
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-03

A Calculus for Higher-order
Concurrent Constraint Programming

with Deep Guards

Gert Smolka

February 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum
für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-
profit organization which was founded in 1988. The shareholder companies are Atlas
Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-
Kienzle, Sema Group, and Siemens. Research projects conducted at the DFKI are funded
by the German Ministry for Research and Technology, by the shareholder companies, or
by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence
and other related subfields of computer science. The overall goal is to construct systems
with technical knowledge and common sense which - by using AI methods - implement
a problem solution for a selected application area. Currently, there are the following
research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Computer Linguistics
Programming Systems
Deduction and Multiagent Systems
Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community.
There exist many contacts to domestic and foreign research institutions, both in academy
and industry. The DFKI hosts technology transfer workshops for shareholders and other
interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI
researchers from Germany and from all over the world. The goal is to have a staff of
about 100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

A Calculus for Higher-order
Concurrent Constraint Programming
with Deep Guards

Gert Smolka

DFKI-RR-94-03

This work has been supported ba a grant from The Federal Ministry for
Research and Technology (FKZ ITWM-9105), the Esprit Project ACCLAIM
(PE 7195), and the Esprit Working Group CCL (EP 6028).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1994

This work may not be copied or reproduced in whole of part for any commercial purpose. Per-
mission to copy in whole or part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice
that such copying is by permission of the Deutsche Forschungszentrum für Künstliche Intelligenz,
Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors and individual
contributors to the work; all applicable portions of this copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a licence with payment of fee to Deutsches
Forschungszentrum für Künstliche Intelligenz.

A Calculus for Higher�order

Concurrent Constraint Programming

with Deep Guards

Gert Smolka

German Research Center for Arti�cial Intelligence �DFKI�

Stuhlsatzenhausweg �� D���	
� Saarbr�ucken� Germany

smolka�dfkiuni�sbde

February ����

Abstract

We present a calculus providing an abstract operational semantics for higher�
order concurrent constraint programming The calculus is parameterized with
a �rst�order constraint system and provides �rst�class abstraction� guarded
disjunction� committed�choice� deep guards� dynamic creation of unique
names� and constraint communication The calculus comes with a declarative
sublanguage for which computation amounts to equivalence transformation
of formulas The declarative sublanguage can express negation

Abstractions are referred to by names� which are �rst�class values This
way we obtain a smooth and straightforward combination of �rst�order con�
straints with higher�order programming

Constraint communication is asynchronous and exploits the presence of
logic variables It provides a notion of state that is fully compatible with
constraints and concurrency

The calculus serves as the semantic basis of Oz� a programming language
and system under development at DFKI

Contents

� Introduction �

� Constraints �

� Calculus A �

��� Syntax �

��� Structural Congruence �

��� The Blackboard Metaphor ��

��� Reduction ��

��� Termination ��

��� Entailment and Negation ��

��� Relative Simpli	cation ��

��
 Con�uence ��

��� Distribution Rule ��

��� Relation to SLD� and SLDNF�resolution � � � � � � � � � � � � � � � �

���� Freeze ��

� Extensions ��

��� Guarded Disjunction ��

��� Committed�Choice �

��� Names ��

��� First�class Abstraction ��

� Calculus B ��

��� Constraint Systems ��

��� Syntax ��

��� Structural Congruence ��

��� Reduction ��

� Constraint Communication ��

�

� Introduction

Concurrent constraint programming ��
� brings together ideas from constraint
and concurrent logic programming� Constraint logic programming ���� ��� on the
one hand� originated with Prolog II ��� and was prompted by the need to inte�
grate numbers and data structures in an operationally e�cient� yet logically sound
manner� Concurrent logic programming ���� on the other hand� originated with
the Relational Language ��� and was promoted by the Japanese Fifth Generation
Project� where logic programming was conceived as the basic system programming
language and thus had to account for concurrency� synchronization and indeter�
minism� For this purpose� the conventional SLD�resolution scheme had to be
replaced with a new computation model based on the notion of committed�choice�
At 	rst� the new model developed as an ad hoc construction� but 	nally Maher
��
� realized that commitment of agents can be captured logically as constraint
entailment� The 	rst practical language design combining committed�choice with
encapsulated search is AKL ����� AKL�s primary mechanism for encapsulation of
nondeterminism are deep guards�

In ���� the DFKI started the research project Hydra with the goal to design�
investigate and implement a high�level concurrent programming language bringing
together the merits of logic and object�oriented programming� Our starting point
was the existing work on concurrent and constraint logic programming� and some
ideas for concurrent control of generalized constraint logic programming ����� It
soon became clear that some of our ideas were related to the ideas realized in AKL�
However� to arrive at a smooth and practical integration of constraint and object�
oriented programming� we felt that it is absolutely necessary that the underlying
language is higher�order� that is� that procedures and agents are 	rst�class citizens�
We also came to the conclusion� that the established model of communication in
concurrent logic programming based on streams was not compatible with our goals�
both because it induces a tedious and low�level programming style� and because
it poses serious implementation problems due to the need for fair stream merging
�for a similar argumentation see also ������

Our investigations resulted ���� in the design and implementation of a 	rst ver�
sion of Oz ����� a higher�order object�oriented concurrent constraint programming
language� Some aspects of Oz have been reported in ���� ���� The major di�culty
encountered in the design of Oz was the lack of a su�ciently powerful frame�
work for designing such a language �i�e�� specifying its operational semantics��
Saraswat�s framework ��
�� for instance� accommodates neither deep guards nor
	rst�class procedures� In fact� it not even accounts for the incremental aspects
of the operational semantics of �at guards� The tree rewriting semantics specify�
ing the Extended Andorra Model ��� and the structural operational semantics for
AKL ��� turned out to be more helpful� Finally� we learned from the setup of the
��calculus ���� how a tree rewriting semantics can be made su�ciently abstract�
rather than employing real trees� one can use abstract trees obtained by taking the
quotient with respect to an abstract equality called structural congruence� This
idea provided a su�cient base for coming up with a �exible calculus specifying

�

the abstract operational semantics of Oz� This setup nicely combines declarative
aspects with operational aspects� Aspects that are accounted for by laws for the
structural congruence are put in declaratively� while aspects that are accounted for
by reduction rules are put in operationally� In our calculi constraint propagation
and simpli	cation are accommodated purely declaratively�

This paper attempts to convey the calculus underlying Oz to readers having a
background in logic programming� For this reason we start with a Calculus A still
maintaining a close connection to 	rst�order Predicate Logic� Calculus A consti�
tutes an operational semantics for �constraint� logic programming with negation
that is profoundly di�erent from the conventional SLDNF�resolution ����� Its dis�
tinctive primitive is a deep guard conditional� Calculus A will convey a number
of important and general ideas� the setup of structural congruence and reduction�
nonclausal syntax� deep guards and propagation laws� relative simpli	cation� and
internal representation of don�t know choices� The next step adds guarded disjunc�
tion and a committed�choice combinator �generalizing the conditional�� Another�
orthogonal generalization gives 	rst�class status to abstractions� This in turn ne�
cessitates the introduction of a facility for the dynamic creation of new and unique
names� Taken together� these extensions lead to Calculus B� Finally� a new form
of asynchronous communication� called constraint communication� is introduced�
Constraint communication also introduces a notion of state that is fully compatible
with constraints and concurrency�

The way our calculus provides for higher�order programming is unique in that de�
notation and equality of variables are captured by 	rst�order logic only� In fact� de�
notation of variables and the facility for higher�order programming are completely
orthogonal concepts� This is in contrast to existing approaches to higher�order
logic programming ���� ��� The paper ���� investigates the relationship between
higher�order functional computation and higher�order relational computation as
realized in Calculus B�

Chapters ��� provide the connection to Logic Programming and motivate and
explain the setup of Calculus B� Chapter � presents Calculus B in a technically self�
contained manner� Chapter � extends Calculus B with constraint communication�

Practical examples illustrating the expressivity of our calculus can be found in �����
where we show how concurrent objects and multiple inheritance can be expressed
with Calculus B and constraint communication�

Calculus B can be conservatively extended with a facility for encapsulated search�
This will be the subject of a future paper�

� Constraints

The calculi presented in this paper are parameterized with respect to a constraint
system� One can see them as constructions extending constraint systems with
programming facilities�

For our purposes it will su�ce to found the notion of constraint system on

�

	rst�order Predicate Logic� similar to how it is done in Ja�ar and Lassez� CLP�
framework ����� We are aware that there exist more general and foundationally
less heavy alternatives for setting up the notion of a constraint system �e�g�� ����
���� however� by taking Predicate Logic as the starting point� we can build on well�
established intuitions� notions and notations� and proceed quickly to the issues we
want to bring across�

A constraint system consists of a signature � �a set of 	rst�order function and
predicate symbols� and a consistent theory � �a set of 	rst�order sentences over
� having at least one model�� Often the constraint theory � will be given as the
set of all sentences valid in a certain structure �e�g�� the structures of 	nite trees�
rational trees� integers� or rational numbers�� A constraint is any formula over
the signature of the constraint system �here we deviate from ������ The basic
constraints are the atomic formulas over � closed under conjunction�

�� � ��� � j � j s
�
� t j r�s�� � � � � sn� j � � ��

The symbol � is the truth constant false� � is the truth constant true� s and t are
terms� and r is a predicate symbol� The letters x� y� z will always denote variables
�of which we assume countably in	nitely many�� and the overlined letters x� y� � � �
are used to denote 	nite� possibly empty sequences of variables� For a formula
�x� � � ��xn�� where n � � we will often write �x�� Moreover� �� abbreviates
�x� � � ��xn�� where x�� � � � � xn are the free variables of �� The notations �x� and
�� are de	ned analogously�

Our calculi make use of the following relationships for constraints�

� j�j� � ��� � ��	 �� is true in every model of �

� j�� � ��� � j�j� � � �

It is understood that � and � may have free variables� Given a constraint system�
a constraint � is called satis	able if �
j�� � �i�e�� there is at least one model of
� in which � is satis	able��

For examples we will use the 	nite tree constraint system H �often called Her�
brand� ���� ��� underlying conventional logic programming� The signature of H
consists of in	nitely many function symbols for every arity� and the theory of H
�known as Clark�s Equality Theory� is given by the schemes�

f�x�
�
�f�y� � x

�
�y

f�x�
�
�g�y� � � �f
� g�

x
�
�f�� � �x � � �� � ��

� Calculus A

Calculus A is a didactic vehicle for conveying our model of concurrent deep guard
computation� Its distinctive primitive is a deep guard conditional that can express

�

negation�� Calculus A is formulated in the familiar setting of 	rst�order Predicate
Logic� which we will leave for the full calculus� Although deep guards already
appeared with Concurrent Prolog� they resisted formalization for a long time� The
only other formalization of deep guard computation we know of is the structural
operational semantics of AKL ����

Calculus A models simpli	cation and propagation of constraints purely declara�
tively by means of its structural congruence�� Given this setup� deep guards can
be accommodated straightforwardly without any extra machinery� Moreover� our
model can account for the incremental aspects of constraint propagation and sim�
pli	cation� This is in contrast to the structural operational semantics of AKL�
which does not separate constraint propagation and simpli	cation from the re�
duction rules�

Calculus A employs a nonclausal syntax that alleviates the distinction between
program and query� This prepares the ground for the switch to higher�order
abstraction in Calculus B�

��� Syntax

The syntax of Calculus A is shown in Figure �� It is parameterized with respect
to the signature of the underlying constraint system� and an additional alphabet
of distinct symbols� called de	ned predicate symbols� We identify conjunction
and quanti	cation of constraints in the calculus with conjunction and existential
quanti	cation of constraints in Predicate Logic�

Every expression of Calculus A corresponds to a 	rst�order formula� where con�
junction translates to conjunction� quanti	cation to existential quanti	cation� dis�
junction to disjunction� and abstraction� application and conditional translate as
follows�

p� x�E �� �x �p�x�	 E�

px �� p�x�

if E then F else G fi �� �E � F � ��E �G��

Abstractions serve as procedure de	nitions� and applications as procedure calls�
We require that the formal arguments of an abstraction be pairwise distinct� The
conventional separation between program and query is alleviated by the nonclausal
syntax of the calculus� Given a conditional if E then F else G fi� we call the
constituent E the guard of the conditional� A guard is called
at if E is a

�A deep guard conditional with the same declarative semantics as ours has been proposed and
implemented in Nu�Prolog by Lee Naish ����� The operational semantics of Naish�s conditional
is however di	erent from ours
 it delays until its guard is ground� A deep guard conditional with
unsound operational semantics based on cut existed already in Edinburgh�s Dec��� Prolog ����

�Note that SLD�resolution �i�e�� the operational semantics of Horn clauses� accommodates
constraints operationally rather than declaratively �e�g�� the notion of uni�cation is an operational
notion��

�

Symbols

x� y� z� u� v�w � variable

p� q � de�ned predicate

Constraints

�� �

Expressions

E� F�G�H ��� � constraint

E � F conjunction

�xE quantification

p� x�E abstraction

px application

E F disjunction

if E then F else G fi conditional

Figure �� Syntax of Calculus A�

constraint� and deep otherwise� Since we have the logical equivalence

�E j�j if E then � else � fi�

Calculus A can express negation�

The variable binders of Calculus A are quanti	cation and abstraction� A quan�
ti	cation �xE binds x with scope E� and an abstraction p� x�E binds its formal
arguments x with scope E� The free variables of an expression are de	ned
accordingly� We use VE to denote the set of variables that occur free in E�

An expression is called an actor if it is either an application� a disjunction� or a
conditional�

Logical equivalence for the expressions of Calculus A is de	ned as

E j�j� F ��� � j� ��E 	 F ��

where � is the theory of the underlying constraint system� The signature under�
lying logical equivalence is the signature of the constraint system together with
the alphabet of de	ned predicate symbols�

��� Structural Congruence

The operational semantics of Calculus A will be de	ned as a reduction relation
�E � F� on expressions� It will respect logical equivalence in that E � F always

�

E � E

E � F

F � E

E � F F � G

E � G

E � E� F � F �

E � F � E� � F �

E � E�

�xE � �xE�

E � E�

p� x�E � p� x�E�

E � E� F � F �

E F � E� F �

E � E� F � F � G � G�

if E then F else G fi � if E� then F � else G� fi

Figure �� Structural congruence laws of Calculus A�

implies E j�j� F � The reduction relation will be de	ned on a quotient of the
expressions with respect to an equivalence relation called structural congruence�
This setup is familiar in the theory of term rewriting �
�� and has been applied to
the semantics of concurrent programming in the Chemical Abstract Machine ���
and the ��Calculus �����

A binary relation � on the expressions of Calculus A is called a congruence if it
satis	es the structural congruence laws in Figure ��

Proposition ��� The relation �E j�j� F� is a congruence�

We de	ne the structural congruence �E � F� of Calculus A to be the least
congruence satisfying the proper congruence laws appearing in Figure �� Except
for the 	rst and second propagation law� which are essential for deep guard com�
putation� the laws are familiar from Predicate Logic�

Proposition ��� For all expressions E� F and all constraints �� ��

�� E � F � E j�j� F

�� � � � � � j�j� ��

Proof� The second claim follows from the 	rst claim and Law SS� To show the
	rst claim� it su�ces to show that �E j�j� F� satis	es every congruence law in
Figure �� since �E j�j� F� is already established as a congruence� All laws but
SPC are obvious� That j�j� satis	es SPC follows easily with�

� � �E j�j� � �� � �E� j�j� �� � ��� �� � �E�

j�j� � � ��� �E�

j�j� � � ��� �E��

Renaming

SR� E � F if E and F are equal up to consistent
renaming of bound variables

Conjunction

SC� � is associative� commutative� and satis	es E � E � �

Quanti	cation

SQE� �x�yE � �y�xE

SQM� �xE � F � �x�E � F � if x does not occur free in F

Disjunction

SD� E F � F E

Simpli	cation

SS� � � � if � j�j� �

Equality

SE� x
�
�y �E � x

�
�y �E�y�x� if y free for x in E

where E�y�x� is obtained from E by replacing every free occurrence of x
with y�

Propagation

SPD� � � �E F � � � � ��� � E� F �

SPC� � � if E then F else G fi � � � if � �E then F else G fi

where � must be a constraint or an abstraction

Replication

SPR� p� x�E � p� x�E � p� x�E

Figure �� Proper congruence laws of Calculus A�

�

Proposition ��� If x does not occur free in E� then �xE � E�

Proof� If x does not occur free in E� then

�xE � �x�� �E� � �x� � E � � �E � E

by the congruence laws SC� SQM� and SS�

It is important to have a good intuitive understanding of the quotient that struc�
tural congruence imposes on the set of expressions� The laws for conjunction
make conjunction into an operator building multisets of nonconjunctive expres�
sions� where � plays the role of the empty multiset� To use the metaphor of
the Chemical Abstract Machine ���� conjunction creates the chemical solution in
which concurrent computation can take place� The Quanti	er Mobility Law SQM
and the Renaming Law ensure that quanti	cation does not hinder the �ow of the
chemical solution� With the congruence laws mentioned so far we can rewrite
every expression into the form

�x �� �E��

where � is a conjunction of constraints and abstractions� and where E is a con�
junction of actors� Law SQE ��quanti	er exchange�� turns the variable sequence x
into a multiset� The commutativity law for disjunctions� SD� takes away the order
between the two branches� The Simpli	cation Law makes constraints denota�
tional� that is� their syntax does not matter� The Equality Law extends equalities
entailed by constraints to conjoined expressions�

The two propagation laws SPD and SPC make conjoined constraints and abstrac�
tions visible in the branches of disjunctions and the guards of conditionals� Read
from right to left� they provide for the deletion of abstractions and constraints
that are present higher up� For example� taking H as the underlying constraint
system and ��� as a binary function symbol� we have

�
B�

x
�
���u�v�w

y
�
�v�w

x � ��u�y x
�
���z�y

�
CA �

�
B�

x
�
���u�y

y
�
�v�w

� z
�
�u

�
CA

using the laws for conjunction� simpli	cation and propagation� �The rows of a
matrix are conjoined by conjunction�� Taken together� the laws for simpli	cation
and propagation provide for something we call relative constraint simpli	cation�
The intuition behind this name is made explicit in the next proposition� where
the constraint in the guard of the conditional is simpli	ed with respect to the
constraint above� Similar statements hold for the branches of a disjunction�

Proposition ��� �Relative Simpli	cation If ��� j�j� ���� and no variable
in x occurs free in �� then

� � if �x �� � E� then F else G fi � � � if �x ��� �E� then F else G fi�

�

A
A

�
�

�
�
�

e
e
e

e
e
e

�
�
�

Blackboard

Actor Actor���

Figure �� The blackboard metaphor�

The following variant of the above proposition will be useful in examples�

Proposition ��� �Relative Simpli	cation If � � � j�j� � � ��� then

� � if � then E else F fi � � � if �� then E else F fi�

The Replication Law SPR allows for copying and merging of abstractions� It is
needed to render the reduction rules con�uent�

��� The Blackboard Metaphor

We can visualize an expression modulo structural congruence as a computation
space consisting of a number of actors connected to a blackboard �see Fig� ���
The actors are either applications� disjunctions or conditionals� The blackboard
consists of constraints and abstractions� Conjunction and quanti	cation provide
the glue keeping actors and blackboard together� Since conditional and disjunctive
actors spawn local computation spaces �i�e�� the guards of conditionals and the
branches of disjunctions�� the computation system is actually a tree�like structure
of computation spaces �see Fig� ���

The reduction rules we will give in the next section can be seen as animation
rules for computation spaces� The actors read the blackboard and reduce once the
blackboard contains su�cient information� The information on the blackboard
increases monotonically� When an actor reduces� it may put new information on
the blackboard and create new actors� The actors of a computation space are
short�lived� once they reduce they disappear�

��� Reduction

We de	ne the reduction relation � of Calculus A to be the least relation
satisfying the structural laws in Figure � and the proper laws �called reduction

rules� in Figure �� Put more intuitively� we have E � F if and only if there
are expressions E� and F � such that E � E�� F � F �� and F � is obtained from
E� by applying a reduction rule to a subexpression of E� not appearing in a
protected position� A position in an expression is called protected if it is within

��

E � E� E� � F � F � � F

E � F

E � E�

E � F � E� � F

E � E �

�xE � �xE�

E � E�

E F � E� F

E � E�

if E then F else G fi� if E� then F else G fi

Figure �� Structural reduction laws of Calculus A�

Unfolding

RU� px � p� y�E � �y �y
�
�x �E� � p� y�E

if x and y are disjoint and of equal length

Disjunction

RDF� �� �E� F � F

RDT� � E � �

Conditional

RCF� if � �E then F else G fi � G

RCT� if � then F else G fi � F

Figure �� Reduction rules of Calculus A�

an abstraction� or within the second or third constituent of a conditional� Due to
the fact that the reduction relation is de	ned as the least relation satisfying the
reduction laws� the protected positions are in fact just those where the reduction
relation is not forced by a structural law to satisfy the compatibility property�
Disallowing reduction at protected positions makes it possible to write terminating
recursive programs� Note that the conditional is the only construct of the calculus
that can express sequentializing and synchronizing control�

Proposition ��� For all expressions E� F � if E � F then E j�j� F �

Proof� It su�ces to show that j�j� satis	es all reduction laws� Since E j�j� F is
a congruence and E � F � E j�j� F by Proposition ���� it su�ces to show that
E j�j� F satis	es every reduction rule� This is easily veri	ed�

The proposition states that reduction is sound with respect to logical equivalence�
Of course� reduction is not complete with respect to logical equivalence� For
instance� p � �p j�j� � although p � �p is irreducible�

��

Proposition ��� If x is free for y in E� then�

px � p� y�E � E�x�y� � p� y�E�

Proof� Without loss of generality we can assume that x and y are distinct �other�
wise we rename the formal argument of the abstraction to a fresh variable�� Now
we have�

px � p� y�E � �y �y
�
�x �E� � p� y�E by RU

� �y �y
�
�x� � E�x�y� � p� y�E by SE� SQM

� E�x�y� � p� y�E by SS�

Example ��� We will now see how reduction in Calculus A works� After going
through a 	at guard computation� we will see a deep guard computation�

Let us assume H as the underlying constraint system� Then the recursively de
ned
predicate nat

NAT �� nat� x � if x
�
� then � else �y �x

�
�s�y� � nat y� fi

holds exactly for the trees � s��� s�s���� � � � � Now suppose we want to reduce
the expression

nat x � x
�
�s�� � NAT�

By unfolding according to Proposition ��� we obtain

if x
�
� then � else �y �x

�
�s�y� � nat y� fi � x

�
�s�� � NAT�

As usual� we tacitly exploit the associativity and commutativity of conjunction� By
relative simpli
cation Proposition ���� we obtain

if � �� then � else �y �x
�
�s�y�� nat y� fi � x

�
�s�� � NAT�

Application of the reduction rule RCF yields

�y �x
�
�s�y�� nat y� � x

�
�s�� � NAT�

from where we proceed to

�y �y
�
� � if y

�
� then � else �z �y

�
�s�z� � nat z� fi� � x

�
�s�� � NAT

using constraint simpli
cation x
�
� s�y� � x

�
� s�� j�jH y

�
� � x

�
� s��� and

unfolding according to Proposition ���� By relative simpli
cation we obtain

�y �y
�
� � if � then � else �z �y

�
�s�z� � nat z� fi� � x

�
�s�� � NAT

from where we proceed to �y �y
�
� � �� � x

�
� s�� � NAT using the reduc�

tion rule RCT� Now application of the Simpli
cation Law yields the irreducible
expression x

�
�s�� � NAT �

��

We are now ready to consider a deep guard computation the capital letter B is a
variable��

if nat x then B
�
�� else B

�
� fi � x

�
�s�� � NAT

� if nat x � x
�
�s�� �NAT then B

�
�� else B

�
� fi � x

�
�s�� � NAT

�� if x
�
�s�� �NAT then B

�
�� else B

�
� fi � x

�
�s�� � NAT

� if � then B
�
�� else B

�
� fi � x

�
�s�� � NAT

� B
�
�� � x

�
�s�� � NAT�

The
rst congruence follows by the propagation law for conditionals� The following
reduction chain on the guard was established above� We exploit that reduction
can be applied to subexpressions if they are not in protected positions�� Using the
Propagation Law in the opposite direction� we can rewrite the guard to �� Now
the reduction rule RCT for conditionals applies and produces the
nal expression�

Example ��� Assume the constraint system H and consider the following de
ni�
tion of a membership predicate for lists�

MEM �� mem �XL � if L
�
�nil then �

else �H R �L
�
�H�R � �X

�
�H memX R�� fi�

One can verify the following two derivations�

�L �L
�
�����X�Y � memX L� � MEM �� MEM

�X L �X
�
�� � L

�
���Y�nil � memX L� � MEM �� Y

�
�� � MEM�

Note that the
rst derivation employs Rule RDT�

Example ���� Assume the constraint system H and consider the following de
�
nition of a length predicate for lists�

LEN �� len �LN � �L
�
�nil � N

�
��

�H RM �L
�
�H�R � N

�
�s�M� � lenRM��

Due to the symmetry of the operational semantics of disjunctions� the predicate
computes numbers for lists and lists for numbers�

�L �L
�
�X�Y�nil � len LN� � LEN �� N

�
�s�s��� � LEN

�N �N
�
�s�� � len LN� � LEN �� �X �L

�
�X�nil� � LEN�

If we de
ne the length predicate with a conditional

LEN �� len �LN � if L
�
�nil then N

�
�

else �H RM �L
�
�H�R � N

�
�s�M� � lenRM� fi�

the symmetry is lost and only the
rst derivation remains possible�

��

��� Termination

An expression E is called failed if E � � � F for some F � The reduction rules
RDF and RCF are called failure rules� An expression is called nervous if it
is not failed and a failure rule applies to it �e�g�� � E�� An in	nite derivation
E� � E� � E� � � � � is called admissible if no Ei is failed� and Ei�� is
obtained from Ei by a failure rule whenever Ei is nervous� An expression is called
terminating if there exists no admissible in	nite derivation issuing from it�

Example ���� Assume the constraint system H and consider the recursively
de
ned predicate nat from Example ���� It is easy to see that the expression
� � nat x �NAT is terminating for every constraint ��

Example ���� Assume the constraint system H and consider

DNAT �� nat� x � x
�
� �y �x

�
�s�y� � nat y��

Logically� NAT and DNAT are equivalent� that is� NAT j�jH DNAT � Oper�
ationally� they behave di�erently as it comes to termination� For instance� we
obtain an admissible in
nite derivation issuing from nat x � DNAT by applying
the unfolding rule repeatedly� However� if we constrain the argument of nat x suf�

ciently� we obtain termination� For instance� x � s�s��� � nat x � DNAT is
terminating�

The examples show that one needs the conditional to write recursive predicates
that terminate for underconstrained arguments� Conditionals have however the
disadvantage that they destroy the symmetry of relational de	nitions �see for
instance the length predicate in Example ����� Calculus B will 	x this problem
by providing so�called guarded disjunctions� which can express the control needed
for termination�

Example ���� Assume the constraint system H and consider the addition pred�
icate

ADD �� add � x y z � if x
�
� then y

�
�z

else �u v �x
�
�s�u� � z

�
�s�v�� addu y v� fi�

It is not di�cult to see that the expression

x
�
�s�z� � addx y z �ADD

is not terminating�� Note that x
�
�s�z��addx y z�ADD j�jH �� We can enforce

termination by sequentializing with a deep guard�

x
�
�s�z� � if nat x then addx y z else � fi �ADD�

�This example was brought to my attention by Thom Fr�uhwirth�

��

��� Entailment and Negation

Knowing Saraswat�s ask and tell calculus ���� �
�� one would expect a reduction
rule for conditionals that 	res upon entailment of the guard by the context�

RCE� � � if � then F else G fi � F if � j�� ��

It is clear that Rule RCE can simulate Rule RCT� However� RCT can also simulate
RCE� To see this� assume � j�� �� Then

� � if � then F else G fi � � � if � then F else G fi

by constraint propagation and simpli	cation�

A constraint system is called independent� if it satis	es

� j��

n�
i��

�xi�i � �i� � j�� �xi�i

for all basic constraints �� ��� � � � � �n� The usual tree constraint systems are in�
dependent ����� In particular� this is the case for the 	nite tree constraint system
H �provided an in	nite signature is taken� as required in this paper� see ���� for a
counter example��

Proposition ���� Assume the constraint system is independent� Then

� �
n�

i��

if �yi�i then � else � fi �� � �� � �
n�

i��

��yi�i j�j� ��

provided �� ��� � � � � �n are basic constraints�

Proof� The direction from left to right is obvious since reduction is an equivalence
transformation �Proposition ����� To show the other direction� we can assume
� j�� �xi�i for some i since the constraint system is independent� Thus we can
use Rule RCE� which yields � � if �yi�i then � else � fi �� � � �� Now we
obtain the left hand side of the equivalence by using Rule RCE with the context ��

��� Relative Simpli	cation

A relative simpli	cation procedure for a constraint system is a procedure
that� given two basic constraints � and �� where � must be satis	able� produces
a constraint �� such that ��� j�j� ����� A relative simpli	cation procedure is
complete if its output �� satis	es

�� � j� �x� � � j� �x�� �provided no variable in x occurs in ��

�Note that our de�nition of independence involves existential quanti�cation� which is not the
case for the conventional de�nition ����� Our notion of independence agrees however with the
de�nitions in ���� ����

��

�� � � � j�j� � � �� � ��

A complete relative simpli	cation procedure together with a test �� j� �x�� is
the basic operational machinery one has to provide for the underlying constraint
system in order to decide whether a reduction rule is applicable� Relative simpli�
	cation procedures for feature tree constraint systems have been developed in ���
���� and the full version of ���� provides an abstract machine for relative simpli	�
cation�

A complete relative simpli	cation procedure for the 	nite tree constraint systemH
can easily be obtained from a uni	cation procedure� Given two basic constraints
� and �� where � is satis	able� one 	rst computes an idempotent most general
uni	er � of �� Next one computes an idempotent most general uni	er � for ��� If
� does not exist� take �� � �� Otherwise� take for �� the equational representation
of �� That this in fact speci	es a complete relative simpli	cation procedure for H
follows from the results in �����

��
 Con�uence

An expression is called admissible if it is congruent to an expression that contains
at most one abstraction per predicate� and that does not nest abstractions into
abstractions� It is easy to see that reduction preserves admissibility of expressions�

Conjecture ���� Reduction in Calculus A is con	uent on admissible expressions�
That is� if E is admissible� E �� F � and E �� G� then there exists an expression
H such that F �� H and G�� H�

Example ���� Consider the nonadmissible expression a and b are distinct con�
stants��

N �� �p� x�x
�
�a� � �p� x�x

�
�b��

It is easy to see that N � py reduces to two noncongruent normal forms N � y
�
�a

and N � y
�
�b�

��� Distribution Rule

A rule obviously missing from Calculus A is the Distribution Rule�

RDD� �E F � � G � �E �G� �F � G��

With the Distribution Rule the otherwise irreducible expression

�x
�
�� x

�
��� � �x

�
�� x

�
���

�we assumeH as the underlying constraint system� reduces to�� The Distribution
Rule may quickly lead to combinatorial explosion since it introduces a new copy

��

of the conjoined G� Moreover� adding the Distribution Rule destroys con�uence
on admissible expressions�

�� p� � q � �� q � q by RDT

�� p� � q � �� � q� �p � q� � q �p � q� by RDD�

We conjecture that con�uence can be preserved if Rule RDT is given preference
over Rule RDD� Disallowing Rule RDT completely should also recover con�uence�

��� Relation to SLD� and SLDNF�resolution

It is interesting to relate Calculus A to SLD�resolution ����� A goal is a conjunction
of constraints and applications� A de	nite abstraction is a closed �i�e�� no free
variables� expression of the form

p� x �
n�

i��

�yiGi

where the Gi�s are goals� A de	nite program is an admissible conjunction of
de	nite abstractions� Clark�s completion ���� translates Horn clause programs into
de	nite programs�

Now consider a de	nite program � and a goal G� An SLD�derivation with re�
spect to � issuing from E can be simulated in Calculus A if the Distribution Rule
is added� The simulation does not employ the rules RDT� RCT and RCF� Fur�
thermore� because there are no conditionals� and disjunctions are moved above
conjunctions with the Distribution Rule� the propagation laws are not needed�
However� it is necessary to add two new congruence laws�

E �F G� � �E F � G

�x �E F � � �xE �xF�

The unfolding rule RU is applied only after an expression has been rewritten to
disjunctive normal form

W
n

i�� �� � �xiGi�� The disjunctive normal form corre�
sponds in fact to the frontier of an SLD�tree� and answers show up as goals Gi

that are satis	able constraints� Finite failure of a goal G amounts to a derivation
� � G�� � � ��

Note that this simulation reveals backtracking as a space e�cient implementation
of the distribution rule� which constructs only one clause of the disjunctive normal
form at a time�

We can also simulate SLDNF�resolution ����� where negation �E is expressed as
if E then � else � fi� Now we need the reduction rules for the conditional
and also Rule RDT for disjunction� We also need the propagation law for the
conditional� but the propagation law for disjunction is still not needed�

�

���� Freeze

Prolog II�s freeze can be expressed as

if �if x
�
�a then � else � fi� then E else � fi

where we assume H as the underlying constraint system� and a to be a constant
of H� Note that this expression is logically equivalent to E� and that E is released
for reduction if and only if the context is strong enough to either entail or disentail
X

�
�a� This will be the case if and only if x is �bound� to a nonvariable term by

the context�

� Extensions

This section discusses informally the extensions leading from Calculus A to Cal�
culus B�

��� Guarded Disjunction

The problem with disjunction in Calculus A is that it lacks the control needed to
obtain termination� This is illustrated by the recursive abstraction

DNAT �� nat� x � x
�
� �y �x

�
�s�y� � nat y�

and the nonterminating expression nat x �DNAT �

It is not di�cult to provide the missing control� To this purpose� we extend the
syntax of Calculus A with a clause combinator

E then F

whose declarative reading is E�F � In contrast to conjunction� however� the clause
combinator is not commutative and prevents its second argument from reduction�
The 	rst argument is called the guard of the clause� and the second argument is
called the body of the clause� If we rewrite DNAT to

DNAT �� nat� x � �x
�
� then �� �y �x

�
�s�y� then nat y��

then the expression nat x �DNAT is obviously terminating� Of course� we need
an additional propagation law

� � �E then F � � � � �� �E then F �

for clauses and must arrange things such that if a disjunction reduces to a clause�
the body of the clause is released� To this purpose we replace the old reduction
rules for disjunction with the following new ones�

�� �E� then F � �

�x �E then F � � � �x �E � F �

�x �� then �� G � � if �x � � ��

��

We can now rewrite the de	nition of the length predicate from Example ��� to

LEN �� len �LN � �L
�
�nil � N

�
� then ��

�H RM �L
�
�H�R � N

�
�s�M� then lenRM�

and obtain a terminating and symmetric solution satisfying

�L �L
�
�X�Y�nil � len LN� � LEN �� N

�
�s�s��� � LEN

�N �N
�
�s�� � len LN� � LEN �� �X �L

�
�X�nil� � LEN�

Our solution will work 	ne with binary disjunctions� but not with disjunctions
taking more alternatives� for instance�

�x
�
�� then E�� �y

�
�� then E�� �z

�
�� then E���

This problem can be resolved by having a disjunction combinator

or �C� � � � Cn�

taking a multiset C� � � � Cn of possibly quanti	ed clauses

C ��� �x �E then F �

as argument�

Let us summarize� The guarded disjunction combinator spawns any number of
possibly quanti	ed clauses� The clauses can be thought of as competing computa�
tions� Reduction takes place in the guards of the clauses� but not in their bodies�
If a clause has failed �i�e�� its guard has reduced to ��E�� it is discarded� If only
one clause is left� the disjunction combinator commits to this clause and the body
of the clause is released� Moreover� the disjunction can reduce to � if the guard
of a clause whose body is � is satis	ed�

��� Committed�Choice

Calculus B will also have a committed�choice combinator

if C� � � � Cn else G

taking a multiset C� � � � Cn of possibly quanti	ed clauses and an expression G as
arguments� The clauses can be thought of as competing computations� Reduction
takes place in the guards of the clauses� but not in their bodies� If the guard of
a clause is satis	ed� the committed�choice combinator can commit to this clause
and the body of the clause is released�

if �x �� then F � C� � � � Cn else G � �x �� � F � if �x � � ��

If a clause has failed �i�e�� its guard has reduced to � � E�� it is discarded� If no
clause is left� the committed choice combinator reduces to the else constituent G�

�

The conditional of Calculus A can be obtained from the committed�choice combi�
nator by having only one unquanti	ed clause� if E then F else G�

Committed�choices with more than one clause introduce indeterminism and hence
destroy con�uence� as one can see from the example

x
�
�� � y

�
�� � if �x

�
�� then z

�
��� �y

�
�� then z

�
��� else ��

which can reduce to either x
�
�� � y

�
�� � z

�
�� or x

�
�� � y

�
�� � z

�
��� In general�

committed�choices with more than one clause cannot be translated to 	rst�order
formulas such that the reduction rules amount to equivalence transformations�

��� Names

How can we extent Calculus A such that we can dynamically create new and
unique names The answer is surprisingly simple� First� we have to require that
the constraint system comes with an in	nite alphabet of distinguished constant
symbols called names satisfying two conditions�

�� � j� ��a
�
�b� for every two distinct names a� b

�� � j� � 	 � for every two 	rst�order sentences �� � over the signature of
the constraint system such that � can be obtained from � by permutation
of names�

It is easy to see that the usual 	nite and rational tree constraint systems �taken
over an in	nite signature� satisfy these conditions for any set of constant symbols
we decide to distinguish as names�

The following proposition says that names are di�erent from any other value that
can be uniquely described by a formula�

Proposition ��� Let a constraint system with names satisfying requirements ��
and �� be given� Moreover� let � be a formula over the signature of the constraint
system such that x is the only free variable of �� and such that � determines x�
that is� � j� �!x�� Then � j� ���a�x� for every name a not occurring in ��

Proof� We prove the claim by contradiction� Suppose A is a model of the con�
straint system such that A j� ��a�x� for some name a not occurring in �� Now let
b be a name di�erent from a that also does not occur in �� Since ��a�x� and ��b�x�
are sentences that are equal up to permutation of names� we know by requirement
��� that A j� ��b�x�� Moreover� we know A j� ��a

�
� b� by requirement ���� Since

we know A j� �!x� by assumption� we have a contradiction�

A small generalization of Calculus A will do the rest of the job� we allow quanti	�
cation over names� that is� �aE is considered a well�formed exoression� moreover�
we provide the same congruence laws for quanti	cation of names we already have

��

for quanti	cation of variables� including renaming of quanti	ed names� Of course�
�aE is not a formula of Predicate Logic and must not be thought of as existential
quanti	cation�

With this simple formal machinery in place� we can create new and unique names
as follows�

newname�x� �� �ax
�
�a�

That this construction indeed works can be seen from the congruences

newname�x� � newname�y� � E � �ax
�
�a � �ay

�
�a � E

� �a�x
�
�a � �by

�
�b � E�

� �a�b�x
�
�a � y

�
�b � E��

which employ the Quanti	er Mobility Law� renaming of names� and the assump�
tion that the names a� b do not occur free in E� For this construction to work it
is crucial that conjunction of expressions is not idempotent�� Hence

�ax
�
�a � �ax

�
�a � �a�b�x

�
�a � x

�
�b� � �a�b��� � �

does not imply �ax
�
�a � ��

The above treatment of names� which we 	rst published in ����� usually puzzles
people a lot on 	rst sight� It is related to the treatment of names in the ��
calculus ����� even so the ��calculus does not distinguish between variables and
names� We need this distinction because of the presence of constraints� A treat�
ment of names similar to ours but in the context of an extended lambda calculus
can be found in �����

��� First�class Abstraction

The setup of Calculus A makes it straightforward to accommodate abstractions
as 	rst�class citizens� We just forget the de	ned predicate symbols and use names
instead� abstraction now takes the form a� x�E� and application becomes ax� If
we also allow applications of the form xy and assume the congruence law

x
�
�a �E � x

�
�a � E�a�x� if a is free for x in E�

the higher�order programming techniques known from functional programming
become available�

Example ��� The following expression de
nes a function f that takes a predicate
P as argument and returns a predicate Q� which holds i� its argument L is a list
whose elements all satisfy P �

f �P Q � �a �Q � a � a�L � if L
�
�nil then �

else �H�R�L
�
�H�R � P H �QR� fi��

�Incidentally� Linear Logic has a nonidempotent conjunction�like connective�

��

Generalized abstraction and application do not destroy the logical semantics of
Calculus A �however� quanti	cation of names does�� By assuming a predicate
symbol apply for every arity� we can translate generalized abstractions and appli�
cations to 	rst�order formulas�

a� x�E �� �x �apply�ax�	 E�

ax �� apply�ax�

xy �� apply�xy��

Under this translation� the unfolding rule remains an equivalence transformation�

From an operational point of view the congruence

�a�a� x�E� � �

seems reasonable� it allows throwing away abstractions that cannot be referred to
anymore� This congruence will� for instance� enable the reduction of the condi�
tional

if �a�a� x�E� then F else G fi � F�

which otherwise would be irreducible� The Annulment Law of Calculus B sub�
sumes the above congruence�

� Calculus B

This section gives a self�contained de	nition of Calculus B�

��� Constraint Systems

Constraint systems as employed by Calculus B are based on 	rst�order Predicate
Logic with equality� A constraint system consists of

�� a signature � �a set of constant� function and predicate symbols�

�� a consistent theory � �a set of sentences over � having a model�

�� an in	nite set of constants in � called names satisfying two conditions�

�a� � j� ��a
�
� b� for every two distinct names a� b

�b� � j� � 	 � for every two sentences �� � over � such that � can be
obtained from � by permutation of names�

Given a constraint system� we will call every formula over its signature a con�
straint� We use � for the constraint that is always false� and � for the constraint

��

x� y� z � variable

a� b� c � name

� � constraint

u� v� w ��� x j a

E ��� � constraint

j E� �E� composition

j �u E declaration

j a� x�E abstraction �x linear�

j uv application

j if D else E conditional

j or �D� disjunction

C ��� E� then E� j �u C clause

D ��� C j � j D� D� collection

Figure �� Abstract syntax of Calculus B�

that is always true� Moreover� we will use the following relationships for con�
straints�

� j�j� � ��� � ��	 �� is valid in every model of �

� j�� � ��� � j�j� � � �

� satis	able ��� �
j�� ��

��� Syntax

The abstract syntax of Calculus B appears in Figure �� It supposes that some
constraint system is given� 	xing in	nite sets of variables� names and constraints�

We use x to denote a possibly empty sequence of variables� A sequence x is called
linear if its elements are pairwise distinct�

An expression a� x�E represents a binding of the name a to the abstraction x�E�
For convenience� we call the entire expression a� x�E an �abstraction�� We some�
times write a�	� where 	 � x�E�

The syntactic category D represents multisets of clauses� where � stands for the
empty multiset and for multiset union�

We identify a conjunction �� � �� of two constraints with the corresponding com�
position of constraints� and an existential quanti	cation �x� of a constraint �
with the corresponding declaration�

��

Calculus B has the following constructs for binding variables and names�

� A declaration �uE binds u �a variable or a name� with scope E�

� An abstraction a� x�E binds its formal arguments x with scope E�

� A clausal declaration �uC binds u �a variable or a name� with scope C�

� Quanti	cation of constraints �as in Predicate Logic��

The free variables and free names of an expression are de	ned accordingly� We
use FE to denote the set of variables and names occurring free in E�

��� Structural Congruence

A congruence is an equivalence relation on the expressions of Calculus B �i�e��
the syntactic categories �� E� C� and D� that is compatible with all syntactic
combinators �e�g�� if E� � E�

� and E� � E�
�� then E��E� � E�

��E
�
��� The struc�

tural congruence �E� � E�� of Calculus B is de	ned as the least congruence
satisfying the congruence laws in Figure
�

The notation E�u�x� stands for the expression that is obtained fromE by replacing
every free occurrence of x with u�

��� Reduction

The reduction relation of Calculus B is de	ned as the least relation �E� � E�� on
expressions satisfying the structural reduction laws in Figure � and the reduction
rules in Figure �� An instance E � E� of the reduction relation expresses that
E� can be obtained from E by one reduction step�

The structural reduction laws �Figure �� say where the reduction rules �Figure ��
can be applied� everywhere but within abstractions� else constituents of condition�
als� and then constituents of clauses� The 	rst structural reduction law

E� � E� E� � E�
� E�

� � E�

E� � E�

says that the reduction rules can be applied modulo structural congruence� that
is� an expression can be rewritten according to the congruence laws in Figure

before and after a reduction rule is applied�

The Unfolding Rule should be clear from Calculus A� The Failure Rule fails a local
computation space� which means that the associated clause is discarded� The 	rst
rule for conditionals reduces the conditional with a clause whose guard is entailed
�see Proposition ����� The second rule for conditionals reduces the conditional to
the else constituent in case all clauses are failed� The 	rst rule for disjunctions
reduces a disjunction that has only one clause left �recall that failed clauses are
discarded by the failure rule�� The second rule reduces a disjunction that has
no clause left to the constraint �� The third rule reduces a disjunction with an
entailed clause whose body is the constraint � to ��

��

Renaming

� E� � E� if E� and E� are equal up to consistent
renaming of bound variables and names

Composition and Collection

� � is associative� commutative and satis	es E � � � E

� is associative� commutative and satis	es D � � D

Declaration

� �u �v E � �v �u E

� �u �v C � �v �u C

� �u E� �E� � �u �E� �E�� if u does not occur free in E�

� �uE� then E� � �u �E� then E�� if u does not occur free in E�

Simpli	cation

� �� � �� if �� j�j� ��

Equality

� x
�
�u � E � x

�
�u � E�u�x� if u is free for x in E

Propagation

� � � if �u �E� then E�� D else E� � � � if �u �� �E� then E�� D else E�

� � � or ��u �E� then E�� D� � � � or ��u �� � E� then E��D�

if � is a constraint or an abstraction with F� � Fu � �

Replication

� a�	 � a�	 � a�	

Annulment

� �x �a�b �� � a�	� � � if �x � j�j� �

Figure
� Congruence laws of Calculus B�

��

E� � E� E� � E�
� E�

� � E�

E� � E�

E� � E �
�

E� � E� � E �
� �E�

E � E�

�uE � �uE�

D� D�

if D else E � if D� else E
D � D�

or �D�� or �D��

D� � D�
�

D� D� � D�
� D�

E� � E�
�

E� then E� � E�
� then E�

C � C�

�u C � �u C�

Figure �� Structural reduction laws of Calculus B�

Unfolding

� au � a� x�E � E�u�x � � a� x�E

if x and u are of equal length and u is free for x in E

Failure

� �u �� � E� then E�� � �

Conditional

� if �u �E� then E�� D else E� � �u �E� � E�� if �u E� � �

� if � else E � E

Disjunction

� or ��u �E� then E��� � �u �E� �E��

� or ��� � �

� or �� then � D� � �

Figure �� Reduction rules of Calculus B�

��

Example ��� Consider the expression

�x �y ��a �x
�
�a� � �a �y

�
�a� � if x

�
�y then E� else E��

and suppose that x and y are distinct variables that do not occur free in E� and
E�� Moreover� assume that a and b are two distinct names not occurring free in
E� and E�� We will show that this expression reduces in two steps to E��

First� we move the left declaration of the name a to the outside of the expression
using the laws for declarations and compositions and exploiting the assumption
that a does not occur free in E� and E��

� �a �x �y �x
�
�a � �a �y

�
�a� � if x

�
�y then E� else E��

Next we apply the Equality Law to x
�
�a�

� �a �x �y �x
�
�a � �a �y

�
�a� � if a

�
�y then E� else E��

Now we move the declaration of x inside using the laws for composition and dec�
laration we exploit that x does not occur free in E� and E� and that x is di�erent
from y��

� �a�y ��x �x
�
�a� � �a �y

�
�a� � if a

�
�y then E� else E��

Since �x �x
�
�a� is a constraint and �x �x

�
�a� j�j� �� we can delete �x �x

�
�a� using

the Simpli
cation Law and the laws for compositions in particular E � � � E��

� �a �y ��a �y
�
�a� � if a

�
�y then E� else E��

Next we rename the inner name a to the di�erent name b using the Renaming
Law�

� �a �y ��b �y
�
�b� � if a

�
�y then E� else E��

This brings us in a position where we can eliminate �b �y
�
�b� in the same way we

did it before for �a �x
�
�a��

� �a �b �if a
�
�b then E� else E��

Now� since a
�
�b j�j� �� we obtain

� �a �b �if � �� then E� else E��

� �a �b �if � else E��

� �a �bE�

using the Simpli
cation Law� the Failure Rule� and the second rule for the con�
ditional� It remains to get rid of the declarations of the names a and b� This
can be done using the Annulment Law together with the laws for compositions and
declarations�

� �a �b �� �E�� � ��a �b�� � E� � � � E� � E��

�

Example ��� This example shows the reason for equipping Calculus B with the
Replication Law� Consider the derivation

a�	 � or �E� then E��

� a�	 � or �a�	�E� then E��

� a�	 � a�	 � E� � E�

� a�	 � E� � E��

The
rst step is by the propagation law for disjunctions� the second step is by the

rst reduction rule for disjunctions� and the third step is by the Replication Law�
Without the Replication Law it would be impossible to get rid of the second copy
of the abstraction a�	�

Example ��� The Annulment Law reconciles
rst�class abstraction with deep
guards� To see this� consider the reduction

if �x �a �x
�
�a � a� y�y

�
�x� then E� else E� � E�

which is justi
ed by the
rst rule for conditionals and the fact that

�x�a �x
�
�a � a� y�y

�
�x� � �

is an instance of the Annulment Law�

The next propostition says that conditionals can reduce with clauses whose guards
are entailed�

Proposition ��� Suppose �� j�� �x ��� Then

�� � if �x ��� then E�� else E� � �� � �x ��� � E���

Proof� Because of the Renaming Law we can assume without loss of generality
that no variable in x occurs in ��� It su�ces to show that there exists a constraint
�� such that �� � �� j�j� �� � �� and �x �� j�j� � since

�� � if �x ��� then E�� else E� � �� � if �x ��� � �� then E�� else E�

� �� � if �x ��� � �� then E�� else E�

� �� � if �x ��� then E�� else E�

� �� � �x ��� � E��

� �x ��� � �� � E��

� �x ��� � �� � E��

� �� � �x ��� � E���

Let �� �� �� � �� �here� is implication� not reduction�� Then ����� j�j� �����
is obviously satis	ed� Moreover� �x�� j�j� �x ��� � ��� j�j� �� � �x �� j�j� �
since �� j�� �x ���

��

� Constraint Communication

Calculus B provides for stream�based communication� which is the established
form of communication in concurrent logic programming ���� From a theoretical
point of view� stream communication is nice since it comes for free� that is� without
further primitives� From a practical point of view� we are however dissatis	ed with
both the expressivity and e�ciency of stream�based communication� Streams
and their problems are carefully discussed in ����� where a new communication
mechanism� called ports� is proposed for use with AKL� Our search for a better
form of communication for Oz 	nally led us to constraint communication ���� ����
As we show in ���� ���� constraint communication introduces a notion of state that
is fully compatible with logical constraints and concurrency�

We extend the abstract syntax of Calculus B with three new expressions called
communication tokens�

E ��� � � �
j a a is channel
j u ! v put u on v
j u v get u from v�

The semantics of the new primitives is given by the communication rule�

u ! a� v a � a � u
�
�v � a�

Moreover� we generalize the Annulment Law of Calculus B to

�x�a �b �c �� � a�	 � c � u� ! c� � u� c�� � �

if �x � j�j� �� and c� and c� are disjoint and contained in c

so that it provides for the annulment of communication tokens� This formulation
of the Annulment Law provides for a straightforward implementation of constraint
communication�

An example of an instance of the generalized Annulment Law is

�x�a �c �a� y�x c � c � a ! c � x
�
�a� � ��

The next two examples show typical usages of constraint communication� For a
further discussion of its expressivity we refer the reader to ���� ��� ����

Example ��� We assume the constraint system H and a unary function symbol
m� The expression

a� x y � �z �z x � if �uz
�
�m�u� then z ! y � ax y else ��

de
nes a procedure a that takes two channels x� y as arguments and transfers
messages from x to y� It is assumed that messages take the form m�� � ��� The
conditional synchronizes upon the arrival of a message on the input channel x�

Given the above abstraction� the expression axz � ayz merges two channels x and
y into a channel z�

�

Example ��� We assume the constraint system H and two constants � and ��
The expression

�c � c � � ! c � a� x � �z � z c �

if �z
�
�� then x

�
�� � � ! c�

 �z
�
�� then x

�
�� � � ! c�

else � ��

de
nes a procedure a that returns alternatingly the constants � and �� Clearly� a
is a procedure with state�

Acknowledgements

Frequent discussions with Martin M"uller� Joachim Niehren� Christian Schulte�
Ralf Treinen helped to get things right� Torkel Franzen from SICS discovered a
problem with an earlier version of the Annulment Law of Calculus B� Andreas
Podelski read a draft and provided comments�

The research reported in this paper has been supported by the Bundesminister
f"ur Forschung und Technologie �FTZ�ITW������ the Esprit Project ACCLAIM
�PE ������ and the Esprit Working Group CCL �EP ��
��

Remark

The Oz System and its documentation are available through anonymous ftp from
duck�dfki�uni�sb�de�

References

��� Hassan A"#t�Kaci� Andreas Podelski� and Gert Smolka� A feature�based con�
straint system for logic programming with entailment� Theoretical Computer
Science� ���� January �����

��� Frederic Benhamou and Alain Colmerauer� editors� Constraint Logic Pro�
gramming� Selected Research� The MIT Press� Cambridge� Mass�� �����

��� G$erard Berry and G$erard Boudol� The chemical abstract machine� In Pro�
ceedings of the ��th ACM Conference on Principles of Programming Lan�
guages� pages
����� San Francisco� CA� January ����

��� Weidong Chen� Michael Kifer� and David S� Warren� Hilog� A foundation for
higher�order logic programming� Journal of Logic Programming� ����
�����
�����

��

��� K�L� Clark and S� Gregory� A relational language for parallel programming�
In Proc	 of the ACM Conference on Functional Programming Languages and
Computer Architecture� pages ������
� ��
��

��� A� Colmerauer� H� Kanoui� and M� Van Caneghem� Prolog� theoretical princi�
ples and current trends� Technology and Science of Informatics� �������������
��
��

��� Frank S� de Boer and Catuscia Palamidessi� A process algebra of concurrent
constraint programming� In Krzysztof Apt� editor� Proceedings of the Joint
International Conference and Symposium on Logic Programming� pages ����
���� Washington� USA� ����� The MIT Press�

�
� Nachum Dershowitz and Jean�Pierre Jouannaud� Rewrite systems� In Hand�
book of Theoretical Computer Science� volume B� chapter ��� North�Holland�
Amsterdam� Holland� ����

��� S� Haridi and S� Janson� Kernel Andorra Prolog and its computation model�
In D�H�D� Warren and P� Szeredi� editors� Logic Programming
 Proceedings
of the �th International Conference� pages ����
� Cambridge� MA� June ����
The MIT Press�

��� Seif Haridi� Sverker Janson� and Catuscia Palamidessi� Structural operational
semantics for AKL� Future Generation Computer Systems� pages �������
�����

���� M� Henz� M� Mehl� M� M"uller� T� M"uller� J� Niehren� R� Scheidhauer�
C� Schulte� G� Smolka� R� Treinen� and J� W"urtz� The Oz Handbook� Re�
search Report RR������ Deutsches Forschungszentrum f"ur K"unstliche Intelli�
genz� Stuhlsatzenhausweg �� D������ Saarbr"ucken� Germany� ����� Available
through anonymous ftp from duck�dfki�uni�sb�de�

���� Martin Henz� Gert Smolka� and J"org W"urtz� Oz%a programming language
for multi�agent systems� In Ruzena Bajcsy� editor� ��th International Joint
Conference on Arti�cial Intelligence� volume �� pages ������ Chamb$ery�
France� � August�� September ����� Morgan Kaufmann Publishers�

���� Joxan Ja�ar and Jean�Louis Lassez� Constraint logic programming� In Pro�
ceedings of the ��th ACM Symposium on Principles of Programming Lan�
guages� pages �������� Munich� Germany� January ��
��

���� Sverker Janson and Seif Haridi� Programming paradigms of the Andorra
kernel language� In Vijay Saraswat and Kazunori Ueda� editors� Logic Pro�
gramming
 Proceedings of the �� International Symposium� pages �����
��
San Diego� USA� ����� The MIT Press�

���� Sverker Janson� Johan Montelius� and Seif Haridi� Ports for objects� In
Research Directions in Concurrent Object�Oriented Programming� The MIT
Press� Cambridge� Mass�� �����

��

���� Jean�Louis Lassez� Michael J� Maher� and Kim Marriott� Uni	cation revis�
ited� In Jack Minker� editor� Foundations of Deductive Databases and Logic
Programming� Morgan Kaufmann� Los Altos� CA� ��

�

���� J� W� Lloyd� Foundations of Logic Programming� Symbolic Computation�
Springer�Verlag� Berlin� Germany� second� extended edition� ��
��

��
� Michael J� Maher� Logic semantics for a class of committed�choice programs�
In Jean�Louis Lassez� editor� Logic Programming
 Proceedings of the Fourth
International Conference� pages
�
�
��� Cambridge� MA� ��
�� The MIT
Press�

���� Michael J� Maher� Complete axiomatizations of the algebras of 	nite� rational
and in	nite trees� In Proceedings of the �rd Annual Symposium on Logic in
Computer Science� pages ��
����� Edinburgh� Scotland� July ��

�

��� Michael J� Maher� A logic programming view of CLP� In David S� Warren�
editor� Proceedings of the ��th DInternational Conference on Logic Program�
ming� pages �������� Budapest� Hungary� June ����� The MIT Press�

���� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile
processes� I� Information and Computation� ��������� September �����

���� Gopalan Nadathur and Dale Miller� An overview of
Prolog� In Robert A�
Kowalski and Kenneth A� Bowen� editors� Proceedings of the Fifth Interna�
tional Conference and Symposium on Logic Programming� pages
��
���
Seattle� Wash�� ��

� The MIT Press�

���� Lee Naish� Negation and quanti	ers in NU�Prolog� In Ehud Shapiro� editor�
Proceedings of the Third International Conference on Logic Programming�
Lecture Notes in Computer Science� pages �������� London� ��
�� Springer�
Verlag�

���� Joachim Niehren and Gert Smolka� Functional computation in a calculus of
relational abstraction and application� Research Report RR������ DFKI�
D������ Saarbr"ucken� Germany� March �����

���� R� A� O�Keefe� On the treatment of cuts in Prolog source�level tools� In
Symposium on Logic Programming� pages �
���� IEEE Computer Society�
Technical Committee on Computer Languages� The Computer Society Press�
July ��
��

���� Andrew Pitts and Ian Stark� On the observable properties of higher or�
der functions that dynamically create local names� In Proceedings of the
ACM SIGPLAN Workshop on State in Programming Languages� pages
������ Copenhagen� Denmark� June ����� Has appeared as Document
YALEU&DCS&RR���
� Department of Computer Science� Yale University�
Conn�

��

���� V� A� Saraswat� Concurrent Constraint Programming Languages� PhD thesis�
School of Comp� Sc�� Carnegie�Mellon University� Pittsburgh� CA� ��
��

��
� V�A� Saraswat and M� Rinard� Concurrent constraint programming� In Pro�
ceedings of the �th Annual ACM Symposium on Principles of Programming
Languages� pages �������� San Francisco� CA� January ����

���� Vijay Saraswat� The category of constraint systems is Cartesian�closed� In
Proceedings
 Seventh Annual IEEE Symposium on Logic in Computer Sci�
ence� pages �������� Santa Cruz� California� June ����� ����� IEEE Com�
puter Society Press�

��� Ehud Shapiro� The family of concurrent logic programming languages� ACM
Computing Surveys� �������������� September ��
��

���� Gert Smolka� Residuation and guarded rules for constraint logic program�
ming� In Frederic Benhamou and Alain Colmerauer� editors� Constraint Logic
Programming� Selected Research� chapter ��� pages ������� The MIT Press�
Cambridge� Mass�� �����

���� Gert Smolka� Martin Henz� and J"org W"urtz� Object�oriented concurrent con�
straint programming in Oz� Research Report RR������� DFKI� Stuhlsatzen�
hausweg �� D������ Saarbr"ucken� Germany� April ����� Will appear in� P�
van Hentenryck and V� Saraswat �eds��� Principles and Practice of Constraint
Programming� The MIT Press� Cambridge� Mass�

���� Gert Smolka and Ralf Treinen� Records for logic programming� In Krzysztof
Apt� editor� Proceedings of the Joint International Conference and Sympo�
sium on Logic Programming� pages ������� Washington� USA� ����� The
MIT Press� Full version has appeared as Research Report RR������� DFKI�
Stuhlsatzenhausweg �� ����� Saarbr"ucken� Germany� will also appear in Jour�
nal of Logic Programming�

��

