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Abstract. For a simplified version of the clamping tool selection problem in mechanical engineering,
the knowledge acquisition tool COKAM is applied to obtain an informal knowledge base and explanation
structures from technical documents and previously solved cases. The output of COKAM is used to
construct a three layered KADS conceptual model, which is then transformed into an operational model in
the language OMOS. The OMOS formalization allows to verify the informal KADS conceptual model and to
check the completeness of the domain knowledge. The results of this analysis are utilized in the next
knowledge elicitation session with COKAM.

1. MOTIVATION
This paper describes how three tools and approaches, each representing a different contribution to
knowledge acquisition, have been used in one application to obtain qualitatively new knowledge
acquisition potential. COKAM (Schmidt & Schmalhofer 1990) is a knowledge elicitation tool.
KADS (Breuker & Wielinga 1989) is a systematic knowledge engineering approach. OMOS
(Linster 1990) is a representation language for operational models of problem-solving. The inter-
action of the tools and approaches (see figure 1.1) looks as follows:

• The output of the knowledge elicitation tool COKAM, which produces informal knowledge
units and explanation structures from technical documents and from prior case solutions can
be transformed into a KADS conceptual model.

• The KADS conceptual model serves as an explanation framework in the ensuing analysis of
COKAM-generated explanations. Thus the conceptual model is tested against the next cases.
This validates the model in the continuing elicitation.

• The structure-preserving operationalization of the KADS conceptual model in the represen-
tation language OMOS enforces an unambiguous definition of the knowledge of the concep-
tual model. A reduction of ambiguity, vagueness and a better understanding of concepts can
be achieved that way (Akkermanns, Balder, van Harmelen, Schreiber & Wielinga 1990,
p. 9).

• The cases, that were the basis for the COKAM explanation structures can be used to validate
the OMOS model.

• The OMOS analysis features point out loopholes in the OMOS knowledge base. Because of
the structure-preserving transformations they correspond to loopholes in the KADS concep-
tual model, which again are due to loopholes in the COKAM case and explanation base.
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Figure 1.1: Knowledge Acquisition with COKAM, KADS and OMOS

Section 2 of this paper describes our application: the selection of an appropriate clamping tool to
fix a workpiece for lathe turning. The third section describes how the tool COKAM is applied to
elicit knowledge and explanation structures from texts and prior case solutions. In section 4 we
will show how the output of COKAM is used to develop an adequate KADS conceptual model.
Section 5 demonstrates how the KADS conceptual model is operationalized with the representa-
tion language OMOS, and Section 6 how the analysis tools of OMOS provide useful hints for the
use of COKAM to complete the elicited knowledge. Section 7 summarizes and discusses the
COKAM-KADS-OMOS approach.

2. OUR APPLICATION DOMAIN: CLAMPING TOOL
SELECTION FOR LATHE TURNING

COKAM was developed in the ARC-TEC project (Acquisition, Representation and Compilation
of TEChnical Knowledge; Richter, Boley & Wetter 1989). The goal of this project  is the
development of a domain specific shell for the construction of expert systems that solve various
tasks in mechanical engineering. One prototypical task is the generation of a production plan for a
rotational part. The production plan specifies:
• the clamping tool with which the workpiece is fixed in the lathe
• the cutting tools with which the material is removed from the mold
• the sequence of cuts
• the cutting parameters such as feed and revolutions per minute.

Figure 2.1 shows a typical rational part (a drive shaft) overlaid with the mold from which it is to
be manufactured. The numbers indicate the sequence of cuts by which the material is removed.
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They also refer to concrete cutting tools. Since the whole task of production planning is rather
complex, we will only consider some aspects of the clamping tool selection problem to
demonstrate our approach.

The clamping tool serves to center the workpiece in the lathe and to transmit the rotation. In Figure
2.1, it is depicted by the two black parts labeled left fixture and right fixture. In this particular case
the left fixture, which transmits the rotation is a lathe dog and the right fixture is a lathe center.
Other types of clamping tools are clamping jaws and collet chucks.

sequence of cuts

sequence of cuts

rotation center
(axis of workpiece)

contour of mold

contour of workpiece

right
fixture

left
fixture

Figure 2.1: A rotational part with its clamping tool and a partial production plan (after: Example for application,
SPK-Feldmühle Werkzeuge, undated)

Lathe dogs hold the workpiece from the side and allow free access to all surfaces except the left
and the right vertical plane. Clamping jaws and collet chucks, on the other hand, do not use the
vertical planes to fix the workpiece but use instead parts of the outside plane (represented by hori-
zontal lines in figure 2.1). Depending on the turning requirements, i.e., which surfaces of the
workpiece are to be manufactured, either a lathe dog or collet chucks are more advantageous.
Besides the accessibility of different sections of the workpiece surface there are several other cri-
teria that determine the selection of a clamping tool. In our application we will only consider the
set-up time, i. e., the time that is needed to mount the clamping tool on the lathe and the clamping
time, the time it takes to close the clamping tool when a new mold is inserted into the lathe.

The selection of an appropriate clamping tool depends on three different kinds of data about the
manufacturing problem:
• the workpiece data which specify the geometry and the technological requirements (e.g.,

surface quality and rotational accuracy) of the workpiece to be manufactured,
• the job data (e.g., lot size and delivery deadlines) which pertain to the whole set of workpieces

that were ordered by a customer.
• the workshop or shop floor data that specify which machines, clamping tools and cutting tools

are available and which clamping tools are already mounted on the individual machines.

In the next two sections of the paper we will develop a KADS conceptual model for this simplified
version of the clamping tool selection problem. We construct a KADS conceptual model with the
help of the knowledge acquisition tool COKAM. We will only describe the subset of the function-
ality of COKAM which is relevant for the construction of the conceptual model. A more compre-
hensive description is given in  Schmidt & Schmalhofer (1990) and Schmalhofer, Kühn &
Schmidt (1990).
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3. KNOWLEDGE ACQUISITION WITH COKAM

3.1. Basic Principles
COKAM (Case-Oriented Knowledge Acquisition Method from Text) is based on the idea that
different traces of expertise, which serve as information sources should be used together for
knowledge acquisition. In the domain of mechanical engineering there are three different traces of
expertise, namely texts, records of previously solved cases, and expert's know-how. These three
traces of expertise complement each other since to some extent they provide different information.
Even when they contain the same information the knowledge may be obtained more easily from
one information source than the other. Therefore, integrated knowledge acquisition (Schmalhofer,
Kühn, Schmidt 1990) in which different traces of expertise are used, offers significant advan-
tages. Since the traces supply different and possibly overlapping knowledge the completeness and
consistency of a constructed knowledge base can more easily be established. Furthermore the rel-
evant knowledge can be elicited more efficiently when several information sources are used.

COKAM combines the three traces of expertise as follows: Texts are the primary information
source since they contain general and well structured knowledge in explicit form. Segments that
are extracted from the text by an expert constitute the building blocks or knowledge units of the
initial informal knowledge base. Although texts are used first, records of previously solved cases
are just as important for knowledge acquisition with COKAM. Cases are used to obtain
information of how the mostly declarative knowledge that was extracted from the text is applied
by the expert in practice. In COKAM this is accomplished by having the expert explain solutions
of different cases using the knowledge units in the informal knowledge base. Cases are used
together with their solutions, since it is less time consuming to explain than to generate a solution
of a particular case. The explanations of individual cases can be analyzed to check the relevance
and sufficiency of the informal knowledge base. It is even more interesting, however, that the
obtained explanation structures can be used to construct a task and an inference structure of a
conceptual model.

3.2. Extracting an Initial Informal Knowledge Base from Text
Figure 3.1 shows how COKAM supports the construction of an initial informal knowledge base
from a technical text. The text (which can be scanned in) is presented on the left of the screen. The
text browser, which is located directly above the text window, helps  the expert navigate through
the text. The right side of the screen shows the informal knowledge base. Small windows display
the knowledge units, which are arranged in the form of a card stack. The user can move up and
down the stack to select a particular knowledge unit. The selected unit is always located next to the
dialog window in the center of the screen. COKAM supports copying text segments to a
knowledge unit, editing a knowledge unit, and assigning it to various categories. It records the
history of each knowledge unit so that the user can at any time go back to the piece of text from
which it originated.

The text that was used in our application contained different types of information. It described the
different types of clamping tools, the function of a clamping tool, the criteria for selecting an ap-
propriate clamping tool, and how these criteria are applied in practice. The expert was told to se-
lect all the text passages that contain relevant information for the solution of the target task, since
only then a detailed explanation at different levels of abstraction can be given. The knowledge
units that were thus constructed usually consisted of single text sentences, of partial sentences or
combinations of two sentences. These text fragments were modified so that they could be under-
stood without their context, i.e., anaphora and other references were resolved. Table 3.1 shows a
selection of knowledge units that were obtained from our text. The expert then used these knowl-
edge units to construct explanations for individual cases.
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Figure 3.1: A screen snapshot of knowledge elicitation from text with COKAM1.

1. "The purpose of the clamping tool is to center the workpiece in the lathe and to transmit
the rotation."

2. "For the selection of a chucking tool the criteria accessibility of workpiece surfaces,
clamping time and set-up time must be considered."

3. "A lathe dog is ideal for transverse turning but axial turning is also possible."

4. "The set-up time for a lathe dog is 3 Minutes."

5. "The set-up time of a selected clamping tool should be as short as possible."
Table 3.1: A sample of knowledge units of the informal knowledge base.

1A German text was used for knowledge elicitation, as our experts are German mechanical engineers.
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3.3. Obtaining Explanations for Individual Cases
The screen set-up for constructing explanations is similar to figure 3.1, except that instead of the
text window an explanation window is displayed, which initially contains a case description. We
build an explanation tree by selecting knowledge units from the informal knowledge base and at-
taching them to the case description or to other units in the explanation window. When construct-
ing the explanation, one can add new units to fill gaps in the informal knowledge base. Existing
knowledge units can be reformulated, so that they can be better understood. Constructing an ex-
planation for a case thus also helps to get a more precise formulation of the units.

Figure 3.2 shows a part of a typical explanation tree. The knowledge unit directly below the
graphical representation of the case names the criteria for clamping tool selection (see knowledge
unit 2 of table 3.1). The subsequent units show how these criteria are satisfied for the particular
problem. The leaves of the explanation tree always refer to concrete elements of the case descrip-
tion, i.e., the workpiece data, the job data, the workshop data or the given solution. The links
between the knowledge units should be interpreted as "explain" links, i.e., the units below a
particular unit together explain that unit.

Figure 3.2: Part of an explanation tree justifying the use of a lathe dog for manufacturing the workpiece
"Welle_2."2

4. CONSTRUCTING THE KADS CONCEPTUAL MODEL

4.1. The Subset of KADS that We Consider
KADS (Knowledge Acquisition and Design Structuring; Breuker et al. 1987, Schreiber et al
1988, Wielinga & Breuker 1989) is a methodology for the structured and systematic development
of knowledge-based systems. KADS divides the development process of a knowledge-based
system into a suite of models (in particular the conceptual model, the design model, the logical
model; Schreiber et al 1989) that represent the transformation of knowledge from the initial, non-

2For the reader's convenience, the knowledge units containing German text are given English labels which
characterize their contents.
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formal phases into an operational system. Within the models, knowledge is represented on several
layers to stress the different types of knowledge of a knowledge-based system.

Our major concern is the development of the conceptual model. According to our interpretation the
conceptual model is a model of the expert's problem-solving process. It should also be the basis
for the design of the system. For the construction of the conceptual model we will rely on the in-
formal knowledge base and the explanation structures collected with COKAM. According to the
KADS terminology we will distinguish a domain layer, an inference layer and a task layer in the
conceptual model. The domain layer describes the static domain knowledge, which can be used
for various tasks. Entities in the domain layer are concepts and relations. The inference layer
specifies what inferences can be made in terms of knowledge sources and meta-classes.
Knowledge sources are functional descriptions of inference making and meta-classes describe the
role that the domain layer concepts can play. The inference layer is neither domain-specific nor
task-specific since the knowledge sources and meta-classes may occur in different domains and
different tasks. The inference structure for a specific task, however, specifies only that part of that
inference layer that is relevant for the solution of this task. The task layer describes how the
knowledge sources of the inference layer are applied to solve a particular task. The task structure
describes one particular way to solve a task. The strategy layer controls the selection of a task
solution method. We do not consider this layer since we did not observe different strategies in our
application task.

4.2. The Domain Layer
The concepts and relations that describe the static knowledge of the application domain can be
identified from the elements of the informal knowledge base. Since the knowledge units contain
decontextualized pieces of information, which were considered to be relevant by the expert, it is
easier to discover concepts and the relations in the knowledge units than in complete texts or in
interview protocols.

The informal knowledge base that was constructed with COKAM contains many knowledge units
that describe relations between domain concepts. For example the knowledge unit 3 of table 3.1,
which states that a lathe dog is an optimal clamping tool for transverse turning and a possible
clamping tool for axial turning, or more technically, the relation between lathe dog and transverse
turning is optimal clamping tool and the relation between lathe dog and axial turning is possible
clamping tool. Another example is knowledge unit 4 of table 3.1, which states that the set-up time
for a lathe dog is 3 minutes.

The relevant domain concepts for clamping tool selection that can be identified from the units of
the informal knowledge base are:
• clamping tool and the various kinds of clamping tools

(e.g., clamping jaw, lathe dog and collet chuck),
• surface accessibility which depends on the turning requirements: transverse turning, axial

turning, inside turning,
• clamping time, set-up time,
• workpiece.

The relevant domain relations are:
• required processing and possible processing,
• has clamping time and has set-up time,
• mounted clamping tool,
• ideal clamping tool and feasible clamping tool.
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4.3. The Inference and Task Layers
We will not separate the discussion of the inference and task layer. They both describe the prob-
lem-solving method and they both depend strongly on each other. The identification of the ex-
pert's problem-solving method is a major difficulty in knowledge acquisition. One approach to
overcome this difficulty is the collection of all known problem-solving methods in libraries that
the knowledge engineer can consult. The KADS interpretation model library (Breuker et al 1987),
Generic Tasks (Chandrasekaran 1986) and the collection of role-limiting methods (McDermott
1988) pursue this goal. Even when comprehensive libraries exist, the selection of an appropriate
model still constitutes a problem. Furthermore, we believe that such libraries can never be both
exhaustive and provide sufficiently detailed models. This means, that only a global model can be
selected from the library, which must be refined to fit the specific task. The knowledge acquisition
method COKAM supports the knowledge engineer in the selection and refinement of an appropri-
ate problem-solving model.

The problem-solving model that we will suggest for the task of clamping tool selection was not
part of the KADS library of interpretation models. We had to build a new one. Psychological re-
search on human decision making (Huber, 1982; Gertzen, 1990) provides the foundation for our
problem-solving method.

When people are confronted with a task of selecting one alternative from a large number of given
alternatives based on several criteria, they first reduce the set of alternatives by eliminating some
obviously bad alternatives to obtain a smaller, more manageable set of alternatives, which are then
examined in more detail. In order to obtain a manageable set of alternatives the selection criteria
are applied more or less rigorously. In a second step, the subjective costs of the remaining
alternatives are computed on the basis of optimization criteria and the best one is selected. The
described strategy has been observed when people select an apartment to rent or a car to buy.

The problem of selecting a clamping tool is similar to the above problems in that there are a large
number of solution alternatives (not illustrated in the example of this paper) and several criteria
that make an elimination process necessary. The above problem-solving method, which might be
termed selection by elimination and optimization  is thus a plausible candidate. However this must
be supported by data collected with COKAM.

4.3.1. The Inference Structure
A closer inspection of the units in the informal knowledge base shows that they not only describe
relations of domain concepts but also refer to inference layer elements. The inference layer units
can be identified by searching the knowledge units for keywords that are typically used to name
meta-classes and hardly ever refer to domain concepts. Such keywords are: criterion, solution,
hypothesis, alternative, feature, etc. For example, knowledge unit 2 of table 3.1 contains the word
criteria, and it indeed relates the domain concepts surface accessibility, clamping time and set-up
time to the meta-class criterion.

Besides the individual knowledge units that give some hints for possible meta-classes and knowl-
edge sources, the construction of the inference layer is facilitated by the explanation collected with
COKAM. Whereas the knowledge units at the leaves of the explanation tree refer to the domain
layer, the inner knowledge units pertain to the inference layer. There are three such knowledge
units in the explanation tree shown in figure 3.2, namely the units directly below the problem de-
scription.

When the explanations that were generated with COKAM for different cases are compared to each
other, it can be seen that the criteria are usually applied in the same order, i.e., the criterion surface
accessibility is considered before the criteria set-up and clamping time (see the explanation struc-
ture in figure 3.2). Therefore it is likely that surface accessibility is a selection criterion  whereas
set-up time  and clamping time are optimization criteria. An inspection of the corresponding
knowledge units confirms this interpretation. The selection criterion surface accessibility can be
instantiated in two ways so that either only the ideal clamping tools (those clamping tools that are
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well suited for the required types of processing) or all feasible clamping tools (those clamping
tools that are less suitable, but that still do the job) are selected.

possible
solutions

find best

solution

compute
cost

instantiate
ideal

instantiate
feasible

instantiated 
ideal criteria

selection
criteria

optimization
criteria

solution 
alternatives

select feasible select ideal
instantiated 

feasible criteria

cost

situation
parameters

Figure 4.1 Inference structure for the problem-solving method selection by elimination and optimization that we
use for clamping tool selection.

Figure 4.1 shows the inference structure for clamping tool selection. There are two ways to select
the possible solutions from the set of solution alternatives (e.g., the available clamping tools
specified in workshop data). The selection criteria (surface accessibility) can be instantiated with
the situation parameters (the problem description except the solution alternatives) so that either all
feasible or only the ideal possible solutions are selected. From the set of possible solutions the
best solution is the one with the lowest cost. The cost for each possible solution is computed
based on the optimization criteria (set-up and clamping time) and the relevant situation parameters
(lot size and mounted clamping tool).

4.3.2. The task structure
The task structure describes the sequence in which the knowledge sources of the inference struc-
ture are used to solve the task. There are no units in the informal knowledge base that contain such
information. This is not surprising since texts usually do not describe in detail how to solve par-
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ticular tasks. To some extent the explanations that were generated with COKAM provide informa-
tion about the sequence of knowledge sources as already pointed out in the previous section.

Figure 4.2 shows the task structure for clamping tool selection. The ideal instantiation of the se-
lection criteria is used first since it allows a more extensive reduction of the number of solution
alternatives. If the ideal instantiation does not produce any solutions, then we resort to feasible,
sub-optimal instantiations of the selection criteria. In our application, the selection criteria are de-
scriptions of the surface accessibility required to turn a workpiece: inside, transverse or axial
turning. For the solutions of the selection process we compute costs. Cost computation uses op-
timization criteria, which in our application correspond to set-up time and clamping time.

select feasible

instantiate
feasible

instantiate
ideal

select ideal

possible 
solutions > 0

compute
cost

find best

no

yes

Figure 4.2: Task structure for the problem-solving method select by elimination and optimization that we use for
clamping tool selection.

5. OPERATIONALIZING THE CONCEPTUAL MODEL WITH
OMOS

This section of the paper describes how the KADS conceptual model of the clamping tool selec-
tion task is represented in the operational language OMOS and which transformation processes are
necessary to do so. We will limit ourselves to a brief description of the language OMOS and of the
implemented clamping-tool-selection system, as this article focusses on the feedback that a
structure-preserving implementation of an explicit model of expertise provides for the continuing
knowledge elicitation and analysis (see figure 1.1).
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5 .1 . The Language OMOS
OMOS (Operational Models of Problem-Solving) is a representation language for operational
problem-solving models for knowledge-based systems (Linster 1990). OMOS models consist of a
generic part that describes the problem-solving method and of an application-specific part that de-
scribes the domain knowledge that is used by the problem-solving method. OMOS tries to com-
bine the advantages of KADS (i.e., flexibility of modelling for a wide range of tasks, reusability
of the generic aspects of the models) with the advantages of operational approaches to the mod-
elling of problem-solving as we find them in PROTEGE/p-OPAL (i.e., use of operational data-
structures to represent detailed domain-knowledge, automatic analysis capabilities and strong
guidance in the acquisition and representation of the application-specific knowledge; Musen
1989). (Wetter 1990) and (Voß et al. 1990) describe related work.

OMOS represents knowledge in a two-layered KADS-like framework, consisting of a domain
layer and of a layer for the problem-solving method.

5 . 1 . 1 . The Language Constructs for the Domain Layer

On the domain layer OMOS provides language facilities for the definition of  concept hierarchies
and for the definition of relations between concepts.

Frames, attribute-descriptions for the frames and instances of the frames are the building blocks
for the concept hierarchies. In OMOS, frames are used to define domain types (e.g., the type
clamping-tool). Frames can be included in multiple-inheritance hierarchies. Attributes, defined for
the frames, provide uniform descriptions for the instances of the frames, such as the attribute set-
up-time  for the frame clamping-tool. Concepts of the domain layer are represented as instances of
frames with values for the attributes.

Relations express information that relates to several concepts. The relation optimal-clamping-tool
relates clamping tools (i.e., instances of the frame clamping-tool) to turning requirements (i.e.,
instances of the frame turning-requirement). Relations are lists of tuples or  predicates, whose ex-
tension corresponds to a finite list of tuples. The arguments of the relations correspond to in-
stances of frames. The relation optimal-clamping-tool  has instances of the frame clamping-tool  as
a first argument whereas the second argument refers to instances of the frame turning-require-
ment.

5 . 1 . 2 . The Language Constructs for the Layer of the Problem-Solving Method

On the layer of the problem-solving method OMOS provides knowledge sources, meta-classes,
inference structures and control-structures to represent a problem-solving method. OMOS uses a
KADS-like terminology on this layer, but the implementation of the terms is different. Important
differences exist for the implementation of the knowledge sources and for the inference structure.
The latter one is a data-dependency diagram in KADS, whereas in OMOS many elements of di-
rected and conditional data-flows are included. KADS uses the inference and task layer elements
to conceptualize problem-solving behavior. OMOS is an implementation language.

Meta-classes describe roles that domain layer concepts play in a problem-solving process. Initially
the meta-class solution-alternative describes the concept collet-chuck. In case it is selected because
the workpiece could be turned using a collect-chuck then it changes its role and becomes a possi-
ble-solution. If it is the best solution as far as some cost-factor is concerned, then it plays the role
solution. Thus these roles are dynamic.

Knowledge sources are inference functions that work on domain layer concepts. They can modify
the role-assignment of a concept or they can change value-assignments of attributes of a concept.
An OMOS knowledge source has one input meta-class, one output meta-class and several control
meta-classes. A knowledge source moves concepts from the input meta-class to the output meta-
class. It can assign values to concepts that currently play the role that is denoted by the output
meta-class. Conditionals are expressed through the elements of the control meta-class. Knowledge
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sources use the knowledge that is expressed in the domain-layer relations. The inference
functionality of a  knowledge source is defined declaratively by stating the type of value-as-
signment it implements (none, initial or modification), its type of role-assignment (none or trans-
fer), the domain-layer relation it uses and the input, output and control meta-classes.

The inference structure is defined implicitly through the meta-classes and knowledge sources. It is
not an explicit construct of OMOS.

The control structure specifies the sequence in which the knowledge sources are called.
Conditionals may only refer to knowledge sources and meta-classes. The control structure
corresponds to the fixed task structures of KADS. OMOS does not provide an equivalent for the
KADS strategy layer.

5 . 1 . 3 . The Interpretation of the Language OMOS

OMOS is implemented in BABYLON (Guesgen, Junker & Voß 1987, DiPrimio & Wittur 1987).
The domain layer elements of OMOS are BABYLON language constructs: frames and instances
for the types and the concepts; PROLOG for the tuples of the relations. The constructs of the
problem-solving layer are compiled into BABYLON constructs. The meta-classes are dynamic
prolog predicates, that hold for pairs of domain-concepts and roles. The knowledge sources are
transformed into forward-rule schemes, which implement the value-assignment and role-
assignment description and that use the underlying domain relation. When a knowledge source is
called, the rule-scheme executes for all the tuples of the domain relation. Thus all the constructs of
OMOS are transformed into BABYLON constructs, and we only need a rudimentary interpreter.

5 .2 . Application Limitations for OMOS
The current implementation of OMOS is limited to finite domains. The problem-solving methods
must obey several characteristics. The inference steps must be represented as selection processes.
The problem-solving method must be a pre-defined iteration through a limited number of infer-
ences. Problem-solving roles, i.e., meta-classes, may only refer to domain-concepts, and not to
attributes of concepts or to tuples of relations. It is not clear yet how these limitations restrain the
applicability of OMOS. It has been used successfully for the implementation of more complex
systems such as K-ONCOCIN, a re-modelling of large parts of ONCOCIN with KADS terminol-
ogy (Linster & Musen 1991).

5 .3 . Formalizing the Conceptual Model of Clamping Tool Selection

5 . 3 . 1 . The Domain Layer

The domain language features of OMOS allow for a straight-forward implementation of the do-
main layer knowledge of the KADS conceptual model described in section 4.2.

5.3.1.1.       The Concepts
Figure 5.1 shows the hierarchical definition of types and instances for the domain layer concepts.
Not all the concepts described in section 4.2 appear in figure 5.1, as not all of them have been de-
fined explicitly in OMOS (e.g., lot-size is a concept of the conceptual model, but an attribute with
values in the implementation). Several of the relations described in the conceptual model were
implemented as attributes of concepts too, for example has clamping time, mounted clamping tool,
required processing. Thus they do not appear in figure 5.2.

In the implementation we had to introduce the type workpiece-cost-element  (see figure 5.1) to
provide concepts that can play the roles defined by meta-class optimization-criterion. This is be-
cause OMOS cannot apply meta-classes to attributes, only to concepts. The type turning-
requirement is a more restrictive, and within the context of our system much more precise term for
surface-accessibility. Its instances describe precisely which kind of turning operation is needed to
model the surface of a workpiece, i.e., how we have to access the surface with our tool.



13

Figure 5.1: The hierarchical definition of concepts. Types are boxed, instances are not. The lines between types de-
note inheritance. The lines between types and instances describe instantiation.

5.3.1.2.       The Relations

Figure 5.2: The relations are defined on the instances of the domain layer types. The tuples of the relation produc-
tion-cost have instances of the type workpiece-cost-element in the first argument position, instances of workpiece
in second position and the last argument is of type clamping-tool.

(DEFINE-DOMAIN-RELATION Optimal-Clamping-Tool
 WITH ARITY = 2
      TYPE-SEQUENCE = (((INSTANCE Clamping-Tool)
                        (EXTENSION-* Turning-Requirement)))
      ARGUMENT-SEQUENCE =
                      ((Clamping-Tool Important-Turning-Requirements))
      TUPLES = ((
                ((Optimal-Clamping-Tool

                    Collet-Chuck
                          ((Transverse-Turning-P Required-Value = Yes)

                     (Inside-Turning-P Required-Value = No))))

                ((Optimal-Clamping-Tool
                    Lathe-Dog
                    ((Axial-Turning-p Required-Value = Yes)
                     (Inside-Turning-P Required-Value = No))))

…

Table 5.1: The definition of the domain layer relation optimal-clamping-tool and some of the tuples of the relation.
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 (DEFINE-DOMAIN-RELATION Suboptimal-Clamping-Tool
  WITH ARITY = 2
       TYPE-SEQUENCE = (((INSTANCE Clamping-Tool)
                        (EXTENSION-* Turning-Requirement)))
       ARGUMENT-SEQUENCE =
                      ((Clamping-Tool Important-Turning-Requirements))
       TUPLES = ((
                      ((Suboptimal-Clamping-Tool
                           Collet-Chuck
                           ((Inside-Turning-P Required-Value = No))))

                      ((Suboptimal-Clamping-Tool
                           Lathe-Dog
                           ((Inside-Turning-P Required-Value = No))))
…

Table 5.2: The definition of the domain layer relation suboptimal-clamping-tool and some of the tuples of the rela-
tion.

The relation optimal-clamping-tool  (see table 5.1) describes which clamping tool is a first choice
for certain turning requirements, for example a collet chuck is the optimal choice if the workpiece
requires transverse turning and inside turning is not needed. The relation suboptimal-clamping-
tool  (see table 5.2) describes a relaxation of the relation optimal-clamping-tool. For example the
second tuple (Suboptimal-Clamping-Tool Lathe-Dog ((Inside-Turning-P Required-Value = No)))
is a formal representation of the third knowledge unit of table 3.1: a lathe dog is ideal for
transverse turning but axial turning is also possible. In the formal representation of the relaxed
choice criteria, we only mention that a lathe dog can definitely not be used for inside turning.

5 . 3 . 2 . Formalization of the Problem-Solving Method Selection by Elimination
and Optimization

The problem-solving method of the operational system is built from the inference and task layers
of the conceptual model.

5.3.2.1.       Modifications to the Inference Structure of the Conceptual Model

The formalization of the underlying domain layer knowledge has shown us that the knowledge
sources instantiate-feasible, instantiate-ideal, select-ideal and select-feasible are redundant in the
problem-solving method selection by elimination and optimization. It is sufficient to instantiate the
selection criteria once and then use them in two different ways. Furthermore we noticed that the
meta-classes cost  and possible-solutions cannot be separated, as they both relate to different
aspects of the same domain concepts3. Thus in the OMOS inference structure the knowledge
source compute-cost  operates on the meta-class possible-solution. In OMOS meta-classes de-
scribe the roles that concepts play and they do not refer to a set of concepts currently playing that
role. Thus the set-like descriptors of the conceptual model, such as possible-solutions become
role-descriptors such as possible-solution, which will be used in the OMOS inference structure
(see figure 5.3), which is a simplification of the inference structure of the conceptual model (see
figure 4.1).

3 This is due to a limitation of the language OMOS because only concepts can play roles and not attributes of
concepts.
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Figure 5.3: The OMOS inference structure for the problem-solving method select by elimination and optimization.

5.3.2.2.       The Knowledge Sources & Meta-Classes

Meta-classes describe dynamic roles that domain concepts play. Some concepts have initial roles;
for example all the instances of the type clamping-tool have the initial role assignment  solution-
alternative.

 (DEFINE-META-CLASS Solution-Alternative
   WITH INITIAL-ROLE-ASSIGNMENT = ((Clamping-Tool _Tool)))

Table 5.3: The definition of the meta-class solution-alternative, with its initial role assignment referring to all the
instances of the domain type clamping-tool.
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 (DEFINE-KNOWLEDGE-SOURCE Select-Ideal
  WITH INPUT-META-CLASS = Solution-Alternative
       OUTPUT-META-CLASS = Possible-Solution
       CONTROL-META-CLASSES = ((Instantiated-Criterion))
       VALUE-ASSIGNMENT = FALSE
       ROLE-ASSIGNMENT = TRANSFER
       DOMAIN-RELATION = Optimal-Clamping-Tool
       REL-ARG-TYPE = (((0 . INSTANCE)(1 . EXTENSION-*)))
       PROJ-MCS-REL-ARGS = (((INPUT-META-CLASS . 0)
                             (OUTPUT-META-CLASS . 0)
                             ((CONTROL-META-CLASSES . 0) . 1))))

Table 5.4: The definition of the knowledge source select-ideal with its corresponding meta-classes, the value- and
role-assignment descriptions, the domain layer relation and the mapping of the meta-classes onto the arguments of
the domain layer relation.

In OMOS knowledge sources are defined through their meta-classes, the domain relation they use,
the value- and role-assignment descriptions and the mapping of the meta-classes onto the argu-
ment positions of the underlying domain relation. A compiler translates this definition (see table
5.4) into a forward rule-schema. Table 5.5 shows how the first tuple of the relation optimal-
clamping-tool (see table 5.1) is used as a forward chaining rule to implement the knowledge
source select-ideal (see table 5.4).

 IF (CURRENT-META-CLASS Solution-Alternative Collet-Chuck)
(CURRENT-META-CLASS Instantiated-Criterion Transverse-Turning-P)
(CURRENT-META-CLASS Instantiated-Criterion Inside-Turning-P)
(Transverse-Turning-P Required-Value = Yes)
(Inside-Turning-P Required-Value = No)

 THEN (TRANSFER-ROLE Solution-Alternative Possible-Solution
Collet-Chuck)

Table 5.5: A beautified version of the forward-chaining rule that the compiler generates from the definition of the
knowledge source and from the underlying domain relation.

5.3.2.3.       The Control Structure

The control structure for the problem-solving method selection by elimination and optimization
(see figure 5.4) is identical to the task structure of the KADS conceptual model (see figure 4.2),
except for the changes described for the OMOS inference structure. In OMOS control structures,
conditionals may only refer to elements of the inference structure. In table 5.6 the statement
(CALL-KS Instantiate) is an activation of the knowledge source instantiate. (ROLE-P
Possible-Solution) is a test that evaluates to true if at least one concept currently plays the role
denoted by the meta-class possible-solution.

 (DEFINE-CONTROL-STRUCTURE Select-by-Elimination-and-Optimization
       CALL-SEQUENCE = (((CALL-KS Instantiate)
                         (CALL-KS Select-Ideal)
                         (WHEN (NOT (ROLE-P Possible-Solution))
                            (CALL-KS Select-Feasible))
                         (CALL-KS Compute-Cost)
                         (CALL-KS Find-Best))))

Table 5.6: The control structure consists of a procedural definition of activations of knowledge sources and tests of
meta-classes.
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5 .4 . Insights through Formalization
As described previously, the formalization of the inferences has shown us, that several knowledge
sources of the inference structure of the conceptual model (instantiate-feasible, instantiate-ideal,
select-ideal and select-feasible) were redundant, even though our analysis of the explanation
structures seemed to reveal that experts used different selection criteria in different selection pro-
cesses. In retrospect though, this simplification is not a contradiction to the human problem-solv-
ing process described in section 4.3.

6 . FEEDBACK FROM THE OPERATIONAL MODEL FOR THE
KNOWLEDGE ELICITATION

6.1 . The Use of the OMOS Analysis Capabilities for Focussed
Knowledge Acquisition

OMOS provides a series of analysis tools to check the domain layer knowledge and the use of the
domain layer knowledge by the inference layer elements. Completeness checks of the domain
layer relations provide feedback that tells us wether all concepts of a domain-type are used in those
domain relations that refer to elements of that type. Table 6.1 shows the result of the analysis of
the relation suboptimal-clamping-tool. The first two paragraphs of the analysis text tell us that the
domain concepts axial-turning-p and transverse-turning-p are not used in that relation, even
though they are potential values for the first argument position of the tuples of that relation (see
table 5.2 for the definition of the relation suboptimal-clamping-tool).

The same analysis text (table 6.1) tells us in the third paragraph that clamping-jaw is not men-
tioned. Clamping-jaw is mentioned again in table 6.2. This table shows the results of analyzing
the use of the domain layer knowledge in a meta-class. The analysis tells us that the concept
clamping-jaw  can play the role denoted by the meta-class solution-alternative. This meta-class is
the input meta-class of the knowledge sources select-ideal and select-feasible (see figure 5.3).
None of the forward chaining rules that represent the implementation of the these knowledge
sources (see table 5.5) refer to the concept clamping-jaw in their preconditions. This points to an
open end in the knowledge base, which should be the topic of a focussed knowledge acquisition
session with COKAM.

The domain layer concept AXIAL-TURNING-P is not used in any tuple of the relation
SUBOPTIMAL-CLAMPING-TOOL it should appear in 1. position (called IMPORTANT-TURNING-
REQUIREMENTS)  with the argument description (EXTENSION-* TURNING-REQUIREMENT).

The domain layer concept TRANSVERSE-TURNING-P is not used in any tuple of the
relation SUBOPTIMAL-CLAMPING-TOOL it should appear in 1. position (called
IMPORTANT-TURNING-REQUIREMENTS)  with the argument description (EXTENSION-*
TURNING-REQUIREMENT).

The domain layer concept CLAMPING-JAW is not used in any tuple of the relation
SUBOPTIMAL-CLAMPING-TOOL it should appear in 0. position (called CLAMPING-TOOL)
with the argument description (INSTANCE CLAMPING-TOOL).

Table 6.1: The results of an analysis of the relation suboptimal-clamping-tool.
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The domain concept CLAMPING-JAW can be assigned to the meta-class SOLUTION-
ALTERNATIVE, but it is not used by any of the knowledge sources SELECT-IDEAL,
SELECT-FEASIBLE that use SOLUTION-ALTERNATIVE as control- or as input-meta-class.

To change this do AT LEAST ONE of the following:

Add a tuple to the relation OPTIMAL-CLAMPING-TOOL, which is used by the
knowledge source SELECT-IDEAL. CLAMPING-JAW must be mentioned in the 0.
argument of the tuple, which is of type (INSTANCE CLAMPING-TOOL) and is called
CLAMPING-TOOL.

Add a tuple to the relation SUBOPTIMAL-CLAMPING-TOOL, which is used by the
knowledge source SELECT-FEASIBLE. CLAMPING-JAW must be mentioned in the 0.
argument of the tuple, which is of type (INSTANCE CLAMPING-TOOL) and is called
CLAMPING-TOOL.

Table 6.2: The results of the analysis of the meta-class instantiated-criterion.

The condition (Meta-Class-Applicable Possible-Solution Clamping-Jaw) derived from
the tuple (PRODUCTION-COST SET-UP-TIME OUR-WORKPIECE (CLAMPING-JAW PRODUCTION-COST
= (+ (<- CLAMPING-JAW :GET 'PRODUCTION-COST) (<- CLAMPING-JAW :GET 'SET-UP-TIME))))
of the relation PRODUCTION-COST used in the knowledge source COMPUTE-COST can never
be fired, as none of the knowledge sources COMPUTE-COST, SELECT-FEASIBLE, SELECT-
IDEAL assign the role POSSIBLE-SOLUTION to the domain concept CLAMPING-JAW.

To change this do AT LEAST ONE of the following:

Add a tuple to the relation PRODUCTION-COST, which is used by the knowledge
source COMPUTE-COST. CLAMPING-JAW must be mentioned in the argument nbr. 2,
which is of type (EXTENSION CLAMPING-TOOL).

Add a tuple to the relation SUBOPTIMAL-CLAMPING-TOOL, which is used by the
knowledge source SELECT-FEASIBLE. CLAMPING-JAW must be mentioned in the
argument nbr. 0, which is of type (INSTANCE CLAMPING-TOOL) and is called
CLAMPING-TOOL.

Add a tuple to the relation OPTIMAL-CLAMPING-TOOL, which is used by the
knowledge source SELECT-IDEAL. CLAMPING-JAW must be mentioned in the argument
nbr. 0, which is of type (INSTANCE CLAMPING-TOOL) and is called CLAMPING-TOOL.

Table 6.3: The results of the analysis of the knowledge source compute-cost.

The analysis of the knowledge sources produces similar results (see table 6.3). The knowledge
source compute-cost uses the domain relation production-cost. The rule-schema that the compiler
produces to evaluate the knowledge source (see table 5.5) will contain a precondition testing
wether clamping-jaw currently plays the role defined by the meta-class possible-solution. The
knowledge base analyzer determines that this can never be the case, as none of the knowledge
sources that use possible-solution as output-meta-class assign that role to that concept. The ana-
lyzer proposes several ways to remedy this. This information, coined in the terms of the opera-
tional model can easily be traced back to the conceptual model, as the operational model is a
structure-preserving implementation of the conceptual model.

6 .2 . Using the Feedback in the Next Session With COKAM
The results of the OMOS analysis, which indicate gaps in the so far acquired knowledge, are used
in various ways in the next session of COKAM. In order to check whether the missing knowledge
was overlooked when extracting knowledge units from the text, the text can be searched for the
respective keywords (e.g., axial-turning or clamping-jaw). Since COKAM records which text
passages contributed to the informal knowledge base, it can be easily determined whether the
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keywords occur in text passages which contain potentially novel information. In this case the
expert has to judge whether these text segments contain information which should be added to the
informal knowledge base.

If the uncovered knowledge gaps can not be filled from the initially selected text, the expert is
asked for additional literture which covers these topics. The knowledge gaps mentioned in table
6.1 are due to the fact that our initial text dealt mostly with clamping tool selection for outside
turning and only contained a few references to inside turning.

Furthermore it may be advisable to select a new case for which the missing knowledge is
supposedly needed and have the expert generate an explanation. This should be done in particular
when the knowledge gaps can not be easily filled from the initial or the additional text or when the
correctness of the constructed conceptual model is in question and must be reexamined. Since the
OMOS analysis indicates that the knowledge concerning clamping jaws is fragmentary, a case in
which a clamping jaw is applied to fix a workpiece should be explained by the expert. If the
obtained explanation structure substantially differs from the other explanation structures this may
indicate that the conceptual model must be modified. For example, the original conceptual model
may be too simple, since the relevance of certain criteria only becomes obvious, when cases are
encountered for which these criteria cannot be neglected.

7. SUMMARY & OUTLOOK
The combination of COKAM, KADS and OMOS is an experiment that we started to analyze the
interaction of different contributions to knowledge acquisition. We spanned the bridge from
natural language texts and experts' explanations of previously solved cases (COKAM) via
systematic models of problem solving (KADS) to an operational system (OMOS). In these
transformation processes we focused on the following questions:
• how can a KADS model be build from explanation structures, and how does the KADS model

influence the generation of explanations?
• how can we formalize the KADS model, and what does the formalization tell us about the

model?
• what does the formal model propose for the next knowledge acquisition session?

In the present paper we used a toy version of a real world problem to analyze and illustrate our
approach. The future work will concentrate on full-blown versions of the process planning
problems for rotational parts.
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