

The ADT Package for the

Verbmobil Interface Term

Michael Dorna

Universit�at Stuttgart

Report ���
July ����

July ����

Michael Dorna

Institut f�ur Maschinelle Sprachverarbeitung
Universit�at Stuttgart

Azenbergstra�e ��
D � 	
�	� Stuttgart

Tel� �
	��� ��� � ����
Fax �
	��� ��� � ����

Geh�ort zum Antragsabschnitt� 	 Formalismus

Die vorliegende Arbeit wurde im Rahmen des Verbundvorhabens Verbmobil
vom Bundesministerium f�ur Bildung� Wissenschaft� Forschung und Technologie
�BMBF� unter dem F�orderkennzeichen
� IV �
� U gef�ordert� Die Verantwor�
tung f�ur den Inhalt dieser Arbeit liegt bei dem Autor�

Abstract

This documentation describes an interface ADT called the �Verbmobil

Interface Term� �VIT� used in the �Verbmobil Forschungsprototyp� �FP�
in several software components� We present the contents of the VIT and the
ADT package for Prolog components of the FP� Among others the ADT
package can be used for creating� for manipulating� for printing and for
checking the contents of a VIT�

The edition of this documentation corresponds to version ��	�
 of the ADT
package� An on�line HTML documentation is available via WWW at
http���www�ims�uni�stuttgart�de�projekte�verbmobil�vitADT�

Report ���

Contents

� Introduction �

��� The Verbmobil Background �

��� The Verbmobil Interface Term �

��� Multiple Information Levels of a VIT � � � � � � � � � � � � � � � � �

��� Contents of VIT Slots � 	

��� The Prolog Implementation �

��� Overview ��

� Create and Fill the ADT ��

��� Introduction ��

��� Predicates ��

� Access the ADT ��

��� Introduction ��

��� Accessing the Slots ��

��� Accessing the Terms ��

� Copy and Delete Information ��

��� Introduction ��

��� Predicates ��

	 Check the VIT �

��� Introduction �

��� VIT Checkers �

��� Error Handling ��

��� Information Checking ��

� Printing �	

��� Introduction ��

��� Predicates ��

�

The ADT Package for the Verbmobil Interface Term

� Miscellaneous ��

	�� Introduction �	

	�� Predicates �	

References �

A Getting and Installing the Software ��

B Usage ��

B�� Using the Package ��

B�� Error Messages ��

C Module atom�term ��

C�� Introduction ��

C�� Predicates ��

D Builtin Semantic Lexicon Database �	

Index of Builtin Predicates ��

�

Report ���

� Introduction

��� The Verbmobil Background

Verbmobil is one of the largest projects in the area of machine translation� The
main goal is a mobile translator for face�to�face dialogs� i�e� translation of spon�
taneous spoken language�

For the current implementation called �Verbmobil Forschungsprototyp� �FP�
there are about �� software components� under development� All these com�
ponents run their own processes using channels for interprocess communication�
Hence� Verbmobil can be seen as a large software development project and also a
software engineering challenge�

We can distiguish the following parts of the FP� The front end includes components
like Speech Recognition and Prosodic Labeling� The �language� part includes
components like Syntactic�Semantic Analysis� Semantic Evaluation� Transfer and
Generation� The back end includes components like Speech Synthesis and Speech
Output�

The ADT is used in a uniform way between almost every component in the lan�
guage part� Semantics play the crucial role in the language understanding and
translation process of the FP� Therefore� most of the information within the ADT
is concerned with semantics�

The main idea behind this approach is a single data structure for di�erent �lan�
guage� components� This lean data structure is portable to di�erent programming
languages used in the FP�

Christian Lieske� Joachim Quantz and myself started to de�ne an ADT in Septem�
ber ���� with the name Minimally Recursive Structure� In the meanwhile� a lot
more Verbmobil partners of Generation� Semantic Construction� Semantic Evalu�
ation� System Integration� Tempus and Aspect� and the Transfer were involved in
the designing and development of the now renamed ADT the Verbmobil Interface

Term�

��� The Verbmobil Interface Term

As already mentioned� the VIT is used as a uniform data structure at the interfaces
between several software components of the Verbmobil Forschungsprototyp� These

�We distinguish between software components and modules� a component is realized as one

process which might include di�erent software modules or control di�erent modules which run

their own processes�

�

The ADT Package for the Verbmobil Interface Term

interfaces are between Semantic Construction and Semantic Evaluation� Semantic
Construction and Transfer as well as Transfer and Generation� The VIT is an
encoding of di�erent linguistically motivated information produced and used in
the named components�

The contents of a VIT correspond to a segment �aka utterance� in a dialog turn�
This partitioning of turns enables the linguistic components to work incrementally�

The main contents of a VIT are semantic representations� On the other hand� in�
formation like morpho�syntax� syntactic tense� semantic sorts� scope and prosody
is also part of a VIT� This information is linked to semantics and can be used for
the computing semantic tense� for disambiguation of underspeci�ed analyses� for
guiding semantic evaluation such as anaphora resolution and for many more�

There are di�erent syntactic and semantic analysis modules realized in the FP
which are based on both di�erent linguistic theories and di�erent formalisms for
their implementation� At the interface to other components the syntax�semantic
components map their output into the common ADT� Because all parties agree
upon the interface� the di�erences are not transparent from outside��

In a large project like Verbmobil data abstraction is an important basis for the par�
allel development of di�erent components which should communicate with each
other in the end� From a software engineering perspective there are a lot argu�
ments for the VIT� Among them there are

� Because there are abstract access and manipulation operations available the
data structures of the VIT can be changed with minor feedback on a software
component using it�

� We assume that this is the �rst time that the result of linguistic components
is checked using a kind of protocol� Language�speci�c on�line dictionaries
are used to insure the compatibility between components� A content checker
is used to test structural properties� It has been shown that this form of
protocol is well�suited for error detection in components with a rapidly grow�
ing linguistic coverage� Furthermore� the complex information produced by
linguistic components even make automatic output control necessary�

� The protocol can be used to de�ne a quality rating� e�g� for correctness�
interpretability� etc� of the contents of a VIT� Such results are much better
and productive to improve a system than common� purely quantitative�
measures based on failure or success rates�

�The project partners which are responsible for semantics even agree on the semantic ana�

lyses at the interface� This allows for a very �exible switching between the linguistic analysis

components�

�

Report ���

� The single protocol serves as a common �language� for discussions� This
language can be �spoken� by people responsible for technical tasks only as
well as others with purely linguistic intentions�

��� Multiple Information Levels of a VIT

The contents of a VIT are �lled into the following slots

Slot Name Description
Utterance ID a unique tag for a segment or utterance of a turn the rest

of the VIT belongs to�
Semantics a list of labeled conditions describing the possibly under�

speci�ed semantic content of an utterance�
Main Label the label of the main semantic condition� i�e� the entry

point for traversing the semantic representation�
Sorts a list of sortal information for marker variables introduced

in labeled conditions�
Discourse a list of additional semantic information� e�g� discourse

roles for individuals introduced in labeled conditions�
Syntax a list of morpho�syntactic information� e�g� case and gender

of individuals�
Tense and Aspect a list of morpho�syntactic and semantic tense combined

with aspect information� e�g� used for computing surface
tense�

Scope a list of scope and grouping constraints� e�g� used for un�
derspeci�ed quanti�er and operator scope representation�

Prosody a list of prosodic information like accents and mood�
Groupings a list of grouping constraints �belonging to Semantics��

A minimally recursive representation was chosen for e�cient information access�
The list arguments are used because they are very easy to manipulate� In typical
AI languages such as Lisp and Prolog they are built�in and they can be ported
easily to other programming languages� In general� the list elements do not intro�
duce any further recursive embedding� i�e� the elements are like �xed arrays with
�elds containing constants�

�

The ADT Package for the Verbmobil Interface Term

��� Contents of VIT Slots

In this section we describe the information which can be found in the slots of a
VIT� First� we list the terms�� and then we explain the possible argument bindings�

The Utterance ID slot is �lled with a VIT identi�er of the form

segment�description�ID� YesNo� LAtom�

ID is a unique Prolog atom for each VIT� YesNo is used to mark the last segment
of a turn� LAtom is a Prolog atom of the utterance the rest of VIT belongs to�
LAtom encodes a string using LaTEX conventions for German�

The contents of the Semantics slot are language speci�c� In general� it contains
terms of the form

Functor�Label� Arg�� � � � � Argx��

called labeled conditions� The semantic entities are e�g� predicates� roles� operators�
and quanti�ers� The �rst argument is always a unique identi�er for such an
object� The semantic variables for labels and markers� such as events� states and
individuals� are skolemized with special constant symbols� e�g� l� for a label and
i� for a state�

The labeling of semantic conditions is very useful since the recursive embedding
of argument structure and operator scope� etc� is no longer syntactically repre�
sented in a recursive representation� but achieved through the interpretation of
additional labeling constraints� In this respect� label arguments act as pointers
to the corresponding arguments� Additionally� all these special constants can be
seen as pointers for adding or linking information within and between multiple
slots of the VIT�

The labeled conditions are all collected in databases� e�g� see �Heinecke et al�
������� for the German database� For further description of the semantics together
with examples of VITs see �Bos et al� ��������

The information located in the rest of the slots is given in the following table

�We describe the Prolog representations only� There exists others� e�g� in LISP�

	

Report ���

Info Description Slot Name

aktionsart�I� Art� Aktionsart information Tense and Aspect
cas�Inst� Case� syntactic case Syntax
ccom	plug�Hole�Label� SynSem scope resolution Scope
demontype�Inst� DType� type of a demonstrative Discourse
dialog	act�DialogAct� SemEval dialog act information Discourse
dialog	phase�DialogPhase� dialog phase Discourse
dir�Label� YesNo� �non�directional preposition Discourse
e	rel	r�Inst� Relation� Reichenbachian tense relation Tense and Aspect
eq�Label�Hole� Label is equal to Hole Scope
eval	plug�Hole�Label� SemEval scope resolution Scope
honor	inst�Inst� politeness marker �for Japanese� Discourse
honor	rel�Label� politeness marker �for Japanese� Discourse
gend�Inst� Gender� morpho�syntactic gender Syntax
leq�Label�Hole� scope�subordination constraint Scope
num�Inst� Number� morpho�syntactic number Syntax
pers�Inst� Person� person Syntax
prontype�I� PRef� PType� type of a pronoun Discourse
pros	accent�Label� prosodic accent Prosody
pros	boundary�Label� prosodic �b� marker Prosody
pros	mood�Label� PMood� prosodic mood Prosody
r	rel	s�Inst� Relation� Reichenbachian tense relation Tense and Aspect
sem	group�L� ListOfLs� group of conditions Scope
syn	voice�Inst� Voice� voice information �for Japanese� Syntax
s	concept�Inst� Sort� SemEval concept information Sorts
s	sort�Inst� Sort� sortal restriction Sorts
ta	aspect�Inst� Aspect� aspectual information Tense and Aspect
ta	mood�Inst� TMood� mood Tense and Aspect
ta	tense�Inst� Tense� surface tense Tense and Aspect
tmod�Inst� TMod� temporal modi�cation Tense and Aspect
unbound�Label� unbound argument Scope

The argument values of the terms above and of the predicates described in the
next sections are given in the following table

�

The ADT Package for the Verbmobil Interface Term

Argument Description or list of values

Art acc� ach� act� stat
Argx Hole� Inst� Label� Atom� or a Prolog list of the named Args
Aspect progr� nonprogr
Atom Prolog atomic
Case nom� gen� dat� acc
Check ground� shape
Class ambig� aux� disc� grad� mod� mood� noun� prep� pron� quant� verb
DialogAct Prolog atom
DialogPhase Prolog atom
DType near� far� ident� spec
Functor Prolog functor
Gender fem� masc� neut
Hole or H Prolog atom starting with h or htfollowed by an unsigned integer
Info any valid term encoding information in a VIT
Inst or I Prolog atom starting with i or it followed by an unsigned integer
ID Prolog atomic
Label or L Prolog atom starting with l or lt followed by an unsigned integer
Language de� en� jp
LAtom Prolog atom encoding a LaTEX string
ListOfLs Prolog list of Label elements
TMood ind� conj� imp
Number sg� pl
Person
� �� �
PRef sp� he� sp	he� third� top
PType refl� std� refl	std� recip� imp� event� event	std� demon�

demon	event� zero �and intersent for Japanese�
PMood decl� prog� quest
Relation equal� overlap� follow� precede
SMood decl� imp� ynq� ynq	imp� whq and ynq	decl �for Japanese�
SlotName Groupings� Scope� Tense and Aspect� Main Label�

Prosody� Discourse� Semantics� Sorts� Utterance ID�
Syntax

Sort sort expression� Sort�Sort or Sort�Sort or �Sort or Atom
TMod st	dist� st	equ� st	prec� st	perf� st	quant
Tense infin� plusq� perf� praet� pres� prespart� futI� futII �for Ger�

man and Japanese�
infin� pres� pastperf� past� future� futurepast� presperf �for
English�

Voice act� pass
VIT Verbmobil Interface Term �not necessarily ground�
YesNo yes� no

�

Report ���

��� The Prolog Implementation

In Prolog� the VIT is implemented as a term of arity �
 named vit� The name
and arity of this realization should be of no interest� if the access into the VIT is
always handled by the ADT package �or a similar abstraction�� If this is the case�
we are not restricted to this implementation in future� As already pointed out� in
general� the information is encoded in lists� The elements are terms� This data
structure is very �exible in adding and removing information� i�e� the terms�

The input and output of each component dealing with the VIT has to make sure
the following properties�

� A VIT is �logical� variable free� i�e� all variables are skolemized�

� A VIT contains only valid information� i�e� in general� lists of terms with
atomic arguments�

� The syntax of a term in a VIT is unique with respect to the slot it belongs to�
I�e� the functor and arity are su�cient to uniquely determine the adequate
slot�

� There is only a �xed number of possible terms allowed in a VIT which are
restricted to a �xed number of possible argument values �enumerations� or
to speci�c types �e�g�� integers��

For describing the predicates of the ADT package we use the �standard� notation
for call patterns �aka mode information�

	 the argument is expected to be instantiated �not necessarily ground� and
will not be changed during processing of the called predicate�

 the argument is expected to be a variable and will be bound during process�
ing of the called predicate�

� the argument can be instantiated when calling the predicate and�or will be
bound during processing of the called predicate�

The ADT package is realized as a Prolog module named vitADT which exports the
predicates described in the following sections� For further remarks on the usage
see appendix B�

�Of course� all partners are free to use any other representations within their components�

�

The ADT Package for the Verbmobil Interface Term

��� Overview

The rest of this documentation is organized as follows� In section � we present
the predicates for constructing a new VIT and �lling it with information� In
section � and section � we outline predicates for information access and those for
deleting information� respectively� Section � informs about predicates for checking
VIT contents� In section � we show predicates for printing a VIT� Miscellaneous
predicates are described in section 	�

Appendix A explains how to get and install the ADT package and appendix B
shows how to use it� Appendix C introduces the term conversion pack�
age atom�term which is part of the ADT package distribution� Finally� ap�
pendix D sketches brie�y the contents of the on�line dictionaries given by the
�les vitSemLex�pl and vitValues�pl of the distribution�

For each predicate presented in this document we give the call pattern�s� and a
brief description sometimes including an example�

��

Report ���

� Create and Fill the ADT

��� Introduction

With vitNew�� a new VIT can be created� and with vitAdd�� it can be �lled
with content� In this case� the adding of information is realized by open ended
lists which should be closed �nally using vitClose���

Once the open ended lists are closed vitAdd� can be used to add new information
to a VIT� vitAdd� takes a VIT� adds something and results a new VIT�

For rebuilding a given VIT which might be not compatible with the current format
vitRebuild�� produces a new one�

The correct location for the information to be added is handled by the syn�
tax� i�e� by the form of a term the designated slot can be determined automati�
cally� The behaviour of vitAdd�f��g can be in�uenced using vitLazyCheck��

or vitRegularCheck�� �see section �����

��� Predicates

vitNew��VIT�

Generates a new VIT which can be �lled� e�g� using vitAdd��� At call time VIT
should be a variable�

Example�

� �� vitNew�VIT��

VIT � vit�	����	
���	
�
�	
���	
���	
���	
���	
���	
���	
���

vitAdd��Infos� �VIT�

Adds information to the contents of the a VIT� Infos can be a single Info or
a list of Info elements� An utterance id UID can be added using id�UID� for
Info� In the same way� the Main Label slot can be �lled with a label Label
using main label�Label�� The behaviour of vitAdd�� can be in�uenced using
vitLazyCheck�� �see section �����

Example�

� �� vitNew�VIT��

vitAdd�s	sort�i
�top��VIT��

VIT � vit�	���	���	����s	sort�i
�top��	
����	���	���	���	���	���	���

��

The ADT Package for the Verbmobil Interface Term

vitAdd��Info� �VIT� �VIT�

Adds a single information Info to the contents of a VIT resulting a new or mod�
i�ed VIT� The behaviour of vitAdd� can be in�uenced using vitLazyCheck��
�see section �����

Example�

� �� vitNew�VIT��

vitAdd��id�xyz��main	label�l
���VIT��

vitClose�VIT��

vitAdd�s	sort�i
�top��VIT�VIT
��

VIT � vit�xyz����l
�����������������������

VIT
 � vit�xyz����l
��s	sort�i
�top���������������������

vitClose��VIT�

Closes the arguments of a VIT which may contain open ended lists�

Example�

� �� vitNew�VIT��

vitAdd�s	sort�i
�top��VIT��

vitClose�VIT��

VIT � vit�	������	����s	sort�i
�top���������������������

vitRebuild��VIT��VIT�

Produces a new VIT using the information found in a given VIT� The new one
may be di�erent with respect to the location of information� Both VITs should
have arity �
 and should have the Utterance ID and Main Label slot at the same
argument position�

��

Report ���

� Access the ADT

��� Introduction

In this section all predicates are listed which can be used to access the contents
of a VIT� We have divided these into two groups the ones which access the slots

of a VIT and the ones which give direct access to the terms within the a VIT�

The slot access predicates have the form vit���VIT��SlotContent� and can be
used to manipulate a slot directly� In general� the term access predicates have the
form vit��	InstOrLabel�	VIT��Value� taking an instance or label and a VIT
resulting a value� if the information is available� Otherwise� they fail�

��� Accessing the Slots

vitDiscourse��VIT� �Discourse�

Uni�es Discourse with the Discourse slot of a VIT�

vitGroupings��VIT� �Groupings�

Uni�es Groupings with the Groupings slot of a VIT�

vitID��VIT� �UtteranceID�

Uni�es UtteranceID with the Utterance ID slot of a VIT�

vitMainLabel��VIT� �MainLabel�

Uni�es MainLabel with the Main Label slot of a VIT�

vitProsody��VIT� �Prosody�

Uni�es Prosody with the Prosody slot of a VIT�

vitScope��VIT� �Scope�

Uni�es Scope with the Scope slot of a VIT�

vitSemantics��VIT� �Semantics�

Uni�es Semantics with the Semantics slot of a VIT�

vitSorts��VIT� �Sorts�

Uni�es Sorts with the Sorts slot of a VIT�

��

The ADT Package for the Verbmobil Interface Term

vitSyntax��VIT� �Syntax�

Uni�es Syntax with the Syntax slot of a VIT�

vitTenseAspect��VIT� �TenseAspect�

Uni�es TenseAspect with the Tense and Aspect slot of a VIT�

��� Accessing the Terms

Note� In general� the following predicates fail if the required information is not
part of the VIT used in a call�

vitAktionsart��Inst� �VIT� �Art�

Reports the Aktionsart value for a given instance�

vitAmbig��VIT� �Ambiguities�

Reports all labeled conditions in the Semantics slot which belong to one of the
lexical ambiguity classes �see �Bos et al� ��������� Ambiguities is a list of such
conditions or �� if there are none�

vitAspect��Inst� �VIT� �Aspect�

Reports the aspect value for a given instance�

vitCase��Inst� �VIT� �Case�

Reports the case value for a given instance�

vitConcept��Inst� �VIT� �Concept�

Reports the concept value for a given instance�

vitDemonType��Inst� �VIT� �DType�

Reports the type of a demonstrative with instance Inst�

vitDialogAct��VIT� �DialogAct�

Reports the the dialog act of a VIT�

vitDialogPhase��VIT� �DialogPhase�

Reports the the dialog phase of a VIT�

��

Report ���

vitDir��Label� �VIT� �YesNo�

Given the label of a preposition this predicate looks if it is marked directional
�YesNo � yes� or non�directional �YesNo � no��

vitEqual��Label��VIT��Hole�

Checks if a label and a hole are marked as equal� i�e� the VIT contains an
eq�Label� Hole� term �backtrackable��

vitErelR��Inst� �VIT� �Relation�

Reports a tense relation for a given instance�

vitGroup��Label��VIT��ListOfLs�

Looks for a single grouping �backtrackable��

vitLabelInGroup��Label��VIT��GroupLabel��ListOfLs�

Checks for a given label Label if it is a member of a ListOfLabels and requires
vitGroup�GroupLabel�VIT�ListOfLabels��

vitMood��Inst� �VIT� �TMood�

Reports the �morpho�syntactic� mood value for a given instance �of a verb��

vitPerson��Inst� �VIT� �Person�

Reports the person value for a given instance�

vitPronType��Inst� �VIT� �PRef� �PType�

Reports the reference and type of a pronoun with instance Inst�

vitProsAccent��Label� �VIT�

Checks if there is a prosodic accent on the condition with label Label�

vitProsBound��Label� �VIT�

Checks if there is a prosodic boundary on the condition with label Label�

vitProsMood��Label� �VIT� �PMood�

Reports the prosodic mood value of the condition with label Label�

vitRrelS��Inst� �VIT� �Relation�

Reports a tense relation for a given instance�

��

The ADT Package for the Verbmobil Interface Term

vitSegmentDesc��VIT� �ID� �YesNo� �LAtom�

Uni�es a segment description� term �see section �����

vitSemEvalPlug��Hole��VIT��Label�

Reports the plugging for a hole suggested by Semantic Evaluation� Checks for
eval plug��� If it is not available� it tests vitSynSemPlug�Hole�VIT�Label��

vitSentMood��VIT� �SMood�

Reports the sentence mood for a given VIT� SMood is the functor of the condi�
tion with label MainLabel and restricted to the sentence mood values given in
section ����

vitSort��Inst� �VIT� �Sort�

Reports the sort value for a given instance�

vitSubOrd��Label��VIT��Hole�

Uni�es with a subordination information leq�Label� Hole� �backtrackable��

vitSynGender��Inst� �VIT� �Gender�

Reports the �morpho�syntactic� gender value for a given instance�

vitSynNumber��Inst� �VIT� �Number�

Reports the �morpho�syntactic� number for a given instance�

vitSynSemPlug��Hole��VIT��Label�

Reports the plugging for a hole suggested by Semantic Construction� e�g� based
on a syntactic analysis�

vitTMod��Inst� �VIT� �TMod�

Reports the temporal modi�er value for a given instance�

vitTense��Inst� �VIT� �Tense�

Reports the �morpho�syntactic� tense value for a given instance�

vitVoice��Inst� �VIT� �Voice�

Reports the voice value for a given instance �of a Japanese verb��

�	

Report ���

� Copy and Delete Information

��� Introduction

vitCopy�� makes a copy of a given VIT which shares no variables with the orig�
inal� vitDelete� deletes information in a given VIT� vitCopyAllBut� makes
a copy of a VIT without copying a speci�ed slot�

��� Predicates

vitCopy��VIT� �VIT�

Makes a copy of a VIT�

Example�

� �
 VIT � vit�A����B��s�sort�i��top����������������������

vitCopy�VIT�NewVIT��

VIT � vit�A����B��s�sort�i��top����������������������

NewVIT � vit�����������������s�sort�i��top���������������������

vitCopyAllBut��Integer� �VIT� �VIT�

Makes a copy of all slots of a VIT without copying argument Integer� This pred�
icate should always be used in combination with vitSlotName�� �see section 	��

Example�

� �
 VIT � vit�A����B��s�sort�i��top����������������������

vitSlotName��Sorts��No��

vitCopyAllBut�No�VIT�NewVIT��

No � ��

VIT � vit�A����B��s�sort�i��top����������������������

NewVIT � vit�A����B������������������������

��

The ADT Package for the Verbmobil Interface Term

vitDelete��Info� �VIT� �VIT�

Deletes information from a given VIT� if it exists� Otherwise vitDelete� simply
uni�es the output with the given VIT� Info cannot be a variable itself when call�
ing vitDelete� but can contain some� I�e� vitDelete� can be used for further
instantiating Info �not backtrackable��

Example�

� �
 vitDelete�s�sort�i��X��

vit�u�����l���s�sort�i��top����������������������

VIT��

X � top�

VIT � vit�u�����l�����������������������

��

Report ���

� Check the VIT

��� Introduction

In this section all predicates are listed which can be used to check the VIT or
parts of it�

vitCheckFormat�� checks a VIT syntactically whereas
vitCheckContent�� does the same for dependencies between the pieces of in�
formation in a VIT� vitCheck�� combines both predicates�

An error handler reports the results of the ADT checkers� The error reporting can
be toggled by vitReportErrors�� �default� and vitDontReportErrors��� The
error handler�s output can be redirected using vitErrorOutput�� and reset to the
default output �user error� by vitResetErrorOutput��� The action after some
error�s� have been detected and reported can be chosen using vitIgnoreError��

or vitFailOnError�� �default��

vitLazyCheck�� changes the behaviour of vitCheckFormat�� and vitAdd�f��g
to be lazy with respect to the language speci�c parts of a VIT� This is important
when using information which is not known to the ADT package� The system will
report every detection of unknown information during processing but will not fail�
To switch o� this mode use vitRegularCheck�� �default��

Single information can be checked using vitValidInfo����� or
vitADT�validInfoCheck�� The di�erent types of arguments can be tested with
vitInst��� vitLabel��� and vitHole���

The language of the checker can be switched using vitSetLanguage��� The cur�
rent language can be seen be using vitLanguage���

��� VIT Checkers

vitCheck��VIT�

Combines vitCheckFormat�� and vitCheckContent�� �see below��

vitCheckFormat��VIT�

Checks the syntax of the information in a given VIT� I�e� for each single Info the
compatibility with the semantic lexicon �e�g� argument frames for verbs� of the
current ADT language is checked and also the argument value ranges of the Info

terms�

�

The ADT Package for the Verbmobil Interface Term

vitCheckContent��VIT�

Checks the dependencies between information in a given VIT� Currently� the
checking covers the following

� unique concept�sort�tense�mood assignment to instances�

� existence of type information for pronouns and demonstratives�

� existence of �non��directional information for prepositions�

� existence and uniqueness of leq��� ccom plug�� and eval plug�� entries
for a hole�

� unique plugging for a single label�

� detection of cyclic groupings�

� missing groupings for group labels�

� existence of morpho�syntactic tense and mood for verbs�

Further checking for cycles and connections between information will be added in
future�

��� Error Handling

vitReportErrors

Reports all detected errors after checking �default��

vitDontReportErrors

Reports no errors even if some were detected during checking�

vitIgnoreError

Switches the checkers error handler to �ignore�� i�e� even if an error occured� the
checkers succeed �default��

��

Report ���

vitFailOnError

Switches the checkers error handler to �fail�� i�e� an error forces a failure�

vitErrorOutput��File�

Redirects the checkers error output to a �le or stream� File needs to be an
accessable and writeable �le or a Prolog output stream� Default is user error�

vitResetErrorOutput

Switches error output to the default output� i�e� sets error output user error�

��� Information Checking

vitLazyCheck

Using this mode vitCheckFormat�� and vitAdd�f��g try to handle syntactically
unknown information�

vitRegularCheck

This mode assumes all information in a VIT to be known to the ADT package
�default��

vitSetLanguage��Language�

Switches the ADT to a given language�

vitLanguage��Language�

Reports current language setting�

vitValidInfo��Info� �Check�

Same as vitValidInfo�Info� Check� � �see below��

��

The ADT Package for the Verbmobil Interface Term

vitValidInfo��Info� �Check� �Slot�

Checks syntax of a given information and if it is valid for a slot� If Check ��
shape� only the form �functor and arity� of Info will be checked� In any other
case� a regular check will be performed assuming Info to be a valid instance�

Example�

� �� vitValidInfo�s	sort�i
�	��shape�S��

S � Sorts

� �� vitValidInfo�s	sort�i
�top��ground�Semantics��

no

� �� vitValidInfo�s	sort�i
�top��ground�Slot��

Slot � Sorts

vitADT�validInfoCheck��Info��Slot��Code�

Reports checks for a given information Info� The valid slot for Info is uni�ed
with Slot� Code is callable Prolog code for checking the arguments of an infor�
mation� This predicate is not exported by vitADT

Example�

� �� vitADT�validInfoCheck�pers�X�Y��Slot�Code��

Slot � Syntax�

Code � vitInst�X��personValue�Y�

vitInst��Inst�

Checks the syntax of an instance�

Example�

� �� vitInst�l
��

no

� �� vitInst�it
��

yes

��

Report ���

vitLabel��Label�

Checks the syntax of a label�

vitHole��Hole�

Checks the syntax of a hole�

��

The ADT Package for the Verbmobil Interface Term

� Printing

��� Introduction

vitPrint�f���g pretty�print a VIT such that it can be used as a Prolog term
again�

��� Predicates

vitPrint��VIT�

Pretty�prints a VIT �using current output stream��

Example�

vit� segment	description�tb
t
br
u
�yes�
dann machen wir doch noch einen termin aus��

�ausmachen�l��i
�� � Semantics
doch�l��h���
termin�l��i���
decl�l��h���
arg
�l��i
�i���
arg��l��i
�i���
noch	fadv	padv�l��l
��h���
ein	card	qua�l��i��l
��l
�h
�
��
dann	laprep	padv�l��i
�h��l
��i��h��l��spec��
pron�l
��i����
l�� � Main Label
�s	sort�i
�ment	communicat	poly�� � Sorts
s	sort�i����space	time�time	sit	poly���
s	sort�i����human�person����
�dir�l��no�� � Discourse
prontype�i��sp	he�std���
�num�i��pl�� � Syntax
pers�i��
��
gend�i��masc��
num�i��sg��
pers�i�����
cas�i��acc��
cas�i��nom���
�ta	mood�i
�ind�� � Tense and Aspect
ta	tense�i
�pres���
�unbound�l
��� � Scope
unbound�l
���
unbound�l
���
leq�l��h���
leq�l��h���
leq�l��h���
leq�l��h
��

��

Report ���

leq�l��h���
leq�l��h���
leq�l��h���
ccom	plug�h��l���
ccom	plug�h��l���
ccom	plug�h��l���
ccom	plug�h��l���
ccom	plug�h
�l����
�pros	mood�l��decl��� � Prosody
�sem	group�l���l���� � Groupings
sem	group�l
��l����

�

vitPrint��Stream��VIT�

Pretty�prints a VIT directing the output to a given stream�

��

The ADT Package for the Verbmobil Interface Term

� Miscellaneous

��� Introduction

This part describes further predicates not covered by previous sections�

vitLabelCond� constructs or decomposes a labeled condition�

vitSlotName�� can be used to list all slot names together with their argument
position in the current VIT implementation�

vitPredicate� and vitExistsPred�� can be used to check for predicates�
vitExistsCond� can be used to check for any condition restricted by a class
and is similar to vitCondition���

vitInstInfo� can be used to collect all information about an instance�

vitDisambig�� can be used to expand underspeci�ed lexical items�

The ADT package can be initalized using vitInit�� and the version can be
checked with vitVersion��� The current ADT package settings are reported by
vitSettings���

��� Predicates

vitLabelCond��LCond	�LCond� �Label� �Cond	�Cond�

Decomposes a given labeled condition LCond into a label Label and a condition
Cond or constructs LCond of Label and given Cond�

Example�

� �
 vitLabelCond�support�l��i��l���L�C��

L � l��

C � support�i��l��

� �
 vitLabelCond�LC�L�support�i��l����

LC � support�L�i��l��

�	

Report ���

vitSlotName��Name��Integer�

Name is a valid slot name and Integer its argument number in the current imple�
mentation �backtrackable��

Example�

� �
 vitSlotName��Main Label��I��

I �

vitPredicate��Condition��Label��Inst�

Succeeds if Condition is of VIT class verb� has base label Label and instance
Inst�

vitExistsPred��Label��Inst��VIT��Condition�

Succeeds if the given VIT contains a labeled condition Condition for which
vitPredicate�Condition�Label�Inst� holds� If Label or Inst are already
instantiated� vitExistsPred�� is deterministic� Otherwise it is backtrackable�
i�e� can be used for look�up�

vitExistsCond��Class��VIT��ListOfArgs�

Matches the list ListOfArgs with the arguments of a condition which is of class
Class �for values of Class see section ����� The arity of the anonymous condition
has to be greater or equal to the length of ListOfArgs� The arguments are
matched from left to right�

vitCondition��
Label�Arg�jArgs���Class��VIT��Cond�

Looks for a condition Cond with base label Label� second argument Arg� and rest
of arguments Args in VIT �backtrackable�� The search can be restricted by a given
class Class� Notice No argX �� X arg�� etc� and no elements of class aux

�like perf�� will be matched

vitInstInfo��Inst��VIT��Infos�

Collects all information about an instance into a list of Attribute�Value pairs
for a given VIT�

��

The ADT Package for the Verbmobil Interface Term

vitAccessableLabels��Label	�Label��Label	�Label��VIT�

Checks whether two labels are connected by a transitive closure
�

� over labeled
conditions and scoping constraints �backtrackable�� Given a label Label��Label�

this predicates enumerates all labels Label��Label� for which Label�
�

� Label�

holds� This closure is restricted by scopal islands given by modal verbs as well as
sentential complements�

vitDisambig��Relation��SemClass	PredName��VITin��VITout�

Given an underspeci�ed semantic representation Relation� a speci�c semantic
class SemClass or predicate name PredName �for verbs� and a VIT� this predicate
produces a VIT in which the underspeci�cation is replaced by an instance of the
speci�ed class� Relation should be part of the given VIT� of course�

vitInit

Initializes the ADT package� vitInit�� is called automatically during loading
the package�

vitVersion��Version�

Reports the version of the ADT package in use�

vitSettings

Reports current settings such as error reporting� error output and language�

Example�

� �
 vitSettings�

� VIT
ADT settings�

� vitRegularCheck

� vitIgnoreError

� vitReportErrors

� vitErrorOutput�user�error�

� vitLanguage�de�

��

Report ���

References

�Amtrup ������� Jan W� Amtrup� ICE � INTARC Communication Environment�

Users Guide and Reference Manual� Version ���� Verbmobil

Technisches Dokument ��� Universit�at Hamburg� Oktober �����

�Bos et al� ������� Johan Bos� Markus Egg and Michael Schiehlen� De�nition of

the Abstract Semantic Classes for the Verbmobil Forschungspro�

totyp ���� Draft of July ��� ����� Available via WWW
http���coli�uni
sb�de��vm�vm
internal�vitdocu�ps�gz

�access restricted to Verbmobil partners��

�CoLi ������� Karsten Worm �ed��� Japanese Semantic Database� Version of
July ��� ����� Available via WWW
http���coli�uni
sb�de��vm�vm
internal�vm
japan�html

�access restricted to Verbmobil partners��

�CSLI�DFKI�IAI�IBM�IMS�SfS ������� Wolfgang Finkler �ed�� English Seman�

tic Database� Version ��� of July ��� ����� Available via WWW
http���www�dfki�uni
sb�de��finkler�E
SEMDB�rdb �access
restricted to Verbmobil partners��

�Heinecke et al� �������
Johannes Heinecke and Karsten Worm� Semantische Daten�

bank� Version ��
� patch of July ��� ����� Available via WWW
http���www�compling�hu�berlin�de��vm�semdb�semdb�aktuell�gz

�access restricted to Verbmobil partners��

�Quintus Manual� Quintus Prolog User	s Manual� Quintus Prolog Release ����
Quintus Corporation� Mountain View� California� ����

�

The ADT Package for the Verbmobil Interface Term

A Getting and Installing the Software

The ADT package is available via anonymous ftp from the Verbmobil ftp�server
ftp�dfki�uni
sb�de at DFKI� Saarbr�ucken �access restricted to Verbmobil part�
ners�� Then follow these steps

ftp� cd EXCHANGE

ftp� bin

ftp� get vitADT������tar�gz

Afterwards you have to unzip and untar the �le at your local site� e�g� using

� gtar
zxf vitADT������tar�gz

or

� unzip vitADT������tar�gz tar
xf vitADT������tar

The distribution contains the following �les

README release notes �recent changes� and installation guide�
Makefile the make�le�
code�vitSemlex�pl the built�in semantic lexicon �see appendix D��
code�vitValues�pl value ranges of terms �see appendix D��
bin�vitADT�qof ADT package in module vitADT �with the semantic lexicon��
bin�atom�term�qof conversion of terms to atoms and vice versa �see appendix C��
doc�report
���
���ps this document�

To install the software call

� make install

which copies vitADT�qof to !VM�HOME�etc�Vit�Adt� For a regular Verbmobil

Forschungsprototyp installation you should set the VM�HOME variable in Makefile

or the environment�

To run the software you neeed Quintus Prolog �Quintus Manual� Version ��� or
higher�

��

Report ���

B Usage

B�� Using the Package

The name of the ADT package is vitADT�fpl�qofg� It is a usual library pack�
age which de�nes a module named vitADT� Hence it can be consulted like every
other Prolog �le containing a module� e�g� by calling ensure�loaded�vitADT� or
use�module�vitADT� ListOfImportedPredicates��

If predicates of the ADT package are not imported into the current module�
predicate calls have to be pre�xed with the module name vitADT� e�g� like
vitADT�vitPrint�VIT�� If predicates are imported� the pre�x can be omitted�
i�e� the same call may look like vitPrint�VIT��

B�� Error Messages

The package produces error messages if the call patterns are violated� There
are two types of errors� Both types cause a predicate to fail� First� there are
instatiation errors an argument was expected to be instatiated at call time� The
error looks like

" Instatiation error� #something� expected but #this� found

" Goal� vitADT�#goal�

The second type of errors are domain errors an argument was instatiated with a
wrong argument type� Then the error message looks like

" Domain error� #something� expected but #this� found

" Goal� vitADT�#goal�

��

The ADT Package for the Verbmobil Interface Term

C Module atom�term

C�� Introduction

The module atom�term exports predicates which can be used to convert terms to
atoms or strings �lists of character codes� and vice versa� These can be used to�
gether with ICE �Amtrup ������� if a Prolog component wants to use the message
type idl�string which is identical to a Prolog atomic�

A VIT has to be ground by de�nition� if a component sends or receives one
�see section ����� If a VIT is not variablefree calling term�atomic�� or

term�string��� numbervars� will be called� I�e� all variables will be instan�
tiated with �!VAR��Integer� terms� These �!VAR��� might be invisible during
debugging because they look like regular variables

C�� Predicates

term�atomic��Term� �Atomic�

Converts a term Term to an atomic Atomic if necessary� inversion of
atomic�term���

Example�

� �
 term�atomic�term�arg��a��arg��b���A��

A � �term�arg��a��arg��b���

atomic�term��Atomic� �Term�

Converts an atomic Atomic to a term Term if necessary� inversion of
term�atomic���

Example�

� �
 atomic�term��term�arg��a��arg��b����T��

T � term�arg��a��arg��b��

��

Report ���

term�string��Term� �String�

Converts a term Term to a list of character codes String� inversion of
string�term���

Example�

� �
 term�string�term�arg��a��arg��b���A��

A � $term�arg��a��arg��b��$

string�term��String� �Term�

Converts a list of character codes String to a term Term� inversion of
term�string���

Example�

� �
 string�term�$term�arg��a��arg��b��$�T��

T � term�arg��a��arg��b��

��

The ADT Package for the Verbmobil Interface Term

D Built	in Semantic Lexicon Database

This ADT package contains the �les vitSemLex�pl and vitValues�pl which
de�ne an on�line database� Currently� there exists an on�line lexicon
for German �based on �Heinecke et al� ��������� for English �based on
�CSLI�DFKI�IAI�IBM�IMS�SfS �������� and for Japanese �based on �CoLi
��������� All three are based on the semantic class descriptions of �Bos et al�
������� except for the changes and reductions mentioned below�

We give a brief description of the data which is part of the current ADT package�
The data was extracted of the named resources using UNIX shell scripts such as
awk� sed� etc� The result is mainly a reduction to relation names and semantic
classes� Hence it does not contain the whole information of the original� e�g� for
decomposition classes which are part of the German database� On the other hand�
we have changed some semantic classes and their names as follows

old su�x new name VIT representation
iv arg� R�L�I��arg��L�I�I��

iv arg� R�L�I��arg�L�I�I��

tv arg�� R�L�I��arg��L�I�I���arg��L�I�I��

tv arg�� R�L�I��arg��L�I�I���arg�L�I�I��

tv arg�� R�L�I��arg��L�I�I���arg�L�I�I��

dv arg��� R�L�I��arg��L�I�I���arg��L�I�I���arg�L�I�I�

ipcv pcv arg� R�L�I��arg�L�I�H�

pcv pcv arg�� R�L�I��arg��L�I�I���arg�L�I�H�

pcv pcv arg�� R�L�I��arg��L�I�I���arg�L�I�H�

dpcv pcv arg��� R�L�I��arg��L�I�I���arg��L�I�I���arg�L�I�H�

coord coord s R�L�LH�LH��

coord coord c R�L�I�LH�I��L��I��

coord coord �h R�L�I�H�I��I��

dra dra conj R�L�I�H�H��

dra dra mod R�L�I�H�

sprep prep R�L�I�I��

Some information was added manually which was not part of the databases�
e�g� this information was �still� forgotten� Contextual constrains such as grouping�
subordination� etc� are not part of this database� In general� these are the result
of a semantic construction process� i�e� that�s part of actions combined to phrase
structure rules�

��

Report ���

The database has the following form

Language�vitSemLex�LabeledCondition�

SemanticClass�

Class�

ConditonCheckingCode�

ContextOfCondition�

ContextCheckingCode�

SortalRestrictions� �
 Goals�

As can be seen� the language Language de�nes a module in which a lexicon
vitSemLex�% can be accessed�

The �rst argument is always a labeled condition LabeledCondition�

In general� the semantic class SemanticClass is given by �Bos et al� ��������
Exceptions are the named classes mentioned above�

The syntax checking code ConditonCheckingCode and ContextCheckingCode is
used� e�g�� by vitCheckFormat��� The callable predicates are either Prolog built�
in or library predicates� de�ned in vitValues�pl or already explained in previous
sections of this documentation�

The context list ContextOfConditon is given by the class description� Together
with parts of the checking code like vitGroupLabel�� this information is used in
vitCheckContent���

The list of sortal restrictions SortalRestrictions is extracted from the German
database� This information is not used in the ADT package�

Optional subgoals Goals are called when accessing a lexicon�

The vitValues�pl �le contains predicates de�ning value ranges for designators
as described in �Bos et al� ������� or in the original databases�

��

Index

Language�vitSemLex�% � � � � � � � � � �

atomic�term�� � � � � � � � � � � � � � � � � �

id�� ��

main label�� � � � � � � � � � � � � � � � � � � ��

segment description� � � � � � � � � � %

string�term�� � � � � � � � � � � � � � � � � � �

term�atomic�� � � � � � � � � � � � � � � � � �

term�string�� � � � � � � � � � � � � � � � � � �

vitADT�validInfoCheck� � � � � � �

vitAccessableLabels� � � � � � � � ��

vitAdd�� ��

vitAdd� �

vitAktionsart� � � � � � � � � � � � � � � � ��

vitAmbig�� ��

vitAspect� ��

vitCase� ��

vitCheck�� ��

vitCheckContent�� � � � � � � � � � � � � ��

vitCheckFormat�� � � � � � � � � � � � � � ��

vitClose�� �

vitConcept� � � � � � � � � � � � � � � � � � � ��

vitCondition�� � � � � � � � � � � � � � � � � ��

vitCopy�� ��

vitCopyAllBut� � � � � � � � � � � � � � � � ��

vitDelete� ��

vitDemonType� � � � � � � � � � � � � � � � � ��

vitDialogAct�� � � � � � � � � � � � � � � � � ��

vitDialogPhase�� � � � � � � � � � � � � � ��

vitDir� ��

vitDisambig�� � � � � � � � � � � � � � � � � � ��

vitDiscourse�� � � � � � � � � � � � � � � � � ��

vitDontReportErrors�� � � � � � � � ��

vitEqual� ��

vitErelR� ��

vitErrorOutput�� � � � � � � � � � � � � � ��

vitExistsCond� � � � � � � � � � � � � � � � ��

vitExistsPred�� � � � � � � � � � � � � � � � ��

vitFailOnError�� � � � � � � � � � � � � � ��

vitGroup� ��

vitGroupings�� � � � � � � � � � � � � � � � � ��

vitHole�� ��

vitID�� ��

vitIgnoreError�� � � � � � � � � � � � � � ��

vitInit�� ��

vitInst�� �

vitInstInfo� � � � � � � � � � � � � � � � � � ��

vitLabel�� ��

vitLabelCond� � � � � � � � � � � � � � � � � �%

vitLabelInGroup�� � � � � � � � � � � � � ��

vitLanguage�� � � � � � � � � � � � � � � � � � ��

vitLazyCheck�� � � � � � � � � � � � � � � � � ��

vitMainLabel�� � � � � � � � � � � � � � � � � ��

vitMood� ��

vitNew�� ��

vitPerson� ��

vitPredicate� � � � � � � � � � � � � � � � � ��

vitPrint�� ��

vitPrint�� ��

vitPronType�� � � � � � � � � � � � � � � � � � ��

vitProsAccent�� � � � � � � � � � � � � � � � ��

vitProsBound�� � � � � � � � � � � � � � � � � ��

vitProsMood� � � � � � � � � � � � � � � � � � ��

vitProsody�� � � � � � � � � � � � � � � � � � � ��

vitRebuild�� � � � � � � � � � � � � � � � � � � �

vitRegularCheck�� � � � � � � � � � � � � ��

vitReportErrors�� � � � � � � � � � � � � ��

vitResetErrorOutput�� � � � � � � � ��

vitRrelS� ��

vitScope�� ��

vitSegmentDesc�� � � � � � � � � � � � � � �%

vitSemEvalPlug� � � � � � � � � � � � � � �%

vitSemantics�� � � � � � � � � � � � � � � � � ��

vitSentMood�� � � � � � � � � � � � � � � � � � �%

vitSetLanguage�� � � � � � � � � � � � � � ��

�	

Report ���

vitSettings�� � � � � � � � � � � � � � � � � � ��

vitSlotName�� � � � � � � � � � � � � � � � � � ��

vitSort� �%

vitSorts�� ��

vitSubOrd� �%

vitSynGender� � � � � � � � � � � � � � � � � �%

vitSynNumber� � � � � � � � � � � � � � � � � �%

vitSynSemPlug� � � � � � � � � � � � � � � � �%

vitSyntax�� ��

vitTMod� �%

vitTense� �%

vitTenseAspect�� � � � � � � � � � � � � � ��

vitValidInfo�� � � � � � � � � � � � � � � � � ��

vitValidInfo� � � � � � � � � � � � � � � � � �

vitVersion�� � � � � � � � � � � � � � � � � � � ��

vitVoice� �%

��

