
Deutsches
Forschungszentrum
fur Kunstl iche
Intelligenz GmbH

Technical
Memo
TM-92-04

On the Representation of Temporal Knowledge

Jurgen Muller, J6rg Muller,
Markus Pischel, Ralf Scheidhauer

May 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautcrn, FRG
Tel. : (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49 6HI) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz , DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz , Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies , or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently , there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

On the Representation of Temporal Knowledge

Jurgen Muller, Jorg Muller, Markus Pischel, Ralf Scheidhauer

DFKI-TM-9'2-04

This work has been supported by a grant from The Federal Ministry for Research and
Technology (FKZ ITW-9104).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permiss ion of Deutsches
Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern , Federal Republic of Germany; an acknowledgement
of the authors and individual contributors to the work ; all appl icable portions of this copyright notice . Copying,
reproducing, or republishing for any other purpose shall require a licence with payment of fee to Deutsches
Forschungszentrum fUr Kunstliche Intelligenz.

On the Representation of Temporal Knowledge

Jorg Miiller, Jiirgen Miiller, Markus Pischel, Ralf Scheiclhauel'
Gennan Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-6GOO Saarhriicken 11

May 26 , 1992

Abstract

T 11 (, grow ing interest in an adequate modelling of time in Artificial Intelligence has given
rise to 1.11(' research discipline of Temporal Reasoning (TR). Due to different views, different
approacll es towards TR such as PL1, modal logics or Allen's interval logic have been investi
ga1.('d. It was realized at an early stage that each of these approaches has some strong points
wll('rc~ as it. suffprs from certain drawbacks. Thus recently, a number of research activities
Il ave ('nI('rgf'd aiming at a combinat.ion of the classical paradigms for representing time.

III 1.lte first part of t hi s paper, we present an overview of the most important approaches
1.0 1.h(' illtegration of t.emporal knowledge into logi c programming. In the second part, we
pn's(, Ii1. tile CII HONOLOG temporal logi c programming language which has been developed
1.0 ("ove r 1.ltp quinLPssence of the approaches presented before. The third part of the paper
d('scrib('s TnAM, whi h is an extension of CHRONOLOG to a tempora.l knowledge represen
t il,1.iOIl syst.(, IlJ. Us illg THAM it is possible to represent knowledge depending on time and
t () J('<lSOII <I.hollt. t.ltis kll ow ledge. TRAM has been conceptually based on a combination of
111O<i;-t.! logics wit.l l Alkll's illt.ervallogic. We present the Extended Modal Logics (EML) which
cst (I.bli slws til(' t.1t('orf't.ical framework for TRAM . We define an operational semantics and a
IIOI'i ::ollf(f/ C01I17Ji/(f f iOll 8('11,(,111,(' for TRAM .

Contents

I Temporal Logic 4

1 Introduction 5

1.1 Time - Reaching out for a Mystery 6

1.2 Synopsis of the Paper. 7

2 Representing Temporal Knowledge 8

2.1 FOPL and Time 8

2.2 Allen's Interval Logic 8

2.3 The Modal Logi cs Approach 10
2.4 Evaluation and Con lusion . 12

3 Temporal Logic Programming Languages 13

3.1 A badi and Manna's TEMPLOG 13

3.2 Dov Gabbay . 15

3.3 Kowalski's and Sergots's Calculus of Events 18

3.4 Hrycej 's Temporal Prolog 19

3.5 Tang's TPL 21

3.6 Comparison and Conclusion 23

II CHRONOLOG and TRAM 26

4 An Introduction to CHRONOLOG 27

4.1 The Syntax 29

4.2 The Semantics 30

4.3 CHRONOLOG Examples. 30

4.3.1 The Factory Example. 30

4.3 .2 The blocks world 31

4.4 Conclusion 33

1

5 The Basic Ideas of THAM

6 An Extended Modal Logic (EML)

6.1 T he SYlItax of EML

6.2 A Mo(jpl -Theordic Semantics of EML .

6.3 Integrat ing Interval Logic

7 The Knowledge Representation System TRAM

7.1 An Operational Semantics of TRAM

7.2 A Horizontal Compilat ion Scheme for TRAM Programs

7.3 Recalling the Loading Dock Scenario

8 Conclusion and Outlook

A The TRAM Solution for the Loading Dock Example

Bibliography

34

36

36

:37

39

41

42

44

46

50

51

59

List of Figures

:3.1 A sam pIt' TP L program . . .

4.1 A CHRONOLOG world graph

:).1 A Loading Dock Scenario ..

7.1 A TRAM dat.abase ro[' t he Loading Dock Sct'nario

7.'2 A THAM Start.illg World ...

I.:{ A Query 1,0 t.!w TRAM System

;)

22

29

35

47

48

49

Part I

Temporal Logic

4

Chapter 1

Introduction

Tilllf' plays an important role in many real-life problems, and reasoning about time often
seems ilidi spE'nsable . Thus, researchers in Artificial Intelligence are faced with the need
of finding acceptable repretientat ions of time and temporal knowledge. However, it is very
diffintl1. 1.0 ex prf'SS what we act ually mean when talking about time, and what the basic
, 11 a. ra,t.(' ri st ics of t im E' are . Trying to formali ze temporal aspectti and fitting them into a
g(, ll (' ra l fram ework appears to be even harder. .Moreover, time can have many different faces
<l1Ie! aspects of t.opology, wh ich may depend on the different points of view: time can be
regi'l ('(led as cou t iUUOU$ or discrete, as intervals or points, as lin ear, branching, or parallel.
Nevcrt.h('l('ss, 1.11<' probl f'ms relat.ed to time do not free us from having to cope with temporal
<ts p('c1 s ill Il1<Lll y fields covered by AI , suc:h as expert sYtitems for medical diagnosis, where
1 ill l(' is i'lll illlport.ant factor Whf'll it com s to di agnosing and healing a disease. Other fields
<1)(' pli'lllllill g alld scll('duling, where act ions and goals have to ' be coordinated while keeping
i'I giV<' lI sd of t.(,lllporal constrain ts sat isfied. Our group) investigates time from the point of
v iew of ll1lt1t.i -agf' lIt. systems, whE' re it plays a crucial rol e for coordination processes (amongst
o11J('rs). Temporal Reasoning(TR) has turned out to be a separate area of research within
1\ 1 (d. [h:S~(i , IIry88, I\M8~ , Tan89, Gab87]). TR deals with the representation of and the
illfcn'II(,(' 0 11 t.(,1l1poral propos itions. A major goal is to explore the basic characteristics of
1.('ll1poral st.l'IlC1.urcs a lld tofinel adE'quate general models of time2

.

1\ 11l011 gSt. 0111n i-lpproach('s, t he 10gic- basNI approach towards handling time has appeared
10 \)(' Il s<' fltl dll<' t.o it.s solid mal.llf'mat ical foundations , its clear and formal syntax and
S(' III <l lJl ics wlliell a llow w('ll-foulHkd stat.ement ti about soundness, completeness, decidability,
COlllplltai>ilit.y, dficiellcy, or complex it.y f'tc. Our approach is closely oriented to this logi cal
hac kgro lllld , a. lt.hollgll WI' do II Ot. dE' IlY t.hat it suffers from a number of short comings which
a l,(, ('ov('t'C'd a.pt Iy by [SM87] using t.hE' WE'll-known metaphore of the man searching his keys
IIl1d(' I"a lall1<'1'11 illst.('(l(1 of sE'al'eililig t.hem ill the dark wherE' he lost them, because search is
silllpin ill t.he light. of tllf' la llt. E' I'II . HowevE'r, we think that the advantages of temporal logics
(jll;-lIly Illak(' lip for t Ilf' ir drawhacks.

l'fhi" work hi\." hl'I'1I dOlI!' ill til!' AKA-t\10d project. a t. DFKI , Saarbriicken.
"U p to 1I0W, ilp proaelws dt'alillg wit.h t.inw have llPf'n highly spec ifi c and depending on the respect ive

"pp li eilt iO Il " .

5

Thi:-; pa}w r i:-; di vided illto two parts. III the first part we will give an overview of somf' recent
work in the fi eld of temporal reasoning. In the second part , we will describe the systems
CHRONOLOG and TRAM whicll have been developed at our rf'sea rch center. CHRONOLOG

[Sch89] is a teIT1poral logic programming language which extf'nds PROLOG. TRAM [Pis91]
is a system for represent ing temporal knowledge, which combines both interval and point
aspects of time by integrating the ideas of two of the main paradigms for the representation
of time in AI: Allen's interval logi c [AIl84] and the modal logics approach[Pri67 , AM89].
The form er approach employs intervals and relations between intervals as the basic entities,
whereas the latter one uses a set of modal operators which are interpreted by using a possible
worlds semanti cs in order to express temporal knowledge. In the following , we will outline
the most cru ial aspects of time and their relevance for research in Computer Science.

1.1 Time - Reaching out for a Mystery

The quest ion of the nature of time is a very difficul t one, and no generally accepted answer
could be given to point out, what the in terest ing characteri st ics of t ime are and how t hey
could be represented. It depends strongly on the domain in which time constructs are to be
used. So the best way to see what aspects time can have is to examine in more detail t he
various concept ions used in different domains. :-Iowever, there are a few general characteri st ic
arguments and criteria which are heard very often in di scuss ions about temporal aspects.
They are summarized in the following:

Point or interval

Some people think of time as having interval character: properties hold during intervals of
time, but one does not know how two different intervals are related to each other (i.e. one
interval may surround, overlap, be before, or after another one). The aim of reasoning is to
get information about the relationships between the intervals.

Another way is to understand time in a modal logic way: the universe is a graph, whose
nodes represent different t ime points. Edges are drawn due to expli citely or implicitely stated
rules of the logic. Here, the aim is to find out if a property that holds in a certain node
(which represents the current time) will be true e. g. for one or all succeeding or preceeding
timepoints .

Discrete or continuous

Out of the point/interval discussion comes the way to see time more as a sequence of time
instants or as a continuous flow.

Time instants are used e. g. in program verification or in the blocks world, where t ime
can only change significant ly between the execution of two direct ly succeeding program
statements or two act ions of t he roboter arm.

6

To look upon time as a continuous flow ma.kes more sense in an environment such as natural
language processing: here it is possible that each event. that was t.old in a sent.ence can have
many subevents, told in future sentences. It may also be possible that there appears a third
intermediate event between two events which are supposed to be directly succeeding.

Branching or Linear

When reasoning about future and past, people regard time as having branching character,
and t hey try to find out what will be or what had been. Others base on one single time line.

ThC'y are more interested in when things happened and not if they will/had happen(ed) at
a ll .

1.2 Synopsis of the Paper

S('ct iOIl :2 short. ly describes the state of the art in temporal logi cs. Some significant for-

1I1itiisms for modelling temporal knowledge are presented and their propertif's are discussed.
[II cll<lpt.('r :3, Wf' IHf'sf'nt SOIllf' of the most interest iug approaches towards building tempo

r;-d logi c programming languages. Thf' evaluation of the strong and weak points of existing
<lppro<lclw:; will 1)(' tlle start.ing poillt to thf' systems CI!RONOLOG and TRAM developed at
(JIll' imd it 111.(' , wlli.il w(' will pr('s(,llt. in 1,11(' 5('.ond pa.rt of this pa.per. In sect ion 4 we provide
;-1 hrid 01 1t.lill(, of t.he Gil RONOLOG temporal logi c programming language, which basically
('ollst.it .l1t.(,S <1.11 (~xt.(,llsion of PROLOG by temporal constructs. In chapter 5 we motivate the
d('\'('loPllll'll1 o f t.\l(' TnA M syst.em which shall be looked upon as a combination of differ
('111 ('oll('('pt.ll(ll ;-lpp roacllt's towards the r('preselltatioll of time, basically the combination of

11IOd;-t\ logi cs wit.h Alleu 's illt.erval logic model. In chapter 6, the theoretic framework of
TILH1 , til(' ('xt.('IICkd m odal logic EML, is described. Both the syntax and a model-theoretic
S(, IIl(tllt.i(·s for EM L Me givell, and we silow how illtervallogi c according to Allen can be inte

p;rill<'d ill10 (I IllOdallogic frall1C'work. Chapt.er 4 describes the basic features of the knowledge
r!'pJ'('s('II1;-tlioll system THAM. \\le give a ll operational semantics for TRAM 3

, and we provide

(I hori;t,olltrd (·olllpilat.ioll scllf'll1e for TRAM programs iuto PROLOG programs. Chapter 8
Sll l11I11<lri ;t,(,s 1.11(' 1ll0St. importa.llt results a nd gives a short. outlook.

:IOlir Cllrr(, lIt. TIt-HI v('rSlOIi is haspd all PROLOG . Thlls t lIP O(1erat iOllal semant. ics of TRAM shou ld be
illt IliliVl' for it r('adl'r faillitiar wit.h PROLOG

7

Chapter 2

Representing Temporal Knowledge

This chapter will present the framework for a unifif>d model- t heoret ic. view of time. For this
purpose, three approaches towards represent ing temporal knowledge are shortly di scussed.

2.1 FOPL and Time

The use of first order predicate logic (FOPL) is very popula.r for many purposes in AI.
Its usefulness for knowledge representation already has been known for a long tim (d.
[NiI80, 11084, BB87, RK91]). The main properties of FOPL are its sem,i- decidab ility and
completeness. Since powerful theorem provers for FOPL exist [OS89], an integration of
temporal reasoning into FOPL appears to be promising. [Pis91] provides a summary of
different approaches towards the representation of temporal knowledge in FOPL.

However, most researchers agree that FOPL does not provide optimal support to temporal
aspects. As a consequence of this, FOPL has been extended in many ways in order to gain
more expressive and more powerful formalisms to represent and to reason about .temporal
knowledge. One of them is Allen's interval logic, which we will di scuss in section 2.2, another
one is the modal logics approach (d. section 2.3).

2 .2 Allen's Interval Logic

Allen's approach towards the representation of temporal knowledge is doubtlessly one of the
most prominent works in this area of research. The origin of Allen's work is the processing of
natural language where time and its representation play an especially important role. In this
section we give a short summary of the topics of Allen's interval logic. For a more detailed
view we refer to Allen's original articles [A1l83, A1l84] .

In his model, Allen uses intervals as the basic entities. He characterizes time by a set of
events (intervals) together with several temporal relations such as before, overlaps, m eets,
equal, during, starts, finishes between these intervals. Allen covers all possible constellations
between two intervals by introducing 13 relations which are shown in table 2.1. The resulting

8

structure is a graph which can be regarded as a constraint net, where the consistency of
different temporal interdependencies can be checked using constraint propagation.

Symbol
Pictoral

Relation Symbol for
Representation

Inverse

XI I
X before Y < >

Y I I

XI I
X equal Y - -- -

YI I

XI I
X meets Y m 'mz

Y I I

XI I
X over laps Y 0 m

Y I I

X I I
X duriug Y d <Ii

YI I

XI I
X starts Y .5 sz

YI I

X I I
X fillishes Y I Ii

YI I

Table 2.1: A lIell 's 13 re lationsh i ps between intervals

A 11('11 IIS('S tlm'(' 1lH't.a-collcepts occur', holds, and oCC'Il1"iug each of which can be applied to
011(' o f t.he followillg t.lll'f'f' c li-Lsses of knowledge items: cvents, proper·ties and processes. An
i-,Ige llraic St.I'1Ict.ur<' is dC'fillf'd on top of t.\](" relations usillg two operators, the intersection
Il ('\.W('(' 11 s('t s of possible r('lat.iom; betw('en ill tervab, and the composition of sets of relations.

A II (,II h i-IS opcrat. iollalized Ili s concepts by providillg both a local and a global constraint

propagatioll a lgori1.l11l1.

For Illolly dOllloillS, Allell's model is wry intuitive and adequate. The constraint propagation
IlH'Cllallislll provides ;-111 ('kgaJlt way to cope wit.b in complete knowledge. Knowledge can be
('x1.elldc'd olld 1l1Odifi<'l1 illc!,(o·Illf'II1.al ly by using incrementa.! constraint solvers . Moreover, the
fOllllal FOPL-lik(' framework fac ilitates t.he proof o f diverse properties. But there are some
s('riolls drawbacks of th(' approach:

• Due to til(' sl)('cial s(,ll1allt.ics of negat.ion in the Allen logic [GaI87]' a sound represen
t at ,ioll of COJlt.illIlOIlS cll <'lllges is not. provided.

• The underlying model of t.ime is res t.ricted to a lillf'ar time axis . Especially, it is not
possible to model something like branching time.

• The granularity of classifying knowledge in events, properties, and processes is very
coarse. For some applications e.g. a fin er semantics of parallelism than the one provided
by the Allen model would be necessary.

• Constraint propagation is an expensive met hod of complltation .

2.3 The Modal Logics Approach

The theory of modal logics has its origin in the necess ity of expressing both knowledge which
always (necessarily) holds and knowledge which somet imes (possibly) holds. This is achieved
by a possible war·lds semantics where those worlds are considered possible whi ch can be
reached from the current world using an accessibility relation. The poss ible worlds togt'ther
with the accessibi lity relation establish a graph of worlds, a so called /\·n:pke stru cture. Two
modal operators 0 and <> are introduced in order to express val idity in all worlds or in
some worlds, respect ively. For a more detailed introduct ion to modal logi cs we refer to
[Kri71, Ram88, Sh088].

Modal Logics and Time

By slightly varying standard Kripke semantics, modal logics can be used in order to model
temporal knowledge. Worlds are considered as time points, and the semantics of the modal
operators is enriched by the notions of future and pa.st:

• Fp: p holds in some} future world.

• Gp: p holds in any future world.

• Pp: p holds in some past world.

• H p: p holds in any past world.

These operators are interpreted in a Kripke- like manner. Prior [Pri67] was the first to apply
the principles of modal logics to tense logics. He showed that the logic defined by the above
operators can be considered equivalent to an S4 modal logic2

.

The strong points of the modal logics approach are obvious. Compared to FOPL, tempo
ral knowledge can be formulated in a very elegant and compact manner, it is possible to
represent objects which exist only temporarily. Moreover , it offers powerful mechanisms of
representation, e.g. axioms like DQ -t DDQ cannot be axiomatized in FOPL. However, this
approach has some shortcomings:

1 i. e. at leas t. in one
2The crucial property of t.he 54 axiomat.ization is that the accessibility relat ion is transitive and reflexive,

whereas it is not symmetric.. Obviously, since most of us cannot simply t.ravel back to the past, this seems
reasonable for the representation of time.

10

• Modal temporal logics just g ives an indirect represf'ntat ioll of time. This makes it hard
to refer to subjects involving exp li c it time.

• Reasoning over intervals of time is not supported by t.he model.

• Due to combinatorial explosion of the graph of worlds, ex ist ing systems using modal
logics suffer from efficiency problems .

• Some important properties of worlds (e.g. refl ex ivi ty of t he accessibility relat ion) can

on ly be formulated as axioms. Thus, properties valid for individual worlds cannot be
f'xpressed in an adequate manner.

Moszkowskis ITL

Moszkowskis intf' rval temporal logic (ITL) is given as an example to clarify the concepts of
Illodal logic. Hi s domain is t llf' behaviour of el ctrical circui ts. He calls hi s worlds intervals,
whr rf' a ll illt f'f"va l J is l'f'preselltp.d as a non empty seque nce of immediately succeeding t ime
P()ill1,s, wli ttf' 1I a.s J = < t.u, i 1 , ... , t" >. Two intervals are connected in the time graph, if
0 11 (' is a, / ('1"1l1in(l./ subill tp.rval of t he othe r; i. e. < 8, t, 'It > has successors < s, t , U >, < t, U >
iil ld < '/I. > . F'ormlllas in ITL are FOPL formula.s witli four addi t ional operators: 0,0,0
a l)(1 ; (1.11(' (' /1.0], operator). III t hf' follow ing J F tv means t hat formula tv holds during
ill t.('J'Vid I . TIl<' II(,W opr rator~ a rf' df'fined as fo ll ows:

< so, ... ,S,,>F Ow iff <8;, ... ,S,,>F w

for a ll .i. wit. h 0 ~ .j ~ 'It

< '~IJ, ... "~II > F Ow iff < 8i, ... , S" > F W

for ;-If, least. o ll e .; wit h 0 ~ ·i ~ n

< so, ... , s" > F Ow if!' < 8 1 , ... ,8/L > F W

< "o,···,s" > F w;w' iff'
< so""" ~ i > F walld < Si, ... ,8/L>F w'
for at. I('ast. 011(' ; wi1.\1 0 ~ i ~ '/I.

l\ loszkowski 11S('S 1.\)('s(' cOlIst.ruct.s t.o df'scrih(' tl w behaviour of di gital circuits: for example
if O il !' wi-lIl1.s 10 st.at.e t. ll al t.wo hit. signals X a lld Y arf' eq ua l over time, one can do this by:

x ~ y =rlrJ O(X = Y)

'1'1)(' 0 opclat.ol ca ll 1)(' llsf'd t.o 1f'])I'('Sf' llt unit. de lay fOI p.xample: if one bit signal X is

('()Ill ilillo ll sly assigllC'd 10 Cl ll ot. llCl bit signa l Y OVf' r til11f' but wit.h unit delay one would define

i 1 iI s:

X del Y =drJ O((X = 0) = (Y = 0))

11

2.4 Evaluation and Conclusion

In this sectioll we presellted some important approaches towards representing temporal
knowledge: FOPL, Allen's interval logic, and modal tense logic. It has been shown that
each of these a.pproaches has some strong points whereas it suffers from some shortcomings .
For many applications it can be extremely useful to combine the features of different ap
proaches in order to gain a more powerful and more expressive formalism for representing
time. In our work, we decided to integrate elements of Allen's work into a modal logic .
Especially, it shall be po ·s ible to reason about intervals of worlds and their interdependence.
Thus, we enhance the modal time model, wh ich per se reveals a time point character of time,
by intervals of time. However, we preserve the basic desirab le properties of modal logics .

Thus, in the fo llowing, after giving a review on some current approaches towards temporal
logic programm ing, we wi ll introduce the CHRONOLOG system which embodies the modal
logics approach towards tense logics (see charter 4. In chaptf'r G we will present an ex
tended modal logics (EML) which embod ies both modal logics and an interval concept.
The knowledge representation system TRAM described in chapter 7 basically constitutes the
operationalization of EML.

12

Chapter 3

Temporal Logic Programming
Languages

[II this s~ctioll we present. some current proposals for temporal logic programming languages.
All issues discussed h re are all closely related to PROLOG , because it seems the most
prom isillg way for different reasons to take PROLOG and extend it by various temporal
cOllstrud s: Fir!::it of all PROLOG is already programming in lofiI c and therefore "only" the
1.C'lIlroral aspects must be added. Furthermore there has already been done world wide
1Il1lcl. work boUI on thf' theoretical an d on the practical side of PROLOG. This results
ill powC'rful PROLOG systems (available for all computer systems) that are comparable to
i.C'. LISP C'lIvironnwnts both in program development tools (editors, debuggers , etc.) and
rIlll1.illlC I)f'rformallce and storage consumption. All thi!::i can be used to develop temporal
prop; r<l. llllllillg t.ools, that. are not only of high academical interest, but also of great practical
IISdlllllC'SS.

3.1 A bad i and Manna's TEMPLOG

Al)a,di all<l Ma,lIll a preseut a programming language called TEMPLOG, which strongly bases on
PI!OLOC; <l.lId adds :lmodallogic operators: 0 ("next"), 0 ("always") and 0 ("eventually") ;
their Illeallillg is ex plailled as follows:

• O J) lll('allS "P is t.rue at the l1f'xt time point"

• 0/) lI\('allS " P is always true (from now Oil)"

• O F is ddillC'd a.s: O P = -,O-,P

[II t.IlC'ir view t.illt(' is lill('(/,I' , r1 iSC1'f'ff' an d exteuds infinitely towards future,

A TF:MI'LOC; program is a collPct ioll of t. emporal (Horn) clauses, where a clause may have
011(' o f t.I \(' foll owi IIg forms :

H t- B

13

oH - B

o(H - B)

For the sake of readability, the last clause, which is also called permanent clause, is written
as:

H ¢= B ;

the first two clauses are called initial.

The heads H of the clauses are next-atomic formulas of the form

where on P means 0 applied n times to P and P is a conventional PROLOG atom of the
form p(t l , ... , t n).

The body B is a formula that consists of next-atomic formulas , which are connected by 0
and A (conjunction, also written as ,). Thus,

p(a) - Oq(f(x))

oOOp(b) - 0 (O(q(y) A 0 0 T(C)))

are well-formed clauses. The use of 0 is prohibited in bodies and the use of 0 is prohibited in
clause heads in order to reduce computational complexity. But this is not a. real restriction,
because clauses like OP - Q (say "P is eventually true if Q is true") or P - OQ ("P is
true if Q is always true") are of no practical use .

Because of the additional modal operators there is a modified SLD-Resolution strategy called
temporal SLD-Resollltion: It also start.s with a list of goals (a goal has the same form as
a body), replaces a goal by the body of an applicable clause and repeats this step until
the goal list is empty or until backtracking must occur. But the specific resolution step is
different from standard SLD-Resolution. To clarify this, we firstly restrict the possible goals
and clauses, so that we have goals of the form

We can try to apply initial or permanent clauses of the form

Oi H - Oil B l , ... , Oik B k (*)
Oi H ¢= Oil B l , . .. ,Oik B k (**)

. where the H, Bi and Gi are atoms.(How to apply clauses of the form OH - B will be
explained later).
If we want to apply one of these two clauses in both cases H and one of the Gi (e . g. G1)

must be unifiable (with most general unifier say B). Additionally, if we want to apply (*),
then it must hold that

. .
Zl = J

14

and the resolving goal li st is:

Qjl Ble, ... , Qjk Bke, Qi2 G2e, . . . , Q;"G"e

If we want to apply (**), we have to note that

implies

but. only if i l 2 j.
Thus, we can perform the same resolution step as in the first case leading to the new goals

If we want to lift this restricted version to the full version, we have to look next at how to
apply c la ll ses t.hat have 0 in their head:

OH +- B

wlli cll is p.q 1\i valf'nt to the followillg two clauses

If {::: 'r(.Ll,"" xn)

'r(.Ll,"" xn) +- B,

wllCl'{' ;1: 1, ... ,:1:'1/. are the free variables occuring in B. So we can reduce this case to the
pn'VI01\S Ollf'.

ow, ollly tile' <> opf'rator occuring in goals (and bodies, which is the same problem) is still
Illissillg. T lw SOllltioll to this employs similar tricks as in case of the 0 operator, but needs
111 01(' t.illH' to exp la in and is t llf'wforf' omitted.

Not.e t.Ilat. ill all casp.s app lying a clause to a goal leads to a unique successing goal list and so
til<' hr<tllcllillg factor ill tlw search space is determined by the number of clauses, In this way
I/O (fddilir)'flol bnl'll.rhing is obtained by the resolution procedure. An additional advantage
is t IIi·d , it. ca,1I he c<t,si ly imple lnt~ntp.d in PHOLOG. But it is difficult to embed it into existing
PHOLOG syst.ellls, heca-Ilse one needs to modify the available PROLOG interpreters/compilers,
wllicll is pract ically difficult alld mostly impossible. Another point of criticism is that there
is 110 cOllcept. for braJlching futurf' and past.

3.2 Dav Gabbay

Cahhay ('xt.ends PHOLOG ill a way which is closely related to the way Abadi and Manna do;
hilt. Ca,hbay has not. on ly modal operators for the future, but also for the past. He adds two
llIodal logic operat.ors: F (fut.ure) and P (past) which also allow to express 0 and <> :

- Fq llIf'ans "(I will bf' t.nw" (including now)

15

- Pq mean!; "q ha!; been true"

Oq q V Fq V Pq

A program is a collect ion of clauses, where F and P may occur either in the body or in the
head. Since F Fq = Fq and P Pq = Pq, we assume that there are no multiply applied F's
and PiS. Thus, clauses are of the form:

H+--B

D(H +-- B)

where the first one is called ordinary clause (because it is only valid now) and the second
one is called always clause (because it may be applied in the past, now and in the future).
The head H may either be an atomic formula or it may have the form FA or PA, where A
may not only be an atom, but it can also be a whole ordinary clause. A body is of the form
A, B 1\ B ' , F B or P B, where A is an atomic formula and B, B' are bodies.

Program execution is driven - as in classical PROLOG - by a list of goals, where a goal
has the same form as a body. The first goal is choosen and replaced by the body of an
applicable clause. But what "appli cable" nleans is different here, because a head of a clause
may contain a whole clause itself. To explain this, we firstly introduce a notation

P ?G = 1(0)

where P is a set of clauses (or say a program). G is a goal and 0 a substitution. The whole
expression means: "The goal G is derivable from program P under the substitution 0".

If we have a goal li st P?G1 , ... , P? Gn and we want to replace the first one by applying a
clause of P, what the successive goals look like depends on the part.icular form of G1 :

1. If G1 is an atom, then we look for an (ordinary or always) clause, whose head H is
unifiable with G1 via O. We derive the new subgoal BO(where B is the body of the
clause) as in ordinary PROLOG .

2. If G1 = G~ 1\ G~ then use

P ?G1 = P?G~ 1\ G~ = 1 (0) iff P?G~ = 1 (0) and P?G~ = 1 (0)

Note that in both subgoals there must be the same substitution O.

3. G1 = PAis symetrically to the next case.

4. G1 = FA is the most complex case, which is rather technical to explain in detail, so
we will outline only the main idea.
F A says that if we want to know if A will be true in the future (using clauses, that
are valid now). We try to show this by applying an ordinary or an always clause. The
simplest case is, when we have a clause of the form

FH +-- B

16

where A and H are unifi able, thus we only get the new 1:i ubgoal P ? B. To apply this
clause, we can try to show that H l:mp/ies (and not on ly unifies) A in some future state
(written as {H} ?A), if we afterwards succeed in proving B, we can argue: B implies
that H will be true in some future time and at that time A becomes true too (from
H); so A becomes true in the future , say FA is true now.

An analogous way to show FA is to show that A will be true not at the time when H
comes true, but after this it wi ll be true (wr itten as {H} ?FA).

These were the possibilities in applying ordinary clauses. Using always clauses one
can try the above ways and add ition al ones. This stems from the fact that an always
clause is not only valid now but also in future states. Trying to apply O(H f-- B) or
O(FH f-- B) one need not only to show B , but can also try to show that B will be
true (F B), resulting in F H or F F H respectively.
Us ing a ll this one can gf't different argumentation chains to show FA:

Bo -t F Ho -t F Ao

B=?FH=FA

B=?FH=?FFA=FA

FB=?FH=?FA

FB =? FH =? FFA

FB =? FFH =? FFA
FB =? FFH =? FFFA

I·;x,(' pt. t.he first o ll e our succes!:i ive goal li st looks as follows:

{H}?X,P?B,P?G2 .. . , P?Gn

wll('r(' X ('q1l a.ls !l or FA. Note however that, if we want to show that in the future H
illlpli('s X, we Illay 1I 0t. li se all c1ausf's of our program P , because not a ll clauses in Pare
va lid forev('\". Hat. lwrmore, we may lise more tban simply {H}. We may use all always
cla 1l s('s of P ; ordi1l ary cla l1 ses m11st \)(" prefixed with the past operator P. So in the above
gmt! li sl, w(' ca ll r('pla,c(' {H)'! X by:

{il} u {all a lways clauses of P} U {Pclc an ord inary clause of P} ?X

Cahhay's 11 0m log ic al lows t.o r('ason about the future and the past and allows more complex
('1"ll1S(, 11 ('ads, But. t.his advalltage is gained by a great loss of computational efficiency: in
('very r('soI11t.i 01l step and for eve ry app li cab le clause t bere are up to 7 paths to test. Especially
always cla 11 ses I('ad to 1.1lf' highest brall ching factor. Additionally the cri ticisms presented in
1 \1(' pn'vio11s s(,ct.io ll hold for Gabbay 's logic too: t.here seems t.o be no easy way to embed
Ilis (,OIl(,(,Pl.s ili1,O PROLOG. III add it.ion it. seems t.o be diffi cult to effi ciently implement the
"swit.chillg dal ahasf' '' 111f'chanisll1 (from P t.o P' in two succ("ss ive goals P ? A and P'?B).

17

3.3 Kowalski's and Sergots's Calculus of Events

Kowalski and Sergot present an interval based calculus, that is combined by three building
blocks: events) properties and time intervals. As the name "event calculus" already states,
it concentrates on events: an event is an action that changes the state of the world. For
the sake of simplicity we assume that events can be totally ordered on a single linear (not
branching) time line , because an event is assumed to take no time (or better say after the
start of an event, there may be no other events to start before the first one is finished). In
this way two events e and e' are either equal or one happens before the other , written as
e < e'. Eve nts are the central constructs because if an event has happe ned it initiates some

properties to be true later on. Furthermore, it states that some other properties are no longer
true. An interval of time is the interval that lies between two directly succeeding events .
Two functions before and after are defined that map events to time intervals; intervals are
always referenced by one of these two functions. It is important to note, that i.e. after(e)
does not mean the whole interval from e to infinity, but. only the interval from e to the next
following interval. Thus:

befor e(e) = after(e') iff
e < e' and there exists no e" such that e < e" < e'

Kowalsi and Sergot give an axiom system which is formulat ed in horn clauses, and which thus
seems easy to be implemented in PROLOG. The most interesting axioms will be presented
in the following:

First there is a metapredicate Holds, that represents the database:
H olds(T, P) is true iff property P is true during time interval T. Two axioms state that a
property P must have been true before an event E if E terminates P , and that P is true
after E if E initiates P:

(AI) Holds(before(E)' P)f-Termina t es(E, P)
(A2) Holds (after'(E), P) f-Initiates (E, P)

The two predicates I n itiates and Terminates constitute the interface to the user: it is
supposed that they are implemented by the user to represent the user's database. E. g. in
the blocks world domain a roboter arm can stack block X onto block Y if the arm is holding
X and no other block is on Y. As a result, the arm is no longer holding X. This can be
expressed as follows:

Terminates(E, holding(X)) f- NOT on(Z, V), holding(X).
Init iat es(E, on(X)) f- NOT on(Z, V), holding(X).

Another two axioms for St art (T, E) state that event E is the start point for interval T:

(A3) Start (after(E), E) f-
(A4) Start (befor'e(E), E ') f- Is-same(after(E'), before(E)).

where
(A5) Is-same(after(E), before(E')) f- NOT E < E" < E' .

18

There are two similar axioms for End(T, E) (event E is the end point of interval T):

(A6) En d (before(E), E) ;-
(A7) E nd (after'(E), E') ;- Is-same(a.fter·(E), befo're(E')).

The above axioms only present a restricted subset of the original ones. However, they should
be expressive enough to provide the main ideas of the event calculus. In the model, there is
no need for a ingle time line: events may only be partially ordered, thus it is possible that
two events cannot always be compared. The fu ll version provides the possibi lity to state that
an event causes different properties to come true which hold for different times; so the world
is seen as a whole graph whose nodes are events. An edge is labelled by the properties that
hold during the interval established by the two time points of the events they connect. In
contrast to the previously discussed approaches this one has the main advantage that it can
be directly integrated into PROLOG: the above axioms can be easi ly formulated in PROLOG;

IIl1fortunately the integration is not a total one : properties and events are not stored like
other PROLOG predicates, but in the special database predicate Holds.

3.4 Hrycej's Temporal Prolog

IIrycej presents a temporal-logic extension of PROLOG that bases completely on Allen's tem
pora,1 const.raint model of time, using time intervals and the 13 relations between intervals as
C(,IIt.ra.1 ('on('epts. The main advantages of his implementation are efficiency and integratiblity

illt.o available PROLOG systems. This is gained by restrict ing Allen's original axioms to six
(lxioll1s fo\' til(' predicat.e H olrl.~ ; where H old.s(P, T) means that P is true in time interval T
(llld l/ old8(P) that P holds without temporal restriction. The six axioms are:

ax iom 1: H()ld.~(P, S) & 8ubint en)al(T,S) ::::} Holds(P,T)
If P holds ill interval 8, it also holds in any subinterval T of 5

axiom 2 : j / ol(l.~ (P) ::::} (VT) H olrl8 (P, T)
If jJ Iiolds without t.emporal limitation, it also holds in any time interval.

axiom 3: l/old,o.;(P, T) & Hulds(Q , T) ::::} Holds(P&Q, T)
If \)oth P alld Q hold in T , tilf'ir conjunction also holds in T.

axiom 4: lIulds(P,T) V Holrls(Q ,T) ::::} Hulds(PVQ,T)
If (It. least. olle of A and B holds in T, their disjunction also holds in T.

axiom 5: l/old,o.;(P, S) ('<I. lIulrls(-,P, T) ::::} disjuin,t(S ,T)
If /) Iiolds ill S' alld ('/luI P) holds in T, then Sand T are disjoint intervals.

axiom 6: l/old ... (P, l f) S.:, Holds(Q , V) 8.<. U'I71U'fl((I, V,T) ::::}
1/ olr/.o.;(P V Q , T)
If /) Iiolds ill {I alld Q holds ill V, then their disjunction holds in the union of U and
V.

19

The last axiom leads to difficulti es in implementat.ion, resu lt ing in two different approaches:
the constrainin!J an d the non-constr'ainin!J app roach . This will be explained in more detail
later on.

Hrycej 's implementation is fully embedded into PROLO G: he adds four (meta-)predicates
constrain..rel, in, dur and mkdur , which the user can utilize - besides all other user
defined and PROLOG-builtin predicates.

constrain..rel (I 1,12, S) can be invoked to declare two in tervals 11 and 12 (if they are not
yet known). S is a li st containing some of Allen's 13 relations. T he relations between I1
and 12 are constrained to S. Constraint propagation is employed, using S to constrain other
intervals to each other. For example if one wants to tell Hrycej 's system that the inte rval

morning has two subintervals 8tol0 and 10to12 , one can do this by:

constrain..rel(morning, 8tol0), [di]) .
constrain..rel(morning, 10to12), [di]) .
constrain..rel (8tol0, 10to12), [m]) .

Remember t hat (11 di 12) means 11 contains 12 , and (Il m 12) means 11 meets 12 .

in is a predicate that is supposed to be provided by the user, where in(P, T) declares that
P only holds during interval T. Here P can !Je a fact, but might a lso be a rule.
Example:

is_to_speak (X) : - at...home (X) .
in(is_to _speak(X) : - aL'Work(X) , 'Working_time).
in (at...home (torn) , morning) .

This declares that everyone is either always to speak, if he is at home or he is to speak at
work but only during working time. The last clause tells us, when torn is at home. Here
'Working_t ime and morning are time intervals, that must be declared by constrain..rel.
Depending on the context one may want to be less restrictive, on ly saying, that tHey should
not be disjoint:

constrain..rel (morning, 'Working_time,
[o,oi,d,di,s,si,f,fi,=]) .

dur and mkdur implement the above axioms. There are two predicates because of the difficul
ties already mentioned which arise because of axiom 6. The other axioms can be implemented
more easi ly ; for example axiom 1 looks in PROLOG like :

dur(P,T) :- in(P,S), subinterval(S,T).

Axiom 2 is written as:

dur(P,T) :- call(P).

20

Here, we present simplified versions, because the original clauses are rather technical and
of less interest than the axiom for disjunction: suppose we want to know whether P V Q
holds during interval I. To solve this one can search for an int.erval I p in which P is true
and another interval IQ in which Q is true. Then one must look whether I p and IQ overlap,
meet or contain each other, and test whether I is a subinterval of the union of Ip and IQ.
This is exactly the way dur implements axiom 6. But this way will rarely lead to a solution,
because it needs much information about the relationship between known intervals.

mkdur goes another way by changing the constraint net. It also looks for I p and IQ above.
But then it does not test, if Ip and IQ do overlap. Rathermore, it tests whether they
can overlap: if there is no information in the net that Ip and IQ cannot overlap, then the
constraint net is modified so that Ip and IQ are supposed to overlap. Computation proceeds
until the final solution is found or until backtracking occurs. In the case of backtracking,
thf' net is restored to its previous stat.e and the next choice point is tried.

A lthough t.hf' constraining approach is more powerful than the non-constraining one it also
comf'S wit.h two main disadvantages: Firstly the cut operator (!) can no longer be used
in all places: if the cut is execut.ed after changing the net and if backtracking occurs after
proc('ssing the Cllt, the net cannot be restored to its previous state, because the predicate
that originall y changed the net is not backtracked. Secondly, in the net-changing step one
1111IS1. exact ly try four different relations between J p and IQ to insure that the constructed
int.erval is the maximal one:

l. Jp oVf' r1 aps IQ

~. IQ oVf' rlaps 1 p

:L Ip cont.ains JQ

tl. IQ cont.ains I p

Tllis leads t.o a rapid comhinatorial explosion .

3.5 Tang's TPL

Ti1llg 's TflL is a Illodal logic f'Xt.(, IISioll t.o PROLOG tbat differs from PROLOG in two major
WilyS: First. of a ll ill TPL t.lwrf' is not on ly one single database, but there is a whole set of
dat ail;'ls('s D B,<", wllf' rf' (-'v('ry datahasf' rf'prf'sents a singlf' t ime point. Additionally, there
IllIISt. ('xist. a pr('df'fined relation R: DBS X DBS', to connect the different databases.
'I'll<' s('colld (xt.(,lIsion of TPL 1.0 PROLOG consist.s of several predefined modal logic meta
predicat es wllicit ca ll be uSf'd as goals in bodif's of user defined clauses to switch between
tit(' difrerellt. da.tahases. II ('rf' we on ly presf'lIt t.wo of thf'm, EX and AX:

• AX(P) slI("("('('ds if P slI("c('('ds ill (fll worlds (databasf's) t.hat follow the current one .

• EX (p) sU(c(>cds if P sllc(('('ds ill (f'lty world that follows tIlt' current one.

21

Wo

p(x) :- EXg(x) . g(c).
g(x) :- AXh(x). g(b).
f(x) :- p(x), g(x). g(x) :- EXh(x).
h(c). h(c).

W2 W3

h(c). r(a).
r(c) . g(b).
p(x) :- EXg(x). h(x) :- EXr(x).

Figure 3.1: A sample TPL program

A sample TPL program is given in figure 3.1

A TPL program is d irect ly represented in PROLOG as follows: every TPL atom gets an
additional argument represent ing the TPL database it belongs to. The relation R is directly
represented by a P ROLOG predicate called world. The TPL program of figure 3.1 will be
written as :

world(wO,wl) .
world(wO,w2).
world(w2,w1) .
world(w2,w3).
world(wl,w3) .
world(w3 , w2).

p(X,wO) EX(g(X),wO) .
g(X,wO) : - AX(h(X),wO) .
f(X , wO) : - p(X ,wO), g(X,wO) .

g(c,w1) .
g(b,wl).
g(X,w2) : - EX(h(X),wl) .

h(c,w2) .
r(c,w2) .
p(X,w2) : - EX(g(X),w2» .

r(a,w3) .
g(b,w3) .

22

h(X,w3) :- EX(r(X),w3).

Now the implementation of EX and AX can be eas ily derived from t he above. For example
EX:

EX(P,W) world(W,Wnext),
P = .. L,

append(L, Wnext, Lnew) ,
Pnew = .. Lnew,
call (Pnew) .

II f'rt, the goals 2 to 4 in the body only serve to add Wnext as an addit ion a l argument to P.

If we have the goal

?- f(X,wO).

1.1)('11 we ran illfer X=c by the following resolu t ion steps:

f(X,wO)
p(X,wO), g(X,wO)
EX(g(X),wO), g(X,wO)
g(X,wl), g(X,wO)
g(c,wl), g(c,wO)
g(c,wO)
h(c,w1), h(c,w2)
h(c,w2)

III 111(' or ig ill a l paver, Tang defines a lso some addi t ional modal logic. operators, whose im

pl('IIH'Ilt. at. io ll is a bi t. more t.ricky t ha ll EX o r AX . Addi t ionally he gives a detailed semantical

dc'snip1 iOIl o f TPL Ilsillg ElIerlli a lltomata.

Trlllg'S rq) proarh is (Iikf' Hrycf'j's) easy to f'l1lbcd ill any ex isting PROLOG system. The search

SpiHT s1 rollg ly d('P(,IIcis 011 t.he s ize of t llf' world graph. Unfortunately, Tang does not provide
('ollnd(' ('xaIllples 0 11 how he II Sf'S TPL in a practical domain; he only states that he uses
,(,PI, 10 vnify i-11 11.ollla.1.ira.ll y some cOll cllrrellt programs which process infinite states.

3.6 Comparison and Conclusion

Up 1.0 1I 0W ill t.his chap t.e r we pr('!,w lI1.ed five approaches, that a ll extend PROLOG in t heir

OWIl directioll. Now 1.I lf' (I' wstio ll a ri ses: What is the best ext.ension? Every issue has its own

ad \'aIl1ag('s a lld disacivant.a.gf's. Th(' maill crite ri o n how to divide them is the time model
1 hey IIS('. 1301.11 11 ryrej and Kowa lski 8.:. S('rgot. use a t ime model t hat concentrates on intervals
of 1 illl<' , wll('("('as t.II(' t. hre(' ot lwrs Sf'f' t.ime as having punctual or pointwise character.

AllIIollgl1 Kowalsky i1 lld IIrycej botll use illt('rvals , t.hey differ a li tt le in their central con
cepts: I [rycf'j COllc('lltrat.es 011 111P possiblf' re lations between t.he known intervals and uses

:23

mostly these relations for reasoning. On the other hand in t.lle center of Kowalsky's & Ser
got's approach there are events and properties. Events start and end the validity of certain
properties. One event can also start or end different properties , which leads to a branching
model of time with both branching future and past, in contrast to Hrycej whose model
only provides a single time line. The linear time model is also common to the modal logic
approach of Abadi & Manna: in TEM PLOG one can only reason about future states and not
about future and past as in Gabbay's issue. Additionally Gabbay does not necessarily need
a linear model of time.

Tang allows a more complex view of the world: here one can directly express what is true
in different worlds and how those worlds are conne ted to each other. This leads to a model
of branching time. In the previous two approaches one can only state what is true now or
what is always true; other worlds can be referenced by the modal logic operators.

In the implementations of the various concepts two groups can be distinguished: Kowal
sky & Sergot, Hrycej and Tang take PROLOG and add their own predicates, that can be
used besides other PROLOG predicates. Thus they combine the practical advantages of ex
isting PROLOG systems with their own time concepts. The other two approaches define
their own languages that sytacticall y look more or less like PROLOG , but have a different
underlying resolution step, such that existing interpreters must be modified or completely
reimplemented. Especially Gabbay gives an operational semallt ics, where it is left unclear
how to implement a simple interpreter based on a proof search strategy.

The different modifications to PROLOG result. in different computational complexities.
Gabbay pays for his ability to reason about future and past wit.h a high Lranching factor dur
ing each resolution step. In contrast, in Abadi & Manna the branching factor is determined
by the number of applicable clauses as in ordinary PROLOG . Hrycej has performance prob
lems both with constraint propagation and (in the constraining approach) with the different
possibilities to constrain two intervals.

But now back to our question: What is the best approach? None of them seems to figure
out, what time really is , and it is hard to find strong reasons t.o prefer one over the Qthers in
general. It strongly depends on the particular domain to be chosen. For natural language
processing e. g. Allen's / Hrycej 's approach seems to be of great interest; for solving problems
using historical databases, Abadi & Manna's TEMPLOG seems to be the better one.

In summary each particular approach has its own advantages that make it seem superior to
the others, but also has disadvantages w. 1'. t. its competitors. No general solution can be
given that combines all advantages and strips off the disadvantages, because time can have
so many facets, and it is likely that a general concept would be computationally intractable.
Thus, the best way is to study the different issues in detail and afterwards to choose the one
that seems to fit best for the particular problem. If none of the above models seems adequate,
one needs to develop one's own new calculus. This observation leads to the second part of
the paper where we present the CHRONOLOG temporal logi c programming language and the
TRAM knowledge representation system as integrating approaches towards the handling of
temporal knowledge.

24

A s p ec t Ahadi & Gabbay
Kowalsky &

Hrycej Tang
Mauua Sergot

t.illl e m o d e l point inte rva l point

ceut.ral prar l irab le m o- rnodallogi r with e ve nts a nd inte rva l re la- Kripke struc-
eo u ce p!.", rial Horn logic future and past properties ti o ns tures

t.illl e Jill e lin p.a,· brall('hillg future branching future liup.ar branching time
a lld past alld past graph

(\xt,e llsiolls t. o O, D a lld 0 F alld P opera- pl'f~ rli c ates for EX, AX and predicates:
I' HO L DC : (· IH~rat.ors t.ors ev,,"t ha nrllillg nth"r lIIodal canst rain..rel J

ope ra t o rs in , dur a nd
mkdur

initial a lld p " r- ord illaryalld

IlIanp.llt (' l allSp.s a lways clauses

III t.f' f!; r" hi J i t. Y ill tr.I"IJ(,p.tp.r tll(,riifirat.i()I I flllly int"grable fully integrated
iut.o I' HO LO(:

("(J III JlH t.a t.iou ;.\1 11I11I1i)('1' of diff" r,,"t paths rOllst J'a iut s ize o f the world
('0 III pJpxi t.y .-I a llsf's for e vp.ry dallse propagation , graph

t.o t r.s t. C'ol1st,rainillg

interva ls

" p plin".ioll" Il isturic 'a l rlata- plan gPlIe l'atio ll Ilat. la ll guage verifying con-
1,f\sPS processing CUlTent

programs

Tahir :3.1: Comparison of tllf' difff'H'ot. approaches

25

Part II

Chronolog and Tram

:2G

Chapter 4

An Introduction to Chronolog

The temporal logic programming languagf' CIlRONOLOG has \wen df'veloped by Ralf Scheid
hauer, and has been descri bed in an un publ isllf'd int.ernal l'f'port (d. [Sch89]). In this ection
we give a short description of the main ideas \whind the CIIRO OLOG system.

CHRONOLOG is closely related to Abadi & Manna 's approach, but extends TEMPLOG in
various directions. CHRONOLOG also includf's thf' possibility of defining multiple database"
like Tang does and it has the ability to rf'ason About. futllrf' and past as in Gabbay's approach.

TEMPLOG has a single built-in modal opf'rat.or 0 (NEXT) t.hat. generatf's new unique worlds
from an existing initial world. So eVf'l'y world has it.s own llniquf'ly determined successor.
But this might not be enough, because real world tells us that. at a certain timepoint many
different events can happen leading to different directly succeeding future worlds . In the
blocks world e. g. a roboter arm can stack or unst.ack cf'rtain bloch, and different successor
states will arise according to the action previous ly performed. Thereforf', CHRONOLOG allows
user definable modal operators each of which generates a unique new succeeding world from
the currf'nt one. These operators are not restricted t.o I11f're const.ant symbols, but they may
also be compound terms. Thus, it is possible to define a modal operator stack ~ith two
variable arguments X and Y. In our example it is also necessary to state t.hat stack is not
applicable in any state, but only when both blocks X and Yare free. This can be done by
adding corresponding goals to every clause in t l1f' databasf' that deals with stacking. But
here CHRONOLOG has an additional featurf' , that allows c01l.riil'ionolmodal operators. The
following clause declares a 2-ary modal opf'rator stack, that can only be applied to blocks
X and Y, if both are free:

stack(X, Y)w := clew'(X)w, clem'(Y)w

The index variable W tells CHRONOLOG, that opf'rator stack can be applied to every world.
Instead of W we could also write a modality (= a nonempty sequence of terms; read from
right to left): thus we could use an in itial world '(/}u and the modality

stack(a, b) 1I.nstack(c, d) 'Wu

to denote the world, that results from 'Wo by first unstacking block c from d and afterwards
stacking a on b.

27

Goals in CHRONOLOG must always be indexed by a modality:

on ((J" h) w 1Uo f--

asks for an operation, that can be applied to world 'Wo and results in a world in which (l is
on b

The user can create a complex world graph using its own modal operators. CHRONOLOG

provides additional meta predicates that allow to reason about statements that are true in
several or all worlds in the future and the past:

• (OfP)W mean.: P will be true in all future worlds of W (including W)

• (OjP)w means: P will be true in some future worlds

• (6. jP)w means: P will be true in some direct future worlds

• ('\7 jP)w means: P will be true in all direct future worlds

D p , Op, 6. p , '\7P are the corresponding equivalents for the past. While those modal operators
are built-in, e. g. a user defined modal operat.or unsi.o.ck can be introduced using one of
those built-in operators. If we want to specify that unstack should be applied at most once
to the same blocks in a sequence of st.ack and unst(J.ck operations, this can be expressed by
definillg a modal operator unstack with modali ty variable W:

unstack(X, Y)w := clear'(X)w, clear(Y)w, (Dp on(X, Y))w

In this way CHRONOLOG allows to define multiple databases like Tang does. Every clause
gets an index that marks the world in which the clause is to be true.

on(a, b)1UO f-

on(b, c)wo f--

bloc/.;(a.)w f-

block(h)w f-

block(c)w f--

represents that block a is on block b,block b is on c in an initial world Wo, and that a block
is a block in every world .

A special predicate edge is a built-in of CII RONOLOG: it ist used during reasoning to find
out which worlds are connected to each other in the world graph. But the user can also add
his own clauses for edge to define which worlds should be connected additionally. Suppose
you have worlds 'WI, 'W2, .. . ,'Wu. The followi ng clauses connect them in various ways:

edge('W2, 'W6) f-

edge('W6, ws) f-

edge(WI, Wll) f--

edge(lUg, lUlO) f-

edge(Ui8, lUg) f-

edge(w!J) H18) f--

Figure 4.1 shows a typical CHRONOLOG world graph which is generated by the user-defined
operators stack and llnstack . Edges are drawn in this graph by a special user-defined
predicate edge.

28

~e.-.... ---.;8
~B..:)... ' "}3

WO., "E}

...... - application of
;

"8 application of uIIslnck

application of slnck

Figure 4.1: A CHRONOLOG world graph

4.1 The Syntax

We' (k'fil1f' t.he. Sf't. Tf"I'mE,v as t.he. set. of all tf'.T'1ns with variables taken out of set V and
fllllCt.ioll symbols out. of 2:;. Let 2:; contain the special function symbols tr'ue, edge and edge·.
t'f"lIl' is lIsf'd for simplicity to represent an empty body of a clause. edg e and edge· are used
hy CII BONO LOGS built-ill modal operators For convenience we write variables starting with
ca.pit.al kl.ters and all other symbols in lower case letters.

All alom is a tf'rm, tllat is not a variab le. A modality is a nonempty sequence of terms.

CII HONOLOG clallses may be either an operator declaration (indicated by the neck symbol
:=) or a cOlldit.iolla.! cla.use:

H:=E
Ht--B

11('1'(' 11 is a goal, t.llal. is of t. 1l<' form Gw alld E is a body goa.! which may be one of:

• t'f"lI t'

• (E', E")

• -,B'

III all casf'S G is all at.om, W a modalit.y and E' , B" are bodygoals itsself; 0 is an element of

{OJ , OJ, 'V], 6], °1"°1,, 'VI" 6 1, }· For COIIVf'IlieIlCe Wf' writ.e clauses of the form H t-- true
as fI t--

29

4.2 The Semantics

In [SchS9], an operational semantics for CII HONOLOG and a horizontal compilation scheme
for the transformation of CHRONOLOG programs into PROLOG programs is defined. Since
this scheme is very similar to the one used in [Pis91] and in chapter 7 for the knowledge
representation system TRAM , we refrain from dealing with it here, and refer to the respective
section for a more detailed description.

4.3 CHRONOLOG Examples

4.3.1 The Factory Example

Consider a factory where Mary, Joe and Tom work. They were hired long time ago and we
don't know yet the exact time when they were hired. But we do remember that Mary and
Tom worked before Tom, but not if Mary was hired before Tom. In CHRONOLOG we will
write:

wo'tks(tom)wo f-

wo'rks(rrwr'Y)Wl f-

wo'tks(joe)W2 f--

edge(WI, wo) f-

edge(w2, '(/)0) f--

We have the possibilities to hire new people and fire others. But we can only fire one if he
already works, and we do not want to hire people that do already work and also not those
that were fired some time ago or that disagree with someone who already works:

ji're(X)w := wo'rks(X)w
hi1-e(X)w := -,(wo',-ks(Y)w, hates(Y, X)w), -, Op(wo,,.ks(X))w

hates(john, tom)w
hates(mary, palll)w
hates(j oe, jane) w

We can now define, that someone works at our factory if he was hired now or if he already
worked the timepoint ago and was not fired now:

works(Xhire(X) w f--

works(X)w f-- 6 p (works(X))w, -, eq(W, ji r·e(X) . W')

eq(X, X)w f--

Now we can ask: if we have hired George and then Jane (after timepoint wo), is there a
future world in which Tom and Jane work in the factory, supposed that Paul has never
worked in the meantime:

30

f-- eq(W, h'i'f' e(s'/),san) hi1'e (g em'ge) wu),
wOT·ks(i.o'm)w l w ,
WO'/, ks (j ane) W' w ,
-, Op (WO'f' ks (paul))WI W

CHRONOLOG will compute t he following modality

vV' = hire (jan e) fir e(joe)

4.3.2 The blocks world

Let us now look a little bit closer at the blocks world example . We have several blocks ,
SOI11<" of whi cl! li e on the table, whereas others are located on top of other blocks. We use
six pn~di cat. es to describe the specifi c stales of our blocks world:

mLi a hl e (X)
un(X , Y)

m eans that block X is on the table
means that block X is on block Y

cl t ' (J: /' (X)
IwMing(X)
(J. ·I"III, t'TII' ldy

means that there is no other block all block X
means that til e robot arm is balding block X
means tilat the robot arm is empty

Now ill ('v('ry sLaj,(, WI?' call df' nnf' fOllr opf' rators:

j . . ~/(J.d·(X , Y) can be applied in a ce rta.in world to two different blocks X and Y, if the
robot. f' r arm is Ilolding X and the re is no other block on Y.

~ . 'I/.".~/ad: (X, V) is t.lt e illve rs f' operat.ion to stack: it can be a pplied, if X is on Y, the
ann is ('Ill pt.y a nd X is dear.

:{ . Il'ld:'IIp(X) call he appli ed , if Lit(' arm is empty and block X is free .

1\ . Jl'lIld(J'IlJ'/l(X) is t.lt(~ last. operat.or , tll a t can be appli ed, if the arm is already holding
hlock X .

'I'll<' 01>('1<11.01' dceland.iolls will look ill CH HONOLOG like :

sloc/. .. (X , V)w := IwMi.ng(X)w ,
cl fa/"(Y)w ,
-' u/(X , Y)

1/ic/'''1I1/(X)lV := (J/,nl.('lIIjilyw ,
clc(f. ·/'p "')w

31

'lI,nsi.(f.ck(X, Y)w := on(X, Y)w ,
clear(X)w ,
o'rmemptyw

VII.t.down(X)w := holding(X)w

Now we can define several initial worlds, that represent certain states of our blocks world.
First, in Wo there are 3 blocks a , Ii and c that all lie on the table. The robot arm in this
example world is empty:

a:rmemptywo -

on_table((J.)wo -
on_tabl e(b)tUo -
on_table(c)wo --

In another world 'WI we have nearly the same situation, as II1 Wo except that block a IS

already on block b:

ar·me·mptYwl -

on(a,b)wl -
on_table(b)wl -
on_table(C)WI --

Now we can declare clauses that specify the effects of applying the different operators:

a·rmemptYstack(X,Y) W -
on(X, Y)stack(X ,n W --
on(U, V)stack(X,Y)W -- on(U, V)w,·eq(U, X)
on_table(U)stack(X,Y) W -- on_table(U)w, . eq(U, X)

First we say that applying stack(X, Y) leads to a world where the arm is empty. The second
clause tells us that block X is on block Y after stacking. The last two clauses are frame
axioms specifying that nothing else changes.

unstack(X, Y) is defined similar to stack :

holding(X)'tnstack(X,Y) W --
on(U, V)unstack(X ,Y) W -- on(U, V)w, .eq(U, X)
on_table(U)1Lnstack(X ,Y) w -- on_table(U)w

pickup and putdown are defined such that pickup can only be applied to blocks that lie on
the table, and that putdOlon places a block always onto the table . Therefore, if we want
to put the topmost block of a tower of blocks onto anot.her tower of blocks, we first have
to apply unstack (from the first tower) then 1J'lltdown (on the table) then pickup (from the
table) and lastly stack (onto the second tower). Therefore, the program looks like:

armemptYptLtdown(X) w -
on_table(X)p1Ltdown(X) w -
on_table(Y)ptLtdollln(X) W -- ordable(Y)w
on(Y, Z)Tnttdown(X) W -- on(Y, Z)w

32

holding(X)pickup(X) w f--

on_f.able(Y)pickup(X) w f-- onjabie(Y)w , -.eq(X, Y)
on(Y, Z)pickup(X) w f-- on(Y, Z)W, -.eq(X, Y)

Using this progro.m we co.n use different goo.ls. For exo.mple:

f-- (\1pon_table(X))stack(a,b) ~i ckup(a) 1LIo

This goo.l asks (via bo.cktro.cking) for 0.11 blocks that have o.lways been on the table after
ho.ving put a on b from world woo (Here the answer will be first X = b and after backtracking
X = c).

Another goa.l o.sks how to build a. tower, were a is on band b on c, starting with WI:

f-- edg e* ('I.III ' W), on(a, b)w, on(h, c)w

Hf're the correct o.nswer should be:

W = 'll.nsiack(a , h) Imtdown(a) pickllp(b) stack(b, c) IJick'U,p(a) stack(a, b)

4.4 Conclusion

I II t.his sC'ct.ion , a. new o.pproo. h to incorporo.te time structures in PROLOG is described. The
result.ing CII RONOLOG system provides a. set of modo.l opero.tors to reo.son within a world
gritI'll t.ho.t. describes vo.rious sto.tes of a. world in the future o.nd the past. In addition the user
Co.ll df'finf' llf'W (conditioned) predico.tes which tro.nsform the objects o.nd relations between
t.hC' objC'ct.s of tlLf' world to gf'nero.te new possible worlds. Thus, CHRONOLOG combines and
gC'llC'ro.liz(-'s ff'o.t.ures from other temporo.llogic progro.mming o.pproo.ches; as in Tang's system

it. is possible jL\st. to opero.te on a. predefined world gro.ph or o.s in Abadi & Manna's system it

is possiblC' t.o work with opero.tors tho.t cho.llge the world status . In the following sections we
will dcscrilw a. t.C'mpora.l know l(-'dge syst.em bo.sed on the ideo.s of CHRONOLOG. The intended
;-I pplica.t.ioll domo.ill for t.his is the simulo.t.ion of multio.gent environments, where planning,
sY llc]Irolli zo.t.ioll , o.lld CO lllIl1l1lli co.t. ion t.o.sks ho.ve to be deo.lt with , strongly involving temporal
aspcct.s.

33

Chapter 5

The Basic Ideas of Tram

III t.iw following sections, we describe the kn owledge representation system TRAM which
combinf's both interval and point aspects of time by integrat ing the ideas of two of the main
paradigms for t lw rf'presentation of time in AI: Allen's interval logic [A1l84] and the modal
logics approach[Pri67 , AM89]. The form er approach employs in tervals and relations between
illtervals as thE' basic entit ies, whereas the latter one uses a set of modal operators which are
illtC'rprf'tl:d by using a, possible worlds semant. ics in order to express temporal knowledge . The
fOlllldat.ions of om a pproach h ave been establi shed by the CHRONOLOG system described
ill sC'ct.ion 4. CIIRONOLOG presents a temporal PROLOG based on standard modal logics.
TRAM f'xtf' llds this concept by providing time intervals.

Om vif'w of tin1f' is st rongly driven by the requirements resu lt ing from our research on
1l111Itiagf'nt.-syst.f'ms (MAS). In MAS, a utonomous inte lligent agents have to fulfil their own
loca l goals ill coo rdill at ion with their enviroument and with other agents. This requires a
grC'rtt. (kal o f sYllchrollization, com muni cat. ion, and coordination work. Time is an essential
CO II CC'pt for halldlill g t.ll<'sf' kinds of tasks , since agents make their plans and decision within
t.11(' fl ow o f t.imf'. To prov ide a bettf' r idea of t his , we will start by an example from a
Illldti -agC' lIt. sCC'llario.

An Example

III 1.I1is SC'ct.iO II We' Ill otivat.f' t.Jw ro lf' of timf' a lld t he way we handle it in our approach by a
Sl ll i-di C'xampl (' from a ll1u lt.i-agf'lIt. domain . Figurp 5. 1 shows our exemplary scenario. There
aI'(' t.wo loadill g docks , rll a nd <1'2 , two trucks 1.1 and i 2, and a railway line between loading

s1at. io ll iJ i-l l1d /'2' T Il<' two tr ucks rf'cp ivp the order to transport goods 911,912,921, and 922

from 1I J(' respect.iv(' loa.d illg dock to load illg st.at ion iI, to take t he t rain to 12, and to unload
11}('r('. Bot. h tnlCks haVE' 1.0 fetch goods both from il an d from 12 , In this scenario time plays
a role ill a t.wofold Ill aIlI lC' r : first., t.Jw two t. ru cks have to synchronize t heir loading dock
ac1.ivit i('s, sillc(' oll ly onf' truck at a t.ime call bf' served at each loading dock. Second, they
Il it\'(' t.o coordillo,t.e 1.ll e ir t.ravf'1 by train, sillcf' bot.h trucks shou ld tak the same t rain to 12 •

All illt.e lli gC' lIt. pl a ll for I I alld 12 wou ld be 1101. t.o st.art at t he same load ing dock, but rather
c.g. 11 could first. go t.o d l whil C' 1'2 could first. go 1.0 <12 , in o rde r to avoid 'wait states' . Then

34

~
d1 '-----___ d2 __ \.:~

11

Figure 5.l: A Loading Dock Scenario

they could meet at II and take the train to l2 together. We suggest the use of time interval
constraints in order to synchronize the actions of i l and i 2 . A formal solution to the example
using the TRAM system is described in chapter 7. The complete TRAM program modelling
the problem can be found in appendix A.

35

Chapter 6

An Extended Modal Logic (EML)

In this chapter, we present the extended modal logics EML. In section 6.1, we define the
syntax of EML by extending the syntax of a standard modal logics by additional temporal
operators, and by generalizing the notion of modal logic worlds to time instances, which are
defined as the union of worlds and time intervals. In section 6.2 we provide a model-theoretic
semantics of EML. Finally, in sect ion 6.3 we show how to draw inferences over time intervals.
For reaSOllS of space, we assume that the rea,der be familiar with FOPL and modal logics. We
presuppose notions such as term, wff, interpretation, model, satisfiability, tautology etc. (d.
[8887] for an introduction into FOPL and [Ram88] for modal logics).

6.1 The Syntax of EML

T IIf" bas ic I)rimitives of the time model underlying to EML are wor·lds. Intervals are defined
as c1oSf'd Sf'CIII<' IlceS of worlds. Starting from this we can now define time instances.

Definition 6.1.1 Bf' W a n01H!mpty sri of 'Wor-lds. The r-e/ation :=J defines a partial order
on r/('11/.('1/,1.<; of W (accessibility relation). We defin e the set I of intervals as:

7'//.(, sf'!. T of I.iu/,(· l:nstrmcr:s is T : = W u I.

NC'xt. , Wf' df'fiIlC' t.1lf' (/.(' cf.<;.<;ibili ty n '/at ion :=J+ over arbitrary elements of T III the frame
sYSt.C'1ll F = (T , :=J+).

Definition 6.1.2 Bf' T a non-empty sd of time instances, and be :=J+ a binary r-elation on
r-/('I//("lIls ofT. F01' (f.1·bilnJT"!J finnf'nis t l , t2 E T , t 1 :=J+ 1.2 holds iff:

,) II E W , 1'2 E I t with 1.'2 = (wu, ... , w n) and 11 :=J Wu

36

In order to be able to describe both worlds and interval s, we introduce new modal operators
such as 6, V, +, . , 0 and El .

Definition 6.1.3 (EML) Th e extended moda.l logic language EML is defin ed by adding to
a standard modal logic language ML th e logical s ymbols V , 6 , +, . , 0 und El. B e <I> a
well-f01'm ed formula (wff) in ML, and i := (wo , ... , w n) i n 7 , then <1> , 6<1> , V <I> , O<I> , D<I> ,
+ <1> , . <1> ,0<1> and El<l> are wff 's in EML . Th ey are to be read as follows :

• 6<1> : Th ere exists an immediately s 1J.ccessing time ins tan ce, at which <I> holds.

• 0 <1> Th ere exists a tim e insta.nce at which <I> holds .

• + <1> Th ere exists a time interval du ring which <I> holds.

• 0 <1> In th e (cun'e nt) tim e interva.l i th ere erists a time instance at wh ich <I> holds .

A na.logo'llsly, we defin e th e s ymbols V , [j, • unci El /01' un iversal quantification of time
instances a.nd intervals, ·respectively.

In the next sect ion, we provide a semant.i cs for EML t.e rms and formulas.

6.2 A Model-Theoretic Semantics of EML

We define the semanti cs of EML in terms of Kripke structures and Kripke interpretations ,
which is a quite familiar technique for modal logi c approaches. In the followin~, we write
"<" for the accessibility relat ion =:J+ over 7 whenever it becomes clear from the context what
is meant.

Definition 6 .2.1 A Kripke interpretation is a tuple M = (7 , <, 1), I) , wher'e th e follow
ing holds:

1. T is a non- empty set of time-insta.nces . W be th e set of worlds in 7.

2. < is a (part ia0 binary r-elat ion on 7 .

3. 1) is a non- empty se t of individuals .

4· I is a function which maps each n - ar'y function symbol f E :F to an n- ary function
fM on 1) and each n - ary predicat e symbol pEP in each world W E W to an n- ary
relation p,:! on 1) , so that the following holds:

(a) p,:! <;;;; 1)n , if p E pi and

37

(b) p~ = p~ f01' all w , w' E W , if 1) E p ' .

Note that I defin es a standard interpretat.ion fun ction for moda.l logi cs. Since worlds are
the basic primitives of the language, I is only defined over worlds. Interval formulas are
interpreted by pulling them down to the worlds contained in the interval. As usual , fun ct ion
symbols have a fix ed interpretation whereas predicate symbols are fl exibly interpreted l

. Next
we define how terms and formulas are interpreted. As the reader will see this is quite similar
to standard modal logi cs.

Definition 6.2.2 B e V th e set of all individual variables, and be 1) the set of all individual

constants. A variable a ssignment relating to a J(ripk e int erpretation M = (7, <, 1), 1) is
(J, mapping a: V -t 1). Th e value a w (x) of (l t erm x in a world W E 7 is defin ed as follo ws:

1. aw (:c) = a (x) for x E V .

2. a w(f(t 1 , . .. , in)) = I(f)(aw (tt} , ... , a w(t n)), other·wise .

Here we consider only global variables2
, i . e. the value of a term does not depend on t he

act ual world.

Definition 6 .2.3 B e M = (7 , <, IJ, 1) an interpretation, a an assignment fun ction . M , a
satisfy th f' fonn'll.la <1> in a tim e instan ce tu E 7 if th e following holds t ru e:

I . <1> is a1l. atomaT' form:II.la P(t 1 , ... ,tn), and Ito(P) (ato (tl) , . . . , a to(t n)) holds (ab
b 1'(' /J. (M , (\') F to P (t.l , . .. , t",.)) .

2. <1> is ..., <1> I , anri (M, a) Fto <1>1 rioes not hold.

1- <1> is 6 <1>1 and f' E 7 r:r. is ts with tu < f.' : (M ,a) Ft l <1>1 and th ere exists no til E 7 with

lu < f" < I' .

,r;. <1> is 0 <1> I and (M, (\') Fto <1>1 or a t' E 7 f:xis ts with tu < t.' , such that (M, 0') p t l <1>1 '

6. <1> is . <1>1 and (M, a) Fto <1>1 fOT' f. u E I , or an i E I exists 'With t o < i, such that

(M , Ct) Fi <1>1'

1. <1> is 0 <1> I 1/.'/1,£1 t u E I , '11l1:t.h 1.0

(J\1 , Ct) F", <1>1 '
(Wo, . .. , wn) and (J. 'til E t o exists, such that

H. <1> is (<1>1 witli (E {V, 0 , . , B}, and (M, a) Fto ...,t...,<I>I , where t is th e corresponding

t/ f'1 /1J'11.t to (of { 6, 0 , . ,0 }.

l lf wt' want t.o a llow hot.h fix t'd and f1 t'xihl t' flln cti on symhols , t.l w dt' finit,ion of I must. be extended (cf.
[l3r z~!) l) .

" If Wt' wOllld like 1.0 consid t' r local va ri ahles as well , the ass ignn1f'nt. fun ction ex has to be modified ,
I' f'f' pf'c t.ivply.

38

The notions of semantic conser/'I enee and /,au/,%gy are defined exact ly as in classical modal
logi cs. In the following , we will provide some examples in order to give an idea of the
expressiveness of a formali sm for knowledge representat ion based on EML.

Example 6.2.4 Classical modal logi cs are typically rest ricted to inferences of the type 'Does
a world w exist in which a certain goal G holds?'. So we could ask if there exists a world in
which the loading order of truck truck1 is empty. By using EML, more express ive inferences
are possible:

1. There exists a time interval In whi ch truckl goes by train and In which its loading
order is always empty:

• Ft + (B(gobyTrain(truckl) 1\ 10adingOrder(truckl ,[])))

2. There exists an interval 'l during which truck trucl.:i is di spatched at loading dock
mmpl, and t here exists no interval following direct ly to i in which tnl.ckl stays at
mmpl:

• Ft + (0(atRamp(truckl, rampl)) 1\ 'V·0 (atRamp(truckl, rampl)))

•
6.3 Integrating Interval Logic

In this sect ion we describe how Allen's int.ern l relations can be embedded into EML. We
achieve this by means of a binary function Access whi cb is globally defined. Its value at
an arbitrary time instance t is a special time value associated to t. For t E I the time
value consists of the first and last point of the interval, for t E W it consi sts of two identi cal
values. Intuitively, the time value is an abstract measure, which ca n be modelled e. g. by
a real number or by an integer. Access allows to compare arbitrary worlds as regards the
temporal relationship between these worlds , even if the accessibility relation is only partial.
In the implementation of TRAM , a length value is assigned to each edge in the graph of
worlds, and the time value of a world computes as the sum of the edges starting from the
current world. Now, we formally extend the notion of interpretation by the Access function:

Definition 6.3.1 An interp1'etation is a t11ple M' = ((7 , <, V , I) , Access) where (7, <, V , I)
corres ponds to the interp1'etation of dejt:nition 6. 2.1 , {[nd th e fu.nction Access: V2 ---t N 2

dejt:nes the access to a time instance.

Now, we are able to define the thirteen Allen relations as binary predicates over the time
values. The transformation of the relation into a representation based on instants rather
than intervals, and the axiomatization for the set of natural numbers do not cause serious
problems . Therefore, we desist from a more detailed description of this issue and refer to
literature (e. g, [Ram88]). Rathermore, we provide some examples taken from our loading
dock scenario to illustrate the usefulness of EML:

In the following examples we show how several patterns of synchronization of resources
between agents can be represented by using EML.

39

l. Tlw first example shows how the synchronization of shared resources can be represented
using EML. Assume that two trucks truck1 and tr'/J,ck2 have to meet at the loading
station station1 in order to take the train together. So we can ask whether there is a
time interval in the future (starting from time t) where the trucks truckl and tr'U,ck2
are bot.h at the station? (This is the precondition for them to use the shared resource
train.)

Ft+ (aLstation(truckl, stationl))
+ (aLstation (truck2, station I)
equals(XI ,YI ,X2,Y2)

A Access(XI ,YI)) A
A Access(X2,Y2)) A

2. In many applications agents which independently pursue their own goals have access
to common resources which may only be used exclusively. This access has to be
synchronized. In our loading-dock example the loading ramps can be considered as
exclusive resources, since at most one agent (truck) is allowed to stay at a ramp rampl
at time t. So we could ask in EML, whether a world exists starting from time t in
which both truck1 and tr'llck2 have achieved their goals and the access to the ramp
ramp1 has been scheduled:

Ft OJ(goaLachieved(tnlckl) A + p(aLramp(truckl, rampl) A Access(XI ,YI))) A

OJ(goaLachieved(tn,,ck2) A + p(aLramp(truck2, rampI) A Access(X2,Y2))) A

(after(Xl,YI,X2,Y2) V before(XI,Yl,X2,Y2))

40

Chapter 7

The Knowledge Representation
System Tram

III this section we develop a computational model of EML which is based on PROLOGWe
pre::mme that the reader be familiar with this language and with standard logic programming
ill general (d. [eM81 , SS8G] for PROLOG [11084] for logic programming) . After giving a more
informal idea of how TRAM works, we will specify an operational semantics for TRAM 7.1
a lld a compilation scheme for TRAM programs into PROLOG programs 7.2. Section 7.3
rf'calls our loading-dock scenario presented in chapter 5 and outlines a solution to it.

Tllp. ill1pkmcutation of modal logic propositions is coupled with therepresentation of differ
ellt worlds and of properties associated to these worlds . In TRAM we describe those worlds
by collst.allt df'clarations wO, wI etc. together with a unary predicate 'World/i. The prop
ert.ies (valid propositions) of a world 'Wi are represented by PROLOG clauses. Propositions
wltich arf' valid ill any world are bound to a variable world name.

TIt~ modal logi c accessibility relation defines a partial order on the graph of worlds, i. e. it
ddill f's which worlds are reachable (in the future or past) from a given world. We express
t.ltis ill TRAM by defining edgf's betwf'en worlds using a predicate edge/2. Apart from con
siderillg wor lds t.hat actually f'xist., THAM allows us to compute possible worlds starting from
til(-' currellt world. For this purpose, we define trallsit ion operators with preconditions and
]JoslconrW.ions, which allow tra,l1sitions between worlds if their preconditions are satisfied . A
world wh ich has bef'll computed this way is identified by the list of operators applied succes
sively begillllillg from t.he currellt world. In order to be able to decide which predicates hold
ill comj)ut.f'd worlds , the f'freds of the appl ication of a transition operator must be defined
by it.s post.colldit.ioll. We can define bot.h pn:mitive transit ion operators (POs) and macro
t.rallsit ion opnat.ors (MO). MOs can bf' const ructed as sequences of POs, and they can be
etrhit.rarily lI('st.ed . Sillce MOs defin f' sequences of worlds, representing an interval by an MO
is a V<'ry II at. ural idea.

Not.(', t.Jtat. ('xpalldillg wor lds by us illg opf'rators does not cause new facts to be added to the
kllowl f'dge base . TIat.llf'rmore, sincf' the computation of a world 'Wi is decoded into the world
Itel.ll\(, (l,S thf' path of a.pplif'd operators, thf' trut.h of formu las in Wi can be computed by the

41

name of 'lV/.
For formulating queries, TRAM provides predicates such a,s LdiamoncUrans/2, whose first
argument is a goal clause, and whose second argument is bound to the name of a world for
which the query could be proved (i f such a world exists).

At the end of this informal motivation, we sh~)Ulcl mention how propositions depending on
specific worlds are actually handled in TRAMEach clause of a TRAM program is translated
into a PROLOG clause by using a binary function r'eijy, which adds to each clause an
argument representing the world the clause refers to. This will become more apparent in
section 7.2 where we define a compilation scheme for TRAM.

7.1 An Operational Semantics of TRAM

In this section we present a scheme of computation for our knowledge representation lan
guage TRAM which is based on the extended modal logic EML we introduced in chapter
6. Since we intend a modal logic representation, world indices Ware attached to goals
in order to express that the evaluation of a program depends on the current world W.
In TRAM a distinction is made between two kinds of program clauses: the first one de
clares transition operators modifying the WJrld and is represented by 'H := B' , the second
one defines the usual program clauses which associate propositions to worlds. It is repre
sented 'H t- B' as we know it from PROLOG. H is a Goal Gw , B is a body goal which
can be either {tr'ue,Gw , (B',B"),-,B', (OB')w}. G represents an atom, W a world name,
B',B" are body goals, and 0 stands for an arbitrary element of {6 j ,'Vj,D j ,Oj, + j, . j,
E3,0, 6 p, 'V p, D p, Op, + p, . p}. For the sake of simplicity we write H t- as an abbreviation
of H t- true.

Central notions for the operational semantics we provide in the following are substitution,
unifier, and most general unifier (m.gu) . They are defined exactly as it is the case in PRO
LOG . Since world arguments are represented by PROLOG data structures (i. e .. lists), it
makes sense to talk about the mgu of two worlds, and this mgu (if it exists) can be computed
by the standard PROLOG unification algorithm. Now, we define the operational semantics
of a TRAM program.

Definit ion 7.1.1 (Operational semant ics of TRAM) Be P a TRAM p1'Ogram, G a goal,
CJ a substitution. G is a logical consequence of P under' CJ (P Fa G) if P U G is contradictory
under CJ. The following cases must be consider'ell:

1. G = true with CJis the empty sv,bstitution

2. G=Bw with H~, t- B' E P
and CJ' = mgu(Bw, H:..v,)
and P F CJ'(B') under CJ

lThe implicit representation of applications of operators estab lishes our solution of t.he IT'ame-problem

42

3. G = (B',B") , with
a.nd

P F B' under (J"

P F (J"(B") unde1' v

4. G=(-,B) ,with th er'e ex. no (J" : P F B uude1' (J"

and (J' is the empty substitution

5. G=(OjB)w

6. G = (0B)w

fO . n = ('dg('*(W, W')

fl . (,' =r.dg(:*(W, W')

I ~ . (,' = (:dg('(W, W')

, with

, with
or

and
and
and

, with
and

I with
and

, with
and

, with

, with
and

, with
and
and
and

1 :Y. (,' = jJ7'O'/l f;* (B, W , (8', B"))
with

01'

14. (,' =]1'/'0'/1(-(B , W, 071WII)
with

and
and

P F -'(®j -,B)w uude1' (J'

P F Bw unde1' (J'

MOpw lI := B' E P
W = (J"(MOpW')
(J" = mgu(W", \IV')
P F prove* (B, (J"(W'), (J"(B')) under (J'

P Fedge (W, W') under (J"

P F (J"(Bwl) 'tI.ndf'.r (J'

P Fedge*(W, W') under' (J"

P F (J"(Bwl) 'tmde1' (J'

P Fedge*(W, W') under (J"

P F (J"(BW 1) under (J'

(J' = mgu(W, W')

P F cdg f'. (vV, W") under (J"

P F edg f'* ((J"(W"),(J"(W')) under (J'

Opw lI := B E P
(7' = 'mgu(W, W")
P F (J"(B) under (J'

W' = (7'(OpW)

P F pr'o'/lc(B , W, B') under' (J'

P F 711'O'/I e* (B , W, E") under (7

dge(W , W') under' (7'
W' = (7"(7'(OpW"))
P F (7"((J"(Bwl)) under (J'

o stallds f()',. an adn:/7'a7'Y f'iF:7I1.f'.nt of the set {'V j , OJ, . j, ElL ® stands for the element
('O/"n'sjlO llf!ing to 0 of {6 j ,O j, + j, 0 }. P T'C]JT'csents till: current set of TRAM clauses,
~V, W', ltV" , and ltVlII a1 ,(, wodd 1Ul11U:S (wo.,.{d flT'gu1n ents), G is a goal, B,B', and B" are
body gonls . OPw and MOPw (J.1 '(' cl(/.'I/..<;f: hmders declm'ing primitive and macro operators,
"(.'iJI,di'/J(·ly. OJJW ('/'('S]I. MOJlW) df'1l.Otf's conca.tf'na.tion . Intuitively, it means that the

43

world named Op W (OpMW) is accessed slarting from a wo,rld W using the oper'utor' 01'.
The modal operators {\7 p, D p, . p, 6 1), Op, + ,,}, which allow strde'11l,ents about the past can be
defined analogously.

Note that 1) ... 4) correspond to PROLOG SLD resolution. The index W in case 2) merely
expresses that the clause depends on an additional world argument. Case 5) treats the
modal-logic rules of double negation for box operators. Cases 6) ... 9) maintain the diamond
operators using the meta-predicates edge, edge·, pr'ove, and prove·. In cases 10) ... 14) the
semantics of the meta-predicates edge, edge·, prove, and prove· is defined. edge(1V, W')
spf'cifies an edge connecting two worlds Wand W' in the graph of worlds. The predicate
pT"OlIe(G, W, W') succeeds if the goal G can be proved in a world W' starting from the
current world W.

7.2 A Horizontal Compilation Sche m e for TRAM Pro
grams

III t.his sectioll we provide a formal scheme for compiling TRAM clauses into PROLOG. The
basic idea is to trallsform each n- ary TRAM goallJ(t1, ... , tn)w into an (n+l)- ary PROLOG
goal lJ(/.I, " " 1' 11) W), whose last argument W represents the modality, i. e. the world. The
compilat.ioll itse lf is performed by the procedme C. The function reify defines the way a
sillgk TRAM-goa! is transformed:

Definition 7.2.1 The fllnclion reify maps each TRAM goall'(t 1 , ..• , tn)wl, ... ,wk to a PRO
LOG .'}Oo.llJ(/I , ... , I.,., WI • ... • Wk) as follows:

/I r ,'(', I hr' Illudiou sy.",,"o[• symbo!i:::('s tlu; couca/'(;ualion of wor·lrl arguments.

Example 7.2 .2 J3(' QWI t.lle goal ou(a, b)wo and RW2 the goal oTLtable(X)puidown(X), W.
n ify t.rallsl<l.1.('s qW I alld RW1 as follows:

n ify((}n(a, h)) =?on(a, b, wu),

'I '('~h;(01"-' a"l('(X)]Julr/o'W'11.(x),W =? 01L!.able(X,]Jutrlowu(X) • W).

III t.11(' CIJIT(,Ilt. illlpl('m(,llt.atioll til<" world argUll1f'llt. is represented as a list containing the
St.iUt. world (\,lld tI J(' seq u(,llce of olwrator app! i cation. •
III til(' followillg W(' explaill Ilow a TRAM program is t.ranslated into a PROLOG program.
'1'1)(' proccc\ me's (: , (" a1ld ('" act.ually d('n 11f' the horizontal com pi lation scheme for TRAM
prograills. III (,' a dist.i1lc1.ioll is 111iHk bf't,wf'f'1I operator declarations and 'normal' program
('101\s('s. (:' a1ld (.'" perform t.he t.ra1lslat.ion of the differf'llt goals.

44

Definition 7.2.3 The procedure C maps the set of TRAM cl(luses TCL to the set of horn
clauses HCL. C : TCL --t H eL is deJind (I S follows:

{

op(POp, W') l- C'[B]
C [c~:= op(reify(MOpwl), W) l- C"[B , W, W']

for cl = (POpw := B)
for cl = (MOpw := B)
for cl= (H l- B) C'[H]l- C'[B]

W is a new variable, POp is a pr·imiti'IJe operator declaration, and MOp is a macro operator
declaration.

The first case in the above definition handles the declaration of a primitive operator. The
corresponding body B is processed by the procedure C'. B consists of conditions that have
to be satisfied in a world where the operator shall be applied. In the case of declarations of
macro operators (case 2) also primitive operators can be app lied. Therefore, such a body is
translated by a special procedure C".

Definition 7.2.4 The auxiliar·y fu.nctions C' and C" map fach body goal B to a new body
goal HB. C' is defined as follows:

C'[B] :=

true
rei1y(B)
C' [B'], C"[B"]
, C' [B']
,C'[(® f ,B')w]
edge(W, W'), C'[B~,1

edge(W', W), C'[B~,]

edge*(W, W'), C' [B~,]
edge*(W' , W), C'[B~,]
edge*(W, W'), C'[B~,]

edge*(W' , W), C'[B~,]

(C'[B~,l;
(W = MOp. W',
C' [B']

WI '
edge*(W', Wd,
edge*(Wl' Mbudy • W'))).

fo r B = true
101· B = Gw , G tenn
for· B = (B', B")
f01' B = ,B'
f01' B = (Of B')w
f01' B = (6 f B')w
fo ·r B = (6 p B')w
for· B = (OfB')W
for B = (O)JB')w
for B = (+ fB')W
for B = (+ pB')w
for B = (0B')w
and there ex. (MOp f- Mbody)

In the above definition, 0 stands for an arbitrary element of the set {\7 j, 0 j, • f , B}, ®
stands for the elFment corresponrhug to 0 of {.6j, Of, + j,0}.

If B is an atomar body goal B = Gw , the corresponding world argument is simply appended
by means of the function reify. If the body goal has the form B = (.6 f B') w, the existence of
exactly one edge (edge(W, W')) in t he graph of worlds directed to the future is required, and
the corresponding goal B~, is processed in the new world. For B = (OjB')w, the existence
of at least one edge pointing to the future is required. If B = (0B')w, W is expected to be

45

an interval. There are two possibilities to prove B~,. Firstly, B(,y, may ensue directly from
applying a macro as a normal transformation operator, and thus follow from the current
world. Secondly, it can follow from one of the worlds contained in the interval.

The function Gil provides the translation of macro operators and their corresponding body
goals. In the body of a macro declaration we make a distinction between calls to primi
tive operators, which have to be translated separately, and other conditions which can be
processed by G' itself:

{

G"[BI' W, WI], G"[B2' WI, Wb]

G"[B, W, W b] := op(POp, W), Wb = POp . W
G'[Bw], Wb = W

for B = (BI' B 2)

for B = POp
otherwise

Finally, we will spend a few words on the actual TRAM run-time system. It solely consists
of two predicates edge and edge*:

• edge*(W, W) f-

edge*(W, W') f- edge(W, W"), edge*(W", W')

• edge(W, Ope W) f- op(Op, W)

Intuitively, edge(W, W') finds an edge from one world W to a next possible world W' , if such
an edge exists. This depends on whether there is an operator declaration whose operator
Op can be applied. Then the operator and the world argument are concatenated to the new
world argument Ope W. The first case of the specification of edge* is necessary because of
the reflexivity of the accessibility relation, i. e. since the current world is always a possible
world.

7 .3 Recalling the Loading Dock Scenario

This section contains excerpts of a TRAM program representing the loading-dock scenario
basically defined in section 5. Figure 7.1 contains some parts of the corresponding TRAM

database. Some definitions of primitive and macro operators with pre- and postconditions
are shown. The primitive operator move ToRamp (Agent, Ramp) can be applied if the Agent
has to load or to unload something at the ramp, if it has not just moved back from the ramp
in the previous world (this is to avoid trivial circularities), and if it has already entered the
loading-dock area, but is not yet at the ramp. After prefroming move to ramp, in the new
world, it is true that the Agent is at the ramp and can now perform its loading or unloading
job .

. A crucial concept is that of macro operators, which can be defined as compositions of simple
operators . Thus, macro operator getGoods is defined by first moving to the ramp, then
loading, and finally moving back from the ramp. Thus, the macro operator defines an interval
consisting of a starting world, two intermediate worlds defined by applying moveToRamp
to the starting world and by applying load to this world, respectively, and of a final world

46

% •••
% Loading Dock Scenario : Source Code
% •••

Y. ••••••••••• Primitive Operators movetoRamp , load, moveBack •••••••••••••••••

%--
% Pr ec onditions for a tru ck moving to a loading dock

prim_op e moveToRamp (Agent, LoadingDock » :
i s Agent (Agent) , isRamp (LoadingDock) ,
not done e moveBack (Agent , LoadingDock »,
ent e red (Agent , LoadingDock) , not atRamp (_ , LoadingDock),
hasToLoadAtRamp(Agen t, LoadingDock) .

%--
% Pre c onditions for a truck being loaded

pr i m_op e load (Agent , LoadingDo c k » : -
i s Agent (Agent) , isRamp (LoadingDoc k),
atRamp (Agent , LoadingDo ck) , hasToLoadAtRamp (Agent, LoadingDock) .

%--
% Preconditions for a tru ck mov i ng avay from a loading-do ck

p r i m_op (mov eBac k (Agent , Lo adingDock» :
is Agent (Agent), i s Ramp (Load ingDock),
not don e(moveToRamp (Agent, LoadingDo ck», atRamp (Agent , LoadingDock) .

% ••••••••••••••••••••••••••••• Mac ro ope r a tors ••••••••••••••••••••••••••••••

ma c ro _op (ge tGoods (Agent , LoadingDo ck » :
move ToRamp(Agent , LoadingDoc k),
l oad (Agent , Load i ngDoc k) ,
mov e Back (Agent , Load i ngDo ck).

% ••• Post cond i tion s of the operators movetoRamp, load , moveBac k , getGoods •••

mov eToRamp (Agent , Load i ngDo c k) . done(mov eToRamp (Agent, LoadingDock» .
nlOv eToRamp (Agent , Load i ngDo c k) . atRamp (Agent , LoadingDo ck).
move ToRamp (Agent , Lo adingDo c k) . loadingOrd er(A, 0) : -

10adingOrder(A, 0) .

l oad (Agent , LoadingDo c k) . atRamp (Agent , LoadingDo ck) .
l oad (Agent , Load i ngDo c k) . 1oadingOrder (Agent, RewOrder) :

l oadingOrder (Agent , OldOrd e r),
{d elet e(OldOrd e r , (LoadingDock , Good) , Re wOrde r) } .

mov e Ba ck (Agent , LoadingDock) . i s Driving (Agent) .
mov e Back (Agent , LoadingDo ck) .done (moveBack (Agent , LoadingDo c k» .
move Back (Agent , LoadingDo ck) . 1oadingOrder (A, 0) : -

load i ngOrder (A, 0) .

ge tGoods (Agent , LoadingDo ck) . isDriving (Agent) .
ge t Goods (Agent , LoadingDo ck) .1oad i ngOrder (Agent , l e wOrd e r) :

loadingOrder (Agent, OldOrd e r),
{d e lete (OldOrd e r , (Load i ngDo c k , Good) , RewOrd e r) } . %%% . ..

: - p rolog .
th isWorld (W, W).

Figurf' 7. 1: A T RAM dat.abasf' for t he Loading Dock Scenario

47

after applying the macro. By mapping time values (durations) to the single actions, we can
formulate how much time has passed by going from the start world to the end world of the
interval.

In figure 7.2, a possible start world for the loading dock scenario is described. In this start
world, both trucks truckl and truck2 are driving and have orders to accomplish. Moreover,
there are some propositions true in any world (expressed by the variable world name Every
World. E. g. both trucks are agents, for both trucks station2 is the target stat ion, and the
only way to reach station2 from stat ionl is by taking t he train. By the way, it seems the
only way to reach station2 at all.

x ••••••••••••••••••••••••••• WORLD PREDICATES ... • ••••••••••••••••••••••••

: - vorld(startWorld) .
isDriving(truckl) .
loadingOrder(truckl , [(loadingdockl, gll) ,(loadingdock2, g 21)]) .
isDriving(truck2) .
loadingOrder(truck2 , [(loadingdockl, g12) ,(loadingdock2 , g22)]) .

: - vorld(EveryWorld) .
isAgent(truckl).
hasToGoByTrain(truck1, stationl, station2).
isTargetStation(truckl , station2) .

isAgent(truck2).
hasToGoByTrain(truck2, stationl, station2) .
isTargetStation(truck2, station2) .

isRamp(loadingdockl) .
isRamp(loadingdock2) .
isTrainRamp(stationl).
isTrainRamp(station2) .

hasToLoadatRamp(Agent , LoadingDock)
isAgent (Agent), isRamp(LoadingDock) , loadingOrder(Agent , List) ,
{member((LoadingDock,Good) , List)}. XXX This goal invokes original PROLOG

Figure 7.2: A TRAM Starting World

Finally, in figure 7.3, we provide a query to the TRAM system delivering a world in which a
task schedule has been achieved where 'wait states' of trucks at ramps are avoided and the
two trucks finally meet at the station to board the train. Note that the variables Resl and
Res2 incorporate the 'plans' for truckl and truck2, respectively, i. e . the sequence of act ions
which transmit them into a world in which their goals are fulfilled. A li st ing of the complete
solution to the problem can be found in Appendix A.

48

% TRA" query ensuring a scheduling of the tvo trucks. The predicates
% f_diamond_trans and p_full_diamond_trans correspond to the E"L operators
% defined previously .

?- f_diamond_trans(orderDelete(truckl), Resl startl/orld),
f_diamond_trans(orderDelete(truck2), Res2 startl/orld) ,
note p_full_diamond_trans(

(thisl/orld(Cl), { Cl =[getGoods(truckl,RampI,_) 1_] ,
p_full_diamond_trans((thisl/orld(C2),

) .

{ C2=[getGoods(truck2,RampI,_) 1_] }) ,_,Res2),
Cl equal C2}),_,Resl)

%................... Answer Variable Bindings ••••••••••••••••••••••••

Resl =
unload(truckl) .goByTrain(truckl,rampT2, [useTrain(truck1 ,rampTl,rampT2) ,changeToTrain(truckl , ram pT1)])

.getGoods(truckl,rampl, [moveBack(truck1 ,ramp1) ,load(truckl,ramp1) ,moveToRamp(tru c~l,ramp1)]) .

driveTo(truckl,ramp1)
. getGoods(truck1,ramp2, [moveBack(truckl ,ramp2) , load(truckl,ramp2) ,moveToRamp(tru ckl,ramp2)]).
driveTo(truckl,ramp2) . startl/orld,

Res2 =
unload(truck2) .goByTrain(truck2,rampT2, [useTrain(truck2,rampTl,rampT2),changeToTrain(truck2,rampTl)])

. getGoods(truck2 , ramp2, [moveBack(truck2,ramp2) ,load(truck2,ramp2) ,moveToRamp(tru ck2,ramp2)]) .
driveTo(truck2,ramp2)
. getGoods(truck2 , rampl, [moveBack(truck2,rampl) , load(truck2 , rampl) ,moveToRamp(tr uck2,rampl)]).
driveTo(truck2,rampl) . startl/orld,

Cl = _161, RampI = _205 , C2 = _258

Figu\"f~ 7.:3: A Query to the TRAM System

4D

Chapter 8

Conclusion and Outlook

Conclusion

111 this paper WI? have tri ed to provide an overview on some current existing approaches on the

l' ~ prf'scJJtation of temporal knowledge . After presenting some important work on this subject,
w~ described t.lle CHRONOLOG temporal programming language and the TRAM system for
tll ~ reprl?sentatioll of temporal knowledge 'based on CHRONOLOG. TRAM integrates two
dif("(' r(,lIt conc~pts of time: one based on modal logi cs and another one related to intervals
of t.ime. Wf' have shown how intervals can be represented as connected sequences of worlds
ill til(' g raph of possible worlds. We have provided a formal treatment of this approach by
illt.egra t.illg a sl?lllalltics of inte rval s into a standard modal temporal logics, and we have given
;'111 opnat.iollal s(, lIlantics for our system. Moreover, we have shown how the system can be
illlplf'Il1f'IIt.f'd 011 top of a PROLOG syst.em by defining a horizontal compilation scheme.
WI' hav(' df'll1ollstrat.l?d the usp.fulll l?ss of our system by giving an example which involves
sY llchrolli zat.i oll a lld coordination ill a multi-age nt scenario.

Outlook

Frolll om ClllT('IIt. work quil f' a ff' w JJ f'W dirf'c1. ives have arisen wlticil will determine our future
wor k ill t.ell1poral logics. First, t.11(" combinatorial explosion caused by the operators which
nil I he IIs('d 1.0 ('xpand lIew worlds is a serioll s problem which appears in m any areas in
!\ I. It. will force liS t.o find a nd to a pply illt f' lligellt mf't hods of rest ri ct ing the search space.
The dC'1.('cti o ll o f cyclf's, tllf' USf' of goal-driven search techniques, and the declaration of
colIst.raillt,s hy t.11(, lISN arf' possiblf' steps in this dirf'ct ion. Second, due to our work in the
field o f Illltlt.i -ag<' Ii1, syst.f'IllS ((" I". [BGSS, GH89 , DM90 , DM91] for an overview), we will have

to colldllct. fmt.ll<'r ('xalllillat.io llS on tllf' ro lf' t.ime pl ays with res pf'ct to multi -agent knowledge
r('pl'<'s<'Ii1,at.ion , dist.rihut.f'd control a nd pl a nning , as well as t.he coordination of the actions

o f dirr< ' l'< ' ll1. agellts. Th(' small f'xampl f' Wf' 1)J'f'Se n1.ed in sect ion 5 g ives an idea of some of the
possihilit.ies ("o ll1.aillf'd ill t.his fi f' ld. Aftf'1' all, unci f' rst. a nciing the mystery of time continues
1.0 h(' O Il<' o f 1.he wry fa,scillat.ing cll a ll f' lIgf's for Ilum a n research .

50

Appendix A

The TRAM Solution for the Loading
Dock Example

%===
%
% A loading dock scenario
%
%===

%**
%************ Prim_ops .. . ****************
%**

% An agent can DRIVE TO a LoadingPlatform, if
% it has to load something there
% it is driving
% and it did not corne from this LoadingPlatform in the world before

prim_ope driveTo(Agent, LoadingPlatform)) :
isAgent(Agent),
isRarnp(LoadingPlatform),
isDriving(Agent),
not donee driveTo(Agent, LoadingPlatform)),
hasToLoadAtRarnp(Agent, LoadingPlatform).

%--

% An agent can only be UNLOADED, if
% it stays at this LoadingPlatform
% this LoadingPlatform is its target LoadingPlatform
% it has nothing to load anywhere else.

prim_ope unload(Agent)) :-

51

isAgent(Agent),
isTargetRamp(Agent, LoadingPlatform),
atRamp(Agent, LoadingPlatform).

%--
% It can only become LOADED, if
% it stays at this LoadingPlatform
% it still has to load something there

prim_op(load(Agent, LoadingPlatform))

isAgent(Agent),
isRamp (LoadingPlatform') ,
atRamp(Agent, LoadingPlatform),
hasToLoadAtRamp(Agent, LoadingPlatform).

%--

% It can only MOVE TO THE LoadingPlatform, if
% it has entered the loading dock,
% there is no other agent staying at the LoadingPlatform,
% it has the order to load some goods at this LoadingPlatform
% it did not move back from the Platform the world before

prim_ope moveToRamp(Agent, LoadingPlatform»:
isAgent(Agent),
isRamp(LoadingPlatform),
not donee moveBack(Agent, LoadingPlatform»,
entered(Agent, LoadingPlatform),
not atRamp(_, LoadingPlatform),
hasToLoadAtRamp(Agent, LoadingPlatform).

1.--

I. It can only MOVE AWAY FROM THE LoadingPlatform, if
I. it stays there now

prim_op(moveBack(Agent, LoadingPlatform» :
isAgent(Agent),
isRamp(LoadingPlatform),
not done(moveToRamp(Agent, LoadingPlatform»,
atRamp(Agent, LoadingPlatform) .

1.--

I. An agent has to CHANGE to TRamp, if
I. it is already driving
I. its order is to go by train from this TRamp

'l. its 10adingOrder is empty

prim_ope changeToTrain(Agent, TRamp)):
isAgent(Agent),
isTrainRamp(TRamp),
isDriving(Agent),
10adingOrder(Agent, []),
hasToGoByTrain(Agent, Tramp, ToTRamp) .

'l.-------- --

'l. An agent can only USE THE TRAIN, if
'l. it has to use it
'l. it sits in a train

prim_ope useTrain(Agent, FromTRamp, ToTRamp)):
isAgent(Agent),
isTrainRamp(FromTRamp),
isTrainRamp(ToTRamp),
sitInTrain(Agent, FromTRamp),
hasToGoByTrain(Agent, FromTRamp, ToTRamp).

'l.--

'l. It can only wait, if it stays in the loading dock; not at the ramp!!!

prim_ope waite Agent)):-
isAgent(Agent), not atRamp(Agent,Goods), not done(wait(Agent)).

'l.**
'l.************ Macro_ops ... ***************
'l.**

macro_op(getGoods(Agent, LoadingPlatform))
moveToRamp(Agent, LoadingPlatform),
load(Agent, LoadingPlatform),
moveBack(Agent, LoadingPlatform) .

macro_op(goByTrain(Agent, ToTRamp))
changeToTrain(Agent, FromTRamp),
useTrain(Agent, FromTRamp, ToTRamp) .

'l.**
'l.********* WORLD PREDICATES .. . ***********
'l.**

: - world(startWorld).
isDriving(truckl).
loadingOrder(truckl,[(LoadingPlatforml, gll),(LoadingPlatform2, g21)]) .

: - world(startWorldTruck2).
isDriving(truck2) .
loadingOrder(truck2,[(LoadingPlatform1, g12),(LoadingPlatform2, g22)]).

: - world(EveryWorld).
isAgent(truck1) .
hasToGoByTrain(truck1, rarnpTl, rarnpT2) .
isTargetRarnp(truckl, rarnpT2).

isAgent(truck2) .
hasToGoByTrain(truck2, rarnpTl, rarnpT2).
isTargetRarnp(truck2, rarnpT2).

isRarnp(LoadingPlatforml).
isRarnpC LoadingPlatform2).
isTrainRarnp(rarnpTl) .
isTrainRarnp(rarnpT2) .

hasToLoadAtRarnp(Agent, LoadingPlatform
isAgentC Agent),
isRarnp(LoadingPlatform),
loadingOrder(Agent, List),
{member ((LoadingPlatform,Good), List)} . 'l.'l.'l. This goal invokes original PROLOG

driveToC Agent, LoadingPlatform) . entered(Agent, LoadingPlatform).
driveToC Agent, LoadingPlatform) . done(driveTo(Agent, LoadingPlatform » .
driveToC Agent, LoadingPlatform) . loadingOrder(A, 0):-

loadingOrder(A, 0).

moveToRarnp(Agent, LoadingPlatform) . done(moveToRarnp(Agent, LoadingPlatform» .
moveToRarnp(Agent, LoadingPlatform) . atRarnp(Agent, LoadingPlatform) .
moveToRarnp(Agent, LoadingPlatform) . loadingOrder(A, 0):-

loadingOrder(A, 0) .

load(Agent, LoadingPlatform).atRarnp(Agent, LoadingPlatform).
load(Agent, LoadingPlatform).loadingOrder(Agent, NewOrder):

loadingOrder(Agent, OldOrder),
{delete(OldOrder, (LoadingPlatform,Good) , NewOrder)}. 'l.'l.'l. . . .

54

rnoveBack(Agent, LoadingPlatforrn) . isDriving(Agent) .
rnoveBack(Agent, LoadingPlatforrn) . done(rnoveBack(Agent, LoadingPlatforrn)) .
rnoveBack(Agent, LoadingPlatforrn) . loadingOrder(A, 0) :-

loadingOrder(A, 0).

unload(Agent).orderDelete(Agent).

changeToTrain(Agent, TRamp).sitlnTrain(Agent , TRamp) .
changeToTrain(Agent, TRamp) . loadingOrder(A, 0) :

loadingOrder(A, 0) .

useTrain(Agent, FrornTRamp, ToTRamp) . atRamp(Agent, ToTRamp) .
useTrain(Agent, FrornTRamp, ToTRamp) . loadingOrder(A, 0) :

loadingOrder(A, 0).

goByTrain(Agent, ToTRamp) . atRamp(Agent, ToTRamp).
goByTrain(Agent, ToTRamp) . loadingOrder(A, 0) :

loadingOrder(A, 0).

getGoods(Agent, LoadingPlatforrn).isDriving(Agent) .
getGoods(Agent, LoadingPlatforrn) . loadingOrder(Agent, NewOrder) :

loadingOrder(Agent , OldOrder),
{delete(OldOrder, (LoadingPlatforrn , Good), NewOrder)} . 1.1.1. ...

: - prolog.
thisWorld(W,W).

cconsult(loadingDock) .
ccornpile(loadingDock).

switch_to_world(startWorld).
switch_to_world(startWorldTruck2) .

apply(rnoveToRamp(Agent,X)) .
apply(load(Agent , Ramp)) .
apply(unload(Agent, Ramp)).
apply(rnoveBack(Agent,Y)) .
apply(driveTo(Agent, rampl)) .
apply(driveTo(Agent, ramp2)) .
apply(changeToTrain(Agent, TRamp)).
apply(useTrain(Agent , FrornRamp,ToRamp)).
apply(getGoods(Agent, Ramp,_)).
apply(goByTrain(Agent, ToTRamp,_)) .

now(entered(Agent, Ramp)) .
now(atRamp(Agent, Ramp)) .

55

now(isDriving(Agent».
now(10adingOrder(Agent, Order)) .
now(hasToGoByTrain(Agent, Start, Goal)).
now(isTargetRamp(Agent, Ramp ».
now(hasToLoadAtRamp(Agent, Ramp ».
now(orderDelete(Agent)) .

f_diamond_trans(orderDelete(Agent) , W , startWorld) .

'l. Compound goals 'l.

Yo==

Query One:

Is there a World (Resi) in the future of (startWorld) in which
"orderDelete(trucki)" holds true and

is there a world (Res2) in the future of (startWorldTruck2) in which
"orderDelete(truck2)" holds true

and is there an interval (Wi) in the past of the world (Resi), which has been
created using "goByTrain(. .)",

and is there an interval (W2) in the past of world (Res2), which has been
created using "goByTrain(..)"

such that the intervals Wi and W2 are equal .

f_diamond_trans(orderDelete(trucki), Resi , startWorld),
f_diamond_trans(orderDelete(truck2), Res2 , startWorldTruck2),
p_full_diamond_trans(thisWorld(Wi) ,_, Resi),

Wi = [goByTrain(trucki, rampT2, _) I _],
p_full_diamond_trans(thisWorld(W2) ,_, Res2),

W2 = [goByTrain(truck2, rampT2, _) I _],
W1 equal W2 .

'l.==

Query Two
=============

'l. For no ramp (Ramp) there exist intervals (World_2i) and (World_22) in the past
'l. . of (Resi) and (Res2), which have been created by "getGoods" and between which
'l. the relations "" and "" hold . The predicates f_diamond_trans and p_full_diamond_tran:
'l. correspond to the EML operators defined previously .

f_diamond_trans(orderDelete(trucki), Resi , startWorld),

56

f_diamond_trans(orderDelete(truck2), Res2 , startWorldTruck2),
note p_full_diamond_trans(

(thisWorld(Cl) ,
{ Cl =[getGoods(truckl,RampI,_)I_],

p_full_diamond_trans((thisWorld(C2),
{ C2=[getGoods(truck2,RampI,_) 1_] }),_,Res2),

Cl equal C2
}),_,Resl)

) .

Result of the second query:
============================

** (2764) 0 Call:
getGoods(truckl,rampl,

[moveBack(truckl,rampl),load(truckl,rampl),moveToRamp(truckl,rampl)])
. driveTo(truckl,rampl)
.getGoods(truckl,ramp2,

[moveBack(truckl,ramp2),load(truckl,ramp2),moveToRamp(truckl,ramp2)])
.driveTo(truckl,ramp2)
. startWorld

equal
getGoods(truck2,rampl,

[moveBack(truck2,rampl),load(truck?,rampl),moveToRamp(truck2,rampl)])
. driveTo(truck2,rampl)
.getGoods(truck2,ramp2 ,

[moveBack(truck2,ramp2) , load(truck2,ramp2),moveToRamp(truck2,ramp2)])
. driveTo(truck2,ramp2)
. startWorldTruck2
** (2940) 2 Call:
** (2940) 2 Exit :

? I

relation(6,6,8,8,equal) ? I
relation(6,6,8,8,equal) ?

======= First successful search, after which the world (Res2) is rejected.

** (3063) 0 Call:
getGoods(truckl,ramp l ,

[moveBack(truckl , rampl), l oad(truckl,rampl),moveToRamp(truckl,rampl)])
. dr iveTo(truckl , rampl)
.getGoods(truckl,ramp2,

[moveBack(truckl,ramp2), l oad(truckl,ramp2),moveToRamp(truckl,ramp2)])
. driveTo(truckl,ramp2)
. startWorld

equal
getGoods(truck2,ramp l ,

[moveBack(truck2,rampl),load(truck2,rampl),moveToRamp(truck2,rampl)])
.driveTo(truck2 , rampl)
.startWorldTruck2 ? I

57

** (3193) 2 Call : relation(6,2,8,4,equal) ? I
** (3193) 2 Fail: relation(6,2,8,4,equal) ? I

** (3285) 0 Call:
getGoods(truck1,ramp2,

[moveBack(truck1,ramp2),load(truck1,ramp2),moveToRamp(truck1,ramp2)])
.driveTo(truck1,ramp2)
. startWorld

equal
getGoods(truck2,ramp2,

[moveBack(truck2,ramp2),load(truck2,ramp2),moveToRamp(truck2,ramp2)])
. driveTo(truck2,ramp2)
.getGoods(truck2,ramp1,

[moveBack(truck2,ramp1),load(truck2,ramp1),moveToRamp(truck2,ramp1)])
. driveTo(truck2,ramp1)
. startWorldTruck2 ? I
** (3415) 2 Call: relation(2,6,4,8,equal) ? I
** (3415) 2 Fail: relation(2,6,4,8,equal) ? I

======== No contradiction could be found, so the resulting worlds
======== are printed out . . .

Res1 =

unload(truck1)
.goByTrain(truck1,rampT2,

[useTrain(truck1,rampT1,rampT2),changeToTrain(truck1,rampT1)])
.getGoods(truck1,ramp1,

[moveBack(truck1,ramp1),load(truck1,ramp1),moveToRamp(truck1 , ramp1)])
.driveTo(truck1,ramp1)
.getGoods(truck1,ramp2,

[moveBack(truck1,ramp2),load(truck1,ramp2),moveToRamp(truck1,ramp2)])
.driveTo(truck1,ramp2)
. startWorld ,

Res2 =

unload(truck2)
.goByTrain(truck2,rampT2,

[useTrain(truck2,rampT1,rampT2),changeToTrain(truck2,rampT1)])
.getGoods(truck2,ramp2,

[moveBack(truck2,ramp2),load(truck2,ramp2),moveToRamp(truck2,ramp2)])
.driveTo(truck2,ramp2)
.getGoods(truck2,rampl,

[moveBack(truck2,ramp1),10ad(truck2 , ramp1),moveToRamp(truck2,rampl)])
. driveTo(truck2,ramp1)
. startWorldTruck2 ,

58

C1 = _161,
RampI = _205,
C2 = _258

59

Bibliography

[AIl83]

[A1l84]

[AM89]

[BB87]

[BG88]

[Brz89]

[eM81]

[DM90]

[DM!H]

[Gab87]

[GaI87]

[GH89]

[Hry88]

[Kri71]

[KS86]

J. F. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11),
1983.

J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2), 1984.

M. Abadi and Z. Manna. Temporal logic programming. Symbolic Computation,
(8):277- 295, 1989.

H.J. Buerckert and K.H. Blaesius. Deduktionssysteme. Oldenbourg-Verlag, 1987.

A. Bond and L. Gasser. Readings in Distributed Artificial Intelligence. Morgan
Kaufmann, Los Angeles, CA, 1988.

C. Brzoska. Temporal logic programming A survey. Institut fuer Logik, J(om
plexitaet und Deduktionssysteme) Universitaet J(arlsruhe, 1989.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, 1981.

Y. Demazeau and J.-P. Mtiller. Decentralized A.I. North Holland, 1990.

Y. Demazeau and J.-P. Miiller. Decentralized A.I. 2. North Holland, 1991.

D. Gabbay. Modal and tempomllogic programming. Academic Press, 1987.

A. Galton. TempoTllllogics and their applications. Academic Press, 1987.

L. Gasser and M.N . Hubns. Distributed Artificial Intelligence) Volume II. Re
search Notes in Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1989.

T. Hrycej. Temporal PR.OLOG. In Proc. of the 7th european conference on
ATf~fi('i(l1 Intelligence, pages 296- 301, St. Paul, MN, 1988.

S. Kripke. Sem(wt.ical considerations on modal logics. Oxford University Press,
1971.

R..A. Kowalski and M.J. Sergot. A logic based calculus of events. New generation
comp7tiing, (4):67-95, 1986.

60

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

[MMPS92] H.J. Muller , J.P. Muller, M. Pischel, and R. Scheidhauer. On the Representation
of Temporal Knowledge. Technical Report TR-92-??, DFKI Saarbrucken, 1992.

[NiI80] N.J. Nilsson. Principles of A rtificial Int elligence. Tioga, Palo Alto, CA, 1980.

[OS89] H.J. Ohlbach and J.H. Siekmann. The Markgraf Karl Refutation Procedure.
SEKI-report SR-89-19, Universitat Kaiserslautern, 1989.

[Pis91] M. Pischel. TRAM: Integration verschiedener Ansatze zur Zeitreprasentation.
Master's thesis, Universitat Kaiserslautern, 1991.

[Pri67] A.N . Prior. Past, presence and future. Clarendon Press, Oxford , 1967.

[Ram88] A. Ramsay. Formal methods in Artificial Intelligence. Cambridge University
Press, 1988.

[RK91] E. Rich and K. Knight. Artificial Int elligence. McGraw Hill, 2nd edition, 1991.

[Sch89] R. Scheidhauer. Chronolog, 1989.

[Sho88] Y. Shoham. R easoning about change: Time and causation from the standpoint
of AI. MIT Press, 1988.

[SM87] Y. Shoham and D.V. McDermott. Temporal reasoning, 1987.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mas
sachusetts, 1986.

[Tan89] T.G. Tang. Temporal logic CTL + PROLOG. Journal of Automated Reasoning,
(5):49- 65, 1989.

61

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz G m b H

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bczogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91·10
Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR·91·12
J.Mark Gawron, John Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer, J urgen Muller: A Two Lcvel
Representation for Spatial Relations, Part I
27 pages

RR-91-1S
Bernhard Nebel , Gert Smolka :
Attributive Description Formalisms .. . and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

DFKI
-Bi bliothek
PF 2080
D-6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-17
Andreas Dengel, Nelson M. Mallos :
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
John Nerbonne, Klaus Neller, Abdel Kader Diagne,
Ludwig Dickmann, Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On th.:: Commitments and
Precommitrnents of Limited Agents
15 pages

RR -91-20
Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR·91-21
Klaus Neller: Clause Unioll and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter, Ansgar Bernardi, Christoph
Klauck, Ralf Legleitner: Akquisition und
Reprasentation von tcchnischem Wissen fUr
Planungsaufgaben im Bereich der Fertigungstcchnik
24 Seilen

RR-91-24
Jochen lIeinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin lIarbusch , Wolfgang Finkler, Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengler , M. Ilecking,
1. Koehler, G. Merziger:
Integra ted Plan Generation and Recognition

- A Logic- Based Approach -
17 pages

RR-91-27
A. Bernardi , II . Boley, Ph . llanschke,
K . /linke lmann , Ch. Klauck, O. Kuhn ,
R . Legleitner, M . Meye;, M . M. Richter,
F. Sr:hmalho/er , G. Schmidt, W. Sommer:
ARC-TEC: Acquisition , Representation and
Compi lmion of Technical Knowledge
I X pages

RR-91-28
Rolf Backo/en, Ilaraid 'frost , Ilans Uszkore it :
L inki ng Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
I I pages

1~f{ -9 1-29

/lans Uszkoreil : Strategies for Adding Control
Information to Declarative Grammars
17 pages

R I{ -9 I -JO
[Jan Flii:kin};er, .fohn Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
W pages

RR-91-31
/I .-U Krie};er,.1. Ner/)onne:
Feature-Based Inheritance Networks for
Com[1utational Lex icons
II pages

RR-91-J2
Rolf BQ(:kr~fen, LUlz Euler, Gunlher G6rz:
Towards the Integration of Functions, Relations and
Ty[1es in an AI Programming Language
14 pages

RR-91-33
Franz Baader, Klaus Schulz:
Unification in the Union of Disjo int Equational
Theories: Comhining Decision Procedures
:n pages

RR-91-3~

BernJUJrd Nebel, Chrisla B(/c:k.l'lrijm:
On the Com[1utational Complex ity of Temporal
Projec tion and some related Problems
35 pages

RR-91-35
Win/ried Gra/, Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischen Wissens
14 Sei len

RR-92-01
Werner NUll: Unification in Monoidal Theories is
Sol ving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel, Rainer Bleisinger, Rainer Hoch,
Frank lfOnes, Frank Fein , Michael Malburg:
nODA: The Paper Interface to ODA

53 pages

RR-92-03
Ilaroid Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-05
Ansgar Bernardi , Christoph Klauck ,
Ralf Leg leitner, Michael Schulte , Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics od DAI: A Review
38 pages

RR-92-07
Michael Beetz :
Dec ision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Win/ried Craf, Markus A. Thies :
Perspcktiven zur Kombination von automatischem
Animmionsdesign und planbasierter Hilfe
15 Seiten

RR-92-11
Susane Biundo, Dietmar Dengler, Jana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsobcrlliichen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A. Thies

2. Plan-Based Graphical Help in Object
Oriented User Interfaces
Markus A. Thies . Frank Berger

22 pages

RR-92-15
Winfried Graf: Constraint-Based Graphical Layout
of MulLimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenko. Berhard Nebel .
Hans-Jurgen Profitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Ail-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleitner. Ansgar Bernardi. Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar, Meaning
and Knowledge
18 pages

RR-92-21
Jorg-Peter Mohren. Jurgen Muller
Representing Spatial Relations (Part II) -The
Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz : Unifying Cycles
24 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

DFKI Technical Memos

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Buschauer. Peter Poller. Anne Schauder. Karin
ffarbusch: Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Be cker. Christoph Klauck . Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut flinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bieisinger. Rainer floch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Bussmann: Prototypical Concept Formation
An AlLernalive Approach lO Knowledge
Represen la lion
28 pages

TM-92-0 I
Lijuan Zhang:
Entwurf und Implementierung eines Compilers zur
Transformation von Werksllickreprasentationen
34 Seilen

TM-92-02
Achim Schupew: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller. Jorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation or Temporal Knowledge
61 pages

DFKI Documents

D-91-10
Donald R . Steiner, Jurgen Muller (Eds.):
MAAMAW'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

D-91-11
Thilo C. /lorstmann:Di stributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann:
Hieracon - a Knowledge Representation System

with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Tenninological Logics
Organizers: Bernhard Nebel, Christof Peltason,

Kai von Luck
131 pages

D-91-14
Erich Achilles. Bernhard Iiallunder . Armin Laux.
16rg-Peter Mohren: 'X.'.R..!S : ~nowledge
~cprescntation and Inference System
- Benutzerhandbuch -
2H Seilen

D-91-IS
/larold Boley, Philipp /lanschke. Martin /larm .
Knut/linkelmann, Thomas Labisch, Manfred
Meyer, '!iJrg Muller. Thomas Oltzen, Michael
Sintek. Werner Stein. Frank Steinle :
j.lCAD2NC: A Declarative Lathe-Worplanning
M<xlel Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

D-91-16
.Iijrg 'l'ho/Jen. Franz Schmalhofer. 'l'homas Reina({z :
Wieclcrholungs- , Yarianten- und Neuplanung bei der
Ferligung rotationssymmetrischer Drchtcilc
134 Seilen

D-91-17
Andrea~ Becker:
Analyse der Planungsverfahren der KI im Hinhlick
auf ihre Eignung fur die AheiL~planung
H6 Seilen

D-91-18
'l'homas Reina({z : Definition von Prohlemklassen
im Maschincnbau als cine Begriffsbildungsaufgabe
107 Seilen

D-91-19
Peter Wazinski: Objektlokalisation in graphischen
Darstellungen
110 Seitt'T1'

D-92-01
Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - Benulzeran1citung
50 Seiten

D-92-02
Wolfgang Maaj3: Constraint-basierte Plazierung in
multimexlalen Dokumenten am Beispiel des Layout
Managers in WIP
111 Sei ten

D-92-03
WOlfgan Maaj3, Thomas Schiffmann, Dudung
Soetopo. Winfried GraJ: LA YLAB: Ein System zur
automatischcn Plazicrung von Text-Bild
Komhinationcn in multimodalen Dokumenten
41 Seilen

D-92-06
/lans Werner /loper: Systcmatik zur Bcschreibung
yon Werk stucken in der Terminologie der
Fcaturesprache
392 Seiten

D-92-0R
.!achen lIeinsohn, Bernhard /lallunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D -92-09
Gernod P. Laufkoller: Implementierungsmoglich
keiten der integrativen Wi!><;ensakquisitionsmethode
des ARC-TEC-Projektes
H6 Seilen

D-92-10
.!akob Mauss: Ein heuristi sch gesteuerter Chrat
Parser fUr attrihutierte Graph-Grammatiken
H7 Seiten

D-n-IS
DFK I W isscnschaftl ich -Technischer J ahresbcricht
1991
130 Seilen

D-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

C
O:
~

co

CJ)
o
:r
CD

a.
:r
II)

c
CD

o
Q)

~
(t)

3
o

