
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Research
Report

TM-94-04

PAntUDE — An Anti-Unification Algorithm for
Expressing Refined Generalizations

Cornelia Fischer

May 1994

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrucken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341



Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order to
inform about the current state of research.
From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director



PAntUDE — An Anti-Unification Algorithm for Expressing Refined Gen-
eralizations

Cornelia Fischer

DFKI-TM-94-04



This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITWM-FKZ ITW-8902 C4).

c� Deutsches Forschungszentrum fur Kunstliche Intelligenz 1993
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee
to Deutsches Forschungszentrum fur Kunstliche Intelligenz.



PAntUDE � An Anti�Uni�cation Algorithm

for Expressing Re�ned Generalizations

Cornelia Fischer

DFKI GmbH

Erwin�Schr�odinger�Stra�e ��

Postfach �� 	�

D�
�
�	 Kaiserslautern

May ��� �

�

Contents

� Introduction �

� The Basic Algorithm �

� Partial Anti�Uni�cation �

� Anti�Uni�cation with Finite Domains and Finite Exclusions �

��� Anti�uni�cation with �nite domains and �nite exclusions � � � � � � � �
��� Partial anti�uni�cation with �nite domains and �nite exclusions � � � �

	 Conclusion �


A Listing of PAntUDE ��

�



Abstract

In this paper some improvements for the basic algorithm for anti�uni�cation
are presented�
The standard �basic� algorithm for anti�uni�cation still may give too general
answers with respect to the intended use of the result� �Too general� means
obtaining an unwanted answer when instantiating some variables of the anti�
uni�cation output term� To avoid this	 a term sometimes should be general�
ized by regarding certain �semantic� restrictions� In PAntUDE �partial anti�
uni�cation with domains and exclusions� two principal improvements of the
basic algorithm were implemented and tested
 it can use masks for prevent�
ing anti�uni�cation of certain arguments �partial anti�uni�cation�� it can also
use �nite domains for enumerating input�term constants instead of introduc�
ing a new �universally quanti�ed� variable	 and �nite exclusions for specifying
forbidden constants �anti�uni�cation with domains and exclusions��

� Introduction

The concept of anti�uni�cation was introduced by Plotkin 	Plotkin
 ����� and ex�
plained by M�M� Richter 	Richter
 ������ The name 
anti�uni�cation� indicates its
duality to the standard uni�cation algorithm� given two terms
 anti�uni�cation will
�nd the lgg �least general generalization� while uni�cation will �nd the mgu �most
general uni�er�� The dual operation of generalization and specialization can be seen
in �gure �� To have the possibility of regaining the original terms one binding for each
original term is created during anti�uni�cation� First of all
 the term 
least general
generalization� must be de�ned�

P(f(X))

P(f(a)) P(f(b))

P(Y)

GeneralizationSpecialization

(Y/f(b))
(Y/f(X)))

(X/b)(X/a)

(Y/f(a))

Figure �� a simple example of specializating�generalizating two terms

It is obvious that a term can be generalized in di�erent ways� The aim now is to
�nd the 
least general generalization� �lgg� of two given terms� The lgg can be seen
as the generalization that keeps the anti�uni�ed term t as special as possible so that
every other generalization would increase the number of possible instances of t in
comparision to the possible instances of the lgg� It is important to �nd the most spe�
ci�c one
 since every instance could be a wrong one in the considered domain� After
having realized the importance of the lgg for anti�uni�cation its formal de�nition will
be given�

�



For two terms � and � we say � � � �spoken � is more general than �� �� ���
����� ��
Let A� ��� AN be some words �literals or terms�� The lgg of these terms is the term �
with � � Ai�� � i � N� and for every other term � with � � Ai it is also true that
� � �� � is now called the lgg for A� ��� AN � For each Ai there exists a substitution
�i to transform the lgg back into Ai
 i�e� �i�i � Ai

The following example will illustrate the way anti�uni�cation works�

� Input�terms�
f�a� g�b� h�X��� c�
f�d� g�j�X�� a�� c�

� First�step of anti�uni�cation� take �rst subterm out o� the input�terms
 anti�
unify them and add the adequate bindings to the lists of bindings�

�� � ��a�X���
�� � ��a�X��

� Repeat this basic step of anti�uni�cation until every subterm in the input�terms
has been adapted� If necessary use the basic step of anti�uni�cation recursively
on subterms�

� Replace every subterm in the �rst term by its adequate binding� During this
step take care that every used substitution is compatible with the substitutions
in the second term�

� Result after substitution�
lgg � f�X�� g�X��X��� c�
�� � ��a�X���b�X���h�X��X���
�� � ��d�X���j�X��X���a�X���

Anti�uni�cation is an elementary step for quite a lot of learning algorithms� The
goal of anti�uni�cation is to detect a least general generalization �lgg� of some given
terms or facts� Most of the time
 the lgg detected by anti�uni�cation still is too
general� E�g� given the two facts likes�john�mary� and likes�peter�jill� as an
input
 the lgg of these two facts would be likes�X�Y�� It is obvious that this is much
too general
 but with the standard approach of anti�uni�cation you would not get a
more specialized solution�
Another problem is that sometimes your intention is to �nd out whether a subcase
�speci�ed through special values of one or more subterms� of some given terms have
something in common� In this case
 not all of the given terms should be generalized
but only those with a certain value in this very subterm�

Example ��� Let the knowledge base contain facts representing information about
the atom structure of three elements
 carbon
 silicon and hydrogen� The �rst ar�
gument of atom is the index number
 the second one is the name
 the third one

�



contains some properties of this element �metall �m�
 semimetall �sm�
 semiconduc�
tor �sc�
 gaseous �g�� electron con�guration of the last three shells� weight and a list
of possible oxidations��

atom��� name�C� Carbon�� prop�sc� eco��� �� ��� 	�
�		� oxi����

��� �����

atom�	�� name�Si� Silicon�� prop�sc� eco��� 
� ��� �

�
���

oxi���� ��� �����

atom�	� name�H� Hydrogen�� prop�g� eco�	� �� ��� 	
��� oxi��	� �	�

����

with the knowledge that you want to learn something about elements with the sub�
term

oxi ���� ��� ���


These facts would be generalized to
atom �X�� name �X�� X��� prop �sc� eco �X�� X�� X��� X�� oxi

�X��X�	�X�����

in spite of loosing most of the interesting facts you were looking for� In PAntUDE
we were trying to solve some of these problems� First the algorithm on which the
improvements took place will be presented�

� The Basic Algorithm

The basic algorithm for anti�uni�cation works in quite a simple way� The input are
two terms and the algorithm returns a list containing the lgg of the two input�terms
and the bindings to transform each input�term into the obtained lgg� In addition to
the input�terms there may also be given a list of initial bindings for one or both of the
input terms� This is realized with two key parameters �bind� for the �rst term and
bind� for the second one�� The algorithm can fail only in one case� the top�symbols
or the length of the two terms are di�erent� This makes sense since without this
restriction you would get just a new variable when anti�unifying the facts of a whole
knowledge base and this would be wrong since top�symbols must not be variables
but only predicates are allowed� Below two examples �one with key�parameter and
one without it� are given to show the way anti�uni�cation works�

Example ��� Taking two of the facts from the �rst example
 anti�uni�cation can
start�

term� � atom��� name�C�Carbon�� prop�sc�eco ��������	�
�		�oxi

������������

term� � atom�	�� name�Si�Silicon��

prop�sc�eco���
�����

�
���oxi������������

will return the anti�uni�ed term�
atom�X	� name�X��X��� prop�sc�eco���X��X���X��oxi����������

with the substitution �the algorithm represents substitutions as lists of pairs�

�



bind�� ��	�
�		 X�� �� X�� �� X�� �CARBON X�� �C X�� �� X	�� for term �
and
bind�� ���

�
�� X��� �� X�� �
 X�� �SILICON X�� �SI X�� �	� X	�� for
term �

Example ��� This example will show how given substitutions take place in an anti�
uni�cation step�

term� �atom��� name�C�Carbon�� prop�sc� eco�������� 	�
�		� oxi

������������

term� � atom�	�� name�Si�Silicon�� prop�sc� eco���
���� �

�
���

oxi������������

with the given initial bindings

bind����C SHORT� �	�
�		 WEIGHT��

bind����Silicon CHEMICAL�NAME��

will return the anti�uni�ed term�

atom �X	�name�SHORT�CHEMICAL�NAME�� prop�sc�eco���X��X���WEIGHT�oxi����������

In our implementation of anti�uni�cation you need not always exactly two terms
to be generalized but as many terms as you like may be given to the system to
be anti�uni�ed� The algorithm will anti�unify all terms matching in the top�symbol
and return a list with the obtained lggs� So anti�uni�cation makes obvious
 which
characteristic items two or more terms have in common� In the example given above
the lgg showed us of course the formal structure but also that Carbon and Silicon
have the same oxidation�numbers and an equal number of electrons on the �rst orbit�
The bindings which may be added to the input can help to ease the understanding
for the reader�

�



� Partial Anti�Uni�cation

In the following I will present a method improving the standard algorithm of section
�� It was developed in the KES �Knowledge Evolution System� group of the VEGA
�Validation and Exploration with Global Analys� project at the DFKI Kaiserslautern
based on ideas by Knut Hinkelmann� To obtain new interesting facts out of the knowl�
edge base
 it is more important to see which parts of the two terms did not change�
For example � if we want to learn something about chemical elements � we could ask
what all elements with the oxidation number � � �� have in common� For this pur�
pose we can not use a standard anti�uni�cation because this would build the lgg of
all given elements and so give unwanted �too general� answers� So we need some tools
to inhibit the anti�uni�cation with elements that don�t have the desired values� Thus
the algorithm has an extra key�parameter� 
keep�� In this parameter
 every position
in the input terms you do not want to be changed are marked by an special sign�
An anti�uni�cation can only take place
 if the two terms are uni�able in this very
�marked� positions�

Example ��� This example will show the usefulness of partial anti�uni�cation for
�nding interessting knowledge

� Input�
atom���� name�Fe� Ferrum�� prop�m� eco�
� 	�� ��� ��

��� oxi����

�����

atom���� name�Sm� Samarium�� prop�m� eco���� 
� ��� 	��
���

oxi���� �����

atom���� name�Ir� Iridium�� prop�m� eco���� 	�� ��� 	��
���

oxi���� �����

atom��
� name�Ce� Cerium�� prop�m� eco���� 
� ��� 	��
		��

oxi���� �����

atom���� name�Os� Osmium�� prop�m� eco���� 	�� ��� 	��
�� oxi����

�����

atom�	� name�H� Hydrogen�� prop�g� eco�	� �� ��� 	
��� oxi��	�

�	���

� Partial anti�uni�cation of these facts with the keep�parameter

keep �� � � � ��

will result in the following facts�

atom�X�� name�X��X��� prop�m� eco�X��X�� ���X�� oxi���������

atom�Y�� name�Y�� Y��� prop�m� eco�Y�� Y�� ��� Y�� oxi���������

atom��� name�H�Hydrogen�� prop�g� eco��� �� ��� ����� oxi���������

�



� The resulting information can be interpreted in the following way� Ele�
ments with the same oxidation behaviour seem to have to same outer
appeareance �metal�� In addition the number of electrons on the last
shell is equal� If instead of parial anti�uni�cation the basic anti�uni�cation
algorithm would have been used on these facts
 the result would be
atom�X�� name�X��X��� prop�X�� eco�X��X��X���X
� oxi�X��X�	����
This would not have been useful to gain any new knowledge�

� Anti�Uni�cation with Finite Domains and Fi�

nite Exclusions

In this version of anti�uni�cation � introduced without patialness in 	Boley
 �����

� domains and exclusions are used instead of variables� A domain is a term listing
all possible values a correspoding free variable should take
 and an exclusion �the

negation� of a domain� lists all values such a variable is not allowed to take� In the
representation language RELFUN �nite domains and exclusions are treated as �rst�
class citizens� Most of the following examples are taken out of the aboved�mentioned
paper�
When anti�unifying two terms with di�erent constants in corresponding positions

PAntUDE yields a dom term containing these constants
 not a �sometimes too general�
new variable� For a constant and a structure it has to yield a new variable since
current dom terms cannot contain structures� Generally �constants can be treated
as singleton domains�
 domain anti�uni�cation of two dom terms yields their union
�uni�cation� intersection�� Identical dom terms can directly yield one copy unchanged

short�cutting spurious unions�

The complementary exclusion anti�uni�cation for a variable and an exclusion
yields a variable in the manner classic anti�uni�cation handles variable�constant pair�
ings� It yields the intersection �uni�cation� union� of two exc terms� For an exclusion
and a constant �singleton domain� it yields the exc term minus the constant�

��� Anti�uni�cation with �nite domains and �nite exclu�

sions

Generally
 the domain�exclusion anti�uni�cation of a dom and an exc term
 in any or�
der
 yields the exc termwith the elements of the dom term set�theoretically subtracted
�uni�cation� domain with exclusion subtracted�� An empty�exclusion outcome
 as
usual
 represents an always successful new variable� Altogether
 the domain�exclusion
complementarity commutes nicely with the uni�cation�anti�uni�cation duality�

The example below will help to understand the way anti�uni�cation with domains
works� Given the �� relational facts for the predicate separates�

separates�pacific�canada�japan�


separates�pacific�mexico�japan�


separates�pacific�usa�japan�


separates�atlantic�canada�denmark�


separates�atlantic�canada�france�


�



separates�atlantic�canada�germany�


separates�atlantic�canada�italy�


separates�atlantic�canada�spain�


separates�atlantic�canada�sweden�


separates�atlantic�canada�uk�


separates�atlantic�mexico�denmark�


separates�atlantic�mexico�france�


separates�atlantic�mexico�germany�


separates�atlantic�mexico�italy�


separates�atlantic�mexico�spain�


separates�atlantic�mexico�sweden�


separates�atlantic�mexico�uk�


separates�atlantic�usa�denmark�


separates�atlantic�usa�france�


separates�atlantic�usa�germany�


separates�atlantic�usa�italy�


separates�atlantic�usa�spain�


separates�atlantic�usa�sweden�


separates�atlantic�usa�uk�


A simplemethod for �least general� generalization of these facts is pairwise domain
anti�uni�cation of the input facts� Thus we get the result

separates�dom�pacific�atlantic��dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk�japan��


This fact is more speci�c than the term seperates �X�Y�Z� resulting from the basic
anti�uni�cation algorithm� However this can still be too general� Using our knowledge
from geography
 we can see that it represents a number of wrong facts� For example

the paci�c doesn�t intersect Canada from Denmark� These wrong conclusions can be
extracted out of the anti�uni�ed term by combining domain�exclusion anti�uni�cation
with partial antiuni�cation�

An example of exclusion anti�uni�cation can take two versions of a fact as input�

likes�X�exc�mary�claire�linda��
 � Everybody likes all except MCL

likes�john�exc�mary�tina��
 � John likes all except Mary � Tina

Anti�uni�cation generalizes them via an intersection of the exclusions in the second
argument�

likes�X�exc�mary��
 � Everybody likes all except Mary

This is the least general generalization of the input facts since exactly the subex�
clusion common to both facts is kept� In cases where we have a closed universe

say fann� claire� john� linda�mary� peggy� susan� tinag the inputs can be rewritten
as complementary domain facts�

likes�X�dom�ann�john�peggy�susan�tina��
 � ���

likes�john�dom�ann�claire�john�linda�peggy�susan��


�



Domain anti�uni�cation via union generalizes them to

likes�X�dom�ann�claire�john�linda�peggy�susan�tina��


which is the complement of the exclusion�anti�uni�cation result above� Finally

domain�exclusion anti�uni�cation of the input facts

likes�X�exc�mary�claire�linda��


likes�john�dom�mary�tina��
 � ����

via subtraction generalizes them to

likes�X�exc�claire�linda��


Here
 the exclusion is minimally weakened �its extension being minimally enlarged�
to accomodate what is speci�ed by the domain� This can again be illustrated for the
case of a closed universe� anti�unify ��� with ���� and re�complement the result�
Such least general generalizations by domain�exclusion anti�uni�cation thus remove
dom�exc contradictions in a set of clauses
 e�g� about John�s liking of Mary in the
above input facts� similarly
 exclusion anti�uni�cation removes the less obvious exc�
exc contradictions concerning constants that occur in only one of the exclusions
 e�g�
about John�s liking of
 say Claire
 in the previous input facts� This may be exploited
for 
theory revision� of knowledge bases containing exclusion terms�

��� Partial anti�uni�cation with �nite domains and �nite

exclusions

Using the keep�operator described in Section � on the �rst term of the above example
of input terms
 these facts can be generalized to

separates�pacific�dom�canada�mexico�usa��japan�


separates�atlantic�dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk��


It is easy to see that this isn�t a generalization but only a compression of the
facts
 since there can�t be extracted any new information out of the new facts� This
occurs because all countries separated from another country by the same ocean are
always identical� So let us add just one new fact to our little knowledge base�

separates�atlantic�panama�denmark�


Using PAntUDE on the facts above together with this new fact we will get a real
generalization�

separates�pacific�dom�canada�mexico�usa��japan�


separates�atlantic�dom�canada�mexico�usa�panama��

dom�denmark�france�germany�italy�spain�sweden�uk��


This generalized atlantic fact expresses more information than the input facts

namely an induction from Denmark to the other European countries �which happens
to be empirically true�� again multiplying out the result makes these induced facts
explicit�

�



separates�atlantic�panama�france�



 
 


separates�atlantic�panama�uk�


It will need quite a lot of domain knowledge to decide which parameters to keep
and which are allowed to be generalized�

� Conclusion

Several tests with PAntUDE were made on realistic sample knowledge bases
 includ�
ing fact bases on chemical properties of certain materials� The entire implementation
is realized in Common Lisp �lucid����� on sun�workstations� The complete system of
PAntuDE is listed in the appendix and also available on ftp�

��



A Listing of PAntUDE

��� This is an complete version containing all the implemented improvements

��� of the basic anti�unification algorithm for

��� generalizing two terms
 The form of variables is the one used in

��� the Colab�system
 February 	���


���� Copyright �c� 	��� by Cornelia Fischer
 This program may be freely

���� copied� used� or modified provided that this copyright notice is included

���� in each copy of this code and parts thereof


���� This version of anti�unification takes a complete KB of facts as input

���� and returns

���� a list containing the anti�unification found for the given terms


���� In addition to the basic algorithm you may add a keep�operator to the

���� arguments
 this operator makes sure� that the two terms have to match in

���� at this very argument position
 For example the two terms f�a b� f�c d�

���� used with the keep�operator f�� �� wouldn�t be anti�unified� because a

���� and b don�t match
 In addition the algorithm don�t care� if the length

���� of the two terms is equal� the shorter term will be enlarged with the

���� missing elements from the other term before anti�unification takes place


�SETQ �PRINT�PRETTY� T�

�defun Pantude �WB�list �optional �keep nil� �key �toprint nil��

�remove�duplicates WB�list �test ��equal�

�setq erg nil�

�do� �

�lga�erg �car WB�list� �car not�antiunified��

�not�antiunified �cdr WB�list� �cdr not�antiunified���

��null not�antiunified��

�let ��bind	 nil�

�bind� nil�

�liste nil��

�do ��nau not�antiunified �cdr nau���

��null nau��

�let ��erg �lga lga�erg �car nau� keep bind	 bind� toprint���

�if �car erg� �antiunification sucessfull

�setq lga�erg �car erg� bind	 �cadr erg�

bind� �caddr erg��

�if liste

�setq liste �append liste �list�car nau����

�setq liste �list �car nau���

�

�

��



�

�

�setq not�antiunified liste�

�

�if erg

�setq erg �append erg �list lga�erg���

�setq erg �list lga�erg��

�

�

�format t �����

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

Ergebnis� �s��

�����������������������������������������������������������������������������

������������������������������������������������������������������������������ erg�

erg

�

�defun dom�t �x� �and �consp x� �eq �dom �car x����

�defun exc�t �x� �and �consp x� �eq �exc �car x����

�defun exc�intersection �x y�

�mk�exc �intersection �cdr x� �cdr y� �test ��equal���

�defun dom�union �x y�

�mk�dom �union �cdr x� �cdr y� �test ��equal���

�defun exc�dom �x y�

�mk�exc �set�difference �cdr x� �cdr y� �test ��equal���

�defun mk�dom �elist�

�cond ��null elist� nil�

��null �cdr elist�� �car elist��

�t �cons �dom elist����

�defun mk�exc

�elist�

�cond ��null elist� �id�

�t �cons �exc elist����

�defun vari�t �x� � test if x is a variable

�AND �consp x� �equal �car x� �vari���

�defun dom�anti�unify	 �a b new�term�

��



��� Returns a new�term which anti�unifies a � b

�cond ��OR �eql a b�

�vari�t a�

�vari�t b��

�if �vari�t a�

�list new�term a�

�list new�term b�

�

�

��AND �atom a��atom b�� � two different constants appear
 Create a new domain

�list new�term �mk�dom �list a b���

�

��dom�t a�

�cond ��dom�t b� �list new�term �dom�union a b���

��exc�t b� �list new�term �exc�dom b a���

�t �list new�term �dom�union a �list �dom b���� � add b to domain

�

�

��exc�t a�

�cond ��dom�t b� �list new�term �exc�dom a b���

��exc�t b� �list new�term�exc�intersection b a���

�t �list new�term�exc�dom a �list �dom b���� � restrict b from exception

�

�

��dom�t b�

�list new�term�dom�union b �list �dom a��� � add a to domain

�

��exc�t b�

�list new�term�exc�dom a �list �dom b��� � restrict a from exceptions

�

��not �equal �first a� �first b��� � two different function�symbols appear
 Cr

�list new�term �mk�dom �list a b���

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�setq new �first a��

�if �� i 	�

�setq new �anti�unify� �nth i a� �nth i b� new��

�setq new �anti�unify	 �nth i a� �nth i b� new���

�

�list new�term new�

�

�

�

��



�defun dom�anti�unify� �a b new�term�

��� Returns a new term which anti�unifies a � b

�cond ��OR �eql a b�

�vari�t a�

�vari�t b��

�if �vari�t a�

�append new�term �list a��

�append new�term �list b��

�

�

��AND �atom a��atom b�� � two different constants appear
 Create a new domain

�append new�term �list �mk�dom �list a b����

�

��dom�t a�

�cond ��dom�t b� �append new�term �list �dom�union a b����

��exc�t b� �append new�term �list �exc�dom b a����

�t �append new�term �list �dom�union a �list �dom b����� � add b to doma

�

�

��exc�t a�

�cond ��dom�t b� �append new�term �list �exc�dom a b����

��exc�t b� �append new�term �list �exc�intersection b a����

�t �append new�term�exc�dom a �list �dom b���� � restrict b from excepti

�

�

��dom�t b�

�append new�term�dom�union b �list �dom a��� � add a to domain

�

��exc�t b�

�append new�term�exc�dom a �list �dom b��� � restrict a from exceptions

�

��not �equal �first a� �first b��� � two different function�symbols appear
 Cr

�append new�term �list �mk�dom �list a b����

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�setq new �first a��

�if �� i 	�

�setq new �anti�unify� �nth i a� �nth i b� new��

�setq new �anti�unify	 �nth i a� �nth i b� new���

�

�append new�term new�

��

��



�

�defvar �use�gensyms� t� � Uses gensym to create unique variables if T

� otherwise uses copy�symbol

�defun ajust�term �big small �aux term�

�setq term big�

�do ��i � �� i 	���

��� i �length small���

�setq term �substitute �nth i small� �nth i term� term �start i��

�

term

�

�defun lga �term	 term� keep bind	 bind� toprint�

�if �not �equal �car bind	� �t�� �add t at the beginning of bind	

�setq bind	 �append ��t� bind	��

�

�if �not �equal �car bind�� �t�� �add t at the beginning of bind�

�setq bind� �append ��t� bind���

�

�if �not � �length term	��length term����

�� adjust length of terms

�if �� �length term	� �length term���

�setq term� �ajust�term term	 term���

�setq term	 �ajust�term term� term	��

�

�

�cond ��equal term	 term��

�if toprint

�format t ���anti�unified term� �s ����� term	�

�

�

�keep

�keep�lga term	 term� �search�matching�keep term	 keep� bind� bind	 toprint�

�

�t �keep�lga term	 term� nil bind	 bind� toprint��

�

�

�defun keep�lga �term	 term� keep bind	 bind� toprint �aux new�term �error nil��

�if toprint

��



�format t ����� ������������������������������������������������term	� �s��term�� �s

�

�if �equal �first term	��first term���

�let� ��new�term �first term	���

�do� ��l 	 �� l 	��

�keep! keep �cdr keep!��

�act �first keep!��first keep!��

�liste	 �cdr term	��cdr liste	��

�liste� �cdr term���cdr liste����

��OR �� l �length term	�� error��

�cond ��equal act ���

�if �not �equal �car liste	� �car liste����

�setq error t�

�if � l 	�

�setq new�term �list new�term �car liste	���

�setq new�term �append new�term �list �car liste	����

�

�

�

��OR �equal act �V��equal act �v��

�if � l 	�

�setq new�term �list new�term �car liste	���

�setq new�term �append new�term �list �car liste	����

�

�setq bindings

�anti�unify	 term	 term� term	 term� bind	 bind��

bind	 �cdar bindings� bind� �cdadr bindings�

�

�

�t

�if �� l 	�

�setq new�term

�dom�anti�unify� �nth l term	� �nth l term�� new�term��

�setq new�term

�dom�anti�unify	 �nth l term	� �nth l term�� new�term��

�

�

�

�

�if error

�progn

�if toprint

�format t �keine Anti�Unifitation moeglich� da nicht mit keep�Forderung

�

�list nil term	 term��

�

�progn

��



�let ��bindings bind���

��� replace every expression in term	 by its more generell expression c

�do� ��expr�list �car bindings� �cadr bind����

�bind�� bindings �cdr bind�����

��null bind����

�if �listp expr�list�

�let ��new�expr �cadr expr�list��

�old�expr �car expr�list��

�

� search in term	 for expression old�expr

� and replace it by new�expr

�setq new�term

�my�substitute new�expr old�expr new�term term� b

�

�

�

�

�

�if toprint

�format t ���anti�unified term� �s ����� new�term�

�

�list new�term bind� bind	�

�

�

�

�progn

�if toprint

�format t �keine Anti�Unifitation moeglich """"��

�

�list nil term	 term��

�

�

�

�defun anti�unify	 �a b term	 term� bind	 bind��

��� Returns a most general binding list which anti�unifies a � b

�cond ��eql a b� �list bind	 bind���

��vari�t a� �make�new a b bind	 bind� � term	 term��

�list bind	 bind���

��vari�t b� �make�new b a bind	 bind� 	 term	 term��

�list bind	 bind���

��or �atom a��atom b�� �create new variable and add to bindings

�let� ��old �find�binding a �rest bind����

�old� �find�binding b �rest bind	���

�new �if old old

�if old� old�

��



�list �vari �gentemp��

�

�

�

�

�add�binding new a b bind� bind	�

�add�binding new b a bind	 bind��

�

�list bind	 bind��

�

�� create new variable and add it to bindings

�� if two different function�symbols appear

��not �equal �first a� �first b���

�let� ��old �find�binding a �rest bind����

�old� �find�binding b �rest bind	���

�new �if old old

�if old� old�

�list �vari �gentemp��

�

�

�

�

�add�binding new a b bind� bind	�

�add�binding new b a bind	 bind��

�

�list bind	 bind��

�

�t �increase depth of anti�unification

�do ��i 	 �� i 	���

��� i �length �rest a����

�let ��bindings

�anti�unify	 �nth i a� �nth i b� term	 term� bind	 bind����

�setq bind	 �car bindings��

�setq bind� �cadr bindings��

�

�

�list bind	 bind��

��

�

�defun make�new �var b bind	 bind� order term	 term��

��� Unify a variable with an other term

�if �and �vari�t b� �var�eq var b�� �both variables are equal�

� this doesn�t change anything in the bindings

�list bind	 bind��

�if �OR �vari�t b�

� to make sure that there is no conflict of variables

��



� with same name and different bindings

�AND ���my�count var term	� 	� � order ���

�AND ���my�count var term�� 	� � order 	��

�

�let �� new �list �vari �gentemp����

�if � order 	�

�progn

�add�binding new var b bind	 bind��

�add�binding new b var bind� bind	�

�

�progn

�add�binding new var b bind� bind	�

�add�binding new b var bind	 bind��

�

�

�

�if � order 	�

�progn

�add�binding var b var bind� bind	�

�add�binding var var var bind	 bind��

�

�progn

�add�binding var b var bind	 bind��

�add�binding var var var bind� bind	�

�

�

�

�

�

�defun var�eq �var	 var��

��� Return T if the two variables are equal

�eql var	 var���

�defun get�binding �var bindings�

��� Get the variable binding for var

�setq gefunden nil�

�setq erg nil�

�do� ��liste �rest bindings� �cdr liste��

�aktuell �car liste� �car liste���

��OR �not liste� gefunden��

�if �var�eq var �cadr aktuell��

�progn �setq gefunden t�

�setq erg aktuell�

�

�

��



�

erg

�

�defun add�binding �var val val� bindings bind��

��� Add the binding of var to val to the existing set of bindings

�setq test �find�binding val �rest bindings���

�if �not �AND test

�find�binding� test val� �cdr bind���

�

�

�setf �rest bindings� �cons �list val var� �rest bindings���

�

bindings�

�defun find�binding �val bindings �optional �erg nil� �gefunden nil��

�do� ��liste bindings �cdr liste��

�aktuell �car liste� �car liste���

��OR gefunden �not liste���

�if �OR �AND �vari�t val�

�vari�t �car aktuell��

�var�eq val �car aktuell���

�equal val �car aktuell��

�

�progn �setq gefunden t�

�setq erg �cadr aktuell��

�

�

�

erg

�

�defun find�binding� �val val�old bindings �optional �gefunden nil��

�do� ��liste bindings �cdr liste��

�aktuell �car liste� �car liste���

��OR gefunden �not liste���

�if �OR �AND �vari�t val�

�vari�t �cadr aktuell��

�equal val�old �car aktuell��

�var�eq val �cadr aktuell���

�AND �equal val �cadr aktuell��

�equal val�old �car aktuell��

�

�

�setq gefunden t�

�

��



�

gefunden

�

�defun my�substitute �new old term term� bind �aux new�term�

�� substitute every appereance of old at actual top�level by new

�do ��i � �� i 	���

��� i �length term���

�� make sure that actual position may be replaced by new

�if �AND �listp term� �listp term��

�NOT �equal �nth i term� �nth i term����

� the actual terms are not equal� so they have to be replaced

�equal �cadr �assoc �nth i term�� bind �test �equal�� new�

� found corresponding binding in bind

�

�progn

�if �equal �nth i term� old�

� if actual element is equal the element to be replaced� replace it in term

�nsubstitute new old term �test �equal �count 	 �start i�

�

�

�if �listp �nth i term��

�nsubstitute �my�substitute new old �nth i term��nth i term�� bind��nth i term�

�

�

�

term

�

�defun my�count �item term �aux �counter ���

��� counts how often item appears in term �with all subterms�

�if �AND �listp term��NOT �equal �car term� �vari���

�do ��i � �� i 	���

��� i �length term���

�if �equal item �nth i term��

�setq counter �� 	 counter��

�setq counter �� counter �my�count item �nth i term����

�

�

�

counter

�

��



�defun search�matching�keep �term keep�

�setq res nil�

�do� ��l keep �cdr l��

�keep! �car l� �car l���

��null l��

�if �equal �car keep!��car term��

�setq res �cdr keep!��

�

�

res

�

References

	Boley
 ����� Harold Boley� Finite domains and exclusions as �rst�class citizens�
In Roy Dyckho�
 editor
 Fourth International Workshop on Extensions of Logic
Programming� St�Andrews� Scotland� March �		
� Preprints and Proceedings�
Springer
 ����� Also available as Research Report RR������
 Feb� ����
 DFKI

P�O� Box
 D������ Kaiserslautern�

	Plotkin
 ����� G� D� Plotkin� A further note on inductive generalization� In D�Michie
B� Meltzer
 editor
Machine Intelligence �
 pages ��� � ���� Elsevier North�Holland

New York
 �����

	Richter
 ����� Michael M� Richter� Prinzipien der K�unstlichen Intelligenz� Teubner
Verlag
 �����

��


