Forschungszentrum
fiir Kiinstliche Report

’ P Dsvisches Research
Intelligenz GmbH RR-02-02

Secure Mobile Multiagent Systems
In Virtual Marketplaces

A Case Study on Comparison Shopping

Ina Schaefer

March 2002

Deutsches Forschungszentrum fur Kinstliche Intelligen z

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken, FRG
Tel.: + 49 (631) 205-3211 Tel.: + 49 (681) 302-5252
Fax: + 49 (631) 205-3210 Fax: + 49 (681) 302-5341
E-Mail: info@dfki.uni-kl.de E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum flr Kiunstliche Intelligen z

DFKI GmbH

German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbriicken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI's mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 165 full-time employees, including 141 research scientists with advanced de-
grees. There are also around 95 part-time research assistants.

Revenues for DFKI were about 30 million DM in 2000, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 20% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbriicken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's five research departments are directed by internationally recognized research scien-
tists:

[Knowledge Management (Director: Prof. A. Dengel)

[Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
(1 Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

[Language Technology (Director: Prof. H. Uszkoreit)

[Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director

Secure Mobile Multiagent Systems
In Virtual Marketplaces
A Case Study on Comparison Shopping

I na Schaefer

DFKI-RR-02-02

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-01 IWA 01).

(© Deutsches Forschungszentrum fur Kuinstliche Intelligenz 2002

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fur Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kiinstliche Intelligenz.

ISSN 0946-008X

Secure Mobile Multiagent Systems

In Virtual Marketplaces
A Case Study on Comparison Shopping

Ina Schaefer

Abstract

The growth of the Internet has deeply influenced our daily lives as well as our com-
mercial structures. Agents and multiagent systems will play a major role in the further
development of Internet-based applications like virtual marketplaces. However, there is an
increasing awareness of the security problems involved. These systems will not be success-
ful until their problems are solved. This report examines comparison shopping, a virtual
marketplace scenario and an application domain for a mobile multiagent system, with re-
spect to its security issues. The interests of the participants in the scenario, merchants
and clients, are investigated. Potential security threats are identified and security objec-
tives counteracting those threats are established. These objectives are refined into building
blocks a secure multiagent system should provide. The building blocks are transformed
into features of agents and executing platforms. Originating from this analysis, solutions
for the actual implementation of these building blocks are suggested. It is pointed out
under which assumptions it is possible to achieve the security goals, if at all.

Contents
1 Introduction

2 Related work
2.1 Related work — Comparison Shopping
2.1.1 Construction and Working Principles of Comparison Shopping Agents . .
2.1.2 Virtual Marketplace Systems o
2.1.3 The Economic Perspective L.
2.1.4 Comparson Shopping in the Security Literature
2.2 Related work — Security Mechanisms for Mobile Agents
2.2.1 Protection of Hosts from Malicious Agents.
2.2.2 Protection of Agents against Malicious Hosts
2.2.3 Protection in Both Directions L.

3 Comparison Shopping — A Case Study
3.1 The Scenario e
3.2 Security Analysis
3.2.1 Roles and their Interests oL
3.2.2 Different Instances of the Scenario, ...
3.3 Overall Security Threats and Security Objectives
3.4 Remarks on the Security Threats and Objectives

4 Towards a Secure System
4.1 A Technical Realisation of the Multiagent System
4.2 Building Blocks
4.3 TFeatures of the Agents and Platforms
4.4 Towards a Technical Realisation
4.4.1 General Remarks on the Achievability of Security Objectives
4.4.2 Aspects of Technical Realisations for the Proposed Building Blocks

5 Conclusion and Future work

References

10
10
13
13
15
16
19

19
20
21
23
24
24
25

31

32

1 Introduction

The success of the Internet and the World Wide Web has deeply influenced our every day lives
as well as our commercial structures. Agent technologies and multiagent systems will play a
major part in the further development of WWW-based applications: virtual marketplaces with
customer and seller agents, chat rooms and avatars, personal assistant agents as well as non
benevolent agents designed to attack a site, are just some of many applications. While there
is still a considerable hype concerning agent technologies, there is also an increasing awareness
of the problems involved. The growth of Internet-based commerce is tempered by legitimate
concerns on the security of such systems. In particular, these applications will not be successful
unless security issues can be adequately handled. One of the major concerns for both customers
and merchants participating in eCommerce is the potential loss of assets and privacy due to
the breaches in the security of corporate computer systems. Although there is a large body of
work on cryptographic techniques that provide basic building blocks to solve specific security
problems, relatively little work has been done in investigating security in a multiagent system
context. The introduction of mobile software agents significantly increases the risks involved in
Internet and Web-based applications.

Mobile agents have several advantages in a system like the Internet. Mobile agents travel to a
platform to be executed and go where the required data is stored. So the overall communication
traffic over low-bandwidth, high-latency and high-cost access networks is reduced. Also if the
connection to the agent owner is interrupted, the agent can still go on working. It returns the
results when the connection is re-established. The owner does not have to be online all the
time for his agent to perform his task. This is particularly useful in case the connection is made
via mobile phone. Therefore, the trade-off between performance and security issues has to be
considered.

The research presented in this report was done as a part of the SEMAS (Security in Mobile
Mulitagent Systems) project funded by the German Ministry for Education and Research. It
investigates the fundamental security threats in the design of mobile multiagent systems within
virtual marketplaces. These threats can be classified according to whether they are inherent to
the application scenario to be implemented, inherent to the multiagent system level design, a
consequence of the design of the individual agent or a result of using mobile computing. SEMAS
therefore investigates into how the design of the application, the design of the agent society
and the selection of the computational paradigm influences the characteristics of the security
threats and how security measures can be combined to an all-embracing security infrastructure.
Accordingly, the SEMAS methodology and also the research work is organised into three layers:
firstly the application layer, secondly the system architecture and thirdly the computational
architecture. The aim of the SEMAS project is to come up with a methodology for the design
and implementation of secure mobile multiagent systems, particularly for virtual marketplaces.
Since SEMAS covers the application oriented design phase as well, there is a need to focus on
a family of scenarios. Guided by the economical importance and scientific significance, SEMAS
explores concrete instances of virtual marketplaces based on auctions and free negotiation. The
cases considered in SEMAS are auctions and comparison shopping as important applications
for mobile agents in virtual marketplaces. They are also important instances of negotiation on
markets from an economic perspective.

This report focuses on the comparison shopping scenario, one of the SEMAS cases on the
application layer. It investigates security requirements and possible solutions for this concrete
scenario. In [DEW96], the comparison shopping problem is described as follows: given are a
domain description with useful attributes to differentiate between different products, a set of
URLs for the homepages of possible vendors, an attribute A by which the user wants to compare
the vendors (e.g. the price) and finally a specification of the desired product in terms of desired
values for the product’s attributes. The task of a comparison shopping agent is to determine
the set of stores where the desired product is available sorted by the attribute A.

In this report, a detailed model for the comparison shopping scenario will be established. With
respect to its different phases and instances, it will be explored which interests and expectations
the participants have. The interests and possibilities of an attacker and the resulting security
threats for the application will be considered. From that analysis, the overall security objectives
counteracting those threats are identified. The security objectives specify the requirements the

system has to satisfy for considering it as secure. Having sketched a potential mobile multiagent
system to realise the scenario, the objectives are broken down into more detailed features of
the system to be constructed, i.e. building blocks or interfaces the system architecture has to
provide at the application level. The building blocks are further refined into features of single
agents roaming in the system and of executing platforms. Finally, concrete technical means are
proposed to implement the building blocks on the level of the system architecture.
Furthermore, this report gives an overview of research on comparison shopping from different
points of view, i.e. the construction of shopbots, virtual marketplaces, economic impact and
security issues. Additionally, an overview of existing security mechanisms for mobile agents and
platforms is presented. It is shown which of those are applicable in this case study.

The remainder of this report is structured as follows: In section 2, we discuss related work with
respect to comparison shopping and security of mobile agents. In section 3, a detailed model
of the comparison shopping scenario is established and its different phases and instances are
analysed. In section 4, we move towards a secure system and show which building blocks are
needed to construct a secure mobile multiagent system for this applicaion scenario and how
they can be realised technically. Section 5 finishes the report with a brief summary of the main
results and an outlook to future work.

2 Related work

2.1 Related work — Comparison Shopping

Research on comparison shopping can be divided into different areas according to its focus. The
first main area of research is concerned with the functionality and construction of comparison
shopping agents or so-called shopbots. It is investigated how a comparison shopping agent
has to work, how wrappers for the retrieved information are constructed and how the findings
will be ranked. A second focus are virtual marketplaces, most of which contain a comparison
shopping phase. A third area of research is the economic perspective on comparison shopping.
Researchers investigate which impact shopbots have to the economy and develop methods to
analyse economies with comparison shopping agents. Finally, comparison shopping is often used
as example in literature considering security of mobile agents. Many authors use comparison
shopping to illustrate the security issues linked to mobile agents. In the following, we have a
closer look at these four areas of comparison shopping research.

2.1.1 Construction and Working Principles of Comparison Shopping Agents

The first area of comparison shopping research is concerned with the construction of comparison
shopping agents that are sent out to find the best match for a given product description.
Andresen Consulting’s BargainFinder [Kru96] is the first ever model of a merchant brokering
shopping agent, or comparison shopping agent. Given a specific music CD name BargainFinder
requests its price (including delivery) from each of nine different online music catalogs using
the same requests as a web browser. It presents its results to the consumer that makes the
final decision where to buy from. Several merchants decided not to participate or blocked
BargainFinder. BargainFinder works in a hard-wired way and is hand-coded for the specific
product domain. It employs manual rule extraction and does not construct wrappers itself.
This means that it is explicitly encoded in the BargainFinder agent how the information from
a specific visited website is extracted. Exite’s Jango was another merchant brokering shopping
assistant similar to BargainFinder, but with more product features and shopping categories to
search across.

Shopbot [DEW96] is comparable to BargainFinder and Jango. It is inspired by BargainFinder’s
feasibility demonstration and popularity. However, Shopbot is product independent and takes
a description of a product domain as an input. All information it needs about a shop is its
URL. Shopbot learns how to extract information from the store and relies on AI techniques
like heuristic search, pattern matching, or inductive learning in contrast to the hand-coded
BargainFinder. Shopbot suggests an automatic rule extraction technique by analysing and
learning in shopping malls. In order to integrate specific product information, Shopbot removes
irrelevant information such as advertisments by using inductive learning mechanisms and then

extracts necessary product information. However, Shopbot uses strong assumptions about the
structure of HTML files and the display format of products for learning. More about the
technical details can be found in [PDEW95].

[JCK'00] proposes a more scalable comparison shopping agent as an improvement to Shop-
bot. They present a robust and automatic shopping mall learning algorithm and an ontology
generation method. The main idea of the proposed algorithm is to determine the position of
a product description unit from the HTML source of a search result page by recognizing a
repeated pattern of logical line information. The positional information is converted into an
extraction rule that becomes the main part of the wrapper. This algorithm is simple, but robust
because no strong biases are assumed. Consequently, the success rate is higher for constructing
a correct wrapper. Furthermore, a mechanism is suggested that generates the ontology from
the well-structured outputs. The existing ontology is automatically extended by applying it to
unstructured search results. More details on the construction of these wrappers can be found
in [YLCOQ].

In [BGY9], Brody et al. introduce the PocketBargainFinder device. A customer enters a
bookshop and finds an interesting book. He takes the PocketBargainFinder and scans the
book’s barcode. PocketBargainFinder connects to the Internet and evaluates the book’s price
at different online retailers. The customer sees whether he could order the book on the Internet
for better conditions taking delivery costs and delivery time into account. The used hardware
is a PDA and a barcode reader as well as wireless communication. PocketBargainFinder is
proposed for use in augmented commerce, i.e. commerce in the real world enhanced with
electronic commerce components.

[GM98] stresses the necessity of including multiple attributes in the product ranking done by
agents during comparison shopping. An online-merchant would, as in the physical world, prefer
his customers only to shop at his site because cross-merchant comparison is seen as a threat to
his own profitability. However, consumers want to compare product offerings across merchants.
Cross-merchant comparison is a characteristic of retail marketplaces. Thus, merchants enhance
their products with product-added values like extended warranties, superior customer service
and so on to distinguish themselves from other merchants. Cross-merchant comparison is much
easier and less costly if it is done by comparison shopping agents. The first generation of
comparison shopping agents makes their recommendations only on the price of the product ig-
noring other product-added values. That results in inappropriately competative markets. That
may mislead customers since the cheapest product is not always the best to buy. Comparison
shopping agents have to be improved in so far as they should employ integrative negotiation
techniques, i.e. they try to resolve a conflict over multiple, but not mutually exclusive goals
[GM98]. This decision process involving multiple attributes can be described and analysed
using multi-attribute decision theory.

2.1.2 Virtual Marketplace Systems

Many of the existing virtual marketplace systems implement a stage similar to comparison
shopping. Kashbah [CM96] is a web-based multi-agent classified ad system where users cre-
ate buying and selling agents helping to transact goods. These agents automate comparison
shopping and negotiation between buyers and sellers. A user wanting to buy or sell a good
creates an agent and sends it to a centralised marketplace. An agent’s goal is to complete an
acceptable deal satisfying its owner’s preferences. However, there are other more sophisticated
markets which implement more market mechanisms and more advanced negotiation.
MAGMA [TMGW97] is such a more sophisticated virtual marketplace system which comprises
all stages from the product brokering to the actual purchase. MAGMA, as a real virtual
marketplace, comprises banking, communication infrastructure, mechanisms for transportation
and storage of goods, facilities for advertising, economic mechanisms and transaction protocols.
MAGMA also contains a comparison shopping stage. Another virtual marketplace system of
this kind including comparison shopping called Tete-a-Tete was developed at the MIT.

In [GMMO98] a survey of existing virtual and agent-based marketplace systems is given. The
classification of such virtual marketplaces is made according to which stages of the Consumer
Buying Behaviour (CBB) model are implemented. The CBB model divides a purchase process
into different phases. In the product brokering stage, a customer decides what he wants to buy.

In the following merchant brokering or comparison shopping stage the customer evaluates the
offers for this product of different merchants to find out whom to buy from. This includes the
evaluation of merchant alternatives, based on customer provided criteria (e.g. price, warranty,
availability, delivery time, repudiation). After the merchant brokering stage, the negotiation
phase follows. The process ends with purchase and delivery of a product. In this survey, it can
be seen which existing systems implement a comparison shopping stage and which do not.

2.1.3 The Economic Perspective

Kephart and Greenwald in [KG99, GK99] explore the potential impact of shopbots on market
dynamics by proposing, analysing and simulating a model of shopbot economics which incor-
porates software agent representations of buyers and sellers. They state that the reduction of
economic friction due to the decreased search costs could dramatically alter market behaviour
in the future as shopbots become more frequently used. Their main objective is to understand
the dynamics of the future information economy in which software agents, rather than humans,
play the key role and to design utility maximisation algorithms for economically motivated
software-agents. In the latter paper, they also examine the impact of pricebots, i.e. software
agents that set prices according to supply and demand.

In [MUO1], the authors focus on the impact of software agent-based shopbots and pricebots
on electronic markets. Shopbots and pricebots change the capabilities available to buyers and
sellers on the market. A shopbot is attached to a single buyer and able to query several sellers
about a desired product. In this sense, shopbots are similar to comparison shopping agents.
A pricebot is attached to a single seller and has the ability to change the price of a service
dynamically to maximize the seller’s profit. The paper proposes a model in which different
situations, e.g. no price and no shopbot, only shopbots or both of them are analysed. One
main result of this investigation is that sellers are always better off colluding with shopbots by
fixing prices and permitting them to evaluate those. A second result is that the use of pricebots
may result in a price-war which in the long run leads to profit decline.

2.1.4 Comparson Shopping in the Security Literature

Also in the security-related literature comparison shopping is widely spread as a motivating
example. [Yee97] proposes means to protect the computation results of free-roaming mobile
agents. This is motivated by the following example of comparison shopping. A software agent
is sent out to find the least expensive fare for a flight from San Diego to Washington D.C.
taking into account various trip timing, seat preference and routing constraints. One of the
queried airlines, Fly-By-Night.com, runs a web server www.flybynight.com, where the agent’s
code is automatically recognized and brainwashed. The agent’s memory about collected offers
of other airlines is modified such that it ends up recommending a flight by Fly-By-Night airlines
although a less expensive daytime flight has been offered by another airline. This example is
also quoted by other authors, e.g. [FGS96b], [Mea97], [KAGIS].

In [CMSO01], a framework for a secure marketplace on the Internet is proposed. A comparison
shopping agent, dispatched to find the most convenient offer for a flight ticket among several
air travel agencies, is facing the following security risks: the shopping agent could try to access
privileged information, reduce resource availability of the current hosting site or perform a co-
ordinate attack with other agents. The other way round, a malicious host could disclose agent’s
private information, tamper with the agent’s code or modify or delete previously collected
prices, thereby gaining economic advantage.

[Hoh97] uses a comparison shopping example as illustration of the code mess up mechanism
proposed to protect agents from direct manipulation of their code. The code of the comparison
shopping agent is altered such that the semantic of the agent cannot be found out easily.

In [Vig98], Vigna proposes the concept of cryptographic traces where execution traces of the
mobile agents are used to check whether agents have been executed correctly. At the end of
his paper he illustrates his concept at a comparison shopping scenario. He shows that using his
approach it is possible to find out that previously collected offers where modified.

More details about the proposed mechanisms can be found in the next section.

2.2 Related work — Security Mechanisms for Mobile Agents

Research on the security of mobile agents is divided into two different categories, firstly the
protection of hosts from malicious agents, the easier part, and secondly the protection of agents
from malicious hosts which is much harder. Some approaches, however, have components which
can be used for protection in both directions. In the following, we will illustrate some techniques
which we may use later in our system.

2.2.1 Protection of Hosts from Malicious Agents

In this section, we focus on the protection of hosts from malicious operations performed by
agents. We order the techniques according to increasing strictness. The final approach in this
part concentrates on resource control at hosts.

Signed Code The main idea of signing the code digitally is to create an unforgeable link
between the author and his code. The author or the dispatcher of a mobile object signs it
with his secret key and certifies that this is his object. The signature can be verified with the
signer’s public key assuming a PKI exists. If there exists a trust model the trust in the author
can so be transferred to the mobile object that works on his behalf. A platform that trusts the
author of the code assumes that the code is not malicious and executes it. This approach is
portable to almost any system, where a public key infrastructure exists. This however restricts
the openness of the system since participants have to register their keys with a central authority.
A drawback could be that an author can also sign malicious code and harm someone that trusts
him.

Safe Interpreters [Mo0098] Running already compiled executables is a severe security risk.
It can be addressed by shifting to the interpretation of some intermediary code on a virtual
machine. The security problem is reduced to the security policy implemented by the interpreter.
Examples for this approach are Safe-Tcl and Javal.

1. Safe-Tcl

In Safe-Tcl, the agent is executed inside a padded cell, which operates in a different name
space. The control over the environment belongs to a master interpreter which prevents
the call of unsafe functions. The problem is that it has to be determined whether a function
is unsafe or not. So functions that are essential for the agent may not be executed. In
addition to that, an access control list is maintained for the system resources. This uses
cryptographic authentication, configurable security policies and the intersection of access
rights to get the least common access.

2. Javal

In Javal, the Java Virtual Machine has several components to ensure security. The secu-
rity manager approves the access to unsafe operations. The Byte Code Verifier checks the
Java Byte Code for violations in the name space restrictions, for stack-over or under-flow
and for illegal typecasts. The Class Loader keeps separate name spaces for local trusted
classes and for downloaded, untrusted classes. A problem is that the Security Manager
and the Class Loader can be cheated. Additionally, there is only one Security Manager
per browser which disables to have different rights for applets in the same browser.

Fault Isolation / Sandboxing [Mo0098] Sandboxing is another mechanism to monitor the
execution of agents and to restrict safety critical operations. The untrusted code runs in a
separate domain or sandbox, the so-called fault domain. Each load, store or jump command is
only permitted inside the fault domain. This is implemented by conditional address checks or
overwriting upper address bits such that each address falls into the fault domain. Sandboxing
has a better performance than interpreters and is cheaper in terms of code overhead. However,
the downloaded code is no longer platform-independent, because the addresses have to be
mapped into the fault-domain.

Code Verification / Proof Carrying Code (PCC) [Mo098, Nec97] In this approach,
the author of the code compiles a proof that his code satisfies a security policy given in some
logical framework by the host. This proof is sent with the agent. At the arrival of the agent, the
host verifies the proof to guarantee that the code has indeed the desired properties. However,
the question remains in which logical framework the security properties should be formulated
to have the necessary expressiveness. Furthermore, the code is no longer platform independent
and porting is not straight forward.

Market-based Resource Control [BKR98] This approach is concerned with the restric-
tion of resources an agent can allocate at a host. If agents use too many resources for a too
long time they can prevent the server from being available to other users. The main idea is
that agents have a restricted amount of e-cash to pay a resource manager for the allocation of
resources. Because of the restricted amount of e-cash, agents can only allocate a limited number
of resources at a time. This enables agents to use the server’s resources in an equal proportion.
Also it prevents denial of service attacks caused by a small number of agents blocking all avail-
able resources. Additionally, the price for resources can be set dynamically depending on the
demand for resources to reduce bottlenecks. However, agents can try to cheat during payment,
e.g. acquire resources without paying for. This could be prevented by introducing an arbiter
agent where a deposit is left that is lost if an agent misbehaves.

2.2.2 Protection of Agents against Malicious Hosts

Protection in this direction is more difficult since the host or platform certainly needs access to
the agent’s code and control state in order to execute it. Therefore, it can read and alter the
agent’s data in plain text. Important questions here are how sensitive data can be kept secret
and how the honest execution of the agent can be guaranteed. The following two approaches
focus on the protection of data the agents collects or computes on his way, whereas the last three
techniques concentrate on ensuring a correct execution. The approaches are ordered according
to their strictness.

Detection Objects [Mea97] Detection objects are a way to detect intensional modifications
of the data an agent carries with itself. Therefore, detection objects, which are dummy data
items not used by the agent, are added. These detection objects will not be modified during
a correct execution of the agent. But if the agent comes back to its owner and the detection
objects are modified, it is clear that the agent has been tampered with. For instance, an
incredible low offer for a product is added as a detection object if the agent is looking for cheap
offers for this product. If the agent comes to a malicious merchant, who changes all offers the
agent collected before to make his offer look the best, also the detection object will be modified.
However, detection objects are only applicable for detection and do not offer protection against
tampering. They have to be chosen application specific and are not usable in all scenarios.
Another problem in constructing fictional data for the detection objects is that it has to be
plausible enough to fool hosts, but may not influence the final results. Furthermore, it might
be necessary to modify the detection objects from time to time such that it is not possible for
a host to discover them by comparing several agents.

Partial Result Authentication Codes (PRAC) [Yee97] Partial result authentication as
proposed by Yee in [Yee97] is a method that tries to protect the privacy and integrity of an
agent’s computation results. This is done by authenticating the agent’s partial results before
it is sent to a next host. The results are authenticated with digital signatures created with a
key from a sequence of public keys the agent carries. A used key is destroyed to avoid that
a host is able to change the result later. An alternative to a sequence of keys is to compute
a new public key from an old one using a one-way function. Additionally, [Yee97] proposes a
mechanism to publicly verify the correctness of the partial results on the agent’s journey by
providing it with verification predicates. However, it is not made explicit how these predicates
are constructed. A drawback of this approach is that the number of hosts that will be visited
has to be known beforehand to provide the correct number of keys. This problem is addressed
in [KAGY8] where the ideas of Yee are extended and improved. In [KAG98] the partial results

and the identities of the hosts are linked together by a hash chain which prevents that results
can later be modified or exchanged. This method does not need a sequence of keys anymore,
but assumes the existence of a PKI. However, only the state after the agent execution can be
checked and verified with these approaches. Tampering in the interaction with the agent while
still on the host can not be detected or prevented.

Code Mess Up and Limited Lifetime [Hoh97] To protect agents against manipulation
of code, data or control flow and to ensure the correct execution of an agent, [Hoh97] proposes
the method of Code Mess Up. The agent’s code is translated into an unreadable and hardly
analysable format, such that it takes the host an unproportional amount of time to find out
what the code is supposed to do. The lifetime of the code is restricted by an expiry time such
that it is impossible to be analysed before the code expires. This mechanism does not try to
detect modifications, but tries to prevent them. However, undirected modifications are always
possible just by randomly altering certain bits. Another problem is to determine a reasonable
expiry time for the code, i.e. the time in which it is possible to figure out the meaning of
the code. Additionally, rules for the code mess up have to be fixed. Code Mess Up offers no
protection against black-box-tests, sabotage or denial of execution.

Cryptographic Traces [Vig98] Since mobile agents cannot be entirely protected from dam-
age done to them, mechanisms have to developed which detect potential tampering. One of
those mechanisms is execution tracing as proposed by Vigna in [Vig98]. The executing host
produces an execution protocol or an execution trace for the agent. The trace consists of pairs
(n,s) where n is the identifier of a code statement and s is the input from outside. If there is
no input, s is empty. After the execution, a hash of this trace and a hash of the agent’s state
is created. These hashs are signed by the host and transmitted with the agent. The trace is
stored at the host in case the agent owner doubts the correct execution of his agent. Then
he requests the trace from the host to compare it with the hash. If necessary, the trace is
re-executed and so a cheating host can be identified. If the initial state of an agent is signed
before it is sent to some host, it can be prevented that hosts lie about the initial state of a
received agent. However, this method has some serious drawbacks. It cannot be detected if a
host lies about input from the outside. Also the applicability might be restricted because of the
hugh overhead produced by the storage of traces. A general problem of detection is that it is
only possible a posteriori. Participants have to be made liable after the detection of cheating.

Encrypted Functions [ST98] Encrypted functions are the only mechanism that hides the
semantics of the agent. The host executes the agent and computes some function. But it does
not know about the semantics of the program because both the function and its result are
encrypted. The mechanism works like this: firstly the agent owner encrypts the function f to
E(f) and creates a program P(E(f)). Then the agent is sent to a host dispatched with P(E(f)).
At the host P((E(f))(x) executed and E(f)(x) is computed. Back home, the owner decrypts
E(f)(x) and obtains the result f(x). The evaluation of the function f(x) is completely secret
and does not reveal anything about its semantics. Since the host does not know about the
semantics of the computation, it cannot directly modify its result. This mechanism tries to
prevent intensional attacks to the functionality of agents. However, not all functions can be
expressed as encrypted functions. [ST98] shows that polynomials are expressible as encrypted
functions. In [ACCKO1], results are presented that extend this to logarithmic and polynomial
size circuits. But research has not gone so far yet that encrypted functions can be used in a broad
range of applications. This method can not be used if interaction with the host is dependant on
the computed results since the host will not understand those. Indirected attacks, like randomly
altering certain bits, are still possible and undetectable.

2.2.3 Protection in Both Directions

The approaches to be presented in this section protect agents and hosts likewise. The first
method presented makes use of fault-tolerance techniques, while the second checks the state of
the agent to detect modifications and to protect the host.

Fault-Tolerance Approaches Approaches used to ensure the availablility of a system can be
transfered to the area of mobile code security. For instance, server replication, a fault-tolerance
method, can be combined with cryptography to enhance the confidence in computed results.
The servers or hosts in the sytem are replicated. An agent visits some of these replicated
servers and uses voting and secret sharing or resplitting to find out what the most likely result
of a correct execution is. It simply compares the results it got from all servers and decides to
accept the result that has been computed in most cases. However, this approach relies on the
assumption that servers fail or cheat independently. But this is contradicted by the fact that
they are all under the same control.

Another approach works with agent replication. Agents are replicated and sent along different
paths with the aim to detect malicious hosts. Supposing two agents are sent on the same path,
but in reverse order. A modification by a malicious host can be detected if only one hosts cheats
by comparing the results of those two agents. However, [Yee97] only shows for a special case
that this approach is a solution of the malicious host problem.

Authentication and State Appraisal [FGS96a] [FGS96a] proposes a technique which
checks agents arriving at the host before starting the execution to protect hosts from executing
malicious agents and to detect modifications of agents. This can also be used to prevent agents
from gaining dangerous access to the hosts’s data and resources. At the arrival of an agent at a
host, a state appraisal function determines the permits that the agent requests from the host,
i.e. the resources it will need, after successfull authentication. An authorisation mechanism
establishes which permissions will be granted. The state appraisal function depends on the
agent’s current state which allows to check this state at arrival, e.g. for some invariant condi-
tions. Assuming that a host would only accept agents whose states satisfy certain conditions,
malicious, modified or corrupted agents can be refused at this point. So misuse of agents can
be prevented. However, not all state alternations, and not even all dangerous modifications,
can be detected since detection depends on the checked conditions.

3 Comparison Shopping — A Case Study

In this section, we present the security analysis of the comparison shopping scenario which is
done in the following way. Firstly, the concrete scenario to be considered is clarified. Secondly,
the acting entities are identified and their interests and expectations in the single phases of the
scenario are analysed. Thirdly, it is investigated which possibilities and incentives an attacker
would have.

3.1 The Scenario

The electronic marketplace or virtual mall considered for comparison shopping consists of a set
of merchants that offer their products, a set of matchmakers that provide a directory service
about the merchants at the portal of the mall and a set of customers that are willing to shop at
the merchant that matches their preferences best. Customers send their agents to a matchmaker
and then to merchants in order to collect the required information. Afterwards, they decide
where to buy from. Customers, matchmakers and merchants are connected via a network in
which the agents roam.

The comparison shopping problem consists of the following parts as described in [DEW96]:

e A domain description, including information about product attributes useful for discrim-
inating between different products and between variants of the same product (e.g. name,
manufacturers, price...)

A set of addresses of potential merchants

An attribute A by which the user wants to compare the vendors

A specification of the desired product in terms of values of selected attributes Determine:
The set of vendors where the desired product is available sorted by the given attribute A.

10

Suppose we like to find the cheapest price for a specific software program or to find a certain
book with the shortest time of delivery. This problem can be solved with a mobile customer
agent in the following way:

1. The customer dispatches an agent with a description of the desired product and the
attributes to compare different offers.

2. The agent visits a matchmaker to obtain information about merchants in the virtual mall.
The matchmaker is situated at the portal of the virtual mall and simplifies the search for
relevant merchants.

3. The customer agent visits all merchants advertised by the matchmaker and enquires
about the desired product. The merchant submits an offer, specifying price, delivery
costs, delivery time etc.

4. After having visited all relevant merchants, the agent returns to its owner and reports his
findings ranked according to its owner’s preferences.

The comparison shopping scenario can be refined into different phases in order to get a deeper
understanding for evolving security requirements. This refinement is done with respect to
existing consumer buying behaviour models in the literature. There are many different models
that try to characterize the process in which a consumer is buying something from the first
recognition that he might need something to the final purchase or even beyond. The Nicosia
model (Francesco Nicosia, 1966), the Howard-Shet-model (1969), the Engel-Kolat-Blackwell
(EKB) model or the Consumer Decision Process Model (CDP) by Blackwell, Minard and Engel
(2001) are models of consumer buying behaviour, to name only a few.

The Consumer Decision Process Model (CDP) [Sch01] splits the consumer buying process into
seven fundamental stages. It starts with the need recognition phase, where the consumer realises
that he has got some need or problem. In phase 2, search for information, the consumer starts
to look for information how he can satisfy the unmet need. Phase 3 is called pre-purchase
evaluation of alternatives where the customer knows how he wants to satisfy his unmet need
and investigates options where to buy. In Phase 4, the purchase phase, the customer finalises
his choice what to buy and where to buy. The phase is subdivided into two subphases, where
firstly the choice for the product is made and secondly the in-store choices are finalised. Phase
5 is called the consumption phase, in which the customer has got the product in his possession.
In phase 6, the customer evaluates the experiences he has had with the product. The last phase
is the disvestment phase, in which the customer decides whether to dispose, sell or recycle the
product.

Overview of the Consumer Decision Process (CDP) Model:

1. Need Recognition

2. Search for Information

3. Pre-Purchase Evaluation of Alternatives
4. Purchase

(a) Customer finalises choice of retailer from options investigated.

(b) In-Store Choices (specific salesperson, payment method)
5. Consumption
6. Post-Consumption Evaluation Behaviour

7. Disvestment

The second model that was considered in order to identify the phases for the comparison shop-
ping scenario is the Consumber Buying Behaviour Model [GM98]. The CBB model comprises
six fundamental stages of many other buying behaviour models.

11

Its first phase is the problem recognition where the customer finds out that he might need
something. Then he starts to investigate which alternatives might satisfy his need in the
information search or product brokering stage. After that, he evaluates these alternatives by
looking around shops and tries to decide where to buy. The fourth stage comprises the actual
buying decision. Purchase, including payment, and post-purchase evaluation are the last phases
in the model.

Overview of the Consumer Buying Behviour (CBB) model:
1. Problem Recognition
2. Information Search

Evaluation of Alternatives

-w

Purchase Decision
5. Purchase

6. Post-Purchase Evaluation

Based on the models of consumer behaviour, the comparison shopping scenario can be divided
into four different phases:

e Phase 1 - Information Search/Product Brokering

Phase 1 covers comparison shopping without the customer’s intention to buy anything.
The customer just walks around the mall and tries to find out what products are on
offer and what he might like to buy. His interest is to get to know what a possible price
range for a product might be like. He evaluates the attributes for his preferences without
wanting to buy something. He does not want to enter any liabilities and does not need
any provably true information.

e Phase 2 - The 'real’ Comparison Shopping

This phase is the actual comparison shopping stage. The consumer compares what he
knows about the different products and brands with what he considers important before
deciding what to buy. He monitors the different attributes of the product and the features
of the store visited. For many customers, it is essential to the buying decision to trust in a
merchant. A prerequiste for this stage is that the consumer knows the need or the problem
he has. In this phase, it is definitely the customers intension to buy something, but he has
yet not decided where to buy. Therefore, his requirements for security, here particularly
regarding the trustworthiness of the merchant, are higher than in the preceding phase.

The phases 1 and 2 correspond to phase 3 in the consumer buying behaviour models
described above. In both, the customer dispatches his agent with a product description
and his preferences. The agent contacts the matchmaker at the portal of the mall to find
out about appropriate merchants. It visits the advertised merchants and evaluates the
values for attributes of the desired product. The products are ranked according to a given
attribute, e.g. the price. Finally, the agent returns to its owner and reports its findings.

e Phase 3 - Commitment/Purchase Decision

In phase 3, the customer finalises his decision. The choice among the possible alternatives
is based on the 4 Ps, namely Product, Price, Place and Promotion [TMP*97]. The
consumer confirms with the merchant what he wants to buy and for which conditions.
Then he orders the product by making a legally liable contract. After that, the conditions
of purchase are fixed and cannot be changed without mutual agreement. The customer
remains no longer remain anonymous since he has to enter liabilities. Therefore, it is
essential that his identity is known undeniably and verifiably although the content of the
contract can be kept secret. In general, there are two ways of how the decision to buy
something somewhere can be made. Either the agent himself makes the decision based

12

on his findings in phase 2 or the agent makes the decision in interaction with its owner.
In our approach, the second possibility is adopted. This purchase or commitment phase
corresponds to phase 4 in the CDP and CBB model.

e Phase 4 - Purchase and Payment

The fourth and last phase considered is the payment phase. Note that the physical
delivery is not modelled since this would involve threats that are not computer specific
and caused by transport companies and alike. This phase is similar to parts of phase
5 in both models. According to the contract made in phase 3, the customer pays the
desired product in this stage. In general, there are different ways available to pay in
eCommerce which have all their strengths and weaknesses. Possibilities are payment by
bill, bank draft or credit card, to mention the more conventional ways. Other possibilities
are Paybox [Pay] or other forms of eCash.

3.2 Security Analysis

In the following, the comparison shopping scenario is analysed focussing on the interests and
expectations of its participants regarding security. The potential actions of an attacker threat-
ening the system are considered. In addition to the phases, different instances of a comparison
shopping scenario are investigated using the example of high price and low price goods.

The participants in the scenario are customers, merchants situated inside the virtual mall and
matchmakers at the portal of the mall. Matchmakers provide customers with information
about the merchants inside the mall. Furthermore, the network owner is considered in order
to analyse the security requirements with respect to the network. In this analysis, it is omitted
that agents are able to contact other customer agents inside the mall to obtain information
about merchants. That would introduce new security aspects, for instance, whether an agent
can trust such information or not.

3.2.1 Roles and their Interests

e Interests of Customers

In a first information search phase, the customer wants to find out what a merchant has
on offer for which price. He expects to be informed about all interesting products and the
attached conditions. He does not want to enter any liabilities just by looking around and
does not want to be forced or required to buy anything. It is his main objective to get the
desired product for the best possible conditions. In the second stage, where the customer
actually intends to buy something, he wants to get exhaustive information about products
and their attributes matching his preferences. He requires this information to be correct
which he wants to base his commitment on.

When the customer wants to commit himself, he wants to make a legally binding contract
with the merchant that also holds as legal evidence in case of litigation. The product has
to be available and has to be delivered for the conditions the customer was told. The
content of the contract can be kept confidential if both parties agree on that. The customer
does not want to be deceived by the merchant. He wants to be sure that the merchant he
is contacting is exactly the one he thinks he is negotiating with. He wants to provide his
personal data only for agreed purposes and wants to prevent that the merchant misuses
his data for unintended purposes such as profiling or advertisment. When it comes to
paying, the customer wants to use a secure, but convenient method of payment. He does
not want to be deceived by the merchant by billing more than it was actually agreed on.
Additionally, he wants his payment information to be protected against misuse, e.g. the
merchant should not forward his credit card number to any other merchant. He wants the
merchant to behave trustworthily, for instance not to sell products he cannot supply or to
deliver the product after payment. Furthermore, a customer expects that the merchant
sticks to the conditions fixed in the contract.

Regarding the matchmaker the customer wants to get all relevant information about
appropriate merchants. The list provided by the matchmaker should be exhaustive and

13

contain no irrelevant information. With respect to other customers, he expects them to
behave in a competative, but fair manner.

The customer wants the merchant and the matchmaker to be available and provide a
service of sufficient quality and also that they behave reliably and trustworthily. It is
important for him that his data (like partial results) and his code are not manipulated by
some external attacker or platform. Furthermore, he wants to stay anonymous and main-
tain his privacy. The customer expects that his agent is executed as it was programmed
and that it can migrate as intended.

Interests of Merchants

It is the main interest of the merchant that customers buy at his store in order to make the
best possible profit. A merchant wants to attract a customer’s attention for instance by
offering good products and prices, granting attractive conditions of purchase and having
a good reputation. Furthermore, the merchant wants his store to be available such that
customers can visit it. Additionally, the integrity of his data and working principles should
be guaranteed. Possibly, the merchant wants to issue some confidential offers which should
indeed be kept private by the customer. Phase 1 and 2 do not make any difference for
the merchant since he cannot distinguish whether a customer intends to buy something
or not.

When a customer commits himself, the merchant wants to make a legally binding contract
with him. The contract should hold as evidence in court in order to prevent that the
customer refuses to pay for a delivered product, for instance. The merchant wants the
customer to provide him with correct information about his person to make a correct
contract. This contract can be kept secret by both parties. Additionally, he wants the
customer to authenticate himself such that he can be sure whom he is communicating
with.

At the payment stage, the merchant’s main interest is to get the agreed amount of money
from the customer as fixed in the contract in a convenient manner. The merchant expects
the customer to be reliable and trustworthy in that he gives correct information, sticks
to the contract and fulfils his obligations. This includes the payment of the product.

Regarding his fellow merchants, a merchant expects them to behave competatively, but
fairly. They should not perform any illegal actions. The matchmaker, in the merchant’s
view, should inform the customers about himself and his products, be available and trust-
worthy.

Interests of Matchmakers and Network Owner

The network owner wants his network to be reliable and secure in all phases in order
to attract users and to maintain the infrastructure. Furthermore, he wants to keep out
criminal actions like sabotage or manipulation. The users of the network expect it to be
reliable and secure. They want their communication over the network to be confidential,
i.e. that communication cannot be disclosed, monitored or manipulated.

The matchmaker is more a mean to an end and not an end in himself. Therefore, he is not
assumed to have any interests on his own. He simply offers a service to all enitities that
contact him. However, his clients expect him to provide a sufficient quality of service, i.e.
that he provides exhaustive and relevant information, is available and non-manipulated.

Interests of an Attacker

In this scenario, an attacker an either come as a malicious merchant, matchmaker or
customer, as a malicious platform or as someone unknown from the outside. The attacker’s
interest is to perform legal as well as illegal actions to maximize his utility. An attacker
can use legal working principles of the system for unintended purposes, such as denial of
service attacks by making too many requests. A major interest of an attacker is to remain
undiscovered.

One objective of the attacker can be to gain useful information for himself. He can try
to compromise customer privacy and anonymity to find out what products the customer

14

looks for. He can achieve information gain by pretending to be a platform, merchant
or matchmaker which the agent trusts in. Furthermore, he can try to disclose secret
offers and contracts. Another way to obtain information is by disclosing the network
communication.

An attacker can sabotage platforms and restrict their availability in order to have more
customers visiting his site and to pretend to be a better choice for customers. Manipu-
lation of data or working principles, sabotage or denial of service attacks can restrict the
availability, reliability and quality of service of merchants, matchmakers and platforms.
So the competition of the market can be influenced.

A malicious merchant can provide the wrong conditions of purchase. He can misuse the
information he got from the customer for unwanted purposes such as profiling, reselling
or advertising. He can cash more than he was actually entitled to, or he can refuse to
deliver the product after payment. A malicious matchmaker can distribute incomplete,
irrelevant or incorrect information about merchants favouring particular merchants. A
malicious customer can provide false personal information or refuse to pay a received
product. A malicious hosts can refuse to execute a customer agent as it was programmed.
Also, he can refuse to send an agent where it wants to go to.

In the first and second phase, an attacker can manipulate the customer’s already collected
offers. The reason for that can be that the attacker wants have the best offer himself or
that he collaborates with other merchants which he wants to look best. In the payment
stage, the incentive for attacks is even greater because real money can be gained. So
payment information, e.g. the credit card number of a customer, can be obtained to get
money of the customer’s account or to resell it.

3.2.2 Different Instances of the Scenario

The analysis of different instances of comparison shopping gives an impression how security
requirements evolve. One example for different instances is the purchase of high price goods in
contrast to low price goods. High price goods are, for instance, cars, houses or something which
is not usually bought every day or every month. Low price goods, however, are things that are
bought more often, like CDs, books or alike. It seems natural that the interests of customers
and merchants differ in these cases since the risks increase with the higher price of the product.
Consequently, there are differences in the security requirements people have both instances.
With low price goods, it seems to be less serious for the customer if something goes wrong
because the financial damage is smaller. In the high price case, fraud, deception and other
attacks are more severe since the amount of money involved is higher. Additionally, fraud
and deception seem more likely since the expected gain is higher, if the manipulation remains
undetected. Because of the higher risks with high price goods, people require greater reliability
and trustworthiness of the system.

Looking at the phases, we have identified previously, differences between the high and the low
price case can be observed. In phase 2, the comparison shopping phase with the intention
to buy, the customer wanting to buying something more expensive definitely requires correct
information about the product, because false information can lead to serious financial harm.
In some cases, it is not easy to determine the actual value of a product. In case of a car or a
house, a trusted third party or a censor is needed to estimate the actual value of the object.
For phase 3, the contract, that is eventually made, has to be indeed legally binding, since in
case of litigation this contract has to be valid evidence in court. Also the payment method used
in phase 3 must be more secure for high price goods because of the higher financial risks.

To sum up, the difference between high and low price goods is that the security requirements
for high price goods are higher. Whereas the technical threats remain more or less the same,
the application-oriented threats, i.e. the opportunities for fraud, increase. In order to counter
fraud, the trust a customer has in a retailer before commitment should be higher.

15

3.3 Overall Security Threats and Security Objectives

In the previous analysis, we illustrated occurring security problems and the requirements of
users to a secure system. From that, we set up an overall view of the threats to the mobile
multiagent system in the virtual marketplace. We will identify security objectives to counter
those threats and to satisfy the security requirements of the system users. The threats will be
grouped into different threat scenarios.

Threat Scenario 1 — Data Security

The first threat scenario comprises all threats that are concerned with the misuse of data, or
more precisely, the unauthorised disclosure, copying or modification of data. All data that
occur in this scenario can be used in an unintended manner if they are unprotected. The data
of an agent comprises its code and the data it carries, like collected offers, identity information,
contracts made with merchants, or payment information. This data can be copied, disclosed or
modified. An interesting instance is the case in which an agent has collected several offers from
other merchants and visits another merchant. This merchant can modify all other previously
collected offers such that his offer seems to be the best. Another critical point with respect to
confidential data is the leak of data without permission of the owner. In addition to that, the
inter-agent communication can be disclosed and modified by a malicious platform. Malicious
agents and other attackers can try to disclose, copy or modify the data that is stored at the
platform and also the platform’s code and working principles. For instance, a Trojan horse can
be inserted into the platform’s code such that someone else gains control over the platform.

T1 Unauthorised Disclosure, Copying and Modification of Data or
Code T1.1 Disclosure of identity

T1.2 Disclosure of secret offers

T1.3 Disclosure or manipulation of contracts

T1.4 Modification of already collected offers

T1.5 Disclosure and modification of payment information
T1.6 Modification of agent’s code

T1.7 Modification of agent’s data

T1.8 Modification of host’s code

T1.9 Modification of host’s data

T1.10 Disclosure of submitted messages between agents
T.1.11 Modification of inter-agent communication

T1.12 Unauthorised passing on of confidential information

Security Objective 1 — Protection of Data

Resulting security objectives are that the agents and platforms can protect their and their data
and code from unauthorised copying, disclosure and modification. It should be possible to detect
and to prevent that confidential information is passed without permission. Additionally, the
customers should be able to stay anonymous as long as possible before eventual commitment.

SO1 No Unauthorised Disclosure, Copying or Modification of Data
SO1.1 Only authorised access to agent’s data and code

S01.2 Only authorised access to host’s data and code

S01.3 No unwanted disclosure of identity

SO1.4 Only authorised access to special offers

SO1.5 Only authorised access to contract information

S01.6 Only authorised access to payment information, no unauthorised modi-
fication of payment information

SO1.7 Confidential and integer inter-agent communication

SO1.8 Detection and prevention of the unauthorised passing on of confidential
information

Threat Scenario 2 — Interception of Network Communication
This threat scenario deals with the security of the network communication. Here, the network
that connects the platforms with each other is considered. Some malicious attacker from the

16

outside can try to disclose the messages transferred between platforms in order to read or modify
them. Furthermore, he can analyse the traffic on the network and extract knowledge about who
communicates with whom. Furthermore, he can block messages from being received, or he can
remove them from the network.

T2 Interception of Network Communication
T2.1 Disclosure of network communication
T2.2 Modification of network communication

Security Objective 2 — Protection of Network Communication
The resulting security objectives are the confidentiality, privacy, integrity and reliability of the
network communication.

SO2 Secure Network Communication

S0O2.1 No disclosure of transmitted messages

S02.2 No modification of transmitted messages

S02.3 Reliable network communication, i.e. sent messages are received by the
intended recipient

Threat Scenario 3 — Restrictions to Availability of Services

In our scenario, restrictions to the availability of services can happen to agents, platforms or
to the network. The agents are mainly threatened by malicious platforms they are on. They
can refuse to execute an agent, or they can not execute it as it was programmed by its owner.
Furthermore, malicious platforms can refuse to transmit agents to other platforms or transmit
them to an unwanted platform. Moreover, they can kill an agent such that it is neither executed
nor transmitted any further. Additionally, platforms can control the communication between
two agents being on the same platform, i.e. they can prevent, alter and forge messages sent
between agents.

Similarly, the platforms and the network are threatened by malicious agents or other attackers
from the outside. Potential attacks are denial of service attacks where too many queries are
submitted such that a service breaks down. Alternatively, resources can be corrupted or blocked
such that a satisfying service is no longer possible.

T3 Sabotage, Restrictions to Availability of Services
T3.1 Incorrect or non-execution of agents

T3.2 Sabotage of hosts (e.g. by denial of service)

T3.3 Sabotage of network

T3.4 Incorrect transmission of agents from platform to platform
T3.5 Non-working inter-agent communication on a platform

Security Objective 3 — Availability and Quality of Services

The security objectives concerning availability and quality of services are the correct and com-
plete execution of agents, the reliable communication between agents and the correct transmis-
sion of agents between platforms. Correctness and completeness of agent execution means that
agents are executed as programmed by their owner. Reliable communication between agents
describes that sent messages are received by the intended recipient. If agents are transmitted
as described in their code we say that they are transmitted correctly. The objective concern-
ing platforms and network is that the service is available at the quality that meets the user’s
expectations.

SO3 Reliability and Availability of Services

S03.1 Correct and complete execution of agents

S03.2 Availability of hosts

S03.3 Availability of the network

S03.4 Correct transmission of agents

S03.5 Reliable inter-agent communication on a platform

17

Threat Scenario 4 — Masquerading vs. Authentication

This threat scenario deals with the identity of the participants, like agents and platforms. An
participating agent can try to masquerade itself to harm an opposite party. Similarly, platforms
can masquerade as a trusted platform to extract secret information of an agent.

T4 Masquerading

T4.1 Merchants masquerade to fool customers.

T4.2 Customers masquerade to harm other participants.
T4.3 Platforms masquerade as trusted platforms.

T4.4 Matchmaker masquerades.

Security Objective 4 — Authentication

The security objective with respect to authentication is to create a unforgeable link between an
agent or a platform and its owner. Therefore, each agent needs to have a unique identity which
a communication partner can verify. Platforms need the capability to authenticate themselves
and prove their identity to an agent. In contrast, a customer agent should be able to stay
anonymous.

SO4 Authentication and Verification of Identity
S04.1 Each entity in the system, agent or platform, has got a unique, verifiable
identity.

Threat Scenario 5 — Fraud vs. Trustworthy Behaviour

This scenario comprises all threats that cannot be classified as classical security issues and are
concerned with fraud and legal problems. With respect to legal behaviour, we can observe the
following threats mainly connected to contracts and payment information: Contracts may be
faked, e.g. by using masquerading. Entities involved in a contract can deny their commitment.
The payment information a merchant obtains can be used to cash more than agreed on in a
contract. A customer can give false payment information to deceive the merchant. Merchants
can provide customers false information on products or issue false offers which becomes a legal
problem if offers are considered legally binding.

Regarding trust and quality of services, we see that the given information from the matchmaker,
i.e. the list of matching retailers, can be incomplete or irrelevant leading to a disadvantage
of certain retailers. Furthermore, matchmakers and retailers can try to misuse or resell the
information they have got about their clients for profiling or advertisments. Other threats,
which are out of the scope of this paper, are related to the delivery of the product after
payment.

T5 Fraud

- Trust Related Issues / Quality and Policy of Services

T5.1 Insufficient quality of service, e.g. incorrect or incomplete list of merchants
given by matchmaker

T5.2 Misuse of information (reselling, profiling, advertising...)

- Legal Liability

T5.3 Faking of a contract (e.g. by masquerading)

T5.4 Denial of contracts

T5.5 Give incorrect payment information

T5.6 Misuse of payment information, cash more than being entitled to
T5.7 Distribution of false information, particularly offers

- Not in the scope of this paper, Payment and Delivery
T5.8 Non-delivery of product
T5.9 Refuse to pay product after delivery

Security Objectives 5 and 6 — Legal Liability and Trusted Services
There are two security objectives to counter these security threats. All threats concerned with
legal behaviour can be countered by introducing legal liability, for instance making contracts

18

and offers legally binding such that fraud can be sued later. The issues linked to trust and
quality of services can be counteracted by introducing the objective "Trusted Services’. This
objective can be achieved by giving services the possibility to prove that they work according
to a quality of service policy.

SO5 Legal Liability
SO5.1 Merchants can issue legally binding offers.
S05.2 Customers and merchants can make legally binding contracts.

SO6 Trusted Services

S06.1 Matchmakers can prove that they operate a quality of service policy.
S06.2 Merchants can prove to the customer that they operate a quality of
service policy.

3.4 Remarks on the Security Threats and Objectives

The identified security threats can be split into technical threats and application-oriented
threats. The technical threats are independent of the concrete scenario in which the agent-
system is applied and are countered by technical means, whereas the application-oriented threats
can depend on the concrete scenario in which the system is used or and on the phase of an
agent’s activity. Roughly speaking, the application-oriented threats can be summed up with
the term ’fraud’. It is hard to come up with means to counter them.

Fraud also happens in the real-world and a priori less can be done to prevent it. Only after
fraud was detected, the responsible person can be sued and punished for it. Before fraud occurs,
the only way prevent deception or to minimize its probability is to interact with someone one
trusts in. In the comparison shopping scenario, it is the same problem with fraud. It cannot be
countered with technical means alone. To reduce the possiblity that fraud occurs, we introduce
a trust model such that agents can take appropriate measures before contacting an untrusted
entity. Additionally, legal liability can decrease the possibility of fraud and deception.

In our scenario, the technical threats are the security threats 'T1 Unauthorised Disclosure,
Copying or Modification of Data or Code’, T2 Interception of Network Communication’, "T3
Sabotage, Restrictions of Availability of Services’ and ’ T4 Masquerading’. *T5 Fraud’ comprises
the application-oriented threats. It can be partially countered by the introduction of legally
binding contracts and offers in SO5, but it also needs the establishment of a trust infrastructure
as in SO6.

Looking at the individual phases of the comparison shopping scenario, the following changes in
the security threats can be observed. During all phases the technical threats T1 — T4 remain
more or less the same. Only in T1, the issue changes over the different phases. In phase 1
and 2, an agent’s identity has to be protected. Additionally, its collected offers should not be
manipulated. Also, merchant’s offers should remain secret if necessary. However, from phase
3 on the customer can no longer stay anonymous since he commits himself. In this phase, the
contract between customer and merchant has to be protected. In phase 4, payment information
is the main concern. Furthermore, in all phases the data and code of agents and hosts should
not be disclosed or manipulated.

With respect to the application-oriented threats, one notes more severe changes over the single
phases. Generally, the more commitment a participant makes the more security is required.
From phase 1 to phase 2, the correctness of product information becomes important, since in
phase 2 the customer wants to base a decision on it. In phase 1 and 2 the customer’s activity
is by no means legally binding, whereas in phase 3 he commits himself, and he enters legal
liabilities. Therefore, in phase 3 we need more trust into merchants than before. Also, with low
price goods fraud is not such a serious issue, but it increases as the price increases.

4 Towards a Secure System

Using the results from the previous analysis, we develop a setting of a secure mobile multiagent
system for comparison shopping. We start with assumptions about the underlying technical

19

model. Then, we transform the security objectives into building blocks which the underlying
system architecture has to provide in order to accomplish those objectives. The building blocks
are further refined into features of agents and platforms. Finally, ideas concerning the technical
realisation of the building blocks are presented.

4.1 A Technical Realisation of the Multiagent System

Generally, any platform is able to read and alter non-encrypted data of agents. Furthermore, a
platform is able to manipulate agents and to influence their behaviour. For the establishment
of security, the notion of a trusted platform is necessary. Therefore, we have a look on the
notion of trusted platforms, before we discuss a concrete model of our electronic marketplace.
A platform is said to be trusted with respect to an functionality if an agent on that platform
can be sure that the platform implements this functionality as expected. If a platform is trusted
with respect to a functionality it does not exhibit malicious behaviour connected to that func-
tionality. It is not reasonable that a platform is completely trusted meaning that no malicious
behaviour occurs. But one can trust in a platform with respect to a subset of operations, i.e. the
agent is safe on the platform if only operations from this subset are carried out. The following
box gives examples with respect to which functionalities a platform can be trusted.

A platform may be trusted

- to execute agents as they were programmed by their owner.

- in transmitting agents between platforms as intended in the agent’s code.

- to maintain the confidentiality and integrity of inter-agent communication.

- to preserve secret keys from disclosure.

- to keep secret data private.

- to preserve an agent’s data from modification and disclosure.

- not to misuse the information and the knowledge (data/code) it gets from the agent.
- to provides correct authentication.

- not to compromise an agent’s privacy and anonymity.

- to protect agents from each other such that agents cannot manipulate each other with
respect to data or functionality.

The last point above refers to the problem that not all agents on a trusted platform are benevo-
lent as well. It still has to be assumed that they can be malicious and try to attack the platform
or other agents. Therefore, any platform should protect itself from malicious agents and protect
the agents from each other, such that malicious agents cannot harm 'good’ agents on the same
platform.

In case of an untrusted or malicious platform, a correct or benevolent behaviour cannot be
predicted or assumed. A malicious platform may behave as it wants and nothing can be said a
priori about it. It can behave benevolently, but it may as well corrupt agents and be malicious
in various aspects as the manipulation of the agent execution, wrong transmission to somewhere
where the agent does not want to go, provision of incorrect or incomplete data and so on. While
a platform can be trusted by some agent, it can be untrusted for other agents. For instance, an
agent sitting on its own platform will certainly trust in it, while a visiting agent might consider
the same platform as untrusted.

In order to think of technical means to counteract the threat scenarios, one has to be precise
about the underlying technical model of the agent system. In general, there are two configura-
tions how an electronic marketplace using mobile agents with these types of participants can
be set up.

Firstly, one can assume that customers, retailers and matchmakers are implemented as mobile
agents that meet on a common platform, the virtual mall. In this approach all agents play

20

the same role. However, the databases of matchmaker and retailer agents are not necessarily
connected to the platform the agents are currently on. In this case, the data the agents need
must be transferred over the network to that platform. This leads to a high amount of traffic
on the network and to bandwidth reductions. Thus, the advantage of mobile agents to travel
to the data and to reduce network traffic would not hold.

Secondly, customers, retailers and matchmakers are modelled as mobile agents, but matchmaker
and retailer agents operate on their own platform. Their database is directly connected to this
platform and so network traffic is reduced. Only customer agents hop from one merchant and
retailer platform to another. An advantage of this alternative is that matchmaker and retailer
agents are situated on their own platforms that they trust in which reduces their security risks.
However, customer agents are still threatened by matchmaker or retailer platforms.

In this report, the ideas on the technical realisation of the building blocks are based on the sec-
ond alternative configuration. We will assume that merchants and matchmaker agents operate
on their own platform and are visited by mobile customer agents.

4.2 Building Blocks

The following building blocks are set up to counter the previously established security threats
and to implement the desired security objectives.

BB1 Inter-Agent Communication

Two agents must be able to communicate with each other confidentially.
The integrity of submitted messages must be guaranteed.

It has to be guaranteed that a submitted message is received.

This first building block 'BB1 Inter-Agent Communication’ provides the system with the ca-
pability that agents can communicate confidentially on the same platform, i.e. noone else is
able to listen to their communication. It ensures the integrity of the communication and that
the messages are indeed received. This building block counters the threats of unreliable inter-
agent communication T3.5 and of unconfidential and modified messages T.1.10 and T.1.11. The
building block implements the security objectives S01.7 'Confidential and Integer Inter-Agent
Communication’ and SO3.5 'Reliable Inter-Agent Communication’.

BB2 Authentication

An agent can authenticate itself if it is required

The customer agent can stay anonymous before making a commitment.
A platform can authenticate itself.

The second building block is needed to counter all threats that are connected to masquerading,
i.e. T4 and its subthreats. It implements the security objective SO4 ’Authentication’ and en-
sures that every participant in this system has got a verifiable and undeniable identity, including
platforms. It also protects the identity of the customer countering threat T1.1 ’Disclosure of
customer’s identity’ and implementing objective SO1.3.

BB3 Data Protection

An agent is able to keep his collected data secret and to protect it from unau-
thorised modification. The data can only be accessed and modified with his
permission.

Personal information, e.g. identity, payment information can be prevented from
unauthorised disclosure, copying and modification.

The protection of its data is essential for a comparison shopping agent on whose findings a
user wants to base his decisions. Therefore, this building block counters the threat scenarios
concerned with data security, namely T1.2-T1.7 and T1.12, including the protection of offers,
contracts and payment information or generally protection of data and code. It implements the
security objectives SO1.1, SO1.3-1.6 and SO1.8.

21

BB4 Agent Execution

It is guaranteed that an agent is executed as it was programmed by its owner.
It is guaranteed that the code and the control state of an agent are not modified.
It is guaranteed that an agent is transmitted as intended between two plat-
forms. The integrity and the confidentiality during transmission is ensured. It
is guaranteed that the agent is received.

As we have seen in the analysis, the correct and complete execution of the agent is a severe
security threat. This building block provides means to ensure that the agent is executed as it was
programmed by its owner. That includes the correct, confidential and integer transmission of
the agent. This counters the security threats T3.1 and T3.4 and implements the corresponding
objectives SO3.1 and SO3.4.

BB5 Protection of Platforms and of the Connecting Network

The access of agents to data and resources of platforms is restricted and pro-
tected.

The availability of platforms is protected. Denial of service attacks can be
prevented.

The availability of the network is protected. Denial of service attacks to the
network can be prevented. The confidentiality and integrity of the network
communication is protected.

This building block counters the threats concerning the availability and reliability of network
and platforms, identified in T3.2 and T3.3. The means provided by the building blocks imple-
ment the security objectives SO3.2 and SO3.3. SO2 ’Secure Network Communication’ is also
implemented by this building block countering T2.

BB6 Legal Liability

A customer and a provider agent are able to make a legally binding contract.
The contract cannot be manipulated after it was made and cannot be denied
by a signing party. If it is required, the contract can be kept confidential.
Provider agents can issue binding offers to customer agents. These offers cannot
be manipulated and can be kept confidential, if it is necessary.

This building block counters the threats linked to the legal liability of offers and contracts T5.3
— T5.7 and implements the security objective SO5 'Legal Liability’.

BBT7 Trusted Services
Agents can prove that the operate according to a quality of service policy.
Platforms can provide a certificate of their trustworthiness.

This building block contains the functionality that relates to the trust an agent has in the
service another agent or a platform provides him. Merchant or matchmaker agents can show
their clients that they work according to some certified quality policy. That can be for instance
that a matchmaker will always provide all relevant and only verified information or that a
merchant will not use the client’s data for profiling or advertisments. That aspect of this
building block counters the threats T5.1 and T5.2 and implements the security objective SO6.
Additionally, the building block provides means for an agent to determine with respect to which
features he trusts a platform. That addresses all threats connected to unwanted behaviour of
platforms, for instance disclosure and modification of data, incorrect execution and so on. The
threats are yet not directly countered. But an agent is free to decide whether it wants to visit
such a platform or what countermeasures it uses before a visit to protect itself, e.g. encryption
of sensitive data.

Figure 1 shows the relationship of security threats, security objectives and building blocks. The
columns denote the main security threats and the rows the main security objectives. For reasons
of clarity the subthreats and subobjectives are omitted. The building block in an intersection
of a row and a column counters the threat in the column and implements the objective in the
row. Building blocks can be mentioned several times if they contain means aiming at several

22

threats and objectives. From the table, we can see that all threats are countered and that all
objectives are implemented by at least one building block.

T1 T2 T3 T4 T5
SO1 | BBI, BB2, BB3

502 BB5

503 BB1, BB4, BB5

S04 BB2

505 BB6
SO6 BB7

Figure 1: Relationship between Security Threats, Security Objectives and Building Blocks

4.3 Features of the Agents and Platforms

Features of Agents In the comparison shopping scenario, we distinguish three types of
agents: customers, matchmakers and retailers. All of those agents possess general features.
In addition, they are specialised with respect to their role in the system. The building blocks
can be split into features of the single agent types in order to realise those blocks in the agent
society. The technical realisation of the features is deduced from the technical realisation of the
building blocks.

The essential features of an agent are the following: An agent is able to authenticate itself if it
is required as postulated in BB2, e.g. when making a contract with a merchant or when issuing
an offer. It is able to keep his internal data secret and to protect its integrity as in BB3. The
communication with other agents can be performed confidentially and integrally as in BBI.
Agents possess means to guarantee the intended execution. Furthermore, they can ensure the
integrity of their code and control flow or are at least able to detect alternations, as required in
BB4. A confidential, integer and working transmission of the agent from a platform to another
platform can also be guaranteed, as in BB4.

Additional features of a customer agent are the ability to hide his identity and stay anonymous
if he wants to as in BB2, the capability to make legally binding contracts with merchants, as in
BB6, and the ability to provide payment information only to the entitled entities, as in BB3. A
feature of the merchant agent in addition to the general features is the ability to make legally
binding contracts with customers, as in BB6. The matchmaker and the merchant agent are
able to prove their quality of service policy to their clients, as in BB7.

Features of Platforms The requirements that were established as building blocks can also
be formulated as features of platforms. Some features are concerned with the self-protection
of platforms, whereas others affect their trustworthiness. Even a malicious platform has an
interest in protecting itself. Thus, it can be assumed that any platform possesses the features
concerned with self-protection. But only a trusted platform can be assumed to have benevolent
features that go beyond self-protection.

A platform should employ access and resource control mechanisms to protect its data and re-
sources against unauthorised access and modifications. Furthermore, mechanisms to protect
the availability and quality of the provided service should be available for a platform. Mecha-
nisms to react to denial of service attacks are desirable, although there are yet no serious and
reasonable solutions. The above features are all mentioned in building block BB5. Apart from
these aspects in which the platform has an interest in itself, other features are required in order
to establish trust in a platform. A trusted platform can apply technical means to guarantee the
execution of an agent as it was programmed. Furthermore, it can guarantee the correct trans-
mission of agents by a transmission protocol. The confidentiality and integrity of an agent’s
data can be protected by cryptographic means. A platform can isolate agents on it from each
other. Furthermore, it can provide certificates for authentication. These features are derived
from the building blocks BB4 comprising agent execution and BB2 comprising authentication.
BBT also suggests that a platform can provide a certificate of its trustworthiness.

23

4.4 Towards a Technical Realisation
4.4.1 General Remarks on the Achievability of Security Objectives

If one starts to think of a technical realisation of the proposed building blocks, firstly some
remarks have to be made about principle restrictions of mobile agents with respect to security
goals based on a paper by Farmer, Guttman and Swarup [FGS96b].

It is unachievable to find out whether a platform or interpreter has been tampered. Since this
question only arises with untrusted hosts mainly run by competitors, noone will allow to inspect
the platform’s code. A program running on this platform to check tampering might as well
get tampered. Testing will not always detect that the platform has been modified since any
modification is designed such that it will not be detected at first sight. Similarly, it cannot be
known a priori whether an interpreter or platform will execute an agent as it was programmed
or whether it will run the agent to completion. Since the platform has total control over the
agent and the agent is essentially passive itself, there is not way to prevent incorrect execution.
Equally, the platform might decide to stop the execution of an agent. Neither can be known
whether a platform will transmit an agent as requested. Similar to non-execution, a platform
can deliberately decide not to submit an agent. Because the platform has access to all non-
encrypted data of an agent, only encrypted data and encrypted code not needed on that host
can be kept private. If certain data should not be known to a platform, it has to be encrypted
before going there.

However, there are also some easily achievable security goals. For example, the author or the
sender of an agent can be authenticated by signing their code. The integrity of code can be
checked by verifying an attached signature. Privacy during transmission of an agent can be
ensured by encrypting it before sending it. Interpreters can protect themselves against malicious
agents by employing access control mechanisms checking the agent’s author, its program and
its state.

Encryption techniques cannot be used to the same extend in systems with mobile agents as
in other settings. Digital signatures and asymmetric encryption require the existence of secret
and public key pairs that are provably assigned to specific entities. Therefore, a public key
infrastructure (PKI) is necessary for applying those techniques. This infrastructure sets up
mechanisms for the distribution of public keys and for allocation of those keys to entities.
Agsuming a PKI in a system, public keys are uniquely attached to each entity. A public key of
an entity can for instance be obtained by getting it from a central key server.

Asymmetric encryption techniques require public keys for encryption and secret keys for de-
cryption. Each generation of a digital signature involves the use of a secret key. Agents visiting
a possibly malicious platform cannot carry a secret key in plain text because the platform would
find out about it. Therefore, an agent can not use a secret key on such a platform.

Taking that as a prerequisite, privacy of data is nevertheless easily achievable. For encryption
of data in the asymmetric case only public keys are necessary. Public keys uniquely attached
to an entity are available everywhere by means of the PKI. If an merchant wants to sent an
confidential offer to a customer, it can ask its platform to get the customer’s public key and to
encrypt the offer with it. Only the customer that possesses the corresponding secret key can
read that message. But decryption of the offer is only possible on a platform that the customer
trusts with respect to the preservation of secret keys. Elsewhere the secret key would not be
available.

Authentication and integrity can be achieved with digital signatures. A digital signature is
the hash of a message encrypted with the sender’s secret key attached to the message. The
receiver can verify the signature by generating the hash of the message, encrypting it with the
sender’s public key for the PKI and comparing the received signature with the self-generated
signature. If those are the same, the message has not been altered. This approach relies on the
assumption that a slight modification of the message would yield a completely different hash.
Digital signatures add accountability to the communication by attaching the sender’s secret
key to the content of a message.

Authentication of merchants or matchmakers sitting on their own platform is also easy since
they can sign an offer or a matching with their secret key. Merchants and matchmakers always
trust their own platform with respect to the preservation of their secret key. Authentication of

24

agents, however, is much harder. Agents do not carry their secret key to an untrusted platform.
On their travel through the mall, customer agents leave their secret key on a trusted platform
or have it encrypted before visiting an untrusted platform. They have to migrate back to a
trusted platform either to fetch their key or to have it decrypted in order to sign something.
For the execution of an agent, the platform needs to have total control over the agent. All code
and data has either to be in plain text or encrypted with a key that the platform owns to be
useable there. So the platform will always be able to find out about the program semantics
and can potentially manipulate data or code. Only encrypted functions [ST98] offer complete
protection against the platform finding out what an agent is actually doing. In this approach,
the function and its result are encrypted such that it cannot be understood by the platform.
However, there are still no encrypted functions available for practical applications. Research
results prove that encrypted functions exists for instance for polynomials. Thus, the security
mechanisms for our system can not make use of this technique. But if there were such functions,
security of mobile code would be much easier to achieve.

Several trusted platforms can be combined to so called trusted island. These island form a
compound structure in which no precautions against malicious platforms have to be taken.
Standard encryption and authentication are applicable on these trusted island since secret
keys are available anywhere. Transmission between platforms inside a trusted island can be
made secure by encryption techniques. The same holds for the agent execution, the inter-agent
communication and so on. Before leaving a trusted island, agents can leave sensitive data as
well as secret keys inside the island. However, one has to think of mechanisms how to establish
such islands, how to certify them and how to authenticate them, such that an agent can be sure
that it is on such an island. On the other hand, trusted island have to be cautious which agents
they allow to come in to protect themselves. This requires also authentication of the agents.

4.4.2 Aspects of Technical Realisations for the Proposed Building Blocks

BB1 Inter-Agent Communication

Two agents must be able to communicate with each other confidentially.
The integrity of submitted messages must be guaranteed.

It has to be guaranteed that a submitted message is received.

Aspects of a Technical Realisation:

On a trusted platform, the confidentiality and the integrity of the inter-agent communication is
guaranteed by the definition of a trusted platform. Such a platform will of course learn about
the content of the communication and will be able to alter it. But because it is trusted with
respect to inter- agent communication, it will not disclose and modify messages. The reliability
of communication can either be guaranteed by the trusted platform or by an handshaking
protocol. In a handshaking protocol, every received message is acknowledged or sent again
after some delay if no acknowledgement was received.

On a malicious platform confidential, communication between two agents is impossible. In open
systems, two parties that want to communicate confidentially with each would use standard
encryption techniques. The approach is safe in a system with static agents communicating
over a malicious network. However, this cannot be transferred to the communication of mobile
agents on the same platform. It would be possible for an agent to encrypt a message with
the recipient’s public key, but the recipient would not be able to decrypt the message on the
platform that it does not trust with respect to its secret key. Two agents can only communicate
with each other confidentially if both are on a platform which they trust with respect to their
public key, see section 4.4.1.

The integrity and authentication of submitted messages is also a problem. In a non-agent
world, one would use digital signatures to detect unauthorised modifications. But with mobile
agents, this technique is not applicable on any platform, since it requires the sender to have an
accessible secret key. Mobile agents can only use a secret key on a trusted platform, compare
section 4.4.1.

On a malicious platform, it is almost impossible to guarantee that a message sent by an agent
to another agent on the same platform is received. In the client-server model, one would
use handshake protocols where each message is acknowledged. However, in this case you will

25

not know whether the message or just the acknowledgement has been lost or if the platform
generated an acknowledgement and just threw the message away.

To sum up this reflection up, it has to be pointed out that secure communication requires a
public key infrastructure. As the agent does not possess secret keys, data to be sent confi-
dentially has to be already encrypted before the agent arrives at an untrusted platform or the
agent has to trust the plattform with respect to the plaintext of the message. Messages to
be received by the agent have to be encrypted with the platform’s public key or — in case of
an untrusted platform — encrypted with the public key of another (trusted) platform which
the agent has to visit in order to decrypt the message. For integrity, this means that for each
message if it is not sent on a trusted platform the digital signature has to be created on a
trusted platform, before the agent migrates somewhere else to sent the message. The verifica-
tion of a digital signature, however, can be done everywhere, since only private keys are needed.

BB2 Authentication

An agent can authenticate itself if it is required

The customer agent can stay anonymous before making a commitment.
A platform can authenticate itself.

Aspects of a Technical Realisation:

For the purpose of authentication agents can carry a passport stating their identity, their service
description, their dispatcher’s identity and whatever information is useful apart from that.
The passports have to be protected from unauthorised modifications using digital signatures.
Furthermore, they have to be certified by some trusted certification authority. The passports
have to be closely linked to the agents such that it is impossible to take a passport of some
agent and to stick it to another agent. A possibility would be to attach a signed hash of the
agents code to the passport using digital signatures. Alternatively, authentication can be done
using a challenge response protocol where questions are asked which only a particular agent
can answer. However, a problem is that some malicious platform can extract this challege
respone information from an agent camouflaging this agent by having the same knowledge. To
identify the dispatcher of an agent, it would be sufficient to add a digital signature to the agent
composed of a hash of the agent’s code and encrypted with the dispatcher’s secret key. This
however requires the existence of a PKI, compare section 4.4.1. A way to prevent agents from
being copied unauthorizedly would be the use of watermarking-techniques.

To realise the anonymity of customer agents, one can allow customer agents not to carry a
passport with them. In case they have to authenticate before committing to something, they
can either go back home to fetch their passport or collect it from a trusted platform where
they left it beforehand. These passports can be encrypted such that they can only be read
by an authorised entity. Additionally, they can be protected by digital signatures against
modifications. Nevertheless, for absolute anonymity, it is not sufficient that agents do not carry
passports. Usually, agents carry the address and ID of their dispatcher such that they know
where they have to go back to at the end of their task. From this information, it is possible to
trace the agents back to where they come from.

This drawback can be countered by the introduction of a trusted pseudonym server. After an
agent is dispatched, it is directly sent to this pseudonym server. There its original identity and
its home address is deleted and replaced by a pseudonym. Malicious platforms can only identify
the pseudonym, but not the real identity. Since the pseudonym server is trusted, it will protect
the agent’s identity. At the end of an agent’s travel, the agent revisits the pseudonym server
which recovers its home address and sends it back. Generally, anonymity and accountability
are contrary issues. If we allow agents to stay anonymous, we will not be able to trace malicious
actions back to specific agents. However with the pseudonym server, it is possible to integrate
both issue. With the pseudonym, the original identity of agents is hidden. But if something
illegal happens in a system caused by an agent, it can be traced back to the pseudonym. In case
of justified evidence, the pseudonym server can recover the original identity which introduces
accountability.

Platforms have to be able to authenticate themselves. It would be very harmful for an agent if
it assumes to be on a trusted platform, but the platform it is on is actually not the platform

26

it thinks it is on. A way to provide authentication would be via a public key infrastructure for
platforms and a mechanism similar to digital signatures and certificates.

BB3 Data Protection

An agent is able to keep his collected data secret and to protect it from unau-
thorised modification. The data can only be accessed and modified with his
permission.

Personal information, e.g. identity, payment information can be prevented from
unauthorised disclosure, copying and modification.

Aspects of a Technical Realisation:

For general remarks on the protection of confidentiality and integrity of data in a mobile mul-
tiagent system see section 4.4.1. Assuming the technical model that customer agents roam on
untrusted platforms, while matchmaker and merchant agents stay on their own trusted plat-
form, only the customer agent needs special attention in this context. Problems to be addressed
are confidentiality and integrity of its data. The data to be protected are offers an agent col-
lects during its journey, the payment information, its identity potentially in form of an agent
passport, the requests it wants to issue, contracts it has made and its code and control state.
Sensitive data can be encrypted on the dispatcher platform with the public key of the platform
to which the agent is supposed to go. The data is safe during the transmission and on all
platforms that the agent visits until it reaches the desired platform. For protecting data on the
way back to the dispatcher the data can be encrypted with the dispatcher’s public key as a last
step before transmitting the agent to a next platform. As the data of the agent is encrypted, it
is impossible for another platform read it unless it has a key for decryption. But a drawback is
that the data cannot be used in this case. For integrity, the data can be signed digitally. This
can be done with the platform’s secret key which the agent is currently on to ensure that the
data has not been modified on the way back. Similarly, the agent’s data can be signed digitally
by the dispatcher to detect modifications of data the agent carries from the beginning.
Another approach to protect data or at least to detect modifications are detection objects
proposed by Meadows in [Mea97]. However, detection objects are always created for a particular
application and cannot be used in all cases. An application for detection objects in comparison
shopping, however, is to add a very low price for a product to the agent’s memory before
dispatching it. If the agent comes back with this price altered, one would know that the agent
has been tampered with.

Yee [Yee97] proposes a protocol how to protect the partial results of agents after they leave a
server and move to the next one. This is applicable to the protection of previously collected
offers on malicious platforms. The results of Yee are extended and improved in [KAGOS].
PRACs (partial result authentication codes) provide perfect forward integrity which means
that all results that are collected before visiting a malicious server cannot be forged. An agent
is dispatched with a sequence of keys, one per server visited. Before travelling to a next server,
the partial results to be preserved are encrypted with one of these keys. After usage, the key
is destroyed. So the result cannot be read, before the agent gets back home. An enhancement
to this is a one-way-function that computes a new key from the last one. So the agent has
an unlimited set of keys at his disposal. The number of servers that can be visited has not
to be determined a priori. A further improvement are publicly verifiable PRACs. An agent
is supplied with a list of secret keys and a corresponding list of verification predicates. Again
it is also possible to defer the key and verification predicate generation to a one-way function.
The verification predicates are publicly available, whereas the signature keys are secret and
destroyed after use. So it can be verified whether a partial result is correct for computations
that depend on these partial results. However, [Yee97] does not present techniques for the
actual construction of the functions and predicates.

[KAGI8] extends the mechanisms proposed by [Yee97] by a component to ensure the integrity
of the collected offers. This approach assumes the existence of a public key infrastructure or
at least the existence of a publicly available key of the agent’s originator. Each shop signs its
offer with its secret key such that the offer is unrepudiable and unforgeable. Then the offer
may be encrypted with the agent owner’s public key for confidentiality. [KAG98] proposes a

27

hash chain that links the offer of the previous shop with the identity of the next shop. This
disables a shop from modifying its own offer later. The agent originator computes a hash of a
dummy offer and the identity of the first shop to be visited as the anchor for the hash chain
using a nounce. Afterwards, he encrypts it with his own public key and dispatches the agent.
When a shop k is visited on the journey, the next offer is added probabilistically encrypted to
the agents memory. A new hash is created from the previous offer of shop k& — 1 connected
with the identity of the next shop k + 1, encrypted and signed. This links the previous with
the current offer such that the current offer cannot be modified without modifying the previous
ones. The inclusion of the next shop’s identity ensures that only this shop can add the next
offer. This protocol can be further enhanced by encrypting the offer and the hash such that
forward privacy is achieved. To avoid that a shop is able to exchange its offer at a later point
in time, a nounce is included in this protocol which serves as the input of the computation of
the next hash. The idea of publicly verifiability can additionally be applied in this approach.
When an agent comes to the stage where it commits itself and has to pay, it has to submit
payment information. The requirement is that only the retailer that needs the information can
obtain it. The best would be that the retailer gets only the information that the customer can
pay the product, but not the concrete payment details. In that approach, as in the SET protocol
(Secure Electronic Transaction), a trusted bank gets the payment details and notifies the retailer
that the customer is able to pay. However, if this is not possible, there are alternatives to solve
the problem. Firstly, the customer agent goes back home and fetches the payment information
which is encrypted with the retailer’s public key. Secondly, the customer agent jumps back to a
trusted platform where it has left the payment information beforehand. Thirdly, the customer
agent could carry the payment information with it in encrypted form. If it wants to submit the
payment information to a retailer, it fetches the decryption key from a trusted platform and
gives it to the retailer. If we include a bank or certification authority, the payment information
could be certified by one of those organisations as being correct. Integrity can be protected by
a digital signature of the agent owner or a central authority.

The program (its hash-value, respectively) of an agent can be digitally signed which allows
to reveal unauthorised modifications of the program. However, the code cannot be encrypted
if the platform has to work on it. Static parts of an agent’s code that are not needed for a
computation can be encrypted for confidentiality, before dispatching the agent. Additionally,
they can be digitally signed for protection of integrity.

Any computation on private data has to be done on a trusted platform with respect to these
data. For instance, in case of the shopping scenario the merchant platform may be trusted with
respect to the offer of its merchant, but not with respect to other offers.

Platforms should protect agents from each other. Even on a trusted platform, there can be
malicious agents that try to corrupt other ’good’ agents on the same platform. Therefore, the
platform has to guarantee that the agents can only communicate via messages and can not
access the data or code of other agents directly. Furthermore, the communication between
two agents should be impossible to monitor, disclose or alter by some other agent on the same
trusted platform. Technically, this can be achieved my separating the name and address spaces
for the single agents on the platform or by executing only one agent in a separate sandbox.
Although difficult, the passing on of confidential information can be prevented by technical
means. Passing on of confidential information means that someone communicates information
without permission of the owner of this information. In order to make that detectable, confiden-
tial data can be marked with the original sender and receiver using watermarking techniques. A
watermark is linked to the content of the document such that it can not be separated from the
document. Moreover, it can not be noticed at first sight, but there are specialised mechanisms
for detection of a watermark. A watermark is robust to common modifications of a document
and also to attacks. A violation of confidentiality is detected if someone receives watermarked
information with a watermark that does not certify that he/she is the legal receiver. For pre-
venting the illegal passing on of watermarked information a coordination medium can be used.
The coordination medium detects watermarked data and checks whether these data is sent to
the legal receiver. If there are inconsistencies, it blocks the message from going through the
network. A coordination medium is a programmable communication device whose behaviour
can be defined by means of suitable programming languages according to global system needs.
There are several models for the implementation of coordination media for the Internet available

28

such as Linda [ML94] or ReSpecT [DNO98]. An overview of the current research on water-
marking techniques can be found in [P£i00].

BB4 Agent Execution

It is guaranteed that an agent is executed as it was programmed by its owner.
It is guaranteed that the code and the control state of an agent are not modified.
It is guaranteed that an agent is transmitted as intended between two plat-
forms. The integrity and the confidentiality during transmission is ensured. It
is guaranteed that the agent is received.

Aspects of a Technical Realisation:

On a trusted platform the agent is executed as it was programmed by definition. However,
on an untrusted platform it is very difficult to guarantee correct execution. There are several
approaches in the literature that try to ensure that an agent is executed as it was programmed.
The Code Mess Up technique [Hoh97] aims at the prevention of intended and directed modifi-
cation of the agent’s code. The basic idea in this approach is to modify the code such that it
is impossible to find out the semantics of the code within a defined period of time. However, it
is hard to determine what time is needed to solve the code mess up. Undirected modifications
and denial of service attacks to the agent are still possible.

In [Vig98], Cryptographic traces are proposed to detect whether an agent was not executed as
it was programmed. The execution of an agent on a remote host is logged by that host. At
the end of the execution a hash of this execution trace is sent with the agent such that the
agent owner can verify a correct execution or at least knows where the tampering must have
happened. An assumption in this approach is that a malicious host nevertheless provides a
correct trace of the execution which seems paradox. The data overhead produced enormous
which restricts the applicability of this method.

Encrypted functions are the only approach to hide the program semantics from the platform.
Encrypted functions are programs that are encrypted and yield encrypted results. These cannot
be understood without having a decryption key. Therefore, directed modifications of the agent
can be prevented with this method. A serious drawback however is that only certain kinds of
functions can be expressed as encrypted functions [ST98].

Correct, confidential and integer transmission of agents over the network can only be achieved
between trusted platforms. Digital signatures and encryption can enhance confidentiality and
integrity. Transmission protocols, like handshaking, can ensure that an agents is transmitted
correctly and that it is received. However, a malicious platform can refuse to transmit an agent
or transmit it to the wrong place.

As we have seen, only trusted platforms completely ensure the correct execution of agents. The
mechanisms for guaranteeing correct execution presented above have drawbacks with respect to
their applicability. In addition to that, they only partially achieve the security goals. Therefore,
it is interesting to ask whether it will be noticed by other agents or platforms if an agent is
not executed or transmitted correctly. If other agents and platforms are able to discover that
another platform is malicious, it is possible to put a kind of social pressure on platforms to
execute agents correctly. In a society of agents, it could be common knowledge that platform
X is malicious. Thus, noone will ever again visit it without taking the necessary precautions
beforehand. A common reputation service could be introduced where such violations are re-
ported to. A black list of platforms or agents can be maintained. A way to detect incorrect
execution or transmission could be time stamps or expiry times for the code. If an agent does
not get back after a defined time, it is assumed to have been killed. In order to identify where
this might have happened, the route of the agent should be known to its owner. Alternatively,
the agent could sent a message to its owner at any time it is leaving a host telling the owner
where it is supposed to go to. If the agent does not notify its owner after some time, the owner
knows that on the host the agent wanted to go to something malicious happened.

29

BB5 Protection of Platforms and of the Connecting Network

The access of agents to data and resources of platforms is restricted and pro-
tected.

The availability of platforms is protected. Denial of service attacks can be
prevented.

The availability of the network is protected. Denial of service attacks to the
network can be prevented. The confidentiality and integrity of the network
communication is protected.

Aspects of a Technical Realisation:

There are several approaches that try to protect hosts from damage done by malicious agents.
The data stored on hosts can be protected by sandboxing or safe interpreters [Moo98]. The
agent is executed inside a padded cell or a sandbox and does not have unprotected access to
the host. Each agent has its own address space. Other accesses to the outside are checked
separately by a security manager. A link between the author and his agent can be established
by the author singing it. Supposing a trust model, the trust in the author can be transferred to
the code he has written. Proof-carrying code ensures that the agent works according to some
security policy. The creator of the agent compiles a proof for the compliance to this policy
which is verified at the agent’s arrival [Nec97].

In order to protect the host’s or platform’s resources one can use access control mechanisms.
For restricting the risk of denial of service attacks, one can use market-based resource control
mechanisms that do not allow one agent to allocate infinitely many resources [BKR98]. However,
currently there are no serious means available to prevent denial of service attacks. In general, it
is very hard, if not impossible, to determine that a denial of service attack happens. A reason
therefore it that it is hard to distinguish between an ordinary and a faked customer in a virtual
mall.

The availability of the network can be protected using fault-tolerance mechanisms such that
another path is chosen if some router breaks down. Alternatively, a second server can be used
as a backup device. A possibility to reduce traffic at certain network nodes, possibly caused
by a denial of service attack, is the use of load balancing techniques. The confidentiality and
integrity of the network communication can be protected by encryption techniques and digital
signatures, assuming that a PKI between the platforms exists, comparable to agent transmis-
sion in building block BB4. In order to make the network communication untraceable, mixes
and anonymizer can be used.

BB6 Legal Liability

A customer and a provider agent are able to make a legally binding contract.
The contract cannot be manipulated after it was made and cannot be denied
by a signing party. If it is required, the contract can be kept confidential.
Provider agents can issue binding offers to customer agents. These offers cannot
be manipulated and can be kept confidential, if it is necessary.

Aspects of a Technical Realisation:

Digital signatures in a public key infrastructure can be used to authenticate messages and to
make a sender of a message legally liable. For details about digital signatures in a mobile
multiagent system see section 4.4.1.

Legal liability of contracts can also be achieved by digital signatures. In our model, merchants
are always on their own trusted platform. Therefore, they can sign the contract with the secret
key at his disposal. The client, however, will only be able to sign the contract on a trusted
platform where he can use his secret key. If the merchant’s platform is not trusted by the
customer, he has to move to a trusted platform, sign the contract and or submit it to the
merchant. The digital signature including a hash of the contract also provides protection of
integrity. The confidentiality of a contract can be established by encryption with public keys.
An offer issued by some merchant can be made legally binding by digitally signing it by the
merchant. Since merchants only roam on their own trusted platforms, they can generate a
hash of their offer and to sign it. The customer is given the offer with the attached signature.

30

The merchant’s signature connects the merchants identity to the offer by means of the PKI.
Additionally, the signature guarantees the integrity of the offer. Confidentiality can be achieved
by encrypting the offer with the recipient’s public key.

Another issue is the correctness of information that the customer agent is given by retailers.
Here, we can distinguish between two phases. In the first, the customer only wants to set up
an information collection and has no requirements with respect to correctness. In this case,
nothing has to be done about the offers given by retailers. In the second phase, a customer
wants to rely on the information and base his commitment based on it. Therefore, provider
agents should issue binding offers to customers to vouch for the correctness of issued information.

BBT7 Trusted Services
Agents can prove that the operate according to a quality of service policy.
Platforms can provide a certificate of their trustworthiness.

Aspects of a Technical Realisation:

Matchmaker and retailer agents can possess certificates that assert that they operate to a
quality policy. The quality policy can for instance include that data is not resold or that offers
are correct. The certificates are signed by some certification authority (CA). Matchmaker and
retail agents can provide these certificates as a part of their authentication. So a customer
contacting such an agent immediately knows by the provided certificate who the other agent
is and to which quality of service policy it complies. The trust an agent will put into such a
certificate always depends on the trust the agent has in the CA. If a merchant or a matchmaker
is certified by an authority in which the client highly trusts he will also put high trust in the
certified provider. If he does not trust the authority, he will be cautious what he tells the
provider about himself and what he thinks of the provided service. Additionally, the client can
take precautions before further interaction. The certificates need not necessarily be issued by
some central CA. It is also possible to set up a web of trust as in PGP. Then a customer trusts
a certificate if he trusts the certifier. By means of certificates, a trusted shop infrastructure or
a web of certified matchmakers can be created.

Also platforms can be certified by some central certification authority to be benevolent, to
execute agents correctly, and not to copy, modify or distribute the agent’s data or code. Again,
it will depend on the trust an agent has in the certification authority if it trusts the platform.
If the agent accepts the certificate, the platform is trusted and the agent just goes there. But if
the agent does not accept the certificate, it can take precautions before going to that platform.
Precautions can include the encryption of sensitive data or the notification of its owner about
what it is going to do such that the owner can detect a potentially malicious platform.

5 Conclusion and Future work

Agents and multiagent systems will play a major role in the further development of Internet-
based applications like virtual marketplaces. However, these systems will not be successful until
their specific security problems are solved. In this report, we examined comparison shopping
as a case study for a virtual marketplace scenario and as an application domain for a mobile
multiagent system with respect to its security issues. We established a detailed model of
the scenario and analysed it regarding the interests of its participants and the possibilities of
an attacker. From that analysis, we identified the overall security threats in this scenario and
security objectives to counteract them. The security objectives were refined into building blocks,
which the underlying multiagent system should provide, and further into features of agents and
executing platforms. We discussed solutions for the implementation of these building blocks
and pointed out under which assumptions it is possible to achieve the security goals.

Agent mobility increases the difficulty for the establishment of security in comparison to a
system with static agents. While there are well-founded mechanisms to establish security in
such systems, like encryption or digital signatures, those methods do not work in a mobile agent
scenario. In some cases, we simply have to admit that a satisfactory solution is not possible
because of technical and conceptual constraints. In this area, more work is necessary to come
up with solutions for security issues connected to agent mobility. Currently, it seems that some

31

problems cannot be solved at all. Consequently, the trade-off between advantages of mobile
agents and their security issues has to be considered before choosing the agent paradigm.

References

[ACCKO1]

[BG99)]

[BKROS]

[CM96]

[CMS01]

[DEW96]

[DNO9S]|

[FGS96a]

[FGS96b]

[GK99]

[GMOS]

[GMMOg]
[Hoh97]

[JCK+00]

[KAGOS]

J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security
for mobile code. In IEEE Symposium on Security and Privacy 2001, pages 2—-11.
IEEE Computer Society, 2001.

A.B. Brody and E.J. Gottsman. PocketBargainFinder: A handheld device for
augmented commerce. In Proc. of the International Symposiom on Handheld and
Ubiquitous Computing (HUC’99), 1999.

J. Bredin, D. Kotz, and D. Rus. Market-based resource control for mobile agents.
In Proceedings of Autonomous Agents’98, May 1998.

A. Chavez and P. Maes. Kashbah: An agent marketplace for buying and sell-
ing goods. In Proceedings of the First International Conference on the Practical
Appication of Intelligent Agents and Multi-Agent Technology, London, UK, April
1996.

A. Corradi, R. Montanari, and C. Stefanelli. Security of mobile agents on the inter-
net. Internet Research: Electronic Networking Applications and Policy, 11(1):84—
95, 2001.

R. B. Doorenbos, O. Etizioni, and D.S. Weld. A scalable comparison-shopping
agent for the world-wide-web. Technical Report UW-CSE-96-03-01, Department
of Computer Science and Engineering, University of Washington, 1996.

E. Denti, A. Natali, and A. Omicini. On the expressive power of a language for
programmable coordination media. In Proceedings of 1998 ACM Symposium on
Applied Computing, 1998.

W. M. Farmer, J. D. Guttman, and V. Swarup. Security for mobile agents: Au-
thentication and state appraisal. In Proceedings of the Jth European Symposium
on Research in Computer Security, pages 118-130, Rome, Italy, 1996.

W.M. Farmer, J.D. Guttman, and V. Swarup. Security for mobile agents: Issues
and requirements. In Proceedings of the National Systems Security Conference,
pages 591-597, 1996.

A. R. Greenwald and J.O. Kephart. Shopbots and pricebots. In Proc. of the
International Joint Conference on Artificial Intelligence '99 (IJCAI’99), 1999.

R. H. Guttmann and P. Maes. Agent-mediated integrative negotiation for retail
electronic commerce. In Lecture Notes in Artificial Intelligence, volume 1571, pages
70-90, 1998.

R.H. Guttmann, A.G. Moukas, and P. Maes. Agent-mediated electronic commerce:
A survey. Knowledge Engineering Review Journal, June 1998.

F. Hohl. An approach to solve the problem of malicious hosts. Technical Report
1997/03, Universitédt Stuttgart, Germany, 1997.

J.Yang, J. Choi, J. Kim, H. Ham, and K. Lee. A more scalable comparison-
shopping agent. In Proceedings of Engineering of Intelligent Systems (EIS2000),
pages 766-772, 2000.

G. Karjoth, N. Asokan, and C. Giilcii. Protecting of the computation results of
free-roaming agents. In Mobile Agents, Second International Workshop, MA’98,
Stuttgart, Germany, Proceedings, volume 1477 of Lecture Notes in Computer Sci-
ence, September 1998.

32

[KG99)]

[Kru96]

[Mea97]

[ML94]

[M0098]

[MUO1]

[Nec97]

[Pay]
[PDEWO5]

[PAOO]

[Sch01]

[ST98]

[TMGW97]

[TMP+97]

[Vig98]

[Yee97)

[YLCOO]

J. O. Kephart and A. R. Greenwald. Shopbot economics. In Autonomous Agents
’99, 1999.

B. Krulwich. The BargainFinder agent: Comparison price shopping on the inter-
net. In Agents, Bots, and other Internet Beasties, pages pp.257-263. SAMS.NET
publishing (Division of Macmillan publishing), 1996.

C. Meadows. Detecting attacks on mobile agents. In Proceedings of the 1997
Foundations for Secure Mobile Code Workshop, pages 64-65, Monterey, CA, March
1997.

N. Minsky and J. Leichter. Law-governed linda as a coordination model. In Object-
Based Models and Languages, volume 924 of Lecture Notes in Computer Science,
pages 125—145. Springer-Verlag, 1994.

J. T. Moore. Mobile code security techniques. Technical Report MS-CIS-98-28,
University of Pennsylvania, 1998.

P. M. Markopoulos and L. H. Ungar. Shopbots and pricebots in electronic service
markets. In Game Theory and Decision Theory in Agent-Based Systems. Kluwer
Academic Publishers, 2001. to appear.

George C. Necula. Proof-carrying code. In Conference Record of POPL '97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 106-119, Paris, France, January 1997.

URL http://www.paybox.de.

M. Perkowitz, R.B. Doorenbos, O. Etizioni, and D.S. Weld. Learning to unter-
stand information on the internet - an example-based approach. In Proceedings of
International Joint Conference on Artificial Intelligence 95 (IJCAI’95), 1995.

A. Pfitzmann, editor. Information Hiding 99, volume 1768 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

R. Scheepers. Supporting the online consumer decision process: Electronic com-
merce in a small australian retailer. In Proceedings of The Twelfth Australasian
Conference on Information Systems, Coffs Harbour, NSW, Australia, December
5-7 2001.

T. Sander and C Tschudin. Towards mobile cryptography. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, 1998. IEEE Computer
Society Press.

M. Tsvetovatyy, B. Mobasher, M. Gini, and Z. Wieckowski. Magma: An agent
based virtual market place for electronic commerce. Applied Artificial Intelligence,
1997.

I. Terpsidis, A. Moukas, B. Pergioudakis, G. Doukidis, and P. Maes. The potential
of electronic commerce in re-engineering consumer-retail relationships through in-
telligent agents. In J.-Y. Roger, B. Stanford-Smith, and P. Kidd, editors, Advances
in Information Technologies: The Business Challenge. 10S Press, 1997.

G. Vigna. Cryptographic traces for mobile agents. In G. Vigna, editor, Mobile
Agents and Security, pages 137-153. Springer-Verlag, Heidelberg, Germany, 1998.

B.S. Yee. A sanctuary for mobile agents. In Proceedings of the DARPA Workshop
on foundations for secure mobile code, Monterey, USA, March 1997.

J. Yang, E. Lee, and J. Choi. A shopping agent that automatically constructs
wrappers for semi-structured online-vendors. Lecture Notes in Computer Science,
1983:368-373, 2000.

33

Secure Mobile Multiagent Systems RR-02-02
In Virtual Marketplaces Research Report
A Case Study on Comparison Shopping

Ina Schaefer

