
From DATR to PATR via

DUTR � an Interface Formalism

Markus Duda

HUB

Report No� ��
July ����

July ����

Markus Duda

Computerlinguistik
Institut f�ur deutsche Sprache und Linguistik

Philosophische Fakult�at II
Humboldt�Universit�at zu Berlin

Unter den Linden �
����� Berlin

Tel	
 ���� ����� � ���
e�mail
 Duda�compling�hu�berlin�de

Geh�ort zumAntragsabschnitt� �	����� Lexikonauswertung� �formalismus�
�werkzeuge

Das diesem Bericht zugrundeliegende Forschungsvorhaben wurde mit Mit�
teln des Bundesministers f�ur Forschung und Technologie unter dem F�order�
kennzeichen �� IV ��� G gef�ordert	 Die Verantwortung f�ur den Inhalt dieser
Arbeit liegt bei dem Autor	

From DATR to PATR via DUTR � an Interface Formalism

Contents

� Introduction �

� Related works �

� Dynamic interaction between DATR and PATR �
�	� Basic idea �
�	� Complex DATR values �
�	� The DATR pattern query �
�	� Feature structures with the DATR pattern query � � � � � � � �

� The DUTR project �
�	� Operator de�nitions �
�	� HUB�DATR �

�	�	� The �le datr	pl �
�	�	� The DATR theory �le � � � � � � � � � � � � � � � � � � ��
�	�	� Di�erences between HUB�DATR and Standard DATR ��
�	�	� An example ��
�	�	� Tools ��

�	� PATR ��
�	�	� The interface to HUB�DATR � � � � � � � � � � � � � � ��
�	�	� Other features ��
�	�	� An example ��

	 Some pros and cons �

A The syntax of HUB�DATR ��

B Where to get DUTR ��

�

Report No� ��

� Introduction

There are a number of di�erent formalisms used in the �eld of computational
linguistics like PATR as a uni�cation formalism or DATR as an inheritance
based one	 One way to partition formalisms is to distinguish between process
oriented formalisms and representation oriented formalisms	 PATR is process
oriented since it is based on uni�cation	 The uni�cation operation is binary
and closed�	 This makes it possible to construct arbitrary sequences of uni�
�cations to de�ne an algorithm� e	g	 the procedure of how to construct a
parse tree from a set of input signs	 That is why� we can call the uni�cation
a procedural operation� and a uni�cation formalism is process oriented	

DATR� on the other hand� is a theorem solver	 There is no other operation
than the built in inference strategy which can not be changed by the user	
Thus� the DATR formalism is declarative	 Since DATR uses an inheritance
mechanism with defaults� it is very simple to de�ne a hierarchy of linguistic
objects and it is easy to create new objects from existing ones by similarity	
By the help of DATR a linguist can simply model rules with exeptions	 DATR
can be refered to as representation oriented	 It is designed to represent
linguistic data	

Some uni�cation formalisms make use of an inheritance based type hierarchy	
By the help of a default uni�cation operation these formalism are able to
express similarity and rules with exeptions as well ����	 The advantage is
that a linguist has to cope with just one formalism	 The drawbacks are
that �rstly� there is no such formalism commonly used and secondly� these
formalisms are fairly complex	

DATR and PATR are very simple and powerful� DATR for representing lin�
guistic data and PATR for processing them	 It is useful to combine both
formalisms to obtain one tool for linguistic work	

� Related works

Some related work exists concerning the problem of connecting DATR to fea�
ture term formalisms	 The �rst approach we consider is described in ���	 The

�It works on two feature structures and results in a feature structure�

�

From DATR to PATR via DUTR � an Interface Formalism

technique used there resembles the use of compilers in computer science	 A
tool converts a DATR lexicon into the PATR�like form of a processing for�
malism	 The distinguishing feature of this approach is that DATR and PATR
remain di�erent processes	 This interface has static character	 The problem
is the loss of information	 Usually only a subset of information is converted
from DATR to PATR� e	g	 all the information related to a lexical entry� but no
information about regularities between lexical items nor information about
the lexeme�s hierarchy are compiled out	

A second� very interesting approach ���� we consider� uses DATR itself as the
compiler that produces strings with a PATR�like structure� i	e	 the interface
between DATR and PATR is constructed on string level	 A DATR query
results in a string in PATR syntax	 This string describes a complex feature
structure	 The interface works during run time� but only in one direction from
DATR to PATR	 Since the string representing a feature structure� has to be
reinterpreted into PATR� no really dynamic interaction between the DATR
inference and the PATR uni�cation is possible	 The idea of constructing
complex feature structures within of DATR is nice and can be used in the
given approach as well	

Common to ��� and ���� are that they both use DATR to encode the lexicon
and that the information �ow is only directed from DATR to PATR� not the
other way around	

� Dynamic interaction between DATR and PATR

��� Basic idea

In order to keep all information given in a DATR theory accessible at run time�
a dynamic link between DATR and PATR is de�ned	 This approach may lead
to a minimal redundance of information which has to be represented in both
formalisms� DATR and PATR	

The idea is to think of a DATR query as of a relation on feature structures
within a feature structure	

For that purpose three small PATR extensions are introduced� lists of feature

�

Report No� ��

structures� disjunctions of feature structures� and the DATR pattern query
as a relation on feature structures	 On the other hand� DATR is extended
with the DATR pattern query which completes a partially given DATR exten�
sional sentence	 Next� this DATR implementation allows structured values	
It distinguishes between atomic values� value lists� and lists of lists	

��� Complex DATR values

Usually� DATR values are simple lists� maybe consisting of only one element�
but they are lists	 If a descriptor is a list element and it evaluates into a list
itself then this list is concatenated in between the surrounding list and the
result is a simple list	 This makes sense since a value may become a path
descriptor and a descriptor can only be a simple list of attributes	

value ���� atom��

On the other hand� it would be nice to have complex data structures to work
with	 The HUB�DATR� implementation makes use of structured lists as
complex DATR values	 It is the user�s responsebility to avoid that complex
DATR values are interpreted as descriptors during the inference process of
DATR	

value ��� atom j vlist
vlist ��� value� �

By the help of complex DATR values it is possible to construct recursive data
structures� as feature structures are� to dynamically link PATR with DATR	 A
dynamic link requires the interchange of linguistic information between DATR
and PATR not only on string level� but on the level of real data structures	
Thats why we designed feature structures in PATR as well as complex values
in DATR as structured lists	

�formula in EBNF
�
DATR of Humboldt�University Berlin

�

From DATR to PATR via DUTR � an Interface Formalism

��� The DATR pattern query

In order to derive information from a DATR theory� a DATR query ��� is
resolved� i	e	 a value of a given node path pair is inferred from the theory	 The
DATR query can be seen as a special case of an extensional DATR sentence���	
The extensional DATR sentence is de�ned as an equation with a node path
pair at its left hand side and a value at its right	 �A extensional DATR
sentence can be referred to as a theorem to be proved over a given DATR

theory	 If the value is variable� the extensional DATR sentence represents a
DATR query	 �A variable position in an extensional DATR sentence extends
the de�nition by Gazdar�Evans ���	

Making use of another variable position in an extensional DATR sentence�
Langer ���� introduced the technique of the reverse DATR query where the
path is variable	 Informally� from a node and a value of an extensional DATR
sentence� the reverse DATR query resolves the path which holds the value at
that node	

As an example� for the simple DATR theory

Noun
 � orth � �� �� � stem � � � � ending � �
� stem � �� � � root � �
� ending � �� �
� gender � �� masc�

N er
 � stem plur � �� �� � root � � e r
� ending sing gen � �� �e s
� ending plur dat � �� �n�

Bild
 � root � �� �b i l d
� gender � �� neut�

an extensional DATR sentence is

Bild
� orth sing gen � � �b i l d e s

The DATR query for that extensional sentence is

Bild
� orth sing gen � ��

�

Report No� ��

and the reverse DATR query is

Bild
 �Path � �b i l d e s

where �Path marks the variable position which is to be �lled with a path
valid for the node Bild and the value �b i l d e s�	

In general� given the set N of nodes � the set P of paths� and the set V of
values of a DATR theory� the set E of all possible extensional DATR sentences
over that DATR theory is the relation

E � N � P � V

Note� for the DATR default inference� E is either empty or in�nite	 Another
interesting property of DATR is that it is also possible to de�ne E as a
function
 Ef
 �N � P � V

Since the path of a DATR extensional sentence entails not only features but
also feature values� we regard a path as consisting of a �nite number of
elements and not as a single element of an extensional sentence	

De�nition� A DATR pattern query Q over paths of length n is a relation

Qn � N �A� �A� � ����An � V

with N � the set of nodes� Ai � the set of attributes� V � the set of values
of a given DATR theory� where some places are bound to single elements
or subsets of elements of its de�nitional sets and the other places are to be
derived from the DATR theory	

To give an example� the DATR pattern query for the in�exion of a German
noun has the following form

�Word
� orth �Number �Case � � �Orth form

in the syntax of an extensional DATR sentence extended with variable posi�
tions� or

Q���Word� orth� �Number� �Case� �Orth form

as a relation over three element paths� where the second position is bound to
the single element orth	 A possible situation is that �Number and �Case are

�

From DATR to PATR via DUTR � an Interface Formalism

variable positions bound to the sets fsing� plurg and fnom� gen� dat� accg�
and that for a particular �Word all pairs of �number� case� form� are to be
derived from a DATR theory	 An instantiation of our example pattern query
is

Bild
� orth pl nom � � b i l d e r

or� as an element of Q�

�Bild� orth� pl� nom� b i l d e r

��� Feature structures with the DATR pattern query

In feature term formalisms� the de�nition of relations over feature values as
an alternative to distributed disjunctions is a commonly used technique to
express dependencies between the features	 Combining this technique with
coreference and disjunction� we can connect a DATR theory to a feature
structure
 �

����������������������

word
 Bild

orth
 �

syn

�
��������������

cat
 noun

agr

�
������������

gen
 neut

num
 �

�
sing

plur

�

cas
 �

�����
���	

nom

gen

dat

acc

����
����

������������

��������������

Bild
� orth � � � � �

����������������������

The idea is that a DATR pattern query can be seen as a relation over feature
values	 Coreferences are used to de�ne the variable positions of the DATR
pattern query	 Disjunctions bind the variable positions to a subset of all
possible feature values	

Note that this connection gives a genuinely dynamic interaction between
DATR inference and feature structure uni�cation	 If a uni�cation attempt
fails� a subsequent DATR inference derives new feature values� which then
allow a possibly successful uni�cation	

�

Report No� ��

In the example �
��
synjagrjnum
 � fsing� plurg
���

Bild
� orth � � � � �

��

the �rst variable position � in the DATR pattern query is dynamically bound
to the set of values fsing� plurg of the feature num	

Thinking of a lexicon� the next step is to put all speci�c information about
a lexeme into the DATR theory	 The following feature structure de�nes an
abstract lexeme for nouns which derives all concrete information from a DATR
theory by uni�cation and DATR inference

�
�����������������������������

word
 �

orth
 �

syn

�
�������������������

cat
 noun

agr

�
�����������������

gen
 �

���
�	

masc

fem

neut

��
��

num
 �

�
sing

plur

�

cas
 �

�����
���	

nom

gen

dat

acc

����
����

�����������������

�������������������

�
� orth � � � � �

�
� gender � � 	

�����������������������������

Using this technique� it is simple to extend this abstract lexeme with other
non�syntactic features which can be described in DATR	

� The DUTR project

DUTR� is an approach to join DATR with PATR into a single formalism	 The
connection between DATR and feature structures was realised on the bases of
HUB�DATR and a slightly extended Prolog PATR ����	 Both formalisms are

�Default and Uni�cation Tree Representation

�

From DATR to PATR via DUTR � an Interface Formalism

realized in pure Prolog and run as one Prolog process	 Prolog variables are
used to interchange data between HUB�DATR and PATR	 Within a PATR

feature structure free variables are bound by a DATR query predicate that
derives the variable values from a given DATR theory	 The backtracking
algorithm of Prolog realizes that all possible variable bindings and thus the
disjunction of all possible extensions of the feature structure are produced	

��� Operator de�nitions

Before you start to use DUTR� the very �rst thing to do is to load the
operator de�nitions given in the �le operator�pl	 If the load fails� you may
change the precedence of the operators but doing this you have to keep the
relative order of precedence wrt	 the builtin operators �see appendix A	

��� HUB�DATR

HUB�DATR is our own implementation of DATR ��� in Prolog	 The idea of
using pure Prolog inference to directly derive a theorem from a DATR theory
was �rst presented by Gibbon ���	

A HUB�DATR theory consists of two parts
 the standard DATR inference
rules de�ned in datr�pl and an applikation theory �le de�ned by the user	
Both parts has to be loaded into Prolog� �rstly datr�pl	 When you have
successfully loaded these �les� HUB�DATR is ready to start	

����� The �le datr�pl

The �le datr�pl contains all predicates that are used for the DATR inference	
It also contains the two DATR pattern query predicates of HUB�DATR that
are the interface between DATR and the other parts	

The two easy to use Prolog predicates datrNodePathPair� Value� and
ext datrNodePathPair� Value� both realize a DATR pattern query	 The
di�erence is that datr�� behaves like a DATR query� thus producing exactly

�

Report No� ��

one result while ext datr�� produces a set of valid results� using backtrack�
ing	 Both predicates take two arguments� a DATR node path pair and a
DATR value	 A node path pair consists of a node name� a colon� and a list
of attributes that mark the path	 A value is an atom �a single value or a
list �a complex value	 Both arguments can be partially or fully variable	
Examples are

�� datr�X� Y��

�� datr�N	P� V��

�� datr�bild	P� V��

�� datr�bild	
orth� Num� Cas�� bildern��

���

The call of a DATR pattern query results� if it succeeds� in a binding of all free
variables in its arguments	 If the query doesn�t succeed there is no solution
for the pattern given by this query	

����� The DATR theory �le

The structure of a DATR theory in HUB�DATR is the same as in Standard
DATR	 A theory consists of a set of sentences� a sentence consists of a node
name and a set of equations� and each equation has a node path pair on its
left hand side and a descriptor� a value� or a list of both on its right hand side	
Nevertheless� the syntax of HUB�DATR is Prolog like and so it di�ers a little
from Standard DATR �see appendix A	 Since there is a lot of lexicon stu�
written in Standard DATR� a compiler exists that makes the transformation
from Standard DATR into HUB�DATR syntax automatically �see �	�	�	

	� noun 		

orth�X� �� �
stem�X� �

�
end�X��

stem��� �� �
root��

end ��� ��
��

genus� �� masc

��

Noun
�orth� �� ���stem��
��end��

�stem� �� ��root��
�end� �� �
�gen� �� masc	

HUB�DATR Standard DATR

��� ext datr�X� Y�� fail� results in a set of valid pairs �xi� yi��

��

From DATR to PATR via DUTR � an Interface Formalism

In order to realize the DATR�PATR interface� some properties of DATR are
extended or changed in HUB�DATR	 This changes do not in�uence the power
of HUB�DATR� it is equal to DATR�s one	 Every theory� written in DATR�
is convertable into HUB�DATR	

����� Di�erences between HUB�DATR and Standard DATR

Lists� In Standard DATR values can be seen as symbol strings or simple
lists	 If there is a descriptor inside the symbol string and this descriptor is
evaluated into a symbol string itself� both strings are concatenated to become
a symbol string again� i	e	 a structured list is made �at by this operation
�see �	�	

�a a B
�i i� c c �DATR �a a �b b c c �DATR �a a b b c c

Since in HUB�DATR structured lists are possible DATR values� this operation
is not the default case	 Concatenation is made explicite in HUB�DATR by
the use of the concatenation operator �	

a� a� � �b	
i� i� �
c� c�

�HUB�DATR

a� a� �
b� b� �
c� c�

�HUB�DATR

a� a� b� b� c� c�

Descriptors� DATR distinguishes between local and global descriptors	
Both can consist of a node name� of a path� or of a node path pair	 Node
names start with a capital letter	 In HUB�DATR it is not necessary to give
a node name a initial capital letter since each descriptor is marked with an
unary operator	

��

Report No� ��

Standard HUB�DATR
local B
�i� �b	
i�

global �B
�i�� �b	
i�

local �i� �
i�

global ��i�� �
i�

local B �b

global �B� �b

Default Inheritance� In Standard DATR the path extension as a mean of
inheritance is the default	 This means� every path not explicitely marked
as unextendable can be extended by default	 Since the operation of default
inheritance by path extension increases the number of all possible extensional
sentences of a DATR theory more than necessary� in HUB�DATR the default
is changed	

Every path� not explizitly marked as extendable� is unextendable by default	

Standard HUB�DATR
extendable N
�a� �� O
�b� n	
a�X� � �o	
b�X�

unextendable N
�a � �� O
�b� n	
a� � �o	
b�

extendable N
�� �� O n	� � �o

Note� the extension mechanism is more �exible then the Standard DATR

one	 It is not only possible to enable or disable default inheritance but also
to de�ne in detail which paths at the right hand side of an equation are to
be extended	

����� An example

The following example presents a description for the language of all words
that consist of the concatenation of a string of a� a string of b� and a string
of c� and all strings have the same length n	

L � fanbncn
 n � Ng

Note� L is context sensitive	

In DATR this language is represented by the following single node description

��

From DATR to PATR via DUTR � an Interface Formalism

	� abc 		

a�n�X� ��
a� � �
a�X��

b�n�X� ��
b� � �
b�X��

c�n�X� ��
c� � �
c�X��

n�X� �� �
a�n�X� �

�
b�n�X� � �
c�n�X��

� ��
�

��

ABC
�� �� �
�a n� �� �a �a�
�b n� �� �b �b�
�c n� �� �c �c�
�n� �� ��a n�

�b n�
�c n�	

HUB�DATR Standard DATR

X is a Prolog variable used for path extension �default inheritance in DATR	
In HUB�DATR the equations of a node are sorted according to the length
of the path on its left hand side	 Thus� the longest paths �a n�� �b n��
�c n� come �rst� and �� comes last	

In order to generate the string with n � �� i	e	 �aaabbbccc� the following
DATR query is asked

ABC
� n n n ���

In HUB�DATR the predicate datr�� is used for querying

�� datr�abc	
n�n�n�� Result��

Result
a�a�a�b�b�b�c�c�c�

The idea is that from the path �n n n� three paths �a n n n�� �b n n n��
and �c n n n� are generated	 These paths evaluate to the strings �aaa�
�bbb� and �ccc that are concatenated to the result	

����	 Tools

Compiler� In order to transform existing lexicon stu� in DATR into the
HUB�DATR syntax� the program d�d exists	 Use

d�d german

��

Report No� ��

means that from the DATR theory �le german�dtr in Standard DATR syntax
the �le german�pl is produced	 german�pl is the DATR theory in HUB�DATR
syntax and directly loadable into Prolog	

Debugger� Since checking a DATR theory of correctness is a very sophisti�
cated and complex task� there are additional predicates for debugging avail�
able then loading dedatr�pl

� nodenode�� displays all equations of a given node	

� extensionnode�� dispalyes all equations that a given node inherits
from other nodes� i	e	 extension�� shows the inheritance path of a
node	

� d datrNodePathPair� Value�� displays the trace of the derivation of
Value from NodePathPair	 The trace distinguishes between local and
global inheritance	 It exactly shows which equation is used to replace a
descriptor	 Unresolveable descriptors are marked with an error at the
point they occur	

��� PATR

Our implementation of PATR follows mainly ����	 In order to use PATR� the
�le unify�pl has to be loaded	

����� The interface to HUB�DATR

The interface to HUB�DATR is realized by the help of the HUB�DATR query
predicate datr��	 The builtin� operator ��� uses this predicate to de�ne
a relation over feature values �see �	� as follows

Node�Path �	� Value

where Node is a DATR query node� Path is the query path� and Value is the
result of the DATR query	 In other terms� Node�Path is the left hand side of

�in PATR

��

From DATR to PATR via DUTR � an Interface Formalism

a DATR extensional sentence and Value its right hand side	 Each operand
of ��� can be variable	 Using variables as coreferences� other features and
its values determine the inference process of a DATR query �see the feature
structure at page �	

����� Other features

Disjunctions� The in�x operator ��� de�nes the disjunction of feature
values as it is commonly used

feature �
� �FS�� FS�� � � � � FSn�

This corresponds to

�feature
 fFS�� FS�� � � � � FSng�

Lists� It is possible to de�ne lists of feature structures as a feature value

feature ��� �FS�� FS�� � � � � FSn�

This corresponds to

�feature
 hFS�� FS�� � � � � FSni�

����� An example

In chapter �	� the idea of an abstract lexeme is described	 Similar to the type
concept� an abstract lexeme� i	e	 a feature structure that is not related to a
concrete word but to a group of words e	g	 regular nouns� de�nes a set of
attributes appropriate for the linguistic object� the set of values appropriate
for the attributes� and dependencies among the attributes	

Using the PATR part from DUTR� the feature structure of the abstract lex�
eme of page � is written as follows

��

Report No� ��

W ord Word 	�

W	word Word�

W	orth Orth�

W	syn	cat noun�

W	syn	agr	gen Genus�

W	syn	agr	num Numerus�

W	syn	agr	cas Casus�

������������������������������ disjunctions

Genus �
masc� fem� neut��

Numerus �
sing� plur��

Casus �
nom� gen� dat� acc��

�������������������������������������� DATR queries

Word	
genus� � Genus�

Word	
orth� Numerus� Casus� � Orth�

Since the HUB�DATR value lists� as well as the PATR feature structures�
are realised as Prolog lists� the interchange of complex feature structures be�
tween HUB�DATR and PATR is possible	 The di�erence between Kilbury�s
approach ���� and the one presented here is that Kilbury only gives the
composition of feature structures in DATR and only on the level of strings	
HUB�DATR interacts with PATR on the level of data structures� interchang�
ing feature structures between them	

� Some pros and cons

The idea of DUTR is to use two formalisms to solve di�erent subtasks of a
system for processing linguistic data	 Thus� both formalism can be lean and
optimized to solve their subtasks	 Next� the dynamic link� i	e	 an informa�
tion �ow between the subtasks in both directions� guaranties an adequate
encoding of linguistic data and less redundancy	

However� using two di�erent formalisms in one system is a basic problem
for all users of this system	 The grammarian mostly uses PATR whereas the
lexicographer DATR� but both must sometimes switch to the other formalism	
It is not really a problem� but it may be inconvenient to use two small
powerful formalism instead of one large formalism	

��

From DATR to PATR via DUTR � an Interface Formalism

A major advantage of the approach of ���� and of our approach is the di�
rect link to the inference system of DATR	 Consider for example information
about compound words in DATR	 If there is no direct link� it is impossible
to tackle compound words with the knowledge of the DATR�theory and it is
also impossible to determine all possible compound words by converting the
information of the DATR�theory	

This is the disadvantage of the approach of ���� but in this way they avoid
the problem that DATR becomes a time crucial process	 This problem may
arrise if DATR is attached to the processing formalism	 Moreover� since
DATR inference becomes part of the uni�cation operation� a special e!cient
encoding of that operation� e	g	 type uni�cation based on table look up� is
impossible	

��

Report No� ��

A The syntax of HUB�DATR

theory 		 sentence � sentence �

sentence 		 �	�� node �		
� equation � ��� equation � ����

equation 		 lhs � �� � lvalue

lhs 		 �
� atom � ��� atom �
 difference � ���

� variable

difference 		 ��� variable

lvalue 		 value

� vallist

vallist 		 �
� lvalue � ��� lvalue � ���

� lvalue ��� lvalue � where lvalue has to be something that

� evaluates to vallist

value 		 atom

� ��� descriptor � global

� ��� descriptor � local

descriptor 		 node

�
 node �	� � path
 ��� difference �

path 		 �
� value � ��� value �
 difference � ���

� path ��� path

node 		 atom

atom and variable are Prolog atoms and variables	 di�erence realizes the
optional path extension	

Precedence� The precedence of the operators can explicitly be given by
parenthesis

abc	�a b c� �� ���
a� � �
b� � �
c���

��

From DATR to PATR via DUTR � an Interface Formalism

The precedence list is

�
	

� and unary��
	

binary��
	
��

Note� The equations have to be ordered wrt	 the path length of its left
hand side
 longest path �rst	

B Where to get DUTR

DUTR is available via email from the author or via ftp from ftp�dfki�uni�sb�de�
�FTP�SERVER�vm�tps�vm�dutr�tar�gz	

DUTR runs in UNIX and DOS environments	 It is tested with Quintus�
Prolog and HU�Prolog	 The latter is available via ftp from ftp�informatik�hu�
berlin�de	

If there is any question� comment� or request do not hesitate to send it to
Markus Duda� duda�compling�hu�berlin�de	

��

Report No� ��

References

��� Andry� F	" Fraser� N	 M	" McGlashan� S	" Thornton� S	 and Youd� N	 J	
�����
 Making DATR Work for Speech� Lexicon Compilation in SUN�
DIAL	 Computational Lingistics ��������	 Assocation for Computa�
tional Linguistics	

��� Cahill� L	 J	 �����
 Morphology in the Lexicon	 In
 Proceedings of the
Sixth Conference of the European Chapter of the Association for Com�
putational Linguistics� Utrecht	

��� Doerre� J	 �����
 Feature Logic with Weak Subsumption Constraints	
In
 Proceedings of the ��th Annual Meeting of the Association for Com�
putational Linguistics	 Berkeley	

��� Emele� M	 C	 �����
 Uni�cation with Lazy Non�Redundant Copying	
In
 Proceedings of the ��th Annual Meeting of the Association for Com�
putational Linguistics	 Berkeley	

��� Evans� R	 and Gazdar� G	 �����
 Inference in DATR	 In
 Proceedings�
�th Meeting of the European Chapter of the Association for Computa�
tional Linguistics	 Manchester	

��� Evans� R	 and Gazdar� G	 �����
 The semantics of DATR	 In
 Cohn� A	
�ed	
 Proceedings of the Seventh Conference of the Society for the Study
of Arti�cal Intelligence and Simulation of Behaviour	 London� Pitman	

��� Evans� R	 and Gazdar� G	 �eds	�����
 The DATR Papers	 Research Re�
port CSPR ���� School of Cognitive and Computer Science� University
of Sussex	

��� Evans� R	 �����
 Theoretical questions about lexical access	 In
 Colling�
ham� R	 J	 �ed	
 Workshop on the Uni�ed Lexicon	 Proceedings	
St	 Aidan�s College� University of Durham	

��� Gibbon� D	 �����
 Generalised DATR for �exible lexical access� Prolog
Speci�cation	 VerbMobil Report �	 Universit�at Bielefeld	

���� Gibbon� D	 �����
 Personal communication	 Universit�at Bielefeld	

��

From DATR to PATR via DUTR � an Interface Formalism

���� Kilbury� J	" Naerger� P	 and Renz� I	 �����
 DATR as a Lexical Compo�
nent for PATR	 In
 Proceedings of the Fifth Conference of the European
Chapter of the Association for Computational Linguistics� Berlin	

���� Kilgarri�� A	 �����
 Inheriting Verb Alternations	 In
 Proceedings of
the Sixth Conference of the European Chapter of the Association for
Computational Linguistics� Utrecht	

���� Langer� H	 �����
 Personal communication	 Universit�at Bielefeld	

���� Gazdar� G	 and Mellish� C	 S	 �����
 Natural Language Processing in
PROLOG	 Addison�Wesley� Wokingham	

���� McGlashan� S	" Fraser� N	 M	" Gilbert� G	 N	" Bilange� E	" Heisterkamp�
P	 and Youd� N	 J	 �����
 Dialogue Management for Telephon Informa�
tion Systems� In
 Proceedings of the �rd Conference on Applied Natural
Language Processing	 Trento	

���� Reinhard� S	 and Gibbon� D	 �����
 Prosodic Inheritance and Mor�
phological Generalisations	 In
 Proceedings of the Fifth Conference of
the European Chapter of the Association for Computational Linguistics�
Berlin	

���� Shieber� S	 M	
 An Introduction to Uni�cation�Based Approaches to
Grammar	 CSLI Lecture Notes No	 �	 Stanford	

���� Krieger� H	�U	 and Nerbonne� J	 �����
 Feature�based inheritance net�
works for computational lexicons	 In
 Brisco� T	� de Pavia� V	� and
Copestake� A	� editors
 Inheritance� Defaults� and the Lexicon� Cam�
bridge University Press	 Cambridge	

��

