
Generalized DATR for �exible

lexical access� PROLOG

speci�cation

Dafydd Gibbon

UBI� Postfach �� �� ��� ����� Bielefeld

Report �
October ����

October ����

Dafydd Gibbon

Universit�at Bielefeld �UBI�
Fakult�at f�ur Linguistik und Literaturwissenschaft

Universit�atsstr� 	

Postfach �� �� ��

��
�� Bielefeld

Tel�� ��
	�� ��
 � �
��
e�mail� gibbon�asl�uni�bielefeld�de

Geh�ort zum Antragsabschnitt�
�� Morphologie

Das diesem Bericht zugrundeliegende Forschungsvorhaben wurde mit Mitteln
des Bundesministers f�ur Forschung und Technologie unter dem F�orderkenn�
zeichen �� IV ��� B 	 gef�ordert� Die Verantwortung f�ur den Inhalt dieser
Arbeit liegt bei dem Autor�

Generalised DATR for flexible lexical access:
Prolog specification

VERBMOBIL-Teilprojekt 5.3, deliverable D1

Dafydd Gibbon

October 1993

Prof. Dr. Dafydd Gibbon

Fakultät für Linguistik
und Literaturwissenschaft

Universität Bielefeld

P 10 01 31
D-33501 Bielefeld

Tel.: +49.521.106.3510
Fax: +49.521.106.6008
Email: gibbon@asl.uni-bielefeld.de

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Contents:

Abstract 3

1 Goals 4

2 Integrated lexical knowledge representation 6
2.1 Types of lexical knowledge 6
2.2 Basic principles and architecture of integrated lexicon theory 8
2.3 A microlexicon illustration of integrated lexical knowledge representation 12

3 DATR syntax and semantics 16
3.1 The original DATR BNF definition 16
3.2 An updated BNF syntax for DATR 17
3.3 Pure Prolog data structures as a model for DATR theories 18
3.4 Aspects of DATR semantics: other models for DATR theories 21

4 Query languages for integrated lexicon theories in DATR 23
4.1 The basic DATR Query Language: DQL 23
4.2 Pure Prolog semantics for DQL: "MINIDATR" 25
4.3 Augmented DQL: ADQL 29
4.4 A new Extended DATR Query Language: EDQL 30

5 The Open DATR Engine: ODE 34
5.1 The ODEC compiler and the ODEQ inference engine 34
5.2 Application to an integrated lexicon 35

6 Conclusion 39

Acknowledgements 40

References 41

Appendix 44
MINIDATR: A minimal core DATR engine in Prolog

2

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Abstract

This report discusses criteria for a computational lexicon with flexible access strategies, and
specifies a new generalised, constraint-oriented query language for DATR lexica (EDQL)
which meets these requirements. A specification of EDQL semantics is given in Pure Prolog,
and an implementation based on this specification, the Open DATR Engine (ODE), is
described. The implementation is in Sicstus Prolog. The approach to integrated lexica is
illustrated with a ’microlexicon’ containing elementary semantic and surface lexical
information. The ODE concept is intended as a general specification for spoken language
lexicon acquisition and application research in the VERBMOBIL project (Work Packages 5.1
and 5.9); it is not a specification for the VERBMOBIL lexicon system.

Dieser Bericht behandelt Kriterien für Computerlexika mit flexiblen Zugriffsstrategien und
stellt eine neue, generalisierte, constraint-orientierte Anfragesprache für DATR-Lexika vor
(EDQL). Die Semantik für EDQL wird in Kern-Prolog spezifiziert und eine auf dieser
Spezifikation basierende Implementierung, die ’Open DATR Engine’, ODE, wird beschrieben.
Die Implementierungssprache ist Sicstus-Prolog. Der Ansatz im Bereich der integrierten
Lexika wird anhand eines Mikrolexikons mit elementarer semantischer und Oberflächen-
Information veranschaulicht. Das ODE-Modell soll eine allgemeine Spezifikation für die
Akquisition und die Anwendung von Lexika im VERBMOBIL-Projekt (Arbeitspakete 5.1,
5.9) darstellen; es handelt sich nicht um eine Spezifikation des VERBMOBIL-
Lexikonsystems.

Ce rapport traite des critères pour les lexiques computationelles avec les stratégies d’accès
flexibles et spécifie un langage de contraints généralisé pour l’accès aux lexiques en DATR.
La sémantique de ce langage est spécifié en Prolog pure et une implantation qui utilise cette
spécification (’Open DATR Engine’, ODE), est décrit. Le langage d’implantation est Sicstus
Prolog. Cette approche aux lexiques intégrés est illustrée avec un microlexique avec les
informations sémantiques et superficielles. Le concept ODE est intendé comme spécification
générale pour la recherche sur l’acquisition et l’application des lexiques pour la langue parlée
dans le projet VERBMOBIL (Paquets de Travail 5.1, 5.9); il ne s’agit pas d’une spécification
du système lexical de VERBMOBIL.

3

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

1 Goals

In their study of the adequacy of lexical models, Daelemans & van der Linden (1992) have
formulated a set of evaluation criteria for lexical representation formalisms. They distinguish
between general formalisms and formalisms based on a specific task analysis, for instance
with respect to the lexicon. In their task analysis of the lexicon, they distinguish in particular
between three basic functions of a computational lexicon (1992:2):

(1) Representation. Representation of morphological, syntactic, semantic and pragmatic
information in such a format that it can be easily integrated, and used with grammar,
parser, and generator.

(2) Access. Given underspecified information, lexical signs compatible with it must be
retrieved. Given a lexical sign, information associated with this sign must be retrieved.
Given a lexical sign, (information associated with) related signs must be retrieved.
These are all instances of a generic classification task.

(3) Acquisition. Addition of new lexical signs to the lexicon must be possible while
keeping consistency of the lexicon.

These general goals overlap with traditional linguistic adequacy criteria (Chomsky 1965) as
applied to lexica (Gibbon & Langer 1992): in addition to observational adequacy (a minimal
requirement for recording facts) and descriptive adequacy (roughly: the representation
criterion), the acquisition criterion covers part of the explanatory adequacy requirement.
However, in addition to the more declarative, competence oriented traditional criteria, the
access and acquisition criteria of Daelemans & van der Linden also touch on the procedural
domain, which might be reconstructed in more traditional terms as observational, descriptive
and explanatory adequacy for performance models.

Daelemans and van der Linden make the point that "Classification as a generic task
for lexicon access suggests a combination of abstraction, matching and refinement as a
problem solving method, which in its turn suggests the use of taxonomies for the
representation of lexical knowledge." They also list formalism-internal criteria of evaluation,
such as provision of a formal declarative semantics, formal inference rules, sound and
complete inference and computationally tractable inference. They then concentrate on
formalism-external criteria of notational adequacy and expressivity (all and only the relevant
linguistic facts), and discuss five dimensions in hierarchical lexicon design, as follows.

(1) Basic relation (e.g. subsumption or inheritance)
Conclusion: Orthogonal multiple default inheritance is currently the best solution for

4

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

conflicts; unification should play a secondary role

(2) Recursive structure (e.g. reference to other lexical signs; path formation in complex
feature structures)
Conclusion: Recursive structuring (path formation) is required

(3) Multiple (orthogonal and prioritised) inheritance and single inheritance
Conclusion: Integration of knowledge from multiple sources is required (multiple
inheritance or subsumption)

(4) Monotonic and Non-monotonic inheritance
Conclusion: Default reasoning is required (with non-monotonic inheritance or
subsumption)

(5) Explicitness in coding non-default information
Conclusion: Implicit blocking (as opposed to explicit encoding of default information)
is required.

These conclusions harmonise well with experience in designing lexica for both written
and spoken language using DATR as a lexicon representation language (Evans & Gazdar
1989, 1990; Andry, Fraser, McGlashan, Thornton, Youd 1992; Gibbon & Langer 1992;
Langer & Gibbon 1992); whether DATR is the optimal language remains to be seen, but
currently a variety of applications and general criteria of adequacy suggest that DATR
provides a promising foundation for further work.

However, a major weakness of DATR lies in its lack of a general query language.
Existing DATR applications either rely on standard DATR procedural semantics, which is a
deterministic mapping from single (or sets of) lexical entry nodes to their semantic and
phonological or orthographic representations, or they embed DATR within a larger, less well-
defined programming context. This state of affairs is not entirely satisfactory with regard to
the fulfilment of the goals formulated by Daelemans & van der Linden.

The aim of this report is to develop a solution to this problem by clearly distinguishing
between DATR and EDQL, an extended query language for DATR, and by defining the latter
as a compositional constraint language. Linguistic motivation for integrated lexica is discussed
in Section 2, and a ’microlexicon’ for illustration of the formal sections is introduced there
(this section can be skipped by readers familiar with integrated lexicon theory and DATR
applications in computational lexicology and lexicography). In Section 3, DATR syntax is
defined, and an overview is given of models for DATR to be found in the literature. Section
4 treats the existing DATR Query Language DQL (standard DATR queries, Evans & Gazdar
1989, will be referred to in this way) and provides a procedural semantics for DATR in Pure
Prolog, as well as an Augmented DATR Query Language ADQL (referring to Evans &
Gazdar 1990; Cahill & Evans 1990); finally, EDQL (Extended DATR Query language) is
introduced as a constraint-oriented generalisation of DQL and ADQL, building on an
approach initiated by Langer (1992). In Section 5, an implementation ODE (Open DATR
Engine), is described, with a simple application to the microlexicon introduced in Section 2.

5

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

2 Integrated lexical knowledge representation

This Section covers types of lexical knowledge to be considered in developing lexicon models
for computational lexica for spoken language, a linguistically motivated lexicon architecture,
and a toy ’microlexicon’ for illustrating the integration of surface and semantic knowledge
in a hierarchical lexicon.

2.1 Types of lexical knowledge

This is not the appropriate context for a detailed survey of the different kinds of lexical
knowledge which need techniques of representation and access; this is a topic which has
received detailed attention for centuries, and innumerable suggestions have been made during
the past three decades of formal and computational linguistics, for instance from Katz &
Postal (1963) to Kamp & Rossdeutscher (1992), to take two examples at the chronological
extremes.

A number of basic kinds of lexical information need to be represented in an integrated
lexicon within the context of a spoken language system, however. These are outlined below.

i. Surface (orthography, pronunciation - segmental, syllabic, prosodic features). In this area,
recent work on computational lexicology has included, in addition to the traditional field of
written text processing (morphological analysis, including lemmatisation, orthographic lexical
representation, orthographic variants), work on phonology, in particular on integrating finite
state representation and processing models into the lexicon. The problems treated include
underspecification theory; feature geometry hierarchies; dependency hierarchies;
autosegmental association; tone sandhi; vowel harmony; tone, vowel and consonant spreading;
prosody (stress and tone); this work has been closely connected to work on integrating
morphology and the lexicon (cf. esp. Cahill 1993).

ii. Morphology, as an intermediate level of paradigm variants, between lexical entries and
their phonological representations. This area has been most extensively and successfully dealt
with for written language in the Two Level Morphology paradigm (Koskenniemi 1983 and
many later studies). However, spoken language problems are not so easily dealt with in this
paradigm. In addition to the evidently tractable areas of prefixation and suffixation, there are
more difficult problems in the area of morphophonology such as infixation, stem modification;
stress assignment, tone assignment in word derivation and inflexion; word-and-paradigm

6

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

variation, including conjugation and declension in various Indo-European languages;
intercalation in Semitic languages, and tone in African languages (cf. Kay 1987, Gibbon
1992a; Bleiching 1991, 1992; Pampel 1992; Reinhard & Gibbon 1991). The integration of
finite state representation techniques into a hierarchical lexicon framework, as ’prosodic
inheritance’, is demonstrated in the automata for Arabic and Kikuyu in Gibbon (1990).

iii. Lexical semantics (atomic elements, relations and fields defined in terms of compositional
frames). Frame-oriented models of lexical semantics (Fillmore 1971) are being developed
further within logical and computational frameworks (Kamp & Rossdeutscher 1992;
Pustejovsky 1991). Models of lexical fields for kinship terms, cooking recipes, collocations
in economics texts, colour terms, institutional domains (e.g. personnel database); cf. Evans
& Gazdar collections of DATR theories (1989, 1990) and Bleiching (1990).

iv. Lemma type (simplex, derived and compound words, idioms). Phrasal idioms: Model of
various degrees of ’frozenness’ in idiomaticity, first modelled in detail by Weinreich (1969).

In more general terms, a lexicon model, representation formalism and architecture are
required to express the following central properties of a lexicon which are applicable to each
of these areas:

(1) The distinction between "actual" and "potential" words.

(2) Notions such as exception, markedness, lexical blocking, elsewhere conditions in
morphology and phonology.

(3) Integration of morphology into the lexicon as a set of lexical generalisations.

(4) Integration of lexical semantics into the lexicon as a set of lexical generalisations.

(5) Integration of the notion of phrasal idiom into a general notion of lexical entries of
different ranks (sizes, granularities).

(6) Represention of an integrated lexicon with the properties described in (1) to (5) as a
structured object in its own right (such as a default inheritance network, or a type
subsumption hierarchy).

(7) Definition of lexical access with flexible combinations of lexical objects, their
attributes and their values as keys, and with unification-like complex constraint
operations over the information generated.

These areas have been extensively discussed in the literature already cited.

7

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

2.2 Basic principles and architecture of integrated lexicon theory

In this Subsection, basic considerations for the architecture of an integrated lexicon are
presented in the form of a set of postulates for Integrated Lexicon Theory (ILT), with an
interpretation in terms of DATR constructs. The architecture of an ILT lexicon is stratified,
with strata ranked in terms of the size (granularity) of lexical entries, with each stratum
characterised by three properties. The stratum ordering does not imply any procedural claims.

(1) A distinct semantic and phonetic interpretation at each stratum.

(2) A function of paradigm variation at each level (e.g. inflexional morphology for
simplex words, more complex variants at higher strata), mediating between lexical
entries (abstract lemmata) and their semantic and phonetic interpretations.

(3) A hierarchy of generalisations at each level, expressed (depending on modelling
conventions) either as a subsumption lattice or as a default inheritance hierarchy. This
notion replaces older linguistic notions of sets of unconnected redundancy rules. The
generalisation hierarchy and the explicitly structured lexicon distinguish this approach
from previous notions of stratification or ranking (Halliday 1966-68; Lamb 1966), and
relate it to Word Grammar (Hudson 1984) and Mel’cuk & Zholkovsky (1988).

Integrated Lexicon Theory is defined by the following main postulates about lexical
entries, their properties and relations; it is not possible to argue for or illustrate all of these
in detail here, though some aspects are further illustrated below.

(1) An Integrated Lexicon IL is a tuple of strata (see also Figure 1 below), each defined
as a tuple <L, P, S, M>. L is a set of abstract lexical signs or lemmata, P is a set of
paradigm variants of L, S is a set of surface interpretations of members of P and a set
M of meaning interpretations of members of P (see also Figure 2). The functions from
L into P, and from P into S and M, are expressed by attribute structures.

(2) A relation of composition C is defined over members of L such that if li and lj are in
L, then lk = C(li,lj) is in L; the relation {<lk,li>,...,<lk,lj>} is Immediate Dominance
(ID). Additional non-binary relations may be defined; in general, the co-constituency
relation C is interpreted as Dependency (e.g. Head-of). The lexical strata are special
features of the relation of composition; the relation is non simply stratal in terms of
stems, word, etc., but is also recursively defined.

(3) A set of equivalence relations F is defined over L, representing lexical fields of similar
abstract lexical signs. In general, the sets are defined by mutually exclusive properties
of abstract lexical signs, organised into attribute-value structures. Lexical markedness
relations are defined as a (partial) ordering over mutually exclusive values (a default
scale). The relations induce a hierarchy of sets of abstract lexical items, expressed as

8

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

a tree or lattice (e.g. as a type hierarchy, object hierarchy, class hierarchy, inheritance
hierarchy etc.).

(4) The form representations S (with subsets Sphon, Sorth) are modality dependent (written,
spoken, gestural, tactile etc.); phonological surface representations are defined as
prosodic or Quasi-Linear Precedence (QLP) structures by the Time Map theory of
segmental and prosodic structure (Carson-Berndsen 1993).

(5) The meaning representations are derived from lexical frame semantics (Fischer 1993).

(6) The three functions mentioned in (1) define model-theoretic interpretations on to the
semantic and phonetic domains (which are regarded as ontologically of the same
type); the first function is realised by morphology, surface syntax, etc., depending on
the stratum, the others by theories of phonetic/prosodic and semantic interpretation.

(6.1) Paradigm variation V(L,Pdet) -> Pvar. The paradigm variants are productive
inflected forms, transparent productive derived forms, and the restricted
variants of idiom entries.

(6.2) Phonetic interpretation Iphon: Pvar -> Fphon. This may of course be expressed as
Iphon: V(L,Pdet) -> M.

(6.3) Semantic interpretation Isem: Pvar -> M. This may of course be expressed as Isem:
V(L,Pdet) -> M.

In the present context, as illustrated in the microlexicon in the following Subsection,
the objects described under (1) are represented by DATR nodes, attribute paths, and the
construction of value sequences.

The relation (2) is represented by inheritance of the properties of constituents via
constituent attributes; it is generally represented by DATR global inheritance.

The lexical fields described under (3) are represented by attribute hierarchies which
define contexts of relevance for sets of properties; in typed attribute systems, these relations
would be represented by appropriateness functions.

The representations (4) are generalisations and specifications of multi-tier finite state
morphophonological structures. In a fully developed IL, they are constructed by DATR
sequence construction and inheritance as temporally parallel or serial structures (QLP
relations). The QLP relations are partially determined by the ID relations specified under (2).

The meaning representations (5), like the temporal QLP relations in phonology, are
also defined by the ID attribute frames, and in a fully developed system they constitute a
mapping on to logical form with quantification (Kamp & Rossdeutscher 1992; Pustejovsky
1991).

9

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Finally, the basic operation (cf. the discussion of Daelemans & van der Linden in
Section 1), of inheritance is used to model the functions which map lexical entries on to their
morphological paradigm variants and phonetic interpretations, and on to their logical form and
denotations.

A specific integrated lexicon theory, as a special case of the applications of the general
principles described above, is further characterised by additional constraints which, after
empirical testing, may be incorporated into general ILT.

For example, currently the composition relation C is defined such that a partition of
L into morphemes, (roots and affixes), derivates of a number of kinds, composites of a
number of kinds, and idioms is induced, with specific consequences for the other functions
and relations.

There are meaningless lexical units, i.e. units with no semantic interpretation such as
"cranberry morphs" (or indeed members of the phonematic segment and prosody inventories)
which are outside the domain of Isem. The general theory allows the option of phonetically
zero units in specific theories; these would be outside the domain of Iphon.

The paradigm determinants include grammatical inflectional categories and productive
derivational types; in addition, idioms are defined by a "frozenness" property which allows
restricted syntactic variation; this is treated by analogy to paradigm variation in morphology.

Lexical fields will be very specific to given languages and language families, and vary
strongly along the lines defined in universal linguistic typology, but general properties can
be defined for general IL theory; similarities in Iphon at the relevant levels of granularity
defined by C, for instance, lead to morphological types such as inflectional, agglutinative, or
tonal inflexion.

For the definition of ad hoc formations and neologisms it is important that IL theory
should define the notion of a lexical entry as an actual word, stem, etc., i.e. an inventarised,
familiar lexical item, as against the notion of a general category containing potential words,
i.e. regular formations which are not inventarised but which are induced by generalisations
over lexical fields. It is also important that the notion of transparent, compositional
interpretation (both phonological and semantic) at some granularity level defined by C is
defined in terms of meaning and form as straightforward functions of the meaning and form
of constituents, as opposed to a direct, partially idiosyncratic semantic or phonetic
interpretation of the item concerned.

Constraints on possible IL theories in DATR include the partition of the node set into
lemma and generalisation nodes, the requirement that the inheritance graph be a connected
graph such as a subsumption lattice (if defaults are not used), and the explicit definition of
a restricted set of "sensible queries" to an IL (currently excluding default overrides, additional
"query default garbage", queries to generalisation nodes). Constraints such as these are
embedded in the microlexicon described in the following Subsection.

10

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

The lexical strata, and their interpretations and generalisations, will not be argued here
(cf. Gibbon 1981, 1985 on lexical strata, 1992a on lexical ID structure; Selkirk 1984,
Bleiching 1992 for relevant aspects of the prosodic hierarchy). Figure 1 and Figure 2 describe
the strata in an ILT lexicon and the detailed structure of a given stratum. For present
purposes, the details are to be taken as general indications of the structure, not as a precise
empirical hypothesis. Each horizontal stratum and each vertical hierarchy has its own
constraints, which complicate the mapping from lexical items to their interpretations. In the
left hand column of the figure, only lexical items are listed; more general compositional items
(words, phrases, sentences, etc.), are also to be envisaged; from the lexical perspective, they
are generalisations over complex lexical items.

Lexical ID structure: Temporal QLP structure: Logical form:
compositional hierarchy prosodic hierarchy semantic hierarchy

ritual dialogue discourse prosody Situation semantics
canned text, proverbs paratone structure DRT, propositional
phrasal idioms intonation phrases semantics

compound words foot structure lexical semantics
derived stems phonological words
simplex stems (roots) (morpho-)phonotactics

affixes morphological prosody

morphophonemes feature tiers

Figure 1: Lexical strata and their interpretations

The internal architecture of an ILT lexicon stratum is shown in Figure 2; the notions
are motivated further in Gibbon (1992b). The horizontal dimension represents the integration
of representations into the ’real world’ of model-theoretic semantic and phonetic
interpretations in ’absolute’ time and space; the intermediate representations in ’relative’ time
(for phonetics) represent the abstract functions (logical and phonological form) which map
entries on to the real world. The notion of lexical category (interpretable as a knowledge base,
or as long-term storage) is atemporal.

The vertical dimension of Figure 2 represents the rank or granularity of lexical entries,
from simplex lemmata through derived and compound lemmata, to idioms (phrasal lemmata).
The paradigm variants of lemmata are an intermediate mapping on to morphological variants
(morphophonology).

11

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Domain of Domain of phonetic and
compositionality semantic interpretations

ABSTRACT CATEGORIAL RELATIVE TIME ABSOLUTE TIME TYPE
REPRESENTATION INTERPRETATION INTERPRETATION

DISTRIBUTION IN
HIGHER STRATA

Relative semantic
representation (e.g.
logical form, frame)

UTTERANCE CONTEXT

Abstract Lexical Token denotation
Lexical Paradigm
Sign Variant C-R R-A Utterance token

mapping mapping

Relative phonetic
representation (e.g.
prosodic lattice)

CONSTITUENTS

Figure 2: Internal architecture of a lexical stratum.

2.3 A microlexicon illustration of integrated lexical knowledge representation

This elementary microlexicon illustrates a minimal application of Integrated Lexicon Theory,
covering a very rudimentary compositional lexical semantics and a very rudimentary
compositional orthography and phonology. Linguistically adequate applications have been
referred to in Section 1 above; a simple theory is a adequate for present purposes. In addition
to their descriptive lexical properties, nodes are specified for metatheoretical formal properties
within Integrated Lexicon Theory, in particular as lemmata or generalisations (in a
dependency model they can be both at the same, for which reason these properties are
specified as distinct Boolean attributes rather than alternative values of the same attribute).
The microlexion is described in the following.

12

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

DATR microlexicon following ILT conventions

(1) Abstract lemma nodes. An abstract lemma is specified only for its distinctive properties;
all transparent or predictable (shared) properties are defined at generalisation nodes. No
priority is accorded to surface or semantic features: the abstract lemma is simply an object
with properties of both types.

(1.1) Compound abstract lemma. A compound lexical entry is specified for its constituents
and other distinctive properties; to the extent that it is transparent (i.e. compositional), it
inherits its surface and semantic properties as a function (defined at the node Compound) of
its constituents (whose properties are defined individually). A transparent compound lemma
is thus ’underspecified’ in the extreme: effectively, it consists of a small set of pointers to
other objects in the lexicon. The constituents are represented as DATR global inheritance
descriptors, because their properties are in the general case totally independent of their
context, and inheritance of their properties can thus be represented as a totally modular
embedded query.

Tablecloth:
<> == Compound
<ilex lemma> == yes
<relation sem> == for covering
<modifier> == "Table:<>"
<head> == "Cloth:<>".

(1.2) Simplex abstract lemmata. The simplex lemmata inherit all but their distinctive
properties from the generalisation hierarchy, in this case the node Simplex. Their meaning is
represented in rudimentary ’genus proximum & differentia specifica’ dictionary form. Surface
properties are either orthographic, represented in the obvious way, or phonological,
represented in SAMPA computer readable phonemic notation (Wells 1989). The prosodic
feature of regular, recursively defined stress value (i.e. normal, default accent position
weighted by depth of embedding) is represented compositionally at the node Compound by
an asterisk; the number of asterisks directly represent the stress value (the more asterisks, the
greater the stress weighting).

Table:
<> == Simplex
<ilex lemma> == yes
<root sem> == horizontal surface to put things on
<root surf orth> == t a b l e
<root surf phon> == t ’eI’ b l.

13

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Cloth:
<> == Simplex
<ilex lemma> == yes
<root sem> == variety of textile
<root surf orth> == c l o t h
<root surf phon> == k l ’O’ ’T’.

(2) Generalisation hierarchy. This elementary hierarchy defines the properties inherited by
the lemma objects in various lexical fields (or contexts). At the node Simplex, the semantic
and surface properties of simplex lemmata are defined as being specified as the semantic and
surface properties of their roots (inflexional morphology is not treated in this microlexicon).
The semantic and surface properties of complex lemmata are defined compositionally (and,
for multiple compounds, recursively) as a function of the semantic and surface properties of
their modifier and head constituents. The top node in the hierarchy, the node Word, is only
specified for formal properties of ILT, with the empty value sequence as a general default
value (an elegant solution, but normally avoided for procedural reasons in practical lexica);
otherwise the node has no descriptive function in this microlexicon.

Compound:
<> == Word
<ilex generalisation> == yes
<ilex type> == compound
<surf> == "<modifier surf>" "<head surf>"
<surf phon> == * "<modifier surf phon>" "<head surf phon>"
<sem> ==

"<head sem>" "<relation sem>" "<modifier sem>".

Simplex:
<> == Word
<ilex generalisation> == yes
<ilex type> == simplex
<surf> == "<root surf>"
<sem> == "<root sem>".

Word:
<> ==
<ilex generalisation> == yes
<ilex type> == word.

14

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Some theorems (DATR extensional sentences) which may be derived from this theory
by standard DATR inference are shown below.

Tablecloth:<relation sem> = for covering.

Tablecloth:<sem> = variety of textile for covering horizontal surface to put things on.

Tablecloth:<surf orth> = t a b l e c l o t h.

Tablecloth:<surf phon> = * t eI b l k l O T.

Table:<surf orth> = t a b l e.

Table:<relation sem> = .

15

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

3 DATR syntax and semantics

The syntax for DATR was originally defined by Evans & Gazdar (1989); it is commented on
in the following subsection. Then a generalised definition will be given, followed by a Pure
Prolog data structure for DATR. Finally, an overview of models for DATR theories is given,
which may be seen as starting points for declarative semantics for DATR.

3.1 The original DATR BNF definition

The original BNF definition for DATR contains the following rules (Evans & Gazdar
1989:1f.).

<sentence> ::= <node> : <path> == <lvalue> .
| <node> : <path> = <value> .

<lvalue> ::= <latom> | (<lseq>)
<gvalue> ::= <gatom> | (<gseq>)
<value> ::= <atom> | ([seq])

<latom> ::= <desc> | <gatom>
<gatom> ::= " <desc> " | <atom>
<desc> ::= <node> | <path> | <node> : <path>

<lseq> ::= <gseq> | <lseq> <desc> <lseq>
<gseq> ::= <seq> | <gseq> " <desc> " <gseq>
<seq> ::= epsilon | <value> <seq>

<lpath> ::= ’<’ <laseq> ’>’

<path> ::= ’<’ <aseq> ’>’

<laseq> ::= epsilon | <latom> <laseq>
<aseq> ::= epsilon | <atom> <aseq>

This formulation is overly complex. The variable <gvalue>, which does not figure on
a rhs, is present for semantic reasons, and can be dispensed with in the syntax. A modified
BNF will be dicussed below.

16

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

3.2 An updated BNF syntax for DATR

A number of generalisations have been introduced into DATR syntax on the basis of
considerable experience within a fairly large community of DATR users, both individual
researchers and European and nationally funded research projects.

The following definition builds on these experiences. It introduces a simple definition
of DATR theory, and replaces the original distinction between definitional and extensional
sentences with a distinction between the definitional sentences in DATR theories and the
extensional sentences in a query language for DATR. Three generalisations pertaining to the
right hand sides of DATR equations are introduced:

(1) All DATR rhs are sequences (the old distinction between atomic rhs and sequence rhs
is dropped). The modification is due to Gibbon (1989); it leads to a simpler syntax.

(2) All DATR rhs are without parentheses; however, parentheses may optionally be used.
This innovation is due to Gazdar (cf. Moser 199a,b). The optionality preserves
downward compatibility with older DATR theories.

(3) Evaluable paths in DATR rhs are evaluated in exactly the same way as DATR rhs.
This is a recursive principle which permits rhs paths to inherit atom sequences as
subpaths, and enables function application to be represented in DATR. This
modification is due to Gibbon 1989 in the theory "register.dtr" (in Evans & Gazdar
1990). The device was extended in Moser’s formal work on DATR (1992a,b).

The notation given below includes character definitions in an extended BNF which
includes set notation, for brevity.

Theories, sentences, sentence constituents:
<theory> ::= <sentence> [<sentence>]*
<sentence> ::= <node> : [<equation>]*
<equation> ::= <lhs> == <rhs>
<lhs> ::= "<" [<atom>]* ">"
<rhs> ::= [<val_exp>]* | ([<val_exp>]*)

Inheritance expressions:
<val_exp> ::= atom | <descriptor> | " <descriptor> "
<descriptor> ::= <node> : <path> | <node> | <path>
<path> ::= "<" [<val_exp>]* ">"
<atom> ::= <atom_char> [<symbol_char>]* | ’ [<char>]* ’ | <variable>
<variable> ::= $ [<symbol_char>]*
<node> ::= <node_char> [<symbol_char>]*

17

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Characters:
<res_char> ::= : | < | > | = | (|) | " | . | ’ | \
<char> ::= char(0) | ... | char(127)
<print_char> ::= char(33) | ... | char(127) | \ <char>
<symbol_char> ::= {x | x in <print_char>} - {y | y in <res_char>}
<node_char> ::= A | ... | Z
<atom_char> ::= {x | x in <symbol_char>} - {y | y in <n_char>}

The BNF definition is primarily intended to serve as a basis for a DATR compiler. An
efficient compiler will use (among other things) a modified BNF which maximises right
recursion and uses Greibach Normal Form optimisation. However, a structurally transparent,
if not speed optimised Prolog compiler using this BNF can easily be implemented with a
Definite Clause Grammar; this technique was used in the Sussex DATR implementations by
Evans (Evans & Gazdar 1989, 1990) and in the ODE implementation (Section 5 below).

3.3 Pure Prolog data structures as a model for DATR theories

The Prolog data structures for DATR theories are straightforward. Each equation is translated
separately, together with its node and the name of the theory in which it is contained, as a
four-argument Prolog fact, under the predicate ’datr_sentence’. The argument positions are
instantiated as the name of the theory (a Prolog atom), the name of the node (also a Prolog
atom), the lhs path, represented as a Prolog list, and the rhs sequence, also represented as a
Prolog list.

The rhs elements are translated as follows: atoms are represented as Prolog atoms, and
inheritance descriptors are represented as Prolog lists, with an atomic tag for the descriptor
type in first position, and nodes and paths at subsequent positions, depending on the
descriptor concerned. Internally, the recursively evaluable rhs paths have exactly the same
syntax and translation function as the rhs itself. The translation function from DATR to
Prolog may be sketched as follows.

<sentence> ==> datr_node(<theory>,<node>,<lhs>,<rhs>).

<lhs> ==> Prolog list of atoms, perhaps empty,
e.g. [], [a], [attribute,list]

<rhs> ==> Prolog list of <descriptor> expressions, perhaps empty,
e.g. [], [a], [aa,bb], etc.

<descriptor> ==> expression of one of the following types,
corresponding to each of the 7 DATR inference rules as a
Prolog atom or a tagged list:

18

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(1) <atom>
(2) [lnp,<node>,<path>] for local node-path
(3) [ln,<node>] for local node
(4) [lp,<path>] for local path
(5) [gnp,<node>,<path>] for global node-path
(6) [gn,<node>] for global node
(7) [gp,<path>] for global path

<node> == <atom>

<atom> ==> Prolog atomic symbol

<path> == <rhs>

Detailed illustrations of the DATR to Prolog translation function, using the
microlexicon of Section 2, are shown below.

Tablecloth:
<> == Compound
<ilex lemma> == yes
<relation sem> == for covering
<modifier> == "Table:<>"
<head> == "Cloth:<>".

datr_sentence(microlex,’Tablecloth’,[ilex,lemma],[yes]).
datr_sentence(microlex,’Tablecloth’,[relation,sem],[for,covering]).
datr_sentence(microlex,’Tablecloth’,[modifier],[[gnp,’Table’,[]]]).
datr_sentence(microlex,’Tablecloth’,[head],[[gnp,’Cloth’,[]]]).
datr_sentence(microlex,’Tablecloth’,[],[[ln,’Compound’]]).

Table:
<> == Simplex
<ilex lemma> == yes
<root sem> == horizontal surface to put things on
<root surf orth> == t a b l e
<root surf phon> == t ’eI’ b l.

datr_sentence(microlex,’Table’,[ilex,lemma],[yes]).
datr_sentence(microlex,’Table’,[root,sem],[horizontal,surface,to,put,things,on]).
datr_sentence(microlex,’Table’,[root,surf,orth],[t,a,b,l,e]).
datr_sentence(microlex,’Table’,[root,surf,phon],[t,’eI’,b,l]).
datr_sentence(microlex,’Table’,[],[[ln,’Simplex’]]).

19

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Cloth:
<> == Simplex
<ilex lemma> == yes
<root sem> == variety of textile
<root surf orth> == c l o t h
<root surf phon> == k l ’O’ ’T’.

datr_sentence(microlex,’Cloth’,[ilex,lemma],[yes]).
datr_sentence(microlex,’Cloth’,[root,sem],[variety,of,textile]).
datr_sentence(microlex,’Cloth’,[root,surf,orth],[c,l,o,t,h]).
datr_sentence(microlex,’Cloth’,[root,surf,phon],[k,l,’O’,’T’]).
datr_sentence(microlex,’Cloth’,[],[[ln,’Simplex’]]).

Compound:
<> == Word
<ilex generalisation> == yes
<ilex type> == compound
<surf> == "<modifier surf>" "<head surf>"
<surf phon> == * "<modifier surf phon>" "<head surf phon>"
<sem> ==

"<head sem>" "<relation sem>" "<modifier sem>".

datr_sentence(microlex,’Compound’,[ilex,generalisation],[yes]).
datr_sentence(microlex,’Compound’,[ilex,type],[compound]).
datr_sentence(microlex,’Compound’,[sem],

[[gp,[head,sem]],[gp,[relation,sem]],[gp,[modifier,sem]]]).
datr_sentence(microlex,’Compound’,[surf,phon],

[’*’,[gp,[modifier,surf,phon]],[gp,[head,surf,phon]]]).
datr_sentence(microlex,’Compound’,[surf],[[gp,[modifier,surf]],[gp,[head,surf]]]).
datr_sentence(microlex,’Compound’,[],[[ln,’Word’]]).

Simplex:
<> == Word
<ilex generalisation> == yes
<ilex type> == simplex
<surf> == "<root surf>"
<sem> == "<root sem>".

datr_sentence(microlex,’Simplex’,[ilex,generalisation],[yes]).
datr_sentence(microlex,’Simplex’,[ilex,type],[simplex]).
datr_sentence(microlex,’Simplex’,[surf],[[gp,[root,surf]]]).
datr_sentence(microlex,’Simplex’,[sem],[[gp,[root,sem]]]).
datr_sentence(microlex,’Simplex’,[],[[ln,’Word’]]).

20

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Word:
<> ==
<ilex generalisation> == yes
<ilex type> == word.

datr_sentence(microlex,’Word’,[ilex,generalisation],[yes]).
datr_sentence(microlex,’Word’,[ilex,type],[word]).
datr_sentence(microlex,’Word’,[],[]).

A theory-specific query function for DATR queries may be defined:

microlex(Node,Path,Value) :- datr(microlex,Node,Path,Value).

3.4 Aspects of DATR semantics: other models for DATR theories

This section is taken from Langer & Gibbon (1992). It summarises different formal models,
perspectives and metaphors which have been used as the basis of modelling conventions for
DATR, each of which has its own specific heuristic value for a given domain-specific
modelling task.

(1) In Evans & Gazdar (1989) DATR is given a procedural semantics in terms of
inference systems, involving concepts such as ’theorem’, ’rule of inference’.

(2) Evans & Gazdar (1989) define an explicit denotational semantics for DATR. The
denotational semantics of a subset of DATR is defined with respect to automata
theory. On this basis, Evans and Gazdar construct a finite state transducer model that
mimics the structure and function of a DATR theory; the transducer interpretation of
DATR has been used to model linear phenomena in phonology, morphology-
phonology mappings, and access relations for bottom-up access to ILEX lexica.

(3) The operational semantics for the DATR-to-PROLOG compiler code published in
Evans & Gazdar (1989, 1990) is based on their procedural semantics, and the object
code is based on a generalisation of the automata theoretic model applied to Prolog.

(4) The use of DATR to express function composition was introduced in Gibbon (1989)
and has been elaborated by Moser (1992a).

(5) Langer (1992) provides a formal reconstruction of a subset of DATR as an instance
of a more general constraint-based framework. Under this interpretation DATR is
regarded as a system of partial functions mapping (typed) feature structures onto
(typed) feature structures using a version of default unification as the only operation.

21

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(6) DATR can be used as a frame language with defaults.

(7) The most frequent metaphor applied to DATR views it as a special form of traditional
inheritance network, with or without defaults.

(8) DATR can be regarded as a graph description language under a specific interpretation
for directed cyclic and acyclic graphs.

(9) Reconstructions of known formal languages and systems in DATR include: Boolean
and many-valued logics, automata and transducers, formal languages up to
deterministic indexed languages, shift-register operations, simulation of shift-reduce
and ’non-deterministic’ top-down search with backtracking, multiple inheritance
systems (see the collection of formal DATR theories in Evans & Gazdar 1989, 1990;
also Moser 1992a).

(10) DATR has been used to provide a representation and interpretation for autosegmental
phonological and morphological graphs (Gibbon 1990; Cahill 1993)

(11) DATR has been used as a compact lexical metalanguage for defining PATR-II
syntactic feature structures as lexical information (Kilbury et al. 1991)

(12) DATR has been most widely applied to the lexical representation of feature structures
in path notation, using inheritance hierarchies as implicit type definitions (Reinhard
& Gibbon 1991; Gibbon 1992a), or with explicit definition of lexical type constraints
(Moser 1992b).

These results suggest that existing linguistic and logical theories of the lexicon,
whether in phonology, morphology, syntax, semantics or pragmatics, can a fortiori be
adequately modelled in the DATR formalism. This claim will not be pursued further at this
point, however.

22

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

4 Query languages for integrated lexion theories in DATR

There is no formal definition for the standard DATR query language and standard DATR
queries are somewhat implementation dependent. There are two main types of query, the basic
query and the "theorem dump" query; the original Evans & Gazdar basic query language has
a special status as the core of all DATR inference, and will be referred to simply as DQL,
DATR Query Language.

4.1 The basic DATR Query Language: DQL

The basic DATR query language, which will be called DQL, defines an elementary query as
a node-path pair (called a "root" by Evans & Gazdar 1989). For instance, for the specimen
theorems given for the microlexicon in the preceding section, the queries are the following:

Tablecloth:<relation sem>
Tablecloth:<sem>
Tablecloth:<surf orth>
Tablecloth:<surf phon>
Table:<surf orth>
Table:<relation sem>

The following is an extended BNF syntax for DQL.

<query> ::= <node> : "<" [<atom>]* ">"

<node> ::= <uc_char> [<non_res_char>]*

<atom> ::= <a_char> [<non_res_char>]* | ’ [<nq_char>]* ’

<uc_char> ::= A | ... | Z

The definitions of <a_char> and <non_res_char> are somewhat implementation specific;
<nq_char> is any character except the single quote. Some implementations use a backslash
escape character to permit atoms to start with capitals or reserved characters to occur in nodes
and atoms. Atom and node delimiters are white space characters (which are not represented
here), or reserved symbols.

23

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Standard DATR inference semantics specifies the following operations:

i. A theory, a query, and two evaluation environment variables. The variables range over
roots, i.e. pairs of a node and an atom path, and constitute the global or initial
environment, and the local environment.

ii. Initialisation of both environments to the same root.

iii. Requirement that the local query root connect with a sentence (a node-equation pair)
in the DATR theory such that:

- the sentence node and the local root node are identical;

- an lhs path at this node is a prefix of the local root path, and there is no such
lhs path which is longer.

iv. Identification of the extension suffix of the local root query with which the connecting
lhs concatenates to yield the local root query path.

v. Evaluation of the sequence of rhs expressions (atoms or inheritance descriptors) in the
connected equation.

vi. Recursive application of the extension rule and the seven inference rules to each rhs
expression:

- the extension rule extends paths at all depths of embedding in the rhs by the
same extension suffix, derived from the local-root-to-lhs connect relation;

- the seven inference rules apply: atoms evaluate to themselves, nodes substitute
for nodes in the corresponding environments (local nodes for local nodes,
global nodes for both global and local nodes - see ii above), and (extended)
paths evaluate recursively to atom paths which substitute for root paths in the
corresponding environments (local paths for local root paths, global paths for
both global and local root paths - as with nodes).

Some implementations provide a structured trace of inference rule application (PCS-
DATR, Gibbon 1989; DDATR, Gibbon, described in Gibbon & Ahoua 1991; QDATR,
Kilbury, ca. 1991; the Open DATR Engine, ODE, described in this paper).

Langer (1992) has generalised the notion of a DATR query by reconstructing DATR
within a general constraint formalism. The query is defined as an axiom and its consistency
with the axioms of the theory, also formalised as attribute-value structures, is checked in
terms of an appropriate domain selector and a default unification operator. This approach
provided the starting point for the definition of the constraint-based Extended DATR Query
Language EDQL (Section 4.4 below).

24

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

4.2 Pure Prolog semantics for DQL: "MINIDATR"

The formal procedural semantics for DATR is generally formulated in terms of general
substitution rules for inheritance descriptors in the two (global and local) DATR evaluation
environments. However, previous descriptions have not been fully explicit in this respect; one
consequence of this has been that implementations have not always been correct.

Rather than complete existing descriptions of DATR formal semantics, a different
approach is taken here: the inference procedure described above is formulated in Pure Prolog,
augmented with two additional assumptions:

i. Equations in the DATR knowledge base are pre-sorted into the required ’longest path
first’ order; this reduces the connect operation over the knowledge base to a simple
linear search for the first match.

ii. The "cut" operator is used to terminate linear search after the first match is found and,
since rules are exhaustively defined for all cases of DATR inheritance descriptors, also
to terminate search for further rule applications when one application has been found.

These are not necessary conditions, but they allow attention to be focussed on the
more central issue of operations over DATR evaluation environments. The inference
procedure is defined in the following way.

(1) Definition of DATR query structure. A query is represented by an operation ’datr’ on a
quadruple: a theory, and three terms representing a DATR extensional sentence with a node,
an atomic path, and an unspecified value. Given this structure, the connect operation is
performed, with the global and local environments instantiated to the query node and path.
The query is interpreted as a constraint on the inference closure of the DATR theory.

datr(Theory,Node,Path,Value) :-
atomic(Theory),
atomic(Node),
nonvar(Path),
atompath(Path),
datr_connect(Theory,Node,Path,Node,Path,Value).

atompath([]) :- !.
atompath([First|Rest]) :-
atomic(First),
atompath(Rest).

25

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(2) Connect operation. The connect operation on query and theory is represented by the
’datr_connect’ predicate. The theory is defined by a four-place predicate ’datr_sentence’, the
first argument of which is the theory name; the other three arguments represent the node, lhs
and rhs of DATR equations. Linear search through the theory for an appropriate node-path
pair is performed by the ’append’ predicate with Prefix instantiated from the theory lhs and
the Result instantiated from the local environment path; a successful append operation not
only defines the connect operation, but also yields the extension suffix for DATR inheritance;
a cut is used to ensure that this is a unique choice. The rhs of the connected DATR equation
is then evaluated.

datr_connect(Theory,Gnode,Gpath,Lnode,Lpath,Value):-
datr_sentence(Theory,Lnode,Prefix,Rhs),
append(Prefix,Suffix,Lpath),!,
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Rhs,Value).

(3) Equation rhs evaluation. The rhs of a DATR equation is a flat sequence (possibly empty
or singleton) of value expressions, either atomic or inheritance descriptors, which evaluates
to a flat sequence of atoms. Standard tail-recursive evaluation is used here for evaluating the
value expressions one by one, and the ’append’ operation is used as a constructor for
concatenating the results of individual evaluations. The first clause evaluates the empty
sequence (the base of the recursive definition) to an empty sequence, and the second evaluates
the first value expression of a non-empty sequence, and concatenates the result of evaluation
to the result of evaluating the rest of the sequence. Evaluation is performed by the seven
DATR inference rules.

datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[],[]).
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[First|Rest],Value) :-
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,First,First_value),
append(First_value,Rest_value,Value),!,
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Rest,Rest_value).

(4) Inference rules. There are seven inference rules in DATR recursive inference: one (the
base of the recursive definition) for atoms, which evaluate to themselves; a set of three
recursive inference rules for operations on the local environment; and a set of three recursive
inference rules for operations on the global environment. The three types of inference rule for
operations on local and global environments define substitutions in these environments; they
correspond to the three kinds of inheritance descriptor: node-path pairs, nodes, and paths,
where the paths are recursively evaluable in exactly the same way as the rhs of an equation.
Nodes evaluate to themselves and substitute for the corresponding node, paths evaluate to
atomic paths, are extended by the extension suffix given by the connect operation, and
substitute for the path in the corresponding environment or environments. Local substitutions
affect the local environment only, while global substitutions affect the global and the local
environment. Path suffix extension is represented by the append operation.

26

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(4.1) DATR Inference Rule 1. If the expression is atomic, it evaluates to itself.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Expr,[Expr]) :-
atomic(Expr).

(4.2) DATR Inference Rule 2. If the expression is a local node-path inheritance descriptor,
then evaluate the path in the current environment as if it were the rhs of an equation, extend
the result, and substitute node and path in the local environment; recursively connect the new
local environment to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[lnp,Node,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Node,Extension,Value).

(4.3) DATR Inference Rule 3. If the expression is a local node inheritance descriptor, then
substitute the node in the local environment; recursively connect the new local environment
to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[ln,Node],Value) :-
append(Prefix,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Node,Extension,Value).

(4.4) DATR Inference Rule 4. If the expression is a local path inheritance descriptor, then
evaluate the path in the current environment as if it were the rhs of an equation, extend the
result, and substitute the path in the local environment; recursively connect the new local
environment to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[lp,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Lnode,Extension,Value).

(4.5) DATR Inference Rule 5. If the expression is a global node-path inheritance descriptor,
then evaluate the path in the current environment as if it were the rhs of an equation, extend
the result, and substitute node and path in the global and local environments; recursively
connect the new local environment to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gnp,Node,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Node,Extension,Node,Extension,Value).

27

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(4.6) DATR Inference Rule 6. If the expression is a global node inheritance descriptor, then
substitute the node in the global and local environments; recursively connect the new local
environment to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gn,Node],Value) :-
append(Gpath,Suffix,Extension),
datr_connect(Theory,Node,Extension,Node,Extension,Value).

(4.7) DATR Inference Rule 7. If the expression is a global node-path inheritance descriptor,
then evaluate the path in the current environment as if it were the rhs of an equation, extend
the result and substitute in the global and local environment; recursively connect the new
local environment to the theory.

datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gp,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Extension,Gnode,Extension,Value).

This inference engine is derived from the PCS-DATR (Gibbon 1989) and DDATR
(Gibbon & Ahoua 1991) inference engines originally defined in the LISP dialect Scheme. It
differs from previous Prolog implementations in that it abstracts over all DATR objects,
including nodes, keeping all components of the data structure as Prolog terms, rather than
asserting nodes as Prolog predicates.

This purely relational definition of DATR inference semantics in Pure Prolog permits,
in an intuitively evident fashion (given Prolog inference semantics), the generalisation of
DATR inference to a ’non-deterministic DATR’ with disjunction (by the simple expedient of
removing the cuts). This generalisation in principle defines all possible defaults and their
overrides, and suggests a number of potentially powerful applications for matching in ’sloppy
acquisition’ and ’sloppy matching’ of lexical knowledge.

The Pure Prolog definition also permits, again in an intuitively evident fashion (given
Prolog inference semantics), DATR reverse queries. This claim must be taken cum grano
salis, however: Prolog semantics will not cope with certain kinds of relatively benevolent
circularities, such as left recursions, and empty rhs sequences result in an explosion of the
search space. There are also circularities which would perhaps be soluble by defining a
pumping lemma for DATR and applying it to a given DATR theory in order to limit the
number of inference steps in a circular inference.

More efficient operations, which do not make use of the ’append’ operation, can be
used in practical applications; in standard DQL deterministic inference, however, this
potentially inefficient operation is harmless. In a generalised reverse query search context, this
would not be the case.

28

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

4.3 Augmented DQL: ADQL

In Evans & Gazdar (1990), a number of augmentations of DQL were suggested; these are
somewhat heterogeneous in character, and are not properly described as a query language.
They will, however, be referred to for convenience as ADQL. The main techniques are:

- question mark value variables;

- theorem dumps with "hide" and "show" declarations;

- on the fly nodes.

In ADQL, queries are no longer roots, but extensional sentences with unspecified
values; unspecified values may be explicitly indicated by question marks:

Tablecloth:<relation sem> = ?
Tablecloth:<sem> = ?
Tablecloth:<surf orth> = ?
Tablecloth:<surf phon> = ?
Table:<surf orth> = ?
Table:<relation sem> = ?

The definition of EDQL given in the next Subsection takes this up, generalising the question
mark notation to a notation for variables (an atomic character string prefixed by the question-
mark character, as with DATR variables).

A theorem dump query is the iterative application of elementary queries to a finite set
of roots defined in the following way:

i. The environment variable for the initial query root node ranges over all nodes in the theory
except those defined in a "hide" declaration.

ii. The environment variable for the initial query root path ranges over all paths defined in
a "show" declaration.

The concept of "on the fly nodes" is mentioned in passing in the 1990 Evans &
Gazdar collection; these are queries in the form of a set of equations with the same node,
including a standard DATR query equation. The equations constitute a context for initial
queries, over and above information contained in the lexicon. In principle, this approach
appears to be related to the EDQL concept outlined below.

29

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

4.4 A new extended DATR query language: EDQL

Starting from these basic ideas, a more explicit and general query language will be defined
here; it will be called Extended DATR Query Language, EDQL. Sentence in the standard
language, DQL, are allowed substructures of expressions of EDQL. The query language
EDQL in its current specification and in the ODE implementation (see Section 5 below) has
the following syntax in EBNF notation.

<query> ::= <constraint> <constraints>

<constraints> ::= . | , <query>

<constraint> ::= <operator> (<theory> , <sentence>)

<operator> ::= foreach | if | ifnot | then | select | license | ban | map
| filemap | tracemap | filetracemap | closure | fileclosure

<theory> ::= <atom>

<sentence> ::= <node_exp> : <lhs_exp> = <rhs_exp>

<node_exp> ::= <node> | <variable>

<lhs_exp> ::= "<" <atomic_exp> ">" | <variable>

<rhs_exp> ::= (<atomic_exp>) | <variable>

<atomic_exp> ::= <atom_exp>* <tail_exp>

<atom_exp> ::= <atom> | <variable>

<tail_exp> ::= epsilon | <atom_exp> "|" <atom_exp>

<variable> ::= ? <non_res_char>* | $ <non_res_char>*

The salient features of EDQL are as follows:

i. The elementary expressions are binary constraint operators over sets of DATR
sentences: there are four main operators, "foreach", "if", "ifnot", "then", with
procedurally flavoured synonyms "select", "licence", "ban", "map". The first operand
is a DATR theory name (for a set of definitional sentences); the second operand a
singleton set consisting of a (possibly generalised) DATR extensional sentence. A

30

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

generalised DATR sentence permits variables over node, lhs, rhs, atoms, lhs path tails
and rhs sequence tails. The result of the operation is a (possibly empty) set of DATR
theorems (extensional sentences).

ii. Conjunctions of elementary constraint expressions are permitted.

An example of an expression in EDQL, given the microlexicon DATR theory
introduced in Section 2, called ’microlex’, is the following, which defines a mapping from
an orthographic representation "t a b l e" to the phonological and semantic representations for
this node. The query and its response demonstrate two central tasks in speech technology
applications: grapheme-phoneme mapping, and grapheme-meaning mapping. The same
inference is immediately available for the phoneme-grapheme and phoneme-meaning
mappings. The operations, taken together, have something of the character of a production
rule system, but differ from the latter in being most plausibly interpreted in set-theoretic
terms.

foreach(microlex, ?node: ?path = ?value),

if(microlex, ?node: <surf orth> = (t|tailvariable)),

if(microlex, ?node: <ilex lemma> = (yes)),

ifnot(microlex, ?node: <ilex type> = (phrasal)),

then(microlex, ?node:<surf phon> = ?value_1),

then(microlex, ?node:<sem> = ?value_2).

The procedurally flavoured version is as follows (with the dollar character borrowed from
DATR variable notation).

select(microlex, $node: $path = $value),

license(microlex, $node: <surf orth> = (t|tailvariable)),

license(microlex, $node: <ilex lemma> = (yes)),

ban(microlex, $node: <ilex type> = (phrasal)),

map(microlex, $node:<surf phon> = $value_1),

map(microlex, $node:<sem> = $value_2).

31

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Clearly, the query language can be improved by relating it more closely to first order
predicate logic; the procedurally flavoured synonyms are perhaps more appropriate in this
version.

The theorem set defined by this complex constraint for the ’microlex’ theory is as
follows.

Table:<surf phon> = t eI b l.

Table:<sem> = horizontal surface to put things on.

Tablecloth:<surf phon> = * t eI b l k l O T.

Tablecloth:<sem> = variety of textile for covering horizontal surface to
put things on.

The query is a constraint on the inference (or inheritance) closure icl(T) of the DATR theory.
Inference closure is the rule closure of the path closure, rcl(pcl(T)) (cf. Evans & Gazdar
1989:5) of the ’microlex’ theory, and defines a subset of theorems with the following
properties.

(1) The node in each of the theorems has a mapping via <surf orth> on to the
orthographic representation, which begins with a ’t’. In other words, variables are used
to represent underspecified input, and the EDQL engine is used to predict the rest of
the word on the basis of top-down lexical information.

(2) The node in each of the theorems has the property of being an <ilex lemma>.

(3) The lemma is not phrasal (this condition is vacuous in the ’microlex’ theory).

(4) For each such node, its <surf phon> value is generated.

(5) For each such node, its <sem> value is also generated.

The definition of EDQL semantics is straightforward. It has a simple set-theoretic
characterisation as operations on DATR theorem sets. An informal description of the
operations is as follows.

i. foreach/select: definition of a subdomain of the inheritance closure of the DATR
theory argument which is consistent with the sentence argument; in general, the
sentence will be specified wholly or partially with variables. In the sentence, any node
or a variable over all nodes may be specified; similarly, any permissible query path
with or without variables may be specified.

ii. if/license: within this subdomain, include only items defined by the sentence argument;

32

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

in general, the constraint will be specified wholly or partially with instantiations.

iii. ifnot/ban: within this subdomain, exclude any items which are compatible with the
sentence; in general, the constraint will be specified wholly or partially with
instantations.

iv. then/map: output theorems compatible with the foreach/select, if/license and then/ban
constraints.

It is the conjunction of constraints of this kind which permit the flexible querying of
DATR theories. Query macros which abbreviate standard, frequently used constraint
combinations are defined as extensions to the query language. At the present stage of
development, for practical reasons the node domain is restricted by requiring the <ilex
lemma> specification, and the set of possible query contexts (attribute paths) is predefined
in the theory as lhs paths of equations under a node "Context". These paths are the "sensible
queries" referred to in Sections 2 above and 5 below.

To a limited extent, EDQL allows the emulation of unification and default unification
operations. Provided that appropriate default-free modelling conventions are adhered to, and
the inheritance hierarchy is used to represent a type subsumption hierarchy, a highly general
inference engine for DATR emulations of typed feature structures such as those described by
Pollard & Sag (1987), Krieger & Nerbonne (1992), Riehemann (1993), may also be realised
on EDQL lines using the Pure Prolog engine. This claim is more than a conjecture, as shown
by the examples; however, it will not be pursued further at this point.

33

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

5 The Open DATR Engine: ODE

A prototype implementation of the DATR-Prolog mapping as a DATR compiler, and a
prototype implementation of the EDQL query language and inference theory as an operational
EDQL engine has been made by the author. The implementation language is Sicstus Prolog;
applications are run in compiled Sicstus Prolog. The inference engine is open, in the sense
that new constraint functions can be freely defined by a user, and linked into the existing
engine; for this reason, the complete implementation is named ODE (for "Open DATR
Engine"), with the two components ODEC (ODE Compiler) and ODEQ (ODE Query engine).

The implementation is provided with a UNIX shell script interface for easy linking of
additional Prolog files. Detailed user documentation is in preparation.

5.1 The ODEC compiler and the ODEQ inference engine

The facilities provided by ODEC include the flagging of syntax errors and the
production of a set of files in different formats for debugging and development purposes: a
normalised character string for tokenisation and parsing; a token representation in standard
Prolog notation with syntactic sugar list notation; a canonical "guaranteed read back"
representation in dot list notation and quoted atoms; a decompiled version into simple DATR
sentences (node-equation pairs) and a decompiled version into complex DATR sentences
(node-equation set pairs).

The canonical Prolog notation is sorted into ’longest path first’ order in order to
support efficient inference by reducing run-time search. The sort operation is a simplification
of the PCS-DATR and DDATR sort operations in Scheme, in which the correct sort order
was given by the following function over the Scheme list representation:

(reverse (sort! (copy equations)))

The simplified version is a straightforward alphabetic sort of the canonical Prolog text
representation; currently the GNU sort function, which handles lines of arbitrary length, is
used for fast and simple sorting. The alphabetic sort gives correct results because of the
fortunate coincidence that a longer lhs in a DATR equation has a space (ASCII 32) where the
shorter lhs has a right parenthesis (ASCII 42).

The facilities provided by the ODEQ inference engine are currently very simple. The

34

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

main feature is the provision of a detailed trace concept modelled on the trace concept of the
PCS-DATR and DDATR implementations, with additional visual representation of depth of
inheritance and parametrised inheritance, and tracking of evaluation of DATR rhs sequences.
There is also an option of output to a theorem dump file. The trace instrumentation which
reflects inference flow is also used included to trap some (though not all) cases of circularity
in the DATR theory, or inherent in the Prolog semantics of the ODE engine.

Implementation of the constraint system is based on the notion of "sensible query":
this is a query over lemma nodes only, with a pre-defined set of query paths. The latter are
currently defined at a DATR node called "Context" (see following Subsection); it may be
regarded as dominating the entire inheritance hierarchy. Their values are not consulted, and
can be left empty. Further types of sensible query are planned.

5.2 Application to an integrated lexicon

A brief illustration of the application of ODE to the microlexicon discussed in the earlier
sections of this report is given in the following section.

The following small set of query contexts are defined for "sensible queries" to the
"microlex" theory; the Context node replaces the "hide/show" declarations of Sussex DATR.

Context:
<sem> ==
<surf phon> ==
<surf orth> == .

A number of different queries are illustrated below, to cover the basic kinds of mapping
which are relevant in, for instance, spoken language recognition and generation lexica, and
in lexicographic development.

(1) With the query
foreach(microlex,?node:?lhs=?rhs),
then(microlex,?node:?lhs=?rhs).

or select(microlex,$node:$lhs=$rhs),
map(microlex,$node:$lhs=$rhs).

the ODEQ inference engine defines the following theorem set:

Cloth:<sem> = variety of textile. % microlex theorem

35

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Cloth:<surf orth> = c l o t h. % microlex theorem
Cloth:<surf phon> = k l O T. % microlex theorem
Table:<sem> = horizontal surface to put things on. % microlex theorem
Table:<surf orth> = t a b l e. % microlex theorem
Table:<surf phon> = t eI b l. % microlex theorem
Tablecloth:<sem> = variety of textile for covering horizontal surface to put things on.

% microlex theorem
Tablecloth:<surf orth> = t a b l e c l o t h. % microlex theorem
Tablecloth:<surf phon> = * t eI b l k l O T. % microlex theorem

(2) With the query
foreach(microlex, ?node:?lhs=?rhs),
ifnot(microlex, Cloth:?lhs=?rhs),
then(microlex, ?node:?lhs=?rhs).

or select(microlex, $node:$lhs=$rhs),
ban(microlex, Cloth:$lhs=$rhs),
map(microlex, $node:$lhs=$rhs).

the ODEQ inference engine generates the following theorem set:

Table:<sem> = horizontal surface to put things on. % microlex theorem
Table:<surf orth> = t a b l e. % microlex theorem
Table:<surf phon> = t eI b l. % microlex theorem
Tablecloth:<sem> = variety of textile for covering horizontal surface to put things on.

% microlex theorem
Tablecloth:<surf orth> = t a b l e c l o t h. % microlex theorem
Tablecloth:<surf phon> = * t eI b l k l O T. % microlex theorem

(3) The query for all theorems beginning with "t" but without phonological representations
foreach(microlex, ?node:?lhs=?rhs),
if(microlex, ?node:?lhs=(t|predict)),
ifnot(microlex, ?node:<surf phon>=?rhs),
then(microlex, ?node:?lhs=?rhs).

or select(microlex, $node:$lhs=$rhs),
license(microlex, $node:$lhs=(t|predict)),
ban(microlex, $node:<surf phon>=$rhs),
map(microlex, $node:$lhs=$rhs).

yields the two theorems

Table:<surf orth> = t a b l e. % microlex theorem
Tablecloth:<surf orth> = t a b l e c l o t h. % microlex theorem

36

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(4) With the query
tracemap(microlex,Tablecloth:<surf phon>=$rhs).

the ODE implementation defines the following inference trace:

"Tablecloth:<surf orth>"-Tablecloth:<>^<surf orth>=Compound.
[1,0,1] -> Compound: ... ^ <surf orth> by III

"Tablecloth:<surf orth>"-Compound:<surf>^<orth>="<modifier surf>" "<head surf>".
[2,0,1] -> "<modifier surf>" ^ <orth> by VII
[2,1,1] -> modifier by I
[2,1,2] -> surf by I

"Tablecloth:<modifier surf orth>"-Tablecloth:<modifier>^<surf orth>="Table:<>".
[3,0,1] -> "Table:<>" ^ <surf orth> by V

"Table:<surf orth>"-Table:<> ^ <surf orth>=Simplex.
[4,0,1] -> Simplex:<> ^ <surf orth> by III

"Table:<surf orth>"-Simplex:<surf>^<orth>="<root surf>".
[5,0,1] -> "<root surf>" ^ <orth> by VII
[5,1,1] -> root by I
[5,1,2] -> surf by I

"Table:<root surf orth>"-Table:<root surf orth>^<>=t a b l e.
[6,0,1] -> t by I
[6,0,2] -> a by I
[6,0,3] -> b by I
[6,0,4] -> l by I
[6,0,5] -> e by I

[2,0,2] -> "<head surf>" ^ <orth> by VII
[2,1,1] -> head by I
[2,1,2] -> surf by I

"Tablecloth:<head surf orth>"-Tablecloth:<head>^<surf orth>="Cloth:<>".
[3,0,1] -> "Cloth:<>" ^ <surf orth> by V

"Cloth:<surf orth>"-Cloth:<>^<surf orth>=Simplex.
[4,0,1] -> Simplex:<> ^ <surf orth> by III

"Cloth:<surf orth>"-Simplex:<surf>^<orth>="<root surf>".
[5,0,1] -> "<root surf>" ^ <orth> by VII
[5,1,1] -> root by I
[5,1,2] -> surf by I

"Cloth:<root surf orth>"-Cloth:<root surf orth>^<>=c l o t h.
[6,0,1] -> c by I
[6,0,2] -> l by I
[6,0,3] -> o by I
[6,0,4] -> t by I
[6,0,5] -> h by I

Tablecloth:<surf orth> = t a b l e c l o t h. % microlex theorem

37

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

The trace shows the global environment (in double quotes) and the local environment,
with the extension path suffix, and gives the Roman number of the inference rule to be
applied.

In addition, the trace instrumentation records the depth of inheritance and parametrised
path embedding, and the position in the equation rhs of the descriptor under evaluation.
Indentation corresponds to the sum of inheritance and path recursions. Further improvements
to EDQL are planned in order to make the logic of the queries more transparent, and to
facilitate interfacing with other systems.

38

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

6 Conclusion

The basic requirement for a flexible lexicon engine in a spoken language system development
environment was examined. Experience with DATR and DQL (DATR query language,
standard DATR queries) in formal lexicology with the integration of morphological, prosodic
and semantic information, suggested that the extension of DATR and DQL could be profitable
in this application.

The DATR language was retained as the basic Lexical Knowledge Representation
language, but DQL was replaced by EDQL, an extended DATR query language which permits
conjunctions of constraints from different lexical subdomains. An informal set-theoretic
semantics and a Pure Prolog inference semantics for EDQL was given; this approach provides
the basic specification for the Open DATR Engine, ODE. The ODE concept permits standard
DATR inferences, the use of standard DATR inferences as constraints on other DATR
inferences, and the definition of subdomains of the lexicon based on constraints with different
types of lexical information.

The types of inference permitted also include restricted DATR reverse query search
with a modified generate and test strategy, and an open interface to Prolog which allows the
development and incorporation of further ODE engine components, including specialised
reverse queries, and DATR theory analysis and development engines.

Future work on the Open DATR Engine concept will need to address fundamental
questions of complexity and efficient incremental solution of constraint conjunctions, and of
domain-specific limitations on the power required for an Open DATR Engine.

The ODE prototype implementation is currently being used for lexicon development
in the VERBMOBIL Sub-Project on Lexicon and Morphology (Teilprojekt 5: Lexikon und
Morphologie), Work Packages 5.1 (Corpus Analysis), 5.3 (Morphology) and 5.9 (Lexicon
Construction), and the ODE specification has been made available for the development of the
VERBMOBIL lexical database and lexicographic tools. This report constitutes Deliverable P1
for Work Package 5.3 (U Bielefeld). The system will be made available for further
distribution at a later date, after completion of tests and immediate applications.

39

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Acknowledgements

The debt to other scholars in the fields of linguistic and computational lexicology is evident
from the cited literature; the prime single debt is owed to Gerald Gazdar and Roger Evans
for their creation of DATR. More recently, the ODE concept and implementation has profited
from fundamental research and development work in the VERBMOBIL-ASL and
VERBMOBIL main phase projects, by Hagen Langer, Martina Pampel, and Doris Bleiching.
It has also benefited from discussions with Gerald Gazdar, Roger Evans, James Kilbury, Joe
Trubisz, Hans-Jürgen Eikmeyer and Guido Drexel. Doris Bleiching has tested the ODE
implementation in lexicon development, and has suggested improvements to syntax and
semantics of EDQL, to the ODEQ interpreter interface, and to the trace and filing facilties.

Fundamental contributions to the theoretical linguistic and computational foundations
for the ODE concept were made by Hagen Langer (1992; Langer & Gibbon 1992) in the
VERBMOBIL-ASL and VERBMOBIL main phase projects. These contributions include the
definition and implementation of the DELASOUL constraint engine, the reconstruction of
DATR with feature structures and default unification, a highly general solution for DATR
reverse query search, and a reduction of DATR to a DATR subset with only two inference
rules.

My gratitude is also due to the VERBMOBIL partners in TP 5 (Lexikon und
Morphologie) for helping to make possible the development of the ODE concept and its
application to integrated lexica for spoken language both intellectually and materially:
Humboldt-Universität Berlin (Prof. Jürgen Kunze, Markus Duda, Gunter Gebhardi), IBM-
Deutschland (Dr. Tibor Kiss), CAP debis Systemhaus (Ralf Kese) and Daimler-Benz Research
Laboratory, Ulm (Dr. Helmut Mangold, and Prof. Stefan Böttcher, now Ulm Polytechnic
College).

40

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

References

Andry, F., N. M. Fraser, S. McGlashan, S. Thornton, & N.J.Youd (1992). Making DATR
Work for Speech: Lexicon Compilation in SUNDIAL. Computational Linguistics 18-3,
245-268.

Bleiching, D. (1990). Das Wortfeld ’family’ als semantisches Netz. SII Thesis, U Bielefeld.
Bleiching, D. (1991). Default-Hierarchien in der deutschen Wortprosodie. ASL-TR-19-

91/UBI, U Bielefeld.
Bleiching, D. (1992). Prosodisches Wissen im Lexikon. In: Görz, G., ed., KONVENS ’92.

Berlin: Springer-Verlag, 59-68.
Boguraev, B. K. (1991). Building a lexicon: The contribution of computers. In Branimir K.

Boguraev, ed., Building a Lexicon. Special issue of International Journal of
Lexicography.

Cahill, L. (1993). Morphophonology in the lexicon. Proceedings, EACL 1993, Utrecht, 87-96.
Cahill, L. & R. Evans (1990). The TIC Lexicon. In: Evans & Gazdar 1990.
Carson-Berndsen, J. (1993). Time Map Phonology and the Projection Problem in Spoken

Language Recognition. Ph.D. thesis, U Bielefeld.
Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge Mass.
Daelemans, W. & E.-J. van der Linden (1992). Evaluation of Lexical Representation

Formalisms. ITK Research Memo 14, Institute for Language Technology and AI,
University of Tilburg, The Netherlands.

Evans, R. & G. Gazdar (1989). The DATR Papers: May 1989. Cognitive Science Research
Paper, U Sussex.

Evans, R. & G. Gazdar (1990). The DATR Papers: February 1990. Cognitive Science
Research Paper 139, U Sussex.

Fillmore, C. (1971). Types of lexical information. In Danny D. Steinberg & Leon A.
Jakobovits, eds., Semantics: An Interdisciplinary Reader in Philosophy, Linguistics and
Psychology. CUP, Cambridge.

Fischer, K. (1993). Kompositionelle Semantik im Lexikon am Beispiel der englischen
Nominalkomposita. M.A. Thesis, U Bielefeld.

Gibbon, D. (1981). Idiomaticity and functional variation. A case study of international
amateur radio talk. In Language and Society 10:21-42.

Gibbon, D. (1985). Context and variation in two-way radio discourse. In C.Ferguson, ed.
Special Issue of Discourse Processes.

Gibbon, D. (1989). PCS-DATR: A DATR implementation in PC-Scheme. English/Linguistics
Occasional Papers 4, U Bielefeld.

Gibbon, D. (1990). Prosodic Association by Template Inheritance. In W. Daelemans & G.
Gazdar, eds., Inheritance in Natural Language Processing. Institute for Language
Technology and AI, U Tilburg, the Netherlands.

41

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Gibbon, D. (1991). Lexical Signs and Lexicon Structure: Phonology and Prosody in the ASL-
Lexicon. ASL-MEMO-20-91/UBI, U Bielefeld.

Gibbon, D. (1992a). ILEX: A linguistic approach to computational lexica. In: U. Klenk (ed.),
Computatio linguae. Aufsätze zur algorithmischen und quantitativen Analyse der
Sprache, Beihefte der Zeitschrift für Dialektologie und Linguistik. Franz Steiner
Verlag, Stuttgart. S. 32-53.

Gibbon, D. (1992b). Prosody, time types, and linguistic design factors in spoken language
system architectures. In: Görz, G., ed., KONVENS ’92. Berlin: Springer-Verlag, 90-99.

Gibbon, D. & F. Ahoua (1991). DDATR: un logiciel de traitement d’héritage par défaut pour
la modélisation lexicale. In: Cahiers Ivoiriens de Recherche Linguistique (CIRL) 27,
5-59.

Gibbon, D. & H. Langer (1992). Linguistische Wortmodellierung. In: D. Reimann [ed.]:
Beiträge des ASL-Lexikonworkshops. Wandlitz, 26.-27. November 1991. ASL-TR-40-
92/ZSB. pp. 50-56.

Halliday, M.A.K. (1961). Categories of the theory of grammar. Word 17:241-292.
Halliday, M.A.K. (1966-8). Notes on transitivity and theme in English. Journal of Linguistics

2:37-81, 3:199-244, 4:179-215.
Hudson, R. (1984). Word Grammar. Blackwell, Oxford.
Kamp, H. & A. Rossdeutscher (1992). Remarks on Lexical Structure, DRS-Construction and

Lexically Driven Inferences. Arbeitspapiere des SFB 340, Nr. 21.
Katz, J. J. & P. M. Postal (1963). An Integrated Theory of Linguistic Descriptions. MIT

Press, Cambridge Mass. Ch. 1 & 2.
Kay, M. (1987). Nonconcatenative Finite-State Morphology. In Proceedings EACL 3,

Copenhagen, 2-20.
Kilbury, J., P. Naerger & I. Renz 1991: DATR as a lexical component for PATR: EACL

1991. pp.137-142.
Koskenniemi, K. (1983). Two-level Morphology: A General Computational Model for Word

Form Recognition and Production. Ph.D. thesis. University of Helsinki.
Krieger, H.-U. & J. Nerbonne (1992). Feature-based inheritance networks for computational

lexicons. In: T. Briscoe, A. Copestake & V. de Paiva [eds.]: Default Inheritance within
Unification-Based Approaches to the Lexicon. Also DFKI Research Report RR-91-31.

Lamb, S. (1966). Outline of Stratificational Grammar. Georgetown UP, Washington DC.
Langer, H. (1992). DELASOUL: Eine constraintbasierte Beschreibungssprache für

lexikalische Repräsentationen. ASL-TR-26-92/UBI. U. Bielefeld.
Langer, H. & D. Gibbon (1992). DATR as a graph representation language for ILEX speech

oriented lexica. ASL-TR-43-92/UBI, U Bielefeld.
Mel’cuk, I. & B. Zholkovsky (1988). The explanatory combinatorial dictionary. In: Evens,

M. W., ed.: Relational Models of the Lexicon. Cambridge UP, Cambridge.
Mertins, I. (1992). Lexical semantics: theories and their application to the analysis of verbs

belonging to the register of cooking. Ms., U Bielefeld.
Moser, L. (1992a). DATR paths as arguments. Technical Report CSRP 215, School of

Cognitive & Computing Sciences, University of Sussex, Brighton UK.
Moser, L. (1992b). Lexical constraints in DATR. Technical Report CSRP 216, School of

Cognitive & Computing Sciences, University of Sussex.
Pampel, M. (1992). Die Repräsentation lexikalischen phonologischen Wissens am Beispiel der

Wortbetonung. ASL Technical Report ASL-TR-58-92/UBI, U Bielefeld.

42

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Pollard, C. & I.A. Sag (1987). Information-Based Syntax and Semantics. Vol. I:
Fundamentals. CSLI Lecture Notes 13. Stanford: CSLI.

Pustejovsky, J. (1991). The generative lexicon. Computational Linguistics 17.
Reinhard, S. & D. Gibbon (1991). Prosodic inheritance and morphological generalisations. In:

Proceedings of EACL 1991, Berlin, pp. 131-136.
Riehemann, S. (1993). Word Formation in Lexical Type Hierarchies. A Case Study of bar-

Adjectives in German. SfS-Report-02-93, Seminar für Sprachwissenschaft,
Computerlinguistik, U Tübingen.

Selkirk, E. O. (1984). Phonology and Syntax: The Relation between Sound and Structure.
MIT press, Cambridge, Mass.

Weinreich, U. (1969). Problems in the analysis of idioms. In Jaan Puhvel, ed., Substance and
Structure of Language. U California Press, Berkeley and Los Angeles.

Wells, J.C. (1989). Computer-coded phonemic notation of individual languages of the
European Community. Journal of the International Phonetic Association 19/1:31-54.

43

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Appendix

/*
---- This is an executable Prolog file --------

MINIDATR: A minimal core DATR engine in Prolog

Dafydd Gibbon
U Bielefeld

gibbon@asl.uni-bielefeld.de
23 September 1994

This document contains a simple version of the core DATR inference engine in
Prolog in order to illustrate the principles of DATR inference to Prolog
programmers. Note that in minor details it departs slightly from DATR
conventions:
- nonstandard nodenames are permitted;
- the knowledge base must be pre-sorted to permit ’longest path first’

inference;
- queries include the theory name.

Note also that this is not a directly usable implementation: there is no user
interface, no DATR-Prolog interpreter, no DATR-specific trace or debugging,
no attention paide to efficiency, etc. The aim is to provide a minimal ’core
DATR standard inference’ interpreter in logical style.

1 Illustration of a DATR theory: a ’microlexicon’

MINILEX.DTR

Tablecloth: <> == Compound
<ilex> == lemma
<relation> == (for covering)
<modifier> == "Table:<>"
<head> == "Cloth:<>".

Table: <> == Simplex
<ilex> == lemma
<meaning> == (horizontal surface to put things on)
<orthography> == (t a b l e).

Cloth: <> == Simplex
<ilex> == lemma
<meaning> == (variety of textile)
<orthography> == (c l o t h).

44

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

Compound: <> == Word
<ilex> == generalisation
<type> == compound
<meaning> == ("<head meaning>" "<relation>"

"<modifier meaning>")
<orthography> == ("<modifier orthography>" "<head orthography>").

Simplex: <> == Word
<ilex> == generalisation
<type> == simplex.

Word: <ilex> == generalisation
<type> == word.

Theorems:

Tablecloth:<relation>=(for covering).
Tablecloth:<meaning>=(variety of textile for covering horizontal surface to

put things on).
Tablecloth:<orthography>=(t a b l e c l o t h).
Table:<orthography>=(t a b l e).
Table:<relation>=undefined.

2 A Prolog translation of MINILEX.DTR: MINILEX.PRO knowledge base.

Note the ’longest path first’ reordering of the theory in Prolog.

Tablecloth: <> == Compound
<ilex> == lemma
<relation> == (for covering)
<modifier> == "Table:<>"
<head> == "Cloth:<>".

*/
datr_sentence(minilex,’Tablecloth’,[ilex],[lemma]).
datr_sentence(minilex,’Tablecloth’,[relation],[for,covering]).
datr_sentence(minilex,’Tablecloth’,[modifier],[[gnp,’Table’,[]]]).
datr_sentence(minilex,’Tablecloth’,[head],[[gnp,’Cloth’,[]]]).
datr_sentence(minilex,’Tablecloth’,[],[[ln,’Compound’]]).
/*
Table: <> == Simplex

<ilex> == lemma
<meaning> == (horizontal surface to put things on)
<orthography> == (t a b l e).

*/
datr_sentence(minilex,’Table’,[ilex],[lemma]).
datr_sentence(minilex,’Table’,[meaning],[horizontal,surface,to,put,things,o
n]).
datr_sentence(minilex,’Table’,[orthography],[t,a,b,l,e]).
datr_sentence(minilex,’Table’,[],[[ln,’Simplex’]]).
/*
Cloth: <> == Simplex

<ilex> == lemma
<meaning> == (variety of textile)
<orthography> == (c l o t h).

*/
datr_sentence(minilex,’Cloth’,[ilex],[lemma]).
datr_sentence(minilex,’Cloth’,[meaning],[variety,of,textile]).
datr_sentence(minilex,’Cloth’,[orthography],[c,l,o,t,h]).
datr_sentence(minilex,’Cloth’,[],[[ln,’Simplex’]]).
/*
Compound: <> == Word

<ilex> == generalisation

45

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

<type> == compound
<meaning> == ("<head meaning>" "<relation>"

"<modifier meaning>")
<orthography> == ("<modifier orthography>" "<head orthography>").

*/
datr_sentence(minilex,’Compound’,[ilex],[generalisation]).
datr_sentence(minilex,’Compound’,[type],[complex]).
datr_sentence(minilex,’Compound’,[meaning],

[[gp,[head,meaning]],[gp,[relation]],[gp,[modifier,meaning]]]).
datr_sentence(minilex,’Compound’,[orthography],

[[gp,[modifier,orthography]],[gp,[head,orthography]]]).
datr_sentence(minilex,’Compound’,[],[[ln,’Word’]]).
/*
Simplex: <> == Word

<ilex> == generalisation
<type> == simplex.

*/
datr_sentence(minilex,’Simplex’,[ilex],[generalisation]).
datr_sentence(minilex,’Simplex’,[type],[simplex]).
datr_sentence(minilex,’Simplex’,[],[[ln,’Word’]]).
/*
Word: <ilex> == generalisation

<type> == word.
*/
datr_sentence(minilex,’Word’,[ilex],[generalisation]).
datr_sentence(minilex,’Word’,[type],[word]).

minilex(Node,Path,Value) :- datr(minilex,Node,Path,Value).
/*

3 A DATR test theory, MINITEST.DTR

This theory illustrates the seven cases of DATR standard
inference. The relevant theorems are the following:

A:<> = (via node A via node B via node C undefined).
A:<1> = (via node A Rule 1).
A:<2> = (via node A Rule 2).
A:<3> = (via node A Rule 3).
A:<4> = (via node A Rule 4).
A:<5> = (via node A via node C Rule 5).
A:<6> = (via node A Rule 6).
A:<7> = (via node A Rule 7).
A:<1 2> = (path <1 2> extends path <1>).
A:<nest a> = (via node A nested global path with a).
A:<nest b> = (via node A nested global path with rubbish).

The MINITEST.DTR theory:

A:<> == (via node ’A’ B)
<1> == <one>
<2> == <two>
<3> == <three>
<4> == <four>
<5> == <five>
<6> == <six>
<7> == <seven>
<seventh> == ’Rule 7’
<1 2> == (path ’<1 2>’ extends path ’<1>’)
<param> == alpha.

B:<> == (via node ’B’ C)
<one> == ’Rule 1’

46

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

<two> == C:<second>
<three> == C
<four> == <fourth>
<five> == "C:<fifth>"
<six> == "C"
<seven> == "<seventh>"
<fourth> == ’Rule 4’
<nest> == <elsif "<param>">
<elsif alpha a> == ’nested global path with a’
<elsif> == ’nested global path with rubbish’.

C:<> == (via node ’C’ D)
<6> == ’Rule 6’
<second> == ’Rule 2’
<three> == ’Rule 3’
<fuenf> == ’Rule 5’.

D:<> == undefined
<fifth> == "<fuenf>".

4 A BNF description of core DATR syntax

<theory> ::= <sentence> | <sentence> <theory>
<sentence> ::= <node> : <equations>
<equations> ::= . | <equation>
<equation> ::= <lhs> == <rhs>

<lhs> ::= "<" <atomseq> ">"
<atomseq> ::= nullseq | <atom> <lhseq>

<rhs> ::= <valseq> | (<valseq>)
<valseq> ::= nullseq | <val> <valseq>
<val> ::= atom | <descriptor> | " <descriptor> "
<descriptor> ::= <node> : <path> | <node> | <path>
<path> ::= "<" <valseq> ">"

<atom> ::= <a_char> <s_seq> | ’ <charseq> ’
<node> ::= <n_char> <s_seq>

<charseq> ::= nullseq | <char> <charseq>
<s_seq> ::= nullseq | <s_char> <s_seq>

<res_char> ::= {:, <, >, =, (,), ", .}
<char> ::= {char(0),...,char(127)}
<p_char> ::= {char(33),...,char(127)} | \ <char>
<s_char> ::= <p_char> - <res_char>
<n_char> ::= {A,...,Z}
<a_char> ::= <s_char> - <n_char>

5 MINITEST.DTR to MINITEST.PRO translation (outline)

<sentence> ::= datr_node(<theory>,<node>,<lhs>,<rhs>).
<lhs> ::= Prolog list of atoms, perhaps empty,

e.g. [], [a], [attribute,list]
<rhs> ::= Prolog list of <descriptor> expressions, perhaps empty,

e.g. [], [a], [aa,bb], etc.
<descriptor> ::= expression of one of the following types,

corresponding to each of the 7 DATR inference rules as a
Prolog atom or a tagged list:
(1) <atom>
(2) [lnp,<node>,<path>] for local node-path

47

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

(3) [ln,<node>] for local node
(4) [lp,<path>] for local path
(5) [gnp,<node>,<path>] for global node-path
(6) [gn,<node>] for global node
(7) [gp,<path>] for global path

<node> ::= <atom>
<atom> ::= Prolog atomic symbol
<path> ::= <rhs>

6 Illustration of DATR-Prolog translation for MINITEST.DTR

This line-by-line illustration includes "longest path first" pre-sorting:

/* A:<1 2> == (’ path <1 2> extends path <1>’). */
datr_sentence(minitest,’A’,[1,2],[’ path <1 2> extends path <1>’]).
/* A:<1> == <one>. */
datr_sentence(minitest,’A’,[1],[[lp,[one]]]).
/* A:<2> == <two>. */
datr_sentence(minitest,’A’,[2],[[lp,[two]]]).
/* A:<3> == <three>. */
datr_sentence(minitest,’A’,[3],[[lp,[three]]]).
/* A:<4> == <four>. */
datr_sentence(minitest,’A’,[4],[[lp,[four]]]).
/* A:<5> == <five>. */
datr_sentence(minitest,’A’,[5],[[lp,[five]]]).
/* A:<6> == <six>. */
datr_sentence(minitest,’A’,[6],[[lp,[six]]]).
/* A:<7> == <seven>. */
datr_sentence(minitest,’A’,[7],[[lp,[seven]]]).
/* A:<seventh> == ’Rule 7’. */
datr_sentence(minitest,’A’,[seventh],[’ Rule 7’]).
/* A:<param> == alpha. */
datr_sentence(minitest,’A’,[param],[alpha]).
/* A:<> == (via node ’A’ B). */
datr_sentence(minitest,’A’,[],[’ via node A’,[ln,’B’]]).

/* B:<one> == ’Rule 1’. */
datr_sentence(minitest,’B’,[one],[’ Rule 1’]).
/* B:<two> == C:<second>. */
datr_sentence(minitest,’B’,[two],[[lnp,’C’,[second]]]).
/* B:<three> == C. */
datr_sentence(minitest,’B’,[three],[[ln,’C’]]).
/* B:<four> == <fourth>. */
datr_sentence(minitest,’B’,[four],[[lp,[fourth]]]).
/* B:<five> == "C:<fifth>". */
datr_sentence(minitest,’B’,[five],[[gnp,’C’,[fifth]]]).
/* B:<six> == "C". */
datr_sentence(minitest,’B’,[six],[[gn,’C’]]).
/* B:<seven> == "<seventh>". */
datr_sentence(minitest,’B’,[seven],[[gp,[seventh]]]).
/* B:<fourth> == ’Rule 4’. */
datr_sentence(minitest,’B’,[fourth],[’ Rule 4’]).
/* B:<nest> == <elsif "<param>">. */
datr_sentence(minitest,’B’,[nest],[[lp,[elsif,[gp,[param]]]]]).
/* B:<elsif alpha a> == ’nested global path with a’. */
datr_sentence(minitest,’B’,[elsif,alpha,a],[’ nested global path with a’]).
/* B:<elsif> == ’nested global path with rubbish’. */
datr_sentence(minitest,’B’,[elsif],[’ nested global path with rubbish’]).
/* B:<> == (via node ’B’ C). */
datr_sentence(minitest,’B’,[],[’ via node B’,[ln,’C’]]).

/* C:<6> == ’Rule 6’. */

48

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

datr_sentence(minitest,’C’,[6],[’ Rule 6’]).
/* C:<second> == ’Rule 2’. */
datr_sentence(minitest,’C’,[second],[’ Rule 2’]).
/* C:<three> == ’Rule 3’. */
datr_sentence(minitest,’C’,[three],[’ Rule 3’]).
/* C:<fuenf> == ’Rule 5’. */
datr_sentence(minitest,’C’,[fuenf],[’ Rule 5’]).
/* C:<> == (via node ’C’ D). */
datr_sentence(minitest,’C’,[],[’ via node C’,[ln,’D’]]).

/* D:<fifth> == "<fuenf>". */
datr_sentence(minitest,’D’,[fifth],[[gp,[fuenf]]]).
/* D:<> == undefined. */
datr_sentence(minitest,’D’,[],[’ undefined’]).

minitest(Node,Path,Value) :- datr(minitest,Node,Path,Value).
/*

Outline of the MINIDATR.PRO inference engine

datr(Theory,Node,Path,Value).
- defines initial DATR global and local query environments
- 1 clause

datr_connect(Theory,Gnode,Gpath,Lnode,Lpath,Value).
- accesses DATR theory with query environments
- 1 clause

datr_rhs(Gnode,Gpath,Lnode,Prefix,Suffix,Rhs,Value).
- evaluates RHS of DATR equations as lists
- 2 clauses

datr_rule(Gnode,Gpath,Lnode,Prefix,Suffix,Descriptor,Value).
- 7 DATR inference rules
- 7 clauses, for evaluation of atoms and of local and
global node-path, node, and path descriptors.

append(Prefix,Suffix,Whole).
- expresses RHS sequence evaluation and path extension
- 2 clauses (standard definition).

The following queries illustrate standard DATR inference.

Query Response

minitest(’A’,[],X). X = [via node A, via node B, via node C,undefined]
minitest(’A’,[1],X). X = [via node A, Rule 1]
minitest(’A’,[2],X). X = [via node A, Rule 2]
minitest(’A’,[3],X). X = [via node A, Rule 3]
minitest(’A’,[4],X). X = [via node A, Rule 4]
minitest(’A’,[5],X). X = [via node A, via node C, Rule 5]
minitest(’A’,[6],X). X = [via node A, Rule 6]
minitest(’A’,[7],X). X = [via node A, Rule 7]
minitest(’A’,[1,2],X). X = [path <1 2> extends path <1>]
minitest(’A’,[nest,a],X). X = [via node A, nested global path with a]
minitest(’A’,[nest,b],X). X = [via node A, nested global path with rubbish]

7 Code for the MINIDATR inference engine

Note that this minimalistic core DATR inference engine allows
nonstandard node-names, has no DATR variables, and does not
include the ’longest path first’ default connection condition.
This means that the ’longest path first’ ordering must be
pre-defined in the Prolog knowledge base.
*/

49

A generalisation of DATR. D. Gibbon, U Bielefeld, 1993

datr(Theory,Node,Path,Value) :-
atomic(Theory),
atomic(Node),
nonvar(Path),
atompath(Path),
var(Value),
datr_connect(Theory,Node,Path,Node,Path,Value),!.

atompath([]) :- !.
atompath([First|Rest]) :-
atomic(First),
atompath(Rest).

datr_connect(Theory,Gnode,Gpath,Lnode,Lpath,Value):-
datr_sentence(Theory,Lnode,Prefix,Rhs),
append(Prefix,Suffix,Lpath),!,
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Rhs,Value).

datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[],[]).

datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[First|Rest],Value) :-
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,First,First_value),
append(First_value,Rest_value,Value),!,
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Rest,Rest_value).

/* DATR Inference Rule 1 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Expr,[Expr]) :-
atomic(Expr).

/* DATR Inference Rule 2 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[lnp,Node,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Node,Extension,Value).

/* DATR Inference Rule 3 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[ln,Node],Value) :-
append(Prefix,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Node,Extension,Value).

/* DATR Inference Rule 4 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[lp,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Gpath,Lnode,Extension,Value).

/* DATR Inference Rule 5 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gnp,Node,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Node,Extension,Node,Extension,Value).

/* DATR Inference Rule 6 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gn,Node],Value) :-
append(Gpath,Suffix,Extension),
datr_connect(Theory,Node,Extension,Node,Extension,Value).

/* DATR Inference Rule 7 */
datr_rule(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,[gp,Path],Value) :-
datr_rhs(Theory,Gnode,Gpath,Lnode,Prefix,Suffix,Path,Path_value),
append(Path_value,Suffix,Extension),
datr_connect(Theory,Gnode,Extension,Gnode,Extension,Value).

50

