Cooperative Transportation Scheduling:
an Application Domain for DAI

Klaus Fischer, Jorg P. Miiller, Markus Pischel*
DFKI GmbH, D-66123 Saarbriicken

Abstract

A multiagent approach to designing the transportation domain is presented.
The MARS system is described which models cooperative order scheduling within
a society of shipping companies. We argue why Distributed Artificial Intelligence
(DAI) offers suitable tools to deal with the hard problems in this domain. We
present three important instances for DAI techniques that proved useful in the
transportation application: cooperation among the agents, task decomposition and
task allocation, and decentralised planning.

An extension of the contract net protocol for task decomposition and task al-
location is presented; we show that it can be used to obtain good initial solu-
tions for complex resource allocation problems. By introducing global information
based upon auction protocols, this initial solution can be improved significantly. We
demonstrate that the auction mechanism used for schedule optimisation can also
be used for implementing dynamic replanning. Experimental results are provided
evaluating the performance of different scheduling strategies.

*email: {kuf,jpm,pischel}@dfki.uni-sb.de

1 Introduction

In a time of constantly growing world-wide interdependence of trade and ware flow, lo-
gistics and the planning of freight transports are of crucial relevance both for economical
and ecological reasons. The problems of vehicle routing and order scheduling are far
from being satisfactorily solved in practice [Florian 93]. Moreover, in European shipping
companies, factually no intelligent software support is available to the human scheduler.
There exist efficient algorithms for solving static scheduling problems; however, classical
computer science, Operations Research (OR), and also classical centralised Al have so
far failed to provide adequate methodologies and algorithms to cope with open dynamic
scheduling problems (see also [Bargl 92]). Unfortunately, virtually any problem of practi-
cal interest falls into the latter category. For example, one out of three trucks on Europe’s
roads drives empty; the average capacity utilisation in freight traffic is only about 55 %
[Rittmann 91]. The process of political and economic integration in Europe and the abol-
ishment of federal regulations on freight transportation services has led to a dramatically
increased competition in the logistics business. Thus, new technologies are required to
keep with the complexity and the dynamics of the domain.

The MARs! simulation testbed (cf. [Kuhn et al. 93a]) constitutes a multiagent ap-
proach to these problems: a scenario of geographically distributed transportation com-
panies is described. The companies have to carry out transportation orders which arrive
dynamically. For this purpose, they have a set of trucks at their disposal. The global
behaviour of the system is evaluated as follows: the quality measure are the costs for
carrying out the orders. What is extraordinary about our approach is that the companies
themselves do not have facilities for scheduling orders; it is the trucks that maintain local
plans, and the actual solution to the global order scheduling problem emerges from the
local decision-making of the agents. Thus, one very complex plan is replaced by several
smaller and simpler plans, allowing to react quickly and without global replanning to
unforeseen events, such as traffic jams or new transportation orders.

What is it that makes the transportation domain especially suitable for using tech-
niques from (Distributed) AI ([Bond & Gasser 88|, [Chaib-Draa et al. 92])7 One reason
is the complexity of the scheduling problem, which makes it very attractive for Al re-
search (see Appendix B for a complexity-theoretic analysis of the domain). However
there are more pragmatic reasons: Commonsense knowledge (e.g. taxonomic, topological,
temporal, or expert knowledge) is necessary to solve the scheduling problems effectively.
Local knowledge about the capabilities of the transportation company as well as knowledge
about competitive (and maybe cooperative) companies massively influences the solutions.
Moreover, since a global view is impossible (because of the complexity), there is a need
to operate from a local point of view and thus to deal with incomplete knowledge with all
its consequences. The last aspect leads to the DAI arguments:

e The domain is inherently distributed. Hence it is very natural to look at it as a
multi-agent system. However, instead of tackling the problem from the point of view
of the entities which are to be modelled and then relying on the emergence of the
global solution, the classical approach to the problem is an (artificially) centralised
one.

!Modeling Autonomous CoopeRating Shipping Companies

e There is a high degree of dynamics in the process of planning (new orders can be
given to the system asynchronously) and execution (unforeseen events may occur,
such as traffic jams). A recent direction in research on planning deals with exactly
this class of problems (see e.g. [Haddawy & Hanks 90, Russell & Zilberstein 91,
Kushmerick et al. 93, Boddy & Dean 94]). Architectures allowing agents to react
to dynamics in execution while at the same time trying to achieve their longer-term
goals have been provided by research in planning and DATI (e.g. [Cohen et al. 89,
Firby 92, Ferguson 92, Lyons & Hendriks 92, Miiller & Pischel 94al).

e The task of a centrally maintaining and processing the knowledge about the shipping
companies, their vehicles, and behaviour is very complex. Moreover, knowledge is
often not even centrally available (real-life company are not willing to share all their
local information with other companies). Therefore, modelling the companies as
independent and autonomous units seems the only acceptable way to proceed.

e The existence of cooperative processes in the real transportation business makes
the domain especially suitable for using DAT techniques such as task decomposition
and task allocation [Davis & Smith 83, Kuhn et al. 93b, Decker & Lesser 94], de-
centralised planning[Ephrati & Rosenschein 93, Miiller 94], and negotiation among
agents [Zlotkin & Rosenschein 93, Rosenschein & Zlotkin 94].

The paper is organised as follows: We start with an overview of our multiagent system
development environment and the underlying agent architecture in Section 2. In Section
3, the transportation domain is presented and analysed. Section 4 defines the multiagent
approach for task decomposition, task allocation, and negotiation underlying the M ARS
system. An extension of the simulation system by a model for traffic jams is described
in Section 5. Section 6 provides an auction-based mechanism for schedule optimisation
and dynamic replanning in order to cope with the types of unforeseen events introduced
in Section 5. Empirical results that have been obtained by running a series of scheduling
benchmarks are reported in Section 7. Related work is described in Section 8. The paper
ends with a discussion of the practical usefulness of the results presented so far.

2 The General Framework

Before describing the MARS system, we would like to sketch briefly the framework under-
lying our multiagent applications.

2.1 The AGENDA Testbed

The AGENDA testbed [Fischer et al. 95] serves as the development platform for our ap-
plications. The testbed consists of two different levels: the architectural level describes
a methodology for designing agents in a sense that it provides several important func-
tionalities an agent should have; thus it supports a general template for agents that has
to be filled by the designer of a DAI system with the domain-specific instantiation. The
system development level provides the basic knowledge representation formalism, general
inference mechanisms (such as forward and backward reasoning) which are used by the
decision-making modules of the architectural layer, as well as a simulation toolbox sup-
porting visualisation and monitoring of agents, and the gathering of performance statistics

(see [Hanks et al. 93] for a well-written discussion of properties, problems, and benefits
of and examples for testbeds). The interrelationship between the two testbed levels is
illustrated in figure 1.

InteRRaP Architectural Level
Inference R K”OW'ﬁdth
; epresentation
MAGSY Mechanisms o Formalism | System Development
Simulation Level
AGenDA

Figure 1: The AGENDA Testbed

The architectural level in the AGENDA Testbed is provided by the INTERRAP agent
architecture [Miiller & Pischel 94a, Miiller & Pischel 94b]. It defines the control within
an agent as a hierarchical process, mapping different classes of situations to different
reactive, deliberative, or cooperative execution mechanisms. The system development
level is covered by the MAGSY system [Fischer 93]. MAGSY provides a frame-based
knowledge representation formalism and a set of general purpose inference mechanisms.
Moreover, it provides tools supporting the construction, visualisation, evaluation, and
debugging of DAI scenarios, including the lower layers of communication, on top of which
more complex protocols such as the contract net or bargaining protocols can be defined.

Two applications have been implemented using the AGENDA framework: the first
system is FORKS, an interacting robots application. FORKS describes an automated
loading dock, where forklift robots load and unload trucks, while avoiding potential and
resolving existing conflicts, and exploiting possibilities to collaborate. The main require-
ment imposed on the testbed by this application was that it had to support reactivity
and deliberation in the decision-making of an individual agent as well as perception and
manipulation of the physical world. The second system is MARS, which is the topic of this
article. In the case of the MARS system, the main challenge for our testbed was to pro-
vide different cooperation methods based on negotiation, leading to different scheduling
mechanisms, and to experimentally evaluate these mechanisms.

An autonomous agent acting and interacting in a dynamic environment has to have
certain properties, which should be reflected in its underlying design architecture. Firstly,
agents are to behave in a situated manner, i.e. they have to perceive unexpected events

and to react appropriately to them (see e.g. [Brooks 86]). Secondly, they are to act in
a goal-directed fashion in order to achieve their goals. In Al, this is normally achieved
by devising plans for certain goals (see e.g. [McDermott 91]). Thirdly, they are to solve
their tasks efficiently and often have to satisfy real-time constraints. This requires access
to a set of “hard-wired” procedures [Georgeff & Lansky 86] with guaranteed execution
properties. Fourthly, they are to cope with the presence of other agents. Whereas certain
types of interactions can often be performed by employing local mechanisms (e.g. ob-
stacle or collision avoidance in a robot scenario, see [Latombe 92, Miiller & Pischel 94a,
Miiller & Pischel 94b]), others (e.g. collaboration) require the adoption of joint goals, the
generation and execution of joint plans, the exchange of relevant information (i.e. about
goals and plans) (see e.g. [Kinny et al. 92]), and thus the explicit representation of mod-
els of other agents in terms of beliefs, goals, plans, and intentions [Rao & Georgeff 91].
Finally, agents are to be adaptive, i.e. they must learn in order to improve their perfor-
mance and to survive even if the environment changes. These requirements have led to
the development of the agent architecture INTERRAP, a layered architecture describing
the individual agent.

2.2 The INTERRAP Agent Architecture

The main idea of INTERRAP is to define an agent by a set of functional layers, linked
by a communication-based control structure and a shared hierarchical knowledge base.
The basic design elements of the agent are (1) its world interface facilities, (2) patterns
of behaviour (PoB), as well as (3) local plans and (4) joint, multiagent plans.

Figure 2 shows the components of the INTERRAP agent model and their interplay.
It consists of five basic parts: the World Interface (WIF), the Behaviour-Based Compo-
nent (BBC), the Plan-Based Component (PBC), the Cooperation Component (CC), and
the agent knowledge-base. The world interface holds the agent’s facilities for perception,
action, and communication. The BBC implements the reactive behaviour and the proce-
dural knowledge of the agent. Basic building blocks of the BBC are patterns of behaviour
which can be divided in two groups: reactor patterns and procedure patterns. Reactivity
is obtained by providing a set of reactor patterns specifying hard-wired condition-action
pairs. These are triggered by exogenous events. Procedural knowledge is contained in
so-called procedure patterns which are activated by the plan-based component; these pro-
cedures are basically compiled plans which can be executed by the agent in order to
perform some routine tasks.

The PBC contains a planning mechanism which is able to devise local single-agent
plans. Depending on the requirements imposed by the application, the PBC may be in-
stantiated with a suitable planning formalism. However, the interface definition between
BBC and PBC requires that the latter can activate PoB, which are primitive actions
from the perspective of the planner. The difference to classical Al planning systems
is that PoB may be rather complex procedures (cf. [Firby 92]) incorporating a certain
degree of execution intelligence (e.g. for dealing with different types of failures with-
out explicit replanning). Finally, the C'C contains a mechanism for devising joint plans
(see [Kinny et al. 92, Miiller 94]). It has access to protocols, and a multiagent planning
mechanism which can access knowledge about other agents and about communication
strategies. CC, PBC, and BBC establish the control of the agent. Their interaction (see
e.g. [Miiller & Pischel 94b]) defines the agent’s overall behaviour.

Hierarchical
Agent Control Unit Agent KB
Cooperation -
Component Cooperation Knowledge
cC (_somal context) =~
Joint Goals / Plans Z
=
J °
Plan-based I Planning Knowledge a
Component <g---p| | (mental context) ©
PBC I Local Goals / Plans
1 o
¥ - :
1 1]
Behaviour-based 1 s World l}/lodel) z
Component e | (situational context]
BBC il v Patterns of Behaviour °
=
L] 1] A A =
Acting Communication Perception
w o r [d interface (Wi EF)
N \ 4

control flow

ENVIRONMENT

-------- information access

Figure 2: The INTERRAP Agent Architecture

The knowledge base is structured hierarchically. It consists of three layers which ba-
sically correspond to the structure of the agent control. The lowest layer contains facts
representing the world model of the agent as well as representations of primitive actions
and patterns of behaviour. The second layer contains the agent’s mental model, i.e. rep-
resentation of knowledge the agent has about its goals, skills, and plans. Finally, layer
three comprises the agent’s social model, i.e. knowledge of and strategies for cooperation,
e.g. beliefs about other agents’ goals. The basic idea is to restrict the information access
and thus to reduce the practical complexity of reasoning in the lower (more reactive)
system layers. For example, the plan-based component can access information about the
world model, whereas the behaviour-based component does not have access to planning
or cooperation information. This is supported by employing different reasoning mecha-
nisms provided by MAGSY in different INTERRAP layers, namely data-driven forward
reasoning in the BBC and goal-driven backward reasoning in the PBC and CC.

3 The Transportation Domain

In this section, the application domain of the MARS system is described and analysed.
Some of the properties are derived that make dealing with this domain so difficult.

The application domain for the MARS system is the planning and scheduling of trans-
portation orders as performed by dispatchers in shipping companies. Many of the prob-
lems which must be solved in this area, such as the Travelling Salesman and related
scheduling problems, are known to be NP-hard (see Appendix B for a formal analysis).
As we have argued in the introduction, the domain is highly dynamic, and decisions have
to be made under a high degree of uncertainty and incompleteness.

Cooperation and coordination are two very important processes that may help to over-

Transportation Agency 1 Transportation Agency 2

Company Agent 1 Company Agent 2

Qrders

A DI

Figure 3: MARS: The Domain of Application

come the problems sketched above. Indeed, they are of increasing importance even in the
highly competitive transportation business of today. Using the M ARS system, several co-
operation types such as the announcement of unbooked legs, order brokering, and different
strategies for information exchange have been evaluated (see also [Fischer et al. 93]).

Corresponding to the physical entities in the domain, there are two basic types of
agents in MARS, which are designed according to the INTERRAP agent architecture:
transportation companies and trucks. Companies can communicate with their trucks and
among each other. The user may dynamically allocate transportation orders to specific
companies. Looking upon trucks as agents allows us to delegate problem-solving skills to
them (such as route-planning and local plan optimisation).

The shipping company agent (SCA) has to allocate orders to her? truck agents (TAs),
while trying to satisfy the constraints provided by the user as well as local optimality
criteria (costs). An SCA also may decide to cooperate with another company instead of
having an order executed by her own trucks. The functionality of an SCA is modelled in
the INTERRAP architecture as follows:

e The BBC of a company is rather simple. It provides patterns of behaviour for
recognising that a transportation order has been received, and for activating the
communication primitives defined by the communication protocols (see section 4).

e Since an SCA does no scheduling on its own, the function of the PBC reduces to an
algorithm that synthesises a plan for an order based on the partial bids received by
the trucks.

e The CC contains the main part of the functionality of the SCA. The protocols for
task allocation and negotiation (see Section 4) are represented as meta joint plans
in a plan library (see [Miiller 94]) and are executed by a plan interpreter.

Each TA is associated with a particular shipping company from which he receives
orders of the form "Load amount s of good ¢; at location /; and transport it to

2We use ’she’ to refer to shipping companies and ’he’ to refer to trucks to resolve ambiguities.

location I, while satisfying time constraints {c;,...,c, }". A TA is modelled as
an INTERRAP agent as follows:

e The BBC of a truck agent contains PoB for checking the existence of new orders,
for deciding when to begin the execution of a plan step based on the temporal
information kept in the plan, for performing the actual plan execution, and for
recognising traffic jams based on data received by the travel information service (see
Section 5). The primitive actions the TA is able to perform are driving, loading,
unloading, as well as communicating with his company.

e A truck’s PBC contains the local planning algorithm, which is a polynomial heuristic
insertion algorithm; additionally, in order to compute a bit for an order, the TA has
to evaluate the cost of his plan (see [Fischer et al. 94]).

e The CC of a truck contains the definition of the protocols used for communication
with his SCA (see Section 4).

Interaction of the agents within one shipping company (called vertical cooperation)
is totally cooperative. This means that a specific TA will accept deals (i.e. results of
negotiation processes) with his SCA even if they are not locally profitable for him. We
call such a setting an instance of a cooperative task-oriented domain (cf. [Fischer 94]).

In the cooperation between SCAs we investigate in both a totally cooperative and a
competitive setting (we call the latter setting an instance of a competitive task-oriented
domain). If we assume a cooperative task-oriented domain, we are purely interested in
the quality of the overall schedule which is emerging from the local problem solving done
in the SCAs and TAs. A practical example for this setting is the cooperation among
different, geographically distributed branches of one shipping company. On the other
hand, in a competitive task-oriented domain among the SCAs, the overall schedule which
is computed will be far from optimal. In this setting we investigate how a single SCA can
maximise her profits and how she can avoid being tricked by other agents.

4 The MARS Simulation System: A Multiagent Approach

In this section, we describe the multiagent approach underlying the M ARS system; start-
ing from the standard Contract Net protocol (Section 4.1), we define a framework that
provides more powerful tools for task decomposition and task allocation (Section 4.2). A
model for peer-to-peer negotiation among different SCAs is outlined in Section 4.3.

4.1 Vertical Cooperation: Task Decomposition and Task Allocation

If an order o is announced to an SCA by a customer (which can also be another SCA),
she has to compute a bid for executing the order. In order to determine the costs, she
forwards the order to her TAs. Each TA a computes a bid

(a,cost(T, ® o) — cost(T,),w),

where T, is the current tour of @ and w is the amount of the order a is able to transport.
cost(T, ® o) denotes the additional costs for @ when executing o given T,. Let O% =
{0%,...,0%},n € IN be the current set of orders for a. A constraint net is derived from the

7

information which is specified with the orders. Fach solution to this constraint solving
problem is a valid tour which fulfils all constraints specified by O®. Then, a tries to find
the best tour for O using a constraint solving and constraint optimisation procedure. Our
implementation is based on the Oz [Schulte et al. 94] system which was developed at DFKI
in Saarbriicken and which provides powerful mechanisms for optimisation procedures in
case the search space is defined by a constraint net.

Order Stock Exchange
Among Shipping Companies

l AN

Announcing Announcing
Revoking Revoking
Orders Orders

Companyq Companys
Trading Graph Trading Graph
o Price < e
°‘<.: ° Negotiation °‘—°¢;
ECN Protocol ECN Protocol
Selling/Buying Orders Selling/Buying Orders
Truckq] Truckqpy Truckp] Truckom

Figure 4: Hierarchical organisation of the agents in MARS.
For each order o announced by an SCA to her TAs, she receives a set of bids
B ={(a,ci,w),..., (an,cn,wy)},n € IN

where ¢; specifies the costs truck a; will produce when executing amount w; of order o,
1 <i < n. The SCA selects

(@mins Cmin, Wmin) € B with VY(a,c,w) € B :

and sends a grant to the TA a,,;,, notifying him that he will be granted the amount a,,;,
provided that the SCA itself will actually receive a grant for o by the customer.

The procedure described so far is the well known Contract Net protocol (CNP)
[Davis & Smith 83]. Because the CNP provides time-out mechanisms it is easy to turn this
communication protocol into an anytime algorithm (see for instance [Boddy & Dean 94,
Russell & Zilberstein 93]), i.e. the system will produce a solution (if there is one) within
a specified time t5. The quality of the solution may be increased if more time for compu-
tation is available (see also Section 4.2).

4.2 The Extended Contract Net Protocol

The pure contract net protocol as described so far runs into problems if the tasks exceed
the capacity of a single truck, i.e.

Umin < amount-to-transport(o)

In this case, the manager of the task, i.e. the SCA, has to solve a knapsack problem,
which for itself is in general NP-hard. To overcome this problem, we decentralised task
decomposition by developing and implementing an extension of the CNP, which is called
the ECNP protocol. ECNP is available as a standard protocol in MARS. In ECNP,
the two speech acts grant and reject are replaced by four new speech acts: temporal
grant, temporal reject, definitive grant, and definitive reject. The ECNP is a natural,
straightforward solution of the task decomposition problem.

Recei\lle Order Shlpplng TrUCk
Company

Receive an Order

Announce Order COmIZ_)Ute
a Bid

Receive a Bid Send a Bid
All Bids Compare Bid —
Present? with Best Bid Definitive] Definitive
Rejoct i bad odiy| MM waitfor BRSO
eject if Ba ocal .
Plan Grant/Reject] Plan
— Definitive
Definitive
ey . Temporal

Send a Bid

Wait for
Grant/Reject|

Temporal
Grant Reject

Reject
Definitive . Copy/Modify Delete Local
Reject) Local Plan Information for Bid
(a) (b)

Figure 5: The ECNP from the point of view of a manager (a) and a bidder (b).

A flow chart representation is used to represent the negotiation protocols provided
by the MARS testbed. The protocols describe the roles of the individual agents in the
negotiation process. Figure 5 shows the flow charts for the ECNP protocol, from (a) the
manager’s and (b) the bidders’ point of view. The main difference to the CNP is that
now the bidders, i.e. the TAs, are allowed to bid for only parts of an order.

In the ECNP the manager (SCA) announces an order o to its TAs. She then receives
bids for the order and selects the best one as specified above. The best TA is sent a
temporal grant. All others receive temporal rejects. If the best bid does not cover the
whole amount of an order, the remaining part of the order is reannounced by the SCA.
This procedure is repeated until there is a set of bids that cover the total amount of the
original order 0. From this set of bids the SCA computes a bid which is passed to the

customer. Based on the answer of the customer, the SCA sends a definitive grant (or
definitive reject, respectively) to all TAs which got temporal grants before. It is possible
to prove that in general all but the last bid selected are locally optimal choices for the
SCA [Fischer et al. 94].

When a TA receives a temporal grant for the first time, he has to store a copy of his
local situation, i.e. the currently valid plan, because he must be able to restore this situ-
ation in case he obtains a definitive reject. All subsequent temporal grants and temporal
rejects are handled like the grants and rejects in the pure CNP. If a TA is sent a definitive
grant for an order, he removes the copy created above and switches to the new plan. If a
TA gets a definitive reject, he restores the situation before the first temporal grant.

In our framework, the ECNP is used to obtain a fairly good initial solution (see section
7 for a quantification of this claim) for the contract net protocol. Having a quick algorithm
to determine a rather good upper bound for the costs induced by an order is important for
the agent since it provides a basis for its future decisions. However, because the situation
changes if new orders arrive and because the TAs will stick to decisions made in the past,
the solution found is not even guaranteed to be pareto-optimal [Wellman 92].

There are different ways to optimise the ECNP solution. Currently, the Simulated
Trading algorithm which is described in section 6 as a solution of the dynamic replanning
problem is also used to optimise the order exchange among trucks. By coupling ECNP and
Simulated Trading, we obtain an anytime algorithm [Boddy & Dean 88] A;, with a lowest
time bound ¢, defined by the runtime of the ECNP process. Le., Ay, is an interruptible
anytime algorithm [Russell & Zilberstein 91| for each ¢ > t,. Since the individual trucks
employ a polynomial insertion algorithms for computing their bids within the ECNP, the
time bound ¢y for the ECNP is polynomial.

4.3 Horizontal Cooperation: Negotiation

Optimising the utilisation of transport capacities is the foremost goal for an SCA. Due to
the spatial and temporal distribution of incoming orders, cooperation with other SCAs
(so-called horizontal cooperation) may be a beneficial operation. For example, companies
may exchange orders and information about free loading capacities, and they may apply
for orders offered by other companies. However, in contrast to the coordination between
an SCA and her trucks, cooperation between companies is a peer-to-peer process where
a solution (e.g. a price to be paid for an offer) can only be found if all the participants
agree, and where the conditions of the solution have to be negotiated among the compa-
nies. It is this peer-to-peer negotiation what we call horizontal cooperation and whose
implementation is described in the sequel.

Negotiation Protocol: AGENDA supports the modelling of horizontal cooperation by
providing a parametrised bargaining protocol which can be instantiated with the specific
conditions of a negotiation. Figure 6 illustrates the protocol by means of a flow chart.

It shows both the types of messages exchanged between the companies as well as
the connection between local reasoning within a company (represented by local decision
nodes and by the connection to the vertical cooperation protocol with her trucks) and
cooperative reasoning in the course of the negotiation. A company (company 1, or ¢,
in the example) may decide to announce free transport capacity to another company, let
us say, company 2, or ¢o. This decision can be made based on information about free

10

receive order
announce Company - Company

free capacity 1 2

announce free
: e 4
suitable foreign
announce
Vertical
Cooperation

articipate Pol) start Pol
pRole:%f‘ferer Role: Orderer

bid,nobid, to_outbid, last_bid
compare

vertical
coop. .
P commit-
ment

end

Figure 6: A Bargaining Protocol for Horizontal Cooperation

capacities ¢; has received by her trucks. Based on its local state, co decides whether she
wants to take up the announcement, and, if so, sends an order to ¢;. This instantiates
a bargaining protocol where ¢; takes the role of the offering agent, ¢, takes the role
of the orderer. ¢; will start by sending an offer (bid) to c; ¢ will decide whether to
accept, reject, or to modify the bid by making a counteroffer. The bargaining process
continues either until both parties have agreed on a common solution or until it becomes
clear that no compromise can be found. The other communication acts shown in figure 6
such as last_bid, to_outbid, to_surpass are special purpose features enabling an auction-like
negotiation between more than two agents.

Decision-Making: The decision-making of the companies during the negotiation pro-
cess is based on information they obtain by their trucks, e.g. information about free
capacities and costs. Whereas the costs of an order were the decision criterion for the
TAs, the SCAs make their decisions based on the utility of an order, which is computed
as the difference between the worth (which is obtained from the customer or from other
companies) and the costs. Based upon this information, a company determines in how far
cooperation will lead to an increase of its local utility, and thus determines its range of ne-
gotiation. Another important issue for decision-making is partner modelling; for example,
if all the agents had complete knowledge about the decision criteria of all other agents,
each agent could locally compute whether there is a solution accepted by all the partners.
In the case where all the agents have the same decision criteria, two agents could directly
agree on the mean value of the first bid and the first counteroffer, since negotiation is to
converge to this value. However, in reality, agents do not have complete knowledge about
each other; this makes the bargaining process interesting. In the current system, partner
modelling is restricted to agents making simple assumptions on the parameters of other

11

agents; future research will aim at enhancing this model. There are several configurable
parameters that can be used to vary the decision-making behaviour of an agent, e.g.:

wq desired profit in per cent for an order.

w, minimal profit in per cent accepted by an agent.

A function determining the amount to which an agent’s next offer is modified given
its current offer p; it can be set to either constant k or max(k, W) n is a
scaling factor determining the speed of convergence; the mazr function guarantees

termination of the negotiation independent of the size of n.
o. threshold denoting the agent’s cooperation sensitivity (which is a measure for how

uneconomic an order has to be for an agent to be offered to another agent); o. €
[0,1].

So far, we have described methods for task decomposition and task allocation imple-
mented in the MARS system which allow us to deal with dynamics and uncertainty in
planning; in the sequel, we will extend this framework to mechanisms allowing us to deal
with dynamics in plan ezecution, too.

5 Introducing Execution Dynamics

In order to be able to explore methods for dealing with problems occurring due to unfore-
seen events happening during plan execution, the concept of traffic congestions has been
integrated into the MARS system. It is described in the sequel. Firstly, the simulation
environment is outlined in Section 5.1. Section 5.2 deals with how adequate cost functions
can be defined. In Section 5.3, a probabilistic model for the generation of traffic jams is
introduced.

5.1 The Simulation Framework

The enhanced MARS simulation environment can be divided in two parts: the simulation
world and the agent society. The agent society has been described in Section 3. The
simulation world consists of three parts: the world simulator module, the traffic jam gen-
erator, and the travel information service. The actual world simulator module maintains
the state of the world, i.e. current positions of TAs and goods, the road map which is
maintained as a graph G = (V,), state of traffic, time etc. The traffic jam generator
incorporates a statistical model for traffic jams. Its output is given as a function

6T x € [0,1],

where 7T is the set of time instants. Thus, ¢ computes for each connection between two
cities of the road map at a time instant ¢; the degree of traffic disturbance that ranges from
¢ — 0 (traffic jam) to 1 (no disturbance). In the sequel, we write ¢}, for the disturbance
factor ¢(t,e;;) on the edge connecting nodes i,j € V at a given time instant ¢. Sensory
data about the traffic density is provided to the third module of the simulation world,
the travel information service (TIS). TIS information can be accessed from the TAs; it is
used by them in order to compute the best route for a given situation (see Section 5.2).

12

traffic jam generator travel

@nformation
service
stochastic bB

DB — |

jam model

\ /

‘Dij service interface

A

Sensors 4\: ~

. \
RS

World Simulator

Agent Society

Figure 7: The Simulation Environment

5.2 Cost Functions

There are two different levels for describing how the TAs make their plans: the rough
planning level maintaining which tasks to perform and in what order to perform them,
and the fine planning level describing the actual route taken to perform a specific order.
Since the rough planning takes place several hours before the start of a journey, it makes
no sense to take into account an extensive amount of information regarding the traffic
situation during that phase, because the situation is very likely to have changed by the
time the order execution actually starts.
In the enhanced model which we present in the sequel, distances and disturbance
factors gbfj on an edge connecting nodes 7 and j are considered for the fine planning.
i; ranges over [0, 1], where ¢ = 0 means traffic jam and 1 means no disturbance. The
objective function which is to be minimised is to be defined via costs. Criteria which have
to be considered for this purpose are e.g. transportation time dur and distance d. The
effect of the disturbance factor in our model is that it increases transportation time. The
criteria are evaluated using factor prices. A model assumption is that the fixed costs Cﬁx

are the same for all TAs and SCAs®. In the following, we set Cp;; = 0 to simplify the
model further. In this model, assuming the state of the world at time ¢, the time dur;; a
TA needs to get from a place 7 to a place j is given as

dur; = (@) L (1)

— t
Uij ij

3Changing this assumption solely means shifting the calculated costs along the X-axis.

13

where
e d;; is the distance [km] between i and j,
e 7;; is the average speed [km/h] of a TA under optimal conditions, and

° qﬁfj is the value of the disturbance factor for the edge connecting nodes 7 and j at
time ¢.

In the following, let x,...,z; be the set of factors relevant for decision-making. In
our case, k = 2: both the time needed and the distance travelled are considered as factors
in the cost function. Now, for time ¢, given a tour 7}, we can define the objective function,

n

cost(Ty) = 3 2 (dUTij D1 +I'j'p2) " Yij

i=1j5=1
n n ____
= > > d- <¢tp—lv— +p2> *Yij — min
i=1j7=1 ij ot
where
o 1 if €ij S T;g
Yii 0 : otherwise

p1 = costs per hour, ps = costs per km.

Using this formula, the current route as well as alternative routes to bypass a traffic
jam are evaluated. For different types of disturbances, the evaluation can lead to differ-
ent replanning strategies, which include either local replanning or global reallocation as
described in Section 6.

5.3 A Model For Traffic Jam Generation

In the sequel, the disturbance variable ¢ which is used in order to generate and to simulate
traffic jams is defined by means of a probabilistic model. Based on ¢, the TAs then
evaluate alternative routes according to the cost function defined in Section 5.2. For the
disturbance variable gbfj on an edge between 7 and j at time ¢, we have

(1 : no disturbance
[0.6-1] little disturbance
¢} [0.4-0.6] : medium disturbance
W) [0.2-0.4] : heavy disturbance
10-0.2 : stop and go traffic
| 0 : total jam

The traffic density zfj is used to compute qﬁfj. zfj denotes the number of vehicles going

on edge e;; at time ¢. For an assumed speed v a vehicle is allowed to go on edge e;;, zfj
reaches its maximum value s7;. Note that for calculating the maximum value sf; for z};
which allows a TA to go with speed v (in this case ¢}; > 0 holds), the reaction time ,(v)

of the truck driver has to be considered when computing the average distance dist?,,,. In

cars”*

case of a traffic jam at edge e;; (¢}; — 0), zj; reaches the maximum value sf;. In a simple

approximation, s;; is computed as

14

_ len(e;;
g en(ei;)

7 A)
T leneers + disty,,,

(2)

where len.,,s is the average length of a vehicle, distY,, . is the average distance between
two vehicles going at speed v, len(e;;) is the length of edge e;;. The traffic density zfj only
affects the disturbance variable d)ﬁj if the TA cannot drive the planned average speed on
this segment. For zj; < s¥, there is ¢}, = 1, i.e. no disturbance. We capture this by a
function sj; with
s ={ T ISE G
z, ¢ oafs; <2< sy

Based on this, the disturbance factor qﬁﬁj can be defined as follows:
s - (50 = s3(Z(t eiy))

to— t7€~~ = u Wi —
5= i) =) - (o — 51

where v is a global constant; Z(t, e;;) is a random variable specifying the number of
vehicles on edge e;; which is computed by the formula:

Z(t,@i]‘) :P(S)S_gj)\—i-(l—)\) -Z(t—l,eij).

P(e) is a random variable with a normal distribution and a mathematical expected
value of €. ¢ is time-dependent (e.g. rush hours). A determines the influence of random
variable P(g) on Z(t, e;;).

Up to now, we have described how jam information is generated and how it is inte-
grated into the cost functions of the TAs, allowing them to derive information needed
for decision-making. Section 6 describes a mechanism that allows the agents to react to
unforeseen situations caused by the occurrence of traffic jams by initiating a dynamic
reallocation process.

6 Simulated Trading: An Auction Mechanism for Dynamic Task
Reallocation

The Simulated Trading (ST) [Bachem et al. 93] procedure which is presented in this sec-
tion can be used for two different purposes:

e Dynamic replanning: if a TA realises that he cannot satisfy the time constraint of
an order because of an unforeseen traffic jam, he can initiate an ST process leading
to an order reallocation satisfying the time constraints.

e Iterative optimisation: starting from the initial ECNP solution (see section 4.2),
ST may be initiated to yield a better order allocation. The experimental results in
Section 7 demonstrate the usefulness of ST as an optimisation technique.

In the following, the principle of ST and its application in the M ARS system are explained.

15

6.1 Principles of ST

In [Bachem et al. 92], Bachem, Hochstéttler and Malich present a parallel improvement
heuristic for solving vehicle routing problems with side constraints. Their approach deals
with the problem that n customers order different amounts of goods which are located
at a central depot. The task of the dispatcher is to cluster the orders and to attach the
different clusters to trucks which then in turn determine a tour to deliver the cluster
allocated to them.

Dapad b—

Clustering

Routing

Figure 8: The Standard Vehicle Routing Problem

The solution to this problem is constructed using the Simulated Trading procedure. It
starts with a set of feasible tours 77, ..., T}, which may e.g. be obtained by a conventional
heuristic which is applicable to this domain. The tours are represented as an ordered list
of costumers that have to be visited. Parallelism is achieved by that the data of each
tour T; can be assigned to a single processor i (the tour manager) of a parallel (Multiple
Instruction Multiple Data, MIMD) computer. To guide the improvement of the initial
solution, an additional processor, the stock manager is added to the system. The task of
the stock manager is to coordinate the exchange of costumers orders between the different
processors. To do this, it collects offers for buying and selling orders coming from the
processors in the system.

A price system is introduced providing a quality criterion for order exchanges to the
stock manager: If processor p sells an order ¢ (i.e., an order from the depot to customer
i), its cost should decrease. This saving of costs is associated as the price Pr to i, where

pr& cost(T,) — cost(T, © {i})
T, T, o {i}.

Here, the term 7}, © {i} denotes the tour that evolves from T, if customer i (or order 1,
respectively) is deleted from processor p’s tour list. Accordingly, the price Pr for processor

p buying a customer ¢ is computed as the difference of costs for the old tour T, and the
costs for the new tour T, @ {i}, which evolves from the insertion of costumer ¢ in T, i.e.

16

pr& cost(T, ® {i}) — cost(T,)

T, ¥ T, & {i}.

Processor 1 Processor 2 Processor t
B %
D D
cl T e, ",
IIlI
III
Tour 1 Tour 2 Tour t '.I

\
\

Selling / Buying Offers l

Stock

Processor t+1

Figure 9: Stock Exchange for Orders in the ST Procedure

The exchange of orders is synchronised by the stock manager according to levels of
exchange situations. At each level it asks each processor for a selling or buying order.
Having done this, it updates a list of the offers and sends it to all tour managers. Each
offer is associated with a quintuple (processor, Level, Selling or Buying, Costumer, Price).

The stock manager maintains a data structure, called Trading Graph whose nodes are
the selling and buying offers of the processors. Furthermore, there exists an edge between
vertices v; = (processory, 1;, Selling, ¢;, Pr;) and v; = (processors, 1;, Buying, c;, Pr;)
if processor, wants to buy customer c; from processor;. 1; and l; indicate the levels of
negotiation. The edge is weighted (or labelled) by the difference of the prices Pr; - Pr;,
giving the global saving of an exchange of the order between these tours. In this graph
the stock manager now looks for a so-called trading matchingi.e., a subset M of the nodes
specifying admissible exchanges of orders between tours.

One problem here is, that with offering a selling of an order a processor believes that
this order eventually will be bought by another processor, and it will base its future price
calculations on its reduced tour. Thus, an admissible exchange must ensure, that with
each node v; € M, all nodes of the processors selling or buying v; and which have a smaller
level than v; have to be also in M.

The gain of the matching is obtained by summing up the weights of the edges between
nodes in M. A trading matching is then defined to be an admissible matching whose gain
is positive.

17

6.2 Adapting ST for the MARS System

The main idea is to let the SCA simulate a stock exchange where her TA can offer their
current orders at some specific “saving price” and may buy orders at an “insert price”.
While getting sell and buy offers form her TAs the SCA maintains the trading graph and
tries to find an order exchange that optimises the global solution. A global interchange
of k customers between all of the current tours of the TA corresponds to a matching in
the trading graph. The weight of the matching is defined by the profit of this global
interchange. Searching for a trading matching is done by a complete enumeration of the
trading graph. Though this requires exponential time in the worst case, it turned out to
be feasible in practice since the trading graph normally does not have too many branches.
Whereas we allowed the splitting of orders into suborders in the ECNP, we forbid it in
the simulated trading process, to restrict combinatorial explosion.

Important for the ST procedure are the decision criteria for the TA to decide which
orders to sell or buy. This is done using heuristics like “buy nearest” and “sell farthest”
combined with randomisation techniques.

Note that simulated trading can only be active during a period of time when no
new orders arrive at the SCA. Nevertheless, while the ST process is active the system
maintains a valid solution because ST is done using a copy of the current plan of a TA
and the current plan is replaced by the new one computed via the simulated trading
procedure only if that was successful, i.e. a trading matching was found which led to a
new optimum. Thus, reactivity is ensured: when a new order arrives, the TA always uses
the consistent original plan to compute a bid for the ECNP. If a new order occurs while
simulated trading is active, the procedure has to be aborted, unless the order fits into the
TA’s plan used for the ST process.

6.3 Using ST for Dynamic Replanning

An important feature of the MARS system is that TAs do not only compute plans: when
time is up, they actually start executing the orders. Executing an order includes the steps
of loading, driving, and unloading. Note, that even after the TA already has started the
execution of his local plan, it is possible for him to participate in the ECNP protocol.
However, in the ST process the TA is not allowed to sell orders he has already loaded.

A problem in plan execution is that planning is done on statistical data which may be
too optimistic. For instance, when the plan is actually executed the TA may get stuck in a
traffic jam (see Section 5). Therefore, replanning might be necessary because the TA may
run into problems with respect to the time constraints which are specified with the orders.
Fortunately, this situation can be nicely handled in our framework. We distinguish two
cases:

Firstly, there are disturbances that can be resolved using local replanning. In some
cases, the TA can do this by selecting an alternative route to the next city where he has
to deliver orders. This is done by computing the shortest path in a dynamically changing
graph using Dijkstra’s algorithm. In other cases, this can force the TA to completely
recompute his local plan using his local planning procedure. Even if the TA is able to
successfully derive a new plan which satisfies all constraints, the quality of the plan may
drop and thus, some orders may be sold within the next ST process. Therefore, restricted
global rescheduling may occur already in this case.

18

Secondly, if the TA cannot fix the problem by local replanning, the procedure depends
on whether the order is already loaded on the TA or if it is not. In the latter case, the
TA initiates a simulated trading process to sell the orders that he is no longer able to
execute. If a trading matching is found, this is a solution to the problem. If the simulated
trading process does not find a valid solution for the situation, the TA has to report the
problem and return the respective orders to his SCA. In this case the SCA herself can
decide whether to sell the order to another SCA (see below) or to contact the customer,
report the problem, and try to negotiate about the violated constraints. In the worst
case, the company has to pay a penalty fee.

If the orders that are causing trouble are already loaded on the TA, it is not possible
to just return the order to the SCA or to sell it in a simulated trading process. In this
case, the only chance for the TA is to report the problem to the SCA which then has to
find a solution by contacting the client, trying to relax the constraints of the order. If a
TA runs into this situation he is paralysed in the sense that he cannot participate in the
ECNP or in the simulated trading process until he receives instructions from his SCA.
Fortunately, the ECNP and the simulated trading procedure can deal with this situation
because they do not require participation of all TAs.

7 Experimental Results

In order to evaluate the influence of the strategies presented so far on the solution of
the global scheduling problem, we ran benchmarks developed by [Desrochers et al. 92],
consisting of 12 test sets a 100 orders describing instances of the vehicle routing problem
with time windows. This is a static scheduling problem that does not challenge the full
expressiveness of MARS:

e There is only one depot from where a set of clients has to be served.

e In each example there are 100 orders for 100 clients where no client occurs twice.

In the test data, it is assumed that only unloading at the location of the client does
need time. There are no time restrictions specified for the process of loading a truck.

There is only a single company modelled.

It is assumed that there is always a direct line connection between two cities.

However, despite these restrictions, optimal solutions are known for only a small portion
of the examples.

In general, optimal solutions can only be computed if a problem is treated as a closed
planning problem. In this case, when the planning processes is started all input data must
be known. Throughout the planning process the input data is not allowed to be changed.
It is clear that there exist special purpose algorithms which perform more efficient than
our system for this specific problem, but these algorithms are not able to deal with the
more general problem solved by MARS.

The parameters to be observed are the distance needed by the trucks (the primary
quality criterion in the benchmark) and the number of trucks required by the solution
(which is an important criterion from an economic point of view). The parameters varied

19

were the number of orders (25, 50, and 100, respectively), the percentage of orders with
time constraints (25, 50, 75, and 100 %), the strategy (pure ECNP or ST) and the
structure of the input set (random or pre-sorted by the earliest start time). The latter
parameter is of special importance: randomness simulates dynamics in a sense that the
agent has no knowledge about the temporal ordering of transportation orders. Since no
benchmark for a dynamic problem was available, this helps us to evaluate how graceful
the performance of our strategies degrades in the dynamic (non-ordered) case with respect
to the static (ordered) case.

Figure 10 shows the results from a class of experiments comparing the relative per-
formance of our solution before and after the optimisation using ST with the optimal
solution for some examples where this solution is known (assuming a sorted input set). It
shows that the ECNP solution is between 3% and 74 % worse than the optimal solution
and thus is comparable to heuristic OR algorithms; in our experiments ST improves this
solution by an average of ca. 12%.

distance in %
A # orders = 25

175 - ECNP

170 H
165
160]
155 7

150
145 -

140
135
130
125 H
120
115 A
110
105 H
100

y

i1 5 9 2 6 10 3 7 11 4 8 12 test set no.

Figure 10: Comparison of ECNP and ST with the Optimal Solution

A second class of experiments compares the performance of ECNP with ST for differ-
ent problem sizes and different degrees of constrainedness, making a distinction between
random and sorted input. The results of these experiments are illustrated by figure 11a)
to 11d). A more detailed table displaying the results for the benchmark examples in
numerical form is enclosed in the appendix of this article.

The main results of these experiments can be summarised as follows: Firstly, ST
improves the ECNP solutions in most cases. Secondly, presorting improves the behaviour
of both algorithms; however, ST yields much better results in the unsorted case than
pure ECNP; this implies that ST is a good strategy for dealing with dynamic problems,
since the trading process is likely to resolve suboptimal order assignments in the ECNP
solutions. On the other hand, ECNP which implements a greedy strategy is very sensitive

20

distance Ktrucks
15004
14504+
14004 154
13504+
13004 144
12504 13-4
12004
11504+ 124
11004
10504 e
10004 104
9501
9004~ T
8504~ a4
8001+
7501 1
T 61

orders =50

ECNP-sorte s
ST-sorted

1 59 26 103 7 11 4 8 12 order 1 59 26 103 7 11 4 8 12 order

b) avg #trucks 50 orders

ID

orders =100

ECNP-sorted —
ECNP-unsorted = = = = =
ST-sorted —
ST-unsorted _

a) avg. distance 50 orders ID

distance A#"UCkS
24001 BT
23001 241 v
22001 237 \\
21001 22717 \Iv
20001 211\
19001 207~ \\©
18001 199-
17001 184-
16001 171-
15001~ 161
14001 151
13001 141-
12001 134
11001 124~
10004~ T

159 26103 7 11 4 8 12 order 15
a) avg. distance 50 orders ID d) avg

Figure 11: Comparison of ECNP and ST on Random and Sorted Input Sets

with respect to the ordering of the transportation orders.

Thirdly, note that the orders drawn along the z-axis are sorted according to how
strong they are constrained: 100 % of the orders in the test sets 1, 5, 9 are constrained,
75 % of order sets 2, 6, 10, and so on, where test set 1 denotes the set named R101 in the
original benchmark data, 2 stands for R102 and so on. It is an interesting observation
that compared to ST, ECNP behaves relatively better for strongly constrained orders
than for weaker constrained ones: for 25 orders, ST is only 7.2% better than ECNP (in
savings of distance on an average) in the 100% constrained case, whereas it saves 22.4%
for 25 % constrained order sets. We might speculate that this is a general property of

21

=t -

26103 7 11 4 8 12 order
rucks 100 orders

ID

greedy, contract-net-like algorithms; however, this speculation still needs being confirmed
by further theoretical and empirical results. For results comparing different horizontal
cooperation settings at the SCA layer, we refer to [Fischer et al. 93].

8 Related Work

The problem of delivering a set of orders is often regarded as a scheduling or a routing
task, or a combination of both (see [Bodin et al. 83]). The difference between routing and
scheduling tasks is that routing problems have no restriction on delivery time nor are there
precedence relationships between stops. Hence, routing problems focus exclusively on the
spatial or geometrical aspects of the problem. On the other hand, scheduling focusses
exclusively on the time constraints of the problem. Combined routing and scheduling
problems incorporate both spatial and temporal characteristics.

Compared to the large number of investigations dealing with static scheduling or
routing problems, the dynamic problem instance, where new orders are allowed to be
input into the system at any point in time, is only weakly explored. Particular attention
has been given to dynamic aspects at the “Centre for Transportation Studies” at MIT
where solutions to this problem have been developed since the mid seventies. An overview
of several of these approaches is contained e.g. in [Bodin et al. 83].

Most of the MIT approaches rely on applying OR-based methods. However, it turns
out that problems arise when the number of constraints to deal with grows or when real-
time response of the system is required, e.g. in case system support should be given to a
dispatcher who has to tell customers an estimated cost of an order at the phone. For this
class of problems often knowledge-based approaches are used as those of Bagchi and Nag
([Bagchi & Nag 91]). They deal with the problem that a vehicle scheduler at a centralised
facility receives customer requests for truck capacities at specific dates and times. The
scheduler has to assign these loads to trucks obtained from contract carriers. Based on a
study of the concepts of a human scheduler Bagchi and Nag have derived a set of rules
which are used to build up a plan incrementally and to do some repairing if necessary. To
implement these rules and to develop their dynamic load scheduling system EXTLOAD they
decided to use a rule-based expert system shell. Within their system, global optimisation
is reduced to assigning a new shipment to a contract with minimal incremental cost caused
by that insertion. This is based on a result of Psaraftis ([Psaraftis 88]) who shows that
in a dynamic scheduling environment global minimisation over a period of time is best
achieved by minimising the incremental cost of each assignment.

In contrast to our approach, Bagchi and Nag offer a centralised solution concept
that covers only the problem solving for one dispatcher in a single shipping company.
MARsextends this approach by providing an inter-company perspective that could be
combined with Bagchi and Nag’s solution to model the intra-company situation.

OR-based approaches have been applied successfully to solve static instances of the
Vehicle Routing Problem. However, in order to be used in a dynamic environment these
methods have to be enhanced with mechanisms providing a real-time behaviour of the cor-
responding algorithms. Furthermore, usually OR-based methods are difficult to use if the
number of constraints is high (see [Golden & Assad 83, Psaraftis 88, Bagchi & Nag 91]).

Falk, Spieck, and Mertens (cf. [Falk et al. 93]) pursue an approach based on the in-
tegration of knowledge-based mechanisms and OR, algorithms. This combination of two
methodologies is expressed by the term Partial Intelligent Agents (PIAs) used to denote

22

components of distributed, cooperating systems having a hybrid structure, i.e. modules
that include a ”conventional” (usually OR-based) and a knowledge-based part. Each
agency is represented by a dispatching PIA that is responsible for the allocation of the
orders of its agency to the trucks. The dispatcher knows the current location of its trucks
and it bases its decision on this knowledge. Its objective function considers maximising
the utilisation of the trucks’ capacity, minimising the idle time and rides without carriage,
and minimising the length of the route for a single order.

The process of cooperative planning for a new order is basically handled by the Con-
tract Net Protocol as proposed in [Davis & Smith 83]. Falk et al. do not only use the
Contract Net for the task allocation process but also for task decomposition.

Compared to our modelling the approach described above considers an instance of
our domain, namely a single company which is geographically distributed. Thus, the
dispatching agents are willing to exchange all the information (in this case, the complete
route plans) in a cooperation process. A further difference to our approach is that Falk
et al. do not allow the actual transportation resources to take an active role by modelling
them as agents. Doing this allows us to parallelise the scheduling process and thus, to
reduce the practical problem complexity (see Section 3).

9 Conclusion and Outlook

In this paper, we have presented a multiagent approach to the design of the transportation
problem. Techniques developed in Distributed Al, such as task decomposition and task
allocation, decentralised planning, and negotiation have been applied to the scheduling of
transportation orders among an agent society consisting of shipping companies and their
trucks. The applicability and suitability of these techniques for the real-world applica-
tion of transportation scheduling in medium-size and large shipping companies has been
demonstrated by developing the simulation system MARS.

The paper provides experimental results indicating that the multiagent approach to
scheduling achieves acceptable solutions that are comparable to those of heuristic search
Operation Research algorithms. Moreover, the multiagent approach as implemented in
the MARS system has some fundamental advantages over standard OR algorithms: It
provides increased flexibility, since it allows to vary dynamically the number of agents,
even during the simulation. Moreover, whereas the scope of the available Operations
Research techniques is limited to static scheduling problems, the multiagent approach
results in an on-line system, which can cope with open, dynamic scheduling problems and
with the dynamics in plan execution. Especially the latter argument makes DAI tools for
task decomposition, task allocation, planning, and negotiation a powerful and promising
alternative for solving industrial scheduling problems.

The current enormous advances in telecommunication and sensor technology estab-
lish the necessary preconditions to put DAI concepts into practice in the transportation
domain over the next few years: trucks are equipped with board computers which — via
wireless modem (see e.g. MODACOM [Preissner-Polte 93]) — maintain the connection to
their company, and which allow the truck to obtain traffic information recorded by sensors
installed along the roads. A decision-support system for the driver computes the currently
optimal route to go based on this sensor information and on information it receives from
the driver’s company. Thus, new transportation orders can be allocated very flexibly and

23

quickly to the appropriate resource; tools based on concepts such as the ECNP can be
used to assist the human dispatcher in its allocation decisions.

An extension of the MARS system allowing the use of the methods presented in this
paper for order dispatching tasks in a real shipping company is an important medium-term
goal of our research.

As regards theoretical aspects of our research, an important issue for future work
are decision-theoretic problems: Using the concepts presented in this paper as a basis
for decision-making, the SCAs will start negotiation processes among each others. In
this negotiation processes, strategies must be found that guarantee that agents will not
benefit e.g. from lying. Preliminary work published in [Fischer 94] shows that the general
results presented by Zlotkin and Rosenschein [Zlotkin & Rosenschein 93] for task-oriented
domains are not fully applicable to the transportation domain as presented in this paper.
A more detailed treatment of this issue will be subject to future work.

Acknowledgements

We would like to thank Norbert Kuhn for intensive discussions and helpful comments on
earlier drafts of this paper. Darius Schier implemented the Simulated Trading algorithm.
Martin Malich (University of Cologne) helped us obtaining the benchmark data and was
very cooperative in all matters concerning Simulated Trading. We thank the anonymous
reviewers of the International Journal of Applied Artificial Intelligence for comments that
contributed to improving the quality and the readability of the paper.

24

References

[Bachem et al. 92] A. Bachem, W. Hochstéattler, and M. Malich. Simulated Trading:
A New Approach For Solving Vehicle Routing Problems. Technical Report 92.125,
Mathematisches Institut der Universitat zu Koln, Dezember 1992.

[Bachem et al. 93] A. Bachem, W. Hochstéttler, and M. Malich. The Simulated Trad-
ing Heuristic for Solving Vehicle Routing Problems. Technical Report 93.139,
Mathematisches Institut der Universitat zu Koln, 1993.

[Bagchi & Nag 91] P. Bagchi and B. Nag. Dynamic Vehicle Scheduling: An Ezpert
System Approach. Journal of Physical Distribution and Logistics Management,
21(2), 1991.

[Bargl 92] Michael Bargl. Tourenplanung in der Transportwirtschaft - viel gelobt, selten
genutzt? Logistik im Unternehmen, 6(6), Juni 1992.

[Boddy & Dean 88] M. Boddy and T. Dean. An Analysis of Time-dependent Planning.
In: Proceedings of the 7th National Conference on Artificial Intelligence, pp. 49—
54, 1988.

[Boddy & Dean 94] M. Boddy and T. L. Dean. Deliberation scheduling for problem
solving in time-constrained environments. Artificial Intelligence, 67:245-285, 1994.

[Bodin et al. 83] L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and Scheduling
of Vehicles and Crews. Computers and Operations Research, 10(2):63 — 211, 1983.

[Bond & Gasser 88] A. Bond and L. Gasser. Readings in Distributed Artificial Intelli-
gence. Morgan Kaufmann, Los Angeles, CA, 1988.

[Brooks 86] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot.
In: IEEE Journal of Robotics and Automation, volume RA-2 (1), pp. 14-23, April
1986.

[Chaib-Draa et al. 92] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Millot. Trends
in Distributed Artificial Intelligence. Artificial Intelligence Review, 1(6):35-66,
1992.

[Cohen et al. 89] P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe. Trial
by Fire: Understanding the Design Requirements for Agents in Complex Environ-
ments. Al Magazine, 10(3), 1989.

[Davis & Smith 83] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed
problem solving. Artificial Intelligence, 20:63 — 109, 1983.

[Decker & Lesser 94] K. Decker and V. R. Lesser. Designing a Family of Coordination
Algorithms. In: Proceedings of the 13th International Workshop on Distributed
Artificial Intelligence, pp. 65-84, Lake Quinalt, Washington, July 1994.

[Desrochers et al. 92] M. Desrochers, J. Desrosiers, and M. Solomon. A New Opti-
mization Algorithm for the Vehicle Routing Problem with Time Windows. Opera-
tions Research, 40(2), 1992.

25

[Ephrati & Rosenschein 93] E. Ephrati and J. Rosenschein. Multi-Agent Planning as
a Dynamic Search for Social Consensus. In: Proc. of IJCAI-93, pp. 423-429.
Morgan Kaufmann, San Mateo, CA, August 1993.

[Falk et al. 93] J. Falk, S. Spieck, and P. Mertens. Unterstitzung der Lager- und Trans-
portlogistik durch Teilintelligente Agenten. Information Management, 2, 1993.

[Ferguson 92] I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational,
Mobile Agents. PhD thesis, Computer Laboratory, University of Cambridge, UK,
1992.

[Firby 92] R. James Firby. Building Symbolic Primitives with Continuous Control Rou-
tines. In: J. Hendler (ed.), Proceedings of the 1st International Conference on
Artificial Intelligence Planning Systems (AIPS-92). Morgan Kaufmann Publish-
ers, San Mateo, CA, 1992.

[Fischer & Kuhn 93] K. Fischer and N. Kuhn. A DAI Approach to Modeling the Trans-
portation Domain. Research Report RR-93-25, DFKI, 1993.

[Fischer & O’Hare 94] K. Fischer and G. M. P. O’Hare (eds.). International Workshop
on Decision Theory for DAI Applications, Amsterdam, 1994. ECAI’94.

[Fischer et al. 93] K. Fischer, N. Kuhn, H. J. Miiller, J. P. Miiller, and M. Pischel.
Sophisticated and Distributed: The Transportation Domain. In: Proceedings of
MAAMAW-93, Neuchatel, CH, August 1993. Fifth European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World.

[Fischer et al. 94] K. Fischer, N. Kuhn, and J. P. Miiller. Distributed, Knowledge-
Based, Reactive Scheduling in the Transportation Domain. In: Proceedings of the
Tenth TEEE Conference on Artificial Intelligence and Applications, pp. 47-53, San
Antonio, Texas, March 1994.

[Fischer et al. 95] K. Fischer, J. P. Miiller, and M. Pischel. Unifying Control in a Lay-
ered Agent Architecture. Technical Memo TM-94-05, DFKI GmbH, Saarbriicken,
January 1995.

[Fischer 93] K. Fischer. The Rule-based Multi-Agent System MAGSY. In: Proceedings
of the CKBS’92 Workshop. Keele University, 1993.

[Fischer 94| K. Fischer. Decision Theoretic Analysis of the Transportation Domain. In:
[Fischer & O’Hare 94], Amsterdam, August 1994.

[Florian 93] Michael Florian. Highway Helden in Not. Ein Beitrag zum Verstindnis der
sozialen Reproduktion arbeits- und berufsbedingter Risiken von Fernfahrern. PhD
thesis, Universitat Miinster, 1993.

[Garey & Johnson 79] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W.H. Freeman and Com-
pany, 1979.

26

[Georgeff & Lansky 86] M. P. Georgeff and A. L. Lansky. Procedural knowledge. In:
Proceedings of the IEEE Special Issue on Knowledge Representation, volume 74,
pp. 1383-1398, 1986.

[Golden & Assad 83] B. Golden and A. Assad. Vehicle Routing: Methods and Studies.
Studies in Management Science and Systems. North Holland, 1983.

[Haddawy & Hanks 90] P. Haddawy and S. Hanks. Issues in Decision-Theoretic Plan-
ning: Symbolic Goals and Numeric Utilities. In: Proceedings of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and Control. Mor-
gan Kaufmann, November 1990.

[Hanks et al. 93] S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, Test Beds,
Controlled Experimentation, and the Design of Agent Architectures. Al Magazine,
Winter:17-42, 1993.

[Kinny et al. 92] D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and
E. Werner. Planned Team Activity. In: A. Cesta, R. Conte, and M. Miceli (eds.),
Pre-Proceedings of MAAMAW’92, July 1992.

[Kuhn et al. 93a] N. Kuhn, H. J. Miiller, and J. P. Miiller. Simulating Cooperative
Transportation Companies. In: Proceedings of the European Simulation Multi-
conference (ESM-93), Lyon, France, June 1993. Society for Computer Simulation.

[Kuhn et al. 93b] N. Kuhn, H. J. Miiller, and J. P. Miiller. Task Decomposition in
Dynamic Agent Societies. In: Proceedings of the International Symposium on
Autonomous Decentralized Systems (ISADS-93), Tokyo, Japan, 1993. IEEE Com-
puter Society Press.

[Kushmerick et al. 93] N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for
Probabilistic Planning. Technical Report 93-06-03, University of Washington, De-
partment of Computer Science, June 1993.

[Latombe 92] J. P. Latombe. How To Move (Physically Speaking) in a Multi-Agent
World. In: Y. Demazeau and E. Werner (eds.), Decentralized A.L, volume 3.
North-Holland, 1992.

[Lyons & Hendriks 92] D. M. Lyons and A. J. Hendriks. A Practical Approach to In-
tegrating Reaction and Deliberation. In: Proceedings of the 1st International Con-
ference on AI Planning Systems (AIPS), pp. 153-162, San Mateo, CA, June 1992.
Morgan Kaufmann.

[McDermott 91] D. McDermott. Robot Planning. Technical Report 861, Yale University,
Department of Computer Science, 1991.

[Miiller & Pischel 94a] J. P. Miiller and M. Pischel. An Architecture for Dynamically
Interacting Agents. International Journal of Intelligent and Cooperative Informa-
tion Systems (IJICIS), 3(1):25-45, 1994.

27

[Miiller & Pischel 94b] J. P. Miiller and M. Pischel. Integrating Agent Interaction into
a Planner-Reactor Architecture. In: M. Klein (ed.), Proceedings of the 13th Inter-
national Workshop on Distributed Artificial Intelligence, Seattle, WA, USA, July
1994.

[Miiller 94] J. P. Miiller. Ewvaluation of Plans for Multiple Agents (Preliminary Report).
In: K. Fischer and G. M. P. O’Hare (eds.), Working Notes of the Workshop on
Decision Theory for DAI Applications at ECAI-94, Amsterdam, NL, August 1994.

[Preissner-Polte 93] A. Preissner-Polte. Funk-Verkehr. manager magazin, 5, 1993.

[Psaraftis 88] H. Psaraftis. Dynamic Vehicle Routing Problems. In: Vehicle Routing:
Methods and Studies. North-Holland, 1988.

[Rao & Georgeff 91] A. S. Rao and M. P. Georgeff. Modeling Agents Within a BDI-
Architecture. In: R. Fikes and E. Sandewall (eds.), Proc. of the 2rd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
pp. 473-484, Cambridge, Mass., April 1991. Morgan Kaufmann.

[Rittmann 91] R. Rittmann. Die Macht der Trucks. Bild der Wissenschaft, 9:112-114,
1991.

[Rosenschein & Zlotkin 94] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation among Computers. MIT Press,
1994.

[Russell & Zilberstein 91] S. J. Russell and S. Zilberstein. Composing Real-Time Sys-
tems. In: Proceedings of [JCAI-91, pp. 212-217. Morgan Kaufmann Publishers,
Inc. San Mateo, CA, 1991.

usse 1lberstein . J. Russell and 5. Zilberstein. Anytime Sensing, Planning,

[Russell & Zilb in 93] S. J. R Il and S. Zilb in. Anytime Sensing, Planning
and Action: A Practical Model for Robot Control. In: Proceedings of IJCAI’93,
pp. 1402-1407, Chambery, F, 1993. Morgan Kaufmann Publishers Inc., San Mateo,
CA, USA.

[Schulte et al. 94] Christian Schulte, Gert Smolka, and Jorg Wiirtz. FEncapsulated
Search and Constraint Programming in Oz. In: Second Workshop on Principles
and Practice of Constraint Programming, pp. 116-129, Orcas Island, Washington,
USA, 2-4 May 1994.

[Wellman 92] M.P. Wellman. A General-Equilibrium Approach to Distributed Trans-
portation Planning. In: Proceedings of AAAI-92, pp. 282-290, 1992.

[Zlotkin & Rosenschein 93] G. Zlotkin and J. S. Rosenschein. A Domain Theory for
Task-Oriented Negotiation. In: Proc. of the 13th International Joint Conference
on Artificial Intelligence, volume 1, Chambéry, France, 28.8.-3.9. 1993.

28

A Benchmark Results

Legend for table 1:

TS Number of test set #0O Number of orders

E ECNP solution S Simulated Trading solution
O Optimal solution Dist. Distance travelled

WT waiting time Std. sorted?

T Total time needed (incl. waiting time)

29

B Computational Complexity of Transportation Problems

In this Section, we summarise basic complexity results showing that the transportation
problems tackled by our research are N'P-hard.

The class of problems we are interested in is characterised by the fact that orders may
be entered into the system at any time, and thus defines an open routing or scheduling
problem. Usually, this problem instance is called the Dynamic Vehicle Routing Prob-
lem (DVRP). We will now formalise the intuitive notion of the transportation problem
described so far.

Definition 1 The Routing Decision Problem RDP:

INSTANCE:

Graph G = (V, E),

Length l(e) € Z{ for each e € E,

Set of orders O = { o;=(s;,d;j,w;) | i = 1, ..., m, with s; € E being the starting
point of o;, d; € E being the target point of o;, and w; € Z* giving the weight (or
volume) of o; },

Trucks A = {a, ..., an },

Function Capacity: A — Zt giving the capacity of each truck, and

Bound B € Z.

QUESTION:
Is there a disposition function D: O — A and a routing of the trucks a; € A, such
that all orders are delivered and that the sum of the length of the route of the trucks
s at most B?

Note that the Routing Decision Problem RDP is only a simplified version of the problem
which we actually deal with, since there are no precedences between orders, nor are time
windows specified. However, the following theorem 1 states that already this problem is
NP complete.

Theorem 1 RDP is NP-complete.

We refer to [Fischer & Kuhn 93] for the proof of theorem 1. It is done in two steps. Firstly,
a polynomial time reduction of the Modified Rural Postman Problem which is known to
be N P-complete (cf. [Garey & Johnson 79]) to the RDP is given. This shows that the
Routing Decision Problem is at least N P-hard. Then, a nondeterministic polynomial-time
algorithm for RDP is provided, showing that RDP itself belongs to N P. O

Finally, theorem 2 states that the RDP is NP complete even if there is only a single
truck, and if the length of each edge e in the graph G is equal to one.

Theorem 2 The RDP is NP complete even if |A| = 1 and l(e) = 1 for all e € E.

The theoretical results obtained so far show that the scheduling problems in the trans-
portation domain are intractable, i.e. we should not hope to find complete algorithms
running in less than exponential time. Therefore, there is a need for using heuristic al-
gorithms, new methodologies, and new techniques for dealing with the transportation
problems. In the sequel, we present a heuristic approach to a solution of these problems
based on the multi-agent paradigm.

30

TS #0O # Trucks Dist. T WT Std.
E S (@] E S (6] E S E S
R101 25 9 8 8 768.5 665.3 617.1 1464.5 | 1365.8 44.6 450.5 y
R101 50 15 | 13 | 12 1483.2 | 1150.4 | 1035.2 2664.1 | 2282.0 68.1 631.5 y
R101 100 22 | 22 | 18 1959.9 | 1833.9 | 1607.7 3891.2 | 3887.5 931.2 | 1053.5 y
R101 100 22 | 21 - 2327.4 | 1835.4 - 4514.7 | 3891.0 1187.2 | 1055.5 n
R102 25 7 7 7 566.0 566.0 547.1 1243.3 | 1243.3 427.2 427.2 y
R102 50 10 | 10 | 11 1041.7 | 1041.7 904.6 1917.7 | 1917.7 375.9 375.9 y
R102 100 20 | 20 | 17 1655.1 | 1655.1 | 1434.0 3617.1 | 3617.1 962.0 962.0 y
R102 100 22 | 20 - 2116.1 | 1922.6 - 4141.6 | 3652.2 980.3 729.6 n
R103 25 4 4 5 494.1 494.1 454.4 840.5 840.5 96.4 96.4 y
R103 50 8 8 9 935.3 935.3 772.5 1655.9 | 1655.9 220.5 220.5 y
R103 100 14 | 14 - 1544.1 | 1544.1 - 2937.7 | 2937.7 393.6 393.6 y
R103 100 17 | 16 - 1907.3 | 1436.6 - 3497.9 | 3116.6 590.5 679.9 n
R104 25 4 4 4 447.1 447.1 416.9 826.7 826.7 129.6 129.6 y
R104 50 7 6 - 842.4 826.2 - 1363.0 | 1351.4 20.5 25.1 y
R104 100 11 | 11 - 1449.1 | 1333.9 - 2461.9 | 2442.3 12.7 108.4 y
R104 100 15 | 12 - 1824.3 | 1275.7 - 3280.5 | 2512.9 456.2 237.2 n
R105 25 7 6 6 645.7 593.8 530.5 1185.5 | 1036.8 289.7 193.0 y
R105 50 10 9 9 1159.7 | 1027.9 891.7 1846.2 | 1674.9 186.4 147.0 y
R105 100 19 | 17 - 1850.0 | 1682.5 - 3421.2 | 3130.2 570.7 447.6 y
R105 100 20 | 16 - 2269.7 | 1630.9 - 3665.6 | 2948.1 395.9 317.2 n
R106 25 6 6 5 519.5 511.8 467.4 1094.3 | 1070.8 324.8 309.0 y
R106 50 8 8 8 953.6 953.5 785.2 1607.3 | 1601.0 153.6 147.5 y
R106 100 17 | 15 - 1677.4 | 1489.6 - 3108.2 | 2845.2 430.8 355.5 y
R106 100 19 | 14 - 2279.6 | 1371.1 - 3736.8 | 2782.1 457.1 410.9 n
R107 25 5 4 4 664.0 515.7 423.0 1046.4 857.9 132.4 92.2 y
R107 50 7 7 7 977.2 977.2 703.2 1539.8 | 1539.8 62.6 62.6 y
R107 100 12 | 13 - 1629.7 | 1544.3 - 2668.6 | 2692.9 38.9 148.5 y
R107 100 17 | 12 - 2040.4 | 1207.2 - 3471.9 | 2551.3 431.4 344.0 n
R108 25 4 4 4 652.0 441.4 396.2 971.1 823.6 69.1 132.2 y
R108 50 6 6 798.0 785.3 - 1312.9 | 1308.1 149.3 22.8 y
R108 100 13 | 12 - 1729.1 | 1296.0 - 2729.5 | 2487.1 0.4 191.1 y
R108 100 14 | 12 - 2015.5 | 1388.8 - 3123.6 | 2461.6 108.1 72.7 n
R109 25 6 6 5 658.9 658.9 441.3 1104.5 | 1104.5 195.6 195.6 y
R109 50 10 9 - 1232.8 900.6 - 1883.6 | 1620.6 150.8 219.9 y
R109 100 18 | 15 - 2141.8 | 1490.4 - 3443.4 | 2792.2 301.6 301.7 y
R109 100 19 | 16 - 2349.7 | 1641.0 - 3614.3 | 2930.4 264.6 289.3 n
R110 25 5 5 4 632.9 531.4 429.5 1016.9 927.9 134.0 146.4 y
R110 50 9 9 7 1275.2 932.5 697.0 1845.1 | 1698.5 69.8 265.9 y
R110 100 14 | 13 - 1980.9 | 1316.1 - 3099.6 | 2617.3 118.6 301.1 y
R110 100 18 | 17 - 2233.8 | 1821.7 - 3517.3 | 2985.7 283.4 164.0 n
R111 25 4 4 4 599.5 541.7 428.8 886.1 838.3 36.6 46.5 y
R111 50 8 7 - 1085.6 941.7 - 1620.7 | 1459.2 35.1 17.4 y
R111 100 14 | 13 - 1860.6 | 1480.1 - 3136.3 | 2809.4 275.6 329.2 y
R111 100 17 | 14 - 2064.7 | 1211.1 - 3399.1 | 2676.5 334.4 465.3 n
R112 25 5 5 4 683.7 572.6 393.0 1075.0 963.9 141.2 141.2 y
R112 50 9 7 - 1381.7 803.9 - 1924.6 | 1380.7 42.9 76.8 y
R112 100 15 | 12 - 1978.7 | 1205.8 - 3091.8 | 2333.6 113.0 127.8 y
R112 100 15 | 12 - 1988.1 | 1139.7 - 3101.8 | 2338.7 113.1 199.0 n

Table 1: Benchmark Results for ECNP and ST Algorithms

31

