
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-37

TDL—A Type Description Language for HPSG
Part 1: Overview

Hans-Ulrich Krieger, Ulrich Schäfer

November 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which
was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowl-
edge and common sense which - by using AI methods - implement a problem solution for a selected
application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.
From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland

Director

TDL
A Type Description Language for HPSG
Part 1: Overview

Hans-Ulrich Krieger, Ulrich Schäfer

DFKI-RR-94-37

Parts of this paper have been published in:
Proceedings of the Workshop on “Neuere Entwicklungen der deklarativen KI-Pro-
grammierung, KI-93, Berlin, 1993.
Proceedings of the 15th International Conference on Computational Linguistics (COL-
ING 94), Kyoto, 1994.

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITWM-9002 0).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee
to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-008X

TDL

A Type Description Language for HPSG

Part �� Overview

Hans�Ulrich Krieger� Ulrich Sch�afer

fkrieger�schaeferg�dfki�uni�sb�de

German Research Center for Arti�cial Intelligence �DFKI�

Stuhlsatzenhausweg �

D�		
�� Saarbr�ucken� Germany

Abstract

Uni�cation�based grammar formalisms have become the predominant paradigm in natu�

ral language processing �NLP� and computational linguistics �CL�� Their success stems

from the fact that they can be seen as high�level declarative programming languages for

linguists� which allow them to express linguistic knowledge in a monotonic fashion� More�

over� such formalisms can be given a precise� set�theoretical semantics�

This paper presents TDL� a typed feature�based language and inference system� which

is speci�cally designed to support highly lexicalized grammar theories like HPSG� FUG�

or CUG�� TDL allows the user to de�ne �possibly recursive� hierarchically�ordered types�

consisting of type constraints and feature constraints over the boolean connectives �� ��

and �� TDL distinguishes between avm types �open�world reasoning�� sort types �closed�

world reasoning�� built�in types and atoms � and allows the declaration of partitions and

incompatible types� Working with partially as well as with fully expanded types is pos�

sible� both at de�nition time and at run time� TDL is incremental� i�e�� it allows the

rede�nition of types and the use of unde�ned types� E�cient reasoning is accomplished

through four specialized reasoners�

�Although the title might suggest that our formalism only suits the needs of HPSG�based grammars� it is

of wider applicability in that it allows for annotated CF grammars in the PATR�GPSG tradition as well as

purely feature�based� FUG�style grammars�

�

�

Acknowledgements� We are grateful to the other FoPra Brothers� Stephan Don Diehl and

Karsten KaKo Konrad� for their support and ingenious programs� We have also bene�t�

ed from two anonymous COLING referees and from our colleagues at the DFKI� especially

Rolf Backofen� Klaus Netter� Stephan Oepen� and Christoph Weyers� and from the reac�

tions of audiences where we presented di�erent parts of it� in particular at the EAGLES

workshop on Implemented Formalisms� Saarbr�ucken	 the workshop on Implementations of

Attribute�Value Logics for Grammar Formalisms at the European Summer School in Lan�

guage� Logic� and Information� Lisbon	 the workshop on Neuere Entwicklungen der deklara�

tiven KI�Programmierung � KI�
�� Berlin	 and the International Conference on Computational

Linguistics� COLING��� � Kyoto� We would also like to thank Elizabeth Hinkelman for care�

fully reading several drafts of this paper and for making detailed suggestions�

CONTENTS �

Contents

� Introduction �

��� A Short History �

��� Expressivity of Formalisms �

��� Overview of the Paper �

� Motivation �

� TDL �

��� The TDL Language �

��� Type Hierarchy ��

����� Encoding Method ��

����� Decomposing Type De�nitions ��

����� Incompatible Types and Bottom Propagation � � � � � � � � � � � � � � �

��� Symbolic Simpli�er ��

����� Type Expressions ��

����� Normal Form ��

����� Reduction Rules �

����� Lexicographic Order �

����� Memoization ��

��� Type Expansion and Control ��

����� Motivation ��

����� Controlled Type Expansion ��

����� Preliminaries �

����� Algorithm ��

������� Basic Structure ��

������� Indexed Prototype Memoization � � � � � � � � � � � � � � � � ��

������� Detecting Recursion ��

������� Example ��

������� Declarative Speci�cation of Control Information � � � � � � � ��

������ How to Stop Recursion ��

��� Theoretical Results ��

�� Other Approaches �

	 Comparison to other Systems ��

� Summary ��

A TDL BNF �

A�� Type De�nitions �

A�� Instance De�nitions ��

A�� Template De�nitions ��

A�� Declarations ��

� CONTENTS

B Sample Sessions 	�

B�� Extracting List Elements ��

B�� De�ning Finite Automata ��

�

� Introduction

Over the last few years� uni�cation�based �or more generally� constraint�based� grammar for�

malisms have become the predominant paradigm in natural language processing and compu�

tational linguistics�� Their success stems from the fact that they can be seen as a monotonic�

high�level representation language for linguistic knowledge� for which a parser�generator or

a uniform type deduction mechanism acts as the inference engine� The representation of as

much linguistic knowledge as possible through a unique data type called feature structures

allows the integration of di�erent description levels� from phonology to pragmatics� Here� the

feature structure itself serves as an interface between the di�erent description stages which

can therefore be accessed at the same time� In this context� uni�cation is concerned with two

di�erent tasks�

�� combining information

uni�cation is a structure�building operation

�� rejecting inconsistent knowledge

uni�cation determines the satis�ability of a description

��� A Short History

Martin Kay was the �rst person to lay out a generalized linguistic framework� called uni�cation�

based grammars� by introducing the notions of extension� uni�cation� and generalization into

computational linguistics �see overview in �Rupp et al�
�� for a good introduction�� Kay�s

Functional Grammar �Kay �
� represents the �rst formalism in the uni�cation paradigm and is

the predecessor of strictly lexicalized approaches like FUG �Kay ���� HPSG �Pollard � Sag ��	

Pollard � Sag
�� and UCG �Moens et al� �
�� Pereira and Shieber were the �rst to give

a mathematical reconstruction of PATR�II in terms of a denotational semantics �Pereira

� Shieber ����� The work of Karttunen led to major extensions of PATR�II� concern�

ing disjunction� atomic negation� and the use of cyclic structures �Karttunen ���� Kasper

and Rounds� seminal work �Kasper � Rounds �	 Rounds � Kasper �� is important in

many respects� it clari�ed the connection between feature structures and �nite automata�

gave a logical characterization of the notion of disjunction� and presented complexity re�

sults for the �rst time �see �Kasper � Rounds
�� for a summary�� Mark Johnson then

enriched the descriptive apparatus with classical negation and showed that the feature cal�

culus is a decidable subset of �rst�order predicate logic �Johnson ���� Finally� Gert Smol�

ka�s work gave a fresh impetus to the whole �eld� his approach is distinguished from oth�

��Shieber ��	 and �Uszkoreit ��	 are excellent introductions to uni
cation�based grammar theories� �Keller

��	 investigates dierent characterizations of feature logics and compares them� �Pereira ��	 makes the con�

nection between uni
cation�based grammar formalisms and logic programming explicit� �Knight ��	 gives an

overview of the dierent
elds in computer science which make use of the notion of uni
cation�
�Pereira and Shieber�s work was novel in that they made a distinction between descriptions and described

objects� which seems to date back to the early work in LFG� Moreover� they presented a
xpoint semantics

for PATR�II �actually� they chose the least
xpoint� where PATR�II grammars are interpreted in the rational

tree domain�

 � INTRODUCTION

ers in that he presents a sorted set�theoretical semantics for feature structures �Smolka ��	

Smolka �
�� Moreover� Smolka gave solutions to problems concerning the complexity and

decidability of feature descriptions� Work by Rounds and Manaster�Ramer� however� showed

that a Kasper�Rounds logic enriched with types �type de�nitions� leads to the undecidability

of the satis�ability problem �Rounds � Manaster�Ramer ���� Later� �Smolka �
� explained

that the undecidability result is due to the use of coreference constraints� Paul King�s work

aimed to reconstruct a special grammar theory� viz�� HPSG� in mathematical terms �King

�
�� whereas Backofen and Smolka�s treatment bridged the gap between logic programming

and uni�cation�based grammar formalisms �Backofen � Smolka
��� New work by Backofen

investigates a very general feature theory which incorporates nearly all extensions of feature

descriptions that have been proposed in the literature� This language is of course undecid�

able w�r�t� satis�ability� but Backofen presents several fragments of the language that show

more desirable properties �Backofen
��� There exist only a few other proposals to feature de�

scriptions nowadays which do not use standard �rst order logic directly� for instance Reape�s

approach� using a polymodal logic �Reape
�� �see �Blackburn
�� for an overview��

��� Expressivity of Formalisms

While the �rst uni�cation�based approaches relied on annotated phrase structure rules �for

instance GPSG �Gazdar et al� ��� and PATR�II �Shieber et al� ���� as well as their successors

CLE �Alshawi
�� and ELU �Russell et al�
���� modern formalisms try to specify grammatical

knowledge as well as lexicon entries entirely through feature structures�

In order to achieve this goal� one must enrich the expressive power of the early uni�cation�

based formalisms with di�erent forms of disjunctive descriptions �atomic disjunctions� general

disjunctions� distributed disjunctions etc���

Later� other operations came into play� viz�� �classical� negation� or implication� Full nega�

tion� however� can be seen as an input macro facility because it can be expressed through

the use of disjunctions� negated coreferences� and negated atoms with the help of existen�

tial quanti�cation as shown in �Smolka ���� Other proposals considered the integration of

functional and relational dependencies into formalisms which makes them Turing�complete

in general��

However the most important extension to formalisms consists in the incorporation of types� for

instance in modern systems like TFS �Emele � Zajac
�	 Zajac
��� CUF �D�orre � Eisele
�	

D�orre � Dorna
��� or TDL �Krieger � Sch�afer
�a	 Krieger � Sch�afer
�a	 Krieger � Sch�afer

�b��� Types are ordered hierarchically �via subsumption� as in object�oriented programming

languages� This leads to multiple inheritance in the description of linguistic entities��

Finally� if a formalism is intended to be used as a stand�alone system� it must implement

recursive types if it does not provide phrase�structure recursion directly �within the formalism�

�For instance� Bob Carpenter�s ALE system �Carpenter � Penn ��	 gives a user the option of de
ning

de
nite clauses� using disjunction� negation� and Prolog cut�
�Cf� �Backofen et al� ��	 for a comprehensive overview of modern systems� including a detailed description

of their features�
�See �Daelemans et al� ��	 for a general introduction�

��� Overview of the Paper �

or indirectly �via a parser�generator��� In addition� certain forms of relations �like append�

or additional extensions of the formalism �like functional uncertainty� can be nicely modelled

through recursive types�

��� Overview of the Paper

In the next section� we argue for the need and relevance of using types in CL and NLP�

After that� we give an overview of TDL and its specialized inference modules� In particular�

we have a closer look at the novel features of TDL and present the techniques we employ

in implementing TDL�� We then compare TDL with other grammatical formalisms� Finally�

we specify the concrete syntax of TDL in BNF and present a small� linguistically�motivated

example written in TDL�

� Motivation

Modern typed uni�cation�based grammar formalisms �like TFS� CUF� or TDL� di�er from

early untyped systems like PATR�II in that they emphasize the notion of a feature type� Types

can be arranged hierarchically� where a subtype monotonically inherits all the information

from its supertypes and uni�cation plays the role of the primary information�combining op�

eration�

An abstract type de�nition s �� ht� �i in TDL can be seen as an abbreviation for a complex

expression� consisting of type constraints t �concerning the sub��supertype relationship� and

feature constraints � �stating the necessary features and their values� over the standard

connectives �� �� and ��� Note however that a feature structure might have other attributes

not mentioned in the type de�nition as well� Thus a �de�nition� only states which attributes

�and values� are required for a certain type� Informally� if

s �� ht� �i

is a type de�nition� the intended meaning is roughly the following implication�

�x � s�x�� t�x� � ��x�

Types are thus a necessary requirement for a grammar development environment because they

serve as abbreviations for lexicon entries� immediate dominance rule schemata� and universal

as well as language�speci�c principles as is familiar from HPSG�

Types not only serve as a shorthand� like templates� but also yield other advantages as well

which cannot however be accomplished by templates�

�For instance� ALE employs a bottom�up chart parser� whereas TFS relies entirely on type deduction� Note

that recursive types can be substituted by de
nite relations �equivalences�� as is the case for CUF� such that

parsing�generation roughly corresponds to SLD resolution�
�A more practice�oriented introduction to TDL is �Krieger � Sch�afer ��a	� This document investigates dif�

ferent tools of TDL� describes internal software switches� focusses on each construct of syntax �plus examples��

and describes other well�worth noting features of TDL� e�g�� non�monotonic overwriting� templates� instance

de
nition facility� etc�
	The concrete syntax for type de
nitions and declarations is given in the Appendix�

� � TDL

� structuring of linguistic knowledge

Types together with the possibility to order them hierarchically allow for a modular way

to represent linguistic knowledge adequately� Moreover� generalizations can be made at

the appropriate levels of representation�

� efficient processing

Certain type constraints can be compiled into more e�cient representations� for in�

stance� �A��t�Kaci et al� �
� reduces GLB �greatest lower bound�� LUB �least upper

bound�� and � �type subsumption� computation to low�level bit manipulations	 see

Section ���� Moreover� types can be used to eliminate expensive uni�cation opera�

tions� for example� by explicit declaration of type incompatibility� In addition� working

with type names only or with partially expanded types� minimizes the costs of copying

structures during processing� This can only be accomplished if the system makes a

mechanism for type expansion available	 see Section ����

� type checking

Type de�nitions allow a grammarian to declare which attributes are appropriate for a

given type and which types are appropriate for a given attribute� therefore disallowing

inconsistent feature structures� Again� type expansion is necessary to determine the

global consistency of a given description�

� recursive types

Recursive types give a grammar writer the opportunity to formulate certain functions or

relations as recursive type speci�cations� Working in the Parsing as Deduction �Pereira

��� paradigm forces a grammar writer to replace the context�free backbone through

recursive types� Here� parameterized delayed type expansion is the key to controlled

linguistic deduction �Uszkoreit
��	 see Section ����

� TDL

TDL is a uni�cation�based grammar development environment and run time system support�

ing HPSG�style grammars� Work on TDL started at the end of �
�� in the DISCO project of

the DFKI and led to TDLExtraLight � the predecessor of TDL �Krieger � Sch�afer
�b�� The

DISCO grammar currently consists of more than
�� type speci�cations written in TDL and

is the largest HPSG grammar for German �Netter
���

Grammars and lexicons written in TDL can be tested by using the DISCO parser� The

parser is a bidirectional bottom�up chart parser� providing a user with parameterized parsing

strategies as well as control over the processing of individual rules �Kiefer � Scherf
���

The core machinery of DISCO consists of TDL �see below� and the feature constraint solver

UDiNe �Backofen � Weyers
��� UDiNe itself is a powerful untyped uni�cation machine which

allows the use of distributed disjunctions� general negation� and functional dependencies�

The modules communicate through an interface� and this communication mirrors exactly the

way an abstract type uni�cation algorithm works� two typed feature structures can only be

uni�ed if the attached types are known to be compatible� This is accomplished by the uni�er

��� The TDL Language

in that UDiNe hands over two typed feature structures to TDL which gives back a simpli�ed

form �plus additional information	 see Fig� ���

The motivation for separating type and feature constraints and processing them in specialized

modules �which again might consist of specialized components as is the case in TDL� is twofold�

�i� this strategy reduces the complexity of the whole system� thus making the architecture

clear� and �ii� leads to faster processing because every module is designed to handle only a

specialized task�

UDiNe

TDL

	

 	

	

	

Type hierarchy

ha � bi

Query

fc� a � b�
g

a

b

c

a

b
�� � ��

�� � ��

h � i hfc� a � b�
g� fyes� no� failgi

Result

�

Figure �� Interface between TDL and UDiNe� Depending on the type hierarchy and the

type of � and �� TDL either returns c �c is de�nitely the GLB of a and b	 or a�b �open
world

reasoning for GLB	 or
 �closed
world reasoning for GLB	 if a single type which is equal to

the GLB of a and b doesn�t exist� In addition� TDL determines whether UDiNe must carry out

feature term uni�cation �yes	 or not �no	� i�e�� the return type contains all the information

one needs to work on properly �fail signals a global uni�cation failure	�

We will now turn our focus to the main components of TDL �see Fig� ��� We start with a

general overview of the language and then have a closer look at certain modules of the system�

��� The TDL Language

TDL supports type de�nitions consisting of type constraints and feature constraints over the

standard operators �� �� �� and � �xor�� The operators are generalized to connect feature

descriptions� coreference tags �logical variables� and types� TDL distinguishes between avm

types �open�world semantics�� sort types �closed�world semantics�� built�in types �through

Common Lisp�� and atoms�

When asked for the greatest lower bound of two avm types a and b which share no common

subtype� TDL always returns a � b �open�world reasoning�� and not
� The reasons for

�� � TDL

TDL control machinery

symbolic

simpli�cation

inheritance

reasoning

look�up

inferences

type

expansion

TDL parser �Zebu�

query

de�nitions

control knowledge

declarations

knowledge

inspector �����

tools

type uni�cation and type expansion

type simpli�cation and bottom propagation

type classi�cation and type inference

type de�nition and type introduction

incremental de�nition and rede�nition

feature constraint

solver �UDiNe�

grapher

feature editor

TDL�LaTEX

Figure �� Architecture of TDL� The control machinery of TDL is either called by the

feature constraint solver at run time �typed uni�cation	 and during type expansion� or at def

inition time during incremental grammar�lexicon development� Moreover� the type expansion

module can be called by other higher
level reasoners� e�g�� a parser�

��� The TDL Language ��

assuming this are manifold�

�� partiality of our linguistic knowledge about a speci�c domain

�� the approach is in harmony with terminological �KL�ONE�like� languages which share

a similar semantics

�� this view makes the stepwise re�nement of grammars during the development process

easier �which has been shown useful in our project�

�� we must not write super�uous type de�nitions to guarantee successful type uni�cations

during processing

The opposite case holds for the GLB of sort types� Furthermore� sort types di�er from avm

types in that they are not further structured� as is the case for atoms�

Moreover� TDL allows the declaration of exhaustive and disjoint partitions of types� for ex�

ample sign � word � phrase which expresses the fact that �i� there are no other subtypes

of sign than word and phrase� �ii� the sets of objects denoted by these types are disjoint�

and �iii� the disjunction of word and phrase can be rewritten �during processing� to sign� In

addition� one can declare sets of types as incompatible� meaning that their conjunction yields

�

TDL allows a grammarian to de�ne and use parameterized templates �macros�� There exists

a special instance de�nition facility to ease the writing of lexicon entries� which di�er from

normal types in that they are not entered into the type hierarchy� Strictly speaking� lexicon

entries can be seen as leaves in the type hierarchy which do not admit further subtypes �see

also �Pollard � Sag ���� p� �
��� This dichotomy is the analogue to the distinction between

classes and instances in object�oriented programming languages�

Input given to TDL is parsed by a Zebu�generated LALR��� parser �Laubsch
�� to allow for

an intuitive� high�level input syntax and to abstract away from uninteresting details of the

uni�er and the underlying Lisp system�

The kernel of TDL �and of most other monotonic systems� can be given a set�theoretical

semantics along the lines of �Smolka ��	 Smolka �
�� It is easy to translate TDL statements

into denotation�preserving expressions of Smolka�s feature logic �or into de�nite equivalences��

thus viewing TDL as just syntactic sugar for �rst�order predicate logic�	

For instance� take the following feature description � written as an attribute�value matrix�

� �

�
�������

np

AGR x

�
��
agreement

NUM sg

PERS 	rd

�
��

SUBJ x

�
�������

�
Cf� �Krieger ��	 for a precise description of the semantics of TDL� including a
xpoint characterization of

recursive types�

�� � TDL

It is not hard to rewrite this two�dimensional description to a �at �rst�order formula� where

attributes�features �e�g�� AGR� are interpreted as binary predicate symbols and sorts �e�g�� np�

as unary predicates�

�x � np��� � AGR��� x� � agreement�x� � NUM�x� sg� � PERS�x� 	rd � � SUBJ��� x�

The corresponding TDL type de�nition of � looks as follows actually � is used on the

keyboard instead of �� j replaces �� and � is substituted by ��

� �� np � �AGR !x � agreement � �NUM sg � PERS 	rd ��

SUBJ !x��

��� Type Hierarchy

The type hierarchy is either called directly by the control machinery of TDL during the

de�nition of a type �type classi�cation� or indirectly via the simpli�er both at de�nition and

at run time �type uni�cation and type expansion��

����� Encoding Method

The implementation of the type hierarchy is based on A��t�Kaci�s bit vector encoding technique

for partial orders �A��t�Kaci et al� ��	 A��t�Kaci et al� �
�� Every type t is assigned a code ��t�

�represented through a bit vector� such that ��t� re�ects the re�exive transitive closure of the

subsumption relation with respect to t� Decoding a code c is realized either by a hash table

look�up �i� �tc � �
�	�c� � tc� or by computing the "maximal restriction� of the set of types

whose codes are less than c�

Depending on the encoding method� the hierarchy occupies O�n log n� �compact encoding�

or O�n�� �transitive closure encoding� bits� resp� Here� GLB�LUB operations corresponds

directly to bitwise or�and instructions� GLB� LUB and � computations have the pleasant

property that they can be carried out in this framework in O�n� �or O��� on an ideal machine��

where n is the number of types�		

The method has been modi�ed for an open�world reasoning over avm types� in that potential

GLB�LUB candidates �calculated from their codes� are veri�ed by inspecting the type hier�

archy through a sophisticated graph search� Why so# Take the following example to see why

this is necessary�

x �� y � z

x� �� y� � z� � �a ��

During processing� one can de�nitely substitute y � z by x� but rewriting y� � z� to x� is not

correct� because x� di�ers from y� � z� x� is more speci�c as a consequence of the feature

constraint �a ��� Thus the implementation distinguishes between

��Actually� one can choose in TDL between the two encoding techniques and between bit vectors and bignums

�arbitrary long integers� for the representation of the codes� Operations on bignums are an order of magnitude

faster than the corresponding operations on bit vectors�

��� Type Hierarchy ��

� internal greatest lower bound GLB�
employ the type subsumption relation via A��t�Kaci�s method �used in case of sort types�

� external greatest lower bound GLBv
take the subsumption relation over feature structures into account�

The same distinction is made for LUBs�

With GLB� and GLBv in mind� we can de�ne a generalized GLB operation informally by

the following table� This GLB operation is actually used during type uni�cation �fc � feature

constraint��

GLB avm� sort� atom� fc�

avm� see ��

 see ��

sort�
 see �� see ��

atom�
 see �� see ��

fc� see ��

 see �

where

��

�����	
����

avm� �� GLBv�avm� � avm� � � avm�

avm� �� avm� � avm�

 �� GLB��avm� � avm� � �
 �via an explicit incompatibility declaration�

avm� � avm� � otherwise �open world reasoning for GLB�

��

��	
�

avm� �� �� expand
tfs�havm� �� � fc� �� i� ��
 �type expansion switched on�

avm� �� �� type expansion is switched o�

� otherwise

��

��	
�

sort� �� GLB��sort� � sort� � � sort�
sort� �� sort� � sort�

� otherwise �closed world reasoning for GLB�

��

�
atom� �� �� type�of�atom� �� � � sort� �� � where sort� �� is a built�in type

� otherwise

��

�
atom� �� atom� � atom�

� otherwise

�

�
	 �� fc� � fc� ��

� otherwise

The encoding algorithm has been extended to cope with the rede�nition of types and the use

of unde�ned types� an essential part of an incremental grammar�lexicon development system�

Rede�ning a type not only means to make changes local to this type� Rather� one has to

rede�ne all dependents of this type all subtypes� in case of a conjunctive type de�nition and

�� � TDL

all disjunction elements for a disjunctive type speci�cation plus� in both cases� all types which

mention these types in their de�nition� The dependent types of a type t can be characterized

graph�theoretically via the strongly connected components �SCC� of t with respect to the

dependency relation� It is important to rede�ne the dependents in the "right� order to obtain

a new consistent type hierarchy�	�

����� Decomposing Type De�nitions

Conjunctive type speci�cations �e�g�� x �� y � z� and disjunctive ones �e�g�� x� �� y� � z��

are entered di�erently into the hierarchy� x inherits from its supertypes y and z� whereas x�

de�nes itself through its disjunction alternatives y� and z��	� This distinction is represented

through the use of di�erent kinds of edges in the type graph �bold edges denote disjunction

elements� see Fig� � and ��� But it is worth noting that both of them express subsumption

�x � y and x� � y� in the above example� and that the GLB�LUB operations must work

properly over "conjunctive� as well as "disjunctive� subsumption links�

TDL decomposes complex de�nitions consisting of �� �� and � by introducing intermediate

types� so that the resulting expression is either a pure conjunction or a disjunction of type

symbols �plus type de�nitions of the form s �� �t�� Intermediate type names are enclosed in

vertical bars �cf� the intermediate types ju � vj and ju � v � wj in Fig� ���

	

u v w

ju � vj

ju � v �wjx

y

Figure �� The intermediate types ju�vj and ju�v�wj are introduced during the de�nition of

the types x �� u � v � �a �� and y �� w � v � u � �a ���

��In general� enriching the type hierarchy with dependency links no longer leads to a cycle�free graph� So it

is not obvious how to establish a topological order on the set of types� However� one can topologically sort the

SCCs of the hierarchy without dependency links �which leads to a total order with respect to a certain SCC�

and then implode the SCCs of the hierarchy into nodes �which ultimately leads to a DAG which itself can be

totally ordered��
��So one can see conjunctive types as top�down specialization of their supertypes and disjunctive ones as

bottom�up generalization of their disjunction elements�

��� Type Hierarchy ��

The same technique is applied when using � �see Fig� � and ��� � will be decomposed into

�� � and �� plus additional intermediates� For each negated type �t� TDL introduces a new

intermediate type symbol j�tj with the de�nition �t and declares it incompatible with t �see

Section ������� In addition� if t is not already present� TDL will add t as a new type to the

hierarchy �see types j�bj and j�cj in Fig� � and ���

fb��bg
fc��cg

jb�cj j�b��cj

a

j�cjb c j�bj

	

Figure �� Decomposing a �� b � c into conjunctive normal form� such that a inherits from

the intermediates jb�cj and j�b��cj�

b j�bj aj�cjc

jb � �cjj�b � cj

	

fb��bg
fc��cg

Figure �� Decomposing a �� b�c into disjunctive normal form� such that a is de�ned through

its disjunction alternatives jb��cj and j�b�cj�

Let�s consider the example a �� b � c� The decomposition performed by TDL can then be

� � TDL

stated informally by the following rewrite steps �assuming that CNF mode is switched on	

see Fig� ���

a �� b� c

a �� �b � �c� � ��b � c�

a �� �b � �b� � �b � c� � ��b � �c� � ��c � c�

a �� �b � c� � ��b � �c�

a �� jb�cj � j�b��cj

where jb�cj �� b � c� j�b��cj �� j�bj � j�cj� j�bj �� �b� j�cj �� �c�
fb��bg �� b � j�bj�

and
fc��cg �� c � j�cj�

If disjunctive normal form instead is enforced by the user� the decomposition of a �� b � c

leads of course to a di�erent type hierarchy �Fig� ���

a �� b� c

a �� �b � �c� � ��b � c�

a �� jb��cj � j�b�cj

where jb��cj �� b � j�cj� j�b�cj �� j�bj � c� j�cj �� �c� j�bj �� �b�
fb��bg �� b � j�bj�

and
fc��cg �� c � j�cj�

����� Incompatible Types and Bottom Propagation

Incompatible types lead to the introduction of specialized bottom symbols �see Fig� �� �

and � which are� however� identi�ed in the underlying logic �this identi�cation is somewhat

related to the notion of a coalesced sum� known from domain theory�� I�e�� these symbols are

always interpreted as representing inconsistent information� thus they denote the empty set�

Bottom symbols must be propagated downwards by a mechanism called bottom propagation

which takes place at de�nition time �see Fig� �� Note that it is important to take not only

subtypes of incompatible types into account but also disjunction elements� as the following

example shows��

 � a � b�

b �� b	 � b��

�
bottom propagation
����������������� a � b	 �
 and a � b� �

It is worth noting that because we employ an explicitly represented type hierarchy within

GLB� LUB and � computations� a single bottom symbol that is a subtype of every other

type� would lead to false inferences� Consider the following example� Assume that we declare

a and b� as well as c and d as incompatible� If only a single bottom symbol
 is used� we

would deduce that a� c is
 which however is not necessarily the case� However� introducing

two bottom symbols
fa�bg and
fc�dg is the right way to guarantee proper results�

One might expect that incompatibility statements together with feature term uni�cation no

longer lead to a monotonic� set�theoretical semantics� But this is not the case� To preserve

monotonicity� one must assume a ��level interpretation of typed feature structures� where

feature constraints and type constraints can denote di�erent sets of objects and the global

��� Symbolic Simpli�er ��

b

ed

	

cab ca

	

d �� b � �p $��

e �� b � �p ���

bottom propagation

fa�b�cg
fa�b�cg

 � a � b � c�

Figure � Bottom propagation triggered through the subtypes d and e of b� so that a � d � c

as well as a � e � c will simplify to
 during processing�

interpretation is determined by the intersection of the two sets �cf� �Krieger
�� for a thorough

investigation�� Take for instance the type de�nitions A �� �a �� and B �� �b ��� plus the user

declaration
 � A �B� viz�� that A and B are incompatible� Then A �B will simplify to

although the corresponding feature structures of A and B successfully unify to �a �� b ���

��� Symbolic Simpli�er

The simpli�er operates on arbitrary TDL expressions� Simpli�cation is done at de�nition time

as well as at run time when typed uni�cation or type expansion takes place �cf� Fig� ���

The main issue of symbolic simpli�cation is to avoid �i� unnecessary feature constraint uni��

cation and �ii� queries to the type hierarchy� by simply applying "syntactic� reduction rules�

Consider an expression like x	�x� � � ��xi � � ���xi � � ��xn� Symbolic simpli�cation will detect

 by simply applying syntactic reduction rules�

The simpli�cation schemata are well known from the propositional calculus� e�g�� De Morgan�s

laws� idempotence� identity� absorption� etc� �cf� Fig� ��� They are hard�wired in Common

Lisp to speed up computation�

Formally� type simpli�cation in TDL can be characterized as a term rewriting system� A set

of reduction rules is applied until a normal form is reached�

Con�uence and termination are guaranteed by imposing a total generalized lexicographic order

�NF on complex type expressions �either CNF or DNF�� In addition� this order has the

nice e�ect of neglecting the commutativity schemata �C� in Fig� � �which are expensive and

might lead to termination problems�� there is only one representative for a given formula�

Therefore� memoization of type expressions is cheap �see Section ������ and is employed in

TDL to reuse precomputed results of simpli�ed formulae �one must not cover all permutations

of a formula�� Consider the conjunction t	 � � � � � tn for which n% permutations exist� Now let

� be a permutation� such that t��	� �NF � � � �NF t��n� is the case� Then t��	� � � � � � t��n� is

the unique representative for all n% permutations of t	 � � � � � tn �the exact de�nition of �NF

�� � TDL

is given below��

Additional reduction rules are applied at run time using �semantic� information from the

type hierarchy �cf� Fig� � and
��

����� Type Expressions

Formally� a signature for TDL contains disjoint sets for atoms �or constants� A and types T �

where T �� Ts � Ta � f	�
g� Ts denotes the set of sort types and Ta the set of avm types�

Furthermore� Ts �� Tb � Tu is subdivided into built�in sorts Tb and user de�ned sorts Tu� We

will use these abbreviations in the simpli�cation schemata depicted in Fig� �� �� and
�

We can then de�ne the set T � of �complex� type expressions inductively as follows�

� any type symbol is a valid type expression�

� any atom �a quoted symbol� a string or a number� is a valid type expression�

� if t	� � � � � tn are valid type expressions� the conjunction t	 � � � � � tn is a valid type

expression �n � ���

� if t	� � � � � tn are valid type expressions� the disjunction t	 � � � � � tn is a valid type

expression �n � ���

� if t is a valid type expression� the negation �t is a valid type expression�

� nothing else is a type expression�

Symbols and negated symbols are also called literals�

����� Normal Form

In order to reduce an arbitrary type expression to a simpler expression� simpli�cation rules

must be applied� So we have to de�ne what it means for an expression to be �simple��

One can either choose the conjunctive or disjunctive normal form� A type expression is in

conjunctive normal form �CNF�� if it is a literal� or a conjunction of literals� or a conjunction of

disjunctions of literals� The de�nition of disjunctive normal form �DNF� is obtained similarly�

The advantages of CNF�DNF are�

� uniqueness

Type expressions in normal form are unique modulo commutativity� Sorting type ex�

pressions according to a total lexicographic order will lead to a total uniqueness of type

expressions and avoid the application of the commutativity rule �C� �see Section �������

� linearity

Type expressions in normal form are linear� Arbitrary nested expressions can be trans�

formed into a �at expressions� This may reduce the complexity of later simpli�cations�

e�g�� at run time�

��� Symbolic Simpli�er �

� comparability

This property is a consequence of the two other properties� Unique and linear ex�

pressions make it easy to �nd or compare �sub�expressions� This is important for the

memoization technique described in Section ������

����� Reduction Rules

The current implementation of the simpli�er uses the hard�wired reduction rules as shown in

Fig� �� Note that only one of the two distributivity rules is applied depending on the chosen

normal form �CNF or DNF�� Otherwise simpli�cation might not terminate�

In order to reach a normal form� it would su�ce to apply only the rules for double negation

�DN�� De Morgan�s laws �DM� and the schemata for distributivity �D�� However� in the worst

case� the application of these three rules would blow up the length of the normal form to

exponential size �compared with the number of literals in the original expression�� To avoid

this� additional rules are employed� idempotence� identity� absorption etc� If they can be

applied� they always reduce the length of the �sub�expressions�

Especially at run time� but also at de�nition time� it is useful to exploit information from the

type hierarchy� Further simpli�cations are possible by employing the schemata of Fig� � and

 �it is possible to switch o� the use of type hierarchy information at any time��

The recursive simpli�cation algorithm simplify
type that implements the simpli�cation schema�

ta is given in pseudo�code in Fig� ���

����	 Lexicographic Order

In order to avoid the application of the commutativity rule� we introduce a total lexicographic

order on type expressions� Together with DNF�CNF� we obtain a unique sorted normal form

for an arbitrary type expression� This guarantees con�uence and fast comparability of type

expressions�

First of all� we de�ne the order �NF on n�ary normal forms by the following table� with

type �NF negatedtype �NF conjunction �NF disjunction�

� x y � type neg� type conjunction disjunction

type x �lex y true true true

neg� type false x	 �lex y	 true true

conjunction false false �i � xi �NF yi true

disjunction false false false �i � xi �NF yi

where � � i � max�jxj� jyj� and �lex is a total lexicographic order on strings �or symbol

names�� e�g�� the predicate STRING� in Common Lisp� for example�

a �NF b �NF bb �NF �a �NF a � b �NF a � �a �NF a � b �NF a � b � c �NF a � �

We then extend �NF for atomic values� such that disjunction �NF symbol �NF string �NF

number� The following matrix is the continuation of the table above at its lower right corner

�� � i � max�jxj� jyj���

�� � TDL

�DN�
� � s

s

�C�
s � t

t � s

s � t

t � s

�DM�
� �s � t�

� s � � t

� �s � t�

� s � � t

�D�
s � �t � u�

�s � t� � �s � u�

s � �t � u�

�s � t� � �s � u�

�F�
s � �t � u�

s � t � u

s � �t � u�

s � t � u

�I�
s � s

s

s � s

s

�A�
s � �s � t�

s

s � �s � t�

s

�B��
s � � s

s � � s

	

�B��
s �

s � 	

	

�B��
� 	

�

	

�NE�
s � 	

s

s �

s

�T�

V	
i	 si

s	

W	
i	 si

s	

�E�

V

i	 si

	

W

i	 si

Figure �� Syntactic simpli�cation schemata employed in TDL �s� si� t� u � T
�� Note

that the schemata for commutativity �C� must not be tested explicitly because TDL impose

a total order on type expressions�

��� Symbolic Simpli�er ��

�GLB��
s � t

s
if s � t and s� t � T

�GLB��
s	 � � � � � sn

t
if t � glb�s	� � � � � sn� and s	� � � � � sn � T � t � T

�

�GLB��
a � t

a
if type
of �a� � s such that s � t and a � A� t � Tb

�GLB��
�s � t

if t � s

�GLB��
�s � �t

�t
if s � t

�GLB	�
s � �t

s
if glb�s� t� �

�GLB
�
s � t

if s � Ta� t � Ts

�GLB��
s � t

if s � Tu� t � Tb

�GLB��
s	 � � � � � sn

if s	� � � � � sn � Ts and � �t�i � t � si

�GLB��
a � t

if type
of �a� � s such that s �� t and a � A� t � T

�GLB���
a � b

if a �� b and a� b � A

�GLB���
a � �b

a
if a �� b and a� b � A

�GLB���
s	 � � � � � sn

if

����������	
���������

�S � fs	� � � � � sng

�T � ft	� � � � � tmg � T �

� surjection � � S ��� T �

�declaration

�
� t	 � � � � � tm�

�s � S � s � ��s�

�GLB���
s �U

if s � T � n f	�Ug

Figure �� Semantic simpli�cation schemata employed in TDL concerning only the

greatest lower bound�

�� � TDL

�LUB��
s � t

s
if t � s and s� t � T

�LUB��
s	 � � � � � sn

t
if t � lub�s	� � � � � sn� and s	� � � � � sn � T � t � T

�

�LUB��
a � t

t
if type
of �a� � s such that s � t and a � A� t � Tb

�LUB��
s � �t

	
if t � s

�LUB��
�s � �t

�s
if s � t

�LUB	�
s � �t

�t
if lub�s� t� �

�LUB
�
t	 � � � � � tn

p
if p

�
�

n
i	

ti

Figure
� Semantic simpli�cation schemata employed in TDL concerning only the

least upper bound�

� x y � disjunction symbol string number

disjunction �i � xi �NF yi true true true

symbol false x �lex y true true

string false false x	 �lex y	 true

number false false false x � y

����� Memoization

The memoization technique described in �Norvig
�b	 Norvig
�a� has been adapted in order

to reuse precomputed results of type simpli�cation� There are four memoization tables for

each TDL type domain� for CNF with�without hierarchy and DNF with�without hierarchy�	�

The lexicographically sorted normal form described in Section ����� guarantees fast access

to precomputed type simpli�cations� Memoization results are also used by the recursive

simpli�cation algorithm to exploit precomputed results for subexpressions�

Note that it can be dangerous during de�nition time� to memoize results that depend on the

type hierarchy� This is because rede�nitions will make previous inferences invalid� Clearly�

��We have implemented the memoization tables via Common Lisp hash tables� The average access time in

case of the generalized lexicographic normal form for an EQUAL hash table �Allegro CL ���� Sun SPARC SS���

is fast� ���� ms for a hash table containing about ���� entries� Hash tables seem to be good candidates for

memoization because they can be implemented with constant access time and linear space complexity�

�� Type Expansion and Control ��

simplify
type�x��

x ��apply �x� DN� 	 �& double negation &�

x ��apply �x� B�� 	 �& �	 �
 etc� &�

if literalp�x� then return x 	

if x � �y then return simplify
type �apply �x�DM�� 	 �& DeMorgan &�

�& now either x � x	 � � � � � xn or x � x	 � � � � � xn &�

for all � � i � n do xi �� simplify
type�xi� 	

x �� apply �x� F� 	 �& �atten &�

x �� apply �x� D� 	 �& distributivity &�

�& now x is in normal form &�

x �� apply �x� I� GLB��� B�� B�� GLB�� LUB�� 	

x �� apply �x� NE� A� GLB��LUB�� GLB��LUB�� GLB��LUB�� GLB	�LUB	� 	

x �� apply �x� GLB
� GLB�� GLB�� GLB�� GLB��� GLB��� 	

x �� apply �x� GLB��LUB�� GLB��� LUB
� T� E� 	

return x�

Figure ��� The recursive simpli�cation algorithm simplify
type� If apply has more

than two arguments� i�e�� more than one rule can be chosen� these rules will be applied to

every conjunct�disjunct in parallel�

deleting the hash table before a rede�niton takes place is a �rst solution� however� a more

appropriate strategy would be to impose a reason maintenance system on top of the simpli�er�

Some empirical results show the usefulness of memoization� The current DISCO grammar

for German consists of ��� types and �� templates� After a full type expansion of a toy

lexicon of ��� instances�entries� the memoization hash tables contain ���� entries �literals

are not memoized�� ���
 results have been reused at least once �some up to ��� times� of

which
� ' are proper simpli�cations �i�e�� the simpli�ed formulae are really shorter than the

unsimpli�ed formulae��

��� Type Expansion and Control

We noted earlier that types allow us to refer to complex constraints through the use of symbol

names� Reconstructing the constraints which determine a type �idiosyncratic plus inherited

constraints� requires a complex operation called type expansion� This operation is comparable

to Carpenter�s total well�typedness �Carpenter
�� or A��t�Kaci�s sort unfolding �A��t�Kaci et

al�
���

Thus type expansion is faced with two main tasks�

�� making all or particular feature constraints explicit �type expansion is a structure�

building operation�

�� determining the global consistency of a type� or more generally� of a typed feature

structure �if possible	 see below�

�� � TDL

��	�� Motivation

In TDL� the motivation for type expansion is manifold�

� consistency

At de�nition time� type expansion determines whether the set of type de�nitions �gram�

mar and lexicon� is consistent� At run time� type expansion is involved in checking the

satis�ability of the uni�cation of two partially expanded typed feature structures� e�g��

during parsing�

� economy

From the standpoint of e�ciency� it does make sense to work only with small� partially

expanded structures �if possible� to speed up feature term uni�cation and to reduce

the amount of copying� At the end of processing however� one has to make the re�

sult�constraints explicit�

� recursion

Recursive types are inherently present in modern constraint�based grammar formalisms

like HPSG which are not provided with a context�free backbone� Moreover� if the

formalism does not allow functional or relational constraints� one must specify certain

functions�relations like append through recursive types� Take for instance A��t�Kaci�s

version of append �A��t�Kaci �� which can be stated in TDL as follows�

append� �� � FRONT � ��

BACK !� � list �

WHOLE !� ��

append� �� � FRONT � !�rst � !rest� ��

BACK !back � list �

WHOLE � !�rst � !rest� ��

PATCH append� � FRONT !rest��

BACK !back�

WHOLE !rest� � ��

append �� append� � append� �

� type deduction

Parsing and generation can be seen in the light of type deduction as a uniform process�

where only the phonology �for parsing� or the semantics �for generation� must be given

as the following simpli�ed example illustrates�

Parsing�

�
phrase

PHON h John� likes� bagels� i

�

Generation�

�
�����
phrase

SEM

�
��

RELN like

ARG��IND�RESTR�NAME john

ARG��IND�RESTR�RELN bagel

�
��

�
�����

�� Type Expansion and Control ��

Type expansion together with a su�ciently speci�ed grammar then is responsible in

both cases for constructing a fully speci�ed feature structure which is maximal infor�

mative and compatible with the input structure� However� �Zajac
�� has shown that

type expansion without sophisticated control strategies is in many cases ine�cient and

moreover does not guarantee termination�

��	�� Controlled Type Expansion

Uszkoreit introduced in �Uszkoreit
�� a new strategy for linguistic processing called controlled

linguistic deduction� His approach permits the speci�cation of linguistic performance models

without giving up the declarative basis of linguistic competence� especially monotonicity and

completeness� The evaluation of both conjunctive and disjunctive constraints can be controlled

in this framework� For conjunctive constraints� the one with the highest failure probability

should be evaluated �rst� For disjunctive ones� a success probability is used instead� the

alternative with the highest success probability is used until a uni�cation fails� in which case

one has to backtrack to the next best alternative�

TDL �together with UDiNe� supports this strategy in that every feature structure can be

associated with its success�failure potential such that type expansion can be sensitive to

these settings� Moreover� one can make other decisions as well during type expansion�

� only regard structures which are subsumed by a given type� or conversely� only those

which are not �e�g�� expand the type subcat�list always or never expand the type daugh�

ters�

� take into account only structures under certain paths� or conversely� all structures

except those under the speci�ed paths �e�g�� always expand the value under path

SYNSEM�LOC�CAT	 in addition� it is possible to employ path patterns in the sense of

pattern matching	��

� set the depth of type expansion for a given type

Note that we are not restricted to applying only one of these settings they can be used

in combination and can be changed dynamically during processing� It does make sense� for

instance� to expand the �partial� information obtained so far at certain well�de�ned points

during parsing� If this will not result in a failure� one can throw away �or store� this fully

expanded feature structure� working on with the older �and smaller� one� However� if the

information is inconsistent� we must backtrack to older stages in computation� Going this way

which of course assumes heuristic knowledge �language as well as grammar�speci�c knowledge�

results in faster processing and copying� Moreover� the inference engine must be able to handle

possibly inconsistent knowledge� e�g�� in case of a chart parser to allow for a third kind of

edge �besides active and passive ones��

��This is dierent from functional uncertainty�

� � TDL

��	�� Preliminaries

In order to describe our algorithm� we need only a small inventory to abstract from the

concrete implementation in TDL and to make the approach comparable to others� First of

all� we assume pairwise disjoint sets of features �attributes� F � atoms �constants� A� logical

variables V� and types T �

In the following� we refer to a type hierarchy I by a pair hT ��i� such that � � T � T is a

decidable partial order� i�e�� � is re�exive� antisymmetric� and transitive�

A typed feature structure �TFS� 	 is essentially either a
�term or an ��term �A��t�Kaci ���

i�e��

	 ��� hx� ��(i j hx� ��)i

such that x � V� � � T � (� ff	
�
� 		� � � � � fn

�
� 	ng� and) � f		� � � � � 	ng� where each fi � F

and 	i is again a TFS�

We will call the equation f
�
� 	 a feature constraint �or an attribute�value pair��	� (is

interpreted conjunctively� whereas) represents a disjunction� Variables are used to indicate

structure sharing�

Let us give a small example to see the correspondences� The typed feature structure

hx� cyc
list � ffirst
�
� ��rest

�
� xgi

should denote the same set of objects than the following two�dimensional attribute�value

matrix �AVM� notation�

x

�
��
cyc
list

first �

rest x

�
��

It is worth noting that for the purpose of simplicity and clarity� we restrict TFS to the above

two cases� Actually� our algorithm is more powerful in that it handles other cases� for instance

conjunction� disjunction� and negation of types and feature constraints�

A type system * is a pair h)�Ii� where) is a �nite set of typed feature structures and I an

inheritance hierarchy� Given *� we call 	 �) a type de�nition�

Our algorithm is independent of the underlying deduction system we are not interested in

the normalization of feature constraints �i�e�� how uni�cation of feature structures is actually

done� nor are we interested in the logic of types� e�g�� whether the existence of a greatest lower

bound is obligatory �TFS �Zajac
��	 ALE �Carpenter � Penn
��� or optional as in TDL� We

assume here that typed uni�cation is simply a black box and can be accessed through an

interface function �say unify
tfs�� From this perspective� our expansion mechanism can be

either used as a stand�alone system or as an integrated part of the typed uni�cation machinery�

��It should be noted that we de
ne TFS to have a nested structure and not to be �at �in contrast to feature

clauses in a more logic�oriented approach� e�g�� �A��t�Kaci et al� ��	� in order to make the connection to the

implementation clear and to come close to the structured attribute�value matrix notation�

�� Type Expansion and Control ��

We only have to say a few words on the semantic foundations of type expansion at the end

of this section� This is because we could either choose extensions of feature logic �Smolka �
�

or directly interpret our structures within the paradigm of �constraint� logic programming

�Lloyd ����

��	�	 Algorithm

In this section� we explain the basic structure of our algorithm� extend it by a technique called

indexed prototype memoization� describe the syntax of control information and �informally�

the integration into the algorithm� and �nally give an example�	�

The overall design of our TE algorithm was inspired by the following requirements�

� support a complete expansion strategy

� allow lazy expansion of recursive types

� minimize the number of uni�cations

� make expansion parameterized for delay and preference information

Before we describe the algorithm� we modify the syntax of TFS to get rid of unimportant

details� First� we simplify TFS in that we omit variables� This can be done without loss of

generality if variables are directly implemented through structure�sharing �which is the case

for our system�� Hence conjunctive TFS have the form h�� ff	
�
� 		� � � � � fn

�
� 	ngi� whereas

disjunctive TFS are of the form h�� f		� � � � � 	ngi�

Given a TFS 	� type
of �	� returns the type of 	� whereas typedef ��� obtains the type de�nition

without inherited constraints as given by the type system * � h)�Ii� We call this TFS a

skeleton� It is either h� f		� � � � � 	ngi or h� ff	
�
� 		� � � � � fn

�
� 	ngi� where are the direct

supertype�s� of � �

Because the algorithm should support partially expanded �delayed� types� we enrich each

TFS 	 by two �ags�

�� +�expanded�	��true� i� typedef �type
of �	�� and the de�nitions of all its supertypes

have been uni�ed with 	� and false otherwise�

�� expanded�	��true� i� +�expanded�	��true and expanded�	i��true for all elements 	i
of TFS 	�

Hence +�expanded is a local property of a TFS that tells whether the de�nition of its type

is already present� while expanded is a global property which indicates that all substructures

of a TFS are +�expanded� Clearly� atoms and types that possess no features are always

expanded� The exploitation of these �ags lead to a drastic reduction of the search space in

the expansion algorithm�

��A thorough description of the algorithm� its realization� and other related subjects are presented in �Sch�afer

��	�

�� � TDL

��	�	�� Basic Structure

The following functions brie�y sketch the basic algorithm� It is a destructive depth��rst

algorithm with a special treatment of recursive types that will be explained in Section ���

expand
tfs is the main function that initiates type expansion� The while loop is executed

until the TFS 	 is expanded or resolved �see below�� Several passes may be necessary for

recursive TFS�

expand
tfs�	� ��

while not �expanded�	� or

resolved�	� or

no uni�cation occurred in the last pass�

depth
�rst
expand�	�� �� or types
�rst
expand�	�� resp� ��

depth
�rst
expand and types
�rst
expand recursively traverse a TFS� The visited check is

done by comparing variables �actually� structure�sharing in the implementation makes vari�

ables obsolete�� types
�rst
expand is de�ned analogously by interchanging the last two lines�

depth
�rst
expand�	� ��

if 	 has been already visited in this pass

then return

else if 	 � h�� f		� � � � � 	ngi

then for every 	 � f		� � � � � 	ng � depth
�rst
expand �	�

else �& 	 � h�� ff	
�
� 		� � � � � fn

�
� 	ngi &�

for every 	 � f		� � � � � 	ng � depth
�rst
expand �	�

if not +�expanded�	� then unify
type
and
node��� 	��

unify
type
and
node destructively uni�es 	 with the expanded TFS of � �

unify
type
and
node��� 	� ��

if � � �

then unify
tfs �negate
fs �expand
type��index ��� 	�

else unify
tfs �expand
type���index �� 	�	

+�expanded�	� �� true�

We adapt Smolka�s treatment of negation to our TFS �Smolka �
�� Note that we only depict

the conjunctive case here�

negate
fs�	 � h�� ff	
�
� 		� � � � � fn

�
� 	ngi� ��

return h	� fh��� fgi� h	� ff	 �gi� h	� ff	
�
� negate
fs�		�gi� � � � �

h	� ffn �gi� h	� ffn
�
� negate
fs�	n�gigi�

��	�	�� Indexed Prototype Memoization

The basic idea of memoization �Michie �� is to tabulate results of function applications in

order to prevent wasted calculations� The more expensive the computation of a value is�

�� Type Expansion and Control �

the bigger the e�ciency gain will be� To memoize a function� it must meet the following

requirements� �i� it must be a proper function with no side e�ects� because side e�ects might

cause wrong results and �ii� the function should be called more than once with the same

argument� the more often� the better� Recursive functions meet these two requirements and

hence serve as good examples for the e�ciency of memoization�	�

We apply this technique to the type expansion function� The argument of our memoized

expansion function is a pair consisting of a type name �or a name of an lexicon entry or a

rule� and an arbitrary index that allows to access di�erent TFS of the same type which may

be expanded in di�erent ways �e�g�� partially or fully�� Such feature structures are called

prototypes�

Once a prototype has been expanded according to the attached control information� its ex�

panded version is recorded and all future calls return a copy of it� instead of repeating once

again the same uni�cations�

expand
type��� index � ��

if protomemo��� index � unde�ned

then 	 �� expand
tfs�typedef ����	

protomemo��� index � �� 		

return copy
tfs�	�

else return copy
tfs�protomemo��� index ���

Most of these computations can be done at compile time �partial evaluation�� and hence speed

up uni�cation at run time� The prototypes can serve as basic blocks for building a partially

expanded grammar�

Some empirical results show the usefulness of indexed prototype memoization� The following

table �Figure ��� contains statistical information about the expansion of an HPSG grammar

with approx�
�� type de�nitions �excluding lexicon entries�� About ��� lexicon entries and

rules have been expanded from scratch� i�e�� all instances are unexpanded �skeletons� at

the beginning� The type and instance skeletons together consist of about
��� nodes� No

preference or delay information was given� Note that the algorithm without memoization

inserts only the unexpanded skeletons of a type de�nition while the memoized version expands

each complex type once and afterwards returns only copies of it� The resulting structures

consist of about ����� nodes ������ in type prototypes� ����� in instance prototypes��

The measurements show that memoization speeds up expansion by a factor of ���� for this

grammar �this factor is directly related to the number of uni�cations�� The time di�erence

between the memoized and non�memoized algorithm may be even bigger if disjunctions are

involved� The sample grammar contains only a few disjunctions�

��One of the most impressing examples is the memoized �b function �Norvig ��b	 ��b n returns the n�th

Fibonacci number� which reduces exponential run�time to a simple table look�up for n once the value for a

number � n has been computed�

�� � TDL

algorithm depth��st�expand types��st�expand depth��st�expand types��st�expand

memoization yes yes no no

time �secs� �� j ��� �� j ��� ��� ���

uni�cations �	��� j ���
�� �	��	 j ������ ������ ����	�

number of ��� �cons� ��� �cons� ���� �avm� ���� �avm�

calls to ��� cattype ��	 �di�list� ��
� semexpr ���� semexpr

expand�type ��
 �di�list� ��� morphtype ��	
 termtype ���� termtype

��� morphtype
� nmorphhead ���� �cons� ��
� �cons�
�� with types ��� atomicw� �� sortexpr ���� w�type ��	� w�type

pre�expanded ��� rptype 	� atomicw�
�� agrfeat
�� agrfeat

��� conjw�type �� rptype ��� semantics 	�	 semantics

��� vartype �� subw�inst ��� indexedw� 	�� indexedw�

�� indexedw� �� cattype ��
 vartype �
	 rptype

�
 nmorphhead �� signtype ��� rptype �
� vartype

�� subw�inst �� masnoun ��
 �di�list� ��
 �di�list�

�� termtype �� countnounlex ��
 majorfeat ��	 headfeat

�� semanticstype �� semanticstype ��	 headfeat ��� localtype

�� signtype �	 indexedw� ��� localtype ��	 casetype

�� sortexpr �� emptyquant ��� cattype ��� headval

�� masnoun �� �avm� ��� headval ��� subcattype

�� countnounlex �
 conjw�type ��� subcattype ��� localfeat

�� emptyquant �� vartype ��� localfeat ��� headtype

�� �avm� �� transverblex ��� headtype ��� subjtype

�� identityw� �� nountype ��� subjtype ��� modtype

�� transverblex �� agrsttype ��� modtype ��� minortype

�	 propername �� propernoun ��� minortype ��� majortype

�� nountype �� adjlex ��� majortype ��� gendertype

�� pheadtype �� amorphhead ��� vfeat ��� cattype

�� agrsttype �� omorphhead ��	 nfeat ��� local

�� propernoun �� femnoun ��� local ��� syntax

�� adjlex �� sgcountnoun ��� syntax ��� morphology

�� amorphhead �� lexsigntype ��� morphology ��� nonlocal

�� omorphhead �� majorval ��� nonlocal ��� syntaxtype

�� in�val �� verbtype ��� syntaxtype ��� majorfeat

�� femnoun �� nbartype ��	 numbertype ��� vfeat

�� sgcountnoun �� neunoun �
� nonloctype �

 nfeat

�� lexsigntype �� dat �
� casetype �
� nonloctype

�� majorval �� sgagr ��� atomicw� ��	 atomicw�

�� verbtype �� nonquesign ��� gendertype ��� numbertype

�� localtype �� w�type ��� agrval ��
 semanticstype

Figure ��� Comparing the e�ciency of depth��rst vs� types��rst expansion with�without

prototype memoization� The run time on a Sparc �� is stated in seconds� The left values in

the run time and uni�cations rows are for expansion of all instances from scratch� the right

ones when all types are already expanded�

�� Type Expansion and Control ��

��	�	�� Detecting Recursion

The memoization technique is also employed in detecting recursive types� This is important

in order to ensure termination� We use the so�called �call stack� of expand
type to check

whether a type is recursive or not �see Section ��������� Each call of expand
type��� index �

will push � onto the call stack� This stack then is passed to expand
tfs�

If the type � on top of the call stack also occurs below in the stack

��� n� � � � � 	� �� �m� � � � � �	�

we immediate know that the types �� n� � � � � 	 are recursive� Furthermore�these types form

a strongly connected component �scc� of the type dependency �or occurrence� graph� i�e�� each

type in the scc is reachable from every other type in the scc� Examples for such sccs are �cons

list� and �state� � in the trace of the example below �Section ���������

Testing whether a type is recursive or not thus reduces to a simple �nd operation in a global

list that contains all sccs� The expansion algorithm uses this information in expand
tfs to

delay recursive types if the call stack contains more than one element� Otherwise� prototype

memoization would loop�

If a recursive type occurs in a TFS and this type has already been expanded under a subpath�

and no features or other types are speci�ed at this node� then this type will be delayed� since

it would expand forever �we call this lazy expansion�� An instance of such a recursive type�

where expansion will terminate� is the recursive version of list � as de�ned below�

��	�	�	 Example

In the following� we de�ne a �nite state machine �Krieger et al�
�� with two states that

accepts the language a��a $ b�� The input is speci�ed through a list under path input 	 cf�

the de�nition of type ab below� The distributed �or named� disjunction �Eisele � D�orre
��

headed by ,� in type state� is used to map input symbols to state types �and vice versa��

The encoding of this �nite state machine in the concrete syntax of TDL is given in Appendix

B���

list � fcons � h ig

cons �

�
first 	

rest list

�
we abbreviate cons via h� � �i

non��nal�con�g �

�
���
input h � � � i

edge �

next
h
input �

i
�
���

�� � TDL

�nal�con�g �

�
���
input h i

edge undef

next undef

�
���

state� �

�
���
non��nal�con�g

edge ,� fa� fa� bgg

next ,� fstate� ��nal�con�gg

�
���

ab �

�
state�

input h a� b i

�

Let us give a trace of the expansion of type ab the algorithm is depth
�rst
expand without

any delay or preference information� In this trace� we assume that it was not known before

that the types cons �abbreviated as h� � �i�� list � and state� are recursive� hence the sccs will

be computed on the �y�

step expand�type in type under path call stack

� cons ab input�rest �ab�

� list cons rest �cons ab�

� cons list � �list cons ab�

� �cons list� is new scc� delay cons here

� cons ab input �ab�

� state� ab � �ab�

� state� state� next �state� ab�

� �state� � is new scc� delay state� here

� �nal�con�g state� next �state� ab�

� non��nal�con�g state� � �state� ab�

� cons non��nal�con�g input �non��nal�con�g state� ab�

�� state� ab next �ab�

The result of expand
type�ab� is the following feature structure�

expand
type�ab��

�
����������������������

ab

input h � a � � h � b � � h i i i

edge �

next

�
��������������

state�

input �

edge �

next

�
������
�nal�con�g

input �

edge undef

next undef

�
������

�
��������������

�
����������������������

�� Type Expansion and Control ��

If we ran our automaton on the input abb�

abb �

�
state�

input h a� b� b i

�

it would be rejected� expand�type�abb�� fail�

��	�	�� Declarative Speci�cation of Control Information

Control information for the expansion algorithm can be speci�ed globally� locally for each

prototype� or for a speci�c expand
tfs call� The following control keywords have been imple�

mented so far�

� �expand�function fdepth j typesg
�rst
expand

Speci�es the basic expansion algorithm� depth
�rst
expand �default� is a proper depth

�rst algorithm� while types
�rst
expand expands types �rst and then goes down the

feature graph �and �rst delays the expansion of recursive types to prevent in�nite loops��

� �delay f � ftype j �type �pred �	g fpathg� 	 g�

Speci�es which types should be delayed during expansion� path may be a feature path

or a complex path pattern with wildcard symbols
� �� �� feature and segment variables�

pred is a test predicate to compare types� e�g�� �� �� �� as well as user�de�ned predicates

are supported� The �delay information overrides the �expand and �expand�only slots

and will be checked in function unify
type
and
node�

� f�expand j �expand�onlyg f � ftype j �type �index �pred ��	g fpathg� 	 g�

There are two mutually exclusive modes concerning expansion of types� If the �expand�

only list is speci�ed� only types in this list will be expanded with the speci�ed prototype

index 	 all others will be delayed� If the �expand list is speci�ed� all types will be

expanded� Types not mentioned in the list will be expanded using the default prototype

index nil� i�e�� fully� if not speci�ed otherwise� Path patterns and type predicates are

supported as in the �delay list and will be checked in function unify
type
and
node�

� �maxdepth integer

Speci�es that all types at paths longer than integer will be delayed anyway �checked in

function unify
type
and
node��

� �attribute�preference fattributeg�

De�nes a partial order on attributes that will be considered in the functions depth
�rst

expand and types
�rst
expand � The �sub� feature structures at the attributes leftmost

in the list will be expanded �rst� This non�numerical preference may speed up expansion

if no numerical heuristics are known�

� �ask�disj�preference ft j nilg

If this �ag is set to t� the expansion algorithm interactively asks for the order in which

disjunction alternatives should be expanded �checked in depth
�rst
expand�� Example�

�� � TDL

Ask�Disj�Preference in G under path X

The following disjunctions are unexpanded�

Alternative ��

��Type A �Expanded NIL	 �

Alternative ��

��Type B �Expanded NIL	 �

Which alternative in G under path X should be expanded next ��� �� or

� to leave them unexpanded� or �all to expand all alternatives in this

order� or �quiet to continue without asking again in G	 � �

� �use�fconj j disjg�heuristics ft j nilg
�Uszkoreit
�� suggested the exploitation of numerical preference information for features

and disjunctions to speed up uni�cation� Both slots control the use of this information

in functions depth
�rst
expand and types
�rst
expand �

� �resolved�predicate fresolved�p j always�false j � � � g

This slot speci�es a user de�nable predicate that may be used to stop recursion �see

function expand
tfs�� The default predicate is always�false which will lead to a com�

plete expansion algorithm if no other delay information is speci�ed�

� �ignore�global�control ft j nilg

If this �ag has value t� the values of the three globally speci�ed lists �expand�only�

�expand� �delay will be ignored� If nil� locally and globally speci�ed lists will be taken

into account�

Let us give an example to show how control information can be employed� Note that we

formulate this example in the concrete syntax of TDL�

defcontrol verb

���delay ��sign Subsumes	 SYNSEM�NONLOCAL���SLASH		

�� � matches INHERITED and TO�BIND

��attribute�preference SYNSEM DTRS SUBCAT HEAD	

��use�disj�heuristics T	

��ignore�global�control T	

��expand ��local initial	
			

��
 matches all paths in type local

�index ��

Here� we specify control information for the type verb� However� not for all prototypes�

but only for the one with index � �see Section ������� on indexed prototype memoization��

The idea is to delay sign and all its subtypes �Subsumes� under all paths that start with

SYNSEM�NONLOCAL� followed by an arbitrary attribute ���� and ending in SLASH� The prefered

attribute preference during expansion is �highest priority �rst�� �i� SYNSEM� �ii� DTRS� �iii�

��� Theoretical Results ��

SUBCAT� �iv� HEAD� The other attributes are not ordered� thus we expand their values depend�

ing on the traversing strategy of our expansion algorithm� We use the disjunction heuristics

�if speci�ed�� and ignore globally speci�ed control information that might con�ict with this

locally speci�ed ones� In addition� the prototype of type local with index�name initial

must be expanded under all its path ��
	 including the empty path��

��	�	�� How to Stop Recursion

Type expansion with recursive type de�nition is undecidable in general� i�e�� there is no

complete algorithm that halts on arbitrary input �TFS� and decides whether a description is

satis�able or not �see Section ����� However� there are several ways to stop in�nite expansion

in our framework�

� The �rst method is part of the expansion algorithm �lazy expansion� as described before�

� The second way is brute force� use the �maxdepth slot to cut expansion at a suitable

path depth�

� The third method is to de�ne �delay patterns or to select the �expand�only mode

with appropriate type and path patterns�

� The fourth method is to use the �attribute�preference list to de�ne the �right� order

for expansion�

� Finally� one can de�ne an appropriate �resolved�predicate that is suitable for a class

of recursive types�

��� Theoretical Results

It is worth noting that testing for the satis�ability of feature descriptions admitting recursive

type equations�de�nitions is in general undecidable� �Rounds � Manaster�Ramer ��� were

the �rst to have shown that a Kasper�Rounds logic enriched with recursive types allows one to

encode a Turing machine hence� deciding satisa�ability would imply that the Halting prob�

lem is decidable �which is obviously not�� Later� �Smolka �
� argued that the undecidability

result is due to the use of coreference constraints� He demonstrated his claim by encoding

the word problem of Thue systems� Hence� our expansion mechanism is faced with the same

result� viz�� that expansion might not terminate�

However� we conjecture that non�satis�ability and thus failure of type expansion is� in general�

semi�decidable� The intuitive argument is as follows� given an arbitrary recursive TFS and

assuming a fair type unfolding strategy� the only event under which TE terminates in �nite

time follows from a local uni�cation failure which then leads to a global one� In every other

case� the unfolding process goes on by substituting types through their de�nitions� Recently�

�A��t�Kaci et al�
�� have formally shown a similar result by using the compactness theorem

of �rst�order logic� However� their proof assumes the existence of an in�nite OSF clause

�generated by unfolding a
�term��

� � TDL

Thus our algorithm might not terminate if we choose the complete expansion strategy� How�

ever� we noted above that we can even parameterize the complete version of our algorithm to

ensure termination� for instance to restrict the depth of expansion �analogous to the o��line

parsability constraint�� The non�complete version always guarantees termination and might

su�ce in practice�

Semantically� we can formally account for such recursive feature descriptions �with respect to

a type system� in di�erent ways� either directly on the descriptions� or indirectly through a

transformational approach into ��rst�order� logic� Both approaches rely on the construction

of a �xpoint over a particular continuous function�	� The �rst approach is in general closer

to an implementation �and thus to our algorithm� in that the function which is involved in

the �xpoint construction corresponds more or less to the uni�cation�substitution of TFS �see

for instance �A��t�Kaci �� or �Pollard � Moshier
���� The latter approach is based on the

assumption that TFS are only syntactic sugar for �rst�order formulae� If we transform these

descriptions into an equivalent set of de�nite clauses� we can employ techniques that are fairly

common in logic programming� viz� characterizing the models of a de�nite program through

a �xpoint� Take� for instance� our cyc
list example from the beginning to see the outcome of

such a transformation �assume that cyc
list is a subtype of list��

�x�cyc
list�x�� �y� z�list�x� � first�x� y� � rest�x� z� � y
�
� � � z

�
� x

��� Other Approaches

In this section� we will describe closely related approaches and compare our algorithm to them�

To the best of our knowledge� the problem of type expansion within a typed feature�based

environment was �rst addressed by �A��t�Kaci ��� The language he described was called KBL

and shared great similarities with LOGIN	 see �A��t�Kaci � Nasr ��� However� the expansion

mechanism he described was order dependent in that it replaced types by their de�nition

instead of unifying the information� Moreover� it was non�lazy� thus it will fail to terminate

for recursive types and performs type expansion only at de�nition time as is the case for ALE

�Carpenter � Penn
��� However� ALE provides recursion through a built�in bottom�up chart

parser and through de�nite clauses� Allowing type expansion only at de�nition time is in

general space consuming� thus uni�cation and copying is expensive at run time�

Another way one might pursue is to integrate type expansion into the typed uni�cation process

so that it can take place at run time� Systems that explore this strategy are TFS �Zajac
��

and LIFE �A��t�Kaci
��� However� both implementations are not lazy� thus hard to control

and moreover� might not terminate� In addition� if prototype memoization is not available�

type expansion at run time is ine�cient	 cf� the results of our grammar example in Table

����� A system that employs a lazy strategy on demand at run time is CUF �D�orre � Dorna

��� Laziness can be achieved by specifying delay patterns as is familiar from Prolog� This

means to delay the evaluation of a relation until the speci�ed parameters are instantiated�

�	In both cases� there is� in general� more than one
xpoint� but it seems desirable to choose the greatest

one� see �Krieger ��	�

��

Our approach� which has been fully implemented as a stand�alone module� is novel in that it

combines the bene�ts of these systems plus much more�

� freely choose time of TE� e�g�� during uni�cation� parsing etc�

� local as well as global control is possible

� delayed expansion

� recursive types are treated specially

� preference information can be employed

� prototype memoization speeds up processing

� Comparison to other Systems

TDL is unique in that it implements many novel features not found in other systems like ALE
�Carpenter � Penn
��� LIFE �A��t�Kaci et al�
��� or TFS �Zajac
��� Of course� these systems

provide other features which are not present in our formalism��

What makes TDL unique in comparison to them is the distinction open vs� closed world� the

availability of the full boolean connectives and distributed disjunctions �via UDiNe�� as well

as an implemented lazy type expansion mechanism for recursive types �as compared with

LIFE�� ALE� for instance� neither allows disjunctive nor recursive types and enforces the type

hierarchy to be a BCPO� However� it makes recursion available through de�nite relations and

incorporates special mechanisms for empty categories and lexical rules�

TFS is based on a closed world� the unavailability of negative information �only implicitly

present� and only a poor form of disjunctive information but performs parsing and generation

entirely through type deduction �in fact� it was the �rst system��

LIFE comes closest to us but provides a semantics for types that is similar to TFS� Moreover

the lack of negative information and distributed disjunctions makes it again comparable with

TFS� LIFE as a whole can be seen as an extension of Prolog �as was the case for its

predecessor LOGIN�� where �rst�order terms are replaced by
�terms� In this sense� LIFE is

richer than our formalism in that it o�ers a full relational calculus�

� Summary

In this paper� we have presented TDL� a typed feature formalism that integrates a powerful

feature constraint solver and type system� Both of them provide the boolean connectives

�� �� and �� where a complex expression is decomposed by employing intermediate types�

Moreover� recursive types are supported as well� In TDL� a grammar writer decides whether

types live in an open or a closed world� This e�ects GLB and LUB computations�

�
�Backofen et al� ��	 gives an overview of implemented formalisms�

�� � SUMMARY

The type system itself consists of several inference components� each designed to cover a

speci�c task e�ciently� �i� a bit vector encoding of the hierarchy� �ii� a fast symbolic simpli�er

for complex type expressions� �iii� memoization to cache precomputed results� and �iv� a

sophisticated type expansion mechanism�

The system as described in this paper has been fully implemented in Common Lisp and runs

on various software�hardware platforms �Allegro CL� Lucid CL� Macintosh CL� CLisp�� It

has been integrated successfully into the DISCO environment �Uszkoreit et al�
�� and is used

at several places outside �e�g�� CSLI� Stanford currently uses TDL for writing a large English

HPSG grammar��

The next major version of TDL will make certain forms of knowledge compilation available�

e�g�� extracting syntactic incompatibilities between types from a given grammar�

Other extensions of the system will concern the type expansion mechanism� We are plan�

ning to provide additional expansion strategies and to realize the expansion mechanism as

a true anytime module �Wahlster
�� �implemented as a separate process�� so that it can be

interrupted and restarted from the outside�

We also plan to extend the grammar development environment with other useful tools� e�g��

a classi�er �cf� �Krieger � Sch�afer
�a� for a description of the current status�� Moreover�

providing a classi�er allow us to incorporate TDL in other areas of knowledge representation

which are currently handled exclusively by terminological�KL�ONE�like languages�

�

A TDL BNF

The TDL syntax is given in extended BNF �Backus�Naur Form�� Terminal symbols �characters

to be typed in� are printed in bold style� Nonterminal symbols are printed in italic style�

The grammar starts with the start production� It is case insensitive �except for strings�� The

following table explains the meanings of the metasymbols used in extended BNF�

metasymbols meaning

� � � j � � � alternative expressions

� � � � � one optional expression

� � � � j � � � j � � � � one or none of the expressions

f � � � j � � � j � � � g exactly one of the expressions

f � � � g� n successive expressions� where n � f�� �� � � �g

f � � � g� n successive expressions� where n � f�� �� � � �g

A�� Type De�nitions

type�def � type f avm�def j subtype�def g �

type � identi�er

avm�def � �� body f� optiong� j

�� nonmonotonic � where � constraint f� constraintg� 	 � f� optiong�

body � disjunction � ���list � � where � constraint f� constraintg� 	 �

disjunction � conjunction f f j �g conjunction g�

conjunction � term f � term g�

term � type j atom j feature�term j di��list j list j coreference j

distributed�disj j templ�par j templ�call j �term j � disjunction 	

atom � string j integer j �identi�er

feature�term � �attr�val f� attr�valg�� �

attr�val � attribute ��restriction� f� attribute ��restriction� � disjunction �g�

attribute � identi�er j templ�par

restriction � conj�restriction f f j �g conj�restriction g�

conj�restriction � basic�restriction f � basic�restriction g�

basic�restriction � type j �basic�restriction j templ�par j � restriction 	

di��list � �� � disjunction f� disjunctiong� � �� � � type �

list � �� j � nonempty�list � � list�restriction �

nonempty�list � � disjunction f� disjunctiong� � � ��� j

disjunction f� disjunctiong� � � disjunction �

list�restriction � � � restriction 	 j � type � � �integer� integer	 j � integer �

coreference � �coref�name j ��� coref�name f� coref�nameg� 	

coref�name � identi�er j integer

distributed�disj � �disj�name � disjunction f� disjunctiong� 	

disj�name � identi�er j integer

�� A TDL BNF

templ�call � �templ�name � �templ�par f� templ�parg�� 	

templ�name � identi�er

templ�par � �templ�var � � disjunction �

templ�var � identi�er j integer

constraint � �coref�name � f function�call j disjunction g

function�call � function�name � disjunction f� disjunctiong� 	

function�name � identi�er

nonmonotonic � type � overwrite�path f� overwrite�pathg� �

overwrite�path � identi�er f � identi�er g� disjunction

subtype�def � f �� type g� f� optiong�

option � status� identi�er j author� string j date� string j doc� string j

expand�control� expand�control

expand�control � � � ��expand f � ftype j �type �index �pred ��	g fpathg� 	 g� 	 j

��expand�only f � ftype j �type �index �pred ��	g fpathg� 	 g� 	 � j

� ��delay f � ftype j �type �pred �	g fpathg� 	 g� 	 � j

� ��maxdepth integer 	 � j

� ��attribute�preference fidenti�erg� 	 � j

� ��ask�disj�preference ft j nilg 	 � j

� ��use�conj�heuristics ft j nilg 	 � j

� ��use�disj�heuristics ft j nilg 	 � j

� ��expand�function fdepth�first�expand j types�first�expandg 	 � j

� ��resolved�predicate fresolved�p j always�false j � � � g 	 � j

� ��ignore�global�control ft j nilg 	 � 	

path � fidenti�er j patterng f�fidenti�er j patterngg�

pattern � � j
 j � j ��identi�er ���j
j��

pred � eq j subsumes j extends j � � �

index � integer for instances

integer j identi�er string for avm types

integer � f�j�j�j�j�j j!j"j#j$g�

identi�er � fa-zjA-Zj�-$j j�j�j
j�g�

string � %fany characterg�%

A�� Instance De�nitions

instance�def � instance avm�def �

instance � identi�er

A�� Template De�nitions

template�def � templ�name � �templ�par f� templ�parg�� 	 �� body f� optiong� �

A� Declarations ��

A�� Declarations

declaration � partition j incompatible j sort�def j built�in�def j

hide�attributes j hide�values j export�symbols

partition � type � type f f j �g type g� �

incompatible � nil � type f� typeg� �

sort�def � sort�s� � type f� typeg� �

built�in�def � built�in�s� � type f� typeg� �

hide�attributes � hide�attribute�s� � identi�er f� identi�erg� �

hide�values � hide�value�s� � identi�er f� identi�erg� �

export�symbols � export�symbol�s� � identi�er f� identi�erg� �

�� B SAMPLE SESSIONS

B Sample Sessions

In the following� we present two sample sessions� The �rst one makes heavy use of A��t�Kaci�s

append encoding through types� the second one de�nes �nite automata directly within TDL

�see �Krieger et al�
����

B�� Extracting List Elements

defdomain �less �load�built�ins�p nil�

begin �domain �less�

begin �declare�

sorts�
built�in
�
null
� ��
null
 represents the empty list � �

NIL �
avm
 �
built�in
� �� incompatibility declaration

end �declare�

begin �type�

avm
 �� �� �� the top avm type

null
 ��
built�in
�

list
 ��
null
 �
cons
�

cons
 ��
avm
 � FIRST�REST
list
��

append� ��
avm
 � FRONT � ��

BACK �� �
list
�

WHOLE ����

append� ��
avm
 � FRONT ��first � �rest���

BACK �back �
list
�

WHOLE ��first � �rest���

PATCH append � FRONT �rest��

BACK �back�

WHOLE �rest����

append �� append� � append��

less ��
avm
 � ELT �elt�

SET �set�

AUX append � FRONT �front�

BACK � �elt � �rest ��

WHOLE �set��

RES append � FRONT �front�

BACK �rest���

w�� less � ELT E ���

SET �A ���B ���C �����

doc� %Because E �� successfully unifies with every

element of SET� RES will contain a disjunction

of three lists� each of length ��%�

expand�type �w�

B�� Extracting List Elements ��

By using the type grapher of TDL� we can depict the type hierarchy for this special type

system �recall that thick lines indicates a disjunctive speci�cation��

�� B SAMPLE SESSIONS

Expanding w �see sample session above� leads to the following feature structure notice that

we choose the feature editor FEGRAMED �Kiefer � Fettig
�� as the visualization tool �certain

attributes are hidden�� Another way to have access to this structure would be to employ the

TDL�LaTEX tool of TDL �see �Krieger � Sch�afer
�a���

B�� De�ning Finite Automata ��

B�� De�ning Finite Automata

defdomain �automata �load�built�ins�p NIL�

begin �domain �automata�

begin �declare�

sorts�
built�in
�
null
�
undef
�

built�ins� string� symbol� number�

nil �
undef
 �
built�in
�

nil �
undef
 �
avm
�

end �declare�

begin �type�

symbol ��
built�in
�

null
 ��
built�in
�

string ��
built�in
�

number ��
built�in
�

avm
 �� ��

cons
 ��
avm
 � FIRST� REST��

list
 ��
null
 �
cons
�

list�of�symbols �� ������symbol�

proto�config ��
avm
 �

EDGE��symbol �
undef
	�

NEXT��config �
undef
	�

INPUT�list�of�symbols��

non�final�config �� proto�config �

EDGE �first�

NEXT�INPUT �rest�

INPUT ��first � �rest���

final�config �� proto�config �

INPUT � ��

EDGE
undef
�

NEXT
undef
��

config �� non�final�config � final�config�

��� consider the two regular expressions R���a�b	&
c and R��a�b&�	�c&
	

��� the intersection of R� and R� is� R��R� � a�b&�	c

U �� non�final�config �

EDGE �covary��a � �b� �c	�

NEXT �covary� U � V	��

V �� final�config�

X �� non�final�config �

EDGE �a�

NEXT Y�� �� expand�control� ���delay �z next�
	 �y next�
			�

Y �� non�final�config �

EDGE �b�

� B SAMPLE SESSIONS

NEXT Y � Z�� �� expand�control� ���delay �z next�
			�

Z �� config �

EDGE �covary� �c�
undef
	�

NEXT �covary� Z�
undef
	��

test� �� U � X � INPUT ��a��b��c���

test� �� U � X � INPUT ��a��b��b��c���

test� �� U � X � INPUT ��b��c���

test� �� U � X � INPUT ��a��b��c��d���

Expanding test� yields the following structure�

B�� De�ning Finite Automata ��

The type hierarchy is given by the following DAG�

�� REFERENCES

References

�A��t�Kaci � Nasr �� Hassan A��t�Kaci and Roger Nasr� LOGIN� A Logic Programming Lan�

guage with Built�In Inheritance� Journal of Logic Programming� �����-���� �
��

�A��t�Kaci et al� ��� Hassan A��t�Kaci� Robert Boyer� and Roger Nasr� An Encoding Technique

for the E�cient Implementation of Type Inheritance� Technical Report AI���
����

MCC� Austin� TX� �
���

�A��t�Kaci et al� �
� Hassan A��t�Kaci� Robert Boyer� Patrick Lincoln� and Roger Nasr� Ef�

�cient Implementation of Lattice Operations� ACM Transactions on Programming

Languages and Systems� ���������-��� January �
�
�

�A��t�Kaci et al�
�� Hassan A��t�Kaci� Andreas Podelski� and Seth Copen Goldstein� Order�

Sorted Feature Theory Uni�cation� Technical Report ��� Digital Equipment Corpora�

tion� DEC Paris Research Laboratory� France� May �

�� Also in Proceedings of the

International Symposium on Logic Programming� Oct� �

�� MIT Press�

�A��t�Kaci �� Hassan A��t�Kaci� An Algebraic Semantics Approach to the E�ective Resolution

of Type Equations� Theoretical Computer Science� ����
�-���� �
��

�A��t�Kaci
�� Hassan A��t�Kaci� An Introduction to LIFE�Programming with Logic� Inheri�

tance� Functions� and Equations� In� Proceedings of the International Symposium on

Logic Programming� pp� ��-�� �

��

�Alshawi
�� Hiyan Alshawi �ed��� The Core Language Engine� ACL�MIT Press Series in

Natural Language Processing� MIT Press� �

��

�Backofen � Smolka
�� Rolf Backofen and Gert Smolka� A Complete and Recursive Feature

Theory� Technical Report RR�
����� Deutsches Forschungszentrum f�ur K�unstliche

Intelligenz �DFKI�� Saarbr�ucken� Germany� �

��

�Backofen � Weyers
�� Rolf Backofen and Christoph Weyers� UDiNe�A Feature Con�

straint Solver with Distributed Disjunction and Classical Negation� Technical report�

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz �DFKI�� Saarbr�ucken� Ger�

many� �

��
��� Forthcoming� hopefully 	�g�

�Backofen et al�
�� Rolf Backofen� Hans�Ulrich Krieger� Stephen P� Spackman� and

Hans Uszkoreit �eds��� Report of the EAGLES Workshop on Implemented Formalisms

at DFKI� Saarbr�ucken� Technical Report D�
����� DFKI� Saarbr�ucken� �

��

�Backofen
�� Rolf Backofen� Expressivity and Decidability of First�Order Languages over

Feature Trees� PhD thesis� Universit�at des Saarlandes� Department of Computer Sci�

ence� �

�� To appear�

�Blackburn
�� Patrick Blackburn� Structures� Languages and Translations� the Structural

Approach to Feature Logic� In� C�J� Rupp� M�A� Rosner� and R�L� Johnson �eds���

Constraints� Language and Computation� Academic Press� �

��

REFERENCES �

�Brew
�� Chris Brew� Adding Preferences to CUF� In� Jochen D�orre �ed��� Computational

Aspects of Constraint�Based Linguistic Description I� pp� ��-
� ILLC�Department

of Philosophy� University of Amsterdam� �

�� DYANA�� Deliverable R����A�

�Carpenter � Penn
�� Bob Carpenter and Gerald Penn� ALE�The Attribute Logic Engine

User�s Guide� Version ���� Technical report� Laboratory for Computational Linguis�

tics� Philosophy Department� Carnegie Mellon University� Pittsburgh� PA� August

�

��

�Carpenter
�� Bob Carpenter� The Logic of Typed Feature Structures� Tracts in Theoretical

Computer Science� Cambridge� Cambridge University Press� �

��

�Daelemans et al�
�� Walter Daelemans� Koenraad De Smedt� and Gerald Gazdar� Inher�

itance in Natural Language Processing� Computational Linguistics� ���������-����

�

��

�D�orre � Dorna
�� Jochen D�orre and Michael Dorna� CUF�A Formalism for Linguis�

tic Knowledge Representation� In� Jochen D�orre �ed��� Computational Aspects of

Constraint�Based Linguistic Description I� DYANA� �

��

�D�orre � Eisele
�� Jochen D�orre and Andreas Eisele� A Comprehensive Uni�cation�Based

Grammar Formalism� Technical Report Deliverable R����B� DYANA� Centre for Cog�

nitive Science� University of Edinburgh� January �

��

�Eisele � D�orre
�� Andreas Eisele and Jochen D�orre� Disjunctive Uni�cation� IWBS Report

���� IWBS� IBM Germany� Stuttgart� �

��

�Emele � Zajac
�� Martin Emele and R.emi Zajac� Typed Uni�cation Grammars� In� Pro�

ceedings of the ��th International Conference on Computational Linguistics� COLING�

�� pp� �
�-�
�� �

��

�Gazdar et al� ��� Gerald Gazdar� Ewan Klein� Geo�rey Pullum� and Ivan Sag� Generalized

Phrase Structure Grammar� Harvard University Press� �
���

�Johnson ��� Mark Johnson� Attribute Value Logic and the Theory of Grammar� CSLI Lecture

Notes� Number �� Stanford� Center for the Study of Language and Information� �
���

�Karttunen ��� Lauri Karttunen� Features and Values� In� Proceedings of the ��th Interna�

tional Conference on Computational Linguistics� COLING���� pp� ��-��� �
���

�Kasper � Rounds �� Robert T� Kasper and William C� Rounds� A Logical Semantics for

Feature Structures� In� Proceedings of the ��th Annual Meeting of the Association for

Computational Linguistics� pp� ���-�� �
��

�Kasper � Rounds
�� Robert T� Kasper and William C� Rounds� The Logic of Uni�cation

in Grammar� Linguistics and Philosophy� �����-��� �

��

�� REFERENCES

�Kay �
� Martin Kay� Functional Grammar� In� C� Chiarello et al� �ed��� Proceedings of the

�th Annual Meeting of the Berkeley Linguistics Society� pp� ���-���� Berkeley� Cal�

�
�
�

�Kay ��� Martin Kay� Parsing in Functional Uni�cation Grammar� In� David R� Dowty� Lau�

ri Karttunen� and Arnold M� Zwicky �eds��� Natural Language Parsing� Psychological�

Computational� and Theoretical Perspectives� chapter �� pp� ���-���� Cambridge�

Cambridge University Press� �
���

�Keller
�� Bill Keller� Feature Logics� In�nitary Descriptions and Grammar� CSLI Lecture

Notes� Number ��� Stanford� Center for the Study of Language and Information� �

��

�Kiefer � Fettig
�� Bernd Kiefer and Thomas Fettig� FEGRAMED�An Interactive Graph�

ics Editor for Feature Structures� Technical report� Deutsches Forschungszentrum f�ur

K�unstliche Intelligenz �DFKI�� Saarbr�ucken� Germany� �

�� Forthcoming�

�Kiefer � Scherf
�� Bernd Kiefer and Oliver Scherf� Gimme more HQ Parsers� The Gener�

ic Parser Class of DISCO� Technical report� Deutsches Forschungszentrum f�ur

K�unstliche Intelligenz �DFKI�� Saarbr�ucken� Germany� �

�� Forthcoming�

�King �
� Paul J� King� A Logical Formalism for Head�Driven Phrase Structure Grammar�

PhD thesis� University of Manchester� Department of Mathematics� �
�
�

�Knight �
� Kevin Knight� Uni�cation� A Multidisciplinary Survey� ACM Computing Sur�

veys� ������
�-���� March �
�
�

�Krieger � Sch�afer
�a� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�A Type Description

Language for Uni�cation�Based Grammars� In� Proceedings of the Workshop on

�Neuere Entwicklungen der Deklarativen KI�Programmierung�� KI�
�� Berlin� �

��

�Krieger � Sch�afer
�b� Hans�Ulrich Krieger and Ulrich Sch�afer� TDLExtraLight User Guide�

Technical Report D�
���
� Deutsches Forschungszentrum f�ur K�unstliche Intelligenz

�DFKI�� Saarbr�ucken� Germany� �

��

�Krieger � Sch�afer
�a� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�A Type Description

Language for HPSG� Part �� User Guide� Technical report� Deutsches Forschungszen�

trum f�ur K�unstliche Intelligenz �DFKI�� Saarbr�ucken� Germany� �

�� Forthcoming�

�Krieger � Sch�afer
�b� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�A Type Description

Language for Constraint�Based Grammars� In� Proceedings of the ��th International

Conference on Computational Linguistics� COLING�
�� Kyoto� Japan� pp� �
�-�

�

�

��

�Krieger et al�
�� Hans�Ulrich Krieger� John Nerbonne� and Hannes Pirker� Feature�Based

Allomorphy� In� Proceedings of the ��st Annual Meeting of the Association for Com�

putational Linguistics� �

�� A version of this paper is available as DFKI Research

Report RR�
�����

REFERENCES ��

�Krieger
�� Hans�Ulrich Krieger� TDL�A Type Description Language for Constraint�Based

Grammars� Foundations� Implementation� and Applications� PhD thesis� Universit�at

des Saarlandes� Department of Computer Science� �

�� Forthcoming�

�Laubsch
�� Joachim Laubsch� Zebu� A Tool for Specifying Reversible LALR��� Parsers�

Technical report� Hewlett�Packard� �

��

�Lloyd ��� J�W� Lloyd� Foundations of Logic Programming� Springer� �nd edition� �
���

�Michie �� Donald Michie� Memo Functions and Machine Learning� Nature� ��������
-���

�
��

�Moens et al� �
� Marc Moens� Jo Calder� Ewan Klein� Mike Reape� and Henk Zeevat� Ex�

pressing generalizations in uni�cation�based grammar formalisms� In� Proceedings of

the �th EACL� pp� ���-���� �
�
�

�Netter
�� Klaus Netter� Architecture and Coverage of the DISCO Grammar� In� S� Buse�

mann and Karin Harbusch �eds��� Proceedings of the DFKI Workshop on Natural

Language Systems� Modularity and Re�Usability� DFKI� D�
����� �

��

�Norvig
�a� Peter Norvig� Paradigms of Arti�cial Intelligence Programming� San Mateo�

CA� Morgan Kaufmann� �

��

�Norvig
�b� Peter Norvig� Techniques for Automatic Memoization with Applications to

Context�Free Parsing� Computational Linguistics� ������
�-
�� �

��

�Pereira � Shieber ��� Fernando C�N� Pereira and Stuart M� Shieber� The Semantics of

Grammar Formalisms Seen as Computer Languages� In� Proceedings of the ��th

International Conference on Computational Linguistics� pp� ���-��
� �
���

�Pereira ��� Fernando C�N� Pereira� Parsing as Deduction� In� Proceedings of the ��st Annual

Meeting of the Association for Computational Linguistics� pp� ���-���� �
���

�Pereira ��� Fernando C�N� Pereira� Grammars and Logics of Partial Information� In� J��L�

Lassez �ed��� Proceedings of the �th International Conference on Logic Programming�

Vol� �� pp�
�
-����� �
���

�Pollard � Moshier
�� Carl J� Pollard and M� Drew Moshier� Unifying Partial Descriptions

of Sets� In� P� Hanson �ed��� Information� Language� and Cognition� Vol� � of Vancou�

ver Studies in Cognitive Science� pp� ���-���� University of British Columbia Press�

�

��

�Pollard � Sag ��� Carl Pollard and Ivan A� Sag� Information�Based Syntax and Semantics�

Vol� I� Fundamentals� CSLI Lecture Notes� Number ��� Stanford� Center for the Study

of Language and Information� �
���

�Pollard � Sag
�� Carl Pollard and Ivan A� Sag� Head�Driven Phrase Structure Grammar�

Studies in Contemporary Linguistics� Chicago� University of Chicago Press� �

��

�� REFERENCES

�Reape
�� Mike Reape� An Introduction to the Semantics of Uni�cation�Based Grammar

Formalisms� Technical Report Deliverable R����A� DYANA� Centre for Cognitive

Science� University of Edinburgh� January �

��

�Rounds � Kasper �� William C� Rounds and Robert T� Kasper� A Complete Logical Cal�

culus for Record Structures Representing Linguistic Information� In� Proceedings of

the ��th Annual Symposium of the IEEE on Logic in Computer Science� �
��

�Rounds � Manaster�Ramer ��� William C� Rounds and Alexis Manaster�Ramer� A Logical

Version of Functional Grammar� In� Proceedings of the ��th Annual Meeting of the

Association for Computational Linguistics� pp� �
-
� �
���

�Rupp et al�
�� C�J� Rupp� M�A� Rosner� and R�L� Johnson �eds��� Constraints� Language

and Computation� Computation in Cognitive Science� Academic Press� �

��

�Russell et al�
�� Graham Russell� Afzal Ballim� John Carroll� and Susan Warwick�

Armstrong� A Practical Approach to Multiple Default Inheritance for Uni�cation�

Based Lexicons� Computational Linguistics� ���������-���� �

��

�Sch�afer
�� Ulrich Sch�afer� Parametrizable Type Expansion for TDL� Master�s thesis� Uni�

versit�at des Saarlandes� Department of Computer Science� �

�� Forthcoming�

�Shieber et al� ��� Stuart Shieber� Hans Uszkoreit� Fernando Pereira� Jane Robinson� and

Mabry Tyson� The Formalism and Implementation of PATR�II� In� Barbara J� Grosz

and Mark E� Stickel �eds��� Research on Interactive Acquisition and Use of Knowledge�

pp� �
-�
� Menlo Park� Cal�� AI Center� SRI International� �
���

�Shieber �� Stuart M� Shieber� An Introduction to Uni�cation�Based Approaches to Gram�

mar� CSLI Lecture Notes� Number �� Stanford� Center for the Study of Language and

Information� �
��

�Smolka ��� Gert Smolka� A Feature Logic with Subsorts� LILOG Report ��� WT LILOG-

IBM Germany� Stuttgart� May �
��� Also in J� Wedekind and C� Rohrer �eds���

Uni�cation in Grammar� MIT Press� �

��

�Smolka �
� Gert Smolka� Feature Constraint Logic for Uni�cation Grammars� IWBS Re�

port
�� IWBS� IBM Germany� Stuttgart� November �
�
� Also in Journal of Logic

Programming� �����-��� �

��

�Uszkoreit et al�
�� Hans Uszkoreit� Rolf Backofen� Stephan Busemann� Abdel Kader Di�

agne� Elizabeth A� Hinkelman� Walter Kasper� Bernd Kiefer� Hans�Ulrich Krieger�

Klaus Netter� G�unter Neumann� Stephan Oepen� and Stephen P� Spackman� DISCO�

An HPSG�based NLP System and its Application for Appointment Scheduling� In�

Proceedings of COLING�
�� Kyoto� Japan� pp� ��-���� �

��

�Uszkoreit ��� Hans Uszkoreit� From Feature Bundles to Abstract Data Types� New Directions

in the Representation and Processing of Linguistic Knowledge� In� A� Blaser �ed���

REFERENCES ��

Natural Language at the Computer Contributions to Syntax and Semantics for Text

Processing and Man�Machine Translation� pp� ��-�� Berlin� Springer� �
���

�Uszkoreit
�� Hans Uszkoreit� Strategies for Adding Control Information to Declarative

Grammars� In� Proceedings of the �
th Meeting of the ACL� pp� ���-���� �

��

�Wahlster
�� Wolfgang Wahlster� VERBMOBIL�Translation of Face�to�Face Dialogs� Re�

search Report RR�
����� Deutsches Forschungszentrum f�ur K�unstliche Intelligenz �DF�

KI�� Saarbr�ucken� Germany� �

�� Also appeared in� MT Summit IV� Kobe� Japan�

July �

��

�Zajac
�� R.emi Zajac� Inheritance and Constraint�Based Grammar Formalisms� Computa�

tional Linguistics� ��������
-���� �

��

