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Abstract 

Constraint handling rules (CH Rs) are a flexible means to implement 
' user-defined' constraints on top of existing host languages (like Prolog 
and Lisp). Recently, M. Schmidt-Schauß and G. Smolka proposed a new 
methodology for constructing sound and complete inference algorithms for 
terminological knowledge representation formalisms in the tradition of KL­

ONE. We propose CHRs as a flexible implementation language for the 
consistency test of assertions, which is the basis for all terminological rea­
soning services. 

The implementation results in a natural combination of three layers: 
(i) a constraint layer that reasons in well- understood domains such as 
rationals or finite domains, (ii) a terminologicallayer providing a tailored , 
validated vocabulary on which (iii) the application layer can rely. The flex­
ibility of the approach will be illustrated by extending the formalism, its 
implementation and an application example (solving configuration prob­
lems) with attributes, a new quantifier and concrete domains. 
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1 Introduction 

Constraint logic programming (CLP) [JaLa87, Sar89, Coh90, VH9l] combines the 
advantages of logic programming and constraint solving. In logic programming, 
problems are stated in a declarative way using rules to define relations (predi­
cates). Problems are solved by the built-in logic programming engine (LPE) us­
ing backtrack search. In constraint solving, efficient special-purpose algorithms 
are used to solve problems involving distinguished relations referred to as con­
straints. Constraint solving is usually 'hard-wired' in a built-in constraint solver 
(CS). While efficient, this approach makes it hard to extend or specialize a given 
CS, combine it with other CS's or build a CS over a new domain. 

Constraint handling rules (CH Rs) [Fru92] are a language extension providing the 
user (application-programmer) with a declarative and flexible means to introduce 
user-defined constraints (in addition to built-in constraints of the underlying host 
language). In this paper the host language is Prolog, a CLP language with 
equality over Herbrand terms as built-in constraint. CHRs define simplification of 
and propagation over user-defined constraints. Simplification replaces constraints 
by simpler constraints while preserving logical equivalence (e.g. X>Y, Y>X <=> 
false). Propagation adds new constraints which are logically redundant but may 
cause further simplification (e.g. x> Y , Y>Z =::1> X>Z). When repeatedly applied 
by a CHR engine (CHRE) the constraints may become solved as in a CS (e.g. 
A>B,B>C,C>A is false). 

CHIP was the first CLP language to introduce some constructs (demons, forward 
rules, conditionals) [D*88] for user-defined constraint handling (solving, simplifi­
cation, propagation). These various constructs have been generalized into CHRs. 
CHRs are based on guarded rules, as can be found in concurrent logic program­
ming languages [Sha89], in the Swedish branch of the Andorra family [HaJa90], 
Saraswats cc-framework of concurrent constraint programming [Sar89], and - with 
similar motivation as ours - in the 'Guarded Rules' of [Sm09l]. However all these 
languages (except CHIP) lack features essential to define non-trivial constraint 
handling, namely handling conjunctions of constraints and defining constraint 
propagation. CH Rs provide these two features by multiple heads and propaga­
tion rules. 

Terminological formalisms based on KL-ONE [BS85] are used to represent the 
terminological knowledge of a particular problem domain on an abstract logical 
level. To describe this kind of knowledge, one starts with atomic concepts and 
roles, and defines new concepts using the opera.tions provided by the language. 

simple-device isa device and soma connactor is interface. 
These intensionally defined concepts can be considered as unary predicates, and 
roles as binary predicates over individuals. The li mi ted expressiveness of ter­
minological formalisms allows for a number of interesting reasoning services like 
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consistency of assertions and classification of concepts. 

The key idea of [ScSm91] for constructing such inference algorithms is to reduce 
all inference services to a consistency test which can be regarded as a tuned 
tableaux calculus. We propose CHRs as a flexible implementation layer for this 
consistency test. These CHRs directly reflect the rules of the tableaux calculus. 

In [BaHa91, Han92] we have shown how a terminological formalism can be 
parametrized by a concrete domain, e.g. constraints over rational numbers. This 
and other extensions carry over to the implementation with CHRs in a straight­
forward way. Concrete domains can be either also implemented by CHRs or 
provided as built-in constraints of the host language. In this way we obtain a 
fairly natural combination of three knowledge representation layers on a common 
implementational basis. 

2 Constraint Logic Programming with Con­
straint Handling Rules 

Syntax. A CLPCHR. program is a finite set of clauses from the CLP language and 
from the language of CHRs. Atoms and terms are defined as usual. There are two 
classes of distinguished atoms, built-in constraints and user-defined constraints. 

A CLP clause is of the form 
H:- BI, ... Bn • (n~O) 

where the head H is an atom but not a built-in constraint, the body BI, . .. Bn 

is a conjunction of atoms called goals. There are two kinds of CHRs. 

A simplification CH R is of the form 
HI, ... Hi <=-) GI,'" Gi I BI, ... Ble, 

An propagation CH Rs is of the form 
HI, ... Hi =:a) GI, ... Gi I BI, ... Bk, (i > O,j ~ 0, k ~ 0) 

where the multi-head H I , ••• Hi is a conjunction of user-defined constraints and 
the guard GI, ... Gi is a conjunction of atoms which neither are, nor depend on, 
user-defined constraints. 

Semanties. Declaratively, CLP languages are interpreted as formulas in first 
order logic. A CLPCHR. program P is a conjunction of universally quantified 
clauses. 

A CLP clause is an implication 
H ~ BI" ... Bn • 

A simplification CH R is a logical equivalence provided the guard is true 

(GI" ... Gi) - (HI " ... Hi +-+ BI " ... Bk)' 
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A propagation CHR is an implication provided the guard is true 
(GI /\ . .. Gj ) -+ (HI /\ ... Hi -+ BI /\ ... B k ). 

The operational semantics of CLPCHR. can be described by a transition system. 
In the following we do not distinguish between sets and conjunctions of atoms. A 
constraint store represents a set of constraints. Let UC and BC be two constraint 
stores for user-defined and built-in constraints respectively. Let G L be a set of 
goals. A computation state is a tuple < GL, UC, BC >. The initial state consists 
of a query GL and empty constraint stores, < GL, 0, ° >. A final state is 
either successfull (no goals left to solve), < 0, UC, BC >, or failed (due to an 
inconsistent constraint store), < GL, false, BC > or < GL, UC, false >. The 
union of the constraint stores in a final state is called conditional answer for the 
query G L, written answer( G L). The following computation steps are possible to 
get from one computation state to the next 

Solve - Built-In CS 
< {C} U GL, UC, BC > 1----+ < GL, UC, BC' > 

if (C /\ BC) +-+ BC' 
Simplify - CH RE with simplification CH Rs 

< H'uGL,H"UUC,BC > 1----+ < GLUB,UC,BC > 
if (H <=> GIB) E P , (BC -+ H = (H' U H") /\ answer(G)) 
Propagate - CHRE with propagation CHRs 

< H'UGL,H"uUC,BC > 1----+ < GLUB,H'UH"uUC,BC > 
if (H==> GIB) E P , (BC -+ l{ = (H' U H") /\ answer(G)) 
Nondeterministic Unfold - LPE with CLPclause 

< {H'} U GL, UC, BC > 1----+ < GL U B, UC, {H = H'} U BC> 
if(H: - B) E P 

< GL, {H'} U UC, BC > 1----+ < GL U B, UC, {H = H'} U BC > 
if(H: - B) E P 

Implementation. An interpreter for CH Rs has been implemented on top of 
ECRC's Eclipse Prolog utilizing its delay-mechanism and built-in meta-predicates 
to create, inspect and manipulate delayed goals. In such a sequential implemen­
tation, the transitions are tried in the above textual order. We wrote real-life 
constraint handlers for booleans, finite domains (a la CHIP), temporal reasoning 
(quantitative and qualitative constraints over points and intervals ) and real closed 
fields (a la CLP(R)). Typically it took only a few days to produce a prototype, 
since one can directly express how constraints simplify and propagate without 
worrying about implementation details. If inefficient, once the handler has been 
tested and 'tuned' as required, it can be safely reworked in a low-levellanguage. 
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3 Terminological Reasoning with Concrete Do-
• malns 

In this section we will recall the concept language ACe and show its implemen­
tation in eH Rs. We conclude with some extensions of this terminological logic 
(TL) showing the flexibility of the CHRs approach. 

Terminology. A terminology (T-box) consists of a finite set of concept defi­
nitions "C isa s" where C is the newly introduced concept name and s is a 
concept term constructed from concept names and roles. Inductivelya concept 
term is defined as follows: 

1. Every concept name C is a concept term. 

2. If sand t are concept terms and R is a role name then the following ex­
pressions are concept terms, too: 

s and t (conjunction), s or t (disjunction), nota s (complement), 
every R is s (value restriction), some R is s (exists-in restriction) 

An interpretation I with a set VI as domain interprets a concept name C as 
a set CI ~ VI and a role name R as a set RI ~ VI X VI. lt can be lifted 
to concept terms' in a straight forward manner: conjunction, disjunction, and 
complement are interpreted as set intersection, set union, and set complement 
w.r.t. VI, respectively, and 
a E (every R is s)I jff, for all bE VI, (a,b) E R implies b E sI, and 
a E (some R is s)I iff, there is some bE VI such that (a, b) E RI, bE sI. An 
interpretation is a modelof a terminology T if CI = sI for all "c isa s" E T. 

Example: The domain of a configuration application comprises at least devices, 
interfaces, and configurations. The following concept definitions express that 
these are disjoint sets. l 

primitive(device). 
interface isa nota device. 
configuration isa nota (interface or device). 

Let's assurne that a simple device has at least one interface. 

role(connector). 
simple-device isa device and some connector is interface. ~ 

IIt 
is convenient to introduce a short cut for tbis kind of definitions: open-:family(entities. 
[device, inter:face, con:figuration]). 
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Assertional formalism. Objects are (Herbrand) constants or variables. Let a, b 
be objects, Raroie, and C a concept term. Then b: C is a memhership assertion 

a.nd (0, b) : Bis a ro/e-ß//er assertion. An A-uoz is a collection of membership 
and role-fiLIer assertions. 

Example (contd): So we can introduce instances of devices and interfaces. 

dev2:device, interl:interface, (devl,interl):connector. CJ 

Reasoning services. An A-box A is consistent (w.r.t. the terminology) if there 
is a model I and a variable assignment u : objects -+ VI such that aB assertions 
of Aare satisfied, i.e., (auI , buI ) E R I and buI E CI, for all (a, b) : Rand b: ein 
A. An object a is a member of a concept C iff in all models I of the terminology 
that satisfy the A-box by an assignment u we have auI E CI. A concept B 

subsumes a concept C if for aB models I of the terminology BI 2 CI. 

Note that subsumption (and similarly membership) queries can be reduced to 
the inconsistency problem of A-boxes: a concept A subsumes a concept B iff it 
is inconsistent to assurne an object a that is a member of "B and nota A" . 

CLPCHR.,(TL). Roughly, the consistency test of A-boxes works as follows. 

1. Use transformation rules to propagate the assertions in the A-box to make 
the knowledge more explicit. 

2. Look for obvious contradictions (clashes) such as "a: B, a: nota B". 

The transformation rules of the first step as weH as the search for the obvious 
contradictions can be directly mapped to CHRs by regarding assertions as user­
defined constraints (see Appendix). Nondeterministic transformations (due to 
disjunctions in the concept language and resulting from negation) are mapped 
into CLP clauses. 

Extensions. In a number of papers the above technique has been applied suc­
cessfuBy to variants of terminologicallogics (e.g., [HNS90, Hol90]). This flexibili ty 
carries over to extensions of our implementation. 

Roles are interpreted as an arbitrary binary relation over VI. Attributes (also 
called features) are functional roles, i.e., their interpretation is the graph of a 
partial function. Assuming declarations of attributes of the form attribute(F), 
F a concept name, we just have to extend ourimplementation by 

(I, Jl):F, (I, J2):F <=> attribute(F) I Jl=J2, (I, Jl):F. 

Example (contd): Now we are ready to define a simple configuration which con­
sists of two distinguished devices. 
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attribute(component-1). 
attribute(component-2). 
simple-config isa 

configuration and 
some component-1 is simple-device and 
some component-2 is simple-devica 

Extending the above A-box by 

config1:simple-config, 
(config1,dev1):component-1, (config1,dev2):component-2 

the membership service can derive that dev1 and dev2 have connectors that are 
interfaces and are thus simple devices. 0 

A more local way to specify functionali ty of roles is provided through concept 
terms of the form "exactly one R", Raroie name. An a E VI is an element of 
(exactly one R)I if there is exactly one R-role filler for a. This is implemented 
through 

I: exactly one R, (I, J1) :R, (I, J2) :R<=> role(R) I 
J1=J2, (I, J1):R. 

We have also to add a way of propagating the complement operator: 

X:nota exactly one R :- X:every R is (S and nota S). 
X:nota exactly one R :- (X,Y):R, (X,Z):R, Y#Z. 

The former says "there is no filler" , the latter says "there are at least two fillers". 

Example (contd): 
very-simple-device isa simple-device and exactly-one connector. [] 

Concrete domains. In [Han92] restricted forms of quantification over predi­
cates of a concrete domain D have been suggested as concept forming operators. 
Examples of concrete domains are Allen 's temporal interval relations, rational 
(natural) numbers with comparison operators and real-closed fields (all of which 
have been implemented by CHRs). An admissible concrete domain has to be 
closed under complement (since we have to propagate the complement operator) 
and has to provide a satisfiability test for conjunctions of predicates. The syntax 
for the extension TL(D) of the concept language is as follows: 

every Wo and ... and Wn is p 
some Wo and ... and W n is P 
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Where Wi is of the form" Ro of . .. of Rk.", Rj are role/attribute names, n > 0, 
kj ~ 0, i = 1"", n, and p is an n-ary concrete predicate (constraint) of D. For 
readability, we may use also infix notation for the predicates. These constructs 
are inspired by the value restriction and the exists-in restriction. Reading the 
expressions as natural language sentences should provide a good intuition about 
there semantics. See [Han92] for details. 

Example (contd): Now we can associate price and voltage with a device and 
require that in an electrical configuration the voltages have to be compatible. 

attribute(price). 
attribute(voltage). 
electrical-device isa very-simple-device and 

some vol tage > 0 and some price > 1 . 
low-cost-device isa electrical-device and every price < 200. 
high-voltage-device isa electrical device and 

every voltage > 15. 
electrical-configuration isa simple-configuration and 

every component-l is electrical-device and 
every component-2 is electrical-device and 
every voltage of component-l = voltage of component-2. 

o 

CLPCHR,,(TL(D». The A-box of this extended concept formalism mayaiso 
contain assertions of the form p( ab' .. ,an). If we apply the CLP scheme of 
Höhfeld und Smolka [HS90] in a straight forward manner to these 'A-boxes', we 
obtain a CLP language with the three mentioned representation and reasoning 
layers. 

Example (contd): The following CLP clauses specify the catalog of devices and 
describe possible configurations that are based on this catalog. 

catalog(devl) :- devl:electrical-device, 
(devl,10):voltage, (devl,100):price. 

catalog(dev2) :- dev2:electrical-device, 
(dev2,20):voltage, (dev2,1000):price. 

possible-config(C) :­
C:electrical-configuration, 
catalog(Dl), (C,Dl):component-l, 
catalog(D2), (C,D2):component-2. 

The following queries enumerate possible configurations satisfying the require­
ments. 
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:-possible-config(C). 
:-possible-config(C). 

(C.Dl):component-l.Dl:1ow-cost-device. 
(C.D2):component-2.D2:high-voltage-device. 

The first query lists the configurations '(dev1,dev1)' and '(dev2,dev2)' whereas 
the se co nd has no solution. D 

4 Conclusions 

Constraint handling rules (CH Rs) are a language extension for implementing user­
defined constraints. Rapid prototyping of novel applications for constraint tech­
niques is encouraged by the high level of abstraction and declarative nature of 
CHRs. 

In this paper we investigated the terminological reasoning formalism. Flexibil­
ity was illustrated by extending the formalism and its implementation with at­
tributes, a special quantifier and concrete domains. Applicability was illustrated 
by sketching a generie terminology for solving configuration problems. 
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Appendix - Basic Implementation 

Y. Terminological Reasoning System with Constraint Handling Rules 
y. Hanschke and Fruehwirth 1992 

Y. primitive clash 
I:nota S,I:S <=> false. 

Y. negation 
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I:nota (5 or T) <=> I:(nota 5 and nota T). 
I:nota (5 and T) <s> I: (nota 5 or nota T). 
I:nota nota 5 <s> 1:5. 
I:nota every R is 5 <=> I:some R is nota 5. 
I:nota some R is 5 <=> I:every R is nota 5. 

Y. conjunction 
1:5 and T <=> I:5,I:T. 

Y. quantifiers and attributes 
I:some R is 5 <=> role R I (I,J):R,J:5. 
I:every R is 5, (I,J):R ==> role R I J:5. 
I:exactly_one R,(I,J):R,(I,K):R <=> role R I J=K, (I,J) :R. 
(I,J) :A,(I,K):A <=> attribute A I J=K, (I,J):A. 

Y. concept unfolding 
I:C <=> (C isa 5) I 1:5. 
I:nota C <s> (C isa 5) I I:nota 5. 

Y. CLP clauses expressing choices 
Y. disjunction 

1:5 or T :- 1:5. 
1:5 or T :- I:T. 

Y. negation of exactly_one 
I:nota exactly_one R :- I:every R is (S and nota 5). Y. no R 
I:nota exactly_one R :- J=\=K, (I,J):R,(I,K):R. Y. two or more R 

For space and presentation reasons we omit concrete domains in this abstract, 
our actual implementation will be presented in the full paper. 
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