
���������
	
��������������
��������������
���������������

��������
���
��

RR-99-02

��	��������
��������������
��	����
�!
�"��������������
����#�$���%�����#���
���&�����'���

�"�����������#

&�������������
(�)�����*��#(�+�����	��!(

,������������������#�,�����
���)��

	������"�-...

����������	
��
����

Postfach 2080
67608 Kaiserslautern, FRG
Tel: +49 (631) 205-3211
Fax: +49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel: +49 (631) 302-5252
Fax: +49 (631) 302-5341
E-Mail: info@dfki.de

WWW: http://www.dfki.de

����������	
��

�	�������
����������������,�������
��'���������������������

Founded in 1988, DFKI today is one of the largest non-profit contract research institutes in the field of
innovative software technology based on Artificial Intelligence (AI) methods. DFKI is focusing on the
complete cycle of innovation — from world-class basic research and technology development through
leading-edge demonstrators and prototypes to product functions and commercialisation.

Based in Kaiserslautern and Saarbrücken, the German Research Center for Artificial Intelligence
ranks among the important "Centers of Excellence'' world-wide.

An important element of DFKI's mission is to move innovations as quickly as possible from the lab into
the marketplace. Only by maintaining research projects at the forefront of science can DFKI have the
strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced degrees.
There are also around 120 part-time research assistants.

Revenues for DFKI were about 24 million DM in 997, half from government contract work and half
from commercial clients. The annual increase in contracts from commercial clients was greater than
37\% during the last three years.

At DFKI, all work is organised in the form of clearly focused research or development projects with
planned deliverables, various milestones, and a duration from several months up to three years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and Kaiserslautern
and in turn provides opportunities for research and Ph.D. thesis supervision to students from these
universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's six research departments are directed by internationally recognised research scientists:

❏ Information Management and Document Analysis (Director: Prof. A. Dengel)

❏ Intelligent Visualisation and Simulation Systems (Director: Prof. H. Hagen)

❏ Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

❏ Programming Systems (Director: Prof. G. Smolka)

❏ Language Technology (Director: Prof. H. Uszkoreit)

❏ Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (e.g. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software available
as quickly as possible.

Prof. Wolfgang Wahlster

Director

��������	��
�������	����
�����	�
��

����	���	�������
�������	��������	��
��������� 	�������	���	��!	�

����	��������
"�#$� 	��%���"�&	�������"�'���������	�!	�

���'�����
���#��

DFKI-RR-99-02

This work has been supported by Siemens AG, the Deutsche Forschungsgemein-
schaft (DFG), and the Studienstiftung des deutschen Volkes.

© Deutsches Forschungszentrum für Künstliche Intelligenz 1999

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to copy in
whole or part without payment of fee is granted for non-profit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of the Deutsche
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X

��������	��
�������	�����
������	�
��

����	���	�������
��������	��������	��
��������
��	�������	���	���	�

�������	
�������	�����	�����	�����	�����	���������	������
���	���������	���

��
	������	�� !�	!"	
����#����
�$%%&'(
�����������	���"��)

*��������	�����	+����	�������	,���-.�+��/��
����011###/�+��/��12��+

��+.�+��/��

��������
We present the Social Interaction Framework ��� and demonstrate how it
can be used for social simulation. SIF is a simulation testbed for multi-agent
systems. The key design aspects are the ability of rapid-prototyping, a broad
implementation platform, the possibility of controlling agents by human
users and easy access to the internal data of every agent in the simulation.
SIF implements the EMS �����	
��������������� paradigm, which
provides a generic agent-world interface.

In this document we describe the architecture, example applications that
have been developed at DFKI and we give an easy to follow ten step guide
for creating simulations with SIF.

&

����������� !� !"

����
�����
� $$$ %

& ��	�������	����	�
�����$$$ '
'/& 3��	4++�����$�����"$
�����	�����/// %
'/' !�+��"�����	�������� /// 5

% ��	��	��	 $$$ (
(/& 3��	6����	
��7��// 8
(/' �����/// 9
(/(�:! /// &;
(/< �������	���	!�+��"�����	���#	��	
!� /// &;
(/=
�"������	3�"�// &&
(/% >�������	�+	4++������ /// &'

) ��	���	�����	����	 $$$ #&
</& �������	�:!// &'
</' ?�,���	!�+�	6����# // &(
</(�������	���// &(
</<
������// &<
</= ����� // &<

* �	����	����
�������	������������
����������$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ #*
=/& ��#�����/// &=
=/'
��$��	
!�/// &=
=/(
��$��)���	������""���	��7����"��� // &%
=/< ���������	���	��������	��)���	��"������� // &%
=/= ���������	���	�����	����	����)	��)���	��"�������// &%
=/% ���������	���	�����	�+	���	��"������	#����/// &5
=/5 @�#	���	������	���+��"	�������A // &5
=/8 @�#	��	���)	������7�	�������	��	���	#����A /// &5
=/9 !"���"�������� /// &8
=/&; B��)���	��"�������C // &8

' 	+���	���	����
� $$$ #(
%/& 3��	����"����	�������	����/// &9
%/'
�"�������	�+	��	����"����	3������	�)���" /// &9
%/(B�������	������������	������ /// ';
%/< D
�+	E	
�����	������ // ';
%/= 3��	�������	��"���	��	
!� /// '&

'

, ��������
�$$ &#
5/& ���������� /// '&
5/' ?������/// ''

����
������ $$ &)

����	-����
�����	�$$$ &*

���	���+�� ��	�������	�$$ &'

���	���+�� �		��	������	�$$ &(

�������� ��./01�"

������	&	�	����������	�+	
!�	�����	��	�F�"���	�������� // <
������	'	:����	"����	+��	����������� // %
������	(3��	�++�����$"����"$������	"����// 5
������	<	3��	�����	�+	
!�	����	"���	��	���	��"�������	������ // 9
������	=	��	�F�"���	�����	��	
!�/// 9
������	%	?7��7��#	��	���	��+��"�����	+��#	������	�	��"�������/// &&
������	5	:����	�	�������	���	��	�������	��	����� /// &<
������	8	�	����������	�+	���	�������	����	��"�������/// &9
������	9	3��	"��	�+	���	�����	#���	�������	���	�+���	��"�	�F���������/ /////////////////////////////////////// '&
������	&;	�	����������	�+	���	����"���	
!�	7������ /// ''
������	&&	3��	��������)	���������	�+	���	
!�	������) // '%
������	&'	���	�������	�+	
!�	���	�����	�����������	���	�����	���������// (;

(

(� ����
�����
�
A recent development in Artificial Intelligence is ����
�����
��� ������������ (AOP)

(Shoham 1991), derived from Object-Oriented Programming (OOP): the entity in focus is a
so-called ����
, a unit able to autonomously plan and perform actions. Some approaches of
AOP see communication between agents as a special case of acting, whereas others regard
acting and communication as different forms of interaction. Tasks are performed in a
distributed fashion through cooperation between agents

The ��	������
���	
������������� (SIF) provides a virtual testbed for evaluation and an
environment for development of Multi-Agent systems. SIF’s strength lies in the support of the
design interaction intensive agent societies and its library of ready-to-use components for
rapid prototyping. The framework can be adapted to a wide range of scenarios and types of
agents, as it is divided into a kernel that implements the model of SIF and a toolbox
containing ready-to-use objects.

In order to build reasonable simulations, the three strands of technology associated with
Virtual reality (VR), Distributed Interactive Simulation (DIS), and Distributed Artificial
Intelligence (DAI) have to contribute. DAI provides for the computational means to build
(semi-) autonomous, interacting agent programs which are situated in an environment via
well-defined perception and action channels. DIS researches the modelling of the (dynamic,
kinematic) evolution of such an environment, including ���
���� ����� for agents. Finally, VR
techniques deliver an integrative frame for visualising the simulated world and interfacing
human users.

DAI is not only providing methods to build simulations, but is also, as a science, a
potential user since it requires an intuitive framework for complex, distributed simulations.
For example, issues of adaptivity and scalability in multi-agent systems (MAS) cannot be
investigated without the use of large-scale simulations. Using a human-oriented, realistic
model of the environment allows a suitable embodiment for evaluating intelligent agents.
Indeed, other sciences, such as the social sciences, are as well becoming aware of the
usefulness of co-habited computer simulations. A common architectural framework for
simulation is thus reasonable and must satisfy the following requirements:

)������	��� ���	����
��Simulations should allow users to survey and influence the
state of the simulated world. An intuitive visualisation as well as a corresponding user
interface is required. From an agent’s standpoint, user-controlled avatars and agents should
not be distinguishable. From a user's perspective, an avatar should be semi-autonomous, i.e.,
its lifelike low-level behaviour should be changeable by frequent user adjustments.

*�
��&��+
�� In general, simulations become the more attractive the more people they
can reach, the more existing systems they can interface. Common and open standards, such
as those based on JAVATM , RMI, VRML'97 and CORBA are the key to connect users
working on heterogeneous platforms and to connect agents built with differing tools and
languages. Although the mentioned standards are not immediately designed with respect to
the demands of simulation, the widespread interest in them by software companies and
researchers will result in a similar effectiveness as home-grown, special-purpose solutions.

���
�
������������	���������!���
��Agents (and avatars) are autonomous (semi-
autonomous), i.e., they are able to freely compute their activity (in given bounds). In AI, this
is usually described by the mutual interplay of two well-defined kinds of interfaces: by
sensors and effectors. Here, the virtual world is responsible for “outputting” on the sensor
interface as being fed by effector data. In turn, the effector data is independently derived by

<

the agent, i.e., in a different computational background, from “inputting” the sensor data (we
elaborate more on these concepts in Section 2.1). When applied to a networked setting, this
notion allows agents and avatars to safely reside and decide on local computers while
perception and action are transparent mediators to the central, global world.

���	� ���	�� ����
�� ��� &	��	���
� Much often, pragmatic, visualisation-oriented
simulations provide every agent with the same abstract (qualitative) sensor and effector
interfaces. This means that perception already incorporates high-level information of which a
commonly agreed semantics is seldom to be found in an open context. Similarly, actions are
coarse patterns which denote complex, but uncontrollable behaviour in the virtual world.
Especially for evaluating intelligent agents in a scientific context, but also for creating more
lifelike scenarios, different quantitative modes of perception and action, such as touching,
smelling, looking, communicating, etc., should allow the agent to classify objects and
outcomes of actions from its personal, characteristic perspective in order to choose from a
richer space of behaviour. Realistic embodiment requires various of those ����� �����
methods of sensing and acting at the same time.

,���� &�
�
����� � What makes virtual worlds so attractive at all stages of scientific
research and development, is the possibility for rapid-prototyping. This is due to the fact that
the granularity of the world is not determined in advance. Thus the designer can incrementally
refine the level of abstraction and therefore gradually approximate real-world characteristics,
such as continuity, dynamics, non-determinism, and inaccessibility, etc. as it may be required
by the actual experiments. A simulation architecture should support this process.

������	&	�	����������	�+	
!�	�����	��	�F�"���	��������

Our solution to this list of desiderata is SIF. SIF is implemented in JAVATM JDK 1.1. and
has interfaces for agents and visualisations using other languages (e.g. VRMLTM). All agents
and the medium run in separate JAVATM threads to provide realistic assumptions on
parallelism in the scenario. Figure 1 shows an example of a SIF scenario. The scenario
consists of a simple grid representation and a group of agents represented by geometric

=

shapes. The objects that were used for this example are part of the toolbox of SIF and can be
adapted to new scenarios.

The SIF design and functionality has been in parts inspired by the ongoing debate about
agent architectures and the interaction mechanism between them. SIF is yet another agent
testbed, but has many different aspects, compared to more traditional systems. Testbeds for
agent architectures provide simple and effective tools to investigate and explore several
aspects of agent architectures with controlled experimentation (Hanks et al. 1993).
Experiments with pre-defined settings help to compare performance of different agent
architectures in various rich environments.

Of the broad variety of testbeds, that have been designed and implemented, we focus here
on a small selection of related or orthogonal systems. One of the most well known testbeds
within the Artificial Intelligence community is the TILEWORLD system by Pollack and
colleagues (Pollack and Ringuette 1990). The TILEWORLD system provides a grid-like
environment. The task of the agent is to collect tiles and deposit them in randomly occurring
holes in the grid. Agents have limited resources in terms of carrying capacity and lifetime.
They also have to consider changes in the environment, due to random appearance of holes,
which have only a certain lifetime as well as random appearance of tiles. Sensors are not
explicitly represented, the agents can always access the environment and its changes. Some of
these ideas can also be modelled in the SIF system: in the displayed grid world scenario,
agents are situated in a dynamically changing boxed environment. While TILEWORLD agents
have a fixed set of tasks, agents in the SIF world can be provided with much richer goals as
well as confronted with different dynamics in the environment. Depending on the user’s goals
and skills, she can design the environment to her experiment needs. Also, SIF provides the
user with a smooth application programming interface to the EMS paradigm, which comprises
a unified model for sensing and acting in an environment. There are several other grid world
agent testbeds, e.g. NASA Tileworld (Reference to Phillips and Bresnia 1991), which was
developed independently from TILEWORLD or the MICE simulator (Montgomery et al. 1992).

Other agent testbeds were developed for different environments. The fire fighting domain
inspired the �!����"� ��������� for implementing and testing multiple autonomous agents
((Hart and Cohen 1990), (Greenberg and Westbrook 1990)). The system consists of three
components: the simulator, the environment and the agents. The ������
��#� tasks are to
maintain and update the map, to synchronise the activities of the environment and the agents,
and to gather data. The Phoenix ����
� sense and change the Phoenix environment by sending
messages to the ������
��. Exogenous events like e.g. wind are also implemented and can
cause fires to grow. Phoenix agent have limited sensors and perceive their environments
through messages. Rather than implementing an abstract task environment, Phoenix aims at
providing a realistic simulation of a single domain. The fire fighting domain is a domain still
favoured by multi-agent researchers (Wiering and Dorigo 1998).

Another effort to model a domain and use the system as multi-agent testbed, is the
$��	������ (Hanks et al. 1993). The system has been designed to test theories of reactive
execution and to provide motivating examples for theory of reasoning about dynamic and
uncertain worlds. The major goal was to provide a realistic model of the domain accessible
for the agents, but without physical sensors. Nevertheless, Truckworld simulates sensors, such
as camera reports for object features, sonar reports for obstacle detection or scales reports for
weight detection. The Truckworld domain is a road network and the trucks travelling along
the roads are agents. Weather influences the road surface as well as truck behaviour. Agents
can communicate via radio or loudspeakers.

The MYWORLD system by Michael Wooldridge (Wooldridge 1995) has been especially
designed for BDI agent architectures. The testbed focuses particularly on BDI agents and the

%

core of the system is the underlying BDI logic and how the interaction of the agent with its
environment can be described with such a logic.

When designing the SIF system we did not have in mind to model a complex domain in
great detail, such as the Truckworld or Phoenix do. Rather, we wanted to provide an abstract
model of interconnecting agents through strongly restricted channels to the environment in
which they are situated. Since we introduced the notion of medium as the description of the
world in terms of physical laws, it is possible to design experimentation environments in great
detail. Depending on the users skills and needs, she hooks her agents provided with her
favourite agent architectures into a complex environment defined through the medium.

 This document is structured as follows: In the next section we describe the model that
underlies SIF. For a better understanding of how SIF works, Section 3 will give an
introduction to its kernel. To pave the way to using the system, Section 4 describes the
complete user interface. After this overview on the possibilities with SIF, Section 5 gives a
step by step guidelines on how to implement a new simulation with SIF. In the appendices we
include more information on the source code.

More information on SIF including a full description of the source and all interfaces can
be found at www.dfki.de/~sif.

-� ��	�������	����	�
+����

-.(� ���	�/++	��
���	������	��
���
�	�
A very general and broadly accepted definition of an agent is provided by (Russell and

Norvig 1996):

���agent� ��������
�
%�
!�
�	��� ������������perceiving� �
�� ����������

!����!�sensors������acting��&���
!�
�����������
�
!����!�effectors'

The so called ����	
�������������� &������� (for short EMS) reflects this definition
(Lind 1998). This paradigm provides an appropriate abstraction of a (human) agent acting and
interacting with its environment and other (human) agents. For example, when humans talk to
each other, a speaker will use the speech apparatus (effector) to set the surrounding air
(medium) in vibration. In a more detailed picture, the effector will influence the state of
specified features of the medium, which depends in our example on the content of the
speaker’s message.

MediumEffectorEffector SensorSensor

������	'	:����	"����	+��	�����������

5

The medium itself connects features to a continuously updated structure, which could
compute, in our case the propagation of the vibrations caused by the act of speaking. Finally
these vibrations will then reach the receiver’s ear, a sensor, which is connected to particular
features of the medium and is able to transduce their state into an internal sensor reading
(Figure 2). In the SIF architecture the medium is in contact with a range of different sensors
and effectors used by the agents.

The ����	
��������������� ����� is the core concept of SIF. It pinpoints the major
features as there are: multi-threaded implementation, asynchronous data flow and subject-
oriented point-of-view. In the centre of the model is the ������, which controls the
simulation. It transfers information from and to the agents via ������� and ����	
���� (see
Figure 3). Sensors represent the input devices of an agent, just as the effectors represent its
output devices. The data transferred is called &��	�&
 and �	
��� respectively. Note that
sensors do not observe necessarily everything that happens in the world, but can be limited to
certain aspects or a specified range.

 medium

 activates notify

 action percept

 effector

 agent

 sensor

Figure 3 The effector-medium-sensor model

The agents in the model act independently from each other and choose the effectors that
will produce the appropriate action. An effector is aimed at changing the world. When
triggered, this effector sends an �	
��� to the medium, which modifies the representation of
the world according to the type and the parameters of the action. Now it computes sensory
input and sends it as &��	�&
� to all sensors affected. This flow of information is shown in
Figure 3. The reason for this apparently complicated way of computing new states of the
world is that the medium is supposed to be the only carrier of information and consequently,
the subjects in the world can access information only via the medium.

-.-� ��+
����
������	��
 The sensor-medium-effector model is used consistently in SIF, i.e. the graphical user

interface (GUI) is linked to the other parts like an agent. Thus all agents communicate only
via the media, not directly with each other. This holds for all actions including
communication, since we view communication as a special kind of action. To illustrate the
communication flow through the media, assume that we have two Agents � and (. � wants to
send a message (a communication action) to (. To do this, � activates its communication
effector, which sends this action to the medium. The medium evaluates this action, identifies

8

the receiver and sends the message as a communication percept to the communication sensor
of (. Note that the agent must explicitly check the success of an effector activation. The way
to do this is to implement a sensor that tracks the agent’s movement (similar to a global
positioning system) or to implement a sensor that observes the change of the visual data and
then to interpret the data of these sensors. For example, the activation of a ���������	
�� in
front of a wall will not cause an error message. Instead, it is the task of the agent to find out
that its current position has not changed.

The flow of information through the media is also characterised by the application of time
(see also Section 3.5). Every action is assigned a certain amount of simulated time that it will
take to complete this action. For the completion of an action this means that the environment
will be checked whether the preconditions of the action hold, while the action is waiting to be
processed. During this time the effector that generated it, is blocked (or “busy”) and cannot
generate other actions. This does not stop other agents from generating actions in the mean
time.

0� ��	�1	��	�
 In this section we give a more detailed description of the main parts of SIF, how they

work and interact. Additional information can be found in the Application Programming
Interface (API) which is available at the SIF homepage.

0.(� ��	�2
�����	�3	�
���	�: WorldServer,

Medium,
SIFWorldRepresentation,
ObjectInformation,
PositionContents

������ 	4 src.kernel and src.AOE for the Medium.

The world server is the object that all agents, effectors and sensors connect to. The world
server passes their reference on to the media that the effectors and sensors will deal with. The
media update the world representation and organise the flow of information during the
simulation. The world server stops and starts the simulation and provides debugging and data
collection facilities. The media on the one hand define operationally the state transition of the
world for every action. On the other hand they processes the data in the world representation
to suit the specifications of the sensors according to the scenario. An implementation of the
abstract class SIFWorldRepresentation defines a data structure which carries
information on position, appearance and capabilities of objects in the environment, the
specifications of the environment itself and the services needed or connected to these objects.
The interaction between these parts is displayed in Figure 4.

9

percept

media

a5 a4 a3 a2

action

Agent

������	<	3��	�����	�+	
!�	����	"���	��	���	��"�������	������

For creating individual scenarios, it is necessary to override methods of the class Medium.
The media are executed in the same thread as the world server when a simulation is running.
The contents of each co-ordinate in the simulated world is represented by a data structure
called PositionContents. Additionally, it stores a boolean value telling the GUI whether
this position should be marked or not. This is used for visualising the selection of an object by
the user. The information on the object itself is stored in an instance of the class
ObjectInformation which contains data on how to access the object, its co-ordinates, etc.

0.-� � 	��
 ���	�4 Agent.java and derived classes
 ������ 	4 src.GOL.agents

Figure 5 shows an example agent with effectors and sensors. As demonstrated here, an
agent can have different types of sensors and effectors in any number. The effectors could be
for instance, effectors for moving, communicating, turning a robotic arm, etc. Sensors could
be for vision and communication. In order to implement an agent derive a class from the
abstract class Agent and provide sensors and effectors.

agent

act () method

sensor S1 effector E1

sensor S2 effector E2

sensor S3 effector E3

������	=	��	�F�"���	�����	��	
!�

The agents, the GUI and the SIF kernel run independently from each other in a JAVATM

threads of their own. In the current implementation the agents must not commit more than one

&;

action per activation. This is necessary to by-pass the lack of pre-emptive scheduling for some
platforms in JDK 1.1. As soon as a new JDK without this restriction gets published, this
obligation is void.

0.0� ���
���	�: SIFGUIAgent,

SIFCanvas,
SIFScriptEditGUI,
SIFControlPadGUI,
SIFObjectInfoGUI

������ 	4 src.GUI

 As mentioned before, the GUI is linked to the core of SIF just like any other agent, i.e. it
communicates via sensors and effectors. The percepts that it receives tell the GUI to update
certain parts of the visualisation, etc. This is especially true for the SIFGUIAgent (which is
an abstract class) or the GUIAgent class respectively. A special part of the GUI, the
SIFControlPadGUI (as well as its implementation the ControlPadGUI) is capable of
forcing agents to perform certain actions. This is done by sending an action to the world
server that contains the information that the user wants the agent do something. This action is
then forwarded to the agent. All this is embedded in the EMS-model of SIF. For easier testing
and varying of experiments in the simulated world, SIF contains a mechanism to specify
simulations in a simple script language. These scripts can be loaded, modified and reloaded.
The ScriptEditGUI enables the user to alter such scripts and restart them without need to shut
down the SIF system. Any text editor can be used to modify the scripts.

The GUI runs in a JAVATM thread of its own. So in total there are 2 + n threads running, n
being the number of agents.

0.5� '
���
�������+
����
����
��������
Due to the EMS-paradigm the flow of control and information in SIF is rather simple. A

detailed overview is given in Figure 6. To explain the information flow we assume that the
simulation has been running for a while and a certain agent (upper left box in Figure 6) is
about to choose its next move to make.

The decision making process takes place in the act() method of the agent (this will be
changed with the next new release of JAVATM JDK, see Section 3.2). As soon as this method
has made its choice, it activates the corresponding effector. If an agent has decided to move
forward, this could be an effector that controls the motor of a real world robot.

In the simulation, the effector wraps the information of what is intended to happen into an
object called an �	
���. The world server stores all incoming actions in an event queue. The
actions are processed first-in-first-out. The world server passes the first action in the queue to
the medium that will deal with this action (the world server finds the correct medium by
calling the getMyMedium() method). The medium then accesses the world representation to
find out whether the action is acceptable. If this is the case it will adjust the state of the world
in the world representation and send a percept to the GUI, telling that a part of the world has
to be redrawn and commit the agents move. The latter is pictured by the arrow pointing from
the media to the GUI. Otherwise the medium will continue by computing new input for all
sensors that are affected by this change of the world. The input is sent in form of percepts
(with a subjective viewpoint) to the agents.

&&

 Now one cycle for the agent is completed and it can perform the next action. Please note
that a side effect of the asynchronous EMS-model of SIF is that the agent does not have to
wait for this feedback from the world. It can also start all sorts of actions, hoping that they
will be suitable by the time they are being executed (see the Section 3.6 on this).

,
��
��
�$�

agent

act () method

sensor S1 effector E1

sensor S2 effector E2

sensor S3 effector E3

percept

media

a5 a4 a3 a2

a6

a1

������	%	?7��7��#	��	���	��+��"�����	+��#	������	�	��"�������

The last part of the figure to be explained is the arrow pointing from the GUI to the media.
On this path information flows in two cases: when the experimenter uses a control pad (which
is part of the GUI) to force a chosen action upon an agent or when the experimenter wants to
start or stop the experiment. In the case of using a control pad, a command is sent to the queue
in form of an action. Such commands get passed on to the agent and force it to an effector
activation according to the command. The other case takes place if the user wants to state of
the simulation itself, e.g. if a command is send to start or stop the simulation. Then the
command will be redirected by the media to the world server‘s action management to start or
stop the control flow. In the implementation we use a separate queue in the world server to
store actions coming in from the GUI. This queue will be processed before the agent queue is
being looked at.

0.6� ������	�����	
SIF is equipped with a mechanism that simulates time. This is implemented by using a

separate agent that runs in the background. Whenever this agent gets processing time, it will
send an action to all media like a clock1. For observing the simulation, the current time is
displayed by the GUI. The media can be intercepted this action in their commitAction()
method to model time-dependent changes in the world representation. For example, the
increase of some resource can be modelled by incrementing a variable in the world
representation whenever the medium receives a new message from the timer agent.

1 In fact, the action is called ClockAction.

&'

The fact that the timer agent (or clock) is part of the simulation guarantees that the
processing speed of a sequence of actions will always be the same in terms of simulated time.
If the system runs faster because the virtual machine can allocate more resources to the
simulation engine, the timer agent will also get more resource.

An example for the need of simulated time would be a number of actions that have
different processing times. If an action gets sent by an effector, the world server will check
how long this action would take to complete2. The world server will calculate the time when
the action should be finished and uses this as the key to sort the action into the actions in the
queue. As we have already mentioned, the world server will always process the first action in
the queue. So it will process the action if all actions that have shorter durations or have been
posted earlier are processed. This does not mean that an agent can block other agents that post
long-term actions, because the timer agent also progresses so eventually the current time will
be greater than the completion time of the long-term actions.

Whenever the world server has processed an action it checks if the remaining actions may
stay in the queue. In other words, the world server checks if the preconditions of the still to
process actions still hold3. Only if the preconditions for an action have always been holding
during the action was in the queue, it will finally be committed to the state of the world. For
an example of such an action try the script time.script when starting OurWorld. The
yellow agent can only jump over the red one, if red one remains on its position. If it leaves
this position, the action from the yellow agent gets removed from the queue.

0.7� *�
���� �
+�/++	��
��
By default, SIF is configured not to let an effector send an action as long as there is still an

action of this effector in the queue. This will help to keep the number of actions that are
waiting to be processed small. It will also make some of the behaviour of the agents more
natural: An agent cannot pick up something while already picking up something else, it needs
to wait until the first action is complete. Furthermore, it can be defined that agents are not
supposed to perform two things at a time. For example, two effectors can be defined as
mutually blocking to prevent an agent from turning while it is moving forward.
Implementation details can be found in the class documentation4.

During simulation the evaluation if an effector is allowed to post another action naturally
takes time. This check can be disabled by starting SIF with –n (see Section 4.5for more
information).

5� ��	���	�����	�+�	
 After starting SIF a graphical user interface (GUI) appears on the screen; very similar to

the one pictured in Figure 1. In this section we give a description of the interface and its
functionality.

5.(� '
��
�	����
*���
��4�The console for SIF is equipped with seven buttons. All buttons will only be

inactive if their functionality is not available in the current context. Two buttons let the

2 It will check a field that the action inherits from the abstract class src.AOE.Action.

3 This is done by calling the methods of src.AOE.Action for precondition checks that should be overridden
when using processing time other than 1 in a simulation. Check the html documentation for more details.

4 Look at the html documentation on the class src.AOE.Effector.

&(

simulation engine start and stop; the two buttons marked with arrows let the engine work in
single step and fast single step mode. Fast single step means that five times as many actions
are performed as in the single step mode. The �
��
� �

�� will turn into a 	��
����� �

���as
soon as the simulation has been started. The ������� �

���will kill all objects and the world
representation from the simulation engine and reload the previously selected script. The
�������
���� �

���will start a window with information on a selected object (therefore an
object or agent must be highlighted by clicking on it first). The same functionality is activated
when ��� ��	��	������������)�	
. In the second row of buttons on the far right there is a
display of the current simulation time.

�	���4�The ��������� offers general functions like loading a new script or saving the
current state of the world as a script (see the Section 4.4on scripts). Scripts can also be edited
in order to modify the simulation. The �)�	
����� allows to kill marked objects and display
information on an object (which is the same function as the info button). The �� �������
helps to check if the simulation is running correctly. The thread control flow can be checked
(in order to see if the agents are being activated by the system) and display the control pad,
which allows to send messages to an agent during run-time5. Three further options let the user
dump the contents of the agent table, the world representation and the action queue of the
world server.

5.-� 8!9	�����+
�2���
�
For every agent and object, this window will display some general information like it’s id,

name, type and its position in the simulated world. Also it displays the last action of an agent,
the current size of its percept queue and a string describing its current state6. For the agents
that come with SIF we provide visualisers for further information e. g. on the sensors: which
range they have (the corresponding area in the grid will be shaded) and what they detect at the
moment. They are being activated by clicking the “show internal state” button. Any visualiser
will automatically be linked into this window.

5.0� '
���
��&�
The control pad lets the user send messages to agents. These agents must provide a sensor

for such messages. Try the script standard.script when starting OurWorld and activate
the control pad when agent “Brutus” at position (7,3) is marked. The user can make it move,
turn or send messages.

The flow of such a control flow is depicted in Figure 7. The flow of control uses the EMS
paradigm to route the information from the user to the agent to be controlled. To fit into the
paradigm, the user must send his or her information by using an effector. This effector is
activated by the control pad. The information gets send to the medium which can test if the
user is allowed to send actions that influence an agent. It will infer which agent to send the
message to. The agent to be controlled will receive a percept via a sensor about the command
of the user. If it is programmed to react to such percepts it will activate its effectors
accordingly. After the media have processed their actions, the user will recognise their effects
by the visualisation of the data that is being received by the sensors of his or her GUI.

5 For more information on the control pad see Section 4.3
6 See the class documentation of the class SIFObject for more details.

&<

medium

effector sensor

�$�

sensoreffector

 agent

 user

������	5	:����	�	�������	���	��	�������	��	�����

5.5� �������
SIF allows a simple script language to specify experiments. This language allows empty

lines and comments (that is, lines that start with „#“ will be ignored during parsing). Any
scenario specific definitions of agents, objects and the world representation should be defined
in a class that inherits from src.kernel.SIFIncorporateScript. For a reference
implementation, take a look at example.src.IncorporateScript.

5.6� �� �
SIF can be started with a number of flags:

java OurWorld [–a] [-b] [–n] [-o file][-s file][-v]

-a The simulation engine will start immediately without waiting for the user to press the
start button. This is useful if using SIF in batch files in combination with the –s option.

–b Lets the user run a benchmark test. This option needs the file benchmark.script to be
in the directory where the OurWorld class has been started. It will help the user to find
out in which system configuration the simulation runs best.

–n Turns of the function that effectors can block each other. Using this option may speed up
SIF, but it can also result in loss of performance if mischievous agents block the system
by exhaustive use of producing actions (see Section 3.6 for more information on the
mutual blocking of effectors).

-o Lets the user specify a script where SIF should write its output to. This will only work in
combination with the –v option and with the output that is generated using the methods
mentioned there.

&=

-s Specifies a script to be loaded on start-up. This means that the user does not need to
choose a script from the list whenever SIF is started, which is especially useful during
debugging.

-v Causes SIF to be verbose. We recommend not to use the System.out.println()
method of JavaTM but the log() method that every SIFObject inherits from the class
src.kernel.Basics. This will help to find out which of the objects has produced the
output and the user can also have a print out of the current stack of the virtual machine if
logError() is used7.

6� �	����	����
������	��+����������
����������
This section guides for the experimenter through all the steps required for conducting

simulations with the social interaction framework. For the sake of convenience we address in
the following the you as the reader directly. We will start with the download and setting up of
the files (steps 1 to 3). Then we will assist you in preparing the implementation of your
simulation step by step (steps 4 to 8). This preparation will provide you with a set of concepts
that will be easy to implement (step 9). Every section will conclude with a description of the
result of each step that will help you to keep track of the progress of the development of your
simulation. If you encounter any problems during download, set-up or implementation, if you
have any bug reports or feature requests, please do not hesitate to contact the developers at
sif@dfki.de.

6.(� �
���
�

Create a directory named sif in your workspace. Start your web browser and go to the
homepage of SIF which you can find at URL http://www.dfki.de/~sif/. Go to the download
page and you will find a link ��������� ���. Click this link and save the file in your SIF
directory. If you would like to have access to the source code, unpack the file and feel free to
browse it.

→ :
����
�����
���3	�����	��
������������
��������
���
+���	�����#�;���
����3	�+��	�����	
�.

6.-� �	��������
For setting up SIF you need an operating system that supports JAVATM. This could be

Windows, MacOs, Linux or Unix. SIF has been designed for JDK 1.2, but it runs just as well
with JDK 1.1. If you have downloaded SIF, set your paths according to the location of your
SIF System. This means you need to set your classpath variable. For example, if you put SIF
into a directory /home/username/sif or c:/sif, you set the classpath:

Setenv CLASSPATH /home/username/sif

Or

Set CLASSPATH=c:\sif

respectively for Linux/Unix or Windows

If you use an IDE such as Symantec Café TM, CodeWarrior TM, etc. then you can either
include it as a new project or just set the path for system files to your SIF directory.

7 See the class documentation for src.kernel.Basics. Take also a look at the methods toString(int)
and printStack(String). These methods are useful in way that you will hardly need a debugger.

&%

→ :
�� ��
���� �
�� !	� !�	� �
� ���� ��	� +
��
��� � �
����� ��� �		� �� 	<���	
����	�	����
��
+����.������	����	��
���	<���	=���������
�������+������� 	�
+
�������"��	�	���+
��	<���	���
�
���������.���	��������
��	� ��	��������	�
�
�������������������	��	���	��������
���
������
������������.

java example.src.OurWorld

6.0� �	������
�����
 ����� �	�3��
��	��
If you already have a satisfactory programming environment, you can skip this section.

However, if you need to find an environment for development with Unix, we recommend you
use XEmacs. There are a few tools available on the download page that we consider very
useful to you. As compiler we recommend Jikes TM which is a freeware compiler produced by
IBM. It is an incremental compiler and a lot more efficient than javac. However, you should
try javac from time to time on your sources because under certain circumstances Jikes may
have problems with linking classes if the inheritance structure is changed very often in one
session (this does not happen very often). The question is that none of these two compilers is
better in the sense of the word, but they have different strengths. Try both and you will easily
see how you can use them together more efficient.

If you use XEmacs you can apply its java-mode and an application we provide: srcguiInfo.
This application helps you to organise your project if you do not want to use a commercial
IDE. Start srcguiInfo with the two parameters java and XEmacs (as described on the tips &
tricks web page) and you will find navigation through your source files a lot easier. Together,
XEmacs, Jikes and srcguiInfo make a fast and easy to use developing environment at no cost.

→ :
����
�����
���3	���	���
�������
����	���	���+
����	.

6.5� �	�� ��� ���	�	�����	������
����������
�
Now lets start to create the simulation! We assume you can describe the intended model in

the terms of the concepts that appear in this and the following sections.

One part of the simulation will be actors i.e. units that will have a �!������� of some
description. We will call them ����
�. Make up a list of the types of agents you identify in
your setting and what �	
���� each must be able to perform. Most likely, you will also have
other units that will not be able to do something, but will be passive (walls, boxes, etc.). We
call these �)�	
�. Later on, when we discuss the inheritance structure of the JAVATM code
you will find that agents are derived from objects. This means that agents are special objects
in the sense that they are objects that can apart from just being in the world, affect the world.

→ :
�� ��
�����
���3	�� �����
+� ���	��
+� 	�������
!9	���� �����
����	��
��
�������
�.�:
����
������
��3	���	<�����3	������
+����
��������	��
���!�	���
�
����������
�

6.6� �	�� ��� ���	����	���������������
����������
�
Now you need to find out what the principle rules of your simulation are going to be. That

is, describe exactly what should happen in the world if one of the actions is performed. You
can think of these rules as the natural laws of the simulated world. Write down what the
preconditions of these rules are. These define when the rules can be applied (and when this is
not possible).

8 For an explanation of the buttons and menus of SIF see the Section 4.1

&5

→ :
����
�����
���3	�������
+����	�������	+��	��������	����+���	��������
�
��� �	�+
��	�.� ��� �
��� �����
+� ���
��� ���� �	� �
���!�	� �
�� ��
���� �3	�
�	�������
��
+���	���	�
�����
���
+�	3	������
�.

6.7� �	�� ��� ���	����	�
+���	�������	���
���
When making up the previous lists, you may have encountered the problem that you

wanted to refer to some variables that describe the state of the world. For example you would
like to represent positions on a plane or in a room, so you would need some sort of an array
data structure. Gather all these variables in a list for the ��������&�����
�
���.

→ :
����
�����
���3	�� �����
+�3��!�	�� �����
���		�� �
��	����!	� ��	� ���	�
+
�
����������
�

6.>�)
����� 	�����	�+
������
��?
In SIF we used the EMS-model which in short means that agents do not perform actions

directly but they have ����	
���. Examples are effectors that make the agent move one step
forward, turn it around, pick up an object, transfer money to another agent, etc. You need
create a new effector for every action. Some actions are similar, in the sense that they affect
similar variables of the world representation. Group these actions so that for each group there
is one effector (this will make implementation easier).

To put more structure into the implementation, we would like you to think about a second
part of the EMS-model, the ������. Media take actions, compute the change of the state of
the world and transform the actions into something that can be perceived by other agents.
Media tackle certain aspects of reality; e.g. air is responsible for the transport of sounds, light
for seeing, etc. In other words, media implement the rules of what happens after an action has
been performed. You can now easily see that they represent exactly the list you already made
up in Section 5.5. Together with this list, we want you to group the effectors by the rules of
the simulated reality they affect. A straightforward partition could be to have a medium that
deals with communication and a medium that deals with moving objects in the world. Every
effector must be assigned to one medium only (otherwise the partition will not gain any
performance).

→ :
����
�����
���3	�������
+�	++	��
��"���	�������
��
+�������	������
���
+
��	���	++	��
��������
+����
���������
����!	��	�+
��	��!�������	++	��
�.�:
�
��
���� ��
� �3	� � �����
+� �	��� ��� +
�� 	��� �	����� ��	� �	��
+� ���	�� +�
�
�	���
��6.6�����������	�	���.

6.@�)
���
���	���	��	�3	���� 	�������	��
���?
Just as in reality our agents do not perceive the world as it is. Humans do not really see

light, but receive sensor data from their eyes and associate this data with stored experiences.
To enable our agents to react on changes in their world we will something similar and design
������� for them. This is fairly simple, as most of the sensors will correspond in some way to
the effectors. When you make up a list of all sensors needed by the agents, you may discover,
however that there are sensors that observe things your agents cannot effect e. g. time.
Another important fact in the context of the agent’s actions is that an agent will never learn
about the success of an action, unless it has a sensor that is designed to do so. For example, if
an agent moves forward, it will not know whether it actually moved forward unless it has a
sensor that tells it exactly this or it infers it from other sensors.

The data the agents will receive through sensors is called &��	�&
�. For an elegant design
of your simulation be careful not to use any other information sources for agents than sensors.

&8

In particular, do not use direct references to other objects in the world or direct access to the
world representation. Always filter such an information through media that clone the data
from the world representation and wrap them into precepts.

→ :
����
�����
���3	�������
+��	��
��������������
+��	�������	������.�����
�����	�������
����
����	��	�����	��������
��	��.��
��	��� 	����
����
���
��
���������	��
������������		�.

6.A� ����	�	����
�
Now you can start implementing your simulation! According to the data collected in the

previous steps, you can now write JAVATM program code. You might want to check first
which of the objects that already come with SIF are useful for your simulation, so we
recommend you explore the examples and take a look at Section 6.

Write one class file for each agent, sensor, effector, action, percept you need. Implement
the media and the visualisation (if they differ from what is already in the object libraries of
SIF). We recommend you arrange your files in a directory structure that reflects the structure
of SIF (see Section Appendix A).

 To get SIF running with your implementation you need to override the class
WorldServer (src.kernel) and create objects for the world representation, graphical user
interface, etc. This is rather easy, just cut and paste these lines of code from
example.src.OurWorld. Name the file after your simulation, it will be the class that you
will start to start your simulation. When started, SIF will always let you choose scripts from
the directory where you started it.

If you need help on how to optimise development, feel free to check the tips & tricks web
pages of SIF.

→ :
����
�����
���3	���
��	���
��
+�����	���������	����+�
���
�	�
���
+�sif.*
��� 	�.�������
�	������!	�	����
��
3	�+�
��
�	����+
����
��
��	�.

6.(B�,����
����������
�C

Start your simulation with the class the overrides the WorldServer. It will then prompt
you for a script to run. Choosing one and pressing start on the GUI will start your simulation.
If you feel that the system is too slow on your machine check our tips & tricks web page
maybe there is an easy way to speed things up.

→ :
�� ��
���� �
�� �3	� � �������
�� ���� ��� !	� 	����� ����+	��	�� �
�
��	�
���+
�������!	���	��!��� �	�����!	��
+���	��.

If you encounter any problems during this process or if you have any feature requests for
SIF, please send us an e-mail. We will take all feedback into account when releasing the next
version of SIF.

7� /<���	���	���
�
SIF has been successfully used for the implementation of several application examples. In

this section we will give a short description of each of them. All of the application examples
have been conducted by students of Multi-Agents Systems group.

&9

7.(� ��	����
��	��%
��� ��
��
The Automated Loading Dock is a representative for many applications of agents in the

manufacturing domain and has been designed in the MAS Group at DFKI as an evaluation
scenario for broad agents, i.e., agents which have to behave reactively, deliberatively, and
social at the same time. In the Loading Dock, forklift robots have to load and unload boxes of
different categories from several docked trucks to corresponding shelves. Reactivity is
required to implement the robust sensor-motor feedback of the robots for positioning, driving,
and manipulating. Deliberative abilities are required to perform the delivery tasks and
navigation that the forklifts equipped with. And social abilities are necessary in order to solve
conflicts in the Loading Dock, e.g., by exchanging tasks and boxes, two robots can optimise
their behaviour.

������	8	�	����������	�+	���	�������	����	��"�������

The Loading Dock has first been implemented physically using Kephera robots controlled
by the InteRRaP architecture (Müller 1996). In order to allow for controlled experiments, a
simulation has been built using SIF. The special character of the Loading Dock as being a
robotics domain is addressed by developing particular types of sensors and effectors.

7.-� �������
��
+������
��	������� �����	�
Due to the great success of the new electronic media, in particular the Internet, new forms

of communication, information retrieval and direct consumer commerce are beginning to
arise. Electronic matching algorithms are being developed for the purpose of reducing market
impact of large stock market transactions: The idea is that large institutional investors will be
matched together, in an optimal sort of way, anonymously, so that markets do not have time
to react to the buy/sell orders that would occur in traditional stock markets.

Using SIF, we have implemented simulations of some of those systems in order to gain
experiences and to evaluate and compare the approaches. In our implementation we have
realised a central matching engine and possible traders as SIF agents that communicate via the
world server. Buyer and seller agents are equipped with the following effectors and sensors:

• *��������������������������	
���: trader agents can register to a matching agent at any
time. A bidder agent can also disconnect from a matching agent whenever the agent
decides to do so.

';

• ��
����	
����
����������������	
���: a trader has to announce its satisfaction structure The.
The satisfaction announcement has to be done right after the logging procedure but can
also be performed during the run of the trading process if an agent changes its mind.

• �������
����������: once a deal is confirmed, confirmation messages sent by the matching
agent are received in these sensors.

Trader agents can log in to different matching engines simultaneously if the traders wish
to trade on different goods at the same time. The realised system is able to cope with the use
of multiple matching agents. Agents of that type have the following sensors and effectors at
their disposal:

• �������
��������	
��: if a matching agent has determined a seller-buyer pair for a certain
trade it sends a message to both agents containing information on the price and quantity of
the arranged deal.

• *������� ������: using this sensor, a matching agent realises registration acts of trader
agents.

• ��
����	
����
����������� sensor: a matching agent gets informed on satisfaction structure
changes via this sensor.

The satisfaction functions or matrices of traders can be inserted conveniently in a script to
be read during the start-up of the agents in SIF. Matching agents store all combinations of
mutual satisfaction values of trading agents currently participating in a trading procedure in a
priority queue, ordered by the value of the mutual satisfaction. For performance reasons this
priority queue is realised by using a balanced (2, 4)-tree.

7.0� ,	�
���	�������!���
��� 	���
Inspired by the strategic games which deal with building of settlements on a pre-defined

map with a limited amount of resources and competing clans (the different players), agents
have been designed which distribute a variety of different tangible resources.

In the application, each resource is controlled by an agent. These resource agents do not
occur on the grid, but appear only as so called ���
���� ����
�. These virtual agents have
sensors to perceive the world and specific effectors for manipulating the world, that is,
distributing resources on the grid. Virtual agents do not appear on the grid and they have no
representation which is perceivable by other agents. Due to this nature, limitations through
restricted perception or action, which are dependant on the agents location on the grid are not
applicable to virtual agents.

Resource agents can distribute resources on the grid. They can deposit the resources on a
field or create resource sources, which provide unlimited resources of their kind. The
distribution of resources can be done according to different distribution models, which can
e.g. simulate the four seasons.

7.5� D��+�E��	����� 	���
Different search strategies for agents in grid worlds have been implemented. With the

helps of such a strategy an agent is able to systematically search the grid world for a specific
target. Such a target can be another agent or special object (e.g. a block of a certain colour).
Search agents have limited perception, their vision range is usually restricted to only a small
fraction of the grid. In order to facilitate the search, the agent disposes of a GPS-sensor, which
always tells it its own location on the grid. Implemented search strategies comprise a simple
row search without a memory of searched areas on the grid. Another, more sophisticated

'&

strategy is the map based search, where the agent builds a representation of the world and
notes already searched spots on a map. This map is used by the agent to check for still
undiscovered areas on the grid. Figure 9 shows an example of such a map right after the agent
is created and after some exploration. It can be also displayed to the user to demonstrate the
search.

������	9	3��	"��	�+	���	�����	#���	�������	G��+�H	���	�+���	��"�	�F���������	G�����H/

7.6� ��	�&��������
����������
Basic elements for standard predator prey scenarios have been implemented, better known

as &�����
� �����. Located on the grid there is a prey agent and some predator agents (the
actual number of predator agents varies). The goal of the predators is to come to a predefined
capture position (e.g. to surround the prey, which means that each of its adjacent fields is
occupied by a predator). The predators act independently from each other, they are not guided
by some kind of central control unit. Nevertheless, in some scenarios they are able to
communicate and cooperate.

In a basic scenario, the prey is known to the predators (an vice versa) and all agents have
unlimited vision range. The basic capture position is defined as a position, in which the prey
agent has no possibility to move either left, right, above or below.

The game parameters can be varied in a script file or in the implementation of an agent’s
strategy and in the implementation of the capture position. As an agent’s strategy a user may
choose one element out of a set of predefined strategies. A strategy defines an agent’s
reactions on sensorial or communicative stimuli. It also includes properties of its owning
agent, which are directly related to the way, the agent is supposed to act.

>� ��������
�

>.(� '
������
�
We have presented an architecture for building simulations, EMS, and its implementation,

SIF, as a broad and reasonable simulation framework for multi-agent systems. The key design
aspects have been the fine-grained virtually acting and sensing, the ability of rapid-
prototyping simulated worlds, a broad implementation platform, and the possibility of
supervising agents by human users. The testbeds we are currently developing with our tool,
for example the automated loading dock, confirm the applicability of our approach. It has

''

been suggested that this framework is able to be the testbed for societies with emotional
agents (Burt 1998).

>.-� 8���

�
New developments in Virtual Reality (VR) have brought a qualitative change to human-

computer interaction, in the form of co-habited virtual worlds (CHVW). In such worlds,
synthetic agents and avatars (agents that are controlled and supervised by human users)
interact in a globally networked setting. Applications of CHVW are, for example, virtual
conferences where lifelikeness and interaction of avatars is a key issue. One could also think
of virtual marketplaces incorporating electronic salesmen agents and customer avatars as a
platform for future e-commerce. Similarly, the entertainment issue of interactive, virtual
theatre requires mixed populations of synthetic characters and half-human, half-
computationally steered personae. DAI technology; such as integrated into SIF; provides the
key to develop the computational means of realising CHVW.

Indeed, the role of a human agent within SIF has already been addressed by the Control
Window and the Control Pad GUI. The human perceives the world through a special sensor
(his browser) and acts upon the world through a special effector (the control pad). Because of
the restricted bandwidth of the human-computer interface; it is convenient to let particular
agents (avatars) represent the human in the simulation. The agent perceives the world on
behalf of the human and acts upon that perception accordingly. Thereby; the user is able to
trace the avatar’s behaviour and to guide and command its avatar through his action.

������	&;	�	����������	�+	���	����"���	
!�	7������

We are currently experimenting with a Web-Based User Interface to SIF which connects
multiple human users remotely to a SIF simulation. It uses standard platforms; such as
VRML, JAVATM; and RMI to visualise the state of the simulation and its change via three-
dimensional; interactive graphics and animations. The key to do so is to apply asynchronous
network technology. Asynchronous visualisation lacks the guarantee of persistence; but

'(

enables to decouple the simulation from the computational operations of the clients. This is
important for upholding the reproducibility of simulation results.

Network technology is the key to bring together various users from remote places and on
different platforms. These advantages could be also transferred to SIF agents as well in order
to move towards a distributed simulation: Agents and avatars could run on the machines of
their users being under their control and not consuming central computational resources.
Perception and action interfaces should be implemented as standard RMI or CORBA services
being independent of any implementation language. And visualisation and appearance data
can then be stored decentrally near the agent code and accessible to the global CHVW in form
of URL’s.

����
��	� 	�	���

We would like to thank all the students who used SIF in their practice semester for their
patience with revisions and their valuable feedback on the system. We would also like to
thank Jasmin Schneider, our graphics designer, for putting our ideas into meaningful
illustrations.

'<

��.��.�/1�234

(Bouron et al. 1991) T. Bouron, J. Ferber, and F. Samuel. MAGES: A Multi-Agent Testbed
for Heterogeneous Agents. In Y. Demazeau and J.P. Müller (eds.):
Decentralised AI, volume 2, pp 195–216. North-Holland, 1991.

(Burt 1998) Burt, Alastair. Modelling motivational behaviour in intelligent agents in
virtual worlds. In C. Landauer and K. L. Bellman (eds.), Proceedings of
Virtual Worlds and Simulation Conference (VWSIM'98), Simulation
Series vol. 2, The Society for Computer Simulation International, 1998.

 (Funk et al. 1998) P. Funk, C. Gerber, J. Lind and M. Schillo. SIF: An Agent-Based
Simulation ToolBox using the EMS Paradigm. In: ���	�����������
!��+��
��
����
������ ,�������� ���
!�� ������
���� ��� �-.�&���� ������
���
��	��
�������������, 1998.

(Greenberg and Westbrook 1990) Michael Greenberg and David Westbrook. The Phoenix
Testbed. Technical Report COINS TR 90-19, Computer and Information
Science, University of Massachusetts, 1990.

(Hägg et al. 1994) S. Hägg, F. Yegg, R. Gustavsson, and H.Ottosson. DA-SoC: A testbed
for modelling distributed automation applications using agent-oriented
programming. I Proccedings of the Siyth European Workshop on
Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW-
94), pp 39–51, August 1994.

(Hanks et al. 1993) Steve Hanks, Martha Pollack, and Paul Cohen. Benchmarks, Testbeds
Controlled Experimentation, and the Design of Agent Architectures. AI
Magazine, 14 (4), pp 17–42, 1993.

(Hart and Cohen 1990) David Hart and Paul Cohen. Phoenix: A Testbed for shared Planning
Research. Proceedings of the NASA/AMES Workshop on Benchmarks
and Metrics, June 1990.

(Jung et al. 1999) Christoph G. Jung, Jürgen Lind, Christian Gerber, Michael Schillo, Petra
Funk and Alastair Burt. An Architecture for Co-Habited Virtual Worlds.
In C. Landauer and K. L. Bellman (eds.), ���	�����������/��
����0�����
���� ������
����,�������	�� �/0���#11�, Simulation Series vol. 2, The
Society for Computer Simulation International, 1999

(Khepara 1993) 2!�&���� -����� ������. Laboratoire de Microinformatique, Lausanne
1993.

(Lind 1998) Lind, Jürgen. $!�� ���� �����. DFKI Technical Memo TM-98-09,
December 1998

'=

 (Montgomery et al. 1992) T. Montgomery, J. Lee, D. Musliner, E. Durfee, D. Darmouth,
and Y. So. MICE users guide. Technical Report CSE-TR-64-90,
Department of Electrical Engineering and Computer Science, University
of Michigan, 1992.

(Müller 1996) Müller, J. P. $!�� 3������ ��� ��
�������
� ����
�4� �� *�%����� �&&���	!'
Springer-Verlag, Lecture Notes in Artificial Intelligence, 1996

(Pollack and Ringuette 1990)Martha Pollack and Marc Ringuette. Introducing the tile-world:
Experimentally evaluating agent architectures. In Proceedings of the
Conference of the American Association for Artificial Intelligence, pp
183–189, 1990.

(Russell and Norvig 1996) Russell, S. and Norvig, P. A�
���	���� ��
�������	�5� �� ������
�&&���	!' Prentice-Hall, 1996.

(Shoham 1991) Shoham, Y. Agent-oriented programming. In ���	�������� ���
!�� 66��

��
����
������0����!�&����3��, pages 345-353, 1991.

(Wiering and Dorigo 1998) Marco Wiering and Morco Dorigo. Learning to control Forrest
Fires. In Proceedings of the Twelfth International Sysmposium on
Computer Science for Environmental Protection, 1998.

(Wooldridge 1995) Michael Wooldridge. This is MYWORLD: The Logic of an Agent-
Oriented DAI Testbed. In M.Wooldridge und N.R. Jennings (eds.):
Intelligent Agents: Proceedings of the 1994 Workshop on Agent
Theories, Architectures, and Languages. LNAI Springer-Verlag, 1995.

����1�5.�!.� "�0"�6

AOE Abstract Object Engine
API Application Programming Interface
EMS Effector-Medium-Sensor (model)
GOL Generic Object Library
GUI Graphical User Interface
MAS Multi-agent system
ROL Runnable Object Library
SIF Social Interaction Framework
VRML Virtual Reality Mark-up Language

'%

�22� 6.7����3����89�/�"

SIF

src example

 AOE GOL and ROL kernel util src

Actions Agents Effectors Frames GUI Media Percepts Sensors Visualizers

������	&&	3��	��������)	���������	�+	���	
!�	������)

The source is distributed across a number of packages (see Figure 11). This distribution
tries to reflect the EMS-paradigm. The � �
��	
��)�	
������� (AOE) contains the abstract
definition of the classes that everything else inherits from. The .���� ��� �)�	
� *� ���%
(ROL) consists of ready-to-use objects. Any classes in between these two layers are in the
7�����	��)�	
�*� ���% (GOL). Both the GOL and the ROL have the same directory structure
(which in JAVATM is the same as the package structure): they have domains for actions,
agents, effectors, frames, GUI, objects, media, percepts, sensors and visualisers. In the kernel
directory lie the core classes of SIF and util contains some auxiliary objects.

For designing your own simulation you will find the example directory most interesting as
you can use it for cut-and-paste-programming. Its src directory has the same structure as the
GOL and the ROL. Please note that the JAVATM package names are created by concatenating
the directory names while traversing the tree and including a „.“ in between two directory
names.

Package: example.src

The classes that demonstrate a simple scenario for SIF. It can be used for cut and paste
programming.

Package: src.AOE

The � �
��	
��)�	
������� (AOE) contains the basic classes from which others inherit, e. g.
src.AOE.Sensor, src.AOE.Medium. Sometimes you also identify a class to belong to
the AOE because it has the prefix „SIF“ to its name.

'5

Package: src.GOL.{actions, agents, effectors, frames, objects, media,
percepts, sensors, visualisers}

They are all part of the 7�����	��)�	
�*� ���% (GOL). The GOL objects are independent of
scenarios. They may be abstract classes that are implemented by objects in the next set of
packages.

Package: src.GOL.GUI

The classes that deal with the ���&!�	����������
����	�(GUI), see Section 4.

Package: src.ROL.{actions, agents, effectors, frames, GUI, objects, media, percepts, sensors,
visualisers}

They are all part of the .���� ��� �)�	
� *� ���% (GOL). The ROL objects are
implementations for special scenarios can be directly used.

Package: src.kernel

The core of SIF.

Package: src.util

A collection of auxiliary classes that are used by the SIF core and may be useful for other
applications.

'8

�22� 6.7��������8!�6����""�"

To conduct experiments you will most likely want to create a new scenario. In this section
we describe which classes have to be overridden by a scenario specific implementation. They
are all cited by their class name. To find the file src.AOE.Medium look for the file
„Medium.java“ in the directory „src.AOE“. That means you append „.java“ to the last word in
the class name. Figure 12 shows the inheritance structure of all classes in SIF and also their
dependencies in the sense of which class uses which other class. Documentation of the fields
and methods of these classes and more information can be found in the application
programming interface (API) that can viewed online or downloaded from the homepage of
SIF at DFKI.

����0 src.kernel.WorldServer

Reference Implementation: example.src.OurWorld

This class contains the main() method which gets called from the JAVATM virtual
machine when you run SIF. It initialises all objects and passes their instances to the SIF core.

File: src.AOE.Medium

Reference Implementation: src.ROL.media.*

As mentioned above, these classes describe how the input for all sensors is to be
computed. It also defines the effect of the actions on the world representation. We would like
to stress the fact that these classes define operationally all effects of any action in the
simulation. See the html documentation for the various class methods

File: src.AOE.SIFGUIAgent

Reference Implementation: src.ROL.GUI.GUIAgent

This is the heart of the 7��&!�	��� -���� ��
����	�(GUI). Here, the environment for the
visualisation of a simulation is chosen (JAVATM, VRMLTM). The class provides a range of
useful methods for the user interface apart from providing the mechanism to link the GUI
with the SIF core.

File: src.AOE.SIFCanvas

Reference Implementation: src.ROL.GUI.Canvas

You need to change this only if you decide to give your agents or the simulated world a
different appearance. Define here how the visualise all the objects that might appear in your
simulations, depending on the contents of a data structure that is derived from
src.AOE.SIFFrame.

'9

File: src.AOE.SIFObjectInfoGUI

Reference Implementation: example.src.ObjectInfoGUI

This part of the GUI allows the user to check the internal state of an object (or agent)
during runtime. This is a very powerful tool to keep control of the states of the objects while
you run tests during the development of your simulation. With this free to edit GUI you need
no longer massive text output to your shell. See also the html documentation on the visualiser
objects that are available for a number of sensors. You can configure this GUI to output only
the important data that is contained in your objects.

File: src.AOE.SIFControlPad

Reference Implementation: src.ROL.GUI.ControlPad

This class is the counterpart of the agent GUI. It allows the user to give an agent input,
especially to make it perform specified actions, by clicking on buttons representing the
actions an agent is capable of. By sending its data to the GridAgentControlMedium the
command gets send to the agent the control pad is connected to.

File: src.AOE.SIFWorldRepresentation

Reference Implementation: example.src.WorldRepresentation

Depending on the scenario, a data structure to represent the state of the world has to be
designed. This data structure must provide methods to access this representation and to update
it.

File: src.AOE.SIFIncorporateScript

Reference Implementation: example.src.IncorporateScript

As SIF enables the user to run scripts, the script language has to be specified according to
the needs of the scenario. Implementing the methods of this class provides for the
specifications necessary. These will then be used when a script is loaded to initialise the
representation of the world and the simulation.

(;

A
ct

io
n

M
an

ag
er

A
ct

io
n

M
an

ag
er

W
or

ld
 S

er
ve

r
S

en
so

r
M

an
ag

er
S

en
so

r
M

an
ag

er

�
�
�C

on
tr

ol
F

lo
w

M
es

sa
ge

�
�
�S

en
so

r

�
�
�P

er
ce

pt

co
nt

ro
lP

ad

�
�
�

�
��

�
�
�

co
nt

ro
lP

ad

�
��

�
�
�

A
ge

nt
In

fo

�
��

C
an

va
s

�
��

W
or

ld
R

ep
re

se
nt

at
io

n

�
��

In
co

rp
or

at
eS

cr
ip

t

In
co

rp
or

at
eS

cr
ip

t

�
��

A
ct

io
nM

an
ag

er

W
or

ld
R

ep
re

se
nt

at
io

n
W

or
ld

R
ep

re
se

nt
at

io
n

gr
id

C
an

va
s

ca
nv

as

ag
en

tIn
fo

�
�
�

�
�
�A

ge
nt

sc
en

ar
io

A
ge

nt

�
�
�

sc
en

ar
io

A
ge

nt
A

ge
nt

�
��

A
ge

nt

�
��

O
bj

ec
t

�
��
�
�
�A

ge
nt

sc
rip

tE
di

t�
�
�

sh
ow

C
on

tro
lF

lo
w

�
�
�

�
�
�S

ha
di

ng
M

es
sa

ge

�
�
�S

ha
di

ng
M

es
sa

ge

�
�
�S

ta
tu

sM
es

sa
ge

�
�
�S

ta
tu

sM
es

sa
ge

�
�
�M

ar
ke

rM
es

sa
ge

�
�
�R

es
et

B
ut

to
ns

M
es

sa
ge

�
�
�T

im
eM

es
sa

ge

�
�
�C

on
tr

ol
F

lo
w

C
ha

ng
e

�
�
�C

on
tr

o
lF

lo
w

A
ct

io
n

�
�
�C

on
tro

lF
lo

w
M

es
se

ng
er

�
�
�F

ile
M

es
se

ng
er

�
�
�U

pd
at

eI
nf

oP
er

ce
pt

�
�
�V

is
io

nP
er

ce
pt

�
�
�Y

ou
M

ay
C

on
tin

ue
M

es
sa

ge

st
an

da
rd

C
oo

rd
in

at
es

co
or

di
na

te
sI

nt

�
��

C
oo

rd
in

at
es

�
��

Fr
am

e

�
��

Ti
m

e

in
te

rn
C

om
A

ct
io

n

�
��

ob
je

ct
In

fo
rm

at
io

n
po

si
tio

nC
on

te
nt

s

tim
in

gQ
ue

ue
C

on
te

nt
s

tim
in

gQ
ue

ue

pe
rc

ep
t

vi
si

on
P

er
ce

pt
vi

si
on

S
en

so
r

vi
si

on
S

en
so

r

ra
ng

eS
en

so
r

se
ns

or
se

ns
or

se
ns

or
F

ie
ld

se
ns

or
F

ie
ld

ra
ng

eS
en

so
r

�
��

S
en

so
rM

an
ag

er

�
��

C
om

m
un

ic
at

io
nS

en
so

r

�
��

C
om

m
un

ic
at

io
nA

ct
io

n

�
��

C
om

m
un

ic
at

io
nP

er
ce

pt
co

nt
ro

lP
ad

S
en

so
r

co
nt

ro
lP

ad
P

er
ce

pt
co

nt
ro

lP
ad

S
en

so
r

A
ll

S
IF

 c
la

ss
es

an
d

th
ei

r
de

pe
nd

en
ci

es

M
ed

iu
m

ag
en

tF
ra

m
e

em
pt

yF
ra

m
e

w
al

lF
ra

m
e

em
pt

yS
pa

ce
w

al
l

E
ffe

ct
or co

m
m

un
ic

at
io

nE
ffe

ct
or

ac
tio

n

bl
in

dA
ge

nt
co

m
m

un
ic

at
iv

eA
ge

nt
co

nt
ro

la
bl

eA
ge

nt
si

m
pl

eA
ge

nt
vi

su
al

R
ea

ct
iv

e A
ge

nt

co
m

m
un

ic
at

io
nA

ct
io

n
m

ov
er

A
ct

io
n

tu
rn

er
Le

ftA
ct

io
n

tu
rn

er
R

ig
ht

A
ct

io
n

co
nt

ro
lP

ad
E

ffe
ct

or
m

ov
er

tu
rn

er
R

ig
ht

tu
rn

er
Le

ft

us
es

ab
st

ra
ct

 c
la

ss

"n
or

m
al

 c
la

ss
"

is
-d

er
iv

ed
-fr

om
S

IF
 s

ys
te

m

sc
en

ar
io

in
te

rfa
ce

������	&'	���	�������	�+	
!�	���	�����	�����������	���	�����	���������

(&

�
�	
��
��
�
��
�

��
��
���
��
��
��
�

�
�	
��
�
�

�!

�
"�
��
�
��
��
��
��
��

�
��
�
#
�$
��
�%
��
�
�
�#
��
�

��
�&
�
��
��
'

��
��
�
"�
��
�
��
��
��
�#

&
��
�
��
���
��
���

(�)
�
�
��
�*
��
#
(�+
��
��
�	
�
�
!(
�,
�
��
��
��
�
��
��
�
��

��
#
�,
�
��
��

�
�
�)
�
�

�
�
�.
.�
/0

R
es

ea
rc

h
R

ep
or

t

