
Cooperative Transportation Scheduling�

an Application Domain for DAI

Klaus Fischer� J�org P� M�uller� Markus Pischel�

DFKI GmbH� D�����	 Saarbr�ucken

Abstract

A multiagent approach to designing the transportation domain is presented�

The Mars system is described which models cooperative order scheduling within
a society of shipping companies� We argue why Distributed Arti
cial Intelligence

�DAI� o
ers suitable tools to deal with the hard problems in this domain� We

present three important instances for DAI techniques that proved useful in the

transportation application� cooperation among the agents� task decomposition and

task allocation� and decentralised planning�

An extension of the contract net protocol for task decomposition and task al�

location is presented� we show that it can be used to obtain good initial solu�

tions for complex resource allocation problems� By introducing global information

based upon auction protocols� this initial solution can be improved signi
cantly� We

demonstrate that the auction mechanism used for schedule optimisation can also

be used for implementing dynamic replanning� Experimental results are provided

evaluating the performance of di
erent scheduling strategies�
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� Introduction

In a time of constantly growing world�wide interdependence of trade and ware �ow� lo�
gistics and the planning of freight transports are of crucial relevance both for economical
and ecological reasons� The problems of vehicle routing and order scheduling are far
from being satisfactorily solved in practice �Florian ��	� Moreover� in European shipping
companies� factually no intelligent software support is available to the human scheduler�
There exist e
cient algorithms for solving static scheduling problems� however� classical
computer science� Operations Research �OR
� and also classical centralised AI have so
far failed to provide adequate methodologies and algorithms to cope with open dynamic
scheduling problems �see also �Bargl ��	
� Unfortunately� virtually any problem of practi�
cal interest falls into the latter category� For example� one out of three trucks on Europe�s
roads drives empty� the average capacity utilisation in freight tra
c is only about �� �
�Rittmann ��	� The process of political and economic integration in Europe and the abol�
ishment of federal regulations on freight transportation services has led to a dramatically
increased competition in the logistics business� Thus� new technologies are required to
keep with the complexity and the dynamics of the domain�
The Mars� simulation testbed �cf� �Kuhn et al� ��a	
 constitutes a multiagent ap�

proach to these problems� a scenario of geographically distributed transportation com�
panies is described� The companies have to carry out transportation orders which arrive
dynamically� For this purpose� they have a set of trucks at their disposal� The global
behaviour of the system is evaluated as follows� the quality measure are the costs for
carrying out the orders� What is extraordinary about our approach is that the companies
themselves do not have facilities for scheduling orders� it is the trucks that maintain local
plans� and the actual solution to the global order scheduling problem emerges from the
local decision�making of the agents� Thus� one very complex plan is replaced by several
smaller and simpler plans� allowing to react quickly and without global replanning to
unforeseen events� such as tra
c jams or new transportation orders�
What is it that makes the transportation domain especially suitable for using tech�

niques from �Distributed
 AI ��Bond � Gasser ��	� �Chaib�Draa et al� ��	
� One reason
is the complexity of the scheduling problem� which makes it very attractive for AI re�
search �see Appendix B for a complexity�theoretic analysis of the domain
� However
there are more pragmatic reasons� Commonsense knowledge �e�g� taxonomic� topological�
temporal� or expert knowledge
 is necessary to solve the scheduling problems e�ectively�
Local knowledge about the capabilities of the transportation company as well as knowledge
about competitive �and maybe cooperative
 companies massively in�uences the solutions�
Moreover� since a global view is impossible �because of the complexity
� there is a need
to operate from a local point of view and thus to deal with incomplete knowledge with all
its consequences� The last aspect leads to the DAI arguments�

� The domain is inherently distributed� Hence it is very natural to look at it as a
multi�agent system� However� instead of tackling the problem from the point of view
of the entities which are to be modelled and then relying on the emergence of the
global solution� the classical approach to the problem is an �arti�cially
 centralised
one�
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� There is a high degree of dynamics in the process of planning �new orders can be
given to the system asynchronously
 and execution �unforeseen events may occur�
such as tra
c jams
� A recent direction in research on planning deals with exactly
this class of problems �see e�g� �Haddawy � Hanks ��� Russell � Zilberstein ���
Kushmerick et al� ��� Boddy � Dean ��	
� Architectures allowing agents to react
to dynamics in execution while at the same time trying to achieve their longer�term
goals have been provided by research in planning and DAI �e�g� �Cohen et al� ���
Firby ��� Ferguson ��� Lyons � Hendriks ��� M�uller � Pischel ��a	
�

� The task of a centrally maintaining and processing the knowledge about the shipping
companies� their vehicles� and behaviour is very complex� Moreover� knowledge is
often not even centrally available �real�life company are not willing to share all their
local information with other companies
� Therefore� modelling the companies as
independent and autonomous units seems the only acceptable way to proceed�

� The existence of cooperative processes in the real transportation business makes
the domain especially suitable for using DAI techniques such as task decomposition
and task allocation �Davis � Smith ��� Kuhn et al� ��b� Decker � Lesser ��	� de�
centralised planning�Ephrati � Rosenschein ��� M�uller ��	� and negotiation among
agents �Zlotkin � Rosenschein ��� Rosenschein � Zlotkin ��	�

The paper is organised as follows� We start with an overview of our multiagent system
development environment and the underlying agent architecture in Section �� In Section
�� the transportation domain is presented and analysed� Section � de�nes the multiagent
approach for task decomposition� task allocation� and negotiation underlying the Mars
system� An extension of the simulation system by a model for tra
c jams is described
in Section �� Section � provides an auction�based mechanism for schedule optimisation
and dynamic replanning in order to cope with the types of unforeseen events introduced
in Section �� Empirical results that have been obtained by running a series of scheduling
benchmarks are reported in Section �� Related work is described in Section �� The paper
ends with a discussion of the practical usefulness of the results presented so far�

� The General Framework

Before describing theMars system� we would like to sketch brie�y the framework under�
lying our multiagent applications�

��� The AGenDA Testbed

The AGenDA testbed �Fischer et al� ��	 serves as the development platform for our ap�
plications� The testbed consists of two di�erent levels� the architectural level describes
a methodology for designing agents in a sense that it provides several important func�
tionalities an agent should have� thus it supports a general template for agents that has
to be �lled by the designer of a DAI system with the domain�speci�c instantiation� The
system development level provides the basic knowledge representation formalism� general
inference mechanisms �such as forward and backward reasoning
 which are used by the
decision�making modules of the architectural layer� as well as a simulation toolbox sup�
porting visualisation and monitoring of agents� and the gathering of performance statistics
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�see �Hanks et al� ��	 for a well�written discussion of properties� problems� and bene�ts
of and examples for testbeds
� The interrelationship between the two testbed levels is
illustrated in �gure ��

Architectural Level 

System Development 
LevelSimulation

Inference 
Mechanisms

Knowledge 
Representation

Formalism

InteRRaP

MAGSY

AGenDA

planning
reactivity

cooperation

action communication

perception

Figure �� The AGenDA Testbed

The architectural level in the AGenDA Testbed is provided by the InteRRaP agent
architecture �M�uller � Pischel ��a� M�uller � Pischel ��b	� It de�nes the control within
an agent as a hierarchical process� mapping di�erent classes of situations to di�erent
reactive� deliberative� or cooperative execution mechanisms� The system development
level is covered by the MAGSY system �Fischer ��	� MAGSY provides a frame�based
knowledge representation formalism and a set of general purpose inference mechanisms�
Moreover� it provides tools supporting the construction� visualisation� evaluation� and
debugging of DAI scenarios� including the lower layers of communication� on top of which
more complex protocols such as the contract net or bargaining protocols can be de�ned�
Two applications have been implemented using the AGENDA framework� the �rst

system is FORKS� an interacting robots application� FORKS describes an automated
loading dock� where forklift robots load and unload trucks� while avoiding potential and
resolving existing con�icts� and exploiting possibilities to collaborate� The main require�
ment imposed on the testbed by this application was that it had to support reactivity
and deliberation in the decision�making of an individual agent as well as perception and
manipulation of the physical world� The second system isMars� which is the topic of this
article� In the case of the Mars system� the main challenge for our testbed was to pro�
vide di�erent cooperation methods based on negotiation� leading to di�erent scheduling
mechanisms� and to experimentally evaluate these mechanisms�
An autonomous agent acting and interacting in a dynamic environment has to have

certain properties� which should be re�ected in its underlying design architecture� Firstly�
agents are to behave in a situated manner� i�e� they have to perceive unexpected events
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and to react appropriately to them �see e�g� �Brooks ��	
� Secondly� they are to act in
a goal�directed fashion in order to achieve their goals� In AI� this is normally achieved
by devising plans for certain goals �see e�g� �McDermott ��	
� Thirdly� they are to solve
their tasks e�ciently and often have to satisfy real�time constraints� This requires access
to a set of �hard�wired� procedures �George� � Lansky ��	 with guaranteed execution
properties� Fourthly� they are to cope with the presence of other agents� Whereas certain
types of interactions can often be performed by employing local mechanisms �e�g� ob�
stacle or collision avoidance in a robot scenario� see �Latombe ��� M�uller � Pischel ��a�
M�uller � Pischel ��b	
� others �e�g� collaboration
 require the adoption of joint goals� the
generation and execution of joint plans� the exchange of relevant information �i�e� about
goals and plans
 �see e�g� �Kinny et al� ��	
� and thus the explicit representation of mod�
els of other agents in terms of beliefs� goals� plans� and intentions �Rao � George� ��	�
Finally� agents are to be adaptive� i�e� they must learn in order to improve their perfor�
mance and to survive even if the environment changes� These requirements have led to
the development of the agent architecture InteRRaP� a layered architecture describing
the individual agent�

��� The InteRRaP Agent Architecture

The main idea of InteRRaP is to de�ne an agent by a set of functional layers� linked
by a communication�based control structure and a shared hierarchical knowledge base�
The basic design elements of the agent are ��
 its world interface facilities� ��
 patterns
of behaviour �PoB
� as well as ��
 local plans and ��
 joint� multiagent plans�
Figure � shows the components of the InteRRaP agent model and their interplay�

It consists of �ve basic parts� the World Interface �WIF
� the Behaviour�Based Compo�
nent �BBC
� the Plan�Based Component �PBC
� the Cooperation Component �CC
� and
the agent knowledge�base� The world interface holds the agent�s facilities for perception�
action� and communication� The BBC implements the reactive behaviour and the proce�
dural knowledge of the agent� Basic building blocks of the BBC are patterns of behaviour
which can be divided in two groups� reactor patterns and procedure patterns� Reactivity
is obtained by providing a set of reactor patterns specifying hard�wired condition�action
pairs� These are triggered by exogenous events� Procedural knowledge is contained in
so�called procedure patterns which are activated by the plan�based component� these pro�
cedures are basically compiled plans which can be executed by the agent in order to
perform some routine tasks�
The PBC contains a planning mechanism which is able to devise local single�agent

plans� Depending on the requirements imposed by the application� the PBC may be in�
stantiated with a suitable planning formalism� However� the interface de�nition between
BBC and PBC requires that the latter can activate PoB� which are primitive actions
from the perspective of the planner� The di�erence to classical AI planning systems
is that PoB may be rather complex procedures �cf� �Firby ��	
 incorporating a certain
degree of execution intelligence �e�g� for dealing with di�erent types of failures with�
out explicit replanning
� Finally� the CC contains a mechanism for devising joint plans
�see �Kinny et al� ��� M�uller ��	
� It has access to protocols� and a multiagent planning
mechanism which can access knowledge about other agents and about communication
strategies� CC� PBC� and BBC establish the control of the agent� Their interaction �see
e�g� �M�uller � Pischel ��b	
 de�nes the agent�s overall behaviour�
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Figure �� The InteRRaP Agent Architecture

The knowledge base is structured hierarchically� It consists of three layers which ba�
sically correspond to the structure of the agent control� The lowest layer contains facts
representing the world model of the agent as well as representations of primitive actions
and patterns of behaviour� The second layer contains the agent�s mental model� i�e� rep�
resentation of knowledge the agent has about its goals� skills� and plans� Finally� layer
three comprises the agent�s social model� i�e� knowledge of and strategies for cooperation�
e�g� beliefs about other agents� goals� The basic idea is to restrict the information access
and thus to reduce the practical complexity of reasoning in the lower �more reactive

system layers� For example� the plan�based component can access information about the
world model� whereas the behaviour�based component does not have access to planning
or cooperation information� This is supported by employing di�erent reasoning mecha�
nisms provided by MAGSY in di�erent InteRRaP layers� namely data�driven forward
reasoning in the BBC and goal�driven backward reasoning in the PBC and CC�

� The Transportation Domain

In this section� the application domain of the Mars system is described and analysed�
Some of the properties are derived that make dealing with this domain so di
cult�
The application domain for theMars system is the planning and scheduling of trans�

portation orders as performed by dispatchers in shipping companies� Many of the prob�
lems which must be solved in this area� such as the Travelling Salesman and related
scheduling problems� are known to be NP�hard �see Appendix B for a formal analysis
�
As we have argued in the introduction� the domain is highly dynamic� and decisions have
to be made under a high degree of uncertainty and incompleteness�
Cooperation and coordination are two very important processes that may help to over�
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Figure �� MARS� The Domain of Application

come the problems sketched above� Indeed� they are of increasing importance even in the
highly competitive transportation business of today� Using the Mars system� several co�
operation types such as the announcement of unbooked legs� order brokering� and di�erent
strategies for information exchange have been evaluated �see also �Fischer et al� ��	
�
Corresponding to the physical entities in the domain� there are two basic types of

agents in Mars� which are designed according to the InteRRaP agent architecture�
transportation companies and trucks� Companies can communicate with their trucks and
among each other� The user may dynamically allocate transportation orders to speci�c
companies� Looking upon trucks as agents allows us to delegate problem�solving skills to
them �such as route�planning and local plan optimisation
�
The shipping company agent �SCA
 has to allocate orders to her� truck agents �TAs
�

while trying to satisfy the constraints provided by the user as well as local optimality
criteria �costs
� An SCA also may decide to cooperate with another company instead of
having an order executed by her own trucks� The functionality of an SCA is modelled in
the InteRRaP architecture as follows�

� The BBC of a company is rather simple� It provides patterns of behaviour for
recognising that a transportation order has been received� and for activating the
communication primitives de�ned by the communication protocols �see section �
�

� Since an SCA does no scheduling on its own� the function of the PBC reduces to an
algorithm that synthesises a plan for an order based on the partial bids received by
the trucks�

� The CC contains the main part of the functionality of the SCA� The protocols for
task allocation and negotiation �see Section �
 are represented as meta joint plans
in a plan library �see �M�uller ��	
 and are executed by a plan interpreter�

Each TA is associated with a particular shipping company from which he receives
orders of the form �Load amount s of good g� at location l� and transport it to

�We use �she� to refer to shipping companies and �he� to refer to trucks to resolve ambiguities�
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location l� while satisfying time constraints fct� � � � � � ctng�� A TA is modelled as
an InteRRaP agent as follows�

� The BBC of a truck agent contains PoB for checking the existence of new orders�
for deciding when to begin the execution of a plan step based on the temporal
information kept in the plan� for performing the actual plan execution� and for
recognising tra
c jams based on data received by the travel information service �see
Section �
� The primitive actions the TA is able to perform are driving� loading�
unloading� as well as communicating with his company�

� A truck�s PBC contains the local planning algorithm� which is a polynomial heuristic
insertion algorithm� additionally� in order to compute a bit for an order� the TA has
to evaluate the cost of his plan �see �Fischer et al� ��	
�

� The CC of a truck contains the de�nition of the protocols used for communication
with his SCA �see Section �
�

Interaction of the agents within one shipping company �called vertical cooperation

is totally cooperative� This means that a speci�c TA will accept deals �i�e� results of
negotiation processes
 with his SCA even if they are not locally pro�table for him� We
call such a setting an instance of a cooperative task�oriented domain �cf� �Fischer ��	
�
In the cooperation between SCAs we investigate in both a totally cooperative and a

competitive setting �we call the latter setting an instance of a competitive task�oriented
domain
� If we assume a cooperative task�oriented domain� we are purely interested in
the quality of the overall schedule which is emerging from the local problem solving done
in the SCAs and TAs� A practical example for this setting is the cooperation among
di�erent� geographically distributed branches of one shipping company� On the other
hand� in a competitive task�oriented domain among the SCAs� the overall schedule which
is computed will be far from optimal� In this setting we investigate how a single SCA can
maximise her pro�ts and how she can avoid being tricked by other agents�

� The Mars Simulation System� A Multiagent Approach

In this section� we describe the multiagent approach underlying the Mars system� start�
ing from the standard Contract Net protocol �Section ���
� we de�ne a framework that
provides more powerful tools for task decomposition and task allocation �Section ���
� A
model for peer�to�peer negotiation among di�erent SCAs is outlined in Section ����

��� Vertical Cooperation� Task Decomposition and Task Allocation

If an order o is announced to an SCA by a customer �which can also be another SCA
�
she has to compute a bid for executing the order� In order to determine the costs� she
forwards the order to her TAs� Each TA a computes a bid

�a� cost�Ta � o
� cost�Ta
� w
�

where Ta is the current tour of a and w is the amount of the order a is able to transport�
cost�Ta � o
 denotes the additional costs for a when executing o given Ta� Let Oa  
foa�� � � � � o

a
ng� n � IN be the current set of orders for a� A constraint net is derived from the
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information which is speci�ed with the orders� Each solution to this constraint solving
problem is a valid tour which ful�ls all constraints speci�ed by Oa� Then� a tries to �nd
the best tour forOa using a constraint solving and constraint optimisation procedure� Our
implementation is based on the Oz �Schulte et al� ��	 system which was developed at DFKI
in Saarbr�ucken and which provides powerful mechanisms for optimisation procedures in
case the search space is de�ned by a constraint net�

Company1 Company2
Trading Graph Trading Graph

Price
Negotiation

ECN Protocol
Selling/Buying Orders

Truck11 Truck1n Truck21 Truck2m

Order Stock  Exchange
Among Shipping Companies

Announcing
Revoking

Orders

Announcing
Revoking

Orders

ECN Protocol
Selling/Buying Orders

Figure �� Hierarchical organisation of the agents in Mars�

For each order o announced by an SCA to her TAs� she receives a set of bids

B  f�a�� c�� w�
� � � � � �an� cn� wn
g� n � IN

where ci speci�es the costs truck ai will produce when executing amount wi of order o�
� � i � n� The SCA selects

�amin� cmin� wmin
 � B with ��a� c� w
 � B �
cmin

wmin

�
c

w

and sends a grant to the TA amin� notifying him that he will be granted the amount amin

provided that the SCA itself will actually receive a grant for o by the customer�
The procedure described so far is the well known Contract Net protocol �CNP


�Davis � Smith ��	� Because the CNP provides time�out mechanisms it is easy to turn this
communication protocol into an anytime algorithm �see for instance �Boddy � Dean ���
Russell � Zilberstein ��	
� i�e� the system will produce a solution �if there is one
 within
a speci�ed time t�� The quality of the solution may be increased if more time for compu�
tation is available �see also Section ���
�
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��� The Extended Contract Net Protocol

The pure contract net protocol as described so far runs into problems if the tasks exceed
the capacity of a single truck� i�e�

amin � amount�to�transport�o


In this case� the manager of the task� i�e� the SCA� has to solve a knapsack problem�
which for itself is in general NP�hard� To overcome this problem� we decentralised task
decomposition by developing and implementing an extension of the CNP� which is called
the ECNP protocol� ECNP is available as a standard protocol in Mars� In ECNP�
the two speech acts grant and reject are replaced by four new speech acts� temporal
grant� temporal reject� de�nitive grant� and de�nitive reject� The ECNP is a natural�
straightforward solution of the task decomposition problem�
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Figure �� The ECNP from the point of view of a manager �a
 and a bidder �b
�

A �ow chart representation is used to represent the negotiation protocols provided
by the Mars testbed� The protocols describe the roles of the individual agents in the
negotiation process� Figure � shows the �ow charts for the ECNP protocol� from �a
 the
manager�s and �b
 the bidders� point of view� The main di�erence to the CNP is that
now the bidders� i�e� the TAs� are allowed to bid for only parts of an order�
In the ECNP the manager �SCA
 announces an order o to its TAs� She then receives

bids for the order and selects the best one as speci�ed above� The best TA is sent a
temporal grant� All others receive temporal rejects� If the best bid does not cover the
whole amount of an order� the remaining part of the order is reannounced by the SCA�
This procedure is repeated until there is a set of bids that cover the total amount of the
original order o� From this set of bids the SCA computes a bid which is passed to the
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customer� Based on the answer of the customer� the SCA sends a de�nitive grant �or
de�nitive reject� respectively
 to all TAs which got temporal grants before� It is possible
to prove that in general all but the last bid selected are locally optimal choices for the
SCA �Fischer et al� ��	�
When a TA receives a temporal grant for the �rst time� he has to store a copy of his

local situation� i�e� the currently valid plan� because he must be able to restore this situ�
ation in case he obtains a de�nitive reject� All subsequent temporal grants and temporal
rejects are handled like the grants and rejects in the pure CNP� If a TA is sent a de�nitive
grant for an order� he removes the copy created above and switches to the new plan� If a
TA gets a de�nitive reject� he restores the situation before the �rst temporal grant�
In our framework� the ECNP is used to obtain a fairly good initial solution �see section

� for a quanti�cation of this claim
 for the contract net protocol� Having a quick algorithm
to determine a rather good upper bound for the costs induced by an order is important for
the agent since it provides a basis for its future decisions� However� because the situation
changes if new orders arrive and because the TAs will stick to decisions made in the past�
the solution found is not even guaranteed to be pareto�optimal �Wellman ��	�
There are di�erent ways to optimise the ECNP solution� Currently� the Simulated

Trading algorithm which is described in section � as a solution of the dynamic replanning
problem is also used to optimise the order exchange among trucks� By coupling ECNP and
Simulated Trading� we obtain an anytime algorithm �Boddy � Dean ��	 At� with a lowest
time bound t� de�ned by the runtime of the ECNP process� I�e�� At� is an interruptible
anytime algorithm �Russell � Zilberstein ��	 for each t � t�� Since the individual trucks
employ a polynomial insertion algorithms for computing their bids within the ECNP� the
time bound t� for the ECNP is polynomial�

��� Horizontal Cooperation� Negotiation

Optimising the utilisation of transport capacities is the foremost goal for an SCA� Due to
the spatial and temporal distribution of incoming orders� cooperation with other SCAs
�so�called horizontal cooperation
 may be a bene�cial operation� For example� companies
may exchange orders and information about free loading capacities� and they may apply
for orders o�ered by other companies� However� in contrast to the coordination between
an SCA and her trucks� cooperation between companies is a peer�to�peer process where
a solution �e�g� a price to be paid for an o�er
 can only be found if all the participants
agree� and where the conditions of the solution have to be negotiated among the compa�
nies� It is this peer�to�peer negotiation what we call horizontal cooperation and whose
implementation is described in the sequel�

Negotiation Protocol� AGenDA supports the modelling of horizontal cooperation by
providing a parametrised bargaining protocol which can be instantiated with the speci�c
conditions of a negotiation� Figure � illustrates the protocol by means of a �ow chart�
It shows both the types of messages exchanged between the companies as well as

the connection between local reasoning within a company �represented by local decision
nodes and by the connection to the vertical cooperation protocol with her trucks
 and
cooperative reasoning in the course of the negotiation� A company �company �� or c��
in the example
 may decide to announce free transport capacity to another company� let
us say� company �� or c�� This decision can be made based on information about free
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Figure �� A Bargaining Protocol for Horizontal Cooperation

capacities c� has received by her trucks� Based on its local state� c� decides whether she
wants to take up the announcement� and� if so� sends an order to c�� This instantiates
a bargaining protocol where c� takes the role of the o�ering agent� c� takes the role
of the orderer� c� will start by sending an o�er �bid
 to c�� c� will decide whether to
accept� reject� or to modify the bid by making a countero�er� The bargaining process
continues either until both parties have agreed on a common solution or until it becomes
clear that no compromise can be found� The other communication acts shown in �gure �
such as last bid� to outbid� to surpass are special purpose features enabling an auction�like
negotiation between more than two agents�

Decision�Making� The decision�making of the companies during the negotiation pro�
cess is based on information they obtain by their trucks� e�g� information about free
capacities and costs� Whereas the costs of an order were the decision criterion for the
TAs� the SCAs make their decisions based on the utility of an order� which is computed
as the di�erence between the worth �which is obtained from the customer or from other
companies
 and the costs� Based upon this information� a company determines in how far
cooperation will lead to an increase of its local utility� and thus determines its range of ne�
gotiation� Another important issue for decision�making is partner modelling� for example�
if all the agents had complete knowledge about the decision criteria of all other agents�
each agent could locally compute whether there is a solution accepted by all the partners�
In the case where all the agents have the same decision criteria� two agents could directly
agree on the mean value of the �rst bid and the �rst countero�er� since negotiation is to
converge to this value� However� in reality� agents do not have complete knowledge about
each other� this makes the bargaining process interesting� In the current system� partner
modelling is restricted to agents making simple assumptions on the parameters of other
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agents� future research will aim at enhancing this model� There are several con�gurable
parameters that can be used to vary the decision�making behaviour of an agent� e�g��

�d desired pro�t in per cent for an order�
�m minimal pro�t in per cent accepted by an agent�
! function determining the amount to which an agent�s next o�er is modi�ed given

its current o�er p� it can be set to either constant k or max�k� ��d��m��p
n


� n is a
scaling factor determining the speed of convergence� the max function guarantees
termination of the negotiation independent of the size of n�

�c threshold denoting the agent�s cooperation sensitivity �which is a measure for how
uneconomic an order has to be for an agent to be o�ered to another agent
� �c �
��� �	�

So far� we have described methods for task decomposition and task allocation imple�
mented in the Mars system which allow us to deal with dynamics and uncertainty in
planning� in the sequel� we will extend this framework to mechanisms allowing us to deal
with dynamics in plan execution� too�

� Introducing Execution Dynamics

In order to be able to explore methods for dealing with problems occurring due to unfore�
seen events happening during plan execution� the concept of tra
c congestions has been
integrated into the Mars system� It is described in the sequel� Firstly� the simulation
environment is outlined in Section ���� Section ��� deals with how adequate cost functions
can be de�ned� In Section ���� a probabilistic model for the generation of tra
c jams is
introduced�

��� The Simulation Framework

The enhanced Mars simulation environment can be divided in two parts� the simulation
world and the agent society� The agent society has been described in Section �� The
simulation world consists of three parts� the world simulator module� the tra
c jam gen�
erator� and the travel information service� The actual world simulator module maintains
the state of the world� i�e� current positions of TAs and goods� the road map which is
maintained as a graph G  �V� E
� state of tra
c� time etc� The tra�c jam generator
incorporates a statistical model for tra
c jams� Its output is given as a function

� � T � E 	
 ��� �	�

where T is the set of time instants� Thus� � computes for each connection between two
cities of the road map at a time instant ti the degree of tra
c disturbance that ranges from
�
 � �tra
c jam
 to � �no disturbance
� In the sequel� we write �tij for the disturbance
factor ��t� eij
 on the edge connecting nodes i� j � V at a given time instant t� Sensory
data about the tra
c density is provided to the third module of the simulation world�
the travel information service �TIS
� TIS information can be accessed from the TAs� it is
used by them in order to compute the best route for a given situation �see Section ���
�
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Figure �� The Simulation Environment

��� Cost Functions

There are two di�erent levels for describing how the TAs make their plans� the rough
planning level maintaining which tasks to perform and in what order to perform them�
and the �ne planning level describing the actual route taken to perform a speci�c order�
Since the rough planning takes place several hours before the start of a journey� it makes
no sense to take into account an extensive amount of information regarding the tra
c
situation during that phase� because the situation is very likely to have changed by the
time the order execution actually starts�
In the enhanced model which we present in the sequel� distances and disturbance

factors �tij on an edge connecting nodes i and j are considered for the �ne planning�
�tij ranges over ��� �	� where �  � means tra�c jam and � means no disturbance� The
objective function which is to be minimised is to be de�ned via costs� Criteria which have
to be considered for this purpose are e�g� transportation time dur and distance d� The
e�ect of the disturbance factor in our model is that it increases transportation time� The
criteria are evaluated using factor prices� A model assumption is that the �xed costs C�x
are the same for all TAs and SCAs�� In the following� we set Cfix  � to simplify the
model further� In this model� assuming the state of the world at time t� the time durij a
TA needs to get from a place i to a place j is given as

durij  

�
dij
vij

�
�
�

�tij
��


�Changing this assumption solely means shifting the calculated costs along the X�axis�
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where

� dij is the distance �km	 between i and j�

� vij is the average speed �km�h	 of a TA under optimal conditions� and

� �tij is the value of the disturbance factor for the edge connecting nodes i and j at
time t�

In the following� let x�� � � � � xk be the set of factors relevant for decision�making� In
our case� k  �� both the time needed and the distance travelled are considered as factors
in the cost function� Now� for time t� given a tour Tt� we can de�ne the objective function�

cost�Tt
  
nP
i��

nP
j��

�
durij � p� " dij � p�

�
� yij

 
nP
i��

nP
j��

dij �
�

p�
�t
ij
�vij
" p�

�
� yij 
 min

where

yij  

�
� � if eij � Tt
� � otherwise

p�  costs per hour� p�  costs per km�

Using this formula� the current route as well as alternative routes to bypass a tra
c
jam are evaluated� For di�erent types of disturbances� the evaluation can lead to di�er�
ent replanning strategies� which include either local replanning or global reallocation as
described in Section ��

��� A Model For Tra	c Jam Generation

In the sequel� the disturbance variable � which is used in order to generate and to simulate
tra
c jams is de�ned by means of a probabilistic model� Based on �� the TAs then
evaluate alternative routes according to the cost function de�ned in Section ���� For the
disturbance variable �tij on an edge between i and j at time t� we have

�tij  

�								

								�

� � no disturbance
����#�� � little disturbance
����#���� � medium disturbance
����#���� � heavy disturbance
	�#��� � stop and go tra�c

� � total jam

The tra
c density ztij is used to compute �
t
ij� z

t
ij denotes the number of vehicles going

on edge eij at time t� For an assumed speed v a vehicle is allowed to go on edge eij� z
t
ij

reaches its maximum value svij� Note that for calculating the maximum value svij for z
t
ij

which allows a TA to go with speed v �in this case �tij 	 � holds
� the reaction time tr�v


of the truck driver has to be considered when computing the average distance distvcars� In
case of a tra
c jam at edge eij ��

t
ij 
 �
� ztij reaches the maximum value s

�
ij� In a simple

approximation� svij is computed as
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svij  
len�eij


lencars " distvcars
� ��


where lencars is the average length of a vehicle� distvcars is the average distance between
two vehicles going at speed v� len�eij
 is the length of edge eij� The tra
c density z

t
ij only

a�ects the disturbance variable �tij if the TA cannot drive the planned average speed on
this segment� For ztij � svij� there is �

t
ij  �� i�e� no disturbance� We capture this by a

function svij with

svij�z
  

�
svij� � if � � z � svij�

z� � if svij � z � s�ij
��


Based on this� the disturbance factor �tij can be de�ned as follows�

�tij  ��t� eij
  
svij � �s

�
ij � svij�Z�t� eij




svij�Z�t� eij

 � �s
�
ij � svij


where v is a global constant� Z�t� eij
 is a random variable specifying the number of
vehicles on edge eij which is computed by the formula�

Z�t� eij
  P �

 � svij � �" ��� �
 � Z�t� �� eij
�

P �

 is a random variable with a normal distribution and a mathematical expected
value of 
� 
 is time�dependent �e�g� rush hours
� � determines the in�uence of random
variable P �

 on Z�t� eij
�
Up to now� we have described how jam information is generated and how it is inte�

grated into the cost functions of the TAs� allowing them to derive information needed
for decision�making� Section � describes a mechanism that allows the agents to react to
unforeseen situations caused by the occurrence of tra
c jams by initiating a dynamic
reallocation process�

� Simulated Trading� An Auction Mechanism for Dynamic Task

Reallocation

The Simulated Trading �ST
 �Bachem et al� ��	 procedure which is presented in this sec�
tion can be used for two di�erent purposes�

� Dynamic replanning� if a TA realises that he cannot satisfy the time constraint of
an order because of an unforeseen tra
c jam� he can initiate an ST process leading
to an order reallocation satisfying the time constraints�

� Iterative optimisation� starting from the initial ECNP solution �see section ���
�
ST may be initiated to yield a better order allocation� The experimental results in
Section � demonstrate the usefulness of ST as an optimisation technique�

In the following� the principle of ST and its application in theMars system are explained�
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�� Principles of ST

In �Bachem et al� ��	� Bachem� Hochst�attler and Malich present a parallel improvement
heuristic for solving vehicle routing problems with side constraints� Their approach deals
with the problem that n customers order di�erent amounts of goods which are located
at a central depot� The task of the dispatcher is to cluster the orders and to attach the
di�erent clusters to trucks which then in turn determine a tour to deliver the cluster
allocated to them�
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Figure �� The Standard Vehicle Routing Problem

The solution to this problem is constructed using the Simulated Trading procedure� It
starts with a set of feasible tours T�� � � � � Tt� which may e�g� be obtained by a conventional
heuristic which is applicable to this domain� The tours are represented as an ordered list
of costumers that have to be visited� Parallelism is achieved by that the data of each
tour Ti can be assigned to a single processor i �the tour manager
 of a parallel �Multiple
Instruction Multiple Data� MIMD
 computer� To guide the improvement of the initial
solution� an additional processor� the stock manager is added to the system� The task of
the stock manager is to coordinate the exchange of costumers orders between the di�erent
processors� To do this� it collects o�ers for buying and selling orders coming from the
processors in the system�
A price system is introduced providing a quality criterion for order exchanges to the

stock manager� If processor p sells an order i �i�e�� an order from the depot to customer
i
� its cost should decrease� This saving of costs is associated as the price Pr to i� where

Pr
def
 cost�Tp
� cost�Tp � fig


Tp
def
 Tp � fig�

Here� the term Tp�fig denotes the tour that evolves from Tp if customer i �or order i�
respectively
 is deleted from processor p�s tour list� Accordingly� the price Pr for processor
p buying a customer i is computed as the di�erence of costs for the old tour Tp and the
costs for the new tour Tp � fig� which evolves from the insertion of costumer i in Tp� i�e�
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Pr
def
 cost�Tp � fig
� cost�Tp


Tp
def
 Tp � fig�
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Figure �� Stock Exchange for Orders in the ST Procedure

The exchange of orders is synchronised by the stock manager according to levels of
exchange situations� At each level it asks each processor for a selling or buying order�
Having done this� it updates a list of the o�ers and sends it to all tour managers� Each
o�er is associated with a quintuple �processor� Level� Selling or Buying� Costumer� Price
�
The stock manager maintains a data structure� called Trading Graph whose nodes are

the selling and buying o�ers of the processors� Furthermore� there exists an edge between
vertices vi  �processor�� li� Selling� ci� Pri
 and vj  �processor�� lj� Buying� ci� Prj

if processor� wants to buy customer ci from processor�� li and lj indicate the levels of
negotiation� The edge is weighted �or labelled
 by the di�erence of the prices Prj � Pri�
giving the global saving of an exchange of the order between these tours� In this graph
the stock manager now looks for a so�called trading matching i�e�� a subset M of the nodes
specifying admissible exchanges of orders between tours�
One problem here is� that with o�ering a selling of an order a processor believes that

this order eventually will be bought by another processor� and it will base its future price
calculations on its reduced tour� Thus� an admissible exchange must ensure� that with
each node vi �M� all nodes of the processors selling or buying vi and which have a smaller
level than vi have to be also in M�
The gain of the matching is obtained by summing up the weights of the edges between

nodes in M� A trading matching is then de�ned to be an admissible matching whose gain
is positive�
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�� Adapting ST for the Mars System

The main idea is to let the SCA simulate a stock exchange where her TA can o�er their
current orders at some speci�c �saving price� and may buy orders at an �insert price��
While getting sell and buy o�ers form her TAs the SCA maintains the trading graph and
tries to �nd an order exchange that optimises the global solution� A global interchange
of k customers between all of the current tours of the TA corresponds to a matching in
the trading graph� The weight of the matching is de�ned by the pro�t of this global
interchange� Searching for a trading matching is done by a complete enumeration of the
trading graph� Though this requires exponential time in the worst case� it turned out to
be feasible in practice since the trading graph normally does not have too many branches�
Whereas we allowed the splitting of orders into suborders in the ECNP� we forbid it in
the simulated trading process� to restrict combinatorial explosion�
Important for the ST procedure are the decision criteria for the TA to decide which

orders to sell or buy� This is done using heuristics like �buy nearest� and �sell farthest�
combined with randomisation techniques�
Note that simulated trading can only be active during a period of time when no

new orders arrive at the SCA� Nevertheless� while the ST process is active the system
maintains a valid solution because ST is done using a copy of the current plan of a TA
and the current plan is replaced by the new one computed via the simulated trading
procedure only if that was successful� i�e� a trading matching was found which led to a
new optimum� Thus� reactivity is ensured� when a new order arrives� the TA always uses
the consistent original plan to compute a bid for the ECNP� If a new order occurs while
simulated trading is active� the procedure has to be aborted� unless the order �ts into the
TA�s plan used for the ST process�


�� Using ST for Dynamic Replanning

An important feature of the Mars system is that TAs do not only compute plans� when
time is up� they actually start executing the orders� Executing an order includes the steps
of loading� driving� and unloading� Note� that even after the TA already has started the
execution of his local plan� it is possible for him to participate in the ECNP protocol�
However� in the ST process the TA is not allowed to sell orders he has already loaded�
A problem in plan execution is that planning is done on statistical data which may be

too optimistic� For instance� when the plan is actually executed the TA may get stuck in a
tra
c jam �see Section �
� Therefore� replanning might be necessary because the TA may
run into problems with respect to the time constraints which are speci�ed with the orders�
Fortunately� this situation can be nicely handled in our framework� We distinguish two
cases�
Firstly� there are disturbances that can be resolved using local replanning� In some

cases� the TA can do this by selecting an alternative route to the next city where he has
to deliver orders� This is done by computing the shortest path in a dynamically changing
graph using Dijkstra�s algorithm� In other cases� this can force the TA to completely
recompute his local plan using his local planning procedure� Even if the TA is able to
successfully derive a new plan which satis�es all constraints� the quality of the plan may
drop and thus� some orders may be sold within the next ST process� Therefore� restricted
global rescheduling may occur already in this case�
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Secondly� if the TA cannot �x the problem by local replanning� the procedure depends
on whether the order is already loaded on the TA or if it is not� In the latter case� the
TA initiates a simulated trading process to sell the orders that he is no longer able to
execute� If a trading matching is found� this is a solution to the problem� If the simulated
trading process does not �nd a valid solution for the situation� the TA has to report the
problem and return the respective orders to his SCA� In this case the SCA herself can
decide whether to sell the order to another SCA �see below
 or to contact the customer�
report the problem� and try to negotiate about the violated constraints� In the worst
case� the company has to pay a penalty fee�
If the orders that are causing trouble are already loaded on the TA� it is not possible

to just return the order to the SCA or to sell it in a simulated trading process� In this
case� the only chance for the TA is to report the problem to the SCA which then has to
�nd a solution by contacting the client� trying to relax the constraints of the order� If a
TA runs into this situation he is paralysed in the sense that he cannot participate in the
ECNP or in the simulated trading process until he receives instructions from his SCA�
Fortunately� the ECNP and the simulated trading procedure can deal with this situation
because they do not require participation of all TAs�

	 Experimental Results

In order to evaluate the in�uence of the strategies presented so far on the solution of
the global scheduling problem� we ran benchmarks developed by �Desrochers et al� ��	�
consisting of �� test sets $a ��� orders describing instances of the vehicle routing problem
with time windows� This is a static scheduling problem that does not challenge the full
expressiveness of Mars�

� There is only one depot from where a set of clients has to be served�

� In each example there are ��� orders for ��� clients where no client occurs twice�

� In the test data� it is assumed that only unloading at the location of the client does
need time� There are no time restrictions speci�ed for the process of loading a truck�

� There is only a single company modelled�

� It is assumed that there is always a direct line connection between two cities�

However� despite these restrictions� optimal solutions are known for only a small portion
of the examples�
In general� optimal solutions can only be computed if a problem is treated as a closed

planning problem� In this case� when the planning processes is started all input data must
be known� Throughout the planning process the input data is not allowed to be changed�
It is clear that there exist special purpose algorithms which perform more e
cient than
our system for this speci�c problem� but these algorithms are not able to deal with the
more general problem solved by Mars�
The parameters to be observed are the distance needed by the trucks �the primary

quality criterion in the benchmark
 and the number of trucks required by the solution
�which is an important criterion from an economic point of view
� The parameters varied
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were the number of orders ���� ��� and ���� respectively
� the percentage of orders with
time constraints ���� ��� ��� and ��� �
� the strategy �pure ECNP or ST
 and the
structure of the input set �random or pre�sorted by the earliest start time
� The latter
parameter is of special importance� randomness simulates dynamics in a sense that the
agent has no knowledge about the temporal ordering of transportation orders� Since no
benchmark for a dynamic problem was available� this helps us to evaluate how graceful
the performance of our strategies degrades in the dynamic �non�ordered
 case with respect
to the static �ordered
 case�
Figure �� shows the results from a class of experiments comparing the relative per�

formance of our solution before and after the optimisation using ST with the optimal
solution for some examples where this solution is known �assuming a sorted input set
� It
shows that the ECNP solution is between �� and �� � worse than the optimal solution
and thus is comparable to heuristic OR algorithms� in our experiments ST improves this
solution by an average of ca� ����
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Figure ��� Comparison of ECNP and ST with the Optimal Solution

A second class of experiments compares the performance of ECNP with ST for di�er�
ent problem sizes and di�erent degrees of constrainedness� making a distinction between
random and sorted input� The results of these experiments are illustrated by �gure ��a

to ��d
� A more detailed table displaying the results for the benchmark examples in
numerical form is enclosed in the appendix of this article�
The main results of these experiments can be summarised as follows� Firstly� ST

improves the ECNP solutions in most cases� Secondly� presorting improves the behaviour
of both algorithms� however� ST yields much better results in the unsorted case than
pure ECNP� this implies that ST is a good strategy for dealing with dynamic problems�
since the trading process is likely to resolve suboptimal order assignments in the ECNP
solutions� On the other hand� ECNP which implements a greedy strategy is very sensitive
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Figure ��� Comparison of ECNP and ST on Random and Sorted Input Sets

with respect to the ordering of the transportation orders�
Thirdly� note that the orders drawn along the x�axis are sorted according to how

strong they are constrained� ��� � of the orders in the test sets �� �� � are constrained�
�� � of order sets �� �� ��� and so on� where test set � denotes the set named R��� in the
original benchmark data� � stands for R��� and so on� It is an interesting observation
that compared to ST� ECNP behaves relatively better for strongly constrained orders
than for weaker constrained ones� for �� orders� ST is only ���� better than ECNP �in
savings of distance on an average
 in the ���� constrained case� whereas it saves �����
for �� � constrained order sets� We might speculate that this is a general property of
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greedy� contract�net�like algorithms� however� this speculation still needs being con�rmed
by further theoretical and empirical results� For results comparing di�erent horizontal
cooperation settings at the SCA layer� we refer to �Fischer et al� ��	�


 Related Work

The problem of delivering a set of orders is often regarded as a scheduling or a routing
task� or a combination of both �see �Bodin et al� ��	
� The di�erence between routing and
scheduling tasks is that routing problems have no restriction on delivery time nor are there
precedence relationships between stops� Hence� routing problems focus exclusively on the
spatial or geometrical aspects of the problem� On the other hand� scheduling focusses
exclusively on the time constraints of the problem� Combined routing and scheduling
problems incorporate both spatial and temporal characteristics�
Compared to the large number of investigations dealing with static scheduling or

routing problems� the dynamic problem instance� where new orders are allowed to be
input into the system at any point in time� is only weakly explored� Particular attention
has been given to dynamic aspects at the �Centre for Transportation Studies� at MIT
where solutions to this problem have been developed since the mid seventies� An overview
of several of these approaches is contained e�g� in �Bodin et al� ��	�
Most of the MIT approaches rely on applying OR�based methods� However� it turns

out that problems arise when the number of constraints to deal with grows or when real�
time response of the system is required� e�g� in case system support should be given to a
dispatcher who has to tell customers an estimated cost of an order at the phone� For this
class of problems often knowledge�based approaches are used as those of Bagchi and Nag
��Bagchi � Nag ��	
� They deal with the problem that a vehicle scheduler at a centralised
facility receives customer requests for truck capacities at speci�c dates and times� The
scheduler has to assign these loads to trucks obtained from contract carriers� Based on a
study of the concepts of a human scheduler Bagchi and Nag have derived a set of rules
which are used to build up a plan incrementally and to do some repairing if necessary� To
implement these rules and to develop their dynamic load scheduling system EXLOAD they
decided to use a rule�based expert system shell� Within their system� global optimisation
is reduced to assigning a new shipment to a contract with minimal incremental cost caused
by that insertion� This is based on a result of Psaraftis ��Psaraftis ��	
 who shows that
in a dynamic scheduling environment global minimisation over a period of time is best
achieved by minimising the incremental cost of each assignment�
In contrast to our approach� Bagchi and Nag o�er a centralised solution concept

that covers only the problem solving for one dispatcher in a single shipping company�
Marsextends this approach by providing an inter�company perspective that could be
combined with Bagchi and Nag�s solution to model the intra�company situation�
OR�based approaches have been applied successfully to solve static instances of the

Vehicle Routing Problem� However� in order to be used in a dynamic environment these
methods have to be enhanced with mechanisms providing a real�time behaviour of the cor�
responding algorithms� Furthermore� usually OR�based methods are di
cult to use if the
number of constraints is high �see �Golden � Assad ��� Psaraftis ��� Bagchi � Nag ��	
�
Falk� Spieck� and Mertens �cf� �Falk et al� ��	
 pursue an approach based on the in�

tegration of knowledge�based mechanisms and OR algorithms� This combination of two
methodologies is expressed by the term Partial Intelligent Agents �PIAs
 used to denote
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components of distributed� cooperating systems having a hybrid structure� i�e� modules
that include a �conventional� �usually OR�based
 and a knowledge�based part� Each
agency is represented by a dispatching PIA that is responsible for the allocation of the
orders of its agency to the trucks� The dispatcher knows the current location of its trucks
and it bases its decision on this knowledge� Its objective function considers maximising
the utilisation of the trucks� capacity� minimising the idle time and rides without carriage�
and minimising the length of the route for a single order�
The process of cooperative planning for a new order is basically handled by the Con�

tract Net Protocol as proposed in �Davis � Smith ��	� Falk et al� do not only use the
Contract Net for the task allocation process but also for task decomposition�
Compared to our modelling the approach described above considers an instance of

our domain� namely a single company which is geographically distributed� Thus� the
dispatching agents are willing to exchange all the information �in this case� the complete
route plans
 in a cooperation process� A further di�erence to our approach is that Falk
et al� do not allow the actual transportation resources to take an active role by modelling
them as agents� Doing this allows us to parallelise the scheduling process and thus� to
reduce the practical problem complexity �see Section �
�

� Conclusion and Outlook

In this paper� we have presented a multiagent approach to the design of the transportation
problem� Techniques developed in Distributed AI� such as task decomposition and task
allocation� decentralised planning� and negotiation have been applied to the scheduling of
transportation orders among an agent society consisting of shipping companies and their
trucks� The applicability and suitability of these techniques for the real�world applica�
tion of transportation scheduling in medium�size and large shipping companies has been
demonstrated by developing the simulation system Mars�
The paper provides experimental results indicating that the multiagent approach to

scheduling achieves acceptable solutions that are comparable to those of heuristic search
Operation Research algorithms� Moreover� the multiagent approach as implemented in
the Mars system has some fundamental advantages over standard OR algorithms� It
provides increased �exibility� since it allows to vary dynamically the number of agents�
even during the simulation� Moreover� whereas the scope of the available Operations
Research techniques is limited to static scheduling problems� the multiagent approach
results in an on�line system� which can cope with open� dynamic scheduling problems and
with the dynamics in plan execution� Especially the latter argument makes DAI tools for
task decomposition� task allocation� planning� and negotiation a powerful and promising
alternative for solving industrial scheduling problems�
The current enormous advances in telecommunication and sensor technology estab�

lish the necessary preconditions to put DAI concepts into practice in the transportation
domain over the next few years� trucks are equipped with board computers which # via
wireless modem �see e�g� MODACOM �Preissner�Polte ��	
 # maintain the connection to
their company� and which allow the truck to obtain tra
c information recorded by sensors
installed along the roads� A decision�support system for the driver computes the currently
optimal route to go based on this sensor information and on information it receives from
the driver�s company� Thus� new transportation orders can be allocated very �exibly and
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quickly to the appropriate resource� tools based on concepts such as the ECNP can be
used to assist the human dispatcher in its allocation decisions�
An extension of the Mars system allowing the use of the methods presented in this

paper for order dispatching tasks in a real shipping company is an important medium�term
goal of our research�
As regards theoretical aspects of our research� an important issue for future work

are decision�theoretic problems� Using the concepts presented in this paper as a basis
for decision�making� the SCAs will start negotiation processes among each others� In
this negotiation processes� strategies must be found that guarantee that agents will not
bene�t e�g� from lying� Preliminary work published in �Fischer ��	 shows that the general
results presented by Zlotkin and Rosenschein �Zlotkin � Rosenschein ��	 for task�oriented
domains are not fully applicable to the transportation domain as presented in this paper�
A more detailed treatment of this issue will be subject to future work�
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A Benchmark Results

Legend for table ��

TS Number of test set &O Number of orders
E ECNP solution S Simulated Trading solution
O Optimal solution Dist� Distance travelled
WT waiting time Std� sorted�
T Total time needed �incl� waiting time
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B Computational Complexity of Transportation Problems

In this Section� we summarise basic complexity results showing that the transportation
problems tackled by our research are NP�hard�
The class of problems we are interested in is characterised by the fact that orders may

be entered into the system at any time� and thus de�nes an open routing or scheduling
problem� Usually� this problem instance is called the Dynamic Vehicle Routing Prob�
lem �DVRP
� We will now formalise the intuitive notion of the transportation problem
described so far�

De�nition � The Routing Decision Problem RDP�

INSTANCE�
Graph G  �V�E
�
Length l�e
 � Z�

� for each e � E�
Set of orders O � f oi�
si�di�wi� j i � 
� 	 	 	 � m� with si � E being the starting
point of oi� di � E being the target point of oi� and wi � Z� giving the weight 
or
volume� of oi g�
Trucks A � fa�� 	 	 	 � am g�
Function Capacity� A
 Z� giving the capacity of each truck� and
Bound B � Z�	

QUESTION�
Is there a disposition function D� O 
 A and a routing of the trucks ai � A� such
that all orders are delivered and that the sum of the length of the route of the trucks
is at most B�

Note that the Routing Decision Problem RDP is only a simpli�ed version of the problem
which we actually deal with� since there are no precedences between orders� nor are time
windows speci�ed� However� the following theorem � states that already this problem is
NP complete�

Theorem � RDP is NP �complete	

We refer to �Fischer � Kuhn ��	 for the proof of theorem �� It is done in two steps� Firstly�
a polynomial time reduction of the Modi�ed Rural Postman Problem which is known to
be NP �complete �cf� �Garey � Johnson ��	
 to the RDP is given� This shows that the
Routing Decision Problem is at leastNP �hard� Then� a nondeterministic polynomial�time
algorithm for RDP is provided� showing that RDP itself belongs to NP � �

Finally� theorem � states that the RDP is NP complete even if there is only a single
truck� and if the length of each edge e in the graph G is equal to one�

Theorem � The RDP is NP complete even if jAj � 
 and l
e� � 
 for all e � E	

The theoretical results obtained so far show that the scheduling problems in the trans�
portation domain are intractable� i�e� we should not hope to �nd complete algorithms
running in less than exponential time� Therefore� there is a need for using heuristic al�
gorithms� new methodologies� and new techniques for dealing with the transportation
problems� In the sequel� we present a heuristic approach to a solution of these problems
based on the multi�agent paradigm�
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