
Deutsches
Forschungszentrum
tür Künstliche
Intelligenz GmbH

Research
Report

D-93-27

Report of the EAGLES Workshop on
Implemented Formalisms

at DFKI, Saarbrücken

Rolf Backofen, Hans-Ulrich Krieger,
Stephen P. Spackman, Hans Uszkoreit (Eds.)

March 1993

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49631) 205-3210

SluhlsalZenhausweg 3
66123 Saarbrücken, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens . Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . Ttle overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community . There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for share holders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a statt of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

eport ofthe
AGLES Workshop on Implemented Formalisms at DFKI, Saarbrücken

olf Backofen, Hans-Ulrich Krieger, Stephen P. Spackman, Hans Uszkoreit (Eds.)

This wor#< has been supported by a grant trom the Commission ot the European
Communities DG XII' to the EAGLES initiative under the programme LRE.

© Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum für Künstliche Intelligenz. Kaiserslautern. Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying. reproducing. or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-0098

Report of the EAGLES Workshop on
Implemented Formalisms

at DFKI, Saarbrücken

Rolf Backofen, Hans-Ulrich Krieger, Stephen P. Spackman, Hans Uszkoreit
editors

March 1-3, 1993

Contents

1 Introduction
1.1 The Working Group
1.2 Objectives of the Workshop
1.3 Organization
1.4 Results and Findings .

2 Systems Exhbited
2.1 ALE
2.2 ALEP

2.2.1 Introduction
2.2.2 Development of ALEP
2.2.3 Formalism
2.2.4 Environment
2.2.5 Further Development .

2.3 CAT2
2.3.1 Overview of the CAT2 Formalism

2.4 CC(L)G
2.4 .1 Introduction
2.4.2 Feature Description Calculus
2.4.3 Categorial Grammar ...
2.4.4 Constraint Categorial Grammar
2.4 .5 A sampie grammar.
2.4.6 Conclusions

2.5 CLAREjCLE
2.6 CLG
2.7 CUF
2.8 ELU

2.8.1 General
2.8.2 Unifier.
2.8.3 Finite-State Lexicon
2.8.4 Default Inheritance Lexicon
2.8.5 Grammar Rules .
2.8.6 Parser.. . .
2.8.7 Generator .. .
2.8.8 Transfer Rules
2.8.9 Compiler ..
2.8.10 User Environment
2.8.11 Responsibility.

2.9 Pleuk and SLE
2.9.1 Introduction
2.9.2 The Tasks of Grammar Development .
2.9.3 Specializations
2.9.4 Assessment . ..
2.9.5 Implementation.
2.9 .6 Conclusions

2.10 TDLjUDiNe
2.10.1 Motivation
2.10.2 The DISCO Core Engine
2.10 .3 The UDiNe Feature Constraint Solver
2.10.4 Intelligent Backtracking
2.10.5 The rv.c language

1

3
3
4
5
5

9
10
15
15
15
16
19
19
21
21
26
26
26
27
27
28
29
32
40
44
50
50
50
51
51
52
52
52
52
52
53
53
58
58
58
61
62
62
63
67
67
67
68
69
70

2

2.10.6 Type Hierarchy . . .
2.10.7 Symbolic Simplifier .

2.11 TFS
2.11.1 Type Constraint System.
2.11. 2 Summary

2.12 TUG
2.13 UD

2.13.1 Origins and Motivations .
2.13.2 The UD Formalism
2.13.3 Discussion

3 Unexhibited Systems
3.1 STUF-II . . .

4 Related Systems
4.1 LIFE.
4 .2 Oz

70
71
75
75
76
81
89
89
89
91

97
98

103
104
109

Part 1

Introduction

From the 1st through the 3rd of March 1993, the Working Group on Linguistic For­
malisms of the EAGLES initiative held a workshop in Saarbrücken on implemented
grammar formalisms.

Starting with so me notes on the Working Group, we will describe objectives,
organization, and results of the workshop. We also summarize some relevant general
findings as they emerged from the final discussion.

The systems demonstrated are described in a detailed synopsis. In order to
facilitate comparison a standardized questionnaire was used for the individual de­
scriptions. The questionnaires were filled out by the developers. Since there might
always be relevant pieces of information that do not fit weIl in such a questionnaire,
the developers could also provide a short prose description. Most developers took
advantage of this opportunity and attached a brief summary of their system.

1.1 The Working Group

The Working Group on Linguistic Formalisms of the EAGLES initiative brings
together experts on the design and implementation of linguistic formalisms from
academia and industry in order to :

• come to a consensus on the basic features and properties for NLP formalisms
and indicate likely and needed future features;

• promote consensus with respect to the definition of de facto standards for
grammar formalisms;

• exchange information about each other's projects and, as far as compatible
with IPR, know-how and results, thus increasing the awareness of possible
synergles;

• where appropriate, concretize potential synergies by promoting cooperative
actions, thus furthering the definition of de-facto standards in the field;

• disseminate information about its activities, participate in and organize events
aimed at make these activities better known (round-tables, workshops, confer­
ences);

3

4 Introduction

• coordinate and cooperate with national and international initiatives; and

• suggest actions needed for the creation of formal and computational prerequi­
sites for the development of multilingual, reusable, grammatical resources.

The group is hosted by the DFKI in Saarbrücken.
The members of the WG are:

H. Ulrich Block - Siemens AG, Munich,
Ewan Klein - University of Edinburgh,
Jeremy Peckham - Logica Cambridge,
Steve Pulman - SRI Cambridge,
Christian Rohrer - University of Stuttgart,
Hans Uszkoreit - DFKI Saarbrücken (chair).

Many additional industrial and academic research institutions are represented
by specialists in the three Subgroups of the Working Group:

Linguistic Adequacy,
Computability and Implementation,
Industrial Requirements.

1.2 Objectives of the Workshop

The main objective of the workshop was to obtain an urgently needed overview of
existing software systems, including their development platforms, that implement
state-of-the-art grammar formalisms. It is not possible to derive such an overview
by surveying the literature. In their publications, the developers of such formalisms
usually focus on certain selected aspects of their systems that constitute novel sci­
entific approaches. The state of the implementation of a system and its robustness,
performance and overall usability can never be judged from the literature.

Another motivation was the broadly-felt necessity to exchange experience gath­
ered in implementing constraint-based grammar formalisms among the relevant de­
velopers.

Therefore the focus of this workshop was not on the linguistic, philosophical
and semantic foundations of advanced typed feature-unification formalisms. The
meeting concentrated on existing implementations.

One goal of the workshop was to obtain an overview of what is feasible and
usable today. This overview served as the starting point for the Working Group's
activities during the survey phase. It is an important part of the ongoing survey
of existing implemented linguistic formalisms. It will also provide a good basis for
characterizing the state of the art in this area.

To participants working in the . area of formalism development, the workshop
offered a unique opportunity to learn those facts about other researchers' formalisms
that cannot be found in the literature.

Introduction 5

1.3 Organization

At the workshop we made sure that the mutual review did not turn into a contest.
The evaluation and assessment of NLP systems has not yet reached astate that
permits an objective comparison of systems. The theoretical premises on which the
systems were developed and the goals of their developers differ so much that it would
be impossible to agree on a reasonable single ranking scheme. On the other hand, a
comparison of implementations along several dimensions was undertaken because it
is urgently needed by everyone working in this area. Such comparative knowledge
is also very important for the further work of EAGLES. In order to arrive at such a
synopsis, detailed questionnaires were designed and handed out to all participants.
We had a return rate in excess of 100%, due to the fact that so me participants copied
the questionnaire to describe additional systems not shown at the workshop. These
description are not considered in the current report on implemented formalisms but
they have been included in the working material of the group.

Seventeen systems were invited : fourteen from European research sites, three
from the USA. This imbalance not only reflects the focus of the EAGLES WG
but demonstrates the growing role that European sites play in today's formalisms
research. At the workshop fourteen systems were exhibited. Two sites turned down
the invitation because their new systems were not yet in astate to be demonstrated;
one American researcher was unable to attend because of a scheduling conflict.

All systems were first presented in brief talks. On the second day, six review
teams, each of three researchers, were formed. Although in theory every participant
could see every system, reviewers often focussed on the systems they were to report
on. The results of this review were reported in a plenary session. After each report
the developers of the respective systems received time for rebuttal. Most of the
questions from the audience concerned implementation details. The discussion was
very concrete and stayed on a high technical level. Although the review did not
follow measurable evaluation criteria, the findings and subjective comments were
generally accepted by the developers.

1.4 Results and Findings

For the discipline of computationallinguistics as a whole, the workshop has resulted
in this synopsis of relevant implemented formalisms. All participating developers
have provided a standardized characterization of their system by filling out a very
detailed questionnaire.

In a final session all participants contributed to a discussion of general develop­
ments and urgent problems . This discussion was very important for further WG
activities.

The following summary lists the most relevant findings of the workshop.

Clear progress: All of the systems showed strong advantages over the formalisms
that were used a decade ago.

European Role: European research in the area no longer trails behind the corre­
sponding American research.

6 Introduction

Lack of Industrial Strength: None of the systems has, as yet, the desired per­
formance behaviour for broad industrial application: some could be used in
limited applications, others have potential in this direction. The most press­
ing problem for research on formalisms is the need for adequate performance
models.

Convergence: There are strong tendencies towards convergence: e.g., most for­
malisms are based on typed feature logics, most new systems use multiple
inheritance hierarchies, and so on.

Connections to constraint logic programming: There is a elose relationship
with ongoing developments in programming language design, especially in CLP,
that needs to be explored further.

It was pointed out that the systems demonstrated represented quite a spectrum
of compromises between sophistication in linguistic description on the one hand and
efficiency in processing on the other. The range of such decisions was noted and
discussed.

In the subsequent discussion the concern was raised that improvements in the
actual formalisms such as powerful type systems and additional data types have
not brought the systems any closer to exploitation in industrial strength systems
and, moreover, that efficient processing models might even have become less likely
through such development. The strong move towards low-level processing methods
and statistical approaches would indicate the dissatisfaction with the pure feature
logic based approach.

Proponents of the current formalism research replied that the real challenge lies
in combining the sophisticated high-level description approaches with powerfullow­
level processing methods. Low level processing methods and statistical approaches
to grammar development alone have not been able so far to arrive at comprehensive,
reusable grammatical resources. They also pointed at the attempts to come up with
strategies for effectively controlling linguistic processing based on constraint-based
grammars.

Another point of discussion was the utilization of results from constraint logic
programming. A number of demonstrated systems were actually described in CLP
terms as special instances of the HöhfeldjSmolka model. The question was raised
whether one should not leave the search for more efficient processing models to
the much larger community of CLP researchers. It was replied that the linguistic
descriptions for NLP offer such a strongly structured and challenging domain to
CLP that it would be in the mutual interest of both communities to work together.
The CLP community was represented at the meeting by such eminent scientists as
Hassan Ait-Kaci, Luis Damas, Andreas Podelski, and Gert Smolka. It was decided
that the connections between CLP and NLP should be strengthened. The upcoming
workshop of the Computability and Implementation Subgroup will focus on relevant
developments in CLP and on the exchange between the two communities .

Several participants proposed to hold a follow-up meeting in a year 's time. In the
discussion i t became elear that such an event would most likely not have the same
status with respect to EAGLES work, but that the EAGLES working group might

Introduction 7

serve as co-sponsor. Some very concrete suggestions concerning the organization of
the next meeting were made. They were discussed and taken to the records.

Summing up it became obvious that the workshop not only delivered important
empirical input for the program of the EAGLES Formalisms Working Group, it also
provided the participants with a better overview of the state of the art and served
as a forum for discussing new trends, burning issues and further collaboration.

Hans Uszkoreit

8

Part 2

Systems Exhbited

9

10 Systems Exhbited

2.1 ALE: An Attribute Logic Engine

Bob Carpenter
Computational Linguistics Program, Philosophy Dept.

Carnegie Mellon University, Pittsburgh, PA 15213
Net: carp@lcl.cmu.edu Phone: (412) 268-8573 Fax: (412) 268-1440

ALE, a public domain system written in Prolog, integrates phrase structure parsing and con­
straint logic programming with typed feature structures as terms. This generalizes both the feature
structures of PATR-II and the terms of Prolog 11 to allow type inheritance and appropriateness
specifications for features and values. Grammars mayaiso interleave unification steps with logic
program goal calls (as can be done in DCGs), thus allowing parsing to be interleaved wi th other
system components. While ALE was developed to handle HPSG grammars, it can also execute
PATR-II grammars, DCG grammars, Prolog, Prolog-lI, and LOGIN programs, etc.

Grammars and logic programs are specified using a typed version of Rounds-Kasper attribute­
value logic, which includes variables and full disjunction. Programs are then compiled into low­
level Prolog instructions corresponding to the basic operations of the typed Rounds-Kapser logic.
There is a strong type discipline enforced on descriptions, allowing many errors to be detected at
compile-time.

The logic programming and parsing systems may be used independently or together. Features
of the logic programming system include negation, disjunction and cuts. It has last caU opti­
mization, but does not perform any argument indexing. On the "naive reverse" benchmark, it
performed at 1000 LIjs on a DEC 5100 running SICStus 2.1, which is roughly 7% as fast as the
SICStus interpreter and 0.7% as fast as the SICStus compiler.

The phrase structure system employs a bottom-up all-paths dynamic chart parser. A general
lexical rule component is provided, including procedural attachment and general methods for
orthographic transformations using pattern matching or Prolog. Empty categories are permitted
in the grammar. Both the phrase structure and logic programming components of the system
allow parametric macros to be defined and freely employed in descriptions. Parser performance
is similar to that of the logic programming system. In an early HPSQ grammar, where feature
structures consisted of roughly 100-200 nodes each, a 10 word sentence producing 25 completed
inactive edges parsed in roughly two seconds, using SICStus 2.1 on a DEC 5100.

Complete documentation (running to 100 pages, with examples of everything, programming
advice, and sampie grammars), is available as:

Bob Carpenter (1992) ALE User's Guide. Carnegie Mellon University Laboratory for
Computational Linguistics Technical Report . Pittsburgh.

ALE can be run in either SICStus or Quintus Prolog, and with other compatible compilers doing
first-argument indexing and last-call optimization. The system and its documentation are available
without charge for research purposes .

A future version of ALE should be available by Summer 1993 which contains a full implemen­
tation of inequations, extensionality, atoms, hooks to Prolog, general constraints on types and a
number of optimizations.

ALE 11

System Name: ALE
Designed and Implemented by: Bob Carpenter

GENERAL DESCRlPTION I

Inference Engine
wllque engine vs. single system with general modules for types, descriptions and uni-
dedicated modules fication, definite dauses, lex rules and chart parsing
non-montonic devices none
control facilities CFG: breadth-first, bottom-up definite clauses: Prolog style with

cut, negation by failure and disjunction
parser/generator? parser (Generator under development)
others empty categories and lexical rules

Data Types
arity (ftxed?) each type has fixed arity, but subtypes can extend features (records

in implementation)
cyclic structures yes-fully integrated with types

lists/ sets lists as structures, using Prolog defs as macros

functions/relations general definite dause, definable functions and relations
others

Interaction FS ~ Types
type unification yes-by hashing
type expansion

at definition/ eager for lexical entries
compile time

at run time: eager type inference for rulesjedges-every unification that changes
(delayed/partial/ types causes inference
recursive)

others (template) parametrie macros-compile time expansion to descriptions

12 Systems Exhbited

I GENERAL DESCRIPTION 11

Interfaces to
morphology general lexical rules transforming structures; template spelling

changes and hooks to Prolog
semantics/ general hooks to Prolog and definite clauses over feature logic
knowledge repr.

Implementational Issues
programming lang. Sicstus(Quintus Prologs

machine any
others (O/S, graphie) -

Applications

grammar theories? HPSG, CG (simple), attribute-value phonology (general purpose)
educational vs. public domain
commercial system

used in projects/ yes-but not by me
other systems?

Grammar coded
SlZe 11 HPSG vol. II-chapters 1-3 (ca. 150 nodes(lex entry)
language 11 English(German

Tools

Comments Modular development, so following may be extracted:

• type compiler
• unification
• description compiler
• definite clause resolution

- -- -

ALE 13

I FEATURE CONSTRAINT SOLVER I
Boolean Connecti ves

unification:

11 destructive built on Prolog backtracking/copying for chart

non-des tructi ve
disjunction:

atoms only full atomic expressibility

full (DNF) full-lexicon to DNF, chart to DNF /rules at runtime

distributed

others in definite clauses-full disjunction

negation

atoms only isa- and isnota-negation encodable in types

negated corefs yes

full
others inequations (and unappropriateness in type system)

implication

via negation

others type inference

Additional Operations
subsumption no
functional uncertainty expressible with definite clauses

others extensionality declarations-interact with inequations

Tools

Comments type system compiled out, type inference compiled and at run-
time--interacts with description solver and unifier

14 Systems Exhbited

I TYPE SYSTEM

Type Connectives
conjunction: multiple inheritance-interacts with types / appropriateness
single vs. multiple
inheritance
disjunction implicit
negation implicit
others ISA/ISNOTA

Type Definitions
via feature structures under development
via appropriateness yes-declare appropriate features and value types (allows encoding
conditions of FS constraints)
recursive? uo
others

Additional Operations

type inference/ full inference-linear (infers value types and classification by
classification appropriateness)
GLB/LUB type
subsumption

others

Restriction on Hierarchy can be specified by
(unre.tricted partial order,
bounded complete p.o ., 1. systemic /HPSG partitions compiles to -+ distributive lattice ...)

2. ISA/ISNOTA declarations compiles to -+
3. BCPO

Tools compile-time type-checking

1 Comments 11

ALEP

2.2 The ALEP Platform for Language Research and
Engineeringa

N K Simpkins (1), M Groenendijk (I) & P Meylemans (2)b

(1) P-E International
llb Boulevard Joseph Ü',

L-1840 Luxembourg
(2) Commission of the European Communities,

Bätiment Jean MOIUlet B4/120A,
L-2920 Luxembourg

15

This paper deseribes some aspeets of the Advaneed Linguistie Engineering Platform (ALEP) prototype
system (ALEP-O) [SIM-93a]. ALEP is an initiative of the Commission of the European Communities
(CEC) to provide the natural language research and engineering eommunity in Europe with a versatile
and flexible general purpose development environment.

The linguistie formalism and tools of the eurrent prototype, and development of a full more extensive and
open environment are outlined. The architecture of the platform which is intended to support eooperation,
exchange and re-use of results and resourees, eomparative evaluation and applieation prototyping, is also
deseribed.

Keywords : ALEP, Advanced Linguistic Engineering Platform
Linguistic Tools, Machine Translation
Natural Language Processing, European Initiatives

2.2.1 Introduction

Natural Language Processing (NLP) and application development projects currently lack asolid,
eommonly accepted and widely available platform for the development of large scale linguistic
resources and applications. As a consequence, researchers and system designers are forced to build
the tools and development aids they need from scratch, before undertaking the implementation
of what matters most to them; linguistic resources or applications. This situation constitutes a
major bottleneck for any serious attempt to build a strong and effective European NLP industry.

Within the Linguistic Research & Engineering (LRE) programme the CEC has invested in a
generic, formal and computational environment, which can be put at the disposal of all Commu­
nity and national R&D projects in relevant areas. This environment is called ALEP (Advanced
Linguistic Engineering Platform) .

In making widely available the ALEP system, the CEC aims to promote cooperation between
different research cent res and to progress towards portability and re-use of research results.

A typical user of the ALEP environment will be either a skilIed researcher in computational
linguisticB or a team of researchers and application designers, who will be provided with a software
environment enabling them to produce linguistic descriptions of different languages, for a number
of different NLP application domains.

2.2.2 Development of ALEP

The development and distribution of ALEP is planned in a number of stages:

• Preparation and design (1991-1992)

• A prototyping stage (1992)

• A development stage (1992-1994)

• Phase-in stage (1994-1995)

awithin the CEC's Linguistic Research and Engineering (LRE) Programme [CEC-9I)
bThe authors would like to thank Roberto Cencioni and Nino Varile ofthe CEC for their invaluable contributions.

16 Systems Exhbited

Several research centres and universities, such as SRI-CRC, UMIST, lAI, CAP GEMINI, SNI,
were involved in the preparatory stage ([ALS-91), [IAI-91), [DEV-9I]). The development of the
final platform has been contracted to BIM, with subcontractors SEMA Group, SRI-CRC and
lAI. P-E International have been charged with the development of a prototype system as weil as
maintenance and support services for the final system.

2.2.3 Formalism

The basic ALEP formalisms were designed by SRI International Cambridge within the ET-6/I rule
formalism and virtual machine design study [ALS-9I]. Several different formalisms are provided
for:

• analysis of word form variation (two-level rules)

• syntactic and semantic analysis/synthesis (typed unification grammar)

• transfer-based MT (general transfer rule formalism)

The central analysis and synthesis formalism has a context-free skeleton but does not in­
tend to embody any particular linguistic theory. The formalism was designed to be conservative,
'mainstream', efficient, expressive, declarative, reversible and monotonie. This typed unification
grammar has a three level architecture:

• Level 1: simple 'PATR like' terms, constraints applied directly by unification.

• Level 2: notation al enrichments which can be compiled into constructs of level 1.

• Level 3: notational enrichments which cannot be compiled into constructs of level land
which require additional machinery over and above unification.

The prototype ALEP-O implements a large part of the ET-6/I specification with a few re­
strictions and differences:

• The 'concrete' syntax is different (elose to that of the 1/1 terms described in ET-6/1, p220).

• The user language (Level 2) is incomplete in not allowing some notations to be used (un­
ordered elements) or not allowing their use at specific points (eg disjunction over sharing).
Tuples and specifiers are also not supported . Most of these restrictions can be worked around.
No preference mechanism is yet provided.

• The type system has been altered to impose a stricter typing. Attributes are associated with
either a basic type (list, atom, boolean expression or term) or with the name of another
user defined type, itself composed of typed attributes. All types are of fixed arity. The type
system also allows for different attributes to have the same name when within different types
and allows for simple compilable type hierarchies and inheritance.

The algorithms which perform analysis, refinement, transfer and synthesis have been isolated
from the main virtual machine component . This allows selection of an appropriate algorithm for a
specific grammar when the system is invoked , and for third party contribution of new algorithms.

The core of the formalism (Level 1) has a conservative design for potential efficiency. As such
this is under-expressive for some users. The third level of the formalism allows for unprescribed
extension with 'external' constraint systems which operate in parallel, after unification (Figure
2.1) [SIM-93b].

The ALEP-O algorithms now include an experimental set of calls to such an extern al system.
An illustrative sampie negation solver is supplied with the system.

ALEP

Core Operation
(analysis,refinement,generation, transfer)

~------------- --------------
, Unificatloo

Features 1 Constraints 1

I
Features 2 Constraints 2

~
Features 3

-------------- -- -- ----------'

Core (VM) application of
level 1 & 2 constraints

External Constraint Sol ver

~----------------------
' Extemal rewrite algorithm

Constraints 3

- _I

Extemal (partial) evaluation
of level 3 constraints

Figure 2.1 : Interaction of core unification & extern al constraint solvers

-----------------------1
1 User Interfaces 1

Corrunand MOTIFIXII 1 ~
I int~qreter graphical user I

user mterface mterface 1

..
Tools

Online documentation
info. tool for browsin

1 1

--~===========[===========--I
Linguistic object

Pretty-printer

XMFED graphical
feature structure viewer Virtual Machine: 1

enter/read sentences -> segment into textunit -> morphology (split) ->
litt to LS -> analyse -> [refine] -> transfer -> synthesise -> [refine] ->

lower to textunit -> morphology Goin) -> unsegment to sentence

Tracing and debug
Pretty printing

Macro pre­
processor (APP)

Customized editor
(Epoch Mode)

......-___ --1_-_-_-_----,- - - - - - - - - - - -J -----1 I TH Simulation

User Language I - 1

Compiler Constraint application 1

Constraint extensions

Extemal Constraint Sol vers:

negation

Unification constraints

Operations library (algorithms):
basic analysis, packed analysis,

1 refinement, transfer, synthesis,

I ~~~:
1 ______ -----------------------

Figure 2.2: Outline of ALEP-O environment modules

17

18

E
n
v

A
L

r

E
0

P
n
m
e

I n
t

[
A

P
P
I L
i a
c y
a e
t r

0

n

U
n

x

1

I

~{--'-~ «oJo)

'-- "{~:I~~I]

/ t
'\..

-I
l

Task

Unix

I....

I--

~

Systems Exhbited

Presentation Layer

grarrunar, lexicon,
linguistic processing,
task & object
managemenlloolboxes

Control Layer

routing & monitoring

Task & Object Layer

task, linguistic & text­
handling objects

Storage Layer

granunar, configuration
& docurnent files

Figure 2 .3: Outline of fuH ALEP Environment

ALEP 19

2.2.4 Environment

The ALEP-O prototype software is intended for small to medium scale lingware development,
debugging and testing. It provides a formalism and tools outlined in Figure 2.2 .

The most important application is the Virtual Machine (VM) with either graphical or
command-line oriented user interface . The VM is implemented using Quintus Prolog Version
3.1.1.

Xalep ([GRO-93b]) is an experimental, simple to use, graphical user interface to the VM.
It consists of a number of 'toolboxes' (analysis, transfer, synthesis, text-, object- and lingware­
handling). This is implemented in C using the OSF /Motif widget set and Quintus' Prolog Foreign
Language Interface. Xalep can run on most displays with X-Windows version 11 and makes direct
calls to the Virtual Machine.

ALEP-O is not intended as open software as designed in ET-6/2 [IAI-9I]. The software ap­
plications are monolithical and only make use of other applications, such as the graphical feature
viewer, via simple Unix calls and ICCCM based communication. Integration of other applications
requires source code changes, although the VM allows for user contributed algorithms as separate
mod ules and extensions via the H ooks and External Opemtions Library mechanisms [SIM-93b].

ALEP-O is distributed with the following additional tools:

• Xmlnfo: a graphical tool for browsing hierarchically structured on line documentation . All
ALEP-O documentation can be used as an on line reference manual for ALEP-O users.

• Xmfed: a graphical feature viewer for viewing large (linguistic) structures, integrated with
Xalep and also with the VM tracer to provide graphical feedback du ring tracing of linguistic
operations [GRO-93a] .

• App: a customized linguistic macro preprocessor.

• alepemacs: a grammar editing mode (elisp) for the GNU emacs editor with dynamic syntax
checking and string completion .

2.2.5 Further Development

As outlined in the development plan, ALEP-O is only the small-scale prototype of the fuH ALEP
platform [MEY -93]. The first version of the full environment has been designed and implemented
by BIM [BIM-92], [BIM-93]. This version, ALEP-1, is to undergo assessment before a second
development cycle which will end in 1994. The environment of ALEP-1 (Figure 2.3) is formalism
independent and open to customization and extension.

The default formalism available within this system is closely based on the ET-6 .1 design,
extended inline with developments under ALEP-O. The ALEP-1 formalisms are largely compat­
ible with that of ALEP-O such that lingware developed under the prototype can be reused with
ALEP-l at low cost [THE-93].

20 Systems Exhbited

Bibliography

[ALS-91]

[BIM-92]

[BIM-93]

[CEC-91]

[DEV-91]

Alshawi H, Arnold D J, Backofen R, Carter D M, Lindop J, Netter K, Pulman S G,
Tsujii J & Uszkoreit H, Eurotro ET6/1: Rule Formalism and Virtual Machine Design
Study (Final Report) , CEC 1991.

BIM, The Functional Specijications and High-Level Design of ALEP 1.0, CEC, 1992.

BIM, ALEP Distributed Architecture; Integroting User-Interface Tools and Applica­
tions in ALEP, Version l.0, CEC, 1993.

Commission of the European Communities, Council Decüion 0/7 June 1991 adopting a
speci/ic programme 0/ research and technological dellelopment in the /ield 0/ telematic systems
in areas 0/ general interest (1990-1994) - (91j959jEEC), Official Journal of the European
Communities, No. 1-192, July 1991, ppI8-28 .

Devillers C, Burnard L D, Hockey S M & Gibeaux G, Eurotra-6/3 Text Handling
Design Study (Final Report), CEC, 1991.

[GRO-93a] Groenendijk M, P-E International, XMFED User Guide, CEC, 1993.

[GRO-93b] Groenendijk M, P-E International, ALEP-O Graphical User Interface, CEC, 1993.

[IAI-91] lAI, CAP Gemini & SNI, ET6/2 Software Environment Study Vol2 Outline Design
Study (Final Report) , CEC, 1991.

[MEY-93] Meylemans P & Simpkins N, Towards a Portable Platform for Language Research and
Engineering, Thirteenth International Conference on Artificial Intelligence, Expert
Systems and Natural Language, Volume 3, EC2, 1993, ppI61-170.

[SIM-93a] Simpkins N K & Cruickshank G, P-E International, ALEP-O Virtual Machine, CEC,
1993.

[SIM-93b] Simpkins N K & Cruickshank G, P-E International, ALEP-O Virtual Machine Exten­
sions, CEC, 1993.

[THE-93] Theofilidis A, ET-9/1 Lingware Report Phase 2, lAI, 1993.

(questionnaire not submitted)

CAT2

2.3 CAT2

Randall Sharp
lAI

Martin-Luther-Straße 14
D-6600 Saarbrücken 3

Germany

2.3.1 Overview of the CAT2 Formalism

21

The CAT2 formalism is used to describe (1) the grammar of a language defining the set of well­
formed linguistic structures that belong to the language, and (2) a mapping relation between the
linguistic structures of one language and those of another. To this end, the formalism consists
of descriptive mechanisms for generating the linguistic structures and for translating from one
structure to another . The former are called Generators, the latter Translators. (This terminology
is taken from the original <C,A>,T specifications.)

Generators

Generators describe linguistic structures in terms of trees . We will assurne here an intuitive
understanding of the not ion of a tree, i.e. that of a root (mother) node dominating zero or more
subtrees (daughters) . Each daughter has a unique mother node, except the topmost node, which
has no mother node . Furthermore, we will assurne that the daughters under a root are ordered, so
we can speak of a left branch, right branch, middle branch, etc. Finally, a root with no daughters
is a terminal node, a leaf in the tree.

An example of a typical tree structure is the following :

S

~
VP NP

Tom

~
V

kissed
NP

Sue

The tree above shows only the syntactic categories, but this is only one piece of linguistic infor­
mation . Other properties, such as person, number, gender, tense, and many others , would be
required to fully describe the actual properties pertaining to a given construction. As is now
standard in modern computationallinguistic theories these properties are described as features,
i.e. attribute-value pairs; each node in the tree contains a set of such features, called a feature
bundle. For example, the subject NP node above might be illustrated by the following feature
bundle :

{ cat ::: np
ortho = 'Tom'
lex ::: tom
agr = { per ::: 3

num ,= sing
gen ::: masc }

case = nom }

Using trees whose nodes are feature bundles as representations of linguistic structure, we can
now define them in the CAT2 formalism .

We define, first, a feature bundle FB as:

22

(1) FB = {F+}
where F+ is a list of one or more features F, enclosed in curly brackets.
A feature F is defined as:
(2) F == <attribute> = <value>

Systems Exhbited

where <attribute> is some atomic constant, a label, and <value> is either an atomic constant
or a feature bundle. The former are called simple features, e.g. cat, per, and case above, and
the latter complex features, e.g. agr .

An example of the above NP feature bundle would be written in CAT2 notation as:
{cat=np,ortho='Tom',lex=tom,agr={per=3,num=sing,gen=masc},case=nom}

Given this introduction to tree and feature structures, we now define a generator 9 for some
language as a tuple:

(3) 9 == < B, :F >
where B is a non-empty set of constructors, called b-rules ("building rules"), and :F is a possi­

bly empty set of well-formedness constraints, called f-rules ("feature rules") on the constructions
produced by B.

B-Rules The constructors, or b-rules, define partial tree structures, i.e . mother nodes and their
immediate daughters. A constructor C, C E B, is defined as:

(4) C == <rulename> = ROOT.BODY.
where <rulename> is a rule identifier, ROOT describes the root of the tree, and BODY is a list

of the immediate daughters under the root. In the case of a terminal node, the body is the empty
list; such constructors, called atoms, define extensionally the lexicon of the generator, i.e. those
constituents which cannot be further decomposed into subconstituents. By restricting the tree
description to the immediate constituents, we have the equivalent of a context-free grammar.
That is, the structure shown in (a) corresponds to the context-free rewrite rule in (b), which is
written in CAT2 notation as (c):

a. 8 b. 8 --t NP VP c. {cat=s}. [{cat=np}, {cat=vp}].

~
NP VP

An example of an atom is given below for the verb kissed :
kiss1 = {cat=v,ortho=kissed,lex=kiss,tense=past}. [].

A more complete verb entry would include things such as argument structure, Aktionsart,
aspect, inflection, possibly phonological information if relevant, etc. We will look at some of these
in some detail in 82 .

F-Rules F-rules operate on the partial trees generated by b-rules and are used to assign default
feature values and enforce well-formedness of tree and feature structures. They have a form similar
to b-rules, with the exception that they are not limited to describing just immediate daughters -
they can map onto an arbitrarily deep tree structure.

F -rules come in three types: default, filter and strict . Adefault f-rule assigns feature values
to a structure unless it already has different values, in which case the default rule does not apply.
A filter f-rule also tries to assign values, and if it succeeds, the structure is deemed ill-formed and
rejected from further analysis . The strict f-rule requires a structure to have or accept the given
features; if the requirement cannot be fulfilled, the structure is rejected .

Default f-rules are most often used to assign features to the lexicon. For example , most English
verbs cannot be treated as auxiliaries, i.e. they do not front in questions, they do not contract
with not, etc. Rather than stating this fact in every verb entry, we can write the following default
rule on ce to apply to all verbs:

default_aux = {cat=v,aux=no}. [] .

CAT2 23

The auxiliaries have and be and the modals would explicitly be marked with the feature
{aux=yes} in the lexicon and therefore not be affected by the rule.

F-rules are used quite extensively in practice, since the set of phrase structure rules, i.e. b­
rules, is rat her minimal, given the implementation of X-bar theory as outlined in S2. Most
well-formedness conditions, aside from pure structural well-formedness, are in fact controlled by
way of f-rules.

Rule Application CAT2 belongs to the family of unification-based formalisms such as PATR
(Shieber 1984). This means the basic operation is that of unification (Shieber 1986), both of tree
and feature structures. Assurne we have the feature bundle description in (a) and this is to be
unified with the feature bundle in (b):

a. {wh=no, agr={per=3 ,num=sing}}
b. {cat=n,ortho='Sue',agr={per=3,gen=fem},wh=X}
c. {cat=n,ortho='Sue' ,agr={per=3.gen=fem.num=sing},wh=no}.
d. {cat=n,agr={per=3.num=plu}}

The result of unification is the feature bundle in (c), where the variable X has been unified
with the value no, and the value of agr is extended to include {num=sing} . (a) cannot unify with
(d) because of confticting values for num.

The not ion of unification has been upgraded to that of constraint satisfaction, in which
constraints on feature values are evaluated only when there is sufficient data to positively establish
a value. The feature constraints provided in CAT2 are itemized below:

a.
b.
c.

positive constraint
negative constraint
disjunctive constraint

{case=nom}
{case-=gen}
{case=(dat; acc)}

The positive constraint assigns a value to a feature, or confirms its value if it is already present in
the feature bundle under investigation. The negative constraint states wh at a given value is not
permitted to unify with, and the disjunctive constraint states what values the given feature may
unify with . In the process of unification, a feature may happen to not be assigned a positive value,
in which case any negative or disjunctive constraints will be retained until a value is assigned by
some other rule application, at which time the constraint(s) can be re-evaluated . Failure of the
constraint to be satisfied at any time will cause the structure under evaluation to be rejected.
Backtracking will take pi ace in this case to some previous choice point, if any. In the current
implementation of CAT2, all choice points will be exhaustively evaluated so that all possible
paths in the grammar and lexicon are followed.

A further notational extension provides for optionality and alternation of constituent struc­
tures. We can define the contents of the body of a rule as a regular expression EXPR whose
Backus-Naur Form notation is shown below:

a.
b.
c.
d.
e.
f.

EXPR := FB
EXPR := -EXPR
EXPR := *EXPR
EXPR := +EXPR
EXPR := (EXPR ; EXPR)
EXPR := (EXPR , EXPR)

(basic feature bundle description)
(optionali ty)
(zero or more expansions of EXPR)
(one or more expansions of EXPR)
(alternation of expressions)
(sequence of express ions)

A somewhat artificial example is shown below for a noun phrase containing an optional de­
terminer, zero or more adjective phrases, at least one noun, and optionally followed by either a
prepositional phrase or a non-infinitive sentential phrase:

{cat=np}. [-{cat=det}, *{cat=ap}, +{cat=n}, - ({cat=pp};{cat=s,tense-=infin})].
The application off-rules to a structure is carried out in the order they occur in the grammar.

This ordered relation enables default rules to assign features to a structure, which subsequent filter
andjor strict rules can verify. This adds a procedural element to an otherwise fully declarative
grammar formalism, meaning the linguist must be cognizant of the correct order in which rules are

24 Systems Exhbited

to be written. At the same time, the linguist has control over processing, and can, for example,
order filter rules earlier in order to reject invalid structures before other rules are unnecessarily
applied.

As to the parsing strategy, CAT2 employs a bottom-up chart parser with one symbollookahead.
It essentially implements the Earley algorithm, where the completion step has been generalized to
include the scanning of terminal constituents (Kilbury 1985) .

The reverse of parsing, synthesis, is carried out by the process of translation, discussed next.

Translators

Translators map one structure onto another by a recursive process of decomposition, transfer
and recomposition. For example, a tree structure created by the parser is transformed into a
new structure with possibly differing feature structures. The new structure may refiect another
aspect of the language, e.g. a semantic or pragmatic representation, or it may be a representation
appropriate to a target language. Schematically, we have the following situation where a source
text T. is translated to a target text T t by transforming it through aseries of intermediate
structures Li, where each Li is defined by a generator Gi:

IT2 2T3 n- 2T n- I n-ITn
.!. t .!. t

T. ==> LI ==> L2 ==> ==> Ln- I ==> Ln ==> TI
t t t t

GI G2 Gn- I Gn

The parser uses GI to generate LI from T., and aseries of translators iTi+I transform this into
L2, ... ,Ln. A simple yield function produces the target string TI, selecting out the orthographic
features in Ln .

A translator T is defined by the tuple:
(5) T == < TB, TF >
where TB is a non-empty set of structural translation rules ("t-rules"), and TF is a possibly

empty set of feature translation rules ("tf-rules").
Syntactically, the t-rule has the form:
(6) <rulename> = ROOT.BODY ::} ROOT.BODY.
where the lefthand side of the "::}" symbol is a partial description of a source structure and

the righthand side is a partial description of a target object to be constructed. Unlike generator
b-rules, the body of either side of the t-rule may specify a tree to an arbitrary depth of detail.
ConsequentlYi non-atoms may be mapped to atoms and vice versa. Semantically, the t-rule states:
if the lefthand side unifies with the source object, then a target object unifying with the righthand
side is created, provided that such object is licensed by the generator for the target level. An
object is licensed in this sense if at least one rule in the generator unifies with the object, and each
of the object's daughters unifies with at least one rule. Again, unification is the basic operation,
including negation and disjunctionas constraints.

The simpl~t t-rule expresses the relation holding between two atomic objects, as found, for
example, in a French-to-English translator:

atomic_t_rule = {lex=aller}. [] => {lex=go}. [].
More complex t-rules are defined recursively o'ler subobjects, permitting a compositional break­

down of a source object and construction of a target object, controlled by explicitly marking the
subobjects to be recursively translated . For example, the following t-rule relates a constituent
structure of a sentence to a lowered-governor dependency structure, in which the subject NP, the
governing verb, and any following constituents are selected on the lefthand side for recursive trans­
lation, and repositioned in the target object such that (the translation of) the verb appears first
under the root node, followed by (the translations of) the subject and the remaining constituents:

t = {cat=s}.[l:{cat=np}, {cat=vp}. [2:{cat=v}, *3]] => _. [2, 1, 3]

CAT2 25

Besides constituent reordering, the VP node disappears, since it is unmarked on the lefthand
side, illustrating how nodes are "deleted" from a structurej conversely, nodes are inserted into a
structure by explicitly describing them on the righthand side of the t-rule. In synthesis we would
have the reverse of the above rule, inserting a VP node in the target structure.

Translator f-rules are similar to generator f-rules, in that they do not affect structure, but
rather affect the feature conte nt of objects . The test for applicability is unification of the entire
lefthand side of the rule with the source object. If applicable, the righthand side is unified with
the target objectj success or failure of unification has the same effect as for generator f-rules, and
depends on whether the f-rule is typed default, strict, or filter . As an example, the following strict
translator f-rule copies over the complex agreement feature:

tf = {agr=A}.[*] => {agr=A}.[*].

(questionnaire not submitted)

26 Systems Exhbited

2.4 Constraint Categorial Grammars

Luis Damas, Nelma Moreira
Universidade do Porto, Rua do Campo Alegre 823, 4000 Porto, Portugal

Giovanni B. Varile
CEC , 2920 Luxembourg, Luxembourg

2.4.1 Introduction

Unification based formalisms show a elear inability to deal in a natural way with phenomena
such as the semantics of coordination. As a matter of fact although unification can be used to
implement a weak form of ß-reduction it seems that this kind of phenomena is better handled by
using some form of .A-calculus. One possibilty, wh ich is at the heart of .A-prolog, is to extend both
the notion of term, to inelude .A-abstraction and application, and the definition of unification to
deal with .A-terms. For this extension to be technically sound it is neccessary to require .A-terms
to be well typed.

On the other hand, it turns out that if instead of using terms we use complex feature de­
scriptions (where conjunction replaces unification), we still can follow the same plan to produce a
higher-order calculus of feature descriptions .

CCLG is a simple formalism, based on categorial grammars, designed to test the practical
feasibility of such an approach .

The main reason for selecting a categorial framework for this experiment was that, due to the
simplicity of the categorial framework, it allowed us to concentrate on the constraints calculus
itself. Another reason was the elose historical relationship between categorial grammars and
semantic formalisms incorporating .A-abstraction.

CCLG extends categorial grammar by associating not only a category but also a higher-order
feature description with each well-formed part of speech. The type of these feature descriptions
are determined by the associated category. Note also that a derivation leading to an unsatisfiable
feature description is illegal.

When compared with other formalisms one of the main distinguishing features of CCLG is
the fact that it computes partial descriptions of feature structures and not the feature structures
themselves.

In the next sections we briefly describe this formalism.

2.4.2 Feature Description Calculus

The feature description calculus A~v at the heart of CCLG is inspired both on the .A-calculus
and on Feature Logics. For technical reasons, namely that we want to insure the existence of
normal forms, it is a typed calculus. Our base types are bool for truth values and fs for feature
structures. Our types are described by

T : := bool I fs ~ T I T ~ T'

Note that w~ exelude fs as the type of any feature description. This retlects our commitment to
compute partial descriptions of feature structures rather than feature structures.

Now assurne we are given a set of atoms a, b, ... , a set of feature symbols /, g, .. . , a set of
variables for feature structure x, y, . . . , and, for each type T, a set of variables of type T

X T , YT, Then the set of feature descriptions of type T is described by

e T

ebool
efS-+T
eT'-tT

true I false I XT leT 1\ eT I eT VeT l,eT I efS-+T x ,P I eT'-+TeT,
t.p=s
.Ax.eT
.AXT' .eT

where sand t denote either atoms or feature structure variables, and p is a, possibly empty,
sequence of feature symbols denoting a path in a feature structure.

CC(L)G 27

Note the languages thus defined includes both feature logics and a typed A calculus. We import
from both theories such not ions as substitution, free and bounded occurrences of variables, a and
ß reductions and normal form.

To define a semantics for the calculus of feature descriptions we adopt the standard model nT
of rational trees for feature stmctures and we associate with each type T a semantic domain D r

as follows
{O,l}

:::: nT --+ Dr

D r , --+ D r

From this point on a semantics for feature descriptions is defined in the same way as for feature
logics and the typed A-calculus by noting that the standard boolean operations can be, extended
to all the semantic domains involved in a component-wise fashion, e.g.

(Ax.e) V (AX .e') =deJ (Ax.e V e').

Similarly, for each type T, true and false denote the obvious elements of V r .

An important property of the feature description calculus is the existence of normal form under
ß-reduction which is a simple consequence of well-typeness . Another important property is that
for any closed feature description of type T we can decide if it is equivalent to false . This last
property is essentially an extention of the the satisfiability problem for a complete axiomatization
of feature logics. For this reason we will say that a feature description of type T is satisfiable iff
its semantics is not that of false.

Our implementation of the feature description calculus is based on the reduction to normal
form followed by the techniques used in CLG for resolving complex feature constraints .

2.4.3 Categorial Grammar

We use a basic (rigid) categorial grammar, consisting of a set of categories, a lexicon which assigns
categories to words and a calculus which determines the set of admissible category combinations.
Given a set of basic categories Cata we define recursively the set of categories Cat by: the elements
of Cata are categories; if A and Bare categories then AlB and A\B are categories. The two
combination mies are left-application (app \) and right-application (app I):

(appl) AI B + B --+ A

(app\) B + A\B --+ A

The meaning of the resulting expression (A) is the application of the meaning of the functor
expression (AIBor A \B) to that of the argument expression (B).

Some unary (lexical) mies (lifting, division, etc) were added to provide a flexible GG which can
cope with discontinuity and other linguistic phenomena. Semantically these mies allow functional
abstract ion over displaced or missing elements.

2.4.4 Constraint Categorial Grammar

A Constraint Categorial Grammar is a tuple (Gata, Y, Lexicon, Rules) where

1. Gata is a set of base categories

2. Y is a map which associates with each category G a type Y(G) and satisfies

Y(AI B) :::: Y(A\B) :::: Y(B) --+ Y(A)

3. Lexicon is a set of tripies (w, A, c), where w is a word, A a category and c IS a feature
description of type Y(A)

28 Systems Exhbited

4 . Rules is the set of inference rules to combine pairs A - C of syntactic categories and semantic
representation .

The inference rules used in the current gramm ars are:

AlB - cf B - cb
(app I) A () if cf Cb is satisfiable

- CfCb

(\)
B-Cb B\A-Cf ' f . . fi bl

app A () 1 cf Cb 1S satls a e
- CfCb

2.4.5 A sampie grammar

In this section we give a very small fragment of an English grammar. The let constructor alJows
the use of macros in the writting of the lexicon. The inference rules are build in the grammar
processor. Note also that although the feature descriptions used in the grammar are untyped a
type inference algorithm is used to infer types for each expression.

Base_Categories % Define the set of base categories
s = fs -> bool, % and their types
vi = fs -> fs -> bool,
np = s/vi,
vt = vi/np,
n = fs -> bool,
det = np/n,
xnp = (s/np)/(vi/np),
xthat=(n\s)\np;

transformation % define a type raising rule
np = (s/np)/(vi/np): \S \Vt \C. S (Vt C);

%1.1.%1.%%1. some useful abreviations

let 3RD..5G \X . X. pers=p3 St; X. nb=sg;

let NOL3RD..5G = \X. X.pers\=p3 I X.nb\=sg;

let PN(W) = \P.\s. s.quant=exists~ne St; s.arg.reln=naming St;

s. arg. arg l=W St; 3RD..5G (s. arg) i; Ps. arg s. pred ;

let CN(W,AGR) \5 . s.reln=W i; AGR 5;

let DET(Q,AGR) = \N \P \s . s . quant=Q St; AGR s.arg t

N s.arg t P s.arg s.pred;

let VI(W,AGR) \x\p p.reln=W t p.argl=x t AGR x;

let VT(W,AGR) = \C . \x\p C (\y \q. q.reln =W t q.arg2=y t q . argl=x) p;

%%%'l.%'l.'l.%%'l.'l.'l.'l.'l. lexicon

lex a, det, DET(exists~ne , 3RD..5G);

lex book, n, CH (book , 3RD..5G) ;

lex john, np, PN(john) ;
lex mary . np. PH(mary);

CC(L)G 29

lex died, vi, VI(die,3RD..'>G);

lex loves, vt, VT (love, 3RD..'>G) ;

'l. coordination

lex and, s\(s/s), \S1\52\s. s.type=coord ~ S1 s.arg1 ~ S2 s.arg2;

lex and, np\«vt\vi)/np),
\NP1\NP2\VT. \subj\s. s.type=coord ~
VT NP1 subj s.arg1 t VT NP2 subj s.arg2;

lex and, vi\(vi/vi) , \V1\V2. \subj.\s.
s.type=coord t V1 subj s.arg1 t V2 subj s.arg2;

2.4.6 Conclusions

The current CCLG implement at ion shows the practical feasibilty of using higher order feature
structure descriptions as semantic representations. This reflects the fact that the complexity of
the satisfiability problem for higher order feature descriptions is essentially the same as for feature
logics. _

We should also point out that the good performance of the system results in part from its
hybrid nature where a categorial grammar with atomic base categories is used to guide parsing.

System Name:
Designed and Implemented by:

CC(L)G Categorial Constraint Grammar
L. Damas

GENERAL DESCRIPTION I

Inference Engine
unique engine vs. Categorial grammar parser and Constraint sol ver
dedicated modules
non-montonic devices

control facilities

parser/generator? parser only

others

Data Types

arity (fixed?) Feature structure constraints

cyclic structures yes

lists/sets
functions/ relations
others high order feature structure descriptions

lnteraction PS {:::::::} Types
type unification

type expansion

at definition/ compile time Hp"
compile time

at run time:
(deI ayed/ partial/
recursive)

others (templates .. .)

CC(L)G 31

I TYPE SYSTEM

Type Connectives

conjW1ction:
single vs . multiple
inheritance
disjW1ction

negation

others

Type Definitions

via feature structW'es

via appropriateness
conditions

recursive?

others

Additional Operations

type inference/
classification

GLB/LUB type
subsumption

others

Restriction on Hierarchy
(unrestricted partial o rder.
bounded complete p.o .•
distributive lattice .. .)

Tools

11 Comments

32 Systems Exhbited

2.5 CLARE (includes Core Language Engine)

SRI International, Cambridge

Introduction

The Core Language Engine is a general purpose, wide coverage, unification-based
system for the analysis and generation of sentences. The following slides give a
high level overview of the architecture of the system and some of the applications
it has been used for. These applications include database query, transfer-based
translation, and spoken language understanding.

A more detailed description of the CLE, including a full specification of the formal­
ism and descriptions of the associated processing algorithms can be found in the
book edited by Hiy~n Alshawi: 'The Core Language Engine ') MIT Press, 1992.

Stephen Pulman,

July 1992.

THE CORE LANGUAGE ENGINE

SRI International
Cambridge Computer Science

Research Centre

* Language research at SRI-CCSRC
* Design themes
* How the themes are realised
* Performance evaluation

Key to same acronyms:

CLE:
CLARE:

BCI:

VEX:
QLF:
RQLF:
TRL:
SLT :
SRl:

Core Language Engine
CLE with reasoning and
cooperative response
Bilingual Conversation
Interpreter
Vocabulary EXpander
Quasi Logical Form
Resol ved QLF
Target reasoning language
Spaken Language Translation
SRl

BACKGROUND

* SRI International: 3,000 people vorld­
vide, scientific ~ other consultancy

* Cambridge laboratory founded 1986.
Now 5 natural language researchers,
(4 hardware/software verification):
NL: Stephen Pulman, David Carter ,
Hanny Rayner, lan Lewin, Dick Crouch .

* Earlier contributors : Bob Moore,
Fernando Pereira, Doug Horan, Jan
van Eijck, Hiyan Alshawi, Arnold Smith

CLARE/CLE

DESIGN THEMES

1 Modular staged architecture

2 Well-defined intermediate
representatioIIß

3 Local ambiguity packing

4 Declarative rules applied by
(Prolog) unification

5 Compilation of rules and entries

6 Balance of user intervention and
system preferences in making choices

7 Customization for applications

(2) INTERMEDIATE REPRESENTATIONS

* These are well-defined and explicit
at all levels. Some examples:

Target Reasoning Language (TRL).
First order logic augmented
with limited lambda abstract ion,
sets, cardinality, time
relations ... to support reasoning.

Quasi Logical Form (QLF).
Limit of compositionality
TRL constructs augmented with
generalized quantifiers; vague
terms and formulas; category

inforlllation.

Mediating between QLF and TRL:
Resolved Quasi Logical Form (RQLF).

QLF with more variables
instantiated to allow
translation to TRL.
conversion to TRL is purely
syntactic k loses information.

(1) MODULAR STAGED ARCHITECTURE

Advantages:

* Easier system development by a team

* Modules can be evaluated and
debugged separately

* Modules can be reused in different
combinations

Pitfalls to be avoided:

* Arbitrary boundaries between
modules

* Risk of inefficiency, e . g . during
parsing

(3) LOCAL AMBIGUITY PACKING

* Allows staged architecture to be
efficient. Used up to semantic
analysis stage.

"Wren designed a library in Cambridge . "

<NP> <-------------VP-------------->
<-------VP-------> <-- - -PP---->
<---V--> <---------NP--------->

* No full parse trees are produced
(except for inspection).

* Can support numerical weighting
(iterative deepening, A* search).

* Avoids the need for true
disjunction in rules.

* Lattice also used in tokenization
(typos, slashes, hyphens; speech)

33

34
user

Systems Exhbited
user

Analysis T Synthesis
.------------------------------- -------------------------------. Correction, i-------------------------------·------------------------------

. . : Acquisition :
ökemzatwn (text speech) : ;-------------------;
----------+---~'~--~ 1 1 1

. ; u~erlvExl i SegmentatlOn -···.···f···· l
1 i etc 1 · . . · · . . I ~ ____ • _____________ ... Morphology

Parsing

Semantic Analysis

Sortal Filtering

___ r:.q._T!:~~!!!I:f:_~!!_~~r~ction
Transfer (BCI)

Lexical Realization

Head-driven Synthesis

.--- ----------------- -----------------------.----------.--------,

QLF 1 Transfer ~LF

. .
_ .. ------.---------._------------ -------._-_.--- -. __ ._-------.... -

Interpretation inmnnmmnnuumurmmmmnmn,mn

Reference Resolution

Description (a fl the moment)
:- --------- -- ---------------.--~I--- .. --------------------------.

ome Term "Dereferencing'
I

ranking+interdction

Quantifier Scoping rQ~-~~üfi~~ -S-~~-p~-R~~~~~Yi ·----· .. · .. · .. ···· .. · .. · .. f·· .. · · .. · .. ···· .. ···
RQLF RQLF

. ranking

First Order Translation ase-based Transformatio
I I

TRL (linguistic) Reasoning (CLARE) TRL (linguistic) ______ ______________ ___________ • _____ .. _________________ 0-- ____ -- .-------------.--------.-._.--------------.- ___________________ • _____________________________ _

Domain model translation Domain model translation
I i

TRL (database)
~

TRL (database)

1
Database (or other back end)

CLARE/CLE

(4) DECLARATIVE RULES AND UNIFICATION

• Reversability; monotonicity;
debuggability; efficiency (Prolog) .

• Major category symbols, complex
syntactic and semantic features

• In semantics, QLFs built up like
feature values

• Rule schemas: verb complement
list in VP rule instantiated from
verb entry

• Limited disjunction for e.g.
agreement (compiled away)

• All rules are declarative:
segmentation, morphology, syntax,
semantics, sorts, reference,
scoping, domain translation ...

(6) INTERACTION AND PREFERENCES

• Wide coverage -> many analyses:
system cannot reliably choose
user cannot cope with too much
and may not know linguistics
system/user balance changes
as technology improves

• Numerical preferences on :
word senses (from corpus)
rule choices (NOT rules)
word occurences (acoustic)
syntactic/semantic properties
scopes, references, etc

• System ORDERS readings numerically
then ASKS user : paraphrases,
bracketings. User can specify
constraints (at QLF level) .

• This happens after semantic
analysis, reference resolution,
(scoping), transfer.

(5) COMPILATION OF RULES AND ENTRIES

• USERS need readability,
flexibility, irredundancy.
SYSTEM needs explicitness and
fixed formats .

• Kacros expanded out first .
(Kost of the lexicon is effectively
lIacro calls) .

• feature=value compiles to
positional notation. Defaults used .

• Disjunction -> boolean vectors.

• Rules are compiled in same way for
analysis t generation, but indexed
differently .

• Sortal class lists compile to
partial hierarchies.

INTERACTION IN ACTION

» I met the man in the bank.

6 well-sorted semantic analyses.

Complete sentence with bracketing:

"{r} met {{the man} in {the bank}} . "

Word senses (unordered):

lIeet : encounter (rather than "be
adjacent")

lIan: male person

35

bank: company (rather than "building"
or "edge")

Confirm this analysis? (y/n/c/p/?) :

36

(7) CUSTOHIZATION FOR APPLICATIONS

* VEX (Vocabulary EXpander) allovs
non-linguist domain experts to add
lexical entries for vords and
phrases. Based on "paradigms " .
GraJDar can change under its feet.

* Sortal hierarchy can be'extended
(vithout revriting lexicon).

* User-defined reference rules (e.g.
for mouse pointing).

* Declarative domain model specifying
logical equivalences betveen
linguistic and domain predicates.

EVALUATING COVERAGE

* LOB corpus: "legible" characters.
limited length. core vocabulary or
external lexicon. (Core vocabulary
words are harder!).

* Can only evaluate as far as QLF level
(no discourse context available).

* 'Good' means that the QLF ranked
highest by the preferences is one
that is correct in some reasonably
plausible context. This is not the
same as correctness in an application.
vhich is often easier to achieve.

* NB this measure ignores the fact
that lover ranked QLFs may be
'good'.

Systems Exhbited

LINGUISTIC COVERAOE

• Major cI.,ue type.: dec1arativc., imperat.ive., ,..h~ .nd
J'cl-ao que.t.ioDI, relat.ive., pa •• ive., elch.,
t.I:acre-claulcl.

• Verb phr •• el: camplemen\. .u.bc:.t.e~ori •• tioD.. cODt.rol yerba,
"erb part.iclcI, auxiliarie., "eDle operat.or., lome
.d"crbi.ll.

• Naua phra.e.: prcllomiaal .Dd pOlt.1I.0mlDal modifieu,
Icxic.1 .Dd pllr ••• 1 qu. •• t.ificu/.pccificn.

• CoordiDat.ioD! co!ljuAcl,ioa.1 .lId di.ju.actioAI of .. widc
cl ... or .Qoua phr.u~ •• verb pbr •• e., _Ild cI.alclj
.djccli. I. Domiaal, _nd adverbi.1 comparati"cl.

• Aa&phoric exprcllioDI: defiD.it.e: ducript.iolll, reflexive
_lid ADD.rcflcKjve prolloua.., boulld va.riable a.Da.phora, implicit
rela.tioD •.

• Ellip.i.: 'oDe'.aDa.phora., iDtra..eDtellti.1 a.lld
iDteueDteDtial verb phra.e eHip.i., follow-oll qlle.tioll. •.

• MorpholoJY : ill.f1ect.ioa..1 morpholoJY, .imple product.ive
e.u;. of deriv.t.io.al morpholoJY, .pecia.1 [arm toke •• .

• Core lexieoll: 1600 fllllCt.ioll word. alld cOllteat ward .tem.,
l300 .eD.'e. with a .. oci.ted .electioD.al re.trictioD.'.
Extern.1 lexicOD interface .vailable.

Heasuring progreSS:
QLF rates for sentences up to 10 words
over the last few years

Unlim. vocab
Date '/.Any 'l.Good

Hay 89 15 12
Oct 90 39 22
Oct 91 54 33
Oct 92 71 44

Comparison of random corpus
sentences with those for which
the system has been customised.
(ATIS = Air Travel Information Service
corpus from US DARPA program)

October 1992, QLF Accuracy:

ATIS LOB
up to 15 words
Got QLFs: 90% 57%
1st QLF good: 80% 62%
Accuracy: 72% 35%

CLARE/CLE

System Name:
Designed and Implemented by:

CLARE (includes Core Language Engine)
SRI International, Cambridge

GENERAL DESCRIPTION I

Inference Engine

unique engine vs. dedicated modules
dedicated modules
non-montonic devices no
control facilities in generation, via definition of "head"

parser/generator? both
others preference mechanisms, quantifier scoping, reference resolution

Data Types

arity (flxed?) fixed
cyclic structures possible but not encouraged

lists/sets lists, no sets
functions /relations not in syntax
others terms etc.

Interaction FS {::::::> Types
type unification via term unification
type expansion

at definition/ compile time
compile time

at run time:
(delayedjpartiall
recursive)

others (ternplates ...) parameterised macros, expanded at compile time

37

38 Systems Exhbited

r GENERAL DESCRlPTION II
-

Interfaces to
morphology yes

semantics/ yes
knowledge repr.

Implementational [ssues

programming lang. Quintus Prolog, Sicstus Prolog (not fully supported)

machine any UNIX machine
others (O/S, graphie •.. .) ORACLE database

Applications
grammar theories? more in semantics than in syntax
educational vs. used for both purposes
commercial system

used in projects/ yes (translation, database query, text processing, spoken language
other systems? understanding)

Grammar coded
size

1. ca. 150 rules , wide coverage
2. ca. 100 rules
3. ca. 30 rules

language

1. English, Swedish
2. Japanese
3. German

TooIs Stepperjdebugger version control for grammar development

Comments fully reversible system efficient, relatively wide coverage (as mea-
sured on red . corpus)

CLARE/CLE 39

I FEATURE CONSTRAINT SOLVER

Boolean Connectives

unification:

destructive uses Prolog unification

non-destructive

disjunction:

atoms only yes

full (DNF) no

distributed no

others no

negation

atoms only yes

negated corefs

full

others

implication

via negation yes

others

Additional Operations

subsumption via term subsumption

functional uncertainty no

others none

Tools compilation of feature structures into terms

Comments deliberately conservative formalism for efficiency

I TYPE SYSTEM

Type Connectives

conjunction: flat type system
single vs. multiple
inheritance
disjunction

negation

others

Type Definitions

via feature structures yes

via appropriateness
conditions

recursive? no

others

Additional Operations

type inIerence/ no
classification
GLB/LUB type no

I
1

subsumption

others

Restriction on Hierarchy
(unrestricted partial order,
bounded complete p.o.,
distributive lattice ...)

Tools

11 Comments

40

2.6

Systems Exhbited

CLG: Constraint Logic Grammar

LUls Damas, Nelma Moreira
{luis,narn}@ncc.up.pt

LIACC, Univ. do Porto, Rua do Carnpo Alegre 823, 4100 Porto, Portugal

The goal of the CLG project was to see to what extent and with what benefits the techniques
of Constraint Logic Programming [8] could be adapted for use in NLP.

The potential benefits expected from such an undertaking were:

• expressivity;

• efficiency;

• soundness.

These goals were met to a large extent as reported in [1, 2, 3, 4, 5, 6, 7] .
Other benefits expected from the CLG approach are modularity and scalability, due in par­

ticular to the hybrid architecture inherited from CLP.

Rationale

The CLG framework assumes that any grammar is a particular first order theory with equality
admitting complete models .

(Constraint) Logic Programming is an ideal paradigm for such a framework in that it supports
a direct mapping between gramm ars (the first order logic theories of linguistic descriptions) and
the first order theory of their implementation and at the same time provide a formally sound and
efficient computational scheme.

The CLG programme is compatible with the unification grammar tradition and constitutes a
simple framework for extending the notion of unification to complex constraint resolution. At the
same time a high degree of declarativeness is achieved by avoiding any reference to an operation
like unification.

In CLG substantial attention has been paid to a detailed formalization of the of the underlying
processing model.

The main reasons derives from the fact that restricting the formal analysis to the static
properties of formalisms does not do justice to the computationalcomplexity of modern linguistic
frameworks. A finer grained analysis of the formal and computational properties of formalisms
than decidability, formal complexity and model theoretic properties, sheds a different light on the
problem motivating choices which would otherwise appear to be arbitrary.

While sound denotation al semantics and appropriate formal complexity characteristics are
necessary conditions to be met by linguistic formalisms , they are not sufficient.

Rather, it is necessary to provide sound and adequate formal processing schemes for such
formalisms, lacking which the main challenges facing modern grammatical formalism design are
not addressed.

Taking this point further, we claim that the theory of a grammar formalism and its formal
processing model constitute a homogeneous and integrated whole and that the practice of relegat­
ing processing issues to low level implementation decisions had, and has, negative consequences,
not least preventing the right questions to be addressed.

The deductive process by which a fact is proven or an object computed must be the subject
of theoretical inquiry just as, and together with, the fact or object and their descriptions.

The analogy with logic programming is paradigmatic : defining the syntax and (static) sem an­
ties of a logic programming scheme is an essential first step. But it also constitutes a relatively
trivial task compared with definition of a formal processing scheme with the necessary computa­
tional characteristies.

Another aspect of central importance to CLG are the circumstances under which one can
ensure a simple and natural relation between grammars with complex constraint expression and

eLG 41

the logic programming paradigm, in particular aversion of Constraint Logic Programming over
the domain of rational trees.

The details of the CLG project relating to these and other aspects are described in (I, 2, 3, 4,
5,6,7] .

Bibliography

[1] Luis Damas and Giovanni B. Varile. CLG: A grammar formalism based on con­
straint resolution . In E.M.Morgado and J.P.Martins, editors, EPIA 89, volume
390 of Lecture N otes in Artificial Intelligence, pages 175-186. Springer Ver­
lag, 1989.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Sergio Balari, Luis Damas, Nelma Moreira and Giovanni B. Varile. CLG(n):
Constraint Logic Grammars. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING), Vol. 3, pages 7-
12, Helsinki, Finland, 1990.

Luis Damas, Nelma Moreira, and Giovanni B. Varile. The formal and processing
models of CLG. In Fifth Conference of the European Chapter of the
Association for Computational Linguistics, pages 173-178, Berlin, 1991.

Luis Damas and Giovanni B. Varile. On the satisfiability of complex constraints.
In Proceedings of the 14th International Conference on Computational
Linguistics (COLING), pages 108-112, Nantes, France, 1992.

Luis Damas, Nelma Moreira and Sabine Broda. Resolution of constraints in
algebras of Rational Trees. In Miguel Filgueiras and Lufs Damas , editors, EPIA
93, volume 727 of Lecture Notes in Artificial Intelligence, pages 61-76.
Springer Verlag, 1993.

Luis Damas, Nelma Moreira, and Giovanni B. Varile. The formal and compu­
tational theory of Constraint Logic Grammars. In C.J. Rupp, M. Rosner and
R. Johnson, editors, Constraints, Language and Computation, Academic
Press, 1994.

Lufs Damas, Nelma Moreira, and Giovanni B. Varile. Constraint Categorial
Grammars Submitted to COLING94 I .

Jaffar, J ., J-L. Lassez, 1987. Constraint Logic Programming. In: Symposium on
Principles of Programming Languages, Munich.

lThis is an extended version of the CCLG description in section 2.4 of the present volume.

42 Systems Exhbited

System Name: CLG
Designed and Implemented by:

GENERAL DESCRIPTION I
,

lnference Engine

unique engine vs. 2, equation sol ver and non-equational constraint sol ver
dedicated modules
non-montonic devices no
control facilities no

parser/generator? depending on versions: only parser, parser & generator

others

Data Types

arity (fixed?) fixed
cyclic structures yes

lists/sets yes/member-type with "discharge"
functions/ relations no/yes
others -

Interaction FS {=:} Types
type unification yes
type expansion

at definition/ compile-time
compile time

at run time:
(delayed/partial/
recursive)

others (templates ...) templates (parametrized)

I GENERAL DESCRIPTION Ir

Interfaces to
morphology no

semantics/ no
knowledge repr.

Implementational Issues

programming lang. Prolog

macrune Sun Microsystem 3-Sparc, Dec station, Mac

others (o/s, graphics ...) UNIX, X-WINDOWS, Finder

Applications

grammar theories? augmented CFG ; HPSG
educational vs. no
commercial system

used in projects/
other systems?

Grammar coded
Slze 11 various sizes, up to 100 KB
language various: EN, DA, DE, CA, PT

Comments
~ debuggers, displayer Tools

eLG 43

I FEATURE CONSTRAINT SOLVER

Boolean Connectives

tmification:

destructive yes

non-destructive no

disjunction:

atoms only

full (DNF) fuH, not DNF

distributed

others -

negation

atoms only

ne ga ted corefs

full fuH
others -

implication

via negation

others

Additional Operations

subsumption no

functional uncertainty no

others

Comments 11

TooIs

TYPE SYSTEM

Type Connectives

conjunction: single inheritance
single vs. multiple
inheritance
disjunction yes

negation yes

others -

Type Definitions

via feature structures yes

via appropriateness yes
conditions
recursive? yes

others -

Additional Operations

type inference/ type expansion
classification
GLB/LUB type LUB
subsumption

others

Restrietion on Hierarchy tree
(unrestricted partial order,
bounded complete p .o .,
distributive lattice . ..)

Comments JJ

Tools

44

2.7

Systems Exhbited

Comprehensive Unification Formalism (CUF)

Jochen Dörre, Michael Dorna
Institut für maschinelle Sprachverarbeitung

Universität Stuttgart, Germany

CUF is a theory-neutral universal grammar formalism like PATR-II which has been developed
in the ESPRIT-Project DYANA (BRA 3175 and 6852). It is based on defining feature structures
and relations over these as encodings of linguistic principles and data. However, it is radically
more expressive than conventional grammar formalisms, since it allows the definition of arbitrary
recursive relation al dependencies without tying recursion to phrase structure rules. Hence, CUF
provides the basis for highly integrated processing of linguistic descriptions of different linguistic
research areas. A system implementing this formalism in PROLOG and C is freely available from
our institute.

The language of CUF uses a syntax especially weil suited for a direct description of feature
structures similar to Kasper/Rounds logic (feature-matrix notation) combined with the possibility
of stating definite clauses over feature terms. Moreover, feature structures are typed, with the types
possibly being ordered in a hierarchy. The CUF type discipline allows for an axiomatic statement
of global restrictions on the structures in which the program is to be interpreted providing enough
redundancy in the descriptions to detect mistakes without burdening the grammar writer with
tedious repetitions .

CUF does not predefine any gramm ar rule formats like PATR's contextfree-based rules or
GPSG's ID/LP rules . Instead, the grammar writer is free to define her own rule formats or even
grammar architecture . For instance, an architecture based on principles and rules can straightfor­
wardly be implemented.

Fig. 2.4 presents an overview of all kinds of language constructs that can be used to compose
a CUF program, including its control part.

logical part: CUF specification

typing information

• type hierarchy axioms
• feature declarations
• sort declarations

• clauses (defining sorts)

CUF program

control part : CUF control statements
(task dependent)

• delay patterns
• index declarations

Figure 2.4: Parts of a CUF Program

CUF is an instance of constraint-Iogic programming (CLP) of the very general Höhfeld/Smolka
scheme [HS88] . This provides us not only with asound and complete proof procedure, but also
equips us with the right paradigm to attack the efficiency problems associated with highly modular
specifications, as for instance proposed by GB theory. For a more complete description of the CUF
language, please refer to [DD93].

The current CUF system (Version 2.28) consists of a compiler, an runtime evaluator and
an ASCII and a graphical user interface (GUI)l with several development tools like debugger,
data base inspector, and feature structure browser. The implementation runs under Quintus and
SICStus PROLOG under UNIX and Xll.

The incremental compiler is used to translate the CUF desriptions into an interpretable format .
Type checking and inference is used to eliminate errors very early in the development phase of a

I Currently, the G U I is still under development and not delivered yet. However, the ASCII interface provides
main functionalities of the GUr.

CUF 45

description. The most distinguishing features of CUF's type system are:

• type interdependencies can be stated in full proposition al logic, allowing to state all kinds
of type hierarchies

• features may be fully polymorphie (no restrictions on multiple feature declarations)

• complete type checking during compilation

• runtime type checking is reduced to a minimum

CUF makes a clear distinction between the purely declarative logical specification and the
control statements which are used to guide the proof procedure without compromising the logical
semantics of the specification. The runtime eva!uator is an SLD-resolution engine whose selection
strategy can be customized by the user. By default the strategy selects deterministicly expandable
literals first, or else the leftmost (nondeterministic) litera!. By use of delay statements the user
can change this behaviour. Another type of control statement is the declaration of predicates for
which the system should build an index.

The system CUF is freely available. Just fetch it via anonymous ftp from

ftp.ims.uni-stuttgart.de:/pub/cuf

or write to cuf-request@ims.uni-stuttgart.de or to:

Bibliography

Jochen Dörre
Institut für maschinelle Sprach verarbeitung
Universität Stuttgart
Azenbergstr. 12
D-70174 Stuttgart, GERMANY

email: Jochen.Doerre@ims.uni-stuttgart.de

[DD93] Jochen Dörre and Michael Dorna. CUF - a formalism for linguistic knowledge repre­
sentation. In Jochen Dörre, editor, Computational Aspects of Constraint-Based
Linguistic Description I, DYANA-2 deliverable R1.2.A . ESPRIT, Basic Research
Project 6852, July 1993.

[HS88] Markus Höhfeld and Gert Smolka. Definite relations over constraint languages. LILOG
Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W. Germany,
October 1988.

46 Systems Exhbited

System Name: CUF System
Designed and Implemented by: Jochen Dörre, Michael Dorna

GENERAL DESCRIPTION I

Inference Engine
unique engine VS . Modules for Feature Constraint Solving and Propositional Con-
dedicated modules straint Solving
non-montonic devices 0
control facilities DELAY declarations and INDEX declarations
parser/generator? System is good for both; however dedicated control statements

needed
others system is a universal deduction system for definite clauses over 'prim-

itively' typed feature constraints
Data Types

arity (fixed?) arity of types can be deduced from hierarchy
cyclic structures currently not supported, planned
lists/sets built in/definable
functions / relati ons functional or relation al constraints are supported
others atoms, strings and list are builtin. We differentiate between primi-

tive types (only propositionally definable) and general predicates
Interaction FS <=> Types

type unification unification takes care of primitive types (see above)
type expansion

at definition/ partial evaluation (can be switched off), compile time
compile time

at run time: deterministic closure over goals, then nondet. choose first non-
(delayed/partial/ delayed goal, search by backtrack (delayed, partial , recursive)
recursive)

others (template3 ...) enhanced Earley engine, which can be parametrized by the goals to
store

CUF 47

I GENERAL DESCRIPTION 11

Interlaces to
morphology interface not needed

full integration possible
semantics/ see above
knowledge repr.

Implementational lssues
programming lang. Quintus+C

machine any
others (O/S , graphics ...) UNIX

for G.U.I.: Xll
Applications

grammar theories? any
educational vs. public domain

I commercial system

used in projects/ used in DYANA, SFB 340, Uni Bielefeld, Uni Tübingen
other systems?

Grammar coded
size basic fragments of German, Englishfdeclarative phonology of Ger-

man, small experimental grammars for hard linguistic problems
language

Tools

• Interactive ProofTree Stepper for Debugging with Retry Skip,
Creep and Clause-Selection Option

• Browser for Result-Feature-Structures and Argument Bindings

Comments

48 Systems Exhbited

r FEATURE CONSTRAINT SOLVER

Boolean Connectives

unification:

destructive

non-destructive X
disjunction:

atoms only

full (DNF)
distributed

others delayed (compiled out); disjunctions between primitive types are
handled by constraint solver

negation

atoms only

negated corefs

full X
others

implication

via negation X
others

Additional Operations

subsumption

functional uncertainty encodable
others

Comments ~
Tools

CUF 49

I TYPE SYSTEM

Type Connectives
conjWlction: for general pred .: multiple inheritance
single vs. multiple for primitive types: multiple inheritance
inheritance
disjWlction for general pred.: yes

for primitive types: yes
negation for general pred.: yes

for primitive types: yes
others for primitive types: disjointness

Type Definitions
via feature structures for general pred.: any complex typed f. str. (with variables)

types (predicates) may have arguments
via appropriateness for general pred.: predicates can be also typed
conditions for primitive types: yes
recursive?
others

Additional Operations
type inference/ for primitive types: yes
classification
GLB/LUB type for primitive types: yes
subsumption

others for general pred.: determinism checking, evaluation modes: 'deter-
miilistic only', 'undelayed only', 'all'

Restriction on Hierarchy for general pred.: definite clauses
(unrestricted partial order, for primitive types: none
bounded complete p .o.,
distributive lattice ...)

Tools

Comments The distinction between a decidable 'primitive' typed constraint lan-
guage and predicate definitions as clauses ensures that the potential
existence of models of the whole specification is decidable! Moreover
the "unification" component is independent of the fhing of goals .

50 Systems Exhbited

2.8 EL U: Environnement linguistique d 'unification

ISSCO, Geneva

2.8.1 General

ELU is a unifieation-based linguistie programming environment designed for research and teaching
purposes. It is implemented in Common Lisp, the compiler for data files being written in yacc
and Hex. It shares a eommon origin with the UD system developed at IDSIA (see section 2.13);
the unifier, parser and finite-state lexicon have remained largely unchanged sinee 1989, with the
generator and inheritanee lexieon being added in 1990, and the transfer mechanism in 1991. See
also Johnson and Rosner (1989) and Estival (1990).

2.8.2 Unifier

ELU employs a polymorphie, structure-sharing unifier.

Data Types

Atom As in PATR-II; implieit eonversion to string by 'eoneatenate' built-in.

Disjunetion Defined over atoms: unifieation interpreted as set intersection .
a/b/c U b = b, a/b/c U b/c/d = b/c

Negation Defined over atoms and disjunetion: unifieation interpreted as intersection with
eomplement.
-a U b = b, -a/b/c U c/d/e = die

List As in Prolog.

Tree Like Prolog compound terms, except that the root ('principle functor') may be
named by a variable.

Typing A typing facility permitting complex FSs with specified eontents to be named. Two
typed FSs unify only if they are of the same type; a FS of type T unifies with
an untyped FS only if the features in the result have been declared as appropriate
for FSs of type T. While there is no built-in support for type subsumption or
inheritanee of information between types, these may be implemented by means of
relational abstractions.

name = (f 1, f2, f 3): declares the content of a FS of type name to be the features
fl, f2 and f3.
VAR == name: constrains the instantiated value of VAR to be a FS of type name.

Relational Abstractions

An extension of the PATR-II 'template' facility to form a eonstraint language closely resembling
Prolog, but without the extralogical devices ofthat language ('cut', negation, conditionals, 'assert',
'var', etc.) .

Proc(A,B,C)
<A f> = [BID]
!Proc2(C,D)

three arguments
B head of a list value
call to another R.A.

Relational abstractions may be defined recursively and/or in terms of multiple subclauses; in
the latter case evaluation involves breadth-first expansion of all possibilities, while in the former
evaluation is suspended as long as insufficient information is available to identify the boundary
ease.

ELU
51

Built-in Relations
notation:

A number of useful three-place relations are provided, using a specialized

Append A++B=C

Extract
C is the result of appending the lists A and B.

A -- B = C
cis the result of extracting the element B from the list A.

Concatenate A kk B = C

C is tbe result of concatenating the strings A and B.

Restrictors

Users may declare certain features (normally those with the most distinctive values) as 'restric­
tors'; these are used in the prediction step of the parser, indexing the inheritance lexicon, and
preprocessing the gramm ar for generation, and generally as aprefilter for unification. See Shieber
(1985).

2.8.3 Finite-State Lexicon

One of ELU'S lexicon systems takes the form of a finite-state machine in which states are associated
with various types ofinformation (equations, calls to abstractions, etc.) and ares are labelled with
segments of words (sterns, suffixes, etc.). This is similar to the continuation-dass approach to
lexical organization taken by Koskenniemi (1983), but does not make use of the two-level 'spelling
rule' mechanism. Looking up a word involves traversing the automaton, concatenating are labels
to instantiate the user-dedared 'form' feature, and unifying information in the states to build a
FS associated with that word-form.

stemvariant
<cat> = x
Clstem\main
+e/t
$sufsl

form of word-segment
some information
merge info. from stem entry in lexicon main
insert e if suffix begins with t
name of continuation dass for suffixes.

2.8.4 Default Inheritance Lexicon

As an alternative to the finite-state lexicon, ELU also provides for lexicons in the form of a
restricted multiple inheritance hierarchy combining strict and defeasible unification. The lexicon
below associates with the example dass the two FSs shown:

#Word example (Super)
<fl> = vall
 = abc

#Class Super ()
<fl> = va12
I
<f2> = va13
<fO> =
I

[

fl Vall]
b abc

f2 val3
[

fl vall]
b abcxyz

f2 val4

inherits from one superclass
overrides defeasible information in Super

no superdasses
example an exception
non-defeasible below here
first variant

<f2> = va14 second variant
<fO> = tt xyz concatenation

See Russell et al. (l992) for a fuller description .

52 Systems Exhbited

2.8.5 Grammar Rules

Essentially as in PATR-II, modulo the extended inventory of data types: each rule consists of
a 'rewrite' and an 'information' section. The generator requires one right-hand side item to be
marked (with a prefixed H) as the head.

A -> H_B C
<A cat> = c
lHead(A,B)
C == sign

2.8.6 Parser

rule involves three FSs - H_B is semantic head
atomic value for feature cat in A
call to relation al abstraction
type of FS C

A two-pass approach: first achart parser using Earley prediction builds structures on the basis
of the 'rewrite' section of the grammar rules and user-declared restrictors, then constraints are
solved in order to instantiate FSs and possibly eliminate some analyses.

2.8.7 Generator

The Shieber et al. (1990) algorithm, modified to complete the bottom-up attachment phase before
initiating top-down treatment of non-head constituents. A 'semantic head' is marked in each
gramm ar rule, rather than being derived autorriatically as in the standard algorithm, thus allowing
gramm ar writers to force a rule to be interpreted top-down when it would otherwise be interpreted
bottom-up. In non-chaining rules, top-down generation begins with this item.

2.8.8 Transfer Rules

Transfer-based machine translation is supported by a facility permitting users to define what
amounts to a grammar capable of analysing a FS and building another based on its contents. The
following mapping between FSs is established by the transfer rules shown below:

[

fO f-val 1
fl [f2 f-val-a 1

f3 f-val-b
[

gO g-val 1
{=:::} gl g-val-b

:T: example
:Ll: <fO> = f-val

<fl> = A
<A f2> = Xl
<A f3> = X2

:L2: <gO> = g-val
<g2> = Y2
<g3> = Yl

:X: Xl = Yl
X2 = Y2

:TA: f-val-a g-val-a
:TA: f-val-b g-val-b

g2 g-val-a

transfer rule name

complex value of f 1

recursive transfer through variables

atomic transfer rules

See Russell at al. (1991) for a fuller description.

2.8.9 Compiler

The user language illustrated in the examples given he re is compiled into Lisp expressions by an
independent program, eIuc. Dependencies between files may be managed by means of an 'include'
directive.

ELU 53

2.8.10 User Environment

From the user's point of view, a typieal session with ELU involves editing, eompiling and loading a
number of files eontaining one or more linguistie descriptions; each of these deseriptions is installed
in a named 'setup', normallyeorresponding to one of the languages between whieh translation is
to be performed. The ELU top level provides eommands for:

• eompiling and loading data files into a given setup

• switching between setups

• analysing and generating words

• parsing and generating sentenees

• applying transfer rules

• saving and reusing results of eomputation

• eseapes to the shell or an editor

• traeing, debugging, inspecting the ehart

Preferred settings for various options may be placed in an initialization file.
ELU output is eharaeter-based rather than graphical.

2.8.11 Responsibility

ELU is the result of eollaborative work over a number of years involving: Rod Johnson and
Mike Rosner (IDSIA), John CarroH (Cambridge University Computer Laboratory) , Amy Winarske
(Lueid Ine.), Afzal Ballim, Graham Russell, Dominique Estival and Susan Armstrong (ISSCO).

References

D. Estival (1990) ELU User Manual. Teehnieal Report 1, ISSCO, Geneva.
Johnson, R . and M. Rosner (1989) "A Rieh Environment for Experimentation with Unifieation

Grammars" , Proceedings of the Fourth Conference of the European Chapter of the
Association for Computational Linguistics, 182-189.

Koskenniemi, K. (1983) Two-Ievel Morphology: a General Computational Model for
Word-form Recognition and Production. Publieation 11, Department of General Lin­
guistics, University of Helsinki.

Russell, G., A. Ballim, J. CarroH and S. Warwick-Armstrong (1992) "A Practical Approach to
Multiple Default Inheritance for Unifieation-Based Lexieons", Computational Linguistics
18(3). 311-337.

RusseH, G., A. BaHim, D. Estival and S. Warwiek-Armstrong (1991) "A Language for the State­
ment of Binary Relations over Feature Structures", Proeeedings of the Fifth Conference
of the European Chapter of the Association for Computational Linguistics, 287-292

Shieber, S.M. (1985) "Using Restriction to Extend Parsing Algorithms for Complex-Feature-Based
Formalisms" , Proceedings of the Eighteenth Annual Meeting of the Assoeiation for
Computational Linguistics, 145-152.

Shieber, S.M., G. van Noord, R.C. Moore and F.C.N. Pereira (1990) "Semantie-Head-Driven
Generation", Computational Linguistics 16(1). 30-42.

54 Systems Exhbited

System Name: ELU
Designed and Implemented by: Rod Johnson, Mike Rosner (IDSIA), John Carroll (Cam­

bridge), Afzal Ballim, Dominique Estival,Graham Rus­
sell, Susan Warwick (ISSCO)

GENERAL DESCRIPTION I

lnference Engine
unique engine vs. unique
dedicated modules
non-mon tonic devices Default inheritance in lexicon-standard unifier under different

control
control facilities "restrictor" -declared f-values to be unified first for earIy failure.

For generator-RHS item to generate first is marked
parser/generator? Parser-2 pass, earley CF and unif. constraint sol ver

Generator-Shieber-van Noord Read Driven
others Transfer rules-non-monotonic bidirectional mappings between fea-

ture structures
Data Types

arity (fixed?) any, except for typed FSs
cyclic structures no checking, but not supported by parser, generator, transfer
lists/sets lists (+ "append", "element" ops.)
functions/relations "Relational Abstractions"-like pure Prolog some built-in (append,

element, concatenation)
others trees, string (+ concatenation op.)

Interaction FS <=> Types
type unification identity only
type expansion

at definition/ -
compile time

at run time: -
(delayedjpartialj
recursive)

others (templates ...)

ELU 55

I GENERAL DESCRlPTION 11

Interlaces to
morphology

• finite-state continuation-class model
• hierarchical lexicon

semantics/ no extra-sentential processing: no facilities for clean interface
knowledge repr.

Implementational Issues
programming lang. Common Lisp--Allegro 4+, compiler: yacc & Hex

macmne Sun
others (o/s, graphica ...) SunOS 4+

no graphics, etc.
Applications

grammar theories? experimental grammars in style of LFG, GPSG, Categorial G., GB,
HPSG-varying degrees of fidelity

educational vs. educational-research and teaching
commercial system
used in projects/ main practical application is continuing project to make system for
other systems? translating Swiss avalanche warning bulletins -

Grammar coded
size variable-up to Lexicons 250-60,000 words
language French, German, Italian, English

Tools

• Debugger-print internal objects in external form at several
levels of detail.

• Tracer-focus on named rule & rel. abstractions when debug-
ging.

• Tree display (ASCII)
• FS display (ASCII)
• Lexicon dump ~ indexed disk file
• Display time & other statistics

Comments a partial port to Macintosh CL exists

56 Systems Exhbited

I FEATURE CONSTRAINT SOLVER
-

Boolean Connectives

unification:

destructive

non-destructive x
disjunction:

atoms only x
full (DNF)
distributed

others

negation

atoms only

negated corefs

full

others atoms and disjunctions of atoms
implication

via negation -
others -

Additional Operations

subsumption -

functional uncertainty via recursive Rel. Abstractions & path variables

others -

Comments ~
Tools

ELU 57

I TYPE SYSTEM

Type Connectives

conjW1ction: -

single vs. multiple
inheritance
disjW1ction -
negation -
others -

Type Definitions

via feature structures no
via appropriateness Type t1(ft ... /n): "Type t 1 has features ft ... In, & only these"-
conditions no value typing
recursive? no
others

Additional Operations

type inference/ no
classification
GLB/LUB type no
subsumption

others -
Restriction on Hierarchy trivial--distinct types don't unify.
(unreatricted partial order.
bounded complete p.o .•
distributive lattice .. . }

Tools -
Comments Typing is optional

Full typing not enforced
More sophisticated systems may be simulated with Relational
Abstractions.

58 Systems Exhbited

2.9 Pleuk

Jo Caldera, Kevin Humphreysb

This section is a lightly edited version of a paper written by Jo Calder and Kevin Humphreys. It
describes Pleuk-a shell within which interpreters for grammatical formalisms can be embedded.
Its design is intended to allow the encoding of a wide range of grammatical formalisms, while
providing sophisticated facilities for interacting with such formalisms. A number of currently
popular formalisms have been implemented within Pleuk. The result is a system with applications
in the fields of grammar development, education and elsewhere. The version of Pleuk described in
the paper does not differ significantly from the one demonstrated by Chris Brew at the EAGLES
workshop on implemented grammar formalisms. Since Pleuk is not a formalism, not all the
formalisms mentioned in the paper were actually used in the demonstration. An updated version
of Pleuk is scheduled to be available by ftp from the DFKI's server. The same distribution is also
available from Michael Covington's archive at the University of Georgia.

2.9.1 Introduction

A current concern within computationallinguistics is with the reusability of resources, in particular
corpora and lexical databases. The same concern arises, of course, with respect to resources of
other kinds, such as computer implement at ions of grammatical formalisms, but has yet to be
addressed in any substantive way. The system discussed in this section attempts to improve upon
this situation. We present a system called Pleuk which is intended as a "formalism-neutral" shell
within which to embed computational interpretations of grammatical formalisms.

The organization of this section is as follows. We first discuss the design of the system,
and the distinctions we make between the various tasks such systems have to perform. These
fall into three basic classes, which we gloss as the "functional", "interface" and "grammatical"
parts of the system. We then discuss briefly the grammatical formalisms which Pleuk currently
supports. We assess the system's future potential and close with abrief description of its current
implementation. 1

The system as a whole is complex,so the current description is considerably simplified. Further
information is available in the form of a printedJon-line manual, from which some of this section
is derived.

2.9.2 The Tasks of Grammar Development

We view the tasks any grammar development system must perform as dividing into three cate­
gones:

• maintaining an accurate picture of the grammar currently being worked on and inter action
with the host operating system;

• performing the operations required by some grammatical formalism under the control of the
user and

• allowing the user to control those operations via a reasonable interface.

Accordingly, we divide the tasks that the system performs into three parts:

• the functional backbone (FB);

QJo Calder, School of Computing Science, Simon Fraser University, Burnaby BC, CANADA V5A IS6, Phone:
(604) 291 3012, Fax: (604) 291 3045, Email: jcalderClcs. sfu. ca

bKevin Humphreys, University of Edinburgh, Centre for Cognitive Science, 2 Buccleuch Place, Edinburgh EH8
9LW, Scotland, email: kvhClcogsci.ed.Ac .uk

1 In this section, the following trademarks are used: X Windows is a trademark of MIT. PostScript is a trademark
of Adobe Systems Inc. SPARCstation is a trademark of Sun Microsystems Inc.

Pleuk and SLE 59

• the specialization and

• the user interface

We discuss these in turn. As the system is implemented in Prolog, certain terminology (for example
database) should be interpreted in that light. The term definition should be construed as referring
to any element which may form part of a grammatical description.

Functional Backbone

The FB provides support for the following operations:

• Compute files to be loaded to produce an up-to-date image of the current gramm ar .

• CaB appropriate functions to read arid compile definitions from files.

• Register definitions in or delete definitions from the database.

• Report current status of files and definitions.

• Retrieve definitions from database by name, by kind or by file.

• CaB appropriate functions to format definitions.

• CaU appropriate functions to parse or generate or otherwise interact with the information
in the grammar.

• Interact with the host environment in appropriate ways (e.g. interpret command line switch­
es, determine availability of graphics systems).

• Invoke an editor on the file containing a particular definition, to allow the addition or deletion
of definitions.

• Maintain a set of variables and values controlling aspects of the system's behaviour.

• Provide low-Ievel support for interaction with the user.

While this list certainly does not include all that one might expect from such a system, it represents
at least sufficient functionality for a workable system.

Note that in no cases do we assurne a particular format for definitions, either in the form
they take on when constructed by the user, or in their internal database representation. This is
essential if the FB is to operate with grammatical formalisms whose syntax and semantics may
vary in arbitrary ways.

Specializations

A specialization is some coUection of code which

• determines possible definitions of some grammatical formalism,

• defines some way of turning a definition in a file into the required internal format,

• provides a parser, generator or other means of interacting with the formalism in question
and

• provides mappings between internal representations and a Pleuk-defined printing format to
be discussed below.

60 Systems Exhbited

The key idea here is then that the FB is entirely unconcerned with the internal representation
of definitions. The specialization must define appropriate routines for reading definitions in files
(often this is just Prolog's read/1) and for translating such definitions into the form that, for
example, a parser might expect. Details of those specializations that currently exist are given in
Section 2.9.3.

A specialization is defined by providing routines with the above functionality. In particular, the
different kinds of definitions that a particular formalism uses must be stated, together with their
distribution in different files, routines for formatting definitions or derivations to be printed, and an
indication of the kinds of processing facilities (i.e. parsers, generators, ...) that the specialization
offers. An order for loading the files that define different aspects of some gramm ar may be stated.
This allows definitions wh ich are necessary for the interpretation of later definitions to be loaded
earlier. An example of this might be the definition of a mapping from attribute names to term
positions and the later use of attribute names.

The specialization may also ask for particular routines to be run each time a file containing
certain definitions is loaded . This allows definitions whose interpretation may be dependent on
other definitions to be computed after all such definitions are loaded. (An example of this would
be a system where certain aXioms must be obeyed by all definitions; the routine could in this case
compute simplifications that may thereby result.)

It will be noted that it is also the specialization's responsibility to define appropriate parsing
andjor generation routines. The provision of generic routines, while feasible to some extent, has
not been investigated.

User Interface

The third part of the system covers interaction with the user. The main functions he re are:

• Interpret menu definitions provided by the FB and the specialization.

• Allow for choice of menu options or user input where appropriate.

• Manage the display of definitions and the results of computations.

• Provide on-line help.

The definitions of menus is independent from the manner in which the user interacts with them. In
particular, we have interpreters for the menu system which allow interaction via a dumb terminal
or graphically under X Windows.

Menus may be defined either by the FB or by a specialization, with the latter given priority
in the case of multiple definitions. Menus are constructed dynamically, and so may be adjusted in
order that options reBect the current state of the system. .

Standard Printing Format The one area in wh ich Pleuk makes assumptions about the format
of terms manipulated by some specialization is in the output of routines that compute represen­
tations to be printed. In this case, the term is assumed to be in Standard Printing Format (SPF) .
SPF has a formal definition as a set of Prolog terms, and a graphical interpreter for this format is
available on-line in Prolog under X Windows. A PostScript interpreter for a closely related format
is also available, as weil as a character-based approximation suitable for non-graphics devices.

Terms in SPF may be written out in PostScript format and the result included within printed
documents (in the mann er of Figure 2.5). This figure shows an example SPF term, with some
internal structure suppressed, together with its graphical interpretation via PostScript.

In addition to supporting the attribute-value diagrams and sequences shown in the figure, SPF
provides facilities for representing trees, tags indicating shared structure, symbols, including logical
connectives, italics, sets, relations, infixes and a number of other diagram types. We are aware
of respects in which the current facilities are deficient-for instance, it is currently impossible to
represent derivations in the style preferred by many categorial grammarians (e.g. Steedman 1987)
where the use of combination rules is expressed by a asolid line beneath the elements involved

Pleuk and SLE

avm([phon=sequence([atomic(loves)]).
synsem=avm([local=avm([cat=avm([head=avm([v=atomic(+).

n=atomic(-).
vform=atomic(fin)]).

subcat=sequence([...•...].
lex=atomic(+)]

PHOli <lovcs>

[
V +] HEAD 11 -
VFORM fin

61

SYliSEM
LOCAL CAT St:"BCAT (LOCAL [CAT [HEAD [~ASE :om]l ,LOCAL [CAT [HEAD [~ASE ~bj]l)

St:"BCAT <> ~ St:"BCAT <> ~
LEX +

loves: parse 1 of 1

Figure 2.5: A term in Standard Printing Format and its graphical interpretation

in that combination. In this case, the specification of SPF requires extension. Also, the current
tree drawing algorithm produces results which are not aesthetically pleasing. The advantage of
a formal specification for SPF is that the interpreters may be improved in any number of ways
without affecting the formalism-specific routines that compute SPF.

One of the spin-offs of the use of SPF is that, given appropriate graphics facilities, it is simple
to implement a Derivation Checker in which the user is provided with a point-and-click interface,
where trees (or derivations, as appropriate for the grammar in question) can be constructed out
of other trees or lexical elements. This seerns to be a useful model for debugging and educational
purposes, and also to be applicable to a wide variety of grammatical formalisffiS (Calder, 1993).

2.9.3 Specializations

To date, specializations defining the following formalisffiS have been incorporated into Pleuk,
roughly in order of implementation:

Term A term-based unification grammar system, originally developed for the support of Unifica­
tion Categorial Grammar (Zeevat et al 1991).

Mike A simple graph-based unification system, enhanced with additional operations for the treat­
ment of free word order presented in Reape (1989).

erg A simple context-free grammar system, intended for demonstration purposes.

SLE A graph-based formalism enhanced with arbitrary relations in the manner of Johnson &
Rosner (1989) and Dörre & Eisele (1991). Delayed evaluation is used to compute infinite
relations. This system has been used for the development of several HPSG-style grammars
(Pollard & Sag 1987, forthcoming) .

Sdg The system described in Dahl et al (1991) for the implementation of principles-and­
parameters grammars in terms of Dahl's Static Discontinuity Grammars (Dahl & Popowich
1990). (Incomplete and currently under revision)

HPSG-PL An HPSG system developed at Simon Fraser University by Popowich, Vogel and
Kudric.

62 Systems Exbbited

The core of Pleuk (i.e. the FB and user interface) stabilized after the first two specializations men­
tioned above were implemented. Various other formalisms are being implemented, in particular
Carpenter's system for typed feature structures (Carpenter 1992).

In general, the cost of porting a particular grammatical formalism for which a Prolog imple­
mentation exists has not been found to be particularly high, of the order of a few hours of work,
although we should emphasize that such work has to date been carried out by people familiar both
with Pleuk and with the target formalisms. The bulk of the effort, unsurprisingly, has to do with
generation of SPF terms from definitions.

2.9.4 Assessment

Pleuk is currently in use at a number of research laboratories in various countries. To date, most of
its use has been concerned with the development of grammars either for demonstration purposes,
or for the examination of particular grammatical phenomena, rather than with the development
of large coverage grammars. In these tasks, Pleuk seems to have been adequate. The ability
to produce high-quality output both on-line and for published documents will become of greater
importance as the grammars developed within Pleuk become more complex.

Pleuk also seems to be suitable for use in educational settings. In particular, the ability to
construct derivations graphically (see Section 2.9.2) offers interaction with a particular grammar
which is at once more detailed and more directly under the control of the user than is possible
-when parsers and/or generators are the only means of constructing a derivation for some grammar.

There are, of course, limitations to what Pleuk can do. At the very least, as it is implemented
in Prolog, interpreters for formalisms implemented in other languages cannot be immediately
embedded within Pleuk. Less generally, implementation of some formalism within Pleuk is easiest
when there is a straightforward relationship between adefinition stated by the user and its internal
representation. The simplest relationship is where each definition gives rise to one and only one
internal representation. Other cases, for example, where a particular definition gives rise to more
than one internal definition are also catered for. A more problematic case is that mentioned at
the end of Section 2.9.2 where some set of definitions has global interpretation. A further example
of this is a set of statements defining a mapping from attribute names to term positions to take
advantage of term, rather than graph, unification. In this case, certain implementations may
decide to compute terms directly for the representation of other definitions. A problem will arise
if the set of statements changes-Pleuk has no way of determining whether such a change means
that the interpretation of other definitions has to be revised.

One facility which is of use in educational and machine-translation settings (as well as in
gramm ar development more generally) is the possibility of manipulating several gramm ars at
once. Pleuk does not provide such a facility directly. However, in an extension of Pleuk completed
for an industrial research laboratory, definitions containing grammatical information are organized
into a hierarchy. At each node in the hierarchy, all and only definitions from the current node and
from dominating nodes are available. Evaluation of this approach is continuing.

2.9.5 Implementation

Pleuk is currently implemented in SICStus Prolog, version 2.1 (Carlsson et aI1991), with a small
number offunctions defined in C, running on Sun SPARCstations. Menus for user input and output
windows, inc1uding the output of graphical interpretations of SPF, make use of the Graphics
Manager supplied with SICStus. We have endeavoured to maintain portability of the FB-no
Prolog system predicates are called directly-but this is currently compromised by dependencies
on the user interface side of the system. Certain specializations also make use of SICStus-specific
facilities, such as the Boolean Constraint Solver.

System documentation is written in the Free Software Foundation's Texinfo format and on­
line help is provided by the XInfo system by Jordan K. Hubbard. Documentation is currently
incomplete in the case of some specializations. On-line interpretation of PostScript output is
possible via Aladdin Enterprises' Ghostscript.

Pleuk and SLE 63

2.9.6 Conclusions

Pleuk is a shell for the implementation of grammatical formalisms. The system has been used
successfully to encode a variety of grammatical formalisms, and for the development of a nu mb er
of grammars. The system allows the on-line display of high-quality graphical representations of
definitions and derivations, and their inclusion within other documents.

Bibliography

Calder, J. (1993) Graphical interaction with constraint-based grammars, Proceedings of PA­
CLING, 1993, Vancouver, Canada.

Carlsson, M., J. Widen, J. Andersson, S. Andersson, K, Boortz, H. Nilsson and T. Sjöland
(1991) SICStus Prolog User's Manual. Swedish Institute of Computer Science, technical
report T91:11B.

Carpenter, B. (1992) The Logic of Typed Feature Structures: with applications to
unification grammars, logic programs, and constraint resolution, Cambridge Tracts
in Theoretical Computer Science, no. 32. Cambridge, New York: Cambridge University
Press .

Dahl, V. and F. Popowich (1990) Parsing and Generation with Static Discontinuity Grammars.
New Generation Computing, 8, pp245-274.

Dahl, V., F. Popowich and M. Rochemont (1991) A Principled Characterization of Dislocated
Phrases: Capturing Barriers with Static Discontinuity Grammars. Technical report CPMT
TR 91-09, Cent re for Systems Science, Simon Fraser University.

Dörre, J. and A. Eisele (1991) A comprehensive unification-based grammar formalism. Dyana
report R3.1.B, Centre for Cognitive Science, University of Edinburgh, January 1991.

Johnson, R. and M. Rosner (1989) A rich environment for experimentation with unification
grammars. In EACL4, pp182-189.

Pollard, C. and I. A. Sag (1987) Information-Based Syntax and Semanties, Volume 1:
Fundamentals. CSLI Lecture Notes No 13. Stanford, Ca. : Center for the Study of Lan­
guage and Information.

Pollard, C. and I. A. Sag (forthcoming) Information-Based Syntax and Semanties, Volume
2. CSLI Lecture Notes. Stanford, Ca.: Center for the Study of Language and Information.

Reape, M. (1989) A logical treatment of semi-free word order and bounded discontinuous con­
stituency. In EACL4, pp103-110.

Steedman, M. (1987) Combinatory gramm ars and parasitic gaps. Natural Language and Lin­
guistic Theory, 5.3, pp403-439 .

Zeevat, H., Klein, E. and Calder, J. (1991) Unification Categorial Grammar, Lingua e stile,
11.4, pp499-527 .

-

64 Systems Exhbited

System Name: SLE formalism (just part of Pleuk. Pleuk itself is a generic
framework, not a formalism)

Designed and Implemented by: Jonathan Calder, Kevin Humphreys, Mike Reape

GENERAL DESCRIPTION I
------ ---

Inference Engine
unique engine VS. unique engine
dedicated modules
non-montonic devices no
control facilities control statements in template definitions allow grammar writer to

specify when it is safe to expand recursive templates
parser/generator?

1. chart parser
2. non-deterministic bidirectional parser/generator

others user controlled interactive derivation checker
Data Types

arity (fixed?) open-ended feature graphs
cyclic structures no
lists/sets no
functions/relations Horn-dause relational dependencies via template definitions
others -

Interaction FS <==:} Types
type unification no
type expansion

at definition/ no
compile time
at nm time: no
(delayed/partial/
recursive)

others (templates ...) Template system uses Horn-dause definitions and control statements
to delay/contr~valuation . .

Pleuk and SLE 65

I GENERAL DESCRIPTION 11

Interfaces to
morphology no

semantics/ no
knowledge repr.

Implementational Issues

programming lang. Prolog

machine sun-4, sparcstation etc.
others (O/S. graphica ...) Derivation checker uses Sicstus Prolog graphics manager

Applications
grammar theories? HPSG,UCG
educational vs. mostly educational but larger grammars under development by in-
commercial system dustrial partner
used in projects/
other systems?

Grammar coded
size small demos

language English, French

Tools High level interface language for printing of linguistic objects. In-
terface to editor.
Interface to grammar displayer.

Comments The tools are generic facilities of Pleuk, not specific to SLE
formalism.

I FEATURE CONSTRAINT SOLVER

Boolean Connectives
unitication:

destructive no
non-destructi ve yes

disjunction:
atoms only yes

full (DNF) no

distributed no

others no
negation

atoms only yes

negated corefs no

full no

others additional sound special case -,(1 : Top)
implication

via negation

others implicational constraints

Additional Operations

subsumption no
functional uncertainty encodable

others none

Tools Limited user control of evaluation strategy / depth bound via run-
time switches

Comments none

66 Systems Exhbited

I TYPE SYSTEM

Type Connectives

conjunction: n/a
single vs. multiple
inheritance
disjunction n/a
negation n/a
othern -

Type Definitions

via feature structures n/a
via appropriateness n/a
conditions
recursive? n/a
others -

Additional Operations

type inference/ n/a
classification
GLB/LUB type n/a
subsumption

othern - -

Restriction on Hierarchy n/a
(unreatricted partial order,
bounded complete p .o.,
distributive lattice ...)

Tools -
1 Comments 11 Direct specification of features appropriate at anode.

TDL/UDiNe 67

2.10 The TDC/UDiNe System

Rolf Backofen, Stefan Diehl, Bernd Kiefer, Karsten Konrad, Hans-Ulrich Krieger, Ulrich Schäfer,
Christoph Weyers

TDC is a typed feature-based language specifically designed to support highly lexicalized gram­
mar theories like HPSG, FUG, or CUG. rvC offers the possibility to define (possibly recursive)
types, consisting of type constraints and feature constraints over the standard connectives A, V,
and .." where the types are arranged in a subsumption hierarchy. TDC distinguishes between avm
types (open-world reasoning) and sort types (c1osed-world reasoning) and allows the declaration
of partitions and incompatible types. Working with partially as weil as with fully expanded types
is possible, both at definition and at run time. TDC is incremental, i.e., it allows the redefinition
of types and the use of undefined types.

TDC is based on UDiNe, a sophisticated feature constraint solver. UDiNe incorporates most
of the advanced means that have been described in literature or used in practical system, e.g .,
distributed disjunctions, negative coreferences, full negation as well as functional and relation al
constraints.

TDC and UDiNe together provide both a grammar definition environment and a typed run
time system which supports lazy type expansion. Efficient reasoning in the system is accomplished
through speciaIized modules.

2.10.1 Motivation

Modern typed unification-based gramm ar formalisms (Iike TFS, CUF, or TDC) differ from the
early untyped systems like PATR-II in that they highlight the notion of a feature type. Types can
be arranged hierarchicaIly, where a subtype inherits monotonically all the information from its
supertypes and unification plays the role of the primary information-combining operation. A type
definition can be seen as an abbreviation for a complex expression, consisting of type constraints
(concerning the sub-jsupertype relationship) and feature constraints (stating the appropriate val­
ues of attributes) over the standard connectives A, V, and ..,. Types can therefore lay foundations
for a grammar development environment because they might serve as abbreviations for lexicon
entries, ID rule schemata, and universal as weIl as language-specific principles as is familiar from
HPSG. Besides using types as a referential mean as templates are, there are other advantages as
well which however cannot be accomplished by templates:

• EFFICIENT PROCESSING. Certain type constraints can be compiled into more efficient repre­
sentations like bit vectors, where a GLB (greatest lower bound) , LUB (least upper bound), or
a ~ (type subsumption) computation reduces to low-Ievel bit manipulation. Moreover, types
release untyped unification from expensive computation through the possibility of declaring
them incompatible. In addition, working with type names only or with partially expanded
types, minimizes the costs of copying structures du ring processing.

• TYPE CHECKING. Type definitions allow a grammarian to declare which attributes are
appropriate for a given type and which types are appropriate for a given attribute, therefore
disallowing to write inconsistent feature structures.

• RECURSIVE TYPES. Recursive types give a grammar writer the opportunity to formulate
certain functions or relations as recursive type specifications. Working in the Parsing as
Deduction paradigm enforces a grammar writer to replace the CF backbone through recursive
types.

2.10.2 The DISCO Core Engine

The core machinery of DISCO consists of TDC and the feature constraint sol ver UDiNe. The
TDC system is a unification-based grammar development environment and run-time system to
support HPSG-like grammars. The DISCO grammar currently consists of more than 700 type

68 Systems Exhbited

III [...] ~ I UV: A ; I a Query 1/Ve
[II b [...] ~

L-_____ _

Result
~

[Ijfo.m

T
([],[l]) ({c, a fo. b, .L}, {yes, no, fail})

Type hierarchy

oE
(a fo. b)

rot-
~

{c,afo.b,.L}

.L

Figure 2.6: Interface between TDC and UDiNe. Depending on the type hierarchy and the
type of 0 and 0, TDC either returns c (c is definitely the GLB of a and b) or a fo. b (open-world
reasoning) resp . .L (closed-world reasoning) if there doesn't exist a single type which is equal to
the GLB of a and b. In addition, TDC determines whether UDiNe must carry out feature term
unification (yes) or not (no), i.e., the return type contains all the information one needs to work
on properly (fail signals aglobai unification failure).

specifications written in TDC and is the largest HPSG grammar for German. The UDiNe feature
constraint sol ver is the main processing machinery of DISCO, which has been weIl-tested in the
DISCO environment over years. Typical size of the processed structures reaches more than 1000
nodes and 140 coreferences (which would need up to 185000 nodes in a PROLOG tree notation).

Both modules communicate through an interface, and this communication mirrors exactly the
way an abstract typed unification algorithm works: two typed feature structures can only be
unified if the attached types are definitely compatible. This is accomplished by the unifier in that
UDiNe handles over two typed feature structures to TDC which gives back a simplified form (plus
additional information; see Fig. 2.6). The motivation for separating type and feature constraints
and processing them in dedicated modules (which again might consist of specialize.clicomponents as
is the case in TDC) is twofold: (i) it reduces the complexity of the whole system, thus making the
architecture much clearer, and (ii) leads to a faster system performance because every dedicated
module is designed to cover only a specialized task.

Grammars and lexicons can be tested by using the parser of the DISCO system. The parser is
a bidirectional bottom-up chart parser, providing a user with parameterized parsing strategies as
weil as giving hirn control over the processing of individual rules.

2.10.3 The UDiJJe Feature Constraint Solver

UDiNe is a modern feature constraint solver that provides distributed disjunctions over arbitrary
structures, negative coreferences, fuIl negation and functional constraints. It is the first (and to
our knowledge the only) implemented feature constraint sol ver that integrates both fuIl negation
and distributed disjunctions. A relation al extension has been implemented, but not yet integrated
into the system.

UDiNe works on an internal representation of feature structures, where coreferences are rep­
resented using structure sharing. The connection between the internal representation and the

TDL/UDiNe 69

(good readable) extern al one is established by input/output functions. There exists an advaneed
window-based feature editor ealled FEGRAMED allowing to define, print and manage feature strue­
tures.

During the translation of the external representation into the internal one, several normal­
ization steps are performed. One of this steps is the elimination of full negation in the input
strueture. We use the method of Smolka (1988), whieh introduces implieit existential quantifiea­
tion. Using this method, negation ean be eliminated if the feature systems provides disjunetion,
negative eoreferenees and negated atoms/types.

UDi'Ve uses distributed disjunetions not only as a tool for eflieient proeessing. They are also
part of the input syntax, whieh allows for a very eompact representation of the input data. In
contrast to other systems using distributed disjunetions, we do not rest riet disjunetions to length
2 (neither in input nor during proeessing). This reduees the size of the representation of a feature
strueture massively.

UDi'Ve is a dedieated feature eonstraints sol ver that ean be eonnected with different type
systems. Unifieation is done destruetively using the lazy eopying technique introdueed by Alt­
Kaei, where only the affeeted strueture must be eopied. Non-destruetive unifieation is performed
using eopy functions. UDi'Ve has been sueeessfully used for several tasks in the DISCO projeet, viz.
for parsing, generation, extended two-Ievel morphology and surface oriented speech act proeessing.

The funetionality of UDi'Ve is eompleted by several auxiliary funetions. It is possible to remove
ineonsistent alternatives, to simplify struetures, to extract subterms or to evaluate functional
eonstraints. A general visiting function ean be used for eonstrueting user-oriented extensions.
Furthermore, one ean build the disjunetive normal form of a feature strueture. This is needed by
other tools used in the applieation system if they eannot handle distributed disjunction.

2.10.4 Intelligent Backtracking

Uszkoreit introdueed in 1991 a new strategy for linguistic proeessing ealled controlled linguistic
deduction. The evaluation of both eonjunetive and disjunetive eonstraints ean be eontrolled in
this framework. For eonjunetive constraints, the one with the highest failure probability should
be evaluated first. For disjunctive ones, a suecess probability is used instead. The alternative with
the highest success probability is used until a unifieation fails, in whieh ease one has to back track
to the next best alternative. Besides more eomplex ones, Uszkoreit also proposed a strategy that
uses statie values for the suecess probabilities (called preferences). In the following, we will eall
unifier that control the evaluation of disjunctions in this way unifier with intelligent backtracking.

Because of similarities between this control method and the mechanism of intelligent back­
tracking in PROLOG, we ean formulate the following properties that a unifier with intelligent
backtracking should fulfill:

• INDEPENDENCE~ Backtracking must be independent from the eomputation history, i.e. back­
tracking should not be restrieted to the last proeessed disjunction.

• CONFLICT DETECTION. It must be possible to determine the disjunetive struetures that are
involved in a unifieation failure. This is necessary in order to restrict the set of eandidates
for backtracking.

• CONFLICT DEDUCTION. The confliet information of several unification errors ean be used for
further restricting the eonflicting set of disjunetions. This avoids unneeessary backtracking.

• COMPLETENESS. It must be guaranteed that eonsistent eombination of disjunetion alterna­
tives will be detected.

The most promising eandidates for implementing intelligent backtracking are unifiers that use
distributed disjunctions, sinee they provide most of the eoneepts mentioned above. Hereby, the
notion of context eommon to all of these unifiers plays an important role. A context is partial
function mapping disjunctions to eorresponding alternatives. Every node has a unique eontext
that deseribes under which disjunctions and whieh alternatives this node ean be found. Ir a

70 Systems Exhbited

unification fails, the context of the node where the inconsistent information has been found is
called inconsistent context. The inconsistent contexts are stored in order to deduce minimal
inconsistent contexts and to detect a global inconsistency. Thus, inconsistent contexts can be used
for conßict detection. The calculation of minimal inconsistent contexts corresponds to conflict
deduction. The check for global inconsistency can be used for guaranteeing completeness.

We have implemented a prototypical extension of UDWe that incorporates intelligent back­
tracking and provides the independence property mentioned above. The implementation works
as folIows. Ir a disjunction is encountered, the alternative with the highest preference is chosen,
and only this alternative is used for later unifications. Ir a unification fails, the involved disjunc­
tions are determined by the inconsistent context. Now one of the involved disjunctions has to be
selected for backtracking. There are two possibilities: (i) one can use the static preference for
this selection; and (ii) the unifier calls a user program in order to select a disjunction. The idea
is to use the second selection mechanism for implementing more complex control methods. E.g.
to achieve better selection criteria, we can provide the user program with the definition of the
disjunction and the conjunctive part the disjunction has be unified with.

The backtracking of the selected disjunction first undoes the unification with the previously
chosen alternative. We have modified the existing method for undoing destructive unification in
order to guarantee a local undo. Second, the cancelled unifications are redone using the new
selected alternative. The algorithm guarantees, that unification is restricted to the substructure
starting with the disjunction.

2.10.5 The rvc language

TDC supports type definitions consisting of type constraints and feature constraints over the
standard operators 1\, V, , and $ (xor). The operators are generalized in that they can connect
feature descriptions, coreference tags (logical variables) as weIl as types. TDC distinguishes between
avm types (open-world semantics), sort types (closed-world semantics), and built-in types. In
asking for the greatest lower bound of two avm types a and b which share no common subtype,
TDC always returns a 1\ b (open-world reasoning), and not ..L. The opposite case holds for sort
types. Furthermore, sort types differ in &Dother point from avm types in that they are not further
structured, like atoms are. Moreover, TDC offers the possibility to declare exhaustive and disjoint
partitions of types, for example sign = word $ phrase which expresses the fact that (i) there are
no other subtypes of sign than word and phrase, (ii) the sets of objects denoted by these types
are disjoint, and (iii) the disjunction of word and phrase can be rewritten (during processing) to
sign. In addition, one can declare sets of types as incompatible, meaning that the conjunction of
them yields ..L.

TDC allows a grammarian to define and use parameterized templates (macros). There exists a
special instance definition facility to ease the writing of lexicon entries which differ from normal
types in that they are not entered into the type hierarchy. Strictly speaking, lexicon entries can
be seen as the leaves in the type hierarchy which do not admit further subtypes. This dichotomy
is the analogue to the distinction between classes and instances in object-oriented programming
languages. Input given to TDC is parsed by a Zebu-generated LALR(l) parser to allow for an
intuitive, high-level input syntax and to abstract from uninteresting details imposed by the unifier
and the underlying Lisp system.

2.10.6 Type Hierarchy

The implementation of the type hierarchy is based on Alt-Kaci's bit vector encoding technique for
boolean lattices (a bit-and/or operation corresponds to a LUB/GLB computation). The method
has been modified to open-world reasoning over avm types in that potential GLB/LUB candidates
must be verified by inspecting the type hierarchy through a sophisticated graph search . GLB, LUB
and ~ computations have the nice property that they can be carried out in O(n), where n is the
number of types. Depending on the encoding method, the hierarchy occupies O(n log n) (compact
encoding) resp. O(n2) (transitive closure encoding) bits.

TDL/UDiNe 71

Figure 2.7: Decomposing a := bEB c, so that a inherits from the intermediates IbV cl and l...,bV...,cl.

The encoding algorithm is extended to cope with the redefinition of types, an essential part
of an incremental grammarjlexicon development system. Redefining a type means not only to
make changes local to this type. Instead, one has to redefine all dependents of this type-all
subtypes, in case of a conjunctive type definition and all disjunction elem~nts for a disjunctive
type specification plus, in both cases, all types which mention these types in their definition . The
dependent types of a type t can be characterized graph-theoretically via the strongly connected
components of t .

Conjunctive, e.g., x := y 1'1 z and disjunctive type specifications, e.g., Xl := y' V Zl are entered
differently into the hierarchy: x inherits from its supertypes y and z, whereas Xl defines itself
through its elements y' and Zl . This distinction is represented through the use of different kinds
of edges in the type graph (bold edges denote disjunctive elements, see Fig. 2.7).

TDC decomposes complex definitions consisting of 1'1, V, and ..., by introducing intermediate
types, so that the resulting expression is either a pure conjunction or a disjunction. The same
technique is applied when using EB (see Fig. 2.7). EB will be decomposed into 1'1, V and ..." plus
additional intermediates. For each negated type ...,t, TDC introduces a new intermediate type
symboll...,tl with the definition ...,t and declares it incompatible with t.

Incompatible types lead to the introduction of specialized bottom symbols (see Fig. 2.7) which
are however identified in the underlying logic. These bot tom symbols must be propagated down­
wards by a mechanism called bottom propagation which takes place at definition time.

2.10.7 Symbolic Simplifier

The simplifier operates on arbitrary TDC expressions. Simplification is done at definition time as
weIl as at run time when typed unification takes pi ace (cf. Figure 2.6). The main issue of symbolic
simplification is to avoid (i) unnecessary feature constraint unification and (ii) queries to the type
hierarchy by simply applying 'syntactic' reduction rules.

The simplification schemata are weIl known from the proposition al calculus, e.g., De Morgan's
laws, idempotence, identity, absorption, etc. They are hard-wired in COMMON LISP in order to
speed up computation. FormaIly, type simplification in TDC can be characterized as a term rewrit­
ing system. Confluency and termination is guaranteed by imposing a generalized lexicographically
ordered normal form on terms (either CNF or DNF). In addition, this order has the nice effects of
neglecting the law of commutativity (which is expensive and might lead to termination problems) :
there is only one representative for a given formula. Therefore, memoization is cheap and is em­
ployed in TDC to reuse precomputed results of simplified (sub)expressions (one must not cover all
permutations of a formula). Additional reduction rules are applied at run time using 'semantic'
information of the type hierarchy (GLB, LUB, and ~).

72 Systems Exhbited

System Name: TDLjUDINE
Designed and Implemented by: Rolf Backofen, Stefan Diehl, Bernd Kiefer, Karsten Kon­

rad, Hans-Ulrich Krieger, Ulrich Schäfer, Christoph Wey­
ers

GENERAL DESCRIPTION I

Inference Engine
unique engine VS. dedicated modules:
dedicated modules

• feature constraint scilver
• sophisticated type system:

- symbolic simplification
- inheritance reasoning

non-montonic devices special form of inheritance and unification; some theoretical results
available

control facilities

• intelligent backtracking (weighted disjuncts)
• type expansion

parser/generator?

.advanced chart parser
• semantic head-driven generator

others future version of the type expansion mechanism can be parametrized
for different expanding strategies

Data Types
arity (flxed?) free
cyclic structures yes
lists/sets only list via FIRST jREST encoding special constructs in the spec-

ification language
functions/ relations functions with residuation

relations
others built-ins: integer, strings, symbols

Interaction FS <==> Types
type unification yes
type expansion

at definition/ yes-work with partially and fully expanded types and recursive
compile time ones
at nm time: yes-work with partially and fully expanded types and recursive
(delayed/partial/ ones
recursive)

others (template • ...) parametrized templates
- ----

TDL/UDiNe 73

I GENERAL DESCRIPTION II

Interfaces to
morphoIogy extended 2-1evel morphology X2 MorF
semanticsj semantic representation language N ce
knowledge repr.

Implementational Issues
programming lang. Common Lisp (Franz Inc., Allegro)

machine SUN/SPARC compatible machines
others (OIS, graphics .. .) UNIX CLIM (Common Lisp Interface Manager)

Applications
grammar theories? HPSG
educational vs. educational
commercial system
used in projectsj DISCO (DFKI), BiLD (Dep. of Comp. Ling.), PRACMA (Comp.
other systems? Science Saarbrücken

Grammar coded
Slze 11 650 type specification 250 lexicon entries
language \\

I Tools
11

I FEATURE CONSTRAINT SOLVER

Boolean Connectives
unification:

destructive yes
non-destructive non-destructive via COPY & RESET

disjunction:
atoms only
full (DNF) yes (via MAKE-DNF)
distributed yes; both in implementation and specification language
others

negation
atoms only
negated corefs yes
full yes with restrictions to distributed disjunctions (negation over non-

distributed disj. only L
others

implication
via negation yes
others

Additional Operations
subsumption on DNF
functional uncertainty via recursive type specifications
others RESET, COPY, MAKE-DNF

Tools

• generic traversing function on feature structures
• print feature structure

Comments prototype version of "intelligent backtracking" (weighted disjuncts)

74 Systems Exbbited

I TYPE SYSTEM
-

Type Connectives
conjunction: multiple inheritance
single vs. multiple
inheritance
disjunction yes
negation yes
others XOR via OR and NOT

Type Definitions
via feature structures yes
via appropriateness
conditions
recursive? yes
others type declarations: incompatibility and partitions

Additional Operations

type inference/ type inference via type unification type classification during type
classification definition
GLB/LUB type GLB, LUB, type subsumption
subsumption

others GLB/LUB behave differently when applied to sorts or avm types

Restrietion on Hierarchy unrestricted input of type specs, some transformation are performed
(unrestricted partial order, on the input by the system
bounded complete p.o.,
distributive lattice ...)

Tools type grapher tdl2 Latex software switches wh ich changes the be-
haviour of the whole system

Comments making a distinction between sort types (closed-world reasoning)
and avm types (open-world)

TFS

2.11 The Typed Feature Structure Representation
Formalism

Martin c. Emele
Institut für maschinelle Sprachverarbeitung

Universität Stuttgart
emeleOims.uni-stuttgart.de

75

The Typed Feature Structure (TFS) representation formalism is an attempt to provide a syn­
thesis of several of the key concepts of unification-based grarnmar formalisms (feature structures),
knowledge representation languages (inheritance) and logic prograrnming (logical variables and
dedarativity) . The inheritance-based constraint architecture embodied in the TFS system inte­
grates two computational paradigms: the object-oriented approach offers complex, recursive,
possibly nested, record objects represented as typed feature structures with attribute-value re­
strictions and (in)equality constraints, and multiple inheritance; the relational programming
approach offers declarativity, logical variables, non-determinism with backtracking, and existential
query evaluation. The interpreter of the formalism is described as a term rewriting system based
on type unfolding where unification of typed feature structures is used to detect inconsistencies
between a query and the constraints imposed by the feature type system.

The grammar writer organizes unification grammars as inheritance networks of typed feature
structures. Complex linguistic structures are described by means of recursive type constraints
which correspond to dass definitions in object-oriented formalisms. The use of an object-oriented
methodology with inheritance is very attractive for naturallanguage processing and offers a num­
ber of advantages such as abstract ion and generalization, information sharing, modularity and
reusability of descriptions. Through the development of a wide variety of different applications
it has been demonstrated that the formalism is flexible enough and weil suited to represent the
principles and parameters approach of modern computationallinguistic theories. In particular, it
has been successfully used for the encoding of large grammar fragments as described in the HPSG
grammar representation formalism .

2.11.1 Type Constraint System

Type Hierarchy

One of the design criteria behind the implementation of TFS was to minimize the amount of
information the user has to explicitly provide while specifying a grammar description. Hence we
do not have to specify separate appropriateness conditions instead they will be inferred from the
type constraints . The following assumptions about types hold:

• types prestructure the domain of discourse and are interpreted as unary predicates which
denote subsets of the universe .

• we assume that all minimal types exhaustively partition the domain. Hence negative infor­
mation, which shows up as inconsistency between types, is represented only implicitly. Such
an approach is motivated by the fact that for most of the linguistic applications only a few
types interact and thus we have to express only the positive statements for those types and
not all the negative ones which are implied by the partitioning assumption.

• all non-minimal types are equivalent to the union of the minimal types which they subsume.

• types not defined in the hierarchy are unconstrained and assumed to be pairwise incompa­
rable.

The set of types Type is ordered by a subtype relation where the user may specify an arbitrary
finite partial order (po) (Type, $) for defining the type hierarchy without any further conditions
like unary branching or being a bounded complete partial order (bcpo) as it is assumed in other

76 Systems Exhbited

formalisms. The user specified po will be embedded into the restricted powerset 2[Type] wh ich is
constructed by taking all non-empty subsets of pairwise incomparable elements and hence defines
a cochain. The resulting construction forms a distributive lattice which preserves the original
ordering and already existing meets.

Typed Feature Structures

Typed feature structures are very similar to structured objects of object-oriented languages
and act as the lingua franca for computational linguists. They are defined over a finite set of
features Feat and over a finite type hierarchy (Type, ~).

Type Definitions

A collection of recursive type definitions which associates typed feature structure constraints to
types forms a. feature type system and offers the functionality of dass definitions imposing con­

straints on objects. Possible constraints involve:

• structural constraints which define for each type the set of appropriate attributes and for
each attribute the attribute-value restriction,

• (in)equality constraints expressed over a set of variables Var and a special equality predi­
cate,

• relational constraints attached to types as further conditions which must be true and hence
further restrict the denotation of the constrained type.

Formally, type definitions may be seen as axioms forming a theory. Satisfiability of feature
structure descriptions is checked with respect to this theory. Type unfolding is used to enforce the
constraints imposed on types by their definitions. In contrast to other systems TFS supports not
only inheritance of appropriateness information but also inheritance of equational and relational
constraints. Whereas the satisfiability of the structural constraints is decidable, adding equality
and relational constraints leads in general to undecidability. By checking the decidable structural
constraints at compile-time we gain the same advantages as in a system with an explicit type
discipline but without having to duplicate the typing information into a redundant appropriateness
specification. The appropriateness information is extracted from the structural constraints and
used for inferring missing type information and for doing actual type checking by testing for
satisfiabili ty.

2.11.2 Summary

The TFS system has been developed to provide a computational environment for the design and
the implementation of formal models of natural language. It does not offer means of defining
control information that would make execution more efficient (but less general), as it would be
needed if it were envisaged to use the system in an application-oriented environment (e.g., as a
parser in a natural language interface to a database system). As such, the TFS formalism is not
designed as a programming language, but as a specification language that can be used to design,
implement, and test formal Iinguistic models. From these formal models, it could be envisaged
to develop programs, i.e., parsers or generators, that would implement efficiently the declarative
knowledge contained in the formal specifications.

The TFS system is implemented using rewriting techniques in a constraint-based architecture
adapted to typed feature structures:

• The language is a logicallanguage directly based on typed feature structure constraints, and
supports an object-oriented style based on multiple inheritance.

TFS 77

• Grammars are expressed as inheritance networks of typed feature structure descriptions.
They define constraints on the set of acceptable linguistic structures. As a consequence we
have a truly multi-directional architecture and there is no formal distinction between "input"
and "output" .

• A unique general constraint solving mechanism is used. Specific mapping properties, based
on constituency, linear precedence or functional composition , are not part of the formalism
itself, but can be encoded explicitly using the formalism.

Although the current implementation is very much at the level of an experimental prototype,
and is still evolving, it has allowed to validate the basic concepts of the language and of the
implementation, and we have been able to show that TFS can adequately model a wide variety of
descriptive paradigms in computational linguistics: descriptive work and migration from existing
resources was carried out in the frameworks of LFG, DCG, SFG and HPSG grammars. From these
various experimentations, we have defined extensions and improvements, both on the language and
on the implementation, that are needed for scaling up the system.

On the formal language side, more expressivity is needed. For example, sets of feature struc­
tures are necessary to formalize non trivial semantic structures. Feature structure encodable types
like lists and strings could be conveniently added to the system as libraries of built-in types togeth­
er with a specific syntax and associated operations, like concatenation, etc., for which specialized
constraint-solvers could be provided to improve the termination behaviour and the performance
of these operations .

On the implementation side, the use of implementation techniques adapted from Prolog im­
plementations, especially the compilation of feature constraints into an abstract machine like the
WAM together with more sophisticated control strategies would greatly enhance the efficiency of
the constraint solver. For specific application domains, like natural language parsing, compila­
tion of string concatenation into a standard chart-parsing module, where the linguistic description
allows such a compilation, might turn out to be a viable strategy for improving the efficiency.

Implementation

TFS was designed and implemented by Martin C. Emele und Remi Zajac within the German
Polygloss Project (BMFT Project 08 B 3116 3 / 08 B 3120 6) and is implemented in Common
Lisp (e.g. MCL, Allegro, Lucid, CMU CL, CLISP, AKCL). It runs on virtually any architecture
and software system for which an appropriate Common Lisp dialect is available. TFS owes much
of its port ability to the fact that it does not include any graphie displays for its basic version.
For some architectures plus Common Lisp dialects (currently LISP-machines and Mac IIs) the
implementation of TFS supports graphie output and a menu-based window interface. A CLIM­
based (Common Lisp/ X Window System / Interface Manager) graphical interface has been written
by Oliver Christ.

TFS runs as a stand-alone system for the Macintosh 11 family, and requires System 7. For
other architectures it requires the appropriate Common Lisp license.

Availability and Maintenance

TFS is copyright Institut für maschinelle Sprachverarbeitung, Universität Stuttgart. It is dis­
tributed in a binary form only, and is available without charge for academic research for non­
commercial use. The main TFS files for different LISP dialects and architectures can be obtained
by anonymous ftp from the address ftp.ims.uni-stuttgart.de (141.58 .127.8) in the directory
TFS. There are also subdirectories 'demo' and 'HPSG' containing further sampie grammars and
programs.

References

For more information about the theoretical motivations for TFS, see ihe following articles, and
references therein:

78 Systems Exhbited

Emele, Martin and Remi Zajac (1990). Typed Unification Grammars. In: Hans Karlgreen
(ed.), Proceedings ofthe 13th International Conference on Computational Linguistics (CoLing90),
Helsinki, August 1990.

Zajac, Remi (1992). Inheritance and Constraint-Based Grammar Formalisms. Computational
Linguistics 18, ppI59-180.

System Name: TFS
Designed and Implemented by: Martin C. Emele, Remi Zajac

GENERAL DESCRIPTION I

Inference Engine
unique engine VB. unique engine (constraint sol ver)
dedicated modules
non-montonic devices no
control facilities no explicit control

dause-indexing over lexicon
parser/generator? not necessary since using the engine the same grammar description

successfully used for parsing and generation
others

Data Types
arity (fixed?) no fixed arity terms
cyclic structures yes
lists/sets lists, set operations encodable
functions/relations

• using macro syntax
• definite dause compiler available (e)

others
Interaction FS {::::::} Types

type unification yes, uses precomputed type lattice
type expansion

at definition/ deterministic expansion at compile time
compile time

at run time: evaluation of recursive type definitions with delayed expansion
(delayed/partiall
recursive)

others (template •...) parametric macros expanded at compile time

TFS 79

I GENERAL DESCRIPTION 11

Interfaces to
morphology not necessary since morphology can be encoded within the system

as weIl
semantics/ not necessary since morphology can be encoded within the system
knowledge repr. aB weIl

Implementational Issues
programming lang. Common Lisp

machine any on which a suitable CL runs
others (o/s, graphica ...) Macintosh System 7, UNIX, Xll, CLIM (Common Lisp Interface

Manager)
Applications

grammar theories? HPSG, LFG, GB, SFG
educational vs. public domain
commercial system
used in projects/ used widely about 20 installations worldwide
other systems?

Grammar coded
size covers large parts of the 11 Vol. of PoIlard & Sag
language EN, GE, FR, JA sampie grammars of HPSG

Tools

• Graphical Feature Structure/Tree Displayer
• Browser and Editor for type hierarchy

Comments

80 Systems Exhbited

I FEATURE CONSTRAINT SOLVER

Boolean Connectives
unification:

destructive ombination of destructive and non-destructive

non-destructive unification with structure-sharing and lazy copying
disjunction:

atoms only atomic disjunctions of types expanded at run time

full (DNF) full disjunction possible within definite clauses (e)

distributed no
others disjunctive type definition

negation
atoms only
negated corefs inequations -'

full
others

implication
via negation
others

Additional Operations -

subsuinption
functional uncertainty encodable with recursive types
others

Comments ~
Tools

TYPE SYSTEM

Type Connectives
conjunction: multiple inheritance
single vs. multiple
inheritance
disjunction yes
negation expressed via closed world assumption

others

Type Definitions
via feature structures inferred from the type definitions
via appropriateness
conditions
recursive? yes
others

Additional Operations
type inference/ full type inference (infers missing type info and classifies feature term
classification descriptions according to type definitions)
GLB/LUB type GLBjLUB
subsumption

others compile-time type-checking

Restriction on Hierarchy unrestricted partial order which is embedded into a distributive
(unreatricted partial o rder, lattice
bounded complete p .o _,
distributive lattice ...)

Comments ~
Tools

Tue 81

2.12 Short Description of Trace & U nification Grammar
(TUG)

Hans Ulrich Block
Siemens AG, Corporate Research, ZFE ST SN 74

Otto Hahn-Ring 6
D-81730 München

Germany
block@zfe.siemens.de

ABSTRACT

This paper presents Trace & Unification Grammar (TUG), a declarative and reversible grammar
formalism that brings together Unification Grammar (UG) and ideas of Government & Binding
Theory (GB) . The TUG system is part of a polyfunctionallinguistic processor for German called
LINGUISTIC KERNEL PROCESSOR (LKP) . The LKP contains a grammar of German with broad
coverage. The grammar describes the relation between a subset of German and a subset of QLF, the
intermediate semantic form that is used in the Core Language Engine of SRI Cambridge (Alshawi
1990). The LKP has been implemented in PROLOG. Parsing and Generation of a sentence up to
15 words normally takes between 1 and 10 seconds, with a strong tendency to the lower bound .

2 FORMALISM

The design of Trace and Unification Grammar has been guided by the following goals:

• Perspicuity. We are convinced that the generality, coverage, reliability and development
speed of a grammar are a direct function of its perspicuity, just as programming in Pascal
is less errorprone than programming in assembler. In the optimal case, the grammar writer
should be freed of reflections on how to code things best for processing but should only be
guided by linguistic criteria. These goals led for example to the introduction of unrestricted
disjunction into the TUG formalism .

• Compatibility to GB Theory. It was a major objective of the LKP to base the grammar
on weIl understood and motivated grounds. As most of the newer linguistic descriptions on
German are in the framework of GB theory, TUG was designed to be somehow compatible
with this theory though it was not our goal to "hardwire" every GB principle.

• Efficiency. As the LKP is supposed to be the basis of products for interactive usage of
naturallanguage, efficiency is a very important goal. Making efficiency a design goal of the
formalism led e.g. to the introduction of feature types and the separation of the movement
rules into head movement and argument movement.

The basis of TUG is formed by a context free grammar that is augmented by PATR lI-style
feature equations. Besides this basis, the main features of TUG are feature typing, mixing of
attribute-value-pair and (PROLOG-) term unification, flexible macros, unrestricted disjunction and
special rule types for argument and head movement.

2.1 BASIC FEATURES

As a very simple example we will look at the TUG version of the example grammar in Shieber
(1984).

% type definition

s => f.

82 Systems Exhbited

np => f(agr:agrmnt).
vp => f(agr:agrmnt).
v => f(agr:agrmnt).

agrmnt => f(number:number,person:person).

number => {singular,plural}.
person => {first,second,third}.

% rules

s ---> np, vp
np:agr = vp:agr.

vp ---> v, np
vp:agr = v:agr.

% lexicon

lexicon('Uther',np)
agr:number = singular,
agr:person = third.

lexicon('Arthur',np) I
agr:number = singular,
agr:person = third.

lexicon(knights,v) I
agr:number = singular,
agr:person = third.

lexicon(knight,v) I
(agr:number = singular,

(agr:person = first
agr:person = second

)

agr:number = plural
) .

The two main differences to PATR II in the basic framwork are that first, TUG is less flexible in
that it has a "hard" contextfree backbone, whereas in PATR 11 categories of the context free part
are placeholders for feature structures, their names beeing taken as the value of the cat feature
in the structure. Second,TUG has a strict typing. For a feature path to be weIl defined, each of
its attributes has to be declared in the type definition.

Besides defined attribute-value-pairs, TUG allows for the mixing of attribute-value-pair uni­
fication with arbitrary structures like PROLOG terms using a back-quote notation. This can be
regarded as the unificational variant of the BUILDQ operation known from ATNs. As an exam­
pIe consider the following lexicon entry of each that constructs a predicate logic notation out of
det :base, det: scope and det: var.

lexicon(each,det) I
det:sem =

'all(det:var,det:base ->
det:scope)

During our work on the German grammar we found that this feature was very useful for the
construction of semantic forms.

TUG 83

TUG provides templates for a clearer organization ofthe grammar. The agreement in the above
mentioned grammar might have been formulated like this:

agree(X,Y) short_for
X:agr = Y:agr.

s ---> np, vp I
agree(np, vp) .

TUG allows for arbitrary disjunction of feature equations. Disjunctions and Conjunction may
be mixed freely. Besides weH known cases as in the entry for knight above, we found many cases
where disjunctions of path equations are useful, e.g. for the description of the extraposed relative
clauses1 .

2.2 MOVEMENT RULES

Further to these more standard uG-features, TUG provides special rule formats for the descrip­
tion of discontinuous dependencies, so called "movement rules". Two main types of movement are
distinguished: argument movement and head movement. The format and processing of argument
movement rules is greatly inspired by Chen e.a. (1988) and Ghen (1990), the processing of head
movement is based on GPSG like slash features.

Head Movement

A head movement rule defines a relation between two positions in a parse tree, one is the
landing site, the other the trace position. Head movement is constrained by the condition that the
trace is the head of a specified sister (the root node) of the landing site2 . Trace and Antecedent
are identical with the exception that the landing si te contains overt material, the trace doesn't.
Suppose, that v is the head of vk, vk the head of vp and vp the head of s, then only the first
of the following structures is a correct head movement, the second is excluded because np is not
head of vp, the third because antecedent and trace are unequal.

Es' Vi [s ... [vp ...
[vk trace(v)i ...] ...] ...] ...]

Es' npi [s .. , ~vp trace(np)i
[vk V •••] •••] •••]

Es' npi [s ... [vp .. .
[vk trace(v)i ...] ...] ...] ...]

To formulate head movement in TUG the following format is used. First, a head definition
defines which category is the head of which other.

V is_head_of vk.
vk is_head_of vp.
vp is_head_of s.

Second, the landing site is defined by a rule like

s' ---> v+s I ...

To include recursive rules in the head path, heads are defined by the following head definitions.
In a structure [H Dl ... Dn] Di is the head of H if either Di is..llead...of H is defined or Di has
the same category as Hand either Di is..llead_of X or X is..llead...of Di is defined for any category
X.

1 Block/Schmid (1992) describes our processing technique for disjunctions.
2 Here, "head of" is a transitive relation S.t. if x is head of y and y is head of z then x is head of z.

84 Systems Exhbited

Head movement rules are very weH suited for a concise description of the positions of the finite
verb in German (sentence initial, second and final) as in

Halj der Mann der Frau das Buch gegeben lj ~
Hasj the man the woman the book given tj
Der Mann halj der Frau das Buch gegeben lj

The man hasj the woman the book given tj
... daß der Mann der Frau das Buch gegeben hat
.. . that the man the woman the book given has
All that is needed are the head definitions and the rule that introduces the landing site3 .

Argument Movement

Argument movement rules describe a relation between a landing site and a trace.
The trace is always c-commanded by the landing site, its antecedent. Two different
traces are distinguished, anaphoric traces and variable traces. Anaphoric traces must find
their antecedent within the same bounding node, variable trace binding is constrained by
subjacency, i.e. the bin ding of the trace to its antecedent must not cross two bound­
ing nodes. Anaphoric traces are found for example in English passive constructions
[s [np The book of this author]j was read tj] whereas variable traces are usuaHy found in wh­
constructions and topicalization. Similar to the proposal in Chen e.a. (1988), argument movement
is coded in TUG by a rule that describes the landing site, as for example in -

s2 ---> np:ante<trace(var,np:trace), s1 I
ante:fx = trace:fx,

This rule states that np:ante4 is the antecedent of an np-trace that is dominated by sI. This
rule describes a leftward movement. Following Chen's proposal, TUG also provides for rightward
movement rules, though these are not needed in the German grammar. A rightward movement
rule might look like this.

s2 ---> s1, trace(var,np : trace»np:ante
ante:fx = trace:fx,

The first argument in the trace-term indicates whether the landing site is for a variable (var)
or for an anaphoric (ana) trace. Other than head movement, where trace and antecedent are
by definition identical, the feature sharing of argument traces with their antecedents has to be
defined in the grammar by feature equations (ante: fx = trace : fx, ...). Furthermore, it is not
necessary that the antecedent and the trace have the same syntactic category. A rule for pronoun
fronting in German might e.g. look like this:

spr ---> pron<trace(ana,np), si . . .

The current version of the formalisms requires that the grammar contains a declaration on
which categories are possible traces. In such a declaration it is possible to assign features to a
trace, for example marking it as empty:

trace(np) I np:empty = yes.

3Even though verb movement is not supposed to be a topic for English grammar, one might think of describing
English Subj-Aux inversion in terms of head movement.

Peter haß been reading a book
H a8j Peter tj been reading a book
4The notation Cat : Index is used to distinguish two or more occurrences of the same category in the same rule

in the equation part. : ante and : trace are arbitrary names used as index to refer to the two different nps.

TUG

Bounding nodes have to be declared as such in the gramm ar by statements of the form

bounding_node(np).
bounding_node(s) I s:tense = yes.

85

As in the second case, bounding nodes may be defined in terms of category symbols and
features5 . Typical long distance movement phenomena are described within this formalism as in
GB by trace hopping. Below is a grammar fragment to describe the sentence Which books; do you
think Li lohn knows Li Mary didn't understand Li:

bounding_node(s).
bounding_node(np).

s1 ---> np<trace(var,np), si ...
s ---> np, vp I ...
s ---> aux, np, vp I
np ---> propernoun I
np ---> det, n I
vp ---> v, s1 I
vp ---> v, np I ...

trace(np) .

The main difference of argument movement to other approaches for the description of discon­
tinuities like extraposition gramm ars (Pereira 1981) is that argument movement is not restricted
to nested rule application. This makes the approach especially atractive for a scrambling analysis
of the relative free word order in the German Mittelfeld as in

Ihm; hatj das Buchk keiner Li tk gegeben tj.

3 COMPILATION OF TUG

For efficient processing TUG is compiled to two different forms, one for parsing and one for
generation. Prior to both compilations a TUG is transformed to DCG format.

For parsing, this format is then transformed for processing with a Tomita parser (Tomita 1986)
in several steps:

• expansion of head movement rules

• transformation of argument movement rules

• elimination of empty productions

• conversion to LR(K) format

• computation of LR tables

After these compilation steps the context free rules are transformed to YACC format and YACC

is used to compute the LR parsing table. Finally, YACC'S y. output file is transformed to PROLOG.

For generation with TUG an improved version of the semantic-head-driven generator (SHOG)

(see Shieber e.a. 1990) is used. Before being useful for generation, the grammar is transformed in
the following steps:

• expansion of head movement rules

• transformation to the semantic head driven generator format

5Currently, only conjunction of equations is allowed in the definition of bounding nodes.

86 Systems Exhbited

• expansion of movement mIes

• elimination of nonchainrules with uninstantiated semantics

• goal reordering and transformation to executable prolog code

4 CONCLUSION

We have presented Trace & Unification Grammar, a gramm ar formalism that tries to bridge
the gap between vo and OB theory. TUG comes with a parser generator and a generator generator
that lead to effient runtime code of the grammar both for parsing and for generation.

The presented grammar formalism has been used to describe a relevant subset of German
language and smaller subsets of Chinese and Japanese. The gramm ars describe a mapping between
German, Chinese and Japanese and QLF expressions. TUG has been used in the German ASL­
project for speech understanding, in the CSTAR project for spoken languagetranslation from
German to Japanese and in the German part of the SUNDIAL project.

ACKNOWLEDGEMENTS

The TUG-system and the grammars for German have been developed by Manfred Gehrke, Rudi
Hunze, Steffi Schachtl, Ludwig Schmid and Christine Zünkler. The Chinese grammar has been
written by Ping Peng. The Japanese grammar has been written by Juunko Hosaka.

REFERENCES

Alshawi, H. (1990) "Resolving Quasi Logical Forms", Computational Linguistics, Vol. 16, pp.
133-144.

Block, H. U. (1991) "Compiling Trace and Unification Grammar for Parsing and Generation",
Proc. of the ACL- Workshop on Reversible Grammar in Natural Language Processing,
pp. lOO-108.

Block, H. U. and S. Schachtl (1992) "Trace and Unification Gramar" , Proc. 14th International
Conference on Computational Linguistics (COLING-92), pp. 87-93.

Block, H. U. and 1. A. Schmid (1992) "Using Disjunctive Constraints in a Bottom-Up Parser"
Konferenz "Verarbeitung natürlicher Sprache" (KONVENS 92), pp. 169-177.

Chen, H.-H., I-P. Lin and C.-P. Wu (1988) "A new design of Prolog-based bottom-up Parsing
System with Government-Binding Theory", Proc. 12th International Conference on Com­
putational Linguistics (COLING-88), pp. 112-116.

Chen, H.-H. (1990) "A Logic-Based Government-Binding Parser for Mandarin"-Chinese", Proc.
13th International Conference on Computational Linguistics (COLING-90), pp. 1-6.

Pereira, F. (1981) "Extraposition Grammar" Computational Linguistics Vol. 7, pp. 243-256.

Shieber, S.M. (1984) "The design of a Computer Language for Linguistic Information" Proc. 10th
International Conference on Computational Linguistics (COLING-84), pp. 362-366.

Shieber, S.M. (1988) "A Uniform Architecture for Parsing and Generation" I Proc. 12th Interna­
tional Conference on Computational Linguistics (COLING-88), pp. 614-619 .

Shieber, S.M., G. van Noord, F.C.N. Pereira and R.C. Moore (1990). "Semantic-Head-Driven
Generation". Computational Linguistics, Vol. 16, pp. 30-43.

Tomita, M. (1986). Efficient Parsing for Natural Language: A fast Algorithm for Practical Sys­
tems. Boston: Kluwer Academic Publishers.

Tue

System Name:
Designed and Implemented by:

Trace & Unification Grammar (TUG)
Siemens AG

GENERAL DESCRIPTION I

Inference Engine

unique engine vs.
dedicated modules
non-montonic devices no

control facilities no

parser/generator? parser and generator

others

Data Types

arity (flxed?) fixed

cyclic structures no

lists/sets lists

functions / relations no

others "movement rules"

Interaction FS {::::::> Types

type unification Prolog term unification

type expansion

at definition/ type elimination at compile time
compile time

at run time:
(delayed/partial/
recuraive)

others (templatea ...)

I GENERAL DESCRIPTION 11

Interfaces to

morphology no

semantics/ yes
knowledge repr.

Implementational Issues
programming lang. Prolog (Quintus-, Sixtus-, SNI)

machine Sun Sparc WS

others (O/S, graphics ...) UNIX

Applications

grammar theories? trace theory

educational vs. commercial
commercial system

used in projects/ ASL, SUNDIAL, CSTAR, MeI
other systems?

Grammar coded
slZe ca. 370 rules, 160 type defs.

language German, Chinese, Japanese

Comments
11 LeXlcon Tool Tools

87

88 Systems Exhbited

[FEATURE CONSTRAINT SOLVER

Boolea.n Connectives

unification:

destructive

non-destructive x
disjunction:

atoms only

full (DNF)

distributed

others full, not DNF

negation

atoms only no

negated corefs no

full no

others no

implication

via negation no

others no

Additional Operations

subsumption no

functional uncertainty no

others movement rules

Comments ~
Tools

TYPE SYSTEM
--

Type Connectives

conjunction: no
single vs. multiple
inheritance
disjunction no

negation no

others no

Type Definitions

via feature structures yes

via appropriateness
conditions
recursive? yes

others

Additional Operations

type inference/ no
classification
GLB/LUB type no
subsumption

others

Restriction on Hierarchy
(unrestricted partial order,
bounded complete p.o.,
distributive lattice ...)

Comments ~
Tools

UD

2.13 UD: A Unification Device

C.J. Rupp and Rod Johnson
IDSIA, Corso Elvezia 36

CH-6900 Lugano, Switzerland
email: {cj,rod}@idsia.chRupp, Mike Rosner, Paolo Cattaneo

2.13.1 Origins and Motivations

89

The current version of UD is a direct descendent of an earlier version of the system that was also the
progeni tor of the EL U system developed at ISSCO. The original version of UD was also developed
at ISSCO and is reported on in Johnson & Rosner (1989) and Rupp et al. (1992). Subsequent
development of UD since 1988, has been carried out at IDSIA and has focussed on improvements
to the morphology and on the efliciency of the implementation.

The nature of the UD formalism still bears many of the infiuences of the original motivations
for developing such a system. The original purpose of building UD was to support the development
of a prototype MT system. We realised from the outset that there would be certain technical,
logistical and theoretical difliculties in developing extensive linguistic descriptions and in making
use of these descriptions in an MT system with adequate performance. We therefore considered it
important to distinguish between a grammar development environment and the intended ultimate
implementation. A major distinction between these two systems would be that the the former
allowed a considerable degree of "theory prototyping", while the latter would "hard code" the
major theoretical constructs of the descriptions in order to optimise performance. At the time that
this project was being planned it was dear that none of the available constraint-based linguistic
theories was fully adequate for the construction of extensive linguistic descriptions; so we were
especially careful to permit the linguists constructing the descriptions to develop their own set
of theoretical constructs which could be optimised for performance as, and when, they became
stabilised. This is essentially a pragmatic approach in that, unlike, say, the LFG system, it does
not assurne apriori the adoption of a particular grammatical (meta)theory. Our approach also
gives the grammar writers some control over the development of the formalism and as a result
the design of the UD formalism has been largely "demand driven". This philosophy also has
its weaknesses: in particular there is a risk of losing homogeneity and of excessive notational
redundancy. Nevertheless the capability to support theory prototyping is a major characteristic of
the UD formalism, and in this respect its expressive power is equivalent to other current formalisms
of much later design, such as the CUF (Dörre & Eisele, 1991) .

2.13.2 The UD Formalism

The formal notation of the UD system was designed in the latter part of the eighties to be a generic
constraint-based formalism, hence it takes as its starting point the equational notation popularised
by PATR-II. The two main extensions to the equational framework that UD offers are the ability
to state linguistic generalisations in the form of definite relations and the provision of a number of
additional data types, most notably lists, and certain key operations over these data types. The
relation al abstraction mechanism, used to state principles and other linguistic generalisations, may
be seen as a direct extension of PATR-II templates, but with a considerably increased expressive
power. Indeed it has been demonstrated (Reape 1991, 1993) that relations can also be used to
define additional data types, but our purpose in providing an explicit representation of constructs
such as lists is more than just a syntactic sweetener: if constructs of a known structure can be
identified as early as possible then their structure can be exploited in the implementation.1

lThere is an important pragmatic difference between a theoretically elegant minimalist view of the semantics
of a formalism and the practical necessities of using that formaliam to construct useful artefacts. The definition of
pure Lisp, as we a11 know. requires just five basic functions and a constantö but the market for Lisp systems which
provide only five functions and one constant is vanishingly small.

90 Systems Exhbited

As a direct consequence of the incorporation of additional data types and of relational rather
than predicative abstractions the UD notation makes use of variables in order to denote the internal
structure of objects and argument positions. This further implies that paths must be rooted to
determine their starting node, rather than systematically referring back to the root of the feature
structure (cf. PATR-II and LFG). These key extensions over earlier formalisms offered by UD raise
the question of what notational conventions to adopt. Here again our solution has been relatively
pragmatic: given that most students of computationallinguistics are exposed to the Edinburgh
syntax notation of Prolog this provides a ready source of notational forms for constructs such as
lists, variables, anonymous variables, terms and relations themselves. The adoption of a number
of Prolog notational conventions was intended to diminish the learning time for novice users; but
we have also found it to be a 80urce of confusion in that novice users and audiences at demos
often assumed that the underlying implementation must also be in Prolog and even inherit Prolog
procedural semantics - which is emphatically not the case.

The combination of PATR-II and Prolog styles of notation covers most of the syntactic needs
of the UD formalism; the remainder can be found in other well-known sourees, such as the various
instantiations of LFG.

The basic UD syntax can be sketched by a few schematic examples. Constraint information in
UD is expressed by two basic types of construct: equations and relational abstractions. The basic
form of equations is predictable from our decision to use a generic PATR-style syntax, plus the
need to root paths.

< Root attri .. . attrn > = value

The form of relational constraints is also unsurprising, except for the preceding exclamation
mark (!) denoting invocation.

!Relation(Argi, .. . , Arg2)

Most of the other extensions to the language to account for additional data structures and
built in operations over these can most easily be accounted for by considering them as additional
terms which slot into the two basic forms of literal, i.e. they are equated or occur in argument
positions in a relation.

X
[Head I TaU]
Mother(Dtri, ... ,Dtrn)
{X,Y,Z}
Listi ++ List2
List -- Element

<Root attri .. . Y ... attrn>
Atomi tt Atom2
atomi/ .. ./atomn
-atom

variables
lists
trees
disjunctions
two lists appended together
the remainder of a list after
an element is removed
a variable path
the concatenation of two atoms
a disjunction of atoms
an atomic negation

The use of Prolog-style variable notation in the above table is intended to be suggestive of the
fact that the syntax allows variables over any of the above syntactic types, subject to the obvious
semantic constraints. For example, the variable at the root of a path must evaluate to a feature
structure; and within a path a variable should evaluate to either an atom or a list of atoms. Similar
constraints are obviously implied by the argument structure of other built in operators.

UD feature structures are, in general, open structures with no restrictions on the range features
that may appear. It is, however, possible to im pose such restrietions using a rudimentary form of
typing.

Typing Definition
x == closed-type closed-type = (first,next, ... ,last)

UD 91

A typing statement requires the presence of all and only those features that appear in its
definition; hence there is no possibility to combine types, nor do they impose any conditions on
feature values. Such statements are of limited applicability, but have found two quite independent
uses that may be of interest: in preserving the syntactic integrity of semantic representations,
which are in effect representations of statements in another language, and in the emulation of
HPSG gramm ars where closed types are essential in constraining the potential proliferation of
relation invocations.

A linguistic description in UD has a number of components consisting, respectively, of grammar
rules, lexical entries, morphology state transitions and relation definitions.

Hother -> Daughterl ... Daughtern
word
lexical-string -> actual-string

$successor-state
$succcessor-state

grammar rule
lexical entry
morphology transition

Constraint information, consisting of equations and relation invocations, is associated with
each of these constructs. 2

The definition of a relation is given by a sequence of clauses, consisting of a head, which is like
an invocation without the exclamation mark prefix, and a body made up of constraint information.

Relation(X, Y ,Z): ! Predicate(X)
<x path> = value
Z = Y -- X
!Hacro

The clauses of a definition are treated disjunctively and may be recursively defined.

2.13.3 Discussion

Given the emphasis in the design of UD on the ability to build new theoretical constructs, we
expect that the fabric of a linguistic description williargely consist of the invocation of relational
abstractions and that the raw equational notation williargely be confined to relation definitions.
Hence the dependencies between relations also form the main organisation al principles of the
description. This is in many ways similar to the definition of type hierarchies as in HPSG, but
somewhat more flexible. This reliance on relation al constructs to provide the fabric of a linguistic
description is in no way diminished by the presence of additional notations representing grammar
rules, lexica and morphological rules, since the constraint language remains the same throughout
every component of the description. Indeed the level of modularity provided by the different
components of the description can be further enhanced by the use of relational constructs to define
"communication protocols" between the different representational domains of the description.
The technique has been demonstrated to be effective by the continued u~e ~f the same extensive
morphology and lexicon over a number of years despite considerable var~atlOns In .the ass<:,cl~ted
syntactic and semantic representations. This level of modularity is an obv,!oUS asse~ 10 descnptl.on~
that are constructed by more than one linguist. The general need for declaratlve modulanty

within constraint-based formalism is further discussed in Rupp (1993).
Given that UD was designed from the outset as a development tool for real syst~~s, w~ were

forced to come to terms very early with the need to maintain a very degre~ of expresslvJty wIthout
sacrificing performance. In a serious development context it is not sufficle~t to allo,,:, the ~ser to
say the kind of thing that you think they are going to want to say; the envlfonm~nt. 10 whlch t~e
f I· ., I ted must equally provide an efficient testbed for the descnptlOn. There JS orma Ism 18 Imp emen

2 • • ludes constructs in the morphology, which in UD is seen as a three-place relatio~ mapp~ng

~::~~i,:~r:~~:~:r~~~!~~~:~~ds:::~~::!~:~~r~~~ :!~~h:~!;ddi~~~o~r~:~~:~;:::~~f =~:~~~!;~I~~:';!:~:
comparable to the X2MorF used in TDL.

92 Systems Exhbited

an obvious interaction between concision and expressivity in formalisms and their complexity, and
yet most current formalisms have broadly the same expressive power. In general the key issue
is non-determinism, which is usually expressed in disjunctive statements of one form or another.
As has been seen above UD contains two main forms of disjunction. By far the most significant
is the presence of multiple clauses in relation definitions, since these definitions are' the primary
constructs of a description, in both theoretical and practical terms. A more direct notation for
disjunctive terms also exists, but this is mainly employed to describe alternations wh ich though
systematic do not playa significant role in the structure of the descriptions.

We have devoted a great deal of effort in UD to optimisation of the treatment of non­
determinism, which is based on breadth-first expansion with heuristically driven delayed eval­
uation. Details of the strategy used and the reasoning behind it can be found in Johnson &
Rupp (1993). The technique has proved very effective in processing descriptions wh ich are, the­
oretically at least, highly complex. It is also notable that the same approach is applied to many
different forms of non-determinism which occur in UD descriptions, including disjunctive and re­
cursive relation definitions, disjunctive terms and operators over specific data types. UD has been
used successfully to define numerous descriptions, including: an extensive fragment of German;
complete Italian and French verbal morphologies; substantial fragments of Italian and French,
including good coverage of clitic constructionsj transcodings of many toy fragments of English
used to illustrate other constraint-based formalisIDS.

Bibliography

[1] J. Dörre and A. Eiseie. A comprehensive unification-based grammar formalism. DYANA
deliverable R3.l.B, Centre for Cognitive Science, University of Edinburgh, Scotland, January
1991.

{2] R. Johnson and M. Rosner. A rich environment for experiment at ion with unification gram­
mars. In Proceedings of the Fourth Conference of the European Chapter of the
Association for Computational Linguistics, pages 182-189, Manchester, 1989.

[3] R. Johnson and C. Rupp. Evaluating complex constraints in linguistic formalisms. In H. Trost,
editor, Feature Formalisms and Linguistic Ambiguity, Chichester, 1993. Ellis Horwoood.
To appear.

[4] M. Reape. An introduction to the semantics ofunification-based grammarformalisms. DYANA
deliverable R3 .2.A, Centre for Cognitive Science, University of Edinburgh, Scotland, 1991.

[5] M. Reape. A feature value logic with intensionality, nonwellfoundedness and functional and
relation al dependencies. In C. Rupp, M. Rosner, and R. Johnson, editorS,· Constraints,
Language, and Computation. Academic Press, London, 1993.

[6] C. Rupp, R. Johnson, and M. Rosner. Situation schemata and linguistic representation. In
M. Rosner and R. Johnson, editors, Computational Linguistics and Formal Semanties.
Cambridge University Press, Cambridge, 1992.

[7] C. J. Rupp. Constraint propagation and semantic representation. In C. Rupp, M. Rosner,
and R. Johnson, editors, Constraints, Language, and Computation. Academic Press,
London, 1993.

UD 93

System Name: UD
Designed and Implemented by: Rod Johnson with contributions from C .J. Rupp, Mike

Rosner, Paolo Cattaneo

GENERAL DESCRIPTION I

Inference Engine
unique engine vs. dedicated parsing & morphology
dedicated modules
non-montomc devices none
control facilities Preference ordering of outputs of rule reductions
parser/generator? tabular parser with Earley prediction over finite restrictors; invert-

ible fst morphology
others

Data Types
arity (fixed?) open: F-structures, lists

closed: F -structures, terms
cyclic structures F-structures, lists, terms
lists/sets lists
functions / relations relations
others strings -

Interaction FS {=} Types
type unification N.A.
type expansion

at definition/ deterministic expansion at load time
compile time

at run time: lazy evaluation at run time
(delayed/partiaIl
recu ive)

others (templates ...)

I GENERAL DESCRIPTION 11

Interfaces to
morphology integrated morphology
semantics/ no external semantics
knowledge repr.

Implementational Issues
programming lang. Allegro Common Lisp, compiler in C (via yacc)

machine Sun Spare, Sun3, Macintosh (no compiler), porting to i486 and
windows

others (O/S, graphie8 .. .) Unix ideally (ported to Macintosh or i486 and windows)
Applications

grammar theories? HPSG, UCG, LFG encodable
educational VS. educational
commercial system
used in projects/ Nat+Lab (Delta DI016)
other systems?

Grammar coded
Slze maximum (German) has 2,000 word lexicon
language 11 German, French, Italian, English (in that order)

Tools Stepper. Compiler from extern al PATR-style notation to S-
expression based internal representation.

Comments

94 Systems Exhbited

[FEATURE CONSTRAINT SOLVER
---- ---

Boolean Connectives I
unification:

destructive

non-destructive non-destructive, structure-sharing I

disjunction: I

atoms only
i

full (DNF)
distributed

others generalised disjunction over any data types, handled by lazy I

evaluation
negation

atoms only yes

negated corefs no

full no
others

implication

via negation no

others
-

Additional Operations

subsumption no

functional uncertainty encodable easily (e.g. using path variables)

others

Comments ~
Tools

UD 95

I TYPE SYSTEM

Type Connectives

conjunction: yes
single vs. multiple
inheritance
disjunction yes

negation no
others

Type Definitions

via feature structures
via appropriateness
conditions
recursive? yes

others via global conditions on feature structures

Additional Operations

type inference/ N.A.
classification
GLB/LUB type N.A.
subsumption

others -
Restriction on Hierarchy N.A.
(unrestricted partial order,
bounded complete p .o .,
d istributive lattice ...)

Tools

Comments These responses refer to relations rather than types, so do not fit
the questions particularly weIl.

96

Part 3

U nexhibited Systems

97

98 Unexbibited Systems

3.1 STUF-II

IBM Germany, Institute for Knowledge Based Systems, Roland Seiffert

(no description submitted)

System Name: STUF-II
Designed and Implemented by: IBM Germany, Institute for KnowledgeBased Systems,

Roland Seiffert

GENERAL DESCRIPTION I

Inference Engine
unique engine VS . dedicated, exchangeable modules for
dedicated modules

• parsmg
• feature unification
• sort lattice & GLB proc.

non-montonic devices -

control facilities tools for development & testing & evaluation of parsing strategies
integrated in parser modules

parser/generator? parser: adaptable bottom-up chart parser, generator under
development

others -
Data Types

arity (fixed?) free
cyclic structures yes
lists/sets not built-in but a set of list macros is provided

sets: no
functions/relations -
others arbitrary sort lattices with associated GLB procedure may be inte-

grated (one GLB proc. is built-in)
Interaction FS <=} Types

type unification FS unification calls sort G LB procedure on leaf nodes in a "sort
domain"

type expansion never (in principle, sorts can be defined arbitrarily if a GLB proce-
dure is provided (e.g., sorts could be fs again))

at definition/
compile time

at run time:
(delayed/partiall
recursive)

others (templates ...) templates:

• parametrized
• recursively definable if compiIe-time evaluable to a disjunction

(finite)

I

STUF-II 99

I GENERAL DESCRIPTION 11

Interfaces to
morphology yes, a "lexicon manger" ia integrated that aHows to exploit variu-

ous lexical resources at runtime (e.g. fuH-form lexicon, morpholoy,
synonyms, ...)

semantics/ yes, hut very specialized (for LILOG project)
knowledge repr.

Implementational Issues
programming lang. Quintus Prolog 3.2

machine IBM RS/6000 runing AIX3.1 + X, SUN 4, IBM PS/2 runing AIXl.l
+X

others (o/s, graphics ...) there is a runtime version on RS/6000 that does not need Quintus
Prolog

Applications
grammar theories? open (we've done CUG and HPSG with it)
educational vs.
commercial system

used in projects/ LILOG
other systems?

Grammar coded
Slze HPSG grammar covering a substantial fragment of German
language 11 German

Tools rather sophisticated window-oriented grammar development
environment

Comments availahle free of charge under licence from IBM Germany for non-
profit organizations

100 Unexhibited Systems

[FEATURE CONSTRAINT SOLVER

Boolean Connectives

unification:

destructive x
non-destructive x

disjunction:

atoms only -

full (DNF) -
distributed X, DörrejEisele algorithm (but no distributed disjunctions in the

grammar specification--only implementation technique!)
others -

negation ..
atoms only x
negated corefs -
full -

others -

implication

via negation -
others -

Additional Operations

subsumption x
functional uncertainty -

others feature structures form an ADT with a whole bunch of possible
operations

Comments ~
Tools

STUF-II 101

I TYPE SYSTEM

Type Connectives

conjunction:
single vs. multiple
inheritance
disjunction

negation

others

Type Definitions

via fe atme structmes

via appropriateness
conditions ,

reCW"sive?

others

Additional Operations

type inference/
classification
GLB/LUB type
subsumption

others

Restriction on Hierarchy
(unrestricted partial order,
bounded complete p .o.,
distributive lattice .. .)

Comments 11

Tools

Part 4

Related Systems

103

104 Related Systems

4.1 An Informal Introduction to LIFE

Hassan A·it-Kaci Andreas Podelski Peter Van Roy
{hak,podelski,vanroy}Cprl.dec.com

Digital Equipment Corporation
Paris Research Laboratory

85 Avenue Victor Hugo
92500 Rueil-Malmaison, France

LIFE ia an experimental programming language proposing to integrate three orthogonal pro­
gramming paradigms proven useful for symbolic computation. From the programmer's standpoint,
it may be perceived as a language taking after logic programming, functional programming, and
object-oriented programming. From a formal perspective, it may be seen as an instance (or rather,
a composition of three instances) of a Constraint Logic Programming scheme. Here, we give an
informaloverview demonstrating LIFE as a programming language, illustrating how its primitives
offer rat her unusual, and perhaps (pleasantly) startling, conveniences.

As an acronym, 'LIFE' means Logic, Inheritance, Functions, and Equations. LIFE also des­
ignates an experimental programming language designed after these four precepts for specifying
structures and computations.

In this document, we give an informal tour of some of LIFE's unusual programming conve­
niences. We hope by this to illustrate for the reader that some original functionality is available
to a LIFE user . We do this by way of small yet (pleasantly) atartling examples.

LIFE is a trinity. The function-oriented component of LIFE is directly derived from function­
al programming languages with higher-order functions as first-dass objects, data constructors,
and algebraic pattern-matching for parameter-passing. The convenience offered by this style of
programming is one in which expressions of any order are first-dass objects and computation is
determinate. The relation-oriented component of LIFE is essentially one inspired by the Prolog
language. Unification of first-order patterns used as the argument-passing operation turns out to
be the key of a quite unique and hitherto unusual generative behavior of programs, which can
construct missing information as needed to accommodate success. Finally, the most original part
of LIFE is the structure-oriented component which consists of a calculus of type structures-the
1{I-calculus [1, 2]-and accounts for some of the (multiple) inheritance convenience typically found
in so-called object-oriented languages.

1{I-Calculus

In this section, we give an informal introduction of the notation, operations, and terminology of
the data structures of LIFE. It is necessary to understand the programming examples to follow.

The 1{I-calculus consists of a syntax of structured types called 1jJ-terms together with subtyping
and type intersection operations. Intuitively, as expounded in [7], the 1{I-calculus is a convenience
for representing record-like data structures in logic and functional programming more adequately
than first-order terms do, without loss ofthe well-appreciated instantiation ordering and unification
operation.

Let us take an example to illustrate. Let us say that one has in mind to express syntactically a
type structure for a person with the property, as expressed for the underlined symbol in Figure 4 .1,
that a certain functional diagram commutes.

The syntax of 1{I-terms is one simply tailored to express as a term this kind of approximate
description. Thus, in the 1{I-calculus, the information of Figure 4.1 is unambiguously encoded into
a formula, perspicuously expressed as the 1{I-term:

X : person(name ~ id(first ~ string,
last ~ S : string) ,

spouse ~ person(name ~ id(last ~ S),
spouse ~ X)).

LIFE

name
~ 1--------+\

,--:,........"""'"

name
per60n I-------+i id

Figure 4.1: A commutative functional diagram

105

It is important to distinguish among the three kinds of symbols participating in a ,p-term.
We assurne given a set S of sorts or type constructor symbols, a set :F of features, or attributes
symbols, and a set V of variables (or coreference tags). In the ,p-term above, for example, the
symbols person, id, string are drawn horn S, the symbols name, first , last, spouse from:F, and the
symbols X, S from V. (We capitalize variables, as in Prolog.)

A ,p-term is either tagged or untagged. A tagged ,p-term is either a variable in V or an expression
of the form X : t where X E V is called the term's root variable and t is an untagged ,p-term.
An untagged ,p-term is either atomic or attributed. An atomic ,p-term is a sort symbol in S. An
attributed ,p-term is an expression of the form S(ll ~ t1, ... ,ln ~ t n) where the root variable's
sort symbol sES and is called the ,p-term's principal type, the li'S are mutually distinct attribute
symbols in :F, and the ti's are ,p-terms (n ~ 0).

Variables capture coreference in a precise sense. They are coreference tags and may be viewed
as typed variables where the type expressions are untagged ,p-terms. Hence, as a condition to be
well-formed, a ,p-term must have all occurrences of each coreference tag consistently refer to the
same structure. For example, the variable X in:

person (id ~ name(first ~ string,
last ~ X : string),

father ~ person(id ~ name(last ~ X : string)))

refers consistently to the atomic ,p-term string. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the sort of a variable at most once and understand
that other occurrences are equally referring to the same structure, as in:

person(id ~ name(first ~ string,
last ~ X : string),

father ~ person(id ~ name(last ~ X)))

In fact, since there may be circular references as in X : person(spouse ~ person(spouse ~ X)),
this convention is necessary. Finally, a variable appearing nowhere typed, as in junk(kind ~ X)
is implicitly typed by a special greatest initial sort symbol T always present in S. This symbol
will be left invisible and not written explicitly as in (age ~ integer, name ~ string), or written
as the symbol CI as in CI(age ~ integer, name ~ string). In the sequel, by ,p-term we shaJl always
mean well-formed ,p-term and call such a form a (,p)-normal form.

Generalizing first-order terms,l ,p-terms are ordered up to variable renaming. Given that the
set S is partially-ordered (with a greatest element T), its partial ordering is extended to the set of

1 In fact, if a first-order term is written f(tl' ... ' t n), it is nothing other than syntactic sugar for the ,p-term

106 Related Systems

attributed t/J-terms. InformaHy, a ,p-term tl is subsumed by a ,p-term t2 if (1) the principal type
of tl is a subtype in S of the principal type of t2 ; (2) aH attributes of t2 are also attributes of tl
with t/J-terms which subsume their homologues in tl; and, (3) aH coreference constraints binding
in t2 must also be binding in t 1.

For example, if student< person and paris< cityname in S then the t/J-term:

student(id => name(first => string,
last => X : string) ,

lives_at => Y : address(city => paris),
father => person(id => name (last => X),

lives_at => Y))

is subsumed by the t/J-term:

person(id => name (last => X : string),
lives_at => address(city => cityname),
father => person(id => name (last => X))) .

In fact, ifthe set S is such that greatest lower bounds (GLB's) exist for any pair oftype symbols,
then the subsumption ordering on t/J-term is also such that GLB's exist . Such are defined as the
unification of two t/J-terms. A detailed unification algorithm for t/J-terms is given in [7].

Last in this brief introduction to the t/J-calculus, we explain type definitions. The concept is
analogous to what a global store of constant definitions is in a practical functional programming
language based on >.-calculus. The idea is that types in the signature may be specified to have
attributes in addition to being partially-ordered. Inheritance of attributes from aH supertypes to
a subtype is done in accordance with t/J-term subsumption and unification. For example, given
a simple signature for the specification of linear lists S = {list, con$, nil} with nil < list and
cons < list, it is yet possible to specify that cons has an attribute tail => list. We shall specify
this as:

list:= {nil; cons(tail => list)}.

From which the appropriate partial-ordering is inferred.
As in this list example, such type definitions may be recursive. Then, t/J-unification modulo

such a type specification proceeds by unfolding type symbols according to their definitions. This is
done by need as no expansion of symbols need be done in case of (1) failures due to order-theoretic
clashes (e.g., cons(tail => list) unified with nil fails; i.e., gives ..1); (2) symbol subsumption (e.g.,
cons unified with list gives just cons), and (3) absence of attribute (e.g., cons(tail => cons) unified
with cons gives cons(tail => cons)). Thus, attribute inheritance may be done "lazily," saving much
unnecessary expansions [14]. ."'.

In LIFE, a basic t/J-term denotes a functional application in FOOL's sense if its root symbol is
a defined function. Thus, a functional expression is either a t/J-term or a conjunction of ,p-terms
denoted by t 1 : t2 : ... : t n .2 An example of such is append(list , L) : list, where append is the
FOOL function defined as:

list := {O ; [@Ilist]}.
append(O, L : list) ~ L .
append([HIT : list], L: list) ~ [Hlappend(T, L)] .

This is how functional dependency constraints are expressed in a t/J-term in LIFE. For example,
in LIFE the t/J-term foo(bar => X : list, baz => Y : list,fuz => append(X, Y) : list) is one in which
the attribute fuz is derived as a list-valued function of the attributes bar and baz. Unifying such

/(1 =? t1, .. . , n =? tn) .
2 In fact, we propose to see the notation _ : _ simply as a dyadic operation resulting in the GLB of its arguments

since, for example, the notation X : t1 : t2 is shorthand for X : t I, X : 12 . Where the variable X is not necessary,

(i.e. , not otherwise shared in the context), we may thus simply write t1 : t2.

LIFE 107

f/!-terms proceeds as before modulo suspension of functional expressions whose arguments are not
sufficiently refined to be provably subsumed by patterns of function definitions.

As for relational constraints on objects in LIFE, a f/!-term t may be followed by a such-that
dause consisting of the logical conjunction of (relational) literals Gi, ... , Gn , possibly containing
functional terms. It is written as t I Gi, ... , Gn . Unification of such relationally constrained
terms is done modulo proving the conjoined constraints. In effect, this allows specifying daemonic
constraints to be attached to objects. Such a (renamed) "daemon-constrained" object's specified
relational and (equational) functional formula is normalized by LIFE, its proof being triggered by
unification at the object's creation time.

Bibliography

[1.] Hassan A'it-Kaci. A Lattice-Theoretic Approach to Computation Based on a Cal­
culus of Partially-Ordered Types. PhD thesis, University of Pennsylvania, Philadelphia,
PA (1984).

[2] Hassan A'it-Kaci. An algebraic semantics approach to the effective resolution of type equa­
tions. Theoretical Computer Science, 45:293-351 (1986).

[3] Hassan A'it-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction. MIT
Press, Cambridge, MA, 1991.

[4] Hassan A'it-Kaci and Jacques Garrigue. Label-selective A-calculus. PRL Research Report
(forthcoming), Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison
(1993).

[5] Hassan A'it-Kaci and Patrick Lincoln. LIFE-a Natural Language for Natural Lan­
guage. T.A. Informations, 30(1-2):37-67. Association pour le Traitement Automatique
des Langues, Paris, France (1989).

[6] Hassan A'it-Kaci, Richard Meyer, and Peter Van Roy. Wild-LIFE, a user manual. PRL
Technical Report (forthcoming), Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison, France (1993).

[7] Hassan A'it-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215 (1986).

[8] Hassan Alt-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp and
Symbolic Computation, 2:51-89 (1989).

[9] Hassan A'it-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations, and Functions.
In Proceedings of the Symposium on Logic Programming (San Francisco, CA),
pages 17-23, Washington, DC (1987). IEEE, Computer Society Press.

[10] Hassan A'it-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueil­
Malmaison, France (June 1991). (Revised, November 1992).

[11] Hassan A'it-Kaci and Andreas Podelski. Towards a meaning of life. In Jan Maluszynski
and Martin Wirsing, editors, Proceedings of the 3rd International Symposium on
Programming Language Implementation and Logic Programming (Passau, Ger­
many), pages 255-274. Springer-Verlag, LNCS 528 (August 1991). (Full paper to appear in
the Journal 0/ Logic Programming) .

[12] Hassan A'it-Kaci and Andreas Podelski. Entailment and Disentailment of Order-Sorted Fea­
ture Constraints. In Andrei Voronkov, editor, Proceedings of the Fourth International
Conference on Logic Programming and Automated Reasoning (St. Petersburg,
Russia). Springer-Verlag, LNCS (1993, to appear).

108 Related Systems

[13] Hassan Alt-Kaci and Andreas Podelski. Logic Programmingwith Functions over Order-Sorted
Feature Terms. In E. Lamma and P. Mello, editors, Proceedings of the 3rd International
Workshop on Extensions of Logic Programming (Bologna, Italy). Springer-Verlag,
LNAI 660 (1992).

[14] Hassan A'it-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature theo­
ry unification. PRL Research Report (forthcoming), Digital Equipment Corporation, Paris
Research Laboratory, Rueil-Malmaison, France (1993).

[15] Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for
logic programming with entailment. In Proceedings of the 5th International Confer­
ence on Fifth Generation Computer Systems, pages 1012-1022, Tokyo, Japan (June
1992). ICOT. (Full paper to appear in Theoretical Computer Science). ·

[16] Joachim Niehren and Andreas Podelski. Feature automata and recognizable sets of feature
trees. In Marie-Claude Gaudei and Jean-Pierre Jouannaud, editors, Proceedings of the 4th
International Joint Conference TAPSOFT'93: Theory and Practice of Software
Development (Orsay, France), pages 356-375, Springer-Verlag LNCS 668 (1993).

[17] Joachim Niehren and Andreas Podelski and RalfTreinen. Equational and Membership Con­
straints for Infinite Trees. In Proceedings of the International Conference RTA '93:
Rewriting Techniques and Applications (1993, to appear).

[18] Andreas Podelski and Peter Van Roy. The Beauty and the Beast Algorithm: Testing En­
tailement and Disentailement Incrementally. PRL Research Report (forthcoming), Digital
Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison, France (1993).

[19] Peter Van Roy and Alvin M. Despain. High-performance logic programming with the Aquarius
Prolog compiler. In IEEE Computer 25 (1), pages 54-68, Jan. 1992.

(questionnaire not submitted)

:, ~ .

Oz

4.2 A Survey of Oz-A Higher-order Concurrent
Constraint Language

Gert Smolka
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
smolka@dfki.uni-sb.de

Oz [7, 2] is an attempt to create a high-level concurrent programming language bringing together
the merits of logic and object-oriented programming. It builds on previous work in concurrent
constraint programming [4, 5, 3] and advances the state of the art along the following directions:

• Oz is a higher-order language: there is no hard-wired distinction between program and query,
everyexpression (possibly containing abstractions) can be abstracted, abstractions are first­
dass citizens. Oz's abstraction mechanism is novel in that it is fully compatible with first
order constraints.

• Oz is a deep guard language. There is no restriction on the form of the guards appearing
in Oz's choice combinators (conditional and disjunction). As a byproduct, Oz can express
logically sound negation.

• Oz has a new asynchronous communication primitive, called constraint communication,
avoiding the dumsiness of stream-based communication; constraint communication provides
a minimal not ion of state that is fully compatible with constraints.

• Oz provides records as logical data structure [1, 8].

• Oz comes with a powerful object system providing for the dynamic creation of concurrent
objects. Object creation may involve multiple inheritance from already existing objects.
Objects have persistent identity and encapsulated state. Objects are first-dass citizens. The
object system is written in Oz.

• Oz comes with a powerful window system providing for the interactive creation of graphical
user interfaces. The window system is written in Oz's object system.

Oz is based on a simple calculus [6, 7] providing an operational semantics. The calculus fixes
a dass of expressions, a congruence on expressions, and a set of rules for rewriting expressions.
An expression corresponds to a computation state, and rewriting with a rule corresponds to an
abstract computation step. The choice of a rewriting step is don't care (that is, there is no
backtracking). Termination of computation is defined as termination of rewriting. The calculus
is parameterized with respect to a first-order constraint system. The congruence of the calculus
is defined as a conservative extension of the logical equivalence on constraints. The calculus does
not require an operation al semantics for constraints (an implementation does, of course). The
calculus accounts compositionally for dynamic creation of new and unique names.

Oz is implemented by means of a compiler and an abstract machine, written in C++. The
programming environment is based on Emacs. It is interactive; at any time a new expression can
be entered and will be executed concurrently with the already existing computations. We plan to
have the implementation ready for ftp-based distribution in October 1993.

Bibliography

[1] Hassan Ai"t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for
logic programming with entailment. In Proceedings oE the International ConEerence on FiEth
Generation Computer Systems, pages 1012-1021, Tokyo, Japan, 1992. ICOT. Full version will
appear in Theoretical Computer Science.

109

HO Related Systems

[2] Martin Henz, Gert Smolka, and Jörg Würtz. Oz-a programming language for multi-agent
systems. In Proceedings o[the International Joint Con[erence on ArtificialIntelligence, Cham­
bery, France, 1993.

[3] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra kernel language.
In Vijay Saraswat and Kazunori Ueda, editors, Logic Programming, Proceedings o[the 1991
International Symposium, pages 167-186, San Diego, USA, 1991. The MIT Press.

[4] Michael J. Maher. Logic semantics for a dass of committed-choice programs. In Jean-Louis
Lassez, editor, Logic Programming, Proceedings o[the Fourth International Con[erence, pages
858-876, Cambridge, MA, 1987. The MIT Press.

[5] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proceedings o[the
7th Annual ACM Symposium on Principles o[Programming Languages, pages 232-245, San
Francisco, CA, January 1990.

[6] Gert Smolka. A calculus for higher-order concurrent constraint programming. Research report,
DFKI, Saarbrücken, Germany, 1993. Forthcoming.

[7] Gert Smolka, Martin Henz, and Jörg Würtz. Object-oriented concurrent constraint program­
ming in Oz. Research Report RR-93-16, DFKI, Saarbrücken, Germany, April 1993 .

. [8] Gert Smolka and Ralf Treinen. Records for logic programming. In Krzysztof Apt, editor,
Proceedings o[the Joint International Con[erence and Symposium on Logic Programming,
pages 240-254, Washington, USA, 1992. The MIT Press. Full version has appeared as Research
Report RR-92-23, DFKI, Stuhlsatzenhausweg 3, 6600 Saarbrücken 11, Germany.

(questionnaire not submitted)

Deutsches
Forschungszentrum
'Or KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben angegebenen
Adresse oder per anonymem ftp von ftp.dfki.uni­
kl.de (131.246.241.100) unter pub/Publications
belogen weroen.
Die Berichte werden, wenn nicht anders gekenn­
zeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-lOrgen BOrckert. Bernhard Hollunder. Annin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-lOrgen BOrckert. Bernhard Hollunder. Annin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knul Hinkelmann.
Manfred Mtryer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke. lörg wOrtz:
Satisfiability of the Smallest Binary Program
8 pages

RR-93-10
Martin Buchheil. Francesco M. Donini. Andrea
Schaerf: Decidable Reasoning in Terminologica1
Knowledge Representation Systems
35 pages

RR-93-11
BernhardNebel. Hans-lOrgenBOrckert:
Reasoning about Temporal Relations:
A Maximal TractableSubc1ass of Allen's Interval
Algebra
28 pages

DFKl
-Bibliothek­
PF 2080
67608 Kaiserslautern
FRO

DFKI Publications

Tbe following DFKI publications or the list of
all published papers so far are obtainable from
the above address or via anonymous ftp
from ftp.dfld.uni-kl.de (131.246.241.100) under
pub/Publications.
Tbe reports are distributed free of charge except if
otherwise indicated.

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader. Karl SchlechJa:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
loachim Niehren. Andreas Podelsld. RalfTreinen:
Equational and Membership Constraints for Infmite
Trees
33 pages

RR-93-1S
Frank Berger. Thomas Fehrle. KristofKMckner.
Volker Schölles. Markus A. Thies. Wolf gang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka. Martin Henz. lörg Würtz: Object­
Oriented Concurrent Conslraint Programming in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional jJ.-Calculus
32 pages

RR-93-20
Franz Baader. Bernhord Hol/untier:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, lörg MaUer:
Weak Looking-Ahead and its Application in
Computer-Aided Process P1anning
17 pages

RR-93-23
Andreas Dengel, Ottmar LUlzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DA! Approach 10
Modeling the Transportation Domain
93 pages

RR-93-26
lörg P. MaUer, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, lohn Nerbonne,
Hannes Pirker: Feature-Based AllomOlphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics
35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman:
Corporate Agents
14 pages

RR-93-31
Elizabeth A. Hinkelman, Stephen P. SpacJanan:
Abductive Speech Act Recognition. Corporate
Agents and the COSMA System
34 pages

RR-93-32
David R. Traum, Elizabeth A. Hinkelman:
Conversation Acts in Task-Oriented Spoken
DiaJogue
28 pages

RR-93-33
Bemhard Nebel, lana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, Fraru;ois Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI­
Programmierung - Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-S).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauek, Ralf Legleilner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation in10 MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner Nutt, Andrea Schaeif:
Queries, Rules and Defmitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LA YLAB: A Constraint-Based
Layout Manager for Multimedia Presentations
9 pages

RR-93-42
Hubert Comon, RalfTreinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-43
M. Bauer, G. Paul: Logic-based Plan Recognition
for Intelligent Help Systems
15 pages

RR-93-44
Martin Buehheit, Man/red A. Jeus/eid, Werner NUlt,
Martin Staudt: Subsumption between Queries to
Object-Oriented Databases
36 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning ofLarge
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven. and
Goal-directed Reasoning
81 pages

RR-93-48
Franz Baader, Martin Buchheit, Bemhard Hollunder:
Cardinality Restrictions on Concepts
20 pages

RR-94-01
Elisabeth Andre, Thomas Rist:
Multimedia Presentations:
The Support ofPassive and Active Viewing
15 pages

RR-94-02
Elisabeth Andre, Thomas Rist:
Von Textgeneratoren zu InteUimedia­
Präsentationssystemen
22 pages

RR-94-03
Gert Smolka:
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-0S
Franz Schmalhofer,
J.StuaTt Aitun, Lyle E. Boume jr.:
Beyond the Knowledge Level: DesCriptions of
Rational Behavior for Sharing and Reuse
81 pages

RR-94-06
Dietmar Dengier:
An Adaptive Deductive Planning System
17 pages

RR-94-07
Harold Boley: Finite Domains and Exclusions as
First-Class Citizens
25 pages

RR-94-08
0110 Kahn, BjlJrn HIJj7ing: Conserving Corporate
Knowledge for Crankshaft Design
17 pages

RR-94-10
Knut Hinkelmann, Helge Hintze:
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11
Knut HinkeimaM: A Consequence Finding
Approach for Feature Recognition in CAPP
18 pages

RR-94-12
Hubert Comon, Ralf Treinen:
Ordering Constraints on Trees
34 pages

DFKI Technical Memos

TM-92-04
JilTgen Maller, JlJrg Maller, Markus Pischel,
RalfScheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer, Christoph Globig, JlJrg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
0110 Kahn, Franz Schmalhofer: Hierarchical
skeletal plan refinement Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Reali.zation ofTree Adjoining
Grammars with Unification
27 pages

TM-93-01
0110 Kahn. Andreas Birk; Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles. Achim Schupeta:
Conllict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley. Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen WISsensbasis über
recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Ganther Hein: Propagation Techniques in
W AM-based Architectures - The FIDO-III
Approach
105 pages

TM-93-0S
Michael Sintek: Indexing PROLOG Procedures into
DAGs by Heuristic Classification
64 pages

TM-94.01
Rainer Bleisinger, Klaus-Peter Gores:
Text Skirnming as a Part in Paper Document
Understanding
14 pages

TM·94·02
Rainer Bleisinger, Berthold KrlJll:
Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

OFKI Oocuments

0-93-06
Jilrgen Müller (Hrsg.):
Beiträge zum GrUndungsworlcshop der
Fachgruppe Verteilte Künstliche Intelligenz,
Saarbrücken, 29. - 30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of25 DM (or 15 US-$).

0-93-07
KIaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse
53 Seiten

0-93-08
Thomas Kieninger, Rainer Hoch:
Ein Generator mit Anfragesystem für strukturierte
Wörterbücher zur Unterstützung von Texterkennung
und Textanalyse
125 Seiten

0-93-09
Hans-Ulrich Krieger. Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

0-93-10
Elizabeth Hinkelman. Markus Vonerden. Christoph
Jung: Natural Language Software Registry
(Second Edition)
174 pages

0-93-11
Knut Hinkelmann. Annin Laux (Eds.):
DFKI Worlcshop on Knowledge Representation
Techniques - Proceedings
88 pages

0-93-12
Harold Boley. Klaus Eisbernd.
Michael Herfert. Michael Sintek. Werner Stein:
RELFUN Guide: Programming with Relations and
Functions Made Easy
86 pages

0-93-14
Man/red Meyer (Ed.): Constraint Processing­
Proceedings of the International Workshop at
CSAM'93, July 20-21. 1993
264 pages
Note: This document is available only for a
nominal charge of25 DM (or 15 US-$).

0-93-15
Robert Laux:
Untersuchung maschineller Lemverfahren und
heuristischer Methoden im Hinblick auf deren
Kombination zur Unterstützung eines Chart-Parsers
86 Seiten

0-93-16
Bernd Bachmann. Ansgar Bernardi. Christoph
Klauck. Gabriele Schmidt: Design & KI
74 Seiten

0-93-20
Bernhard Herbig:
Eine homogene Implementienmgsebene ft1r einen
hybriden Wissensrepräsentationsformalismus
97 Seiten

0-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen am
Beispiel Terminologischer Logiken
53 Seiten

0-93-22
Andreas Abecker:
Implementierung graphischer Benutzungsober­
flächen mit Tcl/fk und Common Lisp
44 Seiten

0-93-24
Brigiue Krenn. Martin Volk:
DiTo-Datenbank: Datendokumentation ZU

Funktionsverbgefügen und Relativsätzen
66 Seiten

0-93-25
Hans-Jilrgen Bilrckert. Werner Nutt (Eds.):
Modeling Epistemic Propositions
118 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-93-26
Frank Peters: Unterstützung des Experten bei der
Formalisierung von Textwissen
INFOCOM:
Eine interaktive Formalisierungskomponente
58 Seiten

0-94-01
Rolf Backofen. Hans-Ulrich Krieger.
Stephen P. Spackman. Hans Uszkoreit (Eds.):
Report of theEAGLES Workshop on
Implemented Formalisms at DFKI, Saarbrücken
110 pages

0-94-01
Josua Boon (Ed.):
DFKI-Publications: The First Four Years
1990 - 1993
75 pages

0-94-02
Markus Steffens: Wissenserhebung und Analyse
zum Entwicklungsprozeß eines Druckbehälters aus
Faserverbundstoff
90 pages

R
e

p
o

rt

o
f

th
e

E

A
G

L
E

S

W

o
rk

s
h

o
p

o

n

Im
p

le
m

e
n

te
d

F

o
rm

a
lis

m
s

a
t

D
F

K
I,

S

a
a

rb
rü

c
k
e

n

R
a

lf

B
a

ck
o

fe
n

,
H

a
n

s-
U

lr
lc

h

K
ri

e
g

e
r,

S

te
p

h
e

n

P
.

S
p

a
ck

m
a

n
,

H
a

n
s

U
sz

ko
re

lt

(E
d

s.
)

0
-9

3
-2

7

R
es

ea
rc

h
R

ep
or

t

	D-93-27-0001
	D-93-27-0002
	D-93-27-0003
	D-93-27-0004
	D-93-27-0005
	D-93-27-0006
	D-93-27-0007
	D-93-27-0008
	D-93-27-0009
	D-93-27-0010
	D-93-27-0011
	D-93-27-0012
	D-93-27-0013
	D-93-27-0014
	D-93-27-0015
	D-93-27-0016
	D-93-27-0017
	D-93-27-0018
	D-93-27-0019
	D-93-27-0020
	D-93-27-0021
	D-93-27-0022
	D-93-27-0023
	D-93-27-0024
	D-93-27-0025
	D-93-27-0026
	D-93-27-0027
	D-93-27-0028
	D-93-27-0029
	D-93-27-0030
	D-93-27-0031
	D-93-27-0032
	D-93-27-0033
	D-93-27-0034
	D-93-27-0036
	D-93-27-0037
	D-93-27-0038
	D-93-27-0039
	D-93-27-0040
	D-93-27-0041
	D-93-27-0042
	D-93-27-0043
	D-93-27-0044
	D-93-27-0045
	D-93-27-0046
	D-93-27-0047
	D-93-27-0048
	D-93-27-0049
	D-93-27-0050
	D-93-27-0051
	D-93-27-0052
	D-93-27-0053
	D-93-27-0054
	D-93-27-0055
	D-93-27-0056
	D-93-27-0057
	D-93-27-0058
	D-93-27-0059
	D-93-27-0060
	D-93-27-0061
	D-93-27-0062
	D-93-27-0063
	D-93-27-0064
	D-93-27-0065
	D-93-27-0066
	D-93-27-0067
	D-93-27-0068
	D-93-27-0069
	D-93-27-0070
	D-93-27-0071
	D-93-27-0072
	D-93-27-0073
	D-93-27-0074
	D-93-27-0075
	D-93-27-0076
	D-93-27-0077
	D-93-27-0078
	D-93-27-0079
	D-93-27-0080
	D-93-27-0081
	D-93-27-0082
	D-93-27-0083
	D-93-27-0084
	D-93-27-0085
	D-93-27-0086
	D-93-27-0087
	D-93-27-0088
	D-93-27-0089
	D-93-27-0090
	D-93-27-0091
	D-93-27-0092
	D-93-27-0093
	D-93-27-0094
	D-93-27-0095
	D-93-27-0096
	D-93-27-0097
	D-93-27-0098
	D-93-27-0099
	D-93-27-0100
	D-93-27-0101
	D-93-27-0102
	D-93-27-0103
	D-93-27-0104
	D-93-27-0105
	D-93-27-0106
	D-93-27-0107
	D-93-27-0108
	D-93-27-0109
	D-93-27-0110
	D-93-27-0111
	D-93-27-0112
	D-93-27-0113
	D-93-27-0114
	D-93-27-0115
	D-93-27-0116
	D-93-27-0117
	D-93-27-0118
	D-93-27-0119
	D-93-27-0120

