
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Comparative Study
of

Connectionist Simulators

Andreas Dengel, Ottmar Lutzy

Mai 1993

Research
Report

RR-93-23

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrticken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens­
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

Comparative Study of Connectionist Simulators

Andreas Dengel, OUmar Lutzy

DFKI-RR-93-23

A shorter version of this report will be published in IEEE Expert (1993) [12].

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9003 0).

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy
in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following : a notice that such copying is by permission of
Deutsches Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fOr Kunstliche Inteliigenz.

Comparative Study of Connectionist Simulators

ANDREAS DENGEL and OTIMAR LUTZY

Authors' Abstract - This paper presents practical experiences and results we
obtained while working with simulators for artificial neural network, 1.e. a comparison of
the simulators' functionality and performance is described. The selected simulators are
free of charge for research and education. The simulators in test were: (a) PlaNet, Version
5 .6 from the University of Colorado at Boulder, USA, (b) Pygmalion, Version 2.0, from the
Computer Science Department of the University College London, Great Britain, (c) the
Rochester Connectionist Simulator (RCS), Version 4.2 from the University of Rochester,
NY, USA and (d) the SNNS (Stuttgart Neural Net Simulator), Versions 1.3 and 2.0 from the
University of Stuttgart, Germany. The functionality test focusses on special features
concerning the establishment and training of connectionist networks as well as facilities
of their application. By exemplarily evaluating the simulators' performance, we attempted
to establish one and the same type of back-propagation network for optical character
recognition (OCR). A respective quality statement is made by comparing the number of
cycles needed for training and the recognition rate of the individual simulators.

Keywords: neural networks, neural network simulation, character recognition,
connectionism, computer vision, arUficlallntelHgence

CONTENTS:

1 Introduction.... 2

2 Simulator Set 2

2.1 PlaNet .. 2

2.2 Pygmalion 4

2.3 Rochester Connectionist Simulator (RCS) 5

2.4 Stuttgart Neural Net Simulator (SNNS) 7

3 Functional Comparison of the Simulators 9

4 Comparison of the Simulators' Performance 13

4.1 Dimensions and Topology of the Test Net 13

4.2 Simulator Benchmarks .. 14

5 DIscussIon.. 19

References 20

-1-

1 INTRODUCTION

Over the last years. a lot of research has been done in developing models of neural net­
works to solve knowledge and recognition problems in reasonable time. Researchers have
begun to investigate maSSively parallel architectures to overcome the problems in conven­
tional symbolic computation. Although parallel processors offer attractive mechanisms to
implement large artificial neural networks. most of the models are implemented using
simulators on conventional s ingle-processor machines. Many working groups have developed
simulation packages prOViding flexible and standardized tools for designing and testing
artificial neural networks. They provide mechanism for creating cells. for their connection.
and for defining respective learning rules. activation functions as well as output functions .
Additionally. libraries facilitate updating of a net. while graphical interfaces describe inter­
mediate activations and allow user interaction.

In this report. we present the results of testing five artificial neural network simulators.
The comparison is outcome of evaluating the applicability of artificial neural nets in optical
character recognition. Due to the lack of scoring publicly and commercialy available network
software. in a first step. we concentrate on simulators which are free of charge and can be
received by anonymous FTP via the Arpa Internet from the corresponding developers or
distributors. The simulators tested are:

• PlaNet. Version 5 .6 [1)
University of Colorado at Boulder. USA

• Pygmalion. Version 2.0 (2)
Computer Science Department of the University College London. Great Britain

• RCS (Rochester Connectionist Simulator). Version 4 .2 (3)
University of Rochester. NY. USA

• SNNS (Stuttgart Neural Net Simulator). Versions 1.3 and 2.0 [4.5)
IPVR. University of Stuttgart. Germany

There are various other simulators of similar functionality. In our conSiderations. we
selected free available simulators running on Sun SparcStations under X Window System.

In Section 2. we first give brief deSCriptions of the individual simulators tested. their com­
ponents. and general characteristics. In Section 3. results of comparing the simulators '
functionality are given. In particular. number of standard functions. hard- and software re­
quirements. and experiences during network design and run of the simulators are reported.
Section 4 first describes dimensions and topology of a feed-forward-net taken as a common
basis for testing the performance of all simulators considered and then shows individual
results of the test. In Section 5. a final discussion is given including a summary deSCription of
all simulators in test as well as general recommendations.

2 SIMULATOR SET

2.1 PlaNet

The PlaNet simulator has been developed at the University of Colorado at Boulder which
has a long history in developing artiflcial neural network simulators. The version available for

-2-

our test was version 5.6 from January 1991. Other earlier simulators developed at Boulder are
StarNet, SunNet, and XNet designed for other Unix environments or other computers. The
designers of PlaNet describe their simulator as a tool for constructing, running and examining
PDP (parallel distributed processing) or connectionist networks.

The respective software environment is installed using a special 1iLtorial routine. This
routine further gives an introduction of how the program should be started and goes through
an example session. While working with PlaNet this session can be started in any state Just
calling the Tutorial. Installation time for the whole system is about 20 minutes on a
SparcStation. It ends by sending electronic mail to Boulder to confirm a correct installation.

The PlaNet system is composed of two major components:

• the simulator kernel with the "PlaNet" programming language and

• the PlaNet interface, a Unix shell and a graphical window, to run and examine the si­
mulator.

(A) Elements of PlaNet

A connectionist network designed by PlaNet consists of units and connections. The units
are grouped in layers. The definition of a layer generates the respective units. The number of
units may be changed dynamically by parameters when starting the net. Each unit is identi­
fied by the name of its layer and its number.

The connections between layers or units are eqUivalent to links in other simulators. A
connectionist network may have 64 connections, each of them identified by an individual
name. This limit seems to be a weakness when using coarse coding (screening) to connect
only parts of two layers. However, the special construct weight matrix allows the definition of
complex connecting structures, requiring only one single connection. Connections between
source and target units can so be defined as existent or non-existent.

(B) Net Functions and Training

Updating (activating) unit values can be done layer by layer and is described by procedures
in the net-program respectively. PlaNet provides a set of special high-level standard operations
(e.g. for activation and learning), but also allows an easy definition of new operations and
procedures for special applications.

Mter loading a network, the connections were initialized by a default value of 0.5.
Changing this value is possible by appropriate parameter settings. For backpropagation
learning, the parameters learning rate (11) and momentum (a) are used . As reported in the
manual, possible values are 11 = 0 .2 and a = 0.4 .

Input and target patterns to be given to the network are stored in a file which is called
pattern sped.ficationfile. There are two different formats to describe patterns:

• a special digit representation. Two strings composed of digits from '0' ... '9' and the
character 'a' represent input and corresponding target patterns. Usually, '0' corres­
ponds to value 0.0 (default min). 'I' to value 0.1, .. , and 'a' to value 1.0 (default max).

• a floating-point representation.

-3-

(C) PlaNet Interface

After opening a conventional X-Window. about 50 special commands may be entered to
interact with PlaNet. The entire simulation runs in the background. The shell window is also
used as output device. There exists a graphical window for displaying various views of the
network. layers or connections. Various static pictures can be mounted and combined to a
movie for presentation. Training states can be saved in a file to rerun the network later on at
characteristic states of knowledge.

The documentations User's Guide and Reference Manual (1) give a brief. but thorough in­
troduction to the PlaNet system and its functionality. Commands are described by their syn­
tax and respective examples. Additionally. an online helpsystem is integrated into the PlaNet
package which is easy to handle and very useful while working with PlaNet.

2.2 Pygmalion

The Pygmalion simulator is a result of an ESPRIT II project. supported by the European
Community. Companies and universities involved in the project were Thomson-CSF IDSE .

Mimetics SA. CSELT. en. ENS. INESC. LRI. Philips. SEL and UCL.

To run the Pygmalion simulator. Unix and X Window System are needed. The simulator
has been tested for various computers such as Sun Sparcstation or DECstations. An instal­
lation script allows an easy installation of the simulator. This job takes about 30 minutes on
a Sparc-Station.

The ESPRIT project was dropped in 1991 after making Version 2 .0 available. The Universi­
ty College London (UCL) has co-ordinated the development. Currently. there is no further
support given by UCL (questions send via email were not answered).

The Pygmalion simulator consists of three main components:

• the simulator kernel holds the connectionist net and the functions to work with.

• a programming language called nC provides constructs for designing connectionist nets
and specific functions for its application. nC is a Pygmalion extension of the pro­
gramming language C*.

• the Graphic Monitor is the graphical interface of the system for visualizing and run­
ning the simulator.

(A) Elements of Pygmalion

In Pygmalion a connectionist net has a hierarchical structure. The top level layers are
composed of so-called clusters. Clusters again consist of neurons which contain synapses .

• There is also a programming language N which has been developed by Thomson-CSF /DSE and
MlmeUcs S.A.

-4-

Neurons correspond to units and synapses to links respectively. The states of a net are repre­
sented by the data of the neuron states and the synaptic weights.

Besides the general feature to consist of input layer. hidden layer and output layer. a
Pygmalion net may also be composed of various heterogeneous subnets . All data as well as
the net topology are administrated by the Pygmalion simulator at the system level.

(B) Net Functions and Training

When starting the Pygmalion system. a special slot allows for a specification of the hard­
ware on which the simulator should run. This leads to an improved performance when run­
ning large connectionist networks. For training. there is only one backpropagation learning
algorithm available.

There are two online learning modes available to train a net:

1. the mode step learn makes one training cycle with the given pattern.

if. the mode learn trains a pattern many cycles until the error is kept within a given tol­
erance.

For training more than one pattern a time. a special batch learning tool is contained in
the system. but it did not run on our eqUipment. Patterns may be described in a file by five
alternative formats . A pattern file may contain 25 different patterns. If there are more patterns
in one file. an error message appears to tell the user that there might be problems.

(C) Graphic Monitor

The Graphic Monitor is the user interface in Pygmalion. It is an user-friendly tool for dis­
playing connectionist nets and working with them. In various windows different components
of a net can be visualized in many ways.

The documentation includes the Installations Marrual. Pattern Descriptor Files Manual and
the Graphic Monitor Tutorial. Other documents are referenced but have not been accessable.
The online help system integrated into the simulator gives only very little (or no) support.

2.3 Rochester Connectionist Simulator (RCS)

This simulator has been developed at the University of Rochester. New York. It is the clas­
sical system for artificial neural network simulation. It is elaborated as a tool to aid specifica­
tion. construction and simulation of connectionist networks . In our considerations we use
the version 4.2 from October 1989. The simulator may be installed on an Unix computer. but
also on a Macintosh. Originally. the simulator was implemented in Lisp. but now is also
available in C. Because of several bugs. we needed more than one installation cycle. However.
the installation is easy and takes about 45 minutes.

The RCS is composed of two major components:

-5-

• the simulator kernel for generating and running connectionist networks. A specialized
backpropagation module (BP-Module) provides the capability to operate with many lay­
ered backpropagation nets.

• two graphical interfaces: the XGI interface working on a X Window System and the GI
interface which runs on other platforms.

(A) Elements of RCS

A Res connectionist network consists of units. links and sites. Units are simple computa­
tional elements which communicate by sending their level of activation via links to other ele­
ments (units or sites). There are various types of units provided by the BP-Module. i.e. input.
hidden. output, teach as well as fire units. lnput- and teach units can be manipulated from
outside.

When generating a connectionist net. a leamsite is added to the hidden- and output
units. It may be considered as a library function which can be redefined by the user.

Unks are directed connections between two units. which are initialized during genera­
tion. Optional sites can be added to units. In this way sites are preprocessing elements.
Therefore. links have no relation to the corresponding unit.

(B) Net Functions and Training

There are three different modes for computing the values of a unit:

• Synchronous. Every unit is updated at each simulation step. The output value from a
preordered step is used to calculate the actual unit value. This mode is set as a default.

• Asynchronous. Allor only few of the units are updated at each step [3)

• Delay. There is an option for generating a delay simulator with a special type of links.
Defining the respective delay time (value), the update operation is maintained for some
time.

Several update or learning functions are implemented. In addition user-defined functions
may be included into the simulator library. The values of the links will be initialized during
network generation. A speciality of the RCS is the allocation of data space for the units.
which may be changed dynamically.

There is no tool for handling data files to initialize input and teach units. The user must
take care of this job on his own and add his own procedures (functions) to the netprogram.

(C) Graphical User Interface GI and XGI

The XGI interface is an extension of the GI interface. XGI uses the X-Window system and
is used to operate with the RCS. The XCI Control Window is used for building. training and
displaying states of the connectionist network. Instructions can be entered by typing or in­
voking with mouse clicks when noted in a panel.

The documentation Technical Report 233 [3) is very substantial. More information is given
in a Simulator User Manual and in an Advanced Programming Manual where each instruction

-6-

is described twice. Nevertheless. an index would be very useful to read the documentation.
The online he1psystem gives only little support.

2.4 Stuttgart Neural Net Simulator (SNNS)

The SNNS has been developed at the Institute for Parallel and Distributed High
Performance Systems (IPVR) at the University of Stuttgart. Germany. For our benchmark test.
we have considered versions 1.3 and 2 .0 of this simulator.

The SNNS is available for various computer architectures which run Unix and X Window
System. During installation makefiles for the underlying machine architecture and window
system are generated. Sometimes. compile options have to be changed manually because of
wrong parameters for optimization. A complete installation of SNNS takes about 30 minutes.

SNNS simulator is a successor to an earlier neural network simulator called NetSim.
which uses many ideas of the Rochester Connectionist Simulator.

The Simulator consists of three major components:

• The simulator kernel for designing and running neural nets. for memory management

and for providing all operation functions.

• The Nessus compiler. a programming language for genera ting medium large nets up to
about 106 units .

• The XGUI graphical user interface which is related to the simulator kernel and the X­
Window system for interaction and displaying.

(A) Elements of SNNS

In the SNNS notation. a network of artificial neurons consists of units . links and optional

sites. Units are the real computation elements of the net. Usually. there are three different
types of units : input units. output units and the hidden units . Other. more specialized unit
types are described in (5) Units may be distinguished by number or name. With a parameter
called io-type the units can be grouped in input. hidden or output layer. Other parameters
capture activation value. initial activation. output value. bias value. activation function.
output function etc . Additional parameters such as position or subnet are used for visualiza­
tion in the XGUI.

Links are directed connections between two units . The direction designates the orienta­
tion of the activation transfer. Recursive connections are possible but redundant connections
are prohibited. Each link has a weight assigned to it. Negative values describe inhibitory con­
nections and positive values excitatory connections respectively. Sites can be compared with
dentrltes. A unit haVing a site relation has no direct incoming connection from other units.

(B) Net Functions and Training

When running the SNNS on a single-processor workstation the activation values of the
units must be computed in some sequential order. This order is defined in a socalled update

mode. There are five different update modes implemented:

-7-

• Synchronous. All units change their activation after each step. The new activation val­
ues are computed in an arbitrary order. After the new activation values have been
computed. the new output of the units is calculated. This looks like all units fired si­
multaneously.

• Random peT71U.1tation. The units compute their activation and output sequentially. The
order is defined randomly. but each unit is selected only once in a cycle (step).

• Random Same as random permutation. but there is no guaranty for a single updating
of units. Instead. units may keep their value or can be updated several times during a
cycle.

• Serial. The updating order is defined by the ascending unit number specified during net
generation. This is the fastest mode.

• Topological. The simulator sorts the units with respect to their topology. The activation
is computed from input to output. This mode provides good performance for feed-for­
ward nets because many units will reach very early their final output activation. and
will not be modified in a later stage.

These modes only are applied to the forward propagation phase from input to output. The
backward phase in learning procedures such as backpropagation is not affected.

An important aspect of training an artificial neural network is the question of how to
adjust the weights of the links to get the desired system behaviour.

In the SNNS. the weights are initalized with random values. The number of cycles needed
is influenced by the initial weight value. The learning algorithms are based on the Hebb-rule.
the delta-rule and the generalized delta-rule. Several activation functions are implemented for
units and links. In Version 2.0. there are five alternative learning algOrithms:

• Vanilla-Backpropagation.

• Backpropagation with momentum.

• Quickpropagation.

• Counterpropagation and

• Backpercolation.

(C) Programming Language Nessus

Nessus stands for 'Netzwerk Spezifikations Sprache der Universit<it Stuttgart'. It is a tool
to describe connectionist nets. their topology and dynamic behaviour at a high level. The
compiler generates a netfile with all specifications needed as input for the simulator kernel.
Because of bugs in this tool. there is no further support from Stuttgart. Therefore. Version 2.0
does not include Nessus. For generating connectionist networks. other tools have been devel­
oped. i.e. net editor and bignet.

(D) Graphical User Interface XGUI

The user communicates via XGUI with the simulator kernel. It provides mechanism for
generating. training. manipulating as well as visualizing a net. Furthermore. generation and

-8-

manipulation of patternfiles for net input is possible. Net states are shown in net displays.
while error report is displayed in the shell window from which the SNNS has been started. To
operate with SNNS there are several pull-up and pull-down windows described in [4.5).

The initial data for input and teach units are stored in file and read into memory to train
or test the net. The data may be either integer or floating point values.

In the SNNS User Manual (5) all components. functions and instructions are described
very clearly. Moreover. the (4) gives a brief overview about connectionist networks in general.
The integrated online help system is very useful and gives good support to work with the
simulator.

3 FUNCTIONAL COMPARISON OF THE SIMULATORS

For comparing the simulators ' functionality. we consider the number as well as the spec­
trum of facilities they offer for generating and working with connectionist networks. For a
comparison concerning performance. we selected a connectionist network running for all
simulators. Thus. one and the same topology and underlying functionality provide a com­
mon basis for all simulators in test.

Most of the information taken for comparison is extracted from the simulators ' manuals
and reports [1.2.3.4.5) . Other information concerns our experience while working with the
simulators. The results will be presented in tables.

(A) Simulator Functions

Table 1 shows the number of implemented standard functions. These are functions for
updating. learning and initializing the net. but also output and site functions.

PlaNet V.5.6 Py\1Mlion V.2.0 RCS V.4.2 SNNSV.1.3 SNNSV.2.0

updail fl.nction 1· ? 3 5 6

learn function 3· 1 2· 2 5

init function 2 1 1 1 2

activation function 1· ? 1· 11 11

output fl.nction 2· ? 1· 4 4

site-function 0 ? 9 5 5

Table 1: Number of standard functions prOvided by the simulators .

• More functions can be Implemented and easily applied by the user.

-9-

(B) Hard- and Software Requirements

Table 2 captures requirements of the simulators to the Hard- and Software on which they
should run. In particular, the required operating system and graphical system, the implemen­
tation language as well as the ability of the simulators for computer networks and for differ­
ent CPUs are reported.

PlaNet V.S.S Py\1Mlion V.2.0 RCSV.4.2 SNNSV.l .3 SNNSV2.0

operating system Unix Unix Unix Unix Unix

graphical system
X Wlfldow System,

X Window System X Window System X Window System X Window System Sunview

source code C C C C C

net'Mlrking ability ro yes ro ro ro

alternative CPUs yes yes yes yes yes

Table 2: Simulators requirements in hard- and software.

(C) Net Design

Table 3 lists possibilities for a user to design and generate connectionist networks. These
are the programming languages used, the existence of a net editor, and the number of possi­
bilities for generating nets.

PlaNet v.s.s Py\1Mlion V.2.0 RCS V.4.2 SNNSV.l .3 SNNSV2.0

programming lan-
nC,N·

C, Common Lisp,

IQlB9ll PlaNet Scheme" Nessus -

net editor ro yes yes yes yes

net gen. pes. 1 2 2 3 3

Table 3: Benchmarks for design connectionist networks.

(D) Acting with the Simulators

Table 4 contains a number of system services for working with the simulators. Here, we
focus on the operating modes, the occurrence of a graphical interface, and the mode of out­
put for controlling the network behaviour.

•

••

The programming language N Is distributed by Thomson CSF and Mimetlcs S.A. only free to
partners of Pygmalion ESPRIT 2059 and Galatea ESPRIT 5293 projects

All languages can be used when available on the system.

-10-

PlaNet V.5.6 Pygnalion V.2.0 RCSV.4.2 SNNSV.1.3 SNNSV2.0

operating mode system shell graphical interface graphical interface graphical interface graphical interface

handing
easy with system easy with easy with easy with easy with

shell I graphical interface graphical interface graphical interface I graphical interface

graphical interface yes yes yes yes yes

plXpose of
net visualization

ret visualization and net visualization and ret visualization and ret visualization and
graphical interface operating operating operating operating
output of system shell, graphical interface graphical interface system shell, system shell ,
net states graphical interface graphical interface I graphical interface

potentials of units
poEntials of poEntials of poEntials of poEntials of range of oulpUl and links learning units and links units units and links units and links

curves, etc.

Table 4 : System seIVices while running the simulators.

(E) Filesystem

Each of the simulators requires data to initialize the input and output units. The respec­
tive file functions provided by the simulators and further possibilities are listed in Table 5.
These are input file formats , capabilities for file handling and filr saving as well as saving of
the graphical output of a net. Note, for the ReS, there is no appropriate file input of patterns.
The user defines his own file formats as integer or float for initializing the input units or teach
units.

PlaNet V.5.6 Pygnalion V.2.0 RCS V.4 .2 SNNSV.1.3 SNNSV2.0

input file formats 2 4 - 2--- 2

file handling yes yes ro yes yes

salle net staE yes yes (restricted) yes yes yes

save
I graphical output yes ro yes ro ro

Table 5: System services while running the simulators.

(F) Experiences during Training Connectionist Nets

The entries of the Table 6 have been gained during the performance test. They indicate
rendering of learning results, the subjective speed of learning as well as termination of learn­
ing in a local minimum.

... There are several Integer and floating-point representation formats for pattern file.

-11-

PlaNet V.5.6 Pygnalion V.2.0 RCS V.4.2 SNNSV.1.3 SNNSV2.0

. . .
rendering of learning yes yes yes yes yes

subj. leaming speed very fast slow slow (average) fast (average) very fast

termination in
no statement ro no statement yes ro

local minima

Table 6: Learning benchmarks.

(G) Further Important Criteria

In Table 7, we have determined additional benchmarks important to qualify the alterna­
tive simulators. These are the possibility for combining them with other applications, their
fault tolerance, and their tolerance against errors in patterns as well as installation time,
quality of documentation, and the support we got from the distributors.

PlaNet V.5.6 Pygnalion V.2.0 RCS V.4.2 SNNSV.1.3 SNNSV2.0

combination with yes yes yes
other applications yes no statement (relocateable.simu- (interface functions) (interface functions)

lator)

fault tolerance very little tij1 average very little little
(average)

tolerance against
little little little little little pattem errors

installation-time ca. 20 min. ca. 30 min. ca. 50 min. ca. 40 min. ca. 25 min.

r'ityof . excellent tm gxxI gxxI excellent
umentatJon

(not available) (very good) (old version)

support not needed no answer no answer excellent excellent

Table 7: Additional criteria.

(H) Summary of Functional Benchmarks

Table 8 summarizes our experiences while working with and testing the simulators on a
Sun SparcStation.

In particular, all of the functionality listed in aspects (Al to (Gl are rated according to
criteria excellent (++). good (+l, average (0), bad H, and worse (--l. The high requirements of
the Pygmalion simulator are caused by the various problems (I.e. time errors and simulator
crashesl occuring while storing and loading of trained networks .

• Reproducing training (learning) results is not possible. because the presentation of learning
pattern happens in random order.

-12-

PlaNet V.5.6 Py~lion V.2.0 RCS V.4.2 SNNSV.1.3 SNNSV2.0

(A) + - 0 + ++

(8) average higl average average average

(C) + + 0 ++ ++

(0) ++ 0 0(-) ++ ++

(E) ++ -- - + +

(F) ++ - 0 ++

(G) ++ 0(-) 0 + ++

Table 8 : Summary of functional benchmarks.

4 COMPARISON OF SIMULATOR PERFORMANCE

For performance testing, an artificial neural net, having the same topology and functions,
is generated for all simulators. Therefore, a three-layered feed-forward-net using a backpropa­
gation learning function for recognizing printed characters is established.

4,1 Dimension and Topology of the Test Net

The input layer consists of 375 units arranged in a 15x25 Input matrix. The output layer
is limited to 26 units for characters 'A' to 'Z' respectively. For the practical use of a respective
net, number and connections of the hidden units is significant.

Uterature describes that a factor of 1.5 to 2 times the number of input units may be ne­
cessary for hidden units in fully connected networks. This is justified by the tolerance against
unknown patterns and the ability to adapt the net respectively. Training a corresponding net.
having about 250 hidden units (factor 1.5) and about 225,000 links, is very time-consuming
on a sequential computer. Even when reducing the number of hidden units to 100, there are
40.100 connections left to be updated at each cycle.

Several publications about character recognition using artificial neural nets [6,7,8] pro­
pose screening or coarse coding on input and hidden layers. This is similar to human percep­
tion where visual data is screened on the retina [9,10,11] .

For our test net, only the input layer has been screened. All units of a column or a row
have been connected to one hidden unit. Therefore, 40 hidden units are needed. They are
fully connected to the output layer. Using this topology (375 input units, 40 hidden units
and 26 output units), only 1. 790 connections have to be updated. This can be done within
acceptable time by a sequential computer. Additionally, the net topology has the strength to
be invariant against rotations up to 15°. Figure 1 schemes the topology of our test net
describing the different layers and their interconnection.

To test the simulators , we take one and the same set of patterns adapted to the corre­
sponding file types. One pattern file consists of ideal binary images of printed characters
(values 0 and 1 as unit activation) . A second pattern file contains the same pattern but the

-13-

zero values are changed by random numbers with random values. A third file contains pat­
terns being optically scanned and normalized to 15x:25 image dots.

Input Layer
Ouput Layer

Figure 1: Topology of the test net for character recognition.

4 .2 Simulator Benchmarks

While testing the given simulators with the net topology described above. Pygmalion and
RCS failed for reasons discussed later in this paper. Statements about the performance of the
simulators are based on the number of training cycles needed until a set of patterns was rec­
ognized. After 300. 500. and 550 cycles another pattern set was loaded. tested and then
trained. Training finished after 650 cycles. At this point. all trained patterns (including small
variations) can be well recognized.

The entries of Table 9 are the sum of the square distances between the teaching input
and the real output. It is the average error for each output unit considering all input
patterns. Because of the failure of Pygmalion and RCS. only PlaNet and SNNS results are
shown. Figure 2 Ulustrates the error curves respectively.

-14-

0,35

0,30

.... 0,25 g
CIl 0,20
CIl
0)

~ 0,15
~
!\I 0,10

0,05

0
0

after .. cycles PlaNet V. 5.6 SNNSV. l .3 SNNSV. 2.0

50 0.29175 0.33275 0.07931

100 0.13705 021871 0.01821

150 0.06591 0.15585 0.00789

200 0.03416 0.12235 0.00454

250 0.023:)6 0.10882 0.00296

:IX) 0.00980 0.09126 0.00211

0.11853 022364 0.07004

350 0.05790 0.16001 0.01017

400 0.03024 0.13448 0.00424

450 0.02621 0.12619 0.00252

500 0.02350 0.10613 0.00172

0.01326 0.10053 0.00435

550 0.00496 o.onoo 0.00156

0.00995 0.11245 0.00548

Em 0.00647 0.07211 0.002B2

ffiO 0.00426 0.06r04 0.00140

Table 9 : Error table for the simula tors during net training.

o PlaNet V. 5.6

• SNNS V.1.3

• SNNS V. 2.0

iii
100 200 300 400 500 600

number of cycles

Figure 2: Diagram of error values during training of the net.

I

700

Please note, that for obtaining the average error of a new pattern set to be learned, the
patterns must be trained for one cycle. This fact leads to the crack points shown in the dia­
gram of Figure 2 .

In the following, the performance of the individual simulators are discussed in more de­
tail. In particular, the average error after a certain number of cycles and the characters are re­
ported which are recognized best and worse (or not) by the simulators. All patterns tested
were presented in a random order in each cycle.

At first. the ideal printed character set is learned for 300 cycles. In the next step, the opti­
cally scanned pattern set is tested and trained. Consequently, after 500 cycles the ideal pat-

- 15-

tern set is presented again to the net and trained 50 cycles. Finally. the ideal character set
with a noisy pattern is loaded and trained. This procedure was applied to all simulators in
test (except Pygmalion).

(A) PlaNet

The topology of PlaNet network has the structure as described above. The leaming rate pa­
rameter was initialized by 11 = 0.2 and momentum by ex = 0.4 for training the net. Table 10
surrunarizes the results of the test. The average error designated by the entries in the tables is
calculated by averaging the squared error across all output units as well as across all pattern.

after .. cycles

50

100

150

200

250

3Xl

350

400

450

500

550

ax>

ffi()

(B) SNNS

average patEm patEm

error bad recognized good recog1ized

0.011221 10.020758 W 0.001394

0.005271 10.019649 V 0.000543

0.002535 I 0.019265 V 0.000254

0.001314 I 0.018766 V 0.000210

0.000887 10.007742 K 0.000218

0.000377 10.001365 V 0.000106

P 0.031288 L 0.000682

0.002227 A 0.019335 H 0.000357

0.001163 A 0.019302 H 0.000206

0.001008 A 0.019161 H 0.000150

0.000004 A 0.017764 W 0.000113

10.009405 Y 0.000057

0.000189 10.000541 U 0.000046

10.011945 o 0.000274

0.000249 A 0.000398 L,M 0.000109

0.000164 A 0.000259 L,M 0.000079

Table 10: Error table for the PlaNet simulator
and characters which were bad and good recognized.

For testing SNNS. there are no structural modifications of the connectionist network. So.
lt is identical to the PlaNet network. Note that Version 1.3 of SNNS only provides the Vanilla­
Algorithm for backpropagation learning with one parameter (initialized by a value of 11 = 0.2) .
The errors reported in the Table 11 and 12 correspond to the sum of the square distances be­
tween the teaching input and the real output. overall output units summed over the number
of all patterns presented. To directly compare these values to those of the PlaNet test, they
have to be divided by the number of characters. 1.e. 26.

-16-

after .. cycles
average paUem paUem

50

100

150

200

250

:m

350

400

450

500

560

ax>

€60

error bad recognized good recoglized

0.33275 H,K,O,a,R" Y0231

021871 H,O,a ,R" YO.14O

0.15585 H,O,a,R" YO.112

0.12235 H,O,a,R" YO.094

0.10882 H,O,a,R" YO.085

0.09126 H,O,a,R" V 0.079

022364 A,C,H,N,O,a ,R" X 0.253

0.16€61 A,C,H,N,O,a" LO.117

0.13448 A,C,H,N,O,a " LO.092

0.12619 A,C,HN,O,a" LO.078

0.10613 A,H,O,a" LO.068

0.10053 H,O,a ,R" CO.013

0.07760 H,O,a" JO.049

0.11245 H,O,a" 80.128

0.07211 H,O,a" TO.079

0.068)4 H,O,a" TO.066

Table 11 : Error table for the SNNS simulator, Version 1.3,
and characters which were recognized as bad and good .

after .. cycles
average paUem paUem

50

100

150

200

250

:m

350

400

450

500

560

ax>

€60

error bad recognized good recognized

0.07931 E 0.759 X 0.156

0.01821 E 0.366 W,X 0.091

0.00789 E 0.195 W 0.064

0.00454 E 0.152 W 0.050

0.00296 E 0.131 W 0.041

0.00211 E 0.107 W 0.035

0.07004 A 1.000 T 0.047

0.01017 00.152 T 0.0.53

0.00424 U 0.102 T 0,044

0.00252 U O.oao T 0.038

0.00172 U 0.067 T 0.034

0.00435 A 0.183 PO.D11

0.00156 E 0.096 V 0.013

0.00548 80.989 M 0.063

0.00282 E 0.097 M 0.053

0.00140 E 0.072 V 0.023

Table 12: Error table for the SNNS simulator, Version 2.0,
and characters which were recognized as bad and good

-17-

Note. characters labeled by a .• ' could not be classified (recognized) correctly. e.g. H,O.Q.R
after 100 cycles. However. to recognize these characters some additional hundred training cy­
cles are needed. Consequently. all patterns were recognized correctly.

For training Version 2 .0. another backpropagation algorithm with momentum (11) and.flat­

spot-elimination (c) parameters is implemented. Initial values are 11 = 0.2. 11 = 0 .4. and c = 0.1.

As reported in Table 12. the average error decreases faster than with the backpropagation
algorithm of version 1.3. All characters were recognized by nearly the same accuracy.

(C) RCS

For testing RCS. the structure of the net must be modified . A second hidden layer with 26
units was added. This additional layer is fully connected to the first hidden layer. Each unit
of the second hidden layer is connected to one corresponding output unit. Thus. the network
consists of 467 units and 1.816 links.

Another modification concerns the procedure of how patterns are presented to the net.
Because RCS does not support any file handling for file input. the test patterns cannot be
presented in a random order. An implemented test function similar to the examples given by
the RCS did not work for the test net. Therefore. it was impossible to get results of recognition
rates for the patterns (characters). However. we have not been able to visualize changes in po­
tential for units of the first hidden layer. Therefore. no exact statements concerning learning
cycles are needed and recognition can be made - apprOximately about 150 - 200 cycles longer
than PlaNet or SNNS.

(D) Pygmalion

The Pygmalion only allows the design of fully connected structures . Therefore. it was im­
possible to generate a screened network. Perhaps other structures can be generated. but there
is no document available which gives any information about this .

However. two variants of connectionist networks were generated for our test:

1. input and output like in the other networks. but 80 hidden units

i1. input and output like in the other networks. but 120 hidden units with a fully con­
nected structure.

This implies many more connections to update each cycle and thus. more cpu-time for
training.

Although patterns are generated as described in the documentation. an error message is
displayed when loading the patterns. It indicates that 26 rows of data are expected as input.
but only 25 rows are in the patternfile. Another error message appears if the pattern file con­
tains more than 25 patterns. These messages are ignored because no damage could be de­
tected. Thus. every pattern must be trained on its own. Therefore. the simulator needs further
100 to 200 cycles longer than RCS to learn one pattern.

-18-

A batch training tool is integrated into the Pygmalion simulator, but because of an un­
identifiable bug, this tool could not be used. As reported in the Pygmalion documentation,
there are thousands of cycles necessary for training a net by an entire set of patterns.
Moreover, the trained (partial trained) net could not be saved for a later reuse. Time out errors
occur when saving and loading the net. Thus, a correct testing of this simulator was impos­
sible.

5 DISCUSSION

For the Pygmalion simulator, it is not possible to give any recommendation because of the
problems occuring while testing the simulator and the additional lack in support from the de­
velopers. The simulator might be suitable for small connectionist networks. Perhaps the un­
derlying hardware may influence the performance. Unfortunately, we had no possibility to
test the simulator on other platforms. For the Pygmalion Version 2 .0, the functionality of
Version l.x is only partially implemented.

The Rochester Connectionist Simulator is one of the first connectionist simulators im­
plemented. It is the standard simulator in general. It allows defining network functions in C
code. In this test, we could not figure out why the RCS needs a second hidden layer to show
output values while training the net. We checked all possibilities described to fit this problem,
but we had no success. Another issue for criticism is the lack of file functions to handle pat­
terns for input and teach unit initialization.

The PlaNet simulator brags with excellent learning speed. There are only few library func ­
tions for updating and learning available. Further functions can be easily written in the
Netfile of PlaNet. However, these functions can be specifically used for the net in which they
are defined. Designing large connectionist nets, of a complex topology, is a very hard job.
Here, some additional support by the system could be given . An integration of the simulator
or a connectionist network into other user applications is not easy because documentation
does not give details . Generally, PlaNet is a flexible tool which allows user-implemented net
functions .

SNNS version 1.3 needs many learning cycles to train a connectionist network. Version
2 .0 provides more learning functions. Here, the learning speed is nearly equivalent to PlaNet.
The set of functions to operate with SNNS (Version 2 .0) is the largest one of the tested simu­
lators. Moreover, user-defined functions in C code can be defined and linked to the system li­
brary. There are many different net types supported. With integrated tools for generating nets
it is easy to build even complex networks. All interface functions are described in the docu­
mentation in an exact manner to be used in other applications.

When changing the network topology, the net must be redeSigned in all simulators. There
is no possibility in modifYing the topology dynamically during runtime. Here, only SNNS sup­
ports dynamic change of learning as well as update functions during training and working
phase. The other simulators use functions which are described in the Netfiles. Thus, there is
no possibility for changing the funtions .

-19-

All in all, the simulators tested seem to be valuable for networks of small and middle size.
For instance, SNNS may be used for networks up to 104 units and 106 links, e.g., it requires
about 230 MB memory for a net having 104 units and 2.107 links.

As a conclusion, we can state, that the performance of the simulators may change with
the net stIucture. Nevertheless, as a result of our comparison, we can only recommend PlaNet
and SNNS. The better equipment and faster learning seems to make SNNS the better choice.
In September 1991 the SNNS simulator, Version1.3 was awarded the 'German Federal
Research Software Prize 1991 ' by the German Federal Ministry of Science and Education.

REFERENCES
[lJ Miyata , Y .: "A User's Guide to PlaNet Version 5 .6", The Reference Manual for PlaNet

Version 5.6; University of Colorado, Boulder, Computer Science Department, 1991.
[2J Hewetson, M.; et.a!. : Pygmalion Neurocomputing Tutorials , University College London,

1991 .
[3J Goddard , N.H.; et.a!. : "Rochester Connectionist Simulator Technical Report 233",

University of Rochester, Computer Science , 1989.
[4J Zell , A. ; et .a!. : "SNNS Benutzerhandbuch", Bericht Nr. 1/91, SNNS Nessus Handbuch,

Bericht Nr. 3/91 ; Universitat Stuttgart Fachbereich Informatik, 1991.
[5J ZeIl, A.; et.al .: "SNNS User Manual", Version 2.0, Report No. 3/92, Universitat Stuttgart

Fachbereich Informatik, 1991.
[6J LeCun,Y.; et.al .: "Handwritten Digit Recognition with a Back-Propagation Network";

Neural Information Processing System Volume 2, Morgan Kaufmann, 1990.
[7J Fukushima, K. ; Miyake, S .; Ito , T .: Neocognitron: "A Neural Network Model for a

Mechanism of Visual Pattern Recognition", IEEE Transaction on System, Man and
Cybernetics 13, 1983.

[8J McClelland , J.L. ; Rumelhard, D.: "Parallel Distributed Processing", Volume 1 - 3, MIT
press , Cambridge, Massachusetts, 1988.

[9J Poggio, Tomaso; Koch, Christof: "Synapses That Compute Motion"; Scientific American
5/87 , p 42-48.

[lOJ Hubel, David H.; Wiesel, Torsten N. : "Brain Mechanisms of Vision"; Scientific American
9/79, p 130-144.

[llJ Frisby, John P.: "Sehen", Bertelsmann Club , 1979.
[12J Lutzy, Ottmar; Dengel, Andreas : "A Comparison of Simulators for Artificial Neural

Nets", IEEE Expert, 1993.

- 20-

Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben .

DFKI Research Reports

RR-92-25
Franz Schmalhofer, Ralf Bergmann, Olto Kahn,
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer, Thomas Reinartz,
Bidjan Tschaitschian : Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR-92-27
Franz Schmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi, Christoph Klauck :
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages
RR-92-30
Rolf Backofen, Gert Smolka :
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster:
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

DFKI
-Bibliothek­
PF 2080
D-67S0 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp Hanschke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR-92-37
Philipp Hanschke : Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke, Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp lIanschke, KnUl Hinke/mann : Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph K/auck, Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisapeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-4S
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages
RR-92-46
Elisabeth Andre. Wolfgang Finkler. Winfried Gra/.
Thomas Rist. Anne Schauder. Wolfgang Wahlster :
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-4S
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-S0
Stephan Busemann:
Generierung natilrlicher Sprache
61 Seiten

RR-92-S1
Hans-Jurgen Burckert. Werner Nutt :
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-S2
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHl- A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-S3
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92-S4
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-SS
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-S6
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-SS
Franz Baader. Bernhard Hol/under:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-S9
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults. Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-JUrgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader. Berhard Hol/under. Bernhard Nebel.
Hans-JUrgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jurgen Burckert. Bernhard Hol/under. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-JUrgen Burckert. Bernhard Hol/under. Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-0S
Harold Boley. Philipp Hanschke. Knut Hinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke. Jorg Wurtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit. Francesco M. Donini. Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel. Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader. Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren. Andreas Podelski.RalfTreinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR-93-15
Frank Berger. Thomas Fehrle. Kristof Klockner.
Volker SchOlies. Markus A. Thies. Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka. Martin Henz . Jorg Wurtz: Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-20
Franz Baader. Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-23
Andreas Dengel. OUmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch. Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

DFKI Technical Memos

TM-91-12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PA TR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Interpreter
16 pages

TM-91-14
Rainer Bieisinger. Rainer Hoch . Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-0 1
Lijuan Zhang : Entwurf und Implementierung eines
Compilers zur Transformation von
W erkstlickrepr'dsen tationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller. Jorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer. Christoph Globig. J6rg Thoben:
The refilling of plans by a human expert
10 pages

TM-92-06
Otto Kuhn. Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn. Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

OFKI Oocuments

0-92-13
Holger Peine : An Investigation of the Applicability
of Terminological Reasoning to Application­
Independent Software-Analysis
55 pages

0-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur Reprasentation
von Features in ClM
98 Seiten

0-92-15
DFKI Wissenschaftlich-Tcchnischer lahresbericht
1991
130 Seiten

0-92-16
Judith Engelkamp (IIrsg.) : Verzeichnis von Soft­
warekomJXlnenten flir natiirlichsprachliche Systeme
189 Seiten

0-92-17
Elisabeth Andre. Robin Cohen . Win/ried Gra/.
Bob Kass . Cecile Paris . Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-S).

0-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

0-92-19
Stefan Dittrich. Rainer lIoch: Automatische,
Deskriptor-basierte UnterstiHzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

0-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grdlnmars
57 pages

0-92-22
Werner Stein : Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

0-92-23
Michael Heifert: Parsen und Generieren der Prolog­
artigen Syntax von RELFUN
51 Seiten

0-92-24
Jurgen Muller. Donald Steiner (IIrsg.):
Kooperierende Agenten
78 Seiten

0-92-25
Martin Buchheit: Klassische Kommunikations- und
Koorclinationsmodelle
31 Seiten

0-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seiten

0-92-27
Martin lIarm. Knut Hinkelmann . Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

0-92-28
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell
zur Reprasentation von Nachrichtentypen
56 Seiten

0-93-01
Philipp lIanschke. Thom Fruhwirth : Terminological
Reasoning with Con<;traint Handling Rules
12 pages

0-93-02
Gabriele Schmidt . Frank Peters .
Gernod Laufkotter: User Manual of COKAM+
23 pages

0-93-03
Stephan Busemann. Karin Harbusch(Eds.) :
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

0-93-04
DFKI Wisscnschaftlich-Tcchnischer lahresbericht
1992
194 Seiten

0-93-06
Jurgen Muller (IIrsg.) :
Beitrage zum GrUndungsworkshop der Fachgruppe
Verteilte KUnstliche lntelligenz Saarbrucken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-93-07
Klaus-Peter Gores. Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse
53 Seiten

0-93-08
Thomas Kieninger. Rainer Hoch: Ein Generator mit
Anfragesystem fiir strukturierte WorterbUcher zur
UnterstULZung von Texterkennung und Textanalyse
125 Seiten

Comparative Study of Connectionist Simulators

Andreas Dengel, Ottmar Lutzy
RR-93-23

Research Report

