld ��
�� The InteRRaP Architecture ��
�� A Layer within InteRRaP ��
� EVE within the LPL ��
�� The Loading Dock Scenario ��

��

�� A Layer of an Agent Architecture ��
�� Plan Abstraction ��
�� Generic resources ��
�� CLP is Abduction ��
�� File Hierarchy ��

��

References

�� M� Alicia P%erez� Multiagent planning in Prodigy� May ���

��� Avrim L� Blum and Merrik L� Furst� Fast Planning Through Planning Graph
Analysis�

��� Bernhard Nebel and Jana Koehler� Plan Modi�cation versus Plan Generation�
A Complexity�Theoretic Perspective� pages ��� $ ���

��� Christian Schulte� Gert Smolka� and J�org W�urtz� Encapsulated Search and
Constraint Programming in Oz� March ����

��� Christoph G� Jung� the EVE User Guide� February ����

��� Christoph G� Jung� Klaus Fischer� and Alastair Burt� Resolution� Constructive
Negation� and Abduction over Finite Domains in Higher Order Constraint
Programming� In Andreas Abecker� Harald Meyer auf�m Hofe� J�org M�uller�
and J�org W�urtz� editors� Proceedings of the DFKI Workshop on Constraint

Based Problem Solving� DFKI Document� Saarbr�ucken� Germany� February
���� DFKI GmbH�

��� David Chang� Constructive Negation based on the Complete Database� In
Robert A� Kowalski and Kenneth A� Bowen� editors� Proceedings of the �th Int�
Conf� on Logic Programming� Seattle� 	
��� pages $��� The MIT Press�
September ����

��� K� Eshghi and R� A� Kowalski� Abduction compared with negation as failure�
In Proceedings of the �st Int� Conf� on Logic Programming� The MIT Press�
����

��� C� Evans� Negation as failure as an approach to the hanks and mcdermott
problem� ����

��� R� James Firby� Building symbolic primitives with continuous control routines�
����

�� Gert Smolka� An Oz Primer� DFKI Oz Documentation� Saarbr�ucken� Ger�
many� April ����

��� Gert Smolka� The Oz Programming Model� In Jan van Leeuwen� editor�
Computer Science Today� Lecture Notes in Computer Science� vol� ���� pages
���$���� Springer�Verlag� Berlin� ����

��� Gert Smolka and Christian Schulte� Logische Programmierung� ���� Skriptum
zur gleichnamigen Vorlesung�

��� S� Hanks and D� McDermott� Default reasoning� nonmonotonic logic� and the
frame problem� pages ��� $ ���� ����

��� Jana Koehler� Towards a logical treatment of plan reuse� pages ���$���� ����

��� Joachim Hertzberg� Planen� Einfuehrung in die Planerstellungsmethoden der

Kuenstlichen Intelligenz� volume �� of Reihe Informatik� Wissenschaftsverlag�
Mannheim � Wien � Zuehrich� ����

��� John McCarthy� Situations� Actions and Causal Laws� ����

��� JohnW� Lloyd� Foundations of Logic Programming� nd ext� Edition� Symbolic
Computation� Springer� Berlin � Heidelberg � New York� ����

��

��� J�org P� M�uller� An Architecture for Dynamically Interacting Agents� Disserta�
tion� Universit�at des Saarlandes� ����

���� Keith L� Clark� Negation as Failure� In H� Gallaire and J� Minker� editors�
Logic and Databases� pages ���$���� New York� ���� Plenum press�

��� N� Kushmerik� S� Hanks� and D� Weld� An algorithm for probabilistic planning�
����

���� J� Lloyd and R� Topor� Making prolog More Expressive� Journal of Logic

Programming� 	������ $ ���� ����

���� Lode Missiaen� Localized Abductive Planning with the Event Calculus� PhD
Dissertation� K�U� Leuven� Leuven� September ���

���� D�M� Lyons and A�J�Hendricks� A practical approach to integrating reaction
and deliberation� ����

���� Marc Denecker� Lode Missiaen� and Maurice Bruynooghe� Temporal reasoning
with Abductive Event Calculus� January ����

���� Mathias Bauer� Susanne Biundo� Dietmar Dengler� Jana Koehler� and Gabriele
Paul� PHI � A Logic�Based Tool for Intelligent Help Systems� Technical report�
Saarbr&ucken� ����

���� Melvin Fitting� First Order Logic and Automated Theorem Proving� Texts
and Monographs in Computer Science� Springer Verlag� New York� September
����

���� Michael Rosinus� ALADIN � A Language for Designing InteRRaP Agents�
Diplomarbeit� Universit�at des Saarlandes� ����

���� J�org P� M�uller and Markus Pischel� The Agent Architecture InteRRaP� Con�
cept and Application� Technical report� Saarbr&ucken� ����

���� Murray P� Shanahan� Representing continuous change in the event calculus�
In Proceedings of the ECAI
�� pages ���$���� August ����

��� Murray Shanahan� Robotics and the Common Sense Informatic Situation�
Budapest� Hungary� to appear�

���� Nils J� Nilsson� Principles of Arti�cial Intelligence� Tiago Publishing Company�
Palo Alto� CA� ����

���� Peter J� Stuckey� Constructive Negation for Constraint Logic Programming�
In Proceedings LICS� ���

���� Ralf Wingenter� Ein Deduktiver Planungsansatz f�ur das Verladehofszenario�
Diplomarbeit� Universit�at des Saarlandes� ����

���� Robert A� Kowalski� Logic for Problem Solving� volume � of Arti�cial Intelli�
gence Series� Elsevier Science Publisher B�V� 	North�Holland�� ����

���� Robert A� Kowalski and Marek Sergot� A logic�based calculus of events� New
Generation Computing� �	����$��� ����

���� Robert E� Fikes and Nils J� Nilsson� Strips� A new approach to the application
of theorem proving to problem solving� Arti�cal Intelligence� �	� �����$����
���

��

���� J� A� Robinson� A machine�oriented logic based on the resolution principle�
Journal of the ACM� ����$�� ����

���� E�D� Sacerdoti� Planning in a Hierarchy of Abstraction Spaces� In Proceedings

of the IJCAI 	
��� ����

���� E�D� Sacerdoti� A Structure for Plans and Behaviour� Elsevier� North Holland�
����

��� M� Shanahan� Prediction is deduction but explanation is abduction� In Pro�

ceedings of the IJCAI �
� page ���� ����

���� F� von Martial� Interactions among autonomous planning systems� pages ��$
��� ����

���� D�E� Wilkins� Hierarchical Planning� De�nition and Implementation� In Pro�

ceedings of the ECAI 	
��� ����

���� Yoav Shoham� What�s the frame problem
 In Michael P� George� and Amy L�
Lansky� editors� Reasoning about Actions and Plans� pages ��$��� Morgan
Kaufmann Publishers� Inc�� Los Altos� CA� June ����

��

Index

C� ��� ��
C� !C � �
CET � ��
�� � ��
��� �� ��
��
��
�
j�j�
��
��
!C� ��
!��
!�
�� � ��
��� �� ��

�
��
��
select� ��
variant� ��
BBL� ��
CPL� ��
KB� ��
LPL� ��
PS� ��
SG� ��
WIF� ��
choose� ��
disunify� ��
fail� ��
maintain� ��
reprove� ��
unify� ��
generic resources� ��
addConditions��� ��
display��� ��
getState��� �
initiates��� �
postcondition��� ��
precondition��� �
setExpense��� ��
setHeuristic��� ��
FiDo� ��
act��� ��
continue��� ��
fails��� �
getState��� ��
halt��� ��
happens��� ��
holds��� ��� ��

initial�� ��
initiates��� ��
negprecondition��� ��
on��� ��
posprecondition��� ��
start��� ��� ��
terminates��� ��
����� �� ��
�� �� ��
Drop� ��
Eve� ��
KnowledgeBase� ��
Maintain� ��� ��
MemberDisj� ��� ��
MetaAbduction� ��� ��
MetaClause� ��
Pickup� ��
SolveCombinator� ��
Solver� ��
Solve� ��
Stack� ��
StateClass� ��
Unstack� ��
UrAction� �
UrEvent� ��� ��
UrPlan� �
act��� �� ��� ��
addConstraints��� ��
addEvent��� ��
addRole��� ��
analysis��� ��
before��� ��� ��� ��
clear��� ��
clipped��� ��� ��� ��� ��� ��
end�� ��
end��� ��� ��� ��
end� ��� ��
evaluation��� ��
evevar��� ��
execute��� ��
executestop��� �
fails��� ��� ��� ��� ��� ��
getAllAfter��� ��
getAllEvents��� ��
getConditions��� ��
getEvent��� ��
getRole��� ��
getState��� ��
getfactdisj��� ��� ��
handempty��� ��
happens��� ��� ��� ��

�

happens�� � ��
holding��� ��
holds��� �� ��� ��� ��
holdsfalse��� ��� ��
holdstrue��� ��
in��� �� ��
initial�� ��� ��
initial� ��� ��� ��
initiates ��� ��
initiates��� ��
member��� �
modification��� ��
negpreconditions��� ��
next��� ��
nil� �� ��
ontable��� ��
out��� ��� ��� ��� ��
pospreconditions��� ��
precondition��� ��
result��� �
setActionBounds��� ��
setAllowedActionTypes��� ��
setBefore��� ��
setDebugLevel��� ��
setEvent��� ��
setKnowledgeBase��� ��
setRoleMap��� ��
setState��� ��� �� ��
start��� ��
stop��� ��
synthesis��� ��
terminates��� �� ��� ��
false�
true�
if else fi� ��
local in end� ��
or �� ro� ��
proc end� ��
NP�hard� �
SIPE� ��
SLDNFA�� ��
CHICA� ��
DFKI Oz� ��
EVE� �
Event Calculus� ��
Event Calculus� �� �� ��� ��� ���

��
GRAPHPLAN� ��
InteRRaP� ��
NOAH� ��
NP�completeness� ��
NP�hard� ��
Oz� �� �� �� ��� ��
PROLOG� ��

SIT� ��
SLDCNFA� ��
SLDCNF� ��
SLDNF�� ��
SLDNFA�� �� �
SLDNFA� ��
SLDNFA�� �� ��
SLDNF� �� ��� ��
SLDNF�� ��� ��
SLD� �� ��� ��
STRIPS� ��� ��
Situation Calculus� �� �� �� ��

abducible� ��
abducible maintenance� ��
abducible maintenance� ��
abduction� �� ��� ��
abduction set� ��� ��� ��
abduction state� ��� ��
abductive predicate� ��� ��� ��
action� �� �� �� ��� ��
action type� �
action type� �
action type� ��� ��� ��
action plan execution� ��
action plan execution� �� ��� ��� ��
agent� �� ��� ��
ALADIN� ��
anti�symmetry� ��
application� ��
architecture� �� �
Arti�cial Intelligence� �
ask operator� ��
assumption� ��� ��
atom�
autonomy� ��
axiomatisation� �� �� ��

backtracking� ��
Backus�Naur Form�
backward planning� �� ��
body� �
boolean value� �

calculus� ��
cell� ��
choice� �� ��� ��� ��� ��� ��
choice point� �
choice rule� �� ��� ��� ��
Clark�s Completion form�
Clark�s equality theory� ��
class� ��� ��
classical logic�
clause� �� � �� �� ��� ��� ��

clause program� �� �� �� ��
closed formula�
communication� ��
completeness� �� � �� �� �� ��� ��
complexity theory� �
computation space� �� ��
concurrency� �� �� �� �� ��� ��
condition� �� ��
conditional� ��
conjunction� � ��
consistency� � �� ��� ��� ��� ��
constraint� �� �� �� ��� ��
constraint logic system� �
constraint abstraction� �� ��� ��
constructive negation� ��
constructive negation� �� �� ��� ��
context�dependent action event type�

��
contour� ��
cooperation� ��
cooperative domain� ��� ��
correctness� � �� ��
cost� �� ��

DAI� ��
De Morgan�s laws� ��
De Morgan�s laws� ��
decidability�
deduction� ��
deliberation� ��
denotational semantics� �
depth bound� ��� ��
depth��rst search� ��� ��� ��
destroyer� �� ��� ��
disjunction� � ��� ��
distributed planning� �
disuni�cation� ��
domain� �� � �� �� ��
DPS� ��
during condition� ��� ��� ��

e�ect� �� �� ��
encapsulated search� �� �� ��� ��
encapsulated search driver� �
entity�
equality� �� ��
equality maintenance� ��
equivalence�
equivalence semantics�
equivalence transformation� �
event� �� ��� ��� ��
event duration� ��� ��� ��
event type� �
execution� �

existential quanti�cation� � ��� ���
��

explicit representation� �
explicit representation� ��
explicit representation� �
exponential complexity� �� ��� ��
extended least commitment� ��

fact� �
fact clause� �� ��
failure� ��� ��
fairness� �� ��� ��� ��� ��
�nite domain� ��
�nite domain� �� ��� �� ��� ��� ��
�rst�order logic� � ��
formula�
forward planning� �� ��
four�valued logic�
free variable�
fuzzy logic�

general problem solving� �
generic resources� �
goal� �� �� �� ��� ��
goal set� ��
GPS� �
graph theory� �
groundness� ��� ��

head� �
heuristics� �� ��� ��� ��� ��� ��� ���

��
hierarchical planning� �� �
higher�order logic� �� �
hypothesis� �� ��
hypothetical reasoning� ��
hypothetical reasoning� �� �� �� ��

implication� � �
implicit representation� �
incomplete temporal knowledge� ��
incomplete temporal knowledge� �
incomplete temporal knowledge� ��

�� �
inequality� ��� ��
inference� ��
in�x� �
initiator� ��
interpretation�
InteRRaP� ��
iterative deepening� ��

KB� �� �� ��
knowledge base� �
knowledge base� �� ��� ��� ��� ��� ��

�

layer� ��
leaf� �
least commitment� �
least commitment� ��� ��
linear planning� �� �� �� �
linearisation� �� ��� �
linearity assumption� �� ��
list� �� ��� ��� ��
loading dock scenario� ��
loading dock scenario� �
localised planning� ��
logic� � �� �
logical connective�
logical programming� �

maintenance� ��� ��� ��
Malc�ev�s Lemma� ��
MAS� ��
means�end analysis� �
meta programming� ��� ��
meta�logic�
method� ��� ��� ��
MGU� �
model�
monotonicity� �
most general uni�er� �� ��
multi�agent blocksworld� ��
multi�agent domain� �� �� ��� ��

negation� � ��� ��� ��� ��
negation as failure� ��
negation as failure� �� ��� ��
negation normal form� ��
negative property� ��
negative abductive goal� �
negative precondition� ��
NF� ��
nonlinear planning� �� �� �� �� ��
nonmonotonicity� �� �� �� �� ��� ���

��
number� ��� ��

object orientation� �� �� ��� ��� ��
object state� ��
object�oriented abduction� �� ��

parallelism� �� �
path� �
pattern of behaviour� ��
persistence� ��
plan� �� �� ��
plan evaluation� �
plan abstraction� �� �� ��
plan analysis� �� �� ��

plan evaluation� �� ��
plan graph analysis� ��
plan modi�cation� �� �� �� ��� ��
plan synthesis� �� �� ��
plan action execution� ��
planning� �� �
planning from scratch� �
planning from second principles� ��
positive precondition� ��
positive property� ��
postcondition� �� �� �� ��� ��
precondition� �� �� ��� ��
predicate�
predicate logic�
program veri�cation� ��
proof� ��
property� �� �� �� ��
proposition� � �

quanti�cation�
quanti�er� � ��

rational tree� ��� ��
reactive architecture� ��
reactivity� ��
reasoning� �� � �
record� ��� ��
re�exivity� ��
refutation� ��
regression� ��
rei�cation� ��
relation�
representation� �� � �� �
residue� ��
resolution� �� �� ��� ��
resource speci�cation� �
role� �� ��
role constraint� ��

satis�ability� � ��
scheduling� �
scope�
search� �
search tree� �
selection rule� �� ��� ��� ��� ��
semantics�
semi�linear planning� ��
situation� �� �� �� ��
situation abstraction� �
skolem term� ��
solution�
soundness� �� � �� �� �� ��� ��
start situation� �� �� ��� ��� ��� ���

��

�

state� �� �� ��
statement�
strong nonlinearity� �
strong condition� ��
strong nonlinearity� �� �� �� ��� ���

��
structure�
sub formula�
subgoal� �
substitution� �� �� ��� ��� ��
subsumption� �� �
success� �� �� �� ��� ��
suspension� ��� ��
symmetry� ��
syntax�

term�
terminating computation� ��
terminating computation� ��� ��� ���

��
the frame axiom� �
the persistence axiom� ��
the abduction step� ��
the abduction step� �� ��
the extended Event Calculus of

EVE� ��
the extended Event Calculus of

EVE� ��
the extended Event Calculus of

EVE� �
the extended Event Calculus of

EVE� ��� ��
the frame axiom� �
the frame problem� �� �� ��
the Halting Problem�
the persistence axiom� ��� ��� ��
the quali�cation problem� �
the resolution step� ��
the simple Event Calculus of

EVE� ��
the simple Event Calculus of

EVE� �
the simple Event Calculus of

EVE� ��
the simple Event Calculus of

EVE� ��
the simple Event Calculus of

EVE� ��� ��
the Sussman Anomaly� �
the travelling salesman problem� �
the Turing Machine�
the Event Calculus by Missiaen�

��

the Event Calculus by Shanahan�
��

theorem�
theorem proof procedure� ��
theorem proof procedure� ��
theorem proving� �� �� ��
theory� �� � �� ��
thread� ��
time� �� �� ��� ��
transformation function� �� �
transition function� �� �
transitivity� ��� ��
truth�
tuple� ��
type hierarchy� �

uni�cation� �� �� ��� ��� ��
uni�er� �� ��
universal quanti�cation� � ��� ��
universe� � ��

variable�
variant� ��

weak condition� ��
weak nonlinearity� �� �
worst case assumption� �� ��� ��

�

