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Abstract

Trust plays a fundamental role in the adoption of technology by society. Potential
consumers tend to avoid a particular technology whenever they feel suspicious about its
ability to cope with their security demands. Such a loss of trust could occur in important
computing platforms, namely cloud, enterprise, and mobile platforms. In this thesis, we
aim to improve trust in these platforms by (i) enhancing their security mechanisms, and
(ii) giving their users guarantees that these mechanisms are in place.
To realize both these goals, we propose several novel systems. For cloud platforms, we

present Excalibur, a system that enables building trusted cloud services. Such services
give cloud customers the ability to process data privately in the cloud, and to attest that
the respective data protection mechanisms are deployed. Attestation is made possible
by the use of trusted computing hardware placed on the cloud nodes. For enterprise
platforms, we propose an OS security model—the broker security model—aimed at pro-
viding information security against a negligent or malicious system administrator while
letting him retain most of the flexibility to manage the OS. We demonstrate the effective-
ness of this model by building BrokULOS, a proof-of-concept instantiation of this model
for Linux. For mobile platforms, we present the Trusted Language Runtime (TLR), a
software system for hosting mobile apps with stringent security needs (e.g., e-wallet).
The TLR leverages ARM TrustZone technology to protect mobile apps from OS security
breaches.





Kurzdarstellung

Für die gesellschaftliche Akzeptanz von Technologie spielt Vertrauen eine entschei-
dende Rolle. Wichtige Rechnerplattformen erfuellen diesbezüglich die Anforderun-
gen ihrer Nutzer jedoch nicht zufriedenstellend. Dies trifft insbesondere auf Cloud-,
Unternehmens- und Mobilplattformen zu. In dieser Arbeit setzen wir uns zum Ziel, das
Vertrauen in diese Plattformen zu stärken, indem wir (1) ihre Sicherheitsmechanismen
verbessern sowie (2) garantieren, dass diese Sicherheitsmechanismen aktiv sind.
Zu diesem Zweck schlagen wir mehrere neuartige Systeme vor. Für Cloud-Plattformen

präsentieren wir Excalibur, welches das Erstellen von vertrauenswürdigen Cloud-
Diensten ermöglicht. Diese Cloud-Dienste erlauben es den Benutzern, ihre Daten in
der Cloud vertraulich zu verarbeiten und sich darüber hinaus den Einsatz entsprechen-
der Schutzvorkehrungen bescheinigen zu lassen. Eine solche Attestierung geschieht mit
Hilfe von Trusted Computing Hardware auf den Cloud-Servern.
Für Unternehmensplattformen stellen wir ein Sicherheitsmodell auf Betriebssyste-

mebene vor—das Broker Security Model. Es zielt darauf ab, Informationssicherheit
trotz fahrlässigem oder böswilligem Systemadministrator zu gewährleisten, ohne diesen
bei seinen Administrationsaufgaben stark einzuschränken. Wir demonstrieren die Leis-
tungsfähigkeit dieses Modells mit BrokULOS, einer Prototypimplementierung für Linux.
Für Mobilplattformen stellen wir die Trusted Language Runtime (TLR) vor, ein Soft-

waresystem zum Hosting von mobilen Anwendungen mit strikten Sicherheitsanforderun-
gen (z.B. elektronische Bezahlfunktionen). TLR nutzt die ARM TrustZone-Technologie
um mobile Anwendungen vor Sicherheitslücken im Betriebssystem selbst zu schützen.
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1 Introduction

1.1 The Importance of Trust in Technological Society

Today, computing technology permeates every aspect of modern society. Over the last 50
years, especially since the advent of the personal computer and the Internet, remarkable
innovations in computing technology have been enthusiastically adopted by society. A
wide range of hardware, software, and services have deeply affected the lives of individ-
uals and organizations in all sorts of human activities, from entertainment (e.g., games)
to mission-critical tasks (e.g., industry, health care, and finances).
This proliferation of technology was largely possible due to the web of trust that has

been built between consumers and providers of technology. Since consumers do not
generally have direct knowledge of the technology internals, their confidence about a
particular product must be based on trust. Consumers’ trust is built through the pro-
gressive accumulation of evidence in favor of a given technology, to the point where the
risks of failure to meet the customers’ expectations become tolerable. A good exam-
ple of this process is online banking. Online banking became prevalent due to multiple
contributions in strengthening end-users’ trust. These contributions included the devel-
opment of security mechanisms (e.g., cryptography, anti-virus, browser security, security
protocols) and the coverage of user losses by banks and insurance companies in case of
security breaches (e.g., phishing, identity theft).
History has also shown that customers’ trust is fragile and can be easily eroded due

to misjudged moves by the technology providers or by the limitations of the technology
itself. Episodes where Facebook and Instagram have made their privacy policies more
permissive were badly received by the public and the popularity of these services was
immediately affected [ins, fbi]. Similarly, the loss of customers’ data by Amazon S3
represented a significant blow to the credibility of cloud computing [amad]. To prevent a
slowdown in the adoption of technology, it is then crucial that the providers of technology
continue to be diligent in maintaining their customers’ trust.

1.2 Trust Issues in Modern Computing Platforms

We highlight three important computing platforms that have not entirely been able
to cope with the security expectations of their respective consumers, namely cloud,
enterprise, and mobile platforms.
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1.2.1 Cloud Platforms

Cloud platforms are one clear scenario where building trust is as important as it is chal-
lenging. Cloud computing follows an outsourcing model where cloud providers monetize
their datacenter infrastructure by providing cloud services such as Amazon S3 [Amac]
and Amazon EC2 [Amab]. Customers can then offload data hosting and computation
to the cloud by paying for the resources consumed.
Since the customers pay for these cloud services, they expect their data to be han-

dled properly in the cloud. As real world incidents have showed [tmo], failure by the
cloud providers to handle customers’ data, e.g., by leaking or losing data, could be
catastrophic for customers and deeply affect the reputation of cloud providers. For this
reason, cloud providers try to build customers’ trust by making their systems reliable,
for example, securing their premises, recruiting skilled engineers, and complying with
best practices [Amaa].
However, despite the best efforts of the cloud providers, customers have expressed

several concerns about the cloud. First, a lack of transparency is prevalent. Mostly
due to security and business concerns, cloud providers tend to be secretive about the
internals of their cloud infrastructures. This lack of transparency raises numerous doubts
in customers’ minds. Customers don’t know, for example, who can access the data, who
manages the cloud infrastructure, what software is really installed, how their data is
being used, or on which locations (and jurisdictions) the data will be stored.
Second, current cloud platforms are prone to mismanagement threats. The cloud ad-

ministrators, who are responsible for installing, configuring, and operating this software,
could alter the behavior of a cloud service by reinstalling, reconfiguring, or manipulating
the software of the cloud nodes. When performed by a negligent or a malicious cloud
administrator, such activities could result in the leakage, corruption, or loss of customer
data. Presently, this lack of guarantee about the behavior of cloud services deters many
organizations from using the cloud for security sensitive tasks [ENI09a].

1.2.2 Enterprise Platforms

Trust issues could also arise in the context of enterprise environments. Many organiza-
tions use in-house enterprise platforms for storing and processing security sensitive data.
By enterprise platforms we refer to the cluster and server infrastructures that constitute
the IT backbone of an organization. These platforms take care of security sensitive data
relevant not only to the organization itself, but also to external users, e.g., when hosting
social networks sites, search engines, and shopping services.
In order for organizations to make sure that their enterprise platforms operate cor-

rectly, they must entirely trust their system administrators to do their jobs properly. In
general, however, building trust in system administrators is not easy. System administra-
tors are responsible for maintaining enterprise platforms, i.e., managing their software,
resources, and the user data located therein. Because even small mistakes when per-
forming these tasks could result in serious security breaches, system administrators must
be highly trustworthy employees. While in small organizations administrators can be
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closely scrutinized, in large organizations assessing the competence and tracing the be-
havior of individual employees is harder. Consequently, large organizations are more
prone to security breaches due to negligent or malicious administrator activity.
In the current state of affairs, preventing mismanagement threats is not easy without

significantly hindering the manageability of systems. Enterprise platforms typically run
commodity operating systems (OSes), which require acquiring superuser privileges to
perform most of the management tasks. While superuser privileges allow for the maxi-
mum flexibility in maintaining an OS, they could easily be abused in order to compromise
sensitive user data. Existing defense techniques would either require deep changes to
existing systems [BLP76, Bib77] or prevent administrators from performing most of their
typical maintenance tasks [ZCCZ11]. Thus, it is time to rethink the design of commodity
OSes so as to improve the security of enterprise platforms against administrator threats
while preserving the system manageability.

1.2.3 Mobile Platforms

Lastly, we turn our attention to the mobile computing universe. Mobile platforms have
witnessed an impressive boost in popularity over the last few years. A variety of mobile
technologies became ubiquitous, such as laptops, netbooks, tablets, and smartphones.
As the mobile device market gained momentum, two interesting phenomena emerged.

First, the impressive computing power of smartphones combined with the fact that they
accompany their users everywhere prompted the emergence of a multi-million dollar
mobile software industry. Thousands of mobile applications have been created by in-
dependent developers and distributed to users via online app stores [Goob]. Existing
mobile apps offer their users a variety of services for photo sharing, password manage-
ment, contacts management, and much more. Emerging applications promise to further
enable payments in shops and vending machines and manage the health history of the
smartphone owners—the so called e-wallet and e-health applications.
Another relevant change in the mobile sphere was the proliferation of malware. As

the mobile applications started to process sensitive user data of high monetary value
in the underworld (e.g., personal photos and location trails), spammers and identity
thieves have increasingly deployed malware with the purpose of extracting that data.
However, devising effective defense mechanisms against malware is far from trivial due to
the complexity of the operating system and applications of mobile devices. In fact, the
trusted computing base of mobile platforms is currently on par with that of applications
running in desktops, opening an avenue for security breaches. As a result, today’s
smartphone platforms offer limited protections for processing security sensitive data,
a fact that could erode users’ trust and hinder the development of applications with
stringent security requirements.

In summary, in cloud, enterprise, and mobile platforms, trust issues arise mostly due
to technical limitations specific to each of the targeted computing platforms. Without
addressing these limitations, users could decide to abandon a technology entirely (e.g.,
in cloud computing), be forced to use it with the associated risks due to the lack of
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a better alternative (e.g., in the enterprise setting), or be deprived of interesting new
applications (e.g., in the smartphone world).

1.3 Improving Trust in Modern Computing Platforms

In this thesis, we aim to strengthen users’ trust in cloud, enterprise, and mobile com-
puting platforms by building systems that can provide the following two key features:

1. Enforce the security properties required by the users. First, we aim to
reinforce the protection of users’ data and computations by enhancing the security
of the computing platforms. The specific security properties to be implemented
and the threat model under which they must be implemented are platform specific.
In the cloud setting, we aim to prevent cloud administrators from inspecting or
interfering with computations taking place in customers’ virtual machines. In
the enterprise environment, we want to enable administrators to maintain the
operating systems without compromising the confidentiality and integrity of data
located and processed in user accounts. In mobile environments, our goal is to
develop mechanisms for protection of the mobile applications’ state in the event of
security breaches that could compromise the entire OS.

2. Give users guarantees that the desired security properties are being
enforced. Second, because in most cases users do not have control over the com-
puting platforms, even if a target platform enforces their desired security proper-
ties, users do not have the means to learn about the platform state and cannot
tell whether or not it can be trusted. Therefore, its is fundamental to bridge this
gap by giving users guarantees regarding the deployment of the mechanisms that
enforce the desired security properties. To provide such guarantees, we leverage
two techniques: trusted computing hardware, which provides online mechanisms
for remote attestation of a platform’s state, and trusted certifiers, which provide
offline certification services.

Implementing this twofold strategy for cloud, enterprise, and mobile platforms raises
new technical challenges, which we address with a set of novel contributions.

1.4 Contributions

The contributions of this thesis are as follows:

1. The first cloud architecture that leverages trusted computing hardware
for providing enhanced security in the cloud. To address the trust issues in
the cloud space, we present a cloud architecture named Trusted Cloud Computing
Platform (TCCP). It consists of an Infrastructure-as-a-Service (IaaS) cloud service
akin to Amazon EC2 that provides guarantees of confidentiality and integrity of
customers’ guest virtual machines from insider threats within the cloud. The key
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insight underlying TCCP is a combination of a hardened virtualization layer that
can host the guest VMs securely with a novel cloud attestation capability. Cloud
attestation leverages commodity trusted computing hardware—Trusted Platform
Module (TPM) [Gro06]—deployed on the cloud nodes to give customers guarantees
that their virtual machines can execute only on the hardened virtualization layer.
Although we illustrate cloud attestation with TCCP, this technique could be used
more generally for building arbitrary trusted cloud services.

2. A system that retrofits commodity trusted computing hardware into
cloud infrastructures and provides simple primitives for building trusted
cloud services. Although TPMs alone could be used to implement trusted cloud
services like TCCP, the developers of such services would face important challenges.
In particular, without careful design, trusted cloud services could incur scalability
bottlenecks, privacy breaches, and data management inflexibility. Such challenges
emerge because TPMs have been developed for single node platforms and not for
the multi-node cloud environment, which has unique requirements. To overcome
the challenges of TPM usage in the cloud, we developed a system called Excal-
ibur. Excalibur masks the intricacies of TPMs by (i) hiding the low-level TPM
primitives from developers and (ii) offering developers a simple programming ab-
straction. This abstraction, named policy-sealed data, provides two primitives: seal
and unseal. Seal enables customers to encrypt data to a user-defined policy before
shipping it to the cloud, with the guarantee that the data can only be unsealed
(i.e., decrypted) on the cloud nodes that satisfy the policy. The user-defined policy
restricts the software and hardware configurations of cloud nodes according to the
user preferences. Excalibur hides the low level details of the cloud, can cope with
the data mobility needs within the cloud, and can scale massively. We demon-
strated the practicality of Excalibur in Eucalyptus [NWG+], an open-source cloud
platform.

3. A novel OS security model and extensions for securing data and compu-
tations from mismanagement threats in commodity OSes. In the context
of enterprise platforms, we studied the problem of enabling an untrusted admin-
istrator to maintain a commodity OS while preserving the confidentiality and in-
tegrity of users’ data and computations. Providing such protections is challenging
because many tasks (e.g., creating user accounts, installing applications, or backing
up user data) require granting the administrator superuser privileges, which give
him direct access to users’ data and computation state. To address this challenge,
we propose a new set of guiding principles for OS design that we call the broker
security model. Our model achieves a security-manageability trade-off by applying
the principle of least privilege and prescribing the OS designer a methodology that
(i) restricts administrator privileges by precluding inspection and modification of
user data, and (ii) allows for the execution of necessary management tasks through
the mediation of a layer of trusted programs—brokers—interposed between the
management interface and system objects. Brokers provide data security at the
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user account granularity while enabling the administrator to perform the typical
OS management tasks. To demonstrate the viability of this approach, we built
BrokULOS, a Linux-based OS that suppresses superuser privileges and exposes a
narrow management interface offered through a set of tailor-made brokers.

4. A new system for protecting the execution state of security-sensitive ap-
plications on mobile platforms. In the scope of mobile platforms, we present
the Trusted Language Runtime (TLR), a system that provides a security environ-
ment for protecting the state of mobile applications for the .Net Framework in
the event of an OS compromise. The TLR targets primarily smartphone devices
where, despite the growing popularity of todays smartphones, they do not yet offer
environments for building and running trusted applications, i.e., applications that
require running security-sensitive logic in a trusted domain (e.g., for online bank-
ing). To facilitate the development of trusted applications, the TLR provides an
intuitive programming model that enables developers to reason about the pieces
of security-sensitive code called trustlets, and about the trusted domain environ-
ments, which are exposed to the programmer as a special sandbox object called
trustbox. Then, at runtime, the TLR transparently confines trustlets’ execution
state to trusted domains, where it is kept safe from the reach of the OS. The TLR
prevents bloating the TCB by making use of (i) ARM TrustZone technology [arm],
which obviates the need for heavyweight hypervisors, and (ii) extending the .Net
MicroFramework [net], which is a small footprint .Net language runtime for em-
bedded and resource constrained devices. The TLR is easy to program because
.Net offers the productivity benefits of modern high-level languages. We built a
prototype of the system for an ARM emulator, and for a real hardware platform.

Some of the material in this thesis was previously published in a series of conference
papers [SGR09, SRSW11, SRGS12, SRF12] or is under submission to a conference at
the time of this writing [SRSW13].

1.5 Structure of this Thesis

The rest of this dissertation is divided into three parts, focusing on cloud, enterprise,
and mobile platforms, respectively.
Part I introduces our contributions to improving trust in cloud platforms. In Chapter 2

we provide additional background and characterize the threat model in detail. Then, in
Chapter 3, we present the TCCP cloud architecture and use it to highlight the challenges
of TPM usage in the cloud; these challenges motivate the design of Excalibur. Chapter 4
presents the design of Excalibur, including the policy-sealed data abstraction, and the
evaluation of the system.
Part II switches gears to focus on our contributions to enterprise platforms. Chapter 5

provides the background and related work in this space. Chapter 6 presents the Broker
Security Model (BSM) and BrokULOS, a set of extensions for Linux that demonstrate
the viability of BSM.
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Part III focuses on improving trust in mobile platforms. Chapter 7 provides the
background and related work, and Chapter 8 describes the design and implementation
of the Trusted Language Runtime. Finally, Chapter 9 makes a comparative analysis
of all systems developed in this thesis and discusses their limitations, and Chapter 10
concludes this dissertation by providing the main conclusions of this work and laying
out the research directions we wish to pursue in the future.
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Improving Trust in Cloud Platforms
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2 Motivation and Related Work

In Part I of this thesis, we focus on the need to improve trust in cloud platforms. In fact,
despite the benefits of cloud computing, the loss of control over data and computations
constitutes a significant deterrent for potential cloud customers [ENI09a]. Existing cloud
services fail to provide answers and guarantees for basic questions like: Who can access
customer data and computations? Are they safe from cloud administrators? Are they
safe from other cloud tenants?
We realize that many of these questions and uncertainties could be resolved if cus-

tomers were assured that only the software they trust could be authorized to serve their
requests. For example, if customer requests were served on a formally verified kernel
that can isolate the domains of co-tenants and prevent access to computation state by
the cloud administrators, the security guarantees offered by the service would be con-
siderably stronger than if the job were done on a commodity hypervisor that does not
offer such protections.
Based on this insight, our strategy to improve customers’ trust is to enhance cloud ser-

vices with a cloud attestation capability. Cloud attestation aims to give customers assur-
ances that their requests are handled only by the cloud software that they trust. To pro-
vide this guarantee, this capability relies on commodity trusted computing hardware—
Trusted Platform Module (TPM) [Gro06]—deployed on the cloud nodes to provide a
reliable root of trust that is independent of the cloud nodes’ software state. In Chap-
ter 3, we illustrate how cloud attestation could be used in general for improving the
security of cloud services akin to Amazon EC2 [Amab]. Then, in Chapter 4, we focus on
the challenges of employing TPMs in cloud environments and present Excalibur, a sys-
tem that helps overcome those challenges. Excalibur offers cloud providers a simple yet
powerful primitive for building trusted cloud services, i.e., cloud services that take ad-
vantage of the cloud nodes’ TPMs, while overcoming the limitations of TPM technology
in the cloud.
In the rest of this chapter we present our motivation and related work in more detail.

We start by providing an overview of the current cloud architecture and of its problems.
We then introduce our idea—the notion of cloud attestation—aimed at addressing these
problems, and clearly state our goals, assumptions, and threat model. Then, we provide
a brief overview of the trusted computing technology, which we use to implement cloud
attestation, and discuss the related work on improving trust in the cloud.

2.1 Limitations of the Current Cloud Computing Stack

To motivate the need for cloud attestation, we must first understand the risks that cloud
customers incur in the current cloud computing model. A simplified model of existing
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Figure 2.1: Cloud computing layers.

cloud services can be represented by the diagram in Figure 2.1. Despite the diversity
and complexity of services and players that populate the cloud ecosystem, existing cloud
services can be grouped according to the abstraction layer at which services are delivered
to their respective clients:

• Infrastructure-as-a-Service (IaaS) includes the basic infrastructure services for
virtual machine hosting (e.g., Amazon EC2) and data storage (e.g., Amazon S3).
Operated by cloud providers like Amazon and Google these services run directly
on a hardware infrastructure consisting of geographically dispersed datacenters,
each of them hosting thousands of cloud nodes and other hardware elements. The
software infrastructure that implements IaaS executes on the cloud nodes and
consists of low-level software components, including a hypervisor or an operating
system for virtual machine hosting or data storage services.

• Platform-as-a-Service (PaaS) sits on top of the physical infrastructure or IaaS.
Similarly to IaaS, PaaS incorporates services for computing and storing data. How-
ever, these services are offered at a higher level of abstraction (e.g., databases,
runtime and web app hosting) and are supported by a richer set of auxiliary ser-
vices (e.g., message handling). Examples of PaaS services include Google Ap-
pEngine [Gooa] and Microsoft Azure [Azu]. PaaS services are typically imple-
mented by middleware components that operate on top of the operating system
and include execution runtimes (e.g., Java), frameworks, and database servers.

• Service-as-a-Service (SaaS) implement applications such as CRM, games, mail,
portals, etc. SaaS services can be implemented on “bare metal”, on PaaS, or on
IaaS (hosted in a virtual machine).

In all these cases, irrespectively of the abstraction layer at which services are of-
fered, clients have limited awareness of and no guarantees about the service behavior.
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Firstly, the implementation of the services is kept private by the service provider. Service
providers tend to reveal only the interfaces and a high level description of the services.
Hiding the low level implementation details aims to improve security from external at-
tacks and preserve the competitive advantage over the provider’s peers. Secondly, the
behavior of services is not guaranteed to be stable over time, even if the service logic is
correctly implemented. Instability is possible because the cloud software stack is fully
reconfigurable. For example, by changing the configuration of a service, a cloud operator
could entirely alter its expected behavior. Such a fact could result in security breaches,
service disruption, performance degradation, and functional deviation. This lack of as-
surances by today’s cloud architectures are unacceptable to clients with stringent security
demands [ENI09b].

2.2 Cloud Attestation

To address the limitations of the current cloud stack, we propose to extend the cloud
architecture with cloud attestation. We define cloud attestation as a mechanism that
ensures that client requests can only be served on the cloud nodes whose software state
is deemed trusted by the clients. The service provider retains the right and the freedom
to implement the software of a service, but clients can now know and decide whether
that software configuration is satisfactory even before using a cloud service.
Cloud attestation is a general mechanism for bootstrapping trust in the cloud. Cloud

providers can specify the behavior of their services as an arbitrary state machine, en-
abling them to tailor the software configurations of the cloud nodes to enforce properties
demanded by the clients. For example, a cloud provider could build an IaaS hosting
service based on a formally verified microkernel such as seL4 [KEH+09], and leverage
cloud attestation to gives clients the guarantee that their requests will be served ex-
clusively by the cloud nodes running seL4. Likewise, cloud services could be enhanced
to satisfy certain requirements in terms of security (e.g., isolation properties), function-
ality (e.g., satisfying certain regulations), and performance (e.g., implementing specific
optimizations).
To reliably convey the software configuration of cloud nodes to clients, we base cloud

attestation upon trusted computing hardware. Namely, the cloud nodes are equipped
with commodity trusted computing hardware, namely Trusted Platform Module (TPM)
chips, which constitute the root of trust for cloud attestation. TPMs allow for checking
the software state of the cloud nodes and making this information available to the clients.
This capability is possible because TPMs’ primitives enable tracking the software state
of a computer and reporting that state to a remote party. Since TPMs are inexpensive
and increasingly available on server blades, deploying TPMs on a cloud infrastructure
would require modest or no additional investment by the cloud provider.
There are, however, some concerns that need to be addressed in order to make this

technique practical. One potential concern for cloud providers is related to how many
details about the cloud would be revealed to the public by providing cloud attestation.
To limit the amount of information that is made public, cloud attestation must only
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convey the software configuration of the cloud nodes to clients in a form that is both
meaningful for clients and not compromising for providers. Another potential concern
is whether cloud attestation will overly complicate the development and maintenance of
cloud services, or affect the scalability and fault tolerance of services. Next, we draw
our plans to make cloud attestation practical.

2.3 Goals, Assumptions, and Threat Model

In Part I of this thesis we focus on (i) illustrating the benefits of cloud attestation,
and (ii) addressing the potential concerns that this technique could raise. To illustrate
the potential benefits of cloud attestation, we focus exclusively on IaaS services, which
constitute the bedrock of the cloud computing stack, and present an architecture of an
IaaS service that provides data security from malicious administrators (see Chapter 3).
To address the concerns of cloud attestation, we built Excalibur. Excalibur is a system
that helps retrofit the cloud infrastructure with TPMs, and provides a key high-level
primitive—policy-sealed data—for developing and managing trusted cloud services (see
Chapter 4). Extending cloud attestation to the cloud stack’s upper layers raises addi-
tional challenges, which we plan to explore in the future (see Chapter 10). Next, we
clarify our assumptions and threat model.
We differentiate between trusted and untrusted software platforms; the former are

approved by the clients, whereas the latter are not. We assume that the trusted soft-
ware platforms are correctly implemented and have the capability to protect volatile
key material generated by Excalibur. Since our focus in Part I is on providing a cloud
attestation capability, we are not concerned with securing the software platforms them-
selves. Such protections would require sanitizing the management interface exposed to
the cloud administrators to prevent leakage or corruption of data (e.g., direct memory in-
spection). To address these complementary goals, the developers of the trusted software
could make use of existing systems and hardening techniques presented in previous re-
search [MSWB09, KEH+09, ZCCZ11, HHF+05] and in Part II of this thesis. Regarding
the untrusted software platforms, we make no assumptions whatsoever.
We assume that all cloud nodes are equipped with TPMs and that the hardware is cor-

rectly implemented. In addition, we assume that the physical integrity of the cloud nodes
is protected. It is often the case that in modern datacenters the physical access to the
cloud nodes is highly restricted. In fact, most of the management activity is performed
from remote sites, including installing software, monitoring systems’ activity, and power
cycling the cloud nodes. In some cases, such as in container-based datacenters [Ham07],
physical access is entirely prohibited.
Regarding the threat model, cloud attestation must be robust against a malicious agent

that operates from within the cloud. An attacker must not be able to fool the cloud
clients into thinking that cloud nodes execute a particular software when in reality they
execute a different one. We model the attacker’s capabilities as those of a disgruntled
cloud administrator with the privileges to manage the cloud software remotely: he can
reboot any cloud node, access its local disk after rebooting, reinstall the software, and
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eavesdrop the network. He can install an operating system or hypervisor that he controls
on any cloud node, allowing him to have full control over a cloud node’s state. However,
installing a trusted software platform on a cloud node restricts the attacker’s capabilities
to the privileges that that software grants the administrator. For example, on a cloud
node booting the seL4 [KEH+09] microkernel, an attacker could not control the OS
kernel nor the system services. Finally, the attacker cannot launch physical attacks that
could compromise the TPMs, because he has only remote access to the nodes, and he is
powerless to violate the integrity of trusted software platforms.
Note that, although we model the attacker as a disgruntled cloud administrator, our

threat model covers a broad range of threats. By protecting against a malicious cloud
administrator, cloud attestation offers defenses against accidental or negligent activity
by the cloud administrators. In addition, this threat model also covers attacks that
escalate administrator privileges on untrusted software platforms stemming from mal-
ware infection or from external attackers. Next, we provide some background on TPM
technology and discuss the related work.

2.4 Brief Primer on the Trusted Platform Module

As mentioned above, a key building block for cloud attestation is the Trusted Platform
Module (TPM). To better understand how this technology works, we provide some
minimal background. First, we introduce the main abstractions implemented by TPMs,
and then describe the most relevant implementation details.

2.4.1 Trusted Computing Abstractions

The Trusted Platform Module (TPM) [Gro06] is the most popular and widespread in-
stance of trusted computing hardware technology. The primary goal of trusted comput-
ing hardware is to implement a set of trusted computing abstractions, which allow for
bootstrapping trust in a single computer [PMP10]. These abstractions enable a remote
party to 1) reliably determine the bootstrap execution state of a computer, and 2) re-
strict data access on that computer to a software execution state trusted by the remote
party. Trusted computing abstractions are important in cloud attestation because they
will be used as the fundamental operations for building trust in the multi-node cloud
environment. To better understand the role of these abstractions, we first introduce
their semantics and then use an example application to illustrate how they work.
There are typically four main abstractions that the trusted hardware is expected to

implement:

• Strong identity: Strong identity enables the computer to be uniquely identified
without having to trust the OS or the software running on the computer.

• Trusted boot: Trusted boot produces a unique fingerprint of the software plat-
form running on the computer; the fingerprint consists of hashes of software plat-
form components (e.g., BIOS, firmware controlling the computer’s devices, boot-
loader, OS) computed at boot time.
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Figure 2.2: Using trusted computing abstractions to provide DRM protection.

• Remote attestation: The software fingerprint can be securely reported to a
remote party using a remote attestation protocol; this protocol lets the remote
party authenticate both the computer and the software platform so it can assess
whether the computer is trustworthy, e.g., if it is a trusted platform that is designed
to protect the confidentiality and integrity of data [Mic, HHF+05].

• Sealed storage: Sealed storage allows the system to protect persistent secrets
(e.g., encryption keys) from an attacker with the ability to reboot the machine
and install a malicious OS that can inspect the disk; the secrets are encrypted
so that they can be decrypted only by the same computer running the trusted
software platform specified upon encryption.

These abstractions can then be used by a particular software platform to provide
specific guarantees. Consider for example how they could be used for building an OS
with Digital Rights Management (DRM) protection in desktops (see Figure 2.2). The
goal of DRM is to prevent illegal retrieval and distribution of copyrighted content, such
as music, movies, and software. The key challenge of implementing DRM is that the
protections in the operating system (OS) and applications for checking the authenticity
of the content can be subverted and allow for the direct access to the content. Bypassing
these protections could be done by tampering with the binaries of OS and applications,
and then boot the modified versions on the computer.
Thwarting copyright infringement could be achieved using trusted computing hard-

ware located on the consumer’s platform and leveraging trusted computing abstractions.
Intuitively, the idea is to give content distributors the guarantee that the binary of the
OS and applications have not been tampered with. If this property holds, it is safe
to ship the content to the consumer’s platform. This verification could be done as fol-
lows. Before shipping the content, the content distribution services execute a remote
attestation protocol which obtains a remote fingerprint of the target computer. (The
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strong identity could be (optionally) used to authenticate the remote attestation sig-
natures issued by the consumer platform.) If the fingerprint differs from the trusted
software’s, then the trusted software binary has been modified or replaced before boot.
Thus, the platform cannot be trusted, and the content delivery is aborted. Otherwise,
the consumer platform is trusted and the service proceeds with sending the content.
To protect the content at the consumer’s end, the OS must prevent the content from

being leaked from memory and from disk. For this last purpose, the OS uses sealed stor-
age before storing the content on disk so that, if the platform reboots to a different OS,
the content remains bound to the trusted software and is inaccessible to the untrusted
OS. In order for remote attestation and sealed storage to work, trusted boot must be
enabled, so that the fingerprint can be generated upon boot.
This example helps to show how trusted computing abstractions provide the basic

support for enabling a remote party to bind sensitive data to trusted software on a single-
node platform. (In fact, thwarting copyright infringement was one of the motivations
that drove the development of trusted computing hardware and TPMs.) In our work,
we borrow and develop this idea to provide analogous guarantees in multi-node cloud
environments.

2.4.2 Trusted Platform Module Primitives

The TPM’s main goal is to implement the trusted computing abstractions described
above. In reality, the functionality of TPM exceeds this scope. The TPM could be seen as
a non-programmable cryptographic library offering OS and application developers a large
number of cryptographic primitives (107 commands in total for TPM v1.2), ranging from
random number generation, cryptographic key generation and management, monotonic
counters, and data encryption / decryption. In the context of this work, however, only
a few subset of primitives are relevant to us, namely those that implement the trusted
computing abstractions:

• To provide a strong identity, the TPM uses an Attestation Identity Key (AIK), a
cryptographic public key generated inside the TPM; its private key never leaves
the TPM in plaintext and can only be used for issuing digital signatures in the
TPM.

• To track the hash values that constitute a fingerprint, the TPM uses special regis-
ters called Platform Configuration Registers (PCRs). Whenever a reboot occurs,
the PCRs are reset and updated with new hash values; the content of the PCRs
constitutes the fingerprint of the software platform booting on the machine.

• To perform remote attestation, the TPM can issue a quote, which includes the
PCR values signed by the TPM with an AIK.

• For sealed storage, the TPM offers two primitives, called seal and unseal, to encrypt
and decrypt secrets, respectively. Seal encrypts the input data and binds it to the
current set of PCR values. Unseal validates the identity and fingerprint of the
software platform before decrypting sealed data.
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In the context of this work, we use these TPM primitives to provide cloud attestation
support. In particular we use them to illustrate the design of a trusted cloud service
(Chapter 3), and to build Excalibur (Chapter 4). But before presenting these issues in
more detail, we discuss some relevant work on improving trust in the cloud.

2.5 Related Work on Improving Trust in the Cloud

We structure our survey on related work in two categories: techniques based on trusted
hardware, and techniques purely based on cryptography.

2.5.1 Based on Trusted Hardware

To the best of our knowledge, we introduced the concept of leveraging trusted hardware
to improve customers’ trust in the cloud [SGR09]. Since our initial proposal, a stream
of research has been produced on this topic. To review the work in this area, we first
describe the relevant work in trusted computing in general, and then discuss the existing
research on applying trusted computing in the context of cloud services.
Over the past several years, there has been considerable work on trusted comput-

ing [PMP10]. Most of this work targets single computers with the goal of enforcing
application runtime protection [GPC+03, HHF+05, MPP+08a, MLQ+10, LTM+00],
virtualizing trusted computing hardware [BCG+06], and devising remote attestation
solutions based on both software [SPvDK04, HCF04] and hardware [SZJvD04, SJZvD,
SPD05, BCC04, JSS, SS04]. Other work, focusing on distributed environments, pro-
vides integrity protection on shared testbeds [CHER10] or distributed mandatory access
control [MJB+06]. More recently, trusted computing primitives have been adapted to
mobile scenarios to provide increased assurances about the authenticity of data gener-
ated by sensor-equipped smartphones [LSWR12]. Our work concentrates on the specific
challenges of cloud computing environments, which fall outside the scope of these prior
efforts.
Excalibur shares some ideas with property-based attestation [SS04], whose goal is to

make hash-based software fingerprints more meaningful to humans. Like Excalibur,
property-based attestation maps low-level fingerprints to high level attributes (proper-
ties) and relies on a monitor (controller) to perform this mapping. However, this prior
work offers an abstract model without an associated system. Moreover, Excalibur ex-
tends this work by proposing new trusted computing primitives.
Nexus [SdBR+11], a new operating system for trustworthy computing, introduces

active attestation, which allows attesting a program’s application-specific runtime prop-
erties and supports access control policies per application. Both Nexus policies and
policy-sealed data can bind data based on attributes. However, Nexus and Excalibur
target complementary problems: Nexus policies are tied to nodes running Nexus and
restrict how the applications can access the data; Excalibur policies focus on multi-node
settings and restrict how the cloud nodes, possibly running various software platforms,
can access the data. Thus, Nexus could be a good candidate to use as an attribute in
an Excalibur policy.
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The work by Schiffman et al. [SMV+10] aims to improve the transparency of IaaS
cloud services by providing customers with integrity proofs of their VMs and underlying
VMMs. Like Excalibur, a central component, called cloud verifier (CV), mediates at-
testations of nodes and uses high-level properties (attributes) for reasoning about node
configurations. However, the scope of this work is narrower than ours: while the CV
provides only integrity proofs, Excalibur builds on these proofs to enforce policy-sealed
data, which is a general, data-centric abstraction for protecting customer data in the
cloud. In addition, the CV administrator is assumed to be trustworthy, representing a
weaker threat model; in our view, this assumption does not address an important class
of problems that occur in cloud services today. Finally, their system does not address
the shortcomings of sealed storage TPM primitives, which could raise concerns of data
management inflexibility and isolation crippling if these primitives need to be used by
cloud services to secure persistent data.
Multiple software systems have been proposed to increase the security of sensitive

data in the cloud. At the OS layer, hypervisors and OSes can protect the confiden-
tiality and integrity of data using isolation [MLQ+10, KEH+09, ZCCZ11, RRT+11] or
information flow control [VEK+07] techniques. At the middleware layer, a range of
frameworks for building Web offer their users strict control over data remotely placed
at the provider site [KMC11], enable controlled sharing of sensitive data using differ-
ential privacy [RSK+10], and provide general-purpose encapsulation mechanisms for
data [MAF+11]. These proposals are complementary to our work: despite their poten-
tial to increase security and control over data in the cloud, these proposals lack a scalable
mechanism for bootstrapping trust in the multi-node cloud environment. By combining
these platforms with Excalibur, cloud providers could build new trusted cloud services.

2.5.2 Based on Cryptography

The most common alternative to using trusted hardware is based on cryptography. The
idea is to protect the secrecy of customers’ data by keeping it permanently encrypted
while the data is hosted in the cloud: the data is encrypted before being shipped by the
users to the cloud and can only be decrypted and retrieved at the customers’ end.
The main strength of cryptography-based when compared to trusted hardware-based

approaches is that no component needs to be trusted at the cloud provider’s end in or-
der to provide data confidentiality. However, pure cryptography-based techniques have
significant limitations to provide secrecy protection if the data has to be computed in
non-trivial ways on the cloud (i.e., other than replicating, comparing, and deleting ci-
phertext). Recently, a fully homomorphic scheme has been proposed [Gen09], which
allows for arbitrary computations over encrypted data. However, this proposal consti-
tutes a theoretical result for which an efficient practical implementation is yet to be
discovered.
To support computations over encrypted data, some work has used more mainstream

cryptography by making a trade-off between efficiency and functionality. One remark-
able example is CryptDB [PRZB11], which supports queries of encrypted databases to
some degree. This is possible by cleverly encrypting the databases with various crypto-
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graphic schemes, each of them is able to support a subset of operations over encrypted
data. While CryptDB constitutes a significant step towards supporting efficient secure
computations, it still exhibits some limitations. Firstly, there are restrictions to the
database queries that can be issued. Secondly, weaker cryptographic schemes are used,
which degrades the overall security of the system. Given the difficulty of performing
secure computations over encrypted data, it is not surprising that many systems us-
ing cryptography provide security for only use cases where data does not need to be
computed. This is the case of secure storage services for the cloud [BCQ+11] or storage-
intensive cloud applications [PKZ11].
In summary, we can say that the two main techniques for improving trust in the cloud

offer different and complementary trade-offs. While the cryptography-based approaches
can provide secrecy protection without requiring any trusted components in the cloud
provider, trusted hardware-based approaches depend on the correctness of trusted com-
ponents, but provide full support for efficient and arbitrary computations. In this thesis,
we focus on the latter.

2.6 Summary

In this chapter we introduced cloud attestation, which constitutes our approach for im-
proving customers’ trust in the cloud. Cloud attestation is based on trusted hardware
deployed on the cloud nodes and enables customers to bind their data and computations
to software platforms they trust. After clarifying our goals, assumptions, and threat
model, we provided some background on TPMs, the trusted hardware we use for cloud
attestation, and discussed the related work on improving trust in the cloud. In the fol-
lowing chapters, we show how cloud attestation enables the design of cloud services that
can provide privacy guarantees for customer computations, and discuss the challenges of
using TPM technology in cloud attestation (Chapter 3). We then present Excalibur, a
system that overcomes these challenges and assists cloud providers in building services
with a cloud attestation capability (Chapter 4).
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In this chapter, we present a new cloud computing architecture for building trusted
cloud services, i.e., cloud services that leverage cloud attestation in their design in order
to give clients specific guarantees. We illustrate the potential benefits of such services
by providing a concrete example of a trusted cloud service, called the Trusted Cloud
Computing Platform. We use the same example to discuss the limitations of TPM
technology in the cloud setting, limitations that motivate the design of Excalibur.

3.1 Trusted Cloud Computing Platform

The Trusted Cloud Computing Platform (TCCP) [SGR09] aims to provide a virtual
machine (VM) hosting service with guarantees of secrecy and integrity protection of the
VMs’ state in the cloud. Before presenting the design of TCCP, we start by describing
the internals of a typical IaaS VM hosting cloud service, and then present the additional
security guarantees we aim to achieve with TCCP.

3.1.1 Architecture of a Typical VM Hosting Cloud Service

A typical VM hosting cloud service provides a functionality akin to Amazon EC2 [Amab].
Customers can rent instances of virtual machines, hosted in the cloud infrastructure and
for which customers pay a price that depends on the time and the resources allocated.
VMs are created from a VM image (VMI), which customers can select from a public
repository provided by the service or upload to the cloud themselves. The cloud service
is responsible for managing the resources of VMs and for securing the VMs’ execution
states, namely from interference by other tenants’ VMs co-located on the same physical
machine.
Figure 3.1 illustrates the architecture of a VM hosting cloud service. The components

shown in the figure are, in reality, a simplification of a real world deployment. Neverthe-
less, they include the components that we find in the Eucalyptus [NWG+] open source
cloud platform. The service is hosted in multiple clusters of cloud nodes. The bulk of
the clusters are responsible for hosting the guest VMs. Internally, a cloud node runs a
virtual machine monitor (VMM), which is responsible for managing the lifecycle of the
guest VMs residing on that cloud node. The VMM controls the memory, CPU, network,
and disk resources used by each VM, and sets the security policies of each VM.
In addition to the cloud nodes allocated to VM hosting, we find specialized internal

services deployed on different clusters. There are three main such internal services:
the cloud manager, the VMI repository, and the VM repository. The cloud manager
is responsible for coordinating the customer VMs in the service. It manages customer
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Figure 3.1: Architecture of a typical VM hosting cloud service.

IDs, serves the requests by the customers for managing the lifecycle of their VMs (e.g.,
create, terminate, suspend VMs), provides information about the VM images registered
in the cloud service, reports billing information to customers, and provides a backend
interface for monitoring the service. The VMI repository contains all the VM images
supported by the service, each of them featuring different software configurations (e.g.,
OS, applications). The VM repository contains the images of VMs’ execution states that
have been suspended by the customers. These images can be resumed later on and their
execution continued.
The VM hosting service allows customers and cloud administrators to interact with

it using a frontend and a backend interface. We highlight the most relevant operations,
which are those related to the management of VMs, where the sensitive computation
state resides. The frontend includes operations that allow customers to create, suspend,
resume, and terminate a VM. The backend includes, in addition, operations that enable
the cloud administrators to migrate customers’ VMs across cloud nodes. The migration
operation is important for load balancing. These operations are coordinated by the cloud
manager and work as follows.

VM creation. To create a VM, a customer uses an authenticated connection to issue a
request to the cloud manager, indicating the characteristics of the VM (e.g., CPU speed,
memory size) and the VMI that should be instantiated. The cloud manager validates
the customer’s identity and the other parameters, and designates a candidate cloud node
for hosting the VM instance. Which cloud node is chosen depends on the internal policy
for managing the resources and on the current resource allocation. The cloud manager
then instructs the cloud node’s VMM to create the VM instance. The VMM retrieves
the VMI from the VMI repository, creates the VM, and boots the VM. During this
process the VMM injects the customer’s public key into the local VMI replica so that
the customer can login to the VM once the VM boots. The customer can learn the
booting status of the VM by consulting the cloud manager. Once the VM is up and
running, the customer can now login over an SSH connection and perform his desired
computations.
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VM suspension. To suspend a VM, the customer instructs the cloud manager accord-
ingly, which in turn forwards the request to the VMM of the cloud node where the VM
is located. The VMM suspends the VM by freezing its volatile and persistent state,
bundles this state on a single file containing the VM image, and ships it to the VM
repository. The VMM then informs the cloud manager that the operation has finished,
enabling the customer to learn about the status of the operation.

VM resumption. To resume the VM, the customer sends a request to the cloud man-
ager. The cloud manager selects a free cloud node, just like when creating a VM, and
requests the VMM of the selected cloud node to retrieve the VM image from the VM
repository. Once the VM image is locally available to the VMM, the VMM restores
the VM state and resumes the execution of the VM. Next, the VMM notifies the cloud
manager, which in turn makes this information available to the customer. The customer
can then login to the VM as before suspension.

VM termination. To terminate a VM, the customer issues a request to the cloud
manager, which forwards the termination request to the VMM where the VM is hosted.
The VMM terminates the VM, releases all its resources, and then updates the cloud
manager, which then informs the customer. The VM termination is carried out in the
same way when requested by the customer or by the administrator.

VM migration. Lastly, to migrate a VM from the current cloud node to another cloud
node, the administrator instructs the cloud manager by indicating the target VM and
the designated destination cloud node. The cloud manager contacts the VMMs of both
the source and the destination cloud nodes, and the VMMs initiate a VM migration
protocol for transferring the VM state between the nodes. Once the transfer finishes,
the cloud manager is notified of the status of the operation.

3.1.2 Requirements for TCCP

A careful look at the architecture of a typical VM hosting cloud service shows that,
in the face of security outbreaks that fit into the threat model defined in Chapter 2,
the security of customer VMs is precarious. For example, outbreaks stemming from
misconduct of cloud administrators or exploits of the service components by external
agents could compromise the confidentiality and the integrity of the customers’ VMs.
The attack surface is large and attacks could be made in multiple ways through any of
the components of the architecture, such as the following:

• VMM: The VMM typically consists of a commodity hypervisor like Xen. Com-
modity hypervisors provide strict isolation between guest VMs, but offer no pro-
tection against the management domain, i.e., the privileged domain from where
the VMs’ resources are controlled (e.g., Dom0 in Xen). In other words, once a
VM is instantiated on the cloud node, the hypervisor can protect the VM’s state
from co-resident VMs, but not from the administrator of the system. From the
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management domain, the administrator has full privileges to access the volatile
(in memory) or the persistent (on disk) state of a VM. As a result, an attacker
empowered with administrator privileges could access the computation state of a
VM, including any sensitive information located in the VMs (e.g., private keys,
personal information, financial data).

• VMI and VM repositories: These repositories contain the initial state of a
VM right before instantiating or resuming a VM, respectively. An attacker with
access privileges to these repositories could read or modify their content arbitrar-
ily. Without mechanisms, such as encryption, that could prevent data inspection
and detect modifications, sensitive state of the VMs could be compromised. For
example, the program binaries of a VMI could be modified to implant malware in
order to leak customers’ secrets or corrupt the computations.

• Cloud manager: The cloud manager controls the authentication of the customers
to the VMs and designates the cloud nodes for hosting the VMs. Compromising
the cloud manager would allow an attacker, for example, to have direct login access
to a VM. Upon creation, the attacker could replace the public key of the customer
for the attacker’s public key, and pass the attacker’s key to the VMM of the hosting
cloud node. The VMM would then inject the attacker’s key into the VM, allowing
the attacker to login to the VM. Compromising the cloud manager could even allow
an attacker to divert the VM outside the cloud provider’s premises. During the
creation, migration, or resume stages, an attacker could designate any machine to
host a customer’s VM, thus making them vulnerable even to physical attacks.

The goal of the Trusted Cloud Computing Platform is to mitigate these threats by
reinforcing the security of the VM hosting service. Specifically, TCCP aims to provide
secrecy and integrity protection of the state of customers’ VMs throughout the entire
VM lifecycle. Next, we show how to provide such protections.

3.1.3 Insights Underlying TCCP

The insight behind the design of TCCP consists of addressing two complementary sub-
problems: first, protect the VM state in the cloud, and then give customers guarantees
that those protection mechanisms are in place.

Protecting the VM State

The first step is to protect the state of customers’ VMs. In the standard architecture of
a VM hosting cloud service (see Figure 3.1), the security of customer’s VMs is dependent
on a huge trusted computing base (TCB). The TCB includes the VMM on the nodes,
the VMI and VM repositories, and the cloud manager. Furthermore, all these compo-
nents are designed under the assumption of a fully trusted administrator. To protect
the confidentiality and integrity of VMs, our approach is then to factor out as many
components as we can from the TCB, and then harden the leftover TCB components to
prevent the cloud administrator from overriding the TCB’s security protections.
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Thus, we can protect the states of VMs by combining two techniques. First, we
leverage a hardened VMM (HVMM) (e.g., CloudVisor [ZCCZ11]) for protecting the
runtime state of VMs in their running stage. The HVMM must isolate the VM from the
management domain, which can be done using existing techniques [GPC+03, ZCCZ11,
RRT+11]. Second, we extend the cloud service protocols in order to keep the VM state
encrypted throughout the remaining stages of the VM lifecycle. This design allows us
to reduce the TCB size considerably by obviating the need to trust the cloud manager,
the VMI repository, and the VM repository: only the HVMM belongs to the TCB.
The TCCP must then implement a set of distributed protocols that can provide the

following assurances:

• During VM creation, the customer must be guaranteed that: (i) the VMI cor-
responds to the VMI selected by the customer (and has not been modified or
replaced), and (ii) the public key injected into the VMI is the customer’s and not
someone else’s. To provide both guarantees, the HVMM must carry out some
additional steps. Before booting a VM, it computes the digest of the VMI and
creates a record of the public key to be injected into the VMI. Then, once the VM
boots, the HVMM enables the customer to read the VMI digest and the record of
the public key. If either of the elements has been corrupted, the VM instance is not
trustworthy, and the customer can abort the creation of the VM. Otherwise the
VM instance is reliable, and the HVMM ensures its protection during execution.

• For VM migration, it is important to make sure that the VM state is protected
while in transit over the network until it reaches the destination cloud node, at
which point the HVMM will provide for the security of the VM after it resumes
execution. To secure the VM migration, the HVMM endpoints could simply es-
tablish a secure channel using standard SSL, and then proceed with the VM state
transfer over the secure channel.

• Between VM suspend and resume operations, the VM state could be vulnerable
to inspection and modification from the moment it leaves the source cloud node
and moves to the VM repository after suspension, until it resumes execution in the
destination cloud node after being transferred from the VM repository. To secure
the VM state in the interim, the VM state could be encrypted and appended with
integrity digests at the source, and then decrypted and its integrity validated at
the destination. The cryptographic key used to encrypt and decrypt the VM state
could be maintained by the customer and propagated to the source and to the
destination without putting an additional burden on the customer.

At first sight, this design is effective at securing the state of a VM by keeping it either
(i) unencrypted on an HVMM, or (ii) encrypted while transiting over the network or
stored in a repository. However, the VM is not yet secure. To provide these guarantees,
cloud attestation is necessary.
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The Need for Cloud Attestation

A fundamental missing piece is the lack of guarantees that the hosting nodes can actually
be trusted. In the protocols shown above, an attacker could still assign the VM state to
a machine executing an untrusted software platform or to a machine located outside the
cloud provider’s premises. Such an assignment could be made by the cloud administrator,
for example, through the system’s management interface. If a cloud node is not executing
a correct binary of the HVMM, then the cloud node can no longer be trusted to properly
isolate the VM state from the cloud administrator. Similarly, if the hosting node is
located outside the cloud provider’s premises, an attacker could launch arbitrary physical
attacks. In either case, the designated machine could no longer be trusted for hosting
the VM.
The security protocols of TCCP must, therefore, include additional checks for guaran-

teeing that the cloud nodes can be trusted. This is precisely the role of cloud attestation.
Cloud attestation consists of cryptographic protocols whose goal is to make sure that
customer VMs can only execute on a machine (i) owned and deployed in the cloud
provider’s premises, and (ii) executing the HVMM. For this purpose, cloud attestation
uses the TPMs installed on the cloud nodes. The TPM’s AIK key helps authenticate the
node by providing a strong node identity that can be compared against a certified list
containing the AIK public keys of all the cloud nodes deployed in the cloud provider’s
premises. The TPM’s PCR values (i.e., software fingerprint produced during trusted
boot) help determine whether the cloud node is executing the HVMM software.
To implement cloud attestation, the protocols described in the section above must be

extended in order to validate the AIK key and PCR values of cloud nodes. In particular,
these checks must take place before a node is authorized to receive the state of a VM,
namely in all operations that assign a VM to a cloud node: create, migrate, and resume.
To implement these protocol extensions, we can use standard remote attestation and
sealed storage primitives as follows:

• Remote attestation can be used in the create and in the migrate protocols to
check the authenticity and software identity of the target node. In the first case,
the software running at the customer end checks the cloud node upon the VM
instantiation. In the second case, the hosting node checks the destination cloud
node upon migration.

• Sealed storage can be used in the suspend and resume operations to make sure
that the encrypted VM state produced upon suspend can only be decrypted upon
resume if the target machine where resume is taking place is trusted. This is
possible by leveraging the fact that the same TPM must be involved in both seal
and unseal operations (see Sections 2.4.1 and 2.4.2). To enforce this behavior,
before transmitting the encrypted VM state to the VM repository, the VMM of
the hosting cloud node seals the encryption key, which can now be stored along
with the encrypted VM state. The resume cloud node is then forced to unseal the
encryption key in order to recover that key. This operation will only succeed if the
cloud node meets the trust requirements stated above. Thus, if the cloud node is
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Figure 3.2: “TPM benchmarks run against the Atmel v1.2 TPM in a Lenovo T60
laptop, the Broadcom v1.2 TPM in an HP dc5750, the Inneonv1.2 TPM
in an AMD machine, and the Atmel v1.2 TPM (note that this is not the
same as the Atmel TPM in the Lenovo T60 laptop) in the Intel TEP.
Error bars indicate the standard deviation over 20 trials.” [MPP+08b]

trusted, unseal succeeds, and the VMM is now able to proceed with decrypting the
VM state and resuming the VM. Otherwise, unseal fails. Sealing has the benefit
that the customer does not need to keep track of the encryption keys.

With this design, TCCP can provide customers with guarantees of VM protection in
the cloud.

3.2 Concerns with TPM Usage in the Cloud Setting

TCCP highlights the role that cloud attestation can play in building trust in the cloud,
namely by providing security guarantees that were not possible before. However, a closer
look at the TCCP design brings to light some complications that are not immediately
apparent. Unless these issues are properly handled, trusted cloud services built upon
TPMs could incur performance, privacy, and management problems.

Performance issues. Today’s TPMs are not built for high performance, which is re-
flected in the poor latency and throughput of TPM primitives. Figure 3.2 presents the
results of a performance benchmark of the core primitives of commodity TPMs, includ-
ing quote, seal, and unseal. This experiment was conducted in several machines and
performed by McCune et al. [MPP+08b]. As we can see, the execution time of a single
quote operation takes between 300ms and 900ms. Benchmarks that we conducted using
a Winbond v1.2 TPM corroborate this number, taking close to one second to complete.
Since TPMs can execute only one single command at a time, the throughput of TPM
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primitives is low. The high latency and the small throughput of the TPM could neg-
atively affect the scalability of cloud services that use TPMs. For example, in TCCP,
the quote operation lies in the critical path of the attestation protocols invoked by the
customers during VM creation and by the cloud nodes during migration operations. As
a result, the number of operations per unit of time could be hindered due to the in-
efficiency of TPMs, creating bottlenecks. The low TPM performance could also open
avenues for denial of service attacks because malicious customers could purposely keep
the TPM busy and delay other customers’ access.

Privacy issues. As we mentioned above, cloud providers are very keen on controlling
the amount of information about the cloud internals that is leaked to the public. They
tend to be hesitant to reveal about the number, characteristics, and placement of their
machines, and about the internal configuration of the software systems. Their rationale
includes concerns regarding competitors (preserving trade-secrets) and security (con-
cealing potential vulnerabilities). In the TCCP architecture, by allowing customers to
directly attest the cloud nodes, cloud providers are giving away the unique identities and
the software hash values of every node. This information could be used, e.g., to infer
the number of cloud nodes of the cloud infrastructure, and the distribution of different
software platforms they run, and then leveraged for harming the cloud customers. In
2009, researchers managed to create a rough map of Amazon’s cloud infrastructure and
used it to place virtual machines on the same physical node [RTSS09]. They argued that
this capability could enable an attacker to target a particular victim VM and try to learn
secrets from it by exploiting side-channels. With cloud attestation implemented as in
TCCP, external agents could gather more information and refine such maps. If revealing
this information is unacceptable to cloud providers, alternative designs to TCCP need
to be developed.

Management issues. The cloud is a massively distributed and dynamic environment,
where, for fault tolerance and resource management reasons, the workload often mi-
grates between clusters within the cloud infrastructure. In the TCCP architecture, this
flexibility could be hindered. When resuming a suspended VM from the VM repository,
it is likely that the cloud node for hosting the resumed VM is not the cloud node where
the VM was suspended. In the interim, the workload conditions may have changed,
thereby affecting the load balancing decisions leading to choosing a different node. It
could also have happened that the original node was shut down to save power. In these
circumstances, it is not possible to unseal the VM state, because the TPMs for sealing
and unsealing would be different. Unsealing would also not be possible if the cloud
node is preserved, but its software configuration changed, for example, due to a software
upgrade. In both situations, the TPM unseal operation fails to return the decryption
key for the VM state, thereby aborting the VM resume operation. The rigidity of sealed
storage could then create hurdles to the management of the workload in the datacenters.
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Although we use TCCP to illustrate these issues, they could also arise when build-
ing arbitrary trusted cloud services. At the root of these problems lies the fact that
TPMs were not originally developed for the cloud environment. TPMs were targeted
for single node platforms, namely desktops, and not for the distributed and dynamic
environment where cloud services operate. Recent proposals for TPMs in the cloud do
not address these limitations. Systems like Nexus [SdBR+11] or CloudVisor [ZCCZ11]
use TPMs to allow users to remotely attest only a single cloud node and therefore do not
address the preceding issues, but focus on the complementary problem of securing the
platform running on a single node. While the TPM limitations could be addressed in
the implementation of the trusted services themselves, the solutions would be hardcoded
and not systematic. Therefore solutions will have to be repeated for every different ser-
vice that needs to be protected, thus complicating the design and maintenance of these
cloud services. To address this problem in a principled and general manner, we designed
Excalibur, a system that offers the designers of trusted cloud services an abstraction—
policy-sealed data—that enables them to take advantage of the TPMs’ properties while
masking the limitations of the TPMs. The following chapter is devoted to presenting
this system.

3.3 Summary

In this chapter, we presented the concept of a Trusted Cloud Computing Platform
(TCCP). TCCP is a cloud architecture that provides an IaaS service for VM hosting.
TCCP guarantees confidential execution of guest VMs and allows users to attest that
the service is secure before they launch their VMs. TCCP serves primarily two goals.
First, it illustrates the potential of cloud attestation and shows that this technique could
be used for enhancing cloud services with security properties that were not present in
their original design. Cloud attestation plays a fundamental and necessary role in pro-
viding such guarantees, and can be implemented using standard TPMs deployed on the
cloud nodes. Second, the TCCP architecture helps clarify the challenges that TPMs
could introduce in the design of trusted cloud services. To address these challenges, we
designed a system called Excalibur, which we present in the next chapter.
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This chapter presents Excalibur [SRGS12], a system that overcomes the technical inade-
quacies of TPMs in cloud environments. Coupled with TPMs, Excalibur provides a key
building block for designing trusted cloud services. Excalibur is presented in five sections:
design goals, high-level design, detailed design, implementation, and evaluation.

4.1 Design Goals

The primary goal of Excalibur is to address the hurdles of using TPM primitives in de-
signing trusted cloud services. As we explained in Chapter 3, TPM primitives, namely
quote, seal, and unseal, could raise concerns regarding efficiency, privacy, and manage-
ability if not used properly in the cloud. Excalibur aims to overcome these hurdles by
providing a high-level programming abstraction (trusted cloud computing primitives)
that the trusted cloud service developers can use instead of TPMs’ low-level primitives.
Excalibur should meet the following design goals:

• Simplicity: Enhancing cloud services with cloud attestation should not incur a
significant increase in complexity for either the developers and cloud administra-
tors. Therefore, Excalibur’s trusted cloud computing primitives should be simple
and the burden of maintaining the system should be low.

• Efficiency: The system should not only mask the inefficiency of the TPMs lo-
cated on the cloud nodes, but also not introduce bottlenecks that could hinder the
performance and scalability of trusted cloud services.

• Privacy control: Excalibur should allow the cloud provider to control the degree
of information that is revealed about the internals of the cloud. The semantics of
the trusted cloud computing primitives should accommodate the ability for fine-
tuned control of attestation information.

• Management flexibility: Excalibur’s primitive must allow for securely stor-
ing data on an untrusted medium within the cloud without hindering the cloud
provider’s ability to migrate data and load balance.

31



4 Building Trusted Cloud Services with Excalibur

Figure 4.1: Excalibur deployment. The dashed lines show the flow of policy-sealed
data, and the solid lines represent interactions between clients and the
monitor. The monitor checks the configuration of cloud nodes. After a
one-time monitor attestation step, clients can seal data. Data can be
unsealed only on nodes that satisfy the policy.

4.2 Excalibur Design

We describe the design of Excalibur. After providing an overview of the system, we
present each of the most important design aspects of the Excalibur in turn.

4.2.1 System Overview

Excalibur implements a trusted computing primitive called policy-sealed data, a simple
programming abstraction for the developers of trusted cloud services. Policy-sealed data
subsumes the functionality of TPM primitives without incurring risks of TPM misusage.
It consists of only two operations: seal and unseal. Seal encrypts a piece of data and
binds it to a customer-defined policy. Unseal is the only way to decrypt that piece of
data; data can be decrypted on a cloud node if and only if the cloud node’s configuration
satisfies the policy. The policy consists of a logic expression over a set of attributes, which
refer to configuration features of a cloud node. In Section 6.3.4 below, we explain how
policy-sealed data could be used in the design of trusted cloud services.
Excalibur exposes the policy-sealed data abstraction to the developers through a client-

side library and enforces it in the cloud through a combination of cryptographic tech-
niques and security protocols (namely the CPABE attribute-based encryption scheme)
under the supervision of a centralized component named the monitor. Figure 4.1 il-
lustrates a deployment of Excalibur, highlighting the separation between the client-side
library and the monitor, which constitutes the heart of the system. The client-side li-
brary can be used on both the customer end (e.g., before uploading data) and by the
hosting cloud nodes (e.g., before data migration).
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The monitor is a dedicated service running on one or more cloud nodes—monitor
clones. It coordinates the enforcement of policy-sealed data on the cloud. The monitor
ensures that the policy-sealed data attributes are properly associated with the TPM state
of each node, by mapping attributes (e.g., “vmm=Xen”) to the cloud nodes’ TPMs
(e.g., “PCR=hash(Xen)”. Whenever a cloud node reboots, the monitor attests the
booting machine and translates its TPM state to a set of attributes, which express the
configuration of the cloud node. The monitor then encodes the attributes in special
credentials that are sent to the node. These credentials are responsible for enforcing the
unseal semantics: unsealing a policy-sealed data item fails unless the credentials of a
cloud node are compatible with that item’s policy. In Excalibur, only the monitor can
send requests that trigger TPM primitives on the cloud nodes, reducing the negative
performance impact of TPM operations and preventing the exposure of infrastructure
details.
Excalibur requires maintenance. For this purpose, the monitor exposes a narrow man-

agement interface to be used by the cloud administrator. The interface allows to config-
ure the mappings between attributes and TPM identities as new software platforms and
cloud nodes are deployed on the infrastructure. Configuration operations include adding
and removing special certificates where these mappings are specified. Certificates are
issued by trusted certifiers who vouch for the correctness of the mappings. In addition,
the management interface enables the cloud administrator to scale up the system by
spawning monitor clones. To bootstrap trust, customers can directly attest the monitor
and thereby validate its correct operation and maintenance.
Next, we describe how the system works in more detail, starting with the policy-sealed

data abstraction.

4.2.2 The Policy-Sealed Data Abstraction

The trusted cloud computing primitive provided by Excalibur is inspired by sealed stor-
age, which we expand from the single-node setting to suit the needs of the multi-node
cloud environment. Policy-sealed data allows user data to be bound to a cluster of cloud
nodes whose configuration is specified by a user-defined policy.
Policy-sealed data offers two primitives for securing user data: seal and unseal. Seal

can be invoked anywhere: either on the user’s computer or on the cloud nodes. It takes
as input the user’s data and a policy and outputs ciphertext. The reverse operation,
unseal, can be invoked only on the cloud nodes that need to decrypt the data. Unseal
takes as input the sealed data and decrypts it if and only if the node’s configuration
satisfies the policy specified upon seal; otherwise, decryption fails. Each cloud node has
a configuration, which is a set of human-readable attributes. Attributes express features
that refer to the node’s software (e.g., “vmm”, “version”) or hardware (e.g., “location”).
A policy expresses a logical condition over the attributes supported by the provider
(e.g., “vmm=Xen and location=US”). Table 4.1 shows an example of the attributes of a
hypothetical deployment of a service akin to EC2. Table 4.2 illustrates the configuration
of a particular node, and Table 4.3 lists example policies over node configurations in
that deployment.
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Attribute Value Description

service “EC2” service name
version “1” version of the service
vmm “Xen”, “CloudVisor” virtual machine monitor
type “small”, “large” resources of a VM
country “US”, “DE” country of deployment
zone “Z1”, “Z2”, “Z3”, “Z4” availability zone

Table 4.1: Example of service attributes. In this case, EC2 supports two types of
VM instances, two types of VMMs, and four availability zones (datacen-
ters) in the US and Germany.

Node Configuration

N service : “EC2” ; version : “1” ; type : “small” ; country
: “DE” ; zone : “Z2” ; vmm : “CloudVisor”

Table 4.2: Example of a node configuration. This configuration contains the values
for the attributes that characterize the hardware and software of a specific
node N .

Policy Policy Specification

P1 service = “EC2” and vmm = “CloudVisor” and

version ≥ “1” and instance = “large”

P2 service = “EC2” and vmm = “CloudVisor” and

(zone = “Z1” or zone = “Z3”)
P3 service = “EC2” and vmm = “CloudVisor” and

country = “DE”

Table 4.3: Examples of policies. P1 expresses version and VM instance type require-
ments, P2 specifies a zone preference for one of two sites, and P3 expresses
a regional preference.

To secure user data on the cloud, policy-sealed data operations could replace the
remote attestation and sealed storage assisted by TPMs. This substitution can be illus-
trated by looking at the TCCP protocols described in Section 3.1.3. To protect data upon
upload, suspend, or migration, instead of using the TPM calls one could use seal the data
to a policy containing the expression “vmm=HardenedVMM”. If the destination cannot
unseal the data, then its configuration does not match the policy; therefore, the node is
not trusted from the perspective of the user who originally specified the policy. Natu-
rally, the cloud provider must specify the attribute-value pair “vmm”-”HardenedVMM”,
and a certifier must issue certificates that vouch for the correct mapping between this
attribute-value pair and the PCR values of the secure VMM software binary.
Policy-sealed data brings several benefits over the native TPM primitives. First, it

gives the cloud provider additional control over the information that is leaked. Instead
of being forced to always reveal the identities and software hashes of the cloud nodes,
cloud providers have the freedom to define the attributes they deem acceptable. Second,
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policy-sealed data allows for an improved management flexibility within the cloud. This
is because any cloud node that satisfies the customer policy can unseal customers’ data,
and not just a single node. Lastly, policy-sealed data provides an additional bonus—
a richer cloud attestation semantics. With our primitive, cloud providers can express
attestation features that were not possible with TPM primitives alone, for example the
location of the datacenters.
Policy-sealed data is enforced cryptographically, involving attribute based encryption

and distributed protocols between the monitor and the cloud nodes, as we explain next.

4.2.3 Cryptographic Enforcement of Policies

It is challenging to cryptographically enforce policies in a scalable, fault tolerant and
efficient manner. Since the mapping between the high-level abstractions (attributes
and policies) and the low-level abstractions (TPM primitives) is done by the monitor,
Excalibur must be carefully crafted so as to avoid bottlenecks in the monitor.
A first attempt to cryptographically enforce policies is to delegate this task to the

monitor itself: upon sealing, the client encrypts the data with a symmetric key and
sends this key and the policy to the monitor; the monitor then encrypts this key and
the policy with a secret key and returns the outcome to the client. To unseal, the
encrypted key is sent to the monitor, which internally recovers the original symmetric
key and policy, evaluates the policy, and releases the symmetric key if the node satisfies
the policy. Although this solution implements the necessary functionality, it involves
the monitor in every seal and unseal operation and thereby introduces a scalability
bottleneck.
An alternative design is to evaluate the policies on the client side using public-key

encryption. Each cloud node receives from the monitor a set of private keys that match
its configuration; in this scheme, each key corresponds to an attribute-value pair of the
configuration. Sealing is done by encrypting the data with the corresponding public keys
according to the attributes defined in the policies. This solution avoids the bottlenecks
of the first approach because all cryptographic operations take place on the client side,
without involving the monitor. Its main shortcoming is complicated key management
due to the number of key-pairs that nodes must be handled in order to reflect all the
possible attribute combinations usable by policies.
The solution we chose uses a cryptographic scheme called Ciphertext Policy Attribute-

Based Encryption (CPABE) [BSW07]. This scheme first generates a pair of keys: a
public encryption key and a secret master key. Unlike traditional public key schemes,
the encryption key allows a piece of data to be encrypted and bound to a policy. A
policy is a logical expression that uses conjunction and disjunction operations over a
set of terms. Each term tests a condition over an attribute, which can be a string or a
number; both types support the equality operation, but the numeric type also supports
inequalities (e.g., a = x or b > y). CPABE can then create an arbitrary number of
decryption keys from the same master key, each of which can embed a set of attributes
specified at creation time. The encrypted data can be decrypted only by a decryption
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key whose attributes satisfy the policy (e.g., keys embedding the attribute a = x can
decrypt a piece of data encrypted with the preceding example policy).
Excalibur uses CPABE to encode the runtime configurations of the cloud nodes into

decryption keys. At setup time, the monitor generates a CPABE encryption and master
key pair and secures the master key. Whenever it checks the identity and software finger-
print of a cloud node, the monitor sends the appropriate credentials to the node, which
include a CPABE decryption key embedding the attributes that correspond to the con-
figuration of the node; the decryption key is created from the master key and forwarded
to all the nodes featuring the same configuration. Sealing is done by encrypting the data
using the encryption key and a policy, and unsealing is done by decrypting the sealed
data using the decryption key. Policies are expressed in the CPABE policy language,
which can be used to specify the examples in Table 4.3 as well as more elaborate policies.
The security of the system then depends on the security of the CPABE keys. The

monitor protects the master key by (i) ensuring that it cannot be released through
the monitor’s management interface, and (ii) encrypting it before storing it on disk,
as described in Section 4.3.4. Additionally, cloud platforms must protect decryption
keys. A software platform must prevent leakage or corruption of key material through
its management interface (e.g., by direct memory inspection of VM memory); it must
also hold the key in volatile memory so that key material is destroyed upon reboot.
Moreover, the software platform must force a reboot after changing TCB components
that get measured during a trusted boot (e.g., subsequent to upgrading the hypervisor).
These properties ensure that the CPABE decryption keys of cloud nodes remain con-
sistent with their TPM fingerprints and therefore reflect current node configurations.
Section 4.3.4 explains how the CPABE decryption keys and the TPM configurations are
kept synchronized as the cloud nodes reboot.
The benefits of using CPABE are twofold. First, it lets the system scale independently

of the workload since the seal and unseal primitives do not interact with the monitor
(and run entirely on the client side). Second, it permits the creation of expressive policies
directly supported by the CPABE policy specification language while only requiring two
keys – the CPABE encryption and decryption keys – to be sent to the nodes.
The cost of CPABE is high when compared to traditional cryptographic schemes.

Section 4.3 explains how this impact can be minimized. A second drawback of using
CPABE is key revocation, which is typically difficult in identity- and attribute-based
cryptosystems. To handle revocation of decryption keys, our current design requires that
all sealed data whose original policy satisfies the attributes of the compromised keys be
resealed. This operation can be done efficiently by re-encrypting only a symmetric key,
rather than the data itself.

4.2.4 Securing the Monitor

Since the monitor is managed by the cloud administrator, the mismanagement threats
that affect any cloud node could also affect the monitor. One threat consists of
adding flawed attribute mappings to the monitor that could compromise the seman-
tics of policies. A mapping would be flawed, for example, if the attribute “loca-
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tion=DE” were mapped to the identity of a node located in the US, or if the attribute
“vmm=HardenedVMM” were mapped to the fingerprint of a non-hardened hypervisor.
Another threat includes tampering with the monitor’s software binaries before booting
the monitor with the aim of subverting the resolution of attributes in the monitor.
We address this challenge in two steps. First, we must first prevent the monitor from

accepting flawed attribute mappings. To provide this guarantee, the monitor accepts
only attribute mappings that are vouched for by certificates (see Section 4.3.3 for more
details). Certificates are issued by one or multiple certifiers, who validate the correctness
of mappings. A certifier could, for example, check that the cloud node with a certain
AIK public key is located in Germany, and that a certain software hash corresponds to
a valid implementation of a secure VMM. The certifier’s role could be played by the
provider itself, or by external trusted parties akin to Certification Authorities. It is up
to the customers to decide who to trust.
The second step aims to give customers guarantees about the integrity of the monitor.

Only then the customers can trust that the system performs correctly. To provide
such a guarantee, customers can directly attest the monitor’s software when first using
the system. The monitor attestation also conveys to the customers the identity of the
certifier that the monitor is using for validating the certificates. Customers can then
decide whether the certifier is deemed trustworthy, and be sure that the certificate-
based protections and the security protocols implemented by the monitor are correct.
By enabling external attestation of the monitor, we must overcome several scalability
bottlenecks, as explained below.

4.2.5 Monitor Scalability and Fault Tolerance

To improve scalability and fault tolerance, Excalibur supports multiple monitor clones.
The cloud administrator can elastically launch or terminate monitor clones according to
the workload. To evenly distribute requests among the clones, standard load balancers
could be used. Clones are designed so that they do not need to communicate with each
other for serving requests from customers or cloud nodes; only some sensitive key material
needs to be securely exchanged when a clone is spawned, for which we developed the
security protocol described in Section 4.3.4. This design enables the number of monitor
clones to scale linearly with the workload.
To further improve the scalability of Excalibur, we further eliminate critical bottle-

necks within a monitor clone. In particular, we introduce two optimizations. The first
improves the throughput of monitor attestations triggered by the customers. This im-
provement is necessary, because using a standard TPM attestation protocol would incur
bottlenecks that could hamper the practicality of Excalibur. Due to TPM inefficiency,
the maximum throughput of a monitor clone would be bound to one attestation per sec-
ond, clearly insufficient. To address this problem, we enhance the attestation protocol
with a technique based on Merkle trees. This technique enables the monitor to batch
a large number of attestation requests into a single TPM quote (i.e., signature of PCR
registers by the TPM’s AIK key), dramatically increasing the throughput of the monitor
attestation protocol (see Section 4.3).
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attest-monitor(mon-addr) → (KE,M) or FAIL

seal(KE, P,D) → E = 〈P,D〉K, 〈K〉KE

unseal(KE,KD, E) → (D,P ) or FAIL

Table 4.4: Excalibur service interface.

A second optimization within a monitor clone improves the throughput of decryption
key requests issued by the cloud nodes. The algorithm for generation of CPABE decryp-
tion keys is inefficient, which could slow down servicing keys to the cloud nodes if a new
key were to be generated per request. Since many machines in the datacenter share the
same configuration (e.g., machines that belong to the same cluster), the monitor clone
can instead securely cache the decryption keys and send them to all the nodes with the
same profile.

4.3 Detailed Design

In this section, we present a more detailed view of Excalibur’s design. First, we describe
the interfaces offered by Excalibur for building cloud services and managing the system.
Then, we introduce the policy language, the certificates, and the security protocols of
Excalibur.

Notation. Throughout this section, we use the following notation for cryptographic
protocols. For asymmetric cryptography, K and KP denote private and public keys,
respectively. For symmetric keys, we drop the superscript. For the cryptographic scheme
Ciphertext-Policy Attribute Based Encryption (CPABE) [BSW07], notation KM, KE

and KD denote CPABE master, encryption, and decryption keys, respectively. The
notation 〈x〉K indicates data x encrypted with key K, and {y}K indicates data y signed
with key K. We represent nonces as n; nonces consist of unique numbers whose goal is
to detect message replays in protocols. The session keys used in the protocols consist of
symmetric keys. Nonces and session keys are randomly generated.

4.3.1 System Interfaces

Excalibur’s interface has two parts: a service interface, which supports the implemen-
tation of cloud services, and a management interface, which lets cloud administrators
maintain the system.
The service interface exported by the client library supports three operations, summa-

rized in Table 4.4. Before the data can be sealed on the customer side, attest-monitor
must be invoked to check the monitor’s authenticity and integrity. It returns the en-
cryption key KE needed for sealing and a manifest M , which contains the certificates
needed to validate the monitor’s identity and fingerprint (see Figure 4.2). The manifest
is passed to the customer, who learns from it which attributes can be used in policies
and identifies the provider and certifier identities needed to decide whether the service is
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Figure 4.2: Example certificate tree and manifest. The certificates in light colored
boxes form the manifest that validates the monitor’s authenticity and
integrity.

trustworthy. Since the client saves both the manifest and the encryption key for future
seal operations, attest-monitor needs to be performed only once when the cloud service
is first used.
The core primitives are seal and unseal. Seal can be invoked by both cloud nodes and

customers; it takes as arguments the encryption key KE, a policy P , and the data D and
produces an envelope E. This envelope is passed to unseal, which returns the decrypted
data D or fails if its caller does not satisfy the policy. In addition to the decryption key
KD, unseal receives as an argument the encryption key KE, which is required by CPABE
decryption; the cloud node that invokes unseal must obtain this key from the monitor.
Unseal also returns the original policy P so that a cloud node can re-seal the data with
the customer’s policy. The CPABE policy language is used to express policies.
The management interface lets the cloud administrator remotely maintain the monitor

using a console. Its main operations permit the administrator to initialize the system,
manage certificates, and spawn monitor clones. Because these operations are intuitive
and could be automated, we expect that the management cost of Excalibur will be
relatively low for the cloud administrators.

4.3.2 Policy Specification

The policies that can be specified to create policy-sealed data blobs depend on two
features: the policy specification language, and the set of attributes associated with a
particular cloud service.
Excalibur adopts the policy language of CPABE [BSW07]. The features of this lan-

guage enable the specification of expressive policies. The logic expressions support con-
junction and disjunction operators, and can involve equality and greater / less than
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operators between attribute values. Attribute values are typed, and two types are sup-
ported: strings and integers.
In addition to satisfying the rules of the policy language, all the attributes referred by

a policy must be supported by the cloud service, otherwise the policy is ill-formed. The
set of attributes associated with a particular cloud service must be specified by the cloud
provider by publishing a schema. The schema indicates the names of each attribute and
the domain of possible values that can be associated with each attribute. Upon sealing,
all the attributes and values referred to in the user-defined policy are compared against
the schema in order to guarantee that the policy is well-formed.
To define the schema of a cloud service, the cloud provider must take into account

some restrictions. Namely, attributes can only refer to static properties related to the
software or to the hardware of cloud nodes, i.e., attributes must refer to the PCR values
and AIK public keys of the cloud nodes’ TPM states. For example, “VMM=Xen” and
“Location=DE” are valid definitions, because the former can be associated with PCR
values matching Xen’s software hashes, and the latter with the AIK public keys of nodes
located in Germany. Attributes, however, cannot represent properties that change over
time (since time cannot be specified in policies). As long as these constraints are followed,
cloud providers are free to define the number of attributes, the names of attributes, and
the possible values for an attribute. The meaning of attributes and values needs to be
validated and declared in special certificates, whose format and usage we discuss next.

4.3.3 Excalibur Certificates

In this section, we describe the relevant issues related to certificates, namely their pur-
pose, generation, format, validity, and management.

Purpose of Certificates

The primary purpose of certificates is to provide the monitor with a reliable method for
representing cloud node configurations as a set of policy-sealed data attributes. Concep-
tually, a certificate is a statement signed by a certifier containing a mapping between
attributes and the pair formed by the identity (AIK public key) and fingerprint (PCR
values) of a cloud node. Whenever the monitor receives a quote from a certain cloud
node in the process of node attestation, the monitor checks if the quote’s AIK and PCR
elements are covered by a certificate. If they are, then the configuration is deemed valid
and the monitor proceeds with performing the translation into attributes and sending
the corresponding CPABE credentials to the cloud node. Otherwise no CPABE cre-
dentials are sent because the configuration is unknown. Thus, so long as the certifier
is trusted for properly mapping attributes to TPM primitives, the CPABE credentials
sent to the cloud nodes match the cloud nodes’ actual configurations and policy-sealed
data is properly enforced.
Although the primary use of certificates is to validate the configuration of cloud nodes,

we use them for another fundamental validation operation, namely for checking the con-
figuration of the monitor. Note that there are two occasions where the monitor’s con-

40



4.3 Detailed Design

figuration needs to be validated. First, when customers attest the monitor they need
to learn whether the quote they receive comes from a valid monitor clone, i.e., from a
machine (i) deployed in the cloud provider’s premises and (ii) executing a trusted imple-
mentation of the monitor logic. Likewise, whenever a new monitor clone is instantiated,
the candidate to play monitor clone must also satisfy safety conditions (i) and (ii). The
question then is how can a monitor clone’s validator (i.e., a customer first using a mon-
itor or an existing monitor clone spawning a new clone) check that the configuration of
the monitor is valid.
To answer this question, we note that a similar problem has to be addressed by the

monitor when verifying the configuration of cloud nodes, with the difference that we are
now focusing on the configuration of the monitor itself. Since we already have a general
mechanism for checking the configuration of any machine—the certificates—we leverage
them to validate the configuration of the monitor. We designate a special attribute
named “monitor” for mapping the AIK and PCR values that refer to trusted monitor
configurations. Just like with any other configuration, there must exist a certificate
covering the trusted monitor configuration. The validator of a monitor clone can then
test its configuration like any other configuration by comparing a quote sent by the
monitor clone against the “monitor” mapping contained in the monitor certificate.
In summary, certificates provide a unified mechanism for validating the configuration

of a machine. Certificates are used on three occasions: (i) when the monitor attests
the configuration of cloud nodes, (ii) when the monitor checks the configuration of a
candidate monitor clone, and (iii) when a customer checks the configuration of the
monitor. In (ii) and (iii), the attribute “monitor” is specifically validated.

Certification Procedure

Certificates are issued by one or multiple certifiers, who must vouch for the accuracy of
attribute mappings. The methodology to validate such mappings depends on the specific
attributes being certified. To validate a location mapping, for example, “location=DE →
AIKx”, the certifier must check that the node with AIKx is placed in a cloud provider’s
datacenter located in Germany. In addition, the certifier must control the management
activity in the datacenters involving the deployment, displacement or decommissioning
of cloud nodes so that the mapping holds over time. To validate the software mapping,
the methodology is different. For example, for mapping “VMM=Xen → PCRy”, the
certifier much confirm that the PCRx values correspond to Xen’s binary hashes. If the
validation is correct, the certifier can then issue a certificate containing the respective
mapping and signed with the certifier’s private PKI key.
Excalibur supports multiple certifiers, namely by allowing different certifiers to in-

dependently check specific attributes, and by allowing multiple certifiers to check the
same attribute. There are several reasons for supporting more that one certifier. First,
verifying all different attributes of a cloud service might require a number of skills that a
single certifier may not gather. By supporting multiple certifiers, different entities may
be hired to validate specific attributes for which they have expertise. Second, relying
on a single certifier could raise privacy concerns in cloud providers because too many
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internal details of the cloud infrastructure could be revealed to a single external organi-
zation. By supporting multiple certifiers, cloud providers can narrow down the amount
of information that a single entity is allowed to obtain. Lastly, relying on a single cer-
tifier centralizes trust in a single entity. With multiple certifiers, trust is spread across
multiple entities, thereby reducing risks.
Deciding on who to hire for certifying the cloud infrastructure is at the cloud provider’s

discretion. A certifier’s role can be played by external organizations (e.g., Certificate
Authorities), but also by dedicated departments of the cloud provider. Ideally, the
set and identity of the certifiers should be chosen so as to increase customers’ trust
in the verification procedure. For this reason, hiring multiple, external, and reputable
organizations may offer a preferable option.

The Format of Certificates

The question we now address is the format of the certificates. This issue is not as
simple as one might first think due to the multiple requirements that must be taken into
account. To show why, we start with a strawman format, clarify the requirements that
need to be addressed, and present our solution.
First of all, certificates must address the basic needs of the system with respect to

mapping attributes to identities and fingerprints. The simplest format for a certificate
consists of a file containing the identities of the certifiers and a list of mappings attr:value
→ AIK/PCR, and then have that file signed by all certifiers and by the provider. This
format serves the needs of the two main parties that make use of the certificates: the
monitor and the customers: (i) the monitor has all the information for checking the
configuration of cloud nodes and of candidate monitor clones, and (ii) the customers can
validate the identities of the certifiers responsible for validating the service by checking
the provider’s and the certifiers’ signatures, and check the configuration of the monitor
by checking the AIK and PCR values of the signature issue by the monitor’s TPM
against the “monitor” attribute.
This format, however, has two main drawbacks. First, it is very rigid. Even for minimal

changes, e.g., adding or removing machines, all certifiers must agree to produce a new
certificate to reflect the changes into the system. Second, this format might compromise
the privacy of the cloud infrastructure. The certificate would disclose the AIK and PCR
values of all the software and of the cloud nodes in the cloud infrastructure, and not just
the details of the monitor (which are necessary for the sake of validating the monitor
configuration). This side-effect would defeat the very purpose of policy-sealed data by
revealing all this information.
These limitations prompted us to develop a more expressive certificate format. Excal-

ibur certificates form a hierarchical tree like in the example shown in Figure 4.2. The
example shows how a provider P can use the certificates that correspond to the internal
nodes in the tree to delegate the certification of different attributes to two certifiers, A
and B. Table 4.5 shows in detail the composition of each certificate type.
To allow for flexibility in producing the certificates, we split one single certificate into

four different kinds of certificates, each of them containing a smaller number of state-
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CService
Provider → {idS, attribute[],KP

Certifier[]}KProvider

CAttribute
Certifier → {idA, attribute[], idS}KCertifier

CIdentity
Certifier → {idA, attribute[],AIK[]}KCertifier

CFingerprint
Certifier → {idA, attribute[],PCR[]}KCertifier

M → CService
Provider, C

Attribute
Certifier [], C

Identity
Certifier(mon), CFingerprint

Certifier (mon)

Table 4.5: Certificate and manifest formats. A certificate CService
Provider identifies the

service, the attributes, and the certifiers. A certificate CAttribute
Certifier iden-

tifies a list of attributes of a service vouched for by a certifier. Cer-
tificates CIdentity

Certifier and CFingerprint
Certifier validate identities and fingerprints, re-

spectively. Manifest M comprises certificates of service, attributes, and
monitor identity and fingerprint. Square brackets indicate a list.

ments that can be verified independently without requiring re-flushing and re-generating
everything anew. There are certificates for four different statements: stating the identi-
ties of the certifiers responsible for each attribute (signed by the cloud provider), stating
the attributes that a particular certifier is responsible for (signed by the respective certi-
fier), and stating the mappings of attributes, which can be issued at different granularities
(signed by the respective certifier).
In order to preserve the consistency of the strawman format, the various certificates

must refer to other certificates, forming the hierarchical structure shown in Figure 4.2.
This format addresses the flexibility requirement because certifiers are now able to easily
and independently create certificates for the attributes they are responsible for without
interfering with other certifiers nor being affected by other certifiers’ activity.
In addition, the hierarchical structure overcomes the privacy concern relative to ex-

posing the AIK and PCR values of the entire infrastructure. Instead of revealing all
the information to the public (as the strawman does), only the subset of certificates
that is necessary to validate the monitor’s configuration is published, namely the leaf
certificates covering the monitor’s AIK and PCR values, and their respective parents all
the way until the root (illustrated in a light shade in Figure 4.2). We call this subset the
manifest. The manifest is sent to the customers during the monitor attestation proto-
col, enabling the verification of the signatures and monitor attributes by the customers
without revealing detailed information about the cloud nodes (see Section 4.3.1).

Certificate Expiration

Excalibur includes a mechanism to limit the time period in which the certificates are
valid (certificate expiration). This mechanism is relevant to the monitor, which uses
certificates to check the configuration of cloud nodes, and to the customers, who use
certificates to validate the monitor.
To support certificate expiration, every certificate includes an expiration date, which

is set by the certifier upon issuing the certificate. The monitor must ensure that, once
the expiration date has been reached, no more CPABE keys are issued for the attributes
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covered by the expired certificate. To ensure that cloud nodes do not use obsolete
CPABE keys, the monitor piggybacks the expiration data on the CPABE keys sent
to the cloud nodes. As soon as the expiration time is reached, the cloud nodes drop
the respective CPABE keys, and re-run the node attestation protocol to obtain fresh
credentials. The monitor also checks the expiration date of the manifest before sending
it to the customers, and aborts the protocol if the manifest has expired. Customers can
also check whether the validity of the received manifest has expired.

Certificate Management

The certificates known to the monitor must be maintained by the cloud administrator,
e.g., as a result of upgrading a software platform or deploying new cloud nodes. The
monitor provides a specific management interface for adding and removing certificates.
To prevent trusting the cloud administrator for preserving the safety of the system,

the monitor checks that the added certificates are consistent with the internal certifi-
cate tree maintained by the monitor. To be consistent, a certificate must satisfy the
constraints implicitly defined by the signatures and statements contained in each cer-
tificate, as shown in Table 4.5. For example, when adding the certificate for location
mapping “location=DE → AIKx” signed by certifier A, the monitor can only accept the
certificate if A was endorsed by the cloud provider to vouch for this specific attribute.
To enforce this condition, the monitor checks whether the certificate for the service con-
tains statement “location → A”. If so, the monitor accepts the certificate, otherwise
rejects it. This way, while the cloud administrator could compromise the availability of
Excalibur (e.g., by switching down the monitor, or removing certificates), he could not
tamper with the attribute mappings of the monitor.
The complexity of managing certificates depends on the number of certificates and the

frequency of updates. The number of certificates can be greatly reduced thanks to the
certificate tree structure. To avoid having a large number of certificates, the tree enables
a single certificate to cover multiple attributes and multiple AIK and PCR values per
attribute. The frequency of the certificate updates depends on how often the hardware
and the software configurations change. The hardware configuration could change when
cloud nodes are deployed or decommissioned. When compared to changes of the software
configuration, it is less likely that the hardware configuration of deployed cloud nodes
changes often over time. The configuration of software platforms could change as new
software platforms go into production. This upgrade requires only uploading a certificate
to the monitor with the PCRs of the new software.
Note that if a certificate is upgraded, causing the PCR values of an attribute to

change, it is not necessary to re-seal the policy-sealed data that depends on the updated
attributes. The reason is that, despite the changes in the attribute mappings, the monitor
still sends CPABE decryption keys with the same set of attributes as before, allowing
nodes to recover the policy-sealed data.
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Monitor Node
1. AIKP

node

2. n

3. {n,PCRnode,K
P
session}AIKnode

4a. OK, 〈KE,KD〉KP
session 4b. FAIL

Figure 4.3: Node attestation protocol.

4.3.4 Excalibur Protocols

This section presents the security protocols of Excalibur: system initialization, node
attestation, monitor attestation, seal and unseal, and clone attestation protocols. Ex-
calibur’s protocols are fairly simple and elegant, which is achieved mainly due to the
expressiveness of both (i) CPABE for cryptographically enforcing policy-sealed data,
and (ii) Excalibur’s certificates for validating the configuration of a machine in a unified
manner. We also highlight the incorporation of a new batching technique that enables
scaling the throughput of the monitor attestation protocol.

System Initialization

Before the system can be used, the monitor must be initialized by binding a unique
CPABE key pair to the service. To do this, the cloud administrator loads the certifi-
cates that validate the service attributes into the monitor and instructs the monitor to
generate the key pair. If these certificates form a consistent certificate tree, the monitor
creates unique encryption and master keys and binds them to the tree’s root certificate
(see Figure 4.2). To permit system maintenance, the administrator can remove or add
certificates as long as they form a valid certificate tree.
The monitor maintains its persistent state in a certificate store and a key store. Both

stores keep their contents in XML files on a local disk. The certificate store contains
the certificates loaded into the monitor. The key store contains all the CPABE keys.
To secure the key material, the key store is sealed using the TPM seal primitive, which
ensures that, in case the monitor reboots, the key store can be accessed only under a
trusted monitor configuration.

Node Attestation Protocol

Once the setup is complete, the monitor delivers to each cloud node a credential that
reflects that node’s boot time configuration, which will allow the node to unseal and
re-seal data. The goal of the node attestation protocol is to deliver these credentials
securely. Recall that, under our assumptions about the trusted software platforms run-
ning on the cloud nodes, when a cloud node reboots, the credentials kept by the node in
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Figure 4.4: Batch attestation example. The tree is built from 4 nonces. A summary
for nonce n10 comprises its tag and the hashes in the path to the root.

volatile memory are lost. Therefore, this protocol must be executed each time a cloud
node reboots so it can obtain a fresh credential.
The monitor first obtains a quote from the node that is signed by the node’s AIK

and contains the current PCRs. Then, the monitor looks in the certificate database for
certificates that match the node’s PCRs and AIK. If any are found, the monitor obtains
the node configuration by combining all the attributes of the matching certificates into
a list like that shown in Table 4.2. Next, the monitor sends the credentials to the node;
these include the encryption and decryption keys embedding these attributes. Since
generating a new decryption key is expensive, the monitor caches these keys in the key
store so they can be resent to nodes with the same configuration.
Figure 4.3 shows the precise messages exchanged between the monitor and a cloud

node. The protocol is based on a standard remote attestation in which a nonce n is sent
to the node (message 2), and the node replies with a quote (message 3); the nonce is
used to check the freshness of the attestation request. Message 3 includes a session key
KP

session that is used in message 4 to securely send credentials KE and KD to the node.
Since the session key is ephemeral, an adversary could not perform a TOCTOU attack
by rebooting the machine after finishing attestation (message 3) but before receiving the
decryption key (message 4). Since the TPM only allows a 20-byte argument (the length
of a SHA-1 hash) to be included in the quote operation, the monitor must first hash
the two pieces of data n and KP

session (which exceed the maximum permitted length) in
order to obtain the quote of message 3.
Note that the node does not need to authenticate the monitor to preserve the security

of policy-sealed data. In the worst case, a node may receive a compromised decryption
key from an attacker. However, given that customers seal their data with the encryption
key obtained from the legitimate monitor, unseal would fail in such a scenario, and this
attack would fail to compromise customer data.
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Monitor Customer-side
1. n

2. s(n),AIKP

mon, {h(n),M,KE,PCRmon}AIKmon

Figure 4.5: Monitor attestation protocol.

Monitor Attestation Protocol

The monitor attestation protocol is triggered by the attest-monitor operation, which lets
customers detect if the monitor is legitimate by checking its authenticity and integrity.
In addition, this protocol obtains: 1) the encryption key, which is used for sealing data,
and 2) the set of certificates that form the manifest, which let the customer check the
identity of certifiers and learn the attributes that are available. The monitor is legitimate
if its identity and fingerprint are validated by the manifest.
The main challenge in designing this protocol is scalability. If every customer-side

client were to run a standard remote attestation, then the throughput of the monitor
would be extremely low due to TPM inefficiency.
To overcome this scalability problem, we batch multiple attestation requests into a

single quote operation using a Merkle tree, as shown in Figure 4.4. The Merkle tree
lets the monitor quote a batch of N nonces ni expressed as an aggregate hash h(nN

i=0)
and send evidence – summary s(ni) – to each customer-side client that its nonce ni is
included in the aggregate hash in a network-efficient manner (i.e., instead of sending all
N nonces, it sends just a summary of size O(log(N))).
The detailed monitor attestation protocol is shown in Figure 4.5. In the first mes-

sage, the customer-side client sends nonce n for freshness and then uses the information
returned in message 2 to validate the monitor in two steps. First, it checks in the man-
ifest M for the certificates with attribute “monitor”; it uses them to authenticate the
monitor key AIKP

mon and to validate the fingerprint of the monitor’s software platform
PCRmon (see Figure 4.2). Second, to validate the freshness of the received messages, it
compares nonce n and the summary s(n) against the aggregate hash h(n) produced by
batch attestation. If all tests pass, the monitor is trustworthy, and the encryption key
KS is authentic. The customer can then seal data securely.

Seal and Unseal Protocols

The use of CPABE lets seal and unseal execute without contacting the monitor. In
implementing these primitives, we take into account two aspects of CPABE related to
performance and functionality. First, since CPABE is significantly more inefficient than
symmetric encryption, seal encrypts the data with a randomly generated symmetric key
and uses CPABE to encrypt the symmetric key. Second, given that CPABE decryption
does not return the original policy (which unseal must return to let cloud nodes re-
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seal the data), we include in the envelope the original policy and a digest for integrity
protection (see Table 4.4).

Clone Attestation Protocol

To scale the monitor elastically, the cloud administrator can create multiple monitor
clones. To do so, an existing monitor instance must share the CPABE master key with
the new clone so the latter can generate and distribute decryption keys to the cloud
nodes. However, this can be done only if the new clone can be trusted to secure the key
and to comply with the specification of Excalibur protocols.
To enforce this condition, the existing monitor instance and the clone candidate run a

clone attestation protocol analogous to that shown in Figure 4.3, but with two differences.
First, after message 3, the monitor assesses if the candidate is trustworthy by checking
whether its AIK and PCR values map to the “monitor” attribute contained in the
manifest; if not, cloning is aborted. Second, if the test passes, the monitor authorizes
cloning and sends the master key, the encryption key, and a digest to the candidate.
The digest identifies the head of the certificate tree associated with the keys. The new
clone refrains from using the keys until the administrator uploads the corresponding
certificates to it.

4.4 Implementation

We implemented Excalibur in about 22,000 lines of C. This includes the monitor, a
client-side library providing the service interface, a client-side daemon for securing the
CPABE decryption key on the cloud nodes, a management console, and a certificate
toolkit for issuing certificates. The console communicates with the monitor over SSL,
and all other protocols use UDP messages. We used the OpenSSL crypto library [Ope]
and the CPABE toolkit [acs] for all cryptographic operations, and we used the Trousers
software stack and its related tools [Tro] to interact with TPMs.
We extended a cloud service so it uses Excalibur to help us understand the effort needed

to adapt services for Excalibur and to estimate the performance impact of Excalibur on
cloud services.
The example cloud service we adapted is an elastic VM service where customer VMs

can be deployed in compute clusters in multiple locations, similar to Amazon’s EC2
service. Our extension used Excalibur to better assure customers that their VMs would
not be accidentally or intentionally moved outside of a cluster in a certain area (e.g., the
EU).
Our base platform was Eucalyptus [NWG+], an open source system that provides

an elastic VM service with an EC2-compatible interface. Eucalyptus supports various
VMMs; we used Xen [BDF+03] because it is open source.
Our implementation modified Xen to invoke seal and unseal when the customer’s VM

was created on a new node, migrated from one node to another, or suspended on one
node and resumed on another. An attempt to migrate the VM to a node outside the
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1324 sock.send(” r e c e i v e \n”)
1325 sock.recv (80)
1326
1327 pipe = subprocess .Popen(”/xen−/bin / s e a l ”,
1328 stdin =subprocess .PIPE ,
1329 stdout =sock.fileno ())
1330 fd_pipe = pipe.stdin.fileno ()
1331
1332 XendCheckpoint.save(fd_pipe , dominfo , True ,
1333 live , dst)
1334 os.close (fd_pipe )
1335 sock.close ()

Figure 4.6: Hook to intercept migration (from file XendDomain.py.) We redirect
the state of the VM through a process that seals the data before it
proceeds to the destination on socket sock (lines 1327-1330).

specified locations would fail because the node would lack the credentials to unseal the
policy-sealed VM.
Implementing these changes was straightforward. Integration with Excalibur required

modifications to Xen, in particular to a Xen daemon called xend, which manages guest
VMs on the machine and communicates with the hypervisor through the OS kernel of
Domain 0. In particular, the VM operations create, save, restore, and migrate sealed or
unsealed the VM memory footprint whenever the VM was unloaded from or loaded to
physical memory, respectively. To streamline this implementation, we took advantage
of the fact that xend always transfers VM state between memory and the disk or the
network in a uniform manner using file descriptors. Therefore, we located the relevant
file descriptors and redirected their operations through an OS process that sealed or
unsealed according to the transfer direction. Figure 4.6 shows a snippet of xend that
illustrates this technique applied to migration. Overall, our code changes were minimal:
we added/modified 52 lines of Python code to xend.
The other two changes we made included (i) hardening the software interfaces to

prevent the system administrator from invoking any VM operations other than the four
noted above, and (ii) using a TPM-aware bootloader [gru] to measure software integrity
and to extend a TPM register with the modified Xen configuration fingerprint.

4.5 Evaluation

This section evaluates the correctness of Excalibur protocols using an automated tool.
We also assess the performance of Excalibur and our example service.

4.5.1 Protocol Verification

We verified the correctness of our protocols using an automated theorem prover. We
used a state-of-the-art tool, ProVerif [Bla01], which supports the specification of security
protocols for distributed systems in concurrent process calculus (pi-calculus).
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To use the tool, we specified all protocols used by our system, which included all cryp-
tographic operations (including CPABE operations), a simplified model of the TPM
identity and fingerprint, the format of all certificate types in the system, the monitor
protocols, and seal and unseal operations. In total, the specification contained approxi-
mately 250 lines of code in pi-calculus.
ProVerif proved the semantics of policy-sealed data in the presence of an attacker

with unrestricted network access. The attacker could listen to messages, shuffle them,
decompose them, and inject new messages into the network; this model covers, for
example, eavesdropping, replay, and man-in-the-middle attacks. ProVerif proved that
whenever a customer sealed data, the resulting envelope could be unsealed only by a
node whose configuration matched the policy.

4.5.2 Performance Evaluation

To evaluate Excalibur’s performance, we first evaluated the monitor’s scalability by
measuring its performance overhead as well as its throughput for its three main activities:
generating CPABE decryption keys, delivering these keys to nodes, and serving monitor
attestation requests. We then measured the performance overhead of seal and unseal on
the client side.

Setup and Methodology

We used two different experimental setups. The first used a two-node testbed; one node
acted as a monitor, and the other acted as a regular cloud node making requests to the
monitor. The second setup was used to evaluate the monitor throughput for attesting
cloud nodes and serving customer attestation requests. For attesting cloud nodes, we
simulated 1,000 nodes by using one machine acting as the monitor and five machines
acting as cloud nodes, all running parallel instances of the node attestation protocol.
For monitor attestations, we used a single machine acting as customers running parallel
instances of the monitor attestation protocol. This number of nodes was sufficient to
exhaust monitor resources and ensure that there were no bottlenecks in the client nodes.
Both setups used Intel Xeon machines, each one equipped with 2.83GHz 8-core CPUs,

1.6GB of RAM, and TPM version 1.2 manufactured by Winbond. All machines ran
Linux 2.6.29 and were connected to a 10Gbps network. We repeated each experiment
ten times and report median results; the standard deviation was negligible.

Decryption Key Generation

The overhead of generating a CPABE decryption key depends on the number of at-
tributes embedded in the key. We measured the time to generate a decryption key
stemming from the same master key, in which we varied the number of attributes from
one to 50. This range seemed reasonable to characterize a node configuration.
Figure 4.7 shows the results, which confirm two relevant findings of the original authors

of CPABE. First, the overhead of generating keys grows linearly with the number of
attributes present in the key. Second, generating CPABE keys is expensive, e.g., a key
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Figure 4.7: Performance of decryption key generation. Time to generate key as
we vary the number of attributes (left), and throughput for 10 attributes
as we vary the number of cores (right).

with ten attributes took 0.12 seconds to create, which corresponds to a maximum rate
of 8.33 keys/sec on a single core.
Although CPABE key generation is inherently inefficient, we consider that its per-

formance is acceptable since we expect the throughput pressure on the monitor to be
relatively low because large groups of machines are likely to have the same configuration.
The latency to generate a key is experienced only by the first node that reboots with a
configuration new to the monitor. After the key is cached, it is reused in future identical
requests without additional costs.

Node Attestation

The latency of the node attestation protocol was 0.82 seconds. The bulk of the attes-
tation cost (96%) was due to the node’s TPM quote operation, which is necessary for
remote attestation. This result is not surprising since such operations are known to be
inefficient [MPP+08a].
Most of the work required by this protocol is carried out by cloud nodes. Therefore,

the attestation latency should not represent a bottleneck to the coordinator. To confirm
this, we evaluated the monitor’s throughput when running multiple parallel instances
of this protocol. Results showed that the monitor could deliver up to 632.91 keys per
second, which is efficient and would allow a single monitor machine to scale to serve a
large number of nodes.

Monitor Attestation

We measured the performance of the monitor attestation protocol. This protocol had
a latency of 1.21 seconds and a throughput of approx. 4800 reqs/sec on a single node.
The quote operation performed by the monitor’s local TPM accounted for the bulk of
the latency (0.82 seconds), and the remaining time was due to cryptographic operations
and network latency. The high peak throughput we observed was enabled by batch
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Figure 4.8: Performance overhead of sealing and unsealing data as a function
of the complexity of the policy, with input data of constant size
(1K bytes).

attestation. When we disabled batching, the throughput dropped sharply to 0.82 re-
qs/sec. Thus, this technique is crucial to the scalability of the monitor and delivered a
throughput speedup of over 5000x.

Sealing and Unsealing

The performance overhead of the seal and unseal operations performed by Excalibur
clients was dominated by the two cryptographic primitives: CPABE and symmetric
cryptography (which uses AES with a 256-bit key size). We describe their effects in
turn.
To understand the overall performance overhead of CPABE, we set the input data

to a small, constant size. Figure 4.8 shows the performance overhead of sealing and
unsealing 1KB of data as a function of policy complexity. On the left is the cost of a
seal operation as a function of the number of tests contained in the policy. For instance,
the policy A=x and (B=y or B=z) contains three comparisons. Our findings show that
the sealing cost grows linearly with the number of attributes. The cost of sealing for a
policy with 10 attributes was about 128 milliseconds.
On the right, Figure 4.8 shows the cost of an unseal operation. Unlike encryption,

CPABE decryption depends on the number of attributes in the decryption key that are
used to satisfy the policy. For example, consider a decryption key with attributes A:x
and B:y, and policies P1 : A=x, and P2 : A=x and B=y. Policy P1 uses one attribute,
whereas P2 uses two. As before, the performance overhead of unseal grows linearly with
the size of the policy. The time required to unseal a policy with 10 attributes was 51
milliseconds.
To study the relative effect of CPABE on the overall performance of Excalibur prim-

itives, we varied the size of the input data. Figure 4.9 shows the fraction of overhead
due to CPABE, and Table 4.6 lists the absolute operation times. Our findings show that
CPABE accounts for the most significant fraction of performance overhead. Sealing 1
MB of data with a policy containing 10 leaf nodes took 134 milliseconds, and 87% of
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Figure 4.9: CPABE fraction in the performance overhead of sealing (left) and unsealing
(right), varying the size of the input data.

Data Latency (ms)
(bytes) Sealing Unsealing

1K 120 50
10K 120 49
100K 121 51
1M 134 68
10M 264 243
100M 1522 1765

Table 4.6: Performance overhead of sealing and unsealing data, varying the
size of the input data.

the total cost of sealing was due to CPABE encryption. For unsealing, the fraction of
CPABE was slightly lower than for sealing, but it was still very significant. Unsealing 1
MB of data with a policy satisfying 10 attributes of the private key took 68 milliseconds,
where 68% of the latency was due to CPABE.
In summary, our evaluation of Excalibur showed the following results: the costs of

generating decryption keys and the node attestation protocol are reasonable when taking
into account how infrequently they are required; the monitor scales well with the number
of cloud customers that are using the service for the first time and with the number of
cloud nodes that are attested upon reboot; the monitor could be further scaled up using
cloning, and the latency of seal and unseal is reasonable and dominated by the cost of
symmetric key encryption for large data items.

4.5.3 Cloud Compute Service

We now evaluate the performance overhead that the changes to Xen incur on its VM
management operations, namely create, save, restore and migrate. We measured the
time to complete each operation using an example VM for 10 trials. The example VM
ran a Debian Lenny distribution with Linux-xen 2.6.26, used a 4GB disk image, and had
a memory footprint of 128MB.
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Figure 4.10: Latency of VM operations in Xen. Encrypting the VM state accounts
for the largest fraction of the overhead, while the execution time of
CPABE is relatively small. Encryption runs AES with 256-bit key
size.

Figure 4.10 shows the results of our experiments. The performance impact is notice-
able, especially for the save, restore, and migrate operations, where the completion time
roughly doubled. The overhead, however, came from encrypting the VM’s entire mem-
ory footprint; using Excalibur to secure or recover the encryption key added a small
delay. Unlike the other operations, create experienced a small overhead increase of only
4%. This is because the system only decrypted the kernel image, which occupied 4.6MB,
instead of the larger VM footprint as it did for the other operations.
As the results show, seal and unseal introduced noticeable overhead to the VM op-

erations due to the symmetric encryption of the VM image. However, given that these
operations occur infrequently, and considering the additional benefits to data security,
we argue that these results reflect an acceptable trade-off between security and perfor-
mance.

4.6 Summary

This chapter presented Excalibur, a system that provides a new trusted computing prim-
itive for the cloud setting. This primitive—policy-sealed data—enables the developers
of trusted cloud services to take advantage of the properties of TPMs deployed on the
cloud nodes for the purpose of building trust without facing the problems that TPMs
could raise when used in the cloud environment. Policy-sealed data enables customers
to specify a policy, containing the configurations they deem trusted for handling their
data, and then seal the data before sending it to the cloud. Excalibur ensures that
only the cloud nodes whose configuration satisfies the policy can unseal the data, hence
recovering it. Excalibur provides a policy-sealed data service which is scalable, flexi-
ble, and easy to manage, thanks to the novel utilization of CPABE encryption and the
development of a monitor component which can attest the cloud nodes very efficiently.
We implemented Excalibur and evaluated it through benchmarks and integration with
an open source cloud platform. The results showed that Excalibur is efficient and can
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be applied to implement a trusted cloud service for the IaaS layer without burdening
the developer with low-level TPM details. Excalibur can be seen as a building block for
developing arbitrary trusted cloud services. We plan to pursue this line of research in
the future, as we explain in Chapter 10. Next, we shift gears and focus on improving
trust in enterprise environments.
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Part II

Improving Trust in Enterprise
Platforms

57





5 Motivation and Related Work

Many of the mismanagement risks discussed in Part I are not specific to cloud computing,
but can occur more broadly within the scope of organizations in general. In fact, even if
organizations outsource some of their data and processes to third-parties, they will still
rely on in-house IT infrastructures—enterprise platforms—for handling some of their
critical data. Given the nature of this data, instances of poor system administration
could lead to security hazards and cause serious losses to organizations.
In this part of the thesis, we aim to strengthen trust in enterprise platforms by en-

hancing their security against IT mismanagement. To achieve this, our strategy is to
enforce the principle of least privilege by limiting the privileges of administrators so as
to reduce the window of vulnerability of the data. In particular, we propose hierar-
chical administrator roles so that most of the management tasks can be delegated to
“untrusted administrators” without the fear of incurring violations to the confidentiality
and integrity of users’ data and computations. In our scheme, only a small number of
administrators needs to be fully trusted in an organization.
To enforce hierarchical administrator roles, the untrusted administrators need to be

able to manage enterprise platforms without compromising security. To enable this, we
make two contributions. First, we introduce and explore an untrusted-administrator
operating system (OS) design named the broker security model. Our model provides
guarantees of confidentiality and integrity of users’ data and computations against a
malicious administrator, while retaining most of the manageability of the OS. Second,
we demonstrate the viability of our model by building a set of extensions for Linux called
BrokULOS.BrokULOS replaces Linux’s overly permissive management interface (i.e.,
superuser commands) with a narrow and carefully crafted set of commands (brokers) that
enforce the security and manageability requirements of the broker model.
Before presenting our technical contributions in Chapter 6, we use the rest of this

chapter to set the stage. We start by explaining in more detail the limitations of ex-
isting enterprise platforms and why these limitations undermine users’ trust. Then, to
make these platforms more trustworthy, we propose the introduction of hierarchical ad-
ministrator roles and discuss the challenges of enforcing them. Finally, we lay out our
plan to address these challenges: we characterize our specific goals, assumptions, and
threat model, and provide an overview of the related work.

5.1 The Problem of IT Mismanagement in Organizations

Organizations in general depend on the correctness of their IT infrastructures, and sys-
tem administrators play a crucial role in keeping enterprise platforms operational. They
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are responsible for a large number of maintenance tasks, most of which are security-
sensitive, for example setting up access control policies, upgrading operating systems,
and handling cryptographic keys. Because most of these tasks require superuser privi-
leges, in practice, system administrators have full control over the OS and, consequently,
over the user data hosted on those platforms. Given the privileged access that system
administrators have to data, they must be trusted to manage the systems correctly and
responsibly.
Unfortunately, security breaches have occurred in the past due to incidents of poor sys-

tems administration, resulting in loss, corruption, or leakage of data. In some cases mis-
management events were caused accidentally, prompted, for example, by the complexity
of the systems or by simple negligence [Mas09]. In other cases, abuses of administration
privileges were intentional, as illustrated by instances in which disgruntled employees
have purposefully subverted systems of their organizations [CLM+, MCT], or by insid-
ers that have stealthily misused data [goo10]. Surprisingly, some studies have recently
shown that the risks of intentional data misuse are more prevalent than one should have
thought. Surveys of employees across a variety of organizations showed that a consider-
able number of individuals would willingly steal secrets from their organizations, if they
knew they were going to be fired [pol].
Prevention of security breaches due to IT mismanagement is not easy, especially in

large organizations. First, in big organizations the IT infrastructure is larger than in
small institutions, requiring more staff to maintain the systems. As a result, more
people have privileged access to the data, making it more vulnerable to misuse. Second,
in large organizations the web of relationships between employees is more complex and
impersonal than in smaller ones. Consequently, it is more difficult to tightly scrutinize
the behavior of individuals, and thus to detect and deter potential misbehavior.
In summary, irrespective of the cause, the risks of IT mismanagement incidents con-

stitute a serious problem that could incur serious losses to organizations. The gravity of
this problem has prompted us to find a solution for making enterprise platforms more
robust to these threats.

5.2 Hierarchical Separation of Administrator Roles

Ideally, we would like the data security to be entirely independent of the administrators’
behavior. In practice, however, it is hard to entirely eliminate the human factor from
the equation. This is because certain management tasks require a great deal of control
over the systems and privileged access to user data, e.g., to troubleshoot and recover
from intricate failures, or to fine-tune the behavior of systems according to the needs
of an organization; completely denying this degree of control would be too inflexible in
practice.
Thus, rather than precluding trust in all system administrators, our strategy to im-

prove security is to mimic smaller organizations by keeping the number of fully trusted
administrators as small as possible as an organization grows. Specifically, we propose
hierarchical administration roles, as represented in Figure 5.1. The idea is to create two
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Figure 5.1: Hierarchical separation of administrator privileges in two roles: fully trusted
and partially trusted.

administration roles with different privileges: fully privileged and partially privileged.
While the former class retains full control over the systems, the latter class is trusted
only for resource availability, but not for information security, i.e., to protect the con-
fidentiality and integrity of data and computations. (By the lack of integrity we mean
undetected modification of user data.) Thus, in contrast to a flat structure where all
system administrators require superuser privileges to carry out their tasks, with hierar-
chical administrator roles a subset of these management tasks can be safely delegated to
a class of “untrusted administrators”. This privilege separation contributes to keeping
the number of fully trusted administrators small even in large organizations.
To be effective, this hierarchical separation of administration roles should allow for the

delegation of a large number of management tasks to a partially trusted administrator.
In principle, a management task can be performed by a partially trusted administrator
so long as it can be performed without compromising the confidentiality and integrity
of user data. However, this delegation is far from trivial in the current state of affairs.
First, the OSes commonly used in enterprise platforms are not designed for supporting
privilege separation between administrators. Most enterprise platforms run commodity
OSes like Linux and Windows, which grant administrators superuser privileges. Second,
most of the management tasks involve some form of access to user data, either direct (e.g.,
backing up data) or indirect (e.g., installing new applications), raising the question of
whether a considerable fraction of such tasks could be completed without compromising
the security of the data, and if so, what mechanisms would be necessary to implement
this capability. Closing these technical gaps in the OS design space thus constitutes our
main goal.

5.3 Goals, Assumptions, and Threat Model

In Part II of this thesis, our goal is to enable organizations to enforce the administrator
privilege separation described above. We focus on administration roles targeting the OS
and defer for future work the implementation of this privilege separation policy for other
software systems that administrators also have to manage (e.g., databases). The OS must
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provide for the security of users’ data and computations while allowing administrators
to perform the typical OS management tasks, such as installing applications, configuring
devices, setting up security policies, and creating user accounts.
In devising OS defenses against mismanagement threats, we take two steps. First, we

want to design a security model that can be applied to OSes in general. The security
model should find a sweet spot in the design space that strikes a balance between lim-
iting the power of the administrator and providing the functionality that is required for
maintaining the system. We envision that the principles of our security model will be
applicable to a range of software systems that currently depend on granting superuser
privileges in their specific domains (e.g., database servers or web applications). Second,
we aim to demonstrate the feasibility of our model when applied to a concrete com-
modity OS. Our solution should not require deep changes to existing OSes and should
preserve compatibility with legacy applications. In Chapter 6, we present both parts of
our solution, which include the broker security model and BrokULOS, respectively.
We design the broker security model and BrokULOS under the following assump-

tions. First, we assume that the OS administrator corresponds to the partially trusted
administrator introduced in the previous section. The fully privileged administrators
constitute the root of trust in the system, e.g., by vouching for the software that is
trustworthy. Second, we assume that the implementation of the trusted computing base
(TCB) of the system is correct. Our focus is not on minimizing the TCB size; such
a goal is complementary to our work and has been the focus of various other research
projects [MPP+08a, SK10, ZCCZ11, MLQ+10]. This allows us to focus on a popular
operating system with a large TCB. Nevertheless, we discuss in Section 6.6 a possible
approach to reducing the TCB size by using an information flow kernel such as HiS-
tar [ZBWKM06]. Third, we assume that the machine that hosts the system is physically
secure, and that the system exposes a management interface that allows the adminis-
trator to manage the system remotely. This situation is common in many organizations
that host and process sensitive data (see Chapter 2.3).
As for the threat model, we assume that the attacker can be impersonated by a

rogue administrator, who has access to the management interface of the OS. In an
insecure commodity OS, this interface includes all operations that can be executed with
superuser privileges by logging into the root account or executing the sudo command.
In the broker security model and in BrokULOS, the management interface exposes
a much more restricted set of operations to the administrator. The attacker can also
reboot the system and have access to the persistent system state stored on disk. The
attacker, however, cannot exploit vulnerabilities in the TCB code of the OS, for instance,
to perform privilege escalation attacks, nor perform physical attacks on the machine. In
addition, we do not consider side channel attacks.

5.4 Related Work on Improving Trust in Enterprise Platforms

The related work on improving trust in enterprise platforms covers multiple topics. We
organize these topics in four different approaches to increasing trust in enterprise plat-
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forms: security models, isolation techniques, superuser privilege limitation, and Linux
security mechanisms.

5.4.1 Security Models

Security models help us to reason about how the data can be accessed in an OS and
who can access it. Bell-LaPadula [BLP76] and Biba [Bib77] are well known information
flow security models for multilevel security. Just like other information flow control
(IFC) models [ML97], they focus on how information flows in a system, and are dual to
each other, allowing expressing confidentiality and integrity policies, respectively. These
models, however, have not looked at reasoning about and expressing the permissions of
the management operations required by administrators (e.g., for upgrading software),
which is the focus of our work.
Another relevant security model is the Clark-Wilson (CW) model [CW87]. The CW is

an informal security model specially designed for commercial purposes. It is concerned
with data integrity, and it aims to prevent users from manipulating data objects arbitrar-
ily. Users can only manipulate the objects through trusted programs, which streamline
the way data objects can change (e.g., only certain users can perform certain transac-
tions). Our broker model shares similarities with CW in that trusted programs also
mediate certain activities in the OS. In contrast to CW, however, we focus not on users’
access control but on administrators’, and we go beyond CW in specifying concrete in-
variants that the trusted programs must adhere to in order to secure the administrator’s
management interface. (We elaborate on these invariants in Chapter 6.)

5.4.2 OS Isolation Techniques

In addition to security models, trust in enterprise platforms could also be reinforced
by leveraging isolation techniques. In general, isolation techniques enable setting up
security domains, some for the system administrators and others for users, such that
the computations hosted in the users’ security domains cannot be inspected or altered
by the system administrators. The system administrators retain the control over the
resources consumed by the users and can at any time release them, but cannot violate the
confidentiality and integrity of users’ runtime data. Since these properties are very much
aligned with those we want to enforce (see Section 5.2), we review some representative
techniques according to the isolation granularity that they implement (see Figure 5.2):
virtual machine, process, and function.

Virtual Machine: The coarsest level of isolation granularity is the virtual machine
(VM), in which a special hypervisor allows users to run VMs in security domains whose
runtime state is isolated from the management domain. The administrator can control
the resources of a guest VM but not access its data. (Note that commercial hypervi-
sors do not offer such protections; the management domain gives the administrator full
control over all the guest VMs in the system.) Terra [GPC+03] was the first hypervi-
sor providing management isolation. Currently, the state-of-the-art includes CloudVi-
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Figure 5.2: Representative systems that can isolate the runtime state of users’ compu-
tations from the administrator. Different systems enforce different isola-
tion granularities: virtual machine, process, and function. The numbers
in each diagram correspond to the protection rings found in Intel archi-
tectures, ranging from the most privileged (-1) to the least privileged
(3) protection ring.

sor [ZCCZ11] and Credo [RRT+11]. CloudVisor, in particular, retrofits the management
protections into Xen. To enforce such protections, CloudVisor leverages nested virtual-
ization to run in a more privileged ring than Xen’s hypervisor and management domain
(Dom0) (see Figure 5.2). In this way, CloudVisor allows the administrator to control the
guest VMs’ lifecycle and associated resources (e.g., create, migrate, suspend, and ter-
minate) without interfering with VMs’ states. While a VM-based solution is reasonable
for virtualized platforms, adopting it for OS-based platforms has two drawbacks. First,
it requires deploying an additional virtualization layer (e.g., CloudVisor and Xen) and
transferring the native OS onto a guest VM. This additional layer introduces inefficien-
cies and additional complexity to the system. Second, since the administrator does not
have any permissions on the OS now deployed in a guest VM, he would be precluded
from managing the OS.

Process: Isolation can also be enforced at a process granularity. In HiStar [ZBWKM06]
and analogous systems [SdBR+11, HHF+05], the administrator can manage the CPU,
memory, and bandwidth resources allocated to each process, but cannot access its inter-
nal state without the explicit authorization of the owner of the process. A microkernel
enforces these protections by isolating the user processes from OS services and adminis-
trator processes. The biggest drawback of these systems is that they do not yet provide
adequate support for system maintenance, mainly because this was not their main moti-
vation. HiStar, for example, implements the influential Decentralized Information Flow
Control (DIFC) model [ML97], but focuses primarily on the design of the microkernel,
which is responsible for enforcing the DIFC policies. A real world OS, however, requires
additional user-level processes with declassification privileges, processes that must ap-
propriately handle user data during management activities. For instance, to offer data
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backup services, some form of trusted daemon or declassifier must read the user data
and forward it to the backup repository (perhaps after encryption). HiStar and sim-
ilar projects did not look into the problem of securely designing the trusted daemons
or declassifiers so as to cope with the range of management tasks performed by the
administrators.

Function: Lastly, it is also possible to provide isolation of user computations at the
funcion granularity. In Flicker [MPP+08a] and TrustVisor [MLQ+10], user processes
can export security-sensitive functions to be executed in secure domains out of the
system administrator’s reach. Similarly to previous techniques, isolation is enforced by
a tiny microkernel, which runs in a privileged protection ring. Applying these systems to
securing enterprise platforms, however, raises manageability challenges similar to those
of process granularity techniques. Furthermore, the programming models of Flicker and
TrustVisor are likely to be too restrictive for securing most real world applications.
Applications would need to be refactored in order to separate the security-sensitive
functions from the security-insensitive parts of the application. In other words, existing
applications would need to be rewritten, placing a a considerable burden on developers
and restricting the scope of computations that could be secured. Such a requirement
would likely hinder the adoption of these systems in a real world setting.

In summary, much of this body of work has focused on the low-level kernel mecha-
nisms that enable the construction of untrusted-administrator systems with very small
trusted computing bases (TCB), an approach that is believed to lower the likelihood
of security flaws. However, little attention has been devoted to building untrusted-
administrator systems that actually remain administerable. Furthermore, the virtual
machine granularity approaches burden users with OS management issues and adds
unnecessary inefficiencies,and process and function granularity approaches require deep
changes to applications and hamper programmability. Thus, the question remains open:
how can we provide isolation from the management domain on OSes while preserving
manageability, efficiency, and compatibility?

5.4.3 Restriction of Administrator Privileges

Some OSes have improved the security of user data by restricting the privileges of the
administrator. Plan9 [iP02] was the first OS without superuser. Plan9 is a distributed
system that comprises multiple nodes, each of which is managed independently by a
node’s owner. Although there is no system-wide superuser in Plan9, the owner of each
node can control not only the node resources, but also compromise the security of the
user data located on the node. HiStar [ZBWKM06] showed that the separation between
resource management and data management is possible using DIFC. However, HiStar
only provides the DIFC foundations for data protection and does not consider the high-
level manageability issues addressed in BrokULOS. Similarly, trusted computing sys-
tems [MPP+08a, SdBR+11] have focused on securing user data and computations from
the administrator by using confinement [MPP+08a] and labeling [SdBR+11] techniques,
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but without specific requirements for preserving manageability. In the hypervisor world,
the work by Murray et al. [MMH08] and more recently CloudVisor [ZCCZ11] allow for
management of VMs without administrator interference, but address different challenges
than BrokULOS’s, which targets OSes rather than virtualized platforms. Some Linux
distributions also try to mitigate the effects of accidental abuse of the superuser privi-
leges. Ubuntu [ubu], for example, does not have a root account that the administrator
can log into directly. However, Ubuntu does not preclude the administrator from ac-
quiring superuser privileges and performing arbitrary operations. Therefore, it provides
no protections against rogue administrators.

5.4.4 Security Mechanisms of Commodity Operating Systems

To implement access control, most modern operating systems support some kind of
Access Control Lists (ACLs). Essentially, an ACL consists of a list that specifies the
access rights of a set of principals over a object. For example, in Windows [Kei00], a
principal could be a process acting on behalf of a user or service, an object could be a
file, a directory, or a registry key, and an access right could be the permission to perform
a certain operation on an object (e.g., “modify a file”, “list the contents of a folder”, or
“delete subfolders and files”). Windows ACLs are very flexible, as they allow for fine-
grained access rights and for the implementation of both Discretionary Access Control
(DAC) and Mandatory Access Control (MAC) policies. However, ACLs are oblivious to
the properties enforced by each of the permitted operations. The Broker Security Model
(BSM) complements ACLs in that it specifies a set of security invariants that these
operations must implement in order to allow for the delegation of security sensitive
management operations to partially trusted administrators without compromising the
confidentiality and integrity of users’ data.
Many mechanisms have been specifically designed to improve the security of Linux.

A large body of mechanisms aims to confine untrusted code to some kind of sandboxing
environment. Notable examples include chroot, Jails [hKW00], Linux containers [lxc],
and UserFS [KZ10]. Other mechanisms such as SELinux [Age01] and AppArmor [App]
provide MAC support for Linux. However, because these mechanisms mostly focus on
restricting access to user objects, they would considerably hamper the overall manage-
ability of the OS, a drawback that we aim to overcome in our work.
Some of these proposals share similarities with BrokULOS in terms of policy en-

forcement. In particular, SELinux also allows for defining policies based on specific
programs, but it differs from BrokULOS in that SELinux policies are defined by the
administrator, whereas BrokULOS’s policies are defined by the users. Just like in
BrokULOS, AppArmor allows for attaching policies to programs based on file paths.
However, in AppArmor, if a program has no policy associated with it, then it is by default
not confined. Thus, contrary to BrokULOS, it cannot protect users from accidentally
executing malicious programs not covered by the policies.
In summary, despite the differences and similarities between BrokULOS and the

state-of-the-art Linux security mechanisms, the key contribution of BrokULOS is not
so much in proposing fundamentally new mechanisms, but in showing that it is possible
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to enhance Linux according to the broker security model by orchestrating well known
Linux mechanisms, with little impact on performance and manageability.

5.5 Summary

This chapter discussed some of the trust issues that exist in the context of organizations.
In particular, we have seen that organizations could incur severe losses if their enterprise
platforms are poorly managed. To address this problem, we propose re-thinking the
distribution of administration privileges by adopting hierarchical administration roles:
rather than depending on a large number of fully privileged administrators, we keep
this number small by offloading most of the management tasks to partially trusted
administrators; this second class of administrators should be able to perform most of the
management tasks without compromising the confidentiality and integrity of users’ data.
We laid out our goal of designing an OS that enables partially trusted administrators
to maintain the OS. In the next chapter, we present the broker security model, which
prescribes the key principles for designing such an OS, and BrokULOS, an OS that
enforces these principles.
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This chapter presents our main contributions for improving trust in enterprise plat-
forms: the broker security model, and BrokULOS. BrokULOS is an implementation
of the broker security model for Linux. In contrast to a typical Linux distribution where
the administrator holds superuser privileges, BrokULOS enforces privilege separation
between fully trusted and partially trusted administrators such that most of the manage-
ment tasks of the system can be performed by partially trusted administrators without
compromising user data security.
In the remainder of this chapter we first present the key principles of the broker security

model. Then, we describe how we applied these principles to the Debian Linux distri-
bution and built BrokULOS. Lastly, we present our evaluation of BrokULOS and
discuss some of its security features.

6.1 Broker Security Model

The broker security model aims to enhance the security of an operating system by
weakening the trust requirements relative to the system administrator while preserving
the manageability of the OS. Since we envision that the principles of our security model
can be applicable to a class of software systems broader than OSes, namely those that
grant some form of superuser privileges in their specific domains (e.g., database servers or
web applications), our model includes a quite abstract and simple design, and proposes
a methodology that system designers can follow to implement this design in concrete
systems. We present this design and methodology below.

6.1.1 General Design

Figure 6.1 shows how the broker security model extends a base software system. The
underlying system is modeled as a collection of objects, each of which is associated with
a set of hardware resources and contains relevant data. If the base system is an OS,
for example, objects include files, processes, user accounts, etc. The base system allows
users and administrator to access and manage objects through two interfaces—a user
interface and a management interface. In the base system the management interface
gives the administrator superuser privileges, which allow him to fully control all system
objects and therefore access user data without restrictions.
The broker security model introduces two main differences with respect to the base

system. First, it implements hierarchical administrator roles, where instead of a single
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Figure 6.1: Software system under the broker security model.

all-powerful administrator, there are two administrator roles (see Section 5.2): par-
tially trusted, and fully trusted administrators. Second, the management interface no
longer grants undiscriminated superuser privileges, but provides administration privi-
leges through a set of trusted programs called brokers. These programs are used by the
partially trusted administrators to manage the system. Brokers mediate the access to
objects in a well-formed manner in order to (i) provide the functionality that is necessary
and sufficient to manage objects properly (e.g., create user accounts), and (ii) let the
administrator retain control over resource availability while shifting control over user
data confidentiality and integrity to users. The fully trusted administrators have the
power to override the brokers’ restrictions, for example, for troubleshooting.
To make sure that users retain control over their data security, brokers must be de-

signed to preserve the following three security invariants:

1. Information security: A broker does not allow user data to be output or modi-
fied in ways that violate the confidentiality and integrity of that data. For example,
allowing a debugger to be attached to a user process without the user having au-
thorized or being aware of this operation violates this property.

2. Identity protection: A broker does not allow user identities and associated
credentials to be hijacked or overridden. Otherwise, the administrator could abuse
this privilege to impersonate a user and access his data. For example, allowing the
administrator to change user passwords arbitrarily breaks this requirement.

3. System integrity: A broker ensures that the system can only transition between
system states that preserve security invariants 1 and 2. For example, a broker
cannot allow arbitrary kernel modules to be loaded because this feature could
be exploited for privilege escalation: loading a malicious module could subvert
brokers’ security mechanisms.

The broker model has a direct correspondence to the hierarchical administrator roles
introduced in Section 5.2. The partially privileged administrators are in charge of main-
taining the OS and have access to the management interface, i.e., they can execute
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the broker commands. The fully privileged administrators interfere more seldom in the
maintenance process. They are primarily responsible for vouching for the broker im-
plementations that correctly implement the security invariants and for overriding the
brokers’ protections in emergency situations (e.g., intricate system failures).

6.1.2 Methodology

Now that we have defined the broker model in abstract terms, we need to discuss how
it can be applied to enhance the security of concrete software systems (and OSes in
particular). For this, we propose a two-step methodology:

1. Specify the broker functionality. First, one must specify the broker layer by
identifying the functionality that the set of brokers need to offer while simultane-
ously obeying the three security invariants required by the model.

2. Implement the brokers. Second, one needs to devise the mechanisms that
implement brokers’ functionality and enforce the security invariants.

We next apply both these steps to an OS. In the following sections, we refer to the
partially trusted administrator role simply as “administrator”. Any reference to the
fully trusted administrator role will be made explicit.

6.2 OS Broker Functionality

To adapt an OS to the broker security model, a natural design is to start by disabling
superuser privileges and force the administrator to maintain the system from a regular
user account. We can then grant that user account the privileges to execute a set of
privileged commands through the sudo program. These commands will constitute the
brokers that the administrator needs access to in order to maintain the OS. By this
approach, we start from a point where the OS is secure by design, yet overly restrictive,
and then add carefully crafted brokers to regain manageability.
The challenge then becomes specifying the functionality of brokers. In particular, we

must make sure (1) not to overlook the functionality that is necessary for keeping the
system administrable and yet (2) enforce the security invariants of the broker model. To
properly specify the brokers’ functionality, we start by surveying the most fundamental
management tasks performed by administrators. The tools that support these tasks
can provide us with the baseline mechanisms that we need to implement the brokers.
However, since existing tools are likely to violate the invariants of the broker model, we
need to validate whether and how such violations take place and complement these tools
so that the resulting brokers can securely satisfy all invariants.
Table 6.1 shows the list of tasks that we surveyed along with an indication of how

the various tasks violate the three security invariants we listed previously. This list
combines the results of two approaches. In a bottom-up approach, we studied a collection
of packages and respective tools available in a basic Debian distribution, identified the
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Category Management task IS IP SI

Software List, install, upgrade, and remove applications and libraries exe-
cuted by the users

−

List, install, upgrade, and remove system services and kernel im-
ages

−

Configure software and diagnose errors −

Apply security patches −

Manage local system documentation −

Accounts Create, modify, and delete user accounts −

Disable user accounts temporarily

Modify account credentials −

Force users to modify their credentials

Groups Create, modify and delete user groups −

Processes Monitor and limit memory utilization by user processes −

Check for runaway processes −

Modify process execution priorities −

Check for unattended login sessions −

Files Perform backup and restore of user data −

Set and view disk quotas

Check file space utilization −

Remove temporary files (in /tmp and in /lost+found) −

Re-distribute disk space in the filesystem −

Mount and unmount filesystems

Check filesystem integrity and fight fragmentation −

Check disk space −

Create, modify, and format partitions

System Restart the system after panics, crashes, and power failures

Load, list, and unload kernel modules −

Start and stop services −

Automate and schedule system administration tasks with cron

Check and clear system log files −

Configure and modify swap space

Configure init and runlevels −

Configure the network and check open connections −

Setup system clock −

Setup and check the status of the printer

Table 6.1: Management tasks grouped into categories: Tasks are grouped by
category. For each task we indicate the security invariants they violate:
information security (IS), identity protection (IP), and system integrity
(SI).

functionality of each tool, and used our judgment to assess whether its functionality
is fundamental for the administrator. In a top-down approach, we studied the system
administration literature and identified the high level tasks that an administrator needs
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to perform. Overall, we manually inspected 902 executables included in 100 packages1

and studied three different textbooks [WOSW04, GBd04, Jos07]. We then converged on
a single (coarse-grained) task list, which we have examined together with professional
system administrators (from the host institution of the author) to make sure it reasonably
characterizes the management activity of a typical OS administrator.
The tasks that violate the information security (IS) invariant mostly involve processes,

files, and volumes and their primary goal is to manage resources and user data. For
example, to learn about the memory utilization and open files by user processes, tools
like ps and lsof reveal sensitive information that may be contained, e.g., in command
line arguments of the process or in the names of user files. Similarly, tools for backing
up and restoring user data (e.g., tar and gzip) allow the administrator to inspect and
modify user data.
The tasks that breach the identity protection (IP) invariant are mostly related to

user accounts and group management. User account operations include the ability to
arbitrarily set and modify the identity and credentials of a user account (e.g., changing
the password of an account using passwd). Group management enables adding and
removing users from groups with tools like useradd and usermod. These capabilities
would allow the administrator to access files and processes owned by the user, in the
first case, or shared within a group, in the second case.
The tasks that compromise the system integrity (SI) invariant are mostly related to

software and system management. Typical OSes allow the administrator to install arbi-
trary software, which can affect both the TCB (e.g., by upgrading the kernel, installing
OS services, loading kernel modules) as well as shared applications. With this capability
the administrator could escalate his privileges to access user data by tampering with the
TCB or by installing backdoors in shared applications. Administrators can also set up
devices to compromise the system integrity. For example, the ability to set the system
time can be used to launch replay attacks.
Note that the purpose of Table 6.1 is not to enclose all management tasks. Instead,

it comprises only the set of fundamental broker operations, which administrators can
then rely upon for more complex tasks. For example, for diagnosing resource misuse,
administrators can use various brokers, e.g., for checking runaway processes, unattended
login sessions, and process memory utilization. In fact, it is typical to use helper tools
to identity the source of such problems. As another example, for recovering from system
bugs, administrators can use brokers for securely installing software and backing up
or restoring user data. Indeed, rather than fixing compromised systems, the common
practice for system recovery is to make clean-slate software reinstalls and restore user
data from backups; this method guarantees that the system state is again known and
trustworthy.
Ideally, the table should list all the tasks that are necessary and sufficient to meet all

needs of OS administrators. However, in spite of our best efforts and positive feedback

1These packages were selected from a minimal Debian distribution according to two criteria: they
contain the basic tools (package “Priority” is “Required” or “Important”) and provide system ad-
ministration support (package “Section” is “Admin”).
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Figure 6.2: Broker-enhanced OS architecture. The numbers in each layer correspond
to the traditional protection rings, ranging from the most privileged (0)
to the least privileged (3).

from professional system administrators, this table is likely to be incomplete, and it may
need to be adapted by adding, modifying, or removing entries depending on the concrete
OS, deployment environment, and administrator needs.
Now that we have characterized the functionality that should be offered by the broker

layer of an OS, we present the mechanisms that implement it.

6.3 Broker-enhanced OS Design

We start with an overview of the OS architecture that we propose and then describe
how each security invariant is enforced by the brokers.

6.3.1 Architecture

Figure 6.2 illustrates the internals of a broker-enhanced OS. Since it is not our primary
goal to minimize the size of the TCB, we simply extend a vanilla Debian Linux distri-
bution with a set of components that implement the broker extensions for the system.
These components consist of broker commands, dedicated services, and an LSM kernel
module.
In contrast to the vanilla Debian distribution, there is no superuser account (root)

nor any other way that the administrator can obtain superuser privileges. Instead, both
users and the administrator run their processes in protection domains with UID > 0.
UID 0 is then reserved for the components that need to run in privileged mode such as
OS services (e.g., init, sshd) and broker commands. The space of unprivileged domains
(UID > 0) is split into two parts: UIDs ≤ ut, which are reserved for services that do
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not need to run in privileged mode, and UIDs > ut, which are reserved for user accounts
(where ut is a configurable threshold).
Brokers consist of a well-defined set of trusted programs that run in privileged mode

(UID = 0). Table 6.2 shows examples of the most representative brokers, grouped
into categories according to their semantics. To allow for invoking brokers from a non-
privileged account, we rely on the well known sudo gateway, which also authorizes broker
execution based on the role—administrator or user—associated with each account. To
bootstrap the creation of administrator accounts, the administrator role is assigned to the
first account to be created; the administrator can then define the role of the subsequent
user accounts.
Next, we describe in more detail the brokers that provide support for the management

tasks in Table 6.1 while preserving the security invariants required by the model. We
structure this presentation according to the invariants that are to be preserved.

6.3.2 Enforcing the Information Security Invariant

The information security invariant stipulates that the administrator cannot access user
data through the system management interface. This is the model’s most fundamental
requirement because otherwise user data confidentiality and integrity could be directly
violated. To meet this requirement, the protection domains of the administrator and
users should be perfectly isolated from each other. However, this can be challenging
when user domains must be crossed over, particularly for resource management and
data management tasks. We discuss these in turn.

Managing Account Resources

The administrator must be able to control the resources associated with a user account
(e.g., set user quotas for CPU and memory). This control, however, requires permission
to access the resources allocated to user data. Without the proper protections, however,
such access could allow the administrator to access user data, thereby compromising its
confidentiality and integrity. To enforce a clean separation between resources and data,
we propose the following steps.
The first step is to conservatively isolate the protection domains of administrator and

users. To start, we can use the UID-based protection domains to prevent direct access
to user files and processes that are not explicitly shared by the users. However, it is also
necessary to prevent information leakage through the /proc filesystem. The Linux kernel
exposes extensive information relative to user processes in a collection of files located
under /proc/PID , where PID is the process number. The kernel generates the content
of these files on the fly whenever they are opened and sets the permissions of many
of them to publicly readable. However, making some of these files public violates the
information security invariant (e.g., files stat and cmdline expose many details about
the memory usage or the command line of processes, respectively). To prevent access
to this information with minimal kernel changes, we simply override the file permissions
to make them private to the process owner and accessible to the system brokers. We
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Category Examples of representative brokers

Packages
list packages (pkg-list), get package (pkg-get), install package (pkg-install),
upgrade package (pkg-upgrade), remove package (pkg-remove), flush package
cache (pkg-flush)

Accounts
create account (acc-create), disable account (acc-disable), enable account
(acc-enable), force password reset (acc-force), reset password (acc-passwd),
delete account (acc-delete), load user policy (acc-polload)

Groups
create group (grp-create), list groups (grp-list), delete group (grp-delete),
add member (grp-addmem), list members (grp-lstmem), remove member
(grp-remmem)

Processes
list resource utilization (ps-list), kill account processes (ps-kill), set account
process priority (ps-renice)

Files
backup account files (fls-backup), restore account files (fls-restore), list
storage usage (fls-du), move account (fls-move), clean temp (fls-cltmp)

System
insert module (mod-insert), remove module (mod-remove), list services
(svc-list), start service (svc-start), stop service (svc-stop), reboot
(sys-reboot), setup system clock (dev-clock), setup network card (dev-net)

Table 6.2: List of representative brokers grouped into categories: States each
broker’s functionality and command name (in parenthesis).

preserve kernel compatibility by adding these changes in an LSM module. Whenever
a process issues the open system call to a sensitive /proc file, the LSM module checks
if the UID of the running process matches the UID of the file (i.e., is its owner) and
aborts the operation if not. To prevent a malicious administrator from bypassing these
protections, the LSM module cannot be unloaded by the administrator.
The second step is to enable the administrator to manage account resources, and it

consists of providing a set of specific brokers for process and file management. These
brokers, however, only let the administrator “see” an account as a bundle of CPU,
memory, and storage resources whose utilization he can observe, restrict (by setting
quotas), and deallocate as a whole. For example, brokers for process management only
output aggregate information of resource utilization and always operate on all processes
of an account (e.g., by applying kill and renice to all processes). Brokers for file
management follow the same approach. As additional examples, monitoring the storage
consumed by a user only reveals aggregate disk utilization, and moving user files to
another volume displaces all files located in users’ home directories or in user-approved
subdirectories.

Exporting Account Data

The aforementioned techniques allow for resource management without user data access.
However, in certain operations like backing up and restoring user data the administrator
needs to export user data from the user account’s protection domain, where the data is
secured, to another machine. To support these operations while preserving information
security, the system encrypts the data and appends integrity checks before the data
leaves the protection domain. However, we need to ensure that, when restoring the
data, the backed up data can only be decrypted (1) on machines booting an untampered
version of BrokULOS and (2) by the original owner of the data. To guarantee this
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Figure 6.3: State transitions between account states: The user must explicitly
accept that the account is valid before it can be used. In the active state,
the administrator can temporarily disable the account or force the user
to change authentication credentials. The resources of a deleted account
can be released at a later point in time.

property, the user data is encrypted and decrypted with a seal key. The seal key is a
unique cryptographic key that the system associates with each newly created account. To
enforce requirement (1), we take advantage of TPM primitives, which allow us to encrypt
(seal) the seal key such that it can only be decrypted (unsealed) if the machine boots
a correct BrokULOS binary. If the booted system is correct, the system then ensures
that the seal key is only accessible to the owner’s account, thereby ensuring requirement
(2). To support recovering data on a different machine, e.g., because the original one
was decomissioned, sealing could be extended to allow for unsealing to take place on any
machine with a similar configuration. This extension could be implemented by coupling
BrokULOS with Excalibur and sealing the data using the policy-sealed data primitive
(see Chapter 4).

6.3.3 Enforcing the Identity Protection Invariant

With the protection mechanisms for the enforcement of information security in place, the
administrator no longer has direct access to user data. Nevertheless, these protections
could be circumvented if the identity protection invariant is not assured. This invariant
requires that the administrator cannot control user credentials and identities, otherwise
he could impersonate users and access their data directly. Thus, ideally, users should
be able to control their own identities without hindering the administrator’s ability
to control resources. In practice, however, shifting control to users entails some loss of
management flexibility of accounts and groups from the perspective of the administrator.
Therefore, we need to design specific brokers that can provide reasonable manageability
without sacrificing the identity protection invariant, as we describe next.
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Managing User Accounts

In managing user accounts, we enforce the identity protection invariant by offering a
set of brokers for regulating an account’s life cycle such that user login credentials are
strictly controlled by the user.
The basic life cycle of a user account is shown in Figure 6.3. An account is created by

the administrator; he specifies the initial configuration of the account (e.g., user name,
home directory) and an initial login credential, which is only going to be used once. The
first time the user logs in with the initial login credential, he must ensure that he has
exclusive access to the account by claiming it. This process involves running a secure
protocol which serves two purposes. First, it provides a report describing the initial
account’s configuration and state. If the account has been set up with initialization
scripts or if somebody has logged into it before, the user will be able to detect these
irregularities and abort the operation. If, however, the report shows no problems, the
user can set up his authentication credentials (e.g., by uploading the user’s public key)
without administrator interference. This process will disable the initial login credential
and lock the user name associated with the account. From this point onwards, only
the user can login to his account and he has full control over its content, but not its
resources. The administrator can still adjust the resources associated with the account,
disable user login temporarily (e.g., in the case of a misbehaving user), force a user to
change credentials, and, whenever necessary, delete the account.
Changing credentials is done by users themselves using the credentials they have up-

loaded to the system. To address the concern that losing user credentials would prevent
a user from ever logging in, our system supports two override mechanisms. One is to
rely on the fully trusted administrators to reset the user credentials. Another is to in-
crease redundancy by registering multiple credentials and using various authentication
mechanisms (e.g., public key, password, passphrase). Although this approach does not
eliminate the problem entirely, it reduces the likelihood of permanent loss of access.

Managing Group Membership

In addition to allowing users to control their own identities and credentials, the members
of user groups need to be properly authenticated. Otherwise, the administrator could
gain access to group-shared data by creating fake identities and registering them as
legitimate group members. To enforce the identity protection invariant when managing
groups, the BrokULOS administrator is still allowed to create and delete user groups,
but adding and removing members is delegated to users themselves. The approach we use
for delegation is to designate a (per-group) group leader that makes group membership
authorization decisions. The group leader must validate users’ identities before adding
them to a group. Since relying on user names chosen by the administrator is insecure
for authentication, the group leader must check users’ credentials (e.g., a certificate of
the user’s public key).
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6.3.4 Enforcing the System Integrity Invariant

The mechanisms we have introduced thus far can effectively enforce both the information
security and identity protection invariants. However, if the administrator can compro-
mise these mechanisms, these assurances can no longer be guaranteed. Thus we next
propose a mechanism for enforcing the system integrity invariant, taking into account
two aspects of the problem: managing TCB components and shared applications.

Managing TCB Components

Managing TCB components involves installing, upgrading, configuring and removing
software components that run in privileged domains and configuring devices (e.g., setting
up the network and the system timer). The privileged software components include
those in the kernel space (i.e., the kernel itself or kernel modules) and in the user space
with UID 0 (e.g., services, system libraries, system tools, and brokers). To enforce the
integrity of the TCB, all these operations must be validated, and this is carried out using
special-purpose brokers.
In particular, brokers only authorize the installation of TCB components if the new

TCB component is “trusted”. Several definitions of trust could be used, for example, in
an ideal world, the system would automatically verify if the implementation is correct.
BrokULOS uses a simple model where a TCB component is trusted if its compliance
with the broker security model is endorsed by one or multiple third parties that are
mutually trusted by both the fully trusted administrators and users, referred to as Mu-
tually Trusted Signers or MTSes. To enforce this consent, administrators set up the
initial MTS certificates in the system and users must approve or reject them whenever
they claim their accounts. MTS certificates can be changed over time—e.g., when up-
dating or revoking them, or when adding new MTSes—by either establishing a chain of
trust that only accepts new MTS certificates signed by a preexisting MTS, or by polling
all users before accepting a new MTS certificate. The MTS role can be performed by any
entity mutually approved by administrator and users (e.g., certification organizations,
software development companies, specific administration roles within the organization,
or open source communities).
Regarding device configuration, we again only accept configurations that are vouched

for by an MTS. The notion of what is expected from a trusted configuration is device-
specific. Therefore device-specific brokers are expected to perform the appropriate vali-
dations. A particularly interesting case is the system clock, where the system time should
not be set arbitrarily. Therefore, we restrict time updates to trusted NTP servers sent
over secure channels. This is done by requiring the NTP configuration file (which iden-
tifies addresses and credentials of the NTP servers) to be signed by an MTS. Given the
large number of devices, we did not design brokers for all of them, but new devices could
easily be accommodated by adding appropriate brokers.
In addition to enforcing TCB integrity, it is necessary to assure users of its enforcement.

This is because the administrator can circumvent the TCB protection mechanisms by
rebooting the machine and tampering with the TCB binaries on disk. We offer these
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guarantees by means of a remote attestation protocol, which users run when they claim
their accounts. Our protocol is based on a standard attestation protocol [PMP10],
which transmits the boot time measurements (hash) of the TCB components signed by
the TPM. We then extend it to include the MTS identities as well as the report of the
user account’s initial state (see Section 6.3.3). Thus, when users claim their accounts
they can validate the hashes of the TCB binaries and the MTS identities, thus verifying
the integrity of the TCB.

Managing Shared Applications

Finally, in addition to TCB components, another type of software that must be trusted
to correctly manipulate user data is shared applications (e.g., MySQL). To give users
the flexibility of choosing which applications they trust, we let them define user policies
that express their restrictions. The policy language expresses a list of rules, each of
them consisting of comparisons among four attributes we currently support: package
maintainer, package name, package version, and filename.
To enforce these policies, we developed a special purpose Linux Security Module (LSM)

kernel module. The LSM module overrides the standard DAC permissions and enforces
the user policy at runtime: whenever the user runs an external program, the LSM
module intercepts this operation, evaluates the policy, and aborts the execution if the
policy evaluation fails. To evaluate each policy rule, the LSMmodule checks the attribute
conditions specified in the policy against a set of extended filesystem attributes associated
with the executable. The filesystem attributes are attached by the broker layer whenever
the executable’s package is installed. The broker responsible for installing the packages
obtains the attributes for each program from a manifest contained in the program’s
package. Users load their policies into the LSM module once they claim their accounts.

6.4 Implementation

Our BrokULOS prototype is based on the Debian GNU/Linux 6.0 (“Squeeze”) dis-
tribution running Linux 2.6.39.3. Our implementation effort includes the broker layer,
which we implemented in about 4, 400 lines of Python code, and the LSM kernel model,
coded in less than 1, 000 lines of C code. For convenience, brokers take advantage of
basic tools such as dpkg, gpg, and useradd to perform the low level changes to the sys-
tem. These tools are included in the core packages of BrokULOS, which comprises 77
packages, out of a total of 266 packages. This package configuration is based on Debian’s
minimal setup, which is then extended with BrokULOS’s functionality.
The LSM module implements the protection mechanisms for overriding the DAC per-

missions of the /proc files and evaluating user policies. To implement this functionality,
it places handlers in two LSM hooks (bprm check security and inode permission). The
LSM module provides an interface via VFS under the mount point /brokulos for loading
the user policies into the module.
Our current prototype uses TPMs to support remote attestation and secure storage.

We use TrustedGRUB [gru] to measure the integrity of the files of core packages and
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extend the PCR registers with these measurements accordingly. Then, we use the TPM’s
quote primitive to generate and sign an attestation report when requested by the users.
This procedure requires setting up an AIK key so that the TPM can sign the report.
The implementation of secure storage has some limitations: we keep the entire system on
an encrypted partition using LVM, but, as of now, we have not modified LVM to ensure
that the encryption keys are protected using the sealing primitives of the TPM. This
modification, however, poses no particular challenges and is already used in Windows
by BitLocker [Mic].

6.5 Evaluation

In this section we evaluate the security, manageability, and compatibility of BrokULOS,
and experimentally gauge its performance overheads.

6.5.1 Security

BrokULOS improves security in three main ways. First, it significantly reduces the
management interface exposed to the administrator. Unlike a commodity Linux distribu-
tion where the administrator is endowed with superuser privileges, in BrokULOS the
administrator can only perform the privileged operations exposed through the broker
layer. The broker layer makes the management interface explicit, and narrows it to a
relatively small number of trusted programs. Thus, provided these programs are cor-
rectly implemented, the administrator cannot acquire privileges not contemplated in the
broker model.
Second, BrokULOS explicitly restricts the software that can run in a privileged

domain, i.e., that belongs to the TCB. In a commodity Linux distribution, because
the administrator can install arbitrary software in the privileged protection domain,
it is not possible to foresee which security properties are guaranteed by the system.
In BrokULOS, however, only the software that is signed by an MTS can run in the
privileged domain. Thus, provided that the MTSes are trustworthy, the system enforces
the well-defined security invariants of the broker model.
Finally, BrokULOS allows users to specify the software they trust to process their

data. BrokULOS conservatively prohibits the execution of all shared programs (i.e.,
not owned by the user) and allows the user to open exceptions based on a user policy.
This mechanism prevents the user from accidentally running applications that could
compromise the security of his data.
An orthogonal aspect of the system security is shrinking the TCB size to reduce the

likelihood of code vulnerabilities. As we mentioned, this aspect was not the emphasis of
our work and we therefore see it as being complementary and a follow up to BrokU-

LOS. Nevertheless, we note that while brokers add code to the TCB, it is only a small
additional fraction of much simpler code when compared to the OS kernel. Furthermore,
we expect to make broker programs more trustable by releasing their source code.
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Figure 6.4: Performance of brokers when executed by the administrator: Cov-
ers representative brokers relative to package, account, group, module,
and process management. The brokers for installing, getting, and re-
moving packages use the hello package, which suffices for measuring the
broker overhead for any package.

6.5.2 Manageability

The ideal way to evaluate the system manageability would be through the practical
experience of deploying and managing the system in a real setting. Not having access
to such a deployment, our methodology is to validate the whether BrokULOS provides
adequate broker coverage to accommodate all the management tasks we have surveyed
(see Table 6.1).
Our current prototype provides a set of 41 brokers spanning multiple task categories.

In some cases there is a one-to-one correspondence between the task and a particular
broker (e.g., backing up data is supported by file-backup), whereas in others a single
broker serves multiple tasks (e.g., ps-list lists both the CPU and memory allocated to
an account). Overall, BrokULOS currently covers the most crucial set of management
tasks. We provide only limited support for tasks related to devices (e.g., managing the
printer) and filesystems (e.g., formating partitions and reducing fragmentation). Overall,
out of the 33 coarse-grained tasks in the table, our system fully supports 29. The high
fraction of management tasks covered by the existing brokers shows that our system
provides extensive management support.

6.5.3 Compatibility

Overall, BrokULOS preserves compatibility with existing Linux mechanisms and ap-
plications. Our solution requires no modifications to the Linux kernel besides plugging
in a kernel module to the standard LSM interface. The system leaves ABI / APIs
unchanged, thereby preserving application compatibility. However, some popular ad-
ministration tools are disabled, since they violate the broker model. This is the case,
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for example, of lsof, which prints out a list of every file that is in use in the system.
As a result, the administrator may have to adapt and possibly change his scripts to use
BrokULOS’s brokers.

6.5.4 Performance

To evaluate the performance of our prototype, we focused on the places where BrokU-

LOS introduces overheads to the vanilla Debian distribution: the broker layer, which
affects management operations, and the LSM module, which impacts the execution la-
tency of all programs in the system. (Recall that the LSM handler code runs every time
a program is executed.)
Our evaluation methodology is as follows. To study the broker layer overhead we use

microbenchmarks. For each broker, we measure its execution time, measure the execu-
tion time of a vanilla Debian operation whose functionality is comparable to the broker’s
(e.g., user account creation), and then compare both values to analyze the performance
penalty incurred by BrokULOS’s management tasks. For each experiment, we run 10
trials and report the mean time and standard deviation. To study the overhead of the
LSM module we measure the impact of policy evaluation on the execution time of a large
task, namely compiling the Linux kernel 2.6.39.3. We measure the overall execution time
with and without policy evaluation, using a policy with 266 rules, where each of them
tests a package installed in the system. We use an Intel Xeon machine with a 2.83GHz
8-core CPU, and 1.6GB of RAM.
Figure 6.4 plots the results of the broker layer evaluation. It shows only the subset of

system brokers that (1) require sanitization of standard administrator tools to enforce
compliance with the broker model (e.g., resetting the network card is not shown), and (2)
have a direct correspondence with a vanilla Debian operation (e.g., the backup broker
is not shown). There is a significant disparity in the performance overhead among
brokers. Brokers whose Debian counterpart execute in the order of 10ms undergo a
performance penalty of around one order of magnitude. For execution times above the
0.1s threshold, however, the performance penalty between the two cases is negligible.
The high overhead of short-lived brokers is partly due to the extra functionality, but
mostly due to being implemented in Python, whereas their Debian counterparts are
implemented more efficiently in C. If we consider, e.g., the ps-renice broker, which sets
the same priority for all the processes of a user, and its counterpart, which corresponds
to the command renice -u, the 10-fold increase is simply due to Python overhead. Since
the broker functionality is not significantly more complex than that of pre-existing tools’,
we believe that implementing brokers from scratch and in C should produce comparable
performance to the Debian distribution.
Our LSM module study shows that policy evaluation is efficient. The overall execution

times of the kernel compilation in Debian and in BrokULOS show no differences, which
means that the LSM module adds negligible overhead to long running tasks. These
results are expected since the LSM module handlers perform very little work and only
when a program is executed.
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6.6 Discussion

In this section we discuss several issues regarding possible design extensions and the
deployment of the system.

Shrinking the TCB size. Several directions could be taken in re-designing BrokU-

LOS’s internals to reduce the TCB size. One direction is to leverage existing sandbox-
ing mechanisms for Linux such as UserFS [KZ10] in order to run some of the trusted
programs (e.g., privileged services) in an unprivileged environment. Thus, if one of these
services is exploited, an attacker could not compromise the entire system. To avoid de-
pending on the correctness of the large Linux kernel, a second direction is to explore
designs based on microkernels [KEH+09] or on DIFC kernels [ZBWKM06, KYB+07].
The important thing to note is that the broker security model is also applicable in this
setting, with the added advantage that brokers can set fine-grained policies. E.g., the
ps-list broker can be constrained to only be able to read the /proc files. Thus, in the
event of an exploit, the attacker could only leak the information contained in those files
and nothing else, which significantly improves security.

Integration with distributed systems. In real enterprise platforms, hardly a single
machine operates autonomously; machines usually rely on networked services for storing
data (e.g., NFS), authentication (e.g., LDAP), or upgrading software (e.g., package
repositories), for example. In cases such as in cloud computing or grid platforms, each
machine is itself a constituent of a larger distributed system. Although in this work we
have focused on securing a single machine, we believe that the same principles can be
applied to a distributed setting by propagating trust across components using secure
channels and remote attestation mechanisms. However, we have not yet explored these
extensions.

Handling corruption of persistent state. One might argue that the loss of control
through the management interface enforced by BrokULOS could hinder the ability
for the administrator to recover the system or the user data if bytes are corrupted on
disk. In such cases, the procedure to recover a BrokULOS box is analogous to what
is typically done to recover a Linux box: If the user data has been tampered with, the
administrator can restore it from backups. If instead the software has been corrupted,
the administrator can reinstall a clean slate image of the system (if necessary on a
different machine).

Improving data availability. In our current design, the administrator has full control
over system resources. However, a great deal of security issues can arise due to the
accidental deletion of data. To prevent permanent data loss, brokers could, e.g., include
delays to enable the administrator to revert the actions that were performed accidentally
or even require multiple administrators to authorize more critical tasks. This guard could
target all brokers that can cause data to be permanently removed.
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6.7 Summary

We introduced the broker security model, a general security model aimed at protecting
the confidentiality and integrity of user data from system administration errors. By
only trusting administrators for resource availability and not for information security,
this model improves data protection with little impact on system manageability. It
achieves this property by relying on a layer of brokers—trusted programs that mediate
access to system objects. We showed that this model is practical for OSes by imple-
menting and evaluating BrokULOS, our proof-of-concept broker-compliant OS. The
broker model lays out important principles in the design of untrusted-admin systems.
We envision applying it to other software systems (e.g., databases and web applications)
and improving the mechanisms necessary to enforce this model (e.g., by reducing the
TCB size). By making OSes more resilient to mismanagement threats, the broker secu-
rity model and BrokULOS have the potential to strengthen users’ trust in enterprise
platforms. Next, we turn our attention to improving trust in mobile platforms.
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Improving Trust in Mobile Platforms
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7 Motivation and Related Work

So far we have focused on trust issues related to cloud and enterprise platforms. We
now shift gears to the mobile landscape. A trend of new mobile apps is emerging with
strict security requirements. Examples include e-wallet and e-health apps, which require
private access to their execution state. However, today’s platforms can hardly offer such
guarantees. In fact, the complexity of mobile platforms like Android, iOS, or Windows
8 is such that it is almost impossible for these systems to be bug free.
To suit the needs of security-sensitive apps, we propose a design where the OS runs

side-by-side with a small sized trusted runtime system, both of which run in isolated
security domains enforced by hardware. The trusted runtime system provides a reduced
TCB environment for hosting security-sensitive components of mobile apps. The spe-
cific challenge of building a small trusted runtime system when compared to related
systems [MPP+08a, MLQ+10] comes from the fact that mobile apps do not run native
code, but run an intermediate code, which depends on complex runtime engines like the
Java Virtual Machine and .Net CLR.
In this part of the thesis, we present the Trusted Language Runtime (TLR). The TLR

reduces the size of the TCB, by providing only a minimal number of application run-
time services. By this, it is possible to strip off a typical runtime engine from all the
components except those that the basic services depend upon. We built a TLR proto-
type targeting .Net mobile apps. In its implementation, the TLR uses ARM TrustZone
technology to protect its state from the OS. In addition, to provide the basic applica-
tion runtime services, we used the .Net Microframework (NetMF), a lightweight and
customizable implementation of .Net for embedded devices.
Before presenting the TLR in Chapter 8, we dedicate the rest of this chapter to

frame the problem and to introduce our approach to address it. Firstly, we discuss
the limitations of today’s mobile platforms in addressing the security needs of emerging
apps in the mobile landscape. We then present our idea for enhancing the security of
mobile platforms to satisfy those needs, and lay out our plan to realize our idea, namely
set our goals, state our assumptions, and characterize the threat model. Lastly, we
provide some necessary background and discuss the related work.

7.1 Security Needs of Emerging Mobile Apps

The need for trusted applications on smartphones is greater than ever. As smartphones
become the de facto personal computing device, people are storing more and more
sensitive and personal information on their phones. Unfortunately, the value of this
information is starting to make smartphones an attractive target for attacks, includ-
ing third-party applications with questionable practices [EGC+10] as well as outright
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malware [Hyp06]. Even more alarming, researchers have demonstrated that today’s
smartphones can be subjected to rootkits, which can compromise the OS [BOB+10].
At the same time, it is difficult to get a grasp on the security properties provided by

existing mobile platforms like iOS, Android, or Windows 8. The fundamental reason for
this is their complexity. These systems include a large number of APIs, rely on runtime
engines for executing apps, control multiple devices and sensors, and run full blown
commodity OSes. Consequently, applications depend on bloated trusted computing
bases (TCBs), comprising millions of lines of code (a number comparable in size to that
of desktop and server platforms). In such large codebases, the likelihood of outstanding
code vulnerabilities is considerable, making it difficult to ascertain the correctness of
their implementation.
As a new trend of security-sensitive applications emerges, the need for strong security

guarantees becomes critical. For example, e-wallet apps aim to replace physical payment
media like credit cards, tickets, or coins involved in transactions. E-health apps focus on
carrying personal health records of the device owner and providing for proper protection
and access control by health providers. Despite the benefits of these apps for users,
service providers such as banks and health authorities could feel reluctant to develop
this kind of mobile apps unless mobile devices provide adequate security environments
for hosting them. It is thus time to rethink the design of mobile platforms so as to satisfy
those needs.

7.2 Hosting Mobile Apps in Trusted Execution Environments

As we discussed in Section 5.4.2, improving the security of desktop and server platforms
featuring large TCBs could be achieved by providing trusted execution environments.
Trusted execution environments have the property of keeping the execution state of
security-sensitive applications out of the OS’s reach, giving users the guarantee that the
application execution state has not leaked or been corrupted in a surreptitious manner
in the event of an OS security exploit. Trusted execution environments are enforced by
a trusted runtime system running in isolation from the OS in a security domain properly
set up by the hardware. What makes this approach reliable, is that trusted runtime
systems like TrustVisor [MLQ+10] are several orders of magnitude smaller than that of
a commodity OS, dramatically reducing the TCB size. Therefore, we propose a similar
approach for shrinking the TCB size of mobile platforms.
Figure 7.1 sketches a mobile platform design that enables the execution of security-

sensitive mobile apps inside trusted execution environments. This design requires two
components: hardware mechanisms for isolation enforcement, and a small trusted run-
time system for managing the execution state of the apps.
To enforce isolation, we propose to use TrustZone technology [ARM09]. Currently

available in modern ARM-based devices, this technology enables the processor to run
in two protection domains named normal and secure worlds, where the OS and the
trusted runtime system could be hosted, respectively. TrustZone provides separate ad-
dress spaces between worlds and secure mechanisms for cross-world communication. Be-
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Figure 7.1: Architecture of a mobile platform featuring trusted execution environ-
ments.

cause these mechanisms are implemented in hardware, this technique leads to increased
efficiency and smaller TCB size compared to using virtualization.
Designing a small trusted runtime system, however, is particularly challenging. Mobile

apps are built using high-level languages, which produce a binary in an intermediate lan-
guage like Java bytecodes or .Net managed code. As a result, they depend on a runtime
engine like the Java (or Dalvik) virtual machine or .Net CLR to execute. The trouble is
that the runtime engine is typically a large piece of software and, in addition, it depends
on the services provided by an underlying OS. The .Net CLR, for example, comprises
millions of lines of code. The open question is then whether it is possible to build a
small sized trusted runtime system that can execute bytecode / managed code binaries.
Note that the related work [MPP+08a, MLQ+10] did not face this problem, because
their focus was primarily on providing execution support for native-code applications.

7.3 Goals, Assumptions, and Threat Model

In part III of this thesis we aim to build a trusted runtime system for mobile platforms—
the Trusted Language Runtime (TLR). Using the TLR, application developers can ex-
ecute security-sensitive applications in trusted execution environments. These environ-
ments must provide guarantees of confidentiality and integrity protection of applications’
execution state. Without loss of generality, the TLR provides support for development
of .Net mobile applications.
In designing the TLR, we have three high-level subgoals:

1. Small TCB size: The trusted computing base (TCB) of the TLR should exclude
the operating system and most application code running on the smartphone. None
of this untrusted code should be able to interfere with or even inspect trusted code
running inside the TLR. The application components hosted within the trusted
execution environment should be guaranteed the protection of confidentiality of
their execution state.
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2. Ease of programming: The effort required to build trusted applications with the
TLR should be low. Programming in TLR should be as simple as programming any
of today’s managed code environments such as Java or .Net. We seek to provide
intuitive and simple abstractions for application developers to interact with the
TLR.

3. Compatible with legacy software environments: Running the TLR should
not require a radical redesign of today’s legacy operating systems or other legacy
software running on the smartphone.

We design the TLR under the following assumptions. First, we assume that the hard-
ware platform features the ARM TrustZone technology, which is present in modern ARM
processors. Second, we assume that the hardware is correctly implemented, namely the
ARM TrustZone technology and the CPU and memory subsystems. Third, we assume
the existence of external trusted parties such as certification authorities or online ser-
vices (e.g., banking web sites) with which the security-sensitive apps could communicate
over a secure channel while deployed on the TLR. Lastly, we assume the correctness of
cryptographic primitives and algorithms. Note that we make no assumptions whatsoever
about the correctness of the OS of the mobile platform.
The TLR is designed to protect the execution state of security-sensitive application

components against an attacker with a profile very similar to that of the attacker we
consider in Part I and Part II (see Sections 2.3 and 5.3). He can take over the OS and
have access to the TLR interface. The interface is provided through specific TrustZone
mechanisms. The attacker can reboot the mobile platform and gain access to data
residing on persistent storage. He can eavesdrop the network and interfere with the
communication between the TLR and third party trusted components located outside
the device. In designing the TLR, however, we do not consider side-channel attacks
and do not contemplate physical attacks that fall outside the defense capabilities of
TrustZone technology, namely attacks that involve disassembling the chip packages of
application processors and memory modules.

7.4 Brief Primer on TrustZone and NetMF Technologies

This section provides some background on two technologies we use to implement the
TLR: ARM TrustZone, and the .Net Microframework (NetMF).

7.4.1 ARM TrustZone Technology

TrustZone [ARM09] is the name of a hardware technology introduced by ARM in 2008.
It provides security extensions that affect the processor-memory subsystem and the
System-On-Chip (SoC) layout of ARM architectures. Figure 7.2 illustrates how these
extensions affect the software and hardware architecture of a computing platform.
The key feature of TrustZone is the ability to execute code without interference from

the OS. There exist two security domains that the processor implements natively, referred
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Figure 7.2: Processor modes and hardware architecture of ARM-based device with
TrustZone extensions.

to as the normal world, where the OS executes, and the secure world, where secure
services and secure applications run. The security domains have independent memory
address spaces. The code running in one of the secure world’s privileged modes (including
the monitor mode) has access to the normal world address space. The code executing in
the normal world has no access to the secure world address space. To prevent privilege
escalation, the processor boots in secure world, and the software must decide whether
to remain in secure world or switch to normal world. In a typical bootstrap sequence,
the bootstrap code yields to the OS after setting up the secure world state. This is done
by exiting secure world and proceeding with the standard OS boot sequence in normal
world.
In order for the software of different worlds to communicate, the processor can switch

worlds via a narrow interface. Once the system has booted, the OS can invoke a service
in secure world by issuing a special software interrupt: the Secure Monitor Call (smc)
instruction. The processor enters secure world through the monitor mode. The code
executed in monitor mode is responsible for (i) saving and restoring the execution context
of the processor, as it switches worlds, and (ii) sharing data by copying data across worlds
or mapping normal world pages into the secure world address space.
TrustZone also allows for the implementation of trusted I/O paths linking secure world

software with peripherals. A special processor bit, the NS bit, defines the world in which
the processor executes, and signals an extra address line that is wired to memory modules
and devices. This design enables a software designer to restrict I/O addresses of selected
devices (or some of their ports) to the secure world software only. The software designer
is also allowed to route interrupts to a world of his choice by programming the interrupt
controller and setting interrupt masks accordingly. In this sense, TrustZone makes a
step forward over related hardware technologies like Intel TXT [Int], which only provide
memory protection capabilities.
All these mechanisms can be used in different ways by system designers. ARM, in

fact, does not prescribe a specific software architecture, but suggests multiple system

93



7 Motivation and Related Work

designs, ranging from setups where two OSes run side-by-side in independent worlds,
to a design where the secure world runs a simple library [ARM09]. Nevertheless, it is
clear that, with TrustZone technology, system designers have the means to implement all
trusted computing abstractions. Memory curtaining and trusted I/O paths are possible
using the memory and peripheral protection mechanisms just described. Trusted boot
could be implemented by deploying a secure boot ROM into the SoC; so long as the
ROM and the secure world code are trustworthy, the ROM initiates the chain of hash
measurements featuring a typical trusted bootstrap sequence and preserves these mea-
surements in the secure-world address space. Remote attestation could be implemented
by burning a cryptographic key—a master key—into the SoC. This key remains private
to secure world software, which could then use it to produce signatures of the software
bootstrap measurements. Lastly, sealed storage could be implemented by secure world
software using the software measurements and the master key. To strengthen the secu-
rity of cryptographic operations, the SoC manufacturer could include a random number
generator and real time clocks into the SoC (see Figure 7.2).
It is also worth remarking that TrustZone remains largely unused in today’s mobile

device landscape. Despite the fact that TrustZone compatible processors (e.g., Cortex
A8 and A9) have been available for a while in popular ARM-based mobile devices,
device manufacturers presently set up the firmware to disable TrustZone technology,
preventing application developers from executing code in secure world. The reasons why
this happens are not entirely clear. One possible explanation is that device manufacturers
want to monetize this technology by deploying closed-source secure services and getting
paid for them. Another explanation involves security concerns. Since the secure world
grants access to the whole system, exploits of vulnerabilities in secure world code could
compromise the entire OS. We envision that the TLR could contribute to changing the
state-of-affairs by providing a secure runtime for hosting trusted applications and open
up TrustZone technology to application developers.

7.4.2 Microsoft .Net Microframework

The .Net Micro Framework (NetMF) [net] is an implementation of Microsoft’s .Net
Framework optimized for small devices. It enables application programmers to use
fully featured development tools like Microsoft Visual Studio and high-level languages
like C# to program an embedded system. Examples of such devices include: sensor
networks, robotics, GPS navigation devices, wearable devices, medical instrumentation,
and industrial automation devices [net10].
The design of NetMF was guided by three main tenets. First, NetMF designers put

an emphasis on offering a robust development environment. To this end, the NetMF
includes a CLR runtime (the equivalent version of the Java virtual machine in .Net ter-
minology), which provides type system, code execution safety, and garbage collection.
The CLR runtime executes applications compiled into managed code, an intermediate
language akin to Java bytecodes. Application developers can also benefit from high-level
language .Net Framework compliance and from a collection of code libraries. Second,
NetMF designers tailored NetMF for resource constrained devices. For improved effi-
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Figure 7.3: Architecture of the .Net Microframework (NetMF).

ciency, NetMF precludes an underlying OS and runs directly on metal. One could say
that NetMF consists of a “bootable .Net” that offers the benefits of managed code with-
out requiring a dedicated OS. Internally, NetMF owns all execution, and it includes only
the bare system functionality for managing memory, CPU, and peripherals. In its basic
setup, NetMF has a small codebase and makes use of only a 250KB memory footprint.
Third, NetMF designers focused on customizability for a wide variety of devices. This
requirement influenced the internal design of NetMF by having the hardware abstracted.
To port the NetMF, the embedded system designer only needs to implement a set of
low-level functions that are hardware-specific (e.g., CPU dependent).
Figure 7.3 shows the NetMF hardware and software architecture in more detail:

• The hardware layer consists of the processor and peripherals. The NetMF software
can be customized for a number of hardware platforms.

• The runtime component layer includes three components: the Common Language
Runtime (CLR), the Hardware Abstraction Layer (HAL), and the Platform Ab-
straction Layer (PAL). The CLR is the heart of the NetMF. It contains several
modules for managed code execution, thread scheduling, memory management,
and other system services. It includes a subset of .Net features, such as types,
threads, synchronization, timers, reflection, serialization, garbage collection, and
exception handling. There are, however, some .Net features not currently sup-
ported, the most relevant ones being the lack of multidimensional arrays and tem-
plates. The HAL and PAL manage the underlying hardware components. The
PAL provides abstractions of the low-level hardware services implemented in the
HAL; only the HAL functions need to be ported when customizing the NetMF for
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a given hardware architecture. The HAL also includes a piece of bootstrap code
responsible for initializing the devices and starting the CLR.

• The class library layer is an object-oriented collection of types that application
developers can use to program embedded applications. Classes are implemented
in C# and offer multiple services, including cryptographic primitives, graphics,
debugging, standard .Net API types, and extensions to specific chipsets.

• The application layer contains the managed-code applications developed by the
application programmers for embedded devices.

We use the NetMF codebase as the baseline for implementing a prototype of the TLR.

7.5 Related Work on Improving Trust on Mobile Platforms

There is a large body of work that indirectly helps to reinforce users’ trust in mobile plat-
forms by improving the security of OSes and mobile apps. In particular, researchers have
paid considerable attention to protecting personal user data (e.g., address book, user pho-
tos, password information, GPS location) and preventing its unauthorized access and
leakage by proposing novel techniques, such as new access control mechanisms [RKM+12]
and information flow analysis [EGC+10]. The focus of all this work, however, is com-
plementary to ours: while in existing work the OS is trusted, in our work the OS can be
compromised and the TLR must provide applications with adequate security protections.
Beyond the scope of mobile devices, previous work has focused on using trusted com-

puting hardware for building systems that provide code and data protection from the
underlying OS [GPC+03, MPP+08a, MLQ+10]. Such systems face a tradeoff between
security and usability. While some systems depend on a large trusted computing base
(TCB) to offer high-level functionality [GPC+03], others have small TCBs but offer pro-
gramming abstractions that are low-level [MPP+08a, MLQ+10]. The TLR bridges these
two extremes by offering a high-level programming abstraction while keeping the TCB
small.
Another area of research uses privilege separation for partitioning an application into

security-sensitive and security-insensitive components. Typically, these systems expose
a partitioning interface at the level of the programming language, and enforce this sep-
aration by using a runtime engine [Mye99] or the OS itself [BS04]. In general, however,
they still depend on a large TCB, which includes the OS and the runtime. Our work
offers a coarser-grained privilege separation at the language level by compartmentalizing
an application while significantly reducing the TCB size.
Finally, there is little published work on building systems that use the ARM TrustZone

technology for their trustworthy computing needs. One relevant piece of related work
proposes to merge the TPM-based primitives found on x86 machines with those found
on ARM in order to build a Linux-based embedded trusted computing platform [Win08].
That paper uses a VM-based design and offers a special “TrustZone VM” to run trusted
code. In contrast, the TLR avoids the energy and performance overheads that come

96



7.6 Summary

with hypervisor-based virtualization systems. Another relevant piece of related work
uses TrustZone technology to implement trusted sensors [LSWR12]. Trusted sensors
enable mobile apps to obtain guarantees of authenticity and integrity of sensor readings
and, therefore, were developed for a purpose different than the TLR’s.

7.6 Summary

This chapter focused on the trust issues affecting the mobile device landscape. We have
seen that the security guarantees provided by existing mobile platforms do not suit the
needs of emerging mobile apps. This lack of guarantees stems mostly from the fact
that applications depend on large trusted computing bases (TCB), whose correctness
properties are difficult to reason about. To meet the security requirements of mobile
apps, we propose a mobile platform redesign offering trusted environments, where the
runtime state of applications is kept safe from a compromised OS. Trusted environments
are provided by a trusted runtime system running alongside the OS. ARM TrustZone
technology separates the trusted runtime system from the OS. The key challenge, then,
is how to design the trusted runtime system with a TCB significantly smaller than that
of a typical OS. In the next chapter, we present the Trusted Language Runtime (TLR),
our proposal for such a system.
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8 Trusted Language Runtime: Enabling
Trusted Applications on Smartphones

This chapter presents the Trusted Language Runtime (TLR), a trusted runtime system
for mobile platforms. The TLR enables the development and execution of trusted mobile
applications while depending on a small TCB.
The rest of the chapter unfolds as follows. First, we present a high-level architecture

of the TLR. Then, we dive into the details of the system design, describe the implemen-
tation of a TLR prototype, and show the applicability of the TLR in multiple use cases.
Finally, we discuss the results of our TLR evaluation and summarize our findings.

8.1 Overview of Trusted Language Runtime

To provide an overview of the TLR, we first state the principles that guided the design of
the system. Then, we provide a high-level description of the TLR architecture. Lastly,
we describe the development process of mobile applications for the TLR.

8.1.1 Design Principles

In devising the TLR, we followed two key principles: privilege separation and subordinate
resource allocation. The former is widely known; the latter is proposed in this work.
In general, privilege separation aims to mitigate the potential damage of a security

attack by dividing a program into parts and restricting the privileges of each part to
those strictly necessary for performing a particular task. To improve the security of
mobile applications, we apply this principle in the TLR design. Specifically, instead of
requiring an entire application to be hosted in the secure world (see Section 7.2), the
TLR enables hosting different partitions of the application logic in different worlds, while
still enabling them to communicate. Thus, an application developer should be able to
reduce the amount of code that needs to be trusted for processing security-sensitive data
by factorizing the application into security-sensitive and security-insensitive components
and hosting them in separate worlds.
The second principle, which we call subordinate resource allocation, aims to arbitrate

the allocation of memory and CPU resources between the TLR and the OS. It states
that the control over the CPU cycles and memory resources consumed by the TLR
must be controlled by the OS: the OS must explicitly authorize every resource allocation
request issued by the TLR, and is free to revoke the allocated resources at any given
time. The OS, however, must have no access privileges over the data associated to the
resources granted to the TLR (e.g., read the memory or the CPU registers). Since the
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Figure 8.1: High-level architecture of TLR.

OSes are currently designed under the assumption of complete control over the hardware
resources of the system, this principle avoids radical changes to OSes and therefore lowers
the barriers to deployment of the TLR by the device manufacturers. As a side effect,
a compromised OS could deny the TLR access to system resources and by this launch
DoS attacks. Although these attacks could be possible, the confidentiality and integrity
of applications’ state would still be assured, which is our priority.

8.1.2 High-level Design

Figure 8.1 illustrates the TLR’s high-level design. The TLR provides two execution en-
vironments: an untrusted one where the smartphone’s OS and most application software
runs, and a trusted one. The code running in the trusted environment is isolated from
any code running in the untrusted one. The TLR ensures both integrity and confiden-
tiality for code and data inside the trusted environment. The OS controls the allocation
of CPU and memory resources in the trusted world. To enable interaction, the TLR
provides a secure communication channel between the two environments.
In the trusted world, the TLR provides a language runtime with minimal library

support: in our implementation we use the .Net Micro Framework [net]. We find that
a resource-constrained runtime environment offers enough flexibility to accommodate
the trusted computing needs of mobile applications while keeping the TCB of the TLR
small.
With the TLR, a developer needs to partition a mobile application into two compo-

nents: a small-sized trusted component that can run on the resource-constrained runtime
of the trusted world, and a large-sized untrusted component that implements most of the
application’s functionality. This partitioning process is similar in spirit to previous work
on privilege separation [BS04] and partitioning of applications for improved security in
distributed systems [CLM+07]. To allow for this partitioning, the TLR’s programming
model provides four primitives:

1. Trustbox. A trustbox is an isolation environment that protects the integrity and
confidentiality of any code and state hosted inside it. This means that the smartphone’s

100



8.1 Overview of Trusted Language Runtime

OS (or any untrusted application code) cannot tamper with the code running in a trust-
box nor inspect its state.

2. Trustlet. A trustlet is a class within an application that runs inside a trustbox. The
trustlet specifies an interface that defines what data can cross the boundary between the
trustbox and the untrusted world. The .Net runtime’s use of strong types ensures that
the data crossing this boundary is clearly defined.

3. Platform identity. Each device that supports the TLR must provide a unique
cryptographic platform identity. This identity is used to authenticate the platform and
to protect (using encryption) any trusted application and data deployed on the platform.
Our implementation uses a public/private key pair. Access to the private key is provided
solely to the TLR, which never reveals this key to anyone.

4. Seal/Unseal data. These abstractions serve two roles: (i) allow a trustlet to main-
tain state across reboots, and (ii) enable a remote trusted party (i.e., a trusted server)
to communicate with a trustlet securely. Sealing data means that data is encrypted
and bound to a particular trustlet and platform before it is released to the untrusted
world. The TLR unseals data only to the trustlet identity and target platform that were
specified upon sealing. The trustlet’s identity is based on a secure hash of its code (e.g.,
SHA-1). Both the platform and trustlet identities are specified at seal time. To recover
sealed data, the TLR decrypts it using the platform key, and checks that the hash of the
calling trustlet matches the hash of the trustlet that originally sealed the data.

8.1.3 Development Scenario

To build a trusted mobile application with the TLR, a developer would typically perform
the following three steps:

1. Determine which part of an application handles sensitive data. To define a trust-
let, the developer identifies the application’s sensitive data, and separates the program
logic that needs to operate on this data into the trustlet. The developer carefully de-
fines the public interface to the trustlet’s main class, as this interface controls what
data crosses the boundary between the trusted and untrusted worlds. A trustlet may
use many helper classes, and in fact may even consist of multiple assemblies, yet there
is only one class that defines the trustlet’s boundary. Once all necessary classes are
compiled into assemblies, the developer runs a TLR post-compilation tool for creat-
ing a package that contains the closure of the assemblies, and a manifest that contains
meta-data information.

2. Seal the sensitive data by binding it to the trustlet. To make sure that a des-
tination mobile platform is configured with the TLR and running the trustlet, before
sending out sensitive data, a developer can seal the data to that specific mobile platform
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Figure 8.2: Component diagram of the entire system with the TLR. The components
of the same layer are colored with the same color.

and trustlet identity. The data can only be unsealed if both conditions hold. The seal-
ing mechanism allows the application to store trustlet data across multiple sessions in
persistent storage, and it allows external parties (e.g. a trusted service) to ensure that
sealed data can only be accessed on platforms it trusts.

3. Deploy trustlet and sealed data to the smartphone and run them inside of a
trustbox. To ensure that the trustlet state is protected at runtime, the developer in-
stantiates a trustbox by providing the trustlet’s manifest. At this point, the TLR loads
the trustlet’s assemblies and creates an instance of the trustlet main class. The resulting
object constitutes the runtime state of the trustlet until the application destroys the
trustbox. To allow the application to interact with the trustlet, the application obtains
from the TLR a special entrypoint object, which is a transparent proxy to the trust-
let interface. Whenever the application invokes methods on the entrypoint, the TLR
transparently forwards these calls to the trustlet main object.

8.2 Design of Trusted Language Runtime

In this section, we describe in detail the internals of the TLR and discuss its key design
decisions. We start with a holistic view of the TLR design, and then focus on its most
relevant components.

8.2.1 Internals of the TLR

Figure 8.2 shows a detailed view of the TLR architecture. It is structured as a software
stack and spans two security domains that are enforced by the ARM TrustZone technol-
ogy: the TLR-domain and the OS-domain. The TLR-domain is mapped to the secure
world and hosts the TCB of the system: the TLR core components and the trusted
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application partitions. The OS-domain is mapped to the normal world and hosts the
untrusted system components: the OS, the TLR stubs, and the untrusted application
partitions. Internally to the TLR, the stack consists of multiple layers, each of them
containing a subset of TLR core components (in the TLR-domain) and TLR stubs (in
the OS-domain). As shown in Figure 8.3, the stubs and core components of each layer
communicate using specific message formats. In this communication, stubs and core
play the role of client and server, respectively. To exchange messages, the components
of a layer rely on a message passing service provided by the contiguous bottom layer.
Because TrustZone provide hardware support for memory isolation, the TLR runtime
lives in the address space of the trusted world and cannot be accessed from the untrusted
world.
The TLR software stack comprises four layers: application layer, trustbox layer, run-

time layer, and trustzone layer:

• The application layer corresponds to the mobile application, which is split into a
trusted and an untrusted partition. The trusted partition is modeled as a set of
trusted classes (trustlets) instantiated in special sandboxed objects (trustboxes).
The untrusted partition interacts with the trusted partition using a method call
abstraction implemented by the trustbox layer.

• The trustbox layer manages the state of trustboxes in the TLR-domain and handles
the communication between the untrusted application partition and the trustlet
instances living in trustboxes. In the TLR-domain, the state of trustboxes is held
in special containers, which are managed by a dedicated service. The OS-domain
communicates with the service using trustbox proxies and the TLR library, both
playing the role of stubs. A new service is spawned whenever an application is
executed. The newly launched service is bound to the application process and is
responsible for managing the trustboxes instantiated by the application process.
A service is destroyed as soon as its respective application process terminates.

• The runtime layer manages the lifecycle of services. In the TLR-domain, the
TLR runtime manages the thread state of existing services, executes the managed
code of services and trustlet code, and serves their memory allocation needs. The
TLR runtime is coordinated by a system call that is included in the OS. This OS
extension binds each service located in the TLR to a local application process.
The system call receives messages from the trustbox layer and forwards them to
the TLR runtime through the trustzone layer.

• The trustzone layermasks the low-level TrustZone mechanisms under a simple mes-
sage passing abstraction. In particular, it handles issues related to world switching
and interrupt handling. To handle these issues, each domain implements specific
trustzone drivers.

In the following sections, we explain in detail how the TLR works internally. We
start by clarifying the programming model offered by the TLR. Then, we focus on
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Figure 8.3: Messages exchanged within and across the layers of the TLR software stack.

the mechanisms that implement this programming model: application runtime support
mechanisms, memory management issues, and seal and unseal primitives. Lastly, we
provide an overview of the TLR bootstrap sequence.

8.2.2 Programming Model

The programming model of the TLR defines programming abstractions and tools that
developers must use for building their applications, and therefore it concerns the applica-
tion layer of the TLR stack (see Figure 8.2). To facilitate the development workflow, we
aimed to provide familiar abstractions and tools that can easily integrate into developers’
rich programming environments.
To present the programming model, we start by firstly focusing on the implementation

and then on the compilation and linkage phases of the development workflow.

Implementing an Application

To implement a TLR application, a developer performs four steps: (i) specify the
security-sensitive logic of the app in a trustlet class, (ii) instantiate the trustlet class
in a trustbox container, (iii) interact with the trustlet instance through transparent prox-
ies, and (iv) validate the identity and integrity of trustlet instance before giving it access
to sensitive data by using seal and unseal primitives. We cover each of these steps in
turn. To help the explanation, we refer to Figure 8.4, which contains code snippets of
an example e-banking application. (See Section 8.4.1 for more details on this code.)

1. Specify the security-sensitive logic: The security-sensitive logic of the app must be
enclosed in a trustlet class. A trustlet class consists of a unit of data (fields) and code
(methods) that can be instantiated in a trustbox container. When instantiated, the data

104



8.2 Design of Trusted Language Runtime

Trustlet Interface

public interface ITanWallet : IEntrypoint
{

public void Load(Envelope tanLst);
public Tan GetTan(long id);

}

Trustlet Implementation

public class TanWallet: ITanWallet, Trustlet
{

private TanList _tanLst = null;

public void Load(Envelope tans) {
try {

_tanLst = (TanList) this.Unseal(tans);
} catch(Exception e) {

throw new Exception("Cannot "
"unseal TAN list.");

}
}

public Tan GetTan(long id) {
Tan tan = _tanLst.Search(id);
if (tan == null) {

throw new Exception("ID invalid.");
} else {

return tan;
}

}
}

Trustlet Manifest

<trustlet name="TanWallet">
<interface name="ITanWallet" />
<implementation name="TanWallet" />

</trustlet>

Snippet of Main Class

// setup the TAN wallet trustlet in a trustbox
Trustbox tbox =

Trustbox.Create("TanWallet.pkg");

// obtain a reference to trustbox entrypoint
ITanWallet twallet = (ITanWallet)

tbox.Entrypoint();

// load the TAN list issued and sealed by bank
twallet.Load(myTanLst);

// obtain a TAN with id requested by bank
Tan tan = twallet.GetTan(id);

Snippet of Third Party Service

// the bank generats TAN list for customer
TanList newLst = customer.GenTanLst();

// seal the list
Envelope sealedLst =

Trustlet.Seal(customer.PlatformID(),
Trustlet.Hash("TanWallet.pkg"), newLst);

Figure 8.4: Code sample of a TLR application (written in C#).

fields and the method code of the trustlet instance are inaccessible to the OS-domain;
only a method interface is exposed. The developer creates a trustlet by defining its
interface and implementing the class. The interface must inherit from the IEntrypoint
interface. The trustlet main class must inherit from the Trustlet class and implement
the newly defined trustlet interface. The public methods that implement the interface
enable data to cross the barrier between the trusted and untrusted worlds; the strongly-
typed nature of the TLR runtime makes it simple to reason about what kind of data is
crossing the barrier of the trustlet interface. This is important because the programmer
must be careful not to let any sensitive data protected by the trustbox leak out into
the untrusted world. To indicate the class and interface of a trustlet, the developer also
creates a manifest. Figure 8.4 provides sample code of the interface, class, and manifest
of a trustlet implementation.
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2. Instantiate a trustlet inside a trustbox container: After implementing the trustlet,
the developer must instantiate the trustlet class in a secure container maintained by
the TLR—a trustbox. The TLR library provides the Trustbox class, which allows for
controlling the lifetime of a trustbox and of the object hosted on it, i.e. the trustlet
instance. To create a trustbox, an application invokes the Create method of this class.
This method takes as input the trustlet manifest, and creates a new trustbox holding a
new instance of the trustlet class referred to by the manifest. When the trustlet instance
is no longer required, the application invokes the Destroy method of the trustbox class
to clean up the runtime state of the trustlet and release all of its resources.

3. Interact with the trustlet instance: During the lifetime of a trustbox, the untrusted
application partition is allowed to interact with the trustlet instance contained in the
trustbox by invoking methods. Since the trustlet instance and the untrusted application
partition reside in separate domains, the method calls must be routed across domains.
To make this process transparent to the developer, the TLR library returns a proxy
object with a method interface compatible with the trustlet. To obtain a transparent
proxy to the trustlet entrypoint, the developer must call the Entrypoint method of the
trustbox reference returned by the Create method of the Trustbox class. As we explain
below, the proxy code is generated during the compilation phase.

4. Validate trustlet identity and integrity: Since arbitrary trustlet code can be in-
stantiated inside trustboxes, third parties relying on the correctness on the trustlet code
must have the ability to validate the identity and integrity of the trustlet instances be-
fore uploading security-sensitive data into the trustbox. To allow for this validation, the
TLR provides Seal and Unseal primitives. Sealing is a form of encryption that binds
the encrypted data to a specific trustlet running on a specific system. To accomplish
this, each unique smartphone has a public/private keypair we call the platform id. This
platform id is used in combination with the secure hash of the trustlet codebase to iden-
tify a particular instance of a trustlet. Seal takes three inputs: 1) the object to be
sealed, 2) the public key of the target platform id, and 3) a secure hash of the target
trustlet. Seal returns an envelope, which consists of the serialized object concatenated
with the trusted hash value, encrypted using the platform id public key. Unseal decrypts
the envelope and then returns the original data only if the hash value of the currently
running trustlet matches the envelope hash value. The envelope can only be decrypted
using the platform id private key. Thus, unseal can validate the identity and integrity
of a trustlet.

Compiling and Packaging the Application

Once the app is properly implemented, it must still be compiled and packaged. In ad-
dition to the standard tool chain operations, two additional steps are required using
tools we developed. First, using a pre-compilation tool, we generate transparent proxies
for trustlet instances. Proxies are responsible for marshaling the parameters and return
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Figure 8.5: Development workflow of a TLR application.

values of the trustlet method call invocation, and for encoding them into trustbox mes-
sages that are sent to the TLR’s trustbox service. Second, using a packaging tool, we
bundle the code of the trustlet code and the manifest into a single package. This package
contains the closure of the trustlet code, i.e., all classes that a trustlet depends upon.
This package is also signed in order to allow for the validation of the trustlet’s identity
and integrity during unseal operations. Figure 8.5 illustrates this process.

8.2.3 Trustbox Management

After compiling and packaging an app, users can execute it on the smartphone. The
TLR automatically manages the trustboxes created by the app, loads and instantiates
trustlet code in the trustboxes, and routes method calls across worlds. All these tasks
are performed by the components of the trustbox layer, namely the trustbox service in
the TLR-side and the trustbox library at the OS-side (see Figure 8.2).
The trustbox layer needs to address three issues. First, trustboxes need an identity so

that trustbox requests issued by an application are routed to the intended trustbox. Sec-
ond, trustboxes must protect their trustlet instances from the surrounding environment
and vice-versa: (i) only the code specified in the manifest is allowed to execute in a trust-
box, and (ii) the trustlet code execution must be confined to the trustbox domain so as
to prevent misbehaved or buggy trustlet code from interfering with other trustboxes and
with the trustbox service code. Third, the runtime state of the trustbox (which includes
the trustlet instance) must be consistent across invocations of the trustlet methods and
subsequent world switches.
To satisfy these requirements, the TLR maintains dedicated service threads for keep-

ing track of the trustboxes instantiated by application processes. To host trustboxes, a
service thread uses trustbox holder data structures (see Figure 8.6). A trustbox holder
contains a trustbox ID and points to a sandbox object. The sandbox is a container that
maintains the state of a trustlet instance, handles loading of trustlet classes into mem-
ory, enforces isolation across trustbox domains, and provides an interface for invoking
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Figure 8.6: Details of the trustbox layer.

methods of the trustlet instance. (In .Net, the sandbox object can be implemented with
an AppDomain object.) Since TLR preserves the state of a service thread throughout
the lifetime of its corresponding application process, the runtime state of trustboxes is
consistently maintained between method invocations.
Based on these mechanisms, the trustbox layer handles the three main events of the

trustbox lifecycle as follows:

• Trustbox creation: When the application requests the creation of a trustbox,
the TLR library encodes this request in a message and sends it to the respective
service thread running in the TLR-domain. The service thread then performs
the following steps: 1) creates a new trustbox holder, containing a new ID and
a sandboxed container, 2) computes the hash of the trustlet code specified in the
manifest, 3) loads the trustlet classes into the sandbox, and 4) creates an instance of
the trustlet’s main class. Afterwards, the TLR returns a reference to the trustbox
(the trustbox ID), which can be used for future interactions with the trustbox.

• Trustbox invocation: When the application calls the Entrypoint method on
the trustbox reference, the TLR library creates a transparent proxy and returns it
to the untrusted part of the application. Later, whenever the untrusted application
invokes a method of the proxy, the proxy forwards a method invocation request to
the TLR-side service thread. There, the request is decoded, and the corresponding
method is invoked on the trustlet instance living inside the sandbox container of
the referred trustbox. The return data produced by the method is forwarded back
to the proxy, and returned to the application. This process is entirely hidden from
the application.
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Figure 8.7: Details of the system layer.

• Trustbox destruction: Finally, destroying a trustbox triggers a request to the
service thread for releasing all resources associated with the respective trustbox
holder. This will result in discarding the internal state of the trustbox, i.e., the
trustlet instance. In order to save any state persistently across instances, the
developer can make use of the seal primitive to encrypt the relevant state and have
the application store it persistently.

In order for the TLR library code of an application process to communicate with
the corresponding service thread, the trustbox layer uses the transportation services
provided by the runtime layer, which we describe next.

8.2.4 Runtime Support

In the previous section, we focused on the trustbox layer. We saw how it splits the
application state between a server thread, which lives in the TLR and manages the
trustbox state, and the application process, which hosts the security-insensitive app
state. In this section, we discuss how the runtime layer (see Figure 8.2) provides the
underlying runtime support infrastructure that makes this splitting possible.
There are several issues that the runtime layer must handle. First, since trustlets are

encoded in managed code, the TLR runtime must interpret and execute managed code
(rather than simply running native code). Second, given that multiple applications can
execute concurrently in the system, the TLR runtime must be multitasked. This entails
that multiple service threads may live simultaneously in the TLR and, naturally, that
each service thread must be unambiguously bound to the respective application process
running in the OS-domain. Finally, since the runtime layer provides a message delivery
service to the trustbox layer, an appropriate interface must be devised for this service,
preferably without requiring significant changes to the OS.
To address these issues, the runtime layer implements several mechanisms in both

domains (see Figure 8.7). In the TLR-domain, the TLR runtime includes subcomponents
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that allow for the execution of managed code: a managed code execution engine, a type
system enforcer, and a garbage collector. The TLR runtime then sits on a loop waiting
for incoming requests from the OS-domain and executing the managed code required
for serving them. Since incoming requests may refer to different application processes,
the TLR runtime maintains independent service threads. To enable service threads to
execute (managed code) trustlets, service threads are implemented as user-level managed
code threads managed by the TLR runtime. To bind a service thread to an application
process, the TLR annotates the descriptor of the service thread with the PID of the
application process. This annotation enables the TLR runtime to route an incoming
request to the service thread based on the PID of the calling application process.
In the OS-domain, the OS (via the TLR system call) coordinates the servicing of

trustbox requests by TLR runtime. An application process sends requests to the TLR
runtime through a special TLR system call added to the OS. These requests are then
forwarded to the service thread bound to the calling application process. Since the
TLR runtime is not aware of application processes’ lifetimes, the OS must instruct the
TLR runtime to create and destroy service threads according to the needs of application
processes.
To accommodate the communication needs within the runtime layer, the OS can ex-

change three messages with the TLR runtime:

• Create service thread: The first time a TLR system call is issued by an appli-
cation process, no service thread for that process exists, and so it must be created.
To keep track of which application processes are bound (i.e., are associated with
a service thread) the OS maintains a descriptor table. To bind an application
process, the OS issues a “create service thread” request to the TLR runtime. The
TLR runtime creates a new service thread and annotates it with the caller’s PID
contained in the request. Once the request has been served, the TLR returns to
the OS, which continues executing the system call. Since the system call is invoked
for sending a message, normally a “call service thread” request ensues.

• Call service thread: This operation is meant to forward the trustbox message
requests received through the system call interface to the server thread of the
calling application process. After making sure that the calling process is bound,
the OS issues a request to the TLR runtime. The TLR runtime retrieves the
trustbox message from the payload of the request, puts the message in a queue,
and resumes the execution of the respective service thread. The service thread
retrieves the request from the queue and processes it in the trustbox layer. After
it finishes serving the request, the service queue executes a special managed code
call to signal the TLR runtime of the service completion. The TLR runtime then
returns to the OS, which concludes the system call.

• Kill service thread: This operation is issued by the OS to terminate a service
thread and free its resources. One way to trigger this operation is through the
TLR system call. Typically this is done by an application that has destroyed all
its trustboxes. The other way is by the OS, which periodically kills service threads
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of terminated application processes. To kill a service thread, the OS simply sends
a request to the TLR runtime and updates the local OS data structures. The TLR
runtime releases all resources and data structures allocated to the service thread.

All messages exchanged within the runtime layer are carried by the trustzone layer,
which we cover next.

8.2.5 Cross-world Communication

The communication between the TLR-domain and the OS-domain is handled by the
bottommost layer, which is the trustzone layer (see Figure 8.8). This layer handles the
low level details of TrustZone technology and provides a simple message passing interface
that enables the runtime layer to exchange messages across worlds.
Specifically, the trustzone layer has to deal with two main issues. First, since the

processor can only execute in one of the worlds—the normal or the secure world—
sending a message across domains requires a world context switch. This operation must
be carefully implemented: it must be efficient without creating security breaches by
exposing the TLR state to the normal world. Second, it is necessary to handle interrupts
that could be triggered while the processor is in secure world. According to the principle
of subordinate resource allocation (see Section 8.1.1), the OS must retain control of the
system resources, and therefore interrupts must be routed to the OS. Thus, whenever
an interrupt is fired in the secure world, the TLR should cause a context switch to
normal world, and hand over the control to the interrupt handler of the OS. This policy,
however, has two potentially problematic consequences. First, because interrupts can
fire in the middle of a TLR runtime call, the OS could resume its execution without the
TLR call producing a result. Second, since the OS might decide to schedule a different
process for the next time slot, the TLR may need to switch service thread contexts to
reflect the process switch that occurred in the OS-domain.
To satisfy these requirements, we adopt the mechanisms depicted in Figure 8.8. For

world switching, the SW trustzone driver maintains a data structure with two world
descriptors: one containing the snapshot of NW registers (i.e., the state of the application
process that made the TLR runtime call) and another containing the snapshot of SW
registers (i.e., the context of the native-code execution thread of the TLR runtime before
leaving SW). Switching worlds, then, can be done efficiently by saving / restoring the
processor registers into / from the corresponding world descriptors and toggling the N
bit. To guarantee the security of world switching, the world descriptors are kept in
memory pages restricted to the SW. In addition, a world switch can be triggered in
only two ways: by interrupts being fired in secure world, causing an asynchronous world
switch, or by a smc instruction being issued, causing a synchronous world switch. The
smc instruction can be executed because either (i) the OS makes a TLR runtime call, or
(ii) the TLR returns from a TLR runtime call. Such a narrow interface helps reduce the
attack surface of the TLR.
With respect to interrupt handling, we need to address the consequences that the

disruption of ongoing TLR runtime calls can have on the semantics of TLR exit and
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Figure 8.8: Details of the trustzone layer.

enter events. To properly handle a TLR exit event, the OS must be able to detect
whether the TLR has exited because the TLR runtime call has terminated or because
it has been interrupted. In the first case, the OS can fetch the return value and yield to
the application process, otherwise the OS must keep entering the TLR until the TLR
runtime call has been entirely served (or a timeout expires). To properly handle a TLR
enter event, the TLR must be able to detect whether the current request concerns the
service thread that was last executing before the TLR exited or if it concerns a new
service thread (because a process switch occurred in the OS-domain). In the first case,
the TLR runtime can simply resume the execution of the prior service thread; otherwise,
it needs to switch service threads.
To address these issues, we implement a mechanism that enables both worlds to syn-

chronize on the current state of ongoing TLR runtime calls. Essentially, the trustzone
drivers of each world maintain a table of descriptors, one for each TLR runtime call.
Each descriptor contains a call ID, input parameters, output parameters, and the state
of the call. In order to shield the secure world from interference from the normal world,
the table of descriptors is replicated in both worlds (see Figure 8.8). However, in certain
situations the SW trustzone driver must access the NW descriptor table, namely for
reading the input parameters, for writing the output parameters, and for updating the
state of an ongoing call. Since the NW trustzone driver has no access to the SW domain,
it is the access by the SW trustzone driver to the NW descriptor table that enables them
to synchronize on the current evolution of the calls. This synchronization is regulated by
the evolution of the state value according to the state machine represented in Figure 8.9
and described next:

• Init state: To initiate a new TLR runtime request, the NW trustzone driver
creates a new call descriptor, fills out the state field with an Init value, and
updates the input parameters. It then enters the TLR using the smc instruction.
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Figure 8.9: State machine of a TLR call as implemented in the trustzone layer. Events
in bold take place in the NW, and events in italic in the SW.

Whenever it is in an Init state, the TLR creates a new descriptor for the call,
copies the input parameters, and changes the state of the call to Ongoing.

• Ongoing state: In this state, the TLR has started to serve the call. If interrupts
occur and control returns to the OS-domain, the NW trustzone driver keep issuing
smc instructions until the call state turns Finished, indicating that the call has
been served. This state change occurs after the TLR runtime call has finished and
the results have been copied to the NW trustzone descriptors.

• Finished state: During this state the SW trustzone driver keeps issuing smc until
the NW trustzone driver has retrieved the output parameters from the descriptor
and terminated the call. At this point, both worlds can release the descriptors
allocated to the call.

The trustzone layer hides all these implementation details from the runtime layer
under a simple message delivery abstraction (see Figure 8.9). Primitives PutReq and
GetRes provided by the NW trustzone driver allow for sending a request and reading
the response. The complementary primitives GetReq and PutRes are provided by the
SW trustzone driver, and allow for reading the request and issuing a response.

8.2.6 Memory Management

To serve the memory needs of the TLR, the system reserves a region of physical memory
for the TLR. The TLR uses this memory region for keeping its internal state and the
execution state of service threads. To prevent access to this memory by untrusted OS-
domain components, the permissions of this region’s memory pages are set to SW access
only. In our current design, the amount of reserved memory for the TLR is statically
defined by a boot parameter (e.g., 10% of the physical memory). However, to reduce
memory fragmentation, a dynamic allocation mechanism could be devised in which the
OS could grant and withdraw memory pages to and from the TLR according to the
current workload demands. Such a memory management policy could be implemented
using the virtual memory mechanisms provided by TrustZone technology.
Since the OS is in charge of controlling the system resources, it is possible for the OS

to fine-tune the memory allocation policy of the TLR for server threads. Namely, the
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OS can specify memory quotas for service threads (see Figure 8.6). The TLR runtime
enforces a quota limit whenever a server thread allocates memory. If the max quota has
been reached, an exception is thrown and forwarded to the application.

8.2.7 System Boot

As described in Section 7.4.1, when an ARM CPU supports the TrustZone feature,
the processor boots in secure mode and runs the secure bootloader. Our bootloader is
responsible for loading the TLR image into memory and checking its integrity. Next, the
secure bootloader hands off to the initialization code within the TLR runtime. After the
TLR initialization code finishes, it uses a mode switch instruction to exit secure mode,
at which point the untrusted world bootloader is invoked and the standard OS boot
sequence is executed.

8.3 Implementation

We implemented a prototype of the TLR for a real TrustZone-compatible hardware
testbed and leveraged existing open source software in the TLR implementation.

8.3.1 Hardware Testbed

Finding a TrustZone-compatible hardware testbed was not easy. Although the ARM
TrustZone technology is prevalent in modern ARM-based SoCs, in most devices this
technology is locked and cannot be used by application developers. Since their manufac-
turers program the device firmware to force a secure world exit before booting the OS,
it is impossible for application developers to execute code in the secure world. This is
the case for popular smartphones (e.g., iPhone 4 and Samsung Galaxy III) and widely
available developer kits (e.g., Panda [Pan] and Beagle [Bea] boards). Although a few
exceptions exist where boards boot the OS in the secure world, manufacturers impose
non-disclosure and lock-in restrictions (e.g., Freescale boards [Fre]).
Given these difficulties, we adopted a less than ideal development: the Tegra 250 Dev

Kit [Teg] manufactured by NVidia. This board is equipped with dual-core Cortex A9
processors at 1GHz, 1GB of RAM, 512MB of flash memory, and multiple peripherals.
Since the processor boots the OS in secure world, this allows us to override the secure
world environment. However, this board does not allow to us to flash a unique key in
the board’s secure ROM. Therefore, we cannot implement a platform ID in hardware.
Moreover, the primary boot loader is closed source, preventing us from installing the
secure-world setup code early in the first level bootstrap stage.
In our implementation, we address the first limitation by simulating the platform

ID credentials in software and configuring them in the secure-world setup stage. To
address the second limitation, we had to boot the TLR using a customized second-
level bootloader–u-boot [U-b]—resulting in the unnecessary inclusion of the first-level
bootloader in the TCB. These shortcomings, however, are not fundamental and could
be overcome by adopting an open and fully featured TrustZone board.
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8.3.2 Software Implementation

Before implementing the TLR prototype, we had to agree on the programming language
and runtime environment on which mobile applications should be built and executed.
The TLR targets .Net applications programmed in C# and compiled to .Net managed
code. To take advantage of open source software, the runtime environment is based on
the Linux kernel 3.5.1 and Mono [Mon] 2.6.7, an open source .Net framework imple-
mentation. We then had to implement (i) a few extensions to the runtime environment
codebase (the OS-domain), and (ii) the components of the TLR (the TLR-domain).
Regarding the OS-domain, we created a TLR library for Mono and modified the Linux

kernel in two ways. First, we extended the kernel with a TLR system call implemen-
tation. Second, and less obviously, we had to port the Linux kernel so that it could
bootstrap in normal world. On the Tegra 250 Dev Kit, the Linux kernel booted in se-
cure world, but it was not ready to start in normal world: by exiting secure world before
jumping to the kernel bootstrap routine, the kernel would eventually execute instruc-
tions that are illegal in normal world and hang. After we identified the illegal operations,
we fixed this issue and made several changes to the kernel: (i) configured the interrupt
masks appropriately, (ii) disabled some cache control registers, and (iii) removed some
processor specific initialization code. Some of these operations were included in the TLR
setup code.
With respect to the TLR-domain, our implementation covered the TLR and the boot-

loader. To build the TLR we leveraged the codebase of the .Net MicroFramework
(NetMF) v4.1 [net]. As we saw in Section 7.4.2, the NetMF is a much smaller version
of the standard .Net Framework, specifically designed for resource constrained devices,
and highly customizable. From its codebase, we borrowed the CLR and PAL code, and
implemented the remaining components of the TLR stack in the HAL layer and appli-
cation layers (see Figure 7.3). To customize the NetMF, we used the NetMF porting
kit [net07]. As for the bootloader, we customized u-boot to initialize the TLR in secure
world and jump to the OS in normal world. To initialize the TLR, u-boot simply loads
the TLR binary and jumps to the TLR binary’s entrypoint.

8.4 Use Cases

In addition to the TLR prototype, we implemented mobile applications that illustrate
how the TLR could improve security in four use cases: one-time password generation,
user authentication, secure mobile transactions, and access control to sensitive data. In
this section, we present these use cases. For each of them we describe the motivation,
state the security goals, and present the security protocols of the application. To the
describe the cryptographic protocols of the applications, we use the same notation as
in the protocols of Excalibur (see Section 4.3). The assumptions and threat model
described in Section 7.3 remain valid in this section.
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Application Model Trustlet Interface

interface ITanWallet : IEntrypoint {

void LoadTanLst(Envelope tanlst);

Tan GetTan(long index);

}

Protocols

Setup: 1. Bank→Device: seal([TANlst], Tlet , Dev)

Query: 1. Svc→Device: index

2. Device→Svc: TANlst(index )

Table 8.1: Use Case 1: Online banking transfers.

8.4.1 One-time Passwords

Our first use case shows how the TLR could protect the generation of one-time passwords
(OTP) on smartphones. OTPs are often used to improve security by providing an
additional authentication factor, for example in online banking.
To authorize online transfers, banks normally issue lists of OTPs called Transaction

Authentication Numbers (TANs) [tan] that they send to their customers. Whenever a
customer performs an online transfer, the bank specifies an index into the TAN list and
asks for the TAN associated with that index. In addition to typing a personal password,
a customer must respond with the correct TAN, otherwise the transaction is aborted.
To reduce the chance of TAN list compromise (e.g., via browser malware), banks usually
write down the TAN list on a plastic card, and send that card to the customer over an
out of band channel (e.g., physical mail).
This method, however, incurs an additional burden for customers, who now have to

carry along an additional token. Instead, banks could take advantage of the TLR to
securely store digital TAN lists on customers’ smartphones. In other words, the physical
tokens containing the TAN list could be replaced by a mobile app—a TAN list trustlet—
that (i) keeps track of the TAN list on a customer’s smartphone, and (ii) provides an
interface for querying a TAN based on TAN indexes. The security properties of such an
application would be equivalent to the physical token approach.
Figure 8.1 illustrates how such an app could be built. The bank creates the trustlet

code (which must be trusted) and seals TAN lists on a per-customer basis so that a
TAN list can only be unsealed by the bank’s trustlet running on the TAN list owner’s
phone (protocol Setup). When the online banking service queries the user for a given
a TAN, the user feeds the requested TAN index into the TAN list mobile application.
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Application Model Trustlet Interface

interface ITicketTrustlet : IEntrypoint
{

bool SetupTicket(Envelope ticket);

TProof Validate(ValFields valinfo);

}

Protocols

Purchase: 1. PTS→Device: seal([tinfo, KT, certPTS(KT )], Tlet , Dev)

Validation:1. Bus→Device: nb, time

2. Device→Bus: [{nb}KT, certPTS(KT )] | fail

Table 8.2: Use Case 2: Mobile ticketing.

The trustlet code then locates the given index in the TAN list. If the index is valid,
the corresponding TAN is returned to the banking service; otherwise a fail message
is produced (protocol Query). The trustlet main method is simple and only requires
two methods: LoadTanLst, and GetTan. (Figure 8.4 provides some code snippets of this
trustlet.)

8.4.2 User Authentication

Our second use case shows how the TLR could be used for user authentication purposes.
In many real world scenarios, individuals use authentication tokens (e.g., tickets or cards)
in order to gain access to sites or services (e.g., institutions, public transports, amusement
parks, museums, etc.). Authentication tokens can consist of physical objects (in plastic or
paper) or digital objects (e.g., a barcode or QR code). In addition to replacing physical
tokens (just like in the previous use case), the TLR could help improve the security
of digital tokens (tickets). In particular, the TLR could provide stronger guarantees
against ticket theft. As opposed to existing mechanisms like QR codes that reveal the
ticket itself during the ticket validation, the TLR could perform user authentication
without the ticket details ever leaving the mobile device. Provided that the TLR sends
only a proof of ticket possession to the ticket validator, an attacker has no way to steal
the ticket from the device and reuse it in future validations.
Figure 8.2 illustrates how a mobile ticketing application could be built for a public

transport company. There are three actors: the public transport service (PTS), which
issues digital tickets; the mobile ticket trustlet, i.e., the trusted code that carries the
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digital ticket and produces the ticket proof, and the ticket validators (VT), i.e., the
ticket readers deployed on the public transport units (e.g., bus, subway).
Essentially, these actors interact twice. When the customer purchases a ticket, the

PTS issues a digital ticket in a sealed envelope and sends it to the customer’s device,
where the mobile ticket trustlet is expected to run and to securely maintain the ticket
(protocol Purchase). Later, before getting access to public transportation, the user
validates the digital ticket by swiping the device in front of the ticket validator; the
mobile ticket trustlet issues a ticket proof and the ticket terminal produces visual or
audio output according to the result of the validation (protocol Validation). We now
explain the details of these protocols.
The central goal of these protocols is to produce a ticket proof that does not leak

ticket information. To achieve this, the VT can simply request the trustlet to validate
the ticket on its behalf and use the trustlet response as a ticket proof; in this way, the
ticket never leaves the device. Naturally, in order for the response to be trustworthy,
the VT must assess the authenticity of the trustlet. For this purpose, the VT validates
the signature sent by the trustlet in message 2 of the Validation protocol. This signature
is produced in the trustlet with a secret key KT that the PTS generated and enclosed
in the sealed envelope of the digital ticket. Since this envelope is sealed to the mobile
ticketing trustlet, KT can only be unsealed if the trustlet running on the user’s device
is authentic.
The challenge then is to convince the VT that the KT key refers to a digital ticket

and was issued by the PTS. To address this problem, the PTS includes in the sealed
envelope a certificate certPTS(KT ) of KT ’s public key signed by the PTS. The certificate
contains information that identify the type of the ticket and the PTS identity. Thus,
by attaching certificate certPTS(KT ) to message 2 of the Validation protocol, the VT can
validate that the signature has been issued with a ticket key certified by the PTS.
The protocol also needs to mitigate replay attacks, in which an attacker reuses a

legitimate ticket proof (possibly issued by another user) in a future validation. To
overcome this problem, each ticket proof is bound to the specific request issued by the
VT. In particular, the VT identifies a request using a nonce (nb) that the trustlet must
sign, otherwise validation fails.
One last point must be mentioned in order to fully understand the protocols: the

trustlet only produces a signed response if the ticket is valid. To allow for the validation
of the ticket, the trustlet must know two pieces of information: the ticket expiration
date, and the current date. The ticket expiration date is enclosed by the PTS into the
sealed envelope (tinfo field). The current date is sent by the VT in message 1 of the
Validation protocol. The trustlet then validates the ticket by comparing both values. If
the expiration date constraints are met, then a signature is produced, otherwise a fail
message is returned.
To implement these protocols, the mobile ticket trustlet includes two methods:

SetupTicket and Validate. The former takes the sealed envelope containing the dig-
ital ticket (i.e., the data items found in message 1 of the Setup protocol), unseals it,
and keeps the resulting objects in memory. The latter takes the validation arguments
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Application Model Trustlet Interface

interface IPayTrustlet : IEntrypoint {

bool SetupCCInfo(SealedCCInfo ccinfo);

Nonce InitPayment();

CCProof Pay(TxFields txinfo);

}

Protocols

Setup: 1. Bank→Device: seal([CC, PIN, KT, KTID, certB(KT ), certM(VT )], Tlet , Dev)

Pay: 1. Device→VT: nd

2. VT→Device: VTID, amount, date, nd, nv, h(PIN,nd,amount), σVT, certM(VT )

3. Device→VT: [VTID, amount, date, KTID, nv, σKT, certB(KT )] | abort

Commit: 1. VT→Bank: VTID, amount, date, nv, KTID, σKT

Table 8.3: Use Case 3: Mobile payments.

contained in message 1 of the Validation protocol, and returns the ticket proof consisting
of the fields enclosed in message 2 of the same protocol.

8.4.3 Secure Mobile Transactions

In our third use case, we show how to use the TLR to perform secure transactions. Specif-
ically, we want to enable customers to perform payments at point of sale (POS) terminals
by simply waving the smartphone in front of the POS. A POS could be deployed in var-
ious contexts: retail shopping, vending machines, toll booths, parking meters, etc. The
mobile device keeps track of the customer’s credit card details, and engages in a payment
protocol with the POS over wireless communication (e.g., NFC). No physical currency
like credit card, debit card, or cash would be required. The role of the TLR is then to
provide for the security of both (i) the credit card information stored on the phone, and
(ii) the payment protocols executed between the device and a POS.
Figure 8.3 illustrates a possible mobile payment scenario involving three actors: the

bank, which issues credit card information, the mobile payment trustlet, which keeps
track of the credit card details, and the vending terminal (VT), i.e., a POS.
These actors engage in three protocols. The Setup protocol takes place between the

bank and the trustlet, and ships the credit card information securely onto the phone.
The Pay protocol occurs between the trustlet and a VT during a payment transaction.
Lastly, the Commit protocol takes place between a VT and the bank (possibly at a
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deferred point in time) in order to credit the payment amount into the vendor’s account.
We now explain these protocols in detail.
One way to look at the requirements of the protocols is from the VT’s perspective. The

VT must guarantee that the credit card information contained in the customer’s device
is valid, and then generate a transaction record that proves to the bank that the payment
was performed. To avoid leaking credit card details, the VT tells the mobile payment
trustlet to endorse the credit card information and produce a transaction record. (This
approach is similar to what is done in the mobile ticketing use case.) The VT then
checks the authenticity of the trustlet based on a signature (σKT in message 3 of the Pay
protocol). This signature is issued by the trustlet with a private key KT certified by the
bank (certificate certB(KT )) and enclosed in an envelope sealed to the mobile payment
trustlet. The trustlet only issues the signature after receiving the payment details from
the VT (payment amount and current date) and validating the credit card expiration
date. This signature is sent along with certB(KT ) in message 3 to VT. By validating
the signature against the certificate, the VT can check the authenticity of the trustlet.
Message 3 serves as a transaction record that can be forwarded to the bank. (To prevent
replay attacks, a nonce nv sent by VT to the device must be included in the signature.)
From the customers’ perspective, it is important to prevent the impersonation of

legitimate terminals. To authenticate a VT, the trustlet verifies whether the VT owns
a private key that has been certified by a trusted VT manufacturer. To enable this,
the bank includes in the sealed envelope certificates of trusted VT manufacturers (field
certM(VT ) of the Setup protocol). Then, in the Pay protocol, the trustlet does not issue
a payment signature unless it receives an authentication proof from the terminal. Such
a proof consists of issuing a signature σVT (with the VT private key) of a trustlet chosen
nonce nd. The VT sends the signature and its certificate certM(VT ) so that the trustlet
can validate them against the certificates of trusted VT manufacturers.
From the customers’ perspective, in addition to making sure the terminal is trusted,

we must prevent accidental or abusive payments in trusted terminals (e.g., duplicate
payments). For this reason, customers must authorize the payments by typing a PIN,
which must be validated by the trustlet before authorizing the payment. Since the I/O
path between the mobile device’s UI and the trustlet can be intercepted by a possibly
compromised OS, the PIN must be typed in the VT. The VT hashes the PIN along with
nonce nd and payment amount, and sends the result to the trustlet as authorization
proof. Sending this hash value (i) prevents the PIN from being sent as clear text, and
(ii) binds the PIN to that particular transaction, thereby preventing replay attacks. The
trustlet validates the authorization proof by recreating the hash and comparing them.
To recreate the hash, the trustlet finds the PIN enclosed in the sealed envelope sent by
the bank. The PIN is chosen by the customer and conveyed to the banking services
before the Setup protocol takes place. To modify the PIN, a new sealed envelope must
be generated and sent to the device, an operation that could be done on the bank’s
website.
To implement these protocols, the mobile payment trustlet implements three meth-

ods: SetupCCInfo, InitPayment, and Pay. The first takes the sealed envelope (i.e., the
contents of message 1 of the Setup protocol), unseals it, and keeps the resulting objects
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Application Model Trustlet Interface

public IHealthTrustlet : IEntrypoint {

bool SetupRecords(SealedRecords recs);

Nonce InitQuery();

Recs QueryRecs(RecQuery query);

}

Protocols

Deploy: 1. HA→Device: seal([[R0, . . . , Rn], ACPol, KT, certHA(KT )], Tlet , Dev)

Query: 1. Device→HP: nd

2. HP→Device: [RID
k ], nh, {nd}KH, certHA(KH )

3. Device→HP: [〈Ri. . .Rj〉K, {K, nh}KT, certHA(KT )] | fail

Table 8.4: Use Case 4: E-health application.

in memory. The second method just returns nonce nd. The third method takes the
validation arguments contained in message 2 of the Pay protocol, and either returns the
transaction record or aborts if validation fails.

8.4.4 Access Control to Sensitive Data

Our final use case for the TLR concerns access control to security-sensitive data placed on
mobile devices. A compelling example can be taken from the context of e-health mobile
apps. The idea underlying such apps is to enable smartphones to carry along the clinical
history of their users so that health providers like physicians and hospitals can have quick
access to patients’ health records in the course of patient visits. Due to the security-
sensitive nature of this data, such apps are somewhat controversial, since giving health
providers unrestricted access to health records could raise serious privacy concerns. The
TLR could address such concerns by restricting health providers’ privileges to this data.
If we assume the existence of a central Health Care Authority (HCA) that defines access
control policies for patients’ clinical history, the TLR could enforce the access control
policies prescribed by the HCA and provide secure access to health record information
placed on patients’ phones.
Figure 8.4 shows how this could be achieved. Our e-health app involves three parties

and two protocols. These parties are: the HCA, the health providers, and the e-health
trustlet. Analogously to the use cases mentioned so far, the e-health trustlet is responsible
for securing the health records of the user and enforcing HCA access control policies.
These three parties participate in two protocols: the Deploy protocol, which takes place
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between the HCA and the e-health trustlet, and loads the health records and access
control policies to a patient’s phone; and the Query, which runs between a health provider
and the trustlet on the patient’s phone, and returns the set of records requested by
the health provider after validating the latter’s access permissions. These protocols are
designed to provide the following security guarantees to patients and to health providers.
From the patient’s perspective, we want to ensure that only properly authorized health

providers can retrieve health records, and that this authorization is granted according
to the permissions of the health provider expressed in the access control policy. To
enforce this behavior, the HCA sends the health records and respective access control
policy to a patient’s phone enclosed in a sealed envelope. The envelope guarantees
that these data items can only be recovered by the trusted e-health trustlet. Later,
during a patient visit, a health provider can issue a query of health record IDs (RID

k ).
As expected, the trustlet’s response depends on the outcome of the policy evaluation.
However, in order to evaluate the policy, the trustlet must first authenticate the health
provider, who is required to sign a challenge—nonce np sent in message 1 of the Query

protocol. This signature is issued with the health provider’s private key KH, and it must
be accompanied by certificate certHA(KH ), in which the HCA certifies KH ’s public key
and further information about the health provider. The trustlet then has all elements
needed to validate this signature and evaluate the policy. If authorization is denied, a
fail message is sent; otherwise, the queried records are encrypted and sent to the health
provider. To make sure that only the health provider can read the records, these are
encrypted with a symmetric key K that is encrypted with the public key of the health
provider.
The health providers also require some guarantees, namely of authenticity of the re-

ceived health records. For this, the HCA includes a private key KT and a certificate
certHA(KT ) in the sealed envelope, and the trustlet attaches (i) a signature σKT of the
encrypted records, (ii) the certificate certHA(KT ), and (iii) the public key certificate of
the HA to the last message sent to HP. These elements enable the health provider to
verify that the message was signed by the HCA and that the KT key could only be
accessed in the e-health trustlet, thereby guaranteeing the authenticity of the received
records. To prevent message replays, we include the nonce nh in the signature.
To implement these protocols, the mobile payment trustlet implements three methods:

SetupRecords, InitQuery, and QueryRecs. The first method takes the sealed envelope
containing the data items found in message 1 of the Deploy protocol, unseals it, and
keeps the resulting objects in memory. The second method returns nonce nd. The third
method takes the query issued by the health provider (message 2 of the Query protocol),
and returns the fields enclosed in message 3 of the same protocol.

8.5 Evaluation

We evaluate the TLR in four dimensions: performance, TCB size, programming com-
plexity, and security.
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8.5.1 Performance

To gauge the performance of our TLR prototype, we study its impact on the execution
time of applications. In particular, we concentrate on two sources of performance over-
heads that the TLR applications incur when compared to standard .Net applications:
(i) the fact that the trustlet code of a TLR application runs on a slower .Net runtime
than the remaining application code, whereas in standard .Net applications all their code
runs on an efficient .Net runtime, and (ii) the fact that TLR applications invoke new
primitives that contribute to increasing their total execution time.

Methodology

To evaluate the performance of trustlet code and TLR primitives, we run multiple ex-
periments based on micro-benchmarks.
To study the performance of the TLR runtime when executing trustlet code, we used

our use case implementation and an additional benchmark suite. The use case prototypes
allow us to measure the performance of the TLR for realistic applications. These tests
consist of the trustlet code that implements the protocols of the use cases presented
in Section 8.4. In total, these trustlets comprise 14 methods: three for Use Case 1
(online banking transfers), three for Use Case 2 (mobile ticketing), four for Use Case
3 (mobile payments), and four for Use Case 4 (e-health application). In addition to
the use case prototypes, to better understand the source of inefficiencies of the TLR
runtime, we implemented an additional benchmark suite. Since the trustlet code is not
allowed to perform I/O operations and is primarily going to perform CPU intensive
applications, this benchmark suite consists of 5 CPU-intensive programs: MatrixMult,
which is a straightforward O(n3) matrix multiplication program; Poly, which computes
the value of a 100-degree polynomial using floating point match; Sudoku, which is a
sudoku solver; CryptoRSA, which performs RSA cryptographic operations (signatures,
encryptions, and decryptions) using 1024-bit keys; and CryptoAES, which performs AES
cryptographic operations (encryptions and decryptions) with 256-bit keys. To compare
the performance overheads of both the use case prototypes and the benchmark suite, we
measure their execution times under two configurations: on the TLR and on Mono.
To measure the performance of the TLR primitives, we implemented a benchmark

suite that stresses each of the five operations related to the trustbox lifecycle: trustbox
creation, trustlet method invocation, data seal, data unseal, and trustbox deletion. Since
the execution time of some of these operations changes with the size of their parame-
ters, we further implemented some micro-benchmarks for studying this variation. These
benchmark programs measure the effect of the factors that are responsible for such vari-
ation, namely the cross world communication (relevant in trustbox creation and trustlet
method invocation) and cryptographic operations (relevant in seal and unseal).
We run our experiments in the hardware testbed described in Section 8.3. In all our

measurements, we run 10 trials and report the mean time and standard deviation.

123



8 Trusted Language Runtime: Enabling Trusted Applications on Smartphones

UC1-Seal

UC1-LoadTanLst

UC1-GetTan

UC2-Seal

UC2-SetupTicket

UC2-Validate

UC3-Seal

UC3-SetupCC

UC3-InitPay

UC3-Pay

UC4-Seal

UC4-SetupRecs

UC4-InitQuery

UC4-QueryRecs

1 10 100 1K 10K 100K 1M

Time (µs)

U
se

 C
a
se

 T
ru

st
le

t 
M

e
th

o
d
s

TLR

Mono

 
 

Figure 8.10: Execution time of trustlet methods from our use case prototypes.

Performance of Trustlet Code Execution

Figure 8.10 presents the evaluation results of our use case prototypes. For each use case
trustlet, the figure shows the execution time of the trustlet’s methods when executed
both on the TLR and on Mono. We can see that the Mono slightly outperforms the
TLR: in 57% of the cases, methods execute on average 4.27× faster in Mono than in the
TLR; and in 43% of the cases, methods execute on average 2.34× faster in the TLR than
in Mono. To a certain extent, these findings were surprising, because we expected Mono
to significantly outperform the TLR. This expectation is justified by the fact that, in
Mono, the trustlets’ managed code is pre-compiled by a built-in jitter into native code,
which runs on bare metal. In contrast, in the TLR, all the managed code is interpreted
by the TLR, with the exception of certain libraries, such as the cryptographic library,
which are implemented in native code.
To understand why the difference in performance between Mono and the TLR is

not more pronounced, we conducted several experiments using our benchmark suite.
Figure 8.11 presents the results of our benchmark suite evaluation. As we can see,
with the exception of CryptoRSA, all other programs of the benchmark run on average
54× slower on the TLR than on Mono. This difference is particularly large in CPU-
intensive programs whose managed code the TLR must entirely interpret, such as in the
Sudoku program, where the difference in performance reaches a factor of 176. However,
this difference is clearly inverted in the CryptoRSA program, which runs 3.3× faster in
the TLR than in Mono, and therefore suggests that Mono’s implementation of RSA is
particularly inefficient.
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Figure 8.11: Performance of our benchmark suite executed on the TLR and on Mono.
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Figure 8.12: Minimum execution time of TLR primitives.

Coming back to the use case evaluation results (see Figure 8.10), we can then un-
derstand that the TLR outperforms Mono for the cases where the trustlet code makes
more heavy use of RSA operations (e.g., UC1-Seal). Mono’s inefficiency, however, is not
fundamental, and a performance degradation should be expected for the trustlet code
running on the TLR as opposed to running it on a standard .Net environment. Nev-
ertheless, for the realistic use cases we have tested, the trustlet execution time ranged
from 29µs to 120ms, numbers that did not negatively hurt the user experience.

Performance of the TLR Primitives

To evaluate the performance of the TLR primitives, we measured their baseline execution
time, and studied how the execution time of these primitives depended on their input
parameters.
Figure 8.12 presents the results of the benchmark suite that measures the baseline

execution time of the TLR primitives. While the seal and unseal primitives take on
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Figure 8.13: Performance of cross world method invocation varying the size of the
method parameters.

average 15.2ms, the remaining primitives execute on average in 75.8µs. This difference
is explained by the heavy use of cryptographic operations by seal and unseal.
With the exception of the delete trustbox, which executes in a constant time of 38µs,

the execution time of the TLR primitives depends on their input parameters, namely
1) the amount of data that needs to be transferred across worlds during the trustbox
creation and trustlet method invocation, or 2) the amount of data that needs to be
encrypted or decrypted by the seal and unseal primitives.
To better understand the cost of cross-world communication, Figure 8.13 plots the

execution time of our method invocation benchmark while varying the size of the pa-
rameters to be transfered between worlds. The total execution time increases linearly at
an approximate rate of 5.6ms/KB. This overhead is explained by the fact that, since the
TLR internal data structures, inherited from NetMF, are incompatible with Mono’s, the
parameters cannot be transfered across worlds by reference, which would take a constant
time. Instead, the parameters need to be marshaled and passed by value, which are op-
erations whose execution time varies with the parameter size. A similar variation could
be observed for the trustbox creation primitive, which requires the transfer of trustlet
binaries to the TLR in order to instantiate a trustlet object in the trustbox.
Finally, to shed some light on the performance impact of cryptographic operations in

the TLR primitives, Figure 8.14 shows our evaluation results for seal and unseal as we
vary the size of the data to be sealed and the size of the envelope to be unsealed. Because
the TLR makes use of the OpenSSL library to implement cryptographic operations in
native code, seal and unseal are efficient. Sealing 1KB takes 5.3ms and unsealing the
same amount of data takes 33.6ms. The performance curves of the seal and unseal
are dominated by the time complexity of the RSA algorithm, which is used in the
implementation of seal and unseal.

8.5.2 TCB Size

To evaluate the TCB size reduction achieved by the TLR, we compare the TCB size of
the TLR against that of two representative systems: TrustVisor (see Section 5.4.2), and
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Figure 8.14: Performance of seal and unseal primitives varying the size of sealed and
unsealed data, respectively.

Codebase (LOC) TrustVisor TLR Mono+Linux

Managed Code Libraries N/A 19.9K (C#) 3, 305.3K (C#)

Native Code
Libraries 18.1K (C) 80.5K (C++) 1, 308.6K (C)

System 7.2K (C) 52.3K (C++) 7, 302.9K (C)

Total 25.3K 152.7K 11, 916.8K

Table 8.5: TCB size of the TLR, TrustVisor, and Mono+Linux setup.

a setup consisting of Mono and Linux (Mono+Linux). While the former gives us an idea
of the minimum TCB size achieved by a state-of-the-art system for hosting native code
applications, the latter gives us an idea of the TCB size that is currently required for
running managed code .Net applications. Since the goal of the TLR is to allow for the
execution of managed code applications with a small TCB, comparing the TLR against
the TrustVisor and Mono+Linux gives us a good measure of success.
Table 8.5 presents a comparative analysis of the TCB sizes of the TLR, TrustVisor, and

Mono+Linux. To measure the size of a system’s TCB, we use the metric of lines of code
(LOC), which counts all lines of the system’s codebase (including comments and empty
lines). In terms of the code versions we considered, for TrustVisor we analyzed version
0.2, and for Linux+Mono we studied version 3.5.1 of Linux and 2.6.7 of Mono. The table
also indicates which part of the codebase is implemented in native code (typically in C
or C++), and which part corresponds to managed code (typically C#). In addition, the
table indicates which part of the code belongs to the core of the system versus libraries.
Comparing the TLR with TrustVisor, we can see that the TLR is approximately five

times larger than TrustVisor: the TCB size of the TLR and TrustVisor are, respec-
tively, 152.7 KLOC and 25.3 KLOC. This difference can be explained by the fact that
TrustVisor provides hosting capability not for managed code applications, but for native
code applications. Therefore, unlike the TLR, TrustVisor neither needs to implement a
managed code runtime engine nor to include managed code libraries containing the basic
services required by the applications. For this reason, TrustVisor’s core is very small
(7.2 KLOC) and includes only a basic cryptographic library (18.1 KLOC). In contrast,
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Use Case Code Size (LOC) # Methods

Online banking 179 3

Mobile ticketing 450 3

Mobile payments 754 4

E-health app 974 4

Table 8.6: Programming complexity of the use case prototypes measured in code
size and number methods.

the TLR must provide support for the execution of trustlet managed code and therefore
requires a larger TCB core (52.3 KLOC for the runtime engine and 80.5 KLOC for native
code libraries).
Comparing the TLR with the Mono+Linux setup, a configuration that enables the

execution of managed code .Net applications, we see that the TLR achieves a drastic
reduction in the TCB size. While the TCB size of Mono+Linux is 11.9 MLOC, the
TLR’s is 152.7 KLOC, i.e., approximately 60 times smaller. The TCB of Linux+Mono
consists of part of the Linux kernel (6.9 MLOC1), Mono’s runtime (471 KLOC), native
code libraries such as the Glib2 (1.3 MLOC), and managed code libraries shipped with
Mono (3.3 MLOC). The TLR cuts down the TCB size due to the TLR’s novel design,
which restricts the functionality offered to trustlets, and merges the roles of OS and
runtime engine into a compact single system.
In summary, we can say that the TLR fills a gap in the design space currently char-

acterized by a tradeoff between TCB size and functionality. On the one hand, we have
systems like TrustVisor that depend on a small TCB but operate at a too low an ab-
straction layer for mobile application developers. On the other hand, we have systems
like Mono that provide high-level runtime engines adequate for mobile applications but
depend on very large TCBs. The TLR bridges both extremes by providing a high-level
runtime engine with essential functionality and a small TCB.

8.5.3 Programming Complexity

Assessing the complexity of programming applications for the TLR is a difficult task.
Therefore, our analysis is primarily based on our experiences building the use case proto-
types and benchmark programs. We find that it is relatively easy to program applications
for the TLR. Once we sketched the security protocols of the four use cases, programming
their respective trustlets was done by a grad student in 3.5 days. Table 8.5 shows the
codebase size of each trustlet and the number of methods implemented by each trustlet.
These numbers show that the average code size is relatively small, consisting of 590 LOC

1It is unlikely that a real world Linux deployment includes all the device drivers shipped in the kernel.
Therefore, to avoid using an artificially bloated Linux kernel, we conservatively exclude the source
code of the device drivers. Device drivers entail nearly two thirds of the overall kernel size, which
is 15.5 MLOC. Since, in practice, some drivers must be included in the kernel, the TCB size of the
Mono+Linux setup would be larger than the number reported in the table.
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in C#, and the trustlet interfaces are simple, consisting of 3 to 4 methods. Although it
is likely that implementing real world applications would demand a larger programming
effort, we believe that building real-world applications on the TLR will be comparable to
building them for standard .Net environments, where programmers can take advantage
of rich programming environments, language features, and debugging utilities.

8.5.4 Security Analysis

Finally, we discuss some relevant issues concerning the security of the TLR. An attacker
wanting to exploit the attack surface of the TLR would face several difficulties. The
attack surface of the TLR comprises the smc interface exposed to the OS, and the
managed code and library interface exposed to the trustlets. Both the smc and the
library interface are relatively narrow, which reduces the number of vulnerabilities that
can be exploited by an attacker. The managed code interface offers a larger attack surface
where an attacker could try to exploit a bug in the NetMF engine by providing carefully
crafted bytecode sequences in their trustlet code. Although such an attack is possible,
the TCB size of the NetMF engine is sufficiently small to be analyzed, thereby reducing
the chance of vulnerabilities in the NetMF engine code. Also note that compromising
the OS-domain native would not pose any specific problem to the application (e.g., the
OS starts forwarding results of a trustlet to a different application). In fact, attacks
resulting from an OS compromise can be considered as a particular kind of a man-in-
the-middle attack mounted between the trustlet and a trusted remote service, an attack
that the application developers already have to mitigate when designing their apps.
The TLR can only provide limited protection against physical attacks: an attacker

with the ability to tamper with the hardware could disable the TrustZone protections
and over take the defense mechanisms enforced by the TLR. However, such attacks
require some degree of sophistication: since the core of the system (the SoC) is packaged
in a single die, an attacker would need to break into the SoC in order to conduct this
attack successfully. Although this task is not impossible, it would be extremely difficult.
To prevent simpler hardware attacks such as probing the bus, the SoC manufacturer
could include the memory modules allocated to the secure world directly in the SoC. In
this way, bus probing attacks would be impossible without tampering with the SoC.

8.6 Summary

We presented the Trusted Language Runtime (TLR), a system for running trusted ap-
plications on the smartphone. TLR offers a trustbox primitive, which is a runtime
environment that offers code and data integrity and confidentiality. With the TLR, pro-
grammers can write managed-code applications in .Net and specify which parts of the
application should run inside a trustbox. These parts, called trustlets, are protected from
the remaining code running on the smartphone, including its OS and other applications.
TLR uses the ARM TrustZone, which is a hardware technology for trustworthy com-

puting found in ARM chips. The rich hardware support offered by ARM TrustZone
combined with the flexibility of the .Net programming environments allows the TLR to
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offer a secure, yet rich programming environment for developing trusted mobile appli-
cations. In addition to presenting the design and a TLR implementation based on the
NetMF, this chapter showed that the system performs well, and that it can successfully
host an array of compelling applications with stringent security needs.
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9 Analysis and Limitations

In this chapter, we aim to show how the systems presented in this thesis fit together
and get a deeper understanding of their limitations. To this end, we start by providing
a unified design model of these systems based on trusted computing—in fact, despite
their diversity, they all borrow their core design principles from trusted computing.
Then, we leverage this model to discuss the main limitations of these systems (and
of trusted computing in general), hoping that this discussion will help identify open
research questions to be addressed in the future.

9.1 A Unified Model for Trusted Computing Systems

Essentially, a trusted computing system aims to improve users’ trust in a particular
computing platform by granting access to users’ data on the platform if and only if the
platform executes a state machine that the users have approved. Since the state machine
of a platform defines its expected properties (e.g., confidentiality and integrity protection
of computations), by approving a trusted state machine that implements certain required
properties, users can obtain a priori guarantees that those properties will be enforced
before uploading their data to the platform.
To restrict data access based on a trusted state machine, trusted computing systems

adopt a similar high-level design, whose components are shown in Figure 9.1. The trusted
state machine is specified as a piece of trusted software (e.g., a hardened hypervisor as
described in Section 3.1.3). Given that a general purpose computing platform can boot
an arbitrary piece of software (and therefore execute an arbitrary state machine), to
validate the software executing on the platform, the system provides a set of trusted
computing primitives. As introduced in Section 2.4.1, these primitives typically include

Figure 9.1: Key elements of a general trusted computing system: trusted software,
trusted hardware, trusted computing primitives, and trusted third parties.
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trusted boot, remote attestation, and sealed storage. To protect the integrity of these
primitives, their implementation is grounded on a piece of trusted hardware (e.g., a
TPM). Since the trusted software and hardware components are not directly controlled
by the users, users must ultimately rely on trusted third parties to correctly implement
and certify these components. For a deeper exposition of some of these concepts, we
refer the interested reader to [PMP10].
As described next, this general design can be used to model the components of the

trusted computing systems presented in this thesis: Excalibur (for cloud platforms),
BrokULOS (for enterprise platforms), and the TLR (for mobile platforms). We clarify
how each component is implemented by each system.

Trusted software: The trusted software is typically tailored to enforce specific proper-
ties. In Excalibur, the trusted software consists of the monitor code and the client side
libraries located on the cloud nodes. These components implement the policy-sealed data
abstraction, which can be used for bootstrapping trust in the cloud (see Section 4.2.1).
In BrokULOS, the trusted software consists of (i) the trusted programs (brokers) that
administrators use to maintain the operating system, and (ii) the software that runs
in privileged mode, namely the kernel and OS services. By implementing the security
invariants of the Broker Security Model (see Section 6.1.1), the brokers offer the ad-
ministrators the tools to manage the system without compromising the confidentiality
and integrity of users’ data and computations. Lastly, in the TLR, the trusted software
comprises the TLR code and the security-sensitive app code (trustlets). The TLR code
guarantees the protection of confidentiality and integrity of the trustlets’ runtime state
(see Section 8.1.2).

Trusted computing primitives: To allow for the validation of a platform’s configura-
tion, a trusted computing system typically provides trusted computing primitives, each
of them serving specific purposes. Excalibur provides an attest-monitor primitive for
attesting the configuration of the monitor, and seal and unseal primitives for sealing and
unsealing policy-sealed data (see Table 4.4). BrokULOS embbeds trusted computing
primitives in the implementation of certain brokers, e.g., the broker for activating a user
account the first time a user logs in includes an attestation mechanism that checks the
integrity of the system (see Section 6.3.3), and the brokers for backing up and restoring
user data implement a mechanism akin to sealed storage to guarantee that the backed up
data is encrypted before leaving the user’s account and can only be decrypted by the user
(see Section 6.3.2). Lastly, at the API level, the TLR provides seal and unseal primitives
that enable validating the integrity and identity of a specific trustlet before entrusting
a trustlet with sensitive data (see Section 6.3.3). In all these cases, the implementation
of the trusted computing primitives is rooted in trusted hardware.

Trusted hardware: To implement the trusted computing primitives, we use two trusted
hardware technologies. In the cloud and enterprise setting, Excalibur and BrokULOS,
respectively, use TPMs deployed on the local machines. In the mobile platform, the TLR
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leverages ARM TrustZone technology. There are, however, other technologies that could
be used: some are already available, while others are in the making. An example of an
alternative technology currently available is that of the IBM cryptographic coprocessors.
The 4765 Cryptographic Coprocessor [IBM13], for instance, is a tamper-resistant PCIe
card, containing a complete programmable subsystem (CPU, RAM, persistent mem-
ory) and specialized hardware functions (e.g., hardware random number generator, time
of day clock, cryptographic functions). The coprocessor can execute security sensitive
applications, relieving the main processor from those tasks. The downside of this tech-
nology is currently its price, costing over $9000 per unit. Intel is currently working on
a new technology called Software Guard Extensions (SGX) [MAB+13]. Essentially, it
consists of a set of extensions to Intel processor architecture that enables applications
to execute with confidentiality and integrity in the native OS environment. Applica-
tions can allocate protected containers called enclaves, consisting of a set of protected
memory pages inside the application’s address space. SGX offer mechanisms for securely
loading code and data into the enclave and for encrypting its content in case it needs to
be offloaded from main memory. Since SGX is expected to appear in commodity Intel
processors, it is likely that the prices will be more competitive than IBM’s coprocessors
and therefore that SGX will become more widely available.

Trusted third parties: In addition to the manufacturers of the trusted software and
hardware components and the Certificate Authorities of Public Key Infrastructure (e.g.,
VeriSign [Ver]), each system requires specific trusted third parties (TTPs). Excalibur
depends on certifiers responsible for issuing certificates for the attributes of a particular
cloud service (see Section 4.2.1). In BrokULOS, trust is rooted on (a small number
of) fully trusted administrators, who are responsible for validating the broker imple-
mentations and for overriding the broker protections in exceptional occasions, such as
for system troubleshooting (see Section 6.1.1). The TLR essentially assumes the exis-
tence of application dependent TTPs that trustlets rely on to exchange security-sensitive
information, as illustrated by the use cases in Section 8.4.

9.2 Limitations of Trusted Computing Systems

Despite the potential of trusted computing to improve trust in computing platforms, this
technology is not perfect. Because trusted computing depends on a few core assump-
tions to guarantee its effectiveness, some of its limitations are fundamental. Others,
instead, are related to its current state of maturity and involve some practical aspects of
development and deployment of technology. In this section, we discuss the limitations
of trusted computing systems by focusing on each of their components in turn.

9.2.1 Limitations Related to Trusted Software

Since the properties enforced by a trusted computing system depend on a trusted piece of
software, two aspects deserve to be highlighted: the need for correctness of the software
and the potential vulnerability to side-channel attacks.
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First, the trusted software must be correct from both the perspective of its specifica-
tion and implementation. In fact, if a user attests that a particular computing platform
executes trusted software X, but the precise specification of X does not match the user’s
high-level idea of what the software is being trusted for (specification problem) or the
code does not meet the specified behavior for X, e.g., by containing security vulnera-
bilities (implementation problem), then it is no longer possible to guarantee that the
properties required by the users will be enforced and therefore the attestation result will
be meaningless. Producing software that satisfies both these correctness properties is
difficult. With respect to the specification, the challenges consist of fully specifying com-
plex pieces of software, and making the specification intelligible to non-technical users.
Regarding the implementation, the challenge is to produce provenly correct code for
complex and large software stacks. Given the lack of a general solution for these prob-
lems, two general approaches have been adopted in order to make the software more
robust. One approach is to reduce the likelihood of vulnerabilities in the code by shrink-
ing the size of the trusted computing base (TCB) [MPP+08a, MLQ+10]. Reducing the
TCB size is not easy, as system designers normally face multiple tradeoffs involving,
for example, a limitation of functionality, a decrease of performance, and an increase in
programming complexity. In a complementary approach the idea is to reduce the attack
surface exposed by the TCB by narrowing the system interfaces [MMH08, MSWB09].
Limiting the attack surface reduces the exposure of potential vulnerabilities located in
the TCB to an attacker, thereby improving the robustness of the software. To different
extents, we have applied both these techniques in Excalibur, BrokULOS, and the TLR.
Caution should be taken to potential side-channels. In fact, as a piece of software

executes it could produce meta-data accessible to an external observer through side-
channels. If this meta-data carries sensitive information, side-channels could be a source
of security leaks. One possible side-channel could be the I/O, namely the network.
Past research has shown that, even if a network channel is encrypted, the meta-data
obtained during the transmission (e.g., IP addresses, size of packets, and transmission
time) can be used to compromise certain properties of the communication such as user
anonymity [LBMA+11] or data confidentiality [CWWZ10]. Another source of meta-data
could be the implementation of the software itself. For example, a cryptographic library
whose decryption operation depends on the decryption key leaks timing information,
which by itself could be leveraged by an attacker to infer the key [BB05]. Yet another
source of meta-data could be a shared system resource (e.g., caches, system files, etc.). In
certain conditions, a malicious user running a virtual machine (VM) alongside a victim’s
VM is able to extract information from the victim’s VM by contending for components
of the memory subsystem (e.g., memory pages, and cache lines) [RTSS09, ZJRR12].
Eliminating (or reducing) the meta-data that is leaked through side-channels constitutes
an open research topic, and it was not the primary purpose of this thesis.

9.2.2 Limitations Related to Trusted Computing Primitives

Trusted computing primitives serve the purpose of allowing users to “express” trust
conditions and enforcing them on a particular platform. In general, trust conditions
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regarding the trusted software are expressed as a (hash) function of its binary. For
example, sealing data to hash h(X) means that only the software binary X is trusted to
unseal the data. However, expressing trust in a specific software implementation raises
some obstacles related to the level of abstraction and evolution of the software.
Regarding the level of abstraction, users face a considerable semantic gap between a

“hash” and the way they perceive as being the platform’s properties. In fact, users and
service providers tend to reason about such properties in abstract terms (e.g., integrity,
confidentiality, availability) and express them in a contractual form written in human
language, typically in the form of Service Level Agreements (SLAs). With existing
trusted computing primitives, however, properties cannot be expressed at this level of
abstraction. Because a hash must be provided, it is necessary to build a specific trusted
software that implements the properties required by the user. This restriction could be
overly inflexible and cumbersome, especially if the service provider operates at upper
layers in the software stack (see Section 10.2). To some extent, Excalibur bridges this
gap by allowing for the specification of policies based on high-level attributes (e.g., the
software version, the location of cloud nodes) and by relying on trusted third parties to
map these attributes to the PCRs and AIK keys of TPMs. Nevertheless, there is room
for improvement, e.g., by devising primitives that better reflect the concepts and termi-
nology of SLAs, and decoupling them as much as possible from specific implementations.
The tight coupling of hashes with software implementations creates another obstacle

as the trusted software evolves and new versions are produced. If a piece of data was
sealed to trusted software version X and access should also be given to a future upgrade
Y, the previous version X must unseal the data and seal it to Y. (Note that Y could not
unseal the data because its hash is different from X’s.) Implementing this kind of forward
portability poses no particular problem and is supported in Excalibur by configuring the
monitor with an additional certificate containing a mapping to Y’s hash). However,
revoking the unsealing permissions from a past software version is more problematic.
The need for revocation could occur, for example, if a certain implementation is no
longer reliable or became obsolete. The systems currently presented in this thesis do
not support revocation, and we defer for future work devising a general solution for this
problem.

9.2.3 Limitations Related to Trusted Hardware

The fact that trusted computing systems depend on dedicated trusted hardware compo-
nents raises a few issues that must also be taken into account. Some of these issues are
fundamental, as they regard the need for integrity protection of the hardware. Others
are specific to particular trusted hardware instances (e.g., TPM and TrustZone), and
have to do with their current state of maturity and deployment.
Since trusted computing primitives depend on the trusted hardware, the entire trusted

computing system could be compromised if the integrity of the hardware is violated. In
other words, trusted computing does not offer protection against physical attacks that
result in the leakage of secrets from the hardware or in the modification of the hard-
ware’s behavior. At first sight, this restriction seems to considerably weaken the power
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of trusted computing. However, we argue this is not the case for several reasons. Firstly,
because the technical evolution of the hardware has significantly raised the bar in terms
of the skill, resources, and time that an attacker would require for breaking into the hard-
ware. For example, while early versions of TPM could be defeated by simply interfering
with the system bus [Tru08], which is a relatively easy attack, compromising current
TPMs requires tampering with the chip itself [Tar10], which is a very sophisticated and
lengthy attack. As the degree of miniaturization of integrated circuits increases, attacks
of this nature become even harder. Thus, because TrustZone is part of SoC proces-
sors and future Intel SGX [MAB+13] will be found in Intel processors, physical attacks
are very challenging. Secondly, the difficulty of attacks could be made even higher by
deploying external barriers to the hardware, such as those located in datacenters (see
Section 2.3).
Turning our attention to specific trusted hardware instances, we highlight a few prac-

tical limitations related to their deployment. Specifically to TPM technology, an impor-
tant limitation concerns the certification of TPM cryptographic keys. Two kinds of keys
need to be certified. Firstly, the public part of the Endorsement Key (EK) contained
in a TPM must be certified by the manufacturer so that the EK can be validated as an
authentic TPM key. (The EK is a unique public key pair burned into the TPM by the
TPM manufacturer.) Secondly, since remote attestation signatures can only be issued
by AIK keys (see Section 2.4.2) and not directly by the EK, the public part of AIK must
be certified by a trusted third party in order to vouch for the association between the
AIK and a valid EK. Currently, however, there lacks a widely deployed infrastructure to
certify these keys. Regarding EKs, most TPM manufacturers do not include certificates
to the EK keys of their TPMs. To the best of our knowledge, the only exception is
Infineon, whose TPMs contain certificates issued in conjunction with Verisign [Inf05].
Regarding AIKs, Certificate Authorities do not yet offer services for certifying AIK keys.
The most popular service used today for this purpose is PrivacyCA [Pri], which how-
ever does not offer the necessary security guarantees for a real deployment. The reasons
for these limitations are not entirely clear. Nevertheless, they are not fundamental.
To overcome these issues, an organization could use Infinion TPMs and delegate the
task of AIK certification to an independent department. For security reasons, such a
department must not have software administrator privileges over the cloud nodes.
Regarding TrustZone technology, a shortcoming could be its poor availability in com-

modity mobile devices. Although many ARM-based devices contain processors that
implement TrustZone extensions, they do not yet incorporate components that are fun-
damental for building fully featured trusted computing systems. Examples include a
secure ROM, which is responsible for starting the chain of measurements of the trusted
boot process, and a unique public key pair, which is fundamental for authenticating the
hardware platform during attestation. Just like with TPMs, we do not have an expla-
nation for why hardware manufacturers are not yet taking full advantage of TrustZone.
It is our hope that the use cases presented in Section 8.4 help illustrate the benefits of
this technology and contribute to changing the state of affairs.
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9.2.4 Limitations Related to Trusted Third Parties

The main issues regarding the trusted third parties (TTPs) come from the fact that they
constitute the root of trust of any trusted computing system. Trusted computing systems
depend on TTPs for a number of crucial tasks, such as correctly implementing trusted
hardware and trusted software components, and certifying public keys of all sorts (EK
and AIK of TPMs, public RSA keys of organizations and individuals). Therefore, failing
to perform these tasks could seriously compromise a trusted computing system. Such a
failure could happen by negligence, accidents (e.g., a natural disaster), external agents
(e.g., coercion by governmental agencies, security exploits by hackers), or dishonesty
(e.g., motivated by a situation of bankruptcy). Independently of the cause, preventing
the negative effects of a TTP failure is very difficult. A typical strategy is to spread trust
across multiple TTPs, for example, by recruiting multiple TTPs for issuing a certificate
or authorizing an operation. This approach, however, is vulnerable to collusion and for
certain operations spreading trust across multiple entities is impractical, for example,
assembling a trusted hardware component.
The reliance on TTPs is not restricted to trusted computing systems, but to most

(if not all) existing systems. Ultimately, the strength of trusted computing systems
lies in that (i) it makes the TTPs of a particular computing platform transparent (e.g.,
Excalibur reveals the hardware and software certifiers), (ii) it can be designed to exclude
specific agents from the chain of trust (e.g., BrokULOS excludes partially trusted
software administrators from enforcing confidentiality and integrity of computations),
and (iii) it gives users of computing platforms the ability to make their trust decision
about a particular computing platform (e.g., based on the reputation of the TTPs and
on how likely are TTPs prone to jurisdictional interference by governments). For these
reasons, we argue that trusted computing systems could help improve users’ trust in
computing platforms.
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In this section, we summarize the main contributions of this work and outline directions
for future research.

10.1 Conclusions

In this thesis, we presented multiple systems aimed at reinforcing user trust in computing
platforms. For their popularity and impact, we targeted cloud, enterprise, and mobile
platforms. We showed that, in spite of the diversity of these systems, a common twofold
strategy can be adopted for building user trust: (i) enhance the security of their software
to provide confidentiality and integrity of user computations, and (ii) provide tangible
hardware-based guarantees that such a software is really deployed. The core principles
to implement this strategy were borrowed from trusted computing, but the specific
techniques had to be tailored for each platform. This is because each platform has
unique characteristics and usage models that create specific challenges.
In the context of cloud platforms, we had to handle with massive distribution. Our

motivation was to address the customers’ fears of security breaches stemming from in-
sider activity, namely by cloud administrators. To address this problem, we proposed
a general trusted cloud service design, which includes two kinds of extensions to the
cloud infrastructure. The first extension is to reinforce the security of the virtualization
software so as to (i) prevent access to in-memory and on-disk customer data by cloud
administrators, and (ii) ensure that, as the data migrates across cloud nodes, customer
data cannot be inspected or modified on transit. The second extension is to install com-
modity trusted computing hardware—TPM chips—on the cloud nodes, and leverage
TPMs to let users remotely attest the software stack of the cloud, and therefore check
that their data is safe. However, we found that, because TPMs have not been specifically
devised to large-scale cloud clusters, improper TPM usage could introduce scalability
bottlenecks, data migration inflexibility, and privacy issues. To overcome these limita-
tions, we presented Excalibur, a system that enables cloud providers to take advantage
of TPMs’ attestation properties for building trusted cloud services while using a few
simple primitives. We implemented a prototype of Excalibur, and integrated it with an
open source cloud platform. Our simulations show that the system can scale to clusters
of hundreds of thousands of nodes.
In the context of enterprise platforms, we faced issues of management inflexibility.

Here, we were also motivated by fears of insider threats, but within the realm of orga-
nizations. In general, organizations hold critical data on in-house enterprise platforms,
and are currently highly dependent on system administrators for properly maintaining
them. A major risk comes from the fact that the operating systems that control these
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platforms are normally built for a fully trusted system administrator. While this design
model allows for maximal management flexibility, it entails security risks. In partic-
ular, it makes the system prone to mismanagement actions conducted by a negligent
or malicious system administrator. To make enterprises more resilient to threats of
this kind while safeguarding management flexibility, we proposed a hierarchical privilege
separation model. Under this model most of the management tasks can be offloaded to
partially-trusted administrators, without undermining the confidentiality and integrity
of user data and computations; only a small number of fully-trusted administrators ex-
ists for conducting a small number of critical tasks. We demonstrated that this model is
viable in commodity OSes by building BrokULOS. BrokULOS is an extended Debian
Linux distribution that disables superuser privileges for the partially-trusted adminis-
trators, and allows them to manage the system using only a set of trusted programs
called brokers. With BrokULOS, we showed that, with about 42 brokers, over 80% of
the typical tasks could be offloaded to partially-trusted administrators without loss of
confidentiality and integrity of user data.
Lastly, in our work on mobile platforms, we had to address the challenges of TCB

inflation. In this case, we were primarily concerned about the lack of security guar-
antees of current mobile platforms for hosting emerging security-sensitive applications,
such as e-wallet and e-health applications. We addressed this gap by presenting Trusted
Language Runtime (TLR), a system that protects the execution of security-sensitive ap-
plication components (trustlets) inside containers called trustboxes. Trustboxes preserve
the confidentiality and integrity of application runtime state even if the OS is entirely
compromised. The TLR design is novel in the sense that applications can be built using
languages that generate intermediate code (e.g., Java and .Net) without bloating the
size of the trusted computing base (TCB). This is possible by leveraging ARM Trust-
Zone technology for isolation between the OS and trustbox state, and designing a tiny
and carefully crafted runtime engine for hosting trustboxes. In our implementation, we
built the TLR by customizing the .Net Microframework (NetMF), a tailored made .Net
framework for embedded devices. To demonstrate the TLR, we built applications for
four real-world use cases. Our evaluation showed that the TLR can reduce the TCB
size of the Mono open source .Net implementation by a factor of 60 with a tolerable
performance cost.

10.2 Directions for Future Research

By improving security, the systems presented in this thesis contribute to reinforcing users’
trust in cloud, enterprise, and mobile platforms. Nevertheless, a number of directions
deserve further exploration. Some of these directions are specific to the computing
platforms studied in this thesis, and others concern to trusted computing systems in
general.
So far, in the context of cloud computing, we focused on building trust in the lower

layers of the cloud stack, namely IaaS. The higher layers of the stack, however, require
more extensive work, namely PaaS and SaaS. In these layers, a number of questions
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remain open. First, it is unclear whether preventing inspection and modification of
customer computations by the cloud administrator can be done while keeping the size
of the TCB relatively small. The reason is that, as one climbs the cloud stack, more
software needs to be trusted. Second, it is yet to be studied whether the attestation
mechanisms we proposed for IaaS would scale in the PaaS setting. Compared to IaaS,
PaaS platforms exhibit different workload patterns: PaaS platforms tend to allocate
customer software components in a larger number of finer grained containers, place
the software components in highly distributed configurations, and migrate them more
frequently across nodes. Under such a workload, the demand of attestations could
increase to the point of producing bottlenecks presently unknown to us. In the future,
we plan to address these challenges and investigate the design of a trusted PaaS platform.
To handle the TCB bloating issues, we aim to make use of our past experience with the
TLR and leverage some of its techniques.
With respect to enterprise platforms, this thesis has primarily focused on thwarting

administration threats in OSes. However, enterprise platforms include additional soft-
ware components that we did not cover and those also require protection. For example,
e-mail, databases, wiki, and web services rely on trusted service administrators who
can freely control the user data managed by the services. In this case, just like in an
OS, a negligent or malicious service administrator could easily inspect or tamper with
user data. To prevent such actions, we plan to investigate whether the broker security
model could also be applied, by mediating data access in such services via trusted code
(brokers). Ideally, we would like to find a general technique that could provide security
guarantees equivalent to those of the broker model, without requiring the handmade
design of brokers, a time consuming task.
Regarding the mobile platform setting, we look forward to increasing the functionality

and security guarantees of the TLR. As of now, application programmers are somewhat
limited in terms of the scope of security-sensitive mobile applications that can be built,
namely mobile applications that require interaction with the UI and persistent storage of
data. Although the TLR offers runtime protection of security-sensitive application code,
it does not presently implement trusted I/O and sealed storage abstractions, which would
be required by many mobile applications. Because implementing trusted I/O and sealed
storage entails the inclusion of device drivers in the TCB, is not trivial to devise such
features without inflating the TCB size. Our future goal is, then, to explore new ways to
implement these capabilities and thereby broaden the spectrum of mobile applications
supported by the TLR.
Lastly, regarding trusted computing systems in general, there are a number of top-

ics that deserve further research. Since these topics have been covered in detail in
Section 9.2, we simply summarize them here. Regarding trusted software, more work
is required to handle vulnerabilities in the TCB and side-channels. With respect to
trusted computing primitives, more attention should be dedicated to raising their level
of abstraction and increase their independence from specific software implementations.
As for the trusted hardware, it would be important to assess the degree of physical pro-
tection offered by the current technology and, if necessary, improve it. Finally, regarding
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trusted third parties (TTPs), studying new ways to reduce the effects of a TTP failure
could represent a significant step forward in the field of trusted computing.

142



Bibliography

[acs] Advanced Crypto Software Collection. http://acsc.cs.utexas.edu.

[Age01] National Security Agency. Security-Enhanced Linux (SELinux), 2001.
http://www.nsa.gov/selinux.

[Amaa] Amazon. AWS Cloud Computing Whitepapers. http://aws.amazon.

com/whitepapers.

[Amab] Amazon EC2. http://aws.amazon.com/ec2.

[Amac] Amazon S3. http://aws.amazon.com/s3.

[amad] Amazon struggles to restore lost data to European cloud customers.
http://www.networkworld.com/news/2011/080911-amazon-outage.

html.

[App] Apparmor application security for linux. http://www.novell.com/

linux/security/apparmor.

[arm] Designing with TrustZone – Hardware Requirements. ARM Technical
White Paper.

[ARM09] ARM. ARM Security Technology – Building a Secure Sys-
tem using TrustZone Technology. ARM Technical White Paper,
2009. http://infocenter.arm.com/help/topic/com.arm.doc.

prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_

whitepaper.pdf.

[Azu] Windows Azure Platform. http://www.microsoft.com/windowsazure.

[BB05] David Brumley and Dan Boneh. Remote Timing Attacks are Practical.
Computer Networks, 48(5):701–716, August 2005.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct Anonymous At-
testation. In Proceedings of CCS, 2004.
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