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Abstract

In this paper some improvements for the basic algorithm for anti�uni�cation
are presented�
The standard �basic� algorithm for anti�uni�cation still may give too general
answers with respect to the intended use of the result� �Too general� means
obtaining an unwanted answer when instantiating some variables of the anti�
uni�cation output term� To avoid this	 a term sometimes should be general�
ized by regarding certain �semantic� restrictions� In PAntUDE �partial anti�
uni�cation with domains and exclusions� two principal improvements of the
basic algorithm were implemented and tested
 it can use masks for prevent�
ing anti�uni�cation of certain arguments �partial anti�uni�cation�� it can also
use �nite domains for enumerating input�term constants instead of introduc�
ing a new �universally quanti�ed� variable	 and �nite exclusions for specifying
forbidden constants �anti�uni�cation with domains and exclusions��

� Introduction

The concept of anti�uni�cation was introduced by Plotkin 	Plotkin
 ����� and ex�
plained by M�M� Richter 	Richter
 ������ The name 
anti�uni�cation� indicates its
duality to the standard uni�cation algorithm� given two terms
 anti�uni�cation will
�nd the lgg �least general generalization� while uni�cation will �nd the mgu �most
general uni�er�� The dual operation of generalization and specialization can be seen
in �gure �� To have the possibility of regaining the original terms one binding for each
original term is created during anti�uni�cation� First of all
 the term 
least general
generalization� must be de�ned�

P(f(X))

P(f(a)) P(f(b))

P(Y)

GeneralizationSpecialization

(Y/f(b))
(Y/f(X)))

(X/b)(X/a)

(Y/f(a))

Figure �� a simple example of specializating�generalizating two terms

It is obvious that a term can be generalized in di�erent ways� The aim now is to
�nd the 
least general generalization� �lgg� of two given terms� The lgg can be seen
as the generalization that keeps the anti�uni�ed term t as special as possible so that
every other generalization would increase the number of possible instances of t in
comparision to the possible instances of the lgg� It is important to �nd the most spe�
ci�c one
 since every instance could be a wrong one in the considered domain� After
having realized the importance of the lgg for anti�uni�cation its formal de�nition will
be given�
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For two terms � and � we say � � � �spoken � is more general than �� �� ���
����� ��
Let A� ��� AN be some words �literals or terms�� The lgg of these terms is the term �
with � � Ai�� � i � N� and for every other term � with � � Ai it is also true that
� � �� � is now called the lgg for A� ��� AN � For each Ai there exists a substitution
�i to transform the lgg back into Ai
 i�e� �i�i � Ai

The following example will illustrate the way anti�uni�cation works�

� Input�terms�
f�a� g�b� h�X��� c�
f�d� g�j�X�� a�� c�

� First�step of anti�uni�cation� take �rst subterm out o� the input�terms
 anti�
unify them and add the adequate bindings to the lists of bindings�

�� � ��a�X���
�� � ��a�X��

� Repeat this basic step of anti�uni�cation until every subterm in the input�terms
has been adapted� If necessary use the basic step of anti�uni�cation recursively
on subterms�

� Replace every subterm in the �rst term by its adequate binding� During this
step take care that every used substitution is compatible with the substitutions
in the second term�

� Result after substitution�
lgg � f�X�� g�X��X��� c�
�� � ��a�X���b�X���h�X��X���
�� � ��d�X���j�X��X���a�X���

Anti�uni�cation is an elementary step for quite a lot of learning algorithms� The
goal of anti�uni�cation is to detect a least general generalization �lgg� of some given
terms or facts� Most of the time
 the lgg detected by anti�uni�cation still is too
general� E�g� given the two facts likes�john�mary� and likes�peter�jill� as an
input
 the lgg of these two facts would be likes�X�Y�� It is obvious that this is much
too general
 but with the standard approach of anti�uni�cation you would not get a
more specialized solution�
Another problem is that sometimes your intention is to �nd out whether a subcase
�speci�ed through special values of one or more subterms� of some given terms have
something in common� In this case
 not all of the given terms should be generalized
but only those with a certain value in this very subterm�

Example ��� Let the knowledge base contain facts representing information about
the atom structure of three elements
 carbon
 silicon and hydrogen� The �rst ar�
gument of atom is the index number
 the second one is the name
 the third one
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contains some properties of this element �metall �m�
 semimetall �sm�
 semiconduc�
tor �sc�
 gaseous �g�� electron con�guration of the last three shells� weight and a list
of possible oxidations��

atom��� name�C� Carbon�� prop�sc� eco��� �� ��� 	�
�		� oxi����

��� �����

atom�	�� name�Si� Silicon�� prop�sc� eco��� 
� ��� �

�
���

oxi���� ��� �����

atom�	� name�H� Hydrogen�� prop�g� eco�	� �� ��� 	
��� oxi��	� �	�

����

with the knowledge that you want to learn something about elements with the sub�
term

oxi ���� ��� ���


These facts would be generalized to
atom �X�� name �X�� X��� prop �sc� eco �X�� X�� X��� X�� oxi

�X��X�	�X�����

in spite of loosing most of the interesting facts you were looking for� In PAntUDE
we were trying to solve some of these problems� First the algorithm on which the
improvements took place will be presented�

� The Basic Algorithm

The basic algorithm for anti�uni�cation works in quite a simple way� The input are
two terms and the algorithm returns a list containing the lgg of the two input�terms
and the bindings to transform each input�term into the obtained lgg� In addition to
the input�terms there may also be given a list of initial bindings for one or both of the
input terms� This is realized with two key parameters �bind� for the �rst term and
bind� for the second one�� The algorithm can fail only in one case� the top�symbols
or the length of the two terms are di�erent� This makes sense since without this
restriction you would get just a new variable when anti�unifying the facts of a whole
knowledge base and this would be wrong since top�symbols must not be variables
but only predicates are allowed� Below two examples �one with key�parameter and
one without it� are given to show the way anti�uni�cation works�

Example ��� Taking two of the facts from the �rst example
 anti�uni�cation can
start�

term� � atom��� name�C�Carbon�� prop�sc�eco ��������	�
�		�oxi

������������

term� � atom�	�� name�Si�Silicon��

prop�sc�eco���
�����

�
���oxi������������

will return the anti�uni�ed term�
atom�X	� name�X��X��� prop�sc�eco���X��X���X��oxi����������

with the substitution �the algorithm represents substitutions as lists of pairs�
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bind�� ��	�
�		 X�� �� X�� �� X�� �CARBON X�� �C X�� �� X	�� for term �
and
bind�� ���

�
�� X��� �� X�� �
 X�� �SILICON X�� �SI X�� �	� X	�� for
term �

Example ��� This example will show how given substitutions take place in an anti�
uni�cation step�

term� �atom��� name�C�Carbon�� prop�sc� eco�������� 	�
�		� oxi

������������

term� � atom�	�� name�Si�Silicon�� prop�sc� eco���
���� �

�
���

oxi������������

with the given initial bindings

bind����C SHORT� �	�
�		 WEIGHT��

bind����Silicon CHEMICAL�NAME��

will return the anti�uni�ed term�

atom �X	�name�SHORT�CHEMICAL�NAME�� prop�sc�eco���X��X���WEIGHT�oxi����������

In our implementation of anti�uni�cation you need not always exactly two terms
to be generalized but as many terms as you like may be given to the system to
be anti�uni�ed� The algorithm will anti�unify all terms matching in the top�symbol
and return a list with the obtained lggs� So anti�uni�cation makes obvious
 which
characteristic items two or more terms have in common� In the example given above
the lgg showed us of course the formal structure but also that Carbon and Silicon
have the same oxidation�numbers and an equal number of electrons on the �rst orbit�
The bindings which may be added to the input can help to ease the understanding
for the reader�

�



� Partial Anti�Uni�cation

In the following I will present a method improving the standard algorithm of section
�� It was developed in the KES �Knowledge Evolution System� group of the VEGA
�Validation and Exploration with Global Analys� project at the DFKI Kaiserslautern
based on ideas by Knut Hinkelmann� To obtain new interesting facts out of the knowl�
edge base
 it is more important to see which parts of the two terms did not change�
For example � if we want to learn something about chemical elements � we could ask
what all elements with the oxidation number � � �� have in common� For this pur�
pose we can not use a standard anti�uni�cation because this would build the lgg of
all given elements and so give unwanted �too general� answers� So we need some tools
to inhibit the anti�uni�cation with elements that don�t have the desired values� Thus
the algorithm has an extra key�parameter� 
keep�� In this parameter
 every position
in the input terms you do not want to be changed are marked by an special sign�
An anti�uni�cation can only take place
 if the two terms are uni�able in this very
�marked� positions�

Example ��� This example will show the usefulness of partial anti�uni�cation for
�nding interessting knowledge

� Input�
atom���� name�Fe� Ferrum�� prop�m� eco�
� 	�� ��� ��

��� oxi����

�����

atom���� name�Sm� Samarium�� prop�m� eco���� 
� ��� 	��
���

oxi���� �����

atom���� name�Ir� Iridium�� prop�m� eco���� 	�� ��� 	��
���

oxi���� �����

atom��
� name�Ce� Cerium�� prop�m� eco���� 
� ��� 	��
		��

oxi���� �����

atom���� name�Os� Osmium�� prop�m� eco���� 	�� ��� 	��
�� oxi����

�����

atom�	� name�H� Hydrogen�� prop�g� eco�	� �� ��� 	
��� oxi��	�

�	���

� Partial anti�uni�cation of these facts with the keep�parameter

keep �� � � � ��

will result in the following facts�

atom�X�� name�X��X��� prop�m� eco�X��X�� ���X�� oxi���������

atom�Y�� name�Y�� Y��� prop�m� eco�Y�� Y�� ��� Y�� oxi���������

atom��� name�H�Hydrogen�� prop�g� eco��� �� ��� ����� oxi���������
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� The resulting information can be interpreted in the following way� Ele�
ments with the same oxidation behaviour seem to have to same outer
appeareance �metal�� In addition the number of electrons on the last
shell is equal� If instead of parial anti�uni�cation the basic anti�uni�cation
algorithm would have been used on these facts
 the result would be
atom�X�� name�X��X��� prop�X�� eco�X��X��X���X
� oxi�X��X�	����
This would not have been useful to gain any new knowledge�

� Anti�Uni�cation with Finite Domains and Fi�

nite Exclusions

In this version of anti�uni�cation � introduced without patialness in 	Boley
 �����

� domains and exclusions are used instead of variables� A domain is a term listing
all possible values a correspoding free variable should take
 and an exclusion �the

negation� of a domain� lists all values such a variable is not allowed to take� In the
representation language RELFUN �nite domains and exclusions are treated as �rst�
class citizens� Most of the following examples are taken out of the aboved�mentioned
paper�
When anti�unifying two terms with di�erent constants in corresponding positions

PAntUDE yields a dom term containing these constants
 not a �sometimes too general�
new variable� For a constant and a structure it has to yield a new variable since
current dom terms cannot contain structures� Generally �constants can be treated
as singleton domains�
 domain anti�uni�cation of two dom terms yields their union
�uni�cation� intersection�� Identical dom terms can directly yield one copy unchanged

short�cutting spurious unions�

The complementary exclusion anti�uni�cation for a variable and an exclusion
yields a variable in the manner classic anti�uni�cation handles variable�constant pair�
ings� It yields the intersection �uni�cation� union� of two exc terms� For an exclusion
and a constant �singleton domain� it yields the exc term minus the constant�

��� Anti�uni�cation with �nite domains and �nite exclu�

sions

Generally
 the domain�exclusion anti�uni�cation of a dom and an exc term
 in any or�
der
 yields the exc termwith the elements of the dom term set�theoretically subtracted
�uni�cation� domain with exclusion subtracted�� An empty�exclusion outcome
 as
usual
 represents an always successful new variable� Altogether
 the domain�exclusion
complementarity commutes nicely with the uni�cation�anti�uni�cation duality�

The example below will help to understand the way anti�uni�cation with domains
works� Given the �� relational facts for the predicate separates�

separates�pacific�canada�japan�


separates�pacific�mexico�japan�


separates�pacific�usa�japan�


separates�atlantic�canada�denmark�


separates�atlantic�canada�france�
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separates�atlantic�canada�germany�


separates�atlantic�canada�italy�


separates�atlantic�canada�spain�


separates�atlantic�canada�sweden�


separates�atlantic�canada�uk�


separates�atlantic�mexico�denmark�


separates�atlantic�mexico�france�


separates�atlantic�mexico�germany�


separates�atlantic�mexico�italy�


separates�atlantic�mexico�spain�


separates�atlantic�mexico�sweden�


separates�atlantic�mexico�uk�


separates�atlantic�usa�denmark�


separates�atlantic�usa�france�


separates�atlantic�usa�germany�


separates�atlantic�usa�italy�


separates�atlantic�usa�spain�


separates�atlantic�usa�sweden�


separates�atlantic�usa�uk�


A simplemethod for �least general� generalization of these facts is pairwise domain
anti�uni�cation of the input facts� Thus we get the result

separates�dom�pacific�atlantic��dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk�japan��


This fact is more speci�c than the term seperates �X�Y�Z� resulting from the basic
anti�uni�cation algorithm� However this can still be too general� Using our knowledge
from geography
 we can see that it represents a number of wrong facts� For example

the paci�c doesn�t intersect Canada from Denmark� These wrong conclusions can be
extracted out of the anti�uni�ed term by combining domain�exclusion anti�uni�cation
with partial antiuni�cation�

An example of exclusion anti�uni�cation can take two versions of a fact as input�

likes�X�exc�mary�claire�linda��
 � Everybody likes all except MCL

likes�john�exc�mary�tina��
 � John likes all except Mary � Tina

Anti�uni�cation generalizes them via an intersection of the exclusions in the second
argument�

likes�X�exc�mary��
 � Everybody likes all except Mary

This is the least general generalization of the input facts since exactly the subex�
clusion common to both facts is kept� In cases where we have a closed universe

say fann� claire� john� linda�mary� peggy� susan� tinag the inputs can be rewritten
as complementary domain facts�

likes�X�dom�ann�john�peggy�susan�tina��
 � ���

likes�john�dom�ann�claire�john�linda�peggy�susan��


�



Domain anti�uni�cation via union generalizes them to

likes�X�dom�ann�claire�john�linda�peggy�susan�tina��


which is the complement of the exclusion�anti�uni�cation result above� Finally

domain�exclusion anti�uni�cation of the input facts

likes�X�exc�mary�claire�linda��


likes�john�dom�mary�tina��
 � ����

via subtraction generalizes them to

likes�X�exc�claire�linda��


Here
 the exclusion is minimally weakened �its extension being minimally enlarged�
to accomodate what is speci�ed by the domain� This can again be illustrated for the
case of a closed universe� anti�unify ��� with ���� and re�complement the result�
Such least general generalizations by domain�exclusion anti�uni�cation thus remove
dom�exc contradictions in a set of clauses
 e�g� about John�s liking of Mary in the
above input facts� similarly
 exclusion anti�uni�cation removes the less obvious exc�
exc contradictions concerning constants that occur in only one of the exclusions
 e�g�
about John�s liking of
 say Claire
 in the previous input facts� This may be exploited
for 
theory revision� of knowledge bases containing exclusion terms�

��� Partial anti�uni�cation with �nite domains and �nite

exclusions

Using the keep�operator described in Section � on the �rst term of the above example
of input terms
 these facts can be generalized to

separates�pacific�dom�canada�mexico�usa��japan�


separates�atlantic�dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk��


It is easy to see that this isn�t a generalization but only a compression of the
facts
 since there can�t be extracted any new information out of the new facts� This
occurs because all countries separated from another country by the same ocean are
always identical� So let us add just one new fact to our little knowledge base�

separates�atlantic�panama�denmark�


Using PAntUDE on the facts above together with this new fact we will get a real
generalization�

separates�pacific�dom�canada�mexico�usa��japan�


separates�atlantic�dom�canada�mexico�usa�panama��

dom�denmark�france�germany�italy�spain�sweden�uk��


This generalized atlantic fact expresses more information than the input facts

namely an induction from Denmark to the other European countries �which happens
to be empirically true�� again multiplying out the result makes these induced facts
explicit�

�



separates�atlantic�panama�france�



 
 


separates�atlantic�panama�uk�


It will need quite a lot of domain knowledge to decide which parameters to keep
and which are allowed to be generalized�

� Conclusion

Several tests with PAntUDE were made on realistic sample knowledge bases
 includ�
ing fact bases on chemical properties of certain materials� The entire implementation
is realized in Common Lisp �lucid����� on sun�workstations� The complete system of
PAntuDE is listed in the appendix and also available on ftp�
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A Listing of PAntUDE

��� This is an complete version containing all the implemented improvements

��� of the basic anti�unification algorithm for

��� generalizing two terms
 The form of variables is the one used in

��� the Colab�system
 February 	���


���� Copyright �c� 	��� by Cornelia Fischer
 This program may be freely

���� copied� used� or modified provided that this copyright notice is included

���� in each copy of this code and parts thereof


���� This version of anti�unification takes a complete KB of facts as input

���� and returns

���� a list containing the anti�unification found for the given terms


���� In addition to the basic algorithm you may add a keep�operator to the

���� arguments
 this operator makes sure� that the two terms have to match in

���� at this very argument position
 For example the two terms f�a b� f�c d�

���� used with the keep�operator f�� �� wouldn�t be anti�unified� because a

���� and b don�t match
 In addition the algorithm don�t care� if the length

���� of the two terms is equal� the shorter term will be enlarged with the

���� missing elements from the other term before anti�unification takes place


�SETQ �PRINT�PRETTY� T�

�defun Pantude �WB�list �optional �keep nil� �key �toprint nil��

�remove�duplicates WB�list �test ��equal�

�setq erg nil�

�do� �

�lga�erg �car WB�list� �car not�antiunified��

�not�antiunified �cdr WB�list� �cdr not�antiunified���

��null not�antiunified��

�let ��bind	 nil�

�bind� nil�

�liste nil��

�do ��nau not�antiunified �cdr nau���

��null nau��

�let ��erg �lga lga�erg �car nau� keep bind	 bind� toprint���

�if �car erg� �antiunification sucessfull

�setq lga�erg �car erg� bind	 �cadr erg�

bind� �caddr erg��

�if liste

�setq liste �append liste �list�car nau����

�setq liste �list �car nau���

�

�

��



�

�

�setq not�antiunified liste�

�

�if erg

�setq erg �append erg �list lga�erg���

�setq erg �list lga�erg��

�

�

�format t �����

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

Ergebnis� �s��

�����������������������������������������������������������������������������

������������������������������������������������������������������������������ erg�

erg

�

�defun dom�t �x� �and �consp x� �eq �dom �car x����

�defun exc�t �x� �and �consp x� �eq �exc �car x����

�defun exc�intersection �x y�

�mk�exc �intersection �cdr x� �cdr y� �test ��equal���

�defun dom�union �x y�

�mk�dom �union �cdr x� �cdr y� �test ��equal���

�defun exc�dom �x y�

�mk�exc �set�difference �cdr x� �cdr y� �test ��equal���

�defun mk�dom �elist�

�cond ��null elist� nil�

��null �cdr elist�� �car elist��

�t �cons �dom elist����

�defun mk�exc

�elist�

�cond ��null elist� �id�

�t �cons �exc elist����

�defun vari�t �x� � test if x is a variable

�AND �consp x� �equal �car x� �vari���

�defun dom�anti�unify	 �a b new�term�

��



��� Returns a new�term which anti�unifies a � b

�cond ��OR �eql a b�

�vari�t a�

�vari�t b��

�if �vari�t a�

�list new�term a�

�list new�term b�

�

�

��AND �atom a��atom b�� � two different constants appear
 Create a new domain

�list new�term �mk�dom �list a b���

�

��dom�t a�

�cond ��dom�t b� �list new�term �dom�union a b���

��exc�t b� �list new�term �exc�dom b a���

�t �list new�term �dom�union a �list �dom b���� � add b to domain

�

�

��exc�t a�

�cond ��dom�t b� �list new�term �exc�dom a b���

��exc�t b� �list new�term�exc�intersection b a���

�t �list new�term�exc�dom a �list �dom b���� � restrict b from exception

�

�

��dom�t b�

�list new�term�dom�union b �list �dom a��� � add a to domain

�

��exc�t b�

�list new�term�exc�dom a �list �dom b��� � restrict a from exceptions

�

��not �equal �first a� �first b��� � two different function�symbols appear
 Cr

�list new�term �mk�dom �list a b���

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�setq new �first a��

�if �� i 	�

�setq new �anti�unify� �nth i a� �nth i b� new��

�setq new �anti�unify	 �nth i a� �nth i b� new���

�

�list new�term new�

�

�

�

��



�defun dom�anti�unify� �a b new�term�

��� Returns a new term which anti�unifies a � b

�cond ��OR �eql a b�

�vari�t a�

�vari�t b��

�if �vari�t a�

�append new�term �list a��

�append new�term �list b��

�

�

��AND �atom a��atom b�� � two different constants appear
 Create a new domain

�append new�term �list �mk�dom �list a b����

�

��dom�t a�

�cond ��dom�t b� �append new�term �list �dom�union a b����

��exc�t b� �append new�term �list �exc�dom b a����

�t �append new�term �list �dom�union a �list �dom b����� � add b to doma

�

�

��exc�t a�

�cond ��dom�t b� �append new�term �list �exc�dom a b����

��exc�t b� �append new�term �list �exc�intersection b a����

�t �append new�term�exc�dom a �list �dom b���� � restrict b from excepti

�

�

��dom�t b�

�append new�term�dom�union b �list �dom a��� � add a to domain

�

��exc�t b�

�append new�term�exc�dom a �list �dom b��� � restrict a from exceptions

�

��not �equal �first a� �first b��� � two different function�symbols appear
 Cr

�append new�term �list �mk�dom �list a b����

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�setq new �first a��

�if �� i 	�

�setq new �anti�unify� �nth i a� �nth i b� new��

�setq new �anti�unify	 �nth i a� �nth i b� new���

�

�append new�term new�

��

��



�

�defvar �use�gensyms� t� � Uses gensym to create unique variables if T

� otherwise uses copy�symbol

�defun ajust�term �big small �aux term�

�setq term big�

�do ��i � �� i 	���

��� i �length small���

�setq term �substitute �nth i small� �nth i term� term �start i��

�

term

�

�defun lga �term	 term� keep bind	 bind� toprint�

�if �not �equal �car bind	� �t�� �add t at the beginning of bind	

�setq bind	 �append ��t� bind	��

�

�if �not �equal �car bind�� �t�� �add t at the beginning of bind�

�setq bind� �append ��t� bind���

�

�if �not � �length term	��length term����

�� adjust length of terms

�if �� �length term	� �length term���

�setq term� �ajust�term term	 term���

�setq term	 �ajust�term term� term	��

�

�

�cond ��equal term	 term��

�if toprint

�format t ���anti�unified term� �s ����� term	�

�

�

�keep

�keep�lga term	 term� �search�matching�keep term	 keep� bind� bind	 toprint�

�

�t �keep�lga term	 term� nil bind	 bind� toprint��

�

�

�defun keep�lga �term	 term� keep bind	 bind� toprint �aux new�term �error nil��

�if toprint

��



�format t ����� ������������������������������������������������term	� �s��term�� �s

�

�if �equal �first term	��first term���

�let� ��new�term �first term	���

�do� ��l 	 �� l 	��

�keep! keep �cdr keep!��

�act �first keep!��first keep!��

�liste	 �cdr term	��cdr liste	��

�liste� �cdr term���cdr liste����

��OR �� l �length term	�� error��

�cond ��equal act ���

�if �not �equal �car liste	� �car liste����

�setq error t�

�if � l 	�

�setq new�term �list new�term �car liste	���

�setq new�term �append new�term �list �car liste	����

�

�

�

��OR �equal act �V��equal act �v��

�if � l 	�

�setq new�term �list new�term �car liste	���

�setq new�term �append new�term �list �car liste	����

�

�setq bindings

�anti�unify	 term	 term� term	 term� bind	 bind��

bind	 �cdar bindings� bind� �cdadr bindings�

�

�

�t

�if �� l 	�

�setq new�term

�dom�anti�unify� �nth l term	� �nth l term�� new�term��

�setq new�term

�dom�anti�unify	 �nth l term	� �nth l term�� new�term��

�

�

�

�

�if error

�progn

�if toprint

�format t �keine Anti�Unifitation moeglich� da nicht mit keep�Forderung

�

�list nil term	 term��

�

�progn

��



�let ��bindings bind���

��� replace every expression in term	 by its more generell expression c

�do� ��expr�list �car bindings� �cadr bind����

�bind�� bindings �cdr bind�����

��null bind����

�if �listp expr�list�

�let ��new�expr �cadr expr�list��

�old�expr �car expr�list��

�

� search in term	 for expression old�expr

� and replace it by new�expr

�setq new�term

�my�substitute new�expr old�expr new�term term� b

�

�

�

�

�

�if toprint

�format t ���anti�unified term� �s ����� new�term�

�

�list new�term bind� bind	�

�

�

�

�progn

�if toprint

�format t �keine Anti�Unifitation moeglich """"��

�

�list nil term	 term��

�

�

�

�defun anti�unify	 �a b term	 term� bind	 bind��

��� Returns a most general binding list which anti�unifies a � b

�cond ��eql a b� �list bind	 bind���

��vari�t a� �make�new a b bind	 bind� � term	 term��

�list bind	 bind���

��vari�t b� �make�new b a bind	 bind� 	 term	 term��

�list bind	 bind���

��or �atom a��atom b�� �create new variable and add to bindings

�let� ��old �find�binding a �rest bind����

�old� �find�binding b �rest bind	���

�new �if old old

�if old� old�

��



�list �vari �gentemp��

�

�

�

�

�add�binding new a b bind� bind	�

�add�binding new b a bind	 bind��

�

�list bind	 bind��

�

�� create new variable and add it to bindings

�� if two different function�symbols appear

��not �equal �first a� �first b���

�let� ��old �find�binding a �rest bind����

�old� �find�binding b �rest bind	���

�new �if old old

�if old� old�

�list �vari �gentemp��

�

�

�

�

�add�binding new a b bind� bind	�

�add�binding new b a bind	 bind��

�

�list bind	 bind��

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�let ��bindings

�anti�unify	 �nth i a� �nth i b� term	 term� bind	 bind����

�setq bind	 �car bindings��

�setq bind� �cadr bindings��

�

�

�list bind	 bind��

��

�

�defun make�new �var b bind	 bind� order term	 term��

��� Unify a variable with an other term

�if �and �vari�t b� �var�eq var b�� �both variables are equal�

� this doesn�t change anything in the bindings

�list bind	 bind��

�if �OR �vari�t b�

� to make sure that there is no conflict of variables

��



� with same name and different bindings

�AND ���my�count var term	� 	� � order ���

�AND ���my�count var term�� 	� � order 	��

�

�let �� new �list �vari �gentemp����

�if � order 	�

�progn

�add�binding new var b bind	 bind��

�add�binding new b var bind� bind	�

�

�progn

�add�binding new var b bind� bind	�

�add�binding new b var bind	 bind��

�

�

�

�if � order 	�

�progn

�add�binding var b var bind� bind	�

�add�binding var var var bind	 bind��

�

�progn

�add�binding var b var bind	 bind��

�add�binding var var var bind� bind	�

�

�

�

�

�

�defun var�eq �var	 var��

��� Return T if the two variables are equal

�eql var	 var���

�defun get�binding �var bindings�

��� Get the variable binding for var

�setq gefunden nil�

�setq erg nil�

�do� ��liste �rest bindings� �cdr liste��

�aktuell �car liste� �car liste���

��OR �not liste� gefunden��

�if �var�eq var �cadr aktuell��

�progn �setq gefunden t�

�setq erg aktuell�

�

�

��



�

erg

�

�defun add�binding �var val val� bindings bind��

��� Add the binding of var to val to the existing set of bindings

�setq test �find�binding val �rest bindings���

�if �not �AND test

�find�binding� test val� �cdr bind���

�

�

�setf �rest bindings� �cons �list val var� �rest bindings���

�

bindings�

�defun find�binding �val bindings �optional �erg nil� �gefunden nil��

�do� ��liste bindings �cdr liste��

�aktuell �car liste� �car liste���

��OR gefunden �not liste���

�if �OR �AND �vari�t val�

�vari�t �car aktuell��

�var�eq val �car aktuell���

�equal val �car aktuell��

�

�progn �setq gefunden t�

�setq erg �cadr aktuell��

�

�

�

erg

�

�defun find�binding� �val val�old bindings �optional �gefunden nil��

�do� ��liste bindings �cdr liste��

�aktuell �car liste� �car liste���

��OR gefunden �not liste���

�if �OR �AND �vari�t val�

�vari�t �cadr aktuell��

�equal val�old �car aktuell��

�var�eq val �cadr aktuell���

�AND �equal val �cadr aktuell��

�equal val�old �car aktuell��

�

�

�setq gefunden t�

�

��



�

gefunden

�

�defun my�substitute �new old term term� bind �aux new�term�

�� substitute every appereance of old at actual top�level by new

�do ��i � �� i 	���

��� i �length term���

�� make sure that actual position may be replaced by new

�if �AND �listp term� �listp term��

�NOT �equal �nth i term� �nth i term����

� the actual terms are not equal� so they have to be replaced

�equal �cadr �assoc �nth i term�� bind �test �equal�� new�

� found corresponding binding in bind

�

�progn

�if �equal �nth i term� old�

� if actual element is equal the element to be replaced� replace it in term

�nsubstitute new old term �test �equal �count 	 �start i�

�

�

�if �listp �nth i term��

�nsubstitute �my�substitute new old �nth i term��nth i term�� bind��nth i term�

�

�

�

term

�

�defun my�count �item term �aux �counter ���

��� counts how often item appears in term �with all subterms�

�if �AND �listp term��NOT �equal �car term� �vari���

�do ��i � �� i 	���

��� i �length term���

�if �equal item �nth i term��

�setq counter �� 	 counter��

�setq counter �� counter �my�count item �nth i term����

�

�

�

counter

�

��



�defun search�matching�keep �term keep�

�setq res nil�

�do� ��l keep �cdr l��

�keep! �car l� �car l���

��null l��

�if �equal �car keep!��car term��

�setq res �cdr keep!��

�

�

res

�
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