
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Technical
Memo
TM-92-02

Organizing Communication and Introspection
in a

Multi-Agent Blocksworld Scenario

Achim Schupeta

March 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbrücken is a non-profit
organization which was founded in 1988 by the shareholder companies Daimler-Benz, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Digital-Kienzle, Philips, Sema Group
Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded
by the German Ministry for Research and Technology, by the shareholder companies, or by
other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Intelligent Communication Networks
Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Organizing Communication and Introspection in a Multi-Agent
Blocksworld Scenario

Achim Schupeta

DFKI-TM-92-02

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9104).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

ORGANIZING COMMUNICATION AND
INTROSPECTION IN A MULTI-AGENT

BLOCKSWORLD SCENARIO

Achim SCHUPETA

DFKI (German Research Center for Artificial Intelligence)
Research group AKA-MOD
Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11
GERMANY

email: schupeta@dfki.uni-sb.de

The implementation of a simple blocksworld-scenario simulation-
program is described. The blocksworld is modeled according to the
multi-agent paradigm of distributed artificial intelligence. Each block is
viewed as an agent. The agents have capabilities like to move, to
communicate, to plan or to gain a small ammount of introspective
knowledge which are necessary to transform the initial scene of a
problem into the goal scene. The structure of the system is oriented
along the ideas of the specification of RATMAN described in
(BMS91). RATMAN was reduced to its two central modules and their
concepts were implemented with means as simple as possible. The
result was a system, that allows to experimentally develop concepts for
communication, planning and introspection, that are (for this simple
toy-domain) sufficient to solve the problems without any global
problem solver, but by the cooperative behavior in the society of agents

1

Contents

Contents.. 1

1. Introduction.. 2

2. Structure of the System ... 4

2.1. RATMAN: A Specification... 4

2.2. Mapping into an Implementation.. 5

3. Description of the Scenario: The Blocksworld .. 7

4. The Agents... 9

4.1. The Agents' Behavior in General. 9

4.2. The Different Layers contain the Agents' Abilities . 11

4.3. Introspection & Partner Modelling .. 12

4.4. Planning .. 14

4.5. Communication .. 15

4.6. Actions.. 19

5. The "World".. 25

6. The Environment.. 28

7. Conclusions .. 30

8. References .. 32

2

1. Introduction

In the last years there was a trend in nearly all disciplines of computer science towards the
distribution of systems. Maybe, that this trend was initiated by the development in the
area of the hardware, where huge mainframe computers were pushed away by networks
of several small computers in many application domains. The virtue of distributed
systems lies in their reliability. If in a centralized system a failure occurs, the whole
system is going down. In a distributed system, the tasks of a faulty component may be
(at least partially) performed by other components, and even in the case of several
failures, the system can degrade gracefully.

Another advantage of distribution is a better management of complexity. In a huge central
system even simple modifications or extensions will have major impacts to the system.
Distributed systems on the other hand are usually designed in a process of incremental
extensions and thus will be more flexible.

In AI the idea of distribution led to the research area of DAI, which is concerned with
concurrency in AI at many levels. DAI branches into the area of distributed problem
solving (DPS), which considers how the work of solving a particular problem can be
divided among a number of cooperating and knowledge-sharing modules or nodes, on
the one hand, and into Multi-Agent Systems (MAS) on the other hand. In MAS the
coordination of intelligent behavior of a collection of autonomous intelligent agents is the
main concern. Coordination of knowledge, plans, different skills and actions itself is a
process, that the agents have actively to reason about. An overview of DAI is given in
(Sch92) and a collection of prominent research papers can be found in (BG88).

In the research projekt AKA-MOD at the DFKI we are interested in the paradigm of
autonomous cooperating agents. How can we simulate a society of agents such that the
cooperative problem solving behavior in human society is rebuilt? What motivates the
agents to cooperate? Which role plays communication is such a society, and what level of
communication is appropriate? In DAI the interest in distributed systems is much deeper
motivated than in gaining more relaible systems or a better management of complexity:
Consider that if the reductionistic viewpoint, that a society is built by its agents, could be
enriched with the reverse viewpoint, that the agents are formed by the society, a deep
insight into the intelligence of the agents would be gained by understanding the concepts
of interaction and cooperation at the level of the society. AI always should take a look to
natural intelligence and it is hard to believe, that natural intelligence would have been
developed without a society. This aspect of intelligence was always neglected in classical
AI.

In the AKA-MOD project we aim to do first steps towards an agent-society

first by designing a comfortable testbed to perform experiments in the
modelling and simulation of agent-societies in general and

3

second by taking a closer look to a few concrete application domains in
which a cooperative problem solving behavior of several agents
promises fruitful results.

The first goal already led to the specification of RATMAN, which stands for “Rational
Agents Testbed for Multi-Agent Networks” and is described in (BMS91). For the second
goal, the following suggestions were made:

The problem of the towers of hanoi, where each disk is modeled as an agent.
A simple blocksworld scenario, where each agent represents a block.
A loading dock, where agents correspond to forklifts, cranes, trucks and so on.
Several transportation companies, that compete for orders, but also cooperate in

performing orders that are too large for a single companies' resources

The complexity increases from toy-world examples to real world domains of remarkable
complexity. The towers of hanoi and the blocksworld scenario are already implemented
as simple experimental simulation programs. The loading dock and the transportation
company scenarios are still in a specificational state.

The purpose of this paper is to report about the implementation of the
multi-agent blocksworld scenario simulation. A few remarks seem to be
necessary before going into the details:

1.) The simulation program tries to implement the main ideas of the RATMAN-
specification, which will briefly be reviewed in the second section. Nevertheless we tried
to implement those ideas with means as simple as possible to invest not too much work
into this toy-world scenario.

2.) PROLOG was used for the implementation, because it seems to fit best in our aim to
stay within the logical paradigm on the one hand. PROLOG programs consist of Horn
clauses and thus of logical formulas. On the other hand PROLOG programs also describe
algorithms. PROLOG is therefore as ideal to express knowledge as it is to express skills.
In particular RATMAN's conceptualization of an agent is that of a hierarchical structured
knowledge base and therefore a structured PROLOG program is a good and simple first
approach to that concept.

3.) The concurrent behavior of the different agents is only simulated! The top-level loop
of the program calls the agents sequentially, each agent performs some simple actions and
returns the control back to the loop. This liberates the simulation from various kinds of
synchronization problems that will occur in more sophisticated simulations of multi-agent
systems, where it is planned to associate different processes on different computers with
the different agents.

4.) The user interface of the system is not very comfortable. One can give an initial scene
and a goal scene during a simple dialogue. Then the system initializes the agents with
their local goals. The user can see the exchanged messages and information about their
intentions, plans and introspective knowledge. A pictoral representation of the performed
movements can be seen after the run of the system.

4

2. Structure of the System

In the following we present an overview of the structure of the blocksworld simulation
program. The detailed description of the presented modules will follow in the related
sections below. The agents are seen as hierarchically layered knowledge bases, where
each layer represents certain skills of the agent. This idea is taken from the specification
of RATMAN, that will shortly be reviewed first:

2.1. RATMAN: A Specification

In this section we will present a brief review of a proposed testbed for multi-agent
systems RATMAN, which stands for Rational Agents Testbed for Multi Agent
Networks. For a more detailed description see (BSM91). RATMAN conceptualizes a
universal testbed along four main modules, which are the agent tool box, the current
world scenario, the specification kit, and the status sequence and statistics box:

The agent tool box provides a scheme for a hierarchically structured knowledge base
together with reasoning facilities to model all features of agents. Predefined knowledge
may be used or be partially skipped and new knowledge may be introduced by the user.
The intention is to develop a library of several knowledge packets for the different levels
of the hierarchy with various possibilities of combinations. The different levels of the
knowledge base will be responsible for different types or aspects of an agent's behavior.
For example there could be layers for sensoric knowledge, knowledge about time, space,
common sense or expert-knowledge, knowledge about actions, communication, planning
schemes, introspective knowledge and learning capabilities.

Each agent defined in the agent tool box will be given a place in the current world
scenario. It contains a large knowledge base that describes all world objects and from
which only a part is visible to the user. Furthermore there is the agents status module,
that presents the agents internal status of the agents to the user and last not least the
blackboard, which serves as a communication platform. The blackboard itself is split into
a communicational part, which provides communication ports for each agent (and for the
user) and a world window, where all objects and agents in the scene are represented.

The specification kit serves as the user interface to define the agents, their relations in
the world, and their status in the agent society. It will provide several choices for general
strategies to be performed and it can be used to specify what kind of status information
and statistic data should be monitored by the system.

The status sequence and statistics box has the task to show the sequence of the
changing world states, the activity potential of the agents, the internal clock, analysis of
synchronization processes etc. Depending on the specification of the actual scenario, a
great amount of specific information should be accessible to the user via this module.
Also tracing and debugging facilities on an appropriate level should be provided.

5

The following figure illustrates this structure:

AT(house,(x,y,z)), AT(tree,(x1,y1,z1)),
LEFT_OF(tree,house), AT(block (X),(q,r,s)),
... TIME(11.30), DATE(1st, Nov),...
WEIGHT(block(X), 30kg)....
ON_THE_FLOOR(block(X)),...
DISTANCE(block(X), house, 300m),Blackboard:

World Window

help!

Communicat ion
S l o t s

agent a:

agent c:

user:

X

World Object Description:

agent a:
status: waiting for an
 answer
action: trying to lift the
 block X
communication: Asking
 agent c for help
current plan: move block
 to the house

agent c:
status: idle, happy
action: playing, singing,
 dancing...

Agent Status Module:

Current World
Scenario:

Agent Tool Box:

l e a r n i n g

introspection and
partner modelling

p l a n n i n g

communicat ion

act ions

knowledge about:

t i m e space common
sense

sensoric knowledge

Layered Knowledge Base:

Reasoner

domain of
e x p e r t i s e

Specification Kit:

Agent Design Facilities:

enable disable

communication:
point to point
broadcast
with acknowledge

planning:
replanning
intentions
hierarchical plans

actions:
movement
grabbing
jumping
...

x

x

x

x

x
x

x

x

x
Consistency
Checker

General Paradigm
Module:

granularity

homogeneity

benevolence

organisational
model: market

hierarchy
...

Agent
Tool
Box

Initial world1

world2

world3

world2.1 world2.2

world4

world2.3

world2.2.1

debug

run

backtrack

initialize

verbose

save ...

load ...

Status Sequence and Statistics Box:

2.2. Mapping into an Implementation

As already mentioned, the simple multi-agent blocksworld simulation program tries to
implement RATMAN's central ideas by means as simple as possible. It consists of
restricted simple versions of the two more important modules of RATMAN, which are
the current world scenario and the agent tool box.

The specification kit's function, which is to support a high level interface for the agent
design and control and check the agent generation, is not implemented in the cuurent
version of the system. Also the status sequence and statistics box is completely left out.

The following picture sketches how restricted versions of these two modules are
organized in the blocksworld simulation program. The following broad description of the
components of this picture shall give an overview of the system structure. A more
detailed description can be found in the related subsections:

6

X11-
drawing
process

current world scenario:

l a y e r e d
agent
knowledge
base

communication

actions

e n v i r o n m e n t

agent tool box:

agent status
module

b lackboard:

world window

 (reasoner =
 Prolog interpreter)

communicat ion
p o r t s

What is called environment in the figure is a collection of all those parts of the
program, that have nothing to do with a single agent and cannot be attached to the
components of the current world scenario. Examples are the predicates that realize the
agent-activation-cycle (= top-level program), initialize the scene, invoke the drawing
routines and several subroutines of minor interest. The environment or more exactly the
agent-activation-cycle acts like a controlling program, that invokes the agents alternating,
until all agents have reached a status, where all their goals are reached.

The agent tool box is simplified by the following idea: The layered knowledge base is
just a structured PROLOG program. The reasoner is then provided by the interpretation
algorithm of PROLOG. The contents of the different layers will be described in section 4,
which focuses especially on the aspects of action, communication, simple planning and
simple introspection.

The current world scenario has no world object database in this implementation,
because the objects are the agents themselves and they know their own positions. Other
world knowledge does not exist or more precisely is too rare to justify a separated
module. For example, the world knowledge about the x- and y-range of the scene and the
position of the supporting table on which the blocks stand is hidden in the common sense
knowledge layer of the agents.

The agent status module provides various information about the agents' internal state.
It is a form of filter on parts of the agents' knowledge bases. For example it is shown
what the agents communicate, what their actual plans and intentions are, what their actual
introspective knowledge is and so on.

7

The blackboard should not be confounded with the central shared data-structure of a
typical blackboard-architecture. In our first simple blocks world scenario, the
communicational part of the blackboard is just used as a device to implement
communication channels between the agents. The world window part of the
blackboard has a similar task as the agent's status module, but shows the world objects
instead of the agents' internal status.

To attain a visible picture of the scene, the world window is supplied with drawing
routines, that generate commands for a drawing process, which draws a scene picture
using the X Windows system.

3. Description of the Scenario: The Blocksworld

Blocks world scenarios are frequently used in literature about planning systems. Usually
the blocks world is composed of a table, several labeled blocks and a movable robot-arm,
which is able to grab one block at a time, to move it to another place and to put it down.
Each block can directly stand on the table or on another block, which may be supported
by the table or a third block and so on. The goal is to generate a plan composed of a
sequence of simple operations, that transforms an initial scene into a given goal scene.
The description of a particular scene can be done with a few simple predicates:

ONTABLE(X) : Block X is standing on the table.

ON(Y, X) : Block Y is standing directly on block X.

CLEAR(Y) : No block stands on block Y.

HANDEMPTY : The robot-arm is empty.

HOLDING(Z) : The robot-arm is actually holding the block Z.

A scene thus is described as a consistent conjunction of these predicates. Such a
description is of course only an abstraction, because several details are not represented.
For example ONTABLE(A) & ONTABLE(B) does not make any assertion about which
block is right and which is left of the other. Basic operations that can be performed are:

pickup(X) : The robot-arm grabs block X from the table.

putdown(X) : The robot-arm lays block X down on the table.

unstack(X, Y) : The robot-arm grabs block X from block Y.

stack(X, Y) : The robot-arm lays block X down on the block Y.

Again the operations are abstractions, that leave out irrelevant details and make several
implicit assumption about the robots capabilities. To perform a stack-operation for
example the robot must know or perceive the exact position of the supporting block.
Several different planning algorithms and modified representations of operators and
scenes around this blocks world scenario have been discussed and analyzed in the
literature. For examples see (Cha87) (Wal75).

8

To adapt the blocks world to a scenario, that involves more than one agent, we can think
of two possibilities:

- First more than one robot-arm can be introduced. Each agent controls one
arm and the agents have to coordinate their actions. The coordination in a
simple scenario will be restricted to the avoidance of harmful interaction e.g.
trying to grab the same block at the same time.

- The second possibility was inspired by the idea of the eco-problem solving
paradigm. (confer (Fer90)). The intelligence is assigned to the blocks
themselves. Each block is modelled as an agent, that only aims to fulfil its
own local goals and even did not know about the global goal. This modelling
sounds very much like a reactive behavior approach, but each agent can be
equipped with more than only reactive intelligence, for example simple
planning and communicative capabilities and consciousness about the (local)
problem solving state. So this modelling comprises effects of reactive
approaches (global solution as an emergent phenomenon of the local problem
solving behavior) as well as the aspects, that are typical for the logic based
approach.

We decided to use the second possibility. The interesting questions are: How far would
the local orientation of the agents reach? Which level of complexity would require a
global view and how can an agent gain this global view?

The following modifications result from our modelling:

The predicates HOLDING and HANDEMPTY are superfluous, because since the
blocks are autonomous agents in our representation, there is no robot-arm
anymore.

A global scene description is only necessary for the definition of the initial scene and
the goal scene.

The predicate ONTABLE(X) is represented by an ON(X, ground) for purposes of a
simple and uniform representation, though we do not model the 'ground' (=table)
as an autonomous agent.

The predicate CLEAR(X) is also left out in the global scene description: Block X is
clear if there is no other block Y such that ON(Y, X) holds.

Each agent has to figure out by communication if there is another agent located above it
before it moves and has to announce every own movement to the others, so that they can
maintain their knowledge. Thus the predicate CLEAR(X) is internalized into the agents
private knowledge bases. A scene description is now reduced to a set of ON-relations.
The following figure gives an example:

9

agent B's view:

{ ON(A, self), ON(self, C) }

B

C D

E

F

A

scene description:

{ ON(C, ground), ON(B, C),
 ON(A, B), ON(D, ground),
 ON(E, F), ON(F, ground) }

The agent's view of the goal-scene is restricted to those relations, that it is participated in.
An agent's goal can only be to be ON another agent (or on the ground) or to be below
another agent.

The basic operations of the blocks world are generalized and condensed into one abstract
operation named move_on(X), which is intended to represent the capability of an agent
to jump on another block or on the ground. If X is an agent, the acting agent is assumed
to have knowledge about the exact location and size of X and if X is 'ground', the agent
has to search for a free place on the table. We assume that there are no limitations for
such a jump relative to height and width. Other actions of the agents like communication
or changes of their internal states are not visible directly in the picture of the scene and
will be described in more detail in the next section.

4. The Agents

We see an agent as a hierarchically layered knowledge base, which is implemented as a
structured PROLOG program. Fortunately the agents in our blocks world scenario are all
similar. Differences in the size and position and the internal states occur, but in principle
we have homogeneous agents. Therefore nearly all predicates are provided with an agent-
parameter. In the predicates that hold for all agents, this parameter is filled with a
variable, while in those predicates that hold for a specific agent the agent name is used.

In the following section we'll describe the principles of our blocks world agents'
behavior. Then the next section tries to associate the different skills of an agent to the
layers, that are suggested in the description of the agent tool box of RATMAN. The
layers in focus of our interest, which are action, communication, planning and
introspection & partner modelling, are described in detail in the then following sections.

4.1. The Agents' Behavior in General

Our conceptual considerations led to the agent-activation-cycle: The environmental
loop sequentially activates all agents of the scenario with a call of the predicate
activity(X), where X is the name of the actual activated agent. This predicate is therefore

10

an important part of the interface between an agent and the environment. The
environment gives control to the agent. Now we must fix what an agent does within an
activation.

The general paradigm of activation is the following: The activated agent looks
for messages in its communication slot of the blackboard and processes them
in dependence to their contents. Then the agent performs actions according to
its internal state and returns the control to the environment. The actions
according to the internal state are directed to satisfy the agent's intentions.

The general paradigm of planning and intention is: Each agent has a list of
intentions, that it tries to achieve one after the other. The actual intention is
used to generate a plan which is a sequence of basic plan-steps, also
called goals. A basic plan-step is resolved into simple actions like for
example a change in the agent's internal knowledge base, asking a question to
another agent, modifying the own plan by insertion of a plan-step or jumping
on another agent. The actions performed in a single activation usually
correspond to the execution of a single basic plan-step. For example after
sending a question the receiver agent needs an activation to have a chance to
generate an answer.

The general principles of communication are: Our agents send their
messages to specific other agents or broadcast them to everyone. The level of
communication is relatively primitive. A finite set of “communication
tokens” comprising all possible information exchange demands that may
occur in our scenario is predesigned. The tokens are clustered to certain types
like question, answer, announcement, instruction. A message
consists of the names of the sending and the receiving agents, a message type
identifier and the message token which may bear a few parameters.

The general principle of locality says that an agent only interacts with those
agents that it knows. In the beginning of a scenario the agents become
acquainted with those agents, that occur in their intentions. (These are their
neighbors in the goal scene.) They may become acquainted with other agents
later on if they need to communicate with them.

The general principle of private knowledge refers to the agent's capability
to maintain a private knowledge base. Real introspective knowledge -
like answers to the questions: Do my intentions imply a future movement of
me? Do I actually have a plan to perform? Are all my intentions fulfilled? - is
mixed with knowledge about the actual spatial relations in the scenario (Is
someone on me? Is someone on agent X? What is the position and the size of
agent Y?) and knowledge that is simply used to remember some actions in
the past. For example if someone replies a “yes” to you, you have to be
aware of the question that you asked him just before. We also use private
knowledge to decouple communicational acts from getting aware of the
communicated information. For example an agent wants to know if another
agent has an intention to move. It first inspects its private knowledge base if it
already knows something about that. If not, it sends a question to the other

11

agent. The reply message is used to update the private knowledge in that
point. Then the same action as in the activation before takes place, that is the
agent searches again in its knowledge base but this time is aware of the other
agent's intention because of its updated knowledge base.

4.2. The Different Layers contain the Agents' Abilities

The attachment of the predicates that realize an agent to the different layers turned out to
be not so easy. In this sense our chosen attachment is not too rigid and open to other
interpretations. The following table seemed an appropriate attachment to us:

layer attached predicates and description

sensoric knowledge position and size of each agent expressed in
x,y-coordinates of the upper left corner of the
agent and height and width. Each movement
retracts the old position and asserts the new
one.

temporal knowledge --------------------------

spatial knowledge the ON-relation is used to test if one agent is

on another or on the ground.

common sense knowledge1 knowledge about the y-level of the table and the
maximal range of x- and y-coordinates.

expert knowledge ---------------------------

actions the activity predicate to be described in more

details soon; a predicate that associates simple
actions to execute to each basic plan-step; a
few predicates that support the agent movement
and the search for a free place on the table
when the agent jumps on the ground.

communication predicates to send, receive and broadcast

messages; a predicate process_message that

1This layer is for sure the most contestable for firstly it is not clear what is comprised by common sense
knowledge in general and how it is modelled and secondly in our scenario much common sense is
implicit in the design. An example is the implicit expectation of each agent, that other agents have the
same structure and will understand its messages. Therefore what we attached here to this layer is only a
stop-gap solution, but we did not pay much attention to common sense in this simple scenario anyway.

12

is used within the activity predicate to work on
the received messages.

planning the list of intentions for every agent; the

actual intention that each agent is working
on; the actual plan generated from the actual
intention; a predicate remember to store
already fulfilled intentions; a predicate to
generate a plan from an intention.

introspection & partner modelling the iknow predicate, that realizes each agent's

private knowledge base; a predicate that
checks the actual plan and all unfulfilled
intentions if they will force the agent to do a
movement in the future.

learner ----------------------------

We see that a few layers are yet not used in our simple blocksworld scenario or are only
sparsely filled. Our special interest was focused to the levels of action, communication,
planning, introspection and partner modelling. We'll have a closer look at these layers in
the following sections. We are now going very much into the details of the
implementation and even program code will occur in the next sections.

4.3. Introspection & Partner Modelling

A crucial question in our blocks world is if an agent will move in the future. If an agent
intends to jump on agent X, but agent X is still not at its final position, i.e. will move in
the future, it is better to wait until agent X has moved because otherwise the agent will
have to jump down from X again because a precondition for agent X to move is that no
one is located on it. We do not represent an intention to move explicitly, so a special
procedure checks the actual intention, the intentions and the actual plan for such an
intention to move. To get an impression how clear and straightforward this is realized in
PROLOG, we show a cut from the code that realizes this procedure2:

%*** introspection into the own movement-intentions:

intention_to_move(Agent) :-

act_intention(Agent, on(self, X)),

(on(Agent, X) -> fail | true).

intention_to_move(Agent) :-

intention(Agent,L),

2The conditional goal construction "A -> B | C " in Quintus PROLOG stands for " if A then B else C"

13

member(on(self, X), L),

(on(Agent, X) -> fail

|

true).

intention_to_move(Agent) :-

plan(Agent, L),

member(move_on(X), L),

(on(Agent, X) -> fail

|

true).

The other part of this layer are the private knowledge bases of the agents. They
expand or shrink dynamically during the run of a scenario, because the agents continually
assert or retract knowledge. The predicate iknow is parameterized by the agent's name
and a knowledge token representing a fact. The intended meaning is that the agent
knows this fact. All existing knowledge tokens of our scenario are listed and shortly
described in the following:

h Knowledge about other agents:
iknow(A, [existence, X]) : A knows about the existence of agent X.
iknow(A, [pos-size, X]) : A knows the position and size of agent X.
iknow(A, [is-fixed, X]) : A knows that X will not move in future.
iknow(A, [intends-to-move, X]) : A knows that X intends to move.
iknow(A, [has-moved,X]) : A knows that X has moved.
iknow(A, [is-free, X]) : A knows that no other agent is on X.
iknow(A, [not-free, X, under,Y]) : A knows that Y is on X.

h Introspective knowledge:
iknow(A, [i-have-a-plan]) : A knows that it actually has a plan to perform.
iknow(A, [no-more-intentions]) : A knows that it has no more unfulfilled

intentions.
iknow(A, [act-intention-fulfilled]) : A knows that its actual intention is fulfilled.
iknow(A, [i-am-fixed]) : A knows that it has no further move-intention.
iknow(A, [i-intend-to-move]) : A knows that it has a further move-intention.
iknow(A, [i-am-free]) : A knows that no other agent is on it.
iknow(A, [is-on-me, X]) : A knows that agent X is on it.

h Awareness of previous actions:
iknow(A, [asked-movement, X]) : A knows that it has asked X for its move-

intention.
iknow(A, [asked-freedom]) : A knows that it has broadcasted a question

about its freedom, i.e. if someone is on it.
iknow(A, [asked-freedom-of, X]) : A knows that it has asked X weather someone

is on X.

14

4.4. Planning

The planning layer bears the intentions, the actual intentions, the plans and a
remember facility for each agent. In the initialization of a scenario the user has to
specify an initial and a final scene. From the final scene the environment computes each
agent 's intentions and stores them as facts of the intention predicate. For example a final
scene as depicted in the figure of section 3. would lead to the following intentions:

%*** planning-layer: **

%*** intentions:

intention(a, [on(self, b)]).

intention(b, [on(self, c), on(a, self)]).

intention(c, [on(b, self), on(self, ground)]).

intention(d, [on(self, ground)]).

intention(e, [on(self, f)]).

intention(f, [on(e, self), on(self, ground)]).

The actual intention in each case is the first intention of the list. A fulfilled intention is
stored in a similar list with another predicate called remember. This is necessary
because it is possible in some situations, that an agent has reached its satisfaction state
(i.e. all its intentions are fulfilled) but these intentions only encode the agent's local view
and the global goal may require the agent to move away once more. In that case the agent
must have the capability to remember its original intentions after its movement.

Plans are generated from the actual intention as shown in the following code segment:
%*** plan generation:

generate_plan(Agent, Plan) :-

act_intention(Agent, on(self, X)),

Plan = [know(X), test-intention, fix(X), free(X), free(self), move_on(X)].

generate_plan(Agent, Plan) :-

Plan = [know(X), test-intention, free(self), fix(self), wait_for_move(X)].

We see that the intentions are very rigidly transformed to sequences of simple plan
steps or goals. For example the intention on(self, X): The last goal is to move on agent
X. The other goals are to assure the preconditions of that movement: The agent must
know the agent X, it must test if it is not already on X, it must be sure, that X has not the
intention to move in future, that no other agent is already on X and that no other agent is
standing on itself. Comparing this with the STRIPS representation of operators
(cf.(FN71)), we miss the delete- and add-list, used to describe the effects of an
operation by specifying how to maintain the knowledge base when applying the
operator. In our scenario, the goal-achievement actions for move_on(X) will change the
position of the moving agent by assert and retract operations and broadcast an
announcement message to all other agents so that they can update their private knowledge
bases. Therefore the effects of an operation are hidden in the operation itself. A list of all
simple goals and the description of their intended meaning follows:

know(X) Get acquainted with X if you are not already. That means to
know about the existence, the size and position of X.

15

test-intention Test if the actual intention is already fulfilled.

pause Causes the agent to do nothing during its next activation. This
goal is never used in the plan generation but inserted
afterwards into plans to modify them for synchronization
purposes.

answer-freedom Focuses the agent's activity to the fact, that it has broadcasted
a message “[question, someone-on-me, [x, y], len]” (confer
communication layer) to all other agents. The agent has to
keep the awareness of this fact on the plan level because it may
possibly get no reply message at all and has to interpret that
case appropriately.

move_on(X) Jump on agent X or on the ground if X is evaluated to
'ground'.

fix(X) Make sure, that agent X is at its final position and has no
further move-intention.

free(X) Make sure, that no agent is located on X.

wait_for_move(X) Wait until agent X has moved.

4.5. Communication

The basic communication skills are message sending, receiving and broadcasting.
The realization of the communication ports on the blackboard is simply done by a
predicate named blackboard. Sending a message means assertion of a fact of this
predicate, which contains the sender, the addressee and the message token. The
receipt of a message is conversely the retraction of a fact. The broadcasting capability
should resemble a shouting behavior - everyone hears the message and anyone may reply
to it. A totally new acquaintance can therefore only be installed with the help of a
broadcast, because to send a message directly, the agent must already know the
addressee, and from the beginning it only knows the names of its direct neighbors in the
goal scene. The following code realizes these basic skills:

%*** communication-layer: **

%*** basic communication skills:

receive_message(Agent, From, Message) :-

retract(blackboard(From, Agent, Message)).

send_message(To, Self, Message) :-

assert(blackboard(Self, To, Message)).

broadcast_message(Agent, Mess) :-

agentlist(AgList),

member(To, AgList),

send_message(To, Agent, Mess),

fail. % use backtracking to capture all agents of AgList.

16

Our communicational model is simple because we use a predesigned set of
communication tokens. We grouped them according to their communicational
function into four message types: questions , answers , instructions and
announcements. We go through these message tokens and give a description of the
intended meaning:

h Messages of type instruction:

[instruction, pause] : This causes the receiving agent to do
nothing in its next activation. This is
achieved be inserting the goal 'pause' to the
front of the plan.

[instruction, move-away-from-me] : To reach the goal free(self) an agent can
instruct the agent, that blocks it, to move
away. This instruction may reactivate even
an already satisfied agent.

h Message of type announcement:

[announcement, i-jump-on, X] : After a movement an agent has to broadcast
this message to everyone, because they may
be interested in this agent's movement and
must update their private knowledge base.

h Messages of type question:

[question, where-are-you] : To get informed about an agent's position
and size.

[question, someone-on-me, [x,y], len] : Asks if someone is located on the agent.
The agent has to supply its position's
coordinates and its length, because the agent
that replies may not be acquainted with it
and therefore must gain that information
from the message. As we have seen in the
previous section, there may be no reply at
all to this question and then the agent can
assume, that no other agent blocks it.

[question, you-intend-to-move] : To achieve the goal fix(X) an agent can ask
X by sending this message to X.

[question, are-you-free] : To achieve the goal free(X) an agent can ask
X by sending this message to X. It may
happen that agent X for itself does not have
this information and must broadcast a
message 'someone-on-me' first to gain it
before it can reply.

17

h Message of type answer:

[answer, i-am-at, X, Y, W, H] : Answer to the question 'where-are-you'.
The additional parameters are the X- and Y-
coordinates and the width and height of the
agent.

[answer, yes] : Answer to several possible questions.
Therefore the receiving agent must be aware
of the question to which this answer refers.

[answer, no] : Analog to the answer 'yes'.

[answer, no, on-me, X] : Negative answer to the question 'are-you-
free'. This time the name of the blocking
agent is supplied, because the asking agent
must know for whose agent's movement it
must wait.

The largest part of the communication layer is occupied by the predicate
'process_message', that implements a procedure which describes how to deal with the
received messages. To each of the presented communication tokens, it associates in
dependance of the private knowledge base of the agent certain reactions like answers in
response to questions, plan modifications in response to instructions or updates of the
private knowledge base in response to announcements. We do not want to describe the
hole code of this procedure, but discuss a little interaction scenario, which involves
several messages and gives also an example for the interaction of the different knowledge
layers. Therefore we first present that part of the code of the predicate
'process_message', that will be helpful to follow the example presented afterwards:

%*** effect of messages:

%*** effect of messages of type question:

process_message(Agent, From, [question, someone-on-me, [XB, YB], Len]) :-

position(Agent, [X, Y]),

size(Agent, [W, H]),

X >= XB,

X+W =< XB+Len,

Y+H =:= YB,

send_message(From, Agent, [answer, yes]).

process_message(Agent, From, [question, are_you_free]) :-

(iknow(Agent, [i-am-free]) ->

send_message(From, Agent, [answer, yes])

|

iknow(Agent, [is-on-me, Y]) ->

send_message(From, Agent, [answer, no, on-me, Y])

|

otherwise ->

send_message(From, Agent, [instruction, pause]),

position(Agent, [XB, YB]),

size(Agent, [Len, _]),

(broadcast_message(Agent, [question, someone-on-me, [XB, YB], Len]) ->

18

true

|

insert_to_plan(Agent, answer-freedom),

insert_to_plan(Agent, pause),

assert(iknow(Agent, [asked-freedom])))).

%*** effect of messages of type answer:

process_message(Agent, From, [answer, yes]) :-

retract(iknow(Agent, [asked-freedom])),

assert(iknow(Agent, [is-on-me, From])),

insert_to_plan(Agent, know(From)).

process_message(Agent, From, [answer, yes]) :-

retract(iknow(Agent, [asked-freedom-of, From])),

assert(iknow(Agent, [is-free, From])).

process_message(Agent, From, [answer, no, on-me, Y]) :-

retract(iknow(Agent, [asked-freedom-of, From])),

assert(iknow(Agent, [not-free, From, is-under, Y])).

%*** effect of messages of type instruction:

process_message(Agent, From, [instruction, pause]) :-

iknow(Agent, [i-have-a-plan]),

insert_to_plan(Agent, pause).

As we have seen in the planning layer, one precondition for a movement is, that the agent
on which an agent intends to move is free, i.e. no other agent is already standing on it.
Therefore an agent A may send an agent B the question message 'are-you-free'.
Agent B processes this message as we see from the code presented above in the
following way: It determines whether it has any according positive or negative
information in its private knowledge base. If this is the case, it sends back an answer
message 'yes' or an answer message 'no, on-me, Y', that is completed with the name
Y of the agent above B immediately. Let's assume now that no information about that is
available in B's private knowledge base, i.e. agent B does not know, whether it is free or
blocked by someone. Then B sends the instruction 'pause' to A and broadcasts the
question 'someone-on-me' provided with its own location's x,y-coordinates and its
length to everyone in the scenario and modifies its plan appropriately by the insertion
of a new goal 'answer-freedom', which will make B aware of its question in the
next activation. This is necessary because it is possible that no one replies to the question.
Agent B also forces itself to do nothing within the actual activation, which is done again
by modifying its own plan with the insertion of the goal 'pause'. To be able to
determine the reference of a reply, B stores in its private knowledge base, that it just has
broadcasted that question (i.e. it asserts 'iknow(B, [asked-freedom])'). During the
next activation cycle, agent A does nothing because it obeys B's instruction to pause,
while B gets the result of its question: A 'yes' if an agent is on B or no answer otherwise.
B will therefore become aware of its situation, i.e. it stores in its knowledge base whether
it is free or blocked. Finally the third considered activation now proceeds like the first

19

one; that means A asks again, but this time B has information about its freedom in its
knowledge base and is able to reply a positive or negative answer.

One first result, the design of the communication level has taught us is that even in a
simple scenario the complexity of communicational interaction is not trivial. We had to
deal with three different types of questions: First a question where the answer is
definite, i.e. the agent would understand the answer even if it never would have posted
the question. For example the [answer, i-am-at, X, Y, W, H] will have the same effect
for the receiver if it is the reply to a previous question or if no previous question exists.
Second a question that the agent has to remember, because the possible answers are also
possible answers to other questions. Examples for this are, 'yes' and 'no'. The third
type has to take into account, that no answer is also an answer: This is the case for the
[question, someone-on-me]. Only an agent at the right position would reply a 'yes' to
that message, but if there is no answer at all, the asking agent has to interpret the missing
of answers as the fact that no agent is on it. In our activation cycle model this is relatively
easy to implement because we can guarantee the receipt of an answer one activation after
the question was sent. In general this question type will introduce the problem of delay
times due to transmission-time of messages.

4.6. Actions

The action layer has two major components: The activity-function, which is the entry
point to every activity performed by an agent and a predicate 'reach_goal', that
associates simple actions to each goal and executes them. The activity-function proceeds
according to the following rules:

---- Look for messages in your communication port of the blackboard and process
them. This is done by the predicate 'process_message' already discussed in
the previous section and may include sending of responses, modifications of
the plan and even the intentions and updates of the private knowledge base.

- If you have a plan, then execute the next plan step. The plan is processed
sequentially and thus always the first plan step is taken to be executed by a
call of the predicate 'reach_goal' described below.

- If you have no plan and no more intentions, then do nothing. This is what we
named the satisfaction state. All the intentions of the agent are fulfilled.
But notice, that the agent continues to process the messages sent to it. Thus it
will respond to questions about its state and even may be reactivated by the
instruction message 'move-away-from-me'.

- If you have no plan and the actual intention is fulfilled, then store the actual
intention in the remember-list and fetch the next intention and make it the
actual intention. At the very beginning in the first activation, the remembering
is of course omitted.

20

- If all this does not apply, then generate a new plan from the actual intention and
execute the first goal of this plan.

The following flow chart shows the procedure that is realized by these rules:

process all
messages

 you
have a plan
 ?

 actual
i n t e n t i o n
f u l f i l l e d
 ?

 no
 more
i n t e n t i o n s
 ?

Y

N

execute next
plan step

get next
intention to
be the actual
one

Y

Y

N

N

do nothing:
s a t i s f a c t i o n
sta te

generate a new
plan from the
a c t u a l
i n t e n t i o n

The conditions of the rules refer to knowledge tokens of the agent's private
knowledge base, which realizes a kind of internal status of the agent. This status is
changed during the processing of messages and the execution of actions to achieve goals.
For example the knowledge token [act-intention-fulfilled] is asserted only during the
execution of the goal 'test-intention' if the intended ON-relation is true in the actual world
state.

21

The five boxes of the flow chart of the figure determine the agent's behavior within one
activation:

The processing of messages has already been discussed in the previous
section.

The generation of a plan is a very simple transformation of an intention into a
plan, which is a sequence of simple plan steps. This has also already been
discussed in the description of the planning layer.

The satisfaction state is a kind of sleeping state and a reactivation from that state
is only the exception. The environmental loop of activations is terminated when all
agents are in their satisfaction state.

If the actual intention is fulfilled, the next intention from the intention-list is
going to be processed. This is also a very simple action performed by the predicate
'get_next_intention'.

The most important and totally by predicates of the action layer realized behavior is
the execution of plan steps. The intended meaning of the different goals was
already presented in the description of the planning layer. Now we sketch how the
predicate 'reach_goal' achieves a goal.

The appended code once again shows the naturalness and elegance with which PROLOG
expresses this procedures and shows - now after we have gained detailed knowledge
about the other layers - the interdependencies of the action layer and the other layers. If
the basic constructs of PROLOG are known and the terminology of the application is
acquainted, comments to the PROLOG code are nearly superfluous. We present in each
case the goal, a description of the actions to achieve it and the code that realizes these
actions:

nil : The 'reach_goal' predicate is invoked with the empty goal nil when all plan
steps have been worked out such that the current plan is the empty list. Therefore the
knowledge token [i-have-a-plan] must be retracted.

%*** execution of plan steps:

reach_goal(Agent, nil) :-

retract(iknow(Agent, [i-have-a-plan])).

know(X) : The existence of X must be asserted because X occurs in one of the agent's
intentions that was used to generate the plan. If the position and the size are not already
known, the agent must send a question and work on that goal again during the next
activation when the answer have been received.

reach_goal(Agent, know(X)) :-

(iknow(Agent, [existence, X]) ->

true

 |

assert(iknow(Agent, [existence, X]))),

(iknow(Agent, [pos-size, X]) ->

true

22

 |

send_message(X,Agent,[question, where-are-you]),

insert_to_plan(Agent, know(X))).

test-intention : Replace the constant 'self' by the own name in the actual intention and
use the ON -predicate of the spatial knowledge layer to test the truth value of the intended
relation. If it holds, assert that the actual intention is fulfilled and that you have no plan
anymore. Otherwise do nothing.

reach_goal(Agent, test-intention) :-

act_intention(Agent, Intention),

Intention =.. List,

replace(List, self, Agent, Newlist),

NInt =.. Newlist,

(NInt -> assert(iknow(Agent, [act-intention-fulfilled])),

retract(iknow(Agent, [i-have-a-plan]))

 |

true).

f ix(X) : Inspect the private knowledge base for information about that. If none is
available, then ask X after its move-intention, assert the knowledge token [asked-
movement] to be aware of that question in the next activation, and try to achieve the goal
fix(X) in the next activation again. If X is the constant 'self', then the asking behavior is
replaced by a call of the introspective predicate 'intention_to_move'. At last, when the
agent knows that X is fixed, the goal is achieved. Otherwise, if X intends to move, the
plan is replaced by the single-goal plan [wait_for_move(X)]. (Confer on the next page
how that goal is achieved if X is 'self'!)

reach_goal(Agent, fix(self)) :-

iknow(Agent, [i-am-fixed]).

reach_goal(Agent, fix(self)) :-

(intention_to_move(Agent) ->

assert(iknow(Agent, [i-intend-to-move])),

retract(plan(Agent, P)),

assert(plan(Agent, [wait_for_move(self)]))

 |

assert(iknow(Agent, [i-am-fixed]))).

reach_goal(Agent, fix(X)) :-

iknow(Agent, [is-fixed, X]).

reach_goal(Agent, fix(X)) :-

iknow(Agent, [intends-to-move, X]),

retract(plan(Agent, P)),

assert(plan(Agent, [wait_for_move(X)])).

reach_goal(Agent, fix(X)) :-

send_message(X, Agent, [question, you-intend-to-move]),

insert_to_plan(Agent, fix(X)),

assert(iknow(Agent, [asked-movement, X])).

free(X) : In principle similar to the previous goal: First inspection of the private
knowledge and appropriate actions, if information is available. If not, a question is

23

posted to X or broadcasted to everyone if X is 'self', and the goal is kept till the next
activation and the awareness of the question is assured in the knowledge base and in the
case of broadcasting additionally in the plan.

reach_goal(Agent, free(self)) :-

iknow(Agent, [i-am-free]).

reach_goal(Agent, free(self)) :-

iknow(Agent, [is-on-me, X]),

send_message(X, Agent, [instruction, move-away-from-me]),

retract(plan(Agent, P)),

assert(plan(Agent, [wait_for_move(X)])).

reach_goal(Agent, free(self)) :-

position(Agent, [X, Y]),

size(Agent, [Len, _]),

(broadcast_message(Agent,[question,someone-on-me,[X Y],Len]) ->

true

 |

insert_to_plan(Agent, free(self)),

assert(iknow(Agent, [asked-freedom])),

insert_to_plan(Agent, answer-freedom)).

reach_goal(Agent, free(X)) :-

iknow(Agent, [is-free, X]).

reach_goal(Agent, free(X)) :-

iknow(Agent, [not-free, X, is-under, Y]),

retract(plan(Agent, P)),

assert(plan(Agent, [wait_for_move(Y)])).

reach_goal(Agent, free(X)) :-

send_message(X, Agent, [question, are-you-free]),

(iknow(Agent, [asked-freedom-of, X]) ->

true

 |

assert(iknow(Agent, [asked-freedom-of, X]))),

insert_to_plan(Agent, free(X)).

wait_for_move(X) : The waiting behavior is realized by focusing the agent's
attention to the knowledge token [has-moved, X], that is asserted during the message
processing. If that token occurs, the knowledge base is updated and the waiting ends.
Otherwise the waiting goal is again inserted into the plan. A special case is if an agent
waits for an own move. This kind of internal deadlock is broken by the predicate
'follow_another_intention', that fetches a new intention from the intention-list, makes it
the actual intention and puts the old actual and still unfulfilled intention to the end of the
intention-list.

reach_goal(Agent, wait_for_move(self)) :-

retract(iknow(Agent, [i-have-a-plan])),

follow_another_intention(Agent).

reach_goal(Agent, wait_for_move(X)) :-

(iknow(Agent, [has-moved, X]) ->

retract(iknow(Agent, [has-moved, X])),

24

(iknow(Agent, [is-on-me, X]) ->

retract(iknow(Agent, [is-on-me, X]))

 |

true)

 |

insert_to_plan(Agent, wait_for_move(X))).

move_on(X) : First of all the movement is announced to all other agents by
broadcasting. The rest of the procedure is a little bit technical and computes the exact
start- and goal-coordinates for the movement. If X is 'ground', a subroutine
'next_free_ground' searches for a free space on the table. The movement itself is done by
the subroutine 'agent-movement', which splits the movement into several little steps and
calls a predicate of the world window, which generates commands for picture drawing
after each step.

reach_goal(Agent, move_on(ground)) :-

(broadcast_message(Agent, [announcement, i-jump-on, ground]) ->

true

 |

true),

position(Agent, [Startx, Starty]),

size(Agent, [W, H]),

ground_level(Y),

Goaly is Y - H,

next_free_ground(Agent, Goalx),

steps(Steps),

Xsteps is (Goalx - Startx)/Steps,

Ysteps is (Goaly - Starty)/Steps,

absolute(Xsteps, XA),

absolute(Ysteps, YA),

agent_movement(Agent,[Startx,Starty],[Goalx,Goaly],

[Xsteps,Ysteps],[XA,YA]).

reach_goal(Agent, move_on(X)) :-

(broadcast_message(Agent, [announcement, i-jump-on, X]) ->

true

 |

true),

position(Agent, [Startx, Starty]),

size(Agent, [W, H]),

position(X, [Goalx, Y]),

Goaly is Y - H,

steps(Steps),

Xsteps is (Goalx - Startx)/Steps,

Ysteps is (Goaly - Starty)/Steps,

absolute(Xsteps, XA),

absolute(Ysteps, YA),

agent_movement(Agent,[Startx,Starty],[Goalx,Goaly],

[Xsteps,Ysteps],[XA,YA]).

25

pause : Very simple: Just do nothing.
reach_goal(Agent, pause).

answer-freedom : If another agent has responded to the question [someone-on-
me], the predicate 'process_message' would have updated the private knowledge base.
Therefore, if that is not the case, (i.e. no [is-on-me, Y]-token is in the knowledge base,)
the agent assumes to be free.

reach_goal(Agent, answer-freedom) :-

iknow(Agent, [is-on-me, Y]).

reach_goal(Agent, answer-freedom) :-

retract(iknow(Agent, [asked-freedom])),

assert(iknow(Agent, [i-am-free])).

A few further predicates, that serve as routines and to make the code more readable, also
belong to the action layer. They are too technical (e.g. the search for a free place on the
table) or too simple and self explaining (e.g. 'insert_to_plan') to discuss them here in
more detail. The following sections will go on with the description of the other modules
of the system structure, which was presented in section 2.2.: The current world scenario
and the environment.

5. The "World"

The current world scenario of the blocksworld program comprises three major functions:
The agent status module shows all important activities and the internal state of the
agents. The blackboard is split into one part that provides communication ports for
each agent and one part, that presents a world window view to the user. To support a
pictorial presentation of the scene to the user, a simple drawing procedure was
written in C that uses the X Window system to open a window and draw the scene on it.
As an interface to this drawing process, a simple set of commands was defined. The
PROLOG part of the world window generates these commands and the drawing process
interprets and executes them to draw the picture.

The agent status module accesses the agents' layered knowledge bases at different
levels, presents the accessed information, which may include abstraction, condensation
or transformation into other representational formats, and presents the result to the user.
The information flows only in one direction, the agent status module has no authority to
manipulate anything in the layered knowledge base. Therefore its task can be compared
with that of a filter for information. The agent status module of our simple blocks
world system is realized by the predicate showstatus, which uses the Quintus PROLOG
built-in predicate 'listing' to flush informations about the agents intentions, plans, private
knowledge, remember-lists and all exchanged interagent messages on the screen.

The idea of a blackboard in general is that of a high level shared memory. The agents
have read- and write-access to that structure. Each agent can write knowledge pieces

26

(hypotheses) onto the blackboard and all other agents will “see” it. In a typical blackboard
architecture, the board is the place, where the global solution is developed.

In our simple blocksworld simulation, the blackboard is a communication device for
the agents and will inform the user about the current state of the world. The first is done
by providing communication ports for the agents. The second is the task of the world
window part of the blackboard.

The communication ports are realized with the predicate 'blackboard'. Sending a
message means assertion of a fact of that predicate that has the form: blackboard(sender-
agent, receiver-agent, message-token). An agent A can only access those messages, that
specify A as the receiver agent. This is a simple and robust (no loss of messages and
arrival guarantee within the next activation cycle !) way to implement a
communication channel.

The other task of the blackboard assigned to the world window is to provide
information about the actual state of the world. This can be done in a similar way as the
agent status module by flushing information about the world state on the screen. A
pictorial presentation of the scene would be much more comfortable. We decided
to use the X Window system to implement a simple and robust drawing process. It was
written in C and works as follows: First a window is opened and initialized for drawing.
The process waits for commands from the input stream. Each command causes a drawing
action which is visible on the window. This process runs independent from the PROLOG
session and one problem is the connection between PROLOG and that drawing facility.
As a logical interface we designed a set of primitive drawing commands, that are
generated by the PROLOG-part of the world window and interpreted and executed by the
drawing process. This will be described in more detail below. Our first idea was to
couple PROLOG and the drawing process via a pipe: PROLOG will put the commands
into the write side of the pipe, while the drawing process gets them out on the read side.
The operating system will do the process synchronization. Unfortunately Quintus
PROLOG, which we used for our implementation, did not support any facility to conduct
the data of an output stream into a pipe. A first attempt to program a simple C procedure
for that task and bind it into the PROLOG program failed because the facility to bind
foreign language code into PROLOG, which was described in the manual, did not work.
Therefore we used a file as a buffer: PROLOG writes the drawing commands on a file.
The drawing process reads this file and calls the X-routines to draw the scene picture.
The PROLOG part of the world window consists of procedures to open and close the file
and a procedure to generate the commands. The later one calls a predicate to draw the
table and another to draw the agents, which accesses the lowest layer of the agents'
knowledge base to get the x,y-coordinates and sizes of them. That looks like this:

%********* (drawing functions): **

initdraw :-

open(proto, append, Stream),

assert(drawstream(Stream)).

27

exitdraw :-

retract(drawstream(Stream)),

close(Stream).

drawpic:-

drawworld,

drawagents,

flushpic.

flushpic :-

drawstream(Stream),

print(Stream,'('),

print(Stream,(clear)),

print(Stream,')'),

nl(Stream).

drawworld :-

drawstream(Stream),

ground_level(Y),

x_range([Min, Max]),

print(Stream,'('),

print(Stream,(fillrect,Min,Y,Max,20)),

print(Stream,')').

drawagents :-

drawstream(Stream),

agentlist(AL),

member(Agent, AL),

position(Agent,[X,Y]),

size(Agent,[W,H]),

print(Stream,'('),

print(Stream,(rect,X,Y,W,H)),

print(Stream,')'),

X1 is X + 5,

Y1 is Y +20,

print(Stream,'('),

print(Stream,(string,X1,Y1,Agent,1)),

print(Stream,')'),

fail.

drawagents.

We already see from that how the graphic commands look like: Each command is
enclosed in brackets and consists of a colon-separated sequence of strings. The first
string identifies the command and the following strings are the parameters. The following
list presents all commands, that the drawing process understands:

(point, x, y) : Draw a point at the coordinates (x,y).

(line, x1, y1, x2, y2) : Draw a line with starting point (x1,y1) and
ending point (x2,y2).

28

(rect, x, y, w, h) : Draw a rectangle with upper left corner at point
(x,y) and width w and height h.

(fillrect, x, y, w, h) : Draw a filled rectangle with upper left corner at
point (x,y) and width w and height h.

(arc, x, y, w, h, a1, a2) : Draw an arc that fits into a rectangle with upper
left corner at (x,y) with width w and height h.
Parameter a1 specifies the start of the arc
relative to the three-o'clock position from the
center. Parameter a2 specifies the length of the
arc specified in 64ths of a degree. (360*64 is a
complete circle).

(fillarc, x, y, w, h, a1, a2) : Same as the previous command, but draws a
filled segment of a circle from the starting point
to the ending point of the specified arc.

(string, x, y, s, l) : Writes the string s at position (x,y). The length
is specified by l. The X Window system allows
to use different fonts.

(clear) : Copies the drawn picture to the window so that
it gets visible to the user.

Not all of these commands are used in our system for our scenarios need no circles to be
drawn. The last command is necessary because all drawings are first done to a pixmap,
which is not visible to the user. The clear command copies this map to the window and
frees the pixmap for the next picture. This is a good method to hide the process of
drawing from the user and generate a picture without flickering.In more time-critical
scenarios, several pixmaps could be used the produce a kind of animated cartoon.

6. The Environment

The basic module in our pictorial representation of the system's structure in section 2.2.
is labeled as environment. The meaning of environment in the context of multi-agent
systems in general is not uniform in different systems. The environment should represent
the world or field where the agents exist. It is used to group agents together within
time and space and make them react to changes of the environment.

In our blocksworld simulation, we count every part of the program to the environment,
that does not realize specialities of the agents. That means all predicates, that have no
agent-parameter. (Those predicates, that realize the agent status module and the world
window part of the blackboard, are excepted.) The functionality of these predicates
realize the top-level activation-loop, a very simple time concept, the initialization of
the scenario, especially the specification of the start- and goal-scene by the user
and the translation of the goal scene into the agents local intentions, which is a
simple form of task decomposition.

29

The activation-loop repeats activating the agents one after the other using their activity
predicate. A list of all agents is used for that and the sequence in this list determines the
sequence of activation. The termination condition is, that all agents are satisfied,
which is tested by inspecting the agents' private knowledge bases whether the knowledge
token [no-more-intentions] is asserted. This is done by the predicate 'until-everyone-is-
satisfied', which in case of failure causes PROLOG to backtrack to the predicate 'repeat'.
This behavior of PROLOG implements the loop. A clipping of the code in shown in the
following:

%*** main program and activation-loop:

main :-

initialize,

activationloop.

activationloop :-

repeat,

showstatus,

activate_all_agents,

drawpic,

tick,

agentlist(AL),

until_everyone_is_satisfied(AL),

exitdraw.

activate_all_agents :-

agentlist(AL),

member(Agent, AL),

activity(Agent),

fail. % backtracking assures the activation of all members of the agentlist.

activate_all_agents.

tick :-

retract(time(T)),

T1 is T + 1,

assert(time(T1)).

until_everyone_is_satisfied([]).

until_everyone_is_satisfied([Agent | Rest]) :-

iknow(Agent, [no-more-intentions]),

until_everyone_is_satisfied(Rest).

The simple time concept also gets obvious from that piece of code. It is not more than a
predicate, that counts the number of times that the activation-loop turns around. This is
done by 'tick' and the time turned out to be a useful information for debugging.

The initialization of the scenario comprises the specification of the agents, the start-
scene and the goal-scene by the user. Both scenes are specified in a different way: The
agents and their initial positions are specified within a user dialogue that proceeds like
this:

30

system's question: user input:

You want a new agent? yes or no

What is its name? name of the new agent

Position of the agent? name of an already specified supporting agent or
'ground'

Size of agent? 'd' as short for default-size or 'size(W,H)', where
W is the width and H the height of the agent.

The dialogue ends with a 'no' to the first question and the system's request to specify a
goal-scene. This is done in form of a list of ON-relations, which is also the internal
form of representation for the initial scene generated from the dialogue:

What should be the final scene? list of ON-relations, e.g.: [on(a,b),on(b,c), ...]

A simple check controls if all agents of the goal-scene are specified in the previous
dialogue, but this does not guarantee a consistent goal scene. An inconsistent scene
description will lead to a faulty behavior. To make the system more fault tolerant could
be a starting point for future work. The global scenes are specified in terms of ON-
relations, therefore the exact x,y-coordinates of the blocks must be computed by a
predicate 'computeinitscene' which calls several subpredicates to perform the technical
details of that computation. A simple task decomposition is performed by the
predicate 'getownintentions', which extracts each agent's intentions out of the global
scene representation. For each agent, those ON-relations, that mention the agent, are
collected and the agent-name is replaced by the constant 'self'.

Finally we want to describe how the blocksworld simulation system can be started: You
have to start a Quintus PROLOG session and consult the file 'blockprog', which contains
all the code discussed in the previous sections. To start a scenario you have to invoke the
predicate 'main', which will start with the user dialogue to specify a scenario. To shortcut
that dialogue it is possible to write all answers of the user in a file and start the scenario
by the invocation of 'defaultmain', which will ask you only for the filename.

7. Conclusions

The presented system shows how in a simple toy-world multi-agent scenario the
interaction of the agents can be organized to lead to a problem solving behavior where no
global view of the problem is necessary.

The interest was focused on the communication and the introspective knowledge of the
agents. Both are very tightly entangled as for example can be seen in the answering
behavior: When an agent receives an answer like “yes” or “no”, it must associate its
previously asked question to it, which in our simulation is done by using the agent's
introspective knowledge. In general we used a communication based on several message
types, where there exist several message tokens for each type. This concept could be
developed further for more sophisticated scenarios (e.g. the cooperation of transportation

31

companies) by the introduction of more types or a hierarchy of types. It would also
enlarge the flexibility of the communication in a multi-agent scenario if there would be
methods to make an agent learn new message types or message tokens from other agents.
But such a facility must also provide methods to modify the agents internal procedures to
process messages on the one hand and to make the agents learn to use new introspective
knowledge tokens on the other hand.

With exception of one relatively simple procedure, we organized the introspective
knowledge of the agents in a similar way as knowledge tokens, i.e. as facts which are
asserted or retracted dynamically during the run of a scenario. The set of all holding
knowledge tokens at a timepoint can be interpreted as a kind of state of the agent. This
state is then used to guide the agent's behavior, for example to decide about asking a
question or not, to change its actual plan, or to generate a new plan out of its intentions.

The agent's planning behavior and its actions cannot be isolated from the higher level
knowledge layers. The planning in our scenario comprises four levels: Intentions are
resolved into plans, which consist of several goals. Each goal is achieved by simple
actions. This may be a first step to a hierarchical planning behavior. A simple form of
replanning is realized by the possibility, that an existing plan is modified e.g. as an effect
of certain messages.

The concept of the agent-activation cycle seems to be appropriate for agent-societies of
that level of complexity. It guarantees a certain flexibility, because what the agents do
within their activation is completely defined by the agents and separated from the
activation loop. Different scenarios with different types of agents can use that concept. To
say it clear: The simulated concurrency depends on the “good will” of the agents: If an
agent does not return the control to the environment it is never interrupted. Such a
mechanism should be integrated into a more sophisticated future version of the system.

PROLOG is well suited as an implementation language for the layered knowledge base.
Facts as well as skills of the agents are represented in a natural way. The drawback of
less efficiency is made up for the advantage of clarity and well structuredness, which was
crucial for our intention to have a simple and prototypical experimental simulation with a
minimal expenditure of work and time.

32

8. References

BG88 Bond, A., Gasser, L.: Readings in Distributed AI, Morgan Kaufmann, Los Angeles,
1988

BMS91 Bürkert, H.-J., Müller, J., Schupeta, A.: RATMAN and its Relation to other Multi-
Agent Testbeds, RR-91-09, Research Report of the German Research Center of
Artificial Intelligence, 1991

Cha87 Chapman, D : Planning for Conjunctive Goals, in Artificial Intelligence 32, 333-
377, 1987

DM91 Demazeau,Y., Muller, J.-P.: Decentralized Artificial Intelligence, Proc of the second
workshop on Modelling Autonomous Agents in a Multi-Agent World, Elsevier Sc.
Pub/North Holland, 1991

Fer90 Ferber, J.: The Framework of Eco-Problem Solving, in (DM91)

FN71 R.E.Fikes and N.J.Nilsson, STRIPS: A new approach to the application of theorem
proving to problem solving, Artificial Intelligence 2, 1971

Sch92 Schupeta, A.: Topics of DAI: A Review, RR-92-06, Research Report of the German
Research Center of Artificial Intelligence, 1991

Wal75 Waldinger, R.: Achieving several goals simultaneously, SRI AI-Center, Tech. Note
107, Menlo Park, CA, 1975

Deutsches
Forschungszentru
m
für Künstliche
Intelligenz GmbH

DFKI
-Bibliothek-
PF 2080
67608
Kaiserslautern
FRG

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben
angegebenen Adresse oder per anonymem ftp
von ftp.dfki.uni-kl.de (131.246.241.100) unter
pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekenn-
zeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or via anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.
The reports are distributed free of charge except
if otherwise indicated.

DFKI Research Reports

RR-93-14
Joachim Niehren, Andreas Podelski, Ralf
Treinen: Equational and Membership
Constraints for Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner,
Volker Schölles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz: Object-
Oriented Concurrent Constraint Programming in
Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional μ-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting —
Message Classification in Printed Business
Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach
to Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and
Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-
Agent Worlds viaTerminological Logics
35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman:
Corporate Agents
14 pages

RR-93-31
Elizabeth A. Hinkelman, Stephen P. Spackman:
Abductive Speech Act Recognition, Corporate
Agents and the COSMA System
34 pages

RR-93-32
David R. Traum, Elizabeth A. Hinkelman:
Conversation Acts in Task-Oriented Spoken
Dialogue
28 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A
Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske
(Eds.): Neuere Entwicklungen der deklarativen
KI-Programmierung — Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini,
Daniele Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-
Based Layout Manager for Multimedia
Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-43
M. Bauer, G. Paul: Logic-based Plan
Recognition for Intelligent Help Systems
15 pages

RR-93-44
Martin Buchheit, Manfred A. Jeusfeld, Werner
Nutt, Martin Staudt: Subsumption between
Queries to Object-Oriented Databases
36 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven,
and Goal-directed Reasoning
81 pages

RR-93-48
Franz Baader, Martin Buchheit, Bernhard
Hollunder: Cardinality Restrictions on Concepts
20 pages

RR-94-01
Elisabeth André, Thomas Rist:
Multimedia Presentations:
The Support of Passive and Active Viewing
15 pages

RR-94-02
Elisabeth André, Thomas Rist:
Von Textgeneratoren zu Intellimedia-
Präsentationssystemen
22 Seiten

RR-94-03
Gert Smolka:
A Calculus for Higher-Order Concurrent
Constraint Programming with Deep Guards
34 pages

RR-94-05
Franz Schmalhofer,
J.Stuart Aitken, Lyle E. Bourne jr.:
Beyond the Knowledge Level: Descriptions of
Rational Behavior for Sharing and Reuse
81 pages

RR-94-06
Dietmar Dengler:
An Adaptive Deductive Planning System
17 pages

RR-94-07
Harold Boley: Finite Domains and Exclusions
as First-Class Citizens
25 pages

RR-94-08
Otto Kühn, Björn Höfling: Conserving
Corporate Knowledge for Crankshaft Design
17 pages

RR-94-10
Knut Hinkelmann, Helge Hintze:
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11
Knut Hinkelmann: A Consequence Finding
Approach for Feature Recognition in CAPP
18 pages

RR-94-12
Hubert Comon, Ralf Treinen:
Ordering Constraints on Trees
34 pages

RR-94-13
Jana Koehler: Planning from Second Principles
—A Logic-based Approach
49 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof
Kremer:
Towards a Sharable Knowledge Base on
Recyclable Plastics
14 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr: Using
Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming
Interfaces
20 pages

RR-94-16
Gert Smolka: A Foundation for Higher-order
Concurrent Constraint Programming
26 pages

RR-94-17
Georg Struth:
Philosophical Logics—A Survey and a
Bibliography
58 pages

RR-94-18
Rolf Backofen, Ralf Treinen:
How to Win a Game with Features
18 pages

RR-94-20
Christian Schulte, Gert Smolka, Jörg Würtz:
Encapsulated Search and Constraint
Programming in Oz
21 pages

RR-94-31
Otto Kühn, Volker Becker,
Georg Lohse, Philipp Neumann:
Integrated Knowledge Utilization and Evolution
for the Conservation of Corporate Know-How
17 pages

RR-94-33
Franz Baader, Armin Laux:
Terminological Logics with Modal Operators
29 pages

DFKI Technical Memos

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg
Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production
Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof
Kremer:
Konzeption einer deklarativen Wissensbasis über
recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Günther Hein:
Propagation Techniques in WAM-based
Architectures — The FIDO-III Approach
105 pages

TM-93-05
Michael Sintek: Indexing PROLOG Procedures
into DAGs by Heuristic Classification
64 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores:
Text Skimming as a Part in Paper Document
Understanding
14 pages

TM-94-02
Rainer Bleisinger, Berthold Kröll:
Representation of Non-Convex Time Intervals
and Propagation of Non-Convex Relations
11 pages

DFKI Documents

D-93-15
Robert Laux:
Untersuchung maschineller Lernverfahren und
heuristischer Methoden im Hinblick auf deren
Kombination zur Unterstützung eines Chart-
Parsers
86 Seiten

D-93-16
Bernd Bachmann, Ansgar Bernardi, Christoph
Klauck, Gabriele Schmidt: Design & KI
74 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene für
einen hybriden
Wissensrepräsentationsformalismus
97 Seiten

D-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen
am Beispiel Terminologischer Logiken
53 Seiten

D-93-22
Andreas Abecker:
Implementierung graphischer Benutzungsober-
flächen mit Tcl/Tk und Common Lisp
44 Seiten

D-93-24
Brigitte Krenn, Martin Volk:
DiTo-Datenbank: Datendokumentation zu
Funktionsverbgefügen und Relativsätzen
66 Seiten

D-93-25
Hans-Jürgen Bürckert, Werner Nutt (Eds.):
Modeling Epistemic Propositions
118 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-26
Frank Peters: Unterstützung des Experten bei der
Formalisierung von Textwissen
INFOCOM:
Eine interaktive Formalisierungskomponente
58 Seiten

D-93-27
Rolf Backofen, Hans-Ulrich Krieger,
Stephen P. Spackman, Hans Uszkoreit (Eds.):
Report of theEAGLES Workshop on
Implemented Formalisms at DFKI, Saarbrücken
110 pages

D-94-01
Josua Boon (Ed.):
DFKI-Publications: The First Four Years
1990 - 1993
75 pages

D-94-02
Markus Steffens: Wissenserhebung und Analyse
zum Entwicklungsprozeß eines Druckbehälters
aus Faserverbundstoff
90 pages

D-94-03
Franz Schmalhofer: Maschinelles Lernen:
Eine kognitionswissenschaftliche Betrachtung
54 pages

D-94-04
Franz Schmalhofer, Ludger van Elst:
Entwicklung von Expertensystemen:
Prototypen, Tiefenmodellierung und kooperative
Wissensevolution
22 pages

D-94-06
Ulrich Buhrmann:
Erstellung einer deklarativen Wissensbasis über
recyclingrelevante Materialien
117 pages

D-94-07
Claudia Wenzel, Rainer Hoch:
Eine Übersicht über Information Retrieval (IR)
und NLP-Verfahren zur Klassifikation von
Texten
25 Seiten

D-94-08
Harald Feibel: IGLOO 1.0 - Eine
grafikunterstützte
Beweisentwicklungsumgebung
58 Seiten

D-94-09
DFKI Wissenschaftlich-Technischer
Jahresbericht 1993
145 Seiten

D-94-10
F. Baader, M. Lenzerini, W. Nutt, P. F. Patel-
Schneider (Eds.): Working Notes of the 1994
International Workshop on Description Logics
118 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-94-11
F. Baader, M. Buchheit,
M. A. Jeusfeld, W. Nutt (Eds.):
Working Notes of the KI'94 Workshop:
KRDB'94 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
65 Seiten

D-94-12
Arthur Sehn, Serge Autexier (Hrsg.):
Proceedings des Studentenprogramms der 18.
Deutschen Jahrestagung für Künstliche
Intelligenz KI-94
69 Seiten

