
Propagation techniques

in WAM based architectures

The FIDO�III Approach

Hans�G�unther Hein

Contents

I Basic Concepts �

� Introduction �

��� Logic Programming and Constraints �
����� Logic Programming �
����� Constraints �

��� What is the WAM �
��� Remarks �
��� Relations to the ARC�TEC project � 	
��� What are the problems �

��	 Contributions ��
��� Overview ��

� Logic Programming and Constraints ��

��� Constraint Domains ��
��� The CLP Scheme ��

����� CLPR� ��
����� Implementation ��
����� CLPR� applications ��

��� Metavariable Approach ��
��� Temporal PROLOG ��
��� Logical Arithmetic � Interval PROLOG ��
��	 Echidna ��
��� CAL �	
��
 CHIP �	
��� CHARME ��
���� PROLOG III ��
���� Trilogy ��
���� FIDO�I � FIDO�II ��

� Theoretical Framework ��

��� Declarative Semantics ��
��� Procedural Semantics ��
��� Forward Checking ��

����� Notation ��
��� Looking ahead ��

����� Notation ��
��� Conclusion ��

CONTENTS ii

II FIDO�III� Concepts and Implementation ��

� The underlying WAM ��

��� Terminology ��
����� The data structures �

��� The registers �

��� Memory layout ��
��� The instructions ��

����� Uni�cation related instructions ��
����� Procedural instructions ��

� The implementation of delay ��

��� freeze and delay ��
��� Suspended Variables ��
��� The overall strategy handling suspended variables � � � � � � � � � � � � � � � � � ��

����� Handling a binding event ��
����� Handling the exception ��
����� Doing suspended goal processing ��
����� Restoring the old state �	

��� Caveats �	

� The Busy Constraint WAM �	
	�� Variable representation �

	�� Memory consumption �

	���� What do we have to expect in Finite Domain Programming � � � � � � � ��
	�� Constraint handling model ��

	���� Compilation impacts ��
	�� Solving the problems ��

	���� Locality and mode problem ��
	���� Detection of dead constraints ��
	���� Simple compilation scheme for the lookahead�forward declarations � � � ��

	�� Unnecessary Work ��

� The optimized WAM �	

��� The lookahead and forward instructions �

����� The forward instruction �

����� The lookahead instruction ��

��� The creation of a delay record ��
��� Inheriting Goals ��
��� Binding mechanism ��
��� Waking a structure up unconditionally ��
��	 The Uni�cation Procedure ��
��� Binding stategies ��

����� Uni�cation of two ordinary variables ��
����� Uni�cation of an ordinary variable with a domain variable � � � � � � � � ��
����� Uni�cation of an ordinary variable with a suspended variable � � � � � � ��
����� Uni�cation of an ordinary variable with a suspended domain variable � ��
����� Uni�cation of two domain variables ��
����	 Uni�cation of a domain variable and a suspended variable � � � � � � � � �	
����� Uni�cation of a domain variable and a suspended domain variable � � � �	
����
 Uni�cation of a suspended variable and a suspended domain variable � � �

CONTENTS iii

����� Uni�cation of a suspended variable and a suspended variable � � � � � � �

������ Uni�cation two suspended domain variables � � � � � � � � � � � � � � � � �

������ The other cases ��

��
 Problems ��
��
�� Invoking internal interrupts � 	�
��
�� Handling internal interrupts � 	�
��
�� Can internal interrupts be avoided at all � � � � � � � � � � � � � � � � � � 	�

��� Termination � 	�
���� Conclusion � 	�

	 The new compilation scheme ��

�� Horizontal compilation � 	�

���� Grouping together � 	�

���� A note on memory organisation � 	�

�� Specifying the extended control primitives � 	�

���� Lookahead and forward de�nitions � 	�

���� Intensional Constraints � 	

���� Extensional Constraints � 	

�� Conclusion ��

� Builtins
 Consistency algorithms � First fail ��
��� Consistency algorithms ��

����� LISP n�consistency algorithms ��
����� FIDO n�pconsistency ��

��� First Fail Principle ��
����� Conventional labeling ��

��� Implementation of the �rst�fail principle ��
��� Conclusion ��

�� Analysis ��
���� Analysis Model ��

������ Five Houses Problem �	
������ The SEND�MORE�MONEY example � � � � � � � � � � � � � � � � � � ��
������ The queens example �
�

���� Conclusion and possible extensions �
�

�� Future developments and Extensions 	�
���� What did we achieve �
�
���� Extensions �
�
���� Acknowledgements �
�

A How to obtain the source code 	�

B Eight queens �rst solution� 	�

C Houses example source code and WAM code ��

D SEND�MORE�MONEY source code and WAM code ��

List of Figures

��� Queens example� Partial solutions are not detected � � � � � � � � � � � � � � � � �
��� FIDO source code for the N queens problem �
��� Initial constraint graph of the eight queens example � � � � � � � � � � � � � � � 	
��� The internal structure of the WAM �
��� Constraint Graph after �rd placement of a queen propagating the 	th queen � �

��� The overall design of the CLPR� system ��
��� Sample program and query of Interval PROLOG � � � � � � � � � � � � � � � � � ��

��� A Domain Variable Uni�cation Algorithm ��

��� Tags used in the WAM ��
��� The memory layout of a choicepoint backtrack point� � � � � � � � � � � � � � � ��

��� Creation of a delayed variable ��
��� Strategy for suspended goal processing ��
��� The memory layout of an environment frame holding the WAM state for exe�

cute�call �	
��� The memory layout of an environment frame holding the WAM state for proceed �	

	�� Variable representation ��
	�� Inheritance of constraints in the Busy WAM ��
	�� Wakup tree immediately after setting the �rst queen in row � � � � � � � � � � � ��
	�� Wakup tree after �rst propagation ��
	�� The woken goal tree in the four queens example in DAG representation � � � � �	
	�	 The woken goal tree in the eight queens example in DAG representation � � � � ��

��� Uni�cation of two ordinary variables ��
��� Uni�cation of an ordinary variable with a domain variable � � � � � � � � � � � � ��
��� Uni�cation of an ordinary variable with a suspended variable � � � � � � � � � � ��
��� Uni�cation of an ordinary variable with a suspended domain variable � � � � � � ��
��� Uni�cation of a domain variable with a domain variable � � � � � � � � � � � � � �	
��	 Uni�cation of a domain variable with a suspended variable � � � � � � � � � � � ��
��� Uni�cation of a domain variable with a suspended domain variable � � � � � � � ��
��
 Uni�cation of a suspended variable and a suspended domain variable � � � � � � �

��� Uni�cation of a suspended variable with a suspended variable � � � � � � � � � � ��

�� Compilation of an intensional constraint � 	

�� Compilation of an extensional constraint � 	�

��� Stack structure during FIDO extensional constraints � � � � � � � � � � � � � � � ��

Abstract

In the paper we develop techniques to implement �nite domain constraints into the Warren
AbstractMachine WAM� to solve large combinatorial problems e�ciently� The WAM is the de
facto standard model for compiling PROLOG� The FIDO system �FInite DOmain�� provides
the same functionality as the �nite domain part of CHIP�

The extension includes the integration of several new variable types suspended variables�
domain variables and suspended domain variables� into the WAM�

The ��ring conditions� are lookahead and forward control schemes known from CHIP� We
have developed a constraint model where the constraint is divided into constraint initialization
code� constraint testing code and constraint body� Furthermore� we supply a deeply integrated
WAM builtin to realize the �rst fail principle� Besides the summary of the important theoretical
results� the speci�cation of the compilation process in the WAM Compilation Scheme is given�

We also present a simple graphical analysis method to estimate the computational burden of
lookahead and forward constraints�

Part I

Basic Concepts

Chapter �

Introduction

In this chapter we will informally introduce the reader to the �eld of constraint logic pro�
gramming� To understand the added structures and concepts implemented in the WAM �
Warren�s Abstract Machine �War
��� �� we need to look �rst at constraints and at the lan�
guage to compile� I have been patient that a reader not familar with WAM and constraint
logic programming will be able to read this chapter without di�culty and get the points and
problems I have worked on� For the following chapters� a good knowledge of the WAM and
constraints is mandatory� The unfamilar reader is referred to �AK��� Hen
���

��� Logic Programming and Constraints

����� Logic Programming

The logic programming paradigm originates from theoretical work done by Kowalski �Kow����
and by Colmerauer� the latter used it for natural language analysis� Kowalski discovered that
horn clauses � a subset of �rst order logic � can be given a procedural interpretation� The
�rst interpreter of PROLOG is due to Roussel �Rou���� The �rst compilative approach has
been presented by D� H� D� Warren �War����� It used structure sharing which turned out
to be not optimal� In ��
� �War
���� a WAM with structure copying was presented� which
is the basis for all e�cient implementations of PROLOG today� Since there is no o�cial
PROLOG standard although there is currently an ISO standard draft circulating�� many
�avors of syntaxes and di�erent semantics of mainly builtin predicates� can be identi�ed�

Since the language has a simple procedural and declarative semantics � in contrast to most
other languages � many approaches are done to extend its expressive power preserving the
semantic properties� Clear procedural and declarative semantics seem to be a k�o��criterion
for extensions� In many cases� the language is modi�ed to include some sort of constraint
processing� According to the CLP scheme see section ���� a structure with some properties
is enough to maintain simple semantics�

After the Japanese selected PROLOG as the basic language for their Fifth Generation Project�
the logic programming paradigm has received much interest from the computer science com�
munity� The latest boost of attention results from database and AI researches realizing the
limitations of SQL and the appealing power of the logic paradigm resulting in the �deductive
databases� trend�

But not only semantics and �political� reasons make the language attractive� Problems can be
stated easily in a simple� natural� elegant� declarative and relational form� The builtin search

Introduction �

strategy frees the programmer from writing an own search procedure� Furthermore� programs
are small and compact shortening the development time�

The drawbacks and criticism deal with the unsound negation and the simple control strategy
SLD�resolution�Llo
����

Concerning combinatorial problems� the programmer is often seduced to write down the pro�
gram in a generate and test strategy� Having a problem with n variables� one of the possible
values is bound to one variable and checked against the constraints� If the choice of a value
results in a failure� backtracking occurs and the next possibility is tried�

In the following we will use a standard example to reveal the problems� On a quadratic� chess
board with a n � n square �eld n queens must be placed in a way that no queen can attack
another queen�

The straightforward approach is to take n variables Xi � � i � n� representing the di�erent
columns and bind them successively to values vj � � vj � n� denoting on which row vj the
queen in column i has been placed� Taking
 queens� we have
� approximately �	 millions�
possibilities to generate in an exhaustive search� When using this approach� we can only dream
of �nding a solution for e�g� ��� queens�

Using backtracking� we immediately invoke those tests which can be checked� Thus when
taking a queen in column i we have to check all conditions where instantiated variables are
present� Using this strategy� an a posterori search space pruning is achieved� However� when
placing queens only regarding the �constraints� on the left hand side� we can make choices for
subsequent columns on the right hand side� impossible without detecting these conditions�
The failure occurs lately when the con�icting variable is to be instantiated and failures for all
�possible� values appear�

Partial solutions appear in the queens example� when some variables have been instantiated
and an arbitrary free variable can only get one value� If we are not immediately instantiating
this variable� we are going to rediscover this partial solution over and over again� If the variable
which could be bound deterministically is then con�icted by another subsequent choice� we
are having unnecessary choicepoints and a lot of �uninformed� failures� In Fig� ��� the next
variable� to be instantiated is X�� although in column 	 X�� the only possibility to place the
queen is deterministic in this con�guration and now being con�icted by the choice of X�� This
is noticed when the other variable has been instantiated� rediscovering the partial solution
several times by backtracking�

XxXZ�xXx
xXx�xXx�
XxXxXx�Z
xXlXxXxX
XxXx�Z�Z
xqxXxXxX
XxXZ�x�Z
lXxXxXxX

Figure ���� Queens example� Partial solutions are not detected

The backtracking version of the program is less declarative than the generate�test program�
The programmer has to take care of the tests� especially when they must be performed�

By restricting the view to the left hand side we still have a lot of useless nodes in the search
tree� which a human would not consider�

�The �x� in the �gure are places known to be impossible to use�

Introduction �

����� Constraints

Since �Wal��� constraint satisfaction methods have been applied in many complex combina�
torial areas� These problems can be characterized by a set of variables Xi which range over
domains Di� The assignment of the constraint variables is in general not a single value� but
elements from �Di � Constraints are constraining� relations RjX�� � � � � Xn� and the set of
constraints forms a constraint net� Together with initial values of Xi � Di �� � this is called
a constraint problem� A single solution is an assigmnent � � Vi � Di for all variables Xi such
that all constraints Rj are satis�ed simultaneously� Finding the set of all solutions is known
to be NP�complete� However� we are interested in an approximation Xi � Di of the variables
removing inconsistent values values which can not be part of any solution�� Using consistency
algorithms to remove incompatible values is polynomial �MF
���� In Logic Programming we
are interested in local consistency which assures that no incompatible values are in the domain
variables of a relation �Hen
����

Graphically� these constraints can be visualized as a hypergraph e�g� see �g� ����� where the
nodes represent the variables with their domains and the hyperarcs denote the relations� In
the above eight�queens example� a human solver would not restrict his attention to the left
hand side of the queen placed� but mark the impossible positions as shown in �g� ���� Thus
we are having a set of
 variables ranging over the �nite domain f�� �� �� �� �� 	� ��
g and wipe
out the impossible values� We actually �remember� the constraints and apply them as soon
as enough information is present� If we are placing a queen in the some row� we wipe out the
�column� in the other queens� domains and then wipe out the diagonal places of those queens
the placed queens can attack�

Thus we collect the tests �rst� and apply these constraints when a variable is instantiated�
More or less� we are using constraint propagation� We are having relations between variables
ranging over a �nite domain� These domains are propagated when enough information is
present�

The source code of the FIDO program for the eight queens example can be found below �g�
����� Please note that the queens predicate calls the safe predicate �rst� whose action is to
build the constraint net before instantiating the variables� The initial constraint graph which
is present after the invocation of safe is shown in �g� ���� The constraint graph after having
placed the third queen is shown in �g� ���� The dotted lines represent those constraints which
became active after the 	th queen was placed deterministically� The hatched lines are �dead�
constraints�� All steps to the �rst solution of the eight queens problem using constraints are
summarized in appendix B�

��� What is the WAM �

The WAM �War
�� is an ingenious machine model for executing logic programs using tech�
niques of conventional languages compilation combined with structures for nondeterministic
behaviour� In order not to be restricted to a particular �hardware philosophy�� abstract ma�
chines are designed for the compilation of a speci�c language and do not obey real�world
restrictions� For example� the X�registers in the WAM are used to hold arguments when call�
ing procedures� A real machine may e�g� have �� of them� In the abstract model an in�nite
set of X�registers is assumed and nothing is said about the handling of procedures which have

��Dead� constraints are relations which have been invoked ���red�� and a successice invocation of the
constraint can not yield any new information�

Introduction �

queens�X� ��

X is

�X��f��	�
���������g� X	�f��	�
���������g�
X
�f��	�
���������g� X��f��	�
���������g�
X��f��	�
���������g� X�f��	�
���������g�
X��f��	�
���������g� X��f��	�
���������g��
safe�X��

labeling�X��

safe�����

safe��X���

safe��X� Y�Z�� ��

noattack�X� �Y�Z���

safe��Y�Z���

noattack�X� Y� �� noattack�X� Y� ���

noattack�X� ��� ��

noattack�X� �H�T�� N� ��

regular�X� H� N��

N� is N � ��

noattack�X� T� N���

regular�X� Y� N� ��

forward�Y � n � X��

forward�Y � n � X � N��

forward�Y � n � X � N��

Figure ���� FIDO source code for the N queens problem

more arguments than X�registers available� In �g� ��� the internal structure of the WAM is
shown in the darkened box� The registers in hatches boxes are the extensions we need for
FIDO� Usually� running out of registers is solved by raising a compilation error� although for
most programs this �limitation� seems to be no real obstacle�

As in conventional languages local variables are stored in the environment frame of the called
function or procedure� This is the same in the WAM architecture� which provides environments
referenced by the register E and holding so called �Y�variables��

In conventional langauges a heap is present for data structures that are dynamically allocated�
The same is true for the WAM� The register H points to the top of the heap which contains
structures� lists and goal trees�

The real extensions are a trail stack and choicepoint entries in the local stack� Choicepoints on
the local stack represent the non�determinism and administrate which clause of a procedure
must be invoked next� These choicepoints are referenced by the register B�

When instantiating variables in PROLOG� binding of variables must be undone upon back�
tracking� This information is stored on the trail stack whose top is accessed by TR�

When compiling PROLOG� the uni�cation algorithm is basically specialized according to the
arguments occurring in the atoms� Recent global compilation techniques �Tay��b� Tay���
Roy���� with mode analysis� variable type inference and determinism analysis are capable of
generating code which is sometimes more e�cient than C code�

��� Remarks

Of course� we have not found any miracle to solve NP�complete problems� We still have an
exponential behaviour not only in the obvisious� generate � test scheme but also in using
backtracking and constraint methods� However� with more sophisticated methods we can
solve larger problems� Especially when applying constraint methods we can solve surprisingly
huge problems� In general� we are in most cases interested in one solution satisfying certain
constraints� The constraints do active computations restricting variables � or even better
� instantiating variables deterministically� By using local information between variables in
an active manner� we reduce the search space� perform an informed search and obtain global
consistency with choice methods�

Introduction �

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

+1≠

+2≠

+3≠

+4≠

+5≠

+6≠

+7
≠

+1≠

+2≠

+3≠

+4≠

+5
≠

+6
≠

+1≠

+2≠

+3
≠

+4
≠

+5
≠

+1
≠

+2
≠

+3
≠

+4≠

+1
≠

+2≠

+3≠

+1≠

+2≠

+1≠

−1≠

−2≠

−3≠

−4≠

−5≠

−6≠

−7
≠

−1≠

−2≠

−3≠

−4≠

−5
≠

−6
≠

−1≠

−2≠

−3
≠

−4
≠

−5
≠

−1
≠

−2
≠

−3
≠

−4≠

−1
≠

−2≠

−3≠

−1≠

−2≠

−1≠

12345678

8

12345678

7

12345678

6

12345678

5

12345678

4

12345678

3

12345678

2

12345678

1

Figure ���� Initial constraint graph of the eight queens example

Looking at Kowalski�s �Kow���� equation �algorithm � logic � control� the standard search
method is not adequate for combinatorial search problems� Using backtracking search� the
burden of control is put on the programmer loosing portions of its declarative speci�cation�
The �nite domain extensions of PROLOG mainly alters the control aspect of PROLOG for a
large class of search problems by a kind of data�driven computation�

��� Relations to the ARC�TEC project

Within the ARC�TEC Project Aquisition� Reprsentation and Compilation of Technical Knowl�
edge� �BBH����� the compilative expert system shell COLAB �BHHM���� has been devel�
oped� Its four main components include forward reasoning� backward reasoning with a func�
tional extension� taxonomical reasoning in a KL�ONE�like manner restricted to a decidable
subset� and hierarchical �nite domain constraint satisfaction� These components are loosely

Introduction �

....

X1

X2

Xn

Stack

Heap

Trail

Code

E

B

A

TR

P

CP

H

HB

WAKE

WAKEE

FIRING

CUTP

S

MODE

Figure ���� The internal structure of the WAM

Introduction �

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

+1≠

+2≠

+3≠

+4≠

+5≠

+6≠

+7
≠

+1≠

+2≠

+3≠

+4≠

+5
≠

+6
≠

+1≠

+2≠

+3
≠

+4
≠

+5
≠

+1
≠

+3
≠

+4≠

+2≠

+3≠

+1≠

−1≠

−2≠

−3≠

−4≠

−5≠

−6≠

−7
≠

−1≠

−2≠

−3≠

−4≠

−5
≠

−6
≠

−1≠

−2≠

−3
≠

−4
≠

−5
≠

−1
≠

−3
≠

−4≠

−2≠

−3≠

−1≠

≠

≠
+1≠

+2≠

−1≠

−2≠

≠

≠

+2
≠

+1
≠

−2
≠

−1
≠

2467

8

247

7

4

6

248

5

278

4

5

3

3

2

1

1

Figure ���� Constraint Graph after �rd placement of a queen propagating the 	th queen

integrated forcing the programmer to state which reasoning component must be invoked and
when this must be done� The latter points are opposed to the declarative challenge�

In this paper I integrate two formalisms� The backward reasoning part without the functional
extension� and the to �nite domains restricted version� of the constraint part�

��� What are the problems �

Compiling PROLOG programs into the WAM results in sequential code� The birds eye�s view
on the code is specialized uni�cation instructions generated for the head of the clause and
instruction for setting up argument registers and calling these literals� in the body of the
clause�

�Please remember the procedural interpretation of PROLOG�

Introduction �

The problems are�

� We must break up the sequentiality� When a constraint is applicable� we must interrupt
the work determined by the sequential code and handle the woken constraint�

� We have to discuss how to represent the constraint graph see �g� ��� for a sample initial
constraint graph� in memory and the administration of it� A constraint is waiting for a
condition so it can ��re�� After it has �red� it may be �dead� forward constraints�
or it may be woken subsequently� if a domain variable is touched again lookahead
constraints���

� Dead constraints have provided their information when they have ��red� but as soon
as backtracking occurs to a point they were alive this ��ring information� is lost and
the constraint must be woken again� This is a major di�erence to the COLAB type of
integration� Consider the queens example again� After having placed the third queen
as already seen in the example above �g� ���� the resulting constraint graph can be
visualized in �g� ���� The dashed lines are dead constraints which must be rewoken on
backtracking� and the dotted lines at node 	 are activated constraints which �re since
the 	th queen can only be placed at row ��

� In the COLAB viewpoint� constraints should be static so the information is present at
the start of the computation� Although it is a good programming practise see the queens
example above� we stated the constraints �rst and then generated solutions�� we do not
restrict ourselves to static constraints� Constraints may be issued arbitrarily at runtime��
and must be deleted when backtracking is done beyond the time�place of their creation�

� We must support some builtins to handle the extensions� When possible� the builtins
have been written in WAM code to ensure an easy modi�cation or even writing them in
FIDO itself� However� some basic builtins are necessary�

� We must have a user access to the domain of the variables to implement choice
labeling� methods�

� We have to extend the machine with consistency procedures assuring local consis�
tency� In constrast to CONTAX �Mey���� we are not supporting global consistency�
This must be satis�ed by the labeling procedure� CHIP has a set of builtin �nite
domain operators ��	� ��
� and predicates �� ������� ����� We can write down
these constraints in LISP by giving a lambda expression holding the constraint to
special consistency procedures� Furthermore� we provide extensional constraints�

� Finally� the �rst fail principle is implemented as a primitive routine�

� When we come to a �nal success� there may still be �alive� constraints in store� This
is called �oundering� CHIP produces a failure when such a situation takes place� We
experimentally have chosen the alternative to print out the bindings of the user�s variables
and the collected �alive� constraints� However� this may lead to unsound answers� The
user should notice that the answer is only correct� if the stored constraints can be satis�ed�

�A lookahead constraint is dead	 when there is at most one domain variable�
�This is mandatory for disjunctive constraints implemented as constraint as choices�

Introduction 	

��	 Contributions

Besides the Boisumault �Boi
	�� implementation of two special control builtins dif and
freeze� in an interpreter based environment� the WAM�based modi�cation of control was
due to Carlsson �Car
���� We are building upon his result and extending towards the control
primitives we need for lookahead and forward constraints� The language and concepts of CHIP
have been intensively described by �Hen
��� The implementation techniques and structures of
CHIP have not been revealed� The FIDO team in the ARC�TEC project �MMS��� investi�
gated meta�interpretation �Sch��� and horizontal compilation �M ul���� Vertical compilation
into the WAM and the extended WAM itself will be presented here� The FIDO compiler is
currently under development �Ste����

��
 Overview

In chapter � we give an overview of the state of the art of constraint systems and implemen�
tations� Some interesting applications are outlined� Chapter � will give the underlying theory
and de�nitions needed to implement the system� In chapter � the terminology and basics of the
utilized WAM are given� In chapter � we will discuss the model of freeze� from where we start
our extension� We will use this simple model to outline an implementation close to this scheme
and discuss its weakness in chapter 	� In chapter � we will develop some new concepts and
redesign our WAM ommitting a lot of unnessesary work� Compilation is speci�ed in chapter

� It has been a challenge to make the FIDO extensions �t in our WAM compilation scheme
�HM��� with only minor modi�cations� In chapter � we give the internals of the propagation
routines for the constraint bodies and review the WAM basic builtins for implementing choice
methods and �rst fail� In chapter �� we present a simple analysis technique well suited to state
dynamic properties of programs� The summary in chapter �� concludes the paper�

Chapter �

Logic Programming and
Constraints

In chapter �� we gave an informal introduction to the constraints present in FIDO� However�
constraints in PROLOG means much more than �nite domains� In this chapter we will present
the state of the art in logic programming constraint systems� Where FIDO and CHIP� are
good for solving large combinatorial constraint problems� other constraint systems are tai�
lored for special contexts e�g� verifying circuits� modelling mathematical connections� integer
programming� etc���

��� Constraint Domains

Constraint languages di�er in their computational domain and methods to ensure consistency
or to solve constraints� The following enumeration will be outlined and those areas related to
FIDO will be examined in more detail�

� �nite domains and propagation techniques

� PROLOG III constraints and saturation and SL�resolution

� boolean uni�cation or boolean Groebner bases

� intervals and propagation techniques

� algebraic domains using Groebner bases�

� linear in�equalities � Gauss and Simplex

Systems with boolean uni�cation use implementation strategies extending the uni�cation al�
gorithm yielding theory uni�cation �MN
	� BS
�� BR
�� Bry
	�� A generalization of boolean
algebras are �nite algebras�B ut

� Fil

�� which can be utilized to verify hardware circuits
where more than two values are to be considered� The power of this approach has been
demonstrated by solving the Lion and Unicorn Puzzle in the constraint system integrated in
PROLOG�XT �SSF
���

Logic Programming and Constraints 	�

��� The CLP Scheme

The Constraint Logic Programming Scheme is a framework for a class of logic programming
languages replacing uni�cation by constraint solving a over special strutures A �JM
�� JMSY���
JL
��� They still obtain simple declarative and operational semantics� Constraint solving is
not restricted to equations�

De�nition � A structure A consists of�

� the domain of A� DA��

� a set ! �An � A� of n�ary functions�

� a set " �An � ftrue� falseg� of n�ary relations with equality�

De�nition � A�Terms are either variables or functions fX�� � � � � Xn� where the functor f �
!� and the arguments Xi are A�terms ��

De�nition � A�constraints have the following form� cX�� � � � � Xn� where c � " and Xi are
A�terms�

De�nition � An A�atom is of the form pX�� � � � � Xn� where p is a predicate symbol p �� "
and the Xi are A�terms�

De�nition � A solution�compact structure allows to approximate elements in DA� by a pos�
sibly in�nite set of A�constraints� Two di	erent elements in D�A� are separable by two disjoint
�nite sets of A�constraints�

A logic programming language CLPA� is obtained by specifying such a solution�compact
structure� Finite and ini�nite trees are examples of solution�compact structures� PROLOG�

can be viewed as a an instance of the CLP�Scheme with �nite trees�

De�nition � A CLP�A� program consists of a �nite number of rules of the form�
A	 � 	C�� � � � � Cn� A�� � � � � Am where Ai are A�atoms and Ci are A�constraints�

De�nition � A CLP�A� goal is of the form�
��C�� � � � � Cn� A�� � � � � Am

where Ai are A�atoms and Ci are A�constraints�

De�nition 	 Let goal G� have the form� ��C�� � � � � Cn� A�� � � � � Am �Ci are A�constraints� Ai

are A�atoms�

and a rule in P selected by a search strategy�

B	 � 	D�� � � � � Dk� B�� � � � � Bl where Bi are A�atoms and Di are A�constraints�

Let C�� � � � � Cn� D�� � � � � Dn be solvable� Let Ai be the selected atom by an atom selection rule��

Then the derived goal G� looks like�

��C�� � � � � Cn� D�� � � � � Dk� Ai � B	� A�� � � � � Ai��� Ai��� � � �Am� B�� � � � � Bl�

A sequence of derivation steps is called a derivation sequence� A goal is an answer constraint�
if a �nite derivation sequence contains only A�constraints�

�Constants are
�ary functions�
�with occur�check�
�Typically the �rst A�atom is selected�

Logic Programming and Constraints 	�

����� CLP�R	

CLPR� is an instance of the CLP scheme based on the structure of reals and trees of reals�
real constants and variables are real terms and if t�� t� are real terms� then t� � t��� t� 	
t��� t�
 t��� t��t�� are also real terms� If t�� t� are real terms� then t� � t�� t� � t�� t� � t��
t� � t� and t� � t� are real constraints�

It is a system for solving constraints in the domain of uninterpreted functors over real linear�
arithmetic terms� The underlying constraint solver is a �sort of� simplex�gauss algorithm
� being modi�ed to allow incrementally adding constraints� and deleting constraints upon
backtracking�

The CLPR� system is an approximation of the CLP scheme� Since the simplex�based al�
gorithm can not determine the solvability of non�linear constraints� they are delayed until
su�ciently instantiated� e�g� other linear� constraints make variables in the non�linear con�
straint and thus eventually linear�

����� Implementation

The structure of the CLPR� system can be seen in �g� ���� CLPR� is a compiler�based
system translating into extended WAM code� The constraint solver is a seperate module in
the design� For the sake of e�ciency� simple constraints are handled by the machine or the
solver interface directly� The constraints are accumulated in the constraint solver store� The
constraint solver is subdivided into a linear constraint solver using Gaussian elemination� and
an inequality solver using simplex algorithm�� Nonlinear constraints are delayed until they
become linear�

The solver is in theory� completely independent of the underlying WAM� A new computa�
tional domain is implemented by replacing the solver for reals with the solver for the new
computational domain� Although the WAM structures are quite standard� the solver struc�
tures and the interaction� are heavily optimized� since the solver must have the following
property� It must be incremental and it should be fast� Considering the interaction between
solver and WAM� the runtime behaviour of the system is remarkable�

Nonlinear delay

Linear equations

Inequalities

WAM
interfaceWAMCompiler

direct
solver

direct
solver Solver

Figure ���� The overall design of the CLPR� system

����
 CLP�R	 applications

The applications done with the CLPR� system are problems with have a �strong mathemat�
ical problem structure� enriched with an underlying search problem� An incomplete list of

�Incrementality means that upon issueing a new constraint to the constraint store	 the test procedure for
solvability must not reconsider the whole constraint store�

Logic Programming and Constraints 	�

published applications follows�

� electrical engineering �HMS
��

� molecular biology �Yap���

� option trading analysis system �HL

�

��� Metavariable Approach

The only thing a user can not easily extend in PROLOG systems is uni�cation� The idea of
metavariables �Hol���� is to have a speci�c structure in the system� which is handled not as
an ordinary structure� but in a very di�erent way� Whenever the uni�cation routine touches
a metastructure� user de�ned uni�cation handlers in PROLOG� are called� Although the
metaterm is seen as a variable� it can have attributes bound to it e�g� a domain�� A special
built�in predicate allows to re�bind the attributes� so domains can be easily made �smaller��

This concept has been implemented in SEPIA� a PROLOG system devoloped at ECRC�ECR���
MAC�
��� Together with SEPIA�s high level predicates for handling woken procedures� a �nite
domain extension of uni�cation can be easily implemented� However� this skillful method may
impose some problems� The uni�cation routine � which should be considered as an important
basic routine � should be made as fast as possible� In hardware�based implementations� this
routine is a very good candidate for the implemenation in microcode� It should be a di�cult
problem to interrupt an atomic� instruction and call a user handler from a microcoded routine
and return back to the microcode � if possible at all� However� taking the supposed death of
specialized hardware and the trend towards a �truly general purpose processor��DNT��� into
consideration� this is not a strong argument�

But since such a handler can arbitrarily use WAM registers we must save the complete WAM
state� because we do not know� which registers are used�� The user handler must not be
restricted to be deterministic� It may create choicepoints so even non�unitary uni�cation algo�
rithms become possible� The average user might not be able to determine when a choicepoint
is unnecessarily� created in a PROLOG program and thus in a uni�cation handler�� All in all�
this �uni�cation hook� is a powerful extension for the specialist� In constrast to our work� we
use an in depth integration of the domain extensions in the uni�cation routine and we do not
invoke constraints within the uni�cation routine� Instead� we call constraint processing when
we know� how many argument registers are alive� Furthermore� the approach is restricted to
depth��rst handling of constraints� In our system the constraints are invoked in the order in
which they were issued to the system� When switching over to in�nite domains like intervals
this fairness aspect may become important�

��� Temporal PROLOG

Temporal PROLOG �Hry

�� is a constraint system loosely coupled to a PROLOG system�
The constraint domain is the one of Allen�s temporal intervals�All
���� In contrast to �nite
domains and interval domains� the nodes of the constraint graph do not have sets of possible

�If the machine has � X�registers and e�g� � are used	 all � registers have to be saved� This might even
complicate garbage collection�

�The best thing should be looking at the WAM code�

Logic Programming and Constraints 	�

values� but the relations the arcs� have a set of possible relations �Ric
���� The system is
interfaced to a constraint system written in C for e�ciency reasons and is seperated from the
machine� Allen�s temporal logic is a widely accepted knowledge formalism for representing
time in areas such as planning� qualitative simulation� natural language or databases�

��� Logical Arithmetic � Interval PROLOG

In Logical Arithmetic �Cle
�� variables can have intervals as their computational domain�
Open� closed and half closed intervals can be represented� This can be considered as a sort of
in�nite domains� The problem is how to detect when a variable has become a singleton�

Another problem is that intervals have to be split and considered as an alternative thus resulting
in the creation of choicepoints� The constraints which can be expressed must not be linear�
By using their propagation techniques quite interesting results can be obtained� Although
intervals can be represented in CLPR� e�g� X � ���� X � ���� the Interval PROLOG system
can infer much more �information� when dealing with nonlinear constraints� However the
system behaviour of solving a set of linear equations is exponential in the number of variables�
While CLPR� solves the constraints symbolically �qualitative resonning��� this system is
based on interval numerics doing a sort of �quantitative reasoning�� An excerpt from the
running system can be seen in �g� ���� The problem can also be seen� Although the solution
is close to optimal� the �oundered goals can not be deleted�

The main di�erence to FIDO is the choice of open� closed and half�closed and half�open intervals
as their computational domain� This system uses a split builtin to halven an interval and
generate a choicepoint� which is related to our choice primitives�

�� poly� Find solution to the equation X����X����X�� 	

�what �poly �X

�add � �A �X �mult �X �A �B �add � �C �B �mult �X �C �

�� ��poly �X

Solution� ��poly �� ���
������������� ���
������������� �

Floundered goals�

�mult �� ���
������������� ���
������������� � ��
��������
��
�����
��������
��
����� � �

�mult �� ���
������������� ���
������������� � �� ���
�������������� ���
�������������� �

�� ���������
��
���� ���������
��
���� �

�add � ��
��������
��
�����
��������
��
����� � �� ���������
��
���� ���������
��
���� �

�add � �� ���
�������������� ���
�������������� � �� ���
������������� ���
������������� �

Splitting goals�

More� �

no more solutions

Figure ���� Sample program and query of Interval PROLOG

��	 Echidna

Echidna �SH���� is an extension of Logical Arithmetic see section ����� Their computational
domain is a �nite set of disjoint intervals� In �Cle
�� only a single interval could be associated
with a variable� A disjoint interval domain variable may e�g� look like� X � ��� �� �� ��
�� ���� Processing disjoint intervals does not result in a generation of new alternatives and
choicepoints��

Logic Programming and Constraints 	�

��
 CAL

CAL Contrainte Avec Logique� �SA
��� has been developed at ICOT using Gr obner base
algorithms to solve algebraic and boolean equations� Their constraint domain is not restricted
to linear equations and disequations� The techniques originate from geometric theorem proving�
They report applications where CAL performs three dimensional inferences dynamic � static�
in a robot arm application �HFKF���� Below an example �SA
��� of the system demonstrating
its unique features of solving nonlinear constraints�

sur�H�A�S� �� A�H�	�S
 �� area of a triange ��

right�A�B�C� �� A�A � B�B � C�C
 �� Pythagoras ��

tri�A�B�C�S� �� C�CA�CB� right�CA�H�A�� right�CB�H�B�� sur�H�C�S�

� tri�A�B�C�S�

S�	 �� �A�� � B�� � C�� � 	�B�	�C�	 � 	�C�	�A�	 � 	�A�	�B�	� � ��

�� Heron�s formula ��

CA CB

B
H

A

C

��� CHIP

CHIP Constraint Handling in PROLOG� is the most eleborated constraint system and is
also commercially successful� It incorperates �nite domains� boolean uni�cation algorithms
and rational numbers� Although many combinatorial problems can be stated as �nite domain
constraints the additional usage of rational and boolean constraints can lead to a further
increased pruning e�ect�

Successful application to real�world problems are

� planning and con�guration� timetables� crew allocation� management� scheduling� re�
source allocation� assembly line scheduling

� cutting stock problems

� circuit design and veri�cation

� �nancial applications

� logistics warehouse location and transport logistics�

� expert systems

A remarkable production managament application is done by Dassault Aviation �Pra��� to
schedule over ��� aircrafts M����� to deliver over a period of � years in several factories�

Logic Programming and Constraints 	�

�� CHARME

CHARME� distributed by BULL� is basically a descendant from CHIP� although it looks quite
di�erent� It is a C language library� extending C with domain variables� nondeterministic
computation� arithmetic and symbolic constraints and special minimization predicates�

���� PROLOG III

PROLOG III �Col
�b� Col
�a� computational domains are the in�nite trees from PROLOG II�
linear rational equalities and inequalities� booleans and special constraint operations on lists�

The system has been used for modeling technical systems �Sku
�b��� especially for design�
ing the model based expert system PROMTEX for fault detection in gasoline motors for
cars�Sku
�a�� Their expert system does not contain rules saying something about the relations
of symptoms and faults� but they have a description of the components with their function in
an algebraic form and the state of the input and output variables functional engine models�
�KS

�� �JS
����

���� Trilogy

Trilogy �Vod

�� supports linear integer arithmetic as their constraint domain� The operators
��� and �	� and integer multiplication factors can be used� the constraint relations are ��
��� and � ���� Although some problems can be stated as linear integer problems� the main
applications seem to be logical puzzles since the solver is rather ine�cient�

���� FIDO�I � FIDO�II

The FIDO constraint domain is the �nite domain subset of CHIP together with e�cient con�
sistency techniques such as forward checking� weak lookahead in FIDO�II� and lookahead in
FIDO�III� As expected� the meta�interpreter approach �Sch���� is a computational slow� pro�
totypical implementation technique� Even the parts� which are �pure� PROLOG are metain�
terpreted e�g� the usage of append����

The idea of FIDO�II �M ul���� is to reduce the interpretational overhead by horizontal source�
to�source� compilation of FIDO programs into SEPIA PROLOG �MAC�
��� using the delay
mechanism of SEPIA as the only extension from �ordinary PROLOG��

For a full discussion of FIDO�II drawbacks� the reader is referred to chapter
 of �M ul���� Since
logical variables can only be bound once� domain variables have to be simulated by a structure

�Xid�Xlength�X�cons�Xvalue�Xdomain�� where Xid is a unique identi�er� Xlength is an open list
representing the length of the domain� X�cons is the number of constraints e�g� for the �rst
fail principle �Hen
����� Xvalue is a place holder for a possible singleton and Xdomain is the
actual domain on this level� Since domain variables are bound to either constants or domains
smaller� than the actual domain� an open list technique is applied� Thus� the handling of

�or low level bind operations in PROLOG could be used	 but we wanted to restrict ourselves to the usage of
delay as the only non�standard PROLOG extension�

�in terms of set inclusion�

Logic Programming and Constraints 	�

domain variables is done on the PROLOG level� Clearly� the more often a domain variable
is bound to a smaller domain� the more time is used to scan through the list to access the
domain� In the WAM this very basic operation is called dereferencing� In our WAM�based
approch� the operation performed to bind a domain variable to a smaller domain is to create
this smaller domain and to bind the pointer to the new domain resulting in an instant access�
Another drawback is explicit handling of uni�cation� If we unify a FIDO�II domain variable
which are structure� with a constant� it is obvisious that the builtin uni�cation routine can
not be used� It must be done by code in the horizontally compiled FIDO�II program�

A problem not yet addressed is whether the usage of the delay primitive in SEPIA is appropriate
for the simulation of the constraints � we did not have the access to the internals of the SEPIA
PROLOG system� The statistical runtime package in SEPIA seems to be too course grain to
state anything about this behaviour�

Chapter �

Theoretical Framework

An intuitive idea of constraints has been given in chapter �� PROLOG has the claim of having
elegent and simple procedural and declarative semantics� The question is when we integrate
some constraint extension� does the language still have the elegant mathematical properties �

A way out of this dilemma is the CLP scheme �JL
��� requiring several properties of a structure
to be integrated as the constraint domain and having the desired well de�ned semantics�
Unfortunately� the �nite domain extension does not belong to scheme� Therefore� we must
justify how to integrate �nite domain consistency techniques without great penalty and how
SLD�resolution can be modi�ed to yield a sound and complete search procedure �Hen
���

The domain extension is done by modifying the uni�cation procedure� the lookahead and for�
ward constraint techniques are formalized as inference rules having great impact on control and
thus on SLD�resolution� We are specially interested in these concepts de�ning the procedural
semantics for our implementation�

In the logical viewpoint the domain variables can be considered as an abreviation for logical
variables with a monadic predicate with �nite clauses� specifying the di�erent values� But on
the procedural level we can hardly express that a speci�c clause of such a monadic procedure
can not be applied achieved with the lookahead and forward rules to obtain a priori pruning�

De�nition � A domain d is a non�empty �nite set R of constants with d��R � e��R for
e�d� e �� �

Constraints have the same syntactic form as normal PROLOG procedures� except for a dec�
laration that some procedure is to be treated as a constraint under a certain control regime
forward� lookahead�� A constraint should have the following property�

De�nition �� An n�ary procedure p�n is a constraint i	 for arbitary ground terms t�� � � �� tn
either p�t��� � ��tn� has a successful refutation� or has only �nitely failed derivations�

This property is important� since for checking consistency after a constraint can be applied�
the domain variables of the constraint are successively instanted to the constants the domain
variables� denote�

Theoretical Framework �

��� Declarative Semantics

In this section we will give an overview of the modi�cations done to the standard �Llo
���
declarative semantics to include the domain variable concept�

�� The alphabet of the �rst order language must be enriched by a set of domain variables
xd with domain d�

�� Terms� de�nite programs and goals are de�ned as usual�

�� The semantics of �rst�order logic with domain variables must be given for the declarative
semantics�

� Extend the usuual interpretation I by the interpretation of a domain d as the
assignment of subset d� of the universe D�

� For de�ning satis�ability a formula in L must be mapped to a truth value ftrue� falseg
w�r�t� an interpretation I and a variable assignment A� The standard de�nition must
be extended by I�xd�P� � true i� there exists c � d� with Ix

d�cP� � true�

I�xd�P� � true i� Ix
d�cP� � true for all c � d��

� De�ne the notions logical consequence�Herbrand interpretations andmodels as usual�

�� De�ne substitution� correct substitution and correct answer substitution extended by the
notion of a domain variable in the following way� a domain variable xd with domain d

can be substituted by a constant c � d or by a domain variable ye with domain e and
e � d�

��� Procedural Semantics

Procedural semantics are given by SLD�resolution and the uni�cation algorithm� In the uni��
cation algorithm� we must cope with the uni�cation of domain variables adding the following
cases�

� If a domain variable xd with domain d and a constant c have to be uni�ed� xd is bound
to c� if c � d� otherwise the uni�cation fails�

� If the domain variable xd with domain d and the domain variable ye with domain e have
to be uni�ed� the intersection l � d�e is computed� If the intersection is empty� a failure
is issued� otherwise the domain variables xd and ye are bound to a new domain variable
zl�

� If a domain variable yd and and ordinary variable x are to be uni�ed� x is bound to yd�

It should be noted that the uni�cation algorithm can be optimized concerning memory aspects�
e�g� in the uni�cation of the domain variables xd and ye special handling can be performed for
d � e or e � d� Furthermore the uni�cation algorithm given in �g� ��� �M ul���� is completely
di�erent from the uni�cation algorithm given in chapter �� where the suspended goals and a
bunch of memory optimisations are considered� This is a mere theoretical version�

Theoretical Framework �	

k ��
� �k �� ��

while Flag � true do

f

if singleton��k�

then

f return �k�E�� STOP g

else

f

compute disagreement set��k�E�	 Dk��

if ��v �in D�k���verb and��t � Dk� and is simplevariable�v�

and not occurs in�v� t�

then �� unification of simple variable and term ��

f �k	� �� �k�v�t�� k �� k � � g

else

if vd � Dk and is domvar�vd� and a � Dk�

and is constant�a� and a � d

then �� unification domain variable � constant ��

f �k	� �� �k�vd�a�� k �� k � � g

else

if vd� � Dkand is domvar�vd�� and vd� � Dk

and is domvar�vd��Dk� and d��d�

then �� unification of two domain variables over the same domain ��

f �k	� �� �k�vd��vd��� k �� k � � g

else

if vd� � Dk and is domvar�vd�� and vd� � Dk

and is domvar�vd��Dk� and d��d� �� �

then �� General unification of two domain variables ��

fe �� d��d�� �k	� �� �k�vd��we� vd��we�� k �� k � � g

else

Flag �� false�

g

RETURN��not unifiable����

STOP

g

Figure ���� A Domain Variable Uni�cation Algorithm

De�nition �� The disagreement set of a �nite set of simple expression S is the set of all
subexpressions obtained by locating the leftmost symbol position at which not all expressions in
S have the same symbol and extract from each expression in S the subexpression at that symbol
position�

SLD resolution with the �nite domain uni�cation algorithm is referred to as SLDD resolution�
In the following we will summarize the main results of �Hen
��� the proof can be found there�

Theorem � Uni�cation theorem� For the domain variable uni�cation algorithm
�� the
following holds�

� The algorithm always terminates�

Theoretical Framework ��

� Let E be a �nite set of expressions� If E is uni�able� the uni�cation algorithm gives the
mgu � for E� If E is not uni�able� the uni�cation algorithm reports �not uni�able

As a conclusion� domain variables can be integrated in a logic programming framework pre�
serving the duality of procedural and declarative semantics� We are now de�ning addtional
inference rules realizing the consistency techniques forward checking and lookahead�

��� Forward Checking

The idea of forward checking is that a constraint whose argument places are ground except
at most one� this argument can be inferred� Some constraints are only useful when such a
condition is present� The �� constraint in the queens example ���� can only be reasonably
applied when one argument is ground and the other is a domain variable� where the ground
value is removed from the domain� We will de�ne now forward checkable and the forward
checking inference rule FCIR��

De�nition �� Be p�t��� � ��tn� an atom� We say that p�t��� � ��tn� is forward�checkable� if

� p is a constraint

� there exists only one ti� � � i � n� that is a domain variable� called the forward variable�
and all others are ground�

De�nition �� The FCIR� Be P a program� goal Gi has the form� A�� � � �� Ak� � � �� Am and
�i�� a substitution� Gi�� is derived by the FCIR from Gi� P� �i��� if the following conditions
hold�

�� Ak is forward�checkable� xd be the forward variable inside Ak�

�� The new domain e is computed by e � fa � djP j� Akfxd � agg� If e � � a failure
occurs�

� The new substitution �i�� is de�ned by
�i�� � fxd � cg� if e � fcg �singleton case�� or fxd�yeg� where ye is a new domain
variable� otherwise�

�� The goal Gi�� is constructed by Gi�� � � A�� � � �� Ak��� Ak��� � � �� Am��i���

Since Ak is considered to be a constraint def� ���� P j� Akfxd � ag in de�nition �� is a
decidable �test�� The inference rule handles the constraints actively�

� when the new domain e is calculated either values are deleted from a domain variable
resulting in a domain variable with less elements� When choice methods are applied to
the domain variables� these inconsistent values are not considered� This is an a priori
pruning�

� when the domain becomes a singleton the variables is instaniated� If the variables can
be found in other constraints it reduces the number of nonground arguments�

Theoretical Framework ��

In the following we summarize some properties of the FCIR�

Theorem � Soundness of the FCIR� Be P a program� Gi be the goal� A�� � � �� Ak� � � �� Am�
Let Ak be forward�checkable� xd be the forward variable and d � fa�� � � �� an� b�� � � �� bkg� d� e
�� �� Let the goal Gi�� be obtained from Gi by Gi�� � � A�� � � �� Ak��� Ak��� � � �� Am��i���
Then Gi is a logical consequence of P i	 Gi�� is a logical consequence of P�

The theorem assures that using the FCIR no wrong results will be achieved� In �Hen
��� the
completeness result has been proved for a procedure that

� applies the FCIR for forward�checkable predicates whenever possible

� uses normal SLD�derivation� otherwise�

This resolution procedure is called �SLDFC resolution��

Theorem � Completeness of FCIR� P be a logic program and G be a goal� If an SLDD
refutation of P fGg exists� then there exists an SLDFC refutation of P fGg� If � is the
answer substitution from the SLDD�refutation of P fGg� and � is the answer substitution
from the SLDFC�refutation of P fGg� then � � ��

We can say that every provable goal using SLDD�reolution can be also proved using SLDFC�
resolution� Ordinary SLDD resolution is the normal proof procedure as long as no forward
checkable goals can be applied� An important point is that a forward checkable constraint
can only be applied once and is afterwards considered to be dead� The e�ect of a forward
checkable goal is a failure when the bindings are inconsistent� or in a further restriction of the
forward�variable�

�
�� Notation

In some form we must tell the system that it must use a particular inference rule for some
constraint procedure�� We will give the syntactic form how a procedure p is declared to be a
forward constraint�

De�nition �� Given an n�ary predicate p� a forward declaration has the following form�
forward p�a�� � � � � an� with ai � fd� gg� p is a constraint and the procedure p in the program
is said to be submitted to forward declaration�

De�nition �� A procedure p submitted to forward declaration is forward�available i	

�� all arguments of p declared �g are ground�

�� p is forward checkable �see Def� ���

Thus a constraint must not necessarily only have domain variables or constants but can also
have complex terms in the argument places where a �g� is declared�

Theoretical Framework ��

De�nition �� A computation rule R is forward consistent i	 an atom submitted to forward
declaration is selected by R only when it is forward available or all arguments are ground�

In our system� of course� we want to have a forward consistent computation rule� Then we
can state the forward��constraints before the generators and these constraints will be selected
when they are forward available or the arguments are ground�

De�nition �� A proof procedure is forward consistent i	

�� it uses a forward consistent computation rule R�

�� when a forward�available atom p is selected by R� the FCIR is used to solve p�

� when an atom p is selection not submitted to FCIR� normal derivation is used�

��� Looking ahead

We will introduce the looking ahead inference rule LAIR� in logic programming motivated
by the looking ahead scheme in constraint processing� The FCIR is applied when not more
than one argument is nonground � which is a very strong condition� In constraint processing
the reduction of the domains is possible when more than one variable is left uninstantiated�
Consider the example X � f�� �� �g� Y � f�� �� �� �g� Z � f�� 	� ��
g where the domains can be
reduced to X � f�� �g� Y � f�� �g � Z � f�� 	� ��
g� This leads to much earlier pruning of the
search space although more work ensuring consistency must be done�

The LAIR applicability is de�ned in the following way�

De�nition �	 An atom pt�� � � �� tn� is lookahead�checkable if

� p is a constraint and

� There exists at least one ti that is a domain�variable� All other tj are either ground or
domain variables�

The domain variables in t�� � � � � tn are called lookahead�variables

De�nition �� The LAIR� Let P be a program and Gi have the form � A�� � � �� Ak� � � �� Am

and �i�� a substitution� Gi�� is derived by the LAIR from Gi and P using the sustitution �i��
if the following holds�

�� Ak is lookahead�checkable� x�� � � �� xn are the lookahead variables of Ak� which range over
d�� � � � � dn�

�� For each xj � ej � fvj � dj j�v� � d�� � � � � �vj�� � dj��� �vj�� � dj��� � � � � �vn � dn such
that Ak� is a logical consequence of P with � � fx��v�� � � �� xn�vngg �� ��

� Let yj be the constant c if ej � fcg �singleton condition� or a new domain variable which
ranges over ej � otherwise�

�� �i�� � fx��y�� � � �� xn�yng�

Theoretical Framework ��

�� Gi�� is either � A�� � � �� Ak��� Ak��� � � �� Am��i�� if at most one yi is a domain variable�
or � A�� � � �� Am��i��� otherwise�

In the above de�nition ��� in point � it is de�ned when a lookahead constraint is regarded
to be dead� The atom submitted to lookahead is again included in the resolvent when more
than one lookahead variable ws present� otherwise the constraint is no longer included in the
resolvent and thus being dead� The e�ect is that a lookahead constraint can be applied several
times� However� we must take care in a real implementation that a lookahead constraint is
not always called� According to the above de�nition the LAIR can always� be applied to
the lookahead atom and an in�nite loop results� Thus we should extend de�nition �
 with a
condition like �a domain variable has been touched by a binding��

Concerning the lookahead control regime we can prove its soundness� but unfortunately not
its completeness see �Hen
����

Theorem � Let P be a program and goal Gi have the form � A�� � � � � Ak� � � � � Am� Let goal
Gi�� be derived by the LAIR from Gi and P using sustitution �i��� Gi is a logical consequence
of P i	 Gi�� is a logical consequence of P �

���� Notation

We will give the syntactic form how a procedure p is declared to be a lookahead constraint�

De�nition �� Given an n�ary predicate p� a lookahead declaration has the following form�
lookahead p�a�� � � � � an� with ai � fd� gg� p is a constraint and the procedure p in the program
is said to be submitted to forward declaration�

De�nition �� A procedure p submitted to lookahead declaration is lookahead�available i	

�� all arguments of p declared �g are ground�

�� p is lookahead checkable �see Def� ���

De�nition �� A computation rule R is lookahead consistent i	 an atom submitted to looka�
head declaration is selected by R only when it is lookahead available or all arguments are
ground�

De�nition �� A proof procedure is lookahead consistent i	

�� it uses a lookahead consistent computation rule R�

�� when a lookahead�available atom p is selected by R� the FCIR is used to solve p�

� when an atom p is selection not submitted to LAIR� normal derivation is used�

��� Conclusion

In this section we have shown how to embed consistency techniques in logic programming by
embedding domain variables and two inference rules altering the selection strategies of SLDD�
resolution� By incorperating the constraint techniques� the elegant declarative semantics are
close to the standard theory� the procedural semantics remain elegant� A priori pruning is
performed by consistency techniques� which can be formalized as inference rules�

Part II

FIDO�III� Concepts and
Implementation

Chapter �

The underlying WAM

The WAM emulator written by Sven�Olof Nystr#m�Nys� is a remarkable implementation con�
cerning the abstraction of structures used within the WAM� Special de�ning functions for
registers� instructions� o�sets to environment and choicepoint locations are present allowing
easy and quick modi�cations of WAM based structures and the implementation of new in�
structions� This WAM is a basis of COLAB developed within the ARCTEC�project and forms
starting point for a variety of extenions e�g� �Hei
�� Bol��� Hin����� However� the main goal
of this implementation is readability and not e�ciency� We will start from this WAM to make
our constraint prototype� Therefore� we will shortly describe the underlying structures and
notations� A reader unfamiliar with the WAM is referred to �War
�� AK����

��� Terminology

The basic entity in the WAM is a word� It contains a tag describing the type of the word and
a value containing the address or representation of a simple type� Since the word is normally
�xed in bit length�� all simple typesmust �t into a word� A simple type is a number� a reference
to a symbol table or an address� including references to other references� references to lists and
references to structures�

The WAM has three stacks�

heap The heap is often referred to as global stack� All data types not �tting into a word are
constructed in the heap� Thus� lists and structures are only found in this data area�
Since suspended variables and domain variables are too large to �t into a word� they
must be created in the heap� However� simple data structures can also be found on the
heap�

stack The stack is also called local stack or runtime stack� It contains environments and choice�
points� Environments hold the Y�variables from a clause� These variables could be stored
on the heap � but the environments can be deallocated earlier than the heap thus saving
a lot of space� especially when doing deterministic computations� Environments can be
compared to �calling frames� in procedural languages� where local variables for a function
or subroutine are stored� In our FIDO extension �g� �������� we will �misuse� environ�
ments to save the state of the WAM machine in order to invoke constraint processing�
Choicepoints are used to store pointers to possible alternatives of procedures� When

�The length of a word is usually � bits or �� bits�

The underlying WAM ��

the �rst clause of a procedure is called and indexing can not reduce the set of possible
clauses to a single clause� a choicepoint is created� which also contains the arguments of
the clause� Upon backtracking the next clause must be invoked � with the arguments
previously stored in the choicepoint�

trail The binding of variables must be undone upon backtracking� In the original WAM
bindings were only done to �normal� variables� Since an unbound variable is represented
by a pointer to the location where it is located� only these addresses were saved� In
our FIDO extension we will also have to save the previous value of the variable� since a
domain variable can be bound a number of times � and must be unbound correctly to
it previous �value��

In the orginal WAM another stack used is the push�down�list PDL� for temporal states of
the uni�cation routine� The uni�cation routine in this WAM is recursive and it stores its
temporal information in local variables inside the uni�cation routine and in the arguments of
the uni�cation routine�

The reader should notice that A�registers and X�registers are the same� In literature they di�er
for presentational reasons�

����� The data structures

Tags see ���� are a portion of a word� In low level implementations e�g� �Tay��a�� tags are
stored in places of a machine word which are normally not used� In modern RISC machines all
basic data types of the machine are aligned at addresses which can be divided by � assuming
�� bit architecture�� Thus the least signi�cent two bits are always zero� which is a possibility
to store the tag� However� with two bits four tags can be coded � which is not enough� Other
bits of a machine word must be used� e�g� the most signi�cant bit is a candidate� If the most
most signi�cant bit is utilized� quick access to this bit is possible� since most architectures set
a bit when loading a �negative� value into the register� The SPARC architecture used by SUN
has special support for tags in their machine implementation� The Motorola M	
K makes bit
processing tag processing� easy with a bunch of bit manipulation instructions and memory
based bit extraction instructions� Other implementations are more radical� Instead of using
one machine word for one WAM word� they use one machine word for the tag and another
machine word for the value �MAC�
����

The coding of tags is a major problem when implementing low�level machine WAMs� The
representation choosen in one architecture can be bad in another� We will not care about
these problems in our implementation � we will even not de�ne how to store them� All
possible atoms can be used as a tag in the WAM� Some of the tags in the WAM are for making
the user�s life easier� The empty� code and trail tags are used for readability when debugging
WAM programs� However� having the problems above in mind� we shall use as few new tags
as possible�

��� The registers

In the WAM� there are several functions coping with the administration of registers� A regis�
ter is de�ned by �define�register register�� resulting in automatically printing the register
when debugging mode is switched on� The regsiter is accessed by �reg register� and set by
�set�reg register new�value�� The X�registers are prede�ned and are read by �argument�reg

The underlying WAM ��

Tag Value

empty unde�ned
ref a reference to a memory address

struct a reference to an address with a fun�word
list a reference to an address with a list�word
const constant symbol
fun a list function�name arity� and beginning of a structure
code a list procedure�name � rest�of�instruction�list�
trail a list of references to bound variables

Added tags�

dly a marker for a constraints indicating if the constraint is dead�
domain a domain
susp a suspend variable

Figure ���� Tags used in the WAM

register� and are written by �set�argument�reg register new�value�� Table ��� gives an
overview of the WAM registers and the new registers� The overall design can be seen in
�g� ���� The indexes to the argument register for X� and Y�registers start with ��

Register Description points to

P program counter program code
CP continuation pointer program code
E last environment local stack
B last choicepoint local stack
A top of stack local stack
TR trail list
H top of heap heap
HB heap backtrack point heap
S structure pointer heap
Xi registers heap�stack

Added registers�

WAKE begin of woken goals heap
WAKEE end of woken goals heap
FIRING True during constraint processing

Table ���� Registers used in the WAM

��� Memory layout

The memory layout is shown in �g� ��� Address � is at the top of �gure increasing downwards�
The trail� normally found in such a memory layout� is realized as a lisp list since the WAM
strictly accesses only the top of the stack�

The underlying WAM �

������� The local stack

The local stack contains environment and choicepoint frames� An environment must be created
in a clause using the allocate instruction� as soon as local variables become necessary�

A choicepoint is needed� if there is more than one clause in a procedure� If a recent goal failed�
the next clause must be explored with all argument registers appropriately re��set and the
variables bound later than the invocation of the current clause restored to an unbound state�

X�

� � �
Xn

previous environment pointer BCE�
previous continuation pointer BCP�

previous choicepoint B��
next clause pointer BP�

trail pointer TR��
heap pointer H�� � new B� new A

Figure ���� The memory layout of a choicepoint backtrack point�

��� The instructions

The instructions are de�ned by �definstr name arguments body�� Structures are coded by
a list �fun arity�� Although the names of the instructions are not strictly equal to �War
���
there is no problem of identfying equal instructions�

����� Uni�cation related instructions

Only some of the instructions in table ��� invoke the general uni�cation algorithm� However�
e�g� a put constant instruction can also be seen as a uni�cation � the uni�cation with an
unbound� variable residing in an argument register which must not be trailed �HM�����

����� Procedural instructions

The procedural instruction determine the control of the program� They can be seperated in
instructions handling the creation� modi�cation and deletion of choicepoints or�processing�
and the handling of environments and�processing��

The cut implementation is due to �Bee
��� Compared to �Bee
��� we slightly modi�ed the
semantics of the instructions and decreased the number of instructions� The save cut pointer
instruction must always be used when an environment has been created and a cut is present
in a clause� �Bee
�� argues that we must not save the additional B�register in an environment�
when we do not use it� However� a word is reserved by the allocate instruction to store the
value�

The underlying WAM �	

�put variable perm Yfrom Xto� �get variable perm Yto Xfrom� �unify variable perm Yi�

�put variable temp Xfrom Xto� �get variable temp Xto Xfromi� �unify variable temp Xi�

�put value perm Yfrom Xto� �get value perm Yto Xfrom� �unify value perm Yi�

�put value temp Xfrom Xto� �get value temp Xto Xfrom� �unify value temp Xi�

�put unsafe value perm Yfrom Xto� �unify local value perm Yi�

�put constant C Xto� �get constant C Xfrom� �unify constant C�

�put nil Xto� �get nil Xfrom� �unify nil�

�put structure F Xto� �get structure F Xfrom�

�put list Xto� �get list Xfrom�

�unify void n�

�unify local value temp Xi�

Table ���� Uni�cation related instruction

try L n� try me else L n�
retry L n� retry me else L n�
trust L n� trust me else fail n�

Table ���� Choicepoint handling instructions

allocate n�
deallocate�
proceed�
execute proc�n�
call proc�n envsize�

Table ���� Environment handling instructions

has�succeeded�
has�failed�
save cut pointer�
cut n�
mcall Xi envsize�
switch on type Lvarunbound Linteger Lsymbol Llist Lstruct Lnil Lother�
switch on constant Len Table Default�
switch on structure Len Table Default�

Table ���� Cut instructions� user interaction� switch and metacall instructions

Chapter �

The implementation of delay

Mats Carlsson �Car
�� extended the WAM by the delay builtin� claiming that the method
does not incur any overhead in programs not using the extension� This seems to be a good
starting point for our implementation� Here� we will brie�y discuss the method�

We must mention an assumption inherent in the extension� An interruption of the program
is only allowed when we know how much registers are alive� This can only be stated when
we invoke a procedure by the call or execute instructions or when we leave a procedure by
proceed� This is contrasted to the assumption that we can always save the entire state as
required by the concept described in section ����

��� freeze and delay

Let X be a variable and P � � �X � � �� be a term containing X �

The delay primitive delay�X�P � � �X � � ��� delays the calling of P � � �X � � �� until it is bound�
even to a variable� The meta�predicate freeze�X�P � � �X � � ��� delays the calling of P � � �X � � ��
until X has been instantiated to a non�variable� Freeze can be implemented by delay�

freeze�X�G� �� var�X�� delay�X�freeze�X�G��

freeze�X�G� �� nonvar�X�� call�G�

Whenever a frozen variable X is bound to another variable� the freeze predicate is invoked
which immediately delays X again with the freeze predicate when it is a variable� otherwise it
has been bound to a nonvariable term and meta�calls the goal�

��� Suspended Variables

There are two types of variables� ordinary variables and suspended variables� Suspended
variables need to have two memory cells� the �rst for the value with the tag susp� and the
second cell is a tree of suspended goals� We will see� why we do not have a list of suspended
goals� although this would be desirable for the user�

The algorithm for delay is��

�in a PASCAL like notation�

The implementation of delay ��

delay�X�G�

if �nonvar�X��

then call�G�

else if �X���susp�V�G��

then bind X to �susp���list�G��G��

else bind X to �susp���G��

ref

susp

struc

fun

ref

ref

p/1

X: X:

susp

list

fun

ref

ref

p/1

X:

fun

ref

q/2

ref

struc

struc

Figure ���� Creation of a delayed variable

In �g� ��� three heap segments are shown� The left one has an unbound variable X which is
consecuatively delayed by delay�X�p�X��� The memory structures are shown in the middle
segment� The reference points to a suspension� whose �rst cell points to itself� indicating an
unbound state� The second cell has a struct�pointer to the structure p�� and the argument
points to the original variable� A following delay�X�Q�X�U�� has to cope which the fact that
X is already delayed� First� the structure is created on the heap and and the second cell of the
suspension is set to a list entry referencing two structure cells��

��� The overall strategy handling suspended variables

Whenever a suspended variable is bound to another term� a wakeup event is raised� In the
framework� the uni�cation of two suspended variables is not handled by the uni�cation routine
but must be handled by the delay primitive� The advantage is that only minor modi�cations
have to be done to the uni�cation routine� although Carlsson �Car
�� writes that �this can
lead to a lot of wasteful wakings and re�suspendings� but has the advantage simplicity�� Please
note that these re�suspending consume not only time but a lot of memory needed to resuspend
the variables see ��� for the implementation of freeze� The overall strategy can be seen in �g�
�����

�In Carlsson original paper a constructure �	� is used to create the suspension tree� In the WAM an optimized
representation for list�cells exists	 saving one node per entry� We use them instead of this structure proposed�
The modi�cation is minor and hence trivial�

The implementation of delay ��

Bind-exception

call/execute/
proceed exception
handling

Suspended goal
proessing: xcall

suspended goals

Restoring old
state by continue
or pcontinue

Figure ���� Strategy for suspended goal processing

�
�� Handling a binding event

After a suspended variable has been touched by the binding primitive � a portion of rudi�
mentary code in the WAM �assigning� terms to variables�� an exception is raised� Because
of the basic character of the bind routine� it must be handled with care� The additional work
done in the routine is to test� if a suspended variable is to be bound� If not� the routine does
its conventional work� The handling of a suspended variable and the invocation of the sus�
pended goal tree belonging to the variable can not be done immediately� The handling must
be preserved until we know how much argument registers are alive and thus must be saved for
handling the exception� The normal �ow of the WAM program can only be interrupted when
we invoke a call� execute or proceed� instruction� The routine of waking up the suspensions
on the variable is called a wakeup� However� several bindings may be done before an instruction
occurs� which can be interrupted� Thus� the woken suspensions must be collected� The new
register WAKEUP contains either the constant nil or points to a suspension tree constructed by
consing the di�erent suspensions in the following way�

wake�Goals��

if �WAKE � nil�

then WAKE �� Goals

else WAKE �� list�WAKE�Goals��

Compared to �Car
�� we do not use extra �ags to indicate an exception� His additional �ag is
only useful when other �exceptions� might also occur�

�Trailing is only necessary if a forthcoming failure will not automatically deallocate this variable�
�In �Car��� the proceed instruction is not included � we will present the necessary �simple� extensions�

The implementation of delay ��

�
�� Handling the exception

In the WAM instructions call� execute and proceed a test must be performed to see� whether
WAKE is nil or not� If WAKE is nil no suspended goals have been woken and the ordinary
semantics of the instructions apply� When a suspended goal tree is present� we have to save
the state of the machine so that it can later restore the state as soon as the interrupt is
�nished� When a call or execute instruction is invoked� the state is saved in an ordinary
WAM environment so that no new �avor of local stack entry is necessary� The number of
active arguments is given in the instruction and known at compile time� The environment for
call and execute exception frames can be seen in in �g� ���� The instruction call saves the
program counter P in the continuation��eld OCP� of the environment� whereas the execute

instruction saves the continuation register CP in this slot�

When a proceed instruction is invoked� we have a little oddity in handling the instruction�
In general� an environment has been previously thrown away by the deallocate instruction�
This information of the environment frame must be again saved on the stack see �g� �����
before the suspended goals can be executed�

Register CP is set to a procedure named continue for call and execute and to pcontinue

for proceed� These procedures are responsible for restoring the state to continue �normal�
processing� The register WAKE is copied to the argument register X�� WAKE is reset to nil
and a WAM procedure xcall�� traversing the tree in order to meta�call the suspended goals
is invoked� The following is an extension to �Car
��� During constraint processing other
suspended goals might be woken� Instead of doing a depth �rst strategy� we apply a fair
strategy� meaning that the goals are executed in the order they have been woken� To implement
this strategy� we need another register named FIRING which is set to true by handling the
exception� This register indicates that the machine does currently suspended goal processing
and no call� execute or proceed is allowed to invoke another woken constraint handling�
However� the newly woken suspended goals are still collected by the binding mechanism�

�
�
 Doing suspended goal processing

A PROLOG notation of xcall�� looks like�

xcall��S� �� struct�S�� mcall�S�

xcall���P�L�� �� struct�P�� mcall�P�� xcall�L�

xcall���L��L	�� �� list�L��� xcall�L��� xcall�L	�

while the xcall predicate has to take care of newly woken constraints�

xcall���

allocate �

L��

call xcall�������

ifagainwakego L�

deallocate

proceed

The new instruction ifagainwakego label jumps to label if WAKE is not nil� Since the proce�
dure xcall��� is deterministic when called with a suspended goal tree� it does not leave any

The implementation of delay ��

choicepoints on the stack� Regarding the determinism� there might be compilers having trouble
to generate indexing code so that choicepoints are created� This is the �rst reason that the
builtin procedure is implemented in WAM code� The other reason is that during the processing
of the suspended goals a depth �rst processing of suspended goals shall be not allowed� Thus�
if the register WAKE is not nil a new suspended goal tree is waiting to be processed� This is
indicated in �g� ��� by the arrow from the xcall box to itself�

�
�� Restoring the old state

Restoring the old state takes place after the procedure xcall�� has �nished� There are two
di�erent restoring procedures� When an exception was invoked initiated by call or execute� a
restoring procedure including argument registers must be performed� Restoring after a proceed
makes the handling of argument registers senseless� Besides the argument registers� the old
program counter and� by deallocating the environment frame� the continuation register CP and
the environment pointer E must be reloaded�

previous environment pointer CE� � new E
previous continuation pointer CP�

place for cutpointer OCUTP� � unused
procedure to invoke after constraint processing Y��

arity � number of registers saved in the rest of the environment Y��
argument� Y��

� � �

argumentarity � new A Yarity���

Figure ���� The memory layout of an environment frame holding the WAM state for exe�
cute�call

previous environment pointer CE� � new E
previous continuation pointer CP�

place for cutpointer OCUTP� � unused � new A

Figure ���� The memory layout of an environment frame holding the WAM state for proceed

��� Caveats

To preserve soundness� suspended goals which might be still waiting� should be detected� The
simplest way as in PROLOG II� is to put the burden on the programmer not to suspend goals
in�nitely� Another method is to fail which leads to incompleteness� Our �method� is to collect
the delayed goals at a �nal proceed and give the list of suspended goals � which is neither
a good choice� some meta�predicates e�g� setof�not� may leave suspended goals and it is
questionable how to deal with them�

The implementation of delay ��

Another citisism that we have a large memory consumption when re�freezing of variables is
performed induced by �higher level� control predicates built upon freeze see ����� In the
following design in chapter 	� we will cut down memory consumption to a single constraint
delay record�

Another caveat is due to the �high level� integration of the freeze primitive� thus unifying two
suspensions with two suspended goal tree is handled de facto on the PROLOG level� A deeper
integration into e�g� the unify routine is an appealing idea�

Chapter �

The Busy Constraint WAM

In this chapter we develop an extension of the WAM closely based on ideas in chapter ��
Many extensions in this chapter are reused in chapter � e�g� the locality of the delay records��
Therefore� this chapter contains implementational issues not repeated in chapter ��

The term �Busy Constraint WAM� is inspired by the busy wake of constraints whenever a
suspended variable is bound� This is partly unnecessary work which we analyse at the end of
the chapter� If we had omitted this chapter and only presented our �nal concept in chapter ��
some design features in chapter � could hardly be motivated�

Conceptually� we have to specify how control is done according to the lookahead and forward
control regimes� The hope is to get an similar simple method as in chapter � for the freeze

builtin�

	�� Variable representation

In this WAM and in the WAM following in the next chapter� we have four di�erent �avours
of variables� Ordinary variables are those which are found in PROLOG� Suspended variables
have a tree of constraints or delayed procedures� in their additional cell� Domain variables are
�restricted� to a �nite set of values to which they can be bound� Suspended domain variables
have a domain and a set of constraints attached to it� The representation is given in �g� 	���

	�� Memory consumption

Let us again look at the code of freeze in ���� The �rst clause delays the variable X con�
secutively� and builts a structure �freeze�X�G�� on the heap�� We will call such a structure
delay record although it is not di�erent from the representation of ordinary structures in the
WAM� In the delay record the procedure to be called is saved� Unfortunately the freeze

builtin generates the useless structure over and over again� Even worse� we have to handle
each variable in a constraint which results in further useless creations of delay records�

�The structure appears in the body of the clause which is built with the put structure instructions	 which
writes the structure onto the heap and sets the mode to write mode forcing the following unify or build�instruction
to write on the heap�

The Busy Constraint WAM ��

Domain

List of goals

Domain

An ordinary
variable

A suspened
variable

A domain
variable

A suspended
domain variable

List of goals

list

ref

domain

susp

domain

ref

listsusp

goals

goals

Figure 	��� Variable representation

The Busy Constraint WAM �

����� What do we have to expect in Finite Domain Programming

Consider that a huge domain variable is many times reduced to a smaller domain� Of course�
we can not avoid the creation of new domain variables as described in the uni�cation algorithm
in �g� ���� but we should try to avoid the creation of any useless delay record� Furthermore�
if a constraint is dead and there is only one delay record� we can notify this fact in one place�
However� it should be noted that we can not do this without minor modi�cations to the model
discussed in chapter ��

	�� Constraint handling model

The actions a constraint has to perform during its lifetime� models the following steps which
can be extracted�

� constraint initialization routine� This portion of code in a constraint is called when
the constraint is invoked� It duty is to check whether it can directly jump to the constraint
body and forget about the constraint lookahead and forward constraints�� or whether it
must create a delay record and suspensions for the constraint variables� Lookahead must
create the delay record and nevertheless invoke the constraint body� The last alternative
is that the constraint body can not be called� so a delay record must be created and the
argument variables must be suspended�

� constraint testing routine� We have seen in chapter � that the control primitive is
called whenever a variable is bound� When this happens� the constraint �ring conditions
have to be checked� If a constraint is applicable and is dead afterwards� it is marked
in the delay record � which must be unbound upon backtracking� Finally� either the
constraint body is called or the constraint is redelayed without generating a new delay
record�

� constraint body It contains the routine to ensure consistency� For the lookahead pro�
cedure the consistency procedure must be modeled according to point � in Def� ��� For
the forward consistency procedure� we should obey point � in Def� ���

��
�� Compilation impacts

Concerning PROLOG toWAM compilation� we have to recall an obstacle inherent in nearly any
compilation model� Given a PROLOG clause� compilation is sequentially from left to right� so
we can say which instruction belongs to which argument place in a usual� compilation model�
Violating this compilation principle will result in di�culties when extending some compilers
with constraints� For example� compiling for example the clause

p�a�b�c�

yields the following code�

p���

get�constant a�� � �st argument

get�constant b�	 � 	nd argument

get�constant c�� � �rd argument

proceed

The Busy Constraint WAM �	

So� given a lookahead or forward declaration see def� ������� e�g� forward p�d�g�d�� we
would like to have an initialization code resembling the following scheme�

p���

� � �

fdomain

�� � �st argument

fground

�	 � 	nd argument

fdomain

�� � �rd argument

� � �

The speci�cation of the code represented by the dots will be given below�

Another desire is to have the initializing code and the testing code to be physically the same�
Besides little memory savings the scheme is inspired by similarities in the WAM� The unify
instructions work di�erent depending on a mode register read�write mode�� When the above
code is called from an ordinary PROLOG program in order to built the constraint net� we are
in a normal processing mode� A delay record is not present and we eventually have to built
the delay record and suspend the variables� When doing constraint processing� we should be
able to tell in the above instructions that we are not in the normal processing mode and have
access to the delay record which must be present since the constraint is already delayed��

To summarize� we request the following�

� locality of the delay record�

� we must determine whether we are in normal processing mode�

� initializing code and testing code should be the same�

� simple compilation scheme for the lookahead�forward declarations�

� easy detection whether a constraint is dead�

	�� Solving the problems

����� Locality and mode problem

The locality problem is to be considered as crucial� If we do not solve it� huge memory
consumption must be expected� Let us look at the routine� which is the source of the problem
see the procedure xcall in section ������� When processing the suspended goal tree the
routine meta calls the delay record� The called routine does not have access to the pointer
of the structure representing its invocation� The solution is to have an additional register
DLYRCRD set by the meta�call instruction pointing to the delay record� If this register is set
to nil upon failure and upon the control instructions� we have an indicator whether we are in
normal processing mode or whether we do constraint processing�

�Please note	 that we can not invoke a new constraint when in non�user mode� This is not true for the WAM
presented in chapter ��

The Busy Constraint WAM ��

����� Detection of dead constraints

If we are going to modify the metacall instruction� we can also put the burden of detecting
dead constraint into this routine�

As already mentioned in section ������ other constraints may be woken during constraint pro�
cessing� The WAM routine handling this fact is given below� The instruction ifagainwakego

Label jumps to Label if constraints have been woken during constraint processing� The control
instructions with the su�x �$� are an optimized version of the control instruction� In section
����� we described that the control instructions execute� call� proceed may be interrupted
when goals are woken and we are not doing exception handling� When being in xcall�� we
know that we are doing exception handling and save the check by the optimized instructions��
We are providing the xcall�� routine in WAM code� because a formulation in PROLOG is
hardly possible� in contradiction to the xcall��� procedure which is given in PROLOG code�

xcall���

allocate �

L�

call� xcall�������

ifagainwakego L�

deallocate

proceed�

The xcall� procedure contains a new version of mcall� namely mcallifactive which previ�
ously checks� if the constraint is alive� If the constraint is dead� the e�ect of the operation is
just returning immediately� otherwise it has the e�ect of a metacall�

xcall��S� �� struct�S��mcallifactive�S�

xcall���P�L�� �� struct�P�� mcallifactive�P�� xcall�L�

xcall����L���L	�� �� xcall��L���� xcall�L	�

����
 Simple compilation scheme for the lookahead�forward declarations

Let us �rst recall which conditions are to be examined if we determine whether a constraint
shall be �red� Those argument places where a �g� was speci�ed� must be ground� If there is
an argument which is nonground� we can not invoke the constraint body� Let us have a new
register named FIRE which is set to true by the new WAM instruction fire true� This �ag
is a�ected by the fground instruction set to nil when an argument speci�ed �g� if nonground�

Let us have another register COUNT which counts the domain variables� It is initially set to �
by the WAM instruction count � and incremented by � when a fdomain instruction detects a
domain variable�

Both fdomain and fground instructions have to do other tasks� Therefore� we look at their
complete syntactic appearance�

fdomain arg label arity
flookahead arg label arity

�These �optimized� instructions are semantically identical to the corresponding WAM instructions without
the constraint extensions�

The Busy Constraint WAM ��

Consider� that fdomain and�or fground are invoked with DLYRCRD � nil� Then the constraint
is called for the �rst time and we have do see the invocation as an initialization step� Both
fdomain and fground instructions suspend variables in the terms given by the argument register
arg� The delay record to build is speci�ed by label� The number of arguments to save in the
delay record is given by arity� The �rst fdomain or fground instruction forced to build a delay
record saves the pointer in the register DLYRCRD� so subsequent fdomain�fground instructions
have access to this record�

list

list

list

struc

struc

struc

struc

susp

list

list

list

struc

struc

struc

struc

susp

A

B

C

D

E

A

D

F

X1

X2

struc B

list

Figure 	��� Inheritance of constraints in the Busy WAM

Consider� that fdomain and�or fground are invoked after a constraint variable has been
touched� The register DLYRCRD points to a delay record which must be inherited to any variable
bound to a suspended variable� Thus� a constraint tree is successively rebuilt by the single
constraints delayed�

This can be seen in �g� 	��� The suspended variable called X� is bound to X� and the suspended
constraints of X� are woken� The constraints A�B�C�D are successively called each processing
their arguments with fdomain�fground� When A is invoked� the fdomain�fground checks verify
that A is already in the suspended goal tree� The �gure indicates the action performed by
invoking the constraint B� The constraint code of B veri�es that B is not in the suspended
goals of X� and allocates a new cell with B and adds it to the suspended goal tree�

When we have checked all the arguments� we must decide whether to �re or not� The end of the
init�testing code for forward checking constraints is forward nofire proceed� The algorithm
is

if �not FIRE� or �COUNT � ��

then proceed

The Busy Constraint WAM ��

else bind�DLYRCRD
fired� true�� �� continue with next

instruction �constraint body� ��

The corresponding algorithm for lookahead nofire proceed is

if �not FIRE�

then proceed

else if �COUNT � �� then bind�DLYRCRD
fired� true��

As already mention there is a placeholder in the delay record indicating that the constraint
is not �red� In the code� this place is referenced by DLYRCRD
fired� It is �set� by a bind
operation� since it must be rewoken upon backtracking�

	�� Unnecessary Work

� a delay record may be allocated without need� Consider we have a predicate p declared
p�d�d�� The �rst variable is a domain variable� the other a constant� So the constraint
satis�es the forward �ring condition� When we test the �rst argument with fdomain�
we have to build a delay record since we do not yet� know that the second argument is
ground�

� since the a constraint has to do the inheritance of the suspended goals� it has to search
for its entry in the suspended goal tree and if it is not present� the constraint must be
added to the suspended goal tree� Thus we have unnecessary memory usage in rebuilding
a suspended goal tree which is already present in memory�

� constraints are woken although their �ring condition is not satis�ed� since constraint
checks for �ring condition in the code presented�

� Due to the simple wakeup mechanism� constraints are woken several times and the checks
are repeated�

In �g� 	�� the suspension tree is visualized after the �rst queen is placed in the �rst row in a
� � � queens problem� Nine constraint are correctly woken� In the constraint bodies of the
� woken constraint� the other variables are touched� As soon as they are touched by bind�
they are woken� The woken constraint tree can be seen in �g� 	��� It should be noted that
the tree is unnecessarily woken� The round nodes are list nodes where the number indicates
the address and the leafs are delay record given identi�ed by their address� A careful reader
may notice that delay records are present in the tree occuring more than once� In fact� the
underlying structure is a directed acyclic graph� Using a DAG representation see �g� 	��� we
can directly see that constraints are woken twice� The size of the DAG is not very harmful�
but the same situation in the eight queens example reveals a frightening growth of the useless
work� To give an impression� the graph to be traversed is given in �g� 	�	��

The Busy Constraint WAM ��

Address Structure Alive
�� DUNGL�����
�� DUNGL�������
�� DUNGL�������
�� DUNGL���	�
�� DUNGL����	��
�� DUNGL����	��

	 DUNGL��
��

� DUNGL���
���
�
 DUNGL���
���

WAKEi

�i

��i

��i

��i

��i

��i

��i

��i

��
�� LL

��

�� LL
��

�� LL
��

�� LL
��

�� LL
��

�� LL
��

�� LL
��

�� LL
��

Figure 	��� Wakup tree immediately after setting the �rst queen in row �

Address Structure Alive
�� DUNGL������ �
�� DUNGL�������� �
�� DUNGL�������� �
�� DUNGL������ �
�� DUNGL�������� �
�� DUNGL�������� �

	 DUNGL���	�� �

� DUNGL����	��� �
�
 DUNGL����	��� �
�� DUNGL��������
�	� DUNGL����������
��� DUNGL����������
��� DUNGL�����	��
��	 DUNGL������	���
��� DUNGL������	���
��� DUNGL�����	��
��� DUNGL������	���
��� DUNGL������	���

WAKEi

�
�i

��
i

���i

���i

���i

���i

��
i

���i

��i

��i

�� 	
�� TT

�� 	

�� LL
�� 	

�� LL

�

�� LL
���

�� LL
���

�� LL
���

�� LL
���

�� LL
��

�� ll
���i

���i

���i

���i

���i

���i

��i

�
i

�� 	
�� TT

�� 	

�� LL
�� 	

�� LL

�

�� LL
���

�� LL
���

�� LL
���

�� LL
���

�� LL
���

��
�� HHHH

���i

���i

���i

���i

���i

���i

�i

��i

�� 	
�� TT

�� 	

�� LL
�� 	

�� LL
���

�� LL
���

�� LL
��

�� LL
���

�� LL
���

�� LL
���

Figure 	��� Wakup tree after �rst propagation

The Busy Constraint WAM ��

197

189

144

135

126

118

109

100

42

33

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

170

161

152

120

111

102

68

59

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

172

163

154

146

137

128

94

85

DUNGL

DUNGL-

DUNGL+

1
186

1
186
1

1
186
1

186
194
+

186
194
1
+

186
194
1
+

186
202
+

186
202
2
+

186
202
2
+

1
194

1
194
2

1
194
2

194
202
+

194
202
1
+

194
202
1
+

1
202

1
202
3

1
202
3

Figure 	��� The woken goal tree in the four queens example in DAG representation

The Busy Constraint WAM ��

825

817

809

801

793

785

368

359

350

342

333

324

316

307

298

290

281

272

264

255

246

238

229

220

58

49

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

498

489

480

472

463

454

446

437

428

420

411

402

394

385

376

240

231

222

84

75

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

602

593

584

576

567

558

550

541

532

524

515

506

396

387

378

266

257

248

110

101

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

680

671

662

654

645

636

628

619

610

526

517

508

422

413

404

292

283

274

136

127

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

732

723

714

706

697

688

630

621

612

552

543

534

448

439

430

318

309

300

162

153

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

758

749

740

708

699

690

656

647

638

578

569

560

474

465

456

344

335

326

188

179

DUNGL

DUNGL-

DUNGL+

DUNGL

DUNGL-

DUNGL+

760

751

742

734

725

716

682

673

664

604

595

586

500

491

482

370

361

352

214

205

DUNGL

DUNGL-

DUNGL+

1
782

1
782
1

1
782
1

782
790
+

782
790
1
+

782
790
1
+

782
798
+

782
798
2
+

782
798
2
+

782
806
+

782
806
3
+

782
806
3
+

782
814
+

782
814
4
+

782
814
4
+

782
822
+

782
822
5
+

782
822
5
+

782
830
+

782
830
6
+

782
830
6
+

1
790

1
790
2

1
790
2

790
798
+

790
798
1
+

790
798
1
+

790
806
+

790
806
2
+

790
806
2
+

790
814
+

790
814
3
+

790
814
3
+

790
822
+

790
822
4
+

790
822
4
+

790
830
+

790
830
5
+

790
830
5
+

1
798

1
798
3

1
798
3

798
806
+

798
806
1
+

798
806
1
+

798
814
+

798
814
2
+

798
814
2
+

798
822
+

798
822
3
+

798
822
3
+

798
830
+

798
830
4
+

798
830
4
+

1
806

1
806
4

1
806
4

806
814
+

806
814
1
+

806
814
1
+

806
822
+

806
822
2
+

806
822
2
+

806
830
+

806
830
3
+

806
830
3
+

1
814

1
814
5

1
814
5

814
822
+

814
822
1
+

814
822
1
+

814
830
+

814
830
2
+

814
830
2
+

1
822

1
822
6

1
822
6

822
830
+

822
830
1
+

822
830
1
+

1
830

1
830
7

1
830
7

Figure 	�	� The woken goal tree in the eight queens example in DAG representation

Chapter �

The optimized WAM

In this chapter� we will make a redesign of the WAM proposed in chapter 	� We will shortly
outline our approach� The handling of the suspended goals should not be done by control
primitives� These had to check� whether the constraints are already delayed in the variables
suspended goal list and therefore had to search the suspended goal tree for a speci�c delay
entry� If we implement the handling in the uni�cation routine� we can save the work� The
idea of having constraint initialization code and constraint testing code in physically the same
code turned out to be ine�cient� We will seperate constraint initialization code and constraint
testing code� We will even put constraint testing code very deep into the bind mechanism
forcing the goals of a delayed variable not to be woken when the variable is touched� but when
the wakeup tests say that a constraint can �re� The idea of splitting the constraint initialization
code into sperate WAM instructions was motivated to have a set of WAM�alike instructions�
We give up this desire and put the initialization code into a single instruction� The idea of
having a single delay record in the system turned out to be a good approach�

The compilation of for this WAM is described in chapter
� You may want to have a look at
the compilation of the added control constructs �rst�

�� The lookahead and forward instructions

The lookahead and forward instructions initialize the constraint by

����� The forward instruction

The task of the forward instruction is to check whether the constraint can already �re� In that
case the forward instruction behaves like an execute instruction� The constraint must not be
delayed� since forward constraints can only be �red once� If the constraint can not �re� a delay
record must be created and the variables must be suspended� In the following instruction arity

is a number indicating the number of arguments� spec is a list of length arity containing �g�
and �d� speci�cations for the arguments� X i accesses the argument register Xi� spec i ref�
erences the the �g� or �d� speci�cation in the speci�cation list� Ground� ordinary variable�

suspended variable� domain variable� suspended domain variable� constant and ground

are tests to check if the argument is ground� an ordinary variable� etc� The procedures
inherit�goal and new�delayrecord are described later�

We give the algorithm in a PASCAL like form�

The optimized WAM ��

����� The lookahead instruction

The lookahead instruction is more complex than the forward constraint� First� we have to
check� whether the lookahead procedure is lookahead available� If there is only one domain
variable left� we can directly jump to the constraint body� If not� we must allocate a delay
record� delay the arguments and jumps to the constraint� If the constraint is not lookahead
available� we either fail or delay the constraint� The notation is similar to the notation in the
forward instruction�

We give the algorithm in a PASCAL like form�

�� The creation of a delay record

The procedure new�delayrecord �label�arity�spec�type� allocates the structure in �g� ��
on the heap� A delay record contains all information to wake a constraint� Furthermore it
contains the speci�cation list of the constraint and a marker indicating whether the constraint
is dead or alive� The bind mechanism� which accesses the stored information must know which
type of constraint is present forward� lookahead�� We are having a special tag dly for a delay
record for �nding un�red constraints at the end�

�� Inheriting Goals

When delaying a constraint� the variables in the constraint must get an entry of the constraint�s
delay record� so when a variable is bound it can be checked whether the constraint can �re or
not� With the notation Var�domain� we access the domain of a domain variable and Var�goals
references the suspended goal tree of the variable� Ref
car Ref
cdr� access the car cdr�
resp�� of a list�

The algorithm for inheriting suspended goal lists is recursive�

inherit�goals �gl ref��

if �ordinary�variable�ref�� then

bind��ref� new�suspended�variable�gl�� else

if �domain�variable�ref�� then

bind��ref� new�suspended�domain�variable�gl�Var�domain�� else

if �suspended�variable�ref�� then

bind��ref� new�suspended�variable �new�goalnode�ref�goals�gl��� else

if �suspended�domain�variable�ref�� then

bind�ref� new�suspended�domain�variable�new�goalnode�ref�goals�gl��ref�domain� else

if const�ref� then begin end else

if list�ref� then begin

inherit�goals�gl�deref�ref�car��	

inherit�goals�gl�deref�ref�cdr��	 end else

if struct�ref� then for i�
� to ref�arity do

inherit�gl�deref�ref�args�i��	

�� Binding mechanism

We have now all the structures to be able to look at the binding algorithm� The task is to bind
a reference to a certain value checking whether the location must be trailed� If we are doing

The optimized WAM �

a binding to a delayed variable� we are taking the goal tree of the variable and are recursively
checking whether a single constraint can �re� This is done by wakeup� The wakeup algorithm
is given in the following�

Wakeupstruct is the procedure testing wether a structure can be �red or not� It marks the
constraint� if it will be dead after �ring and appends it to the woken constraint list� With
struct
fun� struct
arity� struct
notfired� struct
cnsttype and struct
arg i we ac�
cess the functor� the number of arguments� the �ag telling whether the constraint is dead� the
constraint type and the arguments of the structure� resp� The � is the address operator known
from C� The aim of the wakeup� procedure is to append a woken structure to the already woken
constraints�

wakeup�struct��

if struct
nonfired

then if �struct
cnsttype � forward�

then begin

count���� wake��t� i����

while �wake and �count ���� and �i��arity�� do

begin deref�X�i��

case �spec�i� of

�g�� wake �� ground�X�i��

�d�� if �ordinary�variable�X�i� or suspended�variable�X�i��

then wake��nil else

if �domain�variable�X�i� or suspended�domain�variable�X�i��

then count��count�� else

if �not�constant�X�i��� fail�

end�

i��i���

end�

if �wake and �count �� ��� then

begin wakeup��ref��

bind��struct
notfired�true��

end�

end else �� structure is lookahead ��

begin

count���� wake��t� i����

while �wake and �i��arity�� do

begin deref�X�i��

case �spec�i� of

�g�� wake �� ground�X�i��

�d�� if �ordinary�variable�X�i� or suspended�variable�X�i��

then wake��nil else

if �domain�variable�X�i� or suspended�domain�variable�X�i��

then count��count�� else

if �not�constant�X�i��� fail�

end�

i��i���

end�

if wake then begin if �not �w�member ref�� wakeup��ref��

if �count �� �� then bind��struct
notfired�true��

end�

The optimized WAM �	

�� Waking a structure up unconditionally

When we are at the point where we can wake up a constraint unconditionally� it is desirable
that we are building a wakeup list and no tree� Furthermore� we want to invoke the constraints
in the order they occurred�

We are having two registers WAKE and WAKEE for the wakeup� WAKE points either to nil or to
the head of the wakeup list� the register WAKEE points to the last list element which is modi�ed
destructively to ensure the proper order on the wakeup list�

The algorithm to wake up one structure is�

wakeup��ref��

if �WAKE � nil� then begin WAKE��new�list�cell�

WAKEE �� WAKE�

new�value�ref��

new�value�nil��

end

else

begin WAKEE
cdr �� new�list�cell�

WAKEE �� H�

new�value�ref��

new�value�nil��

end�

subsectionThe new XCALL Routine The new xcall routine can be made simpler compared to
the routine in section 	����� There we had to cope with woken goal trees� here we must handle
goal lists� to a simpler version� which must not check whether the constraints are already dead�
If they are dead� they are not woken by lookahead or forward constraint testing code in the
binding mechanism� We will see in section ��
 that we must handle internal interrupts� Up to
now the xcall routines could be written as�

xcall���

allocate �

L��

call xcall�������

ifagainwakego L�

deallocate

proceed

and xcall��� reads�

xcall�����

xcall���S�L�� �� mcall�S��xcall��L�

The optimized WAM ��

�	 The Uni�cation Procedure

In the following we will examine the di�erent cases� the uni�cation routine has to deal with�
Whenever possible� we will give a graphical representation of the uni�cation work� In the
�gures� the dotted boxes are words altered during uni�cation� the hatched boxes are new allo�
cated memory cells on the heap� In the following we describe what happens in the uni�cation
procedure with the di�erent sorts of variables� In the �gures we will show the �interesting�
cases� E�g� when unifying two domain variable we will show the case where the intersection of
the domain is neither empty nor a singleton�

�
 Binding stategies

Binding a variable to a value involves saving its old value� on the trail if the variable is
not deallocated upon backtracking� If the variable to be bound is a suspended variable or a
suspended domain variable� the constraints belonging to the variable have eventually to be
appended to the list of woken constraints��� When handling variables� we somtimes already
know which type of variable is to be bound� Therefore� we have a bind function checking if
the variable to be bound is a suspended variable or suspended domain variable� The bindw

functions is for variables known to be delayed variables� Their goal tree must be woken in
every case� The bind� function is for bindings where the variable is an ordinary or a domain
variable�

Concerning uni�cation� in some cases new data structures have to be created e�g� when
unifying two domain variables� a new domain variable may be created�� In some cases� we
can use some existing memory portions from the structures to be uni�ed� modify them and
use trailing to make the modi�cations reverseable� Since trailing is a costly operation� the
above mentioned optimizations must be considered with great care� It should be assumed
that a trailing operation costs two words one for the address and one for the previous value��
Trailing must only be done when the variable is not deallocated by the next backtracking step�

����� Uni�cation of two ordinary variables

The uni�cation of two ordinary variables �g� ���� is more di�cult as it �rst seems to be� This
arises from the fact that ordinary variables can be found in the stack and in the heap� To avoid
dangling references bindings have to be done from the variable created later to the variable
created earlier� Thus� if we are going to deallocate a variable on the stack by environment
trimming or last call optimization� we can never obtain a reference from a variable to a variable
being deallocated� Another aspect is that references must not point from the stack to the heap�
since the variables on the heap are more �persistent� than those on the stack� Heap addresses
are lower than stack addresses see �g� ��� and older variables have lower addresses than
younger variables� So the binding has to be done from the higher address to the lower address�
The binding is performed by the bind� function�

�In normal WAM systems only the address of a variable must be stored � The contents of the memory
location is its own address �which is the represenation for an unbound variable��

�In the Busy WAM a goallist is always completely woken	 in the optimized WAM only the constraints are
woken	 which can be �red�

The optimized WAM ��

ref ref=
adr1 adr2

ref
adr1

ref
adr2 adr1>adr2

ref
adr1

ref
adr2 adr2>adr1

Figure ���� Uni�cation of two ordinary variables

����� Uni�cation of an ordinary variable with a domain variable

A domain variable is located on the heap� Thus� the binding direction is from the ordinary
variable to the domain variable� No goals have to be considered� so we call the bind� mech�
anism� The binding can not be done from the �rst ref�cell see �g� ���� to the domain cell�
but must be done to the ref�cell of the variable on the right side� If a successive binding of
the domain variable on the right side to e�g� a constant is performed�� the variable on the left
would still point to the domain�

����
 Uni�cation of an ordinary variable with a suspended variable

A suspended variable can only be found on the heap� The binding direction is from the ordinary
variable to the suspended variable see �g� ����� We do not have to wake the constraints on
the suspended variable� since the binding can not a�ect any variable in the frozen goal list� In
principle� only the ordinary variable has been touched� but not the suspended variable� so we
use bind� for the binding�

����� Uni�cation of an ordinary variable with a suspended domain variable

The binding must be done via bind� from the ordinary variable to the suspended domain
variable see �g� ����� No constraints must be woken since the resulting binding does not a�ect
any constraint �ring condition�

���� Uni�cation of two domain variables

From the theoretical viewpoint� unifying two domain variables means that the variables are
bound to a new domain variable where the domain is obtained by intersecting the two domains

�This means	 the ref�cell is bound to a const�cell with the constant as its value�

The optimized WAM ��

ref ref=

domain

ref ref

domain

Figure ���� Uni�cation of an ordinary variable with a domain variable

ref susp=

list goals

ref susp

list goals

Figure ���� Uni�cation of an ordinary variable with a suspended variable

The optimized WAM ��

susp

list goals

domain

=ref

ref susp

domain

list goals

Figure ���� Uni�cation of an ordinary variable with a suspended domain variable

The optimized WAM ��

Thus the total memory consumption is � new cells on the heap and up to � trail entries��
A failure is generated when the intersection ist empty� We can save a memory cell by not
allocating a full new domain variable� One reference cell on the left side see �g� ���� points to
the reference on the right side� assuring that successive bindings a�ect the two variables� The
reference cell on the right side points to the new generated domain� However we can eventually
further save the generation of the new domain� If D� � D�� the right reference cell can be
bound to the domain cell D� on the left side�� If a singleton is obtained by the intersection of
the domains� both variables are bound to the constant� If the intersection is empty� a failure
occurs�

ref=

domain

ref ref

ref

domain D1 D2

domaindomain D1 D2

domain intersection(D1,D2)

Figure ���� Uni�cation of a domain variable with a domain variable

����� Uni�cation of a domain variable and a suspended variable

Unifying a domain variable and a suspended variable means creating a suspended domain
variable� We will not use any new heap memory� see� �g� ��	� The reference cell on the left
side is bound to the suspension cell while the domain reference is put into the suspension cell�
The arising con�guration on the left side is a suspended domain variable� while the right side
is a reference on the same suspended domain variable�

����� Uni�cation of a domain variable and a suspended domain variable

Unifying a domain variable and a suspended domain variable results in a new suspended
domain variable with the same suspended goal list and an intersected domain see �g� �����
We are only generating a new domain� the domain variable on the left hand side is altered
to point to the new domain� The reference on the left hand side is bound to the suspended
domain variable� The new domain cell is saved when one domain is a subset of the other� The
suspended domain variable domain variable� is bound by bindw bind�� resp���

�similar strategy for D � D��

The optimized WAM ��

= refsusp

list goals1

domain

refsusp

list goals1

domain

Figure ��	� Uni�cation of a domain variable with a suspended variable

ref

domain

susp

list goals2

ref

list goals2

=

domain D1

D2

domain D1

domain D2

domain intersection(D1,D2)susp

Figure ���� Uni�cation of a domain variable with a suspended domain variable

The optimized WAM ��

����� Uni�cation of a suspended variable and a suspended domain variable

Unifying a suspended variable and a suspended domain variable results in a new suspended
domain variable whose goals are constructed by consing the two goal trees� When phsically
allocating the above new suspended domain variable with the new goal node� we use
 memory
cells� � cells for the suspended domain variable with the new goal node and � new references
from the orginal variables to new the allocated suspended domain variable� resulting in
 cells
binding needs two cells for each�� In the strategy in �g� ��
 we need 	 memory cells� The
goals of the left hand side goals�� have to be woken� the constraints of the right hand side
can not �re�

susp

list goals1

domain

susp

list goals2

ref

list goals1 list

domain

=

susp

list

list goals2

goals1

Figure ��
� Uni�cation of a suspended variable and a suspended domain variable

����� Uni�cation of a suspended variable and a suspended variable

������ Uni�cation two suspended domain variables

Unifying two suspended variables is the most complex case concerning the handling of variables�
The intersection of the domain variables must be performed� the goal trees of the two suspended
variables must be consed together and the goals must be woken� Instead of generating a new
suspended domain variable� we are altering the existing structures to �t our needs see �g ���
Only a new goal node and a new domain node are needed� If a singleton is obtained by the
intersection of the domains� both variables are bound to the constant� If the intersection is
empty� a failure occurs�

The optimized WAM ��

= susp

list goals2

susp

list goals1

ref

list goals1 list

list

list goals2

goals1susp

Figure ���� Uni�cation of a suspended variable with a suspended variable

������ The other cases

The rest of the possibilities are similar to the standard WAM uni�cation routine� Since all
cases� where two variables are present have been examined above� at most one variable must
be considered�

If one of the arguments to unify is an ordinary variable� the ordinary variable is bound by
bind� to the other argument�

If one argument is a suspended variable� we have to inherit the goals of the suspended variable
to the other argument� Inheriting is done by the procedure described in section ���� Afterwards�
the suspended variable is bound to the other argument by the bind procedure�

Another possibility is that one argument is a domain variable� Then the other must be a
constant� otherwise a failure occurs� It is bound by the bind� function�

The same is true for suspended domain variables� except we are binding via bindw� waking the
suspended goal tree�

In the following� no variables can occur� since all cases with variables have been handled up to
now� Then we check� whether the two arguments have the same tags� If not� a fail is issued�

If the arguments are constants and are equal� all is �ne� otherwise a failure is issued�

If the arguments are compound terms� whose functor is equal� the unify routine is called
recursively for the elements�

�� Problems

In the sections above� we have taken great care that the handling of suspended goal lists is
deeply located in the WAM and is not implemented by WAM primitives or any constraint
testing code� Unfortunately� we have to face a problem occuring when building new structures

The optimized WAM �

in write mode caused by get list or get structure instructions� Consider a suspended
variable� to be uni�ed with a compound term structure or list�� Due to the fact that the
variable is unbound� the compound term must be constructed on the heap� Assume further
that within the structure or list to built is another delayed variable� So we have to construct a
union of the two suspended goal lists� Apparently� we are in trouble since during constructing
compound term elements� we are not allowed to use more than a cell per element� But we
have to construct a new goal nodes which take additional two cells $ We can not allocate
these when we are building compoud terms� Since building compound terms is handled by a
sequence of instructions� we have no chance to allocate the new goal cell behind the structure
to be allocated� This leads to the concept of internal interrupts to delay computation which
can be performed when the term has been constructed�

����� Invoking internal interrupts

Internal interrupt entries are appended to the beginning of the woken constraint list compare
to section ����� They happen when a get list or get structure instruction is called whose
argument is a suspended variable� Before the structure is built on the heap� an internal
interrupt entry is allocated in the heap� The layout of the interrupt record is shown in �g� ���

����� Handling internal interrupts

Internal interrupts must be handled be the xcall�� mechanism� In the implementation� we
have list cells for clueing the list entries of structures and references together� Structure pointers
are references to delay records� ref�cells point to internal delay records� So� when dealing with
internal delay records� we must explicitly handle ref�cells normally invisible to the WAM�
since they are handled by the dereferencing mechanism� We must utilize two new WAM
instructions� switch on type noderef having the same semantics as switch on type except
that no dereferencing is performed and ifref inherit goals arg�label which tests if register
arg is a reference� If the test is negative� the WAM jumps to label� If arg is a reference� it is
a pointer to an internal delay record see ���� If takes the compoud term reference the term
which has been built� and inherits the variable�s suspended goal list� The procedure xcall���
is now more complex�

xcall����

switch�on�type�noderef ��

nil� � Variable �� failstruct� �

nil� � DomVariable �� fail

nil� � number �� fail

nil� � symbol �� fail

list�� � list

nil� � Struct � call it

proceed�� � nil �� fail

nil � otherwise �� fail

list��

allocate �

get�list �

�Suspended domain variables can not be uni�ed with structures�

The optimized WAM �	

unify�variable�temp 	

unify�variable�perm �

ifref�inherit�goals ��mcallit

put�value�perm ���

deallocate

execute� xcall�����

mcallit�

mcall 	��

put�value�perm ���

deallocate

execute� xcall�����

proceed��

proceed

����
 Can internal interrupts be avoided at all �

Internal interrupts are a necessary� but ugly feature of the described WAM� This is caused by
the handling of unifying structures in WAM code� Due to the fact that there is another caveat
in building compound term the mode register is subsequently checked�� schemes have been
developed to make the building of the structures nonlocal �Mei���� Building upon these results
we could integrate a scheme which would avoid internal interrupts� Then� however� we could
not claim that our WAM extensions can be easily implemented in existing compilers�

� Termination

At a �nal proceed the answer is only sound� if there are no more constraints in store� In ��
a delay record is shown� It has a special tag at the beginning with a value indicating whether
the constraint is still alive or dead� The only thing to do at termination is to search for those
tags on the heap� If a record is still active� we must tell the user that there are still un�red
constraints� However� the algorithm is trivial� In �Car
��� Carlsson proposes to trail every
suspension and search the trail suspensions and follow the pointers on the trail to see whether
it is still a suspension� When it is still a suspension the goals of that suspension are still
delayed� Our scheme is simpler� but it costs an extra tag to mark the delay records � this
may be a rare resource in low level implementations�

��� Conclusion

Upon a casual look� one could argue that much the work done by the WAM in the last section
is only performed �deeply inside�� So let us look at the structural di�erences�

� In the previous WAM� waking was done as soon as a suspended variable was touched�
In this WAM� we wake constraints when they can be �red� Of course� we do not save
the testing code� but the time and space the unecessary waking causes and the time and
space� by xcall�

�used in the XCALL environment�

The optimized WAM ��

� Delay records are only created when they are needed since lookahead and forward

instructions have an overview of all arguments involved and not a local view on one
argument�

� The union of suspended goal list is performed by the unify routine and sometimes
by internal interrupts�� It�s not the combined constraint initialization�testing code re�
sponsibility to search on the suspended constraint list� whether it is already delayed�
completely saved�

� in the old WAM complete suspended goal lists were woken� resulting in possible repeated
wakeups of constraints�

� A forward constraint is immediately marked dead� when it is appended to the woken
constraint list� Thus� subsequent tries to wake up the constraint will fail immediately�

Chapter 	

The new compilation scheme

In �HM��� a compilation scheme is presented consisting of horizontal �source�to�source� and
vertical �source�to�instruction� compilation steps� The �rst step of the source�to�source trans�
formation is to group clauses together� Afterwards a �attening process is performed to remove
the nested compound terms� In FIDO� domain variables in compound terms must be treated
in a special manner� because domain variables need more than one word� Therefore� they must
be �attened� After partially evaluating the resulting �attened code� the

�
� constraints are to be

reordered� In the next step� variables are classi�ed so the
�
��constraints can be easily mapped

to WAM instructions� In the chapter� we will give the de�ntions and procedures which must
be altered to cope with the �nite domain extensions� You will see that there are surprisingly
few changes which con�rms that our compilation scheme is very �exible� The ��xes� are due
to the memory organisation memtioned above� Please note that our de�nition of �domain
variable� in the compilation process is slightly di�erent to the notion of �domain variable�
in the WAM� Another surprise is that we must not cope with �delayed� variables suspended
variable� suspended domain variable� during compilation�

��� Horizontal compilation

The aim of horizontal compilation is to reduce the syntactical manifold and obtain clauses
with simple� homogenious and declarative constructs which can be transformed into WAM
code by a relatively small set of transformation rules� In this chapter we will assume clauses
and procedures that are syntactically correct� although we will not de�ne any formal grammar
and rely on the reader�s knowledge of syntactically correct PROLOG clauses�

De�nition �� variable� An ordinary variable is a variable that is not a domain variable�

In the following we will see that we are going to replace the syntactic appearance of a domain
variable by an

�
� construct with an ordinary variables� Whenever the term �variable� without

pre�x is presented� we refer to �ordinary veriables��

De�nition �� domain variable� A domain variable is a variable which can be instantiated
to an element of a �nite domain� This domain set is given at the �rst occurence of the domain
variable� The syntactical form of a domain variable is X�fdomaing� By de�nition� if there is
a variable X without domain at its �rst occurence but written with a domain in the following
occurrence� this latter domain is removed and attached to the �rst occurence�

The new compilation scheme ��

In the WAM �attening process we will get rid of the domain variables of the form Var�domain
and produce instead Var

�
� domain� where domain is the domain of Var� Var is further con�

sidered to be an ordinary variable��

����� Grouping together

First we group together clauses by a mere syntactic transformation� resembling the WAM level
where only one entry point to a procedure is present�

De�nition �� Grouping� Let the clause

pt�� � � � � tn� � B�� � � � �Bn�

be part of a program P� In the �rst step� we replace the constraints in the head by new variables
X�� � � � � Xn� writing

pX�� � � � �Xn� � X�
�
� t�� � � � � Xn

�
� tn�B�� � � � �Bn�

We obtain a set of clauses with the same head�

pX�� � � � �Xn� � E�
���

pX�� � � � �Xn� � Ek

with Ei � �X�
�
� t�� � � �� for� � i � n� Now� we group the clauses together and obtain a de�nite

equivalence�
pX�� � � � �Xn� � E� � � � �� En�

The �attening of compound terms is performed as a horizontal precompilation step� In order
not to cope explicitly with lists at the horizontal compilation level� we rewrite lists as structures
of the form cons�L��L��� where L� is the head of the list and L� is its tail� In the vertical
transformation process� we will handle the cons strutures by di�erent compilation rules� since
during runtime� the representation of lists is optimized in a way so that a memory cell for the
functor is saved�

De�nition �� WAM �attening� Let pt�� � � � � tn� be an atom in the de�nite equivalence�
If ti � � i � n� is not an ordinary variable� replace pt�� � � � � tn� by

Var
�
� ti� pt�� � � � � ti���Var� ti��� � � � � tn��

where Var is a new ordinary variable not yet occurring in the de�nite equivalence�

Let s�
�
� s� be a

�
��constraint�

If s��domain is a domain variable and s� is an ordinary variable replace by s�
�
� domain�

s�
�
� s��

If s� is an ordinary variable and s� is a domain replace by s�
�
� s��

�which is opposed to the runtime behaviour�

The new compilation scheme ��

If s��domain� and s��domain� are domain variables� replace by s�
�
� domain� � domain�� s�

�
� s��

If s��domain and s� is neiher an ordinary variable nor a domain variable� replace by s�
�
� domain�

s�
�
� s��

If s��domain and s� is neiher an ordinary variable nor a domain variable� replace by s�
�
� s��

The aim of the rules above is to eliminate domain variables getting
�
��constraints of the form

Var
�
� domain�

If s� is a ordinary variable and s� is not a variable� replace s�
�
� s� by s�

�
� s��

Let s� be a variable and s� be a structure ft�� � � � � tn� of arity n� If ti �� � i � n� is neither
an ordinary variable nor a constant� replace s�

�
� ft�� � � � � ti��� ti� ti��� � � � � tn� by

Var
�
� ti� s�

�
� ft�� � � � � ti���Var� ti��� � � � � tn�

where Var is a new variable not occurring in the de�nite equivalence�

If neither s� nor s� are ordinary variables� they are either constants or structures� If s��const�
and s��const� with const� ��const�� replace the constraint by a fail� if const��const�� delete
the equation� If s��f�t��� � ��tn� and s��f�u��� � ��un� are structures with same arity and functors�
replace the

�
��constraint by n

�
��constraints of the form

t�
�
� u�� t�

�
� u�� � � � � tn

�
� un%

otherwise replace the
�
��constraint by a fail�

WAM �attening continues until no more rules can be applied�

Note that the �attening order is subject to change in the constraint reordering process�

����� A note on memory organisation

In the above �attening scheme� domain variables are �attened when they appear in a structure�
This is important since a domain variable uses in general more than one word� When a structure
is to be uni�ed with an unbound variable� the write mode is switched on and the structure has
to be built in memory� Assume� the functor has already been built and a domain variable must
be uni�ed directly assuming a memory usage of two word� We have no means to allocate the
domain variable� because we can neither put the domain variable in front of of the structure
nor at the end� We must have direct access to the nth argument of the functor since it is
mandatory WAM design requirement� The same is valid for list cells� A list is assumed to
have two consecutive cells� Accessing the �cdr� cell would result in testing the �rst cell to be
a domain variable and calculating the address from the �car� element of the list node� The
same is true for suspended variables� but this is a dynamic feature occuring at runtime and
the machine has to cope with it�

The resulting de�nite equivalences have a restricted syntactical form�

� The head is an atom whose arguments are variables�

� The arguments of the literals in the body are variables�

� The
�
��constraints have one of the forms�

The new compilation scheme ��

� Var�
�
� Var�

� Var
�
� constant

� Var
�
� domain

� Var
�
� f�t��� � � �tn�� where ti are either constants or variables � � i � n��

� The or�operator � separates the or�branches�

� A special atom fail indicates compile time failure�

Herein� the arguments occurring in the procedure head are temporary variables� The �nite
tree and the �nite domain are handled by the code generation for

�
� for both head and tail�

Please note that the only addition compared to the WAM Compilation Scheme �HM��� is the
addtion of Var

�
� domain�

Variable could be allocated without exception on the stack or on the heap� This would result
in a very bad runtime bahaviour and increased memory consumption�� From conventional
language compilation� we know that speed is due to the intensive use of registers� The WAM
model is a register oriented machine with a set of X�registers used for argument passing and
temporary variable assignment� In �Deb
	� variables are classi�ed permanent Y�variables� or
temporary X�variables�� Permanent variables Y�variables� have to be stored in the environ�
ment while the temporary ones X�variables� can be held in a register�

A X�register can not contain any free logical variables since a register can not be accessed by an
address so it is impossible to have a reference to the register itself � which is the representation
for a variable� However� we speak of X�variables since they may contain pointers to variables in
memory� Domain variables� suspended variables and suspended domain variables belong to a
class of variables� which can only be found in the heap� They can however be X�variables and
Y�variables�� The feature of being a temporary X�variable says something about its lifetime
in the procedure and not where it is located�

What we already know from the suspended�� domain�� and suspended domain variables types
that the are always located on the heap� Thus the can not be unsafe variables� They can be
temporary or permanent variables� When they occur for the �rst time� they have a domain
associated�

The de�nition of destroying and preserving literals� chunk� pseudo�chunk� variable types tem�
porary� permanent� do not alter and can be looked up in �HM����

Var�temp	�rst
�
� domain

�put dvariable temp Var��X�reg domain�

���

Var�temp	non�rst
�
� domain

�get dvalue temp Var��X�reg domain�

���

Var�perm	�rst
�
� domain

�put dvariable perm Var��Y�reg domain�

���

You should be aware that the instructions in the compilation rules given in �HM��� have an
extended semantics� e�g� a get constant operation must now deal with domain variables�

The new compilation scheme ��

��� Specifying the extended control primitives

In this section� we describe how to compile control of the constraints� We distinguish be�
tween constraint initialization code and constraint body� The constraint initialization code is
responsible for jumping to the constraint if it can �re� building the runtime structures for the
bind�mechansim and for delaying the variables�

Concerning the constraint body the �ring code�� we have two sorts of constraints in FIDO�
Intensional constraints are constraints given by an algebraic expression over the operators
��	� ��
�� and predicates ������ ge� ��� �� These are to be compiled into a LISP expressions
for optimal e�ciency� Extensional predicates are a set of clauses and when applying local
consistency the new consistent domains are determined by calculating the set of solutions of
the predicate taking the union of the single arguments�

����� Lookahead and forward de�nitions

Here� we are de�ning how to compile the constraint initialization� The presentation of looka�
head and forward de�nition to the system has been presented in de�nition �� and ��� Taking
a constraint de�nition for a procedure p�arity� we apply the initialization at the label p�arity
delaying the constraint body under the name �c�p�arity� The compilation of forward and
lookahead is given in table
��� The nonterminal arity is the number of arguments� In the
compilation rules� you �nd atoms with a ���� These are labels and mark special entry points
in the code and are no instructions� The non�terminal speclist determines which arguments
must be ground or domain variables�

forward procedure � speclist �

�forward arity speclist �c�procedure�

���

lookahead procedure � speclist �

�lookahead arity speclist �c�procedure�

���

Table
��� Compilation of forward and lookahead declarations

The following is a compilation of an initialization code of �� ne��

forward ne�d�d�

is compiled to�

ne�

�forward 	 �d d� �c�ne�

�c�ne�

�In our implementation we can take every legal LISP expression� For the sake of portability to any other
language we should restrict ourselves to these �builtins��

The new compilation scheme ��

����� Intensional Constraints

In many applications the constraints of interest are expressions over ��	� ��
������� ge� ���
and domain variables and user variables� The task to perform is to synthesize a LISP expression
from the expression in the constraint predicate p and generate the form seen in �g�
��� The
argument argumentplaces speci�es these argument registers from where the parameters are
passed to the consistency routines�

p�� � �� �� expression expressable in LISP

�c�p�arity�
�n�consistent argumentplaces �lambda �Variables� expression expressable in LISP��

�proceed�

�	�

Figure
��� Compilation of an intensional constraint

So the above not�equal predicate is compiled to�

ne�

�forward 	 �d d� �c�ne�

�c�ne�

�	�consistent �� 	� �lambda �x y� ��� x y���

�proceed�

Constraints may be disjunctive� Take for example the neighbour predicate in the houses
example see appendix C�� They are compiled obeying the rules for normal control�

forward neighbour�d�d�

neighbour�X�Y� �� X ��� Y � �

neighbour�X�Y� �� X ��� Y � �

is compiled to

neighbour�	�

�forward 	 �d d� �c�neighbour�	�

�c�neighbour�	�

�try�me�else L� 	�

�	�consistent �� 	� �lambda�x y� �u v� �� u ��� v����

�proceed�

L�� �trust�me�else�fail 	�

�	�consistent �� 	� �lambda�x y� �u v� �� u ��� v����

�proceed�

����
 Extensional Constraints

Extensional constraints are written in FIDO� While the termination using intensional con�
straints is no problem� the programmer may specify a procedure o�ending def� ��� The burden

The new compilation scheme ��

p�� � �� �� � � �

�c�p�arity�
�np�consistent argumentplaces �c�c�p�arity�

�proceed�

�c�c�p�arity�
�tryL���
�trustL���

L� �
�call$&c&c&c&p�arityarity��
�constraint	 succeeded�

L� �
�constraint 	 failed�

���

Figure
��� Compilation of an extensional constraint

is put on the programmer $ The compilation is more complex� since we must collect the so�
lutions by calling the FIDO machine inside FIDO� The initialization code is the same as for
intensional constraints� The code of the body is compiled di�erently and can be seen in �g�

���

Compiling the predicate p�	 results in�

forward p�d�d�

p���	�

p�	���

p�	���

p��� �

p�	�

�forward 	 �d d� �c�p�	�

�c�p�	�

�	p�consistent �� 	� �c�c�p�	�

�proceed�

�c�c�c�p�	�

�try L� ��

�trust L� ��

L��

�call �c�c�c�c�p�	 	 ��

�constraint�succeeded�

L��

�constraint�failed�

�c�c�c�c�p�	�

�try�me�else LL� 	�

�get�constant � ��

�get�constant 	 	�

�proceed�

The new compilation scheme �

LL��

�retry�me�else LL	 	�

�get�constant 	 ��

�get�constant � 	�

�proceed�

LL	

�retry�me�else LL� 	�

�get�constant 	 ��

�get�constant � 	�

�proceed�

LL�

�trust�me�else�fail 	�

�get�constant � ��

�get�constant 	�

�proceed�

��� Conclusion

We have extended the WAM compilation scheme by �nite domain compilation� The minor
changes in the �attening process and the additional instructions show that the scheme veri�ed
to be very �exible� A compiler modeled according to the scheme can be easily extended�
Compiling control is more di�cult� Intensional constraints have a simple form and can be
compiled without much di�culty� Extensional constraints must be compiled in a form which
seems rather ugly� The reason is that the WAM calls a instruction implemented in LISP which
must call the WAM again and after a fail or succeed caused by the constraint body� we must
avoid to proceed or fail in the program which called the consistency procedure� So we actually
protect the constraint program from continueing the calling code and can jump back to our
LISP programm collecting the data for the new domains�

Chapter

Builtins � Consistency algorithms
� First fail

The body of a constraint procedure must be compiled in a special way� We have two primitives
for the compilation of the constraint body� where we can use intensional and extensional con�
straints� Intensional constraint are compiled into LISP code� while extensional constraints are
FIDO predicates where we must apply a surrounding local consistency procedure� Fortunately�
we must not use di�erent consistency algorithms for lookahead and forward constraints � it
can be done by a single algorithm and thus by a single instruction�

The �rst fail principle is a choice method� Given a set of variables� the variable is instantiated
next� which has the smallest domain length� If two variables have the same domain length the
variable is chose� which has the greatest number of active constraints�

�� Consistency algorithms

Let us look at the de�nition of the Forward Checking Inference Rule FCIR� in �� and Looka�
head Inference Rule ��� In the LAIR� the task is to �nd for each domain variable xj with old
domain dj a new domain ej � fvj � dj j�v� � d�� � � � � �vj�� � dj��� �vj�� � dj��� � � � � �vn � dn
such that Ak� is a logical consequence of P with � � fx��v�� � � �� xn�vngg �� �� More sys�
tematically� we instantiate variables i�� � � � � in with the elements of their respective domains
d�� � � � � dn and calculate the union for each argument ej with a consistent assignment ij by
ej � ej ij �

The algorithm to calculate the new domain is�
e� � �� e� � �� � � � � en � �
foreach i� in d� do
� � �
foreach in in dn do
if Akfx��i�� � � �� xn�ingg succeeds
then e� � e� i�� e� � e� i�� � � � � en � en in

The runtime estimation for the algorithm is jd�jjd�j � � � jdnj�

Instead of using only the domain variables as running arguments� use all arguments of the
constraint� In a constraint where arguments are de�ned ground� the running arguments are to
be instantiated to a singleton value in the foreach loop� Since the length of those domains is

Builtins � Consistency algorithms First fail ��

���� the runtime estimation is the same as above� This little trick eases the compilation of the
constraint body�

The same is valid for forward constraints� were we have only one domain variable� the other
arguments are regarded as singleton values� Again� we do no not know at compile time which
arguments are going to be instantiated to ground and which argument to be the domain
variable�

����� LISP n�consistency algorithms

The n�consistency algorithm is utilized when we can transform a FIDO constraint into a
LISP expression� We call these constraints intensional constraints� See chapter
 for the exact
compilation application� The tasks to be performed before a consistency procedure can be
applied are the extraction of the domain variables and the conversion of constants to singleton
domains� The consistency procedure is applied yielding new domains� Only if the domains are
smaller than the old domains � the new domain shall be bound to the domain variables�

����� FIDO n�pconsistency

Calculating extensional constraints is a severe problem� We have to fake the machine by
allocating a new choicepoint which controls the constraint handling� The situation can be
seen in �g� ���� The problem arises from the fact that when a constraint in FIDO �nally
succeeds or fails it jumps to the code located above the upper fat line� We have to take care
of this situation since we want to collect the new domains with the algorithm outlined above�
The choicepoint is responsible that after a �nal succeed or fail control is handed over to LISP
collecting and controlling the extensional constraint�

FIDO consistency

choicepoint or
environment

choicepoint or
environment

environment for
saving state

XCALL
environments

choicepoint by constraint
succeed -> constraint succeeded
failure -> constraint failed

Environment or
choicepoint from
constraint procedure

pconsistency instruction

next value combination

record values

Figure ���� Stack structure during FIDO extensional constraints

�A binding of an equal domain forces a lookahead to be �red	 if all the places speci�ed �g� are ground	
possibly comming into an in�nite loop�

Builtins � Consistency algorithms First fail ��

�� First Fail Principle

����� Conventional labeling

The labeling strategy without any special heuristics takes the �rst domain variable in a list�
gets its domain and tries the values for the variable successively� A FIDO implementation
can be written in the following form� putdomainlist is a WAM builtin taking the domain
variable giving access to the domain represented as a list� While labeling is responsible for
working on all variables� the indomain predicate extracts the domain list and handles it over
to indomain� which is responsible for instantiating all domain list elements� The underlying
�putdomainlist Ai Aj� WAM instruction expects a domain variable in Ai� builds the domain
list and puts the pointer in Aj �

labeling����

labeling��X�Y���� indomain�X�� labeling�Y�

indomain����

indomain�Dv� �� constant�Dv���

indomain�Dv� �� domvar�Dv�� L � putdomainlist�Dv�� indomain��Dv�L�

indomain��Dv���� �� �� fail

indomain��Dv��H�T�� �� Dv � H

indomain��Dv��H�T�� �� indomain��Dv�T�

�� Implementation of the �rst�fail principle

The �rst fail principle is based on the �deleteffc� WAM instruction� The builtin instruction
deleteffc takes a list a of domain variables and constants in the second argument searches for
the domain variables with is most constraint by taking the domain variable with the smallest
domain and if domain variables have the same cardinality of their domain sets� the one is
taken with the gratest number of active constraints� The list without this choosen variable
and without the variables which have already become constants� is constructed and handled
over in the third argument� The choosen variable can be found in the �rst argument� The
e�ect of the predicate is that the choosen variables are taken in a dynamical order�

The altered labeling predicate reads�

labeling����

labeling�Ls���

deleteffc�Var�Ls�RestLs��

indomain�Var��

labeling�RestLs�

�� Conclusion

In this section we presented the necessary WAM level builtins for FIDO� All other builtins
can be constructed in FIDO itself� e�g� all different� The principles of constraint body

Builtins � Consistency algorithms First fail ��

propagation have been presented allowing in a general and e�cient manner to ensure local con�
sistency� Up to now� all methods and concepts have been shown to compile a FIDO constraint
program�

Chapter ��

Analysis

In this chapter� we will develop a simple but useful technique to analyse the behaviour of FIDO
programs during runtime� The problem is to estimate the advantage of constraint procedures
without actually debugging the whole session and looking at procedures involved � although
by using this method� we can extract the most information�

The other possibility is to play around with the forward and lookahead declarations and
try to analyse the runtime �gures� However a lookahead constraint may need a lot of time
for small examples and may be outperformed by a forward de�nition of the same constraint�
Using more complex input� the exponential growth of time in some parameter may make the
lookahead strategy more suited�

Another question arises whether to use disjunctive constraints� They may be either lookahead
or forward de�ned or in a way that �constraints as choices� are made� Pascal Van Hentenryck
proposes to use constraint as choice as the best way �Hen
����

Sometimes an optimal strategy is known to instantiate variables� If we do not know the best
strategy� the �rst fail predicate deleteffc can be applied choosing variables to be instantiated
dynamically� It would be �ne to estimate the gain of this builtin�

We will now look at our analysis model and �nally test it with some selected examples�

���� Analysis Model

The overall idea of using constraints is to prune the search space� get less failures and ob�
tain more directed functional� computation� In a WAM based environment we can easily
get some more information by counting the number of fails 'f�� expressing the degree of
non�determinism� and the number of instructions 'i� expressing the overall work� Directed
computation may be estimated by the ratio 'i�'f � However� the numbers are very course
grain�

We present a simple two�dimensional plot with the following concept� Start at some base line
moving upward when some �functional� computation is done� This is true for call� execute�
proceed and propagation consistency� instructions� When a failure occurs� we fall back onto
the base line and go one step to the right side� Furthermore� we color the di�erent steps so
that we can estimate what has been done� The color table can be seen in table ����� We argue�
that the area of the plot is the total work� The length in horizontal direction is proportional
to the nondeterminism and the height is proportional to the deterministic computation� Due
to the colors� we can see when the constraints are applied and estimate their pruning power�

Analysis ��

Action Color

execute or call black
proceed black
forward green
lookahead red
exception blue
has�succeeded yellow beam

Table ����� The colortable assigning WAM actions to colors

The WAM records the internal actions by writing PostScript statistics into a �le� By a
PostScript convention point ���� is located at the lower left corner� For the sake of sim�
plicity� we start our plot at location ���� moving upwards when we reach the right edge of the
page� Thus a plot containing serveral lines must be read from the bottom to the top�

������ Five Houses Problem

The Five Houses Problem reads� Five people with �ve nationalities live in the �rst �ve houses
of a street� Each of them has a di	erent profession� animal and has a favourite drink� Besides�
the �ve houses are painted di	erently�

� It is known that the englishman lives in a red house�

� the spaniard owns a dog�

� the japanese is a painter�

� the italian drinks tea�

� the owner of the green house drinks co�ee�

� the sculptor breeds snails�

� the diplomat lives in the yellow house�

� the owner of the middle house drinks milk�

� the violinist drinks fruit juice�

� the norwegian lives in the �rst house on the left

� and the green house is on the right of the white one�

� The problem is made more complicated by the following disjunctive constraints�

� the norwegian lives next to the blue house�

� the fox is in the house next to the doctor�s

� and the horse is in the house next to that of the diplomat�

Analysis ��

The question is� now� who owns a zebra and who drinks water ��

The FIDO source and WAM code can be found in appendix C� In the following� minor
modi�cations e�g� a redeclaration of a forward into a lookahead� are explicitly given in the
text�

No delete�c has been used and the predicates neighbour and eq�� have been forward declared�
The number of instruction till the �rst solution is ���� with �� fails� the �nal fail was obtained
after ���� steps and �� fails� The following results will be compared to these runtime �gures�

This plot originates from the save WAM code as above� but the labeling procedure has been
replaced by the �rst fail procedure� The solution was found after ����
�(� steps and 	 fails�
the �nal fail was reached after ��
� ��(� instructions and �� fails�

Now� we changed the declaration of eq�� to a lookahead constraint� We used ���� ��(�WAM
instructions and � $� fail to reach the solution and ���� ��(� steps and �� fails to come to
an end� Apparently� the delete�c has a slightly better pruning power less steps altogether�
than the lookahead less steps to �rst solution�� but the lookahead is more �directed�� Please
notice in the following two plots the tiny red dots indicating lookahead constraints� Lookahead
is not applied foolish often� which has been a criticism of lookahead� but amazingly� one has
to search the red color in the plots$

�There exists a unary solution for that problem� the spaniard owns the zebra	 and he also drinks water�

Analysis ��

If we again leave the code untouched and apply the �rst fail principle� we come to a surprise�
We get �
��
	(� steps and � fails for the �rst solution and ���� �
(� steps and �� fails to
the �no more solutions prompt�� So we have an example that delete�c must not necessarily
get better runtime solutions�

In the following example� we have used lookahead for eq�� $� and constraints as choices for
neighbour� yielding ���	 instructions
	(� �� fails� for the reaching the solution and ����
��(� steps �� fails� to the end� The number of fails are remarkable� The early creation of
choicepoints does not lead to a quick fail� This example can be considered as a counterexample
to Van Hentenrycks argument that constraints as choices are superior p� �	� in �Hen
����

Constraints as choice with delete�c are neither superior� We need ���� steps with � fails to
the solution and ���� steps and �� fails to the end�

Analysis ��

������ The SEND�MORE�MONEY example

A well�known problem is the SEND�MORE�MONEY puzzle� The letters shall be replaced
by digits so that the addition

S E N D

� M O R E

����������

� M O N E Y

gives a correct result� The problem can be formulated by de�ning an adder for each column�
returning a carry and a value� The source and WAM code can be found in appendix D�

The �rst plot resulted from the original source in appendix D with no �rst fail heuristics� Just
for convenience� we repeat the declarations we further want to change� namely the forward�U
� V � W ��� X � �� � Y� and the forward�U � V ��� W � �� � X� constraints� The run�
time �gures are
�	� steps with �� fails till the �rst solution and ����� steps with ��� fails to
the end�

Now we switch over to �rst fail heuristics� The following plot with
��� steps with �� fails to
the solutions and �		�
 steps with ��� fails show hardly a di�erence to the plot above� We
have to take a ruler to notice the di�erences� All in all� the number of steps increased�

Analysis �

The next plot demonstrates the pruning power of the lookahead constraints no delete�c�� The
declarations for the forward constraints above have changed to lookahead�U � V � W ��� X

� �� � Y� and lookahead�U � V ��� W � �� � X�� The number of instructions was ��	�
with � failures to the solution and ��	� instructions with � fails altogether�

�����
 The queens example

To demonstrate that the plot is also useful for larger examples� the queens programs has been
started with �� queens without �rst fail heuristics yielding �
���	 steps with ���� fails to reach
the �rst solution� The Y direction has been scaled to approx� ���� In the plot� there seem to
be some gaps� This is caused by the application of scaling� A single action is just ���pt which
is not seen when few steps are made till the next failure occurs�

Analysis �	

Analysis ��

The �� queens example with delete�c runs in a fraction of the time� To obtain the �rst solution
����� steps with �� fails were necessary�

���� Conclusion and possible extensions

A graphical model has been proposed to roughly visualize the runtime behaviour of a FIDO
program� The e�ects of using several declarations for constraints or loading the �rst fail
principle into the system can be clearly seen� An increase in functional computations results
in higher lines of the plot� while in increase in nondeterminism yields longer plots in horizontal
direction� The goal should be to minimize the �area� of the plot which is proportial to the
number of instructions�

The model is not at all informative about which e�ects of already woken constraints still remain
present meaning their e�ects are not backtracked�� This could be achieved by incorporating
depth information and putting the points at the height corresponding to the depth� Unfor�
tunately� at the beginning of processing a deterministic computation is usually performed in
order to build the constraint net� This may yield tremendous depth so it will not �t on the
page�

Using today�s color laser technology� many colors can be used� This make the assignment of
colors for each constraint in a program possible showing which constraints have been �red�

Lookahead constraints have di�erent complexity according to the number of domain variables
and their domain legth� Thus a three dimensional plot would be suitable for the exploration
of applications with many lookahead constraints�

It would we also very informative to obtain information by some color schme� how useful a
constraint has been� This could be measured in the number of domain elements removed�

Chapter ��

Future developments and
Extensions

In this chapter� we will review the vertical approach of compiling FIDO programs to the WAM�
We will shortly look at the WAM extensions and the basic concepts of compiling constraints
into the WAM� Finally� we will mention some extensions resulting from the approach and we
will also critically note the caveats inherent in the design�

���� What did we achieve �

In the paper� we presented an extension of the WAM for �nite domain constraints� We gave
two di�erent �avors of extensions� The �rst extended the freeze concept in chapter �� the
other is a complete redesign more amenable to constraint processing� While the �rst approach
should be considered as a �hack�� I suppose the latter approach can be classi�ed as state of the
art� This claim is so undistinct since we can not compare our work with the CHIP internals
because they are trade secrets�

The main ideas of the in�depth integration of the constraint handling is

� domain uni�cation with suspended goal list handling

� constraint initialization is atomic

� constraint testing is done deeply by bind

���� Extensions

Sound negation can be implemented� if no constraints and no delays are allowed� If the proce�
dure invoked by the not�predicate delays other procedures� we are in trouble� The only point
were we look for �oundered goals is when we come to a �nal proceed� The current behaviour
of the machine is the worst case� However� we have a lack of good concepts to deal with the
problem� This should be further investigated�

We have seen that forward constraints are cheap to apply� wheras the pruning power of looka�
head constraints is remarkable� We can also use disjunctive constraints as seen in the houses
problem in appendix C�� which is an important feature conerning allocation and scheduling

Future developments and Extensions ��

problems� When we perform constraint processing� we apply the constraints in the order they
appear� We might think of a variant� Handling the forward constraints �rst� then the looka�
head constraints are handled and �nally the disjunctive constraints are invoked� In any case
the disjunctive constraints should be postponed� They generate a choicepoint� which we want
to avoid� So we hope the constraints activated earlier make the disjunctive choice determinis�
tic� In the current version of the WAM� we have a normal processing mode and an exception
mode where the constraints are called� I propose a variant were three �exception mode levels�
for forward� lookahead and disjunctive constraints are present� This is similar to an interrupt
priority scheme of ordinary processors� E�g� an interrupt from a harddisk is of higher priority
than the interrupt from a �oppy disk which has a higher priority than the terminal input
interrupt� There are obvisous examples that postponing disjunctive constraints saves some
work� The �di�erences� by forward and lookahead constraints might be heavily application
dependent�

Going hand in hand with the above remarks is the selection of the choice variable in deleteffc�
When two domains are of equal length� the variable is choosen� which has more constraints�
We could also assume that a lookahead constraint is not as good as a forward constraint and
develop other heuristics�

The integration of hierarchially structured domains in technical problems is of great use as
shown in the CONTAX constraint system �Mey����� A possible extension of the FIDO WAM
is to integrate these structured domains� Another question is whether we can formalize domains
as types over a boolean lattice� Since the hierarchies form a lattice� it may be put into a single
framework in the same way domains in chapter � are seen as unary predicates� Types are unary
predicates as well�� Coding these lattices could be done in a way described in �AKBLN����

Another completely unsolved problem is the usage of soft constraints in a logic programming
framework� Soft constraint should get some sort of importance and they sould be removed
from the system if no solution is possible with them�

In chapter � we mentioned that the COLAB expert system shell is made of loosely coupled
inference systems� The integration of three inference systems constraints � taxonomical
reasoning � backward reasoning� seems to me interesting topic�

���� Acknowledgements

I want to thank Manfred Meyer and Prof� Richter for their help� advice� and support�

Joerg Mueller did exceptional work when developing FIDO�II � my work has been greatly
simpli�ed by verifying the output results of FIDO�III against FIDO�II and by looking at the
runtime behaviour of his systems� Furthermore� my implementation bene�tted from his careful
analysis of the weak points in FIDO�II�

Appendix A

How to obtain the source code

You can get the code by anonymous ftp to ftp
uni�kl
de in the directory �pub�languages�fido�
You will also �nd the metainterpreter and the version using horizontal compilation�

Appendix B

Eight queens ��rst solution�

��gen�

XZ�Z�Z�x
x�Z�Z�x�
XZ�Z�x�Z
x�Z�x�Z�
XZ�x�Z�Z
x�x�Z�Z�
Xx�Z�Z�Z
lXxXxXxX

��gen�

Xx�Z�ZXx
xXZ�ZXx�
Xx�ZXx�Z
xXZXx�Z�
XxXx�Z�Z
xqxXxXxX
XxXZ�Z�Z
lXxXxXxX

��gen�

XxXZ�xXx
xXx�xXx�
XxXxXx�Z
xXlXxXxX
XxXx�Z�Z
xqxXxXxX
XxXZ�x�Z
lXxXxXxX

��propagate

XxXZ�xXx
xXx�xXx�
XxXxXx�x
xXlXxXxX
XxXxXlXx
xqxXxXxX
XxXx�x�x
lXxXxXxX

��propagate

XxXZ�xXx
xXxXxXxq
XxXxXxXx
xXlXxXxX
XxXxXlXx
xqxXxXxX
XxXx�x�x
lXxXxXxX

	�propagate

XxXlXxXx
xXxXxXxq
XxXxXxXx
xXlXxXxX
XxXxXlXx
xqxXxXxX
XxXx�x�x
lXxXxXxX

��propagate�fail

XxXlXxXx
xXxXxXxq
XxXxXxXx
xXlXxXxX
XxXxXlXx
xqxXxXxX
XxXxqxXx
lXxXxXxX

�backtr��gen�

XxXZXxXx
xXxXZXx�
XxqxXxXx
xXxXx�Z�
XxXxXZ�Z
xqxXxXxX
XxXZ�ZXZ
lXxXxXxX

��gen�

XxXxXxXx
xXxXZXx�
XxqxXxXx
xXxXx�x�
XxXxXx�Z
xqxXxXxX
XxXlXxXx
lXxXxXxX

���propagate

XxXxXxXx
xXxXlXx�
XxqxXxXx
xXxXx�x�
XxXxXx�x
xqxXxXxX
XxXlXxXx
lXxXxXxX

���propagate�fail

XxXxXxXx
xXxXlXx�
XxqxXxXx
xXxXxqx�
XxXxXxXx
xqxXxXxX
XxXlXxXx
lXxXxXxX

���backtr��gen�

XxXlXxXx
xXxXxXx�
XxqxXxXx
xXxXx�x�
XxXxXZ�x
xqxXxXxX
XxXx�ZXZ
lXxXxXxX

���propagate�fail

XxXlXxXx
xXxXxXx�
XxqxXxXx
xXxXx�xX
XxXxXZXx
xqxXxXxX
XxXxqxXx
lXxXxXxX

���backtr��gen�

XxXx�ZXx
xXlXxXxX
XxXxXx�Z
xXxXx�Z�
XxXx�x�Z
xqxXxXxX
XxXZ�Z�x
lXxXxXxX

���propagate

XxXx�ZXx
xXlXxXxX
XxXxXx�x
xXxXx�x�
XxXx�x�Z
xqxXxXxX
XxXlXxXx
lXxXxXxX

�	�gen��fail

XxXxXZXx
xXlXxXxX
XxXxXxXx
xXxXxXx�
XxXxqxXx
xqxXxXxX
XxXlXxXx
lXxXxXxX

���backtr��gen�

XxXxqxXx
xXlXxXxX
XxXxXxXx
xXxXx�xX
XxXxXx�Z
xqxXxXxX
XxXlXxXx
lXxXxXxX

�
�propagate�fail

XxXxqxXx
xXlXxXxX
XxXxXxXx
xXxXxqxX
XxXxXxXZ
xqxXxXxX
XxXlXxXx
lXxXxXxX

���backtr��gen�

XxqxXxXx
xXxXZXx�
XxXZXx�Z
xXxXxXZ�
XxXx�ZXZ
xqxXxXxX
XxXZ�Z�Z
lXxXxXxX

���gen��fail

XxqxXxXx
xXxXZXx�
XxXxXx�x
xXxXxXx�
XxXx�xXZ
xqxXxXxX
XxXlXxXx
lXxXxXxX

Eight queens ��rst solution� ��

���backtr��gen�

XxqxXxXx
xXxXxXx�
XxXlXx�Z
xXxXxXZ�
XxXx�xXZ
xqxXxXxX
XxXx�Z�x
lXxXxXxX

���propagate

XxqxXxXx
xXxXxXx�
XxXlXx�Z
xXxXxXZ�
XxXx�xXx
xqxXxXxX
XxXxXlXx
lXxXxXxX

���propagate

XxqxXxXx
xXxXxXxX
XxXlXxXZ
xXxXxXZ�
XxXxqxXx
xqxXxXxX
XxXxXlXx
lXxXxXxX

���propagate�fail

XxqxXxXx
xXxXxXxX
XxXlXxXx
xXxXxXlX
XxXxqxXx
xqxXxXxX
XxXxXlXx
lXxXxXxX

���backtr��gen�

Xx�Z�x�x
xXZ�x�x�
Xx�x�x�Z
xXx�x�Z�
XlXxXxXx
xXx�Z�Z�
Xx�x�Z�Z
lXxXxXxX

�	�gen�

XxXZ�x�x
xXx�x�xX
XxXx�xXZ
xXx�xXZ�
XlXxXxXx
xXxXZ�Z�
XxqxXxXx
lXxXxXxX

���gen��fail

XxXx�xXx
xXxXxXxX
XxXxXxXZ
xXxqxXZ�
XlXxXxXx
xXxXZXZ�
XxqxXxXx
lXxXxXxX

�
�gen�

XxXxXx�x
xXxqx�xX
XxXxXxXZ
xXxXxXZ�
XlXxXxXx
xXxXZ�ZX
XxqxXxXx
lXxXxXxX

���propagate

XxXxXx�x
xXxqx�xX
XxXxXxXx
xXxXxXx�
XlXxXxXx
xXxXlXxX
XxqxXxXx
lXxXxXxX

���propagate�fail

XxXxXxXx
xXxqxqxX
XxXxXxXx
xXxXxXxX
XlXxXxXx
xXxXlXxX
XxqxXxXx
lXxXxXxX

���backtr��gen�

XxXlXxXx
xXxXx�xX
XxXx�xXZ
xXxXxXx�
XlXxXxXx
xXxXZ�Z�
XxqxXxXx
lXxXxXxX

���gen��fail

XxXlXxXx
xXxXx�xX
XxXxXxXx
xXxXxXx�
XlXxXxXx
xXxXlXxX
XxqxXxXx
lXxXxXxX

���backtr��gen�

XxXlXxXx
xXxXxXxX
XxXxqxXx
xXxXxXx�
XlXxXxXx
xXxXx�ZX
XxqxXxXx
lXxXxXxX

���propagate�fail

XxXlXxXx
xXxXxXxX
XxXxqxXx
xXxXxXxX
XlXxXxXx
xXxXxqxX
XxqxXxXx
lXxXxXxX

���backtr��gen�

XxXZXx�x
xXxXx�x�
XxqxXxXx
xXxXx�Z�
XlXxXxXx
xXx�ZXZ�
XxXx�ZXZ
lXxXxXxX

�	�gen��fail

XxXxXx�x
xXxXx�xX
XxqxXxXx
xXxXxXZ�
XlXxXxXx
xXxqxXxX
XxXxXZXZ
lXxXxXxX

���backtr��gen��

XxXlXx�x
xXxXx�x�
XxqxXxXx
xXxXx�x�
XlXxXxXx
xXxXZXZ�
XxXx�ZXZ
lXxXxXxX

�
�gen�

XxXlXx�x
xXxXx�x�
XxqxXxXx
xXxXx�xX
XlXxXxXx
xXxXxXZ�
XxXxqxXx
lXxXxXxX

���gen��fail

XxXlXxXx
xXxXxXxX
XxqxXxXx
xXxXxqxX
XlXxXxXx
xXxXxXZX
XxXxqxXx
lXxXxXxX

���backtr��gen�

XxXlXxXx
xXxXxqxX
XxqxXxXx
xXxXxXxX
XlXxXxXx
xXxXxXZ�
XxXxqxXx
lXxXxXxX

���gen��fail

XxXlXxXx
xXxXxqxX
XxqxXxXx
xXxXxXxX
XlXxXxXx
xXxXxXlX
XxXxqxXx
lXxXxXxX

���backtr��gen��fail

XxXlXxXx
xXxXx�x�
XxqxXxXx
xXxXx�x�
XlXxXxXx
xXxXlXxX
XxXxXxXZ
lXxXxXxX

���backtr��gen�

XxXx�x�x
xXlXxXxX
XxXx�x�Z
xXx�x�Z�
XlXxXxXx
xXx�Z�x�
XxXx�Z�x
lXxXxXxX

���gen�

XxXx�x�x
xXlXxXxX
XxXx�xXZ
xXxXxXZ�
XlXxXxXx
xXxqxXxX
XxXxXZ�x
lXxXxXxX

���propagate

XxXx�x�x
xXlXxXxX
XxXx�xXZ
xXxXxXZ�
XlXxXxXx
xXxqxXxX
XxXxXlXx
lXxXxXxX

�	�gen�

XxXxXxXx
xXlXxXxX
XxXxqxXx
xXxXxXZ�
XlXxXxXx
xXxqxXxX
XxXxXlXx
lXxXxXxX

���propagate�fail

XxXxXxXx
xXlXxXxX
XxXxqxXx
xXxXxXlX
XlXxXxXx
xXxqxXxX
XxXxXlXx
lXxXxXxX

�
�backtr��gen�

XxXxqxXx
xXlXxXxX
XxXxXxXZ
xXxXxXZX
XlXxXxXx
xXxqxXxX
XxXxXlXx
lXxXxXxX

���propagate�fail

XxXxqxXx
xXlXxXxX
XxXxXxXx
xXxXxXlX
XlXxXxXx
xXxqxXxX
XxXxXlXx
lXxXxXxX

���backtr��gen�

XxXx�xXx
xXlXxXxX
XxXxXx�Z
xXxqxXxX
XlXxXxXx
xXxXZXx�
XxXx�ZXx
lXxXxXxX

Eight queens ��rst solution� ��

���propagate

XxXx�xXx
xXlXxXxX
XxXxXx�Z
xXxqxXxX
XlXxXxXx
xXxXxXx�
XxXxXlXx
lXxXxXxX

���propagate�fail

XxXxqxXx
xXlXxXxX
XxXxXxXZ
xXxqxXxX
XlXxXxXx
xXxXxXx�
XxXxXlXx
lXxXxXxX

���backtr��gen�

XxqxXxXx
xXxXx�x�
XxXxXx�Z
xXx�xXZ�
XlXxXxXx
xXx�Z�ZX
XxXx�Z�Z
lXxXxXxX

���gen��fail

XxqxXxXx
xXxXx�xX
XxXxXxXZ
xXxXxXZ�
XlXxXxXx
xXxqxXxX
XxXxXZ�Z
lXxXxXxX

���backtr��gen�

XxqxXxXx
xXxXxXx�
XxXxXx�Z
xXxqxXxX
XlXxXxXx
xXxXZXZX
XxXx�ZXZ
lXxXxXxX

�	�propagate�fail

XxqxXxXx
xXxXxXx�
XxXxXx�Z
xXxqxXxX
XlXxXxXx
xXxXxXZX
XxXxXlXZ
lXxXxXxX

���backtr��gen�

Xx�ZXZ�x
xXZXZ�x�
XxXZ�x�Z
xqxXxXxX
XxXx�Z�Z
xXxXZ�Z�
Xx�ZXZ�Z
lXxXxXxX

�
�gen�

XxXZXZ�x
xXxXZ�xX
XxXZ�xXZ
xqxXxXxX
XxXxXZ�Z
xXxXZ�Z�
XxqxXxXx
lXxXxXxX

���gen�

XxXxXx�x
xXxXx�xX
XxXlXxXx
xqxXxXxX
XxXxXx�Z
xXxXZ�x�
XxqxXxXx
lXxXxXxX

	��propagate

XxXxXx�x
xXxXx�xX
XxXlXxXx
xqxXxXxX
XxXxXx�Z
xXxXlXxX
XxqxXxXx
lXxXxXxX

	��propagate

XxXxXxXx
xXxXxqxX
XxXlXxXx
xqxXxXxX
XxXxXx�Z
xXxXlXxX
XxqxXxXx
lXxXxXxX

	��propagate�fail

XxXxXxXx
xXxXxqxX
XxXlXxXx
xqxXxXxX
XxXxXxqx
xXxXlXxX
XxqxXxXx
lXxXxXxX

	��backtr��gen�

XxXlXxXx
xXxXx�xX
XxXx�xXZ
xqxXxXxX
XxXxXZ�x
xXxXZ�Z�
XxqxXxXx
lXxXxXxX

	��gen��fail

XxXlXxXx
xXxXx�xX
XxXxXxXx
xqxXxXxX
XxXxXx�x
xXxXlXxX
XxqxXxXx
lXxXxXxX

	��backtr��gen�

XxXlXxXx
xXxXxXxX
XxXxqxXZ
xqxXxXxX
XxXxXZXx
xXxXx�ZX
XxqxXxXx
lXxXxXxX

		�propagate�fail

XxXlXxXx
xXxXxXxX
XxXxqxXZ
xqxXxXxX
XxXxXxXx
xXxXxXlX
XxqxXxXx
lXxXxXxX

	��backtr��gen�

XxXxXZ�x
xXlXZ�x�
XxXx�x�Z
xqxXxXxX
XxXx�x�Z
xXxXZ�x�
XxXZXZ�x
lXxXxXxX

	
�propagate

XxXxXZ�x
xXlXxXxX
XxXx�x�x
xqxXxXxX
XxXx�x�Z
xXxXx�x�
XxXlXxXx
lXxXxXxX

	��gen�

XxXxXZ�x
xXlXxXxX
XxXxXxXx
xqxXxXxX
XxXxqxXx
xXxXxXx�
XxXlXxXx
lXxXxXxX

���propagate

XxXxXZ�x
xXlXx�xX
XxXxXxXx
xqxXxXxX
XxXxqxXx
xXxXxXxq
XxXlXxXx
lXxXxXxX

���gen��fail

XxXxXxXx
xXlXxqxX
XxXxXxXx
xqxXxXxX
XxXxqxXx
xXxXxXxq
XxXlXxXx
lXxXxXxX

���backtr��gen��fail

XxXxXlXx
xXlXxXxX
XxXxXxXx
xqxXxXxX
XxXxqxXx
xXxXxXxq
XxXlXxXx
lXxXxXxX

���gen��fail

XxXxXZXx
xXlXxXx�
XxXxqxXx
xqxXxXxX
XxXxXxXZ
xXxXx�xX
XxXlXxXx
lXxXxXxX

���backtr��gen�

XxqxXxXx
xXxXZ�x�
XxXZXx�Z
xqxXxXxX
XxXx�ZXZ
xXxXZ�ZX
XxXZXZ�Z
lXxXxXxX

���gen�

XxqxXxXx
xXxXZ�x�
XxXxXx�x
xqxXxXxX
XxXx�xXZ
xXxXx�ZX
XxXlXxXx
lXxXxXxX

�	�gen�

XxqxXxXx
xXxXx�xX
XxXxXxXx
xqxXxXxX
XxXxqxXZ
xXxXxXZX
XxXlXxXx
lXxXxXxX

���propagate

XxqxXxXx
xXxXxqxX
XxXxXxXx
xqxXxXxX
XxXxqxXZ
xXxXxXZX
XxXlXxXx
lXxXxXxX

�
�propagate�fail

XxqxXxXx
xXxXxqxX
XxXxXxXx
xqxXxXxX
XxXxqxXx
xXxXxXlX
XxXlXxXx
lXxXxXxX

���gen��fail

XxqxXxXx
xXxXlXxX
XxXxXx�x
xqxXxXxX
XxXxXxXx
xXxXx�ZX
XxXlXxXx
lXxXxXxX

��backtr��gen�

XxqxXxXx
xXxXx�x�
XxXlXxXx
xqxXxXxX
XxXx�xXZ
xXxXZ�xX
XxXxXZ�x
lXxXxXxX

Eight queens ��rst solution� ��

��propagate

XxqxXxXx
xXxXx�x�
XxXlXxXx
xqxXxXxX
XxXxXxXZ
xXxXZXxX
XxXxXxqx
lXxXxXxX

��propagate

XxqxXxXx
xXxXx�x�
XxXlXxXx
xqxXxXxX
XxXxXxXZ
xXxXlXxX
XxXxXxqx
lXxXxXxX

��propagate

XxqxXxXx
xXxXxqxX
XxXlXxXx
xqxXxXxX
XxXxXxXZ
xXxXlXxX
XxXxXxqx
lXxXxXxX

��propagate

XxqxXxXx
xXxXxqxX
XxXlXxXx
xqxXxXxX
XxXxXxXl
xXxXlXxX
XxXxXxqx
lXxXxXxX

Appendix C

Houses example source code and
WAM code

��� THIS IS THE FIDO�II source�

���

��� houses� �England� Spain� Japan� Italy� Norway�

��� Green� Red� Yellow� Blue� White�

��� Painter� Violinist� Diplomat� Doctor� Sculptor�

��� Dog� Zebra� Fox� Snails� Horse�

��� Juice� Water� Tea� Coffee� Milk�� ��

��� define�domain�houses� �England� Spain� Japan� Italy� Norway�

��� Green� Red� Yellow� Blue� White�

��� Painter� Diplomat� Violinist� Doctor� Sculptor�

��� Dog� Zebra� Fox� Snails� Horse�

��� Juice� Water� Tea� Coffee� Milk��

��� �

���

��� Norway � �� Milk � ��

��� neighbour�Norway� Blue��

��� neighbour�Fox� Doctor��

��� neighbour�Horse� Diplomat��

��� forward�Green ��� White � ���

��� England � Red� Spain � Dog�

��� Japan � Painter� Italy � Tea�

��� Green � Coffee� Sculptor � Snails�

��� Diplomat � Yellow� Violinist � Juice�

��� all�different��England� Italy� Spain� Norway� Japan���

��� all�different��Green� Red� Yellow� Blue� White���

��� all�different��Painter� Diplomat� Violinist� Doctor� Sculptor���

��� all�different��Dog� Zebra� Fox� Snails� Horse���

��� all�different��Juice� Water� Tea� Coffee� Milk���

��� instantiate��England� Spain� Japan� Italy� Norway�

��� Green� Red� Yellow� Blue� White�

��� Painter� Violinist� Diplomat� Doctor� Sculptor�

��� Dog� Zebra� Fox� Snails� Horse�

��� Juice� Water� Tea� Coffee� Milk��

���

��� neighbour�X� Y� ��

Houses example source code and WAM code �	

��� forward�X ��� Y � ��

��� neighbour�X� Y� ��

��� forward�X ��� Y � ��

���

��� This is the FIDO�III WAM source

�defprocedure houses��

�allocate 	��

�put�dvariable�perm � �� 	� � ��� � England

�put�dvariable�perm 	 �� 	 � � ��� � Spain

�put�dvariable�perm � �� 	 � � ��� � Japan

�put�dvariable�perm � �� 	 � � ��� � Italy

�put�dvariable�perm � �� 	 � � ��� � Norway

�put�dvariable�perm � �� 	 � � ��� � Green

�put�dvariable�perm �� 	 � � ��� � Red

�put�dvariable�perm ! �� 	 � � ��� � Yellow

�put�dvariable�perm " �� 	 � � ��� � Blue

�put�dvariable�perm �� �� 	 � � ��� � White

�put�dvariable�perm �� �� 	 � � ��� � Painter

�put�dvariable�perm �	 �� 	 � � ��� � Violonist

�put�dvariable�perm �� �� 	 � � ��� � Diplomat

�put�dvariable�perm �� �� 	 � � ��� � Doctor

�put�dvariable�perm �� �� 	 � � ��� � Sculptor

�put�dvariable�perm �� �� 	 � � ��� � Dog

�put�dvariable�perm � �� 	 � � ��� � Zebra

�put�dvariable�perm �! �� 	 � � ��� � Fox

�put�dvariable�perm �" �� 	 � � ��� � Snails

�put�dvariable�perm 	� �� 	 � � ��� � Horse

�put�dvariable�perm 	� �� 	 � � ��� � Juice

�put�dvariable�perm 		 �� 	 � � ��� � Water

�put�dvariable�perm 	� �� 	 � � ��� � Tea

�put�dvariable�perm 	� �� 	 � � ��� � Coffee

�put�dvariable�perm 	� �� 	 � � ��� � Milk

�get�variable�perm 	� ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	�

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

Houses example source code and WAM code ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm �

�unify�variable�temp ��

�get�list ��

�unify�value�perm !�

�unify�variable�temp ��

�get�list ��

�unify�value�perm "�

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm �	�

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm ���

�unify�variable�temp ��

�get�list ��

�unify�value�perm � �

�unify�variable�temp ��

�get�list ��

�unify�value�perm �!�

�unify�variable�temp ��

�get�list ��

�unify�value�perm �"�

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 		�

Houses example source code and WAM code ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	��

�unify�nil�

�put�value�perm � ��

�get�constant � �� � Norway � �

�put�value�perm 	� ��

�get�constant � �� � Milk � �

�put�value�perm � ��

�put�value�perm " 	�

�call neighbour�	 	 	�� � neighbour�Norway�Blue�

�put�value�perm �! ��

�put�value�perm �� 	�

�call neighbour�	 	 	�� � neighbour�Fox�Doctor�

�put�value�perm 	� ��

�put�value�perm �� 	�

�call neighbour�	 	 	�� � neighbour�Horse�Diplomat�

�put�value�perm � ��

�put�value�perm �� 	�

�call eq���	 	 	�� � � eq���Green�White�

�put�value�perm � �� � eq�Endland�Red�

�get�value�perm ��

�put�value�perm 	 �� � eq�Spain�Dog�

�get�value�perm �� ��

�put�value�perm � �� � eq�Japan�Painter�

�get�value�perm �� ��

�put�value�perm � �� � eq�Italy�Tead�

�get�value�perm 	� ��

�put�value�perm � �� � eq�Green�Coffee�

�get�value�perm 	� ��

�put�value�perm �� �� � eq�Sculptor�Snails�

�get�value�perm �" ��

�put�value�perm �� �� � eq�Diplomat�Yellow�

�get�value�perm ! ��

�put�value�perm �	 �� � eq�Violonist�Juice�

�get�value�perm 	� ��

�put�list ��

�unify�value�perm �� � Japan

�unify�nil�

�put�list 	�

�unify�value�perm �� � Norway

�unify�value�temp ��

�put�list ��

Houses example source code and WAM code ��

�unify�value�perm 	� � Spain

�unify�value�temp 	�

�put�list 	�

�unify�value�perm �� � Italy

�unify�value�temp ��

�put�list ��

�unify�value�perm �� � England

�unify�value�temp 	�

�call all�different�� � 	��

�put�list ��

�unify�value�perm ��� � White

�unify�nil�

�put�list 	�

�unify�value�perm "� � Blue

�unify�value�temp ��

�put�list ��

�unify�value�perm !� � Yellow

�unify�value�temp 	�

�put�list 	�

�unify�value�perm � � Red

�unify�value�temp ��

�put�list ��

�unify�value�perm �� � Green

�unify�value�temp 	�

�call all�different�� � 	��

�put�list ��

�unify�value�perm ��� � Sculptor

�unify�nil�

�put�list 	�

�unify�value�perm ��� � Doctor

�unify�value�temp ��

�put�list ��

�unify�value�perm ��� � Diplomat

�unify�value�temp 	�

�put�list 	�

�unify�value�perm �	� � Violonist

�unify�value�temp ��

�put�list ��

�unify�value�perm ��� � Painter

�unify�value�temp 	�

�call all�different�� � 	��

�put�list ��

�unify�value�perm 	�� � Horse

�unify�nil�

�put�list 	�

�unify�value�perm �"� � Snails

�unify�value�temp ��

Houses example source code and WAM code ��

�put�list ��

�unify�value�perm �!� � Fox

�unify�value�temp 	�

�put�list 	�

�unify�value�perm � � � Zebra

�unify�value�temp ��

�put�list ��

�unify�value�perm ��� � Dog

�unify�value�temp 	�

�call all�different�� � 	��

�put�list ��

�unify�value�perm 	�� � Milk

�unify�nil�

�put�list 	�

�unify�value�perm 	�� � Coffee

�unify�value�temp ��

�put�list ��

�unify�value�perm 	�� � Tea

�unify�value�temp 	�

�put�list 	�

�unify�value�perm 		� � Water

�unify�value�temp ��

�put�list ��

�unify�value�perm 	�� � Juice

�unify�value�temp 	�

�call all�different�� � 	��

�put�value�perm 	� ��

�deallocate�

�execute labeling�� ��

�

�defprocedure neighbour�	

�forward 	 �d d� �c�bneighbour�

�

�defprocedure �c�neighbour�	

�try�me�else L� 	�

�	�consistent �� 	� �lambda�x y� �eql x ��� y����

�proceed�

L�

�trust�me�else�fail 	�

�	�consistent �� 	� �lambda�x y� �eql x ��� y����

�proceed�

�

�defprocedure eq���	

�forward 	 �d d� �c�eq���

�

Houses example source code and WAM code ��

�defprocedure �c�eq���	

�	�consistent �� 	� �lambda�x y� �eql x ��� y����

�proceed�

�

Appendix D

SEND	MORE
MONEY source
code and WAM code

��� THIS IS THE FIDO�II source�

��

��puzzle��S�E�N�D�M�O�R�Y���C��C	�C��C��� ��

�� define�domain�digits� �S�E�N�D�M�O�R�Y�� �

"��

�� define�domain�carry� �C��C	�C��C��� �

���

�� forward�S �#� ���

�� forward�M �#� ���

�� all�different��S�E�N�D�M�O�R�Y���

�� forward�C� ��� M��

�� forward�C	 � S � M ��� O � �� � C���

�� forward�C� � E � O ��� N � �� � C	��

�� forward�C� � N � R ��� E � �� � C���

�� forward� D � E ��� Y � �� � C���

�� permute��� �C��C	�C��C��M�E�N�O�D�R�Y�S�� �Newlist���

�� instantiate�dl�Newlist�

��

��all�different����

��all�different��H�T�� ��

�� out�of�H� T��

�� all�different�T�

��

��out�of��� ���

��out�of�H�� �H	�T�� ��

�� forward�H� �#� H	��

�� out�of�H�� T�

��

��

��� This is the FIDO�III WAM source

��puzzle��S�E�N�D�M�O�R�Y���C��C	�C��C���

�defprocedure puzzle�	

�allocate ���

�put�dvariable�perm � �� � 	 � � � � ! "�� � Y� � S

�put�dvariable�perm 	 �� � 	 � � � � ! "�� � Y	 � E

SEND�MORE�MONEY source code and WAM code ��

�put�dvariable�perm � �� � 	 � � � � ! "�� � Y� � N

�put�dvariable�perm � �� � 	 � � � � ! "�� � Y� � D

�put�dvariable�perm � �� � 	 � � � � ! "�� � Y� � M

�put�dvariable�perm � �� � 	 � � � � ! "�� � Y� � O

�put�dvariable�perm �� � 	 � � � � ! "�� � Y � R

�put�dvariable�perm ! �� � 	 � � � � ! "�� � Y! � Y

�get�variable�perm �� ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm 	�

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm ��

�unify�variable�temp ��

�get�list ��

�unify�value�perm �

�unify�variable�temp ��

�get�list ��

�unify�value�perm !�

�unify�nil�

�put�dvariable�perm " �� ��� � Y� � C�

�put�dvariable�perm �� �� ��� � Y	 � C	

�put�dvariable�perm �� �� ��� � Y� � C�

�put�dvariable�perm �	 �� ��� � Y� � C�

�get�variable�perm �� 	�

�get�list 	�

�unify�value�perm "�

�unify�variable�temp 	�

�get�list 	�

�unify�value�perm ���

�unify�variable�temp 	�

�get�list 	�

�unify�value�perm ���

�unify�variable�temp 	�

�get�list 	�

�unify�value�perm �	�

SEND�MORE�MONEY source code and WAM code ��

�unify�nil�

�put�value�perm � �� � S

�put�constant � 	�

�call dungl�	 	 ��� � dungl�S���

�put�value�perm � �� � M

�put�constant � 	�

�call dungl�	 	 ��� � dungl�M���

�put�value�perm �� �� � alldifferent��S�E�N�D�M�O�R�Y��

�call all�different�� � ���

�put�value�perm " �� � C�

�get�value�perm � �� � M

�put�value�perm �� �� � C	

�put�value�perm � 	� � S

�put�value�perm � �� � M

�put�value�perm � �� � O

�put�value�perm " �� � C�

�call num���� � ���

�put�value�perm �� �� � C�

�put�value�perm 	 	� � E

�put�value�perm � �� � O

�put�value�perm � �� � N

�put�value�perm �� �� � C	

�call num���� � ���

�put�value�perm �	 �� � C�

�put�value�perm � 	� � N

�put�value�perm �� � R

�put�value�perm 	 �� � E

�put�value�perm �� �� � C�

�call num���� � ���

�put�value�perm � �� � D

�put�value�perm 	 	� � E

�put�value�perm ! �� � Y

�put�value�perm �	 �� � C�

�call snum���� � ���

�put�list ��

�unify�value�perm "� � C�

�unify�variable�temp 	�

�get�list 	�

�unify�value�perm ��� � C	

�unify�variable�temp 	�

�get�list 	�

SEND�MORE�MONEY source code and WAM code 	

�unify�value�perm ��� � C�

�unify�variable�temp 	�

�get�list 	�

�unify�value�perm �	� � C�

�unify�value�perm ���

�deallocate�

�execute labeling�� ��

�

�� forward�U � V � W ��� X � �� � Y�

�defprocedure num����

�forward � �d d d d d� �c�num���

�

�defprocedure �c�num����

���consistent �� 	 � � �� �lambda �u v w x y� �� �� u v w� �� x �� �� y�����

�proceed�

�

�� forward� U � V ��� W � �� � X��

�defprocedure snum����

�forward � �d d d d� �c�snum���

�

�defprocedure �c�snum����

���consistent �� 	 � �� �lambda �u v w x� �� �� u v� �� w �� �� x�����

�proceed�

�

Bibliography

�AK��� Hassan A)t�Kaci� The WAM� The Real� Tutorial� Technical Report �� DEC Paris
Research Laboratory�
�� Avenue Victor Hugo� ���	� Rueil Malmaison Cedex�
France� January �����

�AKBLN��� Hassan A)t�Kaci� Robert Boyer� Patrick Lincoln� and Roger Nasr� E�cient Imple�
mentation of Lattice Operations� ACM Transactions on Programming Languages
and Systems� ��������*��	� January �����

�All
�� James F� Allen� Maintaining Knowledge about Temporal Intervals� Communica�
tions of the ACM� �	����
��*
��� November ��
��

�BBH���� A� Bernardi� H� Boley� K� Hinkelmann� P� Hanschke� C� Klauck� O� K uhn�
R� Legleitner� M� Meyer� M�M� Richter� G� Schmidt� F� Schmalhofer� and W� Som�
mer� ARC�TEC� Acquisition� Representation and Compilation of Technical
Knowledge� In Expert Systems and their Applications� Tools� Techniques and
Methods� Avignon� France� ����� Also available as Research Report RR�������
DFKI GmbH�

�Bee
�� Joachim Beer� Comments on Compiling Prolog�Programs using Warren�s Ab�
stract Instruction Set� Technical report� GMD First� TU Berlin� November ��
��

�BHH���� H� Boley� P� Hanschke� M� Harm� K� Hinkelmann� T� Labisch� M�Meyer� J� M uller�
T� Oltzen� M� Sintek� W� Stein� and F� Steinle� 	CAD�NC� A declarative lathe�
workplanning model transforming CAD�like geometries into abstract NC pro�
grams� DFKI Document D������� DFKI GmbH� November �����

�BHHM��� H� Boley� P� Hanschke� K� Hinkelmann� and M� Meyer� COLAB� A Hybrid Knowl�
edge Compilation Laboratory� Presented at �rd International Workshop on Data�
Expert Knowledge and Decisions� Using Knowledge to Transform Data into In�
formation for Decision Support� Reisensburg� Germany� September �����

�Boi
	� P� Boizumault� A general model to implement DIF and FREEZE� In Ehud
Shapiro� editor� Third International Conference on Logic Programming� number
��� in Lecture Notes in Computer Science� pages �
�*���� Springer� ��
	�

�Bol��� Harold Boley� A Relational�Functional Language and Its Compilation into the
WAM� SEKI Report SR������� Universit at Kaiserslautern� Fachbereich Infor�
matik� April �����

�BR
�� Alexander Bockmayr and Hans�Holger Rath� Extended Prolog with Boolean Uni�
�cation� Technical report� Sonderforschungsbereich ���� Institut f ur Logik� Km�
plexit at und Deduktionssysteme� Universit at Karlsruhe� Germany� ��
��

BIBLIOGRAPHY 	
�

�Bry
	� Randal E� Bryant� Graph�Based Algorithms for Boolean Function Manipulation�
IEEE Transactions on Computers� C���
��	��*	��� August ��
	�

�BS
�� Wolfram B uttner and Helmut Simonis� Embedding Boolean Expressions into
Logic Programming� Journal of Symbolic Computation� �����*���� ��
��

�B ut

� Wolfram B uttner� Uni�cation in Finite Algrebras is Unitary ��� In E� Lusk and
R� Overbeek� editors� Proceedings �th International Conference on Automated
Deduction �CADE ���� number ��� in Lecture Notes in Computer Science� pages
�	
*���� Springer� ��

�

�Car
�� M� Carlsson� Freeze� Indexing and Other Implementation Issues in the WAM� In
Jean�Louis Ja�ar� editor� Proceedings of the Fourth International Conference on
Logic Programming� pages ��*�
� MIT Press� ��
��

�Cle
�� John G� Cleary� Logical Arithmetic� Future Computing Systems� �������*����
��
��

�Col
�a� Alain Colmerauer� Introduction to Prolog III� In Annual ESPRIT Conference�
pages 	��*	��� North Holland� ��
��

�Col
�b� Alain Colmerauer� Opening the Prolog III Universe� Byte� pages ���*�
�� August
��
��

�Deb
	� Saumya K� Debray� Register Allocation in a Prolog Machine� In Symposium on
Logic Programming� pages �	�*���� IEEE� � ��
	�

�DNT��� Michel Dorochevsky� Jacques Noy+e� and Oliver Thibault� Has Dedicated Hard�
ware for Prolog a Future � In H� Boley and M�M� Richter� editors� Processing
Declarative Knowledge �PDK�� number �	� in LNCS� pages ��*��� �����

�ECR��� ECRC� Collection of new SEPIA �����	 features Interproc� Comm�� Metaterms�
Documentation Update�� Sepia Distribution� �����

�Fil

� Thomas Filkorn� Uni�kation in endlichen Algebren und ihre Integration in Pro�
log� Master�s thesis� Technische Universit at M unchen� Institut f ur Informatik�
November ��

�

�Hei
�� Hans�G unther Hein� Adding WAM�Instructions to support Valued Clauses for
the Relational�Functional Language RELFUN� SEKI Working Paper SWP����
��� Universit at Kaiserslautern� Fachbereich Informatik� December ��
��

�Hen
�� P� Van Hentenryck� Constraint Satisfaction in Logic Programming� MIT Press�
Cambridge� Ma�� ��
��

�HFKF��� Ryuzo Hasegawa� Hiroshi Fujita� Miyuki Koshimura� and Masayuki Fujita� A
parallel model�generation theorem prover with ramni�ed term�indexing� In IEEE
Computer Society Press� editor� Seventh IEEE Conference on AI Applications�
pages ��*�
� �����

�Hin��� Knut Hinkelmann� Bidirectional reasoning of horn clause programs� Transforma�
tion and compilation� DFKI Technical Memo TM������� DFKI GmbH� January
�����

BIBLIOGRAPHY 	
�

�HL

� T� Huynh and C� Lassez� A CLRR� Option Trading Analysis System� In
Robert A� Kowalski and Kenneth A� Bowen� editors� Proceedings of the Fifth
International Conference and Symposium on Logic Programming� pages ��*	��
��

�

�HM��� H��G� Hein and M� Meyer� A WAM Compilation Scheme� In A� Voronkov� editor�
Logic Programming� Proceedings of the �st and �nd Russian Conferences� volume
��� of Lecture Notes in Arti�cial Intelligence �LNAI�� pages ���*���� Springer�
Verlag� Berlin� Heidelberg� �����

�HMS
�� N� C� Heintze� S� Michaylov� and P� J� Stuckey� CLPr� and Some Electrical
Engineering Problems� In Jean�Louis Ja�ar� editor� Proceedings of the Fourth
International Conference on Logic Programming� pages 	��*����MIT Press� ��
��

�Hol��� Christian Holzbaur� Realization of Forward Checking in Logic Programming
through Extended Uni�cation� Technical Report TR������� Austrian Research
Institute for Arti�cial Intelligence� Freyung 	� A����� Vienna� Austria� June �����

�Hry

� Tomas Hrycey� Temporal Prolog� In ECAI��� Proceedings� pages ��	*���� ��

�

�JL
�� Joxan Ja�ar and Jean�Louis Lassez� Constraint Logic Programming� In Proceed�
ings of Princlipes of Programming Languages �POPL�� pages ���*���� ��
��

�JM
�� J� Ja�ar and S� Michaylov� Methodology and Implementation of a CLP system�
In Jean�Louis Ja�ar� editor� Proceedings of the Fourth International Conference
on Logic Programming� pages ��	*��
� MIT Press� ��
��

�JMSY��� Joxan Ja�ar� Spiro Michaylov� Peter J� Stuckey� and Roland H� C� Yap� The
CLPR� Language and System� Technical Report CMU�CS�����
�� School of
Computer Science� Carnegie Mellon University� Pittsburgh� PA ������ October
�����

�JS
�� Thomas Jost and Reinhard Skuppin� Technical, Diagnosis Based on Numerical
Models Using PROLOG III� In Commission of the European Communities� editor�
ESPRIT���� pages ���*���� North Holland� ��
��

�Kow��� R� Kowalski� Predicate Logic as a Programming Language� In J� Rosenfeld� editor�
Information Processing ��� pages ��	*���� North Holland� Amsterdam� �����

�Kow��� R� Kowalski� Algorithm � Logic � Control� Journal of the ACM� ������*��	�
�����

�KS

� Wolfgang Krautter and Michael Steinert� A Knowledge Representation for Model�
Based Reasoning using Prolog�III� In Commission of the European Communities�
editor� ESPRIT���� pages
��*
��� North Holland� ��

�

�Llo
�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� ��
��

�MAC�
�� M� Meier� A� Aggoun� D� Chan� P� Dufresne� R� Enders� D�H� de Villeneuve�
A� Herold� P� Kay� B� Perez� E� van Rossum� and J� Schimpf� SEPIA * An
Extendible Prolog System� In G� Ritter� editor� Proceedings of the IFIP ��th
World Computer Congress� pages ����*����� August ��
��

�Mei��� Micha Meier� Compilation of Compound Terms in Prolog� In Saumya Debray
and Manuel Hermenegildo� editors� North American Conference on Logic Pro�
gramming� pages 	�*��� MIT Press� October �����

BIBLIOGRAPHY 	
�

�Mey��� Manfred Meyer� Using Hierarchical Constraint Satisfaction for Lathe�Tool Se�
lection in a CIM Environment� In Fifth International Symposium on Arti�cial
Intelligence �ISAI�� Cancun� Mexico� December �����

�MF
�� Alan K� Mackworth and Eugene C� Freuder� The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems� Arti�cial
Intelligence� ���	�*��� ��
��

�MMS��� M� Meyer� J� M uller� and S� Schr odl� FIDO� Exploring Finite Domain Consistency
Techniques in Logic Programming� In Harold Boley and Michael M� Richter� edi�
tors� Proceedings of the International Workshop on Processing Declarative Knowl�
edge �PDK����� number �	� in Lecture Notes in Arti�cial Intelligence LNAI��
pages ���*���� Springer�Verlag� Berlin� Heidelberg� �����

�MN
	� Ursula Martin and Tobias Nipkow� Uni�cation in Boolean Rings� In Proceedings
of the �th International Conference on Automated Deduction� pages ��	*���� July
��
	�

�M ul��� J� M uller� Design and Implementation of a Finite Domain Constraint Logic Pro�
gramming System based on PROLOG with Coroutining� Diploma thesis� Univer�
sit at Kaiserslautern� FB Informatik� Postfach ����� D�	��� Kaiserslautern� �����

�Nys� Sven Olof Nystr#m� Nywam � a WAM emulator written in LISP�

�Pra��� Claudine Pradelles� Planning and scheduling using chip� June ����� Slides from
�Tutorial on Industrial Applications of Constraints� given at ILCP����

�Ric
�� Michael M� Richter� K�unstliche Intelligenz� chapter �	� pages ���*���� ��
��

�Rou��� P� Roussel� PROLOG Manual de Reference et d�Utilisation� �����

�Roy��� Peter Van Roy� Can Logic Programming Execute as Fast as Imperative Program�
ming� PhD thesis� Computer Science Division� University of California� Berkeley�
December �����

�SA
�� Ko Sakai and Akira Aiba� CAL� A Theoretical Background of Contraint Logic
Programming and Its Applications� J� Symbolic Computation�
��
�*	��� ��
��

�Sch��� S� Schr odl� FIDO� Ein Constraint�Logic�Programming�System mit Finite Do�
mains� ARC�TEC Discussion Paper ������ DFKI GmbH� Postfach ��
�� D�	���
Kaiserslautern� June �����

�SH��� Greg Sidebottom and William S� Havens� Hierarchical arc consistency applied
to numerical processing in constraint logic programming� Technical Report CSS�
IS TR ����	� Simon Fraser University� Burnaby� British Columbia� V�A �S	�
Canada� �����

�Sku
�a� Reinhard Skuppin� Das Diagnosesystem PROMOTEX I� ��
�� Infosheet�

�Sku
�b� Reinhard Skuppin� Modellierung technischer Systeme in PROLOG III� ��
��

�SSF
�� Richard Schmid� Hans�Albert Schneider� and Thomas Filkorn� Using an Extended
PROLOG to Solve the Lion and Unicorn Puzzle� J� Automated Reasoning� �����*
��
� ��
��

BIBLIOGRAPHY 	
�

�Ste��� W� Stein� Design and Implementation of a Constraint Compiler for FIDO�
Diplomarbeit� Universit at Kaiserslautern� FB Informatik� Postfach ����� D�	���
Kaiserslautern� Forthcoming �����

�Tay��a� Andrew Taylor� LIPS on a MIPS� Results from a Prolog Compiler for a RISC�
In David H� D� Warren and Peter Szeredi� editors� Proceedings of the Seventh In�
ternational Conference on Logic Programming� pages ���*�
�� Cambridge� Mas�
sachusetts London� England� ����� MIT Press�

�Tay��b� Andrew Taylor� Quicksort Speed in Prolog� USENET electronic article in
comp�lang�prolog� July �����

�Tay��� A� Taylor� High Performance PROLOG Implementation� PhD thesis� Basser Dpt�
of Computer Science� University of Sydney� AU� �����

�Vod

� P� Voda� The Constraint Language Trilogy� Semantics and Computations� Tech�
nical Report� Complete Logic Systems� North Vancouver� British Columbia�
Canada� ��

�

�Wal��� D� L� Waltz� Generating semantics descriptions from drawings of scenes with
shadows� Technical report AI�TR����� Masssachusetts Institute of Technology�
Cambridge� �����

�War��� David H� D� Warren� IMPLEMENTING PROLOG * compiling predicate logic
programs� D�A�I� Research Report ��� dont know� July �����

�War
�� David H� D� Warren� An Abstract Prolog Instruction Set� Technical Note ����
Arti�cial Intelligence Center� SRI International� ��� Ravenswood Ave� Menlo
Park� CA ������ October ��
��

�Yap��� Roland H� C� Yap� Restriction Site Mapping in CLPR�� In Koichi Furukawa�
editor� Proceedings of the Eighth International Conference on Logic Programming�
pages ���*���� Cambridge� Massachusetts London� England� ����� MIT Press�

