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Part �� Overview

Hans�Ulrich Krieger� Ulrich Sch�afer

fkrieger�schaeferg�dfki�uni�sb�de

German Research Center for Arti�cial Intelligence �DFKI�
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D�		
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Abstract

Uni�cation�based grammar formalisms have become the predominant paradigm in natu�

ral language processing �NLP� and computational linguistics �CL�� Their success stems

from the fact that they can be seen as high�level declarative programming languages for

linguists� which allow them to express linguistic knowledge in a monotonic fashion� More�

over� such formalisms can be given a precise� set�theoretical semantics�

This paper presents TDL� a typed feature�based language and inference system� which

is speci�cally designed to support highly lexicalized grammar theories like HPSG� FUG�

or CUG�� TDL allows the user to de�ne �possibly recursive� hierarchically�ordered types�

consisting of type constraints and feature constraints over the boolean connectives �� ��

and �� TDL distinguishes between avm types �open�world reasoning�� sort types �closed�

world reasoning�� built�in types and atoms � and allows the declaration of partitions and

incompatible types� Working with partially as well as with fully expanded types is pos�

sible� both at de�nition time and at run time� TDL is incremental� i�e�� it allows the

rede�nition of types and the use of unde�ned types� E�cient reasoning is accomplished

through four specialized reasoners�

�Although the title might suggest that our formalism only suits the needs of HPSG�based grammars� it is

of wider applicability in that it allows for annotated CF grammars in the PATR�GPSG tradition as well as

purely feature�based� FUG�style grammars�
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� Introduction

Over the last few years� uni�cation�based �or more generally� constraint�based� grammar for�

malisms have become the predominant paradigm in natural language processing and compu�

tational linguistics�� Their success stems from the fact that they can be seen as a monotonic�

high�level representation language for linguistic knowledge� for which a parser�generator or

a uniform type deduction mechanism acts as the inference engine� The representation of as

much linguistic knowledge as possible through a unique data type called feature structures

allows the integration of di�erent description levels� from phonology to pragmatics� Here� the

feature structure itself serves as an interface between the di�erent description stages which

can therefore be accessed at the same time� In this context� uni�cation is concerned with two

di�erent tasks�

�� combining information

uni�cation is a structure�building operation

�� rejecting inconsistent knowledge

uni�cation determines the satis�ability of a description

��� A Short History

Martin Kay was the �rst person to lay out a generalized linguistic framework� called uni�cation�

based grammars� by introducing the notions of extension� uni�cation� and generalization into

computational linguistics �see overview in �Rupp et al� 
�� for a good introduction�� Kay�s

Functional Grammar �Kay �
� represents the �rst formalism in the uni�cation paradigm and is

the predecessor of strictly lexicalized approaches like FUG �Kay ���� HPSG �Pollard � Sag ��	

Pollard � Sag 
�� and UCG �Moens et al� �
�� Pereira and Shieber were the �rst to give

a mathematical reconstruction of PATR�II in terms of a denotational semantics �Pereira

� Shieber ����� The work of Karttunen led to major extensions of PATR�II� concern�

ing disjunction� atomic negation� and the use of cyclic structures �Karttunen ���� Kasper

and Rounds� seminal work �Kasper � Rounds �	 Rounds � Kasper �� is important in

many respects� it clari�ed the connection between feature structures and �nite automata�

gave a logical characterization of the notion of disjunction� and presented complexity re�

sults for the �rst time �see �Kasper � Rounds 
�� for a summary�� Mark Johnson then

enriched the descriptive apparatus with classical negation and showed that the feature cal�

culus is a decidable subset of �rst�order predicate logic �Johnson ���� Finally� Gert Smol�

ka�s work gave a fresh impetus to the whole �eld� his approach is distinguished from oth�

��Shieber ��	 and �Uszkoreit ��	 are excellent introductions to uni
cation�based grammar theories� �Keller

��	 investigates dierent characterizations of feature logics and compares them� �Pereira ��	 makes the con�

nection between uni
cation�based grammar formalisms and logic programming explicit� �Knight ��	 gives an

overview of the dierent 
elds in computer science which make use of the notion of uni
cation�
�Pereira and Shieber�s work was novel in that they made a distinction between descriptions and described

objects� which seems to date back to the early work in LFG� Moreover� they presented a 
xpoint semantics

for PATR�II �actually� they chose the least 
xpoint� where PATR�II grammars are interpreted in the rational

tree domain�
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ers in that he presents a sorted set�theoretical semantics for feature structures �Smolka ��	

Smolka �
�� Moreover� Smolka gave solutions to problems concerning the complexity and

decidability of feature descriptions� Work by Rounds and Manaster�Ramer� however� showed

that a Kasper�Rounds logic enriched with types �type de�nitions� leads to the undecidability

of the satis�ability problem �Rounds � Manaster�Ramer ���� Later� �Smolka �
� explained

that the undecidability result is due to the use of coreference constraints� Paul King�s work

aimed to reconstruct a special grammar theory� viz�� HPSG� in mathematical terms �King

�
�� whereas Backofen and Smolka�s treatment bridged the gap between logic programming

and uni�cation�based grammar formalisms �Backofen � Smolka 
��� New work by Backofen

investigates a very general feature theory which incorporates nearly all extensions of feature

descriptions that have been proposed in the literature� This language is of course undecid�

able w�r�t� satis�ability� but Backofen presents several fragments of the language that show

more desirable properties �Backofen 
��� There exist only a few other proposals to feature de�

scriptions nowadays which do not use standard �rst order logic directly� for instance Reape�s

approach� using a polymodal logic �Reape 
�� �see �Blackburn 
�� for an overview��

��� Expressivity of Formalisms

While the �rst uni�cation�based approaches relied on annotated phrase structure rules �for

instance GPSG �Gazdar et al� ��� and PATR�II �Shieber et al� ���� as well as their successors

CLE �Alshawi 
�� and ELU �Russell et al� 
���� modern formalisms try to specify grammatical

knowledge as well as lexicon entries entirely through feature structures�

In order to achieve this goal� one must enrich the expressive power of the early uni�cation�

based formalisms with di�erent forms of disjunctive descriptions �atomic disjunctions� general

disjunctions� distributed disjunctions etc���

Later� other operations came into play� viz�� �classical� negation� or implication� Full nega�

tion� however� can be seen as an input macro facility because it can be expressed through

the use of disjunctions� negated coreferences� and negated atoms with the help of existen�

tial quanti�cation as shown in �Smolka ���� Other proposals considered the integration of

functional and relational dependencies into formalisms which makes them Turing�complete

in general��

However the most important extension to formalisms consists in the incorporation of types� for

instance in modern systems like TFS �Emele � Zajac 
�	 Zajac 
��� CUF �D�orre � Eisele 
�	

D�orre � Dorna 
��� or TDL �Krieger � Sch�afer 
�a	 Krieger � Sch�afer 
�a	 Krieger � Sch�afer


�b��� Types are ordered hierarchically �via subsumption� as in object�oriented programming

languages� This leads to multiple inheritance in the description of linguistic entities��

Finally� if a formalism is intended to be used as a stand�alone system� it must implement

recursive types if it does not provide phrase�structure recursion directly �within the formalism�

�For instance� Bob Carpenter�s ALE system �Carpenter � Penn ��	 gives a user the option of de
ning

de
nite clauses� using disjunction� negation� and Prolog cut�
�Cf� �Backofen et al� ��	 for a comprehensive overview of modern systems� including a detailed description

of their features�
�See �Daelemans et al� ��	 for a general introduction�
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or indirectly �via a parser�generator��� In addition� certain forms of relations �like append�

or additional extensions of the formalism �like functional uncertainty� can be nicely modelled

through recursive types�

��� Overview of the Paper

In the next section� we argue for the need and relevance of using types in CL and NLP�

After that� we give an overview of TDL and its specialized inference modules� In particular�

we have a closer look at the novel features of TDL and present the techniques we employ

in implementing TDL�� We then compare TDL with other grammatical formalisms� Finally�

we specify the concrete syntax of TDL in BNF and present a small� linguistically�motivated

example written in TDL�

� Motivation

Modern typed uni�cation�based grammar formalisms �like TFS� CUF� or TDL� di�er from

early untyped systems like PATR�II in that they emphasize the notion of a feature type� Types

can be arranged hierarchically� where a subtype monotonically inherits all the information

from its supertypes and uni�cation plays the role of the primary information�combining op�

eration�

An abstract type de�nition s �� ht� �i in TDL can be seen as an abbreviation for a complex

expression� consisting of type constraints t �concerning the sub��supertype relationship� and

feature constraints � �stating the necessary features and their values� over the standard

connectives �� �� and ��� Note however that a feature structure might have other attributes

not mentioned in the type de�nition as well� Thus a �de�nition� only states which attributes

�and values� are required for a certain type� Informally� if

s �� ht� �i

is a type de�nition� the intended meaning is roughly the following implication�

�x � s�x�� t�x� � ��x�

Types are thus a necessary requirement for a grammar development environment because they

serve as abbreviations for lexicon entries� immediate dominance rule schemata� and universal

as well as language�speci�c principles as is familiar from HPSG�

Types not only serve as a shorthand� like templates� but also yield other advantages as well

which cannot however be accomplished by templates�

�For instance� ALE employs a bottom�up chart parser� whereas TFS relies entirely on type deduction� Note

that recursive types can be substituted by de
nite relations �equivalences�� as is the case for CUF� such that

parsing�generation roughly corresponds to SLD resolution�
�A more practice�oriented introduction to TDL is �Krieger � Sch�afer ��a	� This document investigates dif�

ferent tools of TDL� describes internal software switches� focusses on each construct of syntax �plus examples��

and describes other well�worth noting features of TDL� e�g�� non�monotonic overwriting� templates� instance

de
nition facility� etc�
	The concrete syntax for type de
nitions and declarations is given in the Appendix�
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� structuring of linguistic knowledge

Types together with the possibility to order them hierarchically allow for a modular way

to represent linguistic knowledge adequately� Moreover� generalizations can be made at

the appropriate levels of representation�

� efficient processing

Certain type constraints can be compiled into more e�cient representations� for in�

stance� �A��t�Kaci et al� �
� reduces GLB �greatest lower bound�� LUB �least upper

bound�� and � �type subsumption� computation to low�level bit manipulations	 see

Section ���� Moreover� types can be used to eliminate expensive uni�cation opera�

tions� for example� by explicit declaration of type incompatibility� In addition� working

with type names only or with partially expanded types� minimizes the costs of copying

structures during processing� This can only be accomplished if the system makes a

mechanism for type expansion available	 see Section ����

� type checking

Type de�nitions allow a grammarian to declare which attributes are appropriate for a

given type and which types are appropriate for a given attribute� therefore disallowing

inconsistent feature structures� Again� type expansion is necessary to determine the

global consistency of a given description�

� recursive types

Recursive types give a grammar writer the opportunity to formulate certain functions or

relations as recursive type speci�cations� Working in the Parsing as Deduction �Pereira

��� paradigm forces a grammar writer to replace the context�free backbone through

recursive types� Here� parameterized delayed type expansion is the key to controlled

linguistic deduction �Uszkoreit 
��	 see Section ����

� TDL

TDL is a uni�cation�based grammar development environment and run time system support�

ing HPSG�style grammars� Work on TDL started at the end of �
�� in the DISCO project of

the DFKI and led to TDLExtraLight � the predecessor of TDL �Krieger � Sch�afer 
�b�� The

DISCO grammar currently consists of more than 
�� type speci�cations written in TDL and

is the largest HPSG grammar for German �Netter 
���

Grammars and lexicons written in TDL can be tested by using the DISCO parser� The

parser is a bidirectional bottom�up chart parser� providing a user with parameterized parsing

strategies as well as control over the processing of individual rules �Kiefer � Scherf 
���

The core machinery of DISCO consists of TDL �see below� and the feature constraint solver

UDiNe �Backofen � Weyers 
��� UDiNe itself is a powerful untyped uni�cation machine which

allows the use of distributed disjunctions� general negation� and functional dependencies�

The modules communicate through an interface� and this communication mirrors exactly the

way an abstract type uni�cation algorithm works� two typed feature structures can only be

uni�ed if the attached types are known to be compatible� This is accomplished by the uni�er
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in that UDiNe hands over two typed feature structures to TDL which gives back a simpli�ed

form �plus additional information	 see Fig� ���

The motivation for separating type and feature constraints and processing them in specialized

modules �which again might consist of specialized components as is the case in TDL� is twofold�

�i� this strategy reduces the complexity of the whole system� thus making the architecture

clear� and �ii� leads to faster processing because every module is designed to handle only a

specialized task�

UDiNe

TDL

	








 	

	

	

Type hierarchy

ha � bi

Query

fc� a � b�
g




a

b

c

a

b
�� � ��

�� � ��

h � i hfc� a � b�
g� fyes� no� failgi

Result

�

Figure �� Interface between TDL and UDiNe� Depending on the type hierarchy and the

type of � and �� TDL either returns c �c is de�nitely the GLB of a and b	 or a�b �open
world

reasoning for GLB	 or 
 �closed
world reasoning for GLB	 if a single type which is equal to

the GLB of a and b doesn�t exist� In addition� TDL determines whether UDiNe must carry out

feature term uni�cation �yes	 or not �no	� i�e�� the return type contains all the information

one needs to work on properly �fail signals a global uni�cation failure	�

We will now turn our focus to the main components of TDL �see Fig� ��� We start with a

general overview of the language and then have a closer look at certain modules of the system�

��� The TDL Language

TDL supports type de�nitions consisting of type constraints and feature constraints over the

standard operators �� �� �� and � �xor�� The operators are generalized to connect feature

descriptions� coreference tags �logical variables� and types� TDL distinguishes between avm

types �open�world semantics�� sort types �closed�world semantics�� built�in types �through

Common Lisp�� and atoms�

When asked for the greatest lower bound of two avm types a and b which share no common

subtype� TDL always returns a � b �open�world reasoning�� and not 
� The reasons for
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TDL control machinery

symbolic

simpli�cation

inheritance

reasoning

look�up

inferences

type

expansion

TDL parser �Zebu�

query

de�nitions

control knowledge

declarations

knowledge

inspector �����

tools

type uni�cation and type expansion

type simpli�cation and bottom propagation

type classi�cation and type inference

type de�nition and type introduction

incremental de�nition and rede�nition

feature constraint

solver �UDiNe�

grapher

feature editor

TDL�LaTEX

Figure �� Architecture of TDL� The control machinery of TDL is either called by the

feature constraint solver at run time �typed uni�cation	 and during type expansion� or at def


inition time during incremental grammar�lexicon development� Moreover� the type expansion

module can be called by other higher
level reasoners� e�g�� a parser�
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assuming this are manifold�

�� partiality of our linguistic knowledge about a speci�c domain

�� the approach is in harmony with terminological �KL�ONE�like� languages which share

a similar semantics

�� this view makes the stepwise re�nement of grammars during the development process

easier �which has been shown useful in our project�

�� we must not write super�uous type de�nitions to guarantee successful type uni�cations

during processing

The opposite case holds for the GLB of sort types� Furthermore� sort types di�er from avm

types in that they are not further structured� as is the case for atoms�

Moreover� TDL allows the declaration of exhaustive and disjoint partitions of types� for ex�

ample sign � word � phrase which expresses the fact that �i� there are no other subtypes

of sign than word and phrase� �ii� the sets of objects denoted by these types are disjoint�

and �iii� the disjunction of word and phrase can be rewritten �during processing� to sign� In

addition� one can declare sets of types as incompatible� meaning that their conjunction yields


�

TDL allows a grammarian to de�ne and use parameterized templates �macros�� There exists

a special instance de�nition facility to ease the writing of lexicon entries� which di�er from

normal types in that they are not entered into the type hierarchy� Strictly speaking� lexicon

entries can be seen as leaves in the type hierarchy which do not admit further subtypes �see

also �Pollard � Sag ���� p� �
��� This dichotomy is the analogue to the distinction between

classes and instances in object�oriented programming languages�

Input given to TDL is parsed by a Zebu�generated LALR��� parser �Laubsch 
�� to allow for

an intuitive� high�level input syntax and to abstract away from uninteresting details of the

uni�er and the underlying Lisp system�

The kernel of TDL �and of most other monotonic systems� can be given a set�theoretical

semantics along the lines of �Smolka ��	 Smolka �
�� It is easy to translate TDL statements

into denotation�preserving expressions of Smolka�s feature logic �or into de�nite equivalences��

thus viewing TDL as just syntactic sugar for �rst�order predicate logic�	


For instance� take the following feature description � written as an attribute�value matrix�

� �

�
�������

np

AGR x

�
��
agreement

NUM sg

PERS 	rd

�
��

SUBJ x

�
�������

�
Cf� �Krieger ��	 for a precise description of the semantics of TDL� including a 
xpoint characterization of

recursive types�
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It is not hard to rewrite this two�dimensional description to a �at �rst�order formula� where

attributes�features �e�g�� AGR� are interpreted as binary predicate symbols and sorts �e�g�� np�

as unary predicates�

�x � np��� � AGR��� x� � agreement�x� � NUM�x� sg� � PERS�x� 	rd � � SUBJ��� x�

The corresponding TDL type de�nition of � looks as follows actually � is used on the

keyboard instead of �� j replaces �� and � is substituted by ��

� �� np � �AGR !x � agreement � �NUM sg � PERS 	rd ��

SUBJ !x��

��� Type Hierarchy

The type hierarchy is either called directly by the control machinery of TDL during the

de�nition of a type �type classi�cation� or indirectly via the simpli�er both at de�nition and

at run time �type uni�cation and type expansion��

����� Encoding Method

The implementation of the type hierarchy is based on A��t�Kaci�s bit vector encoding technique

for partial orders �A��t�Kaci et al� ��	 A��t�Kaci et al� �
�� Every type t is assigned a code ��t�

�represented through a bit vector� such that ��t� re�ects the re�exive transitive closure of the

subsumption relation with respect to t� Decoding a code c is realized either by a hash table

look�up �i� �tc � �
�	�c� � tc� or by computing the "maximal restriction� of the set of types

whose codes are less than c�

Depending on the encoding method� the hierarchy occupies O�n log n� �compact encoding�

or O�n�� �transitive closure encoding� bits� resp� Here� GLB�LUB operations corresponds

directly to bitwise or�and instructions� GLB� LUB and � computations have the pleasant

property that they can be carried out in this framework in O�n� �or O��� on an ideal machine��

where n is the number of types�		

The method has been modi�ed for an open�world reasoning over avm types� in that potential

GLB�LUB candidates �calculated from their codes� are veri�ed by inspecting the type hier�

archy through a sophisticated graph search� Why so# Take the following example to see why

this is necessary�

x �� y � z

x� �� y� � z� � �a ��

During processing� one can de�nitely substitute y � z by x� but rewriting y� � z� to x� is not

correct� because x� di�ers from y� � z� x� is more speci�c as a consequence of the feature

constraint �a ��� Thus the implementation distinguishes between

��Actually� one can choose in TDL between the two encoding techniques and between bit vectors and bignums

�arbitrary long integers� for the representation of the codes� Operations on bignums are an order of magnitude

faster than the corresponding operations on bit vectors�
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� internal greatest lower bound GLB�
employ the type subsumption relation via A��t�Kaci�s method �used in case of sort types�

� external greatest lower bound GLBv
take the subsumption relation over feature structures into account�

The same distinction is made for LUBs�

With GLB� and GLBv in mind� we can de�ne a generalized GLB operation informally by

the following table� This GLB operation is actually used during type uni�cation �fc � feature

constraint��

GLB avm� sort� atom� fc�

avm� see �� 
 
 see ��

sort� 
 see �� see �� 


atom� 
 see �� see �� 


fc� see �� 
 
 see �

where

��

�����	
����


avm� �� GLBv�avm� � avm� � � avm�

avm� �� avm� � avm�


 �� GLB��avm� � avm� � � 
 �via an explicit incompatibility declaration�

avm� � avm� � otherwise �open world reasoning for GLB�

��

��	
�


avm� �� �� expand
tfs�havm� �� � fc� �� i� �� 
 �type expansion switched on�

avm� �� �� type expansion is switched o�


� otherwise

��

��	
�


sort� �� GLB��sort� � sort� � � sort�
sort� �� sort� � sort�

� otherwise �closed world reasoning for GLB�

��

�
atom� �� �� type�of�atom� �� � � sort� �� � where sort� �� is a built�in type


� otherwise

��

�
atom� �� atom� � atom�


� otherwise

�

�
	 �� fc� � fc� �� 



� otherwise

The encoding algorithm has been extended to cope with the rede�nition of types and the use

of unde�ned types� an essential part of an incremental grammar�lexicon development system�

Rede�ning a type not only means to make changes local to this type� Rather� one has to

rede�ne all dependents of this type all subtypes� in case of a conjunctive type de�nition and
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all disjunction elements for a disjunctive type speci�cation plus� in both cases� all types which

mention these types in their de�nition� The dependent types of a type t can be characterized

graph�theoretically via the strongly connected components �SCC� of t with respect to the

dependency relation� It is important to rede�ne the dependents in the "right� order to obtain

a new consistent type hierarchy�	�

����� Decomposing Type De�nitions

Conjunctive type speci�cations �e�g�� x �� y � z� and disjunctive ones �e�g�� x� �� y� � z��

are entered di�erently into the hierarchy� x inherits from its supertypes y and z� whereas x�

de�nes itself through its disjunction alternatives y� and z��	� This distinction is represented

through the use of di�erent kinds of edges in the type graph �bold edges denote disjunction

elements� see Fig� � and ��� But it is worth noting that both of them express subsumption

�x � y and x� � y� in the above example� and that the GLB�LUB operations must work

properly over "conjunctive� as well as "disjunctive� subsumption links�

TDL decomposes complex de�nitions consisting of �� �� and � by introducing intermediate

types� so that the resulting expression is either a pure conjunction or a disjunction of type

symbols �plus type de�nitions of the form s �� �t�� Intermediate type names are enclosed in

vertical bars �cf� the intermediate types ju � vj and ju � v � wj in Fig� ���

	

u v w

ju � vj

ju � v �wjx

y

Figure �� The intermediate types ju�vj and ju�v�wj are introduced during the de�nition of

the types x �� u � v � �a �� and y �� w � v � u � �a ���

��In general� enriching the type hierarchy with dependency links no longer leads to a cycle�free graph� So it

is not obvious how to establish a topological order on the set of types� However� one can topologically sort the

SCCs of the hierarchy without dependency links �which leads to a total order with respect to a certain SCC�

and then implode the SCCs of the hierarchy into nodes �which ultimately leads to a DAG which itself can be

totally ordered��
��So one can see conjunctive types as top�down specialization of their supertypes and disjunctive ones as

bottom�up generalization of their disjunction elements�
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The same technique is applied when using � �see Fig� � and ��� � will be decomposed into

�� � and �� plus additional intermediates� For each negated type �t� TDL introduces a new

intermediate type symbol j�tj with the de�nition �t and declares it incompatible with t �see

Section ������� In addition� if t is not already present� TDL will add t as a new type to the

hierarchy �see types j�bj and j�cj in Fig� � and ���


fb��bg 
fc��cg

jb�cj j�b��cj

a

j�cjb c j�bj

	

Figure �� Decomposing a �� b � c into conjunctive normal form� such that a inherits from

the intermediates jb�cj and j�b��cj�

b j�bj aj�cjc

jb � �cjj�b � cj

	


fb��bg 
fc��cg

Figure �� Decomposing a �� b�c into disjunctive normal form� such that a is de�ned through

its disjunction alternatives jb��cj and j�b�cj�

Let�s consider the example a �� b � c� The decomposition performed by TDL can then be
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stated informally by the following rewrite steps �assuming that CNF mode is switched on	

see Fig� ���

a �� b� c

a �� �b � �c� � ��b � c�

a �� �b � �b� � �b � c� � ��b � �c� � ��c � c�

a �� �b � c� � ��b � �c�

a �� jb�cj � j�b��cj

where jb�cj �� b � c� j�b��cj �� j�bj � j�cj� j�bj �� �b� j�cj �� �c� 
fb��bg �� b � j�bj�

and 
fc��cg �� c � j�cj�

If disjunctive normal form instead is enforced by the user� the decomposition of a �� b � c

leads of course to a di�erent type hierarchy �Fig� ���

a �� b� c

a �� �b � �c� � ��b � c�

a �� jb��cj � j�b�cj

where jb��cj �� b � j�cj� j�b�cj �� j�bj � c� j�cj �� �c� j�bj �� �b� 
fb��bg �� b � j�bj�

and 
fc��cg �� c � j�cj�

����� Incompatible Types and Bottom Propagation

Incompatible types lead to the introduction of specialized bottom symbols �see Fig� �� �

and � which are� however� identi�ed in the underlying logic �this identi�cation is somewhat

related to the notion of a coalesced sum� known from domain theory�� I�e�� these symbols are

always interpreted as representing inconsistent information� thus they denote the empty set�

Bottom symbols must be propagated downwards by a mechanism called bottom propagation

which takes place at de�nition time �see Fig� �� Note that it is important to take not only

subtypes of incompatible types into account but also disjunction elements� as the following

example shows��

 � a � b�

b �� b	 � b��

�
bottom propagation
����������������� a � b	 � 
 and a � b� � 


It is worth noting that because we employ an explicitly represented type hierarchy within

GLB� LUB and � computations� a single bottom symbol that is a subtype of every other

type� would lead to false inferences� Consider the following example� Assume that we declare

a and b� as well as c and d as incompatible� If only a single bottom symbol 
 is used� we

would deduce that a� c is 
 which however is not necessarily the case� However� introducing

two bottom symbols 
fa�bg and 
fc�dg is the right way to guarantee proper results�

One might expect that incompatibility statements together with feature term uni�cation no

longer lead to a monotonic� set�theoretical semantics� But this is not the case� To preserve

monotonicity� one must assume a ��level interpretation of typed feature structures� where

feature constraints and type constraints can denote di�erent sets of objects and the global
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b

ed

	

cab ca

	

d �� b � �p $��

e �� b � �p ���

bottom propagation


fa�b�cg 
fa�b�cg


 � a � b � c�

Figure � Bottom propagation triggered through the subtypes d and e of b� so that a � d � c

as well as a � e � c will simplify to 
 during processing�

interpretation is determined by the intersection of the two sets �cf� �Krieger 
�� for a thorough

investigation�� Take for instance the type de�nitions A �� �a �� and B �� �b ��� plus the user

declaration 
 � A �B� viz�� that A and B are incompatible� Then A �B will simplify to 


although the corresponding feature structures of A and B successfully unify to �a �� b ���

��� Symbolic Simpli�er

The simpli�er operates on arbitrary TDL expressions� Simpli�cation is done at de�nition time

as well as at run time when typed uni�cation or type expansion takes place �cf� Fig� ���

The main issue of symbolic simpli�cation is to avoid �i� unnecessary feature constraint uni��

cation and �ii� queries to the type hierarchy� by simply applying "syntactic� reduction rules�

Consider an expression like x	�x� � � ��xi � � ���xi � � ��xn� Symbolic simpli�cation will detect


 by simply applying syntactic reduction rules�

The simpli�cation schemata are well known from the propositional calculus� e�g�� De Morgan�s

laws� idempotence� identity� absorption� etc� �cf� Fig� ��� They are hard�wired in Common

Lisp to speed up computation�

Formally� type simpli�cation in TDL can be characterized as a term rewriting system� A set

of reduction rules is applied until a normal form is reached�

Con�uence and termination are guaranteed by imposing a total generalized lexicographic order

�NF on complex type expressions �either CNF or DNF�� In addition� this order has the

nice e�ect of neglecting the commutativity schemata �C� in Fig� � �which are expensive and

might lead to termination problems�� there is only one representative for a given formula�

Therefore� memoization of type expressions is cheap �see Section ������ and is employed in

TDL to reuse precomputed results of simpli�ed formulae �one must not cover all permutations

of a formula�� Consider the conjunction t	 � � � � � tn for which n% permutations exist� Now let

� be a permutation� such that t��	� �NF � � � �NF t��n� is the case� Then t��	� � � � � � t��n� is

the unique representative for all n% permutations of t	 � � � � � tn �the exact de�nition of �NF



�� � TDL

is given below��

Additional reduction rules are applied at run time using �semantic� information from the

type hierarchy �cf� Fig� � and 
��

����� Type Expressions

Formally� a signature for TDL contains disjoint sets for atoms �or constants� A and types T �

where T �� Ts � Ta � f	�
g� Ts denotes the set of sort types and Ta the set of avm types�

Furthermore� Ts �� Tb � Tu is subdivided into built�in sorts Tb and user de�ned sorts Tu� We

will use these abbreviations in the simpli�cation schemata depicted in Fig� �� �� and 
�

We can then de�ne the set T � of �complex� type expressions inductively as follows�

� any type symbol is a valid type expression�

� any atom �a quoted symbol� a string or a number� is a valid type expression�

� if t	� � � � � tn are valid type expressions� the conjunction t	 � � � � � tn is a valid type

expression �n � ���

� if t	� � � � � tn are valid type expressions� the disjunction t	 � � � � � tn is a valid type

expression �n � ���

� if t is a valid type expression� the negation �t is a valid type expression�

� nothing else is a type expression�

Symbols and negated symbols are also called literals�

����� Normal Form

In order to reduce an arbitrary type expression to a simpler expression� simpli�cation rules

must be applied� So we have to de�ne what it means for an expression to be �simple��

One can either choose the conjunctive or disjunctive normal form� A type expression is in

conjunctive normal form �CNF�� if it is a literal� or a conjunction of literals� or a conjunction of

disjunctions of literals� The de�nition of disjunctive normal form �DNF� is obtained similarly�

The advantages of CNF�DNF are�

� uniqueness

Type expressions in normal form are unique modulo commutativity� Sorting type ex�

pressions according to a total lexicographic order will lead to a total uniqueness of type

expressions and avoid the application of the commutativity rule �C� �see Section �������

� linearity

Type expressions in normal form are linear� Arbitrary nested expressions can be trans�

formed into a �at expressions� This may reduce the complexity of later simpli�cations�

e�g�� at run time�
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� comparability

This property is a consequence of the two other properties� Unique and linear ex�

pressions make it easy to �nd or compare �sub�expressions� This is important for the

memoization technique described in Section ������

����� Reduction Rules

The current implementation of the simpli�er uses the hard�wired reduction rules as shown in

Fig� �� Note that only one of the two distributivity rules is applied depending on the chosen

normal form �CNF or DNF�� Otherwise simpli�cation might not terminate�

In order to reach a normal form� it would su�ce to apply only the rules for double negation

�DN�� De Morgan�s laws �DM� and the schemata for distributivity �D�� However� in the worst

case� the application of these three rules would blow up the length of the normal form to

exponential size �compared with the number of literals in the original expression�� To avoid

this� additional rules are employed� idempotence� identity� absorption etc� If they can be

applied� they always reduce the length of the �sub�expressions�

Especially at run time� but also at de�nition time� it is useful to exploit information from the

type hierarchy� Further simpli�cations are possible by employing the schemata of Fig� � and


 �it is possible to switch o� the use of type hierarchy information at any time��

The recursive simpli�cation algorithm simplify
type that implements the simpli�cation schema�

ta is given in pseudo�code in Fig� ���

����	 Lexicographic Order

In order to avoid the application of the commutativity rule� we introduce a total lexicographic

order on type expressions� Together with DNF�CNF� we obtain a unique sorted normal form

for an arbitrary type expression� This guarantees con�uence and fast comparability of type

expressions�

First of all� we de�ne the order �NF on n�ary normal forms by the following table� with

type �NF negatedtype �NF conjunction �NF disjunction�

� x y � type neg� type conjunction disjunction

type x �lex y true true true

neg� type false x	 �lex y	 true true

conjunction false false �i � xi �NF yi true

disjunction false false false �i � xi �NF yi

where � � i � max�jxj� jyj� and �lex is a total lexicographic order on strings �or symbol

names�� e�g�� the predicate STRING� in Common Lisp� for example�

a �NF b �NF bb �NF �a �NF a � b �NF a � �a �NF a � b �NF a � b � c �NF a � �

We then extend �NF for atomic values� such that disjunction �NF symbol �NF string �NF

number� The following matrix is the continuation of the table above at its lower right corner

�� � i � max�jxj� jyj���
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�DN�
� � s

s

�C�
s � t

t � s

s � t

t � s
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Figure �� Syntactic simpli�cation schemata employed in TDL �s� si� t� u � T
�� Note

that the schemata for commutativity �C� must not be tested explicitly because TDL impose

a total order on type expressions�
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�GLB��
s � t

s
if s � t and s� t � T

�GLB��
s	 � � � � � sn

t
if t � glb�s	� � � � � sn� and s	� � � � � sn � T � t � T

�

�GLB��
a � t

a
if type
of �a� � s such that s � t and a � A� t � Tb

�GLB��
�s � t



if t � s

�GLB��
�s � �t

�t
if s � t

�GLB	�
s � �t

s
if glb�s� t� � 


�GLB
�
s � t



if s � Ta� t � Ts

�GLB��
s � t



if s � Tu� t � Tb

�GLB��
s	 � � � � � sn



if s	� � � � � sn � Ts and � �t�i � t � si

�GLB��
a � t



if type
of �a� � s such that s �� t and a � A� t � T

�GLB���
a � b



if a �� b and a� b � A

�GLB���
a � �b

a
if a �� b and a� b � A

�GLB���
s	 � � � � � sn



if

����������	
���������


�S � fs	� � � � � sng

�T � ft	� � � � � tmg � T �

� surjection � � S ��� T �

�declaration 

�
� t	 � � � � � tm�

�s � S � s � ��s�

�GLB���
s �U



if s � T � n f	�Ug

Figure �� Semantic simpli�cation schemata employed in TDL concerning only the

greatest lower bound�
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�LUB��
s � t

s
if t � s and s� t � T

�LUB��
s	 � � � � � sn

t
if t � lub�s	� � � � � sn� and s	� � � � � sn � T � t � T

�

�LUB��
a � t

t
if type
of �a� � s such that s � t and a � A� t � Tb

�LUB��
s � �t

	
if t � s

�LUB��
�s � �t

�s
if s � t

�LUB	�
s � �t

�t
if lub�s� t� � 


�LUB
�
t	 � � � � � tn

p
if p

�
�

n
i	

ti

Figure 
� Semantic simpli�cation schemata employed in TDL concerning only the

least upper bound�

� x y � disjunction symbol string number

disjunction �i � xi �NF yi true true true

symbol false x �lex y true true

string false false x	 �lex y	 true

number false false false x � y

����� Memoization

The memoization technique described in �Norvig 
�b	 Norvig 
�a� has been adapted in order

to reuse precomputed results of type simpli�cation� There are four memoization tables for

each TDL type domain� for CNF with�without hierarchy and DNF with�without hierarchy�	�

The lexicographically sorted normal form described in Section ����� guarantees fast access

to precomputed type simpli�cations� Memoization results are also used by the recursive

simpli�cation algorithm to exploit precomputed results for subexpressions�

Note that it can be dangerous during de�nition time� to memoize results that depend on the

type hierarchy� This is because rede�nitions will make previous inferences invalid� Clearly�

��We have implemented the memoization tables via Common Lisp hash tables� The average access time in

case of the generalized lexicographic normal form for an EQUAL hash table �Allegro CL ���� Sun SPARC SS���

is fast� ���� ms for a hash table containing about ���� entries� Hash tables seem to be good candidates for

memoization because they can be implemented with constant access time and linear space complexity�
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simplify
type�x��

x ��apply �x� DN� 	 �& double negation &�

x ��apply �x� B�� 	 �& �	 � 
 etc� &�

if literalp�x� then return x 	

if x � �y then return simplify
type �apply �x�DM�� 	 �& DeMorgan &�

�& now either x � x	 � � � � � xn or x � x	 � � � � � xn &�

for all � � i � n do xi �� simplify
type�xi� 	

x �� apply �x� F� 	 �& �atten &�

x �� apply �x� D� 	 �& distributivity &�

�& now x is in normal form &�

x �� apply �x� I� GLB��� B�� B�� GLB�� LUB�� 	

x �� apply �x� NE� A� GLB��LUB�� GLB��LUB�� GLB��LUB�� GLB	�LUB	� 	

x �� apply �x� GLB
� GLB�� GLB�� GLB�� GLB��� GLB��� 	

x �� apply �x� GLB��LUB�� GLB��� LUB
� T� E� 	

return x�

Figure ��� The recursive simpli�cation algorithm simplify
type� If apply has more

than two arguments� i�e�� more than one rule can be chosen� these rules will be applied to

every conjunct�disjunct in parallel�

deleting the hash table before a rede�niton takes place is a �rst solution� however� a more

appropriate strategy would be to impose a reason maintenance system on top of the simpli�er�

Some empirical results show the usefulness of memoization� The current DISCO grammar

for German consists of ��� types and �� templates� After a full type expansion of a toy

lexicon of ��� instances�entries� the memoization hash tables contain ���� entries �literals

are not memoized�� ���
 results have been reused at least once �some up to ��� times� of

which 
� ' are proper simpli�cations �i�e�� the simpli�ed formulae are really shorter than the

unsimpli�ed formulae��

��� Type Expansion and Control

We noted earlier that types allow us to refer to complex constraints through the use of symbol

names� Reconstructing the constraints which determine a type �idiosyncratic plus inherited

constraints� requires a complex operation called type expansion� This operation is comparable

to Carpenter�s total well�typedness �Carpenter 
�� or A��t�Kaci�s sort unfolding �A��t�Kaci et

al� 
���

Thus type expansion is faced with two main tasks�

�� making all or particular feature constraints explicit �type expansion is a structure�

building operation�

�� determining the global consistency of a type� or more generally� of a typed feature

structure �if possible	 see below�
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��	�� Motivation

In TDL� the motivation for type expansion is manifold�

� consistency

At de�nition time� type expansion determines whether the set of type de�nitions �gram�

mar and lexicon� is consistent� At run time� type expansion is involved in checking the

satis�ability of the uni�cation of two partially expanded typed feature structures� e�g��

during parsing�

� economy

From the standpoint of e�ciency� it does make sense to work only with small� partially

expanded structures �if possible� to speed up feature term uni�cation and to reduce

the amount of copying� At the end of processing however� one has to make the re�

sult�constraints explicit�

� recursion

Recursive types are inherently present in modern constraint�based grammar formalisms

like HPSG which are not provided with a context�free backbone� Moreover� if the

formalism does not allow functional or relational constraints� one must specify certain

functions�relations like append through recursive types� Take for instance A��t�Kaci�s

version of append �A��t�Kaci �� which can be stated in TDL as follows�

append� �� � FRONT � ��

BACK !� � list �

WHOLE !� ��

append� �� � FRONT � !�rst � !rest� ��

BACK !back � list �

WHOLE � !�rst � !rest� ��

PATCH append� � FRONT !rest��

BACK !back�

WHOLE !rest� � ��

append �� append� � append� �

� type deduction

Parsing and generation can be seen in the light of type deduction as a uniform process�

where only the phonology �for parsing� or the semantics �for generation� must be given

as the following simpli�ed example illustrates�

Parsing�

�
phrase

PHON h John� likes� bagels� i

�

Generation�

�
�����
phrase

SEM

�
��

RELN like

ARG��IND�RESTR�NAME john

ARG��IND�RESTR�RELN bagel

�
��

�
�����
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Type expansion together with a su�ciently speci�ed grammar then is responsible in

both cases for constructing a fully speci�ed feature structure which is maximal infor�

mative and compatible with the input structure� However� �Zajac 
�� has shown that

type expansion without sophisticated control strategies is in many cases ine�cient and

moreover does not guarantee termination�

��	�� Controlled Type Expansion

Uszkoreit introduced in �Uszkoreit 
�� a new strategy for linguistic processing called controlled

linguistic deduction� His approach permits the speci�cation of linguistic performance models

without giving up the declarative basis of linguistic competence� especially monotonicity and

completeness� The evaluation of both conjunctive and disjunctive constraints can be controlled

in this framework� For conjunctive constraints� the one with the highest failure probability

should be evaluated �rst� For disjunctive ones� a success probability is used instead� the

alternative with the highest success probability is used until a uni�cation fails� in which case

one has to backtrack to the next best alternative�

TDL �together with UDiNe� supports this strategy in that every feature structure can be

associated with its success�failure potential such that type expansion can be sensitive to

these settings� Moreover� one can make other decisions as well during type expansion�

� only regard structures which are subsumed by a given type� or conversely� only those

which are not �e�g�� expand the type subcat�list always or never expand the type daugh�

ters�

� take into account only structures under certain paths� or conversely� all structures

except those under the speci�ed paths �e�g�� always expand the value under path

SYNSEM�LOC�CAT	 in addition� it is possible to employ path patterns in the sense of

pattern matching	��

� set the depth of type expansion for a given type

Note that we are not restricted to applying only one of these settings they can be used

in combination and can be changed dynamically during processing� It does make sense� for

instance� to expand the �partial� information obtained so far at certain well�de�ned points

during parsing� If this will not result in a failure� one can throw away �or store� this fully

expanded feature structure� working on with the older �and smaller� one� However� if the

information is inconsistent� we must backtrack to older stages in computation� Going this way

which of course assumes heuristic knowledge �language as well as grammar�speci�c knowledge�

results in faster processing and copying� Moreover� the inference engine must be able to handle

possibly inconsistent knowledge� e�g�� in case of a chart parser to allow for a third kind of

edge �besides active and passive ones��

��This is dierent from functional uncertainty�



� � TDL

��	�� Preliminaries

In order to describe our algorithm� we need only a small inventory to abstract from the

concrete implementation in TDL and to make the approach comparable to others� First of

all� we assume pairwise disjoint sets of features �attributes� F � atoms �constants� A� logical

variables V� and types T �

In the following� we refer to a type hierarchy I by a pair hT ��i� such that � � T � T is a

decidable partial order� i�e�� � is re�exive� antisymmetric� and transitive�

A typed feature structure �TFS� 	 is essentially either a 
�term or an ��term �A��t�Kaci ���

i�e��

	 ��� hx� ��(i j hx� ��)i

such that x � V� � � T � ( � ff	
�
� 		� � � � � fn

�
� 	ng� and ) � f		� � � � � 	ng� where each fi � F

and 	i is again a TFS�

We will call the equation f
�
� 	 a feature constraint �or an attribute�value pair��	� ( is

interpreted conjunctively� whereas ) represents a disjunction� Variables are used to indicate

structure sharing�

Let us give a small example to see the correspondences� The typed feature structure

hx� cyc
list � ffirst
�
� ��rest

�
� xgi

should denote the same set of objects than the following two�dimensional attribute�value

matrix �AVM� notation�

x

�
��
cyc
list

first �

rest x

�
��

It is worth noting that for the purpose of simplicity and clarity� we restrict TFS to the above

two cases� Actually� our algorithm is more powerful in that it handles other cases� for instance

conjunction� disjunction� and negation of types and feature constraints�

A type system * is a pair h)�Ii� where ) is a �nite set of typed feature structures and I an

inheritance hierarchy� Given *� we call 	 � ) a type de�nition�

Our algorithm is independent of the underlying deduction system we are not interested in

the normalization of feature constraints �i�e�� how uni�cation of feature structures is actually

done� nor are we interested in the logic of types� e�g�� whether the existence of a greatest lower

bound is obligatory �TFS �Zajac 
��	 ALE �Carpenter � Penn 
��� or optional as in TDL� We

assume here that typed uni�cation is simply a black box and can be accessed through an

interface function �say unify
tfs�� From this perspective� our expansion mechanism can be

either used as a stand�alone system or as an integrated part of the typed uni�cation machinery�

��It should be noted that we de
ne TFS to have a nested structure and not to be �at �in contrast to feature

clauses in a more logic�oriented approach� e�g�� �A��t�Kaci et al� ��	� in order to make the connection to the

implementation clear and to come close to the structured attribute�value matrix notation�



�� Type Expansion and Control ��

We only have to say a few words on the semantic foundations of type expansion at the end

of this section� This is because we could either choose extensions of feature logic �Smolka �
�

or directly interpret our structures within the paradigm of �constraint� logic programming

�Lloyd ����

��	�	 Algorithm

In this section� we explain the basic structure of our algorithm� extend it by a technique called

indexed prototype memoization� describe the syntax of control information and �informally�

the integration into the algorithm� and �nally give an example�	�

The overall design of our TE algorithm was inspired by the following requirements�

� support a complete expansion strategy

� allow lazy expansion of recursive types

� minimize the number of uni�cations

� make expansion parameterized for delay and preference information

Before we describe the algorithm� we modify the syntax of TFS to get rid of unimportant

details� First� we simplify TFS in that we omit variables� This can be done without loss of

generality if variables are directly implemented through structure�sharing �which is the case

for our system�� Hence conjunctive TFS have the form h�� ff	
�
� 		� � � � � fn

�
� 	ngi� whereas

disjunctive TFS are of the form h�� f		� � � � � 	ngi�

Given a TFS 	� type
of �	� returns the type of 	� whereas typedef ��� obtains the type de�nition

without inherited constraints as given by the type system * � h)�Ii� We call this TFS a

skeleton� It is either h� f		� � � � � 	ngi or h� ff	
�
� 		� � � � � fn

�
� 	ngi� where  are the direct

supertype�s� of � �

Because the algorithm should support partially expanded �delayed� types� we enrich each

TFS 	 by two �ags�

�� +�expanded�	��true� i� typedef �type
of �	�� and the de�nitions of all its supertypes

have been uni�ed with 	� and false otherwise�

�� expanded�	��true� i� +�expanded�	��true and expanded�	i��true for all elements 	i
of TFS 	�

Hence +�expanded is a local property of a TFS that tells whether the de�nition of its type

is already present� while expanded is a global property which indicates that all substructures

of a TFS are +�expanded� Clearly� atoms and types that possess no features are always

expanded� The exploitation of these �ags lead to a drastic reduction of the search space in

the expansion algorithm�

��A thorough description of the algorithm� its realization� and other related subjects are presented in �Sch�afer

��	�



�� � TDL

��	�	�� Basic Structure

The following functions brie�y sketch the basic algorithm� It is a destructive depth��rst

algorithm with a special treatment of recursive types that will be explained in Section ���

expand
tfs is the main function that initiates type expansion� The while loop is executed

until the TFS 	 is expanded or resolved �see below�� Several passes may be necessary for

recursive TFS�

expand
tfs�	� ��

while not �expanded�	� or

resolved�	� or

no uni�cation occurred in the last pass�

depth
�rst
expand�	�� �� or types
�rst
expand�	�� resp� ��

depth
�rst
expand and types
�rst
expand recursively traverse a TFS� The visited check is

done by comparing variables �actually� structure�sharing in the implementation makes vari�

ables obsolete�� types
�rst
expand is de�ned analogously by interchanging the last two lines�

depth
�rst
expand�	� ��

if 	 has been already visited in this pass

then return

else if 	 � h�� f		� � � � � 	ngi

then for every 	 � f		� � � � � 	ng � depth
�rst
expand �	�

else �& 	 � h�� ff	
�
� 		� � � � � fn

�
� 	ngi &�

for every 	 � f		� � � � � 	ng � depth
�rst
expand �	�

if not +�expanded�	� then unify
type
and
node��� 	��

unify
type
and
node destructively uni�es 	 with the expanded TFS of � �

unify
type
and
node��� 	� ��

if � � �

then unify
tfs �negate
fs �expand
type��index ��� 	�

else unify
tfs �expand
type���index �� 	�	

+�expanded�	� �� true�

We adapt Smolka�s treatment of negation to our TFS �Smolka �
�� Note that we only depict

the conjunctive case here�

negate
fs�	 � h�� ff	
�
� 		� � � � � fn

�
� 	ngi� ��

return h	� fh��� fgi� h	� ff	 �gi� h	� ff	
�
� negate
fs�		�gi� � � � �

h	� ffn �gi� h	� ffn
�
� negate
fs�	n�gigi�

��	�	�� Indexed Prototype Memoization

The basic idea of memoization �Michie �� is to tabulate results of function applications in

order to prevent wasted calculations� The more expensive the computation of a value is�



�� Type Expansion and Control �


the bigger the e�ciency gain will be� To memoize a function� it must meet the following

requirements� �i� it must be a proper function with no side e�ects� because side e�ects might

cause wrong results and �ii� the function should be called more than once with the same

argument� the more often� the better� Recursive functions meet these two requirements and

hence serve as good examples for the e�ciency of memoization�	�

We apply this technique to the type expansion function� The argument of our memoized

expansion function is a pair consisting of a type name �or a name of an lexicon entry or a

rule� and an arbitrary index that allows to access di�erent TFS of the same type which may

be expanded in di�erent ways �e�g�� partially or fully�� Such feature structures are called

prototypes�

Once a prototype has been expanded according to the attached control information� its ex�

panded version is recorded and all future calls return a copy of it� instead of repeating once

again the same uni�cations�

expand
type��� index � ��

if protomemo��� index � unde�ned

then 	 �� expand
tfs�typedef ����	

protomemo��� index � �� 		

return copy
tfs�	�

else return copy
tfs�protomemo��� index ���

Most of these computations can be done at compile time �partial evaluation�� and hence speed

up uni�cation at run time� The prototypes can serve as basic blocks for building a partially

expanded grammar�

Some empirical results show the usefulness of indexed prototype memoization� The following

table �Figure ��� contains statistical information about the expansion of an HPSG grammar

with approx� 
�� type de�nitions �excluding lexicon entries�� About ��� lexicon entries and

rules have been expanded from scratch� i�e�� all instances are unexpanded �skeletons� at

the beginning� The type and instance skeletons together consist of about 
��� nodes� No

preference or delay information was given� Note that the algorithm without memoization

inserts only the unexpanded skeletons of a type de�nition while the memoized version expands

each complex type once and afterwards returns only copies of it� The resulting structures

consist of about ����� nodes ������ in type prototypes� ����� in instance prototypes��

The measurements show that memoization speeds up expansion by a factor of ���� for this

grammar �this factor is directly related to the number of uni�cations�� The time di�erence

between the memoized and non�memoized algorithm may be even bigger if disjunctions are

involved� The sample grammar contains only a few disjunctions�

��One of the most impressing examples is the memoized �b function �Norvig ��b	 ��b n returns the n�th

Fibonacci number� which reduces exponential run�time to a simple table look�up for n once the value for a

number � n has been computed�
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algorithm depth��st�expand types��st�expand depth��st�expand types��st�expand

memoization yes yes no no

time �secs� �� j ��� �� j ��� ��� ���

uni�cations �	��� j ���
�� �	��	 j ������ ������ ����	�

number of ��� �cons� ��� �cons� ���� �avm� ���� �avm�

calls to ��� cattype ��	 �di�list� ��
� semexpr ���� semexpr

expand�type ��
 �di�list� ��� morphtype ��	
 termtype ���� termtype

��� morphtype 
� nmorphhead ���� �cons� ��
� �cons�
�� with types ��� atomicw� �� sortexpr ���� w�type ��	� w�type

pre�expanded ��� rptype 	� atomicw� 
�� agrfeat 
�� agrfeat

��� conjw�type �� rptype ��� semantics 	�	 semantics

��� vartype �� subw�inst ��� indexedw� 	�� indexedw�

�� indexedw� �� cattype ��
 vartype �
	 rptype

�
 nmorphhead �� signtype ��� rptype �
� vartype

�� subw�inst �� masnoun ��
 �di�list� ��
 �di�list�

�� termtype �� countnounlex ��
 majorfeat ��	 headfeat

�� semanticstype �� semanticstype ��	 headfeat ��� localtype

�� signtype �	 indexedw� ��� localtype ��	 casetype

�� sortexpr �� emptyquant ��� cattype ��� headval

�� masnoun �� �avm� ��� headval ��� subcattype

�� countnounlex �
 conjw�type ��� subcattype ��� localfeat

�� emptyquant �� vartype ��� localfeat ��� headtype

�� �avm� �� transverblex ��� headtype ��� subjtype

�� identityw� �� nountype ��� subjtype ��� modtype

�� transverblex �� agrsttype ��� modtype ��� minortype

�	 propername �� propernoun ��� minortype ��� majortype

�� nountype �� adjlex ��� majortype ��� gendertype

�� pheadtype �� amorphhead ��� vfeat ��� cattype

�� agrsttype �� omorphhead ��	 nfeat ��� local

�� propernoun �� femnoun ��� local ��� syntax

�� adjlex �� sgcountnoun ��� syntax ��� morphology

�� amorphhead �� lexsigntype ��� morphology ��� nonlocal

�� omorphhead �� majorval ��� nonlocal ��� syntaxtype

�� in�val �� verbtype ��� syntaxtype ��� majorfeat

�� femnoun �� nbartype ��	 numbertype ��� vfeat

�� sgcountnoun �� neunoun �
� nonloctype �

 nfeat

�� lexsigntype �� dat �
� casetype �
� nonloctype

�� majorval �� sgagr ��� atomicw� ��	 atomicw�

�� verbtype �� nonquesign ��� gendertype ��� numbertype

�� localtype �� w�type ��� agrval ��
 semanticstype

Figure ��� Comparing the e�ciency of depth��rst vs� types��rst expansion with�without

prototype memoization� The run time on a Sparc �� is stated in seconds� The left values in

the run time and uni�cations rows are for expansion of all instances from scratch� the right

ones when all types are already expanded�
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��	�	�� Detecting Recursion

The memoization technique is also employed in detecting recursive types� This is important

in order to ensure termination� We use the so�called �call stack� of expand
type to check

whether a type is recursive or not �see Section ��������� Each call of expand
type��� index �

will push � onto the call stack� This stack then is passed to expand
tfs�

If the type � on top of the call stack also occurs below in the stack

��� n� � � � � 	� �� �m� � � � � �	�

we immediate know that the types �� n� � � � � 	 are recursive� Furthermore�these types form

a strongly connected component �scc� of the type dependency �or occurrence� graph� i�e�� each

type in the scc is reachable from every other type in the scc� Examples for such sccs are �cons

list� and �state� � in the trace of the example below �Section ���������

Testing whether a type is recursive or not thus reduces to a simple �nd operation in a global

list that contains all sccs� The expansion algorithm uses this information in expand
tfs to

delay recursive types if the call stack contains more than one element� Otherwise� prototype

memoization would loop�

If a recursive type occurs in a TFS and this type has already been expanded under a subpath�

and no features or other types are speci�ed at this node� then this type will be delayed� since

it would expand forever �we call this lazy expansion�� An instance of such a recursive type�

where expansion will terminate� is the recursive version of list � as de�ned below�

��	�	�	 Example

In the following� we de�ne a �nite state machine �Krieger et al� 
�� with two states that

accepts the language a��a $ b�� The input is speci�ed through a list under path input 	 cf�

the de�nition of type ab below� The distributed �or named� disjunction �Eisele � D�orre 
��

headed by ,� in type state� is used to map input symbols to state types �and vice versa��

The encoding of this �nite state machine in the concrete syntax of TDL is given in Appendix

B���

list � fcons � h ig

cons �

�
first 	

rest list

�
we abbreviate cons via h� � �i

non��nal�con�g �

�
���
input h � � � i

edge �

next
h
input �

i
�
���
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�nal�con�g �

�
���
input h i

edge undef

next undef

�
���

state� �

�
���
non��nal�con�g

edge ,� fa� fa� bgg

next ,� fstate� ��nal�con�gg

�
���

ab �

�
state�

input h a� b i

�

Let us give a trace of the expansion of type ab the algorithm is depth
�rst
expand without

any delay or preference information� In this trace� we assume that it was not known before

that the types cons �abbreviated as h� � �i�� list � and state� are recursive� hence the sccs will

be computed on the �y�

step expand�type in type under path call stack

� cons ab input�rest �ab�

� list cons rest �cons ab�

� cons list � �list cons ab�

� �cons list� is new scc� delay cons here

� cons ab input �ab�

� state� ab � �ab�

� state� state� next �state� ab�

� �state� � is new scc� delay state� here

� �nal�con�g state� next �state� ab�

� non��nal�con�g state� � �state� ab�

� cons non��nal�con�g input �non��nal�con�g state� ab�

�� state� ab next �ab�

The result of expand
type�ab� is the following feature structure�

expand
type�ab��

�
����������������������

ab

input h � a � � h � b � � h i i i

edge �

next

�
��������������

state�

input �

edge �

next

�
������
�nal�con�g

input �

edge undef

next undef

�
������

�
��������������

�
����������������������
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If we ran our automaton on the input abb�

abb �

�
state�

input h a� b� b i

�

it would be rejected� expand�type�abb�� fail�

��	�	�� Declarative Speci�cation of Control Information

Control information for the expansion algorithm can be speci�ed globally� locally for each

prototype� or for a speci�c expand
tfs call� The following control keywords have been imple�

mented so far�

� �expand�function fdepth j typesg
�rst
expand

Speci�es the basic expansion algorithm� depth
�rst
expand �default� is a proper depth

�rst algorithm� while types
�rst
expand expands types �rst and then goes down the

feature graph �and �rst delays the expansion of recursive types to prevent in�nite loops��

� �delay f � ftype j �type �pred �	g fpathg� 	 g�

Speci�es which types should be delayed during expansion� path may be a feature path

or a complex path pattern with wildcard symbols 
� �� �� feature and segment variables�

pred is a test predicate to compare types� e�g�� �� �� �� as well as user�de�ned predicates

are supported� The �delay information overrides the �expand and �expand�only slots

and will be checked in function unify
type
and
node�

� f�expand j �expand�onlyg f � ftype j �type �index �pred ��	g fpathg� 	 g�

There are two mutually exclusive modes concerning expansion of types� If the �expand�

only list is speci�ed� only types in this list will be expanded with the speci�ed prototype

index 	 all others will be delayed� If the �expand list is speci�ed� all types will be

expanded� Types not mentioned in the list will be expanded using the default prototype

index nil� i�e�� fully� if not speci�ed otherwise� Path patterns and type predicates are

supported as in the �delay list and will be checked in function unify
type
and
node�

� �maxdepth integer

Speci�es that all types at paths longer than integer will be delayed anyway �checked in

function unify
type
and
node��

� �attribute�preference fattributeg�

De�nes a partial order on attributes that will be considered in the functions depth
�rst


expand and types
�rst
expand � The �sub� feature structures at the attributes leftmost

in the list will be expanded �rst� This non�numerical preference may speed up expansion

if no numerical heuristics are known�

� �ask�disj�preference ft j nilg

If this �ag is set to t� the expansion algorithm interactively asks for the order in which

disjunction alternatives should be expanded �checked in depth
�rst
expand�� Example�
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Ask�Disj�Preference in G under path X

The following disjunctions are unexpanded�

Alternative ��

��Type A �Expanded NIL	 �

Alternative ��

��Type B �Expanded NIL	 �

Which alternative in G under path X should be expanded next ��� �� or

� to leave them unexpanded� or �all to expand all alternatives in this

order� or �quiet to continue without asking again in G	 � �

� �use�fconj j disjg�heuristics ft j nilg
�Uszkoreit 
�� suggested the exploitation of numerical preference information for features

and disjunctions to speed up uni�cation� Both slots control the use of this information

in functions depth
�rst
expand and types
�rst
expand �

� �resolved�predicate fresolved�p j always�false j � � � g

This slot speci�es a user de�nable predicate that may be used to stop recursion �see

function expand
tfs�� The default predicate is always�false which will lead to a com�

plete expansion algorithm if no other delay information is speci�ed�

� �ignore�global�control ft j nilg

If this �ag has value t� the values of the three globally speci�ed lists �expand�only�

�expand� �delay will be ignored� If nil� locally and globally speci�ed lists will be taken

into account�

Let us give an example to show how control information can be employed� Note that we

formulate this example in the concrete syntax of TDL�

defcontrol verb

���delay ��sign Subsumes	 SYNSEM�NONLOCAL���SLASH		

�� � matches INHERITED and TO�BIND

��attribute�preference SYNSEM DTRS SUBCAT HEAD	

��use�disj�heuristics T	

��ignore�global�control T	

��expand ��local initial	 
			

�� 
 matches all paths in type local

�index ��

Here� we specify control information for the type verb� However� not for all prototypes�

but only for the one with index � �see Section ������� on indexed prototype memoization��

The idea is to delay sign and all its subtypes �Subsumes� under all paths that start with

SYNSEM�NONLOCAL� followed by an arbitrary attribute ���� and ending in SLASH� The prefered

attribute preference during expansion is �highest priority �rst�� �i� SYNSEM� �ii� DTRS� �iii�
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SUBCAT� �iv� HEAD� The other attributes are not ordered� thus we expand their values depend�

ing on the traversing strategy of our expansion algorithm� We use the disjunction heuristics

�if speci�ed�� and ignore globally speci�ed control information that might con�ict with this

locally speci�ed ones� In addition� the prototype of type local with index�name initial

must be expanded under all its path �� 
	 including the empty path��

��	�	�� How to Stop Recursion

Type expansion with recursive type de�nition is undecidable in general� i�e�� there is no

complete algorithm that halts on arbitrary input �TFS� and decides whether a description is

satis�able or not �see Section ����� However� there are several ways to stop in�nite expansion

in our framework�

� The �rst method is part of the expansion algorithm �lazy expansion� as described before�

� The second way is brute force� use the �maxdepth slot to cut expansion at a suitable

path depth�

� The third method is to de�ne �delay patterns or to select the �expand�only mode

with appropriate type and path patterns�

� The fourth method is to use the �attribute�preference list to de�ne the �right� order

for expansion�

� Finally� one can de�ne an appropriate �resolved�predicate that is suitable for a class

of recursive types�

��� Theoretical Results

It is worth noting that testing for the satis�ability of feature descriptions admitting recursive

type equations�de�nitions is in general undecidable� �Rounds � Manaster�Ramer ��� were

the �rst to have shown that a Kasper�Rounds logic enriched with recursive types allows one to

encode a Turing machine hence� deciding satisa�ability would imply that the Halting prob�

lem is decidable �which is obviously not�� Later� �Smolka �
� argued that the undecidability

result is due to the use of coreference constraints� He demonstrated his claim by encoding

the word problem of Thue systems� Hence� our expansion mechanism is faced with the same

result� viz�� that expansion might not terminate�

However� we conjecture that non�satis�ability and thus failure of type expansion is� in general�

semi�decidable� The intuitive argument is as follows� given an arbitrary recursive TFS and

assuming a fair type unfolding strategy� the only event under which TE terminates in �nite

time follows from a local uni�cation failure which then leads to a global one� In every other

case� the unfolding process goes on by substituting types through their de�nitions� Recently�

�A��t�Kaci et al� 
�� have formally shown a similar result by using the compactness theorem

of �rst�order logic� However� their proof assumes the existence of an in�nite OSF clause

�generated by unfolding a 
�term��
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Thus our algorithm might not terminate if we choose the complete expansion strategy� How�

ever� we noted above that we can even parameterize the complete version of our algorithm to

ensure termination� for instance to restrict the depth of expansion �analogous to the o��line

parsability constraint�� The non�complete version always guarantees termination and might

su�ce in practice�

Semantically� we can formally account for such recursive feature descriptions �with respect to

a type system� in di�erent ways� either directly on the descriptions� or indirectly through a

transformational approach into ��rst�order� logic� Both approaches rely on the construction

of a �xpoint over a particular continuous function�	� The �rst approach is in general closer

to an implementation �and thus to our algorithm� in that the function which is involved in

the �xpoint construction corresponds more or less to the uni�cation�substitution of TFS �see

for instance �A��t�Kaci �� or �Pollard � Moshier 
���� The latter approach is based on the

assumption that TFS are only syntactic sugar for �rst�order formulae� If we transform these

descriptions into an equivalent set of de�nite clauses� we can employ techniques that are fairly

common in logic programming� viz� characterizing the models of a de�nite program through

a �xpoint� Take� for instance� our cyc
list example from the beginning to see the outcome of

such a transformation �assume that cyc
list is a subtype of list��

�x�cyc
list�x�� �y� z�list�x� � first�x� y� � rest�x� z� � y
�
� � � z

�
� x

��� Other Approaches

In this section� we will describe closely related approaches and compare our algorithm to them�

To the best of our knowledge� the problem of type expansion within a typed feature�based

environment was �rst addressed by �A��t�Kaci ��� The language he described was called KBL

and shared great similarities with LOGIN	 see �A��t�Kaci � Nasr ��� However� the expansion

mechanism he described was order dependent in that it replaced types by their de�nition

instead of unifying the information� Moreover� it was non�lazy� thus it will fail to terminate

for recursive types and performs type expansion only at de�nition time as is the case for ALE

�Carpenter � Penn 
��� However� ALE provides recursion through a built�in bottom�up chart

parser and through de�nite clauses� Allowing type expansion only at de�nition time is in

general space consuming� thus uni�cation and copying is expensive at run time�

Another way one might pursue is to integrate type expansion into the typed uni�cation process

so that it can take place at run time� Systems that explore this strategy are TFS �Zajac 
��

and LIFE �A��t�Kaci 
��� However� both implementations are not lazy� thus hard to control

and moreover� might not terminate� In addition� if prototype memoization is not available�

type expansion at run time is ine�cient	 cf� the results of our grammar example in Table

����� A system that employs a lazy strategy on demand at run time is CUF �D�orre � Dorna


��� Laziness can be achieved by specifying delay patterns as is familiar from Prolog� This

means to delay the evaluation of a relation until the speci�ed parameters are instantiated�

�	In both cases� there is� in general� more than one 
xpoint� but it seems desirable to choose the greatest

one� see �Krieger ��	�
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Our approach� which has been fully implemented as a stand�alone module� is novel in that it

combines the bene�ts of these systems plus much more�

� freely choose time of TE� e�g�� during uni�cation� parsing etc�

� local as well as global control is possible

� delayed expansion

� recursive types are treated specially

� preference information can be employed

� prototype memoization speeds up processing

� Comparison to other Systems

TDL is unique in that it implements many novel features not found in other systems like ALE
�Carpenter � Penn 
��� LIFE �A��t�Kaci et al� 
��� or TFS �Zajac 
��� Of course� these systems

provide other features which are not present in our formalism��


What makes TDL unique in comparison to them is the distinction open vs� closed world� the

availability of the full boolean connectives and distributed disjunctions �via UDiNe�� as well

as an implemented lazy type expansion mechanism for recursive types �as compared with

LIFE�� ALE� for instance� neither allows disjunctive nor recursive types and enforces the type

hierarchy to be a BCPO� However� it makes recursion available through de�nite relations and

incorporates special mechanisms for empty categories and lexical rules�

TFS is based on a closed world� the unavailability of negative information �only implicitly

present� and only a poor form of disjunctive information but performs parsing and generation

entirely through type deduction �in fact� it was the �rst system��

LIFE comes closest to us but provides a semantics for types that is similar to TFS� Moreover

the lack of negative information and distributed disjunctions makes it again comparable with

TFS� LIFE as a whole can be seen as an extension of Prolog �as was the case for its

predecessor LOGIN�� where �rst�order terms are replaced by 
�terms� In this sense� LIFE is

richer than our formalism in that it o�ers a full relational calculus�

� Summary

In this paper� we have presented TDL� a typed feature formalism that integrates a powerful

feature constraint solver and type system� Both of them provide the boolean connectives

�� �� and �� where a complex expression is decomposed by employing intermediate types�

Moreover� recursive types are supported as well� In TDL� a grammar writer decides whether

types live in an open or a closed world� This e�ects GLB and LUB computations�

�
�Backofen et al� ��	 gives an overview of implemented formalisms�
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The type system itself consists of several inference components� each designed to cover a

speci�c task e�ciently� �i� a bit vector encoding of the hierarchy� �ii� a fast symbolic simpli�er

for complex type expressions� �iii� memoization to cache precomputed results� and �iv� a

sophisticated type expansion mechanism�

The system as described in this paper has been fully implemented in Common Lisp and runs

on various software�hardware platforms �Allegro CL� Lucid CL� Macintosh CL� CLisp�� It

has been integrated successfully into the DISCO environment �Uszkoreit et al� 
�� and is used

at several places outside �e�g�� CSLI� Stanford currently uses TDL for writing a large English

HPSG grammar��

The next major version of TDL will make certain forms of knowledge compilation available�

e�g�� extracting syntactic incompatibilities between types from a given grammar�

Other extensions of the system will concern the type expansion mechanism� We are plan�

ning to provide additional expansion strategies and to realize the expansion mechanism as

a true anytime module �Wahlster 
�� �implemented as a separate process�� so that it can be

interrupted and restarted from the outside�

We also plan to extend the grammar development environment with other useful tools� e�g��

a classi�er �cf� �Krieger � Sch�afer 
�a� for a description of the current status�� Moreover�

providing a classi�er allow us to incorporate TDL in other areas of knowledge representation

which are currently handled exclusively by terminological�KL�ONE�like languages�
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A TDL BNF

The TDL syntax is given in extended BNF �Backus�Naur Form�� Terminal symbols �characters

to be typed in� are printed in bold style� Nonterminal symbols are printed in italic style�

The grammar starts with the start production� It is case insensitive �except for strings�� The

following table explains the meanings of the metasymbols used in extended BNF�

metasymbols meaning

� � � j � � � alternative expressions

� � � � � one optional expression

� � � � j � � � j � � � � one or none of the expressions

f � � � j � � � j � � � g exactly one of the expressions

f � � � g� n successive expressions� where n � f�� �� � � �g

f � � � g� n successive expressions� where n � f�� �� � � �g

A�� Type De�nitions

type�def � type f avm�def j subtype�def g �

type � identi�er

avm�def � �� body f� optiong� j

�� nonmonotonic � where � constraint f� constraintg� 	 � f� optiong�

body � disjunction � ���list � � where � constraint f� constraintg� 	 �

disjunction � conjunction f f j �g conjunction g�

conjunction � term f � term g�

term � type j atom j feature�term j di��list j list j coreference j

distributed�disj j templ�par j templ�call j �term j � disjunction 	

atom � string j integer j �identi�er

feature�term �  �attr�val f� attr�valg�� �

attr�val � attribute ��restriction� f� attribute ��restriction� � disjunction �g�

attribute � identi�er j templ�par

restriction � conj�restriction f f j �g conj�restriction g�

conj�restriction � basic�restriction f � basic�restriction g�

basic�restriction � type j �basic�restriction j templ�par j � restriction 	

di��list � �� � disjunction f� disjunctiong� � �� � � type �

list � �� j � nonempty�list � � list�restriction �

nonempty�list � � disjunction f� disjunctiong� � � ��� j

disjunction f� disjunctiong� � � disjunction �

list�restriction � � � restriction 	 j � type � � �integer� integer	 j � integer �

coreference � �coref�name j ��� coref�name f� coref�nameg� 	

coref�name � identi�er j integer

distributed�disj � �disj�name � disjunction f� disjunctiong� 	

disj�name � identi�er j integer
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templ�call � �templ�name � �templ�par f� templ�parg�� 	

templ�name � identi�er

templ�par � �templ�var � � disjunction �

templ�var � identi�er j integer

constraint � �coref�name � f function�call j disjunction g

function�call � function�name � disjunction f� disjunctiong� 	

function�name � identi�er

nonmonotonic � type �  overwrite�path f� overwrite�pathg� �

overwrite�path � identi�er f � identi�er g� disjunction

subtype�def � f �� type g� f� optiong�

option � status� identi�er j author� string j date� string j doc� string j

expand�control� expand�control

expand�control � � � ��expand f � ftype j �type �index �pred ��	g fpathg� 	 g� 	 j

��expand�only f � ftype j �type �index �pred ��	g fpathg� 	 g� 	 � j

� ��delay f � ftype j �type �pred �	g fpathg� 	 g� 	 � j

� ��maxdepth integer 	 � j

� ��attribute�preference fidenti�erg� 	 � j

� ��ask�disj�preference ft j nilg 	 � j

� ��use�conj�heuristics ft j nilg 	 � j

� ��use�disj�heuristics ft j nilg 	 � j

� ��expand�function fdepth�first�expand j types�first�expandg 	 � j

� ��resolved�predicate fresolved�p j always�false j � � � g 	 � j

� ��ignore�global�control ft j nilg 	 � 	

path � fidenti�er j patterng f�fidenti�er j patterngg�

pattern � � j 
 j � j ��identi�er ���j
j��

pred � eq j subsumes j extends j � � �

index � integer for instances

integer j identi�er string for avm types

integer � f�j�j�j�j�j j!j"j#j$g�

identi�er � fa-zjA-Zj�-$j j�j�j
j�g�

string � %fany characterg�%

A�� Instance De�nitions

instance�def � instance avm�def �

instance � identi�er

A�� Template De�nitions

template�def � templ�name � �templ�par f� templ�parg�� 	 �� body f� optiong� �
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A�� Declarations

declaration � partition j incompatible j sort�def j built�in�def j

hide�attributes j hide�values j export�symbols

partition � type � type f f j �g type g� �

incompatible � nil � type f� typeg� �

sort�def � sort�s� � type f� typeg� �

built�in�def � built�in�s� � type f� typeg� �

hide�attributes � hide�attribute�s� � identi�er f� identi�erg� �

hide�values � hide�value�s� � identi�er f� identi�erg� �

export�symbols � export�symbol�s� � identi�er f� identi�erg� �
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B Sample Sessions

In the following� we present two sample sessions� The �rst one makes heavy use of A��t�Kaci�s

append encoding through types� the second one de�nes �nite automata directly within TDL

�see �Krieger et al� 
����

B�� Extracting List Elements

defdomain �less �load�built�ins�p nil�

begin �domain �less�

begin �declare�

sorts� 
built�in
� 
null
� �� 
null
 represents the empty list � �

NIL � 
avm
 � 
built�in
� �� incompatibility declaration

end �declare�

begin �type�


avm
 ��  �� �� the top avm type


null
 �� 
built�in
�


list
 �� 
null
 � 
cons
�


cons
 �� 
avm
 � FIRST�REST 
list
��

append� �� 
avm
 � FRONT � ��

BACK �� � 
list
�

WHOLE ����

append� �� 
avm
 � FRONT ��first � �rest���

BACK �back � 
list
�

WHOLE ��first � �rest���

PATCH append � FRONT �rest��

BACK �back�

WHOLE �rest����

append �� append� � append��

less �� 
avm
 � ELT �elt�

SET �set�

AUX append � FRONT �front�

BACK � �elt � �rest ��

WHOLE �set��

RES append � FRONT �front�

BACK �rest���

w�� less � ELT E ���

SET �A ���B ���C �����

doc� %Because E �� successfully unifies with every

element of SET� RES will contain a disjunction

of three lists� each of length ��%�

expand�type �w�



B�� Extracting List Elements ��

By using the type grapher of TDL� we can depict the type hierarchy for this special type

system �recall that thick lines indicates a disjunctive speci�cation��
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Expanding w �see sample session above� leads to the following feature structure notice that

we choose the feature editor FEGRAMED �Kiefer � Fettig 
�� as the visualization tool �certain

attributes are hidden�� Another way to have access to this structure would be to employ the

TDL�LaTEX tool of TDL �see �Krieger � Sch�afer 
�a���
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B�� De�ning Finite Automata

defdomain �automata �load�built�ins�p NIL�

begin �domain �automata�

begin �declare�

sorts� 
built�in
� 
null
� 
undef
�

built�ins� string� symbol� number�

nil � 
undef
 � 
built�in
�

nil � 
undef
 � 
avm
�

end �declare�

begin �type�

symbol �� 
built�in
�


null
 �� 
built�in
�

string �� 
built�in
�

number �� 
built�in
�


avm
 ��  ��


cons
 �� 
avm
 � FIRST� REST��


list
 �� 
null
 � 
cons
�

list�of�symbols �� ������symbol�

proto�config �� 
avm
 �

EDGE��symbol � 
undef
	�

NEXT��config � 
undef
	�

INPUT�list�of�symbols��

non�final�config �� proto�config �

EDGE �first�

NEXT�INPUT �rest�

INPUT ��first � �rest���

final�config �� proto�config �

INPUT � ��

EDGE 
undef
�

NEXT 
undef
��

config �� non�final�config � final�config�

��� consider the two regular expressions R���a�b	&
c and R��a�b&�	�c&
	

��� the intersection of R� and R� is� R��R� � a�b&�	c

U �� non�final�config �

EDGE �covary��a � �b� �c	�

NEXT �covary� U � V	��

V �� final�config�

X �� non�final�config �

EDGE �a�

NEXT Y�� �� expand�control� ���delay �z next�
	 �y next�
			�

Y �� non�final�config �

EDGE �b�
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NEXT Y � Z�� �� expand�control� ���delay �z next�
			�

Z �� config �

EDGE �covary� �c� 
undef
	�

NEXT �covary� Z� 
undef
	��

test� �� U � X � INPUT ��a��b��c���

test� �� U � X � INPUT ��a��b��b��c���

test� �� U � X � INPUT ��b��c���

test� �� U � X � INPUT ��a��b��c��d���

Expanding test� yields the following structure�



B�� De�ning Finite Automata ��

The type hierarchy is given by the following DAG�
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