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Abstract

We present a calculus providing an abstract operational semantics for higher�
order concurrent constraint programming The calculus is parameterized with
a �rst�order constraint system and provides �rst�class abstraction� guarded
disjunction� committed�choice� deep guards� dynamic creation of unique
names� and constraint communication The calculus comes with a declarative
sublanguage for which computation amounts to equivalence transformation
of formulas The declarative sublanguage can express negation

Abstractions are referred to by names� which are �rst�class values This
way we obtain a smooth and straightforward combination of �rst�order con�
straints with higher�order programming

Constraint communication is asynchronous and exploits the presence of
logic variables It provides a notion of state that is fully compatible with
constraints and concurrency

The calculus serves as the semantic basis of Oz� a programming language
and system under development at DFKI
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� Introduction

Concurrent constraint programming ��
� brings together ideas from constraint
and concurrent logic programming� Constraint logic programming ���� ��� on the
one hand� originated with Prolog II ��� and was prompted by the need to inte�
grate numbers and data structures in an operationally e�cient� yet logically sound
manner� Concurrent logic programming ���� on the other hand� originated with
the Relational Language ��� and was promoted by the Japanese Fifth Generation
Project� where logic programming was conceived as the basic system programming
language and thus had to account for concurrency� synchronization and indeter�
minism� For this purpose� the conventional SLD�resolution scheme had to be
replaced with a new computation model based on the notion of committed�choice�
At 	rst� the new model developed as an ad hoc construction� but 	nally Maher
��
� realized that commitment of agents can be captured logically as constraint
entailment� The 	rst practical language design combining committed�choice with
encapsulated search is AKL ����� AKL�s primary mechanism for encapsulation of
nondeterminism are deep guards�

In ���� the DFKI started the research project Hydra with the goal to design�
investigate and implement a high�level concurrent programming language bringing
together the merits of logic and object�oriented programming� Our starting point
was the existing work on concurrent and constraint logic programming� and some
ideas for concurrent control of generalized constraint logic programming ����� It
soon became clear that some of our ideas were related to the ideas realized in AKL�
However� to arrive at a smooth and practical integration of constraint and object�
oriented programming� we felt that it is absolutely necessary that the underlying
language is higher�order� that is� that procedures and agents are 	rst�class citizens�
We also came to the conclusion� that the established model of communication in
concurrent logic programming based on streams was not compatible with our goals�
both because it induces a tedious and low�level programming style� and because
it poses serious implementation problems due to the need for fair stream merging
�for a similar argumentation see also ������

Our investigations resulted ���� in the design and implementation of a 	rst ver�
sion of Oz ����� a higher�order object�oriented concurrent constraint programming
language� Some aspects of Oz have been reported in ���� ���� The major di�culty
encountered in the design of Oz was the lack of a su�ciently powerful frame�
work for designing such a language �i�e�� specifying its operational semantics��
Saraswat�s framework ��
�� for instance� accommodates neither deep guards nor
	rst�class procedures� In fact� it not even accounts for the incremental aspects
of the operational semantics of �at guards� The tree rewriting semantics specify�
ing the Extended Andorra Model ��� and the structural operational semantics for
AKL ��� turned out to be more helpful� Finally� we learned from the setup of the
��calculus ���� how a tree rewriting semantics can be made su�ciently abstract�
rather than employing real trees� one can use abstract trees obtained by taking the
quotient with respect to an abstract equality called structural congruence� This
idea provided a su�cient base for coming up with a �exible calculus specifying
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the abstract operational semantics of Oz� This setup nicely combines declarative
aspects with operational aspects� Aspects that are accounted for by laws for the
structural congruence are put in declaratively� while aspects that are accounted for
by reduction rules are put in operationally� In our calculi constraint propagation
and simpli	cation are accommodated purely declaratively�

This paper attempts to convey the calculus underlying Oz to readers having a
background in logic programming� For this reason we start with a Calculus A still
maintaining a close connection to 	rst�order Predicate Logic� Calculus A consti�
tutes an operational semantics for �constraint� logic programming with negation
that is profoundly di�erent from the conventional SLDNF�resolution ����� Its dis�
tinctive primitive is a deep guard conditional� Calculus A will convey a number
of important and general ideas� the setup of structural congruence and reduction�
nonclausal syntax� deep guards and propagation laws� relative simpli	cation� and
internal representation of don�t know choices� The next step adds guarded disjunc�
tion and a committed�choice combinator �generalizing the conditional�� Another�
orthogonal generalization gives 	rst�class status to abstractions� This in turn ne�
cessitates the introduction of a facility for the dynamic creation of new and unique
names� Taken together� these extensions lead to Calculus B� Finally� a new form
of asynchronous communication� called constraint communication� is introduced�
Constraint communication also introduces a notion of state that is fully compatible
with constraints and concurrency�

The way our calculus provides for higher�order programming is unique in that de�
notation and equality of variables are captured by 	rst�order logic only� In fact� de�
notation of variables and the facility for higher�order programming are completely
orthogonal concepts� This is in contrast to existing approaches to higher�order
logic programming ���� ��� The paper ���� investigates the relationship between
higher�order functional computation and higher�order relational computation as
realized in Calculus B�

Chapters ��� provide the connection to Logic Programming and motivate and
explain the setup of Calculus B� Chapter � presents Calculus B in a technically self�
contained manner� Chapter � extends Calculus B with constraint communication�

Practical examples illustrating the expressivity of our calculus can be found in �����
where we show how concurrent objects and multiple inheritance can be expressed
with Calculus B and constraint communication�

Calculus B can be conservatively extended with a facility for encapsulated search�
This will be the subject of a future paper�

� Constraints

The calculi presented in this paper are parameterized with respect to a constraint
system� One can see them as constructions extending constraint systems with
programming facilities�

For our purposes it will su�ce to found the notion of constraint system on
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	rst�order Predicate Logic� similar to how it is done in Ja�ar and Lassez� CLP�
framework ����� We are aware that there exist more general and foundationally
less heavy alternatives for setting up the notion of a constraint system �e�g�� ����
���� however� by taking Predicate Logic as the starting point� we can build on well�
established intuitions� notions and notations� and proceed quickly to the issues we
want to bring across�

A constraint system consists of a signature � �a set of 	rst�order function and
predicate symbols� and a consistent theory � �a set of 	rst�order sentences over
� having at least one model�� Often the constraint theory � will be given as the
set of all sentences valid in a certain structure �e�g�� the structures of 	nite trees�
rational trees� integers� or rational numbers�� A constraint is any formula over
the signature of the constraint system �here we deviate from ������ The basic
constraints are the atomic formulas over � closed under conjunction�

�� � ��� � j � j s
�
� t j r�s�� � � � � sn� j � � ��

The symbol � is the truth constant false� � is the truth constant true� s and t are
terms� and r is a predicate symbol� The letters x� y� z will always denote variables
�of which we assume countably in	nitely many�� and the overlined letters x� y� � � �
are used to denote 	nite� possibly empty sequences of variables� For a formula
�x� � � ��xn�� where n � � we will often write �x�� Moreover� �� abbreviates
�x� � � ��xn�� where x�� � � � � xn are the free variables of �� The notations �x� and
�� are de	ned analogously�

Our calculi make use of the following relationships for constraints�

� j�j� � ��� � ��	 �� is true in every model of �

� j�� � ��� � j�j� � � �

It is understood that � and � may have free variables� Given a constraint system�
a constraint � is called satis	able if � 
j�� � �i�e�� there is at least one model of
� in which � is satis	able��

For examples we will use the 	nite tree constraint system H �often called Her�
brand� ���� ��� underlying conventional logic programming� The signature of H
consists of in	nitely many function symbols for every arity� and the theory of H
�known as Clark�s Equality Theory� is given by the schemes�

f�x�
�
�f�y� � x

�
�y

f�x�
�
�g�y� � � �f 
� g�

x
�
�f�� � �x � � �� � ��

� Calculus A

Calculus A is a didactic vehicle for conveying our model of concurrent deep guard
computation� Its distinctive primitive is a deep guard conditional that can express
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negation�� Calculus A is formulated in the familiar setting of 	rst�order Predicate
Logic� which we will leave for the full calculus� Although deep guards already
appeared with Concurrent Prolog� they resisted formalization for a long time� The
only other formalization of deep guard computation we know of is the structural
operational semantics of AKL ����

Calculus A models simpli	cation and propagation of constraints purely declara�
tively by means of its structural congruence�� Given this setup� deep guards can
be accommodated straightforwardly without any extra machinery� Moreover� our
model can account for the incremental aspects of constraint propagation and sim�
pli	cation� This is in contrast to the structural operational semantics of AKL�
which does not separate constraint propagation and simpli	cation from the re�
duction rules�

Calculus A employs a nonclausal syntax that alleviates the distinction between
program and query� This prepares the ground for the switch to higher�order
abstraction in Calculus B�

��� Syntax

The syntax of Calculus A is shown in Figure �� It is parameterized with respect
to the signature of the underlying constraint system� and an additional alphabet
of distinct symbols� called de	ned predicate symbols� We identify conjunction
and quanti	cation of constraints in the calculus with conjunction and existential
quanti	cation of constraints in Predicate Logic�

Every expression of Calculus A corresponds to a 	rst�order formula� where con�
junction translates to conjunction� quanti	cation to existential quanti	cation� dis�
junction to disjunction� and abstraction� application and conditional translate as
follows�

p� x�E �� �x �p�x�	 E�

px �� p�x�

if E then F else G fi �� �E � F �  ��E �G��

Abstractions serve as procedure de	nitions� and applications as procedure calls�
We require that the formal arguments of an abstraction be pairwise distinct� The
conventional separation between program and query is alleviated by the nonclausal
syntax of the calculus� Given a conditional if E then F else G fi� we call the
constituent E the guard of the conditional� A guard is called 
at if E is a

�A deep guard conditional with the same declarative semantics as ours has been proposed and
implemented in Nu�Prolog by Lee Naish ����� The operational semantics of Naish�s conditional
is however di	erent from ours
 it delays until its guard is ground� A deep guard conditional with
unsound operational semantics based on cut existed already in Edinburgh�s Dec��� Prolog ����

�Note that SLD�resolution �i�e�� the operational semantics of Horn clauses� accommodates
constraints operationally rather than declaratively �e�g�� the notion of uni�cation is an operational
notion��
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Symbols

x� y� z� u� v�w � variable

p� q � de�ned predicate

Constraints

�� �

Expressions

E� F�G�H ��� � constraint

E � F conjunction

�xE quantification

p� x�E abstraction

px application

E  F disjunction

if E then F else G fi conditional

Figure �� Syntax of Calculus A�

constraint� and deep otherwise� Since we have the logical equivalence

�E j�j if E then � else � fi�

Calculus A can express negation�

The variable binders of Calculus A are quanti	cation and abstraction� A quan�
ti	cation �xE binds x with scope E� and an abstraction p� x�E binds its formal
arguments x with scope E� The free variables of an expression are de	ned
accordingly� We use VE to denote the set of variables that occur free in E�

An expression is called an actor if it is either an application� a disjunction� or a
conditional�

Logical equivalence for the expressions of Calculus A is de	ned as

E j�j� F ��� � j� ��E 	 F ��

where � is the theory of the underlying constraint system� The signature under�
lying logical equivalence is the signature of the constraint system together with
the alphabet of de	ned predicate symbols�

��� Structural Congruence

The operational semantics of Calculus A will be de	ned as a reduction relation
�E � F� on expressions� It will respect logical equivalence in that E � F always
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E � E

E � F

F � E

E � F F � G

E � G

E � E� F � F �

E � F � E� � F �

E � E�

�xE � �xE�

E � E�

p� x�E � p� x�E�

E � E� F � F �

E  F � E�  F �

E � E� F � F � G � G�

if E then F else G fi � if E� then F � else G� fi

Figure �� Structural congruence laws of Calculus A�

implies E j�j� F � The reduction relation will be de	ned on a quotient of the
expressions with respect to an equivalence relation called structural congruence�
This setup is familiar in the theory of term rewriting �
�� and has been applied to
the semantics of concurrent programming in the Chemical Abstract Machine ���
and the ��Calculus �����

A binary relation � on the expressions of Calculus A is called a congruence if it
satis	es the structural congruence laws in Figure ��

Proposition ��� The relation �E j�j� F� is a congruence�

We de	ne the structural congruence �E � F� of Calculus A to be the least
congruence satisfying the proper congruence laws appearing in Figure �� Except
for the 	rst and second propagation law� which are essential for deep guard com�
putation� the laws are familiar from Predicate Logic�

Proposition ��� For all expressions E� F and all constraints �� ��

�� E � F � E j�j� F

�� � � � � � j�j� ��

Proof� The second claim follows from the 	rst claim and Law SS� To show the
	rst claim� it su�ces to show that �E j�j� F� satis	es every congruence law in
Figure �� since �E j�j� F� is already established as a congruence� All laws but
SPC are obvious� That j�j� satis	es SPC follows easily with�

� � �E j�j� �  �� � �E� j�j� �� � ��� �� � �E�

j�j� � � ���  �E�

j�j� � � ��� �E��






Renaming

SR� E � F if E and F are equal up to consistent
renaming of bound variables

Conjunction

SC� � is associative� commutative� and satis	es E � E � �

Quanti	cation

SQE� �x�yE � �y�xE

SQM� �xE � F � �x�E � F � if x does not occur free in F

Disjunction

SD� E  F � F E

Simpli	cation

SS� � � � if � j�j� �

Equality

SE� x
�
�y �E � x

�
�y �E�y�x� if y free for x in E

where E�y�x� is obtained from E by replacing every free occurrence of x
with y�

Propagation

SPD� � � �E  F � � � � ��� � E� F �

SPC� � � if E then F else G fi � � � if � �E then F else G fi

where � must be a constraint or an abstraction

Replication

SPR� p� x�E � p� x�E � p� x�E

Figure �� Proper congruence laws of Calculus A�
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Proposition ��� If x does not occur free in E� then �xE � E�

Proof� If x does not occur free in E� then

�xE � �x�� �E� � �x� � E � � �E � E

by the congruence laws SC� SQM� and SS�

It is important to have a good intuitive understanding of the quotient that struc�
tural congruence imposes on the set of expressions� The laws for conjunction
make conjunction into an operator building multisets of nonconjunctive expres�
sions� where � plays the role of the empty multiset� To use the metaphor of
the Chemical Abstract Machine ���� conjunction creates the chemical solution in
which concurrent computation can take place� The Quanti	er Mobility Law SQM
and the Renaming Law ensure that quanti	cation does not hinder the �ow of the
chemical solution� With the congruence laws mentioned so far we can rewrite
every expression into the form

�x �� �E��

where � is a conjunction of constraints and abstractions� and where E is a con�
junction of actors� Law SQE ��quanti	er exchange�� turns the variable sequence x
into a multiset� The commutativity law for disjunctions� SD� takes away the order
between the two branches� The Simpli	cation Law makes constraints denota�
tional� that is� their syntax does not matter� The Equality Law extends equalities
entailed by constraints to conjoined expressions�

The two propagation laws SPD and SPC make conjoined constraints and abstrac�
tions visible in the branches of disjunctions and the guards of conditionals� Read
from right to left� they provide for the deletion of abstractions and constraints
that are present higher up� For example� taking H as the underlying constraint
system and ��� as a binary function symbol� we have

�
B�

x
�
���u�v�w

y
�
�v�w

x � ��u�y  x
�
���z�y

�
CA �

�
B�

x
�
���u�y

y
�
�v�w

�  z
�
�u

�
CA

using the laws for conjunction� simpli	cation and propagation� �The rows of a
matrix are conjoined by conjunction�� Taken together� the laws for simpli	cation
and propagation provide for something we call relative constraint simpli	cation�
The intuition behind this name is made explicit in the next proposition� where
the constraint in the guard of the conditional is simpli	ed with respect to the
constraint above� Similar statements hold for the branches of a disjunction�

Proposition ��� �Relative Simpli	cation If ��� j�j� ���� and no variable
in x occurs free in �� then

� � if �x �� � E� then F else G fi � � � if �x ��� �E� then F else G fi�
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�
�

�
�
�

e
e
e

e
e
e

�
�
�

Blackboard

Actor Actor���

Figure �� The blackboard metaphor�

The following variant of the above proposition will be useful in examples�

Proposition ��� �Relative Simpli	cation If � � � j�j� � � ��� then

� � if � then E else F fi � � � if �� then E else F fi�

The Replication Law SPR allows for copying and merging of abstractions� It is
needed to render the reduction rules con�uent�

��� The Blackboard Metaphor

We can visualize an expression modulo structural congruence as a computation
space consisting of a number of actors connected to a blackboard �see Fig� ���
The actors are either applications� disjunctions or conditionals� The blackboard
consists of constraints and abstractions� Conjunction and quanti	cation provide
the glue keeping actors and blackboard together� Since conditional and disjunctive
actors spawn local computation spaces �i�e�� the guards of conditionals and the
branches of disjunctions�� the computation system is actually a tree�like structure
of computation spaces �see Fig� ���

The reduction rules we will give in the next section can be seen as animation
rules for computation spaces� The actors read the blackboard and reduce once the
blackboard contains su�cient information� The information on the blackboard
increases monotonically� When an actor reduces� it may put new information on
the blackboard and create new actors� The actors of a computation space are
short�lived� once they reduce they disappear�

��� Reduction

We de	ne the reduction relation � of Calculus A to be the least relation
satisfying the structural laws in Figure � and the proper laws �called reduction

rules� in Figure �� Put more intuitively� we have E � F if and only if there
are expressions E� and F � such that E � E�� F � F �� and F � is obtained from
E� by applying a reduction rule to a subexpression of E� not appearing in a
protected position� A position in an expression is called protected if it is within
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E � E� E� � F � F � � F

E � F

E � E�

E � F � E� � F

E � E �

�xE � �xE�

E � E�

E  F � E�  F

E � E�

if E then F else G fi� if E� then F else G fi

Figure �� Structural reduction laws of Calculus A�

Unfolding

RU� px � p� y�E � �y �y
�
�x �E� � p� y�E

if x and y are disjoint and of equal length

Disjunction

RDF� �� �E� F � F

RDT� �  E � �

Conditional

RCF� if � �E then F else G fi � G

RCT� if � then F else G fi � F

Figure �� Reduction rules of Calculus A�

an abstraction� or within the second or third constituent of a conditional� Due to
the fact that the reduction relation is de	ned as the least relation satisfying the
reduction laws� the protected positions are in fact just those where the reduction
relation is not forced by a structural law to satisfy the compatibility property�
Disallowing reduction at protected positions makes it possible to write terminating
recursive programs� Note that the conditional is the only construct of the calculus
that can express sequentializing and synchronizing control�

Proposition ��� For all expressions E� F � if E � F then E j�j� F �

Proof� It su�ces to show that j�j� satis	es all reduction laws� Since E j�j� F is
a congruence and E � F � E j�j� F by Proposition ���� it su�ces to show that
E j�j� F satis	es every reduction rule� This is easily veri	ed�

The proposition states that reduction is sound with respect to logical equivalence�
Of course� reduction is not complete with respect to logical equivalence� For
instance� p � �p j�j� � although p � �p is irreducible�
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Proposition ��� If x is free for y in E� then�

px � p� y�E � E�x�y� � p� y�E�

Proof� Without loss of generality we can assume that x and y are distinct �other�
wise we rename the formal argument of the abstraction to a fresh variable�� Now
we have�

px � p� y�E � �y �y
�
�x �E� � p� y�E by RU

� �y �y
�
�x� � E�x�y� � p� y�E by SE� SQM

� E�x�y� � p� y�E by SS�

Example ��� We will now see how reduction in Calculus A works� After going
through a 	at guard computation� we will see a deep guard computation�

Let us assume H as the underlying constraint system� Then the recursively de
ned
predicate nat

NAT �� nat� x � if x
�
� then � else �y �x

�
�s�y� � nat y� fi

holds exactly for the trees � s��� s�s���� � � � � Now suppose we want to reduce
the expression

nat x � x
�
�s�� � NAT�

By unfolding according to Proposition ��� we obtain

if x
�
� then � else �y �x

�
�s�y� � nat y� fi � x

�
�s�� � NAT�

As usual� we tacitly exploit the associativity and commutativity of conjunction� By
relative simpli
cation Proposition ���� we obtain

if � �� then � else �y �x
�
�s�y�� nat y� fi � x

�
�s�� � NAT�

Application of the reduction rule RCF yields

�y �x
�
�s�y�� nat y� � x

�
�s�� � NAT�

from where we proceed to

�y �y
�
� � if y

�
� then � else �z �y

�
�s�z� � nat z� fi� � x

�
�s�� � NAT

using constraint simpli
cation x
�
� s�y� � x

�
� s�� j�jH y

�
�  � x

�
� s��� and

unfolding according to Proposition ���� By relative simpli
cation we obtain

�y �y
�
� � if � then � else �z �y

�
�s�z� � nat z� fi� � x

�
�s�� � NAT

from where we proceed to �y �y
�
� � �� � x

�
� s�� � NAT using the reduc�

tion rule RCT� Now application of the Simpli
cation Law yields the irreducible
expression x

�
�s�� � NAT �

��



We are now ready to consider a deep guard computation the capital letter B is a
variable��

if nat x then B
�
�� else B

�
� fi � x

�
�s�� � NAT

� if nat x � x
�
�s�� �NAT then B

�
�� else B

�
� fi � x

�
�s�� � NAT

�� if x
�
�s�� �NAT then B

�
�� else B

�
� fi � x

�
�s�� � NAT

� if � then B
�
�� else B

�
� fi � x

�
�s�� � NAT

� B
�
�� � x

�
�s�� � NAT�

The 
rst congruence follows by the propagation law for conditionals� The following
reduction chain on the guard was established above� We exploit that reduction
can be applied to subexpressions if they are not in protected positions�� Using the
Propagation Law in the opposite direction� we can rewrite the guard to �� Now
the reduction rule RCT for conditionals applies and produces the 
nal expression�

Example ��� Assume the constraint system H and consider the following de
ni�
tion of a membership predicate for lists�

MEM �� mem �XL � if L
�
�nil then �

else �H R �L
�
�H�R � �X

�
�H  memX R�� fi�

One can verify the following two derivations�

�L �L
�
�����X�Y � memX L� � MEM �� MEM

�X L �X
�
�� � L

�
���Y�nil � memX L� � MEM �� Y

�
�� � MEM�

Note that the 
rst derivation employs Rule RDT�

Example ���� Assume the constraint system H and consider the following de
�
nition of a length predicate for lists�

LEN �� len �LN � �L
�
�nil � N

�
�� 

�H RM �L
�
�H�R � N

�
�s�M� � lenRM��

Due to the symmetry of the operational semantics of disjunctions� the predicate
computes numbers for lists and lists for numbers�

�L �L
�
�X�Y�nil � len LN� � LEN �� N

�
�s�s��� � LEN

�N �N
�
�s�� � len LN� � LEN �� �X �L

�
�X�nil� � LEN�

If we de
ne the length predicate with a conditional

LEN �� len �LN � if L
�
�nil then N

�
�

else �H RM �L
�
�H�R � N

�
�s�M� � lenRM� fi�

the symmetry is lost and only the 
rst derivation remains possible�
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��� Termination

An expression E is called failed if E � � � F for some F � The reduction rules
RDF and RCF are called failure rules� An expression is called nervous if it
is not failed and a failure rule applies to it �e�g�� �  E�� An in	nite derivation
E� � E� � E� � � � � is called admissible if no Ei is failed� and Ei�� is
obtained from Ei by a failure rule whenever Ei is nervous� An expression is called
terminating if there exists no admissible in	nite derivation issuing from it�

Example ���� Assume the constraint system H and consider the recursively
de
ned predicate nat from Example ���� It is easy to see that the expression
� � nat x �NAT is terminating for every constraint ��

Example ���� Assume the constraint system H and consider

DNAT �� nat� x � x
�
�  �y �x

�
�s�y� � nat y��

Logically� NAT and DNAT are equivalent� that is� NAT j�jH DNAT � Oper�
ationally� they behave di�erently as it comes to termination� For instance� we
obtain an admissible in
nite derivation issuing from nat x � DNAT by applying
the unfolding rule repeatedly� However� if we constrain the argument of nat x suf�

ciently� we obtain termination� For instance� x � s�s��� � nat x � DNAT is
terminating�

The examples show that one needs the conditional to write recursive predicates
that terminate for underconstrained arguments� Conditionals have however the
disadvantage that they destroy the symmetry of relational de	nitions �see for
instance the length predicate in Example ����� Calculus B will 	x this problem
by providing so�called guarded disjunctions� which can express the control needed
for termination�

Example ���� Assume the constraint system H and consider the addition pred�
icate

ADD �� add � x y z � if x
�
� then y

�
�z

else �u v �x
�
�s�u� � z

�
�s�v�� addu y v� fi�

It is not di�cult to see that the expression

x
�
�s�z� � addx y z �ADD

is not terminating�� Note that x
�
�s�z��addx y z�ADD j�jH �� We can enforce

termination by sequentializing with a deep guard�

x
�
�s�z� � if nat x then addx y z else � fi �ADD�

�This example was brought to my attention by Thom Fr�uhwirth�
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��� Entailment and Negation

Knowing Saraswat�s ask and tell calculus ���� �
�� one would expect a reduction
rule for conditionals that 	res upon entailment of the guard by the context�

RCE� � � if � then F else G fi � F if � j�� ��

It is clear that Rule RCE can simulate Rule RCT� However� RCT can also simulate
RCE� To see this� assume � j�� �� Then

� � if � then F else G fi � � � if � then F else G fi

by constraint propagation and simpli	cation�

A constraint system is called independent� if it satis	es

� j��

n�
i��

�xi�i � �i� � j�� �xi�i

for all basic constraints �� ��� � � � � �n� The usual tree constraint systems are in�
dependent ����� In particular� this is the case for the 	nite tree constraint system
H �provided an in	nite signature is taken� as required in this paper� see ���� for a
counter example��

Proposition ���� Assume the constraint system is independent� Then

� �
n�

i��

if �yi�i then � else � fi �� � �� � �
n�

i��

��yi�i j�j� ��

provided �� ��� � � � � �n are basic constraints�

Proof� The direction from left to right is obvious since reduction is an equivalence
transformation �Proposition ����� To show the other direction� we can assume
� j�� �xi�i for some i since the constraint system is independent� Thus we can
use Rule RCE� which yields � � if �yi�i then � else � fi �� � � �� Now we
obtain the left hand side of the equivalence by using Rule RCE with the context ��

��� Relative Simpli	cation

A relative simpli	cation procedure for a constraint system is a procedure
that� given two basic constraints � and �� where � must be satis	able� produces
a constraint �� such that ��� j�j� ����� A relative simpli	cation procedure is
complete if its output �� satis	es

�� � j� �x� � � j� �x�� �provided no variable in x occurs in ��

�Note that our de�nition of independence involves existential quanti�cation� which is not the
case for the conventional de�nition ����� Our notion of independence agrees however with the
de�nitions in ���� ����
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�� � � � j�j� � � �� � ��

A complete relative simpli	cation procedure together with a test �� j� �x�� is
the basic operational machinery one has to provide for the underlying constraint
system in order to decide whether a reduction rule is applicable� Relative simpli�
	cation procedures for feature tree constraint systems have been developed in ���
���� and the full version of ���� provides an abstract machine for relative simpli	�
cation�

A complete relative simpli	cation procedure for the 	nite tree constraint systemH
can easily be obtained from a uni	cation procedure� Given two basic constraints
� and �� where � is satis	able� one 	rst computes an idempotent most general
uni	er � of �� Next one computes an idempotent most general uni	er � for ��� If
� does not exist� take �� � �� Otherwise� take for �� the equational representation
of �� That this in fact speci	es a complete relative simpli	cation procedure for H
follows from the results in �����

��
 Con�uence

An expression is called admissible if it is congruent to an expression that contains
at most one abstraction per predicate� and that does not nest abstractions into
abstractions� It is easy to see that reduction preserves admissibility of expressions�

Conjecture ���� Reduction in Calculus A is con	uent on admissible expressions�
That is� if E is admissible� E �� F � and E �� G� then there exists an expression
H such that F �� H and G�� H�

Example ���� Consider the nonadmissible expression a and b are distinct con�
stants��

N �� �p� x�x
�
�a� � �p� x�x

�
�b��

It is easy to see that N � py reduces to two noncongruent normal forms N � y
�
�a

and N � y
�
�b�

��� Distribution Rule

A rule obviously missing from Calculus A is the Distribution Rule�

RDD� �E  F � � G � �E �G� �F � G��

With the Distribution Rule the otherwise irreducible expression

�x
�
��  x

�
��� � �x

�
�� x

�
���

�we assumeH as the underlying constraint system� reduces to�� The Distribution
Rule may quickly lead to combinatorial explosion since it introduces a new copy
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of the conjoined G� Moreover� adding the Distribution Rule destroys con�uence
on admissible expressions�

��  p� � q � �� q � q by RDT

��  p� � q � �� � q�  �p � q� � q  �p � q� by RDD�

We conjecture that con�uence can be preserved if Rule RDT is given preference
over Rule RDD� Disallowing Rule RDT completely should also recover con�uence�

��� Relation to SLD� and SLDNF�resolution

It is interesting to relate Calculus A to SLD�resolution ����� A goal is a conjunction
of constraints and applications� A de	nite abstraction is a closed �i�e�� no free
variables� expression of the form

p� x �
n�

i��

�yiGi

where the Gi�s are goals� A de	nite program is an admissible conjunction of
de	nite abstractions� Clark�s completion ���� translates Horn clause programs into
de	nite programs�

Now consider a de	nite program � and a goal G� An SLD�derivation with re�
spect to � issuing from E can be simulated in Calculus A if the Distribution Rule
is added� The simulation does not employ the rules RDT� RCT and RCF� Fur�
thermore� because there are no conditionals� and disjunctions are moved above
conjunctions with the Distribution Rule� the propagation laws are not needed�
However� it is necessary to add two new congruence laws�

E  �F  G� � �E  F �  G

�x �E  F � � �xE  �xF�

The unfolding rule RU is applied only after an expression has been rewritten to
disjunctive normal form

W
n

i�� �� � �xiGi�� The disjunctive normal form corre�
sponds in fact to the frontier of an SLD�tree� and answers show up as goals Gi

that are satis	able constraints� Finite failure of a goal G amounts to a derivation
� � G�� � � ��

Note that this simulation reveals backtracking as a space e�cient implementation
of the distribution rule� which constructs only one clause of the disjunctive normal
form at a time�

We can also simulate SLDNF�resolution ����� where negation �E is expressed as
if E then � else � fi� Now we need the reduction rules for the conditional
and also Rule RDT for disjunction� We also need the propagation law for the
conditional� but the propagation law for disjunction is still not needed�
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���� Freeze

Prolog II�s freeze can be expressed as

if �if x
�
�a then � else � fi� then E else � fi

where we assume H as the underlying constraint system� and a to be a constant
of H� Note that this expression is logically equivalent to E� and that E is released
for reduction if and only if the context is strong enough to either entail or disentail
X

�
�a� This will be the case if and only if x is �bound� to a nonvariable term by

the context�

� Extensions

This section discusses informally the extensions leading from Calculus A to Cal�
culus B�

��� Guarded Disjunction

The problem with disjunction in Calculus A is that it lacks the control needed to
obtain termination� This is illustrated by the recursive abstraction

DNAT �� nat� x � x
�
�  �y �x

�
�s�y� � nat y�

and the nonterminating expression nat x �DNAT �

It is not di�cult to provide the missing control� To this purpose� we extend the
syntax of Calculus A with a clause combinator

E then F

whose declarative reading is E�F � In contrast to conjunction� however� the clause
combinator is not commutative and prevents its second argument from reduction�
The 	rst argument is called the guard of the clause� and the second argument is
called the body of the clause� If we rewrite DNAT to

DNAT �� nat� x � �x
�
� then ��  �y �x

�
�s�y� then nat y��

then the expression nat x �DNAT is obviously terminating� Of course� we need
an additional propagation law

� � �E then F � � � � �� �E then F �

for clauses and must arrange things such that if a disjunction reduces to a clause�
the body of the clause is released� To this purpose we replace the old reduction
rules for disjunction with the following new ones�

�� �E� then F � �

�x �E then F �  � � �x �E � F �

�x �� then �� G � � if �x � � ��
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We can now rewrite the de	nition of the length predicate from Example ��� to

LEN �� len �LN � �L
�
�nil � N

�
� then �� 

�H RM �L
�
�H�R � N

�
�s�M� then lenRM�

and obtain a terminating and symmetric solution satisfying

�L �L
�
�X�Y�nil � len LN� � LEN �� N

�
�s�s��� � LEN

�N �N
�
�s�� � len LN� � LEN �� �X �L

�
�X�nil� � LEN�

Our solution will work 	ne with binary disjunctions� but not with disjunctions
taking more alternatives� for instance�

�x
�
�� then E��  �y

�
�� then E��  �z

�
�� then E���

This problem can be resolved by having a disjunction combinator

or �C� � � � Cn�

taking a multiset C� � � � Cn of possibly quanti	ed clauses

C ��� �x �E then F �

as argument�

Let us summarize� The guarded disjunction combinator spawns any number of
possibly quanti	ed clauses� The clauses can be thought of as competing computa�
tions� Reduction takes place in the guards of the clauses� but not in their bodies�
If a clause has failed �i�e�� its guard has reduced to ��E�� it is discarded� If only
one clause is left� the disjunction combinator commits to this clause and the body
of the clause is released� Moreover� the disjunction can reduce to � if the guard
of a clause whose body is � is satis	ed�

��� Committed�Choice

Calculus B will also have a committed�choice combinator

if C� � � � Cn else G

taking a multiset C� � � � Cn of possibly quanti	ed clauses and an expression G as
arguments� The clauses can be thought of as competing computations� Reduction
takes place in the guards of the clauses� but not in their bodies� If the guard of
a clause is satis	ed� the committed�choice combinator can commit to this clause
and the body of the clause is released�

if �x �� then F � C� � � � Cn else G � �x �� � F � if �x � � ��

If a clause has failed �i�e�� its guard has reduced to � � E�� it is discarded� If no
clause is left� the committed choice combinator reduces to the else constituent G�

�



The conditional of Calculus A can be obtained from the committed�choice combi�
nator by having only one unquanti	ed clause� if E then F else G�

Committed�choices with more than one clause introduce indeterminism and hence
destroy con�uence� as one can see from the example

x
�
�� � y

�
�� � if �x

�
�� then z

�
��� �y

�
�� then z

�
��� else ��

which can reduce to either x
�
�� � y

�
�� � z

�
�� or x

�
�� � y

�
�� � z

�
��� In general�

committed�choices with more than one clause cannot be translated to 	rst�order
formulas such that the reduction rules amount to equivalence transformations�

��� Names

How can we extent Calculus A such that we can dynamically create new and
unique names The answer is surprisingly simple� First� we have to require that
the constraint system comes with an in	nite alphabet of distinguished constant
symbols called names satisfying two conditions�

�� � j� ��a
�
�b� for every two distinct names a� b

�� � j� � 	 � for every two 	rst�order sentences �� � over the signature of
the constraint system such that � can be obtained from � by permutation
of names�

It is easy to see that the usual 	nite and rational tree constraint systems �taken
over an in	nite signature� satisfy these conditions for any set of constant symbols
we decide to distinguish as names�

The following proposition says that names are di�erent from any other value that
can be uniquely described by a formula�

Proposition ��� Let a constraint system with names satisfying requirements ��
and �� be given� Moreover� let � be a formula over the signature of the constraint
system such that x is the only free variable of �� and such that � determines x�
that is� � j� �!x�� Then � j� ���a�x� for every name a not occurring in ��

Proof� We prove the claim by contradiction� Suppose A is a model of the con�
straint system such that A j� ��a�x� for some name a not occurring in �� Now let
b be a name di�erent from a that also does not occur in �� Since ��a�x� and ��b�x�
are sentences that are equal up to permutation of names� we know by requirement
��� that A j� ��b�x�� Moreover� we know A j� ��a

�
� b� by requirement ���� Since

we know A j� �!x� by assumption� we have a contradiction�

A small generalization of Calculus A will do the rest of the job� we allow quanti	�
cation over names� that is� �aE is considered a well�formed exoression� moreover�
we provide the same congruence laws for quanti	cation of names we already have
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for quanti	cation of variables� including renaming of quanti	ed names� Of course�
�aE is not a formula of Predicate Logic and must not be thought of as existential
quanti	cation�

With this simple formal machinery in place� we can create new and unique names
as follows�

newname�x� �� �ax
�
�a�

That this construction indeed works can be seen from the congruences

newname�x� � newname�y� � E � �ax
�
�a � �ay

�
�a � E

� �a�x
�
�a � �by

�
�b � E�

� �a�b�x
�
�a � y

�
�b � E��

which employ the Quanti	er Mobility Law� renaming of names� and the assump�
tion that the names a� b do not occur free in E� For this construction to work it
is crucial that conjunction of expressions is not idempotent�� Hence

�ax
�
�a � �ax

�
�a � �a�b�x

�
�a � x

�
�b� � �a�b��� � �

does not imply �ax
�
�a � ��

The above treatment of names� which we 	rst published in ����� usually puzzles
people a lot on 	rst sight� It is related to the treatment of names in the ��
calculus ����� even so the ��calculus does not distinguish between variables and
names� We need this distinction because of the presence of constraints� A treat�
ment of names similar to ours but in the context of an extended lambda calculus
can be found in �����

��� First�class Abstraction

The setup of Calculus A makes it straightforward to accommodate abstractions
as 	rst�class citizens� We just forget the de	ned predicate symbols and use names
instead� abstraction now takes the form a� x�E� and application becomes ax� If
we also allow applications of the form xy and assume the congruence law

x
�
�a �E � x

�
�a � E�a�x� if a is free for x in E�

the higher�order programming techniques known from functional programming
become available�

Example ��� The following expression de
nes a function f that takes a predicate
P as argument and returns a predicate Q� which holds i� its argument L is a list
whose elements all satisfy P �

f �P Q � �a �Q � a � a�L � if L
�
�nil then �

else �H�R�L
�
�H�R � P H �QR� fi��

�Incidentally� Linear Logic has a nonidempotent conjunction�like connective�
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Generalized abstraction and application do not destroy the logical semantics of
Calculus A �however� quanti	cation of names does�� By assuming a predicate
symbol apply for every arity� we can translate generalized abstractions and appli�
cations to 	rst�order formulas�

a� x�E �� �x �apply�ax�	 E�

ax �� apply�ax�

xy �� apply�xy��

Under this translation� the unfolding rule remains an equivalence transformation�

From an operational point of view the congruence

�a�a� x�E� � �

seems reasonable� it allows throwing away abstractions that cannot be referred to
anymore� This congruence will� for instance� enable the reduction of the condi�
tional

if �a�a� x�E� then F else G fi � F�

which otherwise would be irreducible� The Annulment Law of Calculus B sub�
sumes the above congruence�

� Calculus B

This section gives a self�contained de	nition of Calculus B�

��� Constraint Systems

Constraint systems as employed by Calculus B are based on 	rst�order Predicate
Logic with equality� A constraint system consists of

�� a signature � �a set of constant� function and predicate symbols�

�� a consistent theory � �a set of sentences over � having a model�

�� an in	nite set of constants in � called names satisfying two conditions�

�a� � j� ��a
�
� b� for every two distinct names a� b

�b� � j� � 	 � for every two sentences �� � over � such that � can be
obtained from � by permutation of names�

Given a constraint system� we will call every formula over its signature a con�
straint� We use � for the constraint that is always false� and � for the constraint
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x� y� z � variable

a� b� c � name

� � constraint

u� v� w ��� x j a

E ��� � constraint

j E� �E� composition

j �u E declaration

j a� x�E abstraction �x linear�

j uv application

j if D else E conditional

j or �D� disjunction

C ��� E� then E� j �u C clause

D ��� C j � j D� D� collection

Figure �� Abstract syntax of Calculus B�

that is always true� Moreover� we will use the following relationships for con�
straints�

� j�j� � ��� � ��	 �� is valid in every model of �

� j�� � ��� � j�j� � � �

� satis	able ��� � 
j�� ��

��� Syntax

The abstract syntax of Calculus B appears in Figure �� It supposes that some
constraint system is given� 	xing in	nite sets of variables� names and constraints�

We use x to denote a possibly empty sequence of variables� A sequence x is called
linear if its elements are pairwise distinct�

An expression a� x�E represents a binding of the name a to the abstraction x�E�
For convenience� we call the entire expression a� x�E an �abstraction�� We some�
times write a�	� where 	 � x�E�

The syntactic category D represents multisets of clauses� where � stands for the
empty multiset and  for multiset union�

We identify a conjunction �� � �� of two constraints with the corresponding com�
position of constraints� and an existential quanti	cation �x� of a constraint �
with the corresponding declaration�

��



Calculus B has the following constructs for binding variables and names�

� A declaration �uE binds u �a variable or a name� with scope E�

� An abstraction a� x�E binds its formal arguments x with scope E�

� A clausal declaration �uC binds u �a variable or a name� with scope C�

� Quanti	cation of constraints �as in Predicate Logic��

The free variables and free names of an expression are de	ned accordingly� We
use FE to denote the set of variables and names occurring free in E�

��� Structural Congruence

A congruence is an equivalence relation on the expressions of Calculus B �i�e��
the syntactic categories �� E� C� and D� that is compatible with all syntactic
combinators �e�g�� if E� � E�

� and E� � E�
�� then E��E� � E�

��E
�
��� The struc�

tural congruence �E� � E�� of Calculus B is de	ned as the least congruence
satisfying the congruence laws in Figure 
�

The notation E�u�x� stands for the expression that is obtained fromE by replacing
every free occurrence of x with u�

��� Reduction

The reduction relation of Calculus B is de	ned as the least relation �E� � E�� on
expressions satisfying the structural reduction laws in Figure � and the reduction
rules in Figure �� An instance E � E� of the reduction relation expresses that
E� can be obtained from E by one reduction step�

The structural reduction laws �Figure �� say where the reduction rules �Figure ��
can be applied� everywhere but within abstractions� else constituents of condition�
als� and then constituents of clauses� The 	rst structural reduction law

E� � E� E� � E�
� E�

� � E�

E� � E�

says that the reduction rules can be applied modulo structural congruence� that
is� an expression can be rewritten according to the congruence laws in Figure 

before and after a reduction rule is applied�

The Unfolding Rule should be clear from Calculus A� The Failure Rule fails a local
computation space� which means that the associated clause is discarded� The 	rst
rule for conditionals reduces the conditional with a clause whose guard is entailed
�see Proposition ����� The second rule for conditionals reduces the conditional to
the else constituent in case all clauses are failed� The 	rst rule for disjunctions
reduces a disjunction that has only one clause left �recall that failed clauses are
discarded by the failure rule�� The second rule reduces a disjunction that has
no clause left to the constraint �� The third rule reduces a disjunction with an
entailed clause whose body is the constraint � to ��

��



Renaming

� E� � E� if E� and E� are equal up to consistent
renaming of bound variables and names

Composition and Collection

� � is associative� commutative and satis	es E � � � E

�  is associative� commutative and satis	es D  � � D

Declaration

� �u �v E � �v �u E

� �u �v C � �v �u C

� �u E� �E� � �u �E� �E�� if u does not occur free in E�

� �uE� then E� � �u �E� then E�� if u does not occur free in E�

Simpli	cation

� �� � �� if �� j�j� ��

Equality

� x
�
�u � E � x

�
�u � E�u�x� if u is free for x in E

Propagation

� � � if �u �E� then E�� D else E� � � � if �u �� �E� then E�� D else E�

� � � or ��u �E� then E�� D� � � � or ��u �� � E� then E��D�

if � is a constraint or an abstraction with F� � Fu � �

Replication

� a�	 � a�	 � a�	

Annulment

� �x �a�b �� � a�	� � � if �x � j�j� �

Figure 
� Congruence laws of Calculus B�
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E� � E� E� � E�
� E�

� � E�

E� � E�

E� � E �
�

E� � E� � E �
� �E�

E � E�

�uE � �uE�

D� D�

if D else E � if D� else E
D � D�

or �D�� or �D��

D� � D�
�

D� D� � D�
� D�

E� � E�
�

E� then E� � E�
� then E�

C � C�

�u C � �u C�

Figure �� Structural reduction laws of Calculus B�

Unfolding

� au � a� x�E � E�u�x � � a� x�E

if x and u are of equal length and u is free for x in E

Failure

� �u �� � E� then E�� � �

Conditional

� if �u �E� then E�� D else E� � �u �E� � E�� if �u E� � �

� if � else E � E

Disjunction

� or ��u �E� then E��� � �u �E� �E��

� or ��� � �

� or �� then � D� � �

Figure �� Reduction rules of Calculus B�
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Example ��� Consider the expression

�x �y ��a �x
�
�a� � �a �y

�
�a� � if x

�
�y then E� else E��

and suppose that x and y are distinct variables that do not occur free in E� and
E�� Moreover� assume that a and b are two distinct names not occurring free in
E� and E�� We will show that this expression reduces in two steps to E��

First� we move the left declaration of the name a to the outside of the expression
using the laws for declarations and compositions and exploiting the assumption
that a does not occur free in E� and E��

� �a �x �y �x
�
�a � �a �y

�
�a� � if x

�
�y then E� else E��

Next we apply the Equality Law to x
�
�a�

� �a �x �y �x
�
�a � �a �y

�
�a� � if a

�
�y then E� else E��

Now we move the declaration of x inside using the laws for composition and dec�
laration we exploit that x does not occur free in E� and E� and that x is di�erent
from y��

� �a�y ��x �x
�
�a� � �a �y

�
�a� � if a

�
�y then E� else E��

Since �x �x
�
�a� is a constraint and �x �x

�
�a� j�j� �� we can delete �x �x

�
�a� using

the Simpli
cation Law and the laws for compositions in particular E � � � E��

� �a �y ��a �y
�
�a� � if a

�
�y then E� else E��

Next we rename the inner name a to the di�erent name b using the Renaming
Law�

� �a �y ��b �y
�
�b� � if a

�
�y then E� else E��

This brings us in a position where we can eliminate �b �y
�
�b� in the same way we

did it before for �a �x
�
�a��

� �a �b �if a
�
�b then E� else E��

Now� since a
�
�b j�j� �� we obtain

� �a �b �if � �� then E� else E��

� �a �b �if � else E��

� �a �bE�

using the Simpli
cation Law� the Failure Rule� and the second rule for the con�
ditional� It remains to get rid of the declarations of the names a and b� This
can be done using the Annulment Law together with the laws for compositions and
declarations�

� �a �b �� �E�� � ��a �b�� � E� � � � E� � E��

�




Example ��� This example shows the reason for equipping Calculus B with the
Replication Law� Consider the derivation

a�	 � or �E� then E��

� a�	 � or �a�	�E� then E��

� a�	 � a�	 � E� � E�

� a�	 � E� � E��

The 
rst step is by the propagation law for disjunctions� the second step is by the

rst reduction rule for disjunctions� and the third step is by the Replication Law�
Without the Replication Law it would be impossible to get rid of the second copy
of the abstraction a�	�

Example ��� The Annulment Law reconciles 
rst�class abstraction with deep
guards� To see this� consider the reduction

if �x �a �x
�
�a � a� y�y

�
�x� then E� else E� � E�

which is justi
ed by the 
rst rule for conditionals and the fact that

�x�a �x
�
�a � a� y�y

�
�x� � �

is an instance of the Annulment Law�

The next propostition says that conditionals can reduce with clauses whose guards
are entailed�

Proposition ��� Suppose �� j�� �x ��� Then

�� � if �x ��� then E�� else E� � �� � �x ��� � E���

Proof� Because of the Renaming Law we can assume without loss of generality
that no variable in x occurs in ��� It su�ces to show that there exists a constraint
�� such that �� � �� j�j� �� � �� and �x �� j�j� � since

�� � if �x ��� then E�� else E� � �� � if �x ��� � �� then E�� else E�

� �� � if �x ��� � �� then E�� else E�

� �� � if �x ��� then E�� else E�

� �� � �x ��� � E��

� �x ��� � �� � E��

� �x ��� � �� � E��

� �� � �x ��� � E���

Let �� �� �� � �� �here� is implication� not reduction�� Then ����� j�j� �����
is obviously satis	ed� Moreover� �x�� j�j� �x ��� � ��� j�j� �� � �x �� j�j� �
since �� j�� �x ���

��



� Constraint Communication

Calculus B provides for stream�based communication� which is the established
form of communication in concurrent logic programming ���� From a theoretical
point of view� stream communication is nice since it comes for free� that is� without
further primitives� From a practical point of view� we are however dissatis	ed with
both the expressivity and e�ciency of stream�based communication� Streams
and their problems are carefully discussed in ����� where a new communication
mechanism� called ports� is proposed for use with AKL� Our search for a better
form of communication for Oz 	nally led us to constraint communication ���� ����
As we show in ���� ���� constraint communication introduces a notion of state that
is fully compatible with logical constraints and concurrency�

We extend the abstract syntax of Calculus B with three new expressions called
communication tokens�

E ��� � � �
j a a is channel
j u ! v put u on v
j u v get u from v�

The semantics of the new primitives is given by the communication rule�

u ! a� v a � a � u
�
�v � a�

Moreover� we generalize the Annulment Law of Calculus B to

�x�a �b �c �� � a�	 � c � u� ! c� � u� c�� � �

if �x � j�j� �� and c� and c� are disjoint and contained in c

so that it provides for the annulment of communication tokens� This formulation
of the Annulment Law provides for a straightforward implementation of constraint
communication�

An example of an instance of the generalized Annulment Law is

�x�a �c �a� y�x c � c � a ! c � x
�
�a� � ��

The next two examples show typical usages of constraint communication� For a
further discussion of its expressivity we refer the reader to ���� ��� ����

Example ��� We assume the constraint system H and a unary function symbol
m� The expression

a� x y � �z �z x � if �uz
�
�m�u� then z ! y � ax y else ��

de
nes a procedure a that takes two channels x� y as arguments and transfers
messages from x to y� It is assumed that messages take the form m�� � ��� The
conditional synchronizes upon the arrival of a message on the input channel x�

Given the above abstraction� the expression axz � ayz merges two channels x and
y into a channel z�

�



Example ��� We assume the constraint system H and two constants � and ��
The expression

�c � c � � ! c � a� x � �z � z c �

if �z
�
�� then x

�
�� � � ! c�

 �z
�
�� then x

�
�� � � ! c�

else � ��

de
nes a procedure a that returns alternatingly the constants � and �� Clearly� a
is a procedure with state�
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