
Deutsches
Forschungszentrum
fOr KOnstilche
Intelilgenz GmbH

Research
Report

RR-92-22

Unifying Cycles

Jorg Wurtz

March 1992

Deutsches Forschungszentrum fOr KOnstliche Intelligenz

GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz , DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community . There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Unifying Cycles

Jorg Wurtz

DFKI-RR-92-22

A short version of this paper will be published in the Proceedings of the 10th
European Conference on Artificial Intelligence.

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9105).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Deutsches
Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement
of the authors and individual contributors to the work; all applicable portions of this copyright notice. Copying,
reproducing, or republishing for any other purpose shall require a licence with payment of fee to Deutsches
Forschungszentrum fUr Kunstliche Intelligenz.

Unifying Cycles

Jorg Wurtz

Deutsches Forschungszentrum fur Kiinstliche Intelligenz (DFKI)
Stuhlsatzenhausweg 3

D-6600 Saarbrucken 11, FRG
e-mail: wuertz@dfki.uni-sb.de

Abstract

Two-literal clauses of the form L +- R occur quite frequently in logic programs , deductive
databases, and-disguised as an equation- in term rewriting systems. These clauses define
a cycle if the atoms Land R are weakly unifiable, i .e., if L unifies with a new variant of R .
The obvious problem with cycles is to control the number of iterations through the cycle.
In this paper we consider the cycle unifi cation problem of unifying two literals G and F
modulo a cycle. We review the state of the art of cycle unification and give new results
for a special type of cycles called unifying cycles, i.e., cycles L +- R for which there exists
a substitution (T such that (T L = (T R. Al together , these results show how the ded uct ive
process can be efficiently cont rolled for special classes of cycles without losing completeness.

Contents

1 Introduction

2 Definitions and Notations

3 Cycle Unification

4 Dependency Graphs

5 Unifying Cycles (Cu)

5.1 Linear Paths (Clp)

5.2 Permutations (Cp)

5.3 Permutations with Linear Entry-Path (Cpl p)

5.4 Unifying Cycles (Cu) . .. •...

6 Summary and Future Work

2

3

5

6

7

10

11

12

15

16

21

1 Introd uction

It is the foremost goal of the research in the field of automated deduction to develop general and
adequate proof methods and techniques for the logics under consideration. It is comparatively
easy to invent a general proof method, but it is much more difficult to develop a general and
adequate proof technique. For example, the resolution principle [Rob65] and the connection
method [Bib87] are general proof methods for first-order logic. But are they adequate? What is
the meaning of adequateness in the first place? Roughly speaking, we will consider a technique
as being adequate if it solves simpler problems faster than more difficult ones. We illustrate the
notion of adequateness by a problem, where the known general proof techniques face difficulties
whereas trained humans seem to be able to solve it quite reasonably.

For this purpose, consider the following set of clauses in Prolog-like notation which is taken
from [Pfe88] and was originally studied by Lucasiewicz.

Pw
Pi(i(ixy, z) , i(izx, iux)).

t- Pi(iab,i(ibc,iac)).
t- Pv, Pivw.

G
MP
A

The terms represent implicational formulas, i.e., iab encodes a -r band P asserts the deriv­
abi lity of its argument. Thus, the second clause represents modus ponens. It contains severa.l
cycles [Bib88] defined by the connections between the atom Pw and the atoms Pivw and Pv.
The clause MP can be applied to itself a.nd this may lead to an exponential growth of the search
space. The obvious problem is to control the self-appli cability of MP while retaining complete­
ness. Lukasiewicz has found a 29 step proof. He must have exercised a good control over MP!
Quintus PROLOG on a Sun SPARe station 2 did not find a proof in several days. Nearly all
existing automatic theorem provers cannot solve this problem as well since they are not able to
exercise a good control over MP. E. Lusk reportsl that the parallel version of Otter at Argonne
is able to obtain a hyperresolution proof with about 150 proof-steps while generating 6.5 million
clauses in about half an hour during the search for it. Their prover does not have a good control
over MP as well. It solves th e problem by sheer power.

In [BHW91] it was conjectured that a problem like the Lucasiewicz-formula could be solved
in less than a second by way of a technique called cycle unification. At present this conjecture
remains a challenge since the Lucasiewicz-formula is a particularly difficult instance of a class
of formulas which could eventually be treated by cycle unification. In [BHW91] a first step was
made towards this goal by restricting the attention to the special case of formulas with exactly
one cycle. In fact, we have focused ou r analysis on the simple class of two-literal clauses of
the form PIl ... In t- Prl ... rn which consists of nothing but a single cycle. This additional
restriction simplifies the discussion without loss of generality of the method. In this paper we
further analyze clauses consisting of a single cycle and extend the results found in [BHW91].

Such a two-literal clause is usually embedded in the context of some larger formula, or set
of clauses. Again for simplicity of the discussion and without loss of generality, we restrict the
treatment to the case of two additional clauses, namely a goal clause - referred to as (calling)
goal - of the form t- PSI ... Sn, which calls the cycle, and a fact - called (terminating) fa ct
- of the form Pt} ... in , which termina.tes the cycle. In our restricted case a cycle unification
problem is then the following one:

1 Private communication with W. Bibel [BHW91]

3

Is there a substitution a such that a P 81 .. . 8 n is a logical consequence of Pl 1 .. . In -­
PT1 ... Tn and Pt1 ... tn ?

If such a substitution a exists, then a is said to be a solution for the cycle unification problem.
For more general cases, cycle unification can be defined in an analogue way.

In order to be able to control a cycle we have to answer the following questions. Is cycle
unification decidable? How many independent most general solutions has a cycle unification
problem? Does there exist a unification algorithm which enumerates a minimal and complete
set of solutions for a cycle unification problem? Answers to these questions may help to increase
the power of automated theorem provers significantly. For example, if a cycle is embedded in
a larger formula and it can be determined that the corresponding cycle unification problem is
unsolvable, then the clauses defining the cycle can be eliminated from the formula. If a minimal
and complete set I; of solutions for a cycle unification problem exists and can be enumerated,
then any other solution is subsumed by a solution in I; and need not to be considered. If L:
is finite, then this may prune a potentially infinite search space to a finite one. But theorem
proving is not the only task which may benefit from cycle unification.

There are a variety of applications for cycle unification. Observe that although the variables
occurring in the two atoms P 81 ... Sn and Pt1 ... in might not be instantiated, it is possible to
analyze the structure of the cycle. Therefore, we can compute partial solutions in a preprocessing
manner (all possible solutions if finitely or only a subset otherwise). If some variables will be
instantiated in the course of further computation, we can update the partial solutions (see also
ego [Fut88] on partial evaluation). Furthermore, cycle unification helps us to transform recursive
programs to iterative ones. The iterative structure can be compiled such that a proof might be
detected faster than with the depth-first search of PROLOG. One of the important applications
is datalogic, i.e., the field between logic and databases (cf. [Bib87]). It has been shown by ego
Smith [SGG86] that cycles are the source of non-terminating queries . Consequently, insights
from cycle unification may be and have already been used to determine non-terminating queries
to deductive systems ([DVB89],[DVB90]). Cycle unification might also contribute to answer the
question whether the top-down, Prolog-like evaluation of recursive calls can be guaranteed to
terminate ([UvG88],[Pli.i90]).

Although cycle unification is of significant importance for the field of automated deduction,
it has received surprisingly little attention in the literature. Function-free cycle unification
problems, i.e., cycle unification problems defined over variables and constants only, occur mainly
in deductive databases and it can be shown that under certain conditions these problems do not
give rise to infinite computations (cf. [MN83]). In [OW84] the number of iterations through a
cycle can be limited via a user-defined parameter. In [Vie87] certain cycle unification problems
are solved by generalization and subsumption. There, after several iterations through a cycle,
subterms occurring in a goal are replaced by variables. Subsumption techniques may now be
applied to terminate otherwise infinite derivations. The technique is shown to be complete.
Unfortunately, answers to the generalized goal need not to be answers to the initial goal. M.
Schmidt-Schaufi [SS88] has shown that cycle unification is decidable provided that the goal and
the fact are ground, i.e., they do not contain variable occurrences. Independently, P. Devienne
[Dev90] has given a more general result for cycle unification problems with linear goals and facts,
i.e., each variable occurs at most once in the goal and the fact. He uses essentially the same ideas
as Schmidt-Schaufi, but a very special technique based on directed weighted graphs. Devienne's
results were used by De Schreye et al. [DVB90] to decide whether cycles admit non-terminating
queries to deductive systems. Another approach has been taken by H.J. Ohlbach [Ohl90a] who
represented sets of terms by so-called abstraction trees which may compress the search space.

4

Moreover, abstraction trees can be used to compile two-literal clauses and in certain cases a
finite abstraction tree can represent infinitely many solutions of a cycle unification problem
[OhI90b]. A further approach for unifyi ng infinite sets of terms which are encoded in so called
p-terms is described in [SaI92]. The incorporation of p-terms into logic programming allows on
the one hand infinite queries and the finite representation of infinitely many answers. On the
other hand, it avoids repeated computation and certain kinds of infinite loops , without changing
the denotational semantics of the programs.

In [BHW91] we developed the theoretical foundations for cycle unification. For various classes
of restricted cycle unification problems we showed their decidability, proved that they have
at most finitely many most general solutions and constructed an algorithm to compute this
set. The most general result concerned the class of non-recursive matching cycles Cnrm , i.e.,
cycles {L ~ R} for which there exists a substitution 0' such that 0' L = R or L = 0' Rand
f-li : x 1--+ t E ai, x E Var(t), and t :f x .2 But these were only fundamental classes of cycle
unification problems. One of the open problems was to cont rol cycles which overcome the limits
of matching cycles. In this paper we present the class of unifying cycles, i. e., cycles {L f- R}
such that Land R are unifiable. With this class we finish work on cycles whose problems
might be characterized by having always finitely many solutions.

After some preliminaries on definitions and notations we formally define cycle unification in
Section 3. The important notion of dependency graphs is introduced in Section 4. In Section 5
we define different classes of restricted cycle unification problems and show that their unification
problems are decidable, determine the unification type, and develop a unification algorithm. Our
most general result concerns the class of unifying cycles {L f- R} which is a combination of the
first three analyzed types of cycle unification problems. The paper concludes with a summary
of the results on cycle unifi cation and an outline of future work.

2 Definitions and Notations

Our definitions and notations follow those suggested in [DJ91]. Throughout this paper capital
letters such as P, Q, ... denote predicate symbols, small letters such as a, b, ... denote
constants, f , g, ... function symbols, and z, y, ... variables. A term is either a variable or
of the form f(tl,"" tn) , where t l , ... , tn are terms. s, t, ... denote terms. An atom is
of the form P(tl,"" tn). Let X be an atom or a term. Var(X) denotes the set of variables
occurring in X. X is called ground iff X does not contain any variable. X is called linear iff
every variable occurs at most once in X. By Xk we denote the syntactic object where each
variable occurring in X has the index k attached to it. t[XI,"" xnl denotes a term t such
that {Xl, ... , xn} ~ Var(t) .

A substitution is a mapping from the set of variables into the set of terms which is equal to
the identity almost everywhere. Hence, it can be represented as a finite set of pairs {Xl 1--+

t l , ... , Xn 1--+ tn}, Xi :f ti, 1 ~ i ~ n. Substitutions are denoted by small greek letters
such as 0', (), The identity subst itution is called [. at = a(t) if t is a variable and
at = f(O'tl, ... ,O'tn) if t = f(tl, ... ,tn). Vom(O') = {x I X is a variable and O'x:f x} is the
domain of 0' .

The composition aT of two substitutions 0' and T is defined by (aT)x = a(Tx). The
1'eslriction of the substitution 0' to the set V of variables is defined by O'iv x = ax if x E V

2 By u i we denote the i- fold composition of u with itself, i.e., u 1 = u and u' = u(u·- 1
) .

5

and CTlv x = x otherwise. A substitution CT is called variable-pure if {CTX I x E Vom(CT)} only
consists of variables. A renaming is a variable-pure substitution CT such that CTX = CTy implies
x = y for x, Y E Vom(CT).

If W is a set of variables, then CT = r [W] iff \:Ix E W : CTX = rx. A substitution CT is called
more general than a substitution r on W, CT::! r [W] , iff there exists a substitution p such that
pCT = r [W]. Two substitutions CT and r are called equivalent (or variants) on W, CT '" r [W] ,
iff CT ::! r [W] and r ~ CT [W]. Two substitutions CT and r are called independent on W iff
CT '!1 r [W] and r '!1 CT [W] .

cr is called a unifier for t and t' iff Vom(cr) ~ Var(t) U Var(t') and crt = crt'. A unifier

CT of t and t' is called most general unifier iff CT::! r [Var(t) U Var(t')] for all unifiers r of t
and t' . The definitions above can be extended to atoms, equations, and sets of equations in the
obvious way. For a unification algorithm we use the operations suggested in [MM82] .

3 Cycle Unification

C {L +- R} is called a cyclic theory, or cycle for short, if the atoms Land R are weakly
unifiable, i.e., there exist two substitutions CT and CT' such that CTL = CT'R [Ede85]. Let G and
F be two atoms such that Var(G) n Var(F) = 0. A cycle unification problem (G ~ F) (or
(G --"-+ F)c) is the problem whether there exists a substitution CT such that CTG is a logical
consequence of F and C. A substitution CT is a solution for the cycle unification problem if
Vom(CT) ~ Var(G) arid CTG is a logical consequence of F and C. 3

Since solutions to cycle unification problems are substitutions, the notions of more general,
independent, etc. substitutions can be extended to more general, independent, etc. solutions of
cycle unification problems in the obvious way.

As a first example consider the problem

(Pa --"-+ Pfffa){px+-P]x}'

The empty substitution E is the only most general solution for this problem. However, there
may be more than one solution as the example

(Pxy --"-+ Pab) {Pvw+-Pwv}

shows. This problem has the two independent most general solutions {x f---+ a, y f---+ b} and
{x f---+ b, y f---+ a}. But, there may be even infinitely many independent most general solutions. As
an example consider

(Px --"-+ Pa){p]y+-py}'

This problem has the most general solutions {x f---+ a}, {x f---+ fa}, {x f---+ ffa},

For a cycle unification problem (G ----"-+ F) {L+-R} to be solvable, the atoms F and G must be
of the form P(t}, ... , tn) and P(Sl, ... , sn) ,respectively. Since Land R are weakly unifiable,
their predicate symbols must also be identical, i.e., Land R must be of the form P'(ll, ... , In)
and P'(r1, ... , rn), respectively. In the sequel we will only consider cycle unification problems
of this form. Furthermore, as the case P i= P' is trivial, we assume P = P' .

3 A cycle unification problem should not be confused with a theory unification problem (G = c F) , i.e., the
problem whether there exists a substitution u such that uG =c uF [Bib87, Sti85J .

6

To solve a cycle unification problem (G -7+ F) we have to find a substitution which either
unifies G and F or unifies - viz. simultaneously unifies each equation in -

where

N = {SI ~ l~, . . . , Sn ~ l~} is the set of e!],try equations,

Y k {i. li+l i . li+l 11 < . < k} = 1'1 = 1 , . .. , l' n = n _ l _

is the set of cJ!..cle equations for k itera.tions through the cycle, and

Xk = {r~+1 ~ t l , ... , r~+1 ~ tn }

is the set of e~it equations after k iterations through the cycle.

The following proposition is an immediate consequence of the completeness and soundness of
the connection method [Bib87] or SLD-resolution, ego [Llo84].

Proposition 1 a is a solution for (G -7+ F) iff there exists a substitution () such that ()
unifies G and F and a = ()lv ar(G) or there exists a natural number k such that () unifies Ck

and a = ()lvar(G) .

Throughout the paper T will denote the most general unifier of G and F restricted to
Var(G), if it exists. Similarly, Tk will denote the most general unifier of Ck rest ricted to
Var(G) , if it exists. The solutions T k will be computed by applying the Martelli&Montanari
operations [MM82] to the set Ck

.4

Let C = (G -7+ F) be a cycle unification problem. A set E of substitutions is a complete
set of solutions for C iff each substitution in E is a solution for C and for each solution () for
C we find a substitution a in E such that a ~ ()[Var(G)]. A complete set E of solutions for
C is said to be minimal iff for all a , () E E we find that a ~ ()[Var(G)] implies a = () .

In order to be able to control a cycle, we are interested in the answer to three basic questions. Is
cycle unification decidable? How many independent most general solutions has a cycle unification
problem? Does there exist a unification algorithm which enumerates a minimal and complete
set of solutions for a cycle unification problem?

Following [SiegO], we define t he type of a cycle unification problem as follows. A cycle unifi­
cation problem is of type unitary iff there exists a single most general solution, finitary iff there
ex ist finitely many most general solutions, and infinitary iff there exist infinitely many most
general solutions.

4 Dependency Graphs

In this section we introduce the notion of dependency graphs for cycle unification problems. All
results in this paper depend on certain kinds of paths in the dependency graphs.

4We start with a set of term-equations. The following operations (in the sequel called Martelli&Montanari
operations) are exhaustively applied. Let x be a variable and t a term. If x == x occurs , it is erased. t == x is
replaced by x == t. If x == t occurs in th e set, x t is applied to all other equations (variable elimination); if
x E Var(t), then failure . If the se t contains l(t 1 ••. tn) == J'(t; . .. t~) and I #- I' then failure , otherwise replace
this equation by tl == t;, ... , tn == t~ (term reduction). A set of term-equations is in solved form if all equations
are of the form x == t. We stop with success if we obtain a solved form.

7

Consider the cycle unification problem C = (G ---'l...+ F){L+-R}' A dependency graph relates
variables occurring in the Goal G and variables of the cycle {L +- R}. First, the variables .
in G are related to the variables occurring in the first instance of the left-hand side of the
cycle, i.e., Ll. Second, the variables in the i -th instance of the right-hand side of the cycle,
i.e., R i , are related to the variables in the i + I-st instance of the left-hand side, i.e., Li+1.
Let N' and y,i be the sets which are obtained from Nand Ri == Li+1 by applying all
possible Martelli&Montanari operations, respectively, i.e., they are in solved form. The variable
dependency graph YC corresponding to C is the pair (V, E) , where

• V is a set of nodes, containing a node labeled by v for each v E Var(C) , and

• E is a set of directed edges x"-* y E E computed as follows.

1. Let u, v E Var(G) and x, y E Var(L +-R). If t[u] == t'[xl] EN' or t'[xl] == t[u] E
N' , then add the directed edge from u to x, i.e., u"-* x. If t[u] == t'[v] E N' ,
then add the undirected edge between u and v. If t[Xl] == t'[yl] E N' , then add
the undirected edge between x and y. After all edges are inserted, add the directed
edge u"-* x if x is reachable from u via directed (traverseable in both directions) or
undirected edges. Finally, delete all undirected edges.

2. Consider equations in y,i. The following cases are considered from top to bottom.

If xi == t[yi+l] E y,i and zi+l == t'[yi+l] E y,i, then add the directed edges
x "-* y an d x "-* z .
If xi == t[yi+l] E y,i and zi == t'[yi+l] E y,i, then add the directed edges x"-*y
and z"-* y .
If xi == t[yi+l] E y,i , then add the directed edge X"-* Y .

If xi+l == t[yi] E Y'i and zi+l == t'[yi] E y,i , then add the directed edges y"-* x
and y"-* z .

If xi+1 == t[yi] E Y'i and i == t'[yi] E Y'i , then add the directed edges y"-* x
and z"-* x .

If Xi+1 == t[yi] E y,i then add the directed edge y"-* x .

Since y,i is in solved form, no other cases are possible involving different superscripts.

Observe that no superscribed variables occur in the dependency graph. As an example consider
the cycle unification problem

C = (PUI U2U3U4US ---'l...+ Pababa) {Pyvywz+-Pxyvyw} .

We obtain as the most general unifier of PUIU2U3U4US and Pylvlylwlzl the substitution

because

N' = {Ul == yl, U2 == vI, U3 == yl, U4 == wI, Us == zl}.

In the first step we obtain Figure 1.

Furthermore, we obtain as the most general unifier of Pxiyiviyiwi and p yi+l V i+1 yi+l wi+1 zi+l
the substitution

8

v

Z ... c:e----- Us

Figure 1: First step of the construction of the dependency graph

because

The dependency graph YC is finished by the second step. The result is shown in Figure 2.

Figure 2: Final dependency graph

A variable u E Var(G) depends on xi, x E Var(L.-R), if

{t[u] == tdx1] or (t[u] == t~I[X~'], t~,[X~'] == t1[xm} u

{t'l j] . t [j+1] (t'[j] . I [j+1] "[j+1]. [j+1]) 11 <. '} j Xj = j+1 x j+1 or j Xj = tjl Xj' ,tjl Xj' = tj+1 x j+1 _ J < t , Xi = X

can be derived from Nand yi-1 by application of Martelli&Montanari operations. Because
of the definition there exists a directed path, i.e., a sequence of adjacent directed edges from u
to x, of length i traversed in the right direction. Similarly, yj E Var(Lj .- Rj) depends on
x j+i E Var(Lj+i .- Rj+i) if for Xi = X

{t[yj] == tdX~+1] or (t[yj] == t~l[x~;1], t'{I[xi;1] == t1[X{+1])} U

9

{tic[X{+k] == tk+dxt~~+l] or (tUxt+k] == tic/[xt;-k+l], t%/[X{;-k+l] == tk+I[X{~~+I]) 11 :s; k < i},

i.e., there exists a directed path of length i between yi and xj+i. Hence, we have a corre­
spondence between the paths of the dependency graph and the dependencies established by the
entry- and cycle-equations. We can also say that a variable u E Var(G) depends on xi if an
instantiation of xi may influence via a set of equations in some Ck the instantiation of u.

A path is a list of variables (Xl"", Xn), n 2 1, {Xl, ... , xn} ~ Var(L t- R), such that
XI"'-+ X2, ... , Xn-l "'-+ Xn is a path in the dependency graph and either no edge starts from Xn
or Xn is the first variable in (Xl, ... , xn) occurring twice. Furthermore, the first variable of a
path must be connected with a variable u E Var(G) via one directed edge. A path (Xl,"" XI)
is called linear iff Xi f:. Xj, 1:S; i,j:S; I, if:. j. A path p = (Xb""XI) contains the subpath
T = (YI, ... , Ym) iff there exists an i 2 1 and an j :s; I such that T = (Xi, ... , Xj). A path
T = (Xl, ... , XI) is called a (cyclic) permutation iff (Xl, .. " XI-I) is linear and Xl = XI A path
(Xl, .. "XI) is called a (cyclic) permutation with linear entry-path iff (Xl, ... ,XI-I) is linear and
there exists an j, 1 < j < I, such that XI = Xj. It is obvious that a permutation with linear
entry-path (XI, ... ,XI, ... ,XI+k,XI) can be divided into the linear entry-path (XI, ... ,XI) and
the permutation (XI, ... , xIH, XI) . X is called a branching-point if more than one directed edges
start from x. Finally, a path (Xl"'" XI) is of length I, Xl is called the starting-point and XI
is called the end-point of the path.

The cycle unification problem

depicted in Figure 2 defines the permutation

(y,v,y)

and the linear paths
(v,y,w,z), (y,w,z), (w,z), and (z).

One should observe that the dependency graph contains a cycle iff {L t- R} defines a permu­
tation. Furthermore, for a path (Xl"", Xn) one should observe that the superscribed variable
x; depends on the superscribed variable x~+n-l .

A similar approach with so called argument/variable graphs was undertaken by J. Naughton
[Nau89] and with connection graphs by Wei et al. [WLH91]. Both works were settled in the field
of deductive databases. They considered a set of facts and introduced non-recursive predicates,
i.e., others than the cycle predicates. They disallowed, however, multiple occurrences of variables
in the cycle and needed not to consider function-symbols. Thus, these approaches are too weak
for cycle unification .

5 Unifying Cycles (eu)

In this section we show for certain kinds of subclasses of Cu their decidability, determine the
unification type and develop a unification algorithm. These classes show characteristics which
can be generalized for the class Cu of unifying cycles.

A variable X is called recursive iff it is possible to derive from L == R with Martelli&Mon­
tanari operations an equation of the form X == t such that X E Var(t) and t f:. x. Therefore,

10

if the Martelli&Montanari algorithm runs into an occur-check failure, we know that the cycle
contains a recursive variable. As an example consider the cycle {Pfx +- Px}. Obviously, the
variable x is recursive. Embedded in the cycle unfication problem (Py -"-+ Pa){pjx+-Px} we
obtain the independent most general solutions {yt-+a}, {yt-+fa}, {yt-+ffa}, ... , i.e., infinitely
many. This is one of the reasons why we exclude recursive variables. A cycle unification problem
(G -"-+ F){L+-R} is called unifying iff Land R are unifiable, i.e., the cycle contains no recursive
variables.

5.1 Linear Paths (C lp)

We recall that a path (XI, .•. ,XI) is called linear iff Xi =I Xj, 1::; i,j::; l, i =I j. A cycle
unification problem (G -"-+ F) {L+-R) is in the class Clp, if the corresponding dependency graph
defines only linear paths. Let (Xl ,i, .. . , Xli ,i), 1 ::; i ::; n, be the n defined linear paths.
Furthermore, let m = max(l] , .. . , In) where max denotes the maximum-predicate.

Proposition 2 Let (G -"-+ F) {L+-R} E Clp and m be defined as above. Then, for the most
general solutions

holds.

Proof: After m - 1 iterations through the cycle every variable occurring in G either does not
depend on a variable at all or it depends on a variable xl i' 1 ::; i ::; n, 1 ::; j ::; m. Because
the variables Xli,i, 1 ::; i ::; n, are end-points of linear paths, they do not depend on any other
variable. Hence, further iterations through the cycle do not contribute to further solutions. qed

Proposition 2 states that only the first m - 1 iterations through the cycle contribute to a
possible solution of a cycle unification problem defining linear paths. We conclude that for cycle
unification problems defining linear paths and m defined as above, we have only to consider
T , i.e., the restriction of the most general unifier of G and F to Var(G) , if it exists, and the
first m - 1 iterations through the cycle to obtain all possible most general solutions for a cycle
unification problem in the class Clp . Conversely, if neither G and F are unifiable nor any of
the sets Ci

, 0 ::; i < m, is solvable, then the cycle unification problem is unsolvable.

As an example consider t he cycle unification problem

(Pu] U2U3U4 -"-+ Paafv'/c){p jy,zvw+-Pxxjy,v).

The corresponding dependency graph is depicted in Figure 3.

Figure 3:

:r ~y ~v ... w

~ t t t
U2 "'z Ul U3 U4

We obtain the linear paths
(y, v, w), (z), (v, w), (w)

11

such that m = max(3, 1, 2, 1) = 3. If we solve

CO = { PUlU2 U3U4 == Pfyl,zlvlwl, Pxlxlfy\vl == Paafb,fe},

we obtain the solution

Solving

yields

TO = {Ull-+ jb, U3 1-+ je}.

PUI U2 U3U4 == P fyI, zlvlwl , pXlXl fyI, vI == P fy2, z 2v2w 2, }
Px 2x 2 fy2, v2 == Paafb,fe

Tl = {Ul 1-+ je }.

If we iterate once more through the cycle, we obtain from solving

the solution

PUI U2 U3U4 == P fyI, zlvlwl , PxlXl fyI, vI == P fy2, z 2v2w 2, }
Px 2x 2 fy2,v 2 == Pfy3,z3v3w3, Px3x3f y3,v3 == Paafb,fe

T2 = {Ull-+ fyl}.

Because yl depends on w3 , which does not occur in the right-hand side of the cycle {Pjy}zvw +­

Pxxfy, v} , no further iterations through the cycle contribute new solutions, i.e., T2 = Tj, j > 2.

5.2 Permutations (Cp)

We recall that a path (XI, •.. , XI) is a permutation iff (XI, ..• , XI-I) is linear and Xl = XI.

A cycle unification problem (G ~ F){L+-R} is in the class Cp if the corresponding depen­
dency graph defines only permutations. Let (Xl ,i,"" Xki,i, XI,i), 1 ::; i ::; n, be the n defined
permutations. Furthermore, let N = lcm(k l , ... , kn) where lcm denotes the least common
multiple.s

Proposition 3 Let (G ~ F){L+-R} E Cp and N be defined as above. Then,

Tj ~ Tj+i.N, j ;::: 0, i > O.

Proof: Assume Tj and Tj+i .N to exist. First, we associate with each variable X occurring in a
permutation precisely one permutation such that (x) is a subpath of it. We assume (x) to be
contained in the permutation (Xl"' " x p , Xl) . Hence, x j+l depends on xj+l+p , x j+1+2'p ,

Because Vj3l : l . k j = N, x j+l depends also on xj+l+i.N and N is by definition the least
number for which this is true for all variables.
For computing a solution Tj we have to solve cj = N u yj u X j . A subpath (x, y) of the
permutation (Xl"", x P' Xl) is defined by the following sets of equations:

{xi == yi+l} or {yi+l == xi} or {x i == t, yi+l == t}

such that the last set is equivalent to {xi == yi+l, xi == t}. This holds because the cycle is non­
recursive. The sets above can be derived from the cycle-equations yi. Therefore, we obtain the
chain of equations

j+l...:... j+2 j+2...:... j+3 j+i·N...:... j+l+i·N
X - YI , YI - Y2 , ... , Yi .N-l - X

5Because the permutations (XI, . .. , XI), (X2 , ... , XI)' ... , (XI, ... , XI-I) are defined by the same path in the
dependency graph, we will not distinguish between them.

12

if we follow the permutation-path associated with x. So, x j +! is not only depending on
x j+1+i.N but they must be equal, i.e.,

which is yielded by i · N - 1 variable-elimination steps.
Let U E Var(G) . U depends on some variables z{+l, .. . , z~+l such that x E {Z{+l, ... , z~+l} .
For all z{+l, ... , z~+l the following holds.
Assume slv = f(...) for an occurrence6 v where UI-+S E Ij. Observe that f(...) represents a
constant if the arity of f is O. From x j+1 == x j+1+i.N (which is equivalent to x j+1+i .N == x j+1

)

and from t' [x j+1+i.N] == t (which is obtained from the set of equations {Rj+1+i.N == F}) it
follows by variable-eliminat ion that

t' [x j+1
] == t

is implied by Cj+i .N . On the other hand, we obtain t'[xj+!] == t from {Rj+l == F} of Cj

as well. Hence, we also obtain siv = f(...) if we compute the solution 'j+i.N for Cj+i.N . .

Because no further operations which are caused by remaining equations in Cj+i .N can make the
function-symbol f dissappear. Thus, the topmost function-symbol of slv must be equal for j
and j + i . N iterations through t he cycle.
On the other hand, assume U not to be instantiated or slv E VaT for j iterations . Because
in Cj +i .N we have more equations than in Cj , the value of U after j iterations must be more
general than that for j + i . N iterations if 'j+i .N exists .
This argumentation holds for each z!+l , 1 ~ i ~ n, such that U depends on it. The solutions are
related by ~ and not by = because they are variants of each other (observe the variable-chain
of the permutation-variables). qed

One should observe that the existence of Ij does not imply the existence of 'j+i .N , e.g. for
intertwined permutations like the second example below. But it is easy to see that the non­
existence of Ij implies the non-existence of 'j+i .N. Proposition 3 expresses that we only have
to consider the unifier of G and F restricted to Var(G) , if it exists, and the first N - 1
iterations through the cycle to obtain all possible most general solutions for a cycle unification
problem in the class of permutations .

As an example for a cycle unification problem in Cp consider

which defines the dependency graph of F igure 4.

The dependency graph defines the two permutations

(x , y, x) and (x, v, x)

such that N = lcm(2, 2) = 2. Considering one instance of the cycle and solving

yields

6 An occurrence is a list of natural numbers or A. Let t be a term. tl>. = t . If t = 1(t1, ... , tn) and v IS an
occurrence in ti, then tli .v = ti Iv .

13

Figure 4:

From

we obtain the solution

If we iterate once more, we have to solve

which results again in TO which also implies that TO ~ T2 .

A slight variation of the example above is the cycle unification problem

where we have replaced the fact Pabab with Pabac. If we want to solve

Xl has to be bound simultaneously to band c such that neither Tl nor T2 exists.

As another example consider the cycle unification problem

which defines the dependency graph depicted in Figure 5.

Figure 5:

~~
W E v ""'E;---- X ----;~~ y

t t /\ t
Us

14

We obtain N = lcm(2, 3) = 6. Solving

yields the solution

and solving CS yields the solution

This confirms that TO ~ TS. But we also observe that it is not necessary to consider the fourth
and fifth iteration at all. This holds because after already 3 iterations all variables in the goal
PUI U2U3U4US are instantiated with fa. Consider the variable xl. For 2 and 3 iterations we
obtain xl == x 3 and xl == x4, respectively. On the other hand, we obtain for x2 after 2
iterations x2 == x4. Hence, the chai n Xl == x2, X2 == x3, x3 == X4 holds. Because all variables
in the first instance depend on some xi, 1 ::; i ::; 4, only 3 iterations are necessary since all
further iterations do not change the solution. Let L = {PI, ... , Pn} be the lengths of the
defined permutations minus 1. For cycles with gCd(PI' ... , Pnf = 1 and a dependency graph
consisting of precisely one connected component we are looking for the least number m such
that

u v

Vj, 1::; j::; m,:Ju: (j = Lik·Plk, ik E {-l, I}, Plk E LAVv,l::; v::; u: 0::; Lik·Plk ::; m).
k=l k=l

Thus, we get a refinement of the upper limit of iterations we have to consider. ·

5.3 Permutations with Linear Entry-Path (Cplp)

We recall that a path (Xl, ... , XI) is a permutation with linear entry-path iff (Xl,·.·, XI-I)

is linear and there exists an j, 1 < j < I, such that XI = Xj. A cycle unification problem
(G ~ F){L+-R} is in the class Cpl p if the corresponding dependency graph defines only paths
which are permutations with linear entry-path or which are a subpath of a permutation with lin­
ear entry-path. Let (XI,i, ... , XI"i,.'.' Xli+k"i, XI"i), 1 ::; i ::; n, be the n defined permutations
with linear entry-path. Furthermore, let m = max(ll, ... , in) and N = lcm(kl' ... , kn).

Proposition 4 Let (G ~ F){L+-R} E Cpl p ! m and N be defined as above. Then,

Tm -1+i ~ Tm -l+i+k.N, i ?: 0, k > o.

Proof: It is a straightforward conclusion from the structure of the dependency graph that after
m - 1 iterations through t he cycle all variables u E Var(G) depend either on no variable at
all or on variables xm which are contained in the permutation-parts of the permutations with
linear entry-path. After m - 1 + i iterations through the cycle all u E Var(G) depend either
on no variable at all or on variables ym+i such that y is contained in a permutation-part. Now
we apply the same argumentation as in the proof of Proposition 3. qed

Proposition 4 tells us that we only have to consider the unifier of G and F restricted to the
variables occurring in G, if it exists, and the first m + N - 2 iterations through the cycle to
obtain all possible most general solutions for a cycle unification problem in the class Cpl p .

7 gcd denotes the greatest common divisor.

15

As an example consider the cycle unfication problem

The problem defines the dependency graph illustrated in Figure 6.

Figure 6:

Ul U2 U4

t \1
w > x >y > Z II(U3

"--/

The dependency graph defines the permutation with linear entry-path

(x, y, z, y).

We conclude N = 2 from the permutation-part (y, z, y) and m = 2 from the linear entry­
path (x, y) , which are defined by the cycle {Pxyfz,fy +-- Pwxfy,fz}. Therefore, we conclude by
Proposition 4 that

-
As an example we compute T3 from

c3
= {

We obtain

From solving

PVIV2V3V4 == PX1ylfzl,fyl, Pw1x1fy\fzl == Px2y2fz2,fy2, }
Pw2x 2fy2,fz2 == Px3y3fz3,fy3, Pw3x3f y3,fz3 == Px4y4fz\fy\ .

Pw4x4f y4,fz4 == Pabfc,u

PVIV2V3V4 == Px1ylfz\fy\ Pw1x1fy\fzl == Px 2y2fz2,fy2, }
Pw2x 2fy2,fz2 == Pabfc,u

we obtain the solution

Hence, Tl ~ T3 holds.

5.4 Unifying Cycles (eu)

Unifying cycles consist of a combination of linear paths, permutations and permutations with
linear entry-path where each variable can be a starting-point of certain kinds of paths. We
assume the unifying cycle to contain p permutations

16

pl restricted permutations with linear entry-path

(YI,i,' .. , YI; ,i, YI;+I,i , · .. , YI;+n;,i, YI;+I,i), 1 SiS pl,

such that no subpath is a subpath of a permutation except the permutation-part of the path
itself, and l restricted linear paths

(ZIi" " ,ZI-' .),1 S i::; l,
I .,t

such that no subpath is a subpath of a permutation. Let m = max(l, 11, ... , lpl' 11 , ... , 11)

and N = lcm(l, mI, ... , m p, nl, ... , npl)' Herein, 1 is needed if there are no linear paths
and no permutations at all , respectively. We use the abbreviations

Perm j ~ {xL, ... , x:.n;,i 11 SiS p}

and
L · j {j j } zn = z[, ... , z[I .

) ,1 I,

Perm and Lin denote the sets of variables without superscribed indices. Therefore, Perm
contains only variables which occur in permutations and Lin contains only the end-points of
the restricted linear paths. Observe that all permutation-parts of permutations with linear
entry-path are contained in the set of permutations.

Proposition 5 Let (G -"--> F){L _ R) E Cu , m and N be defined as above. Then ,

Tm -Hk ~ Tm -Hk+j ·N, k 2 0,) > o.

Proof: Due to better readability we only prove Tm-l ~ Tm-Hj.N. The whole proof of Propo­
sition 5 is established with the addition of one more superscribed index.
Assume Tm-l and Tm-Hj.N to exist. First we associate with each variable x E Perm pre­
cisely one permutation such that (x) is a subpath of it. We assume (x) to be contained in the
associated permutation (Yl,"" YI, Yl)' Let u E V ar(G) .
First, we consider m - 1 iterations through the cycle. Assume that u depends on a variable
yj E Linj ,) sm. Hence, all further iterations leave the value of yj invariant because y

depends on no other variable since it is an end-point.
On the other hand, assume that u depends the first time on a variable xi , ism, where
x E Perm. Because of the definition of m, every path starting in u must end in an end-point
y E Lin or reach such an x E Perm in the first m - 1 iterations. Assume xi to depend on
yj;l, 1 S)1 ::; l. If there is a branching in the path of the permutation (or at x itself), this

cannot be caused by a derived equation of the form zi == t such that t is no variable because
of the non-recursiveness of the cycle {L f- R} .
For computing a solution Tj we have to solve Cj = N u yj u X j . A subpath (x, y) of the

permutation (Xl,"" x p , Xl) is defined by the following sets of equations in y,i:

{xi == yi+l} or {yi+l == xi} or {xi == t, y i+l == t}

such that the last set is equ ivalent to {xi == yi+l, xi == t}. This holds because the cycle is nOll­
recursive. The sets above can be derived from the cycle-equations yi. Therefore, we obtain
after m - 1 iterations through the cycle the chain of equations

... ,

17

if we follow the permutation-path associated with x. Hence, it follows from this chain that

holds. Furthermore, x' may depend on some other variables zr,
Figure 7.8

Figure 7:

... , z;;' . This is depicted in

In combination with the set of equations {Rm == F} of em-I, these dependencies establish a
set of dependencies for xi. On the other hand, we know from the proof of Proposition 3 that
after m - 1 + j . N iterations

m . m+j·N
Ym-i = Ym-i

holds. Since (x) is a subpath of (Yl,"" YI, Yl) , there must exist a p such that m - i is equal
to .m + j . N - p (cf. Figure 8). From m - i = m + j . N - p we conclude that p = j . N + i
holds. It follows from the underlying chain of equations that

h ld F th j·N+i d d m+j·N m+j·N h tl o s. ur ermore, x epen s on zl , ... , zn were Zl, ... , Zn are Ie same
variables as for m - 1 iterations. In combination with the set of equations {Rm+j .N == F}
of em-l+j .N results the same set of dependencies for m - 1 + j . N iterations as for m - 1
iterations. This is depicted in Figure 8,9

This argumentation holds for all xi such that (x) is contained in a permutation. Now we
consider again the cases where slv = f(...), u is not instantiated or slv E VaT for u f--+ s E
Tm-l' The proof is established analogously to the proof of Proposition 3. qed

Proposition 5 tells us that we only have to consider the unifier of G and F restricted to
Var(G) , if it exists, and the first m + N - 2 iterations through the cycle to obtain all possible
most general solutions for a cycle unification problem in the class eu ' Conversely, if neither G
and F are unifiable nor anyone of the sets ei , 0 ::; i ::; m+N -2, is solvable, then the cycle
unification problem is unsolvable. One should observe that this result subsumes the result of
linear paths (where N = 1), of permutations (where m = 1) and of permutations with linear
entry-path. Observe that the existence of Tm-l+k does not imply the existence of Tm-l+k+j .N .

But if Tm-l+k does not exist, Tm-l+k+j .N does not exist as well.

8 Here and in Figure 8 the directed edges denote a path of adjacent directed edges in the origina.l dependency
graph where the inner nodes are omitted due to better readability.

90bserve that x)·N+i need not to be on the pa.th between Y';'m-i and Y';m+.!;N .

18

Figure 8:

As an example we resume the example of Section 4, i.e., we consider the cycle unification
problem

(PUl U2 'U3U4'lLS -a..... Pababa) {pY1Jywz<-PxY1JYw} .

The dependency graph of Figu re 9 defines the restricted linear paths

(w, z) and (z)

and the permutation
(y, v, V).

Figure 9:

U4 -------,; ... ~ W ----; ... ~ Z E=-------- Us

Here we see why we must restrict the definition of linear paths. With the former definition we
would also have to consider the paths (v, y, w, z) and (y, w, z) . But they contain variables (v
and y) which are already subpaths of permutations. Hence, they must not contribute to m.
Therefore, we compute m = max(l, 2, 1) = 2 and N = lcm(l, 2) = 2 such that m+N -2 = 2.
In order to compute the solution for 1 iteration through the cycle we have to solve

C1 = { PUIU2U3'lJ'4US == pylvlylwlzl, Pxly1v1y1w1 == py2v2y2w2z2, }
Px2y2v2y2w2 == Pababa

19

which results in

If we solve

c3
= {

we obtain

PUIU2U3U4US == Pylvlylwlzl, Pxly1v1y1w1 == py2v2y2w2z2, }
Px2y2v2y2W2 == p y3v3y3w3 Z3, Px3y3v3y3w3 == py4v4y4w4 Z4,

Px4y4v4y4w4 == Pababa

i.e., Tl again which is implied by Proposition 5.

Let (G --A-+ F){L R} be a cycle unification problem in the class Cu' The following steps
define a cycle unification algorithm for unifying cycles with the help of the previous propositions.
Algorithms for Cip, C p , and Cpip are special cases.

Unification Algorithm for Cu

1. If G and F are unifiable, then compute T as the most general
unifier for G and F restricted to the variables in G.

2. Compute the dependency graph for (G --A-+ F){L R}.

3. If (G --A-+ F){L R} E Cu , then compute the lengths it, ... , li
of all defined restricted linear paths/linear entry-paths and the
lengths m1, .. . , mj of all defined permutations. Let m
max(l, ll' ... , li) and N = lcm(l, ml - 1, ... , mj - 1).

4. If Ck is solvable, then compute Tk as the most general unifier for
Ck

, restricted to the variables occurring in G , 0 ~ k ~ m + N - 2.

5. Let E be the set of solutions obtained in steps (1) and (4). If
E = 0, the problem is unsolvable. Otherwise, iteratively eliminate
a substitution Q if the current set of solutions contains another
substitution 0 with 0 ~ Q [Var(G)]. The obtained set is a minimal
and complete set of solutions for the cycle unification problem
(G --A-+ F){L R}.

As an example we resume our example from above . An application of the algorithm yields the
following results.

2. The dependency graph is depicted in Figure 2.

3. The dependency graph defines the restricted linear paths (w, z) and (z) and the permu­
tation (y, v, y) . Therefore, m = 2 and N = 2.

20

Class Decidabili ty Type Algorithm References

C open infinitary open

CI decidable infinitary open [Dev90]
Cg decidable unitary yes [SS88]
Cm open infinitary open

Cnrm decidable finitary yes [BHW91]
Cu decidable finitary yes in this paper

Table 1: Properties of cycle unification classes

4. TO = {ul~b, u2~a, 'u3~b, u4~a}, T1 = {u1~a, u2~b, u3~a}, T2 = { 'Ul~
b, U2 ~ a, U3 ~ b} are the most general solutions obtained by solving Co, C1 , and C2 ,

respecti vely.

5. We obtain the set {T1, T2} as a minimal and complete set of solutions.

The following theorem follows immediately from the previous results. Observe that Theorem 6
holds for Clp, Cp, and Cplp as well because they are subsets of Cu.

Theorem 6 Let C be a unifying cycle.

(i) (G ~ F) is decidable.

(ii) (G -"--+
C F) is finitary .

(iii) There exists an algorithm computing a minimal and complete set of solutions for (G ~ F).

6 Summary and Future Work

In this paper we firstly defined cycle unification. We then restricted our attention to the class
Cu which denotes the class of cycle unification problems defining unifying cycles, i.e., cycles
{L <-- R} for which Land R are unifiable. By considering several subclasses of Cu , leading in
combination to the results for Cu , we have extended known work.

Table 1 gives an overview of our results as well as of previous work. In each row we state
the decidability and the unification type for a particular class of cycle unification problems,
indicate whether there exists an algorithm to compute a minimal and complete set of solutions
and provide the reference if there exists one. C denotes the class of unrestricted cycle unification
problems. In CI and Cg goals and facts are restricted to be linear and ground, respectively. Cm

contains only matching cycles {L <-- R} such that there exists a substitution a and a L = R or
L = aR. Cnrm contains only non- recursive matching cycles {L+-R}, i.e., the cycle is matching
and f-3i : x ~ t E ai, x E Var(t), and t f:. x. The various classes are related as shown in
Figure 10.

Our most general result concerns the class of unifying cycles. For this class we have shown
that we only have to consider fin itely many iterations through the cycle to obtain a minimal
and complete set of solutions. Furthermore, we have presented an algorithm for computing
the maximal number of necessary iterations to obtain this set. This enables us to efficiently

21

C Cm

Cu Cnrm

CI

ICg I
Figure 10: The relation between the classes C, CI, Cg , Cm , Cnrm ' and Cu.

control the deductive process without losing completeness. Thus, we have finished the basic
research for cycle unification problems which are non-recursive. For future work on these classes
we are interested in refinements for the upper bound of iterations through the cycle. A first
approach has been shown at the end of Section 5.2 for intertwined permutations. Further basic
research has to consider the case of recursive cycles, i.e., cycles which can admit infinitely many
independent solutions.

One of the major open problems in our restricted context is the question whether C is decid­
able. CI and Cu are decidable. However, there are several results which point into the opposite
direction for the case of C. In [Dau88J it is shown that the termination of a one rule term
rewriting system, where rewriting may occur at proper subterms, is undecidable. Similarly, we
know from [SS88J that the class of Horn clauses consisting of two clauses of the form L;- R
and two ground unit clauses is undecidable. It is, however, not obvious, how these results could
be adapted to cycle unification problems.

In the future we intend to develop heuristics to control further classes of cycle unification
problems. We are looking for a wellfounded ordering based on a measure of complexity for
instances of the cycle in order to apply an idea similar to the one contained in [SS88]. Certain
cycles {L;- R} cause some of the terms occurring in Land R to grow or shrink monotonically
in each iteration of the cycle. If there were an upper bound for these terms defined by G
or F, then one would be able to decide the cycle unification problem (G --"-+ F) {L+-R}. For
illustration of this idea consider the cycle unification problem

(Pjfx,x --"-+ Pufu){Pfffy,fz+-PfY,z).

The i-th instance of the right-hand side of the cycle {PjffyJz ~- Pfy,z} is matched against the
i + I-st instance of the left-hand side by (Ji = {yi == jfyi+l, zi == f z i+l}. We observe that the
depth of y and z decreases with each iteration through the cycle. The goal and the fact define
upper bounds because of their non-linearity which correlates y and z. In [BHW91] we have
exploited this insight for the computation of the number k of iterations through the cycle to
obtain a solution. For the example above we obtain k = 2 and the solution T2 = {x I-t f5 y3}.
Under some circumstances, those problems can be solved with a technique called meta-unifying
which is described in [SaI92J. We expect other useful heuristics to exist.

Acknowledgement: I would like to thank Wolfgang Bibel, Gerd GroBe and Steffen Holldobler
at the Technische Hochschule Darmstadt for their valuable comments on this paper. The work
was partially supported by the ESPRIT-project MEDLAR and the Stadt Dreieich.

22

References

[BHW91] W. Bibel, S. Holldobler, and J. Wurtz. Cycle unification. Forschungsbericht AIDA-
91-15, TH Darmstadt, August 1991.

[Bib87] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, 2 edition,
1987.

[Bib88] W. Bibel. Advanced topics in automated deduction. In R. Nossum, editor, Funda­
mentals of AI II. Springer Verlag, 1988.

[Dau88] M. Dauchet. Termination of rewriting is undecidable in the one- rule case. In Mathe­
matical Foundations of Computer Science, pages 262- 270. LNCS 324, 1988.

[Dev90] P. Devienne. Weighted graphs: A tool for studying the halting problem and time
complexity in term rewriting systems and logic programming. Journal of The01,etical
Computer Science, 75:157- 215, 1990.

[DJ91] N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. In EATACS Bulletin,
pages 162- 172,1991.

[DVB89] D. De Schreye, K. Verschaetse, and M. Bruynooghe. On the existence of non­
terminating queries for a restr icted class of Prolog- clauses . Artificial Int elligence,
41:237- 248, 1989 .

[DVB90] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique for de­
tecting non- terminating queries for a restricted class of horn clauses, using directed,
weighted graphs. In Proceedings of the International Conference on Logic Program­
ming, pages 649- 663, 1990 .

. [Ede85] E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computa­
tion, 1:31- 46, 1985.

[Fut88] Y. Futamura. Program evaluation and generalized partial computation. In Pr'oceed­
ings of the Inter'national Conference on Fifth Generation Computer Systems, pages
685- 692, 1988.

[11084] J.W. Lloyd. Foundations of Logic Programming. Symbolic Computation - Artificial
Intelligence. Springer-Verlag, 2 edition, 1984.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. A CM TOPLAS,
4(2):258- 282,1982.

[MN83] J. Minker and J.M . Nicolas. On recursive axioms in deductive databases. Information
Systems, 8(1):1- 13 , 1983.

[Nau89] J .F. Naughton. Data independent recursion in deductive databases. In Journal of
Computer and System Sciences , pages 259- 289, 1989.

[OhI90a] H.J. Ohlbach. Abstraction tree indexing for terms. In Proceedings of the European
Conference on Artificial Intelligence, 1990.

[OhI90b] H.J. Ohlbach. Compilation of recursive two- literal clauses into unification algorithms.
In Proceedings of the AIMSA, 1990.

23

[OW84] H.J. Ohlbach and G. Wrightson. Solving a problem in relevance logic with an auto­
mated theorem prover. In Proceedings of the Conference on A utomated Deduction,
pages 496-508, 1984.

[Pfe88] F. Pfenning. Single axioms in the implicational propositional calculus. In Proceed­
ings of the Conference on Automated Deduction, pages 710-713. Lecture Notes in
Computer Science, Springer, 1988.

[Plii90] L. Pliimer. Termination Proofs for Logic Programs, volume 446 of Lecture Notes in
Computer Science, Springer. Springer, 1990.

[Rob65] J.A. Robinson. A machine- oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23- 41,1965.

[SaI92] G. Salzer. The unification of infinite sets of terms and its applications. Technical
report, Technische Universitat Wien, 1992.

[SGG86] D.E. Smith, M.R. Genesereth, and M.L. Ginsberg. Controlling recursive inference.

[Sie90]

[SS88]

[Sti8~]

Artificial Intelligence, 30:343- 389, 1986.

J. Siekmann. An introduction to unification theory. In R. B. Banerji, editor, Formal
Techniques in Artificial Intelligence, pages 369- 424, 1990.

M. Schmidt-Schaufi . Implication of clauses is undecidable. Journal of Theoretical
Computer Science, 59:287- 296, 1988.

M.E. Stickel. Automated deduction by theory resolution . Journal of Automated
Reasoning, 1:333- 355, 1985.

[UvG88] J.D . Ullman and A. van Gelder. Efficient tests for top-down termination of logical
rules. Journal of the ACM, 35(2):345- 373, 1988.

[Vie87] L. Vieille. Recursive query processing: The power of logic. Technical report, ECRC,
1987.

[WLH91] S.S. Wei, W. Lu, and I.M. Hsu. Using multiple query optimization technique to min­
imize relation searches in processing bounded recursion. In International Symposium
on A rtificial Intelligence, pages 143- 149, 1991.

24

Deutsches
Forschungszentrum
far KOnstliche
Intelilgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentl ichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die BerichLe werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-08
Wolfgang Wahlster, Elisabeth Andre,
Som Bandyopadhyay, Winfried Graf, Thomas Rist:
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-Jurgen Burckert, Jurgen Muller,
Achim Schupeta : RA TMAN and its Relation to
Other Multi-Agent Testbeds
31 pages

RR-91-10
Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel : Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron, John Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer, Jargen Muller: A Two Level
Representation for Spatial Relations, Part I
27 pages

DFK.I
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of all
pubJisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-15
Bernhard Nebel, Gert Smolka:
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel, Nelson M. Mal/os:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
John Nerbonne, Klaus Netter, Abdel Kader Diagne,
Ludwig Dickmann, Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: Akquisition und
Repr~sentation von technischem Wissen flir
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M . Bauer. S. Biundo. D. Dengler. M. Hecking.
J. Koehler. G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi. H. Boley. Ph. Hanschke.
K. Hinkelmann. Ch . Klauck. O. Kuhn.
R. Legleitner. M. Meyer. M . M. Richter.
F. Schmalhofer. G. Schmidt. W. Sommer :
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. Harald Trost. Hans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit : Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger. John Nerbonne :
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-V. Krieger. 1. Nerbonne :
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen. Lutz Euler. Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader. Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
Winfried Grat. Wolfgang Maaj3: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner NUll : Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bleisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg:
DODA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison toDATR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf. Markus A. Thies:
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seiten

RR·92·11
Susane Biundo. Dietmar Dengler. lana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR·92·13
Markus A. Thies. Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsoberflachen
13 Seiten

RR·92·14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle . Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. Frank Berger

22 pages

RR·92·15
Winfried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR·92·17
Hassan Aii-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR·92·18
John Nerbonne : Constraint-Based Semantics
21 pages

RR·92·19
Ralf Legleitner. Ansgar Bernardi. Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR·92·20
John Nerbonne: Representing Grammar. Meaning
and Knowledge
18 pages

RR·92·22
Jorg Wurtz: Unifying Cycles
24 pages

DFKI Technical Memos

TM·91·05
Jay C. Weber. Andreas Dengel. Rainer Bieisinger:
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM·91·06
lohannes Stein: Aspects of Cooperating Agents
22 pages

TM·91·08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM·91·09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM·91·10
Bela Buschauer. Peter Poller. Anne Schauder. Karin
Harbusch: Tree Adjoining Grammars mit
Unifikation
149 pages

TM·91·11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM·91·12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zurFeature-Erkennung in CAD/CAM
33 Seiten

TM·91·13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM·91·14
Rainer Bieisinger. Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM·91·15
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation
28 pages

TM·92·01
Lijuan Zhang:
Entwurf und Implementierung eines Compilers zur
Transformation von Werkstiickreprasentationen
34 Seiten

DFKI Documents

D·91·07
Ansgar Bernardi. Christoph Klauck. Raif Legleitner
TEC-REP: Reprasentation von Geometrie- und
Technologieinformationen
70 Seiten

D-9l-08
Thomas Krause: Globale DatenfluBanalyse und
horizon tale Compilation der relational-funktionalen
Sprache RELFUN
137 Seiten

D-91-09
David Powers. Lary Reeker (Eds.):
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10
Donald R. Steiner. lurgen Muller (Eds.) :
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of25 DM (or 15 US-$).

D-91-11
Thilo C. Horstmann:Di sLributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann:
Hieracon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christof Peltason.

Kai von Luck
131 pages

D-91-14
Erich Achilles. Bernhard Ilollunder. Armin Laux.
lorg-Peter Mohren: 'XJ<!5 : ~owledge
~presentation and Inference System
- Benutzerhandbuch -
28 Seiten

D-91-15
Harold Boley. Philipp Hanschke . Martin Harm.
Knut Hinkelmann. Thomas Labisch. Manfred
Meyer. lorg Muller. Thomas Oltzen. Michael
Sintek. Werner Stein. Frank Steinle:
.uCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

D-91-16
lorg Thoben. Franz Schmalhofer. Thomas Reinartz:
Wiederholungs-. Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile
134 Seiten

D-91-17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung ffir die Abeitsplanung
86 Seiten

D·91·18
Thomas Reinartz: Definition von ProblemIdassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seiten

D-91-19
Peter Wazinski: Objektlokalisation in graphischen
Darstellungen
110 Seiten

D-92-01
Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - Benutzeranleitung
50 Seiten

D-92-02
Wolfgang MaafJ: Constraint-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout­
Managers in WIP
111 Seiten

D-92-03
Wolfgan MaafJ. Thomas Schiffmann. Dudung
Soetopo. Winfried Graf: LA YLAB: Ein System zur
automatischen Plazierung von Text-Bild­
Kombinationen in multimodalen Dokumenten
41 Seiten

D-92-06
Hans Werner Hoper: Systematik zur Beschreibung
von Werkstucken in der Terminologie der
Featuresprache
392 Seiten

D-92-08
lochen Heinsohn. Bernhard Hol/under (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D-92-09
Gernod P. Laufkotter: ImplementierungsmOglich­
keiten der integrativen Wissensakquisitionsmethode
des ARC-TEC-Projektes
86 Seiten

D-92-15
DFKI Wissenschaftlich-Technischer lahresbericht
1991
130 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

o
'<
(")

CD
tn

