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Part 1 

Introduction 

From the 1st through the 3rd of March 1993, the Working Group on Linguistic For­
malisms of the EAGLES initiative held a workshop in Saarbrücken on implemented 
grammar formalisms. 

Starting with so me notes on the Working Group, we will describe objectives, 
organization, and results of the workshop. We also summarize some relevant general 
findings as they emerged from the final discussion. 

The systems demonstrated are described in a detailed synopsis. In order to 
facilitate comparison a standardized questionnaire was used for the individual de­
scriptions. The questionnaires were filled out by the developers. Since there might 
always be relevant pieces of information that do not fit weIl in such a questionnaire, 
the developers could also provide a short prose description. Most developers took 
advantage of this opportunity and attached a brief summary of their system. 

1.1 The Working Group 

The Working Group on Linguistic Formalisms of the EAGLES initiative brings 
together experts on the design and implementation of linguistic formalisms from 
academia and industry in order to : 

• come to a consensus on the basic features and properties for NLP formalisms 
and indicate likely and needed future features; 

• promote consensus with respect to the definition of de facto standards for 
grammar formalisms; 

• exchange information about each other's projects and, as far as compatible 
with IPR, know-how and results, thus increasing the awareness of possible 
synergles; 

• where appropriate, concretize potential synergies by promoting cooperative 
actions, thus furthering the definition of de-facto standards in the field; 

• disseminate information about its activities, participate in and organize events 
aimed at make these activities better known (round-tables, workshops, confer­
ences); 

3 



4 Introduction 

• coordinate and cooperate with national and international initiatives; and 

• suggest actions needed for the creation of formal and computational prerequi­
sites for the development of multilingual, reusable, grammatical resources. 

The group is hosted by the DFKI in Saarbrücken. 
The members of the WG are: 

H. Ulrich Block - Siemens AG, Munich, 
Ewan Klein - University of Edinburgh, 
Jeremy Peckham - Logica Cambridge, 
Steve Pulman - SRI Cambridge, 
Christian Rohrer - University of Stuttgart, 
Hans Uszkoreit - DFKI Saarbrücken (chair). 

Many additional industrial and academic research institutions are represented 
by specialists in the three Subgroups of the Working Group: 

Linguistic Adequacy, 
Computability and Implementation, 
Industrial Requirements. 

1.2 Objectives of the Workshop 

The main objective of the workshop was to obtain an urgently needed overview of 
existing software systems, including their development platforms, that implement 
state-of-the-art grammar formalisms. It is not possible to derive such an overview 
by surveying the literature. In their publications, the developers of such formalisms 
usually focus on certain selected aspects of their systems that constitute novel sci­
entific approaches. The state of the implementation of a system and its robustness, 
performance and overall usability can never be judged from the literature. 

Another motivation was the broadly-felt necessity to exchange experience gath­
ered in implementing constraint-based grammar formalisms among the relevant de­
velopers. 

Therefore the focus of this workshop was not on the linguistic, philosophical 
and semantic foundations of advanced typed feature-unification formalisms. The 
meeting concentrated on existing implementations. 

One goal of the workshop was to obtain an overview of what is feasible and 
usable today. This overview served as the starting point for the Working Group's 
activities during the survey phase. It is an important part of the ongoing survey 
of existing implemented linguistic formalisms. It will also provide a good basis for 
characterizing the state of the art in this area. 

To participants working in the . area of formalism development, the workshop 
offered a unique opportunity to learn those facts about other researchers' formalisms 
that cannot be found in the literature. 
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1.3 Organization 

At the workshop we made sure that the mutual review did not turn into a contest. 
The evaluation and assessment of NLP systems has not yet reached astate that 
permits an objective comparison of systems. The theoretical premises on which the 
systems were developed and the goals of their developers differ so much that it would 
be impossible to agree on a reasonable single ranking scheme. On the other hand, a 
comparison of implementations along several dimensions was undertaken because it 
is urgently needed by everyone working in this area. Such comparative knowledge 
is also very important for the further work of EAGLES. In order to arrive at such a 
synopsis, detailed questionnaires were designed and handed out to all participants. 
We had a return rate in excess of 100%, due to the fact that so me participants copied 
the questionnaire to describe additional systems not shown at the workshop. These 
description are not considered in the current report on implemented formalisms but 
they have been included in the working material of the group. 

Seventeen systems were invited : fourteen from European research sites, three 
from the USA. This imbalance not only reflects the focus of the EAGLES WG 
but demonstrates the growing role that European sites play in today's formalisms 
research. At the workshop fourteen systems were exhibited. Two sites turned down 
the invitation because their new systems were not yet in astate to be demonstrated; 
one American researcher was unable to attend because of a scheduling conflict. 

All systems were first presented in brief talks. On the second day, six review 
teams, each of three researchers, were formed. Although in theory every participant 
could see every system, reviewers often focussed on the systems they were to report 
on. The results of this review were reported in a plenary session. After each report 
the developers of the respective systems received time for rebuttal. Most of the 
questions from the audience concerned implementation details. The discussion was 
very concrete and stayed on a high technical level. Although the review did not 
follow measurable evaluation criteria, the findings and subjective comments were 
generally accepted by the developers. 

1.4 Results and Findings 

For the discipline of computationallinguistics as a whole, the workshop has resulted 
in this synopsis of relevant implemented formalisms. All participating developers 
have provided a standardized characterization of their system by filling out a very 
detailed questionnaire. 

In a final session all participants contributed to a discussion of general develop­
ments and urgent problems . This discussion was very important for further WG 
activities. 

The following summary lists the most relevant findings of the workshop. 

Clear progress: All of the systems showed strong advantages over the formalisms 
that were used a decade ago. 

European Role: European research in the area no longer trails behind the corre­
sponding American research. 
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Lack of Industrial Strength: None of the systems has, as yet, the desired per­
formance behaviour for broad industrial application: some could be used in 
limited applications, others have potential in this direction. The most press­
ing problem for research on formalisms is the need for adequate performance 
models. 

Convergence: There are strong tendencies towards convergence: e.g., most for­
malisms are based on typed feature logics, most new systems use multiple 
inheritance hierarchies, and so on. 

Connections to constraint logic programming: There is a elose relationship 
with ongoing developments in programming language design, especially in CLP, 
that needs to be explored further. 

It was pointed out that the systems demonstrated represented quite a spectrum 
of compromises between sophistication in linguistic description on the one hand and 
efficiency in processing on the other. The range of such decisions was noted and 
discussed. 

In the subsequent discussion the concern was raised that improvements in the 
actual formalisms such as powerful type systems and additional data types have 
not brought the systems any closer to exploitation in industrial strength systems 
and, moreover, that efficient processing models might even have become less likely 
through such development. The strong move towards low-level processing methods 
and statistical approaches would indicate the dissatisfaction with the pure feature 
logic based approach. 

Proponents of the current formalism research replied that the real challenge lies 
in combining the sophisticated high-level description approaches with powerfullow­
level processing methods. Low level processing methods and statistical approaches 
to grammar development alone have not been able so far to arrive at comprehensive, 
reusable grammatical resources. They also pointed at the attempts to come up with 
strategies for effectively controlling linguistic processing based on constraint-based 
grammars. 

Another point of discussion was the utilization of results from constraint logic 
programming. A number of demonstrated systems were actually described in CLP 
terms as special instances of the HöhfeldjSmolka model. The question was raised 
whether one should not leave the search for more efficient processing models to 
the much larger community of CLP researchers. It was replied that the linguistic 
descriptions for NLP offer such a strongly structured and challenging domain to 
CLP that it would be in the mutual interest of both communities to work together. 
The CLP community was represented at the meeting by such eminent scientists as 
Hassan Ait-Kaci, Luis Damas, Andreas Podelski, and Gert Smolka. It was decided 
that the connections between CLP and NLP should be strengthened. The upcoming 
workshop of the Computability and Implementation Subgroup will focus on relevant 
developments in CLP and on the exchange between the two communities . 

Several participants proposed to hold a follow-up meeting in a year 's time. In the 
discussion i t became elear that such an event would most likely not have the same 
status with respect to EAGLES work, but that the EAGLES working group might 
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serve as co-sponsor. Some very concrete suggestions concerning the organization of 
the next meeting were made. They were discussed and taken to the records. 

Summing up it became obvious that the workshop not only delivered important 
empirical input for the program of the EAGLES Formalisms Working Group, it also 
provided the participants with a better overview of the state of the art and served 
as a forum for discussing new trends, burning issues and further collaboration. 

Hans Uszkoreit 
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2.1 ALE: An Attribute Logic Engine 

Bob Carpenter 
Computational Linguistics Program, Philosophy Dept. 

Carnegie Mellon University, Pittsburgh, PA 15213 
Net: carp@lcl.cmu.edu Phone: (412) 268-8573 Fax: (412) 268-1440 

ALE, a public domain system written in Prolog, integrates phrase structure parsing and con­
straint logic programming with typed feature structures as terms. This generalizes both the feature 
structures of PATR-II and the terms of Prolog 11 to allow type inheritance and appropriateness 
specifications for features and values. Grammars mayaiso interleave unification steps with logic 
program goal calls (as can be done in DCGs), thus allowing parsing to be interleaved wi th other 
system components. While ALE was developed to handle HPSG grammars, it can also execute 
PATR-II grammars, DCG grammars, Prolog, Prolog-lI, and LOGIN programs, etc. 

Grammars and logic programs are specified using a typed version of Rounds-Kasper attribute­
value logic, which includes variables and full disjunction. Programs are then compiled into low­
level Prolog instructions corresponding to the basic operations of the typed Rounds-Kapser logic. 
There is a strong type discipline enforced on descriptions, allowing many errors to be detected at 
compile-time. 

The logic programming and parsing systems may be used independently or together. Features 
of the logic programming system include negation, disjunction and cuts. It has last caU opti­
mization, but does not perform any argument indexing. On the "naive reverse" benchmark, it 
performed at 1000 LIjs on a DEC 5100 running SICStus 2.1, which is roughly 7% as fast as the 
SICStus interpreter and 0.7% as fast as the SICStus compiler. 

The phrase structure system employs a bottom-up all-paths dynamic chart parser. A general 
lexical rule component is provided, including procedural attachment and general methods for 
orthographic transformations using pattern matching or Prolog. Empty categories are permitted 
in the grammar. Both the phrase structure and logic programming components of the system 
allow parametric macros to be defined and freely employed in descriptions. Parser performance 
is similar to that of the logic programming system. In an early HPSQ grammar, where feature 
structures consisted of roughly 100-200 nodes each, a 10 word sentence producing 25 completed 
inactive edges parsed in roughly two seconds, using SICStus 2.1 on a DEC 5100. 

Complete documentation (running to 100 pages, with examples of everything, programming 
advice, and sampie grammars), is available as: 

Bob Carpenter (1992) ALE User's Guide. Carnegie Mellon University Laboratory for 
Computational Linguistics Technical Report . Pittsburgh. 

ALE can be run in either SICStus or Quintus Prolog, and with other compatible compilers doing 
first-argument indexing and last-call optimization. The system and its documentation are available 
without charge for research purposes . 

A future version of ALE should be available by Summer 1993 which contains a full implemen­
tation of inequations, extensionality, atoms, hooks to Prolog, general constraints on types and a 
number of optimizations. 
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System Name: ALE 
Designed and Implemented by: Bob Carpenter 

GENERAL DESCRlPTION I 

Inference Engine 
wllque engine vs. single system with general modules for types, descriptions and uni-
dedicated modules fication, definite dauses, lex rules and chart parsing 
non-montonic devices none 
control facilities CFG: breadth-first, bottom-up definite clauses: Prolog style with 

cut, negation by failure and disjunction 
parser/generator? parser (Generator under development) 
others empty categories and lexical rules 

Data Types 
arity (ftxed?) each type has fixed arity, but subtypes can extend features (records 

in implementation) 
cyclic structures yes-fully integrated with types 

lists/ sets lists as structures, using Prolog defs as macros 

functions/relations general definite dause, definable functions and relations 
others 

Interaction FS ~ Types 
type unification yes-by hashing 
type expansion 

at definition/ eager for lexical entries 
compile time 

at run time: eager type inference for rulesjedges-every unification that changes 
( delayed/partial/ types causes inference 
recursive) 

others (template .... ) parametrie macros-compile time expansion to descriptions 
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I GENERAL DESCRIPTION 11 

Interfaces to 
morphology general lexical rules transforming structures; template spelling 

changes and hooks to Prolog 
semantics/ general hooks to Prolog and definite clauses over feature logic 
knowledge repr. 

Implementational Issues 
programming lang. Sicstus(Quintus Prologs 

machine any 
others (O/S, graphie . .. . ) -

Applications 

grammar theories? HPSG, CG (simple), attribute-value phonology (general purpose) 
educational vs. public domain 
commercial system 

used in projects/ yes-but not by me 
other systems? 

Grammar coded 
SlZe 11 HPSG vol. II-chapters 1-3 (ca. 150 nodes(lex entry) 
language 11 English(German 

Tools 

Comments Modular development, so following may be extracted: 

• type compiler 
• unification 
• description compiler 
• definite clause resolution 

- -- -
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I FEATURE CONSTRAINT SOLVER I 
Boolean Connecti ves 

unification: 

11 destructive built on Prolog backtracking/copying for chart 

non-des tructi ve 
disjunction: 

atoms only full atomic expressibility 

full (DNF) full-lexicon to DNF, chart to DNF /rules at runtime 

distributed 

others in definite clauses-full disjunction 

negation 

atoms only isa- and isnota-negation encodable in types 

negated corefs yes 

full 
others inequations (and unappropriateness in type system) 

implication 

via negation 

others type inference 

Additional Operations 
subsumption no 
functional uncertainty expressible with definite clauses 

others extensionality declarations-interact with inequations 

Tools 

Comments type system compiled out, type inference compiled and at run-
time--interacts with description solver and unifier 
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I TYPE SYSTEM 

Type Connectives 
conjunction: multiple inheritance-interacts with types / appropriateness 
single vs. multiple 
inheritance 
disjunction implicit 
negation implicit 
others ISA/ISNOTA 

Type Definitions 
via feature structures under development 
via appropriateness yes-declare appropriate features and value types (allows encoding 
conditions of FS constraints) 
recursive? uo 
others 

Additional Operations 

type inference/ full inference-linear ( infers value types and classification by 
classification appropriateness) 
GLB/LUB type 
subsumption 

others 

Restriction on Hierarchy can be specified by 
(unre.tricted partial order, 
bounded complete p.o ., 1. systemic /HPSG partitions compiles to -+ distributive lattice ... ) 

2. ISA/ISNOTA declarations compiles to -+ 
3. BCPO 

Tools compile-time type-checking 

1 Comments 11 
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2.2 The ALEP Platform for Language Research and 
Engineeringa 

N K Simpkins (1), M Groenendijk (I) & P Meylemans (2)b 

(1) P-E International 
llb Boulevard Joseph Ü', 

L-1840 Luxembourg 
(2) Commission of the European Communities, 

Bätiment Jean MOIUlet B4/120A, 
L-2920 Luxembourg 
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This paper deseribes some aspeets of the Advaneed Linguistie Engineering Platform (ALEP) prototype 
system (ALEP-O) [SIM-93a]. ALEP is an initiative of the Commission of the European Communities 
(CEC) to provide the natural language research and engineering eommunity in Europe with a versatile 
and flexible general purpose development environment. 

The linguistie formalism and tools of the eurrent prototype, and development of a full more extensive and 
open environment are outlined. The architecture of the platform which is intended to support eooperation, 
exchange and re-use of results and resourees, eomparative evaluation and applieation prototyping, is also 
deseribed. 

Keywords : ALEP, Advanced Linguistic Engineering Platform 
Linguistic Tools, Machine Translation 
Natural Language Processing, European Initiatives 

2.2.1 Introduction 

Natural Language Processing (NLP) and application development projects currently lack asolid, 
eommonly accepted and widely available platform for the development of large scale linguistic 
resources and applications. As a consequence, researchers and system designers are forced to build 
the tools and development aids they need from scratch, before undertaking the implementation 
of what matters most to them; linguistic resources or applications. This situation constitutes a 
major bottleneck for any serious attempt to build a strong and effective European NLP industry. 

Within the Linguistic Research & Engineering (LRE) programme the CEC has invested in a 
generic, formal and computational environment, which can be put at the disposal of all Commu­
nity and national R&D projects in relevant areas. This environment is called ALEP (Advanced 
Linguistic Engineering Platform) . 

In making widely available the ALEP system, the CEC aims to promote cooperation between 
different research cent res and to progress towards portability and re-use of research results. 

A typical user of the ALEP environment will be either a skilIed researcher in computational 
linguisticB or a team of researchers and application designers, who will be provided with a software 
environment enabling them to produce linguistic descriptions of different languages, for a number 
of different NLP application domains. 

2.2.2 Development of ALEP 

The development and distribution of ALEP is planned in a number of stages: 

• Preparation and design (1991-1992) 

• A prototyping stage (1992) 

• A development stage (1992-1994) 

• Phase-in stage (1994-1995) 

awithin the CEC's Linguistic Research and Engineering (LRE) Programme [CEC-9I) 
bThe authors would like to thank Roberto Cencioni and Nino Varile ofthe CEC for their invaluable contributions. 
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Several research centres and universities, such as SRI-CRC, UMIST, lAI, CAP GEMINI, SNI, 
were involved in the preparatory stage ([ALS-91), [IAI-91), [DEV-9I]). The development of the 
final platform has been contracted to BIM, with subcontractors SEMA Group, SRI-CRC and 
lAI. P-E International have been charged with the development of a prototype system as weil as 
maintenance and support services for the final system. 

2.2.3 Formalism 

The basic ALEP formalisms were designed by SRI International Cambridge within the ET-6/I rule 
formalism and virtual machine design study [ALS-9I]. Several different formalisms are provided 
for: 

• analysis of word form variation (two-level rules) 

• syntactic and semantic analysis/synthesis (typed unification grammar) 

• transfer-based MT (general transfer rule formalism) 

The central analysis and synthesis formalism has a context-free skeleton but does not in­
tend to embody any particular linguistic theory. The formalism was designed to be conservative, 
'mainstream', efficient, expressive, declarative, reversible and monotonie. This typed unification 
grammar has a three level architecture: 

• Level 1: simple 'PATR like' terms, constraints applied directly by unification. 

• Level 2: notation al enrichments which can be compiled into constructs of level 1. 

• Level 3: notational enrichments which cannot be compiled into constructs of level land 
which require additional machinery over and above unification. 

The prototype ALEP-O implements a large part of the ET-6/I specification with a few re­
strictions and differences: 

• The 'concrete' syntax is different (elose to that of the 1/1 terms described in ET-6/1, p220). 

• The user language (Level 2) is incomplete in not allowing some notations to be used (un­
ordered elements) or not allowing their use at specific points (eg disjunction over sharing). 
Tuples and specifiers are also not supported . Most of these restrictions can be worked around. 
No preference mechanism is yet provided. 

• The type system has been altered to impose a stricter typing. Attributes are associated with 
either a basic type (list, atom, boolean expression or term) or with the name of another 
user defined type, itself composed of typed attributes. All types are of fixed arity. The type 
system also allows for different attributes to have the same name when within different types 
and allows for simple compilable type hierarchies and inheritance. 

The algorithms which perform analysis, refinement, transfer and synthesis have been isolated 
from the main virtual machine component . This allows selection of an appropriate algorithm for a 
specific grammar when the system is invoked , and for third party contribution of new algorithms. 

The core of the formalism (Level 1) has a conservative design for potential efficiency. As such 
this is under-expressive for some users. The third level of the formalism allows for unprescribed 
extension with 'external' constraint systems which operate in parallel, after unification (Figure 
2.1) [SIM-93b]. 

The ALEP-O algorithms now include an experimental set of calls to such an extern al system. 
An illustrative sampie negation solver is supplied with the system. 



ALEP 

Core Operation 
(analysis,refinement,generation, transfer) 

~------------- --------------
, Unificatloo 

Features 1 Constraints 1 

I 
Features 2 Constraints 2 

~ 
Features 3 

-------------- -- -- ----------' 

Core (VM) application of 
level 1 & 2 constraints 

External Constraint Sol ver 

~----------------------
' Extemal rewrite algorithm 

Constraints 3 

- - - - - - - - - - - - - - - - - - - - - _I 

Extemal (partial) evaluation 
of level 3 constraints 

Figure 2.1 : Interaction of core unification & extern al constraint solvers 

-----------------------1 
1 User Interfaces 1 

Corrunand MOTIFIXII 1 ~ 
I int~qreter graphical user I 

user mterface mterface 1 

.. 
Tools 

Online documentation 
info. tool for browsin 

1 1 

--~===========[===========--I 
Linguistic object 

Pretty-printer 

XMFED graphical 
feature structure viewer Virtual Machine: 1 

enter/read sentences -> segment into textunit -> morphology (split) -> 
litt to LS -> analyse -> [refine] -> transfer -> synthesise -> [refine] -> 

lower to textunit -> morphology Goin) -> unsegment to sentence 

Tracing and debug 
Pretty printing 

Macro pre­
processor (APP) 

Customized editor 
(Epoch Mode) 

......-___ --1_-_-_-_----,- - - - - - - - - - - -J -----1 I TH Simulation 

User Language I - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 

Compiler Constraint application 1 

Constraint extensions 
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Figure 2.2: Outline of ALEP-O environment modules 
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2.2.4 Environment 

The ALEP-O prototype software is intended for small to medium scale lingware development, 
debugging and testing. It provides a formalism and tools outlined in Figure 2.2 . 

The most important application is the Virtual Machine (VM) with either graphical or 
command-line oriented user interface . The VM is implemented using Quintus Prolog Version 
3.1.1. 

Xalep ([GRO-93b]) is an experimental, simple to use, graphical user interface to the VM. 
It consists of a number of 'toolboxes' (analysis, transfer, synthesis, text-, object- and lingware­
handling). This is implemented in C using the OSF /Motif widget set and Quintus' Prolog Foreign 
Language Interface. Xalep can run on most displays with X-Windows version 11 and makes direct 
calls to the Virtual Machine. 

ALEP-O is not intended as open software as designed in ET-6/2 [IAI-9I]. The software ap­
plications are monolithical and only make use of other applications, such as the graphical feature 
viewer, via simple Unix calls and ICCCM based communication. Integration of other applications 
requires source code changes, although the VM allows for user contributed algorithms as separate 
mod ules and extensions via the H ooks and External Opemtions Library mechanisms [SIM-93b]. 

ALEP-O is distributed with the following additional tools: 

• Xmlnfo: a graphical tool for browsing hierarchically structured on line documentation . All 
ALEP-O documentation can be used as an on line reference manual for ALEP-O users. 

• Xmfed: a graphical feature viewer for viewing large (linguistic) structures, integrated with 
Xalep and also with the VM tracer to provide graphical feedback du ring tracing of linguistic 
operations [GRO-93a] . 

• App: a customized linguistic macro preprocessor. 

• alepemacs: a grammar editing mode (elisp) for the GNU emacs editor with dynamic syntax 
checking and string completion . 

2.2.5 Further Development 

As outlined in the development plan, ALEP-O is only the small-scale prototype of the fuH ALEP 
platform [MEY -93]. The first version of the full environment has been designed and implemented 
by BIM [BIM-92], [BIM-93]. This version, ALEP-1, is to undergo assessment before a second 
development cycle which will end in 1994. The environment of ALEP-1 (Figure 2.3) is formalism 
independent and open to customization and extension. 

The default formalism available within this system is closely based on the ET-6 .1 design, 
extended inline with developments under ALEP-O. The ALEP-1 formalisms are largely compat­
ible with that of ALEP-O such that lingware developed under the prototype can be reused with 
ALEP-l at low cost [THE-93]. 
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The CAT2 formalism is used to describe (1) the grammar of a language defining the set of well­
formed linguistic structures that belong to the language, and (2) a mapping relation between the 
linguistic structures of one language and those of another. To this end, the formalism consists 
of descriptive mechanisms for generating the linguistic structures and for translating from one 
structure to another . The former are called Generators, the latter Translators. (This terminology 
is taken from the original <C,A>,T specifications.) 

Generators 

Generators describe linguistic structures in terms of trees . We will assurne here an intuitive 
understanding of the not ion of a tree, i.e. that of a root (mother) node dominating zero or more 
subtrees (daughters) . Each daughter has a unique mother node, except the topmost node, which 
has no mother node . Furthermore, we will assurne that the daughters under a root are ordered, so 
we can speak of a left branch, right branch, middle branch, etc. Finally, a root with no daughters 
is a terminal node, a leaf in the tree. 

An example of a typical tree structure is the following : 

S 

~ 
VP NP 

Tom 

~ 
V 

kissed 
NP 

Sue 

The tree above shows only the syntactic categories, but this is only one piece of linguistic infor­
mation . Other properties, such as person, number, gender, tense, and many others , would be 
required to fully describe the actual properties pertaining to a given construction. As is now 
standard in modern computationallinguistic theories these properties are described as features, 
i.e. attribute-value pairs; each node in the tree contains a set of such features, called a feature 
bundle. For example, the subject NP node above might be illustrated by the following feature 
bundle : 

{ cat ::: np 
ortho = 'Tom' 
lex ::: tom 
agr = { per ::: 3 

num ,= sing 
gen ::: masc } 

case = nom } 

Using trees whose nodes are feature bundles as representations of linguistic structure, we can 
now define them in the CAT2 formalism . 

We define, first, a feature bundle FB as: 
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(1) FB = {F+} 
where F+ is a list of one or more features F, enclosed in curly brackets. 
A feature F is defined as: 
(2) F == <attribute> = <value> 
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where <attribute> is some atomic constant, a label, and <value> is either an atomic constant 
or a feature bundle. The former are called simple features, e.g. cat, per, and case above, and 
the latter complex features, e.g. agr . 

An example of the above NP feature bundle would be written in CAT2 notation as: 
{cat=np,ortho='Tom',lex=tom,agr={per=3,num=sing,gen=masc},case=nom} 

Given this introduction to tree and feature structures, we now define a generator 9 for some 
language as a tuple: 

(3) 9 == < B, :F > 
where B is a non-empty set of constructors, called b-rules ("building rules"), and :F is a possi­

bly empty set of well-formedness constraints, called f-rules ("feature rules") on the constructions 
produced by B. 

B-Rules The constructors, or b-rules, define partial tree structures, i.e . mother nodes and their 
immediate daughters. A constructor C, C E B, is defined as: 

(4) C == <rulename> = ROOT.BODY. 
where <rulename> is a rule identifier, ROOT describes the root of the tree, and BODY is a list 

of the immediate daughters under the root. In the case of a terminal node, the body is the empty 
list; such constructors, called atoms, define extensionally the lexicon of the generator, i.e. those 
constituents which cannot be further decomposed into subconstituents. By restricting the tree 
description to the immediate constituents, we have the equivalent of a context-free grammar. 
That is, the structure shown in (a) corresponds to the context-free rewrite rule in (b), which is 
written in CAT2 notation as (c): 

a. 8 b. 8 --t NP VP c. {cat=s}. [{cat=np}, {cat=vp}]. 

~ 
NP VP 

An example of an atom is given below for the verb kissed : 
kiss1 = {cat=v,ortho=kissed,lex=kiss,tense=past}. []. 

A more complete verb entry would include things such as argument structure, Aktionsart, 
aspect, inflection, possibly phonological information if relevant, etc. We will look at some of these 
in some detail in 82 . 

F-Rules F-rules operate on the partial trees generated by b-rules and are used to assign default 
feature values and enforce well-formedness of tree and feature structures. They have a form similar 
to b-rules, with the exception that they are not limited to describing just immediate daughters -
they can map onto an arbitrarily deep tree structure. 

F -rules come in three types: default, filter and strict . Adefault f-rule assigns feature values 
to a structure unless it already has different values, in which case the default rule does not apply. 
A filter f-rule also tries to assign values, and if it succeeds, the structure is deemed ill-formed and 
rejected from further analysis . The strict f-rule requires a structure to have or accept the given 
features; if the requirement cannot be fulfilled, the structure is rejected . 

Default f-rules are most often used to assign features to the lexicon. For example , most English 
verbs cannot be treated as auxiliaries, i.e. they do not front in questions, they do not contract 
with not, etc. Rather than stating this fact in every verb entry, we can write the following default 
rule on ce to apply to all verbs: 

default_aux = {cat=v,aux=no}. [] . 
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The auxiliaries have and be and the modals would explicitly be marked with the feature 
{aux=yes} in the lexicon and therefore not be affected by the rule. 

F-rules are used quite extensively in practice, since the set of phrase structure rules, i.e. b­
rules, is rat her minimal, given the implementation of X-bar theory as outlined in S2. Most 
well-formedness conditions, aside from pure structural well-formedness, are in fact controlled by 
way of f-rules. 

Rule Application CAT2 belongs to the family of unification-based formalisms such as PATR 
(Shieber 1984). This means the basic operation is that of unification (Shieber 1986), both of tree 
and feature structures. Assurne we have the feature bundle description in (a) and this is to be 
unified with the feature bundle in (b): 

a. {wh=no, agr={per=3 ,num=sing}} 
b. {cat=n,ortho='Sue',agr={per=3,gen=fem},wh=X} 
c. {cat=n,ortho='Sue' ,agr={per=3.gen=fem.num=sing},wh=no}. 
d. {cat=n,agr={per=3.num=plu}} 

The result of unification is the feature bundle in (c), where the variable X has been unified 
with the value no, and the value of agr is extended to include {num=sing} . (a) cannot unify with 
(d) because of confticting values for num. 

The not ion of unification has been upgraded to that of constraint satisfaction, in which 
constraints on feature values are evaluated only when there is sufficient data to positively establish 
a value. The feature constraints provided in CAT2 are itemized below: 

a. 
b. 
c. 

positive constraint 
negative constraint 
disjunctive constraint 

{case=nom} 
{case-=gen} 
{case=(dat; acc)} 

The positive constraint assigns a value to a feature, or confirms its value if it is already present in 
the feature bundle under investigation. The negative constraint states wh at a given value is not 
permitted to unify with, and the disjunctive constraint states what values the given feature may 
unify with . In the process of unification, a feature may happen to not be assigned a positive value, 
in which case any negative or disjunctive constraints will be retained until a value is assigned by 
some other rule application, at which time the constraint(s) can be re-evaluated . Failure of the 
constraint to be satisfied at any time will cause the structure under evaluation to be rejected. 
Backtracking will take pi ace in this case to some previous choice point, if any. In the current 
implementation of CAT2, all choice points will be exhaustively evaluated so that all possible 
paths in the grammar and lexicon are followed. 

A further notational extension provides for optionality and alternation of constituent struc­
tures. We can define the contents of the body of a rule as a regular expression EXPR whose 
Backus-Naur Form notation is shown below: 

a. 
b. 
c. 
d. 
e. 
f. 

EXPR := FB 
EXPR := -EXPR 
EXPR := *EXPR 
EXPR := +EXPR 
EXPR := ( EXPR ; EXPR ) 
EXPR := ( EXPR , EXPR ) 

(basic feature bundle description) 
(optionali ty) 
(zero or more expansions of EXPR) 
(one or more expansions of EXPR) 
(alternation of expressions) 
(sequence of express ions) 

A somewhat artificial example is shown below for a noun phrase containing an optional de­
terminer, zero or more adjective phrases, at least one noun, and optionally followed by either a 
prepositional phrase or a non-infinitive sentential phrase: 

{cat=np}. [-{cat=det}, *{cat=ap}, +{cat=n}, - ({cat=pp};{cat=s,tense-=infin})]. 
The application off-rules to a structure is carried out in the order they occur in the grammar. 

This ordered relation enables default rules to assign features to a structure, which subsequent filter 
andjor strict rules can verify. This adds a procedural element to an otherwise fully declarative 
grammar formalism, meaning the linguist must be cognizant of the correct order in which rules are 
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to be written. At the same time, the linguist has control over processing, and can, for example, 
order filter rules earlier in order to reject invalid structures before other rules are unnecessarily 
applied. 

As to the parsing strategy, CAT2 employs a bottom-up chart parser with one symbollookahead. 
It essentially implements the Earley algorithm, where the completion step has been generalized to 
include the scanning of terminal constituents (Kilbury 1985) . 

The reverse of parsing, synthesis, is carried out by the process of translation, discussed next. 

Translators 

Translators map one structure onto another by a recursive process of decomposition, transfer 
and recomposition. For example, a tree structure created by the parser is transformed into a 
new structure with possibly differing feature structures. The new structure may refiect another 
aspect of the language, e.g. a semantic or pragmatic representation, or it may be a representation 
appropriate to a target language. Schematically, we have the following situation where a source 
text T. is translated to a target text T t by transforming it through aseries of intermediate 
structures Li, where each Li is defined by a generator Gi: 

IT2 2T3 n- 2T n- I n-ITn 
.!. t .!. t 

T. ==> LI ==> L2 ==> ==> Ln- I ==> Ln ==> TI 
t t t t 

GI G2 Gn- I Gn 

The parser uses GI to generate LI from T., and aseries of translators iTi+I transform this into 
L2, ... ,Ln. A simple yield function produces the target string TI, selecting out the orthographic 
features in Ln . 

A translator T is defined by the tuple: 
(5) T == < TB, TF > 
where TB is a non-empty set of structural translation rules ("t-rules"), and TF is a possibly 

empty set of feature translation rules ("tf-rules"). 
Syntactically, the t-rule has the form: 
(6) <rulename> = ROOT.BODY ::} ROOT.BODY. 
where the lefthand side of the "::}" symbol is a partial description of a source structure and 

the righthand side is a partial description of a target object to be constructed. Unlike generator 
b-rules, the body of either side of the t-rule may specify a tree to an arbitrary depth of detail. 
ConsequentlYi non-atoms may be mapped to atoms and vice versa. Semantically, the t-rule states: 
if the lefthand side unifies with the source object, then a target object unifying with the righthand 
side is created, provided that such object is licensed by the generator for the target level. An 
object is licensed in this sense if at least one rule in the generator unifies with the object, and each 
of the object's daughters unifies with at least one rule. Again, unification is the basic operation, 
including negation and disjunctionas constraints. 

The simpl~t t-rule expresses the relation holding between two atomic objects, as found, for 
example, in a French-to-English translator: 

atomic_t_rule = {lex=aller}. [] => {lex=go}. []. 
More complex t-rules are defined recursively o'ler subobjects, permitting a compositional break­

down of a source object and construction of a target object, controlled by explicitly marking the 
subobjects to be recursively translated . For example, the following t-rule relates a constituent 
structure of a sentence to a lowered-governor dependency structure, in which the subject NP, the 
governing verb, and any following constituents are selected on the lefthand side for recursive trans­
lation, and repositioned in the target object such that (the translation of) the verb appears first 
under the root node, followed by (the translations of) the subject and the remaining constituents: 

t = {cat=s}.[ l:{cat=np}, {cat=vp}. [ 2:{cat=v}, *3 ]] => _. [ 2, 1, 3 ] 
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Besides constituent reordering, the VP node disappears, since it is unmarked on the lefthand 
side, illustrating how nodes are "deleted" from a structurej conversely, nodes are inserted into a 
structure by explicitly describing them on the righthand side of the t-rule. In synthesis we would 
have the reverse of the above rule, inserting a VP node in the target structure. 

Translator f-rules are similar to generator f-rules, in that they do not affect structure, but 
rather affect the feature conte nt of objects . The test for applicability is unification of the entire 
lefthand side of the rule with the source object. If applicable, the righthand side is unified with 
the target objectj success or failure of unification has the same effect as for generator f-rules, and 
depends on whether the f-rule is typed default, strict, or filter . As an example, the following strict 
translator f-rule copies over the complex agreement feature: 

tf = {agr=A}.[*] => {agr=A}.[*]. 

(questionnaire not submitted) 
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2.4 Constraint Categorial Grammars 

Luis Damas, Nelma Moreira 
Universidade do Porto, Rua do Campo Alegre 823, 4000 Porto, Portugal 

Giovanni B. Varile 
CEC , 2920 Luxembourg, Luxembourg 

2.4.1 Introduction 

Unification based formalisms show a elear inability to deal in a natural way with phenomena 
such as the semantics of coordination. As a matter of fact although unification can be used to 
implement a weak form of ß-reduction it seems that this kind of phenomena is better handled by 
using some form of .A-calculus. One possibilty, wh ich is at the heart of .A-prolog, is to extend both 
the notion of term, to inelude .A-abstraction and application, and the definition of unification to 
deal with .A-terms. For this extension to be technically sound it is neccessary to require .A-terms 
to be well typed. 

On the other hand, it turns out that if instead of using terms we use complex feature de­
scriptions (where conjunction replaces unification), we still can follow the same plan to produce a 
higher-order calculus of feature descriptions . 

CCLG is a simple formalism, based on categorial grammars, designed to test the practical 
feasibility of such an approach . 

The main reason for selecting a categorial framework for this experiment was that, due to the 
simplicity of the categorial framework, it allowed us to concentrate on the constraints calculus 
itself. Another reason was the elose historical relationship between categorial grammars and 
semantic formalisms incorporating .A-abstraction. 

CCLG extends categorial grammar by associating not only a category but also a higher-order 
feature description with each well-formed part of speech. The type of these feature descriptions 
are determined by the associated category. Note also that a derivation leading to an unsatisfiable 
feature description is illegal. 

When compared with other formalisms one of the main distinguishing features of CCLG is 
the fact that it computes partial descriptions of feature structures and not the feature structures 
themselves. 

In the next sections we briefly describe this formalism. 

2.4.2 Feature Description Calculus 

The feature description calculus A~v at the heart of CCLG is inspired both on the .A-calculus 
and on Feature Logics. For technical reasons, namely that we want to insure the existence of 
normal forms, it is a typed calculus. Our base types are bool for truth values and fs for feature 
structures. Our types are described by 

T : := bool I fs ~ T I T ~ T' 

Note that w~ exelude fs as the type of any feature description. This retlects our commitment to 
compute partial descriptions of feature structures rather than feature structures. 

Now assurne we are given a set of atoms a, b, ... , a set of feature symbols /, g, .. . , a set of 
variables for feature structure x, y, . . . , and, for each type T, a set of variables of type T 

X T , YT, ... . Then the set of feature descriptions of type T is described by 

e T 

ebool 
efS-+T 
eT'-tT 

true I false I XT leT 1\ eT I eT VeT l,eT I efS-+T x ,P I eT'-+TeT, 
t.p=s 
.Ax.eT 
.AXT' .eT 

where sand t denote either atoms or feature structure variables, and p is a, possibly empty, 
sequence of feature symbols denoting a path in a feature structure. 



CC(L)G 27 

Note the languages thus defined includes both feature logics and a typed A calculus. We import 
from both theories such not ions as substitution, free and bounded occurrences of variables, a and 
ß reductions and normal form. 

To define a semantics for the calculus of feature descriptions we adopt the standard model nT 
of rational trees for feature stmctures and we associate with each type T a semantic domain D r 

as follows 
{O,l} 

:::: nT --+ Dr 

D r , --+ D r 

From this point on a semantics for feature descriptions is defined in the same way as for feature 
logics and the typed A-calculus by noting that the standard boolean operations can be, extended 
to all the semantic domains involved in a component-wise fashion, e.g. 

(Ax.e) V (AX .e' ) =deJ (Ax.e V e' ). 

Similarly, for each type T, true and false denote the obvious elements of V r . 

An important property of the feature description calculus is the existence of normal form under 
ß-reduction which is a simple consequence of well-typeness . Another important property is that 
for any closed feature description of type T we can decide if it is equivalent to false . This last 
property is essentially an extention of the the satisfiability problem for a complete axiomatization 
of feature logics. For this reason we will say that a feature description of type T is satisfiable iff 
its semantics is not that of false. 

Our implementation of the feature description calculus is based on the reduction to normal 
form followed by the techniques used in CLG for resolving complex feature constraints . 

2.4.3 Categorial Grammar 

We use a basic (rigid) categorial grammar, consisting of a set of categories, a lexicon which assigns 
categories to words and a calculus which determines the set of admissible category combinations. 
Given a set of basic categories Cata we define recursively the set of categories Cat by: the elements 
of Cata are categories; if A and Bare categories then AlB and A\B are categories. The two 
combination mies are left-application (app \) and right-application (app I): 

(appl) AI B + B --+ A 

(app\) B + A\B --+ A 

The meaning of the resulting expression (A) is the application of the meaning of the functor 
expression (AIBor A \B) to that of the argument expression (B). 

Some unary (lexical) mies (lifting, division, etc) were added to provide a flexible GG which can 
cope with discontinuity and other linguistic phenomena. Semantically these mies allow functional 
abstract ion over displaced or missing elements. 

2.4.4 Constraint Categorial Grammar 

A Constraint Categorial Grammar is a tuple (Gata, Y, Lexicon, Rules) where 

1. Gata is a set of base categories 

2. Y is a map which associates with each category G a type Y( G) and satisfies 

Y(AI B) :::: Y(A\B) :::: Y(B) --+ Y(A) 

3. Lexicon is a set of tripies (w, A, c), where w is a word, A a category and c IS a feature 
description of type Y(A) 
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4 . Rules is the set of inference rules to combine pairs A - C of syntactic categories and semantic 
representation . 

The inference rules used in the current gramm ars are: 

AlB - cf B - cb 
(app I) A () if cf Cb is satisfiable 

- CfCb 

( \) 
B-Cb B\A-Cf ' f . . fi bl 

app A ( ) 1 cf Cb 1S satls a e 
- CfCb 

2.4.5 A sampie grammar 

In this section we give a very small fragment of an English grammar. The let constructor alJows 
the use of macros in the writting of the lexicon. The inference rules are build in the grammar 
processor. Note also that although the feature descriptions used in the grammar are untyped a 
type inference algorithm is used to infer types for each expression. 

Base_Categories % Define the set of base categories 
s = fs -> bool, % and their types 
vi = fs -> fs -> bool, 
np = s/vi, 
vt = vi/np, 
n = fs -> bool, 
det = np/n, 
xnp = (s/np)/(vi/np), 
xthat=(n\s)\np; 

transformation % define a type raising rule 
np = (s/np)/(vi/np): \S \Vt \C. S (Vt C); 

%1.1.%1.%%1. some useful abreviations 

let 3RD..5G \X . X. pers=p3 St; X. nb=sg; 

let NOL3RD..5G = \X. X.pers\=p3 I X.nb\=sg; 

let PN(W) = \P.\s. s.quant=exists~ne St; s.arg.reln=naming St; 

s. arg. arg l=W St; 3RD..5G (s. arg) i; Ps. arg s. pred ; 

let CN(W,AGR) \5 . s.reln=W i; AGR 5; 

let DET(Q,AGR) = \N \P \s . s . quant=Q St; AGR s.arg t 

N s.arg t P s.arg s.pred; 

let VI(W,AGR) \x\p p.reln=W t p.argl=x t AGR x; 

let VT(W,AGR) = \C . \x\p C (\y \q. q.reln =W t q.arg2=y t q . argl=x) p; 

%%%'l.%'l.'l.%%'l.'l.'l.'l.'l. lexicon 

lex a, det, DET(exists~ne , 3RD..5G); 

lex book, n, CH (book , 3RD..5G) ; 

lex john, np, PN(john) ; 
lex mary . np. PH(mary); 
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lex died, vi, VI(die,3RD..'>G); 

lex loves, vt, VT (love, 3RD..'>G) ; 

'l. coordination 

lex and, s\(s/s), \S1\52\s. s.type=coord ~ S1 s.arg1 ~ S2 s.arg2; 

lex and, np\«vt\vi)/np), 
\NP1\NP2\VT. \subj\s. s.type=coord ~ 
VT NP1 subj s.arg1 t VT NP2 subj s.arg2; 

lex and, vi\(vi/vi) , \V1\V2. \subj.\s. 
s.type=coord t V1 subj s.arg1 t V2 subj s.arg2; 

2.4.6 Conclusions 

The current CCLG implement at ion shows the practical feasibilty of using higher order feature 
structure descriptions as semantic representations. This reflects the fact that the complexity of 
the satisfiability problem for higher order feature descriptions is essentially the same as for feature 
logics. _ 

We should also point out that the good performance of the system results in part from its 
hybrid nature where a categorial grammar with atomic base categories is used to guide parsing. 

System Name: 
Designed and Implemented by: 

CC(L)G Categorial Constraint Grammar 
L. Damas 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine vs. Categorial grammar parser and Constraint sol ver 
dedicated modules 
non-montonic devices 

control facilities 

parser/generator? parser only 

others 

Data Types 

arity (fixed?) Feature structure constraints 

cyclic structures yes 

lists/sets 
functions/ relations 
others high order feature structure descriptions 

lnteraction PS {:::::::} Types 
type unification 

type expansion 

at definition/ compile time Hp" 
compile time 

at run time: 
(deI ayed/ partial/ 
recursive) 

others (templates .. . ) 
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I TYPE SYSTEM 

Type Connectives 

conjW1ction: 
single vs . multiple 
inheritance 
disjW1ction 

negation 

others 

Type Definitions 

via feature structW'es 

via appropriateness 
conditions 

recursive? 

others 

Additional Operations 

type inference/ 
classification 

GLB/LUB type 
subsumption 

others 

Restriction on Hierarchy 
(unrestricted partial o rder. 
bounded complete p.o .• 
distributive lattice .. . ) 

Tools 

11 Comments 
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2.5 CLARE (includes Core Language Engine) 

SRI International, Cambridge 

Introduction 

The Core Language Engine is a general purpose, wide coverage, unification-based 
system for the analysis and generation of sentences. The following slides give a 
high level overview of the architecture of the system and some of the applications 
it has been used for. These applications include database query, transfer-based 
translation, and spoken language understanding. 

A more detailed description of the CLE, including a full specification of the formal­
ism and descriptions of the associated processing algorithms can be found in the 
book edited by Hiy~n Alshawi: 'The Core Language Engine ' ) MIT Press, 1992. 

Stephen Pulman, 

July 1992. 

THE CORE LANGUAGE ENGINE 

SRI International 
Cambridge Computer Science 

Research Centre 

* Language research at SRI-CCSRC 
* Design themes 
* How the themes are realised 
* Performance evaluation 

Key to same acronyms: 

CLE: 
CLARE: 

BCI: 

VEX: 
QLF: 
RQLF: 
TRL: 
SLT : 
SRl: 

Core Language Engine 
CLE with reasoning and 
cooperative response 
Bilingual Conversation 
Interpreter 
Vocabulary EXpander 
Quasi Logical Form 
Resol ved QLF 
Target reasoning language 
Spaken Language Translation 
SRl 

BACKGROUND 

* SRI International: 3,000 people vorld­
vide, scientific ~ other consultancy 

* Cambridge laboratory founded 1986. 
Now 5 natural language researchers, 
(4 hardware/software verification): 
NL: Stephen Pulman, David Carter , 
Hanny Rayner, lan Lewin, Dick Crouch . 

* Earlier contributors : Bob Moore, 
Fernando Pereira, Doug Horan, Jan 
van Eijck, Hiyan Alshawi, Arnold Smith 
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DESIGN THEMES 

1 Modular staged architecture 

2 Well-defined intermediate 
representatioIIß 

3 Local ambiguity packing 

4 Declarative rules applied by 
(Prolog) unification 

5 Compilation of rules and entries 

6 Balance of user intervention and 
system preferences in making choices 

7 Customization for applications 

(2) INTERMEDIATE REPRESENTATIONS 

* These are well-defined and explicit 
at all levels. Some examples: 

Target Reasoning Language (TRL). 
First order logic augmented 
with limited lambda abstract ion, 
sets, cardinality, time 
relations ... to support reasoning. 

Quasi Logical Form (QLF). 
Limit of compositionality 
TRL constructs augmented with 
generalized quantifiers; vague 
terms and formulas; category 

inforlllation. 

Mediating between QLF and TRL: 
Resolved Quasi Logical Form (RQLF). 

QLF with more variables 
instantiated to allow 
translation to TRL. 
conversion to TRL is purely 
syntactic k loses information. 

(1) MODULAR STAGED ARCHITECTURE 

Advantages: 

* Easier system development by a team 

* Modules can be evaluated and 
debugged separately 

* Modules can be reused in different 
combinations 

Pitfalls to be avoided: 

* Arbitrary boundaries between 
modules 

* Risk of inefficiency, e . g . during 
parsing 

(3) LOCAL AMBIGUITY PACKING 

* Allows staged architecture to be 
efficient. Used up to semantic 
analysis stage. 

"Wren designed a library in Cambridge . " 

<NP> <-------------VP--------------> 
<-------VP-------> <-- - -PP----> 
<---V--> <---------NP---------> 

* No full parse trees are produced 
(except for inspection). 

* Can support numerical weighting 
(iterative deepening, A* search). 

* Avoids the need for true 
disjunction in rules. 

* Lattice also used in tokenization 
(typos, slashes, hyphens; speech) 
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Systems Exhbited 
user 

Analysis T Synthesis 
.------------------------------- -------------------------------. Correction, i-------------------------------·------------------------------

. . : Acquisition : 
ökemzatwn (text speech) : ;-------------------; 
----------+---~'~--~ 1 1 1 

. ; u~erlvExl i SegmentatlOn -···.···f···· l 
1 i etc 1 · . . · . . .. . · . . I ~ ____ • _____________ ... Morphology 

Parsing 

Semantic Analysis 

Sortal Filtering 

___ r:.q._T!:~~!!!I:f:_~!!_~~r~ction 
Transfer (BCI) 

Lexical Realization 

Head-driven Synthesis 

.--- ----------------- -----------------------.----------.--------, 

QLF 1 Transfer ~LF 

. . 
_ .. ------.---------._------------ -------._-_.--- -. __ ._-------.... -

Interpretation inmnnmmnnuumurmmmmnmn,mn 

Reference Resolution 

Description (a fl the moment) 
:- --------- -- ---------------.--~I--- .. --------------------------. 

ome Term "Dereferencing' 
I 

ranking+interdction 

Quantifier Scoping rQ~-~~üfi~~ -S-~~-p~-R~~~~~Yi ·----· .. · .. · .. ···· .. · .. · .. f·· .. · .... · .. · .. ···· .. ··· 
RQLF RQLF 

. ranking 

First Order Translation ase-based Transformatio 
I I 

TRL (linguistic) Reasoning (CLARE) TRL (linguistic) ______ ______________ ___________ • _____ .. _________________ 0-- ____ -- .-------------.--------.-._.--------------.- ___________________ • _____________________________ _ 

Domain model translation Domain model translation 
I i 

TRL (database) 
~ 

TRL (database) 

1 
Database (or other back end) 
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(4) DECLARATIVE RULES AND UNIFICATION 

• Reversability; monotonicity; 
debuggability; efficiency (Prolog) . 

• Major category symbols, complex 
syntactic and semantic features 

• In semantics, QLFs built up like 
feature values 

• Rule schemas: verb complement 
list in VP rule instantiated from 
verb entry 

• Limited disjunction for e.g. 
agreement (compiled away) 

• All rules are declarative: 
segmentation, morphology, syntax, 
semantics, sorts, reference, 
scoping, domain translation ... 

(6) INTERACTION AND PREFERENCES 

• Wide coverage -> many analyses: 
system cannot reliably choose 
user cannot cope with too much 
and may not know linguistics 
system/user balance changes 
as technology improves 

• Numerical preferences on : 
word senses (from corpus) 
rule choices (NOT rules) 
word occurences (acoustic) 
syntactic/semantic properties 
scopes, references, etc 

• System ORDERS readings numerically 
then ASKS user : paraphrases, 
bracketings. User can specify 
constraints (at QLF level) . 

• This happens after semantic 
analysis, reference resolution, 
(scoping), transfer. 

(5) COMPILATION OF RULES AND ENTRIES 

• USERS need readability, 
flexibility, irredundancy. 
SYSTEM needs explicitness and 
fixed formats . 

• Kacros expanded out first . 
(Kost of the lexicon is effectively 
lIacro calls) . 

• feature=value compiles to 
positional notation. Defaults used . 

• Disjunction -> boolean vectors. 

• Rules are compiled in same way for 
analysis t generation, but indexed 
differently . 

• Sortal class lists compile to 
partial hierarchies. 

INTERACTION IN ACTION 

» I met the man in the bank. 

6 well-sorted semantic analyses. 

Complete sentence with bracketing: 

"{r} met {{the man} in {the bank}} . " 

Word senses (unordered): 

lIeet : encounter (rather than "be 
adjacent") 

lIan: male person 

35 

bank: company (rather than "building" 
or "edge") 

Confirm this analysis? (y/n/c/p/?) : 
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(7) CUSTOHIZATION FOR APPLICATIONS 

* VEX (Vocabulary EXpander) allovs 
non-linguist domain experts to add 
lexical entries for vords and 
phrases. Based on "paradigms " . 
GraJDar can change under its feet. 

* Sortal hierarchy can be'extended 
(vithout revriting lexicon). 

* User-defined reference rules (e.g. 
for mouse pointing). 

* Declarative domain model specifying 
logical equivalences betveen 
linguistic and domain predicates. 

EVALUATING COVERAGE 

* LOB corpus: "legible" characters. 
limited length. core vocabulary or 
external lexicon. (Core vocabulary 
words are harder!). 

* Can only evaluate as far as QLF level 
(no discourse context available). 

* 'Good' means that the QLF ranked 
highest by the preferences is one 
that is correct in some reasonably 
plausible context. This is not the 
same as correctness in an application. 
vhich is often easier to achieve. 

* NB this measure ignores the fact 
that lover ranked QLFs may be 
'good'. 

Systems Exhbited 

LINGUISTIC COVERAOE 

• Major cI.,ue type.: dec1arativc., imperat.ive., ,..h~ .nd 
J'cl-ao que.t.ioDI, relat.ive., pa •• ive., elch., 
t.I:acre-claulcl. 

• Verb phr •• el: camplemen\. .u.bc:.t.e~ori •• tioD.. cODt.rol yerba, 
"erb part.iclcI, auxiliarie., "eDle operat.or., lome 
.d"crbi.ll. 

• Naua phra.e.: prcllomiaal .Dd pOlt.1I.0mlDal modifieu, 
Icxic.1 .Dd pllr ••• 1 qu. •• t.ificu/.pccificn. 

• CoordiDat.ioD! co!ljuAcl,ioa.1 .lId di.ju.actioAI of .. widc 
cl ... or .Qoua phr.u~ •• verb pbr •• e., _Ild cI.alclj 
.djccli. .... I. Domiaal, _nd adverbi.1 comparati"cl. 

• Aa&phoric exprcllioDI: defiD.it.e: ducript.iolll, reflexive 
_lid ADD.rcflcKjve prolloua.., boulld va.riable a.Da.phora, implicit 
rela.tioD •. 

• Ellip.i.: 'oDe'.aDa.phora., iDtra..eDtellti.1 a.lld 
iDteueDteDtial verb phra.e eHip.i., follow-oll qlle.tioll. •. 

• MorpholoJY : ill.f1ect.ioa..1 morpholoJY, .imple product.ive 
e.u;. of deriv.t.io.al morpholoJY, .pecia.1 [arm toke •• . 

• Core lexieoll: 1600 fllllCt.ioll word. alld cOllteat ward .tem., 
l300 .eD.'e. with a .. oci.ted .electioD.al re.trictioD.'. 
Extern.1 lexicOD interface .vailable. 

Heasuring progreSS: 
QLF rates for sentences up to 10 words 
over the last few years 

Unlim. vocab 
Date '/.Any 'l.Good 

Hay 89 15 12 
Oct 90 39 22 
Oct 91 54 33 
Oct 92 71 44 

Comparison of random corpus 
sentences with those for which 
the system has been customised. 
(ATIS = Air Travel Information Service 
corpus from US DARPA program) 

October 1992, QLF Accuracy: 

ATIS LOB 
up to 15 words 
Got QLFs: 90% 57% 
1st QLF good: 80% 62% 
Accuracy: 72% 35% 
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System Name: 
Designed and Implemented by: 

CLARE (includes Core Language Engine) 
SRI International, Cambridge 

GENERAL DESCRIPTION I 

Inference Engine 

unique engine vs. dedicated modules 
dedicated modules 
non-montonic devices no 
control facilities in generation, via definition of "head" 

parser/generator? both 
others preference mechanisms, quantifier scoping, reference resolution 

Data Types 

arity (flxed?) fixed 
cyclic structures possible but not encouraged 

lists/sets lists, no sets 
functions /relations not in syntax 
others terms etc. 

Interaction FS {::::::> Types 
type unification via term unification 
type expansion 

at definition/ compile time 
compile time 

at run time: 
( delayedjpartiall 
recursive) 

others (ternplates ... ) parameterised macros, expanded at compile time 

37 
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r GENERAL DESCRlPTION II 
-

Interfaces to 
morphology yes 

semantics/ yes 
knowledge repr. 

Implementational [ssues 

programming lang. Quintus Prolog, Sicstus Prolog (not fully supported) 

machine any UNIX machine 
others (O/S, graphie •.. . ) ORACLE database 

Applications 
grammar theories? more in semantics than in syntax 
educational vs. used for both purposes 
commercial system 

used in projects/ yes (translation, database query, text processing, spoken language 
other systems? understanding) 

Grammar coded 
size 

1. ca. 150 rules , wide coverage 
2. ca. 100 rules 
3. ca. 30 rules 

language 

1. English, Swedish 
2. Japanese 
3. German 

TooIs Stepperjdebugger version control for grammar development 

Comments fully reversible system efficient, relatively wide coverage (as mea-
sured on red . corpus) 
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I FEATURE CONSTRAINT SOLVER 

Boolean Connectives 

unification: 

destructive uses Prolog unification 

non-destructive 

disjunction: 

atoms only yes 

full (DNF) no 

distributed no 

others no 

negation 

atoms only yes 

negated corefs 

full 

others 

implication 

via negation yes 

others 

Additional Operations 

subsumption via term subsumption 

functional uncertainty no 

others none 

Tools compilation of feature structures into terms 

Comments deliberately conservative formalism for efficiency 

I TYPE SYSTEM 

Type Connectives 

conjunction: flat type system 
single vs. multiple 
inheritance 
disjunction 

negation 

others 

Type Definitions 

via feature structures yes 

via appropriateness 
conditions 

recursive? no 

others 

Additional Operations 

type inIerence/ no 
classification 
GLB/LUB type no 

I
1 

subsumption 

others 

Restriction on Hierarchy 
(unrestricted partial order, 
bounded complete p.o., 
distributive lattice ... ) 

Tools 

11 Comments 
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2.6 

Systems Exhbited 

CLG: Constraint Logic Grammar 

LUls Damas, Nelma Moreira 
{luis,narn}@ncc.up.pt 

LIACC, Univ. do Porto, Rua do Carnpo Alegre 823, 4100 Porto, Portugal 

The goal of the CLG project was to see to what extent and with what benefits the techniques 
of Constraint Logic Programming [8] could be adapted for use in NLP. 

The potential benefits expected from such an undertaking were: 

• expressivity; 

• efficiency; 

• soundness. 

These goals were met to a large extent as reported in [1, 2, 3, 4, 5, 6, 7] . 
Other benefits expected from the CLG approach are modularity and scalability, due in par­

ticular to the hybrid architecture inherited from CLP. 

Rationale 

The CLG framework assumes that any grammar is a particular first order theory with equality 
admitting complete models . 

(Constraint) Logic Programming is an ideal paradigm for such a framework in that it supports 
a direct mapping between gramm ars (the first order logic theories of linguistic descriptions) and 
the first order theory of their implementation and at the same time provide a formally sound and 
efficient computational scheme. 

The CLG programme is compatible with the unification grammar tradition and constitutes a 
simple framework for extending the notion of unification to complex constraint resolution. At the 
same time a high degree of declarativeness is achieved by avoiding any reference to an operation 
like unification. 

In CLG substantial attention has been paid to a detailed formalization of the of the underlying 
processing model. 

The main reasons derives from the fact that restricting the formal analysis to the static 
properties of formalisms does not do justice to the computationalcomplexity of modern linguistic 
frameworks. A finer grained analysis of the formal and computational properties of formalisms 
than decidability, formal complexity and model theoretic properties, sheds a different light on the 
problem motivating choices which would otherwise appear to be arbitrary. 

While sound denotation al semantics and appropriate formal complexity characteristics are 
necessary conditions to be met by linguistic formalisms , they are not sufficient. 

Rather, it is necessary to provide sound and adequate formal processing schemes for such 
formalisms, lacking which the main challenges facing modern grammatical formalism design are 
not addressed. 

Taking this point further, we claim that the theory of a grammar formalism and its formal 
processing model constitute a homogeneous and integrated whole and that the practice of relegat­
ing processing issues to low level implementation decisions had, and has, negative consequences, 
not least preventing the right questions to be addressed. 

The deductive process by which a fact is proven or an object computed must be the subject 
of theoretical inquiry just as, and together with, the fact or object and their descriptions. 

The analogy with logic programming is paradigmatic : defining the syntax and (static) sem an­
ties of a logic programming scheme is an essential first step. But it also constitutes a relatively 
trivial task compared with definition of a formal processing scheme with the necessary computa­
tional characteristies. 

Another aspect of central importance to CLG are the circumstances under which one can 
ensure a simple and natural relation between grammars with complex constraint expression and 
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the logic programming paradigm, in particular aversion of Constraint Logic Programming over 
the domain of rational trees. 

The details of the CLG project relating to these and other aspects are described in (I, 2, 3, 4, 
5,6,7] . 
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System Name: CLG 
Designed and Implemented by: 

GENERAL DESCRIPTION I 
, 

lnference Engine 

unique engine vs. 2, equation sol ver and non-equational constraint sol ver 
dedicated modules 
non-montonic devices no 
control facilities no 

parser/generator? depending on versions: only parser, parser & generator 

others 

Data Types 

arity (fixed?) fixed 
cyclic structures yes 

lists/sets yes/member-type with "discharge" 
functions/ relations no/yes 
others -

Interaction FS {=:} Types 
type unification yes 
type expansion 

at definition/ compile-time 
compile time 

at run time: 
(delayed/partial/ 
recursive) 

others (templates ... ) templates (parametrized) 

I GENERAL DESCRIPTION Ir 

Interfaces to 
morphology no 

semantics/ no 
knowledge repr. 

Implementational Issues 

programming lang. Prolog 

macrune Sun Microsystem 3-Sparc, Dec station, Mac 

others (o/s, graphics ... ) UNIX, X-WINDOWS, Finder 

Applications 

grammar theories? augmented CFG ; HPSG 
educational vs. no 
commercial system 

used in projects/ 
other systems? 

Grammar coded 
Slze 11 various sizes, up to 100 KB 
language various: EN, DA, DE, CA, PT 

Comments 
~ debuggers, displayer Tools 
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I FEATURE CONSTRAINT SOLVER 

Boolean Connectives 

tmification: 

destructive yes 

non-destructive no 

disjunction: 

atoms only 

full (DNF) fuH, not DNF 

distributed 

others -

negation 

atoms only 

ne ga ted corefs 

full fuH 
others -

implication 

via negation 

others 

Additional Operations 

subsumption no 

functional uncertainty no 

others 

Comments 11 

TooIs 

TYPE SYSTEM 

Type Connectives 

conjunction: single inheritance 
single vs. multiple 
inheritance 
disjunction yes 

negation yes 

others -

Type Definitions 

via feature structures yes 

via appropriateness yes 
conditions 
recursive? yes 

others -

Additional Operations 

type inference/ type expansion 
classification 
GLB/LUB type LUB 
subsumption 

others 

Restrietion on Hierarchy tree 
(unrestricted partial order, 
bounded complete p .o ., 
distributive lattice . .. ) 

Comments JJ 

Tools 
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2.7 

Systems Exhbited 

Comprehensive Unification Formalism (CUF) 

Jochen Dörre, Michael Dorna 
Institut für maschinelle Sprachverarbeitung 

Universität Stuttgart, Germany 

CUF is a theory-neutral universal grammar formalism like PATR-II which has been developed 
in the ESPRIT-Project DYANA (BRA 3175 and 6852). It is based on defining feature structures 
and relations over these as encodings of linguistic principles and data. However, it is radically 
more expressive than conventional grammar formalisms, since it allows the definition of arbitrary 
recursive relation al dependencies without tying recursion to phrase structure rules. Hence, CUF 
provides the basis for highly integrated processing of linguistic descriptions of different linguistic 
research areas. A system implementing this formalism in PROLOG and C is freely available from 
our institute. 

The language of CUF uses a syntax especially weil suited for a direct description of feature 
structures similar to Kasper/Rounds logic (feature-matrix notation) combined with the possibility 
of stating definite clauses over feature terms. Moreover, feature structures are typed, with the types 
possibly being ordered in a hierarchy. The CUF type discipline allows for an axiomatic statement 
of global restrictions on the structures in which the program is to be interpreted providing enough 
redundancy in the descriptions to detect mistakes without burdening the grammar writer with 
tedious repetitions . 

CUF does not predefine any gramm ar rule formats like PATR's contextfree-based rules or 
GPSG's ID/LP rules . Instead, the grammar writer is free to define her own rule formats or even 
grammar architecture . For instance, an architecture based on principles and rules can straightfor­
wardly be implemented. 

Fig. 2.4 presents an overview of all kinds of language constructs that can be used to compose 
a CUF program, including its control part. 

logical part: CUF specification 

typing information 

• type hierarchy axioms 
• feature declarations 
• sort declarations 

• clauses (defining sorts) 

CUF program 

control part : CUF control statements 
(task dependent) 

• delay patterns 
• index declarations 

Figure 2.4: Parts of a CUF Program 

CUF is an instance of constraint-Iogic programming (CLP) of the very general Höhfeld/Smolka 
scheme [HS88] . This provides us not only with asound and complete proof procedure, but also 
equips us with the right paradigm to attack the efficiency problems associated with highly modular 
specifications, as for instance proposed by GB theory. For a more complete description of the CUF 
language, please refer to [DD93]. 

The current CUF system (Version 2.28) consists of a compiler, an runtime evaluator and 
an ASCII and a graphical user interface (GUI)l with several development tools like debugger, 
data base inspector, and feature structure browser. The implementation runs under Quintus and 
SICStus PROLOG under UNIX and Xll. 

The incremental compiler is used to translate the CUF desriptions into an interpretable format . 
Type checking and inference is used to eliminate errors very early in the development phase of a 

I Currently, the G U I is still under development and not delivered yet. However, the ASCII interface provides 
main functionalities of the GUr. 
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description. The most distinguishing features of CUF's type system are: 

• type interdependencies can be stated in full proposition al logic, allowing to state all kinds 
of type hierarchies 

• features may be fully polymorphie (no restrictions on multiple feature declarations) 

• complete type checking during compilation 

• runtime type checking is reduced to a minimum 

CUF makes a clear distinction between the purely declarative logical specification and the 
control statements which are used to guide the proof procedure without compromising the logical 
semantics of the specification. The runtime eva!uator is an SLD-resolution engine whose selection 
strategy can be customized by the user. By default the strategy selects deterministicly expandable 
literals first, or else the leftmost (nondeterministic) litera!. By use of delay statements the user 
can change this behaviour. Another type of control statement is the declaration of predicates for 
which the system should build an index. 

The system CUF is freely available. Just fetch it via anonymous ftp from 

ftp.ims.uni-stuttgart.de:/pub/cuf 

or write to cuf-request@ims.uni-stuttgart.de or to: 
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System Name: CUF System 
Designed and Implemented by: Jochen Dörre, Michael Dorna 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine VS . Modules for Feature Constraint Solving and Propositional Con-
dedicated modules straint Solving 
non-montonic devices 0 
control facilities DELAY declarations and INDEX declarations 
parser/generator? System is good for both; however dedicated control statements 

needed 
others system is a universal deduction system for definite clauses over 'prim-

itively' typed feature constraints 
Data Types 

arity (fixed?) arity of types can be deduced from hierarchy 
cyclic structures currently not supported, planned 
lists/sets built in/definable 
functions / relati ons functional or relation al constraints are supported 
others atoms, strings and list are builtin. We differentiate between primi-

tive types (only propositionally definable) and general predicates 
Interaction FS <=> Types 

type unification unification takes care of primitive types (see above) 
type expansion 

at definition/ partial evaluation (can be switched off), compile time 
compile time 

at run time: deterministic closure over goals, then nondet. choose first non-
( delayed/partial/ delayed goal, search by backtrack (delayed, partial , recursive) 
recursive) 

others (template3 ... ) enhanced Earley engine, which can be parametrized by the goals to 
store 
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I GENERAL DESCRIPTION 11 

Interlaces to 
morphology interface not needed 

full integration possible 
semantics/ see above 
knowledge repr. 

Implementational lssues 
programming lang. Quintus+C 

machine any 
others (O/S , graphics ... ) UNIX 

for G.U.I.: Xll 
Applications 

grammar theories? any 
educational vs. public domain 

I commercial system 

used in projects/ used in DYANA, SFB 340, Uni Bielefeld, Uni Tübingen 
other systems? 

Grammar coded 
size basic fragments of German, Englishfdeclarative phonology of Ger-

man, small experimental grammars for hard linguistic problems 
language 

Tools 

• Interactive ProofTree Stepper for Debugging with Retry Skip, 
Creep and Clause-Selection Option 

• Browser for Result-Feature-Structures and Argument Bindings 

Comments 
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r FEATURE CONSTRAINT SOLVER 

Boolean Connectives 

unification: 

destructive 

non-destructive X 
disjunction: 

atoms only 

full (DNF) 
distributed 

others delayed (compiled out); disjunctions between primitive types are 
handled by constraint solver 

negation 

atoms only 

negated corefs 

full X 
others 

implication 

via negation X 
others 

Additional Operations 

subsumption 

functional uncertainty encodable 
others 

Comments ~ 
Tools 
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I TYPE SYSTEM 

Type Connectives 
conjWlction: for general pred .: multiple inheritance 
single vs. multiple for primitive types: multiple inheritance 
inheritance 
disjWlction for general pred.: yes 

for primitive types: yes 
negation for general pred.: yes 

for primitive types: yes 
others for primitive types: disjointness 

Type Definitions 
via feature structures for general pred.: any complex typed f. str. (with variables) 

types (predicates) may have arguments 
via appropriateness for general pred.: predicates can be also typed 
conditions for primitive types: yes 
recursive? 
others 

Additional Operations 
type inference/ for primitive types: yes 
classification 
GLB/LUB type for primitive types: yes 
subsumption 

others for general pred.: determinism checking, evaluation modes: 'deter-
miilistic only', 'undelayed only', 'all' 

Restriction on Hierarchy for general pred.: definite clauses 
(unrestricted partial order, for primitive types: none 
bounded complete p .o., 
distributive lattice ... ) 

Tools 

Comments The distinction between a decidable 'primitive' typed constraint lan-
guage and predicate definitions as clauses ensures that the potential 
existence of models of the whole specification is decidable! Moreover 
the "unification" component is independent of the fhing of goals . 
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2.8 EL U: Environnement linguistique d 'unification 

ISSCO, Geneva 

2.8.1 General 

ELU is a unifieation-based linguistie programming environment designed for research and teaching 
purposes. It is implemented in Common Lisp, the compiler for data files being written in yacc 
and Hex. It shares a eommon origin with the UD system developed at IDSIA (see section 2.13); 
the unifier, parser and finite-state lexicon have remained largely unchanged sinee 1989, with the 
generator and inheritanee lexieon being added in 1990, and the transfer mechanism in 1991. See 
also Johnson and Rosner (1989) and Estival (1990). 

2.8.2 Unifier 

ELU employs a polymorphie, structure-sharing unifier. 

Data Types 

Atom As in PATR-II; implieit eonversion to string by 'eoneatenate' built-in. 

Disjunetion Defined over atoms: unifieation interpreted as set intersection . 
a/b/c U b = b, a/b/c U b/c/d = b/c 

Negation Defined over atoms and disjunetion: unifieation interpreted as intersection with 
eomplement. 
-a U b = b, -a/b/c U c/d/e = die 

List As in Prolog. 

Tree Like Prolog compound terms, except that the root ('principle functor') may be 
named by a variable. 

Typing A typing facility permitting complex FSs with specified eontents to be named. Two 
typed FSs unify only if they are of the same type; a FS of type T unifies with 
an untyped FS only if the features in the result have been declared as appropriate 
for FSs of type T. While there is no built-in support for type subsumption or 
inheritanee of information between types, these may be implemented by means of 
relational abstractions. 

name = (f 1, f2, f 3): declares the content of a FS of type name to be the features 
fl, f2 and f3. 
VAR == name: constrains the instantiated value of VAR to be a FS of type name. 

Relational Abstractions 

An extension of the PATR-II 'template' facility to form a eonstraint language closely resembling 
Prolog, but without the extralogical devices ofthat language ('cut', negation, conditionals, 'assert', 
'var', etc.) . 

Proc(A,B,C) 
<A f> = [BID] 
!Proc2(C,D) 

three arguments 
B head of a list value 
call to another R.A. 

Relational abstractions may be defined recursively and/or in terms of multiple subclauses; in 
the latter case evaluation involves breadth-first expansion of all possibilities, while in the former 
evaluation is suspended as long as insufficient information is available to identify the boundary 
ease. 
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Built-in Relations 
notation: 

A number of useful three-place relations are provided, using a specialized 

Append A++B=C 

Extract 
C is the result of appending the lists A and B. 

A -- B = C 
cis the result of extracting the element B from the list A. 

Concatenate A kk B = C 

C is tbe result of concatenating the strings A and B. 

Restrictors 

Users may declare certain features (normally those with the most distinctive values) as 'restric­
tors'; these are used in the prediction step of the parser, indexing the inheritance lexicon, and 
preprocessing the gramm ar for generation, and generally as aprefilter for unification. See Shieber 
(1985). 

2.8.3 Finite-State Lexicon 

One of ELU'S lexicon systems takes the form of a finite-state machine in which states are associated 
with various types ofinformation (equations, calls to abstractions, etc.) and ares are labelled with 
segments of words (sterns, suffixes, etc.). This is similar to the continuation-dass approach to 
lexical organization taken by Koskenniemi (1983), but does not make use of the two-level 'spelling 
rule' mechanism. Looking up a word involves traversing the automaton, concatenating are labels 
to instantiate the user-dedared 'form' feature, and unifying information in the states to build a 
FS associated with that word-form. 

stemvariant 
<cat> = x 
Clstem\main 
+e/t 
$sufsl 

form of word-segment 
some information 
merge info. from stem entry in lexicon main 
insert e if suffix begins with t 
name of continuation dass for suffixes. 

2.8.4 Default Inheritance Lexicon 

As an alternative to the finite-state lexicon, ELU also provides for lexicons in the form of a 
restricted multiple inheritance hierarchy combining strict and defeasible unification. The lexicon 
below associates with the example dass the two FSs shown: 

#Word example (Super) 
<fl> = vall 
<b> = abc 

#Class Super () 
<fl> = va12 
I 
<f2> = va13 
<fO> = <b> 
I 

[ 

fl Vall] 
b abc 

f2 val3 
[ 

fl vall ] 
b abcxyz 

f2 val4 

inherits from one superclass 
overrides defeasible information in Super 

no superdasses 
example an exception 
non-defeasible below here 
first variant 

<f2> = va14 second variant 
<fO> = <b> tt xyz concatenation 

See Russell et al. (l992) for a fuller description . 
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2.8.5 Grammar Rules 

Essentially as in PATR-II, modulo the extended inventory of data types: each rule consists of 
a 'rewrite' and an 'information' section. The generator requires one right-hand side item to be 
marked (with a prefixed H) as the head. 

A -> H_B C 
<A cat> = c 
lHead(A,B) 
C == sign 

2.8.6 Parser 

rule involves three FSs - H_B is semantic head 
atomic value for feature cat in A 
call to relation al abstraction 
type of FS C 

A two-pass approach: first achart parser using Earley prediction builds structures on the basis 
of the 'rewrite' section of the grammar rules and user-declared restrictors, then constraints are 
solved in order to instantiate FSs and possibly eliminate some analyses. 

2.8.7 Generator 

The Shieber et al. (1990) algorithm, modified to complete the bottom-up attachment phase before 
initiating top-down treatment of non-head constituents. A 'semantic head' is marked in each 
gramm ar rule, rather than being derived autorriatically as in the standard algorithm, thus allowing 
gramm ar writers to force a rule to be interpreted top-down when it would otherwise be interpreted 
bottom-up. In non-chaining rules, top-down generation begins with this item. 

2.8.8 Transfer Rules 

Transfer-based machine translation is supported by a facility permitting users to define what 
amounts to a grammar capable of analysing a FS and building another based on its contents. The 
following mapping between FSs is established by the transfer rules shown below: 

[ 

fO f-val 1 
fl [f2 f-val-a 1 

f3 f-val-b 
[

gO g-val 1 
{=:::} gl g-val-b 

:T: example 
:Ll: <fO> = f-val 

<fl> = A 
<A f2> = Xl 
<A f3> = X2 

:L2: <gO> = g-val 
<g2> = Y2 
<g3> = Yl 

:X: Xl = Yl 
X2 = Y2 

:TA: f-val-a g-val-a 
:TA: f-val-b g-val-b 

g2 g-val-a 

transfer rule name 

complex value of f 1 

recursive transfer through variables 

atomic transfer rules 

See Russell at al. (1991) for a fuller description. 

2.8.9 Compiler 

The user language illustrated in the examples given he re is compiled into Lisp expressions by an 
independent program, eIuc. Dependencies between files may be managed by means of an 'include' 
directive. 
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2.8.10 User Environment 

From the user's point of view, a typieal session with ELU involves editing, eompiling and loading a 
number of files eontaining one or more linguistie descriptions; each of these deseriptions is installed 
in a named 'setup', normallyeorresponding to one of the languages between whieh translation is 
to be performed. The ELU top level provides eommands for: 

• eompiling and loading data files into a given setup 

• switching between setups 

• analysing and generating words 

• parsing and generating sentenees 

• applying transfer rules 

• saving and reusing results of eomputation 

• eseapes to the shell or an editor 

• traeing, debugging, inspecting the ehart 

Preferred settings for various options may be placed in an initialization file. 
ELU output is eharaeter-based rather than graphical. 

2.8.11 Responsibility 

ELU is the result of eollaborative work over a number of years involving: Rod Johnson and 
Mike Rosner (IDSIA), John CarroH (Cambridge University Computer Laboratory) , Amy Winarske 
(Lueid Ine.), Afzal Ballim, Graham Russell, Dominique Estival and Susan Armstrong (ISSCO). 
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System Name: ELU 
Designed and Implemented by: Rod Johnson, Mike Rosner (IDSIA), John Carroll (Cam­

bridge), Afzal Ballim, Dominique Estival,Graham Rus­
sell, Susan Warwick (ISSCO) 

GENERAL DESCRIPTION I 

lnference Engine 
unique engine vs. unique 
dedicated modules 
non-mon tonic devices Default inheritance in lexicon-standard unifier under different 

control 
control facilities "restrictor" -declared f-values to be unified first for earIy failure. 

For generator-RHS item to generate first is marked 
parser/generator? Parser-2 pass, earley CF and unif. constraint sol ver 

Generator-Shieber-van Noord Read Driven 
others Transfer rules-non-monotonic bidirectional mappings between fea-

ture structures 
Data Types 

arity (fixed?) any, except for typed FSs 
cyclic structures no checking, but not supported by parser, generator, transfer 
lists/sets lists (+ "append", "element" ops.) 
functions/relations "Relational Abstractions"-like pure Prolog some built-in (append, 

element, concatenation) 
others trees, string (+ concatenation op.) 

Interaction FS <=> Types 
type unification identity only 
type expansion 

at definition/ -
compile time 

at run time: -
( delayedjpartialj 
recursive) 

others (templates ... ) 
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I GENERAL DESCRlPTION 11 

Interlaces to 
morphology 

• finite-state continuation-class model 
• hierarchical lexicon 

semantics/ no extra-sentential processing: no facilities for clean interface 
knowledge repr. 

Implementational Issues 
programming lang. Common Lisp--Allegro 4+, compiler: yacc & Hex 

macmne Sun 
others (o/s, graphica ... ) SunOS 4+ 

no graphics, etc. 
Applications 

grammar theories? experimental grammars in style of LFG, GPSG, Categorial G., GB, 
HPSG-varying degrees of fidelity 

educational vs. educational-research and teaching 
commercial system 
used in projects/ main practical application is continuing project to make system for 
other systems? translating Swiss avalanche warning bulletins -

Grammar coded 
size variable-up to Lexicons 250-60,000 words 
language French, German, Italian, English 

Tools 

• Debugger-print internal objects in external form at several 
levels of detail. 

• Tracer-focus on named rule & rel. abstractions when debug-
ging. 

• Tree display (ASCII) 
• FS display (ASCII) 
• Lexicon dump ~ indexed disk file 
• Display time & other statistics 

Comments a partial port to Macintosh CL exists 
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I FEATURE CONSTRAINT SOLVER 
-

Boolean Connectives 

unification: 

destructive 

non-destructive x 
disjunction: 

atoms only x 
full (DNF) 
distributed 

others 

negation 

atoms only 

negated corefs 

full 

others atoms and disjunctions of atoms 
implication 

via negation -
others -

Additional Operations 

subsumption -

functional uncertainty via recursive Rel. Abstractions & path variables 

others -

Comments ~ 
Tools 



ELU 57 

I TYPE SYSTEM 

Type Connectives 

conjW1ction: -

single vs. multiple 
inheritance 
disjW1ction -
negation -
others -

Type Definitions 

via feature structures no 
via appropriateness Type t1(ft ... /n): "Type t 1 has features ft ... In, & only these"-
conditions no value typing 
recursive? no 
others 

Additional Operations 

type inference/ no 
classification 
GLB/LUB type no 
subsumption 

others -
Restriction on Hierarchy trivial--distinct types don't unify. 
(unreatricted partial order. 
bounded complete p.o .• 
distributive lattice .. . } 

Tools -
Comments Typing is optional 

Full typing not enforced 
More sophisticated systems may be simulated with Relational 
Abstractions. 
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2.9 Pleuk 

Jo Caldera, Kevin Humphreysb 

This section is a lightly edited version of a paper written by Jo Calder and Kevin Humphreys. It 
describes Pleuk-a shell within which interpreters for grammatical formalisms can be embedded. 
Its design is intended to allow the encoding of a wide range of grammatical formalisms, while 
providing sophisticated facilities for interacting with such formalisms. A number of currently 
popular formalisms have been implemented within Pleuk. The result is a system with applications 
in the fields of grammar development, education and elsewhere. The version of Pleuk described in 
the paper does not differ significantly from the one demonstrated by Chris Brew at the EAGLES 
workshop on implemented grammar formalisms. Since Pleuk is not a formalism, not all the 
formalisms mentioned in the paper were actually used in the demonstration. An updated version 
of Pleuk is scheduled to be available by ftp from the DFKI's server. The same distribution is also 
available from Michael Covington's archive at the University of Georgia. 

2.9.1 Introduction 

A current concern within computationallinguistics is with the reusability of resources, in particular 
corpora and lexical databases. The same concern arises, of course, with respect to resources of 
other kinds, such as computer implement at ions of grammatical formalisms, but has yet to be 
addressed in any substantive way. The system discussed in this section attempts to improve upon 
this situation. We present a system called Pleuk which is intended as a "formalism-neutral" shell 
within which to embed computational interpretations of grammatical formalisms. 

The organization of this section is as follows. We first discuss the design of the system, 
and the distinctions we make between the various tasks such systems have to perform. These 
fall into three basic classes, which we gloss as the "functional", "interface" and "grammatical" 
parts of the system. We then discuss briefly the grammatical formalisms which Pleuk currently 
supports. We assess the system's future potential and close with abrief description of its current 
implementation. 1 

The system as a whole is complex,so the current description is considerably simplified. Further 
information is available in the form of a printedJon-line manual, from which some of this section 
is derived. 

2.9.2 The Tasks of Grammar Development 

We view the tasks any grammar development system must perform as dividing into three cate­
gones: 

• maintaining an accurate picture of the grammar currently being worked on and inter action 
with the host operating system; 

• performing the operations required by some grammatical formalism under the control of the 
user and 

• allowing the user to control those operations via a reasonable interface. 

Accordingly, we divide the tasks that the system performs into three parts: 

• the functional backbone (FB); 

QJo Calder, School of Computing Science, Simon Fraser University, Burnaby BC, CANADA V5A IS6, Phone: 
(604) 291 3012, Fax: (604) 291 3045, Email: jcalderClcs. sfu. ca 

bKevin Humphreys, University of Edinburgh, Centre for Cognitive Science, 2 Buccleuch Place, Edinburgh EH8 
9LW, Scotland, email: kvhClcogsci.ed.Ac .uk 

1 In this section, the following trademarks are used: X Windows is a trademark of MIT. PostScript is a trademark 
of Adobe Systems Inc. SPARCstation is a trademark of Sun Microsystems Inc. 
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• the specialization and 

• the user interface 

We discuss these in turn. As the system is implemented in Prolog, certain terminology (for example 
database) should be interpreted in that light. The term definition should be construed as referring 
to any element which may form part of a grammatical description. 

Functional Backbone 

The FB provides support for the following operations: 

• Compute files to be loaded to produce an up-to-date image of the current gramm ar . 

• CaB appropriate functions to read arid compile definitions from files. 

• Register definitions in or delete definitions from the database. 

• Report current status of files and definitions. 

• Retrieve definitions from database by name, by kind or by file. 

• CaB appropriate functions to format definitions. 

• CaU appropriate functions to parse or generate or otherwise interact with the information 
in the grammar. 

• Interact with the host environment in appropriate ways (e.g. interpret command line switch­
es, determine availability of graphics systems). 

• Invoke an editor on the file containing a particular definition, to allow the addition or deletion 
of definitions. 

• Maintain a set of variables and values controlling aspects of the system's behaviour. 

• Provide low-Ievel support for interaction with the user. 

While this list certainly does not include all that one might expect from such a system, it represents 
at least sufficient functionality for a workable system. 

Note that in no cases do we assurne a particular format for definitions, either in the form 
they take on when constructed by the user, or in their internal database representation. This is 
essential if the FB is to operate with grammatical formalisms whose syntax and semantics may 
vary in arbitrary ways. 

Specializations 

A specialization is some coUection of code which 

• determines possible definitions of some grammatical formalism, 

• defines some way of turning a definition in a file into the required internal format, 

• provides a parser, generator or other means of interacting with the formalism in question 
and 

• provides mappings between internal representations and a Pleuk-defined printing format to 
be discussed below. 
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The key idea here is then that the FB is entirely unconcerned with the internal representation 
of definitions. The specialization must define appropriate routines for reading definitions in files 
(often this is just Prolog's read/1) and for translating such definitions into the form that, for 
example, a parser might expect. Details of those specializations that currently exist are given in 
Section 2.9.3. 

A specialization is defined by providing routines with the above functionality. In particular, the 
different kinds of definitions that a particular formalism uses must be stated, together with their 
distribution in different files, routines for formatting definitions or derivations to be printed, and an 
indication of the kinds of processing facilities (i.e. parsers, generators, ... ) that the specialization 
offers. An order for loading the files that define different aspects of some gramm ar may be stated. 
This allows definitions wh ich are necessary for the interpretation of later definitions to be loaded 
earlier. An example of this might be the definition of a mapping from attribute names to term 
positions and the later use of attribute names. 

The specialization may also ask for particular routines to be run each time a file containing 
certain definitions is loaded . This allows definitions whose interpretation may be dependent on 
other definitions to be computed after all such definitions are loaded. (An example of this would 
be a system where certain aXioms must be obeyed by all definitions; the routine could in this case 
compute simplifications that may thereby result.) 

It will be noted that it is also the specialization's responsibility to define appropriate parsing 
andjor generation routines. The provision of generic routines, while feasible to some extent, has 
not been investigated. 

User Interface 

The third part of the system covers interaction with the user. The main functions he re are: 

• Interpret menu definitions provided by the FB and the specialization. 

• Allow for choice of menu options or user input where appropriate. 

• Manage the display of definitions and the results of computations. 

• Provide on-line help. 

The definitions of menus is independent from the manner in which the user interacts with them. In 
particular, we have interpreters for the menu system which allow interaction via a dumb terminal 
or graphically under X Windows. 

Menus may be defined either by the FB or by a specialization, with the latter given priority 
in the case of multiple definitions. Menus are constructed dynamically, and so may be adjusted in 
order that options reBect the current state of the system. . 

Standard Printing Format The one area in wh ich Pleuk makes assumptions about the format 
of terms manipulated by some specialization is in the output of routines that compute represen­
tations to be printed. In this case, the term is assumed to be in Standard Printing Format (SPF) . 
SPF has a formal definition as a set of Prolog terms, and a graphical interpreter for this format is 
available on-line in Prolog under X Windows. A PostScript interpreter for a closely related format 
is also available, as weil as a character-based approximation suitable for non-graphics devices. 

Terms in SPF may be written out in PostScript format and the result included within printed 
documents (in the mann er of Figure 2.5). This figure shows an example SPF term, with some 
internal structure suppressed, together with its graphical interpretation via PostScript. 

In addition to supporting the attribute-value diagrams and sequences shown in the figure, SPF 
provides facilities for representing trees, tags indicating shared structure, symbols, including logical 
connectives, italics, sets, relations, infixes and a number of other diagram types. We are aware 
of respects in which the current facilities are deficient-for instance, it is currently impossible to 
represent derivations in the style preferred by many categorial grammarians (e.g. Steedman 1987) 
where the use of combination rules is expressed by a asolid line beneath the elements involved 
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avm([phon=sequence([atomic(loves)]). 
synsem=avm([local=avm([cat=avm([head=avm([v=atomic(+). 

n=atomic(-). 
vform=atomic(fin)]). 

subcat=sequence([ ...•... ]. 
lex=atomic(+)] 

PHOli <lovcs> 

[
V +] HEAD 11 -
VFORM fin 

61 

SYliSEM 
LOCAL CAT St:"BCAT (LOCAL [CAT [HEAD [~ASE :om]l ,LOCAL [CAT [HEAD [~ASE ~bj]l ) 

St:"BCAT <> ~ St:"BCAT <> ~ 
LEX + 

loves: parse 1 of 1 

Figure 2.5: A term in Standard Printing Format and its graphical interpretation 

in that combination. In this case, the specification of SPF requires extension. Also, the current 
tree drawing algorithm produces results which are not aesthetically pleasing. The advantage of 
a formal specification for SPF is that the interpreters may be improved in any number of ways 
without affecting the formalism-specific routines that compute SPF. 

One of the spin-offs of the use of SPF is that, given appropriate graphics facilities, it is simple 
to implement a Derivation Checker in which the user is provided with a point-and-click interface, 
where trees (or derivations, as appropriate for the grammar in question) can be constructed out 
of other trees or lexical elements. This seerns to be a useful model for debugging and educational 
purposes, and also to be applicable to a wide variety of grammatical formalisffiS (Calder, 1993). 

2.9.3 Specializations 

To date, specializations defining the following formalisffiS have been incorporated into Pleuk, 
roughly in order of implementation: 

Term A term-based unification grammar system, originally developed for the support of Unifica­
tion Categorial Grammar (Zeevat et al 1991). 

Mike A simple graph-based unification system, enhanced with additional operations for the treat­
ment of free word order presented in Reape (1989). 

erg A simple context-free grammar system, intended for demonstration purposes. 

SLE A graph-based formalism enhanced with arbitrary relations in the manner of Johnson & 
Rosner (1989) and Dörre & Eisele (1991). Delayed evaluation is used to compute infinite 
relations. This system has been used for the development of several HPSG-style grammars 
(Pollard & Sag 1987, forthcoming) . 

Sdg The system described in Dahl et al (1991) for the implementation of principles-and­
parameters grammars in terms of Dahl's Static Discontinuity Grammars (Dahl & Popowich 
1990). (Incomplete and currently under revision) 

HPSG-PL An HPSG system developed at Simon Fraser University by Popowich, Vogel and 
Kudric. 
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The core of Pleuk (i.e. the FB and user interface) stabilized after the first two specializations men­
tioned above were implemented. Various other formalisms are being implemented, in particular 
Carpenter's system for typed feature structures (Carpenter 1992). 

In general, the cost of porting a particular grammatical formalism for which a Prolog imple­
mentation exists has not been found to be particularly high, of the order of a few hours of work, 
although we should emphasize that such work has to date been carried out by people familiar both 
with Pleuk and with the target formalisms. The bulk of the effort, unsurprisingly, has to do with 
generation of SPF terms from definitions. 

2.9.4 Assessment 

Pleuk is currently in use at a number of research laboratories in various countries. To date, most of 
its use has been concerned with the development of grammars either for demonstration purposes, 
or for the examination of particular grammatical phenomena, rather than with the development 
of large coverage grammars. In these tasks, Pleuk seems to have been adequate. The ability 
to produce high-quality output both on-line and for published documents will become of greater 
importance as the grammars developed within Pleuk become more complex. 

Pleuk also seems to be suitable for use in educational settings. In particular, the ability to 
construct derivations graphically (see Section 2.9.2) offers interaction with a particular grammar 
which is at once more detailed and more directly under the control of the user than is possible 
-when parsers and/or generators are the only means of constructing a derivation for some grammar. 

There are, of course, limitations to what Pleuk can do. At the very least, as it is implemented 
in Prolog, interpreters for formalisms implemented in other languages cannot be immediately 
embedded within Pleuk. Less generally, implementation of some formalism within Pleuk is easiest 
when there is a straightforward relationship between adefinition stated by the user and its internal 
representation. The simplest relationship is where each definition gives rise to one and only one 
internal representation. Other cases, for example, where a particular definition gives rise to more 
than one internal definition are also catered for. A more problematic case is that mentioned at 
the end of Section 2.9.2 where some set of definitions has global interpretation. A further example 
of this is a set of statements defining a mapping from attribute names to term positions to take 
advantage of term, rather than graph, unification. In this case, certain implementations may 
decide to compute terms directly for the representation of other definitions. A problem will arise 
if the set of statements changes-Pleuk has no way of determining whether such a change means 
that the interpretation of other definitions has to be revised. 

One facility which is of use in educational and machine-translation settings (as well as in 
gramm ar development more generally) is the possibility of manipulating several gramm ars at 
once. Pleuk does not provide such a facility directly. However, in an extension of Pleuk completed 
for an industrial research laboratory, definitions containing grammatical information are organized 
into a hierarchy. At each node in the hierarchy, all and only definitions from the current node and 
from dominating nodes are available. Evaluation of this approach is continuing. 

2.9.5 Implementation 

Pleuk is currently implemented in SICStus Prolog, version 2.1 (Carlsson et aI1991), with a small 
number offunctions defined in C, running on Sun SPARCstations. Menus for user input and output 
windows, inc1uding the output of graphical interpretations of SPF, make use of the Graphics 
Manager supplied with SICStus. We have endeavoured to maintain portability of the FB-no 
Prolog system predicates are called directly-but this is currently compromised by dependencies 
on the user interface side of the system. Certain specializations also make use of SICStus-specific 
facilities, such as the Boolean Constraint Solver. 

System documentation is written in the Free Software Foundation's Texinfo format and on­
line help is provided by the XInfo system by Jordan K. Hubbard. Documentation is currently 
incomplete in the case of some specializations. On-line interpretation of PostScript output is 
possible via Aladdin Enterprises' Ghostscript. 
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2.9.6 Conclusions 

Pleuk is a shell for the implementation of grammatical formalisms. The system has been used 
successfully to encode a variety of grammatical formalisms, and for the development of a nu mb er 
of grammars. The system allows the on-line display of high-quality graphical representations of 
definitions and derivations, and their inclusion within other documents. 
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System Name: SLE formalism (just part of Pleuk. Pleuk itself is a generic 
framework, not a formalism) 

Designed and Implemented by: Jonathan Calder, Kevin Humphreys, Mike Reape 

GENERAL DESCRIPTION I 
------ ---

Inference Engine 
unique engine VS. unique engine 
dedicated modules 
non-montonic devices no 
control facilities control statements in template definitions allow grammar writer to 

specify when it is safe to expand recursive templates 
parser/generator? 

1. chart parser 
2. non-deterministic bidirectional parser/generator 

others user controlled interactive derivation checker 
Data Types 

arity (fixed?) open-ended feature graphs 
cyclic structures no 
lists/sets no 
functions/relations Horn-dause relational dependencies via template definitions 
others -

Interaction FS <==:} Types 
type unification no 
type expansion 

at definition/ no 
compile time 
at nm time: no 
(delayed/partial/ 
recursive) 

others (templates ... ) Template system uses Horn-dause definitions and control statements 
to delay/contr~valuation . . 
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I GENERAL DESCRIPTION 11 

Interfaces to 
morphology no 

semantics/ no 
knowledge repr. 

Implementational Issues 

programming lang. Prolog 

machine sun-4, sparcstation etc. 
others (O/S. graphica ... ) Derivation checker uses Sicstus Prolog graphics manager 

Applications 
grammar theories? HPSG,UCG 
educational vs. mostly educational but larger grammars under development by in-
commercial system dustrial partner 
used in projects/ 
other systems? 

Grammar coded 
size small demos 

language English, French 

Tools High level interface language for printing of linguistic objects. In-
terface to editor. 
Interface to grammar displayer. 

Comments The tools are generic facilities of Pleuk, not specific to SLE 
formalism. 

I FEATURE CONSTRAINT SOLVER 

Boolean Connectives 
unitication: 

destructive no 
non-destructi ve yes 

disjunction: 
atoms only yes 

full (DNF) no 

distributed no 

others no 
negation 

atoms only yes 

negated corefs no 

full no 

others additional sound special case -,(1 : Top) 
implication 

via negation 

others implicational constraints 

Additional Operations 

subsumption no 
functional uncertainty encodable 

others none 

Tools Limited user control of evaluation strategy / depth bound via run-
time switches 

Comments none 
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I TYPE SYSTEM 

Type Connectives 

conjunction: n/a 
single vs. multiple 
inheritance 
disjunction n/a 
negation n/a 
othern -

Type Definitions 

via feature structures n/a 
via appropriateness n/a 
conditions 
recursive? n/a 
others -

Additional Operations 

type inference/ n/a 
classification 
GLB/LUB type n/a 
subsumption 

othern - -

Restriction on Hierarchy n/a 
(unreatricted partial order, 
bounded complete p .o., 
distributive lattice ... ) 

Tools -
1 Comments 11 Direct specification of features appropriate at anode. 
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2.10 The TDC/UDiNe System 

Rolf Backofen, Stefan Diehl, Bernd Kiefer, Karsten Konrad, Hans-Ulrich Krieger, Ulrich Schäfer, 
Christoph Weyers 

TDC is a typed feature-based language specifically designed to support highly lexicalized gram­
mar theories like HPSG, FUG, or CUG. rvC offers the possibility to define (possibly recursive) 
types, consisting of type constraints and feature constraints over the standard connectives A, V, 
and .." where the types are arranged in a subsumption hierarchy. TDC distinguishes between avm 
types (open-world reasoning) and sort types (c1osed-world reasoning) and allows the declaration 
of partitions and incompatible types. Working with partially as weil as with fully expanded types 
is possible, both at definition and at run time. TDC is incremental, i.e., it allows the redefinition 
of types and the use of undefined types. 

TDC is based on UDiNe, a sophisticated feature constraint solver. UDiNe incorporates most 
of the advanced means that have been described in literature or used in practical system, e.g ., 
distributed disjunctions, negative coreferences, full negation as well as functional and relation al 
constraints. 

TDC and UDiNe together provide both a grammar definition environment and a typed run 
time system which supports lazy type expansion. Efficient reasoning in the system is accomplished 
through speciaIized modules. 

2.10.1 Motivation 

Modern typed unification-based gramm ar formalisms (Iike TFS, CUF, or TDC) differ from the 
early untyped systems like PATR-II in that they highlight the notion of a feature type. Types can 
be arranged hierarchicaIly, where a subtype inherits monotonically all the information from its 
supertypes and unification plays the role of the primary information-combining operation. A type 
definition can be seen as an abbreviation for a complex expression, consisting of type constraints 
(concerning the sub-jsupertype relationship) and feature constraints (stating the appropriate val­
ues of attributes) over the standard connectives A, V, and ..,. Types can therefore lay foundations 
for a grammar development environment because they might serve as abbreviations for lexicon 
entries, ID rule schemata, and universal as weIl as language-specific principles as is familiar from 
HPSG. Besides using types as a referential mean as templates are, there are other advantages as 
well which however cannot be accomplished by templates: 

• EFFICIENT PROCESSING. Certain type constraints can be compiled into more efficient repre­
sentations like bit vectors, where a GLB (greatest lower bound) , LUB (least upper bound), or 
a ~ (type subsumption) computation reduces to low-Ievel bit manipulation. Moreover, types 
release untyped unification from expensive computation through the possibility of declaring 
them incompatible. In addition, working with type names only or with partially expanded 
types, minimizes the costs of copying structures du ring processing. 

• TYPE CHECKING. Type definitions allow a grammarian to declare which attributes are 
appropriate for a given type and which types are appropriate for a given attribute, therefore 
disallowing to write inconsistent feature structures. 

• RECURSIVE TYPES. Recursive types give a grammar writer the opportunity to formulate 
certain functions or relations as recursive type specifications. Working in the Parsing as 
Deduction paradigm enforces a grammar writer to replace the CF backbone through recursive 
types. 

2.10.2 The DISCO Core Engine 

The core machinery of DISCO consists of TDC and the feature constraint sol ver UDiNe. The 
TDC system is a unification-based grammar development environment and run-time system to 
support HPSG-like grammars. The DISCO grammar currently consists of more than 700 type 
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Figure 2.6: Interface between TDC and UDiNe. Depending on the type hierarchy and the 
type of 0 and 0, TDC either returns c (c is definitely the GLB of a and b) or a fo. b (open-world 
reasoning) resp . .L (closed-world reasoning) if there doesn't exist a single type which is equal to 
the GLB of a and b. In addition, TDC determines whether UDiNe must carry out feature term 
unification (yes) or not (no), i.e., the return type contains all the information one needs to work 
on properly (fail signals aglobai unification failure). 

specifications written in TDC and is the largest HPSG grammar for German. The UDiNe feature 
constraint sol ver is the main processing machinery of DISCO, which has been weIl-tested in the 
DISCO environment over years. Typical size of the processed structures reaches more than 1000 
nodes and 140 coreferences (which would need up to 185000 nodes in a PROLOG tree notation). 

Both modules communicate through an interface, and this communication mirrors exactly the 
way an abstract typed unification algorithm works: two typed feature structures can only be 
unified if the attached types are definitely compatible. This is accomplished by the unifier in that 
UDiNe handles over two typed feature structures to TDC which gives back a simplified form (plus 
additional information; see Fig. 2.6). The motivation for separating type and feature constraints 
and processing them in dedicated modules (which again might consist of specialize.clicomponents as 
is the case in TDC) is twofold: (i) it reduces the complexity of the whole system, thus making the 
architecture much clearer, and (ii) leads to a faster system performance because every dedicated 
module is designed to cover only a specialized task. 

Grammars and lexicons can be tested by using the parser of the DISCO system. The parser is 
a bidirectional bottom-up chart parser, providing a user with parameterized parsing strategies as 
weil as giving hirn control over the processing of individual rules. 

2.10.3 The UDiJJe Feature Constraint Solver 

UDiNe is a modern feature constraint solver that provides distributed disjunctions over arbitrary 
structures, negative coreferences, fuIl negation and functional constraints. It is the first (and to 
our knowledge the only) implemented feature constraint sol ver that integrates both fuIl negation 
and distributed disjunctions. A relation al extension has been implemented, but not yet integrated 
into the system. 

UDiNe works on an internal representation of feature structures, where coreferences are rep­
resented using structure sharing. The connection between the internal representation and the 
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(good readable) extern al one is established by input/output functions. There exists an advaneed 
window-based feature editor ealled FEGRAMED allowing to define, print and manage feature strue­
tures. 

During the translation of the external representation into the internal one, several normal­
ization steps are performed. One of this steps is the elimination of full negation in the input 
strueture. We use the method of Smolka (1988), whieh introduces implieit existential quantifiea­
tion. Using this method, negation ean be eliminated if the feature systems provides disjunetion, 
negative eoreferenees and negated atoms/types. 

UDi'Ve uses distributed disjunetions not only as a tool for eflieient proeessing. They are also 
part of the input syntax, whieh allows for a very eompact representation of the input data. In 
contrast to other systems using distributed disjunetions, we do not rest riet disjunetions to length 
2 (neither in input nor during proeessing). This reduees the size of the representation of a feature 
strueture massively. 

UDi'Ve is a dedieated feature eonstraints sol ver that ean be eonnected with different type 
systems. Unifieation is done destruetively using the lazy eopying technique introdueed by Alt­
Kaei, where only the affeeted strueture must be eopied. Non-destruetive unifieation is performed 
using eopy functions. UDi'Ve has been sueeessfully used for several tasks in the DISCO projeet, viz. 
for parsing, generation, extended two-Ievel morphology and surface oriented speech act proeessing. 

The funetionality of UDi'Ve is eompleted by several auxiliary funetions. It is possible to remove 
ineonsistent alternatives, to simplify struetures, to extract subterms or to evaluate functional 
eonstraints. A general visiting function ean be used for eonstrueting user-oriented extensions. 
Furthermore, one ean build the disjunetive normal form of a feature strueture. This is needed by 
other tools used in the applieation system if they eannot handle distributed disjunction. 

2.10.4 Intelligent Backtracking 

Uszkoreit introdueed in 1991 a new strategy for linguistic proeessing ealled controlled linguistic 
deduction. The evaluation of both eonjunetive and disjunetive eonstraints ean be eontrolled in 
this framework. For eonjunetive constraints, the one with the highest failure probability should 
be evaluated first. For disjunctive ones, a suecess probability is used instead. The alternative with 
the highest success probability is used until a unifieation fails, in whieh ease one has to back track 
to the next best alternative. Besides more eomplex ones, Uszkoreit also proposed a strategy that 
uses statie values for the suecess probabilities (called preferences). In the following, we will eall 
unifier that control the evaluation of disjunctions in this way unifier with intelligent backtracking. 

Because of similarities between this control method and the mechanism of intelligent back­
tracking in PROLOG, we ean formulate the following properties that a unifier with intelligent 
backtracking should fulfill: 

• INDEPENDENCE~ Backtracking must be independent from the eomputation history, i.e. back­
tracking should not be restrieted to the last proeessed disjunction. 

• CONFLICT DETECTION. It must be possible to determine the disjunetive struetures that are 
involved in a unifieation failure. This is necessary in order to restrict the set of eandidates 
for backtracking. 

• CONFLICT DEDUCTION. The confliet information of several unification errors ean be used for 
further restricting the eonflicting set of disjunetions. This avoids unneeessary backtracking. 

• COMPLETENESS. It must be guaranteed that eonsistent eombination of disjunetion alterna­
tives will be detected. 

The most promising eandidates for implementing intelligent backtracking are unifiers that use 
distributed disjunctions, sinee they provide most of the eoneepts mentioned above. Hereby, the 
notion of context eommon to all of these unifiers plays an important role. A context is partial 
function mapping disjunctions to eorresponding alternatives. Every node has a unique eontext 
that deseribes under which disjunctions and whieh alternatives this node ean be found. Ir a 
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unification fails, the context of the node where the inconsistent information has been found is 
called inconsistent context. The inconsistent contexts are stored in order to deduce minimal 
inconsistent contexts and to detect a global inconsistency. Thus, inconsistent contexts can be used 
for conßict detection. The calculation of minimal inconsistent contexts corresponds to conflict 
deduction. The check for global inconsistency can be used for guaranteeing completeness. 

We have implemented a prototypical extension of UDWe that incorporates intelligent back­
tracking and provides the independence property mentioned above. The implementation works 
as folIows. Ir a disjunction is encountered, the alternative with the highest preference is chosen, 
and only this alternative is used for later unifications. Ir a unification fails, the involved disjunc­
tions are determined by the inconsistent context. Now one of the involved disjunctions has to be 
selected for backtracking. There are two possibilities: (i) one can use the static preference for 
this selection; and (ii) the unifier calls a user program in order to select a disjunction. The idea 
is to use the second selection mechanism for implementing more complex control methods. E.g. 
to achieve better selection criteria, we can provide the user program with the definition of the 
disjunction and the conjunctive part the disjunction has be unified with. 

The backtracking of the selected disjunction first undoes the unification with the previously 
chosen alternative. We have modified the existing method for undoing destructive unification in 
order to guarantee a local undo. Second, the cancelled unifications are redone using the new 
selected alternative. The algorithm guarantees, that unification is restricted to the substructure 
starting with the disjunction. 

2.10.5 The rvc language 

TDC supports type definitions consisting of type constraints and feature constraints over the 
standard operators 1\, V, .... , and $ (xor). The operators are generalized in that they can connect 
feature descriptions, coreference tags (logical variables) as weIl as types. TDC distinguishes between 
avm types (open-world semantics), sort types (closed-world semantics), and built-in types. In 
asking for the greatest lower bound of two avm types a and b which share no common subtype, 
TDC always returns a 1\ b (open-world reasoning), and not ..L. The opposite case holds for sort 
types. Furthermore, sort types differ in &Dother point from avm types in that they are not further 
structured, like atoms are. Moreover, TDC offers the possibility to declare exhaustive and disjoint 
partitions of types, for example sign = word $ phrase which expresses the fact that (i) there are 
no other subtypes of sign than word and phrase, (ii) the sets of objects denoted by these types 
are disjoint, and (iii) the disjunction of word and phrase can be rewritten (during processing) to 
sign. In addition, one can declare sets of types as incompatible, meaning that the conjunction of 
them yields ..L. 

TDC allows a grammarian to define and use parameterized templates (macros). There exists a 
special instance definition facility to ease the writing of lexicon entries which differ from normal 
types in that they are not entered into the type hierarchy. Strictly speaking, lexicon entries can 
be seen as the leaves in the type hierarchy which do not admit further subtypes. This dichotomy 
is the analogue to the distinction between classes and instances in object-oriented programming 
languages. Input given to TDC is parsed by a Zebu-generated LALR(l) parser to allow for an 
intuitive, high-level input syntax and to abstract from uninteresting details imposed by the unifier 
and the underlying Lisp system. 

2.10.6 Type Hierarchy 

The implementation of the type hierarchy is based on Alt-Kaci's bit vector encoding technique for 
boolean lattices (a bit-and/or operation corresponds to a LUB/GLB computation). The method 
has been modified to open-world reasoning over avm types in that potential GLB/LUB candidates 
must be verified by inspecting the type hierarchy through a sophisticated graph search . GLB, LUB 
and ~ computations have the nice property that they can be carried out in O(n), where n is the 
number of types. Depending on the encoding method, the hierarchy occupies O(n log n) (compact 
encoding) resp. O(n2 ) (transitive closure encoding) bits. 
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Figure 2.7: Decomposing a := bEB c, so that a inherits from the intermediates IbV cl and l...,bV...,cl. 

The encoding algorithm is extended to cope with the redefinition of types, an essential part 
of an incremental grammarjlexicon development system. Redefining a type means not only to 
make changes local to this type. Instead, one has to redefine all dependents of this type-all 
subtypes, in case of a conjunctive type definition and all disjunction elem~nts for a disjunctive 
type specification plus, in both cases, all types which mention these types in their definition . The 
dependent types of a type t can be characterized graph-theoretically via the strongly connected 
components of t . 

Conjunctive, e.g., x := y 1'1 z and disjunctive type specifications, e.g., Xl := y' V Zl are entered 
differently into the hierarchy: x inherits from its supertypes y and z, whereas Xl defines itself 
through its elements y' and Zl . This distinction is represented through the use of different kinds 
of edges in the type graph (bold edges denote disjunctive elements, see Fig. 2.7). 

TDC decomposes complex definitions consisting of 1'1, V, and ..., by introducing intermediate 
types, so that the resulting expression is either a pure conjunction or a disjunction. The same 
technique is applied when using EB (see Fig. 2.7). EB will be decomposed into 1'1, V and ..." plus 
additional intermediates. For each negated type ...,t, TDC introduces a new intermediate type 
symboll...,tl with the definition ...,t and declares it incompatible with t. 

Incompatible types lead to the introduction of specialized bottom symbols (see Fig. 2.7) which 
are however identified in the underlying logic. These bot tom symbols must be propagated down­
wards by a mechanism called bottom propagation which takes place at definition time. 

2.10.7 Symbolic Simplifier 

The simplifier operates on arbitrary TDC expressions. Simplification is done at definition time as 
weIl as at run time when typed unification takes pi ace (cf. Figure 2.6). The main issue of symbolic 
simplification is to avoid (i) unnecessary feature constraint unification and (ii) queries to the type 
hierarchy by simply applying 'syntactic' reduction rules. 

The simplification schemata are weIl known from the proposition al calculus, e.g., De Morgan's 
laws, idempotence, identity, absorption, etc. They are hard-wired in COMMON LISP in order to 
speed up computation. FormaIly, type simplification in TDC can be characterized as a term rewrit­
ing system. Confluency and termination is guaranteed by imposing a generalized lexicographically 
ordered normal form on terms (either CNF or DNF). In addition, this order has the nice effects of 
neglecting the law of commutativity (which is expensive and might lead to termination problems) : 
there is only one representative for a given formula. Therefore, memoization is cheap and is em­
ployed in TDC to reuse precomputed results of simplified (sub)expressions (one must not cover all 
permutations of a formula). Additional reduction rules are applied at run time using 'semantic' 
information of the type hierarchy (GLB, LUB, and ~). 
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System Name: TDLjUDINE 
Designed and Implemented by: Rolf Backofen, Stefan Diehl, Bernd Kiefer, Karsten Kon­

rad, Hans-Ulrich Krieger, Ulrich Schäfer, Christoph Wey­
ers 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine VS. dedicated modules: 
dedicated modules 

• feature constraint scilver 
• sophisticated type system: 

- symbolic simplification 
- inheritance reasoning 

non-montonic devices special form of inheritance and unification; some theoretical results 
available 

control facilities 

• intelligent backtracking (weighted disjuncts) 
• type expansion 

parser/generator? 

.advanced chart parser 
• semantic head-driven generator 

others future version of the type expansion mechanism can be parametrized 
for different expanding strategies 

Data Types 
arity (flxed?) free 
cyclic structures yes 
lists/sets only list via FIRST jREST encoding special constructs in the spec-

ification language 
functions/ relations functions with residuation 

relations 
others built-ins: integer, strings, symbols 

Interaction FS <==> Types 
type unification yes 
type expansion 

at definition/ yes-work with partially and fully expanded types and recursive 
compile time ones 
at nm time: yes-work with partially and fully expanded types and recursive 
(delayed/partial/ ones 
recursive) 

others (template • ... ) parametrized templates 
- ----
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I GENERAL DESCRIPTION II 

Interfaces to 
morphoIogy extended 2-1evel morphology X2 MorF 
semanticsj semantic representation language N ce 
knowledge repr. 

Implementational Issues 
programming lang. Common Lisp (Franz Inc., Allegro) 

machine SUN/SPARC compatible machines 
others (OIS, graphics .. . ) UNIX CLIM (Common Lisp Interface Manager) 

Applications 
grammar theories? HPSG 
educational vs. educational 
commercial system 
used in projectsj DISCO (DFKI), BiLD (Dep. of Comp. Ling.), PRACMA (Comp. 
other systems? Science Saarbrücken 

Grammar coded 
Slze 11 650 type specification 250 lexicon entries 
language \\ 

I Tools 
11 

I FEATURE CONSTRAINT SOLVER 

Boolean Connectives 
unification: 

destructive yes 
non-destructive non-destructive via COPY & RESET 

disjunction: 
atoms only 
full (DNF) yes (via MAKE-DNF) 
distributed yes; both in implementation and specification language 
others 

negation 
atoms only 
negated corefs yes 
full yes with restrictions to distributed disjunctions (negation over non-

distributed disj. only L 
others 

implication 
via negation yes 
others 

Additional Operations 
subsumption on DNF 
functional uncertainty via recursive type specifications 
others RESET, COPY, MAKE-DNF 

Tools 

• generic traversing function on feature structures 
• print feature structure 

Comments prototype version of "intelligent backtracking" (weighted disjuncts) 
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I TYPE SYSTEM 
-

Type Connectives 
conjunction: multiple inheritance 
single vs. multiple 
inheritance 
disjunction yes 
negation yes 
others XOR via OR and NOT 

Type Definitions 
via feature structures yes 
via appropriateness 
conditions 
recursive? yes 
others type declarations: incompatibility and partitions 

Additional Operations 

type inference/ type inference via type unification type classification during type 
classification definition 
GLB/LUB type GLB, LUB, type subsumption 
subsumption 

others GLB/LUB behave differently when applied to sorts or avm types 

Restrietion on Hierarchy unrestricted input of type specs, some transformation are performed 
(unrestricted partial order, on the input by the system 
bounded complete p.o., 
distributive lattice ... ) 

Tools type grapher tdl2 Latex software switches wh ich changes the be-
haviour of the whole system 

Comments making a distinction between sort types (closed-world reasoning) 
and avm types (open-world) 
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The Typed Feature Structure (TFS) representation formalism is an attempt to provide a syn­
thesis of several of the key concepts of unification-based grarnmar formalisms (feature structures), 
knowledge representation languages (inheritance) and logic prograrnming (logical variables and 
dedarativity) . The inheritance-based constraint architecture embodied in the TFS system inte­
grates two computational paradigms: the object-oriented approach offers complex, recursive, 
possibly nested, record objects represented as typed feature structures with attribute-value re­
strictions and (in)equality constraints, and multiple inheritance; the relational programming 
approach offers declarativity, logical variables, non-determinism with backtracking, and existential 
query evaluation. The interpreter of the formalism is described as a term rewriting system based 
on type unfolding where unification of typed feature structures is used to detect inconsistencies 
between a query and the constraints imposed by the feature type system. 

The grammar writer organizes unification grammars as inheritance networks of typed feature 
structures. Complex linguistic structures are described by means of recursive type constraints 
which correspond to dass definitions in object-oriented formalisms. The use of an object-oriented 
methodology with inheritance is very attractive for naturallanguage processing and offers a num­
ber of advantages such as abstract ion and generalization, information sharing, modularity and 
reusability of descriptions. Through the development of a wide variety of different applications 
it has been demonstrated that the formalism is flexible enough and weil suited to represent the 
principles and parameters approach of modern computationallinguistic theories. In particular, it 
has been successfully used for the encoding of large grammar fragments as described in the HPSG 
grammar representation formalism . 

2.11.1 Type Constraint System 

Type Hierarchy 

One of the design criteria behind the implementation of TFS was to minimize the amount of 
information the user has to explicitly provide while specifying a grammar description. Hence we 
do not have to specify separate appropriateness conditions instead they will be inferred from the 
type constraints . The following assumptions about types hold: 

• types prestructure the domain of discourse and are interpreted as unary predicates which 
denote subsets of the universe . 

• we assume that all minimal types exhaustively partition the domain. Hence negative infor­
mation, which shows up as inconsistency between types, is represented only implicitly. Such 
an approach is motivated by the fact that for most of the linguistic applications only a few 
types interact and thus we have to express only the positive statements for those types and 
not all the negative ones which are implied by the partitioning assumption. 

• all non-minimal types are equivalent to the union of the minimal types which they subsume. 

• types not defined in the hierarchy are unconstrained and assumed to be pairwise incompa­
rable. 

The set of types Type is ordered by a subtype relation where the user may specify an arbitrary 
finite partial order (po) (Type, $) for defining the type hierarchy without any further conditions 
like unary branching or being a bounded complete partial order (bcpo) as it is assumed in other 
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formalisms. The user specified po will be embedded into the restricted powerset 2[Type] wh ich is 
constructed by taking all non-empty subsets of pairwise incomparable elements and hence defines 
a cochain. The resulting construction forms a distributive lattice which preserves the original 
ordering and already existing meets. 

Typed Feature Structures 

Typed feature structures are very similar to structured objects of object-oriented languages 
and act as the lingua franca for computational linguists. They are defined over a finite set of 
features Feat and over a finite type hierarchy (Type, ~). 

Type Definitions 

A collection of recursive type definitions which associates typed feature structure constraints to 
types forms a. feature type system and offers the functionality of dass definitions imposing con­

straints on objects. Possible constraints involve: 

• structural constraints which define for each type the set of appropriate attributes and for 
each attribute the attribute-value restriction, 

• (in)equality constraints expressed over a set of variables Var and a special equality predi­
cate, 

• relational constraints attached to types as further conditions which must be true and hence 
further restrict the denotation of the constrained type. 

Formally, type definitions may be seen as axioms forming a theory. Satisfiability of feature 
structure descriptions is checked with respect to this theory. Type unfolding is used to enforce the 
constraints imposed on types by their definitions. In contrast to other systems TFS supports not 
only inheritance of appropriateness information but also inheritance of equational and relational 
constraints. Whereas the satisfiability of the structural constraints is decidable, adding equality 
and relational constraints leads in general to undecidability. By checking the decidable structural 
constraints at compile-time we gain the same advantages as in a system with an explicit type 
discipline but without having to duplicate the typing information into a redundant appropriateness 
specification. The appropriateness information is extracted from the structural constraints and 
used for inferring missing type information and for doing actual type checking by testing for 
satisfiabili ty. 

2.11.2 Summary 

The TFS system has been developed to provide a computational environment for the design and 
the implementation of formal models of natural language. It does not offer means of defining 
control information that would make execution more efficient (but less general), as it would be 
needed if it were envisaged to use the system in an application-oriented environment (e.g., as a 
parser in a natural language interface to a database system). As such, the TFS formalism is not 
designed as a programming language, but as a specification language that can be used to design, 
implement, and test formal Iinguistic models. From these formal models, it could be envisaged 
to develop programs, i.e., parsers or generators, that would implement efficiently the declarative 
knowledge contained in the formal specifications. 

The TFS system is implemented using rewriting techniques in a constraint-based architecture 
adapted to typed feature structures: 

• The language is a logicallanguage directly based on typed feature structure constraints, and 
supports an object-oriented style based on multiple inheritance. 
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• Grammars are expressed as inheritance networks of typed feature structure descriptions. 
They define constraints on the set of acceptable linguistic structures. As a consequence we 
have a truly multi-directional architecture and there is no formal distinction between "input" 
and "output" . 

• A unique general constraint solving mechanism is used. Specific mapping properties, based 
on constituency, linear precedence or functional composition , are not part of the formalism 
itself, but can be encoded explicitly using the formalism. 

Although the current implementation is very much at the level of an experimental prototype, 
and is still evolving, it has allowed to validate the basic concepts of the language and of the 
implementation, and we have been able to show that TFS can adequately model a wide variety of 
descriptive paradigms in computational linguistics: descriptive work and migration from existing 
resources was carried out in the frameworks of LFG, DCG, SFG and HPSG grammars. From these 
various experimentations, we have defined extensions and improvements, both on the language and 
on the implementation, that are needed for scaling up the system. 

On the formal language side, more expressivity is needed. For example, sets of feature struc­
tures are necessary to formalize non trivial semantic structures. Feature structure encodable types 
like lists and strings could be conveniently added to the system as libraries of built-in types togeth­
er with a specific syntax and associated operations, like concatenation, etc., for which specialized 
constraint-solvers could be provided to improve the termination behaviour and the performance 
of these operations . 

On the implementation side, the use of implementation techniques adapted from Prolog im­
plementations, especially the compilation of feature constraints into an abstract machine like the 
WAM together with more sophisticated control strategies would greatly enhance the efficiency of 
the constraint solver. For specific application domains, like natural language parsing, compila­
tion of string concatenation into a standard chart-parsing module, where the linguistic description 
allows such a compilation, might turn out to be a viable strategy for improving the efficiency. 

Implementation 

TFS was designed and implemented by Martin C. Emele und Remi Zajac within the German 
Polygloss Project (BMFT Project 08 B 3116 3 / 08 B 3120 6) and is implemented in Common 
Lisp (e.g. MCL, Allegro, Lucid, CMU CL, CLISP, AKCL). It runs on virtually any architecture 
and software system for which an appropriate Common Lisp dialect is available. TFS owes much 
of its port ability to the fact that it does not include any graphie displays for its basic version. 
For some architectures plus Common Lisp dialects (currently LISP-machines and Mac IIs) the 
implementation of TFS supports graphie output and a menu-based window interface. A CLIM­
based (Common Lisp/ X Window System / Interface Manager) graphical interface has been written 
by Oliver Christ. 

TFS runs as a stand-alone system for the Macintosh 11 family, and requires System 7. For 
other architectures it requires the appropriate Common Lisp license. 

Availability and Maintenance 

TFS is copyright Institut für maschinelle Sprachverarbeitung, Universität Stuttgart. It is dis­
tributed in a binary form only, and is available without charge for academic research for non­
commercial use. The main TFS files for different LISP dialects and architectures can be obtained 
by anonymous ftp from the address ftp.ims.uni-stuttgart.de (141.58 .127.8) in the directory 
TFS. There are also subdirectories 'demo' and 'HPSG' containing further sampie grammars and 
programs. 

References 

For more information about the theoretical motivations for TFS, see ihe following articles, and 
references therein: 
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System Name: TFS 
Designed and Implemented by: Martin C. Emele, Remi Zajac 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine VB. unique engine (constraint sol ver) 
dedicated modules 
non-montonic devices no 
control facilities no explicit control 

dause-indexing over lexicon 
parser/generator? not necessary since using the engine the same grammar description 

successfully used for parsing and generation 
others 

Data Types 
arity (fixed?) no fixed arity terms 
cyclic structures yes 
lists/sets lists, set operations encodable 
functions/relations 

• using macro syntax 
• definite dause compiler available (e) 

others 
Interaction FS {::::::} Types 

type unification yes, uses precomputed type lattice 
type expansion 

at definition/ deterministic expansion at compile time 
compile time 

at run time: evaluation of recursive type definitions with delayed expansion 
(delayed/partiall 
recursive) 

others (template •... ) parametric macros expanded at compile time 
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I GENERAL DESCRIPTION 11 

Interfaces to 
morphology not necessary since morphology can be encoded within the system 

as weIl 
semantics/ not necessary since morphology can be encoded within the system 
knowledge repr. aB weIl 

Implementational Issues 
programming lang. Common Lisp 

machine any on which a suitable CL runs 
others (o/s, graphica ... ) Macintosh System 7, UNIX, Xll, CLIM (Common Lisp Interface 

Manager) 
Applications 

grammar theories? HPSG, LFG, GB, SFG 
educational vs. public domain 
commercial system 
used in projects/ used widely about 20 installations worldwide 
other systems? 

Grammar coded 
size covers large parts of the 11 Vol. of PoIlard & Sag 
language EN, GE, FR, JA sampie grammars of HPSG 

Tools 

• Graphical Feature Structure/Tree Displayer 
• Browser and Editor for type hierarchy 

Comments 
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I FEATURE CONSTRAINT SOLVER 

Boolean Connectives 
unification: 

destructive ombination of destructive and non-destructive 

non-destructive unification with structure-sharing and lazy copying 
disjunction: 

atoms only atomic disjunctions of types expanded at run time 

full (DNF) full disjunction possible within definite clauses (e) 

distributed no 
others disjunctive type definition 

negation 
atoms only 
negated corefs inequations -' 

full 
others 

implication 
via negation 
others 

Additional Operations -

subsuinption 
functional uncertainty encodable with recursive types 
others 

Comments ~ 
Tools 

TYPE SYSTEM 

Type Connectives 
conjunction: multiple inheritance 
single vs. multiple 
inheritance 
disjunction yes 
negation expressed via closed world assumption 

others 

Type Definitions 
via feature structures inferred from the type definitions 
via appropriateness 
conditions 
recursive? yes 
others 

Additional Operations 
type inference/ full type inference (infers missing type info and classifies feature term 
classification descriptions according to type definitions) 
GLB/LUB type GLBjLUB 
subsumption 

others compile-time type-checking 

Restriction on Hierarchy unrestricted partial order which is embedded into a distributive 
(unreatricted partial o rder, lattice 
bounded complete p .o _, 
distributive lattice ... ) 

Comments ~ 
Tools 
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2.12 Short Description of Trace & U nification Grammar 
(TUG) 

Hans Ulrich Block 
Siemens AG, Corporate Research, ZFE ST SN 74 

Otto Hahn-Ring 6 
D-81730 München 
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block@zfe.siemens.de 

ABSTRACT 

This paper presents Trace & Unification Grammar (TUG), a declarative and reversible grammar 
formalism that brings together Unification Grammar (UG) and ideas of Government & Binding 
Theory (GB) . The TUG system is part of a polyfunctionallinguistic processor for German called 
LINGUISTIC KERNEL PROCESSOR (LKP) . The LKP contains a grammar of German with broad 
coverage. The grammar describes the relation between a subset of German and a subset of QLF, the 
intermediate semantic form that is used in the Core Language Engine of SRI Cambridge (Alshawi 
1990). The LKP has been implemented in PROLOG. Parsing and Generation of a sentence up to 
15 words normally takes between 1 and 10 seconds, with a strong tendency to the lower bound . 

2 FORMALISM 

The design of Trace and Unification Grammar has been guided by the following goals: 

• Perspicuity. We are convinced that the generality, coverage, reliability and development 
speed of a grammar are a direct function of its perspicuity, just as programming in Pascal 
is less errorprone than programming in assembler. In the optimal case, the grammar writer 
should be freed of reflections on how to code things best for processing but should only be 
guided by linguistic criteria. These goals led for example to the introduction of unrestricted 
disjunction into the TUG formalism . 

• Compatibility to GB Theory. It was a major objective of the LKP to base the grammar 
on weIl understood and motivated grounds. As most of the newer linguistic descriptions on 
German are in the framework of GB theory, TUG was designed to be somehow compatible 
with this theory though it was not our goal to "hardwire" every GB principle. 

• Efficiency. As the LKP is supposed to be the basis of products for interactive usage of 
naturallanguage, efficiency is a very important goal. Making efficiency a design goal of the 
formalism led e.g. to the introduction of feature types and the separation of the movement 
rules into head movement and argument movement. 

The basis of TUG is formed by a context free grammar that is augmented by PATR lI-style 
feature equations. Besides this basis, the main features of TUG are feature typing, mixing of 
attribute-value-pair and (PROLOG-) term unification, flexible macros, unrestricted disjunction and 
special rule types for argument and head movement. 

2.1 BASIC FEATURES 

As a very simple example we will look at the TUG version of the example grammar in Shieber 
(1984). 

% type definition 

s => f. 
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np => f(agr:agrmnt). 
vp => f(agr:agrmnt). 
v => f(agr:agrmnt). 

agrmnt => f(number:number,person:person). 

number => {singular,plural}. 
person => {first,second,third}. 

% rules 

s ---> np, vp 
np:agr = vp:agr. 

vp ---> v, np 
vp:agr = v:agr. 

% lexicon 

lexicon('Uther',np) 
agr:number = singular, 
agr:person = third. 

lexicon('Arthur',np) I 
agr:number = singular, 
agr:person = third. 

lexicon(knights,v) I 
agr:number = singular, 
agr:person = third. 

lexicon(knight,v) I 
( agr:number = singular, 

( agr:person = first 
agr:person = second 

) 

agr:number = plural 
) . 

The two main differences to PATR II in the basic framwork are that first, TUG is less flexible in 
that it has a "hard" contextfree backbone, whereas in PATR 11 categories of the context free part 
are placeholders for feature structures, their names beeing taken as the value of the cat feature 
in the structure. Second,TUG has a strict typing. For a feature path to be weIl defined, each of 
its attributes has to be declared in the type definition. 

Besides defined attribute-value-pairs, TUG allows for the mixing of attribute-value-pair uni­
fication with arbitrary structures like PROLOG terms using a back-quote notation. This can be 
regarded as the unificational variant of the BUILDQ operation known from ATNs. As an exam­
pIe consider the following lexicon entry of each that constructs a predicate logic notation out of 
det :base, det: scope and det: var. 

lexicon(each,det) I 
det:sem = 

'all(det:var,det:base -> 
det:scope) 

During our work on the German grammar we found that this feature was very useful for the 
construction of semantic forms. 
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TUG provides templates for a clearer organization ofthe grammar. The agreement in the above 
mentioned grammar might have been formulated like this: 

agree(X,Y) short_for 
X:agr = Y:agr. 

s ---> np, vp I 
agree(np, vp) . 

TUG allows for arbitrary disjunction of feature equations. Disjunctions and Conjunction may 
be mixed freely. Besides weH known cases as in the entry for knight above, we found many cases 
where disjunctions of path equations are useful, e.g. for the description of the extraposed relative 
clauses1 . 

2.2 MOVEMENT RULES 

Further to these more standard uG-features, TUG provides special rule formats for the descrip­
tion of discontinuous dependencies, so called "movement rules". Two main types of movement are 
distinguished: argument movement and head movement. The format and processing of argument 
movement rules is greatly inspired by Chen e.a. (1988) and Ghen (1990), the processing of head 
movement is based on GPSG like slash features. 

Head Movement 

A head movement rule defines a relation between two positions in a parse tree, one is the 
landing site, the other the trace position. Head movement is constrained by the condition that the 
trace is the head of a specified sister (the root node) of the landing site2 . Trace and Antecedent 
are identical with the exception that the landing si te contains overt material, the trace doesn't. 
Suppose, that v is the head of vk, vk the head of vp and vp the head of s, then only the first 
of the following structures is a correct head movement, the second is excluded because np is not 
head of vp, the third because antecedent and trace are unequal. 

Es' Vi [s ... [vp ... 
[vk trace(v)i ... ] ... ] ... ] ... ] 

Es' npi [s .. , ~vp trace(np)i 
[vk V ••• ] ••• ] ••• ] 

Es' npi [s ... [vp .. . 
[vk trace(v)i ... ] ... ] ... ] ... ] 

To formulate head movement in TUG the following format is used. First, a head definition 
defines which category is the head of which other. 

V is_head_of vk. 
vk is_head_of vp. 
vp is_head_of s. 

Second, the landing site is defined by a rule like 

s' ---> v+s I ... 

To include recursive rules in the head path, heads are defined by the following head definitions. 
In a structure [H Dl ... Dn ] Di is the head of H if either Di is..llead...of H is defined or Di has 
the same category as Hand either Di is..llead_of X or X is..llead...of Di is defined for any category 
X. 

1 Block/Schmid (1992) describes our processing technique for disjunctions. 
2 Here, "head of" is a transitive relation S.t. if x is head of y and y is head of z then x is head of z. 
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Head movement rules are very weH suited for a concise description of the positions of the finite 
verb in German (sentence initial, second and final) as in 

Halj der Mann der Frau das Buch gegeben lj ~ 
Hasj the man the woman the book given tj 
Der Mann halj der Frau das Buch gegeben lj 

The man hasj the woman the book given tj 
... daß der Mann der Frau das Buch gegeben hat 
.. . that the man the woman the book given has 
All that is needed are the head definitions and the rule that introduces the landing site3 . 

Argument Movement 

Argument movement rules describe a relation between a landing site and a trace. 
The trace is always c-commanded by the landing site, its antecedent. Two different 
traces are distinguished, anaphoric traces and variable traces. Anaphoric traces must find 
their antecedent within the same bounding node, variable trace binding is constrained by 
subjacency, i.e. the bin ding of the trace to its antecedent must not cross two bound­
ing nodes. Anaphoric traces are found for example in English passive constructions 
[s [np The book of this author]j was read tj] whereas variable traces are usuaHy found in wh­
constructions and topicalization. Similar to the proposal in Chen e.a. (1988), argument movement 
is coded in TUG by a rule that describes the landing site, as for example in -

s2 ---> np:ante<trace(var,np:trace), s1 I 
ante:fx = trace:fx, 

This rule states that np:ante4 is the antecedent of an np-trace that is dominated by sI. This 
rule describes a leftward movement. Following Chen's proposal, TUG also provides for rightward 
movement rules, though these are not needed in the German grammar. A rightward movement 
rule might look like this. 

s2 ---> s1, trace(var,np : trace»np:ante 
ante:fx = trace:fx, 

The first argument in the trace-term indicates whether the landing site is for a variable (var) 
or for an anaphoric (ana) trace. Other than head movement, where trace and antecedent are 
by definition identical, the feature sharing of argument traces with their antecedents has to be 
defined in the grammar by feature equations (ante: fx = trace : fx, ... ). Furthermore, it is not 
necessary that the antecedent and the trace have the same syntactic category. A rule for pronoun 
fronting in German might e.g. look like this: 

spr ---> pron<trace(ana,np), si . . . 

The current version of the formalisms requires that the grammar contains a declaration on 
which categories are possible traces. In such a declaration it is possible to assign features to a 
trace, for example marking it as empty: 

trace(np) I np:empty = yes. 

3Even though verb movement is not supposed to be a topic for English grammar, one might think of describing 
English Subj-Aux inversion in terms of head movement. 

Peter haß been reading a book 
H a8j Peter tj been reading a book 
4The notation Cat : Index is used to distinguish two or more occurrences of the same category in the same rule 

in the equation part. : ante and : trace are arbitrary names used as index to refer to the two different nps. 
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Bounding nodes have to be declared as such in the gramm ar by statements of the form 

bounding_node(np). 
bounding_node(s) I s:tense = yes. 
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As in the second case, bounding nodes may be defined in terms of category symbols and 
features5 . Typical long distance movement phenomena are described within this formalism as in 
GB by trace hopping. Below is a grammar fragment to describe the sentence Which books; do you 
think Li lohn knows Li Mary didn't understand Li: 

bounding_node(s). 
bounding_node(np). 

s1 ---> np<trace(var,np), si ... 
s ---> np, vp I ... 
s ---> aux, np, vp I 
np ---> propernoun I 
np ---> det, n I 
vp ---> v, s1 I 
vp ---> v, np I ... 

trace(np) . 

The main difference of argument movement to other approaches for the description of discon­
tinuities like extraposition gramm ars (Pereira 1981) is that argument movement is not restricted 
to nested rule application. This makes the approach especially atractive for a scrambling analysis 
of the relative free word order in the German Mittelfeld as in 

Ihm; hatj das Buchk keiner Li tk gegeben tj. 

3 COMPILATION OF TUG 

For efficient processing TUG is compiled to two different forms, one for parsing and one for 
generation. Prior to both compilations a TUG is transformed to DCG format. 

For parsing, this format is then transformed for processing with a Tomita parser (Tomita 1986) 
in several steps: 

• expansion of head movement rules 

• transformation of argument movement rules 

• elimination of empty productions 

• conversion to LR(K) format 

• computation of LR tables 

After these compilation steps the context free rules are transformed to YACC format and YACC 

is used to compute the LR parsing table. Finally, YACC'S y. output file is transformed to PROLOG. 

For generation with TUG an improved version of the semantic-head-driven generator (SHOG) 

(see Shieber e.a. 1990) is used. Before being useful for generation, the grammar is transformed in 
the following steps: 

• expansion of head movement rules 

• transformation to the semantic head driven generator format 

5Currently, only conjunction of equations is allowed in the definition of bounding nodes. 
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• expansion of movement mIes 

• elimination of nonchainrules with uninstantiated semantics 

• goal reordering and transformation to executable prolog code 

4 CONCLUSION 

We have presented Trace & Unification Grammar, a gramm ar formalism that tries to bridge 
the gap between vo and OB theory. TUG comes with a parser generator and a generator generator 
that lead to effient runtime code of the grammar both for parsing and for generation. 

The presented grammar formalism has been used to describe a relevant subset of German 
language and smaller subsets of Chinese and Japanese. The gramm ars describe a mapping between 
German, Chinese and Japanese and QLF expressions. TUG has been used in the German ASL­
project for speech understanding, in the CSTAR project for spoken languagetranslation from 
German to Japanese and in the German part of the SUNDIAL project. 
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System Name: 
Designed and Implemented by: 

Trace & Unification Grammar (TUG) 
Siemens AG 

GENERAL DESCRIPTION I 

Inference Engine 

unique engine vs. 
dedicated modules 
non-montonic devices no 

control facilities no 

parser/generator? parser and generator 

others 

Data Types 

arity (flxed?) fixed 

cyclic structures no 

lists/sets lists 

functions / relations no 

others "movement rules" 

Interaction FS {::::::> Types 

type unification Prolog term unification 

type expansion 

at definition/ type elimination at compile time 
compile time 

at run time: 
(delayed/partial/ 
recuraive) 

others (templatea ... ) 

I GENERAL DESCRIPTION 11 

Interfaces to 

morphology no 

semantics/ yes 
knowledge repr. 

Implementational Issues 
programming lang. Prolog (Quintus-, Sixtus-, SNI) 

machine Sun Sparc WS 

others (O/S, graphics ... ) UNIX 

Applications 

grammar theories? trace theory 

educational vs. commercial 
commercial system 

used in projects/ ASL, SUNDIAL, CSTAR, MeI 
other systems? 

Grammar coded 
slZe ca. 370 rules, 160 type defs. 

language German, Chinese, Japanese 

Comments 
11 LeXlcon Tool Tools 

87 
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[ FEATURE CONSTRAINT SOLVER 

Boolea.n Connectives 

unification: 

destructive 

non-destructive x 
disjunction: 

atoms only 

full (DNF) 

distributed 

others full, not DNF 

negation 

atoms only no 

negated corefs no 

full no 

others no 

implication 

via negation no 

others no 

Additional Operations 

subsumption no 

functional uncertainty no 

others movement rules 

Comments ~ 
Tools 

TYPE SYSTEM 
--

Type Connectives 

conjunction: no 
single vs. multiple 
inheritance 
disjunction no 

negation no 

others no 

Type Definitions 

via feature structures yes 

via appropriateness 
conditions 
recursive? yes 

others 

Additional Operations 

type inference/ no 
classification 
GLB/LUB type no 
subsumption 

others 

Restriction on Hierarchy 
(unrestricted partial order, 
bounded complete p.o., 
distributive lattice ... ) 

Comments ~ 
Tools 
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2.13 UD: A Unification Device 
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2.13.1 Origins and Motivations 
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The current version of UD is a direct descendent of an earlier version of the system that was also the 
progeni tor of the EL U system developed at ISSCO. The original version of UD was also developed 
at ISSCO and is reported on in Johnson & Rosner (1989) and Rupp et al. (1992). Subsequent 
development of UD since 1988, has been carried out at IDSIA and has focussed on improvements 
to the morphology and on the efliciency of the implementation. 

The nature of the UD formalism still bears many of the infiuences of the original motivations 
for developing such a system. The original purpose of building UD was to support the development 
of a prototype MT system. We realised from the outset that there would be certain technical, 
logistical and theoretical difliculties in developing extensive linguistic descriptions and in making 
use of these descriptions in an MT system with adequate performance. We therefore considered it 
important to distinguish between a grammar development environment and the intended ultimate 
implementation. A major distinction between these two systems would be that the the former 
allowed a considerable degree of "theory prototyping", while the latter would "hard code" the 
major theoretical constructs of the descriptions in order to optimise performance. At the time that 
this project was being planned it was dear that none of the available constraint-based linguistic 
theories was fully adequate for the construction of extensive linguistic descriptions; so we were 
especially careful to permit the linguists constructing the descriptions to develop their own set 
of theoretical constructs which could be optimised for performance as, and when, they became 
stabilised. This is essentially a pragmatic approach in that, unlike, say, the LFG system, it does 
not assurne apriori the adoption of a particular grammatical (meta)theory. Our approach also 
gives the grammar writers some control over the development of the formalism and as a result 
the design of the UD formalism has been largely "demand driven". This philosophy also has 
its weaknesses: in particular there is a risk of losing homogeneity and of excessive notational 
redundancy. Nevertheless the capability to support theory prototyping is a major characteristic of 
the UD formalism, and in this respect its expressive power is equivalent to other current formalisms 
of much later design, such as the CUF (Dörre & Eisele, 1991) . 

2.13.2 The UD Formalism 

The formal notation of the UD system was designed in the latter part of the eighties to be a generic 
constraint-based formalism, hence it takes as its starting point the equational notation popularised 
by PATR-II. The two main extensions to the equational framework that UD offers are the ability 
to state linguistic generalisations in the form of definite relations and the provision of a number of 
additional data types, most notably lists, and certain key operations over these data types. The 
relation al abstraction mechanism, used to state principles and other linguistic generalisations, may 
be seen as a direct extension of PATR-II templates, but with a considerably increased expressive 
power. Indeed it has been demonstrated (Reape 1991, 1993) that relations can also be used to 
define additional data types, but our purpose in providing an explicit representation of constructs 
such as lists is more than just a syntactic sweetener: if constructs of a known structure can be 
identified as early as possible then their structure can be exploited in the implementation.1 

lThere is an important pragmatic difference between a theoretically elegant minimalist view of the semantics 
of a formalism and the practical necessities of using that formaliam to construct useful artefacts. The definition of 
pure Lisp, as we a11 know. requires just five basic functions and a constantö but the market for Lisp systems which 
provide only five functions and one constant is vanishingly small. 
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As a direct consequence of the incorporation of additional data types and of relational rather 
than predicative abstractions the UD notation makes use of variables in order to denote the internal 
structure of objects and argument positions. This further implies that paths must be rooted to 
determine their starting node, rather than systematically referring back to the root of the feature 
structure (cf. PATR-II and LFG). These key extensions over earlier formalisms offered by UD raise 
the question of what notational conventions to adopt. Here again our solution has been relatively 
pragmatic: given that most students of computationallinguistics are exposed to the Edinburgh 
syntax notation of Prolog this provides a ready source of notational forms for constructs such as 
lists, variables, anonymous variables, terms and relations themselves. The adoption of a number 
of Prolog notational conventions was intended to diminish the learning time for novice users; but 
we have also found it to be a 80urce of confusion in that novice users and audiences at demos 
often assumed that the underlying implementation must also be in Prolog and even inherit Prolog 
procedural semantics - which is emphatically not the case. 

The combination of PATR-II and Prolog styles of notation covers most of the syntactic needs 
of the UD formalism; the remainder can be found in other well-known sourees, such as the various 
instantiations of LFG. 

The basic UD syntax can be sketched by a few schematic examples. Constraint information in 
UD is expressed by two basic types of construct: equations and relational abstractions. The basic 
form of equations is predictable from our decision to use a generic PATR-style syntax, plus the 
need to root paths. 

< Root attri .. . attrn > = value 

The form of relational constraints is also unsurprising, except for the preceding exclamation 
mark (!) denoting invocation. 

!Relation(Argi, .. . , Arg2) 

Most of the other extensions to the language to account for additional data structures and 
built in operations over these can most easily be accounted for by considering them as additional 
terms which slot into the two basic forms of literal, i.e. they are equated or occur in argument 
positions in a relation. 

X 
[Head I TaU] 
Mother(Dtri, ... ,Dtrn) 
{X,Y,Z} 
Listi ++ List2 
List -- Element 

<Root attri .. . Y ... attrn> 
Atomi tt Atom2 
atomi/ .. ./atomn 
-atom 

variables 
lists 
trees 
disjunctions 
two lists appended together 
the remainder of a list after 
an element is removed 
a variable path 
the concatenation of two atoms 
a disjunction of atoms 
an atomic negation 

The use of Prolog-style variable notation in the above table is intended to be suggestive of the 
fact that the syntax allows variables over any of the above syntactic types, subject to the obvious 
semantic constraints. For example, the variable at the root of a path must evaluate to a feature 
structure; and within a path a variable should evaluate to either an atom or a list of atoms. Similar 
constraints are obviously implied by the argument structure of other built in operators. 

UD feature structures are, in general, open structures with no restrictions on the range features 
that may appear. It is, however, possible to im pose such restrietions using a rudimentary form of 
typing. 

Typing Definition 
x == closed-type closed-type = (first,next, ... ,last) 
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A typing statement requires the presence of all and only those features that appear in its 
definition; hence there is no possibility to combine types, nor do they impose any conditions on 
feature values. Such statements are of limited applicability, but have found two quite independent 
uses that may be of interest: in preserving the syntactic integrity of semantic representations, 
which are in effect representations of statements in another language, and in the emulation of 
HPSG gramm ars where closed types are essential in constraining the potential proliferation of 
relation invocations. 

A linguistic description in UD has a number of components consisting, respectively, of grammar 
rules, lexical entries, morphology state transitions and relation definitions. 

Hother -> Daughterl ... Daughtern 
word 
lexical-string -> actual-string 

$successor-state 
$succcessor-state 

grammar rule 
lexical entry 
morphology transition 

Constraint information, consisting of equations and relation invocations, is associated with 
each of these constructs. 2 

The definition of a relation is given by a sequence of clauses, consisting of a head, which is like 
an invocation without the exclamation mark prefix, and a body made up of constraint information. 

Relation(X, Y ,Z): ! Predicate(X) 
<x path> = value 
Z = Y -- X 
!Hacro 

The clauses of a definition are treated disjunctively and may be recursively defined. 

2.13.3 Discussion 

Given the emphasis in the design of UD on the ability to build new theoretical constructs, we 
expect that the fabric of a linguistic description williargely consist of the invocation of relational 
abstractions and that the raw equational notation williargely be confined to relation definitions. 
Hence the dependencies between relations also form the main organisation al principles of the 
description. This is in many ways similar to the definition of type hierarchies as in HPSG, but 
somewhat more flexible. This reliance on relation al constructs to provide the fabric of a linguistic 
description is in no way diminished by the presence of additional notations representing grammar 
rules, lexica and morphological rules, since the constraint language remains the same throughout 
every component of the description. Indeed the level of modularity provided by the different 
components of the description can be further enhanced by the use of relational constructs to define 
"communication protocols" between the different representational domains of the description. 
The technique has been demonstrated to be effective by the continued u~e ~f the same extensive 
morphology and lexicon over a number of years despite considerable var~atlOns In .the ass<:,cl~ted 
syntactic and semantic representations. This level of modularity is an obv,!oUS asse~ 10 descnptl.on~ 
that are constructed by more than one linguist. The general need for declaratlve modulanty 

within constraint-based formalism is further discussed in Rupp (1993). 
Given that UD was designed from the outset as a development tool for real syst~~s, w~ were 

forced to come to terms very early with the need to maintain a very degre~ of expresslvJty wIthout 
sacrificing performance. In a serious development context it is not sufficle~t to allo,,:, the ~ser to 
say the kind of thing that you think they are going to want to say; the envlfonm~nt. 10 whlch t~e 
f I· ., I ted must equally provide an efficient testbed for the descnptlOn. There JS orma Ism 18 Imp emen 

2 • • ludes constructs in the morphology, which in UD is seen as a three-place relatio~ mapp~ng 

~::~~i,:~r:~~:~:r~~~!~~~:~~ds:::~~::!~:~~r~~~ :!~~h:~!;ddi~~~o~r~:~~:~;:::~~f =~:~~~!;~I~~:';!:~: 
comparable to the X2MorF used in TDL. 
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an obvious interaction between concision and expressivity in formalisms and their complexity, and 
yet most current formalisms have broadly the same expressive power. In general the key issue 
is non-determinism, which is usually expressed in disjunctive statements of one form or another. 
As has been seen above UD contains two main forms of disjunction. By far the most significant 
is the presence of multiple clauses in relation definitions, since these definitions are' the primary 
constructs of a description, in both theoretical and practical terms. A more direct notation for 
disjunctive terms also exists, but this is mainly employed to describe alternations wh ich though 
systematic do not playa significant role in the structure of the descriptions. 

We have devoted a great deal of effort in UD to optimisation of the treatment of non­
determinism, which is based on breadth-first expansion with heuristically driven delayed eval­
uation. Details of the strategy used and the reasoning behind it can be found in Johnson & 
Rupp (1993). The technique has proved very effective in processing descriptions wh ich are, the­
oretically at least, highly complex. It is also notable that the same approach is applied to many 
different forms of non-determinism which occur in UD descriptions, including disjunctive and re­
cursive relation definitions, disjunctive terms and operators over specific data types. UD has been 
used successfully to define numerous descriptions, including: an extensive fragment of German; 
complete Italian and French verbal morphologies; substantial fragments of Italian and French, 
including good coverage of clitic constructionsj transcodings of many toy fragments of English 
used to illustrate other constraint-based formalisIDS. 
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System Name: UD 
Designed and Implemented by: Rod Johnson with contributions from C .J. Rupp, Mike 

Rosner, Paolo Cattaneo 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine vs. dedicated parsing & morphology 
dedicated modules 
non-montomc devices none 
control facilities Preference ordering of outputs of rule reductions 
parser/generator? tabular parser with Earley prediction over finite restrictors; invert-

ible fst morphology 
others 

Data Types 
arity (fixed?) open: F-structures, lists 

closed: F -structures, terms 
cyclic structures F-structures, lists, terms 
lists/sets lists 
functions / relations relations 
others strings -

Interaction FS {=} Types 
type unification N.A. 
type expansion 

at definition/ deterministic expansion at load time 
compile time 

at run time: lazy evaluation at run time 
(delayed/partiaIl 
recu .... ive) 

others (templates ... ) 

I GENERAL DESCRIPTION 11 

Interfaces to 
morphology integrated morphology 
semantics/ no external semantics 
knowledge repr. 

Implementational Issues 
programming lang. Allegro Common Lisp, compiler in C (via yacc) 

machine Sun Spare, Sun3, Macintosh (no compiler), porting to i486 and 
windows 

others (O/S, graphie8 .. . ) Unix ideally (ported to Macintosh or i486 and windows) 
Applications 

grammar theories? HPSG, UCG, LFG encodable 
educational VS. educational 
commercial system 
used in projects/ Nat+Lab (Delta DI016) 
other systems? 

Grammar coded 
Slze maximum (German) has 2,000 word lexicon 
language 11 German, French, Italian, English (in that order) 

Tools Stepper. Compiler from extern al PATR-style notation to S-
expression based internal representation. 

Comments 



94 Systems Exhbited 

[ FEATURE CONSTRAINT SOLVER 
---- ---

Boolean Connectives I 
unification: 

destructive 

non-destructive non-destructive, structure-sharing I 

disjunction: I 

atoms only 
i 

full (DNF) 
distributed 

others generalised disjunction over any data types, handled by lazy I 

evaluation 
negation 

atoms only yes 

negated corefs no 

full no 
others 

implication 

via negation no 

others 
-

Additional Operations 

subsumption no 

functional uncertainty encodable easily (e.g. using path variables) 

others 

Comments ~ 
Tools 
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I TYPE SYSTEM 

Type Connectives 

conjunction: yes 
single vs. multiple 
inheritance 
disjunction yes 

negation no 
others 

Type Definitions 

via feature structures 
via appropriateness 
conditions 
recursive? yes 

others via global conditions on feature structures 

Additional Operations 

type inference/ N.A. 
classification 
GLB/LUB type N.A. 
subsumption 

others -
Restriction on Hierarchy N.A. 
(unrestricted partial order, 
bounded complete p .o ., 
d istributive lattice ... ) 

Tools 

Comments These responses refer to relations rather than types, so do not fit 
the questions particularly weIl. 
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3.1 STUF-II 

IBM Germany, Institute for Knowledge Based Systems, Roland Seiffert 

(no description submitted) 

System Name: STUF-II 
Designed and Implemented by: IBM Germany, Institute for KnowledgeBased Systems, 

Roland Seiffert 

GENERAL DESCRIPTION I 

Inference Engine 
unique engine VS . dedicated, exchangeable modules for 
dedicated modules 

• parsmg 
• feature unification 
• sort lattice & GLB proc. 

non-montonic devices -

control facilities tools for development & testing & evaluation of parsing strategies 
integrated in parser modules 

parser/generator? parser: adaptable bottom-up chart parser, generator under 
development 

others -
Data Types 

arity (fixed?) free 
cyclic structures yes 
lists/sets not built-in but a set of list macros is provided 

sets: no 
functions/relations -
others arbitrary sort lattices with associated GLB procedure may be inte-

grated (one GLB proc. is built-in) 
Interaction FS <=} Types 

type unification FS unification calls sort G LB procedure on leaf nodes in a "sort 
domain" 

type expansion never (in principle, sorts can be defined arbitrarily if a GLB proce-
dure is provided (e.g., sorts could be fs again)) 

at definition/ 
compile time 

at run time: 
(delayed/partiall 
recursive) 

others (templates ... ) templates: 

• parametrized 
• recursively definable if compiIe-time evaluable to a disjunction 

(finite) 

I 
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I GENERAL DESCRIPTION 11 

Interfaces to 
morphology yes, a "lexicon manger" ia integrated that aHows to exploit variu-

ous lexical resources at runtime (e.g. fuH-form lexicon, morpholoy, 
synonyms, ... ) 

semantics/ yes, hut very specialized (for LILOG project) 
knowledge repr. 

Implementational Issues 
programming lang. Quintus Prolog 3.2 

machine IBM RS/6000 runing AIX3.1 + X, SUN 4, IBM PS/2 runing AIXl.l 
+X 

others (o/s, graphics ... ) there is a runtime version on RS/6000 that does not need Quintus 
Prolog 

Applications 
grammar theories? open (we've done CUG and HPSG with it) 
educational vs. 
commercial system 

used in projects/ LILOG 
other systems? 

Grammar coded 
Slze HPSG grammar covering a substantial fragment of German 
language 11 German 

Tools rather sophisticated window-oriented grammar development 
environment 

Comments availahle free of charge under licence from IBM Germany for non-
profit organizations 
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[ FEATURE CONSTRAINT SOLVER 

Boolean Connectives 

unification: 

destructive x 
non-destructive x 

disjunction: 

atoms only -

full (DNF) -
distributed X, DörrejEisele algorithm (but no distributed disjunctions in the 

grammar specification--only implementation technique!) 
others -

negation .. 
atoms only x 
negated corefs -
full -

others -

implication 

via negation -
others -

Additional Operations 

subsumption x 
functional uncertainty -

others feature structures form an ADT with a whole bunch of possible 
operations 

Comments ~ 
Tools 
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I TYPE SYSTEM 

Type Connectives 

conjunction: 
single vs. multiple 
inheritance 
disjunction 

negation 

others 

Type Definitions 

via fe atme structmes 

via appropriateness 
conditions , 

reCW"sive? 

others 

Additional Operations 

type inference/ 
classification 
GLB/LUB type 
subsumption 

others 

Restriction on Hierarchy 
(unrestricted partial order, 
bounded complete p .o., 
distributive lattice .. . ) 

Comments 11 

Tools 
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4.1 An Informal Introduction to LIFE 

Hassan A·it-Kaci Andreas Podelski Peter Van Roy 
{hak,podelski,vanroy}Cprl.dec.com 

Digital Equipment Corporation 
Paris Research Laboratory 

85 Avenue Victor Hugo 
92500 Rueil-Malmaison, France 

LIFE ia an experimental programming language proposing to integrate three orthogonal pro­
gramming paradigms proven useful for symbolic computation. From the programmer's standpoint, 
it may be perceived as a language taking after logic programming, functional programming, and 
object-oriented programming. From a formal perspective, it may be seen as an instance (or rather, 
a composition of three instances) of a Constraint Logic Programming scheme. Here, we give an 
informaloverview demonstrating LIFE as a programming language, illustrating how its primitives 
offer rat her unusual, and perhaps (pleasantly) startling, conveniences. 

As an acronym, 'LIFE' means Logic, Inheritance, Functions, and Equations. LIFE also des­
ignates an experimental programming language designed after these four precepts for specifying 
structures and computations. 

In this document, we give an informal tour of some of LIFE's unusual programming conve­
niences. We hope by this to illustrate for the reader that some original functionality is available 
to a LIFE user . We do this by way of small yet (pleasantly) atartling examples. 

LIFE is a trinity. The function-oriented component of LIFE is directly derived from function­
al programming languages with higher-order functions as first-dass objects, data constructors, 
and algebraic pattern-matching for parameter-passing. The convenience offered by this style of 
programming is one in which expressions of any order are first-dass objects and computation is 
determinate. The relation-oriented component of LIFE is essentially one inspired by the Prolog 
language. Unification of first-order patterns used as the argument-passing operation turns out to 
be the key of a quite unique and hitherto unusual generative behavior of programs, which can 
construct missing information as needed to accommodate success. Finally, the most original part 
of LIFE is the structure-oriented component which consists of a calculus of type structures-the 
1{I-calculus [1, 2]-and accounts for some of the (multiple) inheritance convenience typically found 
in so-called object-oriented languages. 

1{I-Calculus 

In this section, we give an informal introduction of the notation, operations, and terminology of 
the data structures of LIFE. It is necessary to understand the programming examples to follow. 

The 1{I-calculus consists of a syntax of structured types called 1jJ-terms together with subtyping 
and type intersection operations. Intuitively, as expounded in [7], the 1{I-calculus is a convenience 
for representing record-like data structures in logic and functional programming more adequately 
than first-order terms do, without loss ofthe well-appreciated instantiation ordering and unification 
operation. 

Let us take an example to illustrate. Let us say that one has in mind to express syntactically a 
type structure for a person with the property, as expressed for the underlined symbol in Figure 4 .1, 
that a certain functional diagram commutes. 

The syntax of 1{I-terms is one simply tailored to express as a term this kind of approximate 
description. Thus, in the 1{I-calculus, the information of Figure 4.1 is unambiguously encoded into 
a formula, perspicuously expressed as the 1{I-term: 

X : person(name ~ id(first ~ string, 
last ~ S : string) , 

spouse ~ person(name ~ id(last ~ S), 
spouse ~ X)). 
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name 
~ 1--------+\ 

,--:,........"""'" 

name 
per60n I-------+i id 

Figure 4.1: A commutative functional diagram 
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It is important to distinguish among the three kinds of symbols participating in a ,p-term. 
We assurne given a set S of sorts or type constructor symbols, a set :F of features, or attributes 
symbols, and a set V of variables (or coreference tags). In the ,p-term above, for example, the 
symbols person, id, string are drawn horn S, the symbols name, first , last, spouse from:F, and the 
symbols X, S from V. (We capitalize variables, as in Prolog.) 

A ,p-term is either tagged or untagged. A tagged ,p-term is either a variable in V or an expression 
of the form X : t where X E V is called the term's root variable and t is an untagged ,p-term. 
An untagged ,p-term is either atomic or attributed. An atomic ,p-term is a sort symbol in S. An 
attributed ,p-term is an expression of the form S(ll ~ t1, ... ,ln ~ t n ) where the root variable's 
sort symbol sES and is called the ,p-term's principal type, the li'S are mutually distinct attribute 
symbols in :F, and the ti's are ,p-terms (n ~ 0). 

Variables capture coreference in a precise sense. They are coreference tags and may be viewed 
as typed variables where the type expressions are untagged ,p-terms. Hence, as a condition to be 
well-formed, a ,p-term must have all occurrences of each coreference tag consistently refer to the 
same structure. For example, the variable X in: 

person ( id ~ name(first ~ string, 
last ~ X : string), 

father ~ person(id ~ name(last ~ X : string))) 

refers consistently to the atomic ,p-term string. To simplify matters and avoid redundancy, we 
shall obey a simple convention of specifying the sort of a variable at most once and understand 
that other occurrences are equally referring to the same structure, as in: 

person(id ~ name(first ~ string, 
last ~ X : string), 

father ~ person(id ~ name(last ~ X))) 

In fact, since there may be circular references as in X : person(spouse ~ person(spouse ~ X)), 
this convention is necessary. Finally, a variable appearing nowhere typed, as in junk(kind ~ X) 
is implicitly typed by a special greatest initial sort symbol T always present in S. This symbol 
will be left invisible and not written explicitly as in (age ~ integer, name ~ string), or written 
as the symbol CI as in CI(age ~ integer, name ~ string). In the sequel, by ,p-term we shaJl always 
mean well-formed ,p-term and call such a form a (,p)-normal form. 

Generalizing first-order terms,l ,p-terms are ordered up to variable renaming. Given that the 
set S is partially-ordered (with a greatest element T), its partial ordering is extended to the set of 

1 In fact, if a first-order term is written f(tl' ... ' t n ), it is nothing other than syntactic sugar for the ,p-term 
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attributed t/J-terms. InformaHy, a ,p-term tl is subsumed by a ,p-term t2 if (1) the principal type 
of tl is a subtype in S of the principal type of t2 ; (2) aH attributes of t2 are also attributes of tl 
with t/J-terms which subsume their homologues in tl; and, (3) aH coreference constraints binding 
in t2 must also be binding in t 1. 

For example, if student< person and paris< cityname in S then the t/J-term: 

student( id => name(first => string, 
last => X : string) , 

lives_at => Y : address( city => paris), 
father => person(id => name (last => X), 

lives_at => Y)) 

is subsumed by the t/J-term: 

person(id => name (last => X : string), 
lives_at => address(city => cityname), 
father => person(id => name (last => X))) . 

In fact, ifthe set S is such that greatest lower bounds (GLB's) exist for any pair oftype symbols, 
then the subsumption ordering on t/J-term is also such that GLB's exist . Such are defined as the 
unification of two t/J-terms. A detailed unification algorithm for t/J-terms is given in [7]. 

Last in this brief introduction to the t/J-calculus, we explain type definitions. The concept is 
analogous to what a global store of constant definitions is in a practical functional programming 
language based on >.-calculus. The idea is that types in the signature may be specified to have 
attributes in addition to being partially-ordered. Inheritance of attributes from aH supertypes to 
a subtype is done in accordance with t/J-term subsumption and unification. For example, given 
a simple signature for the specification of linear lists S = {list, con$, nil} with nil < list and 
cons < list, it is yet possible to specify that cons has an attribute tail => list. We shall specify 
this as: 

list:= {nil; cons(tail => list)}. 

From which the appropriate partial-ordering is inferred. 
As in this list example, such type definitions may be recursive. Then, t/J-unification modulo 

such a type specification proceeds by unfolding type symbols according to their definitions. This is 
done by need as no expansion of symbols need be done in case of (1) failures due to order-theoretic 
clashes (e.g., cons(tail => list) unified with nil fails; i.e., gives ..1); (2) symbol subsumption (e.g., 
cons unified with list gives just cons), and (3) absence of attribute (e.g., cons( tail => cons) unified 
with cons gives cons( tail => cons)). Thus, attribute inheritance may be done "lazily," saving much 
unnecessary expansions [14]. ."'. 

In LIFE, a basic t/J-term denotes a functional application in FOOL's sense if its root symbol is 
a defined function. Thus, a functional expression is either a t/J-term or a conjunction of ,p-terms 
denoted by t 1 : t2 : ... : t n .2 An example of such is append(list , L) : list, where append is the 
FOOL function defined as: 

list := {O ; [@Ilist]}. 
append(O, L : list) ~ L . 
append([HIT : list], L: list) ~ [Hlappend(T, L)] . 

This is how functional dependency constraints are expressed in a t/J-term in LIFE. For example, 
in LIFE the t/J-term foo( bar => X : list, baz => Y : list,fuz => append(X, Y) : list) is one in which 
the attribute fuz is derived as a list-valued function of the attributes bar and baz. Unifying such 

/(1 =? t1, .. . , n =? tn) . 
2 In fact, we propose to see the notation _ : _ simply as a dyadic operation resulting in the GLB of its arguments 

since, for example, the notation X : t1 : t2 is shorthand for X : t I, X : 12 . Where the variable X is not necessary, 

(i.e. , not otherwise shared in the context), we may thus simply write t1 : t2. 
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f/!-terms proceeds as before modulo suspension of functional expressions whose arguments are not 
sufficiently refined to be provably subsumed by patterns of function definitions. 

As for relational constraints on objects in LIFE, a f/!-term t may be followed by a such-that 
dause consisting of the logical conjunction of (relational) literals Gi, ... , Gn , possibly containing 
functional terms. It is written as t I Gi, ... , Gn . Unification of such relationally constrained 
terms is done modulo proving the conjoined constraints. In effect, this allows specifying daemonic 
constraints to be attached to objects. Such a (renamed) "daemon-constrained" object's specified 
relational and (equational) functional formula is normalized by LIFE, its proof being triggered by 
unification at the object's creation time. 
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Oz [7, 2] is an attempt to create a high-level concurrent programming language bringing together 
the merits of logic and object-oriented programming. It builds on previous work in concurrent 
constraint programming [4, 5, 3] and advances the state of the art along the following directions: 

• Oz is a higher-order language: there is no hard-wired distinction between program and query, 
everyexpression (possibly containing abstractions) can be abstracted, abstractions are first­
dass citizens. Oz's abstraction mechanism is novel in that it is fully compatible with first 
order constraints. 

• Oz is a deep guard language. There is no restriction on the form of the guards appearing 
in Oz's choice combinators (conditional and disjunction). As a byproduct, Oz can express 
logically sound negation. 

• Oz has a new asynchronous communication primitive, called constraint communication, 
avoiding the dumsiness of stream-based communication; constraint communication provides 
a minimal not ion of state that is fully compatible with constraints. 

• Oz provides records as logical data structure [1, 8]. 

• Oz comes with a powerful object system providing for the dynamic creation of concurrent 
objects. Object creation may involve multiple inheritance from already existing objects. 
Objects have persistent identity and encapsulated state. Objects are first-dass citizens. The 
object system is written in Oz. 

• Oz comes with a powerful window system providing for the interactive creation of graphical 
user interfaces. The window system is written in Oz's object system. 

Oz is based on a simple calculus [6, 7] providing an operational semantics. The calculus fixes 
a dass of expressions, a congruence on expressions, and a set of rules for rewriting expressions. 
An expression corresponds to a computation state, and rewriting with a rule corresponds to an 
abstract computation step. The choice of a rewriting step is don't care (that is, there is no 
backtracking). Termination of computation is defined as termination of rewriting. The calculus 
is parameterized with respect to a first-order constraint system. The congruence of the calculus 
is defined as a conservative extension of the logical equivalence on constraints. The calculus does 
not require an operation al semantics for constraints (an implementation does, of course). The 
calculus accounts compositionally for dynamic creation of new and unique names. 

Oz is implemented by means of a compiler and an abstract machine, written in C++. The 
programming environment is based on Emacs. It is interactive; at any time a new expression can 
be entered and will be executed concurrently with the already existing computations. We plan to 
have the implementation ready for ftp-based distribution in October 1993. 
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