
Deutsches 
Forschungszentrum 
fOr KOnstilche 
Intelilgenz GmbH 

Research 
Report 

RR-92-22 

Unifying Cycles 

Jorg Wurtz 

March 1992 

Deutsches Forschungszentrum fOr KOnstliche Intelligenz 

GmbH 

Postfach 20 80 
D-6750 Kaiserslautem, FRG 
Tel.: (+49631) 205-3211/13 
Fax: (+49631) 205-3210 

Stuhlsatzenhausweg 3 
D-6600 Saarbriicken 11, FRG 
Tel.: (+49681) 302-5252 
Fax: (+49681) 302-5341 



Deutsches Forschungszentrum 
fOr 

KOnstliche Intelligenz 

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr 
KOnstliche Intelligenz , DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit 
organization which was founded in 1988. The shareholder companies are Atlas Elektronik, 
Daimler Benz, Fraunhofer Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, Philips, 
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the 
DFKI are funded by the German Ministry for Research and Technology, by the shareholder 
companies, or by other industrial contracts. 

The DFKI conducts application-oriented basic research in the field of artificial intelligence and 
other related subfields of computer science. The overall goal is to construct systems with 
technical knowledge and common sense which - by using AI methods - implement a problem 
solution for a selected application area. Currently, there are the following research areas at the 
DFKI : 

o Intelligent Engineering Systems 
o Intelligent User Interfaces 
o Intelligent Communication Networks 
o Intelligent Cooperative Systems. 

The DFKI strives at making its research results available to the scientific community . There exist 
many contacts to domestic and foreign research institutions, both in academy and industry. The 
DFKI hosts technology transfer workshops for shareholders and other interested groups in 
order to inform about the current state of research . 

From its beginning, the DFKI has provided an attractive working environment for AI researchers 
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at 
the end of the building-up phase. 

Prof. Dr. Gerhard Barth 
Director 



Unifying Cycles 

Jorg Wurtz 

DFKI-RR-92-22 



A short version of this paper will be published in the Proceedings of the 10th 
European Conference on Artificial Intelligence. 

This work has been supported by a grant from The Federal Ministry for Research 
and Technology (FKZ ITW-9105). 

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992 

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in 
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all 
such whole or partial copies include the following: a notice that such copying is by permission of Deutsches 
Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement 
of the authors and individual contributors to the work; all applicable portions of this copyright notice. Copying, 
reproducing, or republishing for any other purpose shall require a licence with payment of fee to Deutsches 
Forschungszentrum fUr Kunstliche Intelligenz. 



Unifying Cycles 

Jorg Wurtz 

Deutsches Forschungszentrum fur Kiinstliche Intelligenz (DFKI) 
Stuhlsatzenhausweg 3 

D-6600 Saarbrucken 11, FRG 
e-mail: wuertz@dfki.uni-sb.de 

Abstract 

Two-literal clauses of the form L +- R occur quite frequently in logic programs , deductive 
databases, and-disguised as an equation- in term rewriting systems. These clauses define 
a cycle if the atoms Land R are weakly unifiable, i .e., if L unifies with a new variant of R . 
The obvious problem with cycles is to control the number of iterations through the cycle. 
In this paper we consider the cycle unifi cation problem of unifying two literals G and F 
modulo a cycle. We review the state of the art of cycle unification and give new results 
for a special type of cycles called unifying cycles, i.e., cycles L +- R for which there exists 
a substitution (T such that (T L = (T R. Al together , these results show how the ded uct ive 
process can be efficiently cont rolled for special classes of cycles without losing completeness. 
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1 Introd uction 

It is the foremost goal of the research in the field of automated deduction to develop general and 
adequate proof methods and techniques for the logics under consideration. It is comparatively 
easy to invent a general proof method, but it is much more difficult to develop a general and 
adequate proof technique. For example, the resolution principle [Rob65] and the connection 
method [Bib87] are general proof methods for first-order logic. But are they adequate? What is 
the meaning of adequateness in the first place? Roughly speaking, we will consider a technique 
as being adequate if it solves simpler problems faster than more difficult ones. We illustrate the 
notion of adequateness by a problem, where the known general proof techniques face difficulties 
whereas trained humans seem to be able to solve it quite reasonably. 

For this purpose, consider the following set of clauses in Prolog-like notation which is taken 
from [Pfe88] and was originally studied by Lucasiewicz. 

Pw 
Pi( i( ixy, z) , i( izx, iux )). 

t- Pi(iab,i(ibc,iac)). 
t- Pv, Pivw. 

G 
MP 
A 

The terms represent implicational formulas, i.e., iab encodes a -r band P asserts the deriv­
abi lity of its argument. Thus, the second clause represents modus ponens. It contains severa.l 
cycles [Bib88] defined by the connections between the atom Pw and the atoms Pivw and Pv. 
The clause MP can be applied to itself a.nd this may lead to an exponential growth of the search 
space. The obvious problem is to control the self-appli cability of MP while retaining complete­
ness. Lukasiewicz has found a 29 step proof. He must have exercised a good control over MP! 
Quintus PROLOG on a Sun SPARe station 2 did not find a proof in several days. Nearly all 
existing automatic theorem provers cannot solve this problem as well since they are not able to 
exercise a good control over MP. E. Lusk reportsl that the parallel version of Otter at Argonne 
is able to obtain a hyperresolution proof with about 150 proof-steps while generating 6.5 million 
clauses in about half an hour during the search for it. Their prover does not have a good control 
over MP as well. It solves th e problem by sheer power. 

In [BHW91] it was conjectured that a problem like the Lucasiewicz-formula could be solved 
in less than a second by way of a technique called cycle unification. At present this conjecture 
remains a challenge since the Lucasiewicz-formula is a particularly difficult instance of a class 
of formulas which could eventually be treated by cycle unification. In [BHW91] a first step was 
made towards this goal by restricting the attention to the special case of formulas with exactly 
one cycle. In fact, we have focused ou r analysis on the simple class of two-literal clauses of 
the form PIl ... In t- Prl ... rn which consists of nothing but a single cycle. This additional 
restriction simplifies the discussion without loss of generality of the method. In this paper we 
further analyze clauses consisting of a single cycle and extend the results found in [BHW91]. 

Such a two-literal clause is usually embedded in the context of some larger formula, or set 
of clauses. Again for simplicity of the discussion and without loss of generality, we restrict the 
treatment to the case of two additional clauses, namely a goal clause - referred to as (calling) 
goal - of the form t- PSI ... Sn, which calls the cycle, and a fact - called (terminating) fa ct 
- of the form Pt} ... in , which termina.tes the cycle. In our restricted case a cycle unification 
problem is then the following one: 

1 Private communication with W. Bibel [BHW91] 
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Is there a substitution a such that a P 81 .. . 8 n is a logical consequence of Pl 1 .. . In -­
PT1 ... Tn and Pt1 ... tn ? 

If such a substitution a exists, then a is said to be a solution for the cycle unification problem. 
For more general cases, cycle unification can be defined in an analogue way. 

In order to be able to control a cycle we have to answer the following questions. Is cycle 
unification decidable? How many independent most general solutions has a cycle unification 
problem? Does there exist a unification algorithm which enumerates a minimal and complete 
set of solutions for a cycle unification problem? Answers to these questions may help to increase 
the power of automated theorem provers significantly. For example, if a cycle is embedded in 
a larger formula and it can be determined that the corresponding cycle unification problem is 
unsolvable, then the clauses defining the cycle can be eliminated from the formula. If a minimal 
and complete set I; of solutions for a cycle unification problem exists and can be enumerated, 
then any other solution is subsumed by a solution in I; and need not to be considered. If L: 
is finite, then this may prune a potentially infinite search space to a finite one. But theorem 
proving is not the only task which may benefit from cycle unification. 

There are a variety of applications for cycle unification. Observe that although the variables 
occurring in the two atoms P 81 ... Sn and Pt1 ... in might not be instantiated, it is possible to 
analyze the structure of the cycle. Therefore, we can compute partial solutions in a preprocessing 
manner (all possible solutions if finitely or only a subset otherwise). If some variables will be 
instantiated in the course of further computation, we can update the partial solutions (see also 
ego [Fut88] on partial evaluation). Furthermore, cycle unification helps us to transform recursive 
programs to iterative ones. The iterative structure can be compiled such that a proof might be 
detected faster than with the depth-first search of PROLOG. One of the important applications 
is datalogic, i.e., the field between logic and databases (cf. [Bib87]). It has been shown by ego 
Smith [SGG86] that cycles are the source of non-terminating queries . Consequently, insights 
from cycle unification may be and have already been used to determine non-terminating queries 
to deductive systems ([DVB89],[DVB90]). Cycle unification might also contribute to answer the 
question whether the top-down, Prolog-like evaluation of recursive calls can be guaranteed to 
terminate ([UvG88],[Pli.i90]). 

Although cycle unification is of significant importance for the field of automated deduction, 
it has received surprisingly little attention in the literature. Function-free cycle unification 
problems, i.e., cycle unification problems defined over variables and constants only, occur mainly 
in deductive databases and it can be shown that under certain conditions these problems do not 
give rise to infinite computations (cf. [MN83]). In [OW84] the number of iterations through a 
cycle can be limited via a user-defined parameter. In [Vie87] certain cycle unification problems 
are solved by generalization and subsumption. There, after several iterations through a cycle, 
subterms occurring in a goal are replaced by variables. Subsumption techniques may now be 
applied to terminate otherwise infinite derivations. The technique is shown to be complete. 
Unfortunately, answers to the generalized goal need not to be answers to the initial goal. M. 
Schmidt-Schaufi [SS88] has shown that cycle unification is decidable provided that the goal and 
the fact are ground, i.e., they do not contain variable occurrences. Independently, P. Devienne 
[Dev90] has given a more general result for cycle unification problems with linear goals and facts, 
i.e., each variable occurs at most once in the goal and the fact. He uses essentially the same ideas 
as Schmidt-Schaufi, but a very special technique based on directed weighted graphs. Devienne's 
results were used by De Schreye et al. [DVB90] to decide whether cycles admit non-terminating 
queries to deductive systems. Another approach has been taken by H.J. Ohlbach [Ohl90a] who 
represented sets of terms by so-called abstraction trees which may compress the search space. 
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Moreover, abstraction trees can be used to compile two-literal clauses and in certain cases a 
finite abstraction tree can represent infinitely many solutions of a cycle unification problem 
[OhI90b]. A further approach for unifyi ng infinite sets of terms which are encoded in so called 
p-terms is described in [SaI92]. The incorporation of p-terms into logic programming allows on 
the one hand infinite queries and the finite representation of infinitely many answers. On the 
other hand, it avoids repeated computation and certain kinds of infinite loops , without changing 
the denotational semantics of the programs. 

In [BHW91] we developed the theoretical foundations for cycle unification. For various classes 
of restricted cycle unification problems we showed their decidability, proved that they have 
at most finitely many most general solutions and constructed an algorithm to compute this 
set. The most general result concerned the class of non-recursive matching cycles Cnrm , i.e., 
cycles {L ~ R} for which there exists a substitution 0' such that 0' L = R or L = 0' Rand 
f-li : x 1--+ t E ai, x E Var(t), and t :f x .2 But these were only fundamental classes of cycle 
unification problems. One of the open problems was to cont rol cycles which overcome the limits 
of matching cycles. In this paper we present the class of unifying cycles, i. e., cycles {L f- R} 
such that Land R are unifiable. With this class we finish work on cycles whose problems 
might be characterized by having always finitely many solutions. 

After some preliminaries on definitions and notations we formally define cycle unification in 
Section 3. The important notion of dependency graphs is introduced in Section 4. In Section 5 
we define different classes of restricted cycle unification problems and show that their unification 
problems are decidable, determine the unification type, and develop a unification algorithm. Our 
most general result concerns the class of unifying cycles {L f- R} which is a combination of the 
first three analyzed types of cycle unification problems. The paper concludes with a summary 
of the results on cycle unifi cation and an outline of future work. 

2 Definitions and Notations 

Our definitions and notations follow those suggested in [DJ91]. Throughout this paper capital 
letters such as P, Q, ... denote predicate symbols, small letters such as a, b, ... denote 
constants, f , g, ... function symbols, and z, y, ... variables. A term is either a variable or 
of the form f(tl,"" tn ) , where t l , ... , tn are terms. s, t, ... denote terms. An atom is 
of the form P(tl,"" tn ). Let X be an atom or a term. Var(X) denotes the set of variables 
occurring in X. X is called ground iff X does not contain any variable. X is called linear iff 
every variable occurs at most once in X. By Xk we denote the syntactic object where each 
variable occurring in X has the index k attached to it. t[XI,"" xnl denotes a term t such 
that {Xl, ... , xn} ~ Var(t) . 

A substitution is a mapping from the set of variables into the set of terms which is equal to 
the identity almost everywhere. Hence, it can be represented as a finite set of pairs {Xl 1--+ 

t l , ... , Xn 1--+ tn}, Xi :f ti, 1 ~ i ~ n. Substitutions are denoted by small greek letters 
such as 0', (), .... The identity subst itution is called [. at = a(t) if t is a variable and 
at = f(O'tl, ... ,O'tn) if t = f(tl, ... ,tn ). Vom(O') = {x I X is a variable and O'x:f x} is the 
domain of 0' . 

The composition aT of two substitutions 0' and T is defined by (aT)x = a(Tx). The 
1'eslriction of the substitution 0' to the set V of variables is defined by O'iv x = ax if x E V 

2 By u i we denote the i- fold composition of u with itself, i.e., u 1 = u and u' = u( u·- 1 
) . 
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and CTlv x = x otherwise. A substitution CT is called variable-pure if {CTX I x E Vom( CT)} only 
consists of variables. A renaming is a variable-pure substitution CT such that CTX = CTy implies 
x = y for x, Y E Vom(CT). 

If W is a set of variables, then CT = r [W] iff \:Ix E W : CTX = rx. A substitution CT is called 
more general than a substitution r on W, CT::! r [W] , iff there exists a substitution p such that 
pCT = r [W]. Two substitutions CT and r are called equivalent (or variants) on W, CT '" r [W] , 
iff CT ::! r [W] and r ~ CT [W]. Two substitutions CT and r are called independent on W iff 
CT '!1 r [W] and r '!1 CT [W] . 

cr is called a unifier for t and t' iff Vom(cr) ~ Var(t) U Var(t') and crt = crt'. A unifier 

CT of t and t' is called most general unifier iff CT::! r [Var(t) U Var(t')] for all unifiers r of t 
and t' . The definitions above can be extended to atoms, equations, and sets of equations in the 
obvious way. For a unification algorithm we use the operations suggested in [MM82] . 

3 Cycle Unification 

C {L +- R} is called a cyclic theory, or cycle for short, if the atoms Land R are weakly 
unifiable, i.e., there exist two substitutions CT and CT' such that CTL = CT'R [Ede85]. Let G and 
F be two atoms such that Var( G) n Var( F) = 0. A cycle unification problem (G ~ F) (or 
(G --"-+ F)c) is the problem whether there exists a substitution CT such that CTG is a logical 
consequence of F and C. A substitution CT is a solution for the cycle unification problem if 
Vom(CT) ~ Var(G) arid CTG is a logical consequence of F and C. 3 

Since solutions to cycle unification problems are substitutions, the notions of more general, 
independent, etc. substitutions can be extended to more general, independent, etc. solutions of 
cycle unification problems in the obvious way. 

As a first example consider the problem 

(Pa --"-+ Pfffa){px+-P]x}' 

The empty substitution E is the only most general solution for this problem. However, there 
may be more than one solution as the example 

(Pxy --"-+ Pab) {Pvw+-Pwv} 

shows. This problem has the two independent most general solutions {x f---+ a, y f---+ b} and 
{x f---+ b, y f---+ a}. But, there may be even infinitely many independent most general solutions. As 
an example consider 

(Px --"-+ Pa){p]y+-py}' 

This problem has the most general solutions {x f---+ a}, {x f---+ fa}, {x f---+ ffa}, .... 

For a cycle unification problem (G ----"-+ F) {L+-R} to be solvable, the atoms F and G must be 
of the form P(t}, ... , tn) and P( Sl, ... , sn) ,respectively. Since Land R are weakly unifiable, 
their predicate symbols must also be identical, i.e., Land R must be of the form P'(ll, ... , In) 
and P'(r1, ... , rn ), respectively. In the sequel we will only consider cycle unification problems 
of this form. Furthermore, as the case P i= P' is trivial, we assume P = P' . 

3 A cycle unification problem should not be confused with a theory unification problem (G = c F) , i.e., the 
problem whether there exists a substitution u such that uG =c uF [Bib87, Sti85J . 
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To solve a cycle unification problem (G -7+ F) we have to find a substitution which either 
unifies G and F or unifies - viz. simultaneously unifies each equation in -

where 

N = {SI ~ l~, . . . , Sn ~ l~} is the set of e!],try equations, 

Y k {i. li+l i . li+l 11 < . < k} = 1'1 = 1 , . .. , l' n = n _ l _ 

is the set of cJ!..cle equations for k itera.tions through the cycle, and 

Xk = {r~+1 ~ t l , ... , r~+1 ~ tn } 

is the set of e~it equations after k iterations through the cycle. 

The following proposition is an immediate consequence of the completeness and soundness of 
the connection method [Bib87] or SLD-resolution, ego [Llo84]. 

Proposition 1 a is a solution for (G -7+ F) iff there exists a substitution () such that () 
unifies G and F and a = ()lv ar(G) or there exists a natural number k such that () unifies Ck 

and a = ()lvar(G) . 

Throughout the paper T will denote the most general unifier of G and F restricted to 
Var( G), if it exists. Similarly, Tk will denote the most general unifier of Ck rest ricted to 
Var(G) , if it exists. The solutions T k will be computed by applying the Martelli&Montanari 
operations [MM82] to the set Ck

.4 

Let C = (G -7+ F) be a cycle unification problem. A set E of substitutions is a complete 
set of solutions for C iff each substitution in E is a solution for C and for each solution () for 
C we find a substitution a in E such that a ~ ()[Var(G)]. A complete set E of solutions for 
C is said to be minimal iff for all a , () E E we find that a ~ ()[Var( G)] implies a = () . 

In order to be able to control a cycle, we are interested in the answer to three basic questions. Is 
cycle unification decidable? How many independent most general solutions has a cycle unification 
problem? Does there exist a unification algorithm which enumerates a minimal and complete 
set of solutions for a cycle unification problem? 

Following [SiegO], we define t he type of a cycle unification problem as follows. A cycle unifi­
cation problem is of type unitary iff there exists a single most general solution, finitary iff there 
ex ist finitely many most general solutions, and infinitary iff there exist infinitely many most 
general solutions. 

4 Dependency Graphs 

In this section we introduce the notion of dependency graphs for cycle unification problems. All 
results in this paper depend on certain kinds of paths in the dependency graphs. 

4We start with a set of term-equations. The following operations (in the sequel called Martelli&Montanari 
operations) are exhaustively applied. Let x be a variable and t a term. If x == x occurs , it is erased. t == x is 
replaced by x == t. If x == t occurs in th e set, x ...... t is applied to all other equations (variable elimination); if 
x E Var(t), then failure . If the se t contains l(t 1 ••. tn) == J'(t; . .. t~) and I #- I' then failure , otherwise replace 
this equation by tl == t;, ... , tn == t~ (term reduction). A set of term-equations is in solved form if all equations 
are of the form x == t. We stop with success if we obtain a solved form. 
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Consider the cycle unification problem C = (G ---'l...+ F){L+-R}' A dependency graph relates 
variables occurring in the Goal G and variables of the cycle {L +- R}. First, the variables . 
in G are related to the variables occurring in the first instance of the left-hand side of the 
cycle, i.e., Ll. Second, the variables in the i -th instance of the right-hand side of the cycle, 
i.e., R i , are related to the variables in the i + I-st instance of the left-hand side, i.e., Li+1. 
Let N' and y,i be the sets which are obtained from Nand Ri == Li+1 by applying all 
possible Martelli&Montanari operations, respectively, i.e., they are in solved form. The variable 
dependency graph YC corresponding to C is the pair (V, E) , where 

• V is a set of nodes, containing a node labeled by v for each v E Var(C) , and 

• E is a set of directed edges x"-* y E E computed as follows. 

1. Let u, v E Var(G) and x, y E Var(L +-R). If t[u] == t'[xl] EN' or t'[xl] == t[u] E 
N' , then add the directed edge from u to x, i.e., u"-* x. If t[u] == t'[v] E N' , 
then add the undirected edge between u and v. If t[Xl] == t'[yl] E N' , then add 
the undirected edge between x and y. After all edges are inserted, add the directed 
edge u"-* x if x is reachable from u via directed (traverseable in both directions) or 
undirected edges. Finally, delete all undirected edges. 

2. Consider equations in y,i. The following cases are considered from top to bottom. 

If xi == t[yi+l] E y,i and zi+l == t'[yi+l] E y,i, then add the directed edges 
x "-* y an d x "-* z . 
If xi == t[yi+l] E y,i and zi == t'[yi+l] E y,i, then add the directed edges x"-*y 
and z"-* y . 
If xi == t[yi+l] E y,i , then add the directed edge X"-* Y . 

If xi+l == t[yi] E Y'i and zi+l == t'[yi] E y,i , then add the directed edges y"-* x 
and y"-* z . 

If xi+1 == t[yi] E Y'i and i == t'[yi] E Y'i , then add the directed edges y"-* x 
and z"-* x . 

If Xi+1 == t[yi] E y,i then add the directed edge y"-* x . 

Since y,i is in solved form, no other cases are possible involving different superscripts. 

Observe that no superscribed variables occur in the dependency graph. As an example consider 
the cycle unification problem 

C = (PUI U2U3U4US ---'l...+ Pababa) {Pyvywz+-Pxyvyw} . 

We obtain as the most general unifier of PUIU2U3U4US and Pylvlylwlzl the substitution 

because 

N' = {Ul == yl, U2 == vI, U3 == yl, U4 == wI, Us == zl}. 

In the first step we obtain Figure 1. 

Furthermore, we obtain as the most general unifier of Pxiyiviyiwi and p yi+l V i+1 yi+l wi+1 zi+l 
the substitution 
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v 

Z ... c:e----- Us 

Figure 1: First step of the construction of the dependency graph 

because 

The dependency graph YC is finished by the second step. The result is shown in Figure 2. 

Figure 2: Final dependency graph 

A variable u E Var(G) depends on xi, x E Var(L.-R), if 

{t[u] == tdx1] or (t[u] == t~I[X~'], t~,[X~'] == t1[xm} u 

{t'l j] . t [j+1] (t'[ j] . I [j+1] "[ j+1]. [j+1]) 11 <. '} j Xj = j+1 x j+1 or j Xj = tjl Xj' ,tjl Xj' = tj+1 x j+1 _ J < t , Xi = X 

can be derived from Nand yi-1 by application of Martelli&Montanari operations. Because 
of the definition there exists a directed path, i.e., a sequence of adjacent directed edges from u 
to x, of length i traversed in the right direction. Similarly, yj E Var(Lj .- Rj) depends on 
x j+i E Var(Lj+i .- Rj+i) if for Xi = X 

{t[yj] == tdX~+1] or (t[yj] == t~l[x~;1], t'{I[xi;1] == t1[X{+1])} U 
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{tic[X{+k] == tk+dxt~~+l] or (tUxt+k] == tic/[xt;-k+l], t%/[X{;-k+l] == tk+I[X{~~+I]) 11 :s; k < i}, 

i.e., there exists a directed path of length i between yi and xj+i. Hence, we have a corre­
spondence between the paths of the dependency graph and the dependencies established by the 
entry- and cycle-equations. We can also say that a variable u E Var(G) depends on xi if an 
instantiation of xi may influence via a set of equations in some Ck the instantiation of u. 

A path is a list of variables (Xl"", Xn), n 2 1, {Xl, ... , xn} ~ Var(L t- R), such that 
XI"'-+ X2, ... , Xn-l "'-+ Xn is a path in the dependency graph and either no edge starts from Xn 
or Xn is the first variable in (Xl, ... , xn) occurring twice. Furthermore, the first variable of a 
path must be connected with a variable u E Var(G) via one directed edge. A path (Xl,"" XI) 
is called linear iff Xi f:. Xj, 1:S; i,j:S; I, if:. j. A path p = (Xb""XI) contains the subpath 
T = (YI, ... , Ym) iff there exists an i 2 1 and an j :s; I such that T = (Xi, ... , Xj). A path 
T = (Xl, ... , XI) is called a (cyclic) permutation iff (Xl, .. " XI-I) is linear and Xl = XI A path 
(Xl, .. "XI) is called a (cyclic) permutation with linear entry-path iff (Xl, ... ,XI-I) is linear and 
there exists an j, 1 < j < I, such that XI = Xj. It is obvious that a permutation with linear 
entry-path (XI, ... ,XI, ... ,XI+k,XI) can be divided into the linear entry-path (XI, ... ,XI) and 
the permutation (XI, ... , xIH, XI) . X is called a branching-point if more than one directed edges 
start from x. Finally, a path (Xl"'" XI) is of length I, Xl is called the starting-point and XI 
is called the end-point of the path. 

The cycle unification problem 

depicted in Figure 2 defines the permutation 

(y,v,y) 

and the linear paths 
(v,y,w,z), (y,w,z), (w,z), and (z). 

One should observe that the dependency graph contains a cycle iff {L t- R} defines a permu­
tation. Furthermore, for a path (Xl"", Xn) one should observe that the superscribed variable 
x; depends on the superscribed variable x~+n-l . 

A similar approach with so called argument/variable graphs was undertaken by J. Naughton 
[Nau89] and with connection graphs by Wei et al. [WLH91]. Both works were settled in the field 
of deductive databases. They considered a set of facts and introduced non-recursive predicates, 
i.e., others than the cycle predicates. They disallowed, however, multiple occurrences of variables 
in the cycle and needed not to consider function-symbols. Thus, these approaches are too weak 
for cycle unification . 

5 Unifying Cycles (eu ) 

In this section we show for certain kinds of subclasses of Cu their decidability, determine the 
unification type and develop a unification algorithm. These classes show characteristics which 
can be generalized for the class Cu of unifying cycles. 

A variable X is called recursive iff it is possible to derive from L == R with Martelli&Mon­
tanari operations an equation of the form X == t such that X E Var( t) and t f:. x. Therefore, 
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if the Martelli&Montanari algorithm runs into an occur-check failure, we know that the cycle 
contains a recursive variable. As an example consider the cycle {Pfx +- Px}. Obviously, the 
variable x is recursive. Embedded in the cycle unfication problem (Py -"-+ Pa){pjx+-Px} we 
obtain the independent most general solutions {yt-+a}, {yt-+fa}, {yt-+ffa}, ... , i.e., infinitely 
many. This is one of the reasons why we exclude recursive variables. A cycle unification problem 
(G -"-+ F){L+-R} is called unifying iff Land R are unifiable, i.e., the cycle contains no recursive 
variables. 

5.1 Linear Paths (C lp ) 

We recall that a path (XI, .•. ,XI) is called linear iff Xi =I Xj, 1::; i,j::; l, i =I j. A cycle 
unification problem (G -"-+ F) {L+-R) is in the class Clp, if the corresponding dependency graph 
defines only linear paths. Let (Xl ,i, .. . , Xli ,i), 1 ::; i ::; n, be the n defined linear paths. 
Furthermore, let m = max(l] , .. . , In) where max denotes the maximum-predicate. 

Proposition 2 Let (G -"-+ F) {L+-R} E Clp and m be defined as above. Then, for the most 
general solutions 

holds. 

Proof: After m - 1 iterations through the cycle every variable occurring in G either does not 
depend on a variable at all or it depends on a variable xl i' 1 ::; i ::; n, 1 ::; j ::; m. Because 
the variables Xli,i, 1 ::; i ::; n, are end-points of linear paths, they do not depend on any other 
variable. Hence, further iterations through the cycle do not contribute to further solutions. qed 

Proposition 2 states that only the first m - 1 iterations through the cycle contribute to a 
possible solution of a cycle unification problem defining linear paths. We conclude that for cycle 
unification problems defining linear paths and m defined as above, we have only to consider 
T , i.e., the restriction of the most general unifier of G and F to Var( G) , if it exists, and the 
first m - 1 iterations through the cycle to obtain all possible most general solutions for a cycle 
unification problem in the class Clp . Conversely, if neither G and F are unifiable nor any of 
the sets Ci

, 0 ::; i < m, is solvable, then the cycle unification problem is unsolvable. 

As an example consider t he cycle unification problem 

(Pu] U2U3U4 -"-+ Paafv'/c){p jy,zvw+-Pxxjy,v). 

The corresponding dependency graph is depicted in Figure 3. 

Figure 3: 

:r ~y ~v ... w 

~ t t t 
U2 "'z Ul U3 U4 

We obtain the linear paths 
(y, v, w), (z), (v, w), (w) 
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such that m = max(3, 1, 2, 1) = 3. If we solve 

CO = { PUlU2 U3U4 == Pfyl,zlvlwl, Pxlxlfy\vl == Paafb,fe}, 

we obtain the solution 

Solving 

yields 

TO = {Ull-+ jb, U3 1-+ je}. 

PUI U2 U3U4 == P fyI, zlvlwl , pXlXl fyI, vI == P fy2, z 2v2w 2, } 
Px 2x 2 fy2, v2 == Paafb,fe 

Tl = {Ul 1-+ je }. 

If we iterate once more through the cycle, we obtain from solving 

the solution 

PUI U2 U3U4 == P fyI, zlvlwl , PxlXl fyI, vI == P fy2, z 2v2w 2, } 
Px 2x 2 fy2,v 2 == Pfy3,z3v3w3, Px3x3f y3,v3 == Paafb,fe 

T2 = {Ull-+ fyl}. 

Because yl depends on w3 , which does not occur in the right-hand side of the cycle {Pjy}zvw +­

Pxxfy, v} , no further iterations through the cycle contribute new solutions, i.e., T2 = Tj, j > 2. 

5.2 Permutations (Cp ) 

We recall that a path (XI, •.. , XI) is a permutation iff (XI, ..• , XI-I) is linear and Xl = XI. 

A cycle unification problem (G ~ F){L+-R} is in the class Cp if the corresponding depen­
dency graph defines only permutations. Let (Xl ,i,"" Xki,i, XI,i), 1 ::; i ::; n, be the n defined 
permutations. Furthermore, let N = lcm(k l , ... , kn ) where lcm denotes the least common 
multiple.s 

Proposition 3 Let (G ~ F){L+-R} E Cp and N be defined as above. Then, 

Tj ~ Tj+i.N, j ;::: 0, i > O. 

Proof: Assume Tj and Tj+i .N to exist. First, we associate with each variable X occurring in a 
permutation precisely one permutation such that (x) is a subpath of it. We assume (x) to be 
contained in the permutation (Xl"' " x p , Xl) . Hence, x j+l depends on xj+l+p , x j+1+2'p , .... 

Because Vj3l : l . k j = N, x j+l depends also on xj+l+i.N and N is by definition the least 
number for which this is true for all variables. 
For computing a solution Tj we have to solve cj = N u yj u X j . A subpath (x, y) of the 
permutation (Xl"", x P' Xl) is defined by the following sets of equations: 

{xi == yi+l} or {yi+l == xi} or {x i == t, yi+l == t} 

such that the last set is equivalent to {xi == yi+l, xi == t}. This holds because the cycle is non­
recursive. The sets above can be derived from the cycle-equations yi. Therefore, we obtain the 
chain of equations 

j+l...:... j+2 j+2...:... j+3 j+i·N...:... j+l+i·N 
X - YI , YI - Y2 , ... , Yi .N-l - X 

5Because the permutations (XI, . .. , XI), (X2 , ... , XI)' ... , (XI, ... , XI-I) are defined by the same path in the 
dependency graph, we will not distinguish between them. 
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if we follow the permutation-path associated with x. So, x j +! is not only depending on 
x j+1+i.N but they must be equal, i.e., 

which is yielded by i · N - 1 variable-elimination steps. 
Let U E Var( G) . U depends on some variables z{+l, .. . , z~+l such that x E {Z{+l, ... , z~+l} . 
For all z{+l, ... , z~+l the following holds. 
Assume slv = f( ... ) for an occurrence6 v where UI-+S E Ij. Observe that f( ... ) represents a 
constant if the arity of f is O. From x j+1 == x j+1+i.N (which is equivalent to x j+1+i .N == x j+1 

) 

and from t' [x j+1+i.N] == t (which is obtained from the set of equations {Rj+1+i.N == F} ) it 
follows by variable-eliminat ion that 

t' [x j+1
] == t 

is implied by Cj+i .N . On the other hand, we obtain t'[ xj+!] == t from {Rj+l == F} of Cj 

as well. Hence, we also obtain siv = f( ... ) if we compute the solution 'j+i.N for Cj+i.N . . 

Because no further operations which are caused by remaining equations in Cj+i .N can make the 
function-symbol f dissappear. Thus, the topmost function-symbol of slv must be equal for j 
and j + i . N iterations through t he cycle. 
On the other hand, assume U not to be instantiated or slv E VaT for j iterations . Because 
in Cj +i .N we have more equations than in Cj , the value of U after j iterations must be more 
general than that for j + i . N iterations if 'j+i .N exists . 
This argumentation holds for each z!+l , 1 ~ i ~ n, such that U depends on it. The solutions are 
related by ~ and not by = because they are variants of each other (observe the variable-chain 
of the permutation-variables). qed 

One should observe that the existence of Ij does not imply the existence of 'j+i .N , e.g. for 
intertwined permutations like the second example below. But it is easy to see that the non­
existence of Ij implies the non-existence of 'j+i .N. Proposition 3 expresses that we only have 
to consider the unifier of G and F restricted to Var( G) , if it exists, and the first N - 1 
iterations through the cycle to obtain all possible most general solutions for a cycle unification 
problem in the class of permutations . 

As an example for a cycle unification problem in Cp consider 

which defines the dependency graph of F igure 4. 

The dependency graph defines the two permutations 

(x , y, x) and (x, v, x) 

such that N = lcm(2, 2) = 2. Considering one instance of the cycle and solving 

yields 

6 An occurrence is a list of natural numbers or A. Let t be a term. tl>. = t . If t = 1(t1, ... , tn) and v IS an 
occurrence in ti, then tli .v = ti Iv . 
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Figure 4: 

From 

we obtain the solution 

If we iterate once more, we have to solve 

which results again in TO which also implies that TO ~ T2 . 

A slight variation of the example above is the cycle unification problem 

where we have replaced the fact Pabab with Pabac. If we want to solve 

Xl has to be bound simultaneously to band c such that neither Tl nor T2 exists. 

As another example consider the cycle unification problem 

which defines the dependency graph depicted in Figure 5. 

Figure 5: 

~~ 
W E v ""'E;---- X ----;~~ y 

t t /\ t 
Us 
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We obtain N = lcm(2, 3) = 6. Solving 

yields the solution 

and solving CS yields the solution 

This confirms that TO ~ TS. But we also observe that it is not necessary to consider the fourth 
and fifth iteration at all. This holds because after already 3 iterations all variables in the goal 
PUI U2U3U4US are instantiated with fa. Consider the variable xl. For 2 and 3 iterations we 
obtain xl == x 3 and xl == x4, respectively. On the other hand, we obtain for x2 after 2 
iterations x2 == x4. Hence, the chai n Xl == x2, X2 == x3, x3 == X4 holds. Because all variables 
in the first instance depend on some xi, 1 ::; i ::; 4, only 3 iterations are necessary since all 
further iterations do not change the solution. Let L = {PI, ... , Pn} be the lengths of the 
defined permutations minus 1. For cycles with gCd(PI' ... , Pnf = 1 and a dependency graph 
consisting of precisely one connected component we are looking for the least number m such 
that 

u v 

Vj, 1::; j::; m,:Ju: (j = Lik·Plk, ik E {-l, I}, Plk E LAVv,l::; v::; u: 0::; Lik·Plk ::; m). 
k=l k=l 

Thus, we get a refinement of the upper limit of iterations we have to consider. · 

5.3 Permutations with Linear Entry-Path (Cplp ) 

We recall that a path (Xl, ... , XI) is a permutation with linear entry-path iff (Xl,·.·, XI-I) 

is linear and there exists an j, 1 < j < I, such that XI = Xj. A cycle unification problem 
(G ~ F){L+-R} is in the class Cpl p if the corresponding dependency graph defines only paths 
which are permutations with linear entry-path or which are a subpath of a permutation with lin­
ear entry-path. Let (XI,i, ... , XI"i,.'.' Xli+k"i, XI"i), 1 ::; i ::; n, be the n defined permutations 
with linear entry-path. Furthermore, let m = max(ll, ... , in) and N = lcm(kl' ... , kn). 

Proposition 4 Let (G ~ F){L+-R} E Cpl p ! m and N be defined as above. Then, 

Tm -1+i ~ Tm -l+i+k.N, i ?: 0, k > o. 

Proof: It is a straightforward conclusion from the structure of the dependency graph that after 
m - 1 iterations through t he cycle all variables u E Var( G) depend either on no variable at 
all or on variables xm which are contained in the permutation-parts of the permutations with 
linear entry-path. After m - 1 + i iterations through the cycle all u E Var(G) depend either 
on no variable at all or on variables ym+i such that y is contained in a permutation-part. Now 
we apply the same argumentation as in the proof of Proposition 3. qed 

Proposition 4 tells us that we only have to consider the unifier of G and F restricted to the 
variables occurring in G, if it exists, and the first m + N - 2 iterations through the cycle to 
obtain all possible most general solutions for a cycle unification problem in the class Cpl p . 

7 gcd denotes the greatest common divisor. 
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As an example consider the cycle unfication problem 

The problem defines the dependency graph illustrated in Figure 6. 

Figure 6: 

Ul U2 U4 

t \1 
w > x >y > Z II( U3 

"--/ 

The dependency graph defines the permutation with linear entry-path 

(x, y, z, y). 

We conclude N = 2 from the permutation-part (y, z, y) and m = 2 from the linear entry­
path (x, y) , which are defined by the cycle {Pxyfz,fy +-- Pwxfy,fz}. Therefore, we conclude by 
Proposition 4 that 

-
As an example we compute T3 from 

c3 
= { 

We obtain 

From solving 

PVIV2V3V4 == PX1ylfzl,fyl, Pw1x1fy\fzl == Px2y2fz2,fy2, } 
Pw2x 2fy2,fz2 == Px3y3fz3,fy3, Pw3x3f y3,fz3 == Px4y4fz\fy\ . 

Pw4x4f y4,fz4 == Pabfc,u 

PVIV2V3V4 == Px1ylfz\fy\ Pw1x1fy\fzl == Px 2y2fz2,fy2, } 
Pw2x 2fy2,fz2 == Pabfc,u 

we obtain the solution 

Hence, Tl ~ T3 holds. 

5.4 Unifying Cycles (eu ) 

Unifying cycles consist of a combination of linear paths, permutations and permutations with 
linear entry-path where each variable can be a starting-point of certain kinds of paths. We 
assume the unifying cycle to contain p permutations 
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pl restricted permutations with linear entry-path 

(YI,i,' .. , YI; ,i, YI;+I,i , · .. , YI;+n;,i, YI;+I,i), 1 SiS pl, 

such that no subpath is a subpath of a permutation except the permutation-part of the path 
itself, and l restricted linear paths 

( ZIi" " ,ZI-' .),1 S i::; l, 
I .,t 

such that no subpath is a subpath of a permutation. Let m = max(l, 11, ... , lpl' 11 , ... , 11) 

and N = lcm(l, mI, ... , m p, nl, ... , npl)' Herein, 1 is needed if there are no linear paths 
and no permutations at all , respectively. We use the abbreviations 

Perm j ~ {xL, ... , x:.n;,i 11 SiS p} 

and 
L · j {j j } zn = z[ , ... , z[ I . 

) ,1 I, 

Perm and Lin denote the sets of variables without superscribed indices. Therefore, Perm 
contains only variables which occur in permutations and Lin contains only the end-points of 
the restricted linear paths. Observe that all permutation-parts of permutations with linear 
entry-path are contained in the set of permutations. 

Proposition 5 Let (G -"--> F){L _ R) E Cu , m and N be defined as above. Then , 

Tm -Hk ~ Tm -Hk+j ·N, k 2 0, ) > o. 

Proof: Due to better readability we only prove Tm-l ~ Tm-Hj.N. The whole proof of Propo­
sition 5 is established with the addition of one more superscribed index. 
Assume Tm-l and Tm-Hj.N to exist. First we associate with each variable x E Perm pre­
cisely one permutation such that (x) is a subpath of it. We assume (x) to be contained in the 
associated permutation (Yl,"" YI, Yl)' Let u E V ar( G) . 
First, we consider m - 1 iterations through the cycle. Assume that u depends on a variable 
yj E Linj , ) sm. Hence, all further iterations leave the value of yj invariant because y 

depends on no other variable since it is an end-point. 
On the other hand, assume that u depends the first time on a variable xi , ism, where 
x E Perm. Because of the definition of m, every path starting in u must end in an end-point 
y E Lin or reach such an x E Perm in the first m - 1 iterations. Assume xi to depend on 
yj;l, 1 S )1 ::; l. If there is a branching in the path of the permutation (or at x itself), this 

cannot be caused by a derived equation of the form zi == t such that t is no variable because 
of the non-recursiveness of the cycle {L f- R} . 
For computing a solution Tj we have to solve Cj = N u yj u X j . A subpath (x, y) of the 

permutation (Xl,"" x p , Xl) is defined by the following sets of equations in y,i: 

{xi == yi+l} or {yi+l == xi} or {xi == t, y i+l == t} 

such that the last set is equ ivalent to {xi == yi+l, xi == t}. This holds because the cycle is nOll­
recursive. The sets above can be derived from the cycle-equations yi. Therefore, we obtain 
after m - 1 iterations through the cycle the chain of equations 

... , 
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if we follow the permutation-path associated with x. Hence, it follows from this chain that 

holds. Furthermore, x' may depend on some other variables zr, 
Figure 7.8 

Figure 7: 

... , z;;' . This is depicted in 

In combination with the set of equations {Rm == F} of em-I, these dependencies establish a 
set of dependencies for xi. On the other hand, we know from the proof of Proposition 3 that 
after m - 1 + j . N iterations 

m . m+j·N 
Ym-i = Ym-i 

holds. Since (x) is a subpath of (Yl,"" YI, Yl) , there must exist a p such that m - i is equal 
to .m + j . N - p (cf. Figure 8). From m - i = m + j . N - p we conclude that p = j . N + i 
holds. It follows from the underlying chain of equations that 

h ld F th j·N+i d d m+j·N m+j·N h tl o s. ur ermore, x epen s on zl , ... , zn were Zl, ... , Zn are Ie same 
variables as for m - 1 iterations. In combination with the set of equations {Rm+j .N == F} 
of em-l+j .N results the same set of dependencies for m - 1 + j . N iterations as for m - 1 
iterations. This is depicted in Figure 8,9 

This argumentation holds for all xi such that (x) is contained in a permutation. Now we 
consider again the cases where slv = f( ... ), u is not instantiated or slv E VaT for u f--+ s E 
Tm-l' The proof is established analogously to the proof of Proposition 3. qed 

Proposition 5 tells us that we only have to consider the unifier of G and F restricted to 
Var(G) , if it exists, and the first m + N - 2 iterations through the cycle to obtain all possible 
most general solutions for a cycle unification problem in the class eu ' Conversely, if neither G 
and F are unifiable nor anyone of the sets ei , 0 ::; i ::; m+N -2, is solvable, then the cycle 
unification problem is unsolvable. One should observe that this result subsumes the result of 
linear paths (where N = 1), of permutations (where m = 1) and of permutations with linear 
entry-path. Observe that the existence of Tm-l+k does not imply the existence of Tm-l+k+j .N . 

But if Tm-l+k does not exist, Tm-l+k+j .N does not exist as well. 

8 Here and in Figure 8 the directed edges denote a path of adjacent directed edges in the origina.l dependency 
graph where the inner nodes are omitted due to better readability. 

90bserve that x)·N+i need not to be on the pa.th between Y';'m-i and Y';m+.!;N . 
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Figure 8: 

As an example we resume the example of Section 4, i.e., we consider the cycle unification 
problem 

(PUl U2 'U3U4'lLS -a..... Pababa) {pY1Jywz<-PxY1JYw} . 

The dependency graph of Figu re 9 defines the restricted linear paths 

(w, z) and (z) 

and the permutation 
(y, v, V). 

Figure 9: 

U4 -------,; ... ~ W ----; ... ~ Z .... E=-------- Us 

Here we see why we must restrict the definition of linear paths. With the former definition we 
would also have to consider the paths (v, y, w, z) and (y, w, z) . But they contain variables (v 
and y) which are already subpaths of permutations. Hence, they must not contribute to m. 
Therefore, we compute m = max(l, 2, 1) = 2 and N = lcm(l, 2) = 2 such that m+N -2 = 2. 
In order to compute the solution for 1 iteration through the cycle we have to solve 

C1 = { PUIU2U3'lJ'4US == pylvlylwlzl, Pxly1v1y1w1 == py2v2y2w2z2, } 
Px2y2v2y2w2 == Pababa 
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which results in 

If we solve 

c3 
= { 

we obtain 

PUIU2U3U4US == Pylvlylwlzl, Pxly1v1y1w1 == py2v2y2w2z2, } 
Px2y2v2y2W2 == p y3v3y3w3 Z3, Px3y3v3y3w3 == py4v4y4w4 Z4, 

Px4y4v4y4w4 == Pababa 

i.e., Tl again which is implied by Proposition 5. 

Let (G --A-+ F){L .... R} be a cycle unification problem in the class Cu' The following steps 
define a cycle unification algorithm for unifying cycles with the help of the previous propositions. 
Algorithms for Cip, C p , and Cpip are special cases. 

Unification Algorithm for Cu 

1. If G and F are unifiable, then compute T as the most general 
unifier for G and F restricted to the variables in G. 

2. Compute the dependency graph for (G --A-+ F){L .... R}. 

3. If (G --A-+ F){L .... R} E Cu , then compute the lengths it, ... , li 
of all defined restricted linear paths/linear entry-paths and the 
lengths m1, .. . , mj of all defined permutations. Let m 
max(l, ll' ... , li) and N = lcm(l, ml - 1, ... , mj - 1). 

4. If Ck is solvable, then compute Tk as the most general unifier for 
Ck

, restricted to the variables occurring in G , 0 ~ k ~ m + N - 2. 

5. Let E be the set of solutions obtained in steps (1) and (4). If 
E = 0, the problem is unsolvable. Otherwise, iteratively eliminate 
a substitution Q if the current set of solutions contains another 
substitution 0 with 0 ~ Q [Var( G)]. The obtained set is a minimal 
and complete set of solutions for the cycle unification problem 
(G --A-+ F){L .... R}. 

As an example we resume our example from above . An application of the algorithm yields the 
following results. 

2. The dependency graph is depicted in Figure 2. 

3. The dependency graph defines the restricted linear paths (w, z) and (z) and the permu­
tation (y, v, y) . Therefore, m = 2 and N = 2. 
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Class Decidabili ty Type Algorithm References 

C open infinitary open 

CI decidable infinitary open [Dev90] 
Cg decidable unitary yes [SS88] 
Cm open infinitary open 

Cnrm decidable finitary yes [BHW91] 
Cu decidable finitary yes in this paper 

Table 1: Properties of cycle unification classes 

4. TO = {ul~b, u2~a, 'u3~b, u4~a}, T1 = {u1~a, u2~b, u3~a}, T2 = { 'Ul~ 
b, U2 ~ a, U3 ~ b} are the most general solutions obtained by solving Co, C1 , and C2 , 

respecti vely. 

5. We obtain the set {T1, T2} as a minimal and complete set of solutions. 

The following theorem follows immediately from the previous results. Observe that Theorem 6 
holds for Clp, Cp, and Cplp as well because they are subsets of Cu. 

Theorem 6 Let C be a unifying cycle. 

(i) (G ~ F) is decidable. 

(ii) (G -"--+ 
C F) is finitary . 

(iii) There exists an algorithm computing a minimal and complete set of solutions for (G ~ F). 

6 Summary and Future Work 

In this paper we firstly defined cycle unification. We then restricted our attention to the class 
Cu which denotes the class of cycle unification problems defining unifying cycles, i.e., cycles 
{L <-- R} for which Land R are unifiable. By considering several subclasses of Cu , leading in 
combination to the results for Cu , we have extended known work. 

Table 1 gives an overview of our results as well as of previous work. In each row we state 
the decidability and the unification type for a particular class of cycle unification problems, 
indicate whether there exists an algorithm to compute a minimal and complete set of solutions 
and provide the reference if there exists one. C denotes the class of unrestricted cycle unification 
problems. In CI and Cg goals and facts are restricted to be linear and ground, respectively. Cm 

contains only matching cycles {L <-- R} such that there exists a substitution a and a L = R or 
L = aR. Cnrm contains only non- recursive matching cycles {L+-R}, i.e., the cycle is matching 
and f-3i : x ~ t E ai, x E Var( t), and t f:. x. The various classes are related as shown in 
Figure 10. 

Our most general result concerns the class of unifying cycles. For this class we have shown 
that we only have to consider fin itely many iterations through the cycle to obtain a minimal 
and complete set of solutions. Furthermore, we have presented an algorithm for computing 
the maximal number of necessary iterations to obtain this set. This enables us to efficiently 
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C Cm 

Cu Cnrm 

CI 

ICg I 
Figure 10: The relation between the classes C, CI, Cg , Cm , Cnrm ' and Cu. 

control the deductive process without losing completeness. Thus, we have finished the basic 
research for cycle unification problems which are non-recursive. For future work on these classes 
we are interested in refinements for the upper bound of iterations through the cycle. A first 
approach has been shown at the end of Section 5.2 for intertwined permutations. Further basic 
research has to consider the case of recursive cycles, i.e., cycles which can admit infinitely many 
independent solutions. 

One of the major open problems in our restricted context is the question whether C is decid­
able. CI and Cu are decidable. However, there are several results which point into the opposite 
direction for the case of C. In [Dau88J it is shown that the termination of a one rule term 
rewriting system, where rewriting may occur at proper subterms, is undecidable. Similarly, we 
know from [SS88J that the class of Horn clauses consisting of two clauses of the form L;- R 
and two ground unit clauses is undecidable. It is, however, not obvious, how these results could 
be adapted to cycle unification problems. 

In the future we intend to develop heuristics to control further classes of cycle unification 
problems. We are looking for a wellfounded ordering based on a measure of complexity for 
instances of the cycle in order to apply an idea similar to the one contained in [SS88]. Certain 
cycles {L;- R} cause some of the terms occurring in Land R to grow or shrink monotonically 
in each iteration of the cycle. If there were an upper bound for these terms defined by G 
or F, then one would be able to decide the cycle unification problem (G --"-+ F) {L+-R}. For 
illustration of this idea consider the cycle unification problem 

(Pjfx,x --"-+ Pufu){Pfffy,fz+-PfY,z). 

The i-th instance of the right-hand side of the cycle {PjffyJz ~- Pfy,z} is matched against the 
i + I-st instance of the left-hand side by (Ji = {yi == jfyi+l, zi == f z i+l}. We observe that the 
depth of y and z decreases with each iteration through the cycle. The goal and the fact define 
upper bounds because of their non-linearity which correlates y and z. In [BHW91] we have 
exploited this insight for the computation of the number k of iterations through the cycle to 
obtain a solution. For the example above we obtain k = 2 and the solution T2 = {x I-t f5 y3}. 
Under some circumstances, those problems can be solved with a technique called meta-unifying 
which is described in [SaI92J. We expect other useful heuristics to exist. 
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