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Abstract

In this work� a novel approach to the integration of relational and functional
languages on the basis of abstract machines �in the context of the RELFUN
language and implementation� is described�

This integration is carried out for several reasons� to combine two declara�
tive paradigms into a more expressive one� to allow existing software libraries in
relational and functional �here LL� a COMMON LISP derivative� languages to
be used together without the need of re�implementation� to speed up relational
programs by transforming deterministic relations into functions� and to enhance
the expressiveness of relational languages by new extra�logicals with the help of
functions�

The integration is performed on two levels� �� on the abstract machine level
�the WAM� the abstract machine behind most implementations of relational lan�
guages� and the LLAMA� an abstract machine especially designed for the e	cient
execution of LL� are coupled�� and 
� on the source language level �LL functions
are accessible from relations and vice versa��

One of the major points of this work is the detection and transformation of de�
terministic relations �into LL functions�� resulting in a speed�up factor of 
��� For
this� a theoretical foundation for deterministic relations and several intermediate
representation languages for the transformation process are developed�
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� CHAPTER �� INTRODUCTION

Chapter �

Introduction

��� Objectives

The objective of this work is a novel approach to the integration of functional and
logic programming languages on the basis of abstract machines in the context of
the RELFUN �Boley� ���
� project� This integration is motivated by the following
points�

�� Both functional and logic programming are declarative paradigms� but
are suitable for solving partially disjoint problem classes� logic program�
ming is preferable for problems involving search� functional programming
is preferable for deterministic symbolic computations on complex dynamic
data structures�

In real�world applications� often problems of both problem classes occur�
thus solving them in a single programming paradigm requires some abuse
of it� As a consequence� large programs developed in integrated functional�
logic programming languages pro�t from the advantages both languages
can o�er�


� In addition to the development of new algorithms� reuse of existing software
libraries plays an important role in practice� since software development and
especially software maintenance is highly expensive� For this reason� stable
software should be reused as often as possible� even if the programming
language it has been developed in turns out to be suboptimal in some sense
��Never change a running system���� It is thus desirable to permit combin�
ing already existing algorithms of which some are speci�ed in a functional
and some in a logic programming language� without having to re�implement
any of them in the other paradigm�

� Logic programming languages usually have the disadvantage of being inef�
�cient since uni�cation and search are not directly supported by von Neu�
mann architectures� Since the development of hardware directly suited for
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logic programming languages turned out to proceed slower than expected
�Benker et al�� ����� Dorochevsky et al�� ����� Kurozumi� ���
�� other means
for improving the e	ciency of logic programs have to be developed� too� In
addition to recent research in the �eld of native code generation for logic pro�
grams �Taylor� ����� Van Roy� ������ research dealing with the improved
compilation of logic programs into abstract machines should be pursued�
too�

In the current work� the integration of logic and functional programming
with abstract machines will be shown to be suitable for attacking the e	�
ciency problem for the class of logic programs containing predicates that are
only used deterministically� in this case� these deterministic predicates are
transformed into functions which are then compiled into an abstract ma�
chine especially designed for the e	cient execution of functional languages�
By this� the overhead caused by the general search strategies � wastefully
applied to deterministic predicates � can be avoided�

The following diagram illustrates the integration of logic and functional
programming on the basis of abstract machines and the transformation of
deterministic predicates into the functional sublanguage�

abstract machine

languages

abstract machine
for functional programming

compilation compilation

access

mutual

both abstract machines

mation
transfor-

deterministic
predicates

functional programmingsub-
language

relational programming

for relational programming
languages

common parts of

on the

source language

level

on the

abstract machine

level

integration

integration

sublanguage

�� In concrete logic programming languages� it is often desirable to enhance
the expressiveness by adding new features� This is usually either performed
by directly extending �changing� the compiler�interpreter or by designing
the language for extensibility via �usually extra�logical� programs written
in the language itself��

�For example� some logic programming languages allow the uni�cation� constraint solving�
and the search strategies to be extended with the help of programs written in the language
itself�
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While the �rst approach is rather in�exible �i�e� expensive� error�prone�
non�modular�� the second is usually ine	cient and often introduces perfor�
mance penalties even for programs not requiring any extensions� In this
work� a �exible and e	cient means for extending the expressiveness of logic
programs with the help of deterministic functions will be shown�

��� Approach and Results

In this work� the integration of

�� relational languages �with REL as a representative� and


� LL �LISP light�� a subset of COMMON LISP extended with PROLOG�like
structures�

is presented� The extension of LL with PROLOG�like structures is necessary in
order to permit both sublanguages to work on the same data types�

This integration is carried out on two levels�

� On the abstract machine level�
The WAM �Warren� ����� the abstract machine which has turned out to be
a �local� optimum for the compilation of relational languages� is �loosely�
coupled with the LLAMA �LISP light Abstract Machine�� an abstract stack
machine especially designed for the e	cient execution of LL programs while
handling all PROLOG data structures �as they are internally represented�
to avoid their transformation at run time�

The integration of the WAM and the LLAMA was carried out with the
help of the GAMA� a General Abstract Machine Assembler� intended as a
programming environment supporting the development and integration of
abstract machines�

� On the source language level�

�� As a result of the integration of the two underlying abstract machines�
relational programs compiled into the WAM and LL programs com�
piled into the LLAMA can access each other��

relations access LL functions via a generalized is builtin� allowing
not only arithmetical builtins �as in PROLOG� but also LL functions
on the right�hand side� and LL functions access relations� either with
once �retrieving only the �rst solution�� or with a bagof�like construct
�retrieving all solutions��

�In our prototypical implementation� only relational programs access LL programs�
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� Relations that are �detected or declared to be� only used determin�
istically are transformed into LL functions and then compiled into
LLAMA code� thus avoiding the overhead caused by the ordinary
WAM code�

The following diagram� a re�nement of the diagram on page �� illustrates the
integration of relational languages and LL on both the source language and the
abstract machine level �parts newly developed in this work are marked with ���

GAMA

WAM LLAMA

common data

once,bagof

is

transfor-
mation

compilation compilation

types

predicates
deterministic

LL (LISP light)
(REL)

*

*

*

*
*

on the

source language

level

on the

abstract machine

level

integration

integration

integrative

platform

relational languages

This approach meets all the requirements presented in the preceding section�

�� Applications in which either the logic or the functional programming
paradigm is best suited for some sub�problems can be developed in a rela�
tional language coupled with LL�


� Already existing programs in relational languages and LISP can be inte�
grated without re�implementation� Since PROLOG and COMMON LISP
are the predominant logic and functional programming languages� mainly
subsets of these languages have been chosen�

� By mapping deterministic predicates into LL functions� the e	ciency of
relational programs can often be considerably improved �by a factor of 
���
see appendix A�� Especially� large relational applications tend to contain a
huge number of deterministic predicates� as we were able to determine via
some of our RELFUN programs �Sintek� ����� Boley� ������

�� The expressiveness of relational programs can be improved by specifying
new features as LL functions and using them as pseudo builtins�
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Compared with more theoretically motivated approaches using a tight inte�
gration of logic and functional languages on the source and the abstract machine
levels �e�g� �Hanus� ����� Lock� ������ our approach has the following strong
points�

� Already existing programs in PROLOG and LISP do not have to be re�
implemented in a new� uni�ed formalism�

� For applications requiring additional programming paradigms� further ab�
stract machines can be coupled with the WAM and the LLAMA without
much e�ort�

� The loose coupling of the WAM and the LLAMA allows new insights in the
technology of the WAM or stack machines to be easily adopted�

��� Outline

Chapter 
 presents the background for this work� a short introduction is given
for relational�functional programming languages and abstract machines�

Chapter  introduces LL� its data types� special forms and builtin functions�
and the user�de�nable functions� Since LL is mainly a subset of COMMON LISP�
the reader familiar with COMMON LISP may skip most of the details in this
chapter�

Chapter � describes the integration of relational languages and LL� their
integration on the abstract machine and source language level� the transformation
of deterministic predicates into LL functions� and the implementation of extra�
logicals with the help of LL� Since the transformation of deterministic predicates
requires their detection� a theoretical foundation for deterministic relations �using
SLD resolution trees� is developed�

Chapter � gives a description of the LLAMA� its registers and memory or�
ganization� the representation of data structures� the calling conventions� and
the instructions� The LLAMA is presented in a rather technical manner us�
ing machine state transition diagrams� thus allowing the LLAMA to be easily
re�implemented in any �imperative or functional� programming language�

Chapter � describes the compiler for LL into the LLAMA� Again� a
technical representation using transformation rules was employed in order to allow
the compiler� just like the LLAMA� to be easily re�implemented�

Chapter � gives a short overview of the GAMA which was used to integrate
the WAM with the LLAMA�

Chapter � �nishes this work with conclusions and gives some hints for future
work�
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Chapter �

Background

In this chapter� a short introduction to relational�functional programming and
abstract machines is presented�

The reader is expected to be familiar with the concepts of logic program�
ming and functional programming� In �Lloyd� ������ an introduction to logic
programming� in �Wikstr�m� ������ an introduction to functional programming
is given�

��� Relational�Functional Programming Lan�

guages

Languages integrating functional and logic �relational� programming concepts
�DeGroot and Lindstrom� ����� are currently often called functional logic pro�
gramming languages� However� we will employ the term relational�functional
programming languages� where the term relational language is used as a supercon�
cept for both purely logic languages and logic languages enhanced by �functionally
appropriate but� extra�logical features such as the cut�commit operator�

The integration of di�erent programming paradigms into a new programming
language aims at a language inheriting the advantages of the original languages�
In the case of the integration of relational and functional programming languages�
their declarativeness and� in particular� their expressiveness� i�e� their suitability
for partially disjoint problem classes� is inherited�

In general� there are two di�erent ways of integrating functional and relational
programming languages �Boley� ���
��

�� by tightly integrating both paradigms into uni�ed ones �Boley� ����� Hanus�
����� Lock� ����


� by loose coupling� obtaining hybrid languages �for classic systems� see �Slo�
man and Hardy� ���� Robinson� ������ which are often parts of multi�
language expert system shells
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Both approaches have their advantages and disadvantages�

�� While tightly integrated languages maintain full declarativeness� they re�
quire existing software libraries to be re�implemented and cannot be easily
augmented by additional programming paradigms� Furthermore� tightly
integrated languages often lose some of the e	ciency of the separate lan�
guages since techniques of their e	cient execution can usually not be en�
tirely transferred to the integrated language�


� Hybrid languages have the disadvantage of not completely maintaining
declarativeness� applications have to be split into parts speci�ed in dif�
ferent paradigms and communicating via interface primitives� For large�
modular applications this is often insigni�cant� complete modules can be
speci�ed either in the functional or the relational sublanguage� accessing
each other only via well�de�ned interfaces��

The loose integration of relational languages and LISP in this work was in�
spired by RELFUN �Boley� ���
�� a tightly integrated relational�plus�functional
programming language also building upon PROLOG and LISP �the original ver�
sion �Boley� ����� not only used a LISP�like syntax for both relations and func�
tions but also LISP�like dotted�pair patterns for uni�cation��

In addition to functions being accessible on the right�hand side of the gen�
eralized is builtin� RELFUN also allows function calls in each premise� all of
which can be nested for call�by�value evaluation� This requires a syntactical dis�
tinction between active function applications and passive structures� while round
parentheses are reserved for applications� the square brackets used for PROLOG
lists are generalized to be also used for structures �which can thus be viewed as
labeled lists��

In RELFUN� the tight integration of functions into a relational language is
performed via functional clauses� an extension of relational �Horn� clauses by a
value�returning premise �the last premise� preceded by an ampersand� ����� This
directly leads to the main di�erence between RELFUN and the loose integration
described in this work� RELFUN functions inherit all properties of ordinary
relations and are thus potentially non�deterministic� as the following example
illustrates�

Example ���
The ternary PROLOG relation

memberp�X� �X � R�� �X � R�	


memberp�X� �� � R�� Z	 � member�X� R� Z	


�In the case of applications developed by more than one implementor� the languages for the
separate modules can eventually be chosen according to their preferences or abilities�
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can in RELFUN be rewritten as the binary �LISP�inspired� function

member�X� �X � R�	 �� �X � R�


member�X� �� � R�	 �� member�X� R	


For lists containing the searched element more than once� each occurrence
results in a separately returned solution�

rfep� member��� ���������������	

��� �� �� �� �� ��

rfep� more

��� �� ��

rfep� more

unknown

�

For relations and functions to be applied only deterministically� RELFUN
extends PROLOG s cut use to its functional clauses��

memberp�X� �X � R�� �X � R�	 � �


memberp�X� �� � R�� Z	 � member�X� R� Z	


member�X� �X � R�	 � � � �X � R�


member�X� �� � R�	 �� member�X� R	


Now� member��� ���������������	 succeeds only once �with the �rst solu�
tion��

A principal goal of this work will be to transform the deterministic memberp

relation into the deterministic member function and both into the LISP�like LL�
language for execution on the highly e	cient stack machine LLAMA�

For providing some notation� as our highest�level relational �input� language
we will use a sublanguage of RELFUN� here called REL� encompassing relations�
the generalized is�primitive� as well as cut and once operators�

REL clauses will thus employ RELFUN s syntax� e�g� structures will be en�
closed in square brackets� since this generalization is useful in the context of
relational�functional languages �and can even enhance the readability of purely
relational languages�� Furthermore� RELFUN functions will be used as one of
our intermediate representation languages in the transformation of REL into LL
�section ��
���

�Since in RELFUN these deterministic clauses are compiled into ordinary WAM code �in
order to allow uni�cation and non�ground computations in functions�� e�ciency is not much
improved�
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��� Abstract Machines

The execution of programming languages in general can be performed in three
di�erent ways�

�� by interpreting the source code�


� by compiling the source code into native machine code� or

� by compiling it into an abstract machine code and then emulating it�

Interpretation is used for the de�nition of the operational semantics and in
prototypical implementations of all kinds of programming languages� In order to
obtain e	ciency� compilation is needed� Programming languages complying with
the imperative programming style imposed by the von Neumann architecture are
usually compiled into native machine code�

For a language like PROLOG which cannot be easily mapped into the impera�
tive programming paradigm� the compilation into an abstract machine especially
designed for it is usually a good compromise w�r�t� e	ciency and development
costs� The machine code for such an abstract machine is interpreted by an or�
dinary �but of course highly optimized� imperative program in contrast to the
execution of native machine code with a hardware�encoded interpreter �a proces�
sor��

In case of relational programming languages� for quite some time only inter�
preters existed� In ����� Absys �Aberdeen System�� an interpreter for �a pre�
decessor of� pure PROLOG� was developed at the University of Aberdeen� In
����� David H� D� Warren et� al� developed DEC��� PROLOG� the �rst PRO�
LOG compiler� and in ���� he designed the WAM �Warren� ����� the abstract
machine that has become the de facto standard implementation technique for
relational languages �Van Roy� ������

The WAM can be characterized as follows�

WAM ! sequential control �call�return�jump instructions�
" uni�cation �get�put�unify instructions�
" backtracking �try�retry�trust instructions�

Since the coupling of the WAM and the LLAMA is loose� a deep understanding
of the WAM will not be required�� Only

� the WAM heap �holding lists and structures� the compound data terms of
PROLOG and RELFUN�REL��

� the local stack �holding environments� which contain local variables� and
choice points�� and

�For introductions into the WAM� refer to 	Gabriel et al�� 
���� 	A��t�Kaci� 
����� and
	Van Roy� 
�����
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� some of the WAM registers �the program counter and the stack and heap
pointers�

are shared between the WAM and the LLAMA� They will be described in detail
in sections ��� and ��
�
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Chapter �

LL� LISP light

LL �LISP light� is a subset of �COMMON� LISP �McCarthy et al�� ���
� Steele Jr��
����� extended by PROLOG structures� In addition to purely functional builtins�
it contains some extra�functional builtins for the following reasons�

�� Existing �COMMON� LISP programs can be integrated with relational pro�
grams without having to re�implement their non�functional parts like global
variables� re�assignments via setq� or loops�


� LL functions can be used to augment relational languages by �new� extra�
logicals� Some of these extensions require non�functional behaviour� e�g�
bagof� which can be implemented via global LL variables �see section ����

� Deterministic tail�recursive relations and functions can be translated into
loops to speed up execution�

In the following� LL s data types� special forms� builtins� and user�de�nable
functions will be described�

��� Data Types

In LL� the following data types� are supported�

� symbols

� numbers �integers and reals�

� strings

� lists and dotted pairs

�In the context of LISP� data types are usually referred to as S�expressions �symbolic ex�
pressions� 	McCarthy et al�� 
�����
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� structures

Symbols� numbers� strings� and lists work just like their COMMON LISP
counterparts� Because LL has to handle all data types that can be found on the
WAM stack and heap� PROLOG structures had to be added� They are quite
similar to ���dimensional� COMMON LISP arrays in that they allow e	cient
random access to all of their elements in contrast to LISP�PROLOG lists which
require linear access by applying a cdr operation repeatedly�

In LL� structures are enclosed in square brackets and use LISP s Cambridge
Polish pre�x notation�

PROLOG RELFUN LL
f�a�b�c	 f�a�b�c� �f a b c�

LL structures evaluate to themselves� thus quoting is not necessary but � as
with numbers and strings � allowed�

In analogy to constructing lists with list or cons� LL structures can be built
up with struct �

�
� denotes evaluation� expr� ! expr� is equivalent to expr

�
�

expr���

�struct �f �a �b �c	
�
� �f a b c�

�struct �f �a �struct �g �b �c		
�
� �f a �g b c��

Using struct is the only way to construct a structure which contains variables�
The RELFUN�REL goal

X is a� Y is f�X�b� � Y � f�a� b�

has� in LL� to be expressed as�

�let ��x �a		 �struct �f x �b		
�
� �f a b�

LL � just like COMMON LISP � does not support pattern matching or
uni�cation� Selecting the constituents of a structure has to be done with the
following functions�

� �arity �f arg� � � � argn�	
�
� n

� �functor �f arg� � � � argn�	
�
� f

� �elt �f arg� � � � argn� m	
�
� argm with � � m � n
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��� Special Forms and Builtin Functions

In LL� only basic special forms and builtin functions are directly understood by
the compiler� Often�used builtins that can be de�ned via these basic special forms
and builtins are contained in the prelude which is loaded at system startup�

In the following subsections� the LL builtins will be described� If the reader is
familiar with COMMON LISP� most of these subsections may be skipped �except
subsection �
�� which describes LL structures��

Only short de�nitions of the LL builtins are given� A detailed description can
be found in the LISP literature �Steele Jr�� ������

LL Builtins
quoting quote� �

lists and dotted pairs cons� list� car� cdr� null� consp
structures struct� structp� arity� functor� elt

�single�re�� assignments let� let�� setq� psetq
equality equal� eq� eql

numerical builtins �� � �� �� ��� �� �� ��� �� �� ��� ��
string builtins string�� string�

I�O builtins read� print
higher�order builtins funcall� apply� lambda� function� eval
sequential evaluation progn

conditional evaluation if� cond� and� or
non�local exits and loops catch� throw� loop� return� do

prelude caar� cadr� cdar� cddr�
mapcar� append� reverse� member� assoc� sort

����� Quoting

� �quote arg	
�
� arg

� �arg
�
� arg

����� Lists and Dotted Pairs

� �cons a b	
�
� �a� 
 b�	

� �list expr� � � � exprn	
�
� �expr�� � � � expr�n	

� �car l	
�
�

�
nil � l � ! nil

x � l � ! �x � y�

� �cdr l	
�
�

�
nil � l � ! nil

y � l � ! �x � y�
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� �null l	
�
�

�
t � l � ! nil

nil � otherwise

� �consp l	
�
�

�
t � l � ! �x � y�
nil � otherwise

����� Structures

� �struct f arg� � � � argn	
�
� �f � arg�� � � � arg�n�� where f � is a symbol

� �structp s	
�
�

�
t � s� ! �f � � ��
nil � otherwise

� �arity �f arg� � � � argn�	
�
� n

� �functor �f arg� � � � argn�	
�
� f

� �elt �f arg� � � � argn� m	
�
� argm with � � m � n

����� �Single and Re�� Assignments

� �let ��v� e�	 � � � �vn en		 
 body	
�
� �progn 
 body	�

where body is evaluated in the context of the local variables v i ! e�i �
i � f�� � � � � ng� created in parallel� i�e� �rst all ei are evaluated� then the v i
are �single�� assigned �bound�

� �let� ��v� e�	 � � � �vn en		 
 body	
�
� �progn 
 body	�

where body is evaluated in the context of the local variables v i ! e�i �
i � f�� � � � � ng� created sequentially

� �psetq var� expr� � � � varn exprn	
�
� nil

with the parallel �re��assignment of vari to expr��� i � f�� � � � � ng� via side
e�ect

� �setq var� expr� � � � varn exprn	
�
� expr �n

with the sequential �re��assignment of vari to expr��� i � f�� � � � � ng� via side
e�ect

����	 Equality

� �equal x y	
�
�

�
t � x � ! y�

nil � otherwise
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� �eq x y	
�
�

�����
t � if the internal toplevel representation �pointer�

is equal �see section ������
nil � otherwise

� �eql x y	 � same as eq �in COMMON LISP� eq is di�erent from eql in
that it is not guaranteed that eq works for numbers depending on their
internal representation� in LL� eq and eql are identical since the abstract
machine for LL� the LLAMA �see chapter ��� represents numbers just like
all other constants�

����
 Numerical and String Builtins

����
�� Numerical Builtins

� �� arg� � � � argn	
�
�
Pn

i�� arg
�
i � n � �

� � arg� � � � argn	
�
�

�
arg�� �

Pn
i�� arg

�
i � n � �

�arg�� � n ! �

� �� arg� � � � argn	
�
�
Qn
i�� arg

�
i � n � �

� �� arg� � � � argn	
�
�

���
arg

�
�Qn

i��
arg

�
i

� n � �
�

arg
�
�

� n ! �

� ��� arg	
�
� arg� " �

� �� arg	
�
� arg� � �

� �� arg� � � � argn	
�
�

�
t � �ni�� arg

�
� ! arg�i

nil � otherwise

� ��� arg� � � � argn	
�
�

�
t � �ni�� �

n
j�� �i 	! j 
 arg�i 	! arg�j�

nil � otherwise

� �� arg� � � � argn	
�
�

�
t � �n��i�� arg�i � arg�i��
nil � otherwise

� �� arg� � � � argn	
�
�

�
t � �n��i�� arg�i � arg�i��
nil � otherwise

� ��� arg� � � � argn	
�
�

�
t � �n��i�� arg�i � arg�i��
nil � otherwise

� ��� arg� � � � argn	
�
�

�
t � �n��i�� arg�i � arg�i��
nil � otherwise
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����
�� String Builtins

� �string� arg� arg�	
�
�

�����
t � arg�� is lexicographically

less than arg��
nil � otherwise

� �string� arg� arg�	
�
�

�����
t � arg�� is lexicographically

greater than arg��
nil � otherwise

����� I�O Builtins

� �read	
�
� input� where input is any LL term entered by the user

� �print expr	
�
� expr�� expr� is printed as side e�ect

���� Higher�order Builtins

� �funcall function expr� � � � exprn	�
function application of function� to �expr�� � � � expr�n	

� �apply function expr� � � � exprn�� exprn	�
function application of function� to �expr�� � � � expr�n�� 
 expr�n	�
expr�n must be a list

� �function function	 or ��function� evaluates to the functional object cor�
responding to function in the current environment� function may be a sym�
bol or a lambda expression �lambda �v� � � � vn	 
 body	

� �eval expr	� expr is evaluated twice� the �rst evaluation takes place in the
current environment� the second in the global environment

����� Sequential Evaluation

� �progn expr� � � � exprn	
�
� expr�n� expr� � � � exprn�� are

evaluated for their side e�ects

������ Conditional Evaluation

� �if test expr� expr�	
�
�

�
expr �� � test� 	! nil

expr �� � otherwise
�if test expr	� ! �if test expr nil	�

� �cond �t� 
 e�	 � � � �tn 
 en		
�
� �progn 
 ei	

� with
t �i 	! nil

� �i��j�� t
�
j ! nil
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� �and expr� � � � exprn	
�
�

�����
t � n ! �
expr �n � n � � � �ni�� expr

�
i 	! nil

nil � otherwise

� �or expr� � � � exprn	
�
�

�����
expr �i � �i�f������ng expr

�
i 	! nil

� �i��j�� expr
�
j ! nil

nil � otherwise

������ Non�local Exits and Loops

Non�local exits �catch and throw� and loops �loop and do� have been provided
for two reasons�

�� to make the integration of existing COMMON LISP programs into REL
programs easier


� to allow tail�recursive deterministic REL relations and functions to be trans�
lated into LL loops in order to speed up execution

For a detailed explanation of catch� throw� loop� and do� see �Steele Jr��
������ Here a short description�

� �catch tag 
 body	
�
�

���������
�progn � body�� � if no throw statement

was evaluated in body
expr � � if �throw tag expr	

was evaluated in body

� �throw tag expr	� leave the next catch body tagged with tag�� returning
expr�

� �loop 
 body	� repeat executing body� returns only if �throw nil expr	
is executed �this is slightly di�erent from COMMON LISP loop�

� �return expr	� same as �throw nil expr	

� �do init exit 
 body	
with init ! ��varI� exprI�a exprI�b	� � � �var

I
n exprIna exprInb		�

exit ! �test exprE� � � � expr
E
m	

The execution of a do loop takes place as follows�

�� initialize varIi with exprIia
� via let


� if test� 	! nil� return �progn exprE� � � � expr
E
m	

�

� if test� ! nil� execute body and re�initialize varIi with exprIib
� via

psetq� go to 
�
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������ Prelude

� cr with  � faa� ad� da� ddg�
�cr l	� ! �c�r �c�r l		� for  ! ��

� �mapcar function list	
�
� �y� � � � yn	

with list� ! �x� � � � xn	
� �ni�� �funcall function �x i	

� ! y i

� �append list� list�	
�
� �x� � � � xn y� � � � ym	

with list�� ! �x� � � � xn	 �
list�� ! �y� � � � ym	

� �reverse list	
�
� �xn � � � x�	 with list� ! �x� � � � xn	

� �member x list	
�
�

���������
�x yp � � � yn	 � list� ! �y� � � � yn	

� �p�f������ng x� ! yp
� �p��j�� x

� 	! yj
nil � otherwise

� �assoc x alist	
�
�

���������
�k p � vp	 � alist� ! ��k� � v �	 � � � �kn � vn		

� �p�f������ng x
� ! kp

� �p��j�� x
� 	! kj

nil � otherwise

� �sort list pred	
�
� �xi� � � � xin	

with list� ! �x� � � � xn	
� fi�� � � � � ing ! f�� � � � � ng
� �n��j�� �funcall pred �xij �xij��	

� 	! nil
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��� User�de�nable Functions

In LL� functions can only be de�ned via defun in the following form�

�defun function �var� � � � varn	 
 body	

Optional� keyword� and rest parameters are not directly supported� However�
in contrast to COMMON LISP� a function may have � just like a REL procedure
� more than one arity� This allows REL procedures to be transformed into LL
functions more easily because renaming is not necessary�

Example ��� �LL function with more than one arity�

�defun incadd �x	 ��� x		 �incadd �	
�
� �

�defun incadd �x y	 �� x y		 �incadd � �	
�
� �

�

This also allows optional and keyword parameters to be simulated� For in�
stance� the COMMON LISP function de�nition

�defun f �x y �optional �z �		 � � � 	

can be expressed in LL as�

�defun f �x y z	 � � � 	

�defun f �x y	 �f x y �		

Similarly� #�nite rests �e�g� a �xed number� n� of arities�� can be expressed�

�defun f �	 � � � 	
�defun f �x�	 � � � 	
� � �
�defun f �x� � � � xn	 � � � 	
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Integrating Relations and LL

In this chapter� the three facets of the integration of relational languages and LL
are described�

�� their integration by loose coupling on the abstract machine and source
language level�


� the transformation of deterministic predicates into LL functions� and

� the implementation of extra�logicals with the help of LL�

In section ���� the loose coupling of REL and LL is described� where the
emphasis is on the accessibility of LL functions from predicates �since the other
direction is not part of our prototypical implementation��

In section ��
� the detection and transformation of deterministic predicates
is portrayed� For this� �rst a theoretical foundation of determinism in relational
languages is developed �using SLD resolution trees�� and then algorithms for the
detection and transformation of deterministic predicates� using several interme�
diate representation languages� are given�

In section ��� the implementation of extra�logicals in relational languages
via LL functions is described by giving a simple example �global variables and�
building upon them� bagof��

��� Loose Coupling of Relations and LL

Relational programs and LL programs principally access each other in two dif�
ferent ways�

�� LL functions are called from relations


� relations are called from LL functions
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����� Calling LL Functions from Relations

On the source language level� the access of LL functions from relations is per�
formed by a generalized is builtin� in addition to arithmetical builtins� functions
de�ned in LL may be used on the right�hand side of is premises� Furthermore�
LL �test� predicates can be used as guards in relational clauses� An LL predi�
cate is a boolean�valued function for which a returned nil is interpreted as false
�failure� and any other value as true�

The following example illustrates this�

Example ���

�defun append �l� l�	

�if �null l�	

l�

�cons �car l�	 �append �cdr l�	 l�				

�defun member �x l	

�if l �or �equal x �car l		 �member x �cdr l					

p�X�L��L��R	 �

member�X�L�	�

R is append�L��L�	


p�X�L��L��R	 �

member�X�L�	�

R is append�L��L�	


The following queries are now possible�

rfep� p��� �������� �������� R	

true

R � ��� �� �� �� �� ��

rfep� more

unknown

rfep� p��� �������� �������� R	

true

R � ��� �� �� �� �� ��

rfep� more

unknown

rfep� p��� �������� �������� R	

true

R � ��� �� �� �� �� ��

rfep� more

true

R � ��� �� �� �� �� ��
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rfep� more

unknown

rfep� p��� ������ �����	

unknown

�

On the abstract machine level� the accessibility of LL functions �which are
compiled into LLAMA code� from predicates �which are compiled into WAM
code� is achieved by extending the WAM with two new instructions�

�� ll is used to execute an ordinary LL function


� llp is used to execute an LL predicate

Both ll and llp� when executing an n�ary LL function�predicate� push the
�rst n WAM argument registers on the stack �this is necessary since the abstract
machine behind LL� the LLAMA� is a stack machine� see chapter ��� Note that
by simply copying the contents of WAM registers only the toplevel representation
�pointers� of complex data structures �lists and structures� are copied� not the
data structures themselves�

After executing the LLAMA code� the result� which is the topmost element
on the stack� is stored in the �rst WAM argument register X� which is then
uni�ed with the left�hand side of the is call� In case of an LL predicate� a fail is
generated if the return value is nil�

����� Calling Relations from LL Functions

Since LL does not support backtracking� relations can only be accessed in the
following two ways from LL functions�

�� the relation returns only the �rst solution �once mode�


� the relation returns a list of all solutions �bagof mode�

The extensions of the LLAMA are similar to those needed for calling LL
functions from relations�

��� Determinism Transformation

Real�world applications of relational languages tend to contain a very large por�
tion of deterministic procedures for several reasons�
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� potentially invertable predicates are often not meaningfully inverted� e�g�
reverse� or used only in one direction� e�g� append

� most mathematical computations �as they occur in applications dealing with
economics� statistics� technical �elds� etc�� are deterministic

� of course� user interaction� �le I�O� and other communications with the
underlying operating system are deterministic�

For most of these deterministic predicates it is important to be highly e	�
cient� Besides attempts at e	cient compilation of deterministic PROLOG itself
�Van Roy� ������ this can be achieved by either implementing deterministic pred�
icates in a loosely coupled imperative or functional programming language �as
described in section ���� or by specifying them in a relational language with sub�
sequent transformation into an e	cient �e�g� imperative or functional� language
by an intelligent compiler�

Loose coupling has often the disadvantage of not maintaining full declarative�
ness� the application has to be split into parts speci�ed in di�erent paradigms of
di�erent levels� A much more declarative approach is to implement the complete
program in a relational language and then leave it to the compiler to achieve the
desired e	ciency�

In the following subsections� a set of transformations and intermediate lan�
guages is described which are used to detect and compile deterministic relations
into LL�

����� Determinism in Relational Languages

Before describing the algorithms for determinism transformation� determinism
in relational languages� is de�ned� The de�nition presented in this work was
designed to cover as many deterministic predicates as possible since in the context
of a transformation into LL� the gain in e	ciency grows directly with the number
of transformed deterministic predicates�

In this work� determinism is de�ned via SLDPROLOG resolution trees�

De�nition ��� �SLDPROLOG Resolution Tree�
An SLDPROLOG resolution tree for a program P and an atomic� goal g is the

�For reasons of simplicity� relational programs with side e�ects will not be covered in this
work�

�In this work� only relational languages with PROLOG�s computation and search rule are
considered�

�Only atomic goals g�� � �� are considered� complex� conjunctive� goals g��� � ��� � � � � gn�� � ��
can be transformed into atomic goals by adding g�v�� � � � � vm� � � g��� � ��� � � � � gn�� � �� to P and
using g�v�� � � � � vm� as the new goal �the vi� i � f
� � � � �mg� are the variables of the original
goal g��� � ��� � � � � gn�� � ����
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partial SLD resolution tree 	Lloyd
 ���� for g in P created according to the
PROLOG� refutation procedure
 i�e� with PROLOG�s computation rule �which
always selects the leftmost goal in a goal sequence� and PROLOG�s depth��rst
search rule �searching clauses from top to bottom��

Nodes are either labeled with a goal sequence hg�� � � � � gni or the empty goal hi
or � to indicate success� �

De�nition ��� �Multiset of Nodes N P �g��
For a program P and an atomic goal g
 N P �g� is the ��nite or in�nite� multiset
of all nodes in the SLDPROLOG resolution tree for P and g� �

De�nition ��� �Activated Subgoals SP �g��
For a program P and an atomic goal g
 the set of all activated subgoals of g w�r�t�
P is de�ned as

SP �g� �! fg� j �n � N P �g� � n ! hg�� � � �ig

For a program P and a set of goals G
 the set of all activated subgoals of G w�r�t�
P is de�ned as

SP �G� �!
�
g�G

SP �g�

�

As this de�nition states� all goals appearing as �rst elements in the nodes of
an SLDPROLOG resolution tree are activated subgoals� This is due to PROLOG s
computation rule which always selects the leftmost goal in a goal sequence�

De�nition ��� �Predicate Symbol ��g��
For an atomic goal g
 the predicate symbol ��g� is de�ned as

��g� ! p �
 �g ! p�t�� � � � � tn� � p 	! once� � g ! once�p�t�� � � � � tn��
�where the ti� i � f�� � � � � ng
 are any PROLOG terms�

�

Now the fundamental de�nition of determinism in PROLOG can be given�

De�nition ��� �Deterministic PROLOG Predicate�
Let P be a PROLOG program and Q a set of atomic queries for P� A predicate
p in P is called deterministic w�r�t� P and Q i��

�q � SP �Q� � ���q�!p 
 �jN P �q� j�� � jN P �q� j�� ��
��jN P �q� j! �� � �� N P �q�� �

�

�In this work� only PROLOG with cut and once is considered� negation and other extra�
logicals are not taken into account�

�jMS jx is the number of occurrences of x in the multiset MS�
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This de�nition speci�es a predicate p to be deterministic if for all possible queries
all activated subgoals q with p as predicate either

�� have exactly one solution�


� fail� or

� enter a non�terminating branch �before computing a �rst solution�	

when called separately�

q = p(t ,...,t )1 n

1.

......

... ... ... ... ......

q = p(t ,...,t )1 n q = p(t ,...,t )1 n

......

... ... ... ... ......

2. 3.

...

... ... ...

inf

There are other possibilities to de�ne determinism in PROLOG
� In the follow�
ing� examples motivating our de�nition and modi�cations that make it tractable
and more powerful are given�

In de�nition ���� a predicate is deterministic w�r�t� to a given program P and
a given set of queries Q� A de�nition of determinism in PROLOG that does not
consider an entire program and a set of queries but only the clauses of a single
predicate will not be fruitful� only very few PROLOG predicates are deterministic
as such� and � as already mentioned � as many predicates as possible should
be covered in order to gain e	ciency by transforming them into LL�

�Thus non�determinism also covers cases where a predicate is �rst successful and then enters
a non�terminating branch�

�Here� determinism is de�ned dynamically via proof trees� A more common approach is to
de�ne determinism statically� e�g� via non�overlapping clause heads�
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Example ��� Let us consider the following simple program� only containing the
predicate p�

p��	


p��	


p��	


While p is of course deterministic for ground queries� it is not deterministic
for general queries� the non�ground query p�X	 has three solutions�

If and only if we restrict the set of possible queries to p�nvterm	 with nvterm
being any PROLOG term except a �free� variable� then p is deterministic� the
SLDPROLOG derivation trees for all queries either directly end with a fail or with
the empty goal� For �non�variable queries�� p could thus be replaced by the
following �correctness�preserving� LL function� where nil resulting from the or

for x �� f�� 
� g is interpreted as fail�
�defun p �x	 �or �equal x �	 �equal x �	 �equal x �			 �

Example ��
 shows that it is important to consider all queries for a given
program� Otherwise� predicates that are always used deterministically are not
detected and thus compiled into ine	cient code�

This de�nition complies with the concept of partial evaluation �or partial de�
duction in the �eld of logic programming�� As pointed out in �Nilsson� �����
partial evaluation is� at least from a principal point of view� a simple form of
program transformation by which a program� given some partial input data� can
be specialized to solve a particular problem more e	ciently than the more gen�
eral program� The origin of the �eld is due to Kleene �Kleene� ���
�� but the
application to programming languages is primarily due to Futamara �Futamura�
������ Haraldsson �Haraldsson� ������ Ershov �Ershov� ������ and Jones �Jones et
al�� ������

As the following example shows� non�trivial deterministic predicates can be
detected without partial evaluation�

Example ��� �once Determinism�
For a given program P and a query set Q
 a predicate p is once deterministic i�

�q � SP �Q� � ���q�!p
 q ! once�p� � � � 		�

Once determinism directly ful�lls the de�nition of determinism� In the special
case that a predicate is always embedded into an explicit once in all queries of
Q and in all premises in P � it satis�es the de�nition of once determinism� This
form of determinism can be detected by simple syntactical inspection of P and
Q� partial evaluation is not needed� �
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The next example shows that it is not su	cient for a predicate to have at
most one solution for all activated subgoals to be easily replaced by an e	cient
deterministic procedure�

Example ���

p�X�Y	 � q�X�Z	� r�Z�Y	


q����	


q����	


r����	


r����	


Z=3Z=2

p(1,R)

q(1,Z), r(Z,R)

r(2,R) r(3,R)

R=4

For Q ! fp���R	g� p is deterministic according to de�nition ���� �

The problem with this program is that although p is deterministic w�r�t� P
and Q� q� which is called in p� is non�deterministic w�r�t� P and Q� ! fq���Z	g
� SP �p���R	��

q(1,Z)

Z=2 Z=3

In order to be able to replace each deterministic predicate by a simple and di�
rectly obtainable procedure or function speci�ed in a deterministic imperative or
functional language� all predicates called in the execution of deterministic predi�
cates must themselves be deterministic� internal backtracking in the execution of
a deterministic predicate is not allowed�

This leads to the following de�nition of deep determinism�

De�nition ��
 �Deeply Deterministic PROLOG Predicate�
Let P be a PROLOG program and Q a set of atomic queries for P� A predicate
p in P is called deeply deterministic w�r�t� P and Q i�

p is deterministic w�r�t� P and Q
� �q � SP �Q� � ���q�!p
 �r � SP �q�nfqg � ��r� is deeply deterministic

w�r�t� P and Q� ! frg�

�
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An algorithm detecting deeply deterministic predicates �for a special case of
query sets� is described in section ��
��

The following example motivates a further modi�cation of the concept of
deterministic predicates�

Example ��� Let us consider two logically equivalent programs A and B�

A B
q�X	 � p�X	� r�X	


p��	
 r��	


p��	
 r��	


p��	
 r��	


q�X	 � r�X	� p�X	


p��	
 r��	


p��	
 r��	


p��	
 r��	


If the only query is q�X	� then the following SLDPROLOG derivation trees
result�

q(X)

p(X), r(X)

r(1) r(2) r(3)

q(X)

r(X), p(X)

p(1) p(2) p(4)

X=1 X=2 X=4X=2X=1 X=3

A B

In program A� only r is �deeply� deterministic� while in B only p is �deeply�
deterministic�

�� In A� the set of all activated subgoals S�q�X	� is fq�X	� p�X	� r��	� r��	�
r��	g� Of these� q�X	 has two and p�X	 has three solutions� whereas r��	

and r��	 have one and r��	 has no solutions� which makes r the only
�deeply� deterministic predicate�


� In B� p is derived to be the only �deeply� deterministic predicate in analogy
to ��

�

This example shows that due to PROLOG s computation rule the set of de�
terministic predicates in a program can change if the program is transformed into
a logically equivalent program� This motivates a slight modi�cation of de�nitions
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��� and ���� in order to obtain more �or more interesting� e�g� more often used�
deterministic predicates� reordering of premises should be allowed�

Reordering of premises is potentially dangerous in PROLOG for several rea�
sons�

�� the termination behaviour may change


� solutions may be computed in a di�erent order

� side e�ects may be executed in the wrong order

The transformation algorithms described in this work will only reorder
premises in respective benevolent cases�

�� by reordering premises� in PROLOG non�terminating relations are some�
times transformed into terminating ones� but never the other way around


� only premises of deeply deterministic predicates are reordered� which does
not change the order of the computed solutions because deeply deterministic
predicates have at most one solution

� the transformations are not applied to programs with side e�ects

����� Restricting the Query Set

As was shown in the previous subsection� determinism analysis requires to con�
sider not only the clauses of a single predicate but also the whole program and a
set of queries� This gives rise to two problems�

�� usually the set of all queries is not known for a program


� the set of all queries is in�nite in most cases

These problems can be solved in the following ways�

�� The set of all possible queries is not supplied by the user but determined
by global analysis� In this case� only very few restrictions of the query set
can be found� predicates with numerical or other type restricted builtins
are used to determine the types of some variables which are then propa�
gated through the whole program by abstract interpretation� The �usually
in�nite� set of possible queries is then represented by a �nite set of type
restrictions�


� The user declares types and�or modes for some or all predicates� Modes
specify whether an argument is always free� bound� or ground when a pred�
icate is called� These types and modes are then propagated by abstract
interpretation to obtain a �nite set of type and mode restrictions for as
many predicates as possible�
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In this work� a simpli�ed version of the second solution was chosen� since
PROLOG is �usually� untyped� only mode declarations are considered� A mode
analyzer� e�g� the one described in �Krause� ������ can then be used to re�ne the
set of mode descriptions� thus further restricting the query set�

In the following� a set of mode descriptions� either only declared by the user
or re�ned with a mode analyzer� is assumed to be present� Only two modes are
used� ground� which is denoted by G� and any �i�e� unrestricted�� which is denoted
by X � For a predicate p� the mode declaration is of the form p���� � � � � �n� with
�i � fG�Xg� i � f�� � � � � ng�

����� Transforming Relational Languages into LL

In this subsection� the determinism analysis and the transformation steps for
deeply deterministic predicates are described�

For reasons of simplicity� only the following two kinds of deeply deterministic
predicates are supported�

�� functional predicates� predicates which for a given set of ground input
arguments compute a ground set of output arguments� i�e� they always
compute exactly one solution and never fail �total functions�


� test predicates� predicates which when called with all arguments ground
either fail or succeed exactly once� these test predicates are used as guards

For a program P � in which the predicates P are de�ned� and a set of mode
declarations M � deeply deterministic functional or test predicates are detected
by the following algorithm�

�� C � fp � P j �p���� � � � � �n��M �i�f�� � � � � ng � �i ! Gg�
construct a set of candidates C consisting of all predicates with at least one
ground argument �if all arguments are ground� the predicate is assumed to
be a test predicate� otherwise it is assumed to be a functional predicate�


� while �p � C � �p�� � �� � � � � � � q� � � � �� � P � ��q� �� C do C � Cnfpg�
repeat deleting all predicates in C if in their de�nition a predicate in PnC
is used until no such predicate in C exists

� try to transform all predicates in C into LL �with the algorithms described
in the following subsections�� remove all predicates from C which could not
be thus transformed

�� same as 
�

In the transformation steps� several intermediate representations are used�
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REL input
RELFUN functions
�E � �� expression environment �plus return value�
� LL clause speci�cation in RELFUN syntax
LL output

The following REL example will be used to demonstrate the various transfor�
mations and intermediate representations� It consists of two deeply deterministic
functional predicates�

Example ��


�a	 fac����	 � �


b	 fac�X�Y	 �

X� is �X��	�

fac�X�� FX�	�

Y is ��X� FX�	


�a	 f�s�X�Y�� u�s�X�Y��s�A�B��	 �

A is �B�A	�

s�A�B� is s�X�Y��

fac�X�A	�

fac�Y�B	 �


b	 f�X� �X�X�	


The query set is represented by the following mode declarations� fac�G�
X	 and f�G� X	� �

This example was chosen for the following reasons�

�� fac �the factorial function� is used to show how the algorithms work for a
simple case�


� f is a rather arti�cial function using fac� It is used to show how the
algorithms handle non�standard cases�

� the de�nition of f cannot be evaluated by REL �the arithmetical
builtin  is called with free variables��

� the expression A is �B�A	 is cyclic�

� the uni�cation in s�A�B� is s�X�Y� has to be handled at compile
time �static uni�cation��

� lists and structures are transformed into LL constructors� selectors�
and test predicates� and

� subexpressions in the output value can be shared with the input value�
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������� REL � RELFUN Functions

In this �rst step� all deeply deterministic functional predicates are transformed
into functional RELFUN speci�cations� For our example� this results in�

��	 fac�X�� X�	 � X� is fac����X�	


�a	 fac�����	 � �� �


�b	 fac����X	 �

X� is �X� �	�

FX� is fac����X�	�

Y is ��X� FX�	

� Y


��	 f�X�� X�	 � X� is f����X�	


�a	 f����s�X� Y�	 �

A is �B� A	�

s�A� B� is s�X� Y��

A is fac����X	�

B is fac����Y	 �

� u�s�X� Y�� s�A� B��


�b	 f����X	 �� �X� X�


The rules �� and �� are needed in order to allow to call the binary fac and f

predicates from the toplevel� The original predicates are transformed into unary
function de�nitions� renaming them by adding the su	x ����

In general� this su	x has the form �mn where m is the original arity and
n is the number of output arguments �speci�ed by X in the mode declaration��
For n � �� the output values are embedded in a values structure� e�g�

f�X�Y�A�B	 � A is ��X�Y	� B is ��X�Y	


with the modes f�G� G� X� X	 is transformed into
f�X�Y�A�B	 � values�A�B� is f����X�Y	


f����X�Y	 � A is ��X�Y	� B is ��X�Y	 � values�A�B�


This also works for non�adjacent output arguments� g�X�A�Y�B	 � � � � with
modes g�G�X�G�X	 is transformed into g����X�Y	 � � � � � values�A�B��

Such value structures can be viewed as representing multiple�valued functions
as described in �Stein and Sintek� ������

������� RELFUN � �E � ��

The next transformation step takes all deterministic clauses totally apart� an
internal representation� called E � is created� in which variables are associated
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with expressions �E stands for environment because this data structure strongly
resembles the sort of environments used for uni�cation in PROLOG interpreters��
The return value is represented by ��

This structure is needed for several reasons�

� all arguments of subqueries have to be ground� this often requires reordering
of premises

� uni�cation has to be done at compile time �static uni�cation�� resulting in
assignments and equality tests

� in LL� the arguments of a function have to be distinct variables and cannot
be arbitrary terms as in PROLOG

� common subexpressions are �statically� uni�ed� e�g� if X is f�Z	 and Y is

f�Z	 occur in a clause� then X is uni�ed with Y� e�g� by replacing Y by X

everywhere in the clause �this is allowed because predicates with side e�ects
and non�deterministic predicates are not considered�

For our example� �E � �� looks like this�

�a E Arg�� �

� �

�b E X� �Arg��� �	

FX� fac����X�	

Y ��Arg��� FX�	

� Y

�a E V� struct�u� Arg��� Arg��	

V� structp�Arg��	

X elt�Arg��� �	� fac����X	� �Y� X	

Y elt�Arg��� �	� fac����Y	

V� s� functor�Arg��	
V� �� arity�Arg��	

� V�

�b E V� cons�Arg��� V�	

V� cons�Arg��� nil	

� V�

Note that in �E � �� a variable need not be associated with a unique expres�
sion� e�g� in �a� X is associated with three and Y with two expressions� As will be
shown in the following subsection� exactly one of the expressions associated with
a variable is used to bind the variable �single assignment�� the remaining expres�
sions are only compared with the variable �if one of the expressions a variable is
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associated with is a constant� then the variable is not needed� it is su	cient to
compare all remaining expressions with the constant� e�g� V� and V���

�E � �� was created by �local� abstract interpretation of each clause using the
following techniques�

� normalizing heads� all head terms are moved into the body� leaving Arg�i
as the only head terms

� normalizing lists and structures� all lists and structures are transformed
into the LL constructors� selectors� and test predicates �cons� car� struct�
etc��

� static uni�cation� all uni�cation is translated into environment entries in
E just as a concrete PROLOG interpreter would do� in clause �a� s�A� B�

is s�X� Y� has been used to unify A with X and B with Y

� uni�cation of common subexpressions� static uni�cation is not only used for
explicit uni�cation �is� but also for common subexpressions� the output
value of clause �a� V�� is built using the original input argument Arg��

without re�creating s�X�Y� and s�A�B�� V� � struct�u� Arg��� Arg��	

������� �E � �� � �

The next transformation step transforms clauses represented as �E � �� into �
clauses �only information contained in �E � �� is needed�� � clauses are RELFUN
clauses with the following features�

� structures and lists are represented by LL constructors� selectors� and test
predicates�

� the premises have already been ordered such that all arguments are ground
and test predicates come before selectors�

� uni�cation �i�e�� each entry in E� has been transformed into assignments
�via is� and equality tests �via equal��

� expressions have been inserted as arguments for other expressions when
possible� and

� all cuts are removed �this is allowed since � clauses are only used as an
intermediate representation��

For our example� the following � clauses created�

fac����Arg��	 � equal��� Arg��	 � �


fac����Arg��	 �� ��Arg��� fac�����Arg��� �			
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f����Arg��	 �

structp�Arg��	�

equal�s� functor�Arg��		�

equal��� arity�Arg��		�

X is elt�Arg��� �	�

equal�X� fac����X		�

Y is elt�Arg��� �	�

equal�X� �Y� X		�

equal�Y� fac����Y		

� struct�u� Arg��� Arg��	


f����Arg��	 �� cons�Arg��� cons�Arg��� nil		


������� � � LL

In the �nal step� all � clauses for a predicate are collected into a single LL
function de�nition� where the clauses are connected by a cascade of if and let

statements��

This transformation is only allowed if the following conditions are satis�ed�

�� for deeply deterministic functional predicates�

�a� all �REL input� clauses but the last must contain a quasi��nal cut� i�e�
all guards �test predicates and test builtins� come before the cut

�b� the last clause must be a catch�all clause� i�e� a clause without any
guards


� for deeply deterministic test predicates� all clauses but the last either

�a� contain a quasi��nal cut or

�b� their head is disjoint from all following clause heads �disjointness is
established via non�unifyability�

These conditions ensure that all deeply deterministic functional predicates
have exactly one solution and all deeply deterministic test predicates have at
most one solution�

For a typed relational language� these conditions could be relaxed in a very
desirable way� clauses often do not have to contain cuts� which at least by logic�
programming purists are disliked for various reasons� and catch�all clauses can in
most cases be avoided� since guards together with type declarations can be used

�In analogy to PROLOG indexing� for relations consisting of many clauses� case statements
in addition to the if�let cascade could be used�
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to prove all clauses of a predicate to be disjoint �and total� w�r�t� the mode and
type declaration��

Example ���
In the presence of type declarations� the factorial function can be de�ned as�

type fac�NAT�POSINT	


mode fac�G�X	


fac����	


fac�X�Y	 �

��X��	�

X� is �X��	�

fac�X�� FX�	�

Y is ��X� FX�	


Now both clauses are disjoint and together catch all cases w�r�t� the type
declaration� �

In example ���� both predicates satisfy the conditions� i�e� clauses �a and �a

contain �nal cuts and clauses �b and �b are catch�all clauses� The following LL
function de�nitions result�

�defun fac��� �arg��	

�if �equal � arg��	

�

�� arg�� �fac��� � arg�� �					

�defun f��� �arg��	

�if �and �structp arg��	

�equal �s �functor arg��		

�equal � �arity arg��			

�let ��x �elt arg�� �			

�if �equal x �fac��� x		

�let ��y �elt arg�� �			

�if �and �equal x � y x		 �equal y �fac��� y			

�struct �u arg�� arg��	

�cons arg�� �cons arg�� nil				

�cons arg�� �cons arg�� nil				

�cons arg�� �cons arg�� nil				

	In special cases� disjointness can be established by global analysis even for programs without
type declarations 	Debray and Warren� 
�����
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In case of the fac function� exactly the de�nition a human programmer would
have chosen has been created�

The function de�nition for f is extremely operational� the sequence of uni��
cations of the original REL de�nition has been transformed into a very precise
operational de�nition mainly consisting of assignments and equality tests� This
is consistent with recent insights that PROLOG programs should be compiled
into much simpler and more specialized instructions than the WAM instructions
�see �Taylor� ����� Van Roy� �������

The three copies of �cons arg�� �cons arg�� nil		 cannot be avoided in
a purely functional speci�cation� These copies� which do not cause any e	ciency
disadvantages� can be removed on the abstract machine level by code sharing�

������� Examples

In this subsection� some of the features of the determinism analysis and trans�
formation that were not covered by example ��� are described with the help of
some additional examples�

� even� a simple deeply deterministic test predicate

� append and reverse� functional predicates showing how free variables can
be handled in LL and how to avoid the speci�cation of catch�all clauses

Example ��� only contained two deeply deterministic functional predicates�
The following example shows how test predicates are compiled�

Example ���
even��	 � �


even�X	 � ��X� �	� even��X��		 �


even�X	 � ��X��	� even���X��		


even is a deeply deterministic test predicate w�r�t� the mode declaration
even�G	� It relies on the closed�world assumption that �after possible recur�
sions� even��	 and even��	 yield #no because no clauses cover these cases�

�

even is compiled into the following LL function de�nition�

�defun even �arg��	

�if �equal � arg��	

t

�if �and �� arg�� �	 �even � arg�� �			

t

�if �and �� arg�� �	 �even �� arg�� �			

t

nil				
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The transformation process is nearly identical to the transformation for func�
tional predicates with the following exceptions�

�� the transformation into RELFUN functions is not necessary


� in �E � ��� and thus in �� the return value ��� is always t

� the if and let cascade created by � � LL closes with nil� here� the �nal
nil explicitly covers the cases arg��!� and arg��!�

The next example� append and reverse� is used to show

� how to avoid the speci�cation of catch�all clauses and

� how free variables can be handled in LL�

Example ���

append���� X� X	 � �


append��H�T�� X� �H�Y�	 � append�T�X�Y	 �


append�X�Y�nonlistarg	


reverse������	 � �


reverse��H�T��X	 � reverse�T�T�	� append�T���H��X	 �


reverse�X�nonlistarg	


append and reverse are deeply deterministic functional predicates w�r�t� the
mode declarations append�G�G�X	 and reverse�G�X	� �

Since in untyped PROLOG and RELFUN�� there is no way to specify that
append and reverse only operate on lists� the weird catch�all clauses and addi�
tional cuts are needed�

In order to avoid these and all cuts� it is possible to declare predicates to be
total deterministic functional predicates� With such declarations��� append and
reverse can be speci�ed as one is used to in PROLOG� which leaves it to the
user to call them with the intended types�

append���� X� X	


append��H�T�� X� �H�Y�	 � append�T�X�Y	


reverse������	


reverse��H�T��X	 � reverse�T�T�	� append�T���H��X	


The following LL function de�nitions result�

�
The extension of RELFUN by type de�nitions and signatures is momentarily worked on�
��The syntax of these declarations is described in appendix B�
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�defun append��� �arg�� arg��	

�if �equal nil arg��	

arg��

�if �consp arg��	

�cons �car arg��	 �append��� �cdr arg��	 arg��		

�typeerror				

�defun reverse��� �arg��	

�if �equal nil arg��	

nil

�if �consp arg��	

�append��� �reverse��� �cdr arg��		 �cons �car arg��	 nil		

�typeerror				

Since no catch�all clauses were speci�ed� �typeerror	 is generated� Fur�
thermore� the resulting LL de�nitions are slightly di�erent from the de�nitions
a human programmer would have chosen� since the compiler does not know
that append and reverse only operate on lists� type�checking code is generated�
�consp arg��	�

In the design of LL� �free� logical variables were not taken into account� In
our implementation� they are simply ignored� they cannot be accessed in LL
functions� but lists and structures with unbound variables that were created in
REL can be used as arguments for LL functions� From LL s point of view� free
variables belong to a data type for which neither constructors nor selectors exist�

It is thus possible to append or reverse lists with the above LL functions even
if they contain free variables� In the further execution of the embedding REL
program� these free variables can be bound� the query

X is �a�b�Y�f�Z��� reverse�X�XR	� Y is c� Z is d

yields the following bindings�

X � �a� b� c� f�d��

XR � �f�d�� c� b� a�

Y � c

Z � d
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��� Implementing Extra�logicals via LL

A very �exible way of introducing extensions in relational languages is by speci�
fying them in LL��� In the following� a simple REL extension is described� global
variables�

Global variables can be implemented by allowing the following two LL func�
tions� setvar and getvar� to be accessed from REL�

�defun setvar �var value	

�eval �list �setq var �list �quote value				

�defun getvar �var	

�eval var		

�setvar var value	 sets the global LL variable var to value by evaluating
�setq var �value	� �getvar var	 returns the value of the global LL variable
var by simply evaluating var�

From the point of view of REL� such a variable is a #constant changeably
associated with a term�

Global variables are useful in REL in two situations�

�� when computed values have to live longer than a query �this is usually the
case for programs with user interaction and�or operating system access�


� when computed values have to survive backtracking

The second situation occurs when all solutions of a query have to be collected�
bagof in PROLOG or tupof in RELFUN�

In pure PROLOG and RELFUN� it is impossible to collect all solutions of a
query� intermediate results are reset when backtracking occurs� which is used to
generate the next solution� thus all computed values are lost� In order to overcome
this di	culty� bagof in PROLOG and tupof in RELFUN were introduced�

These extra�logicals can easily be implemented via global variables� a global
variable holds a stack of lists containing the intermediate results �a stack is nec�
essary because it is possible that in the execution of a tupof another tupof call
occurs��

��Since our prototypical implementation does not �yet� allow LL functions to access �bind�
free REL variables� no extensions of the uni�cation can be accomplished�
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Chapter �

LLAMA � The LISP light

Abstract Machine

The LLAMA is a simple and universal abstract stack machine �Henderson� �����

which is used as the target machine for the compilation of LL� It is universal
in the sense that most functional� and many imperative language can easily be
compiled into it�

In the following sections� the constituents of the LLAMA�

� the registers and memory organization�

� the representation of data structures�

� the calling conventions� and

� the instructions

are described�

��� Registers and Memory Organization

The LLAMA was designed to have as few registers as possible�

LLAMA registers
P program counter
SP stack pointer
H heap pointer
CT catch stack pointer

P� SP� and H are shared with the WAM� Only the CT register is new� it is
used for non�local exits �catch and throw� and loops �loop and do� which are
implemented via non�local exits� Programs not using these builtins never access
the CT register� thus no overhead for purely functional programs results�

�With eager �call�by�value� evaluation
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The LLAMA has the following memory organization�

LLAMA memory organization
Stack data and return address stack
Heap heap area for complex data structures
Catch Stack catch stack for non�local exits
Code code area
Memory general purpose memory

Stack� Heap� and Code are shared with the WAM� Catch Stack is used to store
tuples of the form htag stackpointer addressi which are created by catch and
removed by throw�

Memory is used to store data structures which have to live longer than entries
in Stack and Heap which are reset between queries� Thus� Memory is mainly used
to store global variables� Furthermore� Memory contains hash and jump tables
which are created by the GAMA �see section ���

��� The Representation of Data Structures

The LLAMA represents data structures exactly like the WAM� This allows LL
functions to access and manipulate data that has been created by REL programs
without having the need of copying�

In the WAM �and thus in the LLAMA�� Stack and Heap have a tagged archi�
tecture� an entry consists of a tuple htag valuei� The following sections describe
the representation of constants� lists� and structures on Stack and Heap�

	���� Constants

A constant c is the only data structure which is simple enough to �t into a single
stack or heap cell�

Stack�Heap�

const c

	���� Lists

Lists are � just as in COMMON LISP � handled by ��cons�� pairs� Such a
cons pair �car 
 cdr	 is represented as follows�
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Stack�Heap�

list lp

Heap�

lp � car

cdr

The list �a b c	 is equivalent to �a 
 �b 
 �c 
 nil			�

Stack�Heap�

list lp�

Heap�

lp� � const a

list lp�
���

lp� � const b

list lp�
���

lp� � const c

const nil

	���� Structures

Structures are represented similarly to lists�

Stack�Heap�

struct sp

Heap�

sp � fun func�n

arg�
���

argn
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��� Calling Conventions

As in all stack languages� the arguments are put on the stack before a function
is executed�

In case of a user�de�ned function� the return address is additionally put on
the stack� local variables �e�g� created by let� follow�

Stack�
���

previous

arg�
���

argn

return�address

local�
���

SP� localm

After executing the function� all arguments� the return address� and local
variables are removed from the stack� the return value is put on the stack� and
the program counter is set to the return address�

Stack�
���

previous

SP� return�value

P ! return�address

��� The Instructions

In the following sections� a detailed description of all LLAMA instructions is
given� The instructions are de�ned via a simple and uniform graphical represen�
tation which allows an easy re�implementation in any �functional or imperative�
language�

Alternatively� the de�nitions could have been given using an imperative
pseudo language as in
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pushconstant c
SP � SP� �

mem�SP� � hconst ci

Even for slightly more complex instructions� this representation becomes un�
readable� Therefore� diagrams of the following form are used�

old machine state�

���

ptr � cell entry
���

instruction
�

new machine state�

���

ptr � cell entry
���

The LLAMA instruction set contains the following instructions�

LLAMA instruction set
constants pushconstant

lists cons� car� cdr� null� consp
structures struct� structp� functor� arity� elt
equality eq� eql� equal
stack manipulation pop� remove� dup� setnth� setnth
control instructions llcall� return� goto� onnilgoto�

catch� removetag� throw� catchnil� thrownil
higher�order instructions funcall� apply� eval
global variables setglobal� setglobal� pushglobal
numerical�string builtins llbuiltin

I�O builtins read� print

	���� Constants

���

SP � �

pushconstant
�

c

���

�

SP � const c

In order to mark the place of cells whose contents is irrelevant� cells containing
a � or � are used�
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	���� Lists

The operations on lists are divided into three classes�

�� construction� cons
cons creates a cons pair� general lists are �rst transformed into cons lists�
as described in section ��
�



� selection� car� cdr
with car and cdr� cons pairs are taken apart� by successive application of
cdr� any list element can be accessed

� test� null� consp
null tests for an empty list �nil�� consp for a non�empty list �a cons pair�

Stack�
���

�

car

SP � cdr

Heap�
���

H � �

cons
�

Stack�
���

�

SP � list lp

Heap�
���

�

lp � car

H � cdr

For the access functions car and cdr� the accessed heap entries have to be
dereferenced because they could have been created by REL in the context of free
variables �which were bound later� and then passed to LL� Entries put on the
stack have always to be dereferenced in order to avoid unnecessary dereferencing
when multiply accessing arguments or local variables� Dereferencing is denoted
by arg�
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���

�

SP � const nil

car
�

���

�

SP � const nil

Stack�
���

�

SP � list lp

Heap�
���

lp � car

cdr
���

car
�

Stack�
���

�

SP � car

Heap�
���

lp � car

cdr
���

���

�

SP � const nil

cdr
�

���

�

SP � const nil

Stack�
���

�

SP � list lp

Heap�
���

lp � car

cdr
���

cdr
�

Stack�
���

�

SP � cdr

Heap�
���

lp � car

cdr
���
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���

�

SP � const nil

null
�

���

�

SP � const t

���

�

SP � value

value 	! hconst nili

null
�

���

�

SP � const nil

���

�

SP � list lp

consp
�

���

�

SP � const t

���

�

SP � value

value 	! hlist lpi

consp
�

���

�

SP � const nil

	���� Structures

In analogy to lists� the following classes of operations on structures exist�

�� construction� struct n
struct n creates a structure with arity n� functor and arguments are on
the stack


� selection� functor� arity� elt
with functor and arity� the functor and the arity of a structure are deter�
mined� elt expects a structure and a number n on the stack and determines
the nth argument of the structure� where the �rst argument is counted as
the �th argument

� test� structp

structp tests for a structure
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Stack�
���

�

const func

arg�
���

SP � argn

Heap�
���

H � �

struct n
�

Stack�
���

�

SP � struct sp

Heap�
���

�

sp � fun func�n

arg�
���

H � argn

Stack�
���

�

SP � struct sp

Heap�
���

sp � fun func�n
���

functor
�

Stack�
���

�

SP � const func

Heap�
���

sp � fun func�n
���

Stack�
���

�

SP � struct sp

Heap�
���

sp � fun func�n
���

arity
�

Stack�
���

�

SP � const n

Heap�
���

sp � fun func�n
���
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Stack�
���

�

struct sp

SP � const n

Heap�
���

sp � fun func�m"�

arg�
���

argn
���

argm
���

� � n � m

elt
�

Stack�
���

�

SP � argn

Heap�
���

sp � fun func�m"�

arg�
���

argn
���

argm
���

���

�

SP � struct sp

structp
�

���

�

SP � const t

���

�

SP � value

value 	! hstruct spi

structp
�

���

�

SP � const nil

	���� Equality

In LL� just as in COMMON LISP� there are two forms of equality� structural
equality and toplevel equality�

Toplevel equality �eq and eql� tests� if the representation of two arguments
is equal at the toplevel� i�e� only pointers �in the case of lists and structures�
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are compared� This form of equality was only provided for compatibility with
COMMON LISP� its use is not recommended�

���

�

arg�

SP � arg�

eq� eql
�

���

�

SP � const tv

tv !

�
t � arg� ! arg�
nil � otherwise

Structural equality �equal� tests� if the two arguments have the same struc�
ture on stack and heap� i�e� if their external term representation is equal�

���

�

arg�

SP � arg�

equal
�

���

�

SP � const tv

tv !

�
t � arg�

�
! arg�

nil � otherwise

The structural equality
�
! is de�ned as follows�

x
�
! y �
 x ! y

� � x ! hlist lpxi � y ! hlist lpyi

� mem�lpx�
�
! mem�lpy�

� mem�lpx � ��
�
! mem�lpy � �� ��

� � x ! hstruct spxi � y ! hstruct spyi
� mem�spx� ! hfun fun�ni
� mem�spy� ! hfun fun�ni

� �i�f������ng mem�spx � i�
�
! mem�spy � i� �

	���	 Stack Manipulation

pop simply removes the top stack element� This instruction is only used in non�
functional programs� e�g� in loops� where the result of the loop body is simply
discarded�

�p� n means incrementing the pointer p by n cells�
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���

�

SP � value

pop
�

���

SP � �

remove removes n elements from the stack� except the topmost one� This
instruction is used at the end of a let statement where the local variables have
to be discarded�

���

�

val�
���

valn

SP � value

remove n
�

���

�

SP � value

dup duplicates the nth element of the stack� This is used to push a function
argument or a local variable �as an operand� on the stack�

���

valuen
���

value�

value�

SP � value�

dup n
�

���

valuen
���

value�

value�

value�

SP � valuen

setnth replaces the nth element with the top stack element� This instruction
is used for assignments �e�g� via setq�� The setnth instruction additionally
removes the top stack element �see section ����
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���

valuen��

valuen

valuen��
���

value�

value�

SP � value�

setnth n
�

���

valuen��

value�

valuen��
���

value�

value�

SP � value�

���

valuen��

valuen

valuen��
���

value�

value�

SP � value�

setnth n
�

���

valuen��

value�

valuen��
���

value�

SP � value�
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	���
 Control Instructions

The control instructions are divided into three classes�

�� calling subroutines� llcall� return


� branch instructions� goto� onnilgoto

� non�local exits� catch� removetag� throw� catchnil� thrownil

����
�� Calling Subroutines

llcall proc pushes the return address on the stack and stores the address of
proc �denoted as $proc� in P�

Stack�
���

�

arg�
���

SP � argn

Code�
���

P � llcall proc

nx � �

���

llcall proc
�

Stack�
���

�

arg�
���

argn

SP � nx

Code�
���

llcall proc

nx � �

���

P ! $proc

return n removes the n arguments and the return address retaddr from the
stack and continues execution at P ! retaddr�

���

�

arg�
���

argn

retaddr

SP � retvalue

return n
�

���

�

SP � retvalue

P ! retaddr
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����
�� Branch Instructions

goto label is the unconditional branch instruction� execution is continued at P !
$label�

���

SP � �

goto label
�

���

SP � �

P ! $label

onnilgoto label is the only conditional branch instruction in the LLAMA�
execution is continued at P ! $label i� the top stack element is nil� execution
continues at the instruction following the onnilgoto instruction otherwise�

���

�

SP � const nil

onnilgoto
�

label

���

SP � �

P ! $label

Stack�
���

�

SP � value

Code�
���

P �
onnilgoto

label

�

���

value 	! hconst nili

onnilgoto
�

label

Stack�
���

SP � �

Code�
���

onnilgoto

label

P � �

���
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����
�� Non�local Exits

catch label prepares the catch stack at the beginning of an LL �catch tag 


body	 statement� the actual stack pointer and the address of the instruction
following body �! $label� are pushed on the catch stack�

For a detailed de�nition of the compilation of the �catch tag 
 body	 state�
ment into the catch and removetag instructions� please refer to section ��
���

Stack�
���

sp � �

SP � const tag

Catch Stack�
���

CT � �

catch
�

label

Stack�
���

sp
SP

o
� �

Catch Stack�
���

�

CT � tag sp $label

If the end of the body of the �catch tag 
 body	 statement is reached� the
top of the catch stack is removed with the removetag instruction�

Catch Stack�
���

�

CT � tag sp pc

removetag
�

Catch Stack�
���

CT � �

A non�local exit of the body is performed by the throw instruction� corre�
sponding to the LL �throw tag value	 builtin� the topmost occurrence of the
tag in the catch stack is determined� P and SP are restored with the correspond�
ing values in the catch stack� and the found entry and all entries on the catch
stack behind it are discarded� It is an error when the tag is not found in the
catch stack�
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Stack�
���

sp � �

���

const tag

SP � value

Catch Stack�
���

�

tag sp pc

ct�
���

CT � ctn

�i�f������ng ct i 	! htag � � �i

throw
�

Stack�
���

sp � �

SP � value

Catch Stack�
���

CT � �

P ! pc

For LL loops �loop and do�� specialized versions of catch and throw are used
where the tag is nil� In order to avoid to push the constant nil on the stack� a
catchnil and a thrownil instruction were introduced�

Stack�
���

SP � �

Catch Stack�
���

CT � �

catchnil
�

label

Stack�
���

SP � �

Catch Stack�
���

�

CT � nil SP $label
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Stack�
���

sp � �

���

SP � value

Catch Stack�
���

�

nil sp pc

ct�
���

CT � ctn

�i�f������ng ct i 	! hnil � � �i

thrownil
�

Stack�
���

sp � �

SP � value

Catch Stack�
���

CT � �

P ! pc

	���� Higher�Order Instructions

In LL� three builtins for higher�order function application exist� funcall� apply�
and eval� Their corresponding LLAMA instructions funcall n� apply n� and
eval work as follows�

�� funcall n�

� First� the functional object is examined� if it is a constant function�
function�n is the function to be called� If it is a structure �func
argS� � � � argSm�� then func�arity with arity � n " m is the func�
tion� Structures as functional objects are mainly used for lambda
expressions� the free local variables of a lambda expression become
the arguments of a structure �this is described in section ��
����

� In case of a structure as functional object� the structure arguments are
inserted behind the place where the structure pointer is on the stack�

� Finally� as in the llcall instruction� the return address is pushed on
the stack and execution is continued at $function�n or $func�arity�
respectively� If the function is a builtin �e�g� ��� the function�relation
implementing it is simply executed and the result is put on the stack�


� apply n� In case of apply� there is only a minor di�erence to funcall� the
top stack element� which must be a list� is expanded on the stack� and the
length of this list minus � is added to the arity of the function to be called�
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� eval� The external representation �denoted as gexpr� of the expression which
has to be evaluated is embedded in a new function de�nition �defun �eval

�	 gexpr 	 which is executed� Subsequently� the address of the instruction
behind the eval instruction is pushed as return address on the stack and
execution is continued with �eval�

Note that for eval the compiler is used at run time instead of interpreting
the expression�

Stack�
���

�

const functionud
arg�

���

SP � argn

Code�
���

P � funcall n

nx � �

���

functionud�n is user de�ned

funcall n
�

Stack�
���

�

const functionud
arg�

���
argn

SP � nx

Code�
���

funcall n

nx � �

���

P ! $functionud�n
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Stack�
���

�

struct sp

arg�
���

SP � argn

Heap�
���

sp � fun funcud�m

argS�
���

argSm
���

Code�
���

P � funcall n

nx � �

���

funcud�arity is user�de�ned

funcall n
�

Stack�
���

�

struct sp

argS�
���

argSm
arg�

���
argn

SP � nx

arity ! n " m
P ! $funcud�arity

For builtins� the functions implementing these builtins are directly evaluated�
their return value is put on the stack�
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Stack�
���

�

const functionud
arg�

���
argn��

SP � list lp�

Heap�
���

lp� � argL�

list lp�
���

lp� � argL�

list lp�
���

lpm � argLm

const nil

Code�
���

P � apply n

nx � �

���

functionud�n is user de�ned

apply n
�

Stack�
���

�

const functionud
arg�

���
argn��

argL�
���

argLm

SP � nx

arity ! n " m� �
P ! $functionud�arity

If the functional object is not a constant but a structure� this structure is ex�
panded on the stack just as in funcall�

For builtins� the functions implementing these builtins are directly evaluated�
their return value is put on the stack�
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Stack�
���

�

SP � expr

Code�
���

P � eval

nx � �

eval
�

Stack�
���

�

SP � nx

Code�
���

eval

nx � �

�defun �eval �	 gexpr 	�
P ! $�eval��

	��� Global Variables

The LLAMA instruction for setting a global variable� which is used in the com�
pilation of setq and psetq� is setglobal v� the expression �which must not
contain free logic variables� is copied into the general purpose memory �Memory��
and its toplevel representation is stored in the address corresponding to v�

This copying is needed because the value of global variables should be stored
permanently� Stack and heap are reset between queries� thus the general purpose
memory is used�

Stack�
���

�

SP � value

Memory�
���

$v � �

���

setglobal v
�

Stack�
���

�

SP � value

Memory�
���

$v � dvalue�
���

If the value which is stored in the global variable is not needed afterwards�
it is removed in the setglobal instruction thus avoiding a subsequent pop

instruction �see section ����

�gexpr is the external representation of expr�
� dvalue is a copy of value in Memory�
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Stack�
���

�

SP � value

Memory�
���

$v � �

���

setglobal v
�

Stack�
���

SP � �

Memory�
���

$v � dvalue
���

The counterpart to the dup n instruction for local variables is pushglobal

v in the case of global variables�

Stack�
���

SP � �

Memory�
���

$v � value
���

pushglobal v
�

Stack�
���

�

SP � value

Memory�
���

$v � value
���

	���� Numerical and String Builtins

Builtins expecting �a usually variable number of� constants �numbers or strings�
are handled by a single LLAMA instruction llbuiltin� this instruction was
introduced to keep the number of di�erent LLAMA instructions as small as pos�
sible�

constant builtins
�  � � �� �

� �� � � �� ��

string� string�

In our prototypical COMMON LISP implementation� all these builtins can
be handled by COMMON LISP itself� If they should be re�implemented in any
other language� the de�nitions given in section �
�� can be used�
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���

�

arg�
���

SP � argn

llbuiltin
�

function n

���

�

SP � const value

value ! �function �garg� � � � �gargn	�
�as de�ned in section �
���

	����� I�O Builtins

���

SP � �

read
�

���

�

SP � expr

where expr corresponds
to an LL term provided
by the user

���

�

SP � expr

print
�

���

�

SP � expr

gexpr is printed as side e�ect
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Chapter 	

Compiling LL into the LLAMA

The compiler �� maps LL expressions into LLAMA instructions�

��� EXPR � ENV � INSTRSEQ

with EXPR is the set of all LL expressions as described
in chapter 

ENV is the set of compiler environments used to keep track
of the stack positions of local variables �see section ����

INSTRSEQ is the set of LLAMA instruction sequences

For writing convenience� the function symbol �� will only be used as in�

� expr �env! instrseq

In this chapter� a precise description of the LL compiler via transformation
rules is given �section ��
�� This allows a simple re�implementation in any �func�
tional or imperative� programming language�

In these transformation rules� the compiler environment and the peep�hole
optimizer are not included� They are described in section ��� and ���

In section ���� some examples illustrating the transformation rules are pre�
sented�

	�� The Compiler Environment

In the LLAMA� parameters passed to a function and local variables are accessed
via the dup instruction on the stack� For that reason� the stack position of
parameters and variables has to be known at compile time� This task is performed
by the compiler environment� it contains pairs hvar posi associating parameters
and local variables with stack positions�

Let us consider the following LL function�
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�defun f� �x y	 �� x � y		

The code produced by �� is��


proc f���

dup � � variable x

pushconstant �

dup � � variable y

llbuiltin � �

return �


end

The arguments for the two dup instructions were determined with the help
of the environment� As shown in the following diagram� the compiler has to
simulate the e�ects of the instructions on the stack in order to keep track of the
parameter positions�

Instruction Stack Environment


proc f��� x
�

y
�

retaddr
�

fhx� 
i� hy� �ig

dup �
x
�� x

�

y
�

retaddr
�

x
�

fhx� i� hy� 
ig

pushconstant �
�
�� x

�

y
�

retaddr
�

x
�

�
�

fhx� �i� hy� ig

dup �
y
�� x

�

y
�

retaddr
�

x
�

�
�

y
�

fhx� �i� hy� �ig

llbuiltin � � �� x
�

y
�

retaddr
�

x���y
�

fhx� i� hy� 
ig

return � �� x���y
�

fg

In the transformation rules given in section ��
� these changes of the environ�
ment are not made explicit� Only if variables are added to the environment �as
in defun and let�� the environment extension is shown�

	�� Transformation Rules

In the following sections� the compiler �� will be described with a system of
transformation rules� these rules can be of the following forms�

�The assembler instructions �proc and �end mark the beginning and end of a function or
relation�
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form A form B form C

expression expression expression
instruction� instruction� instruction�

� � � � � � � � �
instructionn � expression� � � expression� �var����varn

� � � � � �
instructionn instructionn

�A� Rules of form A map an expression � EXPR directly into an instruction
sequence hinstruction�� � � � � instructionni � INSTRSEQ�

�B� In rules of form B� recursive calls to �� are expressed by � expression� �
parts on the right�hand side of the rules�

�C� If recursive calls of �� require the environment of local variables to be
extended �as in defun and let�� these variables are added as an index to
�� as in � expression� �var����varn �


���� defun

�defun function �var�� � � varn	 
 body	


proc function�n
� �progn 
 body	 �var����varn

return n

end

The assembler statements 
proc and 
end do not generate any code but are
used to mark the beginning and end of a relation or function �see chapter ���


���� Simple Expressions� Lists� and Structures

constant
pushconstant constant

where constant is a number� string� nil� t

local�variable
dup stack�position

where stack�position is the position of
local�variable on the stack
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global�variable
pushglobal global�variable

�functor arg� � � � argn�

� �struct �functor �arg� � � � �argn	 �

�atom
pushconstant atom

��functor arg� � � � argn�
� �functor arg� � � � argn� �

��arg� � � � argn	
� �list �arg� � � � �argn 	 �

�list arg� � � � argn	
� �cons arg� �cons arg� � � � �cons argn nil	� � � 	 �

�struct functor arg� � � � argn	
� functor �
� arg� �
� � �
� argn �
struct n


���� setq and Relatives

�setq var� expr� � � � varn exprn	
� �progn ��setq var� expr�	 � � � ��setq varn exprn		 �

��setq local�variable expression	
� expression �
setnth stack�position

where stack�position is the position of
local�variable on the stack

��setq global�variable expression	
� expression �
setglobal global�variable
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�psetq var� expr� � � � varn exprn	
� expr� �
� � �
� exprn �
destr� set statement for varn
� � �
destr� set statement for var�
pushconstant nil

where the destructive set statement for
vari is setnth stack�positioni for local
and setglobal vari for global variables
�cf� �setq�


���� funcall and Relatives

�funcall function expr� � � � exprn	
� function �
� expr� �
� � �
� exprn �
funcall n
remove �

remove � removes the functional object�
the result of � function �� from the stack

�apply function expr� � � � exprn	

� function �
� expr� �
� � �
� exprn �
apply n
remove �

for remove �� see funcall�
exprn must evaluate to a list

�function symbol	
� �symbol �

�function �lambda �v� � � � vn	 
 body		
� �symbol �

with�

� symbol is a new symbol

� body does not contain any
free local variables

� �defun symbol �v�� � � vn	

 body	

is executed
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�function �lambda �v� � � � vn	 
 body		
� �struct �symbol f� � � � fm	 �

with�

� symbol is a new symbol

� f� � � � fm are the free local variables
of body

� �defun symbol �f�� � � fm v�� � � vn	

 body	

is executed

�eval expression	
� expression �
eval


���	 let and let�

�let ��v� e�	 � � � �vn en		 
 body	

� e� �
� � �
� en �
� �progn 
 body	 �v����vn

remove n

�let� ��v� e�	 � � � �vn en		 
 body	
� �let ��v� e�		 �let ��v� e�		 � � � �let ��vn en		 
 body		� � � 	 �


���
 if and Relatives

�if test expr� expr��
� test �
onnilgoto labelA
� expr� �
goto labelB

labelA�
� expr� �

labelB�

where labelA and labelB are new labels

�if test expression	
� �if test expression nil	 �
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�cond �t� 
 e�	 � � � �tn 
 en		
� �if t� �progn 
 e�	

�if t� �progn 
 e�	 � � � �if tn �progn 
 en	 nil	� � � 	 �

�and	

� t �

�and expression	
� expression �

�and expr� � � � exprn	� n � 

� �if expr� �if expr� � � � �if exprn�� exprn	� � � 	 �

�or	

� nil �

�or expression	
� expression �

�or expr� � � � exprn	� n � 

� ��if expr� ��if expr� � � � ��if exprn�� exprn	� � � 	 �

��if expr� expr��
� �let ��var expr�		 �if var var expr�		 �

where var is a new
variable


���� Sequential Evaluation

�progn expr� � � � exprn	
� expr� �
pop

� � �
� exprn�� �
pop

� exprn �
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��� Non�local Exits and Loops

�catch tag 
 body	

� tag �
catch label
� �progn 
 body	 �
removetag

label�

where label is a new label
�for throw� see section ��
���

�loop 
 body	
catchnil labelB

labelA�
� �progn 
 body	 �
pop

goto labelA
labelB�

where labelA and labelB are new labels

�return expression	
� �thrownil expression	 �

�for thrownil� see section ��
���

�do init exit 
 body	�
init ! ��varI� exprI�a exprI�b	� � � �var

I
n exprIna exprInb		�

exit ! �test exprE� � � � expr
E
m	

� �let ��varI� exprI�a	� � � �var
I
n exprIna		

�loop

�if test
�progn exprE� � � � expr

E
m�� �return exprEm		

�progn ��body �psetq �varI� exprI�b	� � � �var
I
n exprInb				 ��


���� Simple Builtins

�functionva expr�� � � exprn	

� expr� �
� � �
� exprn �
llbuiltin functionva n

where functionva is one of

�  � � �� �

� �� � � �� ��

string� string�

���list splices list into the embedding list�
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�functionfa expr�� � � exprn	
� expr� �
� � �
� exprn �
functionfa

where functionfa is one of

functionfa n functionfa n
cons 
 eq 

car � eql 

cdr � equal 

null �
consp � print �
functor � read �
arity �
elt 
 throw 

structp � thrownil �


����� User�de�ned Functions

�functionud expr�� � � exprn	
� expr� �
� � �
� exprn �
llcall functionud�n

	�� The Peep�Hole Optimizer

The LL compiler sometimes produces code which by local inspection can be con�
siderably improved� For these cases� a peep�hole optimizer is used which looks at
the code and changes it to make it smaller and faster�

The most obvious ine	cient constellations are those where something is �rst
pushed on the stack and then directly discarded� The instructions responsible
for this can simply be removed�

pushconstant constant
pop

�

Another simpli�cation is to collect remove instructions�

remove n
remove m

remove n"m

With this rule� a sequence of remove instructions is replaced by a single in�
struction� This situation occurs when multiple let forms end at a single location�
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In the LLAMA� some instructions were introduced especially for the peep�hole
optimizer� setnth and setglobal� Their counterparts without a trailing
dash leave the top stack element on the stack� the versions with the dash remove
it� An instruction sequence consisting of setnth or setglobal and a pop

instruction �as it is produced by multiple setq statements� is replaced by the
corresponding setnth or setglobal instruction�

setnth n
pop

setnth n

setglobal n
pop

setglobal n

Many additional peep�hole optimizations are possible� most of them also re�
quiring new LLAMA instructions� e�g� cons� n �executing cons n times��

cons

cons

cons� �

cons� n
cons

cons� n"�

cons

cons� n
cons� n"�

	�� Examples

In this section� some examples illustrating the compiler are presented�

Example 
��
The �rst example� fac� shows the usage of onnilgoto in the compilation of
if�
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�defun fac �x	

�if �equal � x	

�

�� x �fac � x �					


proc fac��

pushconstant � � �

dup � � x

equal � �equal � x	 �

onnilgoto  L� � no� go to  L� 

pushconstant �

goto  L� 

 L� 

dup � � x

dup � � x

pushconstant � � �

llbuiltin  � � � x �	

llcall fac�� � �fac � x �		

llbuiltin � � � �� x �fac � x �			

 L� 

return �


end

Example 
��
The second example shows how lists are accessed via cons� car� cdr� and null�

�defun append �l� l�	

�if �null l�	

l�

�cons �car l�	 �append �cdr l�	 l�				


proc append��

dup � � l�

null � �null l�	 �

onnilgoto  L� � no� go to  L� 

dup � � l�

goto  L� 

 L� 

dup � � l�

car � �car l�	

dup � � l�

cdr � �cdr l�	

dup � � l�
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llcall append�� � �append �cdr l�	 l�	

cons � �cons �car l�	 �append �cdr l�	 l�		

 L� 

return �


end

Example 
��
This example shows how higher�order functions are compiled�

�defun mapcar �f l	

�if l

�cons �funcall f �car l		

�mapcar f �cdr l					


proc mapcar��

dup � � l

onnilgoto  L� 

dup � � f

dup � � l

car � �car l	

funcall � � �funcall f �car l		

remove � � remove f from stack

dup � � f

dup � � l

cdr � �cdr l	

llcall mapcar�� � �mapcar f �cdr l		

cons � �cons �funcall f �car l		 �mapcar f �cdr l			

goto  L� 

 L� 

pushconstant nil

 L� 

return �


end

For lambda expressions containing free variables� structures as functional ob�
jects are constructed�

�defun listadd �l n	 ! add n to each element in l

�mapcar ���lambda �x	 �� x n		 l		


proc listadd��

pushconstant lambda��

dup � � n

struct � � �lambda�� n�
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dup � � l

llcall mapcar�� � �mapcar l �lambda�� n�	

return �


end


proc lambda���� � �defun lambda�� �n x	 �� x n		

dup � � x

dup � � n

llbuiltin � � � �� x n	

return �


end

Example 
��
This example illustrates how loops are compiled into catchnil and thrownil�

�defun reverse �list	

�do ��l list �cdr l		

�res nil �cons �car l	 res			

��null l	 res			


proc reverse��

dup � � list �initialization

pushconstant nil � nil for l and res	

catchnil  L� 

 L� 

dup � � l

null � �null l	 �

onnilgoto  L� 

dup � � res

thrownil � leave loop with res as return value

 L� 

dup � � l

cdr � �cdr l	

dup � � l

car � �car l	

dup � � res

cons � �cons �car l	 res	

setnth � � res � �cons �car l	 res		

setnth � � l � �cdr l	

goto  L� 

 L� 

remove � � remove l and res

return �


end



��

Chapter 


Integrating Abstract Machines�

The GAMA

GAMA� the General Abstract Machine Assembler� is a programming environment
supporting the development and integration of abstract machines� In this work�
it was used to integrate an existing implementation of the WAM �our version of
the NyWAM �Nystr�m� ������ with the newly developed LLAMA �chapter ���

In the following sections� the constituents of the GAMA�

� the memory organization�

� hash tables� jump tables� and the module system�

� the de�nition of assembler instructions� and

� the assembler and loader

are described�


�� Memory Organization

In the GAMA� only one memory area for all abstract machines exists� the general
purpose memory Memory� This memory is managed via a free list which contains
all areas in Memory which are currently unused� Memory can be allocated and
deallocated with the following functions��

� �gmem
alloc n	 returns the address of the newly allocated memory area
of size n

� �gmem
dealloc addr n	 deallocates the memory area starting at addr
with size n

�The GAMA is implemented in COMMON LISP� in order to avoid name con�icts� function
names are preceded by a pre�x �mod�� indicating that a function belongs to module mod� here
gmem �we did not use the COMMON LISP package system��
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� �gmem
defractionize	 cleans up the free list� i�e� adjacent freed memory
areas are collected �after calls to gmem
dealloc�

Memory cells can be accessed with the following functions�

� �gmem
put addr x	 stores x in the cell with address addr

� �gmem
get addr	 returns the contents of the cell with address addr


�� Hash Tables� Jump Tables� and the Mod�

ule System

In the GAMA� hash tables are simply areas in Memory occupying three memory
cells for each hash table entry� The use of three cells was motivated by the
intended usage of hash tables as jump tables� the �rst cell contains the key
�the name of a procedure�� the second contains an address �the entry point of
the procedure�� and the third cell contains further information �concerning the
procedure��

The following functions are de�ned on hash tables�

� �gmht
makeht n	 returns a new hash table handle with n entries

� �gmht
removeht ht	 removes the hash table ht

� �gmht
put ht key a b	 creates a new entry in ht for key� storing a and b
in it

� �gmht
get ht key	 returns the address �in Memory� of a hash table entry
�the �rst address is returned� i�e� the address of the memory cell containing
the key�

These hash tables are the basis of the GAMA module system� a hash table
can be viewed as a name space containing all addresses and further information
concerning all procedures of a module�

The reason why addresses are stored independently of the other information is
that the hash tables are used as jump tables� a machine instruction like llcall

does not have the name of a procedure as argument but only the address of the
second memory cell in the corresponding hash table entry� thus avoiding to look
up the address in the hash table at run time�

The following diagram shows how a hash table entry for a procedure f�� is
used� at the address ����� a call to f�� is expressed as llcall ��� where ���

is the address of the memory cell in the hash table which contains the entry point
for f���



���� DEFINING ASSEMBLER INSTRUCTIONS �

Hash Table�
���

���

��� f��

��� ���

��
 �label �end ���	 �dynamic t		
���

���

Code�
���

���

��� pushconstant �

���
���

���� llcall ���
���

���

Since abstract machines for PROLOG� and LISP�like languages are highly
dynamic in that they allow procedures to change even at run time� procedures
are not jumped at directly but via jump tables� This has the e�ect that� if a
procedure is changed �recompiled�� none of the procedures calling this procedure
have to be changed�


�� De�ning Assembler Instructions

In the GAMA� new assembler instructions for an arbitrary abstract machine are
de�ned with definstr� definstr expects a COMMON LISP argument list� a
type speci�cation for these arguments�� and the COMMON LISP code de�ning
the instruction�

The following example shows the de�nition of the LLAMA instruction
pushconstant�

�definstr pushconstant �c	 �CONST	

�standard �ll
pushconstant

�stackpush �constant c				

ll
pushconstant is the name of the COMMON LISP function corre�
sponding to the pushconstant instruction� The keyword �standard declares

�The available types are� NAT for natural numbers� CONST for constants� FUNCTOR for WAM
functor speci�cations of the form �name arity�� FUNCTION for COMMON LISP functions �e�g�
used for ll�builtin�� LABEL for labels� VARIABLE for global �LL� variables� HASHTABLE for hash
tables �used in the WAM switch instructions�� and X for arbitrary arguments� Additional types
can be de�ned with gasm�deftype�
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pushconstant to be a simple instruction� The next example shows a non�
standard instruction for which more than one COMMON LISP de�nition is
needed�

�definstr llcall �proc	 �LABEL	

�static �ll
call�st

�stackpush �reg P		

�setreg P proc		

�dynamic �ll
call�dy

�stackpush �reg P		

�setreg P �gmem
get proc				

All instructions expecting a label can be used in two di�erent ways� statically
and dynamically� In the dynamic version� the address corresponding to the label
is an entry in a jump table� an additional gmem
get is needed to dereference
it� The static version does not use a jump table entry but directly uses the real
address� dereferencing is not needed� It is used for procedures which will not be
changed �like those in the prelude��


�� The Assembler and Loader

In the GAMA� assembler and loader are interleaved� in contrast to most assem�
blers for native machines which �rst produce a relocatable object �le which is
linked together with other object �les by a linker and then loaded into memory
for execution� the GAMA assembler and loader directly transform assembler code
into executable machine code in memory�

In addition to the instructions de�ned via definstr� the GAMA assembler
handles the following pseudo instructions�

� 
proc marks the beginning of a procedure� it is mainly used to restrict the
scope of local labels thus allowing di�erent procedures to use the same local
labels

� 
end marks the end of a procedure� in addition to restricting the scope of
local labels together with 
proc� it adds the end address of a procedure to
the information in the corresponding hash table entry �third cell� in order
to allow the procedure to be removed from memory

� 
dynamic declares the following global labels �the entry points for proce�
dures� to be dynamic �see section ���

� 
static declares the following global labels to be static

� any symbol is taken as a global label
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� any number or string is taken as a local label

� �
module mod	 declares all following global labels to be in module mod�
if this module does not yet exist� it is created

� �
importfrom mod label� � � � labeln	 imports label� � � � labeln from
module mod �quali�ed import�

� �
importmodule mod	 imports all labels from module mod �unquali�ed
import�

The following example shows the usage of some of these pseudo instructions
and how the assembler and loader transform assembler code into executable ma�
chine code in memory�

Example ���
The assembler and machine code �with the corresponding hash table entry� for
the LL function

�defun fac �arg��	

�if �equal � arg��	 � �� arg�� �fac � arg�� �					

is as follows�

Assembler code Hash table entry and machine code

module lluser Hash Table �for module lluser��

proc ���"#�� fac��


dynamic ���"##� ���$��

fac�� ���"#$� �label �end ���$#�	 �dynamic t		

Code�
pushconstant � ���$��� pushconstant �

dup � ���$��� dup �

equal ���$��� equal

onnilgoto  l� ���$��� onnilgoto ���$�$

pushconstant � ���$��� pushconstant �

goto  l� ���$�#� goto ���$#�

 l� 

dup � ���$�$� dup �

dup � ���$�"� dup �

pushconstant � ���$#�� pushconstant �

llbuiltin  � ���$#�� llbuiltin  �

llcall fac�� ���$#�� llcall ���"##

llbuiltin � � ���$#�� llbuiltin � �

 l� 

return � ���$#�� return �


end

�
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Chapter �

Conclusions and Future Work

In this work� a general and �exible technology for loosely integrating relational
and functional languages on the basis of abstract machines was developed�

We �rst highlight several aspects of this integration before discussing its
achievements and possible enhancements�

� Relational and functional languages� when individually compilable into ab�
stract machines �as in the case of PROLOG�like and LISP�like languages��
can be integrated by extending their abstract machines by only a few� usu�
ally very simple instructions�

� The mutual access thus achieved on the abstract machine level is then used
to integrate the languages on the source level� In the case of PROLOG�
like relational languages �e�g� REL�� the is builtin is generalized to allow
functions de�ned in the functional language in addition to �usually builtin�
arithmetical functions on its right�hand side� The functional language� if
desired� can access relations either via once� retrieving only the �rst solu�
tion� or a bagof�like construct� retrieving all solutions�

� Deterministic predicates� for which a PROLOG computation rule foun�
dation is developed in this work� can be detected and transformed into
functions� thus improving their e	ciency considerably since the overhead
of uni�cation and backtracking is avoided�

Let us mention here three major contributions of our functional�plus�logic
programming on an integrated platform �FLIP��

� FLIP can be regarded as an implementation technique for relational lan�
guages �e�g� PROLOG� and relational�functional languages �e�g� RELFUN��
where deterministic predicates exploit special�purpose compilation into a
functional stack machine �LLAMA� loosely coupled to the language s prin�
cipal abstract machine� In the case of RELFUN� the functional language
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LL needed for this implementation can even be regarded as a version of the
functional source language component itself�

� Algorithms from existing software libraries can be combined even if speci�ed
in di�erent paradigms without the need of re�implementation� Since the
development and maintenance of software is very expensive� the loss of
some declarativeness usually caused by hybrid integrations is justi�able�

� Since the seminal paper �Warren et al�� ����� there has been a dispute about
the relative e	ciencies of LISP and PROLOG� the authors gave examples
where their PROLOG was as e	cient as the LISPs of that time�

In the current work we contribute to the e	ciency of both language
paradigms individually and in combination� While it is di	cult to assert a
de�nitive e	ciency advantage for one of these paradigms� our benchmarks
tend to support the view that LISP can still be made faster than PRO�
LOG� in case of the integration of REL and LL� a factor of about 
�� was
achieved by transforming deterministic predicates into LL functions� This
is mainly caused by LL being on a lower �though still declarative� level than
relational languages� i�e� allowing much more operational speci�cations�

In the future� this integration can be improved in several directions�

� In the current implementation� the transformation of deterministic predi�
cates into LL functions does not contain optimizations exploiting the extra�
functional builtins of LL� In the future� optimizations such as transform�
ing tail�recursions into loops or using case statements� in addition to the
if�let cascade �analogously to PROLOG indexing� see section ��
���� can
be developed to further improve the e	ciency�

� As was laid out in section ��
���� predicates automatically detected and
transformed into deterministic functions have to contain quasi��nal cuts and
catch�all clauses� A remedy to avoid these is the introduction of type de��
nitions and signatures �see example ��� on page ��� as they are currently
developed for RELFUN �Hall� ������ New algorithms� detecting determin�
ism in the more declarative context of mode declarations together with
signatures� have to be conceived� not only modes� but also types should be
handled by abstract interpretation�

� Since the structure of the LLAMA is very similar to native machines� its
instructions � unlike WAM instructions � can easily be compiled into
native machine code� In future research it could be examined how LL

�case is not yet implemented�
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and the LLAMA can be useful in the compilation of PROLOG and other
relational languages into native code �Taylor� ����� Van Roy� ������

A possible scenario for this is illustrated in the following diagram�

LLAMA

transfor-
mation

predicates
deterministic

LL (LISP light)
relational languages

native machine

compilationcompilation

compilation

...

compilation

intermediate representation

intermediate representation

� The loose integration� performed on the abstract machine level� is not re�
stricted to relational and functional languages� Some research could be
done to identify additional programming paradigms integratable in an anal�
ogous manner� These programming paradigms could either be declarative�
like constraint logic or object�oriented programming� or rather operational�
in order to access programming languages whose software libraries can be
reused�
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Appendix A

Benchmarks

In our prototypical implementation� WAM and LLAMA code are interpreted by
a COMMON LISP program� It would thus be unfair to compare the run time
behaviour of LL programs with PROLOG programs compiled into C interpreted
WAM code�

A�� Naive Reverse

The standard benchmark� naive reverse� was tested in three environments�

�� in REL� compiled into the WAM without indexing�


� in REL with indexing

� in LL� automatically generated from the REL speci�cation �see section
��
����

For naive reverse applied to a list with �� elements� the following internal run
times were measured�

�� REL without indexing ����� s

� REL with indexing ��
�� s
� LL �automatically generated� ����
 s

The speed up achieved by indexing and by transformation into LL �compared
with the indexed version� are both approximately 
�

�For a survey of indexing� see 	Stein� 
���� and 	Sintek� 
����
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A�� Naive Fibonacci

For the �naive� Fibonacci algorithm applied to 
�� the following internal run
times were measured�

�� REL without indexing ���� s

� REL with indexing ��
 s
� LL �automatically generated� ���� s

This time� the speed up achieved by indexing is ����� and the the speed up
achieved by transformation into LL is ��� �compared with the indexed version��

A�� Quicksort

For quicksort applied to a list with 
�� elements� the following internal run times
were measured�

�� REL without indexing ���� s

� REL with indexing ���� s
� LL �automatically generated� ���� s

The speed up achieved by indexing is only ���� whereas the the speed up
achieved by transformation into LL is ���
 �compared with the indexed version��
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Appendix B

The User Interface

In this appendix� the user interface for the prototypical implementation of the
integration of REL� LL� WAM� and LLAMA in the RELFUN environment is
described�

B�� RELFUN Toplevel

In FLIP�extended RELFUN� three di�erent toplevels are present� the interpreter�
the emulator� and the LL toplevel� They are entered with inter� emul� and ll�
respectively�

For the commands available at the interpreter and emulator toplevels� refer
to the RELFUN documentation �Boley et al�� ����� and �Boley et al�� �����

At the LL toplevel� the following commands are available�

� load filename� load and compile an LL �le �if no extension is present�
�
lisp� is assumed�

� spy� switch to spy mode �the executed machine code is displayed�

� nospy� �nish spy mode

� asm mod lluser� show contents of LL name space

� asm l a b� display a memory area �addresses a % b�

B�� Declarations

In RELFUN� declarations are realized via declare facts �in contrast to PROLOG�
where declarations are usually goals� i�e� they are preceded by �����

LL functions� which should be accessed from REL� have to be declared�
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� declare� ll�function��� � � �functionn�	

declares ordinary functions to be accessible

� declare� llp�testpred��� � � �testpredn�	

declares the testpredi to be functions used as test predicates �i�e� a returned
nil generates a failure�

Mode declarations have the following form�
declare� mode�predicate���� � � � � �n�� 	


where the �i are either g or x �corresponding to G and X in section ��
�
��
For example� the mode declarations for append and reverse are

declare�mode�append�g�g�x��	


and
declare�mode�reverse�g�x��	


If a predicate should additionally be declared to be representable as a �total�
deterministic function �as was mentioned in subsection ��
����� mode is replaced
by dfmode� declare�dfmode�append�g�g�x��	


In appendix C� the usage of mode declarations is illustrated�

B�� Transforming Deterministic REL Predi�

cates into LL Functions

After loading REL programs with consult filename at the emulator toplevel�
or asserting REL clauses �and mode declarations� with az clause� the following
commands have to be used to detect and transform deterministic predicates and
to compile the remaining �non�deterministic� predicates�

�� undeclare �executes� the declare facts and thus the mode declarations


� deta transforms deterministic predicates into LL functions and compiles
them

� compile compiles the remaining �non�deterministic� predicates

These steps also are illustrated in appendix C�
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Appendix C

Sample Dialog

rfe�p� destroy

rfe�p�

rfe�p� az declare� mode� fac�g�x� ��	

rfe�p�

rfe�p� az fac�
��� �� 	

rfe�p� az fac�X�Y� �� X� is ��X���� fac�X�� FX��� Y is ��X� FX��	

rfe�p�

rfe�p� az declare� mode� f�g�x� ��	

rfe�p�

rfe�p� az f�s�X�Y�� u�s�X�Y��s�A�B��� ��

A is ��B�A��

s�A�B� is s�X�Y��

fac�X�A��

fac�Y�B� 	

rfe�p� az f�X� �X�X��	

rfe�p�

rfe�p� az tripfac�X� �X�Y�� �� fac�X�Y�	

rfe�p� az tripfac�X� �X��Y�� �� X� is ��X���� fac�X��Y�	

rfe�p� az tripfac�X� �X��Y�� �� X� is ��X���� fac�X��Y�	

rfe�p�

rfe�p� az declare� mode� tripfac��g�x�x�x� ��	

rfe�p�

rfe�p� az tripfac��X�F�F��F�� ��

fac�X�F��

X� is ��X���� F� is ��X��F��

X� is ��X���� F� is ��X��F��	

rfe�p�

rfe�p� undeclare

rfe�p� deta

rfe�p�

rfe�p� listing

tripfac�X� �X� Y�� �� Y is fac�����X�	
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tripfac�X� �X�� Y�� �� X� is ��X� ��� Y is fac�����X��	

tripfac�X� �X�� Y�� �� X� is ��X� ��� Y is fac�����X��	

tripfac��X�� X�� X�� X�� �� values�X�� X�� X�� is tripfac������X��	

f�X�� X�� �� X� is f�����X��	

fac�X�� X�� �� X� is fac�����X��	

�defun tripfac����� �arg���

�let ��v�
�� �fac���� arg�����

�let ��v�
�� �� �� arg�� �� v�
�����

�struct �values v�
�� v�
�� �� �� arg�� �� v�
�������

tripfac������X� ��

F is fac�����X��

X� is ��X� ���

F� is ��X�� F��

X� is ��X� ���

F� is ��X�� F�� �

values�F� F�� F��	

�defun f���� �arg���

�if �and �structp arg��� �equal �s �functor arg����

�equal � �arity arg�����

�let ��v���� �elt arg�� 
���

�if �equal v���� �fac���� v������

�let ��v���� �elt arg�� ����

�if �and �equal v���� �� v���� v������

�equal v���� �fac���� v�������

�struct �u arg�� arg���

�cons arg�� �cons arg�� nil����

�cons arg�� �cons arg�� nil����

�cons arg�� �cons arg�� nil����

f�����s�X� Y�� ��

A is ��B� A��

s�A� B� is s�X� Y��

A is fac�����X��

B is fac�����Y� �

u�s�X� Y�� s�A� B��	

f�����X� ��� �X� X�	

�defun fac���� �arg���

�if �equal 
 arg��� � �� arg�� �fac���� �� arg�� ������

fac�����
� �� � �	

fac�����X� �� X� is ��X� ��� Fx� is fac�����X��� Y is ��X� Fx�� � Y	

rfe�p�

rfe�p� compile

rfe�p�
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rfe�p� fac���R�

true

R � ��


rfe�p� f�s������R�

true

R � u�s��� ��� s��� ���

rfe�p� f�s������R�

true

R � �s��� ��� s��� ���

rfe�p� tripfac���R�

true

R � ��� ��

rfe�p� m

true

R � ��� ���

rfe�p� m

true

R � ��� ��
�

rfe�p� m

unknown

rfe�p� tripfac����F�F��F��

true

F � �

F� � ��

F� � ��


rfe�p�

rfe�p� destroy

rfe�p�

rfe�p� az declare� dfmode� app�g�g�x� ��	

rfe�p� az declare� dfmode� rev�g�x� ��	

rfe�p�

rfe�p� az app���� X� X�	

rfe�p� az app��H�T�� X� �H�Y�� �� app�T�X�Y�	

rfe�p�

rfe�p� az rev�������	

rfe�p� az rev��H�T��X� �� rev�T�T��� app�T���H��X�	

rfe�p�

rfe�p� undeclare

rfe�p� deta

rfe�p�

rfe�p� listing

rev�X�� X�� �� X� is rev�����X��	

app�X�� X�� X�� �� X� is app�����X�� X��	

�defun rev���� �arg���
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�if �equal nil arg���

nil

�if �consp arg���

�app���� �rev���� �cdr arg���� �cons �car arg��� nil��

�type�error����

rev�������� ��� ��	

rev������H � T�� �� T� is rev�����T�� X is app�����T�� �H�� � X	

�defun app���� �arg�� arg���

�if �equal nil arg���

arg��

�if �consp arg���

�cons �car arg��� �app���� �cdr arg��� arg����

�type�error����

app�������� X� ��� X	

app������H � T�� X� �� Y is app�����T� X� � �H � Y�	

rfe�p�

rfe�p� compile

rfe�p�

rfe�p� app�����������������X�

true

X � ��� �� �� �� �� ��

rfe�p� rev���������������X�

true

X � ��� �� �� �� �� ��

rfe�p�

rfe�p� destroy

rfe�p�

rfe�p� az declare� mode� app�g�g�x� ��	

rfe�p� az declare� mode� rev�g�x� ��	

rfe�p�

rfe�p� az app���� X� X� �� 	

rfe�p� az app��H�T�� X� �H�Y�� ��  app�T�X�Y�	

rfe�p� az app�X�Y�non�list�arg�	

rfe�p�

rfe�p� az rev������� ��  	

rfe�p� az rev��H�T��X� ��  rev�T�T��� app�T���H��X�	

rfe�p� az rev�X�non�list�arg�	

rfe�p�

rfe�p� undeclare

rfe�p� deta

rfe�p�

rfe�p� listing

rev�X�� X�� �� X� is rev�����X��	

app�X�� X�� X�� �� X� is app�����X�� X��	
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�defun rev���� �arg���

�if �equal nil arg���

nil

�if �consp arg���

�app���� �rev���� �cdr arg���� �cons �car arg��� nil��

�non�list�arg���

rev�������� �� � ��	

rev������H � T�� ��  T� is rev�����T�� X is app�����T�� �H�� � X	

rev�����X� ��� non�list�arg	

�defun app���� �arg�� arg���

�if �equal nil arg���

arg��

�if �consp arg���

�cons �car arg��� �app���� �cdr arg��� arg����

�non�list�arg���

app�������� X� �� � X	

app������H � T�� X� ��  Y is app�����T� X� � �H � Y�	

app�����X� Y� ��� non�list�arg	

rfe�p�

rfe�p� compile

rfe�p�

rfe�p� app�����������������X�

true

X � ��� �� �� �� �� ��

rfe�p� app�����X�

true

X � non�list�arg

rfe�p� rev���������������X�

true

X � ��� �� �� �� �� ��

rfe�p�

rfe�p� destroy

rfe�p�

rfe�p� az declare� mode� even�g� � �	

rfe�p�

rfe�p� az even�
� �� 	

rfe�p� az even�X� �� ��X� ��� even���X���� 	

rfe�p� az even�X� �� ��X����� even���X����	

rfe�p�

rfe�p� az declare� mode� small�g� ��	

rfe�p�

rfe�p� az small�
�	

rfe�p� az small���	
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rfe�p� az small���	

rfe�p�

rfe�p� undeclare

rfe�p� deta

rfe�p�

rfe�p� listing

�defun small �arg���

�if �equal 
 arg���

t

�if �equal � arg��� t �if �equal � arg��� t nil����

small�
�	

small���	

small���	

�defun even �arg���

�if �equal 
 arg���

t

�if �and �� arg�� �� �even �� arg�� ����

t

�if �and �� arg�� ��� �even �� arg�� ���� t nil����

even�
� �� 	

even�X� �� ��X� ��� even���X� ��� 	

even�X� �� ��X� ���� even���X� ���	

rfe�p�

rfe�p� compile

rfe�p�

rfe�p� even����

unknown

rfe�p� even����

true

rfe�p� even����

unknown

rfe�p� even�
�

true

rfe�p� even���

unknown

rfe�p� even���

true

rfe�p�

rfe�p� small���

true

rfe�p� small���

unknown

rfe�p�
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Appendix D

Symbols

� expr� is in LL the expression expr evaluated�
�list � �	� ! �� �	

� expr�
�
� expr� is equivalent to expr�� ! expr�

� � and � are placeholders on the LLAMA stack and heap used in the de�
scription of machine states

� �proc is the entry address of the procedure proc

� glexpr is the external �printable� LL representation of the LLAMA expression
lexpr on the stack or heap �where it is in case of a list or structure only a
pointer�

� dlexpr is a copy of lexpr in the general purpose memory �Memory� of the
LLAMA

� lexpr is the LLAMA expression lexpr dereferenced

� G and X denote the modes ground and unrestricted� respectively
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