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Abstract 

T 11 (, grow ing interest in an adequate modelling of time in Artificial Intelligence has given 
rise to 1.11(' research discipline of Temporal Reasoning (TR). Due to different views, different 
approacll es towards TR such as PL1, modal logics or Allen's interval logic have been investi
ga1.('d. It was realized at an early stage that each of these approaches has some strong points 
wll('rc~ as it. suffprs from certain drawbacks. Thus recently, a number of research activities 
Il ave ('nI('rgf'd aiming at a combinat.ion of the classical paradigms for representing time. 

III 1.lte first part of t hi s paper, we present an overview of the most important approaches 
1.0 1.h(' illtegration of t.emporal knowledge into logi c programming. In the second part, we 
pn's(, Ii1. tile CII HONOLOG temporal logi c programming language which has been developed 
1.0 ("ove r 1.ltp quinLPssence of the approaches presented before. The third part of the paper 
d('scrib('s TnAM, whi h is an extension of CHRONOLOG to a tempora.l knowledge represen
t il,1.iOIl syst.(, IlJ. Us illg THAM it is possible to represent knowledge depending on time and 
t () J('<lSOII <I.hollt. t.ltis kll ow ledge. TRAM has been conceptually based on a combination of 
111O<i;-t.! logics wit.l l Alkll's illt.ervallogic. We present the Extended Modal Logics (EML) which 
cst (I.bli slws til(' t.1t('orf't.ical framework for TRAM . We define an operational semantics and a 
IIOI'i ::ollf(f/ C01I17Ji/(f f iOll 8('11,(,111,(' for TRAM . 
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Chapter 1 

Introduction 

Tilllf' plays an important role in many real-life problems, and reasoning about time often 
seems ilidi spE'nsable . Thus, researchers in Artificial Intelligence are faced with the need 
of finding acceptable repretientat ions of time and temporal knowledge. However, it is very 
diffintl1. 1.0 ex prf'SS what we act ually mean when talking about time, and what the basic 
, 11 a. ra,t.(' ri st ics of t im E' are . Trying to formali ze temporal aspectti and fitting them into a 
g(, ll (' ra l fram ework appears to be even harder. .Moreover, time can have many different faces 
<l1Ie! aspects of t.opology, wh ich may depend on the different points of view: time can be 
regi'l ('( led as cou t iUUOU$ or discrete, as intervals or points, as lin ear, branching, or parallel. 
Nevcrt.h('l('ss, 1.11<' probl f'ms relat.ed to time do not free us from having to cope with temporal 
<ts p('c1 s ill Il1<Lll y fields covered by AI , suc:h as expert sYtitems for medical diagnosis, where 
1 ill l(' is i'lll illlport.ant factor Whf'll it com s to di agnosing and healing a disease. Other fields 
<1)(' pli'lllllill g alld scll('duling, where act ions and goals have to ' be coordinated while keeping 
i'I giV<' lI sd of t.(,lllporal constrain ts sat isfied. Our group) investigates time from the point of 
v iew of ll1lt1t.i -agf' lIt. systems, whE' re it plays a crucial rol e for coordination processes (amongst 
o11J('rs). Temporal Reasoning(TR) has turned out to be a separate area of research within 
1\ 1 (d. [h:S~(i , IIry88, I\M8~ , Tan89, Gab87]). TR deals with the representation of and the 
illfcn'II(,(' 0 11 t.(,1l1poral propos itions. A major goal is to explore the basic characteristics of 
1.( 'll1poral st.l'IlC1.urcs a lld tofinel adE'quate general models of time2

. 

1\ 11l011 gSt. 0111n i-lpproach('s, t he 10gic- basNI approach towards handling time has appeared 
10 \)(' Il s<' fltl dll<' t.o it.s solid mal.llf'mat ical foundations , its clear and formal syntax and 
S(' III <l lJl ics wlliell a llow w('ll-foulHkd stat.ement ti about soundness, completeness, decidability, 
COlllplltai>ilit.y, dficiellcy, or complex it.y f'tc. Our approach is closely oriented to this logi cal 
hac kgro lllld , a. lt.hollgll WI' do II Ot. dE' IlY t.hat it suffers from a number of short comings which 
a l,(, ('ov('t'C'd a.pt Iy by [SM87] using t.hE' WE'll-known metaphore of the man searching his keys 
IIl1d(' I"a lall1<'1'11 illst.('(l(1 of sE'al'eililig t.hem ill the dark wherE' he lost them, because search is 
silllpin ill t.he light. of tllf' la llt. E' I'II . HowevE'r, we think that the advantages of temporal logics 
(jll;-lIly Illak(' lip for t Ilf' ir drawhacks. 

l'fhi" work hi\." hl'I'1I dOlI!' ill til!' AKA-t\10d project. a t. DFKI , Saarbriicken. 
"U p to 1I0W, ilp proaelws dt'alillg wit.h t.inw have llPf'n highly spec ifi c and depending on the respect ive 

"pp li eilt iO Il " . 
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Thi:-; pa}w r i:-; di vided illto two parts. III the first part we will give an overview of somf' recent 
work in the fi eld of temporal reasoning. In the second part , we will describe the systems 
CHRONOLOG and TRAM whicll have been developed at our rf'sea rch center. CHRONOLOG 

[Sch89] is a teIT1poral logic programming language which extf'nds PROLOG. TRAM [Pis91] 
is a system for represent ing temporal knowledge, which combines both interval and point 
aspects of time by integrating the ideas of two of the main paradigms for the representation 
of time in AI: Allen's interval logi c [AIl84] and the modal logics approach[Pri67 , AM89]. 
The form er approach employs intervals and relations between intervals as the basic entities, 
whereas the latter one uses a set of modal operators which are interpreted by using a possible 
worlds semanti cs in order to express temporal knowledge. In the following , we will outline 
the most cru ial aspects of time and their relevance for research in Computer Science. 

1.1 Time - Reaching out for a Mystery 

The quest ion of the nature of time is a very difficul t one, and no generally accepted answer 
could be given to point out, what the in terest ing characteri st ics of t ime are and how t hey 
could be represented. It depends strongly on the domain in which time constructs are to be 
used. So the best way to see what aspects time can have is to examine in more detail t he 
various concept ions used in different domains. :-Iowever, there are a few general characteri st ic 
arguments and criteria which are heard very often in di scuss ions about temporal aspects. 
They are summarized in the following: 

Point or interval 

Some people think of time as having interval character: properties hold during intervals of 
time, but one does not know how two different intervals are related to each other (i.e. one 
interval may surround, overlap, be before, or after another one). The aim of reasoning is to 
get information about the relationships between the intervals. 

Another way is to understand time in a modal logic way: the universe is a graph, whose 
nodes represent different t ime points. Edges are drawn due to expli citely or implicitely stated 
rules of the logic. Here, the aim is to find out if a property that holds in a certain node 
(which represents the current time) will be true e. g. for one or all succeeding or preceeding 
timepoints . 

Discrete or continuous 

Out of the point/interval discussion comes the way to see time more as a sequence of time 
instants or as a continuous flow. 

Time instants are used e. g. in program verification or in the blocks world, where t ime 
can only change significant ly between the execution of two direct ly succeeding program 
statements or two act ions of t he roboter arm. 
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To look upon time as a continuous flow ma.kes more sense in an environment such as natural 
language processing: here it is possible that each event. that was t.old in a sent.ence can have 
many subevents, told in future sentences. It may also be possible that there appears a third 
intermediate event between two events which are supposed to be directly succeeding. 

Branching or Linear 

When reasoning about future and past, people regard time as having branching character, 
and t hey try to find out what will be or what had been. Others base on one single time line. 

ThC'y are more interested in when things happened and not if they will/had happen( ed) at 
a ll . 

1.2 Synopsis of the Paper 

S('ct iOIl :2 short. ly describes the state of the art in temporal logi cs. Some significant for-

1I1itiisms for modelling temporal knowledge are presented and their propertif's are discussed. 
[II cll<lpt.('r :3, Wf' IHf'sf'nt SOIllf' of the most interest iug approaches towards building tempo

r;-d logi c programming languages. Thf' evaluation of the strong and weak points of existing 
<lppro<lclw:; will 1)(' tlle start.ing poillt to thf' systems CI!RONOLOG and TRAM developed at 
(JIll' imd it 111.(' , wlli.il w(' will pr('s(,llt. in 1,11(' 5('.ond pa.rt of this pa.per. In sect ion 4 we provide 
;-1 hrid 01 1t.lill(, of t.he Gil RONOLOG temporal logi c programming language, which basically 
('ollst.it .l1t.(,S <1.11 (~xt.(,llsion of PROLOG by temporal constructs. In chapter 5 we motivate the 
d('\'('loPllll'll1 o f t.\l(' TnA M syst.em which shall be looked upon as a combination of differ
('111 ('oll('('pt.ll(ll ;-lpp roacllt's towards the r('preselltatioll of time, basically the combination of 

11IOd;-t\ logi cs wit.h Alleu 's illt.erval logic model. In chapter 6, the theoretic framework of 
TILH1 , til(' ('xt.('IICkd m odal logic EML, is described. Both the syntax and a model-theoretic 
S(, IIl(tllt.i(·s for EM L Me givell, and we silow how illtervallogi c according to Allen can be inte

p;rill<'d ill10 (I IllOdallogic frall1C'work. Chapt.er 4 describes the basic features of the knowledge 
r!'pJ'('s('II1;-tlioll system THAM. \\le give a ll operational semantics for TRAM 3

, and we provide 

(I hori;t,olltrd (·olllpilat.ioll scllf'll1e for TRAM programs iuto PROLOG programs. Chapter 8 
Sll l11I11<lri ;t,(,s 1.11(' 1ll0St. importa.llt results a nd gives a short. outlook. 

:IOlir Cllrr(, lIt. TIt-HI v('rSlOIi is haspd all PROLOG . Thlls t lIP O(1erat iOllal semant. ics of TRAM shou ld be 
illt IliliVl' for it r('adl'r faillitiar wit.h PROLOG 
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Chapter 2 

Representing Temporal Knowledge 

This chapter will present the framework for a unifif>d model- t heoret ic. view of time. For this 
purpose, three approaches towards represent ing temporal knowledge are shortly di scussed. 

2.1 FOPL and Time 

The use of first order predicate logic (FOPL) is very popula.r for many purposes in AI. 
Its usefulness for knowledge representation already has been known for a long tim (d. 
[NiI80, 11084, BB87, RK91]). The main properties of FOPL are its sem,i- decidab ility and 
completeness. Since powerful theorem provers for FOPL exist [OS89], an integration of 
temporal reasoning into FOPL appears to be promising. [Pis91] provides a summary of 
different approaches towards the representation of temporal knowledge in FOPL. 

However, most researchers agree that FOPL does not provide optimal support to temporal 
aspects. As a consequence of this, FOPL has been extended in many ways in order to gain 
more expressive and more powerful formalisms to represent and to reason about .temporal 
knowledge. One of them is Allen's interval logic, which we will di scuss in section 2.2, another 
one is the modal logics approach (d. section 2.3). 

2 .2 Allen's Interval Logic 

Allen's approach towards the representation of temporal knowledge is doubtlessly one of the 
most prominent works in this area of research. The origin of Allen's work is the processing of 
natural language where time and its representation play an especially important role. In this 
section we give a short summary of the topics of Allen's interval logic. For a more detailed 
view we refer to Allen's original articles [A1l83, A1l84] . 

In his model, Allen uses intervals as the basic entities. He characterizes time by a set of 
events (intervals) together with several temporal relations such as before, overlaps, m eets, 
equal, during, starts, finishes between these intervals. Allen covers all possible constellations 
between two intervals by introducing 13 relations which are shown in table 2.1. The resulting 
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structure is a graph which can be regarded as a constraint net, where the consistency of 
different temporal interdependencies can be checked using constraint propagation. 

Symbol 
Pictoral 

Relation Symbol for 
Representation 

Inverse 

XI I 
X before Y < > 

Y I I 

XI I 
X equal Y - -- -

YI I 

XI I 
X meets Y m 'mz 

Y I I 

XI I 
X over laps Y 0 m 

Y I I 

X I I 
X duriug Y d <Ii 

YI I 

XI I 
X starts Y .5 sz 

YI I 

X I I 
X fillishes Y I Ii 

YI I 

Table 2.1: A lIell 's 13 re lationsh i ps between intervals 

A 11( '11 IIS('S tlm'(' 1lH't.a-collcepts occur', holds, and oCC'Il1"iug each of which can be applied to 
011(' o f t.he followillg t.lll'f'f' c li-Lsses of knowledge items: cvents, proper·ties and processes. An 
i-,Ige llraic St.I'1Ict.ur<' is dC'fillf'd on top of t.\](" relations usillg two operators, the intersection 
Il ('\.W('(' 11 s('t s of possible r('lat.iom; betw('en ill tervab, and the composition of sets of relations. 

A II (,II h i-IS opcrat. iollalized Ili s concepts by providillg both a local and a global constraint 

propagatioll a lgori1.l11l1. 

For Illolly dOllloillS, Allell's model is wry intuitive and adequate. The constraint propagation 
IlH'Cllallislll provides ;-111 ('kgaJlt way to cope wit.b in complete knowledge. Knowledge can be 
('x1.elldc'd olld 1l1Odifi<'l1 illc!,(o·Illf'II1.al ly by using incrementa.! constraint solvers . Moreover, the 
fOllllal FOPL-lik(' framework fac ilitates t.he proof o f diverse properties. But there are some 
s('riolls drawbacks of th(' approach: 

• Due to til(' sl)('cial s(,ll1allt.ics of negat.ion in the Allen logic [GaI87]' a sound represen
t at ,ioll of COJlt.illIlOIlS cll <'lllges is not. provided. 



• The underlying model of t.ime is res t.ricted to a lillf'ar time axis . Especially, it is not 
possible to model something like branching time. 

• The granularity of classifying knowledge in events, properties, and processes is very 
coarse. For some applications e.g. a fin er semantics of parallelism than the one provided 
by the Allen model would be necessary. 

• Constraint propagation is an expensive met hod of complltation . 

2.3 The Modal Logics Approach 

The theory of modal logics has its origin in the necess ity of expressing both knowledge which 
always (necessarily) holds and knowledge which somet imes (possibly) holds. This is achieved 
by a possible war·lds semantics where those worlds are considered possible whi ch can be 
reached from the current world using an accessibility relation. The poss ible worlds togt'ther 
with the accessibi lity relation establish a graph of worlds, a so called /\·n:pke stru cture. Two 
modal operators 0 and <> are introduced in order to express val idity in all worlds or in 
some worlds, respect ively. For a more detailed introduct ion to modal logi cs we refer to 
[Kri71, Ram88, Sh088]. 

Modal Logics and Time 

By slightly varying standard Kripke semantics, modal logics can be used in order to model 
temporal knowledge. Worlds are considered as time points, and the semantics of the modal 
operators is enriched by the notions of future and pa.st: 

• Fp: p holds in some} future world. 

• Gp: p holds in any future world. 

• Pp: p holds in some past world. 

• H p: p holds in any past world. 

These operators are interpreted in a Kripke- like manner. Prior [Pri67] was the first to apply 
the principles of modal logics to tense logics. He showed that the logic defined by the above 
operators can be considered equivalent to an S4 modal logic2

. 

The strong points of the modal logics approach are obvious. Compared to FOPL, tempo
ral knowledge can be formulated in a very elegant and compact manner, it is possible to 
represent objects which exist only temporarily. Moreover , it offers powerful mechanisms of 
representation, e.g. axioms like DQ -t DDQ cannot be axiomatized in FOPL. However, this 
approach has some shortcomings: 

1 i. e. at leas t. in one 
2The crucial property of t.he 54 axiomat.ization is that the accessibility relat ion is transitive and reflexive, 

whereas it is not symmetric.. Obviously, since most of us cannot simply t.ravel back to the past, this seems 
reasonable for the representation of time. 
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• Modal temporal logics just g ives an indirect represf'ntat ioll of time. This makes it hard 
to refer to subjects involving exp li c it time. 

• Reasoning over intervals of time is not supported by t.he model. 

• Due to combinatorial explosion of the graph of worlds, ex ist ing systems using modal 
logics suffer from efficiency problems . 

• Some important properties of worlds (e.g. refl ex ivi ty of t he accessibility relat ion) can 

on ly be formulated as axioms. Thus, properties valid for individual worlds cannot be 
f'xpressed in an adequate manner. 

Moszkowskis ITL 

Moszkowskis intf' rval temporal logic (ITL) is given as an example to clarify the concepts of 
Illodal logic. Hi s domain is t llf' behaviour of el ctrical circui ts. He calls hi s worlds intervals, 
whr rf' a ll illt f'f"va l J is l'f'preselltp.d as a non empty seque nce of immediately succeeding t ime 
P()ill1,s, wli ttf' 1I a.s J = < t.u, i 1 , ... , t" >. Two intervals are connected in the time graph, if 
0 11 (' is a, / ('1"1l1in(l./ subill tp.rval of t he othe r; i. e. < 8, t, 'It > has successors < s, t , U >, < t, U > 
iil ld < '/I. > . F'ormlllas in ITL are FOPL formula.s witli four addi t ional operators: 0,0,0 
a l)(1 ; (1.11(' (' /1.0], operator). III t hf' follow ing J F tv means t hat formula tv holds during 
ill t.('J'Vid I . TIl<' II(,W opr rator~ a rf' df'fined as fo ll ows: 

< so, ... ,S,,>F Ow iff <8;, ... ,S,,>F w 

for a ll .i. wit. h 0 ~ .j ~ 'It 

< '~IJ, ... "~II > F Ow iff < 8i, ... , S" > F W 

for ;-If, least. o ll e .; wit h 0 ~ ·i ~ n 

< so, ... , s" > F Ow if!' < 8 1 , ... ,8/L > F W 

< "o,···,s" > F w;w' iff' 
< so""" ~ i > F walld < Si, ... ,8/L>F w' 
for at. I('ast. 011(' ; wi1.\1 0 ~ i ~ '/I. 

l\ loszkowski 11S('S 1.\)('s(' cOlIst.ruct.s t.o df'scrih(' tl w behaviour of di gital circuits: for example 
if O il !' wi-lIl1.s 10 st.at.e t. ll al t.wo hit. signals X a lld Y arf' eq ua l over time, one can do this by: 

x ~ y =rlrJ O(X = Y) 

'1'1)(' 0 opclat.ol ca ll 1)(' llsf'd t.o 1f' ])I'('Sf' llt unit. de lay fOI p.xample: if one bit signal X is 

('()Ill ilillo ll sly assigllC'd 10 Cl ll ot. llCl bit signa l Y OVf' r til11f' but wit.h unit delay one would define 

i 1 iI s: 

X del Y =drJ O((X = 0) = (Y = 0)) 
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2.4 Evaluation and Conclusion 

In this sectioll we presellted some important approaches towards representing temporal 
knowledge: FOPL, Allen's interval logic, and modal tense logic. It has been shown that 
each of these a.pproaches has some strong points whereas it suffers from some shortcomings . 
For many applications it can be extremely useful to combine the features of different ap
proaches in order to gain a more powerful and more expressive formalism for representing 
time. In our work, we decided to integrate elements of Allen's work into a modal logic . 
Especially, it shall be po ·s ible to reason about intervals of worlds and their interdependence. 
Thus, we enhance the modal time model, wh ich per se reveals a time point character of time, 
by intervals of time. However, we preserve the basic desirab le properties of modal logics . 

Thus, in the fo llowing, after giving a review on some current approaches towards temporal 
logic programm ing, we wi ll introduce the CHRONOLOG system which embodies the modal 
logics approach towards tense logics (see charter 4. In chaptf'r G we will present an ex
tended modal logics (EML) which embod ies both modal logics and an interval concept. 
The knowledge representation system TRAM described in chapter 7 basically constitutes the 
operationalization of EML. 
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Chapter 3 

Temporal Logic Programming 
Languages 

[II this s~ctioll we present. some current proposals for temporal logic programming languages. 
All issues discussed h re are all closely related to PROLOG , because it seems the most 
prom isillg way for different reasons to take PROLOG and extend it by various temporal 
cOllstrud s: Fir!::it of all PROLOG is already programming in lofiI c and therefore "only" the 
1.C'lIlroral aspects must be added. Furthermore there has already been done world wide 
1Il1lcl. work boUI on thf' theoretical an d on the practical side of PROLOG. This results 
ill powC'rful PROLOG systems (available for all computer systems) that are comparable to 
i.C'. LISP C'lIvironnwnts both in program development tools (editors, debuggers , etc.) and 
rIlll1.illlC I)f'rformallce and storage consumption. All thi!::i can be used to develop temporal 
prop; r<l. llllllillg t.ools, that. are not only of high academical interest, but also of great practical 
IISdlllllC'SS. 

3.1 A bad i and Manna's TEMPLOG 

Al)a,di all<l Ma,lIll a preseut a programming language called TEMPLOG, which strongly bases on 
PI!OLOC; <l.lId adds :lmodallogic operators: 0 ("next"), 0 ("always") and 0 ("eventually") ; 
their Illeallillg is ex plailled as follows: 

• O J) lll('allS "P is t.rue at the l1f'xt time point" 

• 0/) lI\('allS " P is always true (from now Oil)" 

• O F is ddillC'd a.s: O P = -,O-,P 

[II t.IlC'ir view t.illt(' is lill('(/,I' , r1 iSC1'f'ff' an d exteuds infinitely towards future, 

A TF:MI'LOC; program is a collPct ioll of t. emporal (Horn) clauses, where a clause may have 
011(' o f t.I \(' foll owi IIg forms : 

H t- B 
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oH - B 

o(H - B) 

For the sake of readability, the last clause, which is also called permanent clause, is written 
as: 

H ¢= B ; 

the first two clauses are called initial. 

The heads H of the clauses are next-atomic formulas of the form 

where on P means 0 applied n times to P and P is a conventional PROLOG atom of the 
form p(t l , ... , t n ). 

The body B is a formula that consists of next-atomic formulas , which are connected by 0 
and A (conjunction, also written as ,). Thus, 

p(a) - Oq(f(x)) 

oOOp(b) - 0 (O(q(y) A 0 0 T(C))) 

are well-formed clauses. The use of 0 is prohibited in bodies and the use of 0 is prohibited in 
clause heads in order to reduce computational complexity. But this is not a. real restriction, 
because clauses like OP - Q (say "P is eventually true if Q is true") or P - OQ ("P is 
true if Q is always true") are of no practical use . 

Because of the additional modal operators there is a modified SLD-Resolution strategy called 
temporal SLD-Resollltion: It also start.s with a list of goals (a goal has the same form as 
a body), replaces a goal by the body of an applicable clause and repeats this step until 
the goal list is empty or until backtracking must occur. But the specific resolution step is 
different from standard SLD-Resolution. To clarify this, we firstly restrict the possible goals 
and clauses, so that we have goals of the form 

We can try to apply initial or permanent clauses of the form 

Oi H - Oil B l , ... , Oik B k (*) 
Oi H ¢= Oil B l , . .. ,Oik B k ( **) 

. where the H, Bi and Gi are atoms.(How to apply clauses of the form OH - B will be 
explained later). 
If we want to apply one of these two clauses in both cases H and one of the Gi (e . g. G1 ) 

must be unifiable (with most general unifier say B). Additionally, if we want to apply (*), 
then it must hold that 

. . 
Zl = J 
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and the resolving goal li st is: 

Qjl Ble, ... , Qjk Bke, Qi2 G2e, . . . , Q;"G"e 

If we want to apply (**), we have to note that 

implies 

but. only if i l 2 j. 
Thus, we can perform the same resolution step as in the first case leading to the new goals 

If we want to lift this restricted version to the full version, we have to look next at how to 
apply c la ll ses t.hat have 0 in their head: 

OH +- B 

wlli cll is p.q 1\i valf'nt to the followillg two clauses 

If {::: 'r(.Ll,"" xn) 

'r(.Ll,"" xn) +- B, 

wllCl'{' ;1: 1, ... ,:1:'1/. are the free variables occuring in B. So we can reduce this case to the 
pn'VI01\S Ollf'. 

ow, ollly tile' <> opf'rator occuring in goals (and bodies, which is the same problem) is still 
Illissillg. T lw SOllltioll to this employs similar tricks as in case of the 0 operator, but needs 
111 01(' t.illH' to exp la in and is t llf'wforf' omitted. 

Not.e t.Ilat. ill all casp.s app lying a clause to a goal leads to a unique successing goal list and so 
til<' hr<tllcllillg factor ill tlw search space is determined by the number of clauses, In this way 
I/O (fddilir)'flol bnl'll.rhing is obtained by the resolution procedure. An additional advantage 
is t IIi·d , it. ca,1I he c<t,si ly imple lnt~ntp.d in PHOLOG. But it is difficult to embed it into existing 
PHOLOG syst.ellls, heca-Ilse one needs to modify the available PROLOG interpreters/compilers, 
wllicll is pract ically difficult alld mostly impossible. Another point of criticism is that there 
is 110 cOllcept. for braJlching futurf' and past. 

3.2 Dav Gabbay 

Cahhay ('xt.ends PHOLOG ill a way which is closely related to the way Abadi and Manna do; 
hilt. Ca,hbay has not. on ly modal operators for the future, but also for the past. He adds two 
llIodal logic operat.ors: F (fut.ure) and P (past) which also allow to express 0 and <> : 

- Fq llIf'ans "(I will bf' t.nw" (including now) 
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- Pq mean!; "q ha!; been true" 

Oq q V Fq V Pq 

A program is a collect ion of clauses, where F and P may occur either in the body or in the 
head. Since F Fq = Fq and P Pq = Pq, we assume that there are no multiply applied F's 
and PiS. Thus, clauses are of the form: 

H+--B 

D(H +-- B) 

where the first one is called ordinary clause (because it is only valid now) and the second 
one is called always clause (because it may be applied in the past, now and in the future). 
The head H may either be an atomic formula or it may have the form FA or PA, where A 
may not only be an atom, but it can also be a whole ordinary clause. A body is of the form 
A, B 1\ B ' , F B or P B, where A is an atomic formula and B, B' are bodies. 

Program execution is driven - as in classical PROLOG - by a list of goals, where a goal 
has the same form as a body. The first goal is choosen and replaced by the body of an 
applicable clause. But what "appli cable" nleans is different here, because a head of a clause 
may contain a whole clause itself. To explain this, we firstly introduce a notation 

P ?G = 1(0) 

where P is a set of clauses (or say a program). G is a goal and 0 a substitution. The whole 
expression means: "The goal G is derivable from program P under the substitution 0". 

If we have a goal li st P?G1 , ... , P? Gn and we want to replace the first one by applying a 
clause of P, what the successive goals look like depends on the part.icular form of G1 : 

1. If G1 is an atom, then we look for an (ordinary or always) clause, whose head H is 
unifiable with G1 via O. We derive the new subgoal BO( where B is the body of the 
clause) as in ordinary PROLOG . 

2. If G1 = G~ 1\ G~ then use 

P ?G1 = P?G~ 1\ G~ = 1 (0) iff P?G~ = 1 (0) and P?G~ = 1 (0) 

Note that in both subgoals there must be the same substitution O. 

3. G1 = PAis symetrically to the next case. 

4. G1 = FA is the most complex case, which is rather technical to explain in detail, so 
we will outline only the main idea. 
F A says that if we want to know if A will be true in the future (using clauses, that 
are valid now). We try to show this by applying an ordinary or an always clause. The 
simplest case is, when we have a clause of the form 

FH +-- B 
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where A and H are unifi able, thus we only get the new 1:i ubgoal P ? B. To apply this 
clause, we can try to show that H l:mp/ies (and not on ly unifies) A in some future state 
(written as {H} ?A), if we afterwards succeed in proving B, we can argue: B implies 
that H will be true in some future time and at that time A becomes true too (from 
H); so A becomes true in the future , say FA is true now. 

An analogous way to show FA is to show that A will be true not at the time when H 
comes true, but after this it wi ll be true (wr itten as {H} ?FA). 

These were the possibilities in applying ordinary clauses. Using always clauses one 
can try the above ways and add ition al ones. This stems from the fact that an always 
clause is not only valid now but also in future states. Trying to apply O(H f-- B) or 
O(FH f-- B) one need not only to show B , but can also try to show that B will be 
true (F B), resulting in F H or F F H respectively. 
Us ing a ll this one can gf't different argumentation chains to show FA: 

Bo -t F Ho -t F Ao 

B=?FH=FA 

B=?FH=?FFA=FA 

FB=?FH=?FA 

FB =? FH =? FFA 

FB =? FFH =? FFA 
FB =? FFH =? FFFA 

I·;x,(' pt. t.he first o ll e our succes!:i ive goal li st looks as follows: 

{H}?X,P?B,P?G2 .. . , P?Gn 

wll('r(' X ('q1l a.ls !l or FA. Note however that, if we want to show that in the future H 
illlpli( 's X, we Illay 1I 0t. li se all c1ausf's of our program P , because not a ll clauses in Pare 
va lid forev('\". Hat. lwrmore, we may lise more tban simply {H}. We may use all always 
cla 1l s('s of P ; ordi1l ary cla l1 ses m11st \)(" prefixed with the past operator P. So in the above 
gmt! li sl, w(' ca ll r('pla,c(' {H)'! X by: 

{il} u {all a lways clauses of P} U {Pclc an ord inary clause of P} ?X 

Cahhay's 11 0m log ic al lows t.o r('ason about the future and the past and allows more complex 
('1"ll1S(, 11 ('ads, But. t.his advalltage is gained by a great loss of computational efficiency: in 
('very r('soI11t.i 01l step and for eve ry app li cab le clause t bere are up to 7 paths to test. Especially 
always cla 11 ses I('ad to 1.1lf' highest brall ching factor. Additionally the cri ticisms presented in 
1 \1(' pn'vio11s s(,ct.io ll hold for Gabbay 's logic too: t.here seems t.o be no easy way to embed 
Ilis (,OIl(,(,Pl.s ili1,O PROLOG. III add it.ion it. seems t.o be diffi cult to effi ciently implement the 
"swit.chillg dal ahasf' '' 111f'chanisll1 (from P t.o P' in two succ("ss ive goals P ? A and P'?B). 
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3.3 Kowalski's and Sergots's Calculus of Events 

Kowalski and Sergot present an interval based calculus, that is combined by three building 
blocks: events) properties and time intervals. As the name "event calculus" already states, 
it concentrates on events: an event is an action that changes the state of the world. For 
the sake of simplicity we assume that events can be totally ordered on a single linear (not 
branching) time line , because an event is assumed to take no time (or better say after the 
start of an event, there may be no other events to start before the first one is finished). In 
this way two events e and e' are either equal or one happens before the other , written as 
e < e'. Eve nts are the central constructs because if an event has happe ned it initiates some 

properties to be true later on. Furthermore, it states that some other properties are no longer 
true. An interval of time is the interval that lies between two directly succeeding events . 
Two functions before and after are defined that map events to time intervals; intervals are 
always referenced by one of these two functions. It is important to note, that i.e. after(e) 
does not mean the whole interval from e to infinity, but. only the interval from e to the next 
following interval. Thus: 

befor e(e) = after(e') iff 
e < e' and there exists no e" such that e < e" < e' 

Kowalsi and Sergot give an axiom system which is formulat ed in horn clauses, and which thus 
seems easy to be implemented in PROLOG. The most interesting axioms will be presented 
in the following: 

First there is a metapredicate Holds, that represents the database: 
H olds(T, P) is true iff property P is true during time interval T. Two axioms state that a 
property P must have been true before an event E if E terminates P , and that P is true 
after E if E initiates P: 

(AI) Holds(before(E)' P)f-Termina t es(E, P) 
(A2) Holds (after'(E), P) f-Initiates (E, P) 

The two predicates I n itiates and Terminates constitute the interface to the user: it is 
supposed that they are implemented by the user to represent the user's database. E. g. in 
the blocks world domain a roboter arm can stack block X onto block Y if the arm is holding 
X and no other block is on Y. As a result, the arm is no longer holding X. This can be 
expressed as follows: 

Terminates(E, holding(X)) f- NOT on(Z, V), holding(X). 
Init iat es(E, on(X)) f- NOT on(Z, V), holding(X). 

Another two axioms for St art (T, E) state that event E is the start point for interval T: 

(A3) Start (after(E), E) f-
(A4) Start (befor'e(E), E ' ) f- Is-same(after(E' ), before(E)). 

where 
(A5) Is-same(after(E), before(E' )) f- NOT E < E" < E' . 
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There are two similar axioms for End(T, E) (event E is the end point of interval T): 

(A6) En d (before(E), E) ;-
(A7) E nd (after'(E), E') ;- Is-same(a.fter·(E), befo're(E' )). 

The above axioms only present a restricted subset of the original ones. However, they should 
be expressive enough to provide the main ideas of the event calculus. In the model, there is 
no need for a ingle time line: events may only be partially ordered, thus it is possible that 
two events cannot always be compared. The fu ll version provides the possibi lity to state that 
an event causes different properties to come true which hold for different times; so the world 
is seen as a whole graph whose nodes are events. An edge is labelled by the properties that 
hold during the interval established by the two time points of the events they connect. In 
contrast to the previously discussed approaches this one has the main advantage that it can 
be directly integrated into PROLOG: the above axioms can be easi ly formulated in PROLOG; 

IIl1fortunately the integration is not a total one : properties and events are not stored like 
other PROLOG predicates, but in the special database predicate Holds. 

3.4 Hrycej's Temporal Prolog 

IIrycej presents a temporal-logic extension of PROLOG that bases completely on Allen's tem
pora,1 const.raint model of time, using time intervals and the 13 relations between intervals as 
C(,IIt.ra.1 ('on('epts. The main advantages of his implementation are efficiency and integratiblity 

illt.o available PROLOG systems. This is gained by restrict ing Allen's original axioms to six 
(lxioll1s fo\' til(' predicat.e H olrl.~ ; where H old.s(P, T) means that P is true in time interval T 
(llld l/ old8(P) that P holds without temporal restriction. The six axioms are: 

ax iom 1: H()ld.~(P, S) & 8ubint en )al(T,S) ::::} Holds(P,T) 
If P holds ill interval 8, it also holds in any subinterval T of 5 

axiom 2 : j / ol(l.~ (P) ::::} (VT) H olrl8 (P, T) 
If jJ Iiolds without t.emporal limitation, it also holds in any time interval. 

axiom 3: l/old,o.;(P, T) & Hulds(Q , T) ::::} Holds(P&Q, T) 
If \)oth P alld Q hold in T , tilf'ir conjunction also holds in T. 

axiom 4: lIulds(P,T) V Holrls(Q ,T) ::::} Hulds(PVQ,T) 
If (It. least. olle of A and B holds in T, their disjunction also holds in T. 

axiom 5: l/old,o.;(P, S) ('<I. lIulrls(-,P, T) ::::} disjuin,t(S ,T) 
If /) Iiolds ill S' alld ('/luI P) holds in T, then Sand T are disjoint intervals. 

axiom 6: l/old ... (P, l f ) S.:, Holds(Q , V) 8.<. U'I71U'fl((I, V,T) ::::} 
1/ olr/.o.;( P V Q , T) 
If /) Iiolds ill {I alld Q holds ill V, then their disjunction holds in the union of U and 
V. 
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The last axiom leads to difficulti es in implementat.ion, resu lt ing in two different approaches: 
the constrainin!J an d the non-constr'ainin!J app roach . This will be explained in more detail 
later on. 

Hrycej 's implementation is fully embedded into PROLO G: he adds four (meta- )predicates 
constrain..rel, in, dur and mkdur , which the user can utilize - besides all other user
defined and PROLOG-builtin predicates. 

constrain..rel (I 1,12, S) can be invoked to declare two in tervals 11 and 12 (if they are not 
yet known). S is a li st containing some of Allen's 13 relations. T he relations between I1 
and 12 are constrained to S. Constraint propagation is employed, using S to constrain other 
intervals to each other. For example if one wants to tell Hrycej 's system that the inte rval 

morning has two subintervals 8tol0 and 10to12 , one can do this by: 

constrain..rel(morning, 8tol0), [di]) . 
constrain..rel(morning, 10to12), [di]) . 
constrain..rel (8tol0, 10to12), [m]) . 

Remember t hat (11 di 12) means 11 contains 12 , and (Il m 12) means 11 meets 12 . 

in is a predicate that is supposed to be provided by the user, where in(P, T) declares that 
P only holds during interval T. Here P can !Je a fact, but might a lso be a rule. 
Example: 

is_to_speak (X) : - at...home (X) . 
in(is_to _speak(X) : - aL'Work(X) , 'Working_time). 
in (at...home (torn) , morning) . 

This declares that everyone is either always to speak, if he is at home or he is to speak at 
work but only during working time. The last clause tells us, when torn is at home. Here 
'Working_t ime and morning are time intervals, that must be declared by constrain..rel. 
Depending on the context one may want to be less restrictive, on ly saying, that tHey should 
not be disjoint: 

constrain..rel (morning, 'Working_time, 
[o,oi,d,di,s,si,f,fi,=]) . 

dur and mkdur implement the above axioms. There are two predicates because of the difficul
ties already mentioned which arise because of axiom 6. The other axioms can be implemented 
more easi ly ; for example axiom 1 looks in PROLOG like : 

dur(P,T) :- in(P,S), subinterval(S,T). 

Axiom 2 is written as: 

dur(P,T) :- call(P). 
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Here, we present simplified versions, because the original clauses are rather technical and 
of less interest than the axiom for disjunction: suppose we want to know whether P V Q 
holds during interval I. To solve this one can search for an int.erval I p in which P is true 
and another interval IQ in which Q is true. Then one must look whether I p and IQ overlap, 
meet or contain each other, and test whether I is a subinterval of the union of Ip and IQ. 
This is exactly the way dur implements axiom 6. But this way will rarely lead to a solution, 
because it needs much information about the relationship between known intervals. 

mkdur goes another way by changing the constraint net. It also looks for I p and IQ above. 
But then it does not test, if Ip and IQ do overlap. Rathermore, it tests whether they 
can overlap: if there is no information in the net that Ip and IQ cannot overlap, then the 
constraint net is modified so that Ip and IQ are supposed to overlap. Computation proceeds 
until the final solution is found or until backtracking occurs. In the case of backtracking, 
thf' net is restored to its previous stat.e and the next choice point is tried. 

A lthough t.hf' constraining approach is more powerful than the non-constraining one it also 
comf'S wit.h two main disadvantages: Firstly the cut operator (!) can no longer be used 
in all places: if the cut is execut.ed after changing the net and if backtracking occurs after 
proc('ssing the Cllt, the net cannot be restored to its previous state, because the predicate 
that originall y changed the net is not backtracked. Secondly, in the net-changing step one 
1111IS1. exact ly try four different relations between J p and IQ to insure that the constructed 
int.erval is the maximal one: 

l. Jp oVf' r1 aps IQ 

~. IQ oVf' rlaps 1 p 

:L Ip cont.ains JQ 

tl. IQ cont.ains I p 

Tllis leads t.o a rapid comhinatorial explosion . 

3.5 Tang's TPL 

Ti1llg 's TflL is a Illodal logic f'Xt.(, IISioll t.o PROLOG tbat differs from PROLOG in two major 
WilyS: First. of a ll ill TPL t.lwrf' is not on ly one single database, but there is a whole set of 
dat ail;'ls('s D B,<", wllf' rf' (-'v('ry datahasf' rf'prf'sents a singlf' t ime point. Additionally, there 
IllIISt. ('xist. a pr('df'fined relation R: DBS X DBS', to connect the different databases. 
'I'll<' s('colld (xt.(,lIsion of TPL 1.0 PROLOG consist.s of several predefined modal logic meta
predicat es wllicit ca ll be uSf'd as goals in bodif's of user defined clauses to switch between 
tit(' difrerellt. da.tahases. II ('rf' we on ly presf'lIt t.wo of thf'm, EX and AX: 

• AX(P) slI("("('('ds if P slI("c('('ds ill (fll worlds (databasf's) t.hat follow the current one . 

• EX (p) sU(c(>cds if P sllc(('('ds ill (f'lty world that follows tIlt' current one. 
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Wo 

p(x) :- EXg(x) . g( c). 
g(x) :- AXh(x). g(b ). 
f(x) :- p(x), g(x). g(x) :- EXh(x). 
h( c). h( c). 

W2 W3 

h( c). r( a). 
r( c) . g(b ). 
p(x) :- EXg(x). h(x) :- EXr(x). 

Figure 3.1: A sample TPL program 

A sample TPL program is given in figure 3.1 

A TPL program is d irect ly represented in PROLOG as follows: every TPL atom gets an 
additional argument represent ing the TPL database it belongs to. The relation R is directly 
represented by a P ROLOG predicate called world. The TPL program of figure 3.1 will be 
written as : 

world(wO,wl) . 
world(wO,w2). 
world(w2,w1) . 
world(w2,w3). 
world(wl,w3) . 
world(w3 , w2). 

p(X,wO) EX(g(X),wO) . 
g(X,wO) : - AX(h(X),wO) . 
f(X , wO) : - p(X ,wO), g(X,wO) . 

g(c,w1) . 
g(b,wl). 
g(X,w2) : - EX(h(X),wl) . 

h(c,w2) . 
r(c,w2) . 
p(X,w2) : - EX(g(X),w2» . 

r(a,w3) . 
g(b,w3) . 
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h(X,w3) :- EX(r(X),w3). 

Now the implementation of EX and AX can be eas ily derived from t he above. For example 
EX: 

EX(P,W) world(W,Wnext), 
P = .. L, 

append(L, Wnext, Lnew) , 
Pnew = .. Lnew, 
call (Pnew) . 

II f'rt, the goals 2 to 4 in the body only serve to add Wnext as an addit ion a l argument to P. 

If we have the goal 

?- f(X,wO). 

1.1)('11 we ran illfer X=c by the following resolu t ion steps: 

f(X,wO) 
p(X,wO), g(X,wO) 
EX(g(X),wO), g(X,wO) 
g(X,wl), g(X,wO) 
g(c,wl), g(c,wO) 
g(c,wO) 
h(c,w1), h(c,w2) 
h(c,w2) 

III 111(' or ig ill a l paver, Tang defines a lso some addi t ional modal logic. operators, whose im

pl( 'IIH'Ilt. at. io ll is a bi t. more t.ricky t ha ll EX o r AX . Addi t ionally he gives a detailed semantical 

dc'snip1 iOIl o f TPL Ilsillg ElIerlli a lltomata. 

Trlllg'S rq) proarh is ( Iikf' Hrycf'j's) easy to f'l1lbcd ill any ex isting PROLOG system. The search 

SpiHT s1 rollg ly d('P(,IIcis 011 t.he s ize of t llf' world graph. Unfortunately, Tang does not provide 
('ollnd(' ('xaIllples 0 11 how he II Sf'S TPL in a practical domain; he only states that he uses 
,(,PI, 10 vnify i-11 11.ollla.1.ira.ll y some cOll cllrrellt programs which process infinite states. 

3.6 Comparison and Conclusion 

Up 1.0 1I 0W ill t.his chap t.e r we pr('!,w lI1.ed five approaches, that a ll extend PROLOG in t heir 

OWIl directioll. Now 1.I lf' (I' wstio ll a ri ses: What is the best ext.ension? Every issue has its own 

ad \'aIl1ag('s a lld disacivant.a.gf's. Th(' maill crite ri o n how to divide them is the time model 
1 hey IIS('. 1301.11 11 ryrej and Kowa lski 8.:. S('rgot. use a t ime model t hat concentrates on intervals 
of 1 illl<' , wll('("('as t.II(' t. hre(' ot lwrs Sf'f' t.ime as having punctual or pointwise character. 

AllIIollgl1 Kowalsky i1 lld IIrycej botll use illt('rvals , t.hey differ a li tt le in their central con
cepts: I [rycf'j COllc('lltrat.es 011 111P possiblf' re lations between t.he known intervals and uses 
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mostly these relations for reasoning. On the other hand in t.lle center of Kowalsky's & Ser
got's approach there are events and properties. Events start and end the validity of certain 
properties. One event can also start or end different properties , which leads to a branching 
model of time with both branching future and past, in contrast to Hrycej whose model 
only provides a single time line. The linear time model is also common to the modal logic 
approach of Abadi & Manna: in TEM PLOG one can only reason about future states and not 
about future and past as in Gabbay's issue. Additionally Gabbay does not necessarily need 
a linear model of time. 

Tang allows a more complex view of the world: here one can directly express what is true 
in different worlds and how those worlds are conne ted to each other. This leads to a model 
of branching time. In the previous two approaches one can only state what is true now or 
what is always true; other worlds can be referenced by the modal logic operators. 

In the implementations of the various concepts two groups can be distinguished: Kowal
sky & Sergot, Hrycej and Tang take PROLOG and add their own predicates, that can be 
used besides other PROLOG predicates. Thus they combine the practical advantages of ex
isting PROLOG systems with their own time concepts. The other two approaches define 
their own languages that sytacticall y look more or less like PROLOG , but have a different 
underlying resolution step, such that existing interpreters must be modified or completely 
reimplemented. Especially Gabbay gives an operational semallt ics, where it is left unclear 
how to implement a simple interpreter based on a proof search strategy. 

The different modifications to PROLOG result. in different computational complexities. 
Gabbay pays for his ability to reason about future and past wit.h a high Lranching factor dur
ing each resolution step. In contrast, in Abadi & Manna the branching factor is determined 
by the number of applicable clauses as in ordinary PROLOG . Hrycej has performance prob
lems both with constraint propagation and (in the constraining approach) with the different 
possibilities to constrain two intervals. 

But now back to our question: What is the best approach? None of them seems to figure 
out, what time really is , and it is hard to find strong reasons t.o prefer one over the Qthers in 
general. It strongly depends on the particular domain to be chosen. For natural language 
processing e. g. Allen's / Hrycej 's approach seems to be of great interest; for solving problems 
using historical databases, Abadi & Manna's TEMPLOG seems to be the better one. 

In summary each particular approach has its own advantages that make it seem superior to 
the others, but also has disadvantages w. 1'. t. its competitors. No general solution can be 
given that combines all advantages and strips off the disadvantages, because time can have 
so many facets, and it is likely that a general concept would be computationally intractable. 
Thus, the best way is to study the different issues in detail and afterwards to choose the one 
that seems to fit best for the particular problem. If none of the above models seems adequate, 
one needs to develop one's own new calculus. This observation leads to the second part of 
the paper where we present the CHRONOLOG temporal logi c programming language and the 
TRAM knowledge representation system as integrating approaches towards the handling of 
temporal knowledge. 
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Chapter 4 

An Introduction to Chronolog 

The temporal logic programming languagf' CIlRONOLOG has \wen df'veloped by Ralf Scheid
hauer, and has been descri bed in an un publ isllf'd int.ernal l'f'port (d. [Sch89]). In this ection 
we give a short description of the main ideas \whind the CIIRO OLOG system. 

CHRONOLOG is closely related to Abadi & Manna 's approach, but extends TEMPLOG in 
various directions. CHRONOLOG also includf's thf' possibility of defining multiple database" 
like Tang does and it has the ability to rf'ason About. futllrf' and past as in Gabbay's approach. 

TEMPLOG has a single built-in modal opf'rat.or 0 (NEXT) t.hat. generatf's new unique worlds 
from an existing initial world. So eVf'l'y world has it.s own llniquf'ly determined successor. 
But this might not be enough, because real world tells us that. at a certain timepoint many 
different events can happen leading to different directly succeeding future worlds . In the 
blocks world e. g. a roboter arm can stack or unst.ack cf'rtain bloch, and different successor 
states will arise according to the action previous ly performed. Thereforf', CHRONOLOG allows 
user definable modal operators each of which generates a unique new succeeding world from 
the currf'nt one. These operators are not restricted t.o I11f're const.ant symbols, but they may 
also be compound terms. Thus, it is possible to define a modal operator stack ~ith two 
variable arguments X and Y. In our example it is also necessary to state t.hat stack is not 
applicable in any state, but only when both blocks X and Yare free. This can be done by 
adding corresponding goals to every clause in t l1f' databasf' that deals with stacking. But 
here CHRONOLOG has an additional featurf' , that allows c01l.riil'ionolmodal operators. The 
following clause declares a 2-ary modal opf'rator stack, that can only be applied to blocks 
X and Y, if both are free: 

stack(X, Y)w := clew'(X)w, clem'(Y)w 

The index variable W tells CHRONOLOG, that opf'rator stack can be applied to every world. 
Instead of W we could also write a modality (= a nonempty sequence of terms; read from 
right to left): thus we could use an in itial world '(/}u and the modality 

stack(a, b) 1I.nstack(c, d) 'Wu 

to denote the world, that results from 'Wo by first unstacking block c from d and afterwards 
stacking a on b. 
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Goals in CHRONOLOG must always be indexed by a modality: 

on ( (J" h) w 1Uo f--

asks for an operation, that can be applied to world 'Wo and results in a world in which (l is 
on b 

The user can create a complex world graph using its own modal operators. CHRONOLOG 

provides additional meta predicates that allow to reason about statements that are true in 
several or all worlds in the future and the past: 

• (OfP)W mean.: P will be true in all future worlds of W (including W) 

• (OjP)w means: P will be true in some future worlds 

• (6. jP)w means: P will be true in some direct future worlds 

• ('\7 jP)w means: P will be true in all direct future worlds 

D p , Op, 6. p , '\7P are the corresponding equivalents for the past. While those modal operators 
are built-in, e. g. a user defined modal operat.or unsi.o.ck can be introduced using one of 
those built-in operators. If we want to specify that unstack should be applied at most once 
to the same blocks in a sequence of st.ack and unst(J.ck operations, this can be expressed by 
definillg a modal operator unstack with modali ty variable W: 

unstack(X, Y)w := clear'(X)w, clear(Y)w, (Dp on(X, Y))w 

In this way CHRONOLOG allows to define multiple databases like Tang does. Every clause 
gets an index that marks the world in which the clause is to be true. 

on(a, b)1UO f-

on( b, c)wo f--

bloc/.;( a.)w f-

block(h)w f-

block( c)w f--

represents that block a is on block b,block b is on c in an initial world Wo, and that a block 
is a block in every world . 

A special predicate edge is a built-in of CII RONOLOG: it ist used during reasoning to find 
out which worlds are connected to each other in the world graph. But the user can also add 
his own clauses for edge to define which worlds should be connected additionally. Suppose 
you have worlds 'WI, 'W2, .. . ,'Wu. The followi ng clauses connect them in various ways: 

edge( 'W2, 'W6) f-

edge( 'W6, ws) f-

edge( WI, Wll) f--

edge( lUg, lUlO) f-

edge( Ui8, lUg) f-

edge(w!J) H18) f--

Figure 4.1 shows a typical CHRONOLOG world graph which is generated by the user-defined 
operators stack and llnstack . Edges are drawn in this graph by a special user-defined 
predicate edge. 
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Figure 4.1: A CHRONOLOG world graph 

4.1 The Syntax 

We' (k'fil1f' t.he. Sf't. Tf"I'mE,v as t.he. set. of all tf'.T'1ns with variables taken out of set V and 
fllllCt.ioll symbols out. of 2:;. Let 2:; contain the special function symbols tr'ue, edge and edge·. 
t'f"lIl' is lIsf'd for simplicity to represent an empty body of a clause. edg e and edge· are used 
hy CII BONO LOGS built-ill modal operators For convenience we write variables starting with 
ca.pit.al kl.ters and all other symbols in lower case letters. 

All alom is a tf'rm, tllat is not a variab le. A modality is a nonempty sequence of terms. 

CII HONOLOG clallses may be either an operator declaration (indicated by the neck symbol 
:= ) or a cOlldit.iolla.! cla.use: 

H:=E 
Ht--B 

11('1'(' 11 is a goal, t.llal. is of t. 1l<' form Gw alld E is a body goa.! which may be one of: 

• t'f"lI t' 

• (E', E") 

• -,B' 

III all casf'S G is all at.om, W a modalit.y and E' , B" are bodygoals itsself; 0 is an element of 

{OJ , OJ, 'V], 6], °1"°1,, 'VI" 6 1, }· For COIIVf'IlieIlCe Wf' writ.e clauses of the form H t-- true 
as fI t--
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4.2 The Semantics 

In [SchS9], an operational semantics for CII HONOLOG and a horizontal compilation scheme 
for the transformation of CHRONOLOG programs into PROLOG programs is defined. Since 
this scheme is very similar to the one used in [Pis91 ] and in chapter 7 for the knowledge 
representation system TRAM , we refrain from dealing with it here, and refer to the respective 
section for a more detailed description. 

4.3 CHRONOLOG Examples 

4.3.1 The Factory Example 

Consider a factory where Mary, Joe and Tom work. They were hired long time ago and we 
don't know yet the exact time when they were hired. But we do remember that Mary and 
Tom worked before Tom, but not if Mary was hired before Tom. In CHRONOLOG we will 
write: 

wo'tks(tom)wo f-

wo'rks(rrwr'Y)Wl f-

wo'tks(joe)W2 f--

edge( WI, wo) f-

edge(w2, '(/)0) f--

We have the possibilities to hire new people and fire others. But we can only fire one if he 
already works, and we do not want to hire people that do already work and also not those 
that were fired some time ago or that disagree with someone who already works: 

ji're(X)w := wo'rks(X)w 
hi1-e(X)w := -,( wo',-ks(Y)w, hates(Y, X)w), -, Op( wo,,.ks(X))w 

hates(john, tom)w 
hates( mary, palll)w 
hates(j oe, jane) w 

We can now define, that someone works at our factory if he was hired now or if he already 
worked the timepoint ago and was not fired now: 

works(Xhire(X) w f--

works(X)w f-- 6 p (works(X))w, -, eq(W, ji r·e(X) . W') 

eq(X, X)w f--

Now we can ask: if we have hired George and then Jane (after timepoint wo), is there a 
future world in which Tom and Jane work in the factory, supposed that Paul has never 
worked in the meantime: 
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f-- eq(W, h'i'f' e(s'/),san) hi1'e (g em'ge) wu), 
wOT·ks(i.o'm)w l w , 
WO'/, ks (j ane) W' w , 
-, Op (WO'f' ks (paul) )WI W 

CHRONOLOG will compute t he following modality 

vV' = hire (jan e) fir e(joe) 

4.3.2 The blocks world 

Let us now look a little bit closer at the blocks world example . We have several blocks , 
SOI11<" of whi cl! li e on the table, whereas others are located on top of other blocks. We use 
six pn~di cat. es to describe the specifi c stales of our blocks world: 

mLi a hl e ( X ) 
un(X , Y) 

m eans that block X is on the table 
means that block X is on block Y 

cl t ' (J: /' ( X) 
IwMing(X) 
(J. ·I"III, t'TII' ldy 

means that there is no other block all block X 
means that til e robot arm is balding block X 
means tilat the robot arm is empty 

Now ill ('v('ry sLaj,(, WI?' call df' nnf' fOllr opf' rators: 

j . . ~/(J.d·(X , Y) can be applied in a ce rta.in world to two different blocks X and Y, if the 
robot. f' r arm is Ilolding X and the re is no other block on Y. 

~ . 'I/.".~/ad: (X, V) is t.lt e illve rs f' operat.ion to stack: it can be a pplied, if X is on Y, the 
ann is ('Ill pt.y a nd X is dear. 

:{ . Il'ld:'IIp(X) call he appli ed , if Lit(' arm is empty and block X is free . 

1\ . Jl'lIld(J'IlJ'/l(X) is t.lt(~ last. operat.or , tll a t can be appli ed, if the arm is already holding 
hlock X . 

'I'll<' 01>('1<11.01' dceland.iolls will look ill CH HONOLOG like : 

sloc/. .. (X , V)w := IwMi.ng(X )w , 
cl fa/"(Y)w , 
-' u/( X , Y) 

1/ic/'''1I1/(X)lV := (J/,nl.('lIIjilyw , 
clc(f. ·/'p "' )w 
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Now we can define several initial worlds, that represent certain states of our blocks world. 
First, in Wo there are 3 blocks a , Ii and c that all lie on the table. The robot arm in this 
example world is empty: 

a:rmemptywo -

on_table( (J. )wo -
on_tabl e( b )tUo -
on_table( c)wo --

In another world 'WI we have nearly the same situation, as II1 Wo except that block a IS 

already on block b: 

ar·me·mptYwl -

on(a,b)wl -
on_table(b)wl -
on_table( C)WI --

Now we can declare clauses that specify the effects of applying the different operators: 

a·rmemptYstack(X,Y) W -
on(X, Y)stack(X ,n W --
on(U, V)stack(X,Y)W -- on(U, V)w,·eq(U, X) 
on_table( U)stack(X,Y) W -- on_table( U)w, . eq( U, X) 

First we say that applying stack(X, Y) leads to a world where the arm is empty. The second 
clause tells us that block X is on block Y after stacking. The last two clauses are frame 
axioms specifying that nothing else changes. 

unstack(X, Y) is defined similar to stack : 

holding(X)'tnstack(X,Y) W --
on(U, V)unstack(X ,Y) W -- on(U, V)w, .eq(U, X) 
on_table(U)1Lnstack(X ,Y) w -- on_table(U)w 

pickup and putdown are defined such that pickup can only be applied to blocks that lie on 
the table, and that putdOlon places a block always onto the table . Therefore, if we want 
to put the topmost block of a tower of blocks onto anot.her tower of blocks, we first have 
to apply unstack (from the first tower) then 1J'lltdown (on the table) then pickup (from the 
table) and lastly stack (onto the second tower). Therefore, the program looks like: 

armemptYptLtdown(X) w -
on_table(X)p1Ltdown(X) w -
on_table(Y)ptLtdollln(X) W -- ordable(Y)w 
on(Y, Z)Tnttdown(X) W -- on(Y, Z)w 
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holding(X)pickup(X) w f--

on_f.able(Y)pickup(X) w f-- onjabie( Y)w , -.eq(X, Y) 
on(Y, Z)pickup(X) w f-- on(Y, Z)W, -.eq(X, Y) 

Using this progro.m we co.n use different goo.ls. For exo.mple: 

f-- (\1pon_table(X))stack(a,b) ~i ckup(a) 1LIo 

This goo.l asks (via bo.cktro.cking) for 0.11 blocks that have o.lways been on the table after 
ho.ving put a on b from world woo (Here the answer will be first X = b and after backtracking 
X = c). 

Another goa.l o.sks how to build a. tower, were a is on band b on c, starting with WI: 

f-- edg e* ('I.III ' W), on(a, b)w, on(h, c)w 

Hf're the correct o.nswer should be: 

W = 'll.nsiack(a , h) Imtdown(a) pickllp(b) stack(b, c) IJick'U,p(a) stack(a, b) 

4.4 Conclusion 

I II t.his sC'ct.ion , a. new o.pproo. h to incorporo.te time structures in PROLOG is described. The 
result.ing CII RONOLOG system provides a. set of modo.l opero.tors to reo.son within a world 
gritI'll t.ho.t. describes vo.rious sto.tes of a. world in the future o.nd the past. In addition the user 
Co.ll df'finf' llf'W (conditioned) predico.tes which tro.nsform the objects o.nd relations between 
t.hC' objC'ct.s of tlLf' world to gf'nero.te new possible worlds. Thus, CHRONOLOG combines and 
gC'llC'ro.liz(-'s ff'o.t.ures from other temporo.llogic progro.mming o.pproo.ches; as in Tang's system 

it. is possible jL\st. to opero.te on a. predefined world gro.ph or o.s in Abadi & Manna's system it 

is possiblC' t.o work with opero.tors tho.t cho.llge the world status . In the following sections we 
will dcscrilw a. t.C'mpora.l know l(-'dge syst.em bo.sed on the ideo.s of CHRONOLOG. The intended 
;-I pplica.t.ioll domo.ill for t.his is the simulo.t.ion of multio.gent environments, where planning, 
sY llc]Irolli zo.t.ioll , o.lld CO lllIl1l1lli co.t. ion t.o.sks ho.ve to be deo.lt with , strongly involving temporal 
aspcct.s. 
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Chapter 5 

The Basic Ideas of Tram 

III t.iw following sections, we describe the kn owledge representation system TRAM which 
combinf's both interval and point aspects of time by integrat ing the ideas of two of the main 
paradigms for t lw rf'presentation of time in AI: Allen's interval logic [A1l84] and the modal 
logics approach[Pri67 , AM89]. The form er approach employs in tervals and relations between 
illtervals as thE' basic entit ies, whereas the latter one uses a set of modal operators which are 
illtC'rprf'tl:d by using a, possible worlds semant. ics in order to express temporal knowledge . The 
fOlllldat.ions of om a pproach h ave been establi shed by the CHRONOLOG system described 
ill sC'ct.ion 4. CIIRONOLOG presents a temporal PROLOG based on standard modal logics. 
TRAM f'xtf' llds this concept by providing time intervals. 

Om vif'w of tin1f' is st rongly driven by the requirements resu lt ing from our research on 
1l111Itiagf'nt.-syst.f'ms (MAS). In MAS, a utonomous inte lligent agents have to fulfil their own 
loca l goals ill coo rdill at ion with their enviroument and with other agents. This requires a 
grC'rtt. (kal o f sYllchrollization, com muni cat. ion, and coordination work. Time is an essential 
CO II CC'pt for halldlill g t.ll<'sf' kinds of tasks , since agents make their plans and decision within 
t.11(' fl ow o f t.imf'. To prov ide a bettf' r idea of t his , we will start by an example from a 
Illldti -agC' lIt. sCC'llario. 

An Example 

III 1.I1is SC'ct.iO II We' Ill otivat.f' t.Jw ro lf' of timf' a lld t he way we handle it in our approach by a 
Sl ll i-di C'xampl (' from a ll1u lt.i-agf'lIt. domain . Figurp 5. 1 shows our exemplary scenario. There 
aI'(' t.wo loadill g docks , rll a nd <1'2 , two trucks 1.1 and i 2, and a railway line between loading 

s1at. io ll iJ i-l l1d /'2' T Il<' two tr ucks rf'cp ivp the order to transport goods 911,912,921, and 922 

from 1I J(' respect.iv(' loa.d illg dock to load illg st.at ion iI, to take t he t rain to 12, and to unload 
11}('r('. Bot. h tnlCks haVE' 1.0 fetch goods both from il an d from 12 , In this scenario time plays 
a role ill a t.wofold Ill aIlI lC' r : first., t.Jw two t. ru cks have to synchronize t heir loading dock 
ac1.ivit i('s, sillc(' oll ly onf' truck at a t.ime call bf' served at each loading dock. Second, they 
Il it\'(' t.o coordillo,t.e 1.ll e ir t.ravf'1 by train, sillcf' bot.h trucks shou ld tak the same t rain to 12 • 

All illt.e lli gC' lIt. pl a ll for I I alld 12 wou ld be 1101. t.o st.art at t he same load ing dock, but rather 
c.g. 11 could first. go t.o d l whil C' 1'2 could first. go 1.0 <12 , in o rde r to avoid 'wait states' . Then 
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Figure 5.l: A Loading Dock Scenario 

they could meet at II and take the train to l2 together. We suggest the use of time interval 
constraints in order to synchronize the actions of i l and i 2 . A formal solution to the example 
using the TRAM system is described in chapter 7. The complete TRAM program modelling 
the problem can be found in appendix A. 
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Chapter 6 

An Extended Modal Logic (EML) 

In this chapter, we present the extended modal logics EML. In section 6.1, we define the 
syntax of EML by extending the syntax of a standard modal logics by additional temporal 
operators, and by generalizing the notion of modal logic worlds to time instances, which are 
defined as the union of worlds and time intervals. In section 6.2 we provide a model-theoretic 
semantics of EML. Finally, in sect ion 6.3 we show how to draw inferences over time intervals. 
For reaSOllS of space, we assume that the rea,der be familiar with FOPL and modal logics. We 
presuppose notions such as term, wff, interpretation, model, satisfiability, tautology etc. (d. 
[8887] for an introduction into FOPL and [Ram88] for modal logics). 

6.1 The Syntax of EML 

T IIf" bas ic I)rimitives of the time model underlying to EML are wor·lds. Intervals are defined 
as c1oSf'd Sf'CIII<' IlceS of worlds. Starting from this we can now define time instances. 

Definition 6.1.1 Bf' W a n01H!mpty sri of 'Wor-lds. The r-e/ation :=J defines a partial order 
on r/('11/.('1/,1.<; of W (accessibility relation). We defin e the set I of intervals as: 

7'//.(, sf'!. T of I.iu/,(· l:nstrmcr:s is T : = W u I. 

NC'xt. , Wf' df'fiIlC' t.1lf' (/.(' cf.<;.<;ibili ty n '/at ion :=J+ over arbitrary elements of T III the frame 
sYSt.C'1ll F = (T , :=J+). 

Definition 6.1.2 Bf' T a non-empty sd of time instances, and be :=J+ a binary r-elation on 
r-/('I//("lIls ofT. F01' (f.1·bilnJT"!J finnf'nis t l , t2 E T , t 1 :=J+ 1.2 holds iff: 

,) II E W , 1'2 E I t with 1.'2 = (wu, ... , w n ) and 11 :=J Wu 
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In order to be able to describe both worlds and interval s, we introduce new modal operators 
such as 6, V, +, . , 0 and El . 

Definition 6.1.3 (EML) Th e extended moda.l logic language EML is defin ed by adding to 
a standard modal logic language ML th e logical s ymbols V , 6 , +, . , 0 und El. B e <I> a 
well-f01'm ed formula (wff) in ML, and i := (wo , ... , w n ) i n 7 , then <1> , 6<1> , V <I> , O<I> , D<I> , 
+ <1> , . <1> ,0<1> and El<l> are wff 's in EML . Th ey are to be read as follows : 

• 6<1> : Th ere exists an immediately s 1J.ccessing time ins tan ce, at which <I> holds. 

• 0 <1> Th ere exists a tim e insta.nce at which <I> holds . 

• + <1> Th ere exists a time interval du ring which <I> holds. 

• 0 <1> In th e ( cun'e nt) tim e interva.l i th ere erists a time instance at wh ich <I> holds . 

A na.logo'llsly, we defin e th e s ymbols V , [j, • unci El /01' un iversal quantification of time 
instances a.nd intervals, ·respectively. 

In the next sect ion, we provide a semant.i cs for EML t.e rms and formulas. 

6.2 A Model-Theoretic Semantics of EML 

We define the semanti cs of EML in terms of Kripke structures and Kripke interpretations , 
which is a quite familiar technique for modal logi c approaches. In the followin~, we write 
"<" for the accessibility relat ion =:J+ over 7 whenever it becomes clear from the context what 
is meant. 

Definition 6 .2.1 A Kripke interpretation is a tuple M = (7 , <, 1), I) , wher'e th e follow
ing holds: 

1. T is a non- empty set of time-insta.nces . W be th e set of worlds in 7. 

2. < is a (part ia0 binary r-elat ion on 7 . 

3. 1) is a non- empty se t of individuals . 

4· I is a function which maps each n - ar'y function symbol f E :F to an n- ary function 
fM on 1) and each n - ary predicat e symbol pEP in each world W E W to an n- ary 
relation p,:! on 1) , so that the following holds: 

(a) p,:! <;;;; 1)n , if p E pi and 
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(b) p~ = p~ f01' all w , w' E W , if 1) E p ' . 

Note that I defin es a standard interpretat.ion fun ction for moda.l logi cs. Since worlds are 
the basic primitives of the language, I is only defined over worlds. Interval formulas are 
interpreted by pulling them down to the worlds contained in the interval. As usual , fun ct ion 
symbols have a fix ed interpretation whereas predicate symbols are fl exibly interpreted l

. Next 
we define how terms and formulas are interpreted. As the reader will see this is quite similar 
to standard modal logi cs. 

Definition 6.2.2 B e V th e set of all individual variables, and be 1) the set of all individual 

constants. A variable a ssignment relating to a J(ripk e int erpretation M = (7, <, 1), 1) is 
(J, mapping a: V -t 1). Th e value a w (x ) of (l t erm x in a world W E 7 is defin ed as follo ws: 

1. aw (:c ) = a (x ) for x E V . 

2. a w(f(t 1 , . .. , in)) = I(f)( aw (tt} , ... , a w(t n)), other·wise . 

Here we consider only global variables2
, i . e. the value of a term does not depend on t he 

act ual world. 

Definition 6 .2.3 B e M = (7 , <, IJ, 1) an interpretation, a an assignment fun ction . M , a 
satisfy th f' fonn'll.la <1> in a tim e instan ce tu E 7 if th e following holds t ru e: 

I . <1> is a1l. atomaT' form:II.la P(t 1 , ... ,tn), and Ito(P ) (ato (tl) , . . . , a to(t n )) holds (ab
b 1'(' /J. (M , (\') F to P (t.l , . .. , t",.)) . 

2. <1> is ..., <1> I , anri (M, a ) Fto <1>1 rioes not hold. 

1- <1> is 6 <1>1 and f' E 7 r:r. is ts with tu < f.' : (M ,a) Ft l <1>1 and th ere exists no til E 7 with 

lu < f" < I' . 

,r;. <1> is 0 <1> I and (M, (\' ) Fto <1>1 or a t' E 7 f:xis ts with tu < t.' , such that (M, 0') p t l <1>1 ' 

6. <1> is . <1>1 and (M, a ) Fto <1>1 fOT' f. u E I , or an i E I exists 'With t o < i, such that 

(M , Ct ) Fi <1>1' 

1. <1> is 0 <1> I 1/.'/1,£1 t u E I , '11l1:t.h 1.0 

( J\1 , Ct ) F", <1>1 ' 
(Wo, . .. , wn ) and (J. 'til E t o exists, such that 

H. <1> is (<1>1 witli ( E {V, 0 , . , B}, and (M, a) Fto ...,t...,<I>I , where t is th e corresponding 

t/ f'1 /1J'11.t to ( of { 6, 0 , . ,0 }. 

l lf wt' want t.o a llow hot.h fix t'd and f1 t'xihl t' flln cti on symhols , t.l w dt' finit,ion of I must. be extended (cf. 
[ l3r z~!) l ) . 

" If Wt' wOllld like 1.0 consid t' r local va ri ahles as well , the ass ignn1f'nt. fun ction ex has to be modified , 
I' f'f' pf'c t.ivply. 
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The notions of semantic conser/'I enee and /,au/,%gy are defined exact ly as in classical modal 
logi cs. In the following , we will provide some examples in order to give an idea of the 
expressiveness of a formali sm for knowledge representat ion based on EML. 

Example 6.2.4 Classical modal logi cs are typically rest ricted to inferences of the type 'Does 
a world w exist in which a certain goal G holds?'. So we could ask if there exists a world in 
which the loading order of truck truck1 is empty. By using EML, more express ive inferences 
are possible: 

1. There exists a time interval In whi ch truckl goes by train and In which its loading 
order is always empty: 

• Ft + (B(gobyTrain(truckl) 1\ 10adingOrder(truckl ,[]))) 

2. There exists an interval 'l during which truck trucl.:i is di spatched at loading dock 
mmpl, and t here exists no interval following direct ly to i in which tnl.ckl stays at 
mmpl: 

• Ft + (0(atRamp(truckl, rampl)) 1\ 'V·0 (atRamp(truckl, rampl))) 

• 
6.3 Integrating Interval Logic 

In this sect ion we describe how Allen's int.ern l relations can be embedded into EML. We 
achieve this by means of a binary function Access whi cb is globally defined. Its value at 
an arbitrary time instance t is a special time value associated to t. For t E I the time 
value consists of the first and last point of the interval, for t E W it consi sts of two identi cal 
values. Intuitively, the time value is an abstract measure, which ca n be modelled e. g. by 
a real number or by an integer. Access allows to compare arbitrary worlds as regards the 
temporal relationship between these worlds , even if the accessibility relation is only partial. 
In the implementation of TRAM , a length value is assigned to each edge in the graph of 
worlds, and the time value of a world computes as the sum of the edges starting from the 
current world. Now, we formally extend the notion of interpretation by the Access function: 

Definition 6.3.1 An interp1'etation is a t11ple M' = ((7 , <, V , I) , Access) where (7, <, V , I) 
corres ponds to the interp1'etation of dejt:nition 6. 2.1 , {[nd th e fu.nction Access: V2 ---t N 2 

dejt:nes the access to a time instance. 

Now, we are able to define the thirteen Allen relations as binary predicates over the time 
values. The transformation of the relation into a representation based on instants rather 
than intervals, and the axiomatization for the set of natural numbers do not cause serious 
problems . Therefore, we desist from a more detailed description of this issue and refer to 
literature (e. g, [Ram88]). Rathermore, we provide some examples taken from our loading
dock scenario to illustrate the usefulness of EML: 

In the following examples we show how several patterns of synchronization of resources 
between agents can be represented by using EML. 
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l. Tlw first example shows how the synchronization of shared resources can be represented 
using EML. Assume that two trucks truck1 and tr'/J,ck2 have to meet at the loading
station station1 in order to take the train together. So we can ask whether there is a 
time interval in the future (starting from time t) where the trucks truckl and tr'U,ck2 
are bot.h at the station? (This is the precondition for them to use the shared resource 
train. ) 

Ft+ ( aLstation( truckl, stationl)) 
+ ( aLstation (truck2, station I) 
equals(XI ,YI ,X2,Y2) 

A Access(XI ,YI)) A 
A Access(X2,Y2)) A 

2. In many applications agents which independently pursue their own goals have access 
to common resources which may only be used exclusively. This access has to be 
synchronized. In our loading-dock example the loading ramps can be considered as 
exclusive resources, since at most one agent (truck) is allowed to stay at a ramp rampl 
at time t. So we could ask in EML, whether a world exists starting from time t in 
which both truck1 and tr'llck2 have achieved their goals and the access to the ramp 
ramp1 has been scheduled: 

Ft OJ(goaLachieved(tnlckl) A + p(aLramp(truckl, rampl) A Access(XI ,YI))) A 

OJ(goaLachieved(tn,,ck2) A + p(aLramp(truck2, rampI) A Access(X2,Y2))) A 

(after(Xl,YI,X2,Y2) V before(XI,Yl,X2,Y2)) 
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Chapter 7 

The Knowledge Representation 
System Tram 

III this section we develop a computational model of EML which is based on PROLOGWe 
pre::mme that the reader be familiar with this language and with standard logic programming 
ill general (d. [eM81 , SS8G] for PROLOG [11084] for logic programming) . After giving a more 
informal idea of how TRAM works, we will specify an operational semantics for TRAM 7.1 
a lld a compilation scheme for TRAM programs into PROLOG programs 7.2. Section 7.3 
rf'calls our loading-dock scenario presented in chapter 5 and outlines a solution to it. 

Tllp. ill1pkmcutation of modal logic propositions is coupled with therepresentation of differ
ellt worlds and of properties associated to these worlds . In TRAM we describe those worlds 
by collst.allt df'clarations wO, wI etc. together with a unary predicate 'World/i. The prop
ert.ies (valid propositions) of a world 'Wi are represented by PROLOG clauses. Propositions 
wltich arf' valid ill any world are bound to a variable world name. 

TIt~ modal logi c accessibility relation defines a partial order on the graph of worlds, i. e. it 
ddill f's which worlds are reachable (in the future or past) from a given world. We express 
t.ltis ill TRAM by defining edgf's betwf'en worlds using a predicate edge/2. Apart from con
siderillg wor lds t.hat actually f'xist., THAM allows us to compute possible worlds starting from 
til(-' currellt world. For this purpose, we define trallsit ion operators with preconditions and 
]JoslconrW.ions, which allow tra,l1sitions between worlds if their preconditions are satisfied . A 
world wh ich has bef'll computed this way is identified by the list of operators applied succes
sively begillllillg from t.he currellt world. In order to be able to decide which predicates hold 
ill comj)ut.f'd worlds , the f'freds of the appl ication of a transition operator must be defined 
by it.s post.colldit.ioll. We can define bot.h pn:mitive transit ion operators (POs) and macro 
t.rallsit ion opnat.ors (MO). MOs can bf' const ructed as sequences of POs, and they can be 
etrhit.rarily lI('st.ed . Sillce MOs defin f' sequences of worlds, representing an interval by an MO 
is a V<'ry II at. ural idea. 

Not.(', t.Jtat. ('xpalldillg wor lds by us illg opf'rators does not cause new facts to be added to the 
kllowl f'dge base . TIat.llf'rmore, sincf' the computation of a world 'Wi is decoded into the world 
Itel.ll\(, (l,S thf' path of a.pplif'd operators, thf' trut.h of formu las in Wi can be computed by the 
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name of 'lV/. 
For formulating queries, TRAM provides predicates such a,s LdiamoncUrans/2, whose first 
argument is a goal clause, and whose second argument is bound to the name of a world for 
which the query could be proved (i f such a world exists). 

At the end of this informal motivation, we sh~)Ulcl mention how propositions depending on 
specific worlds are actually handled in TRAMEach clause of a TRAM program is translated 
into a PROLOG clause by using a binary function r'eijy, which adds to each clause an 
argument representing the world the clause refers to. This will become more apparent in 
section 7.2 where we define a compilation scheme for TRAM. 

7.1 An Operational Semantics of TRAM 

In this section we present a scheme of computation for our knowledge representation lan
guage TRAM which is based on the extended modal logic EML we introduced in chapter 
6. Since we intend a modal logic representation, world indices Ware attached to goals 
in order to express that the evaluation of a program depends on the current world W. 
In TRAM a distinction is made between two kinds of program clauses: the first one de
clares transition operators modifying the WJrld and is represented by 'H := B' , the second 
one defines the usual program clauses which associate propositions to worlds. It is repre
sented 'H t- B' as we know it from PROLOG. H is a Goal Gw , B is a body goal which 
can be either {tr'ue,Gw , (B',B" ),-,B', (OB')w}. G represents an atom, W a world name, 
B',B" are body goals, and 0 stands for an arbitrary element of {6 j ,'Vj,D j ,Oj, + j, . j, 
E3,0, 6 p, 'V p, D p, Op, + p, . p}. For the sake of simplicity we write H t- as an abbreviation 
of H t- true. 

Central notions for the operational semantics we provide in the following are substitution, 
unifier, and most general unifier (m.gu) . They are defined exactly as it is the case in PRO
LOG . Since world arguments are represented by PROLOG data structures (i. e .. lists), it 
makes sense to talk about the mgu of two worlds, and this mgu (if it exists) can be computed 
by the standard PROLOG unification algorithm. Now, we define the operational semantics 
of a TRAM program. 

Definit ion 7.1.1 (Operational semant ics of TRAM) Be P a TRAM p1'Ogram, G a goal, 
CJ a substitution. G is a logical consequence of P under' CJ (P Fa G) if P U G is contradictory 
under CJ. The following cases must be consider'ell: 

1. G = true with CJis the empty sv,bstitution 

2. G=Bw with H~, t- B' E P 
and CJ' = mgu(Bw, H:..v,) 
and P F CJ'(B') under CJ 

lThe implicit representation of applications of operators estab lishes our solution of t.he IT'ame-problem 
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3. G = (B',B") , with 
a.nd 

P F B' under (J" 

P F (J"(B") unde1' v 

4. G=(-,B) ,with th er'e ex. no (J" : P F B uude1' (J" 

and (J' is the empty substitution 

5. G=(OjB)w 

6. G = (0B)w 

fO . n = ('dg('*(W, W') 

fl . (,' =r.dg(:*(W, W') 

I ~ . (,' = (:dg('(W, W') 

, with 

, with 
or 

and 
and 
and 

, with 
and 

I with 
and 

, with 
and 

, with 

, with 
and 

, with 
and 
and 
and 

1 :Y. ( ,' = jJ7'O'/l f;* (B, W , (8', B")) 
with 

01' 

14. (,' = ]1'/'0'/1(-( B , W, 071WII ) 
with 

and 
and 

P F -'(®j -,B)w uude1' (J' 

P F Bw unde1' (J' 

MOpw lI := B' E P 
W = (J"(MOpW') 
(J" = mgu(W", \IV') 
P F prove* (B, (J"(W'), (J"(B')) under (J' 

P Fedge (W, W') under (J" 

P F (J"(Bwl) 'tI.ndf'.r (J' 

P Fedge*(W, W') under' (J" 

P F (J"(Bwl) 'tmde1' (J' 

P Fedge*(W, W') under (J" 

P F (J"( BW 1 ) under (J' 

(J' = mgu(W, W') 

P F cdg f'. (vV, W") under (J" 

P F edg f'* ((J"(W"),(J"(W')) under (J' 

Opw lI := B E P 
(7' = 'mgu(W, W") 
P F (J"(B) under (J' 

W' = (7'( OpW) 

P F pr'o'/lc( B , W, B') under' (J' 

P F 711'O'/I e* (B , W, E") under (7 

dge( W , W') under' (7' 
W' = (7"(7'( OpW")) 
P F (7"((J"(Bwl)) under (J' 

o stallds f()',. an adn:/7'a7'Y f'iF:7I1.f'.nt of the set {'V j , OJ, . j, ElL ® stands for the element 
('O/"n'sjlO llf!ing to 0 of {6 j ,O j, + j, 0 }. P T'C]JT'csents till: current set of TRAM clauses, 
~V, W', ltV" , and ltVlII a1 ,(, wodd 1Ul11U:S (wo.,.{d flT'gu1n ents), G is a goal, B,B', and B" are 
body gonls . OPw and MOPw (J.1 '( ' cl(/.'I/..<;f: hmders declm'ing primitive and macro operators, 
"(.'iJI,di'/J(·ly. OJJW ( '/'('S]I. MOJlW) df'1l.Otf's conca.tf'na.tion . Intuitively, it means that the 
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world named Op W (OpMW) is accessed slarting from a wo,rld W using the oper'utor' 01'. 
The modal operators {\7 p, D p, . p, 6 1), Op, + ,,}, which allow strde'11l,ents about the past can be 
defined analogously. 

Note that 1) ... 4) correspond to PROLOG SLD resolution. The index W in case 2) merely 
expresses that the clause depends on an additional world argument. Case 5) treats the 
modal-logic rules of double negation for box operators. Cases 6) ... 9) maintain the diamond 
operators using the meta-predicates edge, edge·, pr'ove, and prove·. In cases 10) ... 14) the 
semantics of the meta-predicates edge, edge·, prove, and prove· is defined. edge(1V, W') 
spf'cifies an edge connecting two worlds Wand W' in the graph of worlds. The predicate 
pT"OlIe(G, W, W') succeeds if the goal G can be proved in a world W' starting from the 
current world W. 

7.2 A Horizontal Compilation Sche m e for TRAM Pro
grams 

III t.his sectioll we provide a formal scheme for compiling TRAM clauses into PROLOG. The 
basic idea is to trallsform each n- ary TRAM goallJ(t1, ... , tn)w into an (n+l)- ary PROLOG 
goal lJ(/.I, " " 1' 11) W), whose last argument W represents the modality, i. e. the world. The 
compilat.ioll itse lf is performed by the procedme C. The function reify defines the way a 
sillgk TRAM-goa! is transformed: 

Definition 7.2.1 The fllnclion reify maps each TRAM goall'(t 1 , ..• , tn)wl, ... ,wk to a PRO
LOG .'}Oo.llJ(/I , ... , I.,., WI • ... • Wk) as follows: 

/I r ,'(', I hr' Illudiou sy.",,"o[ • symbo!i:::('s tlu; couca/'(;ualion of wor·lrl arguments. 

Example 7.2 .2 J3(' QWI t.lle goal ou(a, b)wo and RW2 the goal oTLtable(X)puidown(X), W. 
n ify t.rallsl<l.1.('s qW I alld RW1 as follows: 

n ify( (}n(a, h)) =?on( a, b, wu), 

'I '('~h;( 01"-' a"l('( X) ]Julr/o'W'11.(x ),W =? 01L!.able( X,]Jutrlowu(X) • W). 

III t.11(' CIJIT(,Ilt. illlpl('m(,llt.atioll til<" world argUll1f'llt. is represented as a list containing the 
St.iUt. world (\,lld tI J(' seq u(,llce of olwrator app! i cation. • 
III til(' followillg W(' explaill Ilow a TRAM program is t.ranslated into a PROLOG program. 
'1'1)(' proccc\ me's (: , (" a1ld ('" act.ually d('n 11f' the horizontal com pi lation scheme for TRAM 
prograills. III (,' a dist.i1lc1.ioll is 111iHk bf't,wf'f'1I operator declarations and 'normal' program 
('101\s('s. ( :' a1ld ( .'" perform t.he t.ra1lslat.ion of the differf'llt goals. 
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Definition 7.2.3 The procedure C maps the set of TRAM cl(luses TCL to the set of horn 
clauses HCL. C : TCL --t H eL is deJind (I S follows: 

{ 

op(POp, W') l- C'[B] 
C [ c~:= op(reify(MOpwl), W) l- C"[B , W, W'] 

for cl = (POpw := B) 
for cl = (MOpw := B) 
for cl= (H l- B) C'[H]l- C'[B] 

W is a new variable, POp is a pr·imiti'IJe operator declaration, and MOp is a macro operator 
declaration. 

The first case in the above definition handles the declaration of a primitive operator. The 
corresponding body B is processed by the procedure C'. B consists of conditions that have 
to be satisfied in a world where the operator shall be applied. In the case of declarations of 
macro operators (case 2) also primitive operators can be app lied. Therefore, such a body is 
translated by a special procedure C". 

Definition 7.2.4 The auxiliar·y fu.nctions C' and C" map fach body goal B to a new body 
goal HB. C' is defined as follows: 

C'[B] := 

true 
rei1y(B) 
C' [B'], C"[B"] 
, C' [B'] 
,C'[( ® f ,B')w] 
edge(W, W'), C'[B~,1 

edge(W', W), C'[B~,] 

edge*(W, W'), C' [B~,] 
edge*(W' , W), C'[B~,] 
edge*(W, W'), C'[B~,] 

edge*(W' , W), C'[B~,] 

(C'[B~,l; 
(W = MOp. W', 
C' [B' ] 

WI ' 
edge*(W', Wd, 
edge*(Wl' Mbudy • W'))). 

fo r B = true 
101· B = Gw , G tenn 
for· B = (B', B") 
f01' B = ,B' 
f01' B = (Of B')w 
f01' B = (6 f B')w 
fo ·r B = (6 p B')w 
for· B = (OfB')W 
for B = (O)JB')w 
for B = (+ fB')W 
for B = (+ pB')w 
for B = (0B')w 
and there ex. (MOp f- Mbody) 

In the above definition, 0 stands for an arbitrary element of the set {\7 j, 0 j, • f , B}, ® 
stands for the elFment corresponrhug to 0 of {.6j, Of, + j,0}. 

If B is an atomar body goal B = Gw , the corresponding world argument is simply appended 
by means of the function reify. If the body goal has the form B = (.6 f B') w, the existence of 
exactly one edge (edge(W, W')) in t he graph of worlds directed to the future is required, and 
the corresponding goal B~, is processed in the new world. For B = (OjB')w, the existence 
of at least one edge pointing to the future is required. If B = (0B')w, W is expected to be 
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an interval. There are two possibilities to prove B~,. Firstly, B(,y, may ensue directly from 
applying a macro as a normal transformation operator, and thus follow from the current 
world. Secondly, it can follow from one of the worlds contained in the interval. 

The function Gil provides the translation of macro operators and their corresponding body 
goals. In the body of a macro declaration we make a distinction between calls to primi
tive operators, which have to be translated separately, and other conditions which can be 
processed by G' itself: 

{ 

G"[BI' W, WI], G"[B2' WI, Wb] 

G"[B, W, W b] := op(POp, W), Wb = POp . W 
G'[Bw ], Wb = W 

for B = (BI' B 2 ) 

for B = POp 
otherwise 

Finally, we will spend a few words on the actual TRAM run-time system. It solely consists 
of two predicates edge and edge*: 

• edge*(W, W) f-

edge*(W, W') f- edge(W, W"), edge*(W", W') 

• edge( W, Ope W) f- op( Op, W) 

Intuitively, edge(W, W') finds an edge from one world W to a next possible world W' , if such 
an edge exists. This depends on whether there is an operator declaration whose operator 
Op can be applied. Then the operator and the world argument are concatenated to the new 
world argument Ope W. The first case of the specification of edge* is necessary because of 
the reflexivity of the accessibility relation, i. e. since the current world is always a possible 
world. 

7 .3 Recalling the Loading Dock Scenario 

This section contains excerpts of a TRAM program representing the loading-dock scenario 
basically defined in section 5. Figure 7.1 contains some parts of the corresponding TRAM 

database. Some definitions of primitive and macro operators with pre- and postconditions 
are shown. The primitive operator move ToRamp (Agent, Ramp) can be applied if the Agent 
has to load or to unload something at the ramp, if it has not just moved back from the ramp 
in the previous world (this is to avoid trivial circularities), and if it has already entered the 
loading-dock area, but is not yet at the ramp. After prefroming move to ramp, in the new 
world, it is true that the Agent is at the ramp and can now perform its loading or unloading 
job . 

. A crucial concept is that of macro operators, which can be defined as compositions of simple 
operators . Thus, macro operator getGoods is defined by first moving to the ramp, then 
loading, and finally moving back from the ramp. Thus, the macro operator defines an interval 
consisting of a starting world, two intermediate worlds defined by applying moveToRamp 
to the starting world and by applying load to this world, respectively, and of a final world 
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% ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
% Loading Dock Scenario : Source Code 
% ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Y. ••••••••••• Primitive Operators movetoRamp , load, moveBack ••••••••••••••••• 

%--------------------------------------------------------------------------
% Pr ec onditions for a tru ck moving to a loading dock 

prim_op e moveToRamp ( Agent, LoadingDock » : 
i s Agent ( Agent) , isRamp ( LoadingDock ) , 
not done e moveBack ( Agent , LoadingDock », 
ent e red ( Agent , LoadingDock ) , not atRamp ( _ , LoadingDock), 
hasToLoadAtRamp( Agen t, LoadingDock ) . 

%--------------------------------------------------------------------------
% Pre c onditions for a truck being loaded 

pr i m_op e load ( Agent , LoadingDo c k » : -
i s Agent ( Agent ) , isRamp ( LoadingDoc k ), 
atRamp ( Agent , LoadingDo ck ) , hasToLoadAtRamp ( Agent, LoadingDock ) . 

%--------------------------------------------------------------------------
% Preconditions for a tru ck mov i ng avay from a loading-do ck 

p r i m_op (mov eBac k ( Agent , Lo adingDock» : 
is Agent ( Agent ), i s Ramp ( Load ingDock ), 
not don e( moveToRamp ( Agent, LoadingDo ck», atRamp ( Agent , LoadingDock ) . 

% ••••••••••••••••••••••••••••• Mac ro ope r a tors •••••••••••••••••••••••••••••• 

ma c ro _op ( ge tGoods ( Agent , LoadingDo ck » : 
move ToRamp( Agent , LoadingDoc k), 
l oad ( Agent , Load i ngDoc k ) , 
mov e Back ( Agent , Load i ngDo ck ). 

% ••• Post cond i tion s of the operators movetoRamp, load , moveBac k , getGoods ••• 

mov eToRamp ( Agent , Load i ngDo c k ) . done( mov eToRamp ( Agent, LoadingDock» . 
nlOv eToRamp ( Agent , Load i ngDo c k ) . atRamp ( Agent , LoadingDo ck ). 
move ToRamp ( Agent , Lo adingDo c k ) . loadingOrd er( A, 0 ) : -

10adingOrder( A, 0 ) . 

l oad ( Agent , LoadingDo c k ) . atRamp ( Agent , LoadingDo ck ) . 
l oad ( Agent , Load i ngDo c k ) . 1oadingOrder ( Agent, RewOrder ) : 

l oadingOrder ( Agent , OldOrd e r ), 
{d elet e( OldOrd e r , ( LoadingDock , Good ) , Re wOrde r ) } . 

mov e Ba ck ( Agent , LoadingDock ) . i s Driving ( Agent ) . 
mov e Back ( Agent , LoadingDo ck ) .done ( moveBack ( Agent , LoadingDo c k» . 
move Back ( Agent , LoadingDo ck ) . 1oadingOrder ( A, 0 ) : -

load i ngOrder ( A, 0 ) . 

ge tGoods ( Agent , LoadingDo ck ) . isDriving ( Agent) . 
ge t Goods ( Agent , LoadingDo ck ) .1oad i ngOrder ( Agent , l e wOrd e r ) : 

loadingOrder ( Agent, OldOrd e r ), 
{d e lete ( OldOrd e r , ( Load i ngDo c k , Good ) , RewOrd e r ) } . %%% . .. 

: - p rolog . 
th isWorld (W, W). 

Figurf' 7. 1: A T RAM dat.abasf' for t he Loading Dock Scenario 
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after applying the macro. By mapping time values (durations) to the single actions, we can 
formulate how much time has passed by going from the start world to the end world of the 
interval. 

In figure 7.2, a possible start world for the loading dock scenario is described. In this start 
world, both trucks truckl and truck2 are driving and have orders to accomplish. Moreover, 
there are some propositions true in any world (expressed by the variable world name Every
World. E. g. both trucks are agents, for both trucks station2 is the target stat ion, and the 
only way to reach station2 from stat ionl is by taking t he train. By the way, it seems the 
only way to reach station2 at all. 

x ••••••••••••••••••••••••••• WORLD PREDICATES ... • •••••••••••••••••••••••• 

: - vorld( startWorld ) . 
isDriving( truckl) . 
loadingOrder( truckl , [( loadingdockl, gll ) ,( loadingdock2, g 21 ) ]) . 
isDriving( truck2) . 
loadingOrder( truck2 , [( loadingdockl, g12 ) ,( loadingdock2 , g22 ) ] ) . 

: - vorld( EveryWorld ) . 
isAgent( truckl ). 
hasToGoByTrain( truck1, stationl, station2 ). 
isTargetStation( truckl , station2) . 

isAgent( truck2 ). 
hasToGoByTrain( truck2, stationl, station2 ) . 
isTargetStation( truck2, station2) . 

isRamp( loadingdockl ) . 
isRamp( loadingdock2 ) . 
isTrainRamp( stationl ). 
isTrainRamp( station2 ) . 

hasToLoadatRamp( Agent , LoadingDock ) 
isAgent ( Agent), isRamp( LoadingDock) , loadingOrder( Agent , List) , 
{member( (LoadingDock,Good) , List )}. XXX This goal invokes original PROLOG 

Figure 7.2: A TRAM Starting World 

Finally, in figure 7.3, we provide a query to the TRAM system delivering a world in which a 
task schedule has been achieved where 'wait states' of trucks at ramps are avoided and the 
two trucks finally meet at the station to board the train. Note that the variables Resl and 
Res2 incorporate the 'plans' for truckl and truck2, respectively, i. e . the sequence of act ions 
which transmit them into a world in which their goals are fulfilled. A li st ing of the complete 
solution to the problem can be found in Appendix A. 
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% TRA" query ensuring a scheduling of the tvo trucks. The predicates 
% f_diamond_trans and p_full_diamond_trans correspond to the E"L operators 
% defined previously . 

?- f_diamond_trans( orderDelete(truckl), Resl startl/orld), 
f_diamond_trans( orderDelete(truck2), Res2 startl/orld) , 
note p_full_diamond_trans( 

(thisl/orld( Cl ), { Cl =[getGoods(truckl,RampI,_) 1_] , 
p_full_diamond_trans( (thisl/orld( C2 ), 

) . 

{ C2=[getGoods(truck2,RampI,_) 1_] } ) ,_,Res2), 
Cl equal C2} ),_,Resl) 

%................... Answer Variable Bindings •••••••••••••••••••••••• 

Resl = 
unload(truckl) .goByTrain(truckl,rampT2, [useTrain(truck1 ,rampTl,rampT2) ,changeToTrain(truckl , ram pT1)]) 

.getGoods(truckl,rampl, [moveBack(truck1 ,ramp1) ,load(truckl,ramp1) ,moveToRamp(tru c~l,ramp1)]) . 

driveTo(truckl,ramp1) 
. getGoods(truck1,ramp2, [moveBack(truckl ,ramp2) , load(truckl,ramp2) ,moveToRamp(tru ckl,ramp2)]). 
driveTo(truckl,ramp2) . startl/orld, 

Res2 = 
unload(truck2) .goByTrain(truck2,rampT2, [useTrain(truck2,rampTl,rampT2),changeToTrain(truck2,rampTl)]) 

. getGoods(truck2 , ramp2, [moveBack(truck2,ramp2) ,load(truck2,ramp2) ,moveToRamp(tru ck2,ramp2)]) . 
driveTo(truck2,ramp2) 
. getGoods(truck2 , rampl, [moveBack(truck2,rampl) , load(truck2 , rampl) ,moveToRamp(tr uck2,rampl)]). 
driveTo(truck2,rampl) . startl/orld, 

Cl = _161, RampI = _205 , C2 = _258 

Figu\"f~ 7.:3: A Query to the TRAM System 
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Chapter 8 

Conclusion and Outlook 

Conclusion 

111 this paper WI? have tri ed to provide an overview on some current existing approaches on the 

l' ~ prf'scJJtation of temporal knowledge . After presenting some important work on this subject, 
w~ described t.lle CHRONOLOG temporal programming language and the TRAM system for 
tll ~ reprl?sentatioll of temporal knowledge 'based on CHRONOLOG. TRAM integrates two 
dif("(' r(,lIt conc~pts of time: one based on modal logi cs and another one related to intervals 
of t.ime. Wf' have shown how intervals can be represented as connected sequences of worlds 
ill til(' g raph of possible worlds. We have provided a formal treatment of this approach by 
illt.egra t.illg a sl?lllalltics of inte rval s into a standard modal temporal logics, and we have given 
;'111 opnat.iollal s(, lIlantics for our system. Moreover, we have shown how the system can be 
illlplf'Il1f'IIt.f'd 011 top of a PROLOG syst.em by defining a horizontal compilation scheme. 
WI' hav(' df'll1ollstrat.l?d the usp.fulll l?ss of our system by giving an example which involves 
sY llchrolli zat.i oll a lld coordination ill a multi-age nt scenario. 

Outlook 

Frolll om ClllT('IIt. work quil f' a ff' w JJ f'W dirf'c1. ives have arisen wlticil will determine our future 
wor k ill t.ell1poral logics. First, t.11(" combinatorial explosion caused by the operators which 
nil I he IIs('d 1.0 ('xpand lIew worlds is a serioll s problem which appears in m any areas in 
!\ I. It. will force liS t.o find a nd to a pply illt f' lligellt mf't hods of rest ri ct ing the search space. 
The dC'1.('cti o ll o f cyclf's, tllf' USf' of goal-driven search techniques, and the declaration of 
colIst.raillt,s hy t.11(, lISN arf' possiblf' steps in this dirf'ct ion. Second, due to our work in the 
field o f Illltlt.i -ag<' Ii1, syst.f'IllS ((" I". [BGSS, GH89 , DM90 , DM91] for an overview), we will have 

to colldllct. fmt.ll<'r ('xalllillat.io llS on tllf' ro lf' t.ime pl ays with res pf'ct to multi -agent knowledge 
r('pl'<'s<'Ii1,at.ion , dist.rihut.f'd control a nd pl a nning , as well as t.he coordination of the actions 

o f dirr< ' l'< ' ll1. agellts. Th(' small f'xampl f' Wf' 1)J'f'Se n1.ed in sect ion 5 g ives an idea of some of the 
possihilit.ies ("o ll1.aillf'd ill t.his fi f' ld. Aftf'1' all, unci f' rst. a nciing the mystery of time continues 
1.0 h(' O Il<' o f 1.he wry fa,scillat.ing cll a ll f' lIgf's for Ilum a n research . 
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Appendix A 

The TRAM Solution for the Loading 
Dock Example 

%========================================================================= 
% 
% A loading dock scenario 
% 
%========================================================================= 

%****************************************** 
%************ Prim_ops .. . **************** 
%****************************************** 

% An agent can DRIVE TO a LoadingPlatform, if 
% it has to load something there 
% it is driving 
% and it did not corne from this LoadingPlatform in the world before 

prim_ope driveTo( Agent, LoadingPlatform) ) : 
isAgent( Agent), 
isRarnp( LoadingPlatform ), 
isDriving( Agent ), 
not donee driveTo( Agent, LoadingPlatform)), 
hasToLoadAtRarnp( Agent, LoadingPlatform). 

%--------------------------------------------------------------------------

% An agent can only be UNLOADED, if 
% it stays at this LoadingPlatform 
% this LoadingPlatform is its target LoadingPlatform 
% it has nothing to load anywhere else. 

prim_ope unload(Agent)) :-
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isAgent( Agent), 
isTargetRamp( Agent, LoadingPlatform ), 
atRamp( Agent, LoadingPlatform ). 

%--------------------------------------------------------------------------
% It can only become LOADED, if 
% it stays at this LoadingPlatform 
% it still has to load something there 

prim_op( load( Agent, LoadingPlatform )) 

isAgent( Agent), 
isRamp ( LoadingPlatform' ) , 
atRamp( Agent, LoadingPlatform ), 
hasToLoadAtRamp( Agent, LoadingPlatform ). 

%--------------------------------------------------------------------------

% It can only MOVE TO THE LoadingPlatform, if 
% it has entered the loading dock, 
% there is no other agent staying at the LoadingPlatform, 
% it has the order to load some goods at this LoadingPlatform 
% it did not move back from the Platform the world before 

prim_ope moveToRamp( Agent, LoadingPlatform»:
isAgent( Agent ), 
isRamp( LoadingPlatform), 
not donee moveBack( Agent, LoadingPlatform», 
entered( Agent, LoadingPlatform), 
not atRamp( _, LoadingPlatform), 
hasToLoadAtRamp( Agent, LoadingPlatform). 

1.--------------------------------------------------------------------------

I. It can only MOVE AWAY FROM THE LoadingPlatform, if 
I. it stays there now 

prim_op(moveBack( Agent, LoadingPlatform» : 
isAgent( Agent ), 
isRamp( LoadingPlatform), 
not done(moveToRamp( Agent, LoadingPlatform», 
atRamp( Agent, LoadingPlatform ) . 

1.--------------------------------------------------------------------------

I. An agent has to CHANGE to TRamp, if 
I. it is already driving 
I. its order is to go by train from this TRamp 



'l. its 10adingOrder is empty 

prim_ope changeToTrain( Agent, TRamp) ):
isAgent( Agent), 
isTrainRamp( TRamp ), 
isDriving( Agent ), 
10adingOrder( Agent, []), 
hasToGoByTrain( Agent, Tramp, ToTRamp) . 

'l.-------- ------------------------------------------------------------------

'l. An agent can only USE THE TRAIN, if 
'l. it has to use it 
'l. it sits in a train 

prim_ope useTrain( Agent, FromTRamp, ToTRamp )):
isAgent( Agent), 
isTrainRamp( FromTRamp ), 
isTrainRamp( ToTRamp ), 
sitInTrain( Agent, FromTRamp ), 
hasToGoByTrain( Agent, FromTRamp, ToTRamp). 

'l.--------------------------------------------------------------------------

'l. It can only wait, if it stays in the loading dock; not at the ramp!!! 

prim_ope waite Agent )):-
isAgent( Agent ), not atRamp( Agent,Goods), not done(wait(Agent)). 

'l.****************************************** 
'l.************ Macro_ops ... *************** 
'l.****************************************** 

macro_op( getGoods( Agent, LoadingPlatform )) 
moveToRamp( Agent, LoadingPlatform), 
load( Agent, LoadingPlatform), 
moveBack( Agent, LoadingPlatform ) . 

macro_op( goByTrain( Agent, ToTRamp )) 
changeToTrain( Agent, FromTRamp), 
useTrain( Agent, FromTRamp, ToTRamp ) . 

'l.****************************************** 
'l.********* WORLD PREDICATES .. . *********** 
'l.****************************************** 



: - world( startWorld ). 
isDriving( truckl). 
loadingOrder( truckl,[( LoadingPlatforml, gll ),( LoadingPlatform2, g21 ) ]) . 

: - world( startWorldTruck2 ). 
isDriving( truck2) . 
loadingOrder( truck2,[( LoadingPlatform1, g12 ),( LoadingPlatform2, g22) ]). 

: - world( EveryWorld ). 
isAgent( truck1 ) . 
hasToGoByTrain( truck1, rarnpTl, rarnpT2 ) . 
isTargetRarnp( truckl, rarnpT2). 

isAgent( truck2 ) . 
hasToGoByTrain( truck2, rarnpTl, rarnpT2 ). 
isTargetRarnp( truck2, rarnpT2). 

isRarnp( LoadingPlatforml ). 
isRarnpC LoadingPlatform2 ). 
isTrainRarnp( rarnpTl ) . 
isTrainRarnp( rarnpT2 ) . 

hasToLoadAtRarnp( Agent, LoadingPlatform 
isAgentC Agent), 
isRarnp( LoadingPlatform), 
loadingOrder( Agent, List ), 
{member ( (LoadingPlatform,Good), List )} . 'l.'l.'l. This goal invokes original PROLOG 

driveToC Agent, LoadingPlatform ) . entered( Agent, LoadingPlatform ). 
driveToC Agent, LoadingPlatform ) . done( driveTo( Agent, LoadingPlatform » . 
driveToC Agent, LoadingPlatform ) . loadingOrder( A, 0 ):-

loadingOrder( A, 0 ). 

moveToRarnp( Agent, LoadingPlatform) . done(moveToRarnp( Agent, LoadingPlatform» . 
moveToRarnp( Agent, LoadingPlatform) . atRarnp( Agent, LoadingPlatform ) . 
moveToRarnp( Agent, LoadingPlatform) . loadingOrder( A, 0 ):-

loadingOrder( A, 0 ) . 

load( Agent, LoadingPlatform ).atRarnp( Agent, LoadingPlatform ). 
load( Agent, LoadingPlatform ).loadingOrder( Agent, NewOrder ):

loadingOrder( Agent, OldOrder), 
{delete( OldOrder, (LoadingPlatform,Good) , NewOrder)}. 'l.'l.'l. . . . 
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rnoveBack( Agent, LoadingPlatforrn) . isDriving( Agent ) . 
rnoveBack( Agent, LoadingPlatforrn) . done( rnoveBack( Agent, LoadingPlatforrn)) . 
rnoveBack( Agent, LoadingPlatforrn) . loadingOrder( A, 0 ) :-

loadingOrder( A, 0 ). 

unload(Agent).orderDelete( Agent ). 

changeToTrain( Agent, TRamp).sitlnTrain( Agent , TRamp) . 
changeToTrain( Agent, TRamp) . loadingOrder( A, 0 ) : 

loadingOrder( A, 0 ) . 

useTrain( Agent, FrornTRamp, ToTRamp ) . atRamp( Agent, ToTRamp) . 
useTrain( Agent, FrornTRamp, ToTRamp ) . loadingOrder( A, 0 ) :

loadingOrder( A, 0 ). 

goByTrain( Agent, ToTRamp ) . atRamp( Agent, ToTRamp). 
goByTrain( Agent, ToTRamp ) . loadingOrder( A, 0 ) : 

loadingOrder( A, 0 ). 

getGoods( Agent, LoadingPlatforrn).isDriving( Agent ) . 
getGoods( Agent, LoadingPlatforrn) . loadingOrder( Agent, NewOrder ) : 

loadingOrder( Agent , OldOrder), 
{delete( OldOrder, (LoadingPlatforrn , Good), NewOrder)} . 1.1.1. ... 

: - prolog. 
thisWorld(W,W). 

cconsult(loadingDock) . 
ccornpile(loadingDock). 

switch_to_world( startWorld ). 
switch_to_world( startWorldTruck2 ) . 

apply( rnoveToRamp( Agent,X)) . 
apply( load( Agent , Ramp) ) . 
apply( unload( Agent, Ramp) ). 
apply( rnoveBack( Agent,Y) ) . 
apply( driveTo( Agent, rampl ) ) . 
apply( driveTo( Agent, ramp2 )) . 
apply( changeToTrain( Agent, TRamp)). 
apply( useTrain( Agent , FrornRamp,ToRamp)). 
apply( getGoods( Agent, Ramp,_ )). 
apply( goByTrain( Agent, ToTRamp,_ )) . 

now( entered( Agent, Ramp) ) . 
now( atRamp( Agent, Ramp) ) . 
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now( isDriving(Agent». 
now( 10adingOrder( Agent, Order) ) . 
now( hasToGoByTrain( Agent, Start, Goal) ). 
now( isTargetRamp( Agent, Ramp ». 
now( hasToLoadAtRamp( Agent, Ramp ». 
now( orderDelete(Agent) ) . 

f_diamond_trans( orderDelete(Agent) , W , startWorld) . 

'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l. Compound goals 'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l. 

Yo======================================================================== 

Query One: 
--------------------------

Is there a World (Resi) in the future of (startWorld) in which 
"orderDelete( trucki )" holds true and 

is there a world (Res2) in the future of (startWorldTruck2) in which 
"orderDelete( truck2 )" holds true 

and is there an interval (Wi) in the past of the world (Resi), which has been 
created using "goByTrain( . . )", 

and is there an interval (W2) in the past of world (Res2), which has been 
created using "goByTrain( .. )" 

such that the intervals Wi and W2 are equal . 

f_diamond_trans( orderDelete(trucki), Resi , startWorld), 
f_diamond_trans( orderDelete(truck2), Res2 , startWorldTruck2), 
p_full_diamond_trans( thisWorld( Wi ) ,_, Resi), 

Wi = [goByTrain( trucki, rampT2, _ ) I _], 
p_full_diamond_trans( thisWorld( W2 ) ,_, Res2), 

W2 = [goByTrain( truck2, rampT2, _ ) I _], 
W1 equal W2 . 

'l.======================================================================== 

Query Two 
============= 

'l. For no ramp (Ramp) there exist intervals (World_2i) and (World_22) in the past 
'l. . of (Resi) and (Res2), which have been created by "getGoods" and between which 
'l. the relations "" and "" hold . The predicates f_diamond_trans and p_full_diamond_tran: 
'l. correspond to the EML operators defined previously . 

f_diamond_trans( orderDelete(trucki), Resi , startWorld), 
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f_diamond_trans( orderDelete(truck2), Res2 , startWorldTruck2), 
note p_full_diamond_trans( 

(thisWorld( Cl ) , 
{ Cl =[getGoods(truckl,RampI,_)I_], 

p_full_diamond_trans( (thisWorld( C2 ), 
{ C2=[getGoods(truck2,RampI,_) 1_] } ),_,Res2), 

Cl equal C2 
}),_,Resl) 

) . 

Result of the second query: 
============================ 

** (2764) 0 Call: 
getGoods(truckl,rampl, 

[moveBack(truckl,rampl),load(truckl,rampl),moveToRamp(truckl,rampl)]) 
. driveTo(truckl,rampl) 
.getGoods(truckl,ramp2, 

[moveBack(truckl,ramp2),load(truckl,ramp2),moveToRamp(truckl,ramp2)]) 
.driveTo(truckl,ramp2) 
. startWorld 

equal 
getGoods(truck2,rampl, 

[moveBack(truck2,rampl),load(truck?,rampl),moveToRamp(truck2,rampl)]) 
. driveTo(truck2,rampl) 
.getGoods(truck2,ramp2 , 

[moveBack(truck2,ramp2) , load(truck2,ramp2),moveToRamp(truck2,ramp2)]) 
. driveTo(truck2,ramp2) 
. startWorldTruck2 
** (2940) 2 Call: 
** ( 2940) 2 Exit : 

? I 

relation(6,6,8,8,equal) ? I 
relation(6,6,8,8,equal) ? 

======= First successful search, after which the world (Res2) is rejected. 

** (3063) 0 Call: 
getGoods(truckl,ramp l , 

[moveBack(truckl , rampl), l oad(truckl,rampl),moveToRamp(truckl,rampl)]) 
. dr iveTo(truckl , rampl ) 
.getGoods(truckl,ramp2, 

[moveBack(truckl,ramp2), l oad(truckl,ramp2),moveToRamp(truckl,ramp2)]) 
. driveTo(truckl,ramp2 ) 
. startWorld 

equal 
getGoods(truck2,ramp l , 

[moveBack(truck2,rampl),load(truck2,rampl),moveToRamp(truck2,rampl)]) 
.driveTo(truck2 , rampl ) 
.startWorldTruck2 ? I 
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** (3193) 2 Call : relation(6,2,8,4,equal) ? I 
** (3193) 2 Fail: relation(6,2,8,4,equal) ? I 

** (3285) 0 Call: 
getGoods(truck1,ramp2, 

[moveBack(truck1,ramp2),load(truck1,ramp2),moveToRamp(truck1,ramp2)]) 
.driveTo(truck1,ramp2) 
. startWorld 

equal 
getGoods(truck2,ramp2, 

[moveBack(truck2,ramp2),load(truck2,ramp2),moveToRamp(truck2,ramp2)]) 
. driveTo(truck2,ramp2) 
.getGoods(truck2,ramp1, 

[moveBack(truck2,ramp1),load(truck2,ramp1),moveToRamp(truck2,ramp1)]) 
. driveTo(truck2,ramp1) 
. startWorldTruck2 ? I 
** (3415) 2 Call: relation(2,6,4,8,equal) ? I 
** (3415) 2 Fail: relation(2,6,4,8,equal) ? I 

======== No contradiction could be found, so the resulting worlds 
======== are printed out . . . 

Res1 = 

unload(truck1) 
.goByTrain(truck1,rampT2, 

[useTrain(truck1,rampT1,rampT2),changeToTrain(truck1,rampT1)]) 
.getGoods(truck1,ramp1, 

[moveBack(truck1,ramp1),load(truck1,ramp1),moveToRamp(truck1 , ramp1)]) 
.driveTo(truck1,ramp1) 
.getGoods(truck1,ramp2, 

[moveBack(truck1,ramp2),load(truck1,ramp2),moveToRamp(truck1,ramp2)]) 
.driveTo(truck1,ramp2) 
. startWorld , 

Res2 = 

unload(truck2) 
.goByTrain(truck2,rampT2, 

[useTrain(truck2,rampT1,rampT2),changeToTrain(truck2,rampT1)]) 
.getGoods(truck2,ramp2, 

[moveBack(truck2,ramp2),load(truck2,ramp2),moveToRamp(truck2,ramp2)]) 
.driveTo(truck2,ramp2) 
.getGoods(truck2,rampl, 

[moveBack(truck2,ramp1),10ad(truck2 , ramp1),moveToRamp(truck2,rampl)]) 
. driveTo(truck2,ramp1) 
. startWorldTruck2 , 
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C1 = _161, 
RampI = _205, 
C2 = _258 
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