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Abstract 

Constrained resolution allows t.he incorporat.ion of domain specific problem 
solving methods into the cla.ssical resolution principle. Firstly, the domain spe
cific knowledge is represen ted by a restriction theory. One then starts with for
mulas containing so-called rest.ricted quantifiers , written as V X :R F and 3X :R F, 
where X is a set of variables and the restriction R is used to encode domain spe
cific knowledge by fil tering out some assignments to the variables in X. Formulas 
with restricted quantifiers can be translated into clauses which consist of a (clas
sical) clause together with a restriction. In order to attain a refutation proceclure 
which is based on such clauses one needs algorithms to decide satisfiability and 
validi ty of restrictions w. r.t. the gi ven restriction theory. 

Recently, concep t logics have been proposed where the restriction theory is 
defined by terminological logics. However, in this approach problems have been 
assumed to be given as sets of clauses with restrictions and not in terms of 
formulas with restricted quantifiers. For this special case algorithms to decide 

satisfiability and validity of restrictions have been given. 
In this paper we will show that things become much more complex if problems 

are given as sets of formu las with restricted quantifiers. The reason for this is 
due to the fact that Skolem function symbols are introduced when translating 
such formulas into clauses with restrictions. While we will give a procedure to 
decide satisfiability of restrictions containing function symbols, validity of such 
restrictions turns out to be undecidable. Nevertheless, we present an application 
of concept logics with function sym bois, namely their use for generating (partial) 
answers to queries. 
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1 Introduction 

Deductive systems which are based on the classical resolution principle in general do 
not allow the incorporation of methods for domain specific problem solving: Firstly, a 
set of (first-order) formulas is transformed into a set of clauses by a domain-independent 
transformation algorithm . Then t.hese clauses are tested on unsatisfiabilit.y by a more or 

less blind search. Recent.ly, a logic with rest.ricted quantifiers has been introduced and, 
building upon t.his, constrainf'd resolution allows tlte incorporat.ion of domain specific 
knowledge int.o 1.lw resolut.ion principle ([Bi.ir91, Bi.ir93, BBII+90, BHL93]). The main 
idea behind t.his approach is to reprf'sf'nt domain-specific knowlf'dge in a so-called 

restriction t.heory and to extend t.he classical quant.ifif'rs as follows. If R is a restriction, 
i.e. an open formula over the signature of the restriction theory, formulas V{T}:RF and 
3{x}:RF are allowed which can be read as "F holds for all elf'mcnts satisfying R" and "F 
holds if t.hen' exists all element. which satisfies R", respf'ct.ively. When transforming 
such formulas into clausf's OIW obt.ains so-called RQ-clausf's which are of the form 
ell R, when' C is a clause and R is a rest.riction. In order t.o proVf~ ullsatisfiability of 
the obtainf'd RQ-c1ausf's set onf' can use tlw constrailwd rf'solution principle to derive 
empty RQ-c1auses 0 II R I , ... , 0 II Rn.. Thi::; proces::; is iteratf'd ulltil for each model 

of the restriction tlwory tlterf' is a an empty RQ-clallse C II R whose restriction R is 

satisfied by that modf'i. 

In order to profit from the constrained resolution principle one has to select a 

restriction t.hf'ory that. provide::; both, a powf'rfllllanguage to represent domain specific 
knowledge and (efficient) algori t.h InS to df'cidf' satisfiabili ty and val idity of restrictions. 
In this paper we invest.igate tl](" use of terminological logics as restriction theory. To 
represent knowledge of a problem domain in this formalism one starts with given atomic 
concepts and rolf'S, and df'fillf'S nf'W concepts using the opf'rators provided by a so
called concept language. For several reasons, terminological logics seem to be a good 
candidate to define a restriction thf'ory. On the one hand, they have widely been 

accepted to be a knowledge representation formalism applicable to a large class of 

problem domains. On t.he other hand, most terminological logics are a decidable and 
well-investigated fragment of first-order logics. 

Indeed, t.he use of terminological logics in the constrained ff~solution principle has 
already been investigatf'd in [BBH+f)Q] and was called concept logics there. In this 

approach problems have been ass umed to be given as a set of RQ-clauses together with 
a restriction theory, and algorithms for deciding satisfiability and validity of restrictions 
have been given. Howf'ver, problems are usually not given by RQ-clauses but by 

formulas (with restricted quantifiers), and we will show that things become much more 
complicated in this case. The reason for this lies in the fact that function symbols 

may be introduced via Skolemization. We thus need algorithms to test satisfiability 
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and validity of restrictions containing function symbols, which was not addressed III 

[BBH+90] . 

This paper is organized as follows. In Section 2 syntax and semantics of a logic 
with restricted quantifiers are given and the constrained resolution principle is recalled. 
Besides from Skolem function symbols, which are introduced by Skolemization, we al
low RQ-formulas to contain user-specified function symbols . Since all variables in 
RQ-formulas are constrained, it is appropriate to take restrictions into account when 
interpreting these function symbols and thus each of them may have a function decla
ration. Section 3 presents the concept language ALC and it is shown how constrained 
resolution can be instantiated if the restriction theory is given by the terminological 
logic based on this concept language. In [BHL93] we proposed an optimization of the 
constrained resolution provided that the restriction theory satisfies a certain condition 
which is satisfied when using ALe. That means we do not need to consider RQ-clauses 
with arbitrary satisfiable restrictions, but only RQ-clauses whose restrictions satisfy an 
additional condition, called constraint .unifiability. 

In Section 4 we investigate algorithms for testing constraint unifiability and valid
ity of restrictions containing function symbols . We will present an algorithm to decide 
constraint unifiability of a restriction. However, testing validity of a set of restrictions 
turns out to be undecidable. Though this result shows that there is no algorithm to 
decide whether the derived empty RQ-clauses are sufficient to prove unsatisfiability 
of an RQ-clause set, there is an interesting application of concept logics with func
tion symbols which is presented in Section 5, namely using concept logics for query 
answering. The main idea of this approach is to translate facts and a negated query, 
both given as RQ-formulas, into a set C of RQ-clauses. Each restriction R of a derived 
empty RQ-clause can then be read as an answer "the query is successful whenever R 
is satisfied". 

1.1 Related Work 

The idea of clauses with restrictions has already been introduced by Hohfeld and Smolka 
[HS88] who did not aim at a refutation procedure, but at query answering for logic 
programming. The basis of our work is [Bur~n], [Bur93] where a logic with restricted 
quantifiers and the constrained resolution principle have been introduced. Constrained 
resolution generalizes several approaches of building in theories into resolution based 
deduction systems. An important example for building in such theories are sorted 
logics (see, e.g., [Obe62], [WaI87]' [WaI88], [Sch89], [W090], [Coh92]' [Wei92]). 

The use of terminological logics as restrictions, so-called concept logics, has been 
discussed in [BBH+90]. In that approach, problems have been assumed to be given as a 
set of RQ-clauses without function symbols, together with a terminological restriction 
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theory. For this case, algorithms for deciding sat isfiability and validity or restrictions 
have been given. 

The transformation of formulas with restricted quanti fiers in to a set of RQ-clauses 
while preserving sat isfiab ility has been given in [BHL93J. Building upon this trans

formation procedure a refuta. t ion pro cedure for fo rmulas with restri cted quantifi ers 

is given there, which is in stant.i atf'd for concept log ics with function symbols in the 

presen t paper. 

2 A Logic wit h Restricted Quantifiers 

In t hi s section w(' recall a log ic with rf'st ri ctf'd qualltifiers (I1Q for short.). Syntax an d 
sema nti cs of I1Q-forlllula s ar(' gi \'('11 ill SlIbsf'ctions 2.1 and 2.2, rf'slwctivdy. Subsf'cLioll 

2.3 int.roducf's a reso lution principle for RQ-dauscs . 

2.1 Syntax 

A signature .....J consists of thrf'e pairwise disjoint sets of symbols: a set FE of function 
symbols, a set. V~ of varia.blf.'s, and a. set. p~ of predicat.e symbols. The not.ion s of 
(ground) terms a.nd formulas a r(' defined as usual. Given a formula l ' with exactly t.he 

frf.'e variables ;1: 1, ' " ,.T.n , then \:IF denotes the universal closure \:/.1: 1 . . . \:IxnF of F 
and 3F denot.es the existential closure 3 :1.:1 ... 3x"F of the formu la F. 

We now introd uce rest. rict.pd quant.ifica.tion systems ( RQS) to rep r('se nt. domain 
specific (or background) kn ow ledgf' an d RQ-si gnaturcs which extpnel a n RQS by fore

ground language symbols. An IlQS consists of three parts , that is , a signature ~, a set 

of (open) ~-formulas, whi ch define the syntactically allowed background formulas, and 
a restriction theory, which represents the poss ible interpretations of the restrictions. 

A restricted quantification system (RQ S) R consists of 

• a signat.ure ~ with equa li ty, 

• a set of (open) ~- formluas, t he restriction formu las or restrict ions which are 
closed under conjun ctioll and instantiation of variables, and 

• a theory over ~, the restrictio n theory. 

The res triction theory can be given either as a set of axioms or as a set of ~

structures . Note that in t he latter case the restri ctions need not have a first-order 

axiomatization. 
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A signature with restricted quantifiers or an RQ-signature ~ consists of an 
RQS R together with an additional set of predicate symbols P~ and an additional set 
of function symbols :FE, both disjoint from the symbols of .6. of the RQS. In order to 
simplify our notation we will use the prefix "~-" if we denote objects- terms, atoms, 
formulas, etc.- that are built upon symbols out of :FE and PE , and variables out of V~ 
only. 

Given such an RQ-signature ~ we now define formulas with restricted quantifiers 
w.r.t. ~. Therefore we allow quantifiers to be indexed not only by variables, but by 
pairs of a variable set X and a restriction formula R. These extended quantifiers are 
written as VX:R and 3X:R, and we call them restricted quantifiers . Note that the 
restrictions represent background information and the ~-formulas foreground informa
tion, respectively. We define RQ-formulas over ~ by 

1. all ~-atoms are RQ-formulas, 

2. V x:RF and 3X:RF are RQ-formulas, where F is an RQ-formula, R is a restriction, 
and X contains at least the free variables in R, 

3. FAG, FVG, -oF, F ---+ G, F f-+ G are RQ-formulas, where F, G are RQ-formulas, 
and x is a variable. 

In the second definition the formula F may contain free variab les of X that are now 
bounded by the restricted quantifiers V X:R or 3X:R' The formula R is called the re
striction for the variab les of X and can be seen as a sieve that filters out the possible 
assignments of elements to these vari ab les. 

An RQ-clause (or constrained clause) consists of a ~-clause C, the so-called 
kernel , together with a restriction R. Such a clause, written as C II R, represents the 
RQ-formula VX:RC, where X contains exactly the free variables in C and R. If C is 
empty we call it an empty RQ-clause , written as 0 II R. 

Without loss of generality we can assume that the set :F~ of foreground function 
symbols is empty. We can always achieve this by modifying an RQS as follows: the first 
step is to extend the background signature .6. by the symbols in :FE. But after doing 
this we are neither allowed to use these symbols in our foreground language (since :FE 
is empty now), nor to use them in a restriction, because the set of restrictions does not 
contain any formula over these function symbols up to now.} Of course, we want to be 
able to express the same facts before a,nd after the extension of F~ . To guarantee this 
we use unfolding, i.e., we replace every ~>term, e.g. f(x), by a new variable z, and 
then we enlarge the set of restrictions by the equation z = f(x). Therefore the second 

1 Note that the original signature ~ of the RQS did not contain any of these additional fun ction 
symbols, and restrictions are (open) formulas over this original signature ~. 
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step is to extend the set of restrictions s ti ch that it contains in addit ion a ll equations 

of the form x = I., where :1.: is a variablf' and t is a 2.:-term. 

2.2 Semantics 

We first recapitulate the semant.ics of first-order formulas (with equality) by using 2.:
structures and L:-assignmf'nts. Then we extend t hese L:-structures to RQ-structures, 
which gives a semantics of RQ-formulas . 

Let 2.: be a signat.u re. A 2.:-structure A cons ists of a non -f'mpty universe UA and 
maps each n-ary function (predicate) symbol to an n-ary functi on (re lation ). A 2.: 

assignment a maps each variable x E VE to an element u. E U A
. Th is mapping is 

extended to tf' r1 11S as usua l: if I == f(/" .. . , In ) is an arb itrary t.e rrn , then we de fine 
a (.f (t 1 , ... , t·n )) : = fA ( () (t , ), ... , a (t n) ). 

Satisfiabilit.y of formul as wit hout rf'st ri cted quantifi ers is df'finpd as usual. We 

write (A , a) 1= F if F is sat.isfied by the -,-structu re A and t llf' ~-ass i gnmellt a. A 
.:..;-structurf' A is a L-model of a formula F , written A 1= F, if and on ly if (A , a) 1= F 
holds for e\,f'ry ~-assignment a. A formula F is call ed valid if and on ly if every 2.:
structure A is a ~-model of F. Two form ulas are equivalent iff t hey have exact ly the 

same models. 

To simplify our notation we will USf' some abbrev iat ions: F[:r l ," " xn ] denotes a 
formula F that contains at. least. the frf'f' variab les :1: " ... , Xn' With F[x f- t.] we denote 
the formula wh ich is obtained from F by rf'placing every fref' OCCUITenCf' of the var iab le 

x by the term t . Analogously, F[:I: , f- I." ... , :r:n f- I. n ] deno tf's the re placf'llwnt of every 
free variable Xi by the t erm ti , i = 1, ... , n. If u is an elf'mf'nt of the universe, t hen 

a[x+-ul denotes the ~-assignment a with the excf' ption of t1w f'xp li cit ass ignment of II 

to x. As above, this abbreviat ion is extended to a [x i <-ul , ... ,XnHLnj, whe rf' X l , ... ,Xn and 
1l1, ... ,1ln are vari abIes and e lemen ts of the un i verse, n~s pecti vely. 

The semantics of restricted quantifiers can be g iven by relativization , that is, one 
can transform any RQ-formul a into an f'q ui valent first-order formu la by replacing 

VX:RF 
3X :RF 

by 

by 

V.1: , ... VXn(R -t F) 
3Xl ... 3xn( R 1\ F) 

where X = {.1:j , ... ,Xn} is a set of variables . 

We will USf' an a lternative characterization which maintains the separation of fore

ground and background symbols. Lf't ~ bf' an RQ-signature over the RQS R. An 
RQ-structure over u is a 2.:-structurt~ A such that the restriction of A to ~ , writ
ten AI~ , is one of the ~- modeJ s in R. As we assumed that L: introduces only new 
predicate symbols but no fun ct ion symbols, we obtain the different RQ-structures by 
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expanding every model of the restriction theory with all possible interpretations of 
theses new predicate symbols. If the restriction theory is given by a .6.-axiomatization, 
RQ-structures are exactly those structures that satisfy the axioms of R , considered as 
formulas over the extended signature. 

Let A be an RQ-structure over the RQ-signature ~, 0' be a ~-assignment, and 
X = {Xl, ... , xn } be a set of variables. RQ-satisfiability of an RQ-formula F is 
defined as an extension of the satisfiability of first-order formulas by: 

(A, 0') 1= VX:RF iff for all Ul, ... , Un E UA with 
(AlA, Q'[XI +-UI , . .. ,Xn +-Un]) 1= R holds 
(A, Q'[XI +-U, ... ,Xn +-un]) F F 

(A,a) 1= "3 x :RF iff there are Ul, ... ,Un E UA such that 

(AlA, Cl'[XI+-UI, .. . ,Xn+-Un ]) 1= Rand 
(A, Q:[XI +-UI , ... ,Xn +-1I n ]) 1= F 

A closed RQ-formula F is RQ-satisfiable if and only if there is an RQ-structure 
A such that (A, a) F F for each ~-assignment 0'. In this case, A is a ~-model 
of F, written A F F. The RQ-formula F is called RQ-valid if and only if every 
RQ-structure A is a ~-model of F. 

Given a restriction R, we say R is RQ-satisfiable if and only if there exists an 
RQ-structure which satisfies the existential closure of R (that means iff there exists a 
.6.-model in R that satisfies "3 R). Analogously, a restriction R is called RQ-valid if 
and only if the existential closure of R is satisfied by each RQ-structure. 

2.3 RQ-Resolution 

Given a set C of RQ-clauses we need an appropriate resolution calculus, which allows 
one to check C on RQ-unsatisfiability. Such a calculus is given in [Bi.ir91] and consists 
of two rules, called RQ-resolution and RQ-factor rule. Using a predicate redundant (d. 
[BHL93]) generalized forms of these rules have been given, namely 

RQ-resolution rule (RR) 

P(Xl, ... ,Xn) V Cl V ... V Ck II R 

Cl V ... V Ck V Dl V ... v Dm II R 1\ 51\ r if not redundant (R 1\ 5 1\ r) -'P(Yl , ... , Yn) V Dl V ... V Dm II 5 

where r is the conjunction of the equations Xi = Yi , i = 1, ... , n. 

The inferred RQ-clause is called RQ-resolvent . 

8 



RQ-factor rule (FR) 

p(x~, ... ,x~) v ... V p(.T~", ... ,.T~') V C1 V ... V Ck II R 
p(xL···, x~) V C1 V ... V Ck II R 1\ r if not redundant (R 1\ r) 

where r is the conjunction of the equations xl = x:, i = 1, ... ,n and j = 2, ... ,7n. 

The inferred RQ-clause is called RQ-factor . 

If C II R is an I1Q-clause , t.hen redundant (C II R) is true iff this RQ-c1ause is 
redundant to prove RQ-unsat.i::;fiability of a set of RQ-c1auses.2 Thus, given a fixed 

RQS, the predicate I'rd1Jndrmt has to be instantiated in an appropriatf' mannf'r in order 
to guarantee refut.at.ion completC'ness of the RQ-resolution principle. For examp le, 
one can in::;tantiatf' t.hi::; predicat.e by redundant (C II R) ifr R is RQ-unsatisfiable. In 
this case, refutation completeness is guaranteed for arbitrary restricted quantification 
systems (see [Bt"tr91]). Another instantiation of this predicate will be presented in 
Section 3. 

For sake of simpl icit.y we will ::;ometimes USf' constant symbols in the kernels of RQ

clauses, though we assull1f'd that t.11f' foreground language introduces new predicate 
symbols only.3 For example, we ::;imply write 

q ( a, y) II 7) (y ) instead of q(.1:,Y) II x = a 1\ ]J(Y)· 

An RQ-resolution step C -t C' t.ransforms a set C of RQ-c1auses into a set C' by 
either choosing two suit.able clauses in C and adding their RQ-resolvent, or by adding 
an RQ-factor to C. An RQ-der ivation is a possibly infinite sequence Co -t C) -t C2 -t 

... of RQ-resolution steps. An RQ-refutation of a set Co of nQ-clauses is an RQ

derivation which starts with Co and sat isfies the following condition: For each model 
A of the restriction theory there is an RQ-c1ause set Ci in the derivation containing 

an empty clause 0 II R, whosf' restriction is satisfied by this model, i.e. A F 3R. In 
contrast to the classical resolut.ion principle we need in general more than one empty 

RQ-c1ause to prove t l1f' RQ-unsatisfiability of an RQ-c1ause set (d. [BHL93]). 

3 Concept Logics 

Terminological logics have are used as a knowledge representation formalism in Arti

ficial Intelligence. To represent knowlf'Cigf' of a problem domain in this formalism one 

2Cf. the classical resolut.ion prin ciple where tautological clauses are redundant to prove unsatisfia
bility of a clause set. , 

3Note that in Subsection 2,1 we required the set :FE of additional foreground function symbols to 
be empty, 
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starts with given atomic concepts and roles, and defines new concepts using the oper
ations provided by a so-called concept language. Thereby, concepts can be considered 
as unary predicates which are interpreted as sets of objects, and roles as binary predi
cates which are interpreted as binary relations between objects. Examples for atomic 
concepts may be woman or queen, and for roles likes-the-same-clothes-as. The use of 
terminological logics in restrictions of RQ-formulas is called concept logic. 

In this section we will present the terminological logic which uses operators of a 
distinguished concept language, called A.ce. This logic has widely been accepted to be 
an adequate knowledge representation mechanism for a large class of problem domains, 
and it is a decidable and well-investigated subclass of first-order logics. In Subsection 
3.1 we introduce syntax and semantics of the language A.ce. In 3.2 syntax and seman
tics of function declarations are given, while 3.3 presents a restricted quantification 
system over A.ce. A refutation procedure for concept logics, which is an instantiation 
of the general refutation procedure ))[Psented in [BHL93], is given in Subsection ?? 

3.1 The Concept Language ALe 

The concept language A.ce provides two formalisms to describe a particular problem 
domain: a terminological formalism to represent taxonomical knowledge by defining 
concepts, and an assertional formalism which can be used to describe concrete objects. 
Therefore we assume in the following a signature ~ = (Ft:;, Vt:; , Pt:;) to be given, where 

• Ft:; consists of a set of function symbols, 

• Vt:; consists of a set of variables, and 

• P t:; consists of a set of unary predicates (atomic concepts), the symbols T and 
1.., and a set of binary predicates (roles). 

In A.ce, concepts can be built up from atomic concepts, the top concept T, the 
bottom concept 1.., and roles with the help of the operators n (concept conjunction), 
u (concept disj unction), -, (concept. negat.ion), V R.. C (val ue-restriction), and :l R.. C 
(exists-restriction) as follows: 

1. Each atomic concept, T, and 1.. are concepts. 

2. If C and D are concepts, then enD, C UD , and -,C are concepts. 

3. If C is a concept and R is a role, then V R.. C and :l R.. C are concepts. 

Let A be a ~-structure. Then the semantics of roles and concepts is given by 
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• AA ~ [fA for each atomic concept A in P~. 

• RA ~ [fA X [fA fo r each role R in P~. 

• T A = U A an d .1. A = 0. 

• The value- and exists-rest.riction are interpreted by 

[V R.. C']A 
[3 R..C]A 

{v. E UA 
1 Vu': (ll,u') E RA ---+ 11,' E CA } 

{v. E [fA 1311.': (11.,11.') ERA A v,' E CAl 

where R is a role and C, D are concepts. 

Using t.hese operat.ors, we can, e.g ., define the concept. of women who like the same 
clothes as a queen by: woman n 3 Jikes-the-sa,me-clothes-as.qlleen, if woman and queen 
are atomic concepts, and likes-the-same-dothes-as is a role. In 3.3 we will show how 
to use concept.s t.o rest.rict the possible assignments to variables by quantifying over 
elements in a given concept oilly. 

Note, that. concepts can be s('en as first-order formulas (without equali ty) with one 
free variable. For example, the concept V R.C represents the formula Vy (R(x,y) ---+ 

C(y)) where :r is a free variabk. 

In the following we will sometimes need a concept C to be in negation normal 
form, i.e. , negation signs in C only occur immediately in front of atomic concepts. It 
is easy to show that each concept C can be transformed into an equ ivalent concept in 
negation normal form. For example, -,V R. C is rewritten as 3 R. -, C (d. [1-10190]). 

The terminological knowledge of a problem domain can be defined by a terminol
ogy (TBox) which consists of a finite set of terminological axioms, i.e., expressions 
of the form A = C where A is an atomic concept and C is a concept. For example, if 
woman, person, and [ema.Je are atomic concepts we can define "men are persons who 
are not female" by the terminological axiom 

man = person n -,female. 

If child is a role we then can describe "not female persons with only female children" 
by the expression man n V chiJd.fema.Je. That means, terminological axioms allows 
one to define abbreviations for concepts, and hence helps one to keep the definitions of 
concepts simple. However, for reason of simpli city of presentation we do not consider 
terminological axioms, i.e., we assume each concept only to be built up by atomic 
concepts and roles but not by abbreviations for concepts . This assumption does not 
influence expressive power. For technical details see, e.g., [HoI90]. 
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The assertional formalism of A.cC allows us to introduce concrete objects by 
stating that they are instances of concepts and roles. Thereby, each ground term over 
Fe:. is called an object. For example, if John is a constant, and father is a unary 
function symbol in Fe:., then John as well as father (John) are objects. In general, only 
constants are allowed as objects in the concept language A.cC. But this view is not 
sufficient for us since, by Skolemization, function symbols may occur in the restrictions 
of RQ-clauses (d. Section 3 in [BHL93]). The assertional formalism is given by concept 
instances and role instances which are defined as follows: 

1. If 0 is an object and C a concept, then 0 : C is a concept instance. 

2. If 0 and 0' are objects and R is a role, then oRo' is a role instance. 

A ~-structure A maps objects to elements of the universe [fA and satisfies 0 : C iff 
oA E CA, and oRo' iff (oA, o'A) E RA. Concept instances and role instances are called 
assertional axioms. A finite set of assertional axioms is called an ABox. We sayan 
ABox A is consistent iff there exists a ~-structure A which satisfies every axiom in 
A, written as A FA. 

With these axioms we can, e.g ., define that Elizabeth IS a queen and that Mary 
likes the same clothes as her mother by 

Elizabeth: queen and 
Mary likes-the-same-clothes-as mother (Mary) 

respecti vely. 

3.2 Function Declarations 

By definition, RQ-formulas may contain n-ary function symbols. Consider, for example, 
the RQ-formula 

'v'{ x}:humil.nmale(father( x)) 

where human is a unary restriction, mille is a predicate, and fil .ther a function symbol. 
Up to now we interpreted these function symbols free, i.e., we assumed a L:-structure 
A to map each n-ary function symbol f to a function fA : [fAx ... x [fA f-t [fA, where 
[fA is the universe of A. Indeed , since all variables in RQ-formulas are constrained, it 
is appropriate to take restrictions into account when interpreting function symbols. In 
the above example it is more intuitive to define the unary function symbol father to 
map from human to huma.n instead of mapping arbitrary elements of the universe to 
the universe. 

Thus, we extend the restriction theory by function declarations for the function 
symbol occurring in RQ-formulas. If f is an n-ary function symbol and R ll . .. ,Rn , R 
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are restrictions, a function declaration is of the form 

.f : RI x ... x Rn f-+ R. 

We assume t.hat there is exactly one declarat.ion for each function symbol. A straightfor

ward semantics of these function declaration could be defined by V'XI ... V'xm (RI (Xl) 1\ 

... 1\ Rn(xm)) --t R(f( XI , ... ,1'",)). We additionally assume the range of a function to 
be non-empty what strongly simplifies the algorithm for t.est.ing satisfiability of A£e 
restrictions (cf. 4.:3). More formally, a E-structure A satisfies the function declaration 

f : RI X ... x R" f-+ R iff A satisfies 

l. V'XI ... V'xm (RI (l:d 1\ ... 1\ Rn(xm)) --t R(f(''CI, ... , xm)) and 

2. R =1= 0. 

In [BHL9:3] a met.hod for t.ransforming a set. of RQ-formllias int.o a sd, of RQ-clauses 
while preserving 11.Q-sat.isfiabilil.y has been df'scribed. In t.his transformation restricted 
existential quant.ifif'rs an' elimin(l,t.f'd via Skolf'mization . TI1f'rf'by, for each n -ary Skolem 
function symhol I a Skolem declaratioll is added to the restriction theory. A Skolem 

declaration is of the form 

(R 1- f/J) --t .r : R I X . . . x Rn f-t R 

where R I , ... , R.n , Ran"' rf'strict.ions (d. 3.2 in [BHUJ3]). A E-strllcture A satisfies this 

Skolem declaration iff 

1. A satisfif's R = 0 or 

When looking at tl1f' transformation of RQ-formulas into a set of RQ-clauses, the 

following property can f'asily bf' shown.4 If ells is an RQ-c1ause where 5 contains a 

Skolem function symbol .f with the Skolem declaration (R =1= 0) --t f : Rl x ... x Rn f-+ 

R, then 5 contains a conjunct R =1= 0, where R =1= 0 is an abbreviation for the formula 
3x R(x). For example, the transformation of the RQ-formula 

results in the RQ-clause set 

p(x,y) 
o 

II RI ( x) 1\ Y = f Skolem (x) 1\ R2 =1= 0 
II Rd z) 1\ R2 = 0 

4Cf. quantifif.'rsplitting (Subsection 3,1) and Skolemization procedures (Subsection 3,2) in [BHL93]. 
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and an extension of the restriction theory by the Skolem declaration 

That means, whenever there is an RQ-clause whose restriction contains a function 
symbol or a Skolem function symbol with range R, we only have to take L:-structures A 
with RA =I 0 into consideration when testing satisfiability or validity of this restriction. 

3.3 A Restricted Quantification System over ALe 

In this subsection we show how the concept language ALe can be used to define a 
restricted quantification system RQS. We therefore have to say how the sigI1ature, how 
the restrictions, and how the restriction theory are to be defined. 

Firstly, in order to use concepts as restrictions we allow restricted quantifiers of 
the form \i{x}:c and :J{x} :c where C is a concept, i.e., a unary predicate. This leads 
to restrictions of the form x : C whf're x is a variable. Secondly, we assumed the 
set FE of foreground function symbols to be empty (see Subsection 2). This can 
always be obtained by unfolding and leads to restrictions of the form y = f(i l , ... , in), 

where y is a variable, f is a function symbol, and iI, ... , in are terms. Finally, when 
transforming RQ-formulas into a set of RQ-clauses restrictions of the form C = 0 and 
C =I 0 are introduced which are abbreviations for the closed formulas \ix -,C(x) and 
3x C(x), respectively. This is the third kind of restriction we take into consideration. 
In the following definition of an RQS over ALe these three types of restrictions are 
introduced.5 We thus obtain the following definition of a restricted quantification 
system over ALe which is given by 

• A signature .6. = (Fc:,., Vc:,., Pc:,.) as described above. 

• A set of restrictions which are .6.-formulas of the form 

x : C (containment) 
Y = f (t l , ... , tn ) (equational restriction) 

C = 0, C =I 0 (closed restriction) 

where C is a concept, x,y are variables, and tl"'" in are .6.-terms. These re
strictions are called ALe-restrictions. Note, that we assumed restrictions to be 
closed under conjunction and instantiation of variables. 

• A restriction theory which is given by an ABox A and a set F of declarations , 
i.e. function declarations or Skolem declarations, such that 

5Note, that RQ-formulas must not obtain restrictions of the form C = 0 or C -:j:. 0. Furthermore, 
equations in restrictions of RQ-c1auses can only be of the form y = J(tt , ... , in) where y is a new 
variable. This is due to the fact that equations are introduced only by unfolding. 
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1. f'a.ch Skolem function symbol in Ftl has exact ly one Skolem declaration in 
F, and 

2. each function symbol in Ftl which is not a Skolem function symbol has 
exactly one function declaration in F. 

Thus, a ~-structure A is an HQ-structure iff it sat isfies A and each declaration in F. 
We then write A F A uF. 

3.4 Constrained Resolution applied to Concept Logics 

In this subsection Wf' will show an important propert.y restricted quantification systems 
over the concf'pt lallguagf' A.cC have, namely that the redundant prf'dicate of tl1f' RQ
resolution and t.he HQ-factor rule can be inst.antiated by constraint unifiability, which 
will be defi ned below. 

In [BHL93], a gf'neral refutat.ion procf'dure for a set of RQ-formulas has been pre
sented. The main idf'a of this rf'futation procedure is as follows. Firstly, the RQ-clallses 
are transformf'd into a Sf't. of RQ-c1ausf's while preserving RQ-satisfiability. To provf' 
RQ-unsatisfiability of an RQ-clause Sf't C then the RQ-rf'soilition and the RQ-factor 
rule are uSf'd which successively add new RQ-clauses t.o C. This process is iteratf'd 
until a set of empt.y H Q-c1ausf's D II HI, ... , D II R" is derived such that HI V ... V H" 

is RQ-valid. 

In the same papf'r it. has been shown that const raint unification can be used to 
instantiate t.hf' 1'(;duur/a.nt predica.tf' of t.hf' RQ-resolution and the RQ-factor rule if the 

RQS satisfies a certain condition, call ed (TM). Let R = E} 1\ .. . 1\ En 1\ NI 1\ .. . 1\ Nm 
be a restriction , wllE'rf' E I , .. . , En are t.he equational restrictions in R. Then R is 
constraint unifiable with substitution CT iff there ex ists an RQ-structure A and a 
~-assignment cr such that 

1. E} 1\ ... 1\ En is unifiable with CT , and 

2. (A,cr)FCTN}I\ ... I\CTNm . 

If the restriction R is constraint unifiable with CT we call CT a constraint unifier 
of R. If a const.raint unifier CT is a most general unifier of the equational restrictions in 
R we call CT a constraint mgu of R. We say R is constraint unifiable iff there is a 
substitution CT such that R is constraint unifiable with CT. 

Example 3.1 Let A and B be predicate symbols of a background signature ~, and let 
R be the restriction (y = f(x))I\A(x)I\B(y), where f is a function symbol. Obviously, 

the only equational rest. riction in R, y = f( x), is unifiable with mgu CT = {y +- f(x)}. 
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1. Let f have the function declaration f : A I-t ,B. Since function declarations are 
part of the restriction theory, each RQ-structure A has to satisfy f : A I-t ,B, 
i.e., fA(u) tt BA if u E AA. By definition, R is constraint unifiable with (J 
iff there exists an RQ-structure A and a ~-assignment 0:' such that (A, 0:') F= 
(J(A(x)) A (J(B(y)). This is the case iff O:'(x) E AA and fA(O:'(x)) E BA. Because 
of the function declaration such a pair (A, 0:') cannot exist, i.e., R is not constraint 
unifiable with (J. 

2. If f has the function declaration f : A I-t A, then R is constraint unifiable with (J 
iff there exists an RQ-structure A and a ~-assignment 0:' such that a(x) E AA and 
fA(O:'(x)) E BA. Because of the function declaration we know fA(O:'(x)) E AA if 
O:'(x) E AA. Thus R is constraint unifiable with (J if there exists an RQ-structure 
A such that AA n BA I- 0. • 

In order to formulate the condition (TM) we need the notion of a term-model. If 
S is a set of formulas over some signature ~, then A is a term-model of S over ~ 
iff A 1= S, all elements in the universe UA are interpretations of ~-ground terms, and 
two different ~-ground terms denote different elements in UA . 

The property (TM) the RQS has to satisfy is given by: Let T be a satisfiable 
restriction theory and let R1 , .•. ,Rn be a set of restrictions, then (TM) is defined by 

(TM) 
T 1= :J(RI V ... V Rn) 

iff 
there exists a term-model A of T such that A F= :J(RI V ... V Rn) 

The following theorem, proved in [BHL93], shows the connection between condition 
(TM) and constraint unifiability. 

Theorem 3.2 Let T be a satisfiable 1'esh'iction theory, and 1ft R 1 , ... ,Rn be a set of 
restrictions such that 

1. T does not contain (explicitly or implicitly) equations. 

2. Each resi1'iction Ri can be 'tIwitten as Ei A N il where Ei is a conjunction of 
equations and Ni does nedher contain (exp licitly or implicitly) equations nor 
disequations. 

Then T and R I , ... ,Rn satisfy condition (T M). 

In an RQS over ALe the restriction theory is given by an ABox A together with 
a set F of declarations. Obviously, neither A nor F contain (explicitly or implicitly) 
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equations since A consists of concept and role instances and F of (Skolem) function 
declarations only.G Furthermore, each A.cC-restriction R is given as a conjunction of 
containments x : C, closed restrictions C = 0, C =I=- 0, and equational restrictions 
y = f(tl ,"" i n)· Hence, each A.cC-restrcition can be written as E 1\ N where E is a 
conjunction of equations and N does neither contain (explicitly or implicitly) equations 
nor disequations. Thus, by the above theorem, we know that an RQS over A.cC satisfies 
condition (TM) . 

We therefore can apply the next theorem, also proved in [BHL93], which tells us 

that only RQ-clauses with a constraint unifiable res triction need to be derived in order 
to test RQ-un sat isfiability of an RQ-dause set with A.cC-restrictions. 

Theorem 3.3 Lf'l ~ bf' a sigll.atv.Te , let T be. (/, satis.fiable set of ~-fonnulas , and lei 
R1 , ... , Rn br; "('stricliolls such that condil ion (TM) is satisfied. fl each 'restTicf ion 
Ri is given by Eil 1\ ... 1\ E'k 1\ Nil 1\ ... 1\ Nil' whr;7'e Eil , ... ,Eik aTe the equational 
l'es t7'ictions in R i , (fnd II f'ae/). co njunct ion Eil 1\ ... 1\ Eik is unUiable with the mgu O'i, 

th en T 1= 3(Rl V ... V Rn) zffT 1= 3(0'1 N l V . . . V O'nNn). 

Summing up , if Wf' Wow rf'sL ri ctf'ci quantifi ers V{.r.}: c 'and 3 {.r}:c where C is a con
cept,. a set S of RQ-formulas can be tf'sted on RQ-unsatisfiability as follows. Firstly, 
S is transformf'd into a set C of RQ-clauses whi le preserving RQ-sat isfiability. An 
algorithm for thi s is described ill Sect ion 3 of [BHL93]. Then C can be tested on RQ
unsatisfiability via constrain ed reso lut.ion , where only RQ-c1auses with a constraint 
unifiable rest rictioll nf'ed to be considered . We thus obtain an instantiation of the 
general refutation procedure ill Sf'ction 4 of [BHL93] which is givf'n in Figure 1. 

The problems of how to test constraint unifiabil ity of an A.cC- J'(~s triction and how to 
check RQ-validity of a set of A.cC-rest rictions will be invest igated in the next sect ion. 

4 Testing Constraint U nifiability and RQ-Validity 
of A£ e -Restrictions 

In order to give a.n algorithm which tf~sts constraint unifiability of an A.cC-restriction 
we use the notions of containment sets and (admissible) containment combinations, 
which are given in Subsect ion 4. 1. We will show that testing constraint unifi cation can 
be reduced to a top consistency test of a given con cept Do, i. e., to a test whether there 

6Usually, objects are a.5s ll med to satisfy the unique name assumption, i.e ., different objects are 
mapped to different elements of the universe. However, if A is a model of an ABox A, there exists a 
model A' of A which satisfies the uniqu e name assumption (and vice versa) . This is due to the fact 
that cardinality of CA cannot. be res tri cted in ACe for a concept C. Thus , if aA = a,A = u E UA , 

I AI 
one can extend UA by a "du pli cate" u ' of u and define aA = u and a' = u'. 
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Input: A set S of RQ-formulas and a restriction theory T which is given by 
an ABox A and a set of declarations 

Output: RQ-unsatisfiable iff S is not RQ-satisfiable 
RQ-satisfia,ble or the algorithm does not terminate, else 

Initializing 

Transform S into a set C of RQ-clauses while preserving RQ-satisfiability as 
described in Section 3 of [BHL93], and let T' be the modified restriction theory. 
Remove an RQ-clause C II R from C if R is not constraint unifiable. 

Testing 

1. If 0 \I R1, ... , 0 \I Rn are empty RQ-clauses in C such that R1 V . .. V Rn 
is RQ-valid w.r.t. T' , then return RQ-unsa,tisfiable. 

2. If there is an RQ-clause to which the RQ-factor rule (FR) is applicable, 
but has not yet been applied, then apply the RQ-factor rule to this RQ
clause and add the RQ-factor to C. 

3. Find two RQ-clauses which can be resolved against each other by the 
RQ-resolution rule (RR) (of course the two RQ-clauses have to be chosen 
by a fair strategy). If there does not exist such a pair of RQ-clauses, 
return RQ-satisfiable. Otherwise, add the RQ-resolvent to C (after an 
appropriate variable renaming) and goto 1. 

Figure 1: The refutation procedure. 

exists a E-structure A such that D~ = TA (= UA). An algorithm for this test is given 
in Subsection 4.2. Building upon this, an algorithm for testing constraint unifiability of 
an AIC-restriction is given in 4.3, and its termination, correctness, and completeness is 
proved. Finally, in 4.4, we show that validity of a set of AIC-restrictions is undecidable. 

4.1 Admissible Containment Combinations 

Suppose we want to test constraint uniafibility of an AIC-restriction R. By definition, 
R can be written as E1 /\ ... /\ En/\ N1 /\ .. . /\ Nm where E1, . .. ,En are the equa
tional restrictions in R. We then have to test whether (i) the equations E1,.·., En 
are unifiable and (ii) if E1, .. . ,En are unifibale and (J is the most general unifier of 
E1, ... , En we furthermore have to test whether there exists an RQ-structure A such 
that A 1= (J N1 /\ ... /\ (J Nm· 
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Algorithms for tes till g Illlifia.bility of a set of eqll a ti ons EI .. , '. En and for comput 
in g th p. most gellera l llllifi er (T of f: I "", £" a re well -knowll , Thus. WP still need an 
a.lgorithm for testill g HQ-sa,tis fi a.bility o f t1 1f' res t ri ct ion (T ." 'I 1\ , , , 1\ r7 .\ 'm' That means. 
Wf' nf'p.d an a lgo rithm for tf'st ing t he f'xi st f' nti a l closure of conjun ctions o f ~- formul as 

on RQ-sa.tisfiabilit.y whi ch have tl1f' form 

• t : C 

• C = 0, C =f. 0 

whf' rp. t is a 6. -terIll , aile! c: is a concf'pt , Rf's tri ct iOll s of thi s form a re ca ll ed equation 
free restrictions ,7 TI1f' rpby. I('s t ri ct ions of I he form t : C a ri s(' from cont a illI1 lC' llt s 

:1' : C by unifying lll f' \·a ri ahl e.1' \\'ilh a tprlll I, e,g" ill .r : C 1\.1' = /(.1/), 

T hf' re arf' two st ra ight fo]'\\'ard poss ibilit ies 10 simplif.\· e(l'l a t iOIl frpe rf's t ric t iOIl S, 
Firstly, for t f's ting HQ-sa ti sfi abilit ,\' of tl1f' ex istellti a l closure ~.I' R of an f'qu at ion frf'f' 
res triction R it is suffi cient 10 les l HQ-sa ti sfia bilil ,\' of th p rf's tri cti oll R' whi ch ari sps 
from ~ ;TR by rf' ll1ov ing t he qua nlifi er ~ ,r. rpplac ing eac h OCC UITPII Cf' of .1' in R b.\' a 
I1 f' W con stant (f, a nd adding th p fun cl iOIl e! f'c la ra ti on (f :f--t T to t hf' Sf'1 J- of fun ction 
declarations, The rf's tri ction 17' is t hf' n ca ll f'd t he ground version of Ii. 

Analogo usl y, we ca ll aSS Ulll e th a t tl lf' g roull d \'e rsioll of a ll equa tio ll fr('e ]'('s tri clioll 
does no t cont a ill closed rest ri clio ll s of til(' forlll (' =f. 0, .\ot (' . th a I a res tri cti oll o f ti l<." 

form R 1\ C =f. 0 is ('q ui nl lelll to ~ .1'( R 1\.1' : C) a lld t hus to R 1\ 0 : C where (/ is a Ilew 
const.ant, 

For f'xampl f', t('s t.in g HQ-sa ti sfiahi lily of the res tri ctio ll / (.1' . .1/) : -. f) 1\ .1' : D 1\ B =f. 
0 1\ E = 0 is f' qui\'a l(, lIt. 10 tes till g HQ- satisfi a bilit~, of the res tri cti o ll /(0 . hl : -. D 1\ 0 : 

D 1\ c : B 1\ E = 0 whe]'(' (f , h, c arc lI ew cO llstallt s . 

Thus, we aSSUlll e ill the followillg res l riel iOll s to be gi\'e ll h~' cO lljull ct iOll s of ~ 

formulas whi ch ha\'(' t.h (' forlll 1 : C o r C = 0 where 1 is a groulld \(' rlll a lld C is a 
concept. For test.ing cO ll sI ra illt uilifi a hilit~ · WI' 1I 0W lI('cd a ll a lgo rit hill whi ch les t s such 

rest rictions Oil HQ-sa ti sfi a i>ilit ,\', 

In order to g ua.rall\('(' th a t th(' t.Iit' ra llg(' of ('ach fUllcl ion \\'hich has a fUlld iOIl 

declaration ill F is 1l01l -f'1ll pty (d , sCilla Il I ics of fu Il cl iOll decl a 1'(1 I iOll s). we ass U Illl' ill 
tlw following tha.t a. 1l A Box A cO llt,a.ins a COllI a illllH'1l1 (/ : C for ('ac h fUlld iOll dt'dara t iOll 

I : C1 x " , X (,'" f--t C ill p, If thi s is llo1 t Il!' CClSI'. WI' t'xklld A h,Y 0 : C wht'l'(, (/ is a 

nf' W obj ect. l3ecaus(' of th (' seillcliiti cs of flillcl iOIl d('c1arat iO!ls t his dol'S !lot illllucIl cl' 

RQ-satisfi abi I i t.y, 

7No t.t' t.h a t. ( : = 0 a lld (' i- 0 ,tr l' ahhrc ' yiat.i o ll'; for tlw ~- fo rlllllb" Vr -,( '( J') a lld :JJ'C( J'). 
res pec tivt' ly. 
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"'e are now going t o gin" :-;uch an RQ-satisfiabilit.y algorit.hm , t.he main idea of 

\\'hich is M follow s. Suppose a cOlltainment lUI ..... tn) : D and a function declaration 

f : C\ >-- . . . >-- ell 1--+ C to be giH>Il. Then , a ~-structure A satisfies both , the function 
declaration and t he cant ai1l1l1ent iff 

l. [l(tI ..... t il )]A E DA and 

'J A LA f' . . - 1 . I' [f( )]A CA _ . tiE , 0 1 I - ..... 17 llnp Ies . t 1 . .... t" E . 

Thus. in order to find a ~-stru c ture A which satisfies f(t I , ... , tn) : D w.r.t. the 
function declaration f : e x ... X ('" 1--+ C, we can do the the following. Firstly, for each 

argument t, of f we choose non-deterministically whether tf E Cf or t,f E [..., Ci ]A holds. 

Ana logous l:';. we decide non-dete rmini stically whet her or not [l(tl ,"" tn )]A E CA 

holds, The on l\' rest ri ct ion on these dpcisions is: If we choose tf E C-: for i = 1", . , n, 
then we choose [I(1 I ' . . .. t n )] A E (' A. 

:'\0\\' suppose. we made such dec is ions tf E C-: where Ci is either Ci or ..., Ci , 

and J(t I ..... tn ) : (' where (' is either C or""C'. Then there exists a ~-struct ure 
which sati sfi es both. the con t a inment J(tl"'" tn) : D and the fun ction declaration 

f : CI x , , , x Cn 1--+ C . iff the res tri ction 

tI : C\ 1\ ... 1\ 1,,., : ('.,., 1\ f(1l ..... tn) : C' 1\ f(1,1 ,"" tn ) : D 

is sa ti sfiable. 

Let us define this more formally. If A is an ABox and R is a rest riction , then the 

term set of A and R is gi\'e n by the set a ll (sub)terms in A U {R} with a leading 

function symbol. For example . if R is giw>n by (J : A 1\ J(b ,g( c)) : B, the term set of R 
is given by {a.J(h,g(c)),h,g(c ),c}, 

For each term t in a fun ct ion term set S we now co nst ruct a non-deterministic 

concept set ncs(t) of t ( \V.r.t. S ). Thf' intuiti ve id p.a of a set ncs(l.) is to detp.rmin p. all 

concepts C for whiell \\'f' non-det(~rministi('ally Il ave to decide wlwthf'r 1 E Cor' E ...,C 
(restrictions on th e possible dec is ion s arf' formul ated below) . Thesf' Sf'ts aJ'f' defi ned by 

1. If t is a constant with the function der. laration t :1--+ C or with thp. Skolem decla

ration (e =I- 0) ---t I :1--+ e, then ncs(l) := {C } U {Di I g(II ,.'" t i- I , I" ~ ti+I ,·· · , tn ) 

is a t f' rm in Sand 9 has t lte flIn ction d(~claration 9 : DI x .. . x Dn 1--+ D or the 

Skolem decl a ratioll (D =I- 0) ---t g : DI x ". x Dn 1--+ D}. 

2. If t is a t erm I ( /1 , . . . , t ,,) where f has the function df' c1 a ra,1,ion f : C I x , .. X 

en 1--+ C or tlw Skolern (kelaration (C =I- 0) ---t f : (.' 1 x ... X en 1--+ C, then 

ncs( t ) := {C'} U {lJ , I q ( II , ... , ' i- I , I , ' i+I , ... , ' m) is a l.('rm ill S' a nd 9 hi\,~ 
the fllTl ct iol1 d(:claratioll q : /)1 X ... x Urn 1--+ D or t.h e Sko lprn dp.c1aration 

(D =I- 0) ---t q : JJ I / ... / JJ n 1--+ 1)}. 



Obviously, tlw non - determini~t ic concept ~et of each term f in a term ~et is not empty. 

Let now S be a tf'rm set a nd 1f' 1. for each term f in S t.he non-deterministic concept 

set be given by nc."U). Now Wf' rep resent th e non-deterministi c decisions for t in so

called containmmt sets. If, for some term i in S, ncs(t) = {AI ,"" An} then each 

set {t : AI"'" f : An} is call ed a containment set of t (w.r. t.. S) if ea.ch Ai is 

either Ai or -,A; . For exa.mple, if ncs(J(a)) = {B ,C }, then {.f (a) : B , .f(a) : C}, 
{.f(a) : -,B,.f(a) : e } , {I(a) : B , I(a) : -,C}, {.f(a) : -,B,I(a) : -,C} are a ll t he 

containment sets of I(a). 

A set which con ~ i st.~ for each term f in a \'C'rnl set S of onf' co nt.a innw nt. ~et is 

called con tainmf' llt combin at io ll o f S . More formally , if t l , ... , iT1/. a re cxac t.! y the terms 

in Sand cont, (I;) i ~ a contaillillent. Sf't of t i , t.hcll t he Sf't {con(,(l.I),"" COI1 t,(I.",')} is 

called a containment combination of S. Finally, we a re not in terested in a ll possible 

containment comb in ations, bul. only ill t hosC' combillations whi ch arC' compat. ible with 

the declaration~ ill F: A containllwnt. combi nat. io ll C is an admissible containment 
combination iff for C'ac h tnll1 I(t.] , , , " I,,) in S hold~: if I has t il(' fun ct ion (kclarat. io ll 

.f: DI x .. . x D." f--7 D and I; : D; i~ in C for i = 1, ... ,11,1. 11('11 I(tI , ... , l. n ): D i ~ 

in C. Observf' that if a is a constan t wit.h t.h e fun ct ion declaratioll a :f--7 C, (,Mh 

adm iss ible conl.a innwnt comb illi"l.t. io ll cont.ains a : C. Furti1C'rnlOrc, if a Skolcll1 fUll ct io ll 

~ymbol .fs occ ur~ in a term ~et. of an ABox A a lld a rest ri ct ion R, this Skolem fllncti on 

symbol occurs in R but not ill A. Let 1l0W t he Skolem declarat.ioll o f Is' bC' givC'n by 
(D 1= 0) -+ Is : D I x . .. X [)II f--7 D (11 ;::: 0) . 1'11 ('11 t.ll(' l'('s t.ri ct. io ll R cOllt.ains a 

conjunct D =1= 0 (d. Sub:,wctioll :3.2). T hll s, fo r t.est.ing ~at. i sfiah ilit.y o f R w.r.L A and 

F we only havf' to consider I:-st.ructures A s uch that DA =1= 0.'0 

Example 4.1 Let the set. F co nt.a in the funct.ioll declarations 

I : A x B f--7 Co' 
9 : -,fl f--7 D 

(/ :f--7 T 

h:f--7T . 

Furthermorf', If't an ABox A 1)(' g iven by {a : A,f( h,g(h)) : C } and a re~triction R by 

f(h ,g( h)): B I\ g(h): E 

Then the term sP.t S' of A and R is {a , f(h ,g(h)), b, g(h)} . The non-determin ist ic concept 

set of the terms in S' are given by: 

11C8( a) 
11CS( h) 
11cs(g(h)) 
11 cs ( .f ( h, 9 ( h) ) ) 

{T} 
{T,A,-,B} 
{B , D} 
{C} 

SThus, as an optimization, admissible containment combinations cou ld be defin ed such that they 
contain ! S(tl, ... , t il) : D whenever Is ap pears in a term set and has the Skolem declaration (D f-
0) --+ Is : DI x ... X DIl ........, D. 
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Now the set 

{a: T,h: T,h: A,b: -.B,g(h): B,g(b): D,j(h,g(h)): C} 

is an admissible containment combination, while the set 

{a: T,b: T,b: A,b: -.B,g(b): B,g(b): D,j(b,g(b)): -.C} 

is not an admissible containment combination, since j(b,g(b)) : C has to be in an 

admissible containment combination C if b : A and g(b) : B are in C (cf. the function 
declaration of 1). • 

In order to check RQ-satisfiability of a restriction R w.r.t. to a given ABox A and a 
set F of declarations we will use admissible containment combinations as follows. If 5 
is the term set of A and R, and C is an admissible containment combination of 5, then 
we will test whether or not there exists a .6-structure A which satisfies both the ABox 
which is given by Au C, and R. In other words, we test whether R is RQ-satisfiable 
w.r.t. A uC. We will show that R is RQ-satisfiable (w.r.t. A and F) iff there exists an 
admissible containment combination C of S such that R is RQ-satisfiable w.r.t. A u C. 

Since the ABox which is given by A u C may contain role instances, an algorithm 
which tests RQ-satisfiability of a restriction R w.r.t. A U C must test satisfiability of a 
set of 

• concept instances t : C, where t is a ground term and C is a concept, 

• role instances sRt, where 5 , t are ground terms and R is a rol , and 

• closed restrictions C = 0, wlwre C is a concept. 

Thereby, concept instances and rolf' instances may occur in tIl<" ABox A UC, and closed 
restrictions and concept instances may occur in the ground version of the equation free 
restriction. 

Example 4.2 Consider the ABox A = {a : C,f(a,a) : B}, the set F = {j: A x B f-t 

C, a :f-t T, b :f-t T, e :f-t T, d :f-t T} of function declarations, and the restriction R, 
given by 

f( h, e) : -.D 1\ b: D 1\ e : D 1\ d : B 1\ E = 0. 

The term set of A and R is {a,f(a,n),.f(b,e),b,e,d}. Obviously, the set 

C = {a: T,a: A,a: B,b: T,b: A,e: T,e: B,d: T,j(a,a): -.C,j(b,e): -.C} 

is an admissible containment combination. In order to test RQ-satisfiability of R w.r.t. 
Au C we have to check whether there exists a .6-structure A sllch that 
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1. A satisfies the ABox which is given by AUC, i.e., A satisfies the concept instances 
{a : T, a : A, (J, : B, b : T, b : A, c : T, c : B, d : T, 1 ( a, a) : -. C, 1 ( b, c) : -. C}, an d 

2. A satisfies R, i.e., A ~ 1(b, c) : -.D A b : D A c : DAd: B A E = 0. 

Note that the t.est does no longer take the function declarations into account. • 

An algorithm for test.ing RQ-satisfiability of a restriction R w.r.t. A u C is given in 
the next su bsection. 

4.2 Testing Top Consistency 

Algorithms for testing satisfiability of an ABox, i.e., of a Sf't of variable-free concept 
instances and role instances are well-known (see, e.g., [HoI90]). For additionally testing 

satisfiability of closed rf'striction of the form C = 0, we introduce the notion of top 
consistency: a concept. Du is top consistent w.r.t. an ABox A iff there exists a 6-
structure A such that A 1= A and DC = TA (= u A). The nf'xt lemma shows that 
testing satisnability of an ABox togf'ther with a set of closed restrictions of the form 
C = 0 can be reduced to a top consistency test. 

Lemma 4.3 Let A be an ABo.r, and let C1 = 0, ... , Cn = 0 be a set of closed re

strictions . Then therc c.rists a 6-struct.U1'C A such that A satisfies A and A ~ C1 = 

o A .. . A en = 0 iff the conccpt -,C1 n ... n -.en is lop consist.ent. w. r.t . A. 

Proof: The closed restriction Cj = 0 means that -.C is equivalent to the top concf'pt 
T. Thus, e1 = 0 A ... A Cn = 0 is sat isfied iff each of the concepts [-,Cd A , .. . , [-,CnJ A 

is equivalent to TA, and hence iff [-.C1 n ... n -,CnJ A is equivalent to TA. 0 

An algorithm for testing top consistency of a concept Do w.r.t. a given ABox A is 
given in [Lau92J. In this algorithm only constants are allowed as objf'cts. However, 
since we only want to handle ground terms as objects and since equat ions between 
these ground t.erms cannot be exprf'ssed by an ABox, we can handle these ground 
terms exact ly like constants in this algorit.hm. 

The top cons ist.ency algo ri t hm is based on the notion of a constraint system. A 
constraint system is finite non-empty set of constraints of t.he form a : C or aRb, 
where C is a concept, R is a role, and a, h are constants. A constraint system 5 contains 
a clash iff (i) S contains two concept instances Cl : A and a : -.A where a is an constant 
and A is an atomic concept or (ii) S contains a constraint Cl : 1- for some constant 
Cl. We say S' is clash-free iff S' does not contain a clash. A constraint system 5 is 
satisfiable iff tlwre exists a 6-structure A such that A 1= 8 for each constraint 8 in S. 
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1. 5 -tn {a : C\, a : C2 } u 5' 

if a: C\ n C2 is in 5' 
and S dof's not contain both const.raints a : CI and a : C2 • 

2. 5 -tu {a : D} u S 

if a: CI U C2 is in S', 

neith er (/. : (: 1 lI or (/ : C2 is in S, alld f) is CI or C2 • 

3. 5-tv{ b: C} u S 

if a.: V R.C and aRIi are in S 

and b : C is not ill S. 

4. S -t31 {aRh, Ii: (.', h : D(~} u 5' 

if 0::1 R.C is in ,S', 

D I, ... , D" <Uf' ('xact.ly the co 1l st. rai1lt.s of tlw form (/. : V R.!)i III ,S', 

t.here exist.s 11 0 c such t.hat c: C', c : D I, ... , c : D," c : J)~ are in S, 
a.nd Ii is a 11('\\' ('()IIst.allt.. 

5. 5 -t 3'1 {(/. He} U S 

if a: 3R.(.' is in S, 
D I, ... , Dn arf' f'xact. ly tllf' co nst. rai 1lt.s of Uw forlll (/. : V H'!)i III S, 
the cO llstra.int.s c: C, e: DI"'" c : Dn, C : D~ arf' a ll in S, 
and aRc is Ilot ill S. 

F'igu rf' :Z: P ropagat. ion I'll IPs of t.Iw t.op cons ist.ell cy t.est.. 

Given an ABox A and a CO II Cf'Pt. Du, Wf' say t.he const rai llt. systelll .s' is induced 
by A and Do iff S = A u {au : Do, (/.1 : Do, ... ,a,,: Do} where ao is a nf'W constant, 
Do is the nf'gation normal form of Do , and at, ... , an are exact ly the objects ill A. 
The top consistency algo rit.hm has a concept Do and an A Box A as input and starts 
with the constraint syStf'111 S which is inducf'd by A an d Do . It thf'1l successive ly adds 
new constraints to S by t.he fi ve propagation rules given in Figure 2 until no more 
propagation rul f' is app licable. A cO llstraint. syst.em S to which no more rules are 
app licable is called complete . 

The follo\\'in g t IWO I'f'1ll has beell provf'd in [Lau92]. 

Theorem 4.4 Ld A be au A 80.7:, and id Do be a concept. Then Do is lop consistent 

w. r. t. A lJJ th en' r:.r.is ts (f chain Su -t I SI -t2 . .. -tn S'n where 

1. So is th e constraint system which is induced by A and DOl 
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2. ~i is Ihe leftmost IJ1'opClgation 1'71 if; in Ihe sequel ~n, ~u, ~'V, ~31' ~32 which 
is applicable to 5'i- 1 , 

3. Sn is complde and clash.-fre(;. 

Thus, a concept Do is top consist.ent W.r.t. an ABox A iff a complete and clash-free 

constraint syst.em 5' can be obt.ained from the constraint system which is induced by 

A and Do. We assumf'd each occurrence of a term I to be replaced by a new constant 

at. Obviously, replacing each occurrence of (/.t by l in the result ing constraint system 

S preserves satisfiability and hencf' we assume S to contain the object t inst.ead of t.hf' 

constant (/.t. Analogollsly to [Lalln] one can show that the fo ll owing .6-st.rllcturf' A 
satisfies S: 

• UA is t.lw Sf't. of objf'cts in 5', 

• AA := {u I 0: A is in S} for f'ach at.omic concept. A ill S, 

• RA:= {(a,7') I aR7) is in S'} for f'ac h role R ill S', 

• aA := u E (fA for each objf'ct. a in S. 

We will call t.his .6-st.ru('t.urf' t.he free .6-stru cture of S. 

4.3 Testing Constraint Unifiability 

Now we are able to givf' an a lgorit.hm for tf'sting RQ-satisfiabi lity of an equat.ion free 

restriction R W.r.t.. an ABox A and a Sf't F of declarat.ions. This a lgorithm has a.s input 

an ABox A, a Sf't F of df'c larat. iolls, and an equation fref' rest.rict ion R. The a lgorithm is 

given in Figurf' ~ and tf'St.s wlwt.her t.lwl'f' f'xists an admissib lf' cont.ainmf'nt. combinat.ion 

C of the term set. of A and R such that R is RQ-satisfiablf' W.r.t.. A U C. Not.f' t.hat. t.hf' 

set F of funct.ion symbols is implicit. ly rf'prf'sf'nt.f'd ill tlw cOIlt.a inmC'lIt. combina.t.ion C. 

We will now show t.ha.t. t il<" RQ-sa.t.isriabilit.y algor ithm rf't.urns ·'RQ-sat.isfiablf''' 

jff the restriction R is RQ-sa.t isfiablf' W.r.t.. thf' ABox A and tl1<" Sf't. F of function 

declarat ions . Firstly, Wf' will shov\' t.hat t.ll<" a lgorithm always tf'rminat.f's. 

Lemma 4 .5 Ld A Uf' (III ABo.!:, F be (I sd of r/cclarrdions, allr/ R an cfj1Udion frCf 
restriction. The I?Q-f;(llis./i(lbilil!J (llgon/hm with input A, F, and R lenni/w/fS. 

Proof: Let S be the flillct.ion term set. of A and R, and let. 11c,<;(/) be the non-deterministic 

concept set of I W.r.t. F. Obviously, t. lw Sf't ]Jcs(t) is finite for f'ach term f. Thf'refore, 

only a finit.f' number of containlllf'nt combinat.ions (and thus of admiss ible cont.ainment. 
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1. Lrl ,c,' hr t.1](, function Irrll1 Sf't. of A and R. 

2. Let 17' 1)(' t.hf' ground \'('rsion of 17. 

J. For f'ach 1.(' 1'111 I ill S' 1<'1 /lcs(t) 1)(' 1.1](' lloll -dd,crll1inist.ic COll(,('Pt. s<'l of I. 

4. Let. CI = 0 .. . .. e" = 0 he the closed cOllst.raillt.s ill /1', alld kt. A/{, he 
t.hf' ABox which cOllsisls of t.h(' cOllt.ailll1H'llt.S ill R'. 

5. Cl)('ck \\'hethrr 1.1)('1'(' is all adlllissibl(' cOlltainl1H'llt. cOlllhillatioll C of ,,,' 
sllch that -.('1 n ... n-.('" is t.op cOllsist.ellt IV.r.t.. t.11<' ABox which is givell 

by A u C U All" 

G. If ther(, exisls such (Ill cldlllissihle cOlltaillllH'llt. (,Ollli>illat.ioll C. t.h(,ll rdllrll 
HQ-Siltisfi il/>/C. else reI \11'11 /lot, IUJ -siliisfia/>!r. 

Figure :1 : 'I'll<' HQ-sal isfiahilit,,\' algoril hilI for equatioll fr<'(, rest.rict.iolls, 

combillat.iolls) ('xists, [11 [Lall<)2] has alrr(1dy h('ell SIIO\\'1I t.hat t.l1(' t.op ('()]]sist.('llcy 
algorit.hm t.f'rlllill;-l1,es, 0 

TI1f' 11f'Xt 1('111111<1 st.at.es t.hat t.he HQ-sa.t.isfiahilit,y algorit.lllll is SOUII<I. 

Lenll11a 4.6 /, f'! A 1)( 1/ II ;\ 11 0,('. F 1)(' (f sf'! of d (cl(f/'f/ Ii Ol/.S , f( 1)( (f I/. ('q /I (f Ii (m f/,('( , 

rf'striclion , (lIId S In /I" 1(' 1'111 SII of A II.lld /( Ful'ih.("/'IIIOI'I. If'! /1' In Ih.(' .')/'OI/'IIr! 

1)fTSion of R, C I = 0"" , (,'k = 0 1)(' Ih(' dos('(/ /'('si'l'iciiOIlS /11 H' , 11.1/(/ All' h(' ill(' sf'! 

of containmr'lIls /11 /1' , /f 11r('/'( (',rists 11.11 (ulmi,<;,<;ihlr- (,O'1I/lI.illlll(l/./ ('()/IIIi1:IW/ioll C of S 
sllch that -'('1 n, "n -' ('k /s lOll ('ollsis/('ut w,'/' ,l. AU C u Au" /"'11 f( is f((j-s(fl1s./i(fblr' 

(10.1'.1. A {fur! FJ. 

Proof: Since -'(,'1 n ... n -'(,'k IS t.op consist.ellt. W.r.t.. AU C U All' , t.1lt-' t.op cOllsistellcy 
algorithm wit 11 ill]>llt, -'(,'1 n ... n-.(,\: and AUCUA/{, COllst.ruct.s a cOllst.ra.illt. sYSt.('lll , say 
S* , which is cOlllpkt.(, amI clasll -frf'f' (cL [La,uQ2j). Thus, if ;1* is t.h(' fr(,(, ~-st.rllct.lI]"(' 

of 8* , then A- F.'i for ('(1ch cOllstraillt. ,~ ill 8-, 

Let now A be a ~- st.rllct.II]'(' which is ident.ical to A-, but. illt.erpr~t.s t.h(~ fUllction 
symbols in F as follo\\'s: 

III , if I(t l", ., III ) : C:j (i = 1, .. . ,117.) arf' eX;-ld,ly the 

cOIlt.ailllTH'llts of t.h!' form fUI ," " I.,,) : C in ,S'- (-1.11<1 
11.1 is some f'lement ill [C\ n ... n Cm]A 

11'2 , if therf' is no contaillment of tlw form 
I( II , .. . , t,,,) : C in S- and 712 is some f'lcllwnt in j)A 



i f I is no t a Skolclll fUll ct iOIl \ \"lllhol and has t 1)(' fUll ct. ion d('clarat. io ll I : /)1 x . .. X 

D" f---+ D . FurtlH'J'lllo re, if I...,. i s a Skoklll fUllct iOIl s.\"l Il hoI \\' itll t 1)(' Sko lelll decla rat.ioll 

(D =f. 0) -+ f : /)1 X ... X V" f---+ V, A illtcrprct s I..,' by 

111 , if f(/I ,"" I,,} : (', (i = 1, ... , 11/ ) arc cxa.ct.ly t.hc 

c(Jllt.ailllll('nts of tIl<' forlll / ( / 1 , •• •• 1,,) : (' ill .l.,'. alld 

//1 is SOll\<' ('1(,11)(' lIt ill [(' I n .. . n (', ,,]A 

//}., if t h('('(' is 110 COllt aill11H'llt of t.hc fOl'l1l 

l(I" ... , I,,) : (' ill .'-,'., /)A =f. 0, 
CI lld 112 is SOlll(, cll'11H'lIt ill J)A 

II :\, if t 11('1'(' is 11 0 COlit aill11H'Ilt. of t.hc for1ll 

f (I I .... , I,,) : (' illS-, /)A = 0, 
CI lld 11 :\ is somc ClcllH'llt ill ( f A 

Wc alr('il( I,' kllo\\' t lied A· F= A CIlld A· F= Au' sillce A· sittisfies .'-,". We st.ill II,,\'(' 

t o sho\\' that A s;di sf ies (';Icll fllllCtioll dec laridioll ill F. 

First I),. let f h(' " fllli c t iOIl s.\"lllho l \\'hi ch is 1I 0t a Skoklll fliliCt iOIl sY 11d)o l (llld 

which has 1.h(' flille! iOIl d('cl;lritt.ioll f : /), x ... X /) " f---+ /) . \V(' Ild\'(' t.o sIIO\\' t.ll id, ( i ) 

VA =f. 0 and (i i ) wll<'ll<'\ '('r If E /)f for i = 1, .. . , 11 , 1.111'11 [f ( /, .... , I,,)]A E f)A. For 

(i), r('n1('l11lwr t hat for tIl<' fllll ct iOIl dcc larat iOIl of It 11<'1'(' is (I COII(,('!,1. ill stall(,( ' (/ : /) ill 

A wltC'rC' {/ is ii II (, \\' CO IISt illlt. SiIIC(' A s<d isfi('s S· <l lld (f : f) is ill S· (S ill(,( ' (/ : f) is ill A), 
DA =f. 0 holds . Fo r (ii) \\'C' di st ill g llisll t \\'0 CClS( 'S: if f is it flllictioll sY IIlI)()1 \\'Ilich doC's 

not OCCllr ill S·, t.iJ('II. 1)\· ddillitioll o f A , [I(/I ,"" I,,)]A = II }. E f)A . SIIPPOS(" Oil t.ll<' 

oth('r hand , f ( /I "" .1 ,,) OCCI II'S ill S· alld If E f)f for i = I , .... 11. Hy ddilli1.ioll of A , 
I, E Df holds iff I, : /) , is (t COll st raill1. ill ........ Flirt Il<'rtIl0 re , si ll(,(' I ( II , . .. , I,,) O(TIII'S ill 

S·, f(ll , '" ,I ,,) i ll 1(1 II .... , I" (tr(' ('1('11l<'lIts ill til<' flll lct. ioll t.('st. s('(. of A (tlld f( . TilliS , 

the admissible ('o llt.(Iilllll<'lIt COIIlI)ill;:ttioli C cOllt.a.ill s ('it.ll<'r I , : /) , or I , : -' /), for ('itch 

i E {I , .. . , '/I}. Sill c(' \\'(' asslllllcd I , : I), to 1)(' ill .'-,' . alld sillCC' .<.,'. is clasll - fr( '(' , I , : -' /), 

can not. occur ill C (i = 1. ... , 1/). Finally, Iwcallsc Cis adlllissihle , / ( /" ... , 1,,) : I) is 

in C. That. III ('a li S, /(1" .. . , 1. ,,,) : D occurs ill S· alld thlls [I(/" ... , I,,)]A E /)A. 

Secondly, let I 1)(' il Sko lclll fllll Ct.ioli sYlllbol which Ila,s t.ll( ' SkolC'11I dcclilrat,ioll 

(D =f. 0) -+ I : /)1 x ... x n" f---+ D. 'vV(' ha.ve 1.0 sllow 1.liel1. ('it.ll<'r /)A = 0, or that 

DA =f. 0 an d [/(/ 1 , ••• , I" )]A E /)A w ll<'lI(, v('J' ('a,cll If E Df. If I)A = 0 1.11<'1'<' is lIothilig 

to show . If, a ll tIl<' o t 11<'1' Ii al ld , f)A =f. 0 1.11<' arg lllTwllt.at.i o li is 1.11<' SiU l1(' as ill til<' 

nOIl -Skolem case (Ibo\·('. 

Sllmming lip , A sa1. isfi ('s lJO t I, A and F, i.C' ., A is a ll HQ-s1.rtlct.m('. Fmt.ll<'rtI}()J'( \ 

A sat. isfies c:. = 0 for i = I , ... , k sillce -,c:t = T A' . Fillall y, A sat. isfies ('a.ch 

containment. in H' sincc A sa. ti sfiC's AnI . That means , A F= /7' aile! thcr(,forc A 1= ?JR, 
i.e., R is RQ-satisfiable (w.r.t. A alld F) . 0 

Compl f'tf'nf'ss o f t11 f' HQ-sa t isfi a.b ilit.y algorithm is shown by thf' following 1p.lTlma. 
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Lemma 4.7 Lrt A bf' an A Bo.l', lei F br' a sri oj declarations, and let R be an equat ion 
free restriclion. Fllrl.h. r1'171.on;, ld R' br lh r !)1'Ounrive1'sion oj R , C1 = 0, ... , Cle = 0 be 
the closed rf'st,.irlious in R' , Ani til,; sd oj conl.ainments in R' , and S th e t(T1n scl oj 
A and R. IJ Ih r/'(' (, ;l'isl.<; a ~-'<;//,l/,clU1'e A such Owl A 1= AuF and A 1= R' , then th fTC 
exis t.s an arlmis"i'l:ulr con la inm.(·ul combin al ion C oj S' S1lC h. Ihal -,C1 n . .. n -'('Ie is top 
consisten t w. r. t. A U C U ARI . 

Proof: We will show t hat there f'xists an admissible containment combin ation C of S 
such that A F C. Therefore, If't. { S I ," ., 8 m } be the tf'rms in 5 and for each tf'l'm "j in S 
let n cs(sj) be t llf' non -ddermillistic cont.ainment. set of Sj. Obviously, for f'ac h concC'pt 
Din ncs(sd eith f'r sf E DA or sf E [-,DjA holds. Now, if D is a concept. in an arbitrary 
non-deterministic conta inment. Sf't. ncs(sd, let !J bf' D if sf E Df and If't. tJ bf' -,D if 
sf tf- DA. TIlf'n t.1lf' sd C = { '~ i : iJ 1 .~, is a t('rm ill Sand D is a. concf'p t. in ll CS(Si)} 
is a containment comb in at ion of ,S'. Fmt.\wrlllor(' , Id I(t I , . . . , 1,,) he a ll arbitrary tf'rm 
in 5, when:. I has t.he fun ct. ioll df'clarat.ion I : Dl x ... x DII 1---+ D. Tlwn, if If E Df 
for i = 1, . .. ,11. , Wf' know [f(tl , ... , ln)jA E DA becausf' A sat. isfies F. Thus, C is an 
admissiblf' conta.inment. combin at. ion of S'. Finally, If't. I.e.; be a Skolell1 function symbol 
with thf' funct.ion cl f'c la ra.t ioll ( D =1= 0) -t Is : Dl X ... X D11 1---+ D. If DA = 0 tlwrc is 
nothing to show, and if DA =1= 0 t. he argll11wnta.tion is thf' samf' as in the case above. 

Hence, we can conc lude that A 1= C. Wf' a lrf'ady know t.hat A s~.t isfi f's A and, 
because of A F' R' , bot h A 1= (.'1 = 0 A .. . A Ck = 0 and A 1= Ani holds. Summing 
up , [-,CdA = T A, .. . , [-'Cd A = TA, and A sat. isfies A, C and ARI. That. means , 
-,C1 n ... n -'('Ie is t.op consis tC' llt. \V.r.t. A U C U AR,. 0 

Summing lip t.he a.bove rf'st ilt.s, w (, obta ill t.h(' foll ow ing t.heorell1. 

Theorem 4.8 I.!d Au,' fl.1I A /Jo .r, Itl F /)(' a sri of drrla1Yl1 ion.>;. (('lid ld R U(' fl.//, f' '!1If1.

tion free 1'fslriclioll. Thr'll R is RQ-satis./iablr· (w.r. l . A and F) i.fT tflr- RQ-satis./iauilily 
aigo1'ithm ~I'ilh injJu.1 A. F, fl.nd R I'rl1I1'IIS "RQ-sa li4iablr". 

Proof: Becaus(' of Lf'lll lll a -1..5 the HQ-sat isfi a hili t.y a lgorit Illll wit h illPut A, F, and R 
terminates. By definit.ioll, R is HQ-sat.isfiab le iff t.here f'x ist.s a RQ-slructure A such 
that A F 3R, i.('., iff t.here ('x ist.s (t ~-s t . rtl c tur(' A which satisfi('s A and F such t hat 
A 1= 3R. LC't. S be the 1.e rl11 set of A and R. Firstly, if A is an RQ-st. ruct ure such 
that A 1= 3R, t.hen A F R' wlwJ'(" H' is the ground version of R . T hen, because 
of Lemma 4.7, ther(' f'x ist.s a ll admissihle conta.inment combin at. ion C of S such t hat 
-,Cl n ... n -'n, is top consist.f' nt. \\' .r.t.. A U C U Ani (where C1 = 0, ... , C\ = 0 are t.he 
closed rest.rictions ill R' and AR' is the set. of containment.s in R' ). In t.his case , the 
RQ-satisfiabilit.y algorit.hm returns ··RQ-satisfiable". 
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I . Let I~' I "'" !-,'" al ld '\1 , ' . . . ,\'"' til(' ('qll il t iOll,11 alld ll o ll -eqll cdio ll ili rest.ri c

t.i o lls ill I? r< ·sl)( 'C ti \·(·I\·. 

2. If R I . . .. . I~'" is Ilo t llilifi abk, I'd IIl'II lI o t ('o lls/.r<lill/ llllifiable, else let. a 

1)(' I II(' lllos t gCIl('l' c1 1 1IIIifier o f F I , ... . 1,-'" . 

3. ifIll<' f'qu ati o ll fre(, restrict.io ll aSI /\ " . /\ a N m is HQ-sal.isfiahl(' \V.l'.t .. A 
alld F . rct lll'll ('O ilS/ r rt ill/ Illlifi<l/>ic. else ret.111'II lI O /, (,OllS/ raillt Illlifiah/e. 

Fig l\l'C' .1: 'I'll(' (,Ollst railll IllIifi a l)ilit.y algorit.hlll. 

Con\'f' r se l.\'. SIIPp OS(' til(' HQ-s, tt isfi Cl h i lit.\' cIi go rit 11111 ret III'11 S " \{Q-siI1 is fi ;-I hl ('''. TII('II 

t l1Prf' ex ist s all cldllli ss il)le cO ll1 aiIllll('llt (,OIl1hili a tioll C o f S SII (' 11 tll a t. -.('1 n ... rl -. ( 'k 

is t.op consist ellt \\'.r.t . A u C U Au,. Tilli S. I? is HQ-sa t isfi ahle 1)( 'CiIIIS(' o f L( 'IlII ll<1. ·\,7 . 0 

Now it. is st rai ghl for\\' ard 10 g ive ' clll algo rit hill fo r t. es l ill g (,O ll st ra.illt 1IIIifia.hilil.y 

o f a rE's t.ri cti o li It ( \\,.r .t. a g i\'('11 ABox A alld a sd F of de(' icl.r at.i o ll s). If /( is a 

res t.ri ct ion and Ij\, .... 1,-'" alld .\ '1 .. . . , /V", aI'(' t.il(' eqll at. io ll al alld t.he lI o ll -eqll a t.iOIl<l1 

r('s t.ri ct ions ill n. l'('s l)('c li\·(' ly . \\'(' first.i y hcl.\·(' t. o (,O lllPllt.( ' t.il<' 1I10S t. gell('l'a l 1lllifiC'r a 

o f E I , • • . , E ll ( prov ided I Il<'S(' ('qll at.i o ll s Me Iinifi ahle ) . Theil we ('a ll avpl y t.l1<' HQ
sat isfi abilit. ,v a lgorit.hlll t o a !\'1 /\ . .. /\ aN", Sill !'(' t Ili s rest. ri ct. io ll is ('( pl ed,io ll "n '('. '1'1\(, 

const r a int. llnifi Cl hilit.y a lgo rit 11111 is g i \'(' 11 ill Fig l\l'( · I . II. IfilS 11 11 A Box A, il sd F o f 

dec lar a t.io ns , alld ;-1 !'( 's t.ri ct. io ll It ciS illPllt a.nd ret III'II S " COli st rclillt. 1IIIifi cIi)le" ifl' /( is 

cOll st.ra int. llnifi a.hk ( \\' .1'. 1.. A cll l( l F ). 

4.4 Testing RQ-validity of ACe-Restrictions 

L et. li S no\\' )'f' ca ll t.i)(' refllt at. io ll procedure o f Figure I. In the " t.es t.ill g par t. " o f t.ili s algo

ri t hm i t is t. f's t ed w het h('J' o r lI o t SO l1 W deri ved (' llIPt.y HQ-c1all s<'s ar(' sldfi ciell t. t. o prove 

RQ-unsatisfi ability o f th e illput HQ- fo I'lTllllas . More t.echni call y, if 0 11 /(1 , ... , 0 11/(1I M ( ' 

dp.ri vE'd E'm p t. y HQ-c laII S('S we have to t ('s t. 171 V . . . V /(" Oil HQ- va.lidit.y w. r .t.. t.iw g i Ve' li 

rest ri ct ion t. ll f'o r.\'. Il o \\'('v(' r , til(' fo llow illg tl l<'Or(, lll sll ows I ll at I Ili s t. est is Illldec idabl c: 

for A£C-r f's tri cti o ll S. 

Theorem 4.9 17 (j-7Jolirlil y of ° sd HI . .. . , R" of A£C-r(sl7'irl i011S is uur/r'cir/(lblc. 

Proof: W E' will sho w t.h at. an a.lgorit.hm whi ch d ec id es HQ-validil.y o f a set. o f A£C
rest ri ct ions cO lild a lso Iw used t.o decide sat.isfi abili ty o f an arbitrary c1 allsc: sP.t, what 

i s known to Iw 11l1 dec id ablc. 



Let C = { (.'I , . ' . , C'n } be a Sf' t. of cla uses OVf' r somf' sign at.u rf' ....J . Fu rt.iw rmore, Ipl. 
A be a new un ary predi ca.tf' a lld Ip hp a new m-ary fun ct. ion sym bol for each m-a ry 
predicate symbol 7) in C. We first ly usp t llP foll owing tra nsla tion: 

p( t I , ... , f. m) 
-'P(t.I , .. . , l. m ) 

is ma pppd to t he formula 
is map ped to t lw formula 

A(fp( 11 , •. . , t11J) 
-,A(fp( ll , oO., tm )) 

for each li teral P(tl , .. . , tm ) or -, ]) (1. 1 , ... , tm ) occurring in C. Wp df' notp t IH' ap plicat ion 
of thi s reduct ion t.o C by C* = { C~ , 00 • ,C,*, } . It is easy to verify th a t. C is un sat. isfiablp 
iff C* is unsat is fi a ble: Lf't. M 1)(' a modpl of C and Ip\, M * bC' (kfin C'd such t. hat. such 
M * 1= A(Jp(tl , ... , l m)) iff' M 1= lJ ( f. I , ·· · , f. m) · Th C' 1l M * obv iously sat.isfies C* iff' M 
satisfi ps C. 

Furt hermorC', Sln cf' t he cla use set. C* represent s t hC' fOrllllli ;'I 'II C~ 1\ ... 1\ C.,*" wp 
obtain t hat C is ullsa.t.i sfi a blf' iff :3 -,C ~ V ... V -,C'~ is valid. LC' t 1l 0 \\' C+ 1)(' tl lP cla ll sf' 
set {c t , oO ',C,;- } wherC' c:t is obt.a in f' c\ frOll1 ('7 by rC' plac ill g A(j~ (i I 'oO. , t1f/)) a ll d 
-,A(fp(t) , ... ,t.",)) by I p(tl , . .. , f. ,/I) : A and I p( II , ... , l m ) : -.A, res pC'ct ivC' ly. T hen 
each ct represC'nts an A.cC- rest.rict ion sin ce A is unary prC'di n ll.f' , i.f'., a. concppt.. 
Obviollsly, t f'st ing validi ty of :3 -.C; V ... V -.C~ is equi valf' nt. t.o t. C'st ill g RQ-validi t.y of 
-,c t V ... V -, c.,; w.r.t.. tIlP follow ing rf'st. ri cted qu ant.ifi cat.i on sys t.elll O\'f' r A.cC: 

• t.he signat ure 6. is givpn by t1 H' concf' pt A alld t.l)(" sC't of fun ct io ll sy mhols occ ur
ring in C+, 

• rf'st ri ct ions are of t. ll(' fo rlll I : A onl y, whprp I is a ~- t (,], ll1 , 

• t he rest. ri ct ion t lwory is givpn by an C' Il1P t.y ABox a nd a dec la rat. ion 

t' :T x oO. x T I---> T 
. ~ 

'fII 

for eac h m-ary fUll ct ion sy mhol in 6. . 

Summing up , if \\'f' ha.d a ll a lgo rit.hm for (k cidin g I1Q-\'a lidit y of a set of A.cC-
restrict ions wp could dec id f' RQ-\'a lidity of C+ and t. hus of t.Iw cla usf' set. C. 0 

Th at mpan s, w(' canllot c\('cid< ' wllC'tl H' r or !lOt. a givf'1l Sf' t. of ALC-rest rict ions is 
RQ-valid. Th C' rC'aso ll for t.hi s li f' s in t.ll(' fact. t.h a t \\' e' a ll owed fUll ct ion sy mbols. If we 
restrict ourselves such t.h a t no fun ct ioll symhols occ ur , neitlw r ex pli citly in RQ-formul as 
nor implicit. ly in rest. ri cted ex ist. f' nt. ia l quant.ifi f' rs whi ch Mf' C' limin a.t.pd by in troducing 
Skolem fun ct ion sY 1l1 bo ls, RQ-\·alidit.y is known t.o be dpc id abl p (d . [BBH+ 90]) . 
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5 An Application: Query Answering 

Though the result of the previous subsection shows that one cannot obtain a decidable 
refutation procedure for concept logics, we will now show that concept logics can be 
applied, e.g., in query answering or in abductive systems. 

Let us firstly have a look at the query answering capabilities of concept logi cs. If we 

use the classical resolution principle to test unsatisfiability of a clause set, we obtain 

answers yes or no (provided that the algorithm terminates at all). For example, let us 

apply classical resolution to the following problem: In a knowledge base it is explicitly 

represented that the supermarket is open each day except from sunday, i.e., the clause 

set 
d<lY (mond<lY) 

d <I)' (s u m/ <I)' ) 

supermarke,t-open (monday) 

supermil.rket-open (sa.turday) 
--supermarket-open (sunday) 

is stored. Obviously, the query Ql , "is the supermarket open on wednesday?", can be 
answered with yes , what is intuitively adequate, by a single resolution step. But, on 

the other hand, the query Q2, "is the supermarket closed some day?", will be answered 

with yes as well. Though this answer is logically cor rect, it is an unsatisfying answer if 

one wonders whether to go to the supermarket on saturday or on sunday. 

There exist extensions of the classical resolution principle which can answer the 

query Q2 in s1lch a way that "the supermarket is closed on sunday" can be generated 

from this answer. One example is the use of PRO LO G (e.g., [L1084]) where the variable 
bindings, whi,h have been made to generate a refutation, are stored exp li citly. Thus, 
queries containing unbound variables are not only answered by yes or no but, addi

tionally, by an app ropriate variable binding of their free variables. As a disadvantage 

of this approach one might cons ider the use of negation as failure . That means, 

if PROLOG fails to prove a fact ]J, it considers 'p as proved. For example, if it was 

not stored in the above database whether or not the supermarket is open on thursday, 

PRO LO G would give two answers to query Q2, namely thursday and sunday. Another 

approach has been presented in Section 4.7 of [GN87]. There, a special answer lit
eral Ans (v., .. . , vn ) is in troduced where v., ... , Vn are the free variables of the query 

which are bOllnded to values du ring the refutation process. Unfortunately, the problem 
whether or not one has f01lnd all possible answers of the query is undecidable. 

Now, how ,an we use concept logics for q1lery answering and what advantages does 

this approach have? Pirstly, Wf:: can assume a knowledge base to be given by a set of 
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RQ-formulas, and a restriction tlwory by all ABox A and a Sf't F of declarations. A 

query, given as RQ-formula, can tlwn bf' answered by const.railwd rf'solution as follows. 

The RQ-formulas and the negated query are trallslat.ed into a set C of constrained 

clauses. Thf'n we start deriving 'empty R Q-clauses 0 II R from C, wlwre each of these 

empty RQ-clauses tells us that. the query is a logical conseqUf'nce from the knowlf'dge 

base whenever R is satisfied. In the above supermarket example Wf' can represf'nt some 

part of the knowledge in an ABox A, e.g., 

monday: Day 

sunday: Day 

where Day is a concf'pt. 9 V/hich days t.hf' supermarket. is opf'n can Iw stored as follo\\'s 

(already translat.ed int.o a set of RQ-formulas) 

SlJpeJ'lllarket,-open (.1'1) II ·1'1 = mOll day 

SlJpermarkf't,-open (.1'1,) 11.1'1; = sa t urda.\· 

-'SUpf'rlJ}ill'ket.-opell (.1·i) 11.1'; = sUllday. 

The negated q twry Q2 can be rppresel1 tC'd by t. hp R Q- cIa USC'S lJ I) C'/'I1J a rkct -OpC'll (.1') 11.1' : 
Day, and by a singlf' RQ-resollll.ion s\C'p \\'f' obt.aill Ilw pm])I.\· HQ-clausf' 

o II .1' : Day 1\ .1' = slJnday. 

From this empty RQ-clausf' t.hf' constl'llcti\'f' anS\\'f'r "t Ilf' sllJwrmarkel IS closC'd on 

sunday" can Iw obtained imn1f'diat.f'ly. 

The approach of using concept logics for <tUN,)' anSWf'rillg has I\\'o ad\'anl agf's . 

Firstly, logical nf'gat.ion is used illst.f'ad of llC'gat.ioll as failurC'. That mcalls. C'\'('11 if 

none of the facts "t.he superIllarkel. is opf'n 011 t.hursday" nor "I he Supf'l'lllarkel is closed 

on thursday" would Iw rcprf'Sf'1lt.ec\, RQ-rf'solut.ion only gin·s a sillgle answer to query 

Q2, namely sunday. Secondly, a part. of t.lw knowledgp hasf' call hC' rf'prf'selllC'd ill an 

ABox such that. one can reasoll 011 this part. of thf' knowledgf' basC' by using specialized 

algorithms (f'.g., [Hol~)O]). 

Let us now rf'consider tllp abovf' gpnerat.ed f'mpty RQ-clause 0 II .1' : Day 1\ .r = 
sunday. This f'mpty RQ-c1ause t.f'lIs tIS that t.he qtwry is answelN\ in f'ach 1l10df'1 of t.he 

restriction t\1f'ory which satisnes sunday: Day. As shown in subsf'ctiol1 4.4, t.he problf'm 

whether thf' rf'st.rictiolls of a sri. of empt.y RQ-clausf's are RQ-valid is undecidable 

(provided t1wre arf' function symhols in SOI11(' part. of t1w complC'tf' knowlf'Clge base). 

That means, if em pty RQ-c1ausf's 0 II R I, ... , 0 II R7I are df'ri ved from a clause set C, 

we can in general not decide whether tlwsf' C'mpt.y RQ-clausf's are sufficient. to prove 

9For sake of readability we omit fun('t.ion declarat.ions here (e.g., mOll/Jay:,...... T .... ). 
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RQ-unsatisfiability of C. However, given the above empty RQ-clause it is easy to verify 
that the restriction Day /\ x = sunday is satisfied by each model of the restriction theory 
since sunday: Day is contained in the ABox A. 

But even if we cannot decide whether a given set of empty RQ-clauses represents a 
contradiction in all or only in some models of the restriction theory, there are interesting 
applications of this kind of query answering. We will now show how to use concept 
logics in abductive reasoning components. As an example, suppose the following part 
of a (colloquial language) knowledge base to be given 

(A) If there is high water at place x, then x is wet 
(B) If it is raining at place x, then x is wet. 

Furthermore, assume we have observed that the 4th A venue is wet and are interest.ed 
in a possible explanation for this fact. In order to solve this (abductive) reasoning 
task we can represent (A ), (B), and the negated observation by one RQ-clause each. 
Thus, using an appropriate res triction th,eory we may obtain the following constrained 
RQ-clause set 

(1) wet (xd II Xl : high water 
(2) wet (X2) II X2 : raining 
(3) -, wet (x) II x = 4th Avenue. 

By applying one const rained resolution step to (1) and (2) we obtain the empty RQ
clause 

(4) 0 II x : j)ighwa.ter /\ x = 4th Avenue. 

This empty RQ-clause solves our reasoning problem by giving a possible explanation, 
namely, there is high water at the 4th AVf'nue. This is due to the fact that the RQ
clause set {( 1), (2), (3)} is RQ-unsatisfiable in all models of the restriction theory which 
satisfy 4th A venue: high water and can be seen as an abductive reasoning step (d., 
e.g., [BN92]). 

6 Conclusion 

In this paper we presented an instantiation of the general refutation procedure given 
in [BHL93] for restricted quantification systems over the concept language ACe. We 
showed that sllch an RQS satisfies condition (TM) and thus, as an optimization, ACC
restrictions can be tested on constraint unifiabili ty instead of RQ-satisfiability (d. 
[BHL93]), and an algorithm for this constraint unifiability test has been given. In 
contrast to concept logics without function symbols [BBH+90] it turned out that RQ
validity of ACC-restrictions becomes undecidable when allowing function symbols in 
these restrictions. Thus, as a noteworthy result, describing problems in terms of RQ
clauses without function symbols or in terms of RQ-formulas is more than syntactical 
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sugar. The reason for this is due to the fact that Skolemization may introduce Skolem 
function symbols into restrictions. We proved that allowing function symbols in A£C
restrictions together with disjunction (which is needed to test a set of restrictions on 
RQ-validity) is as expressive as OI:dinary clause logic which is known to be undecidable. 

However, it turned out that there are interesting applications of concept logics with 
function symbols. Firstly, we presented a query answering approach based on concept 
logics. For giving (partial) answers to a query we only need to test constraint unifiability 
of A£C-restrictions, whereby each empty RQ-clause 0 II R with a constraint unifiable 
restriction R represents an answer in all models of the restriction theory which satisfy 
R. Testing validity of a set of restrictions is only needed if we want to decide whether 
the derived empty RQ-clauses give an exhaustive answer to the query. Secondly, it 
turned out that. concept logics with function symbols can be used within abductive 
reasoning syst.ems in order to gelleratf' possible explanations for an obsf'rvation. 
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