
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Technical
Memo
TM-94-02

Representation of Non-Convex Time Intervals
and Propagation of Non-Convex Relations

Rainer Bleisinger, Berthold Kröll

March 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341



Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense  which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Computer Linguistics
Programming Systems
Deduction and Multiagent Systems
Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Friedrich J. Wendl
Director



Representation of Non-Convex Time Intervals and Propagation of
Non-Convex Relations

Rainer Bleisinger, Berthold Kröll

DFKI-TM-94-02



This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9003 0).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0046-0071



Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations

Rainer Bleisinger, Berthold Kröll

German Research Center for Artificial Intelligence (DFKI)
P.O. Box 2080

D-67608 Kaiserslautern, Germany
e-mail: bleising@dfki.uni-kl.de

Abstract: For representing natural language expressions with temporal repetition the well
known time interval calculus of Allen [Allen 83] is not adequat. The fundamental concept of
this calculus is that of convex intervals which have no temporal gaps. However, natural
language expressions like “every Summer“ or “on each Monday“ require the possibility of such
temporal gaps.
Therefore, we have developed a new calculus based on non-convex intervals and have defined
a set of corresponding non-convex relations. The non-convex intervals are sets of convex inter-
vals and contain temporal gaps. The non-convex relations are tripels: a first part for specifying
the intended manner of the whole relation, a second part for defining relations between subin-
tervals, and a third part for declaring relations of whole, convexified non-convex intervals. In
the non-convex calculus the convex intervals and relations of Allen are also integrated as a spe-
cial case.
Additionally, we have elaborated and fully implemented a constraint propagation algorithm for
the non-convex relations. In comparison with the convex case we get a more expressive calcu-
lus with same time complexity for propagation and only different by a constant factor.
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1. Introduction
Real world events happen during time. All computer programs handle and model parts of the
real world. Therefore, most of these systems, like office automation systems, project manage-
ment systems or natural language systems, require a representation of time in which events
happen and properties hold. In this context, qualitative (relational) as well as quantitative
(numeric) temporal aspects must be considered for both temporal order and temporal duration
[Faidt et al 89, Bleisinger 91]. The quantitative time representation is based on a calendaric
chronological system which combines dates and clock time (see also [Ladkin 86b]).
In our approach the basic objects of time are time intervals, and the infinite time structure is li-
nearly ordered. Also, no smallest time unit is defined, hence the time representation is close.
By modeling an event on a time interval the distinction between two kinds of intervals is impor-
tant. The calculus proposed in [Allen 83] considers convex intervals and the thirteen convex
relations1 that can hold between those intervals, respectively. Convex intervals are intuitively
those without temporal gaps. But what about those events, like swimming every Summer or
meeting on each Monday morning, which happen in an interval containing gaps?
Principally, two different approaches are possible. On the one hand, the interval calculus of
Allen is extended with special predicates for repetitive events [Becker 90], for example
holds_periodic or holds_at_holiday.
On the other hand, the restriction to convex intervals is abolished. A new type of intervals con-
taining gaps, so called non-convex intervals, is introduced. The first paper discussing this
theme is [Ladkin 86a,b]. Based on calendar and clock time units an extensive set of “useful“
relations for specifying relationships between non-convex intervals is explained. Relations bet-
ween non-convex intervals are called non-convex relations. Other ideas are presented in [Leban
et al 86] and [Kortüm 91]. Aim of [Leban et al 86] is first of all the introduction of operators to
allow an effective means for representing non-convex intervals, here called "collections" of in-
tervals. But we think their representation of non-convex intervals to be unsuitable to further
application, for example reasoning. Disadvantages of [Kortüm 91] are established in their low
expression power. So all proposed techniques are not satisfactory.
The aim of this paper is the elaboration of an appropriate calculus of non-convex intervals be-
cause we need this type of more general time intervals for many purposes in AI. In Chapter 2
we present our non-convex interval calculus. After the informal introduction of non-convex in-
tervals we define calendar based non-convex intervals. Main part of our calculus is the repre-
sentation of the binary relations that can hold between two non-convex intervals. Within this
part we provide examples of these relations applied to the description of tasks and events. The
propagation algorithm for our non-convex relations is discussed in detail in Chapter 3. Because
our non-convex relations are tripels, the propagation of each part of the tripel will be explained
separately. A summary and short discussion of our non-convex interval calculus and the appro-
priate propagation method conclude this paper.

2. Calculus of non-convex intervals

2.1 Informal definition of non-convex intervals
The convex time intervals proposed in [Allen 83] are the starting point for the definition of non-
convex time intervals. In analogy to the approach in [Ladkin 86b] non-convex intervals consist

1Convex relations means relations between convex intervals. In [Nökel 89] a different meaning is intended.
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intuitively of some (maximal) convex subintervals with convex temporal gaps in between them.
In this way non-convex time intervals are unions of convex time intervals which often occur in
the real world. Generally, non-convex intervals are finite as well as infinite sets of convex in-
tervals. Any recurring time period can be represented in this form. For example, we can regard
the infinite non-convex period MONDAYS as being composed of any individual, convex
Monday, or the finite non-convex interval of all WEEKENDS IN JANUARY 1992.
A graphical representation of a non-convex time interval looks like this:

i

This non-convex interval i has five parts, i.e. convex subintervals, which we call consubints.
Each of those consubints describes the time of validity of a certain event.
Now we have to elaborate a formal specification of non-convex intervals motivated by natural
language statements. Analogous to the treatment of quantitative and qualitative aspects to de-
scribe attributes and relationships of convex time intervals 8Bleisinger 919, similar information
may be described for non-convex time intervals.
So the sentences “every two days in summer“ or “five times a week“ are quantitative descrip-
tions of recurring time periods and thereby of non-convex intervals. To represent quantitative
information we use calendar based expressions which are introduced in Section 2.2.
The statements “always reading the newspaper during the breakfast“ or “mostly taking a sho-
wer after jogging“ are examples of qualitative information concerning a non-convex interval.
Information of this kind sets two intervals in a non-convex relation. As we will see temporal
adverbs like “always“, “mostly“ etc. will have a special bearing by the development of non-
convex relations that can hold between non-convex intervals. In this paper qualitative informa-
tion of non-convex intervals is more important and will be discussed in the Section 2.3.

2.2 Calendar based non-convex time intervals
For reasoning about years, months, days, minutes etc. we have to develop a possibility to ex-
press quantitative aspects in a formal manner. Here we introduce a standard form for an interval
which represents an instance of one of the mentioned calendaric chronological units. All the
basic units will be convex intervals. Afterwards, we show how to develop non-convex inter-
vals as unions of these standard convex intervals.

To represent standard convex intervals we use sequences of integers. For example, 81991, 12,
13, 79 denotes the hour starting at 7 am on December 13th, 1991. It is obvious how to extend
the hierarchy to smaller standard intervals. Certain relationships are essential between these
standard intervals which are formulated by a couple of axioms (see 8Ladkin 86b9).

Now we are able to define several standard non-convex intervals as unions of standard convex
intervals. In the following a, b, g, denote standard convex intervals. The function length
counts the number of positions contained in the sequence denoting a standard convex interval.

Between standard convex intervals essential relationships are formulated by a couple of axioms
(see also 8Ladkin 86b9). For example, a standard convex interval a meets exactly one b and is
met-by exactly one g of the same length (a = 1991, b = 1992, g = 1990).

Now we define several standard non-convex intervals as unions of standard convex intervals.

• MONTHS = {a | length (a) = 2},
• DAYS = {a | length (a) = 3} etc.
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Additionally, we may also define arbitrary non-convex intervals only loosely coupled with a
calendar. Therefore, we define the operator to iterate the meets relations:

Definition 1: (iterated meets-relations)
Let a, b and g be standard convex intervals of the same length and i an integer. The iterated
meets-relations are then defined by:

• f0 (a, b) ˚ (a meets  b)
• fi+1 (a, b) ˚ (æ g) (fi (a, g) å (g meets  b))  for 0 ≤ i
• f* is the symmetric, transitive closure of f for any binary relation f

The fi are the iterated meets-relations for standard intervals of a special length.

Note that, as we have defined them, a given a of a standard interval meets exactly one b and is
met-by exactly one g of the same standard interval.

To define arbitrary non-convex intervals we make use of the iterated meets-relations. For the
next example we suppose a ranging over the set DAYS.

• MONDAYS = {a | (f6)* ([1992, 1, 13], a)} with: [1992, 1, 13] is a Monday.

Besides those quantitative aspects describing non-convex intervals we have to reflect upon the
possibilities how to describe non-convex intervals by qualitative aspects. This will be done by
non-convex relations.

2.3 Definition of non-convex relations
In the convex case qualitative statements are realized by the specification of the well known
thirteen convex relations [Allen 83]. In parenthesis the same abbreviations as in [Allen 83] are
listed for these relations. Therefore, the set of convex relations kR is defined as following:

Definition 2: (set of convex relations, kR)

kR = {before (<), meets (m), overlaps (o), starts (s), during (d), finishes (f), equal  (=),
      after (>), met-by (mi), overlapped-by (oi), started-by (si), contains (di), finished-by (fi)}.

Here we investigate binary relations that can hold between non-convex intervals. Those rela-
tions will be called non-convex relations. In 8Lad86a9 a theorem states that the number of rela-
tions between non-convex intervals is at least exponential in the number of consubints. That
means an exhaustive enumeration of non-convex relations is infeasible. To avoid the combina-
torial explosion implied by the theorem Ladkin chose some basic relations that don´t depend on
the number of consubints. We didn´t fully accept those relations but refine the idea of genera-
lized convex relations (see 8Lad86a9). At a first view our non-convex relations show certain
similarities to the generalized relations arising from [Kortüm 91], but note that Kortüms rela-
tions in fact are only a subset of our relations.

In our calculus a non-convex relation is composed of three parts:

• a functor whose name acts as key for the intended manner of the whole relation
• a first argument which specifies the convex relation between consubints of the first 

interval and consubints of the second interval
• a second argument which specifies the convex relation between the convex 

conclusions of the participating intervals.

To illustrate the second argument consider the following non-convex intervals i and j. The con-
vex conclusion of an interval is just the smallest convex interval that covers all consubints of the
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original non-convex interval. In case of the intervals i and j the list (overlaps) specifies the rela-
tion between the convex conclusions of i and j.

i

j

The convex conclusion will be realized by the interval operator convexify which takes the
first and the last consubint of a non-convex interval as its argument and returns the convex
conclusion.

In the following, we introduce the formal notation of a non-convex relation in form of a tripel,
but first we give the definition of the set of all functors.

Definition 3: (set of functors, func)
The set of all functors is specified by:

func = {1:1, 01:1, 1:01, n:1, 1:n, n<m, n=m, n>m, 01:1-f, 1:01-s, n:1-s, 1:n-f, 1:1-b}.

Definition 4: (set of non-convex relations, R)
A non-convex relation is noted in form of a tripel <functor  list1  list2>. The set of all non-con-
vex relation is defined as:

R = ˙ {<functor  list1  list2> | functor ™func; list1, list2 ∑ kR}.

A disjunctive collection of tripels is realized by gathering all participating tripels in a list. In ac-
cordance with disjunctions of convex relations this disjunction should be understood as XOR.

In the following we explain the different functors with the help of several examples of these re-
lations applied to the description of tasks and events. Thereby, the set of functors is treated in
three groups. At first, we discuss functors for two non-convex intervals.

1:1:  i  <1:1 list1 list2>  j
The intervals i and j contain the same number of consubints and between each matched pair of
consubints one of the realitions of list1 is valid. The functor 1:1 is taken from the adverb al-
ways.
E.g.  “always during the breakfast read the newspaper“ — i  <1:1 (contains) (contains) > j

i
j

1:01:  i  <1:01 list1 list2>  j
For every consubint of j exists one consubint of i so that one of the relations of list1 holds. This
allows the possibility that there are other consubints of i, but not of j. The functor 1:01 is taken
from the adverb mostly.
E.g. “mostly after jogging take a shower“ — i  <1:01 (after) (overlaps)>  j

i
j

n:1:  i  <n:1 list1 list2>  j
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For every consubint of j, there is a group of consubints of i that is related to it in one of the
elements of list1. Note, the conversion is not valid: you can´t gather arbitrary consubints of i
and expect these groups to be in a well defined relation to consubints of j.
E.g. “after some hours of learning take an hour to relax“ — i  <n:1 (after)(overlaps)> j

i
j

n<m, n=m, n>m:  i  <n<m list1 list2>  j
For every chosen group of consubints of j, there is a group of consubints of i that is related to it
in one of the elements of list1. The number of consubints of groups from interval i is always
less than the number of consubints of the matched groups from interval j.
In analogy to this definition the functors n=m and n>m are defined; only the number relation-
ship of consubints of corresponding groups is different.
E.g “he enjoys his holidays always just the last few days“ — i  <n>m (finishes) (finishes)>  j

i
j

Note that n>m and n<m are converse functors. The converse functors of 1:01 and n:1 are 01:1
resp. 1:n. They are not enumerated here, but their semantics should be clear.

Besides the presented functors we have defined a group of functors for the specification of re-
lations that can hold between a non-convex and a convex interval.

1:01-s:  i  <1:01-s list1 list2>  j
One of the consubints of i is related to the convex interval j in one of the elements of list1. The
postfix -s (“second“) designates the second interval - here interval j - to be the convex one.
E.g. “I became familiar with her the last day of our holiday“ — i<1:01-s (equal) (finishes)> j

i
j

n:1-s:  i  <n:1-s list1 list2>  j
A chosen group of consubints of i is related to the convex interval j in one of the elements of
list1.
E.g.“she failed once in a test during the first examination day“ — i<n:1-s (during) (during)>j

i
j

Additionally there are the functors 01:1-f and 1:n-f as converse functors. Here the postfix -f
(“first“) designates the first interval to be the convex one.

The notation of non-convex relations in form of tripels allows the representation of pure convex
relations in a suitable manner: if list is a disjunction of convex relations between two convex
intervals, those relations can be transformed to the equivalent tripel notation <1:1-b list list>.
The positions 2 and 3 of the tripel are both list and the new defined functor is called 1:1-b. The
postfix -b (“both“ intervals are convex) distinguishes this functor from the pure non-convex
functor 1:1.
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Why did we choose those functors and why did we determine the tripelform as presentation of
non-convex relations? The advantages are evident:

• three positions of a tripel imply a high expressive power
• relations between arbitrary types of intervals (convex/non-convex) can be expressed 

by one form (our tripelform)
• the relations are disjunct
• they don´t depend on the number of consubints of their argument intervals
• the set of all possible relations is exclusive concerning the product of relations

(see Section 3.1.4)
• our functors allow a natural presentation of relationships between intervals

Finally another remark concerning the presentation of non-convex intervals within our calculus:
After that we have the possibility to define non-convex intervals by sets we may furthermore
use ordinary setoperations to construct and modify non-convex intervals. Besides we can
combine formal quantitative and qualitative descriptions to define new intervals as shown in the
examples below.

- beginning in march 1991 every three days = {a | (f2)* ([1991,3,1], a) å a ≥ [1991,3,1]}
- three times everyday = FIRST ˙ SECOND ˙ THIRD å
(FIRST <1:1 (contained-in) (contained-in)>  DAYS) å
(SECOND <1:1 (contained-in) (contained-in)>  DAYS) å
(THIRD <1:1 (contained-in) (contained-in)>  DAYS) å
(FIRST <1:1 (before) (overlaps)> SECOND) å (SECOND <1:1 (before) (overlaps)> THIRD)

Now, an expressive formal calculus of non-convex intervals is at our disposal. Thereby, the
presented non-convex relations may act as the basis of a relation algebra that is going to be de-
veloped within the next chapter.

3. Propagation of non-convex relations
In 8Allen 839 an algorithm to propagate convex relations within a time interval network is pre-
sented. Allen´s algorithm is motivated by the following question: if xRy and ySz, where x, y
and z are convex intervals and R, S are convex relations, how is the relation p(R, S) to be de-
termined? An essential part of his algorithm was the introduction of the two operations product
and intersection on relation sets. The elaboration of our non-convex calculus as extension of
Allen´s convex calculus avoids the developement of an entire different algorithm.
In this section we redesign Allen´s algorithm to an appropriate algorithm for non-convex rela-
tions. That means, we have to redefine the mentioned operations, product and intersection, on
sets of non-convex relations.

3.1 Product of relations as tripel product
The axiomatization of the relation product in the convex case, p(R, S), R, S ™ kR, is given by
a relation product table ([Allen 83]). Because of the enormous amout of different tripels a simi-
lar proceeding in the non-convex case will be complicated. Nevertheless, the representation of
non-convex relations in tripelform offers the way of a separate product building about every
position of two tripels. This can be done with regard to certain dependencies of the three
positions. That is, we have to construct products p1, p2 and p3 over the first, the second resp.
the third positions of each two tripels. In a final step we combine the results to receive the tripel
product.
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3.1.1 The product p1 of two functors
The product of p1 is independent of the other positions of the participating tripels. So we can
axiomatisize p1 by a functor product table. Instead of introducing this table (for details see
8Kröll 919) we point out some fundamental principles that are pursuited in the table.
• Entries in the table always consist of subsets of func.
• Certain entries consist of the empty set which implies an inconsistency, e.g., p1(1:1, 01:1-f)
= {}. 1:1 implies the first two intervals to be non-convex whereas 01:1-f requires the second
interval to be convex. This is a contradiction.
• All entries consist of a maximal set of valid functors. This technique guarantees that no in-
consistencies will be inferred where no inconsistencies are. By it the similar semantics of cer-
tain functors leads to a grouping of functors. The groups are {1:1, n=m} , {1:01, n:1, n>m} ,
{01:1, 1:n, n<m} , {1:01-s, n:1-s} , {01:1-f, 1:n-f} , {1:1-b}. Pay attention to the similarity of
1:01 and n:1 for example. The entries in the table (besides the empty set) consist always of a
whole group or of unions of groups. Examples are p1(1:1, 1:01) = {1:01, n:1, n>m}, and
p1(1:01, 01:1) = {1:1, 1:01, 01:1, n:1, 1:n, n<m, n=m, n>m}.
• The consideration of the types of the participating intervals (convex/non-convex) is essential
to the construction of p1. So 01:1-f relates a convex and a non-convex interval, 1:01-s relates a
non-convex and a convex interval, and the product p1(01:1-f, 1:01-s) inferes only the functor
1:1-b which is defined between two convex intervals.

The disjunction of several functors will be realized later by the disjunction of whole tripels. But
we still have to define the products p2 and p3 to get there.

3.1.2 The product p3 of the third positions of tripels
The third position of a tripel specifies the convex relations between two intervals after applica-
tion of the convexify-operator. This operator transforms the set of consubints of a non-con-
vex interval to a convex interval. This offers the application of Allen´s product table to axioma-
tisize the product p3. But, we have to regard dependencies from the result of the product p2 of
the second positions. Consulting Allen´s product table with the example

i <1:1 (meets) (overlaps)> j  and  j <1:1 (met-by) (overlapped_by)> k

i
j

k

we receive the disjunction {o, oi, =, s, d, f, fi, di, si}. In fact, only a subset of this disjunction
is valid. This subset is identical to the disjunction {f, fi, =}received as result of p2.
It is difficult to formulate rules to represent dependencies of this type. Besides these dependen-
cies we have to regard dependencies of p2 and p3 in the other direction too. That is we have
cyclical dependencies which are very difficult to handle. Our realization of p3 abandons those
dependencies. For practical applications of the algorithm this proceeding is all right: the precise
valid relationset is always just a subset of the inferred relation set. Though the result of p3 is
still correct it is not guaranteed that the local consistency check detects all inconsistencies.
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3.1.3 The product p2 of the second positions of tripels
The second position of a tripel consists of a list of convex relations which relates according to
the valid functor single consubints or groups of consubints of the participating intervals. This
dependency is assigned to the product p2 which will be primary dependent of

• the semantics of the functors of the product building tripels
and • the semantics of the functors of the resulting tripels.

The trick how to take this primary dependency in consideration is the definition of several diffe-
rent tables to axiomatisize p22. Because of the complexity of p2 (i.e. use of different product
tables, when to consult a special table etc.) we will confine here the representing of essential re-
sults. We will make use of some examples to determine possible values of p2:

• Define the interval of the daily lunch through lunch <1:1 (after) (overlapped-by)> breakfast
and lunch <1:1 (before) (overlaps)> diner. Further let diner <1:1 (after) (overlapped-by)> lunch
and diner <1:1 (before) (overlaps)> breakfast.

breakfast

lunch

diner

Propagating those relations leads to the inconsistency that lunch is as well before as after break-
fast. We took this case into acount by introducing a new "convex" relation named no_rel. The
pseudo-relation no_rel avoids the statement of a not existing inconsistency of this kind. So if
the second position of the resulting tripel consists of the disjunction (before no_rel) no_rel is
always to be understood as additional possible relation. Therefore, no_rel will be listed in some
entries of Allen´s product table besides the original entries.

• We will use the example above to show another resulting tripel. p1(1:1, 1:1) not only leads to
the functor 1:1 but also to the functor n=m (see formation of groups of functors by p1). So if
the resulting tripel owns the functor n=m, what about the second position of this tripel? In this
special case the second positions of the product building tripels are irrelevant. The result of p2
is identical with the result of p3.

i

j

k

Summed up we get p(<1:1 (before) (overlaps)>, <1:1 (before) (overlaps)>) = (<1:1 (before
no_rel) (before overlaps meets)> <n=m (before overlaps meets) (before overlaps meets)>)
where p designates the tripel product.

• Sometimes it is impossible to infer a restricted set of relations in a resulting second position.
E.g. i (<01:1 (overlaps) (during)>) j and j (<1:n (overlapped-by) (overlapped-by)>) k

2The dependencies between p2 and p3 mentioned in the last passage will not be considered here again. In contrary

to the primary dependencies whose discussion will be quite extensive they are called secundary dependencies.
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i

j

k

The 01:1-functor implies a lack of information about the pairing of structures of the intervals i
and k. We know nothing about the site of consubints of i nor of k. In this case the second posi-
tions of resulting tripels consist of the constant kR+nr, kR+nr = kR ˙ {no_rel}.

• In some cases another modification of the product table for convex relations is consulted.
Again an example shall show the necessity of this table.
E.g. i (<1:1 (before) (overlaps)>) j and j (<n:1 (overlaps) (overlaps)>) k

i

j

k

We are interested in the second position of the resulting n:1-tripel. Consulting the ordinary pro-
duct table the entry of the second position would be the incomplete relation (before). In fact,
this position is filled with the relationset (before meets overlaps no_rel). Just this entry is to be
found in the new defined product table.

3.1.4 The tripel product p
The tripel product p is finally realized by a 13*13 table whose arguments are each two tripels
and whose entries are disjunctions of resulting tripels. Those resulting tripels are composed of
the three positions that are at their part constructed by p1, p2 and p3.
We will conclude this passage by some annotations. A major principle when defining the tripel
product p was the regard on certain logical aspects. I.e. we tried to realize p in a way adequate
to the human way of thinking. A typical feature of questions of AI is the problem of modeling
cognitive processes and, by it, the impossibility to place an exact mathematical buildung at dis-
posal. So especially p2 lacks an exact, or "strong", logic.

3.2 Intersection of relations
Let C and D be disjunctions of tripels relating two intervals i and j. Intersection of C and D re-
duces the number of valid tripels between i and j. If the result of the intersection is the empty set
no relations between the participating intervals i and j are valid.
Intersection of disjunctions of tripels is more complicated as the intersection in the convex case.
We have to define two additional intersection operators œTK and œT. œTK intersects two dis-
junctions of tripels by constructing the union of the intersection œT of each two tripels whose
functors are equal. œT on his side intersects each two tripels with the same functor. The inter-
section returns an empty set, that means an inconsistency, if

• either œTK returns an empty set
or • the intersection  œ of the relation lists of the second or the third position of the two 

intersecting tripels is empty.
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4. Conclusion
In this paper a new non-convex time interval calculus is introduced. The non-convex intervals
make it possible to represent repetitive natural language expressions. For the specification of
relationships between non-convex intervals appropriate non-convex relations in form of tripels
are defined. Each position of the relation focus on a special detail of the relationship between
non-convex intervals.
In this way we reach a powerfull calculus which subsumes the convex time interval calculus
proposed by Allen. Moreover, we have extended the constraint propagation algorithm intro-
duced by Allen for handling with non-convex relations. Thereby, the tripel form is used for se-
parate constraint propagation of the particular parts.
Another word concerning the complexity of our algorithm. In the O-notation it acts with a
complexity of O(n3) and therewith in polynomial time, like its convex equivalent. In contrast,
the constant factor in our algorithm is much higher.
The developed non-convex propagation algorithm is fully implemented on a SUN SparcStation.
Today, only a few examples are tested. So, the useability in “real domains“ has to be shown in
future.
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