
Design and Analysis of Sequential and Parallel

Single–Source Shortest–Paths Algorithms

Ulrich Meyer

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

Universität des Saarlandes

Saarbrücken, 2002



ii

Datum des Kolloquiums: 21.10.2002
Dekan: Prof. Dr. Philipp Slusallek
Gutachter: Prof. Dr. Kurt Mehlhorn

Prof. Dr. Jop F. Sibeyn



iii

Abstract. We study the performance of algorithms for the Single-Source Shortest-Paths
(SSSP) problem on graphs with � nodes and � edges with nonnegative random weights.
All previously known SSSP algorithms for directed graphs required superlinear time. We
give the first SSSP algorithms that provably achieve linear

��� ��� ��� average-case execution
time on arbitrary directed graphs with random edge weights. For independent edge weights,
the linear-time bound holds with high probability, too. Additionally, our result implies im-
proved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse
graphs, and it yields the first theoretical average-case analysis for the “Approximate Bucket
Implementation” of Dijkstra’s SSSP algorithm (ABI–Dijkstra). Furthermore, we give con-
structive proofs for the existence of graph classes with random edge weights on which
ABI–Dijkstra and several other well-known SSSP algorithms require superlinear average-
case time. Besides the classical sequential (single processor) model of computation we also
consider parallel computing: we give the currently fastest average-case linear-work parallel
SSSP algorithms for large graph classes with random edge weights, e.g., sparse random
graphs and graphs modeling the WWW, telephone calls or social networks.

Kurzzusammenfassung. In dieser Arbeit untersuchen wir die Laufzeiten von Algo-
rithmen f ür das K ürzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen
mit � Knoten, � Kanten und nichtnegativen zuf älligen Kantengewichten. Alle bisheri-
gen SSSP Algorithmen ben ötigten auf gerichteten Graphen superlineare Zeit. Wir stellen
den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zuf älligen
Kantengewichten eine beweisbar lineare average-case-Komplexit ät

��� �	� ��� aufweist.
Sind die Kantengewichte unabh ängig, so wird die lineare Zeitschranke auch mit hoher
Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-
case-Schranken f ür das All-Pairs Shortest-Paths (APSP) Problem auf d ünnen Graphen und
liefert die erste theoretische average-case-Analyse f ür die “Approximate Bucket Implemen-
tierung” von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin f ühren wir konstruk-
tive Existenzbeweise f ür Graphklassen mit zuf älligen Kantengewichten, auf denen ABI-
Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare
Zeit ben ötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell be-
trachten wir auch Parallelverarbeitung; f ür umfangreiche Graphklassen mit zuf älligen Kan-
tengewichten wie z.B. d ünne Zufallsgraphen oder Modelle f ür das WWW, Telefonanrufe
oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit
durchschnittlich linearer Arbeit vor.



iv



v

Acknowledgements

First of all, I would like to thank my Doktorvater, Kurt Mehlhorn, for his constant support,
patience and generosity. He provided a very good balance between scientific freedom and
scientific guidance. The same holds true for my co-advisor, Jop F. Sibeyn. I could be sure
to fall on sympathetic ears with them whenever I wanted to discuss some new ideas.

Some of the material presented in this thesis has grown out of joint work with Andreas
Crauser, Kurt Mehlhorn, and Peter Sanders. Working with them was fun and and taught
me a lot. I am also indebted to Lars Arge, Paolo Ferragina, Michael Kaufmann, Jop F.
Sibeyn, Laura Toma, and Norbert Zeh for sharing their insights and enthusiasm with me
while performing joint research on non-SSSP subjects.

The work on this thesis was financially supported through a Graduiertenkolleg graduate
fellowship, granted by the Deutsche Forschungsgemeinschaft, and through a Ph. D. position
at the Max-Planck Institut f ür Informatik at Saarbr ücken. I consider it an honor and privilege
to have had the possibility to work at such a stimulating place like MPI. The members and
guests of the algorithm and complexity group, many of them friends by now, definitely
played an important and pleasant role in my work at MPI. Thanks to all of you.

I would also like to acknowledge the hospitality and warm spirit during many short visits
and one longer stay with the research group of Lajos Rónyai at the Informatics Laboratory
of the Hungarian Academy of Sciences. Furthermore, many other people outside MPI and
the scientific circle have helped, taught, encouraged, guided, and advised me in several ways
while I was working on this thesis. I wish to express my gratitude to all of them, especially
to my parents.

Of all sentences in this thesis, however, none was easier to write than this one: To
my wife, Annamária Kovács, who did a great job in checking and enforcing mathematical
correctness, and to my little daughter, Emilia, who doesn’t care about shortest-paths at all,
this thesis is dedicated with love.



vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Worst-Case versus Average-Case Analysis . . . . . . . . . . . . . . . . . . 2
1.3 Models of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Sequential Computing . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 New Results in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Sequential Algorithms (Chapter 3) . . . . . . . . . . . . . . . . . . 6
1.4.2 Parallel Algorithms (Chapter 4) . . . . . . . . . . . . . . . . . . . 6

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Definitions and Basic Concepts 8
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Basic Labeling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Advanced Label-Setting Methods . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Basic Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Sequential SSSP Algorithms 18
3.1 Previous and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Sequential Label-Setting Algorithms . . . . . . . . . . . . . . . . . 18
3.1.2 Sequential Label-Correcting Algorithms . . . . . . . . . . . . . . . 19
3.1.3 Random Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Simple Bucket Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Dial’s Implementation . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Buckets of Fixed Width . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 The New Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 The Common Framework . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Different Splitting Criteria . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 The Current Bucket . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.5 Progress of the Algorithms . . . . . . . . . . . . . . . . . . . . . . 28
3.4.6 Target-Bucket Searches . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Performance of the Label-Setting Version SP-S . . . . . . . . . . . . . . . 31
3.5.1 Average-Case Complexity of SP-S . . . . . . . . . . . . . . . . . . 32

vii



viii CONTENTS

3.5.2 Immediate Extensions . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Performance of the Label-Correcting Version SP-C . . . . . . . . . . . . . 34

3.6.1 The Number of Node Scans . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Average–Case Complexity of SP-C . . . . . . . . . . . . . . . . . 37

3.7 Making SP-C More Stable . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.1 Performing Relaxations in Constant Time . . . . . . . . . . . . . . 41

3.8 A High–Probability Bound for SP-C* . . . . . . . . . . . . . . . . . . . . 42
3.8.1 A Revised Worst-Case Bound for SP-C* . . . . . . . . . . . . . . 43
3.8.2 Some Observations for Random Edge Weights . . . . . . . . . . . 44
3.8.3 The Event � ��� � and the Method of Bounded Differences . . . . . . 46

3.9 Implications for the Analysis of other SSSP Algorithms . . . . . . . . . . . 50
3.9.1 ABI-Dijkstra and the Sequential � -Stepping . . . . . . . . . . . . 50
3.9.2 Graphs with Constant Maximum Node-Degree . . . . . . . . . . . 52
3.9.3 Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10.1 Emulating Fixed Edge Weights . . . . . . . . . . . . . . . . . . . . 55
3.10.2 Inputs for Algorithms of the List Class . . . . . . . . . . . . . . . 56
3.10.3 Examples for Algorithms with Approximate Priority Queues . . . . 59
3.10.4 Summary Difficult Input Graphs . . . . . . . . . . . . . . . . . . . 64

3.11 Conclusions Sequential SSSP . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11.1 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Parallel Algorithms 67
4.1 Previous and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 PRAM Algorithms (Worst-Case Analysis) . . . . . . . . . . . . . . 67
4.1.2 PRAM Algorithms (Average-Case Analysis) . . . . . . . . . . . . 69
4.1.3 Algorithms for Distributed Memory Machines . . . . . . . . . . . 69

4.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Basic Facts and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Simple Parallel � -Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Parallelizing a Phase via Randomized Node Assignment . . . . . . 74
4.5 Advanced Parallelizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Improved Request Generation . . . . . . . . . . . . . . . . . . . . 78
4.5.2 Improved Request Execution . . . . . . . . . . . . . . . . . . . . . 78
4.5.3 Conversion to Distributed Memory Machines . . . . . . . . . . . . 79

4.6 Better Bounds for Random Graphs . . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Maximum Shortest-Path Weight . . . . . . . . . . . . . . . . . . . 80
4.6.2 Larger Step Width . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.3 Inserting Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Parallel Individual Step-Widths . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7.1 The Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.2 Performance for Random Edge Weights. . . . . . . . . . . . . . . 86
4.7.3 Fast Node Selection. . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.4 Performance Gain on Power Law Graphs. . . . . . . . . . . . . . . 90

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter 1

Introduction

This thesis deals with a basic combinatorial-optimization problem: computing shortest
paths on directed graphs with weighted edges. We focus on the single-source shortest-
paths (SSSP) version that asks for minimum weight paths from a designated source node
of a graph to all other nodes; the weight of a path is given by the sum of the weights of
its edges. We consider SSSP algorithms under the classical sequential (single processor)
model and for parallel processing, that is, having several processors working in concert.

Computing SSSP on a parallel computer may serve two purposes: solving the problem
faster than on a sequential machine and/or taking advantage of the aggregated memory in
order to avoid slow external memory computing. Currently, however, parallel and exter-
nal memory SSSP algorithms still constitute major performance bottlenecks. In contrast,
internal memory sequential SSSP for graphs with nonnegative edge weights is quite well
understood: numerous SSSP algorithms have been developed, achieving better and better
asymptotic worst-case running times. On the other hand, many sequential SSSP algorithms
with less attractive worst-case behavior perform very well in practice but there are hardly
any theoretical explanations for this phenomenon.

We address these deficits, by providing the first sequential SSSP algorithms that prov-
ably achieve optimal performance on the average. Despite intensive research during the last
decades, a comparable worst-case result for directed graphs has not yet been obtained. We
also prove that a number of previous sequential SSSP algorithms have non-optimal average-
case running times. Various extensions are given for parallel computing.

In Section 1.1 of this introduction, we will first motivate shortest-paths problems. Then
we compare average-case analysis with worst-case analysis in Section 1.2. Subsequently,
we sketch the different models of computation considered in this thesis (Section 1.3). Then,
in Section 1.4, we give a first overview of our new results. Finally, Section 1.5 outlines the
organization of the rest of this thesis.

1.1 Motivation

Shortest-paths problems are among the most fundamental and also the most commonly
encountered graph problems, both in themselves and as subproblems in more complex set-
tings [3]. Besides obvious applications like preparing travel time and distance charts [71],
shortest-paths computations are frequently needed in telecommunications and transporta-

1



2 Introduction

tion industries [128], where messages or vehicles must be sent between two geographical
locations as quickly or as cheaply as possible. Other examples are complex traffic flow
simulations and planning tools [71], which rely on a large number of individual shortest-
paths problems. Further applications include many practical integer programming prob-
lems. Shortest-paths computations are used as subroutines in solution procedures for com-
putational biology (DNA sequence alignment [143]), VLSI design [31], knapsack packing
problems [56], and traveling salesman problems [83] and for many other problems.

A diverse set of shortest-paths models and algorithms have been developed to accommo-
date these various applications [37]. The most commonly encountered subtypes are: One-
Pair Shortest-Paths (OPSP), Single-Source Shortest-Paths (SSSP), and All-Pairs Shortest-
Paths (APSP). The OPSP problem asks to find a shortest path from one specified source
node to one specified destination node. SSSP requires the computation of a shortest path
from one specified source node to every other node in the graph. Finally, the APSP problem
is that of finding shortest paths between all pairs of nodes. Frequently, it is not required to
compute the set of shortest paths itself but just the distances to the nodes; once the distances
are known the paths can be easily derived. Other subtypes deal with modified constraints
on the paths, e.g., what is the shortest-path weight from node � to node

�
through a node � ,

what is the � -th shortest path from node � to node
�
, and so on. Further classifications con-

cern the input graph itself. Exploiting known structural properties of the input graphs may
result in simpler and/or more efficient algorithms.

Throughout the thesis, we will consider graphs ��� ���
	�� � with  � �� � nodes,
 � �� � edges (Section 2.1 provides a short summary of the basic terminology for shortest-
path problems on graphs). We will mainly deal with the SSSP problem on directed graphs
with nonnegative edge weights. We will restrict ourselves to the computation of the shortest-
paths weight labels without reporting the paths themselves; see Figure 1.1 for an example.

0.3 0.2

0.4
1.0

0.2 0.7

0.80.5
0.90.1

SSSP

0.2

0

0.2 0.5 0.7

0.60.8

Figure 1.1: Node labels of a solution for SSSP. The source node is marked in black.

1.2 Worst-Case versus Average-Case Analysis

The efficiency of an algorithm for a certain machine model is often stated using worst-case
analysis: an upper bound on the running time is given that holds true for any input of a
certain class. For sequential SSSP, the worst-case running time can be given by a formula� � � 	 ��� depending exclusively on the number of nodes, � , and the number of edges, � .



1.2 Worst-Case versus Average-Case Analysis 3

Additional restrictions on edge weights, graph structures etc. may result in sharper upper
bounds.

Shortest-paths algorithms commonly apply iterative labeling methods, of which two
major types are label-setting and label-correcting (we will formally introduce these meth-
ods in Section 2.2). Some sequential label-correcting algorithms have polynomial-time
upper-bounds, others even require exponential time in the worst case. In either case, the
best sequential label-setting algorithms have better worst-case bounds than that of any label-
correcting algorithm. Hence, at first glance, label-setting algorithms seem to be the better
choice. However, several independent experimental studies [25, 36, 39, 60, 64, 87, 111, 145]
showed that SSSP implementations of label-correcting approaches frequently outperform
label-setting algorithms. Thus, worst-case analysis sometimes fails to bring out the advan-
tages of algorithms that perform well in practice.

Evaluating the performance of shortest-paths algorithms on the basis of real-world data
is both desirable and problematic: clearly, testing and refining an algorithm based on con-
crete and practically relevant instances (like road maps for SSSP) will be helpful to improve
the algorithmic performance on these very instances. However, benchmarks of real-life in-
puts are usually restricted to some fixed-size instances, thus making it difficult to predict
the scalability of an algorithm. Furthermore, the actual running time may crucially de-
pend on structural input properties that may or may not be represented by the benchmarks.
Consequently, experimental evaluation frequently relies on synthetic input data that can be
generated in varying sizes and that are designed to more or less model real-word data.

Many input generators produce input instances at random according to a certain prob-
ability distribution on the set of possible inputs of a certain size. For this input model
one can study the average-case performance, that is, the expected running time of the al-
gorithm averaged according to the applied probability distribution for the input instances
(Section 2.4 will supply some basic facts and pointers concerning probability theory). It
nearly goes without saying that the choice of the probability distribution on the set of pos-
sible instances may crucially influence the resulting average-case bounds. A useful choice
establishes a reasonable compromise between being a good model for real-world data (i.e.,
producing “practically relevant” instances with sufficiently high probability) and still being
mathematically analyzable.

Frequently used input models for the experimental performance evaluation of SSSP
algorithms are random or grid-like graphs with independent random edge weights. The re-
sulting inputs exhibit certain structural properties with high probability (whp)1, for example
concerning the maximum shortest-path weight or connectivity. However, for some of these
properties it is doubtful whether they reflect real-life features or should rather be consid-
ered as artifacts of the model, which possibly misdirect the quest for practically relevant
algorithms.

Mathematical average-case analysis for shortest-paths algorithms has focused on the
APSP problem for a simple graph model, namely the complete graph with random edge
weights. One of the main contributions of this thesis is a thorough mathematical average-
case analysis of sequential SSSP algorithms on arbitrary directed graphs with random edge

1For a problem of size � , we say that an event occurs with high probability (whp) if it occurs with probability
at least

������� �	��
� for an arbitrary but fixed constant ��� � .



4 Introduction

weights.

1.3 Models of Computation

The analysis of an algorithm must take into account the properties and restrictions of the
underlying machine model. In this section we sketch the models of computation used in the
thesis.

1.3.1 Sequential Computing

The standard “von Neumann” model of computation (see e.g., [2]) assumes some uniform
cost for any basic operation like accessing a memory cell, assigning, adding or comparing
two values and so on.

There are further model distinctions concerning the set of supported basic operations:
advanced algorithms often rely on additional constant time operations provided on the
“RAM (Random Access Machine) with word size � ” [2]. This model basically reflects
what one can use in a programming language such as

�
and what is supported by current

hardware. In particular, it allows direct and indirect addressing, bitwise logical operations,
arbitrary bit shifts and arithmetic operations on

���
� � -bit operands in constant time. Fre-

quently, the values of variables may also take real numbers (standard RAM model without
explicit word size).

In contrast to the RAM, there is the pointer-machine model: it disallows memory-
address arithmetic. Therefore, bucketing, which is essential to some of our algorithms,
is impossible in this model. Also, there is the comparison based model, where weights may
only be compared2 .

The algorithms proposed in this thesis do not require any new machine model properties
that would not have been used before for other SSSP algorithms as well; the standard RAM
model is sufficient. Some of our algorithms even work in the weaker models. By way
of contrast, a recent paper of Brodnik et.al. [21] strengthens the machine model in order to
obtain a linear-time SSSP algorithm for directed graphs; its priority queue requires a special
memory-architecture model with “byte overlap”, which is currently not supported by any
existing hardware.

1.3.2 Parallel Computing

Large input sizes require algorithms that efficiently support parallel computing, both in
order to achieve fast execution and to take advantage of the aggregate memory of the par-
allel system. The parallel random access machine (PRAM) [52, 72, 88] is one of the most
widely studied abstract models of a parallel computer. A PRAM consists of � independent
processors (processing units, PUs) and a shared memory, which these processors can syn-
chronously access in unit time. Most of our parallel algorithms assume the arbitrary CRCW
(concurrent-read concurrent-write) PRAM, i.e., in case of conflicting write accesses to the
same memory cell, an adversary can choose which access is successful. The strict PRAM

2(However, in order to facilitate any meaningful SSSP computation, at least addition of weights must be
allowed.)



1.3 Models of Computation 5

model is mainly implemented on experimental parallel machines like the SB-PRAM [51].
Still, it is valuable to highlight the main ideas of a parallel algorithm without tedious details
of a particular architecture.

The performance of PRAM algorithms for input graphs with � nodes and � edges
is usually described by the two parameters time ��� � � 	 ��� (assuming an unlimited num-
ber of available PUs) and work � � � 	 ��� (the total number of operations needed). Let� � � 	 ��� be the execution time for some fixed sequential SSSP algorithm. The obtainable
Speed-up � � � 	 � 	 � � over this sequential algorithm due to parallelization is bounded by��� �
	��� ������ 	��� ��������	��� �������! . Therefore, a fast and efficient parallel algorithm minimizes both� � � � 	 ��� and � � � 	 ��� ; ideally � � � 	 ��� is asymptotic to the sequential complexity of
the problem. A number of SSSP PRAM algorithms has been invented to fit the needs of
parallel computing. Unfortunately, most of them require significantly more work than their
sequential counterparts.

P P P P
" " " "# # # #$ $ $ $Shared Memory

%
more theoretical

Pure PRAM

P P P P
" " " "
Distr ibute d Me mory

&more practical

'( )* Distributed
Memory Machine

Modules

Network

PUs

" " "
" " "
" " "

Me mo ry

bu te d

Di st ri

P P P

P P P

P P P

Concrete
Architecture

Figure 1.2: Different models of parallel computation.

Other models like BSP [142] and LogP [34] view a parallel computer as a so called
distributed memory machine (DMM), i.e., a collection of sequential processors, each one
having its own local memory. The PUs are interconnected by a network, which allows
them to communicate by sending and receiving messages. Communication constraints are
imposed by global parameters like latency, limited network bandwidth and synchronization
delays. Clearly, worst-case efficient DMM algorithms are at least as hard to obtain as their
PRAM equivalents. Even more detailed models of a parallel computer are obtained by
additionally taking into consideration the concrete network architecture used to connect
the PUs, thus allowing more fine-grained performance predictions of the message passing
procedures. Figure 1.2 depicts the relation between parallel models of computation.



6 Introduction

1.4 New Results in a Nutshell

This section provides a very brief overview of our new results. More comprehensive listings
including pointers to previous and related work are given in the beginnings of the respective
chapters.

1.4.1 Sequential Algorithms (Chapter 3)

For arbitrary undirected networks with nonnegative edge costs, it is known that Single-
Source Shortest-Paths problems can be solved in linear time in the worst case [136]. It
is unknown, however, whether this can also be achieved for directed networks. We prove
that on average, a similar result indeed holds. Our problem instances are arbitrary directed
networks on � nodes and � edges whose edge weights are randomly chosen according
to the uniform distribution on � � 	���� , independently of each other. We present both label-
setting and label-correcting algorithms that solve the SSSP problem on such instances in
time � � � � ��� on the average. The time bound can also be obtained with high probability.

Only very little is known about the average-case performance of previous SSSP algo-
rithms. Our research yields the first theoretical average-case analysis for the “Approximate
Bucket Implementation” [25] of Dijkstra’s algorithm [42] (ABI–Dijkstra): for random edge
weights and either random graphs or graphs with constant maximum node degree we show
how the bucket width must be chosen in order to achieve linear

��� � � ��� average-case
execution time. Furthermore, we give constructive existence proofs for graph classes with
random edge weights on which ABI–Dijkstra and several other well-known SSSP algo-
rithms are forced to run in superlinear time on average. While this is interesting in its own
right it also stresses the advantages of our new algorithms.

1.4.2 Parallel Algorithms (Chapter 4)

Besides the classical sequential (single processor) model of computation we also consider
parallel processing. Unfortunately, for general graphs with nonnegative edge weights, no
fast and work-efficient parallel SSSP algorithms are known.

We present new average-case results for a number of important graph classes; for exam-
ple, we provide the first work-optimal PRAM algorithms that require sublinear average-case
time for sparse random graphs, and graphs modeling the WWW, telephone calls or social
networks. Most of our algorithms are derived from the new sequential label-correcting ap-
proach exploiting the fact that certain operations can be performed independently on differ-
ent processors or disks. The algorithms are analyzed in terms of quite general graph prop-
erties like (expected) diameter, maximum shortest-path weight or node degree sequences.
For certain parameter ranges, already very simple extensions provably do the job; other pa-
rameters require more involved data structures and algorithms. Sometimes, our methods do
not lead to improved algorithms at all, e.g., on graphs with linear diameter. However, such
inputs are quite atypical.

Preliminary accounts of the results covered in this thesis have been presented in [33, 103,
104, 105, 106, 107]. The follow-up paper of Goldberg [67] on sequential SSSP was helpful



1.5 Organization of the Thesis 7

to streamline some proofs for our sequential label-setting algorithm.

1.5 Organization of the Thesis

The rest of the thesis is composed as follows: Chapter 2 provides the definitions for shortest-
paths problems on graphs and reviews the basic solution strategies. In particular, it discusses
simple criteria to verify that some tentative distance value is final. These criteria play a
crucial role in our SSSP algorithms – independent of the machine model.

Throughout the thesis we will use probabilistic arguments; Chapter 2 also provides
a few very basic facts about probability theory and offers references for further reading.
Advanced probabilistic methods will be presented when needed.

Subsequently, there is a division into the parts sequential SSSP (Chapter 3) and parallel
SSSP (Chapter 4). Each of these chapters starts with an overview of previous work and then
presents our contributions. At the end of the chapters we will provide a few concluding
remarks and highlights some open problems. Many concepts developed in Chapter 3 will
be reused for the parallel algorithms.



Chapter 2

Definitions and Basic Concepts

In this chapter we will provide a short summary of the basic terminology (Section 2.1) and
solution approaches (Section 2.2) for shortest-path problems on graphs. Readers familiar
with the SSSP problem may choose to skip these sections and refer to them when neces-
sary. In Section 2.3 we present advanced strategies that turn out to be essential for our new
algorithms. Finally, Section 2.4 provides some basic facts about probability theory.

2.1 Definitions

A graph � � ���
	�� � consists of a set
�

of nodes (or vertices) and a set
�

of edges (or arcs).
We let  � �� � denote the number of nodes in � ,  � �� � represents the number of edges.

Directed Graphs

The edge set
�

of a directed graph consists of ordered pairs of nodes: an edge � from
node � to node � is denoted by � � � � 	 � � . Here � is also called the source, � the target, and
both nodes are called endpoints of

� � 	 � � . Furthermore,
� � 	 � � is referred to as one of � ’s

outgoing edges or one of � ’s incoming edges, as an edge leaving � or an edge entering � .
The number of edges leaving (entering) a node is called the out-degree (in-degree) of this
node. The degree of a node is the sum of its in-degree and out-degree. The adjacency-list
of a node � consists of all nodes � such that

� � 	 � ��� � . Depending on the application, a
corresponding member of the adjacency-list of node � may be interpreted as either the target
node � or the edge

� � 	 � � . The adjacency-list of node � is also often called the forward star
of � , ��� � � � for short.

Undirected Graphs

Undirected graphs are defined in the same manner as directed graphs except that edges
are unordered pairs of nodes, i.e., �	� 	 ��
 stands for an undirected edge that connects the
nodes � and � . Hence, in undirected graphs an edge can be imagined as a “two-way”
connection, whereas in directed graphs it is just “one-way”. Consequently, there is no
distinction between incoming and outgoing edges. Two undirected edges are adjacent if
they share a common endpoint.

8



2.1 Definitions 9

Networks

(Un)directed graphs whose edges and/or nodes have associated numerical values (e.g., costs,
capacities, etc.) are called (un)directed networks. We shall often not formally distinguish
between graphs and networks; for example, when we consider the unweighted breadth-first
search version of the shortest-path problem. However, our model for shortest-paths prob-
lems are usually networks

� � 	�� 	 � ��� � � in which a function � ��� � assigns independent random
costs, weights, to the edges of

�
. The weight of the edge

� � 	 � � is denoted by � � � 	 � � .
Subgraphs

We say that a graph � � � ��� � 	�� � � is a subgraph of � � ���
	�� � if
� ��� �

and
� ��� �

.
Given a set

� ��� �
, the subgraph of � induced by

� �
is the graph � � � ��� � 	�� � � , where� � � � � � 	 � � � � � � 	 � � � � 
 . Furthermore, we shall often define subgraphs based

on a threshold � � on the weights of the edges in
�

: the subset of edges is given by
� � �

� � � 	 � � � ��� � � � 	 � �	� � � 
 , and only nodes being either source or target of at least one
edge in

� �
are retained in

� �
.

Paths and Cycles

A path 
 from � to � in a directed graph � is a node sequence � �� 	 ��� 	������ 	 ����� for some
��� �

, such that the edges
� ��� 	 ��� � , � ��� 	 ��� � , . . . ,

� ����� � 	 ��� � are part of
�

, ��� � � , and
��� � � . The nodes ��� and ��� are called the starting point and endpoint of 
 , respectively.
If all nodes ��� on 
 are pairwise distinct then we say that the path is simple. Cycles are
those paths where the starting point and the endpoint are identical. Paths and cycles of
undirected graphs are defined equivalently on undirected edges. A graph is called acyclic if
it does not contain any cycle. We say that a node � is reachable from a node � in � if there
is a path � � 	������ 	 ��� in � . An undirected (directed) graph is called (strongly) connected if
it contains a path from � to � for each pair

� � 	 � � � ��� �
. The weight of a path 
 �

� � � 	������ 	 ����� with edges
� � � 	 � � � , � � � 	 � � � , . . . ,

� ����� � 	 ��� � in
�
�
	�� 	 � ��� � � is defined to be

� � 
 � � �! ��� ��#"$� � � ��� 	 ��� � � � . In contrast, the size of a path denotes the number of edges on
the path.

Using the notation above we can formally state the kind of SSSP problems we are
interested in:

Definition 1 Consider a network
� � � ��� 	�� � 	 � � with a distinguished vertex % (“source”)

and a function � assigning a nonnegative real-valued weight to each edge of � . The ob-
jective of the SSSP is to compute, for each vertex � reachable from % , the minimum weight&('*),+ � % 	 � � , abbreviated

&('#),+ � � � , among all paths from % to � . We set
&('*),+ � % � � � � , and&('*),+ � % 	 � � � �.- if � is not reachable from % . We call a path of minimum weight from % to �

a shortest path from % to � .

A valid solution for the SSSP problem implies certain properties for the underlying shortest
paths:

Property 1 If the path �/%�� �0� 	 ��� 	������ 	 ����� � 	 ����� is a shortest path from node % to node �1� ,
then for every 2 , � �324� �65 �

, the sub-path �/%�� �1� 	������ 	 ���7� is a shortest path from node %
to node � � .



10 Definitions and Basic Concepts

Property 2 A directed path 
 � �/% � �1� 	 ��� 	������ 	 ����� � 	 ����� from the source node % to
node ��� is a shortest path if and only if

&('#),+ � � � � � � � & '#),+ � � � � � � � � � 	 � � � � � for every edge� ��� 	 ��� � � � � 
 . Furthermore, the numbers
&('#),+ ��� � represent proper shortest-paths distances

if and only if they satisfy the following optimality condition:

&('#) + � % � � � and
&('#),+ � � � � � '��	��  � ���
	 &('*),+ � � � � � � � 	 � � � � � �� ��% 
 �

We need to define two characteristic measures for weighted graphs, which play a crucial
role in the analysis of our parallel SSSP algorithms:

Definition 2 The maximum shortest-path weight for the source node % is defined as � � % � � ������ � &('*),+ � % 	 � �  &('#),+ � % 	 � ��� - 
 , abbreviated � .

On graphs with edge weights in � � 	���� , the value of � is bounded from above by the diame-
ter � :

Definition 3 In a graph � � ��� 	�� � , let � '��() '���� � � 	 � � denote the minimum number of
edges (i.e., the size) needed among all paths from � to � if any, 5 - otherwise; then � � ������ �  ����� � � '��() '���� � � 	 � � 	�� 
 is called the diameter � of � .

The running times of our parallel SSSP algorithms are explicitly stated in dependence of the
value � . Part of our research is concerned with the problem to find good upper bounds on �
for certain graph classes: in Section 3.9.3 we will derive stronger bounds for � on random
graphs by using known results on the diameter of appropriate subgraphs with bounded edge
weights.

2.2 Basic Labeling Methods

Shortest-paths algorithms are usually based on iterative labeling methods. For each node �
in the graph they maintain a tentative distance label

+����0+ � � � ; +����1+ � � � is an upper bound on&('*),+ � � � . The value of
+����0+ � � � refers to the weight of the lightest path from % to � found so

far (if any). Initially, the methods set
+����0+ � % � � � � , and

+����0+ � � � � � - for all other nodes
� ���% .

The generic SSSP labeling approach repeatedly selects an arbitrary edge
� � 	 � � where+����1+ � � � � � � � 	 � �!� +����1+ � � � , and resets

+����0+ � � � � � +����1+ � � � � � � � 	 � � . Identifying such an
edge

� � 	 � � can be done with
��� ��� operations. The method stops if all edges satisfy

+����0+ � � � � +����1+ � � � � � � � 	 � � � � � 	 � � � � � (2.1)

By then,
&('#) + � � � � +����1+ � � � for all nodes � ; compare Property 2. If

&('#) + � � � � +����1+ � � � then
the label

+����0+ � � � is said to be permanent (or final); the node � is said to be settled in that
case.

The total number of operations needed until the labeling approach terminates depends
on the order of edge selections; in the worst case it is pseudo-polynomial for integer weights," � � � � � � � � and

" � � �$# � � otherwise [3]. Therefore, improved labeling algorithms perform
the selection in a more structured way: they select nodes rather than edges. In order to do
so they keep a candidate node set % of “promising” nodes. We require % to contain the
starting node � of any edge

� � 	 � � that violates the optimality condition (2.1):



2.2 Basic Labeling Methods 11

Requirement 1 %�� �	� � � ��� � � 	 � � � � with
+����1+ � � � � � � � 	 � �!� +����1+ � � � 


The labeling methods based on a candidate set % of nodes repeatedly select a node � � %
and apply the SCAN operation (Figure 2.1) to it until % finally becomes empty. Figure 2.2
depicts the resulting generic SSSP algorithm.

procedure SCAN
� � �

% � � % � �	� 

for all

� � 	 � � � � do
if
+����1+ � � � � � � � 	 � �!� +����0+ � � � then+����1+ � � � � � +����0+ � � � � � � � 	 � �
if � �� % then
% � � %�� �	� 


Figure 2.1: Pseudo code for the SCAN operation.

algorithm GENERIC SSSP

for all � � � do+����0+ � � � � � -+����0+ � % � � � �
% � � ��% 

while % ���� do

select a node � � %
SCAN

� � �

Figure 2.2: Pseudo code for the generic SSSP algorithm with a candidate node set.

SCAN
� � � applied to a node � � % first removes � from % and then relaxes all1 outgo-

ing edges of � , that is, the procedure sets

+����1+ � ��� � � � � '�� � +����1+ � ��� � 	 +����0+ � � � � � � � 	 ��� � 
 � � � 	 ��� � � ��� � � � �

If the relaxation of an edge
� � 	 ��� � reduces

+����1+ � ��� � where ��� �� % , then ��� is also inserted
into % .

During the execution of the labeling approaches with a node candidate set % the nodes
may be in different states: a node � never inserted into % so far (i.e.,

+����0+ � � � � - ) is said
to be unreached, whereas it is said to be a candidate (or labeled or queued) while it belongs
to % . A node � selected and removed from % whose outgoing edges have been relaxed is
said to be scanned as long as � remains outside of % .

The pseudo code of the SCAN procedure (Figure 2.1) immediately implies the follow-
ing:

Observation 1 For any node � ,
+����1+ � � � never increases during the labeling process.

1There are a few algorithms that deviate from this scheme in that they sometimes only consider a subset of
the outgoing edges. We shall use such strategies later on as well.



12 Definitions and Basic Concepts

Furthermore, the SCAN procedure maintains % as desired:

Lemma 1 The SCAN operation ensures Requirement 1 for the candidate set % .

Proof: % is required to contain the starting node � of any edge � � � � 	 � � that violates
the optimality condition (2.1). Due to Observation 1, the optimality condition (2.1) can
only become violated when

+����1+ � � � is decreased, which, in turn, can only happen if some
edge

�
�
	 � � into � is relaxed during a SCAN

�
� � operation. However, if SCAN

�
� � reduces+����1+ � � � then the procedure also makes sure to insert � into % in case � is not yet contained

in it. Furthermore, at the moment when � is removed from % the condition (2.1) will not
become violated because of the relaxation of ��� � � � .

In the following we state the so-called monotonicity property. It proves helpful to obtain
better data structures for maintaining the candidate set % .

Lemma 2 (Monotonicity) For nonnegative edge weights, the smallest tentative distance
among all nodes in % never decreases during the labeling process.

Proof: Let �
� % � � � � '�� � +����1+ � � � � � � % 
 . � � % � will not decrease if a node is removed

from % . The tentative distance of a node � can only decrease due to a SCAN
� � � operation

where � � % ,
� � 	 � � � � , and

+����0+ � � � � � � � 	 � � � +����1+ � � � ; if � is not queued at this time,
then a reduction of

+����0+ � � � will result in � entering % . However, as all edge weights are
nonnegative, SCAN

� � � updates
+����0+ � � � � � +����0+ � � � � � � � 	 � � ��� � % � .

So far, we have not specified how the labeling methods select the next node to be scanned.
The labeling methods can be subdivided into two major classes: label-setting approaches
and label-correcting approaches. Label-setting methods exclusively select nodes � with
final distance value, i.e.,

+����0+ � � � � &('#),+ � � � . Label-correcting methods may select nodes
with non-final tentative distances, as well.

In the following we show that whenever % is nonempty then it always contains a node
� with final distance value. In other words, there is always a proper choice for the next node
to be scanned according to the label-setting paradigm.

Lemma 3 (Existence of an optimal choice.) Assume � � � � � � for all � � � .
(a) After a node � is scanned with

+����1+ � � � � &('#) + � � � , it is never added to % again.
(b) For any node � reachable from the source node % with

+����1+ � � ��� &('#) + � � � there is a node
� � % with

+����1+ � � � � &('#),+ � � � , where � lies on a shortest path from % to � .

Proof: (a) The labeling method ensures
+����0+ � � � � &('#) + � � � at any time. Also, when � is

added to % , its tentative distance value
+����1+ � � � has just been decreased. Thus, if a node �

is scanned from % with
+����1+ � � � � &('#),+ � � � , it will never be added to % again later.

(b) Let �/% � ��� 	 �1� 	������ ����� �� be a shortest path from % to � . Then
+����1+ � % � � &('*),+ � % � � �

and
+����1+ � ��� ��� &('#),+ � ��� � . Let 2 be minimal such that

+����0+ � ��� ��� &('#) + � ��� � . Then 2�� � ,+����1+ � ��� � � � � &('#) + � ��� � � � and

+����1+ � ��� ��� &('#) + � ��� �
� &('*),+ � � � � � � � � � ��� � � 	 ��� � � +����0+ � � � � � � � � � ��� � � 	 ��� � �
Thus, by Requirement 1 for the candidate set, the node � � � � is contained in % .



2.3 Advanced Label-Setting Methods 13

The basic label-setting approach for nonnegative edge weights is Dijkstra’s method [42]; it
selects a candidate node with minimum tentative distance as the next node to be scanned.
Figure 2.3 demonstrates an iteration of Dijkstra’s method.

unreachedscanned
labeled

0.2 0.5

0.1 8

1.0
0.2

0

1.30.3 1.0

0.7

0.3

SCAN(v)

0.2 0.5

1.0

0.1

0

0.7 1.5

0.2

0.3 1.0

ss

vv

Figure 2.3: SCAN step in Dijkstra’s algorithm.

The following lemma shows that Dijkstra’s selection method indeed implements the
label-setting paradigm.

Lemma 4 (Dijkstra’s selection rule) If � � � � � � for all ��� � then
+����1+ � � � � &('*),+ � � � for

any node � � % with minimal
+����0+ � � � .

Proof: Assume otherwise, i.e.,
+����1+ � � � � &('#),+ � � � for some node � � % with minimal

tentative distance. By Lemma 3, there is a node � � % lying on a shortest path from % to
� with

+����1+ �
� � � &('*),+ �

� � . Due to nonnegative edge weights we have
& '#),+ �

� � � &('#) + � � � .
However, that implies

+����1+ �
� � � +����1+ � � � , a contradiction to the choice of � .

Hence, by Lemma 3, label-setting algorithms have a bounded number of iterations (propor-
tional to the number of reachable nodes), but the amount of time required by each iteration
depends on the data structures used to implement the selection rule. For example, in the case
of Dijkstra’s method the data structure must support efficient minimum and decrease key
operations.

Label-correcting algorithms may have to rescan some nodes several times until their
distance labels eventually become permanent; Figure 2.4 depicts the difference to label-
setting approaches. Label-correcting algorithms may vary largely in the number of itera-
tions needed to complete the computation. However, their selection rules are often very
simple; they frequently allow implementations where each selection runs in constant time.
For example, the Bellman-Ford method [15, 50] processes the candidate set % in simple
FIFO (First-In First-Out) order.

Our new SSSP algorithms either follow the strict label-setting paradigm or they apply
label-correcting with clearly defined intermediate phases of label-setting steps.

2.3 Advanced Label-Setting Methods

In this section we deal with a crucial problem for label-setting SSSP approaches: identifying
candidate nodes that have already reached their final distance values. Actually, several



14 Definitions and Basic Concepts

unreached labeled scanned & settled

scanned, but not settled

LABEL − CORRECTINGLABEL − SETTING 

unreached labeled scanned & settled

Figure 2.4: States for a reachable non-source node using a label-setting approach (left) and
label-correcting approach (right).

mutually dependent problems have to be solved: first of all, a detection criterion is needed
in order to deduce that a tentative distance of a node is final. Secondly, the data structure that
maintains the set % of candidate nodes must support efficient evaluation of the criterion and
manipulation of the candidate set, e.g. inserting and removing nodes. For each iteration of
the labeling process, the criterion must identify at least one node with final distance value;
according to Lemma 3 such a node always exists. However, the criterion may even detect
a whole subset

� � % of candidate nodes each of which could be selected. We call
�

the
yield of a criterion.

Large yields may be advantageous in several ways: being allowed to select an arbitrary
node out of a big subset

�
could simplify the data structures needed to maintain the can-

didate set. Even more obviously, large yields facilitate concurrent node scans in parallel
SSSP algorithms, thus reducing the parallel execution time. On the other hand, it is likely
that striving for larger yields will make the detection criteria more complicated. This may
result in higher evaluation times. Furthermore, there are graphs where at each iteration of
the labeling process the tentative distance of only one single node in % is final - even if %
contains many nodes; see Figure 2.5.

1 2 30 i

1
1

11

1

1/n n−2 n−11/n 1/n 1/n 1/n 1/n 1/n 1/n

1

Figure 2.5: Input graph for which the candidate set % contains only one entry with final
distance value: after settling nodes � ,

�
,
�����

, 2 5 �
the queue holds node 2 with (actual)

distance 2�� � , and all other � 5 2 5 �
queued nodes have tentative distance

�
.

In the following we will present the label-setting criteria used in this thesis. We have al-
ready seen in Lemma 4 that Dijkstra’s criterion [42], i.e., selecting a labeled node with min-
imum tentative distance as the next node to be scanned, in fact implements the label-setting
paradigm. However, it also implicitly sorts the nodes according to their final distances.
This is more than the SSSP problem asks for. Therefore, subsequent approaches have been
designed to avoid the sorting complexity; they identified label-setting criteria that allow to
scan nodes in non-sorted order. Dinitz [43] and Denardo and Fox [36] observed the follow-
ing:

Criterion 1 (GLOB-criterion) Let � � � '�� � +����1+ � � � � � � % 
 . Furthermore, let � � �� '�� � � � � � � ��� � 
 . Then
+����0+ � � � � & '#),+ � � � for any node � � % having

+����0+ � � � ��� � � .



2.3 Advanced Label-Setting Methods 15

The GLOB-criterion of Dinitz and Denardo/Fox is global in the sense that it applies uni-
formly to any labeled node whose tentative distance is at most � � � . However, if � �
� � � � 	 � � � happens to be small2, then the criterion is restrictive for all nodes � � �

, even
though its restriction may just be needed as long as the nodes � � and � � are part of the can-
didate set. Therefore, it is more promising to apply local criteria: for each node � � % they
only take into account a subset of the edge weights, e.g. the weights of the incoming edges
of � . The following criterion is frequently used in our algorithms:

Lemma 5 (IN-criterion) Let � � � '�� � +����0+ � � � � � � % 
 . For nonnegative edge weights,
the labeled nodes of the following sets have reached their final distance values:� � � � �	� � %  � � � % � +����1+ � � � � +����0+ � � � 
� � � � �	� � %  � � � 	 � � � � � +����0+ � � � � � � � � � 	 � � 

Proof: The claim for the set

� � was established in Lemma 4 of Section 2.2. The proof
for the set

� � follows the same ideas; assume
+����1+ � � � � & '#),+ � � � for some node � � � � .

By Lemma 3 there is a node � � % , � �� � , lying on a shortest path from % to � with+����1+ �
� � � &('#),+ �

� � ��� . However, since all edges into � have weight at least
+����0+ � � � 5 � ,

this implies
&('#) + � � � � &('*),+ �

� � � +����1+ � � � 5 � � +����0+ � � � , a contradiction.

Lemma 5 was already implicit in [36, 43]. However, for a long time, the IN-criterion has not
been exploited in its full strength to derive better SSSP algorithms. Only recently, Thorup
[136] used it to yield the first linear-time algorithm for undirected graphs. Our algorithms
for directed graphs also rely on it. Furthermore, it is used in the latest SSSP algorithm of
Goldberg [67], as well.

The IN-criterion for node � is concerned with the incoming edges of � . In previous
work [33], we also identified an alternative version, the OUT-criterion.

Lemma 6 (OUT-criterion) Let

� � � '�� � +����1+ � � � � � � % 
 � �
� 	

� � � �	� � % � +����0+ � � � ��� � 
 	
� � � � � � � '�� � � - 	 � � '�� � � � � 	 � � � � � � 	 � � 	 � � � � 
 
 �

If � � � � � � � 5 � and � � � � � � for all ��� � then
+����1+ � � � � &('#) + � � � for all � � � .

Proof: In a similar way to the proof of Lemma 5, we assume
+����0+ � � � � &('#),+ � � � for some

node � � �
. Again, by Lemma 3, there will be a node � � % , � �� � , lying on a shortest

path from % to � with
+����1+ �

� � � & '#),+ �
� � ��� . Due to nonnegative edge weights,

&('#) + �
� � �+����1+ � � �6� � �

. Consequently, � � � . However, this implies
&('#),+ � � �6� &('*),+ �

� � ��� � � � . If
� � � � ��� � 5 � then

& '#),+ � � � � � �
, a contradiction.

Applications of the OUT-criterion are not only limited to SSSP; it is also used for conser-
vative parallel event-simulation [99].

So far we have provided some criteria to detect nodes with final distance values. In the
following chapters, we will identify data structures that efficiently support the IN-criterion.

2This is very likely in the case of independent random edge weights uniformly distributed in � ��� ��� as as-
sumed for our average-case analyses.



16 Definitions and Basic Concepts

2.4 Basic Probability Theory

In this section we review a few basic definitions and facts for the probabilistic analysis of
algorithms. More comprehensive presentations are given in [48, 49, 74, 112, 129].

Probability

For the average-case analyses of our SSSP algorithms we assume that the input graphs
of a certain size are generated according to some probability distribution on the set of all
possible inputs of that size, the so-called sample space � . A subset � � � is called an
event. A probability measure � is a function that satisfies the following three conditions:
� ��� � � � � �

for each � � � , � ��� � � �
, and � � � � � � � �  � � � � � � for pairwise disjoint

events ��� . A sample space together with its probability measure build a probability space.
For a problem of size � , we say that an event � occurs with high probability (whp) if� � � � � � 5 ��� � ��� � for an arbitrary but fixed constant � � �

.
The conditional probability � � � �  ��� � � �	� 
����
�����	� 
���� refers to the probability that an exper-

iment has an outcome in the set �$� when we already know that it is in the set � � . Two events
� � and �� are called independent if � � �$�  ��� � ��� � � � � .

Boole’s inequality often proves helpful for dependent events: let � � 	������ � � be any col-
lection of events, then � � � ��#" � � � � �  �� " � � � � � � .

Random Variables

Any real valued numerical function � ��� ��� � defined on a sample space � may be called
a random variable. If � maps elements in � to � � � � � 
 then it is called a nonnegative
random variable. A discrete random variable is supposed to take only isolated values with
nonzero probability. Typical representatives for discrete random variables are binary ran-
dom variables, which map elements in � to � � 	�� 
 . For any random variable � and any real

number � ��� we define

� � � �� ��� ��� � ��� � � ��� � � �� �! . The distribution function "	#
of a random variable � is given by " # � � � ��� � � �$� � . A continuous random variable �
is one for which " # � � � can be expressed as " # � � � �&%	'�)( � # � � �	*+� where � # � � � is the
so-called density function. For example if a random variable � is uniformly distributed in
� � 	���� (that is the case for the edge weights in our shortest-path problems) then � # � � � � �
for � �,� � �

and � # � � � � � otherwise.
For any two random variables � and - , � is said to (stochastically) dominate - (de-

noted by �/.$- ) if � � � � � � �0� � - � � � for all � ��� . Two random variables � and -
are called independent if, for all � 	21 ��� , � � � ��� 3- � 1 � ��� � � ��� � .
Expectation

The expectation of a discrete random variable � is given by 4 � � � �  ' ��5 � � � � � �6� � .
For a continuous random variable � we have 4 � � � � % (�)( � � � # � � �	*+� . Here are a few
important properties of the expectation for arbitrary random variables � and - :7 If � is nonnegative, then 4 � � � � � .



2.4 Basic Probability Theory 177 �4 � � � ��04 �  �  � .7 4 � � � � � � � � 4 � �  for any � ��� .7 4 � � � - � �64 � � � � 4 � - �
(linearity of expectation).7 If � and - are independent, then 4 � � � - � ��4 � � � � 4 � - �

The conditional expectation of a random variable � with respect to an event � is defined by4 � �  � � �  ' �35 � � � � � � �  � � . An important property of the conditional expectation
is that 4 ��4 � -  � � � �64 � - �

for any two random variables � and - .

Tail Estimates

Frequently, we are interested in the probability that random variables do not deviate too
much from their expected values. The Markov Inequality for an arbitrary nonnegative ran-
dom variable � states that � � � � � � � � � # �� for any � � � . More powerful tail estimates
exist for the sum of independent random variables. Here is one version of the well-known
Chernoff bound:

Lemma 7 (Chernoff bound [26, 77]) Let � � 	������ 	 � � be independent binary random vari-
ables. Let � �64 �  �� " � � � � . Then it holds for all � � � that

� �� ��� " � � � � � � � � � � �	�
 � � ���������� �  ����� � ��� � (2.2)

Furthermore, it holds for all � ��� � �
that

� �� ��� " � � � � � � 5�� � � � �
 � � ��� � � � � � � (2.3)

We shall introduce further bounds in the subsequent chapters whenever the need arises.
More material on tail estimates can be found for example in [41, 77, 100, 110, 127].



Chapter 3

Sequential SSSP Algorithms

This chapter deals with single-source shortest-paths algorithms for the sequential model
of computation. However, many of the concepts presented in here will be reused for the
parallel and external-memory SSSP algorithms, as well.

The chapter is structured as follows: first of all, Section 3.1 sketches previous and re-
lated work for the sequential machine model. An overview of our new contributions is given
in Section 3.2. In Section 3.3 we review some simple bucket-based SSSP algorithms. Then
we present our new algorithms SP-S and SP-C (Section 3.4). Both algorithms run in linear
time on average. Even though the two approaches are very similar, the analysis of SP-S
(Section 3.5) is significantly simpler than that of SP-C (Sections 3.6 and 3.8); in poetic
justice, SP-C is better suited for parallelizations (Chapter 4). Furthermore, once analy-
sis of SP-C is established, it easily implies bounds for other label-correcting algorithms
(Section 3.9). In Section 3.10, we demonstrate a general method to construct graphs with
random edge weights, that cause superlinear average-case running-times with many tradi-
tional label-correcting algorithms. Finally, Section 3.11 provides some concluding remarks
and presents a few open problems.

3.1 Previous and Related Work

In the following we will list some previous shortest-paths results that are related to our
research. Naturally, due to the importance of shortest-paths problems and the intensive
research on them, our list cannot (and is not intended to) provide a survey of the whole
field. Appropriate overview papers for classical and recent sequential shortest-paths results
are, e.g., [25, 37, 114, 124, 136, 146].

3.1.1 Sequential Label-Setting Algorithms

A large fraction of previous work is based on Dijkstra’s method [42], which we have
sketched in Section 2.2. The original implementation identifies the next node to scan by
linear search. For graphs with � nodes, � edges and nonnegative edge weights, it runs in��� � � � time, which is optimal for fully dense networks. On sparse graphs, it is more efficient
to use a priority queue that supports extracting a node with smallest tentative distance and
reducing tentative distances for arbitrary queued nodes. After Dijkstra’s result, most subse-

18



3.1 Previous and Related Work 19

quent theoretical developments in SSSP for general graphs have focused on improving the
performance of the priority queue: Applying William’s heap [144] results in a running time
of
��� � ������� � � . Taking Fibonacci heaps [53] or similar data structures [19, 44, 135], Dijk-

stra’s algorithm can be implemented to run in
��� � ������� � � ��� time. In fact, if one sticks

to Dijkstra’s method, thus considering the nodes in non-decreasing order of distances, then��� � ������� � � ��� is even the best possible time bound for the comparison-addition model:
any �

� � �	����� � � -time algorithm would contradict the � � � �	����� � � -time lower-bound for
comparison-based sorting.

A number of faster algorithms have been developed for the more powerful RAM model.
Nearly all of these algorithms are still closely related to Dijkstra’s algorithm; they mainly
strive for an improved priority queue data structure using the additional features of the
RAM model (see [124, 136] for an overview). Fredman and Willard first achieved

��� � �

 ����� � � expected time with randomized fusion trees [54]; the result holds for arbitrary
graphs with arbitrary nonnegative edge weights. Later they obtained the deterministic��� � � � ������� � � ����������� � � -time bound by using atomic heaps [55].

The ultimate goal of a worst-case linear time SSSP algorithm has been partially reached:
Thorup [136, 137] gave the first

��� � � ��� -time RAM algorithm for undirected graphs with
nonnegative floating-point or integer weights fitting into words of length � . His approach
applies label-setting, too, but deviates significantly from Dijkstra’s algorithm in that it does
not visit the nodes in order of increasing distance from % but traverses a so-called component
tree. Unfortunately, Thorup’s algorithm requires the atomic heaps [55] mentioned above,
which are only defined for � � # � �

��
. Hagerup [76] generalized Thorup’s approach to

directed graphs. The time complexity, however, becomes superlinear
��� � � � �������

� � .
The currently fastest RAM algorithm for sparse directed graphs is due to Thorup [138];
it needs

��� � � � ������������� � � time. Alternative approaches for somewhat denser graphs
have been proposed by Raman [123, 124]: they require

��� � � � � 
 ����� � ������������� � � and��� � � � � � �
������� � � � ��� � time, respectively. Using an adaptation of Thorup’s component tree

approach, Pettie and Ramanchandran [119] recently obtained improved SSSP algorithms
for the pointer machine model. Still, the worst-case complexity for SSSP on sparse directed
graphs remains superlinear.

In Section 3.3 we will review some basic implementations of Dijkstra’s algorithm with
bucket based priority queues [3, 36, 38, 43]. Alternative bucket approaches include nested
(multiple levels) buckets and/or buckets of different widths [4, 36]. So far, the best bound
for SSSP on arbitrary directed graphs with nonnegative integer edge-weights in � � 	������ 	 � 

is
��� � � � � ������� � � � ��� ��� � expected time for any fixed � � � [124].

3.1.2 Sequential Label-Correcting Algorithms

The classic label-correcting SSSP approach is the Bellman–Ford algorithm [15, 50]. It im-
plements the set of candidate nodes % as a FIFO-Queue and achieves running time

��� � � ��� .
There are many more ways to maintain % and select nodes from it (see [25, 59] for an
overview). For example, the algorithms of Pallottino [117], Goldberg and Radzik [69],
and Glover et al. [64, 65, 66] subdivide % into two sets % � and % � each of which is im-
plemented as a list. Intuitively, % � represents the “more promising” candidate nodes. The



20 Sequential SSSP Algorithms

algorithms always scan nodes from % � . According to varying rules, % � is frequently refilled
with nodes from % � . These approaches terminate in worst-case polynomial time. However,
none of the alternative label-correcting algorithms succeeded to asymptotically improve on
the
��� � � ��� -time worst-case bound of the simple Bellman-Ford approach. Still, a num-

ber of experimental studies [25, 36, 39, 60, 64, 87, 111, 145] showed that some recent
label-correcting approaches run considerably faster than the original Bellman–Ford algo-
rithm and even outperform label-setting algorithms on certain data sets. So far, no profound
average-case analysis has been given to explain the observed effects. A striking example in
this respect is the shortest-paths algorithm of Pape [118]; in spite of exponential worst-case
time it performs very well on real-world data like road graphs.

We would like to note that faster sequential SSSP algorithms exist for special graph classes
with arbitrary nonnegative edge weights, e.g., there is a linear-time approach for planar
graphs [81]. The algorithm uses graph decompositions based on separators that may have
size up to

��� � � � � � . Hence, it may in principle be applied to a much broader class of graphs
than planar graphs if just a suitable decomposition can be found in linear time. The algo-
rithm does not require the bit manipulating features of the RAM model and works for di-
rected graphs, thus it remains appealing even after Thorup’s linear-time RAM algorithm for
arbitrary undirected graphs. Another example for a “well-behaved” input class are graphs
with constant tree width; they allow for a linear-time SSSP algorithm as well [24].

3.1.3 Random Edge Weights

Average-case analysis of shortest-paths algorithms mainly focused on the All-Pairs Shortest-
Paths (APSP) problem on either the complete graph or random graphs with � � � ������� � �
edges and random edge weights [32, 57, 80, 109, 133]. Average-case running times of��� � � ������� � � as compared to worst-case cubic bounds are obtained by virtue of an initial
pruning step: if � denotes a bound on the maximum shortest-path weight, then the algo-
rithms discard insignificant edges of weight larger than � ; they will not be part of the final
solution. Subsequently, the APSP is solved on the reduced graph. For the inputs considered
above, the reduced graph contains

��� � ������� � � edges on the average. This pruning idea does
not work on sparse random graphs, let alone arbitrary graphs with random edge weights.

Another pruning method was explored by Sedgewick and Vitter [130] for the average-
case analysis of the One-Pair Shortest-Paths (OPSP) problem on random geometric graphs
���� ��� � . Graphs of the class ���� ��� � are constructed as follows: � nodes are randomly placed
in a * -dimensional unit cube, and each edge weight equals the Euclidean distance between
the two involved nodes. An edge

� � 	 � � is included if the Euclidean distance between � and
� does not exceed the parameter

� � � � 	���� . Random geometric graphs have been intensively
studied since they are considered to be a relevant abstraction for many real world situations
[40, 130]. Assuming that the source node % and target node � are positioned in opposite
corners of the cube, Sedgewick and Vitter showed that the OPSP algorithm can restrict
itself to nodes and edges being “close” to the diagonal between % and � , thus obtaining
average-case running-time

��� � � .
Mehlhorn and Priebe [102] proved that for the complete graph with random edge weights

every SSSP algorithm has to check at least � � � � ����� � � edges with high probability. Noshita



3.2 Our Contribution 21

[115] and Goldberg and Tarjan [70] analyzed the expected number of decreaseKey opera-
tions in Dijkstra’s algorithm; for the asymptotically fastest priority queues, however, the
resulting total average-case time of the algorithm does not improve on its worst-case com-
plexity.

3.2 Our Contribution

We develop a new sequential SSSP approach, which adaptively splits buckets of an ap-
proximate priority-queue data-structure, thus building a bucket hierarchy. The new SSSP
approach comes in two versions, SP-S and SP-C, following either the label-setting (SP-S)
or the label-correcting (SP-C) paradigm. Our method is the first that provably achieves
linear

��� � � ��� average-case execution time on arbitrary directed graphs.

In order to facilitate easy exposition we assume random edge weights chosen according
to the uniform distribution on � � 	���� , independently of each other. In fact, the result can
be shown for much more general random edge weights in case the distribution of edge
weights “is linear” in a neighborhood of zero. Furthermore, the proof for the average-
case time-bound of SP-S does not require the edge weights to be independent. If, however,
independence is given, then the linear-time bound for SP-S even holds with high probability.
After some adaptations, the label-correcting version SP-C is equally reliable.

The worst-case times of the basic algorithms SP-S and SP-C are
��� � � ��� and

��� � �
� � ����� � � , respectively. SP-C can be modified to run in

��� � � ��� worst-case time as
well. Furthermore, running any other SSSP algorithm with worst-case time � � � 	 ��� “in
parallel” with either SP-S or SP-C, we can always obtain a combined approach featuring
linear average-case time and

��� � � � 	 ��� � worst-case time.
Our result immediately yields an

��� � � � � � ��� average-case time algorithm for APSP,
thus improving upon the best previous bounds on sparse directed graphs.

Furthermore, our analysis for SP-C implies the first theoretical average-case analysis
for the “Approximate Bucket Implementation” [25] of Dijkstra’s SSSP algorithm (ABI–
Dijkstra): assuming either random graphs or arbitrary graphs with constant maximum node
degree we show how the bucket widths must be chosen in order to achieve linear

��� � � ���
average-case execution time for random edge weights. The same results are obtained with
high-probability for a slight modification of ABI–Dijkstra, the so-called sequential “ � -
Stepping” implementation.

Finally, we present a general method to construct sparse input graphs with random edge
weights for which several label-correcting SSSP algorithms require superlinear average-
case running-time: besides ABI–Dijkstra and � -Stepping we consider the “Bellman–Ford
Algorithm” [15, 50], “Pallottino’s Incremental Graph Algorithm” [117], the “Threshold Ap-
proach” by Glover et al. [64, 65, 66], the basic version of the “Topological Ordering SSSP
Algorithm” by Goldberg and Radzik [69]. The obtained lower bounds are summarized in
Table 3.1. It is worth mentioning that the constructed graphs contain only

��� � � edges, thus
maximizing the performance gap as compared to our new approaches with linear average-
case time.

Preliminary accounts of our results on sequential SSSP have appeared in [104, 106]. Sub-



22 Sequential SSSP Algorithms

SSSP Algorithm Average-Case Time

Bellman–Ford Alg. [15, 50] � � � � ��� � � �
Pallottino’s Incremental Graph Alg. [117] � � � � ��� � � �
Basic Topological Ordering Alg. [69] � � � � ��� � � �
Threshold Alg. [64, 65, 66] � � � � ����� � � ����������� � �
ABI–Dijkstra [25] � � � � ����� � � ����������� � �
� -Stepping [106] (Chap. 3.9.1) � � � ��� ����� � � ����������� � �

Table 3.1: Proved lower bounds on the average-case running times of some label-correcting
algorithms on difficult input classes with � � ��� � � edges and random edge weights.

sequently, Goldberg [68, 67] obtained the linear-time average-case bound for arbitrary di-
rected graphs as well. He proposes a quite simple alternative algorithm based on radix
heaps. For integer edge weights in � � 	������ 	 � 
 , where � is reasonably small, it achieves
improved worst-case running-time

��� � ��������� � ��� , where
� � � denotes the ratio be-

tween the largest and the smallest edge weight in � . However, for real weights in � � 	����
as used in our analysis, the value of

�
may be arbitrarily large. Furthermore, compared

to our label-correcting approaches, Goldberg’s algorithm exhibits less potential for paral-
lelizations. We comment on this in Section 4.8.

Even though Goldberg’s algorithm is different from our methods, some underlying ideas
are the same. Inspired by his paper we managed to streamline some proofs for SP-S, thus
simplifying its analysis and making it more appealing. However, more involved proofs as
those in [104, 106] are still necessary for the analysis of the label-correcting version SP-C.

3.3 Simple Bucket Structures

3.3.1 Dial’s Implementation

Many SSSP labeling algorithms – including our new approaches – are based on keeping the
set of candidate nodes % in a data structure with buckets. This technique was already used in
Dial’s implementation [38] of Dijkstra’s algorithm for integer edge weights in � � 	������ 	 � 
 :
a labeled node � is stored in the bucket � � 2 � with index 2 � +����0+ � � � . In each iteration Dial’s
algorithm scans a node � from the first nonempty bucket, that is the bucket � � � � , where � is
minimal with � � � � ���� . In the following we will also use the term current bucket, � cur, for
the first nonempty bucket. Once � cur ��� � � � becomes empty, the algorithm has to change
the current bucket. As shown in Lemma 2, the smallest tentative distance among all labeled
nodes in % never decreases in the case of nonnegative edge weights. Therefore, the new
current bucket can be identified by sequentially checking � � � � ����	

� � � � # ��	������ until the
next nonempty bucket is found.

Buckets are implemented as doubly linked lists so that inserting or deleting a node,
finding a bucket for a given tentative distance and skipping an empty bucket can be done in
constant time. Still, in the worst case, Dial’s implementation has to traverse

�3� � � 5 � � � �
buckets. However, by reusing empty buckets cyclically, space for only

� � �
buckets is

needed. In that case � � 2 � is in charge of nodes � with
+����1+ � � � � � & � � � � � � 2 . That is, as



3.3 Simple Bucket Structures 23

d f ge h

d f ge h

d f ge h

e f g h

f g h

g h

d f ge h

d f ge h

d f ge h

d f ge h

d f ge h

hgfed

d f ge

d fe

d e

s qa b c

h
g

d
e
f

0.5 0.3
0.7

0.1 0.1 0.1 0.1

1.0

0.6

d f ge h

d f ge h

d f ge h

d f ge h

s

a

b

c

q

q

q

q

h

s

a

a

b

q

q

b

c q

c

q

d

bucket width = 0.1 bucket width = 0.8

pr
og

re
ss

−> Label−setting −> Label−correcting

unvisited bucket

emptied bucket

current bucket

ph
as

es

ph
as

es

Figure 3.1: Impact of the bucket width � . The drawing shows the contents of the bucket
structure for ABI-Dijkstra running on a little sample graph. If � is chosen too small then
the algorithm spends many phases with traversing empty buckets. On the other hand, taking
� too large causes overhead due to node rescans: in our example, the node � is rescanned
several times. Choosing � � � ��� gives rise to

#��
edge relaxations, whereas taking � � � � �

results in just
��#

edge relaxations but more phases.

the algorithm proceeds, � � 2 � hosts nodes with larger and larger tentative distances. In each
iteration, however, the tentative distances of all nodes currently kept in � � 2 � have the same
value. This is an easy consequence of the fact that the maximum edge weight is bounded
by

�
.



24 Sequential SSSP Algorithms

3.3.2 Buckets of Fixed Width

Dial’s implementation associates one concrete tentative distance with each bucket. Alter-
natively, a whole interval of tentative distances may be mapped onto a single bucket: node
� � % is kept in the bucket with index � +����1+ � � � � ��� . The parameter � is called the bucket
width.

Let � denote the smallest edge weight in the graph. Dinitz [43] and Denardo/Fox [36]
demonstrated that a label-setting algorithm is easily obtained if � � � : taking � � � , all
nodes in � cur have reached their final distance; this is an immediate consequence of either
Criterion 1 or Lemma 5 using the lower bound �

� ��� � � if � cur � � � � � . Therefore, these
nodes can be scanned in arbitrary order.

Choosing � � � either requires to repeatedly find a node with smallest tentative dis-
tance in � cur or results in a label-correcting algorithm: in the latter case it may be needed
to rescan nodes from � cur if they have been previously scanned with non-final distance
value. This variant is also known as the “Approximate Bucket Implementation of Dijk-
stra’s algorithm” [25] (ABI-Dijkstra) where the nodes of the current bucket are scanned in
FIFO order. The choice of the bucket width has a crucial impact on the overall performance
of ABI-Dijkstra. On the one hand, the bucket width should be small in order to limit the
number of node rescans. On the other hand, setting � very small may result in too many
buckets. Figure 3.1 depicts the tradeoff between these two parameters.

Sometimes, there is no good compromise for � : in Section 3.10.3 we will provide
a graph class with

��� � � edges and random edge weights, where each fixed choice of �
forces ABI-Dijkstra into superlinear average-case running time. Therefore, our new SSSP
approaches change the bucket width adaptively.

3.4 The New Algorithms

3.4.1 Preliminaries

In this section we present our new algorithms, called SP-S for the label-setting version and
SP-C for the label-correcting version. For ease of exposition we assume real edge weights
from the interval � � 	���� ; any input with nonnegative edge weights meets this requirement
after proper scaling. The algorithms keep the candidate node set % in a bucket hierarchy�

: they begin with an array � � at level � . � � contains � buckets, � �  � 	������ 	 � �  � � � , each
of which has width � � � # � � � �

. The starting node % is put into the bucket � �  � with+����1+ � % � � � . Bucket � �  � , � ��� � � , represents tentative distances in the range � � 	 � � � � .
Our algorithms may extend the initial bucket structure by creating new levels (and later

removing them again). Thus, beside the initial � buckets of the first level, they may create
new buckets. All buckets of level 2 have equal width � � , where � � � # �	� for some integer
 �.2 . The array � � � � at level 2 � �

refines a single bucket � �  � of the array ��� at level 2 .
This means that the range of tentative distances � � 	 � � � � � associated with � �  � is divided
over the buckets of � � � � as follows: let � � � � contain

� � � � � � � � � � � � � # buckets; then
�6� � �  � , � ��� � � � � � keeps nodes with tentative distances in the range � � � � � � � � � 	 � �� � � � � � � � � � � . Since level 2 � �

covers the range of some single bucket of level 2 we also
say that level 2 � �

has total level width � � .



3.4 The New Algorithms 25

The level with the largest index 2 is also referred to as the topmost or highest level.
The height of the bucket hierarchy denotes the number of levels, i.e., initially it has height
one. The first or leftmost nonempty bucket of an array � � denotes the bucket � �  � where �
is minimal with � �  � �� � . Within the bucket hierarchy

�
, the current bucket � cur always

refers to the leftmost nonempty bucket in the highest level.
Our algorithms generate a new topmost level 2 � �

by splitting the current bucket � cur �
� �  � of width � � at level 2 . When a node � contained in � �  � is moved to its respective bucket
in the new level then we say that � is lifted. After all nodes have been removed from � �  � ,
the current bucket is reassigned to be the leftmost nonempty bucket in the new topmost
level.

3.4.2 The Common Framework

After initializing the buckets of level zero, setting � cur
� � � �  � , and inserting % into � cur,

our algorithms SP-S and SP-C work in phases. It turns out that each phase will settle at least
one node, i.e., it scans at least one node with final distance value. A phase first identifies the
new current bucket � cur. Then it inspects the nodes in it, and takes a preliminary decision
whether � cur should be split or not.

If not, the algorithms scan all nodes from � cur simultaneously1 ; we will denote this
operation by SCAN ALL

�
� cur � . We call this step of the algorithm regular node scan-

ning. As a result, � cur is first emptied but it may be refilled due to the edge relaxations of
SCAN ALL

�
� cur � . This marks the regular end of the phase. If after a regular phase all

buckets of the topmost level are empty, then this level is removed. The algorithms stop after
level zero is removed.

Otherwise, i.e., if � cur should be split, then the algorithms first identify a node set� � � � � � � cur (see Figure 3.2) whose labels are known to have reached their final distance
values; note that in general

� � � � ��� � cur. Then all these nodes are scanned, denoted by
SCAN ALL

� � � � � � � . This step of the algorithm is called early node scanning. It removes� � � � � from � cur but may also insert additional nodes into it due to edge relaxations. If � cur

remains nonempty after SCAN ALL
� � � � � � � then the new level is actually created and

the remaining nodes of � cur are lifted to their respective buckets of the newly created level.
The phase is over; in that case we say that the phase found an early end. If, however, the new
level was not created after all (because � cur became empty after SCAN ALL

� � � � � � � )
then the phase still ended regularly.

3.4.3 Different Splitting Criteria

The label-setting version SP-S and the label-correcting version SP-C only differ in the
bucket splitting criterion. Consider a current bucket � cur. SP-S splits � cur until it contains
a single node � ; by then

+����0+ � � � � &('*),+ � � � . If there is more than one node in � cur then the
current bucket is split into two new buckets; compare Figure 3.2.

In contrast, adaptive splitting in SP-C is applied to achieve a compromise between either
scanning too many narrow buckets or incurring too many node rescans due to wide buckets:

1Actually, the nodes of the current bucket could also be extracted one-by-one in FIFO order. However, in
view of our parallelizations (Chapter 4), it proves advantageous to consider them in phases.



26 Sequential SSSP Algorithms

SP-S (* SP-C *)

Create � � , initialize
+����0+ ��� � , and insert % into � �  �

2 � � � , � � � � �
while 2 � � do

while nonempty bucket exists in �4� do
repeat� �������	� � := true /* Begin of a new phase */
� � � � '�� � � � �  � �  � ���� 

� cur

� � � �  � , � cur
� � � �� � � � # nodes in � cur (* * � � � ����� � degree

� � �  � � � cur 
 *)
if
� � � �

then (* if * � � � � � cur then *)� � � � �	� � � cur  � � � � cur
� +����1+ � � � � +����1+ � � � 
� � � � �	� � � cur  � � � 	 � � � � � � � � 	 � � � � cur 


SCAN ALL
� � � � � � � /* Early scanning */

if � cur ����
Create ��� � � with � � � � � � � cur � # (* with � � � � � � # ��
����� � � ��� *)
Lift all remaining nodes from � cur to ��� � �� ��������� � := false, 2 � � 2 � �

/* Early end of a phase */
until

� �������	� � = true
SCAN ALL

�
� cur � /* Regular scanning / end of a phase */

Remove ��� , 2 � ��2 5 �

Figure 3.2: Pseudo code for SP-S. Modifications for SP-C are given in (* comments *).
SCAN ALL denotes the extension of the SCAN operation (Figure 2.1) to sets of nodes.

let * � denote the maximum node degree (sum of in-degree plus out-degree) among all nodes
in � cur at the topmost level 2 . If * � � � � � � , then SP-C splits � cur into

� � � � � � � � � � � #
new buckets having width � � � � � # ��
����� � � � � each; compare Figure 3.2 and Figure 3.3.

Both splitting criteria imply a simple upper bound on the bucket widths in the hierarchy:
initially, buckets of level � have width � �6� # � � � �

. Each subsequent splitting of � cur �
� �  � at level 2 creates a new level 2 � �

with at least two buckets of width � � � � � � � � # .
Therefore, we find by induction:

Invariant 1 Buckets of level 2 have width � � � # � � .
For the label-correcting version SP-C, the invariant can be refined as follows:

Invariant 2 Let * denote the maximum degree among all nodes in the current bucket � cur �
�6�  � at level 2 when the regular node scanning of SP-C starts. Then the bucket width � � of
� cur is at most � '�� � # ��
������ � � � 	 # � � 
 .
In the following we will collect some more observations concerning the current bucket:

3.4.4 The Current Bucket

The algorithms stay with the same current bucket � cur � � �  � until it is split or finally
becomes empty after a phase. Then a new current bucket must be found: the leftmost



3.4 The New Algorithms 27

B0,jB0,j−1 B0,j+1

= 1/4∆

B1,3B1,2B1,1L

L

= 1∆

B0,jB0,j−1 B0,j+1

1,0B

L = 1∆

empty split unvisitedcurrent

u v

1

1

0

0

0 0

u

v

B0,1B0,0

B1,0 B1,1

B0,0 B0,1

B1,0 B1,1

= 1

1/8 1/8 1/8 1/8

L

L

L

L

= 1/2 = 1/2∆

∆

∆

1/
16

1/
16

= 1

1/8 1/8 1/8 1/8

L

L

L

= 1/2 = 1/2

∆

∆ ∆

3

2

1

0 0

1 1

0

1

2

0

1 1

Figure 3.3: (Left) Basic case in the label-correcting approach: detecting a node with degree
�

in � �  � of ��� forces a split into buckets of widths
# ��
������ � � � � � � �

. Nodes � and � are
not lifted but selected for early node scans ( � has smallest tentative distance in � cur, all
incoming edges of � have weight larger than � cur). (Right) General situation: after a bucket
split, the first nonempty bucket of the highest level becomes the new current bucket.

nonempty bucket of the topmost level. Thus, � cur is reassigned in a way that maintains the
following invariant:

Invariant 3 When a phase of SP-S or SP-C starts then the current bucket � cur contains
a candidate node with smallest tentative distance. Furthermore, if some node � � % is
contained in � cur, then any node � � % having

+����1+ � � � � +����1+ � � � is contained in � cur as
well.

This is easily seen by induction: initially, the nodes with the smallest tentative distances
reside in the leftmost nonempty bucket of level zero; i.e., in � cur. By the monotonicity
property (Lemma 2) the smallest tentative distance in % never decreases. Therefore, if
� cur � � �  � becomes empty after a phase, then the next nonempty bucket can be found
by linear search to the right, i.e., testing � �  � � � 	 � �  � � � 	������ . When level 2 � �

comes into
existence then it inherits the tentative distance range and the non-scanned nodes from the
single bucket � cur at level 2 . After lifting, the nodes with smallest tentative distances are
found in the leftmost nonempty bucket of level 2 � �

, thus maintaining the invariant.
Reassigning � cur at the new level 2 � �

is done by linear search again, this time starting
from the leftmost bucket of array � � � � , �6� � �  � . Subsequent reassignments of � cur on the
topmost level 2 � �

continue the search from the previous current bucket of level 2 � �
. In

case there is no further nonempty bucket on the topmost level then this level is removed and
the search continues at the first non-split bucket of the previous level, if any.

Remark 1 Note that the algorithms can keep counters for the number of nodes currently
stored in each level. Thus, if the counter for the topmost level is zero at the beginning of
a phase, this level can be instantly removed without further sequential search for another
nonempty bucket, which does not exist2 .

2The usage of these counters does not influence the sequential complexity of the algorithms, but they will



28 Sequential SSSP Algorithms

Altogether we can summarize the crucial points about reassigning the current bucket as
follows:

Observation 2 Let � be the total number of newly created buckets. Keeping track of the
current bucket can be done in

��� � � � � time.

3.4.5 Progress of the Algorithms

We continue with some observations concerning the efficiency of the scan operations:

Lemma 8 The tentative distances of all nodes in the set
� � � � � are final.

Proof: Let � cur be in charge of the distance range � � 	
� � � cur � . Hence,

+����1+ � � � �
� � � cur for any node � � � � � � � . By Invariant 3, � � � '�� � +����1+ � � � � � � % 
 .
Therefore, we can apply the IN-criterion of Lemma 5 where

� � � � � and
� � � � � .

Observe that whenever SCAN ALL
�
� cur � is executed in SP-S then � cur contains at most

one node. Together with Invariant 3 and Lemmas 4, 5 and 8 this implies

Corollary 1 SP-S implements the label-setting paradigm.

A further remark is in order concerning the IN-criterion:

Remark 2 Our algorithms may lift a node � several times. In that situation, a naive method
to check whether � belongs to the set

� � might repeatedly read the weights of all edges into �
and recompute the minimum. This can result in a considerable overhead if the in-degree of �
is large and � is lifted many times. Therefore, it is better to determine the smallest incoming
edge weight of each node once and for all during the initialization. This preprocessing takes��� � � ��� time; the result can be stored in an extra array. Afterwards, each check whether
a node � belongs to

� � or not can be done in constant time by a lookup in the extra array.

In the following we turn to the number of phases:

Lemma 9 Each phase of SP-S or SP-C settles at least one node.

Proof: By Invariant 3, � cur contains a candidate node � with smallest tentative distance.
Furthermore, according to Lemma 4,

+����0+ � � � � & '#),+ � � � . A phase with regular end scans all
nodes from � cur, hence � will be settled. In case of an early phase end, � belongs to the set� � . Therefore, it is scanned in that case, too.

At most � '�� � � 	 � 
 nodes are reachable from the source node % . Consequently, the algo-
rithms require at most � '�� � � 	 � 
 phases. Each phase causes at most one splitting. As for
SP-S, each splitting creates at most two new buckets. Hence, we immediately obtain the
following simple upper bounds:

Corollary 2 At any time the bucket hierarchy for SP-S contains at most � '�� � � 	 � 
 levels.
SP-S creates at most

#6� � '�� � � 	 � 
 new buckets.

prove useful for subsequent parallelizations.



3.4 The New Algorithms 29

The splitting criterion of SP-C implies better bounds on the maximum height of the hierar-
chy:

Lemma 10 At any time the bucket hierarchy for SP-C contains at most � ����� � ��� � # levels.
SP-C creates at most

� � � new buckets.

Proof: A current bucket on level 2 having width � � is only split if it contains a node with
degree * � � � � � . By Invariant 1, � � � # � � . Furthermore, * � # � � (recall that * is the
sum of in-degree and out-degree). Therefore,

# � � � � � � � � # � implies that splittings may
only happen on level 2 , 2 � � , if 2!� ����� � ��� � ��� ����� � ��� � �

. In other words, there can
be at most � ����� � ��� � # levels.

During the execution of SP-C, if a node � � � cur is found that has degree * � � � � cur

and all other nodes in � cur have degrees at most * , then � causes a splitting of � cur into
at most

# � � * 5 � � new buckets. After node � caused a splitting it is either settled by the
subsequent early scan operations or it is lifted into buckets of width at most

� � * . Observe
that � never falls back to buckets of larger width. Therefore, each node can cause at most
one splitting. Consequently, SP-C creates at most  ���
� # � � degree

� � ��5 � �6� � � � new
buckets.

The observations on the maximum hierarchy heights given above naturally bound the num-
ber of lift operations for each node � � � . However, we can provide sharper limits based
on the weights of the edges into � :

Lemma 11 Consider a reachable node � � � with in-degree * � . Let ��� � � � � 	 � � 	������ 	 � ��� �� � � � 	 � � denote its incoming edges. Furthermore, let � be an upper bound on the maximum
height of the bucket hierarchy. Node � is lifted at most

� � � � � � � '�� ��� 5 � 	 �������� � � � � 	 ����� � �
� � � � ��
  times.

Proof: Within the bucket hierarchy, nodes can only be moved upwards, i.e. to levels with
higher indices. This is obvious for SP-S; in the case of SP-C, note that a rescanned node
can only reappear in the same � cur it was previously scanned from, or in one of its refining
buckets on higher levels. Thus, each node can be lifted at most � 5 �

times. Let � �� � �� '�� ��� � � � � � � � � � be the weight of the lightest edge into node � . If � is lifted fewer than� ����� � � ���� times or if
� ����� � � ���� ��� , then the claim holds. Otherwise, after

� ����� � � ���� lift

operations, � resides in a current � cur of width at most
# ���	����� � �� ���� � � �� (by Invariant 1). If

� cur is split then � � � � � � � . Hence, � will be settled by early node scanning of
� � � � �

(Lemma 8); on the other hand, if � cur is not split, then � is eventually settled by regularly
scanning the nodes in � cur. In both cases, � will not be lifted any more.

Using ����� ��� � � � � � ����� � � 	���� � � �  ��� � � � � � ����� � � 	���� � � , Lemma 11 yields the follow-
ing simple inequality, which in general is far from being sharp:

Corollary 3 SP-S and SP-C perform at most  � ��	 � ����� � � 	�� � � lift operations.



30 Sequential SSSP Algorithms

3.4.6 Target-Bucket Searches

We still have to specify how the SCAN ALL procedure works in the bucket hierarchy. For
the relaxation of an edge � � � � 	 � � it is necessary to find the appropriate target bucket that
is in charge of the decreased

+����1+ � � � : either � cur or a so far unvisited non-split bucket. The
target bucket search can be done by a simple bottom-up search: for � � +����0+ � � � , the search
starts in the array � � and checks whether the bucket � � � � � � 	 � � � � 0 � � � ��� � 	 ��� � � � �
has already been split or not. In the latter case, � is moved into � � , otherwise the search
continues in the array � � and checks � � � � � � 	 � � � � 1 � where

� � � � � � � � � 5 � � � � � 1 � � � 1.
Generally, if the target bucket � � � � � � 	 � � � � � � at level 2 has been split then the search
proceeds with bucket � � � � � � � � � � 	 � � � � � � � � � � where

� � � � � � � � � � � 5 � � � � � � � � � � � i+1.
Each level can be checked in constant time. In the worst case all levels of the current

bucket hierarchy must be examined, i.e., at most � levels for SP-S (Corollary 2), and at
most � ����� � ��� � # levels for SP-C (Lemma 10); see also Figure 3.4. Better bounds can be
obtained if we include the weight of the relaxed edge into our considerations (Lemma 12).
Furthermore, in Section 3.7.1 (Lemma 19) we will give an extension that reduces the worst-
case time for a target-bucket search to

��� � � .

1 level

4 levels

2 levels

B0,1B0,0

B1,0 B1,1

= 1

L

L

L

L

= 1/2 = 1/2∆

∆

∆

1/8 1/8

1/
16

1/
16

1/41/4

L

L

v w
w

w

3

2

1

0 0

1 1

4

5

Figure 3.4: A worst-case setting for relaxations of the edge
� � 	 � � with bottom-up search

for the target bucket. The smaller the edge weight the more levels have to be checked.

Lemma 12 Let � be an upper bound on the maximum height of the bucket hierarchy. The
bottom-up target-bucket search for the relaxation of an edge � � � � 	 � � with weight � � � �
checks at most

� � � 	 � � � � � '���� � 	 � ����� � � 	�� � � � ���
levels.

Proof: When the edge � � � � 	 � � from the forward star ��� � � � is relaxed, then � is scanned
from a current bucket � cur

� � � �  � at the topmost level � . Hence, the target-bucket search
for � examines at most � � � � � levels. The claim trivially holds if the target bucket
for � belongs to level � . Therefore, let us assume that the proper target bucket lies in a
level 2 � � �

. Let
� � � � � � 	 � � � � � � � � be the range of tentative distances level 2 � �

is in charge of; recall that the whole range of level 2 represents the range of a single split
bucket at level 2 5 �

. Due to the way buckets are split,
� � � � � for

� � 2 � � . Therefore,
when � is relaxed we have

+����1+ � � � � � � � � � . The level 2 � of the target bucket must be in



3.5 Performance of the Label-Setting Version SP-S 31

charge of the new tentative distance
+����1+ � � � � � � � � � � � � � � � � � . Hence, � � � ��� � � � � � . By

Invariant 1, � � � � � � # � � � � � . After transformations we obtain 2 � � � ����� � � 	�� � � � �
.

Remark 3 For non-negative edge weights the algorithms never relax self-loop edges
� � 	 � � .

Hence, the total costs to scan a node � including edge relaxations is bounded by��� � �  �� ����� 	�� �� ���" � � � � 	 � �  .

This concludes our collection of basic observations. In the next sections we will com-
bine these partial results in order to obtain performance bounds for SP-S and SP-C.

3.5 Performance of the Label-Setting Version SP-S

In this section we will first prove that SP-S has worst-case time
��� � � ��� . Then we show

that it runs in linear
��� � � ��� time on the average. Finally, we prove that this bound also

holds with high probability.
Initializing global arrays for tentative distances, level zero buckets, and pointers to the

queued nodes and storing the lightest incoming edge for each node (Remark 2) can clearly
be done in

��� � � ��� time for both algorithms SP-S and SP-C. By Lemma 9, there are at
most � phases, each of which requires constant time for setting control variables, etc. The
remaining costs of SP-S account for the following operations:

(a) Scanning nodes.

(b) Generating, traversing and removing new buckets.

(c) Lifting nodes in the bucket hierarchy.

As for (a), we have seen before that SP-S performs label-setting (Corollary 1); each node
is scanned at most once. Consequently, each edge is relaxed at most once, as well. By
Corollary 2, the bucket hierarchy for SP-S contains at most � levels. Therefore, Lemma 12
implies that the total number of levels checked during all relaxations is bounded by

� '��
�
� � � 	 �� ��	
	 	 ����� � �

� � � � 
 � ���� �
(3.1)

Concerning (b), we know from Corollary 2 that the algorithm creates at most
#6� � '�� � � 	 � 
 (3.2)

new buckets. Traversing and finally removing them can be done in time linear in the number
of buckets; also compare Observation 2. Identifying the sets

� � and
� � during a split takes

time linear in the number of nodes in the split bucket. Each of these nodes is either early
scanned or lifted right after the split. Hence, the constant time share to check whether such
a node belongs to

� � � � � can be added to its respective scan or lift operation.
Finally, the upper bound for (c) follows from Lemma 11 and Corollary 3 where � � � ,

and at most � '�� � � 	 � 
 nodes are reachable from % : SP-S performs at most

� '��
�
� '�� � � 	 � 
 � � 	 �� ��	 	

����� �
�
� � � � 
  lift operations. (3.3)



32 Sequential SSSP Algorithms

Combining the bounds above immediately yields the following result:

Theorem 1 SP-S requires
� � � '�� � � � � 	 � � � �  � ��	 � ����� � � 	 � � � �  time.

In the following we will consider the average-case behavior of SP-S:

3.5.1 Average-Case Complexity of SP-S

Theorem 2 On arbitrary directed networks with random edge weights that are uniformly
drawn from � � 	���� , SP-S runs in

��� � � ��� average-case time; independence of the random
edge weights is not needed.

Proof: Define � � � � � ����� � � 	�� � � . By Theorem 1, SP-S runs in
��� � � � �  � ��	 � ���

time. Hence, it is sufficient to bound the expected value of  � ��	 � � . Due to the linearity
of expectation we have 4��� � �
	 � ��� �  � ��	 4 ��� � � . By the uniform distribution,

4 � � � � �
(�
�#" � 2

� � � � � � 2 � �
(�
�#" � 2

� # � � � # (3.4)

for any edge ��� � . Therefore, 4 �  � ��	 � � � � ��� ��� .
Note once more that Theorem 2 does not require the random edge weights to be indepen-
dent. However, if they are independent then the result even holds with high probability.
This can be shown with a concentration result for the sum of independent, geometrically
distributed random variables:

Lemma 13 ([127], Theorem 3.38) Let � � 	������ 	 � � be independent, geometrically distri-
buted random variables with parameters � � 	������ 	 � � � � � 	�� � . Let � ��4 �  ��#" � � � � , and let

� � � '�� ���(� � � � � . Then for all � � � it holds that

� � ��
� " � � � � � � � � � � �	� � 	 � � � � � � �

�
� � � � ��� � � � � � (3.5)

Proof: In [127] it is shown how (3.5) can be derived from the Chernoff bounds.

Theorem 3 SP-S requires
��� � � ��� time with high probability on arbitrary directed net-

works with random independent edge weights uniformly drawn from � � 	���� .
Proof: Define � � � � � ����� � � 	�� � � . As in the case of Theorem 2 we have to bound  � �
	 � � .
Note that � � � � � 2 � � � � � # � � , i.e., � � is a geometrically distributed random variable with
parameter � � � � � # . Furthermore, 4 � � � � � # . Hence, we can use Formula (3.5) with��� �

, � � � � # , and � � # � � to see

� � �� ��	 � � � � � �
� � � # � � � � �



3.5 Performance of the Label-Setting Version SP-S 33

3.5.2 Immediate Extensions

This section deals with a few simple extensions for SP-S: in particular, we consider a larger
class of distribution functions for the random edge weights, sketch how to improve the
worst-case performance, and identify implications for the All-Pairs Shortest-Paths problem.

Other Edge Weight Distributions

Theorem 2 does not only hold for random edge weights uniformly distributed in � � 	���� : from
its proof it is obvious that any distribution function for the random edge weights satisfying

4 � 	
����� �

�
� � � � 
 � � ��� � �

is sufficient. The edge weights may be dependent, and even different distribution functions
for different edge weights are allowed.

The uniform distribution in � � 	���� is just a special case of the following much more gen-
eral class: let us assume � � � � � � � �

has a distribution function " � with the properties that" � � � � � � and that " �� � � � is bounded from above by a positive constant. These properties
imply that " � can be bounded from above as follows: there is an integer constant �3� �

so
that for all � � � � # ��� , " � � � � � # � � � . Let - � be a random variable that is uniformly
distributed in � � 	 # ��� � . For all � ��� � �

, � � � � � � � � � �6� ��- � � � � � � '�� � # � � � 	�� 
 .
Consequently, for all integers 24� �

,

� � 	
����� �

�
� � � � 
 �32 � �0� � 	

����� �
�
- � 
 �32�� � � '�� � # ��� � 	�� 
 �

Thus,

4 � 	
����� �

�
� � � � 
 � � (�

�#" � 2
� � '�� � # ��� � 	�� 
	� � � (�

�#" �
� 2 � � � � # � � � � � � �

Other Splitting Criteria

If the current bucket � cur contains
� � � �

nodes at the beginning of a phase then SP-S splits
� cur into two new buckets. Actually, SP-S still runs in linear average-case time if � cur is
split into

��� � � � buckets: in that case the total number of newly generated buckets over the
whole execution of SP-S is linear in the total number of nodes plus the total number of lift
operations, i.e.,

��� � � ��� on the average.

Improved Worst-Case Bounds

The worst-case time
" � � � ��� can be trivially avoided by monitoring the actual resource

usage of SP-S and starting the computation from scratch with Dijkstra’s algorithm after
SP-S has consumed

" � � � ����� � � ��� operations. Similarly, SP-S can be combined with
other algorithms in order to obtain improved worst-case bounds for nonnegative integer
edge weights [124].



34 Sequential SSSP Algorithms

All-Pairs Shortest-Paths

Solving SSSP for each source node separately is the most obvious All-Pairs Shortest-Paths
algorithm. For sparse graphs, this stragegy is very efficient. In fact, SP-S implies that the
APSP problem on arbitrary directed graphs can be solved in

��� � � � � � ��� time on the
average. This is optimal if � � ��� � � . All previously known average-case bounds for
APSP were in

� � � � � .
3.6 Performance of the Label-Correcting Version SP-C

In analogy to Section 3.5 we first consider the worst-case complexity of SP-C (Figure 3.5).
We give a simple proof for the

��� � � � � ����� � � -bound and then continue with a more detailed
treatment of the number of node scans. Subsequently, we turn to the average-case running
time. For the high-probability bound, however, SP-C needs some modifications; we will
deal with that in Section 3.7.

SP-C

Create � � , initialize
+����0+ ��� � , and insert % into � �  �

2 � � � , � � � � �
while 2 � � do

while nonempty bucket exists in � � do
repeat� �������	� � := true /* Begin of a new phase */
� � � � '�� � � � �  � �  � ���� 

� cur

� � �6�  � , � cur
� � � �* � � � ����� � degree
� � �  � � � cur 


if * � � � � � cur then� � � � �	� � � cur  � � � � cur
� +����1+ � � � � +����1+ � � � 
� � � � �	� � � cur  � � � 	 � � � � � � � � 	 � � � � cur 


SCAN ALL
� � � � � � � /* Early scanning */

if � cur ����
Create ��� � � with � � � � � � # ��
����� � � � �
Lift all remaining nodes from � cur to ��� � �� ��������� � := false, 2 � � 2 � �

/* Early end of a phase */
until

� �������	� � = true
SCAN ALL

�
� cur � /* Regular scanning / end of a phase */

Remove ��� , 2 � ��2 5 �

Figure 3.5: Pseudo code for SP-C.

Theorem 4 SP-C requires
��� � � � � ����� � � time in the worst case.

Proof: Similar to SP-S, the initialization of the data structures for SP-C can be done in��� � � ��� time. By Lemma 10, SP-C creates at most
� � � new buckets. Hence, creating,



3.6 Performance of the Label-Correcting Version SP-C 35

traversing and removing all buckets can be done in
��� � � ��� time (see also Observation 2).

The bucket hierarchy for SP-C contains at most � � ��������� � � levels (Lemma 10). Conse-
quently, SP-C performs at most

� '��
�
� � � 	 �� �
	 	

����� �
�
� � � � 
  � ��� � � ����� � �

lift operations (Lemma 11 and Corollary 3). By Lemma 9, there are at most � phases, each
of which settles at least one node. Therefore, even though nodes may be rescanned, no node
is scanned more than � times. That implies that altogether at most � � � edges are relaxed.
Due to � � ��������� � � , the target-bucket search for each relaxation requires at most

��������� � �
time. Hence, SP-C runs in

��� � � � � ����� � � time in the worst-case.

In Section 3.7.1 (Lemma 19) we will give an extension that reduces the worst-case time for
a target-bucket search to

��� � � . After this modification, the asymptotic worst-case time for
SP-C will be

��� � � ��� . In the following we will have a closer look at the number of scan
operations.

3.6.1 The Number of Node Scans

Each node � that is reachable from the source node % will be inserted into the bucket struc-
ture

�
and scanned from some current bucket at least once. Recall from the description of

the algorithms in Section 3.4.2 that there are regular node scans and early node scans; for
an early scan of � , the IN-criterion (Lemma 5) ensures

+����0+ � � � � & '#),+ � � � . A re-insertion
of � into

�
occurs if � was previously scanned with non-final distance value

+����1+ � � � , and
now the relaxation of an edge into � reduces

+����1+ � � � . A re-insertion of � later triggers a
rescan of � from some current bucket involving re-relaxations of � ’s outgoing edges. We
distinguish local rescans of � , i.e., � is rescanned from the same current bucket from which
it was scanned before, and nonlocal rescans of � , where � is rescanned from a different
current bucket.

Lemma 14 (Number of Scan Operations) Let � � �
be an arbitrary node with degree* � �

and in-degree * � , � ��* � ��* . Define � �� � � � '�� ��� � � � � � � � � � to be the weight of the
lightest edge into node � . Let � � be the subgraph of � that is induced by all vertices with
degree at most

# � . For each � � � � , let
� �� be the set of nodes � � � � that are connected

to � by a simple directed path � � 	������ 	 �� in � � of total weight at most
# � � . Finally, let

� � �6� � denote the maximum size (i.e., number of edges) of any simple path in �	� with total
weight at most

# � � . SP-C performs at most

��� � � � � � � '�� � � ����� � ��� � � 	 � '����� � � � � � �� � �
# � � *   nonlocal rescans of node �

(3.6)
and at most

��� � � � � � 
 ����� � � � � ��
�#" 
 ����� � � � 

� ��  local rescans of node � � (3.7)

For each current bucket of width
# � � there are at most

� � � � � � �
regular scan phases.



36 Sequential SSSP Algorithms

Proof: By Invariant 2, the very first regular scan of node � (if any) takes place when � re-
sides in a current bucket � �  having bucket width � �  � # ��
����� � � � . We first discuss nonlo-
cal rescans:

Node � can only be rescanned from another current bucket after � moved upwards in
the bucket hierarchy. As there are at most � ����� � ��� � # levels, this can happen at most� ����� � ��� � �

times. The new current buckets cover smaller and smaller ranges of tentative
distances: the � -th nonlocal rescan of � implies that � was previously (re-) scanned from
some current bucket � ��� � � having bucket width � ��� � � � # ��
������ � � � � � � � whereas it is now
rescanned from a new current bucket � ��� � � � � � 	 � � � � � � � � � � ��� � � of width � � � �# ��
������ � � � � � at some higher level 2�� �!2 ��� � . As soon as � enters the current bucket � � �
we have

+����0+ � � � � � � � � # ��
������ � � � � � . By then, the smallest tentative distance among all
queued candidate nodes is at least

� ��� (Invariant 3). Therefore, if

� �� � �
# � � * � # ��
����� � � � � � for some � � � (3.8)

then
+����1+ � � � � &('#),+ � � � according to the IN-criterion (Lemma 5); in that case, the � -th

nonlocal rescan of � will be the last time that � is scanned. The bound (3.6) of the lemma
follows by choosing the smallest nonnegative � satisfying the inequality (3.8).

Now we turn to the local rescans of � . Consider a current bucket � cur � � � 	 � � � cur �
from which � is rescanned. By Invariant 2, � cur has bucket width � cur � # � � for some
2 � � ����� � * � . We shall use the notation

+����0+ � � � � to denote the tentative distance of � at the
beginning of phase � . Let � denote the first regular scan phase for � cur. Let � � be the last
phase where � is rescanned from this � cur. Hence, �

� � +����0+�� � � � � constitutes the smallest
tentative distance found for � before � cur is split or finally becomes empty. It follows that
there are at most � � 5 � local rescans of � from � cur. Furthermore,

� � &('#),+ � � � � � �� � � cur, and
+����0+ � � � ��� +����1+ � � � � � for all � � � � .

Let
��� � �

denote the set of nodes that were scanned and settled before phase � ; note
that

� �
contains all nodes with

&('#),+ ��� � � �
. Finally, let

�	� � � � � �
be the set of nodes

contained in � cur when the phase � starts. All nodes in
� �

have degree at most
# � , i.e., they

belong to � � . Furthermore, as long as the algorithm scans nodes and � cur is neither split
nor emptied, the algorithm keeps exploring paths in � � , starting from the nodes in

� �
.

Let us fix a path 
 � � � � 	 � � � � 	������ 	 � � � � ��� whose exploration causes the last res-
can of � from � cur in phase � � with tentative distance � : node � � , � ��� � � � , is scanned in
phase � ; therefore,

+����1+ � � � � � � � � � � +����1+ � � � � � � � � � � 	 � � � � � . On the other hand,+����1+ � � � � � � � � � � +����0+ � � � � � � � � � � 	 � � � � � would imply that there is another path from� �
to � in � � that results in

+����1+ � � � � �� � ; this contradicts the choice of 
 . Thus,+����1+ � � � � � � � � ��� +����0+ � � � � � � � � � � 	 � � � � � . We conclude � � 
 � � +����1+�� � � � �45 +����1+
� � � � � �� � � cur 5 � � # � � . In fact, 
 must be a simple path in � � ; otherwise – due to non-
negative edge weights – � would already have been scanned in some phase �� � � with+����1+ � � � ��� � , thus contradicting our observation that

+����1+ � � � � � +����1+
� � � � � . Therefore, �
can be reached from the nodes � � 	������ 	 � � � � � in �6� along paths of weight less than

# � � , i.e.,
� � 	������ � � � � � � � �� . Consequently,  � �� � � � 5 � . Since there are at most � � 5 � local rescans
of � from � cur their number is bounded by  � ��  .



3.6 Performance of the Label-Correcting Version SP-C 37

The discussion above easily implies that � subsequent regular scan phases for � cur re-
quire at least one simple path in � � having � 5 �

edges and total weight at most
# � � . Hence,

there are at most
� � � � � � �

regular scan phases for this current bucket.
After having dealt with local rescans of node � from one particular current bucket of

width
# � � , we can easily bound the total number of local rescans of node � : the first local

rescan of � (if any) takes place in a current bucket of width
# � �  , where 2 � � � ����� � * � .

Further local rescans may happen for other current buckets of width
# � � � , # � � � , . . . , where

2 � � 2 � �32 � � �����
; hence, there are at most  
 ����� � � � � ��#" 
 ����� � � �  � ��  local rescans of � in total.

Using Lemma 11 (for the number of lift operations), Lemma 12 and Remark 3 (for the costs
of scan operations), and Lemma 14 (for the number of scan operations), we can restate the
worst-case running time of SP-C as follows:

Corollary 4 Let � � � � , � � � 	 � � , � � � � � , and ��� � � � be defined as in Lemmas 11, 12, 14
and 14, respectively. SP-C runs in time� ���������
	�������������� ���������! ����� �"�!# �����%$'& �(��� 	)*��+-,�./�1032 )546 �87 ���89;:<�;$!=?>A@ (3.9)

3.6.2 Average–Case Complexity of SP-C

This section serves to establish an average-case bound on the running time of SP-C under
the assumption of independent random edge weights that are uniformly drawn from � � 	���� .
According to Corollary 4 it is sufficient to find an upper bound for

4 � � � � � �
����� 	 � � � � � � � � ��� � � � � ��� � � �  ��� � � �� ����� 	�� �� ���" � � � � 	 � �  � � �

Due to the linearity of expectation we can concentrate on the terms 4 � � � � � � and

4 � � � � � � � � � � � � � � �  � � � � �� ����� 	 � �  � �" � � � � 	 � �  � � (3.10)

Recall from Lemma 14 that the values of � � � � � and � � � � � depend on the weights of
edges and simple paths into node � ; they do not depend on the weights of any edge

� � 	 � � ,
� �� � , in the forward star of � . On the other hand,

� � � 	 � � solely depends on the weight
of the edge

� � 	 � � ; see Lemma 12. Hence, as all edge weights are independent, the random

variables
� � � � � � � � � ��� � � � � and

� � �  � � ��� 	 � �� ���" � � � � 	 � �  are independent, too.
Consequently, the average-case running time for SP-C is bounded from above by

BDCE � � � ��F�HGJI<K � � � 	�� � � ��L � � � � ��M 	�� � � � � � ��N 	�� � �PO � L � � FQ8GSRTSU �WVYX Q[Z\ � � � ] 	 �  � � �PO_^a`b (3.11)

Now we will show the following inequalities: For any node � � �
and any edge� � 	 � � � � we have



38 Sequential SSSP Algorithms

4 � � � � � � � # �
degree

� � � (Lemma 15)4 � � � � 	 � � � � � (Lemma 15)4 � ��� � � � � � �
(Lemma 16)4 � ��� � � � � � # � � (Lemma 18).

After inserting these inequalities in (3.11) we immediately obtain

Theorem 5 On arbitrary directed networks with random edge weights that are independent
and uniformly drawn from � � 	���� , SP-C runs in

��� � � ��� average-case time.

In the remainder we prove the inequalities mentioned above.

Lemma 15 Let � � � � and
� � � 	 � � be defined as in Lemmas 11 and 12, respectively. For any

node � � � and any edge
� � 	 � � � � we have 4 � � � � � � � #� & � ��� ��� � � � and 4 � � � � 	 � � � ��� .

Proof: For � � � � , consider a reachable node � � � with in-degree * � , � �6* � � degree
� � � .

Let � � � � � � 	 � � 	������ 	 � � � � � � � � 	 � � denote its * � incoming edges. � � � � is bounded from

above by  ��� � � � � � ����� � � 	���� � � . By Inequality (3.4), we have

4 � 	
����� �

�
� � � � 
 � �

(�
�#" � 2

� � � 	
����� �

�
� � � � 
 � 2 � � (�

� " � 2
� # � � � #

for any edge � � �
. Hence, 4 � � � � � � � # � * � � # � degree

� � � . Similarly,
� � � 	 � � �� ����� � � 	��  � � � � �

for any edge
� � 	 � � � � . Thus, 4 � � � � 	 � � � � # � � ��� .

Lemma 16 For any node � � � , let � � � � � be defined as in Lemma 14; then 4 � � � � � � � � �
.

Proof: Let � have degree * � �
and in-degree * � , � ��* � ��* . Let � �� � � � '�� ��� � � � � � � � � �

be the weight of the lightest edge into node � . From the definition of � � � � � we easily derive

� � � � � � � '����� � � � � � �� � �
# � � *  �

Due to the uniform edge weight distribution we have

� �
� �� � �

# � � * � � � 5 � ��� " � � �
� � � � � � �

# � � * � � � 5 * � � �
# � � * � � 5 # � � �

Thus, � � � � � � � � � � � � 5 # � � and � � ��� � � � � � � ��� � # � � . Therefore,

4 � ��� � � � � �
(�
�#" � � � ��� � � � � 2 � � 24�

(�
�#" � � � ��� � � � �32 � � 2

�
(�
�#" �
# � � � � � 2 � # � (� �#" � # � � � 2 � � �



3.6 Performance of the Label-Correcting Version SP-C 39

Before we show the last missing inequality, 4 � � � � � � � � #�� � , we first prove that long paths
with small total weight are unlikely for random edge weights. This observation will be used
to bound 4 � ��� � � � � in Lemma 18. In the following, a path without repeated edges and total
weight at most � will be called a � -path.

Lemma 17 Let � be a path of



non-repeated edges with independent and uniformly dis-
tributed edge weights in � � 	���� . The probability that � is a � -path equals � � � 
�� for � � �

.

Proof: Let � � denote the weight of the 2 -th edge on the path. The total weight of the

path is then  ��#" � � � . We prove by induction over



that � �  ��#" � � � � ��� � � � � 
�� for

� � �
: if


 � �
then due to the uniform distribution the probability that a single edge

weight is at most � � �
is given by � itself: � � � � � � � � � . Now we assume that� �  ��#" � � � � ��� � � � � 
�� for � � �

is true for some

 � �

. In order to prove the result

for a path of

 � �

edges, we split the path into a first part of



edges and a second part of
one edge. For a total path weight of at most � , we have to consider all combinations for
� � � � � � �

so that the first part of



edges has weight at most � 5 � and the second
part (one edge) has weight � . Thus,� �  � � ��#" � � � � � � � %��� � �  ��#" � � � � � 5 � � * � � %	�� 	 � ��
 ����� * � � � ��� �	 � � � � �
Lemma 18 Let � � � � � be defined as in Lemma 14. For any node � � � , 4 � � � � � � � � # � � .
Proof: Recall that � � denotes the subgraph of � that is induced by all vertices with degree
at most

# � . Furthermore, for any � � � � , � �� denotes the set of nodes � � � � that are
connected to � by a simple directed path � � 	������ 	 �� in � � of total weight at most

# � � . For
any node � with degree * , � � � � � � �  
������ � � � � ��#" 
������ � � �  � ��  .

Let us define � �� to be the set of all simple
� # � � � -paths into � in � � . Obviously,  � �� ��

 � ��  . Hence,

4 � ��� � � � � � 
����� � � � � ��
�#" 
 ����� � � � 4 �  � ��  ���

Since all nodes in � � have degree at most
# � , no more than * � � # � � 	 �#� � � simple paths of


edges each enter node � in � � . Taking into account the probability that these paths are� # � � � -paths (Lemma 17), we find

4 � ��� � � � � �

 ����� � � � � ��
�#" 
 ����� � � �

(�
� " � * ��# � � 	 � � � � � # � � � � � 
��

�

 ����� � � � � ��
�#" 
 ����� � � �

*# � ��� (� � " � �

���� �

(�
�#"$�
# � � � � � #6� � � (3.12)



40 Sequential SSSP Algorithms

Hence, by now we have provided the missing pieces in order to show that SP-C runs in
linear time on the average (Theorem 5).

As already mentioned in Section 3.5.2 for SP-S, SP-C can keep track of the actual
resource usage: after

" � � � ����� � � ��� operations it may abort and start the computation
from scratch with Dijkstra’s algorithm. Thus, the worst-case total execution time is limited
by
��� � ����� � � ��� while the linear average-case bound is still preserved.
Unfortunately, SP-C is less reliable than its label-setting counterpart SP-S; the linear-

time bound is not obtained with high probability. Why? In its current form – even though
the total number of node scans is bounded by

� � � � � # � � � � � � � �	� � on average
(Lemmas 16 and 18) – SP-C may scan some nodes many more than

� �
times with non-

negligible probability. If such a node � has out-degree
" � � � then SP-C may perform a

superlinear number of operations: each time � is scanned, all its outgoing edges are relaxed.
In Section 3.7 we give the modifications for SP-C to cope with that problem; Section 3.8
provides the adapted analysis for the high-probability bounds.

3.7 Making SP-C More Stable

Our modified version of SP-C, which we will call SP-C*, applies deferred edge relaxations:
when a node � is scanned from a current bucket � cur of width � cur, then only those edges
out of � that have weight at most � cur are relaxed immediately. The remaining edges of
larger weight are relaxed once and for all after

+����1+ � � � is guaranteed to be final.
The rationale behind this modification is the following: due to the correlation of bucket

widths and maximum node degrees it turns out that as long as
+����1+ � � � is not yet final,

each (re-)scan of � in SP-C* relaxes at most a constant number of � ’s outgoing edges in
expectation and not much more with high probability. Therefore, even if some nodes may
be rescanned much more often than the average, it becomes very unlikely that these nodes
cause a superlinear number of edge relaxations.

Furthermore, we describe an alternative for the simple bottom-up search in order to find
target buckets in constant worst-case time. The fast relaxation procedure is not crucial to
obtain the high-probability bound for SP-C*. However, being allowed to assume that any
(re-)relaxation can be done in constant worst-case time somewhat simplifies our analysis.
Subsequently, we describe our modifications in more detail:

1. For each node � � � , SP-C* creates a list �� � that initially keeps all outgoing edges
of � in grouped order according to their weights as follows:7 �� � consists of at most � ����� � # ��� � �

groups;7 group � � , � � 2 � � ����� � # ��� , in �� � holds all outgoing edges
� � 	 � � with# � � � � � � � � 	 � � � # � � in arbitrary order;7�� 
������ � � � � keeps all edges of �� � with weight at most

# ��
����� � � � � ;7 for all � �32 , � � appears before � � in �� � .
The grouped order can be established in linear time by integer-sorting for small val-
ues: edge weights � � � � � # ��
 ����� � � � � are mapped onto � ����� � � � � � � � � , thus creating



3.7 Making SP-C More Stable 41

integers from � to � ����� � # ��� 5 �
; smaller edge weights are mapped onto the inte-

ger � ����� � # ��� . After an integer-sorting by non-increasing order the largest integers
(which account for the smallest edge weights) appear first.

2. Each bucket � �  � is equipped with an additional edge list
� �  � . Whenever a node � is

deleted from � cur ���6�  � (by either scanning or lifting), SP-C* moves all remaining
edges � � �� � satisfying � � � � � � cur from �� � to

� �  � . Note that these edges constitute
the last groups in �� � . Hence, if � is rescanned from � cur no transferable edges are
left in �� � ; this can be checked in constant time.

3. All edges in
� �  � are relaxed as soon as � cur � �6�  � is empty after a phase or – in case

� �  � has been split – after its refining level 2 � �
is removed. This is sufficiently early:

we have � � � �6� � � for any edge � � � � 	 � � � � �  � ; hence, if
&('*),+ �

� � belongs to the
range of �6�  � , then

&('*),+ � � � � � � � 	 � � � &('*),+ � � � since
&('#),+ � � � lies in the range of � �  �

as well; in that case a relaxation of
� � 	 � � is not needed at all. On the other hand, if&('#),+ �

� � is too large to be covered by � �  � , then
� � 	 � � � � �  � is relaxed before � will

be scanned in its respective bucket. By the time
� � 	 � � � � �  � is relaxed, we have+����0+ � � � � & '#),+ � � � (this follows from the monotonicity property).

The total number of operations needed to perform the initial grouping and to maintain the
additional edge lists is bounded by

��� � � ��� .

3.7.1 Performing Relaxations in Constant Time

In the following we describe a method to perform edge relaxations in constant worst-case
time. Using this guided search routine instead of the simple bottom-up search improves
the total worst-case time of SP-C and SP-C* to

��� � � ��� . Additionally, it simplifies our
analysis in Section 3.8. Therefore, from now on we will assume that SP-C* applies this
worst-case efficient method.

Lemma 19 The target bucket search for an edge relaxation can be performed in constant
worst-case time.

Proof: For the relaxation of an edge � � � � 	 � � , where � is in the current bucket � cur � �6�  �
with bucket width � � of the topmost level 2 , the algorithm has to find the highest level

� � 2
that can potentially contain the non-split target bucket for � . We distinguish two cases:
� � � � � � � � � and � � � ��� � � � � .

Firstly, if � � � � � � � � � (recall that � � � � is the total level width of level 2 ) then the target
bucket of � is either located in level 2 , hence

� � 2 , or it is the immediate successor bucket
�

�6� of the rightmost bucket in level 2 . Note that
�

�6� is located in some level below 2 having
total level width at least � � � � . Upon creation of the new topmost level 2 , a pointer to

�

�6�
can be maintained as follows: if level 2 is a refinement of a bucket � � � �  � that is not the
rightmost bucket in level 2 5 �

, then
�

� �
� �6� � �  � � � , otherwise
�

�6� � �

�6� � � ; see Figure 3.6
for an example.

Secondly, consider the case � � � � � � � � � where the target bucket is definitely located
in some array below � � . Let � � � � ����� � � � � � � � � . For each level � , � � �

, we maintain
an additional array � � � � � with

����� � � � � ��� � entries: � � � � � � � � � 2 denotes the highest



42 Sequential SSSP Algorithms

L

L

L

L

empty split unvisited

3

2

1

0

Figure 3.6: Example for pointers to the immediate successor buckets.

level
�

potentially containing the target bucket of � for a relaxation of � � � � 	 � � with
� � � cur � �6�  � . As before, if � does not belong to level

�
, then it will fit into the immediate

successor bucket
�

��� of level
�
. The correctness follows inductively from the construction:� � � � � is an empty array. Now we show how � � � � � , 2	� # , can be created from � � � � � � � .

The highest possible level for a target bucket of an edge � � � � 	 � � with � � � � � � � � � is
located in some level

� � 2 5 �
, independent of the position of � in level 2 5 �

. As before,
this is an immediate consequence of the fact that the total width of level 2 5 �

is given by
� � � � � � � � � . By induction, the proper search level

�
can be identified in

��� � � time by
looking up � � � � � � ����� � � � � � � � � � � �

. The new level 2 is just a refinement of some bucket
from level 2 5 �

. Hence, for � � � � � � � � � , all targets are still located in the same level� � 2 5 �
as before. Consequently, we have � � � � � � � � � � � � � for � � � � ����� � � � � � � � . In

other words, these entries can simply be copied from � � � � � � � to � � � � � .
New entries are needed for � � � ����� � � � � � � � � , ����� , �$� � ����� � � � � � � � 5 ���

, accounting for
edge weights � � � � � � � � � � � � � � . These weights are too large for a target within level 2
(which has total level width � � � � ) but the target may be located in the array � � � � ; therefore,� � � ����� � � � � � � � � � 2 5 �

,
�����

, � � � ����� � � � � � � � 5 ��� � 2 5 �
. On the other hand, if the target

does not lie in � � � � then the target bucket is definitely given by the immediate successor
bucket of ��� � � , �

� � � � , because
�

�6� � � has width at least � � � � � � � � � .
Hence, all required lookups in the additional data structures for a relaxation of � can be

done in constant time. For SP-C and SP-C*, the costs to build � � � � � and to set the pointer to
�

� cur are bounded by
��������� �

degree
� � � � , where � is a node that caused the creation of level 2

by a bucket splitting. As each node is responsible for at most one splitting, the worst-case
total costs to maintain the extra data structures are bounded by

��� � � ��� .

3.8 A High–Probability Bound for SP-C*

In this section we first give a revised worst-case bound for the running time of SP-C*. Then
we prove linear average-case time for SP-C* using this revised bound. After some technical
lemmas we can identify an event � ��� � , which holds with high probability. The event � ��� �
is used to show that the revised worst-case bound for the running time of SP-C* satisfies
the so-called Bounded Martingale Difference Condition with suitable parameters for nearly
all instantiations of the random edge weights. At that point the high-probability bound for
the running time of SP-C* follows easily from a generalization of the Chernoff bounds.



3.8 A High–Probability Bound for SP-C* 43

3.8.1 A Revised Worst-Case Bound for SP-C*

Lemma 20 Let � � � � , � � � � � , and ��� � � � be defined as in Lemmas 11, and 14, respectively.
Furthermore, for every � � � define

� � � � � � � �
�
�
� � � 	 � � � � � � �� �

	 � � � 	 � � � # ��
����� ����� ��� ��� 	 � � � � ��
�
�

SP-C* runs in time

� � � � � � �
����� 	 � � � � � � � � � � � � � � � � �  � � � � � � � � �  � � � (3.13)

Proof: We only elucidate the differences as compared to SP-C (Corollary 4). By Sec-
tion 3.7.1, each relaxation can be performed in constant time. Hence, scanning each node
and relaxing all its outgoing edges once can be done in

��� � � ��� time in total. As long
as
+����1+ � � � � &('#),+ � � � , each scan of � relaxes at most

� � � � � edges out of � . This can hap-
pen at most

� � � � � � � � � � � � � times. Each such non-final scan of node � requires at most��� � � � � � � � � operations. The total number of additional operations needed to maintain the
new data structures is bounded from above by

��� � � ��� .

Based on (3.13) we will prove the average-case running time of SP-C*:

Lemma 21 On arbitrary directed networks with random edge weights that are independent
and uniformly drawn from � � 	���� , SP-C* runs in

��� � � ��� average-case time.

Proof: According to Lemma 20 we can concentrate on the expected value of the function

� � � �
���
� 	 � � � � � � ��� � � � � ��� � � �  ��� � � � � � � �  � � (3.14)

As already discussed in Section 3.6.2, the random variable
� � � � � � � ��� � � � � does not depend

on the weights of non-self-loop edges out of node � . On the other hand,
� � � � � only depends

on these edge weights. Hence,
� � � � � � � ��� � � � � and

� � � � � are independent. Therefore,

4 � � � � �
����� 	 4 � � � � � � � � 4 � � � � � � � � 4 � ��� � � � �  ��� � � 4 � � � � � � �  � �

We already showed before that 4 � � � � � � � # � & � ��� ��� � � � , 4 � � � � � � � � �
, and

� � ��� � � � � �# � � ; see Lemmas 15, 16, and 18, respectively. Finally,

4 � � � � � � � � & � ��� ��� � � � � # ��
������ ���	� ��� ��� 	 � � � � �

for any � � � . Hence,

4 � � � � �
�����

� # � & � ��� ��� � � � � � � � # � � � � #  � � � � � # � � � � (3.15)



44 Sequential SSSP Algorithms

Later on, we will also need a simple upper bound for the function
�

of (3.14). Using

� � � � � � ����� � ��� � �
(by Lemmas 10 and 11),��� � � � � � ����� � ��� � �
(by Lemma 14),��� � � � � � � ����� � ��� � # � � � (by Lemma 14),� � � � � � � (by Lemma 20)

we obtain,

� � �
���
� 	 � � � � � � � � � � � � ��� � � �  � � � � � � � � �  � � � � for � � � #� (3.16)

3.8.2 Some Observations for Random Edge Weights

In the following we will define some event � ��� � and provide a lower bound on its proba-
bility.

Lemma 22 Let
� � �

be an arbitrary constant. Let � ��� � stand for the event that for all
� � 2�� � ����� � ��� � �

it is true that

(a) for each node in � � the number of incoming and outgoing edges with weight at most# � � is bounded by * �� � � � � � � � � � � � � .

(b) each simple
� # � � � -path in � � contains fewer than


 �� � � � � � 	 � � � � � ��� ���� ��� � edges.

� ��� � holds with probability at least
� 5 � � # � � � � if � ��� # .

Proof: Let us begin with (a): consider a node � � � � with degree � ,
� � � � # � . Let � �

denote the binary random variable that is one if the � -th edge of � has weight at most
# � � ,

and zero otherwise. We have � � � 4 �  � � � � � � � # � � � �
. Due to independent edge

weights, we can use the Chernoff bound (2.2) of Lemma 7 with � � � 	 � � � ��� � � ��� �� in order to
show

� �� ��� " � � � � � � � � � � � ��� � � �
 � � ����� � ��� � � � � � � �
By Boole’s inequality, (a) holds with probability at least

� 5 � � � � ����� � ��� � # � � � � � � � � � 5 � � � � � � � for � ��� # .
Now we turn to part (b): there are at most

# � � � simple paths of size



into each node of � � .
By Lemma 17, the probability that a given path of



independent edges has total weight at

most
# � � is bounded by

	 � ��� ���� . Hence, there is at least one simple
� # � � � -path with



edges

in �6� with probability at most � � # � � � � � ����� ���� � � �� . Therefore, by Boole’s inequality there
is at least one simple

� # � � � -path of

 � 
 �� edges in any � � , � � 2 � � ����� � ��� � �

, with
probability at most �

� �	� ��
� � � � ����� � ��� � # �
�� � � � � � ����� � ��� � # �
 �� � � �

� � �
�

��



3.8 A High–Probability Bound for SP-C* 45

� � � � � ����� � ��� � # �� � ��� � � �� � � # ��� � 
 �� � � by the Stirling Approximation

� � �
� � � � ��� � � �� � � for � ��� #

� � � �
�

�

For the last inequality consider an upper bound for

 �� in

� ' � 1 � � � � � � � � � 1
where

1 � � � � � � � � � and � � � � ��� : (3.17)

Since � � � we have
� � � � �

and therefore � � � � 1
. Reinserting the last inequality in

(3.17) yields the lower bound � � �������� ����� . If we repeat the reinsertion trick once more using

the lower bound just obtained, then we find � � �������� ����� � ��� ��� ����� � � � �������� ����� � � � 	 � � � � ��� ���� ��� � .

Hence, the choice of

 �� � � � � � 	 � � � � � ��� ���� ��� � ensures � ' � � � � � . Therefore, (b) holds with

probability at least
� 5 � � � � � � � .

Combining the bounds for (a) and (b) by Boole’s inequality we find that � ��� � holds
with probability at least

� 5 #6� � � � � � � � � � 5 � � # � � � � .

Using � ��� � , we can also prove high-probability bounds on the sizes of the sets
� �� (which,

in turn, define ��� � � � ; see Lemma 14).

Lemma 23 Let � be an arbitrary node in � � . Let
� �� be defined as in Lemma 14. Let

�� �� be
the set of nodes � � � � that are connected to � by a simple directed path � � 	������ 	 � � in � � of
total weight at most

# � � . Let
� 	

� � �
be arbitrary constants. If � ��� � holds then there exist

positive constants � � � � � and � � � � so that  � ��  � � � � 	 	 ��� � ��� ��� � and  �� ��  � � � � 	 	 � � � ��� ��� �
with probability at least

� 5 � � � for � � � � � � � .
Proof: Let us start with

�� �� . We argue that the number of those nodes that are reached
from � via paths of length



can be bounded by the offspring in the



-th generation of the

following branching process3 
 : An individual (a node) � has its offspring defined by the
number - � of edges leaving � that have weight at most

# � � . For independent edge weights
uniformly distributed in � � 	���� , we find 4 � - � � � degree

� � � �
# � � � # � ��# � � � �
since each

node in � � has degree at most
# � . Let � � denote the total offspring after



generations when

branching from node � (i.e., � � �6- � ).
As long as new edges are encountered when following paths out of � , the offspring of

the branching process is an exact model for the number of paths emanating from � that use
only edges with weight at most

# � � . After a node � is found to be the target of multiple paths
out of � , the events on those paths would no longer be independent. However, all but one of
the multiple paths would produce only duplicate entries into

�� �� . The additional paths are
therefore discarded from the branching process. All remaining events are independent.

In the following, we consider another branching process 
 � with identical and indepen-
dent probabilities for the generation of new nodes: � �� � �

, � �� is a nonnegative integer-

valued random variable, and � �� �  
� �� � ��#" � - �� where the random variables - �� are distributed

3An introduction to branching processes can be found in [11, 79], for example.



46 Sequential SSSP Algorithms

like � � . Furthermore, the random variables - �� are independent of each other and indepen-
dent of � � � � . The branching factor of this branching process is given by � �&4 � � �� � . For
branching processes of this kind we have 4 � � �� � ��� � . Additionally, it is shown in [91,
Theorem 1] that for � � �

and any constant � �
�
, � �� � ��� � � � ����� � � with probability at

least
� 5 � � # � � � � ; the involved constants depend on � . Taking � � � � �

, the random
variables � � of the first branching process 
 are stochastically dominated by the respective
random variables � �� of 
 � .

In order to asymptotically bound the sum  � � � � �� we can concentrate on the term
� �� because a growing exponential sum is dominated by its last summand:  � � � � �� ���� � � � ����� � � whp. If � ��� � holds in addition, we have


 � 
 �� � � � � � 	 � � � � � ��� ���� ��� � . In that
case, the number of nodes that are reached from � via simple

� # � � � -paths in � � is at most��� � �
�� � ����� � � � ��� � � � � � U � � � V� ��� ��� � ����� � � with probability at least

� 5 � � # � � � � .
Now we turn to

� �� , which is symmetric to
�� �� in the sense that it considers paths

entering � instead of paths leaving � . Hence, the argument simply follows by traversing the
edges during the branching process in the opposite direction. Therefore, if � ��� � holds, there
are positive constants � � � � � and � � � � so that  � �� �� � � � 	 	 � � � ��� ��� � and  �� �� �� � � � 	 	 � � � ��� ��� �
with probability at least

� 5 � � � for � � � � � � � .

3.8.3 The Event �
	��� and the Method of Bounded Differences

In the next lemma we introduce the event � ��� � and give a lower bound on its probability:

Lemma 24 Let
� � �

be an arbitrary constant. Let � � ��� � # � and � ��� � # � be the constants
of Lemma 23 with � � � � # . We define � ��� � to be the event that

(a) � ��� � holds.

(b)  � ��  � � � � 	 	 � � � ��� ��� ��� � and  �� ��  � � � � 	 	 � � � � � ��� ��� � for all � � 2 � � ����� � ��� � �
and all � � � � .

Then � ��� � holds with probability at least
� 5 � � � for any � � � ��� � � � ��� � # � 	 � # 
 .

Proof: By Lemma 22, (a) holds with probability at least
� 5 � � # � � � � for � � � # . Using

Boole’s inequality, (a) and (b) hold with probability at least
� 5 � � # � � � � 5 � � � � ����� � ��� �# � � � � � � � � � 5 � � � for � � ����� � � � ��� � # � 	 � # 
 .

For technical reasons we will also need the events � � ��� � and � � � � ��� � : let � � � � � 	����
denote the random variable associated with the weight of the



-th edge of the input graph

for
� � 
 � � ; then � � ��� � stands for the event that � ��� � holds if we just consider the

edge weights associated with � � 	������ � � . Equivalently, � � � � ��� � denotes the event that
� ��� � holds if we restrict attention to the � 5�� random variables � � � � 	������ � � . Clearly,
� ��� � implies � � ��� ��� � � � � ��� � for all

� � � � � . Therefore, � � � � ��� � ��	 � � � � � � ��� � � �� � � ��� � � � � 5 � � � . On the other hand, it does not necessarily follow from � � ��� ��� � � � � ��� �
that � ��� � holds as well. Still, � � ��� ��� � � � � ��� � implies that some event � � ��� � similar to
� ��� � holds; it is easy to check that due to the contributions from two independent edge
sets, the bounds of � ��� � are at most doubled and as a consequence the bounds on  � �� 



3.8 A High–Probability Bound for SP-C* 47

and  �� ��  are at most squared. So, more formally, � � ��� � stands for the event that for all
� � 2�� � ����� � ��� � �

it is true that

(a) for each node in � � the sum of incoming and outgoing edges with weight at most
# � �

is bounded by
# � * �� � ��� � � � � � � ��� � � .

(b) each simple
� # � � � -path in � � contains fewer than

# � 
 �� � � � � � 	 � � � � � ��� ���� ��� � edges.

(c)  � �� � � � � � � 	 	 � � � ��� ��� ��� � and  �� �� � � � � � � 	 	 � � � ��� ��� ��� � for all � � � � .
Similarly, � � � ��� ��� � � � � � ��� � with

� � ����� � � � � implies � � ��� � if we only take into
consideration the edge weights associated with � � 	������ � � � and � � � � � 	������ � � . The events
� ��� � and � � ��� � will be used later in connection with the following tail estimate:

Lemma 25 (Method of Bounded Martingale Differences [45, 100]) Let � � � � � 	������ 	� � � be a family of random variables with � � taking values in the set � � . Let � � �����
be the typographical shortcut for � � � � � , . . . , � � � �1� . Let

� � � � be a function that sat-
isfies the following condition concerning � � 	������ 	 � � with parameters � � 	������ � � : for any
� � � � � 	������ 	 � � � ��� � � � and any

� � ��� � ,
� � � � � � � 34 � � 	� � � � �
�(� � � 	 � � � � � � 5 4 � � 	� � � � ����� � � � � ��� (3.18)

for all
� �324� � . Then

� � � � � ���$4 � � � � � � � � � � # � �
��

�  � � �� �
Moreover, let � be any ‘bad’ subset of � � � � , such that � � � � �	� ��� , � � 2 � � for each
� ���� . Then � � � � � ���04 � � � � � � � � � � # � �

��
�  � � �� � � � � ��� �7�

(3.19)

Proof: See [100].

The function � � � � � of (3.18) measures how much the expected value of
� � � � changes if it is

revealed that � � takes the value
� � , conditioned on the fact that � � � � � 	������ 	 � � � � � �0� � � .

If the random variables � � 	������ 	 � � are dependent then fixing � � � � � may influence the
distribution of � � � � 	������ 	 � � . However, if � � 	������ 	 � � are independent then the distribu-
tion of � � � � 	������ 	 � � remains the same. In that case, � � � � � can be rewritten as

34 � � � � � 	������ 	 � � � � 	 � � 	 � � � � 	������ 	 � � � � 5 4 � � � � � 	������ 	 � � � � 	 � � 	 � � � � 	������ 	 � � � �  �
Hence, for independent random variables, � � � � � can be obtained by comparing� � � � 	������ 	 � � � � 	 � � 	 � � � � 	������ 	 � � � with 4 � � � � � 	������ 	 � � � � 	 � � 	 � � � � 	������ 	 � � � � for each com-
bination

� � � � � 	������ 	 � � � ��� � � " � � � � � , weighted with the respective probabilities for� � � � � 	������ 	 � � � to occur. If we are just interested in upper bounds on � � � � � , then it is even
sufficient to bound

������
�  � � � ��� � �� � � �(� 	������ 	 �1� � � 	 � � 	 � � � � 	������ 	 � � � 5 � � �(� 	������ 	 �0� � � 	 � �� 	 � � � � 	������ 	 � � � �� (3.20)



48 Sequential SSSP Algorithms

for each
� � � � � 	������ 	 � � � � � � � " � � � � � , and then build the weighted sum over all combina-

tions.
We shall use Lemma 25 as follows: � � � � � 	���� denotes the weight of the



-th edge of

the input graph for
� � 
 � � ; hence, the random variables � � 	������ 	 � � are independent.

For
�

we substitute the function (3.14) concerning the running time of SP-C*. The ‘bad’
subset � contains those edge-weight vectors for which the event � ��� � does not hold. By
Lemma 24, � � � ��� � � � � 5 � � � for � � ����� � � � ��� � # � 	 � # 
 . Thus, � � � ��� � � � � � .

It remains to bound � � � � � for all � �� � using (3.20): we know that ��� � � ��� � holds for
the prefix

� � � 	������ 	 �0� � � � ; if � � � � ��� � also holds for the suffix
� �$� 	������ 	 � � � then this implies

� � ��� � concerning the first 2�5 �
edges and the last � 5 2 edges of the graph. In that case

(which happens for the overwhelming number of suffixes since � � � � � � ��� � � � � 5 � � � ) we
can use the knowledge that � � ��� � holds in order to bound the maximum effect of arbitrarily
changing the value of the 2 -th coordinate in (3.20). In fact, for that case we will show in
the proof of Theorem 6 that (3.20) can be bounded from above by

# � � � 	 � ��� ��� ��� � where� ��� � � �
is some constant, and � � ����� � � � ��� � # � 	 � # 
 .

Otherwise, i.e., in the unlikely case that � � � � ��� � does not hold, then (3.20) can be
trivially bounded by � � according to (3.16). It follows that for any � ���� and all

� �32 � � ,

� � � � � � � � 5 � � � � � # � � � 	 � � � ��� ��� � � � � � �
� � � � � 	 � ��� ��� ��� � � � � � for

� � �
and � � ����� � � � ��� � # � 	 � # 
 �

Using Lemma 25 we find

� � � �$4 � � � ��� � � � � ��� � � # �
���
� U � ��� V ��
	

� � � �
�
� � U � V� � ��� ��� � � � � � # � �� � � � U �HV�� � ��� ��� � � � � � # � � � �

if � � � ��� � � U � V . Hence,

� � � �04 � � � ��� � � � � ��� � � � 5 #6� � � �

for any constant
� � �

and any � � ����� � � � ��� � # � 	 � ��� � � U � V 
 .
Theorem 6 On arbitrary directed networks with random edge weights that are independent
and uniformly drawn from � � 	���� , SP-C* runs in

��� � � ��� time with high probability.

Proof: According to the discussion above it is sufficient to show that (3.20) can be bounded
from above by

# � � � 	 � � � ��� ��� � if the event � � ��� � holds for all edge weights excluding
� � � � 	 �

� � , the weight of the 2 -th edge in the input graph. We rewrite
�

in the form

� � �
���
�
� � � � �

�
����� 	 ��� � � � ��� � � � � � � �  � � �

����� 	 ��� � � � ��� � � � � � � �  � �

In the following, let � � - � denote the maximum change of some random variable - after a
modification of � � � � 	 �

� � .
By the definition of � � � � , as given in Lemma 11, modifying � � � � 	 �

� � does not influence
� � � � unless � � �

�
. Moreover, � � �

� � is bounded by the maximum height of the bucket
hierarchy. Hence, after an alteration of � � � � 	 �

� � , the value � � �
� � may change by at most� ����� � ��� � �

. In other words, � � � � �
� � � � � ����� � ��� � �

and � �  ���
� � � � � � � � ����� � ��� � �
,



3.8 A High–Probability Bound for SP-C* 49

too. The arguments for � � � � transfer to � � � � � , which was defined in Lemma 14: � � � � � �� ����� � ��� � �
; therefore, � � � � � �

� � � � � ����� � ����� �
whereas � � � � � � � � � � for any other

node � �� �
�
.

Let us turn to the random variable
� � � � � from Lemma 20. Recall that

� � � � � denotes the
number of non-self-loop edges out of � that have weight at most

# ��
������ � �	� ��� ��� 	�� � � . As � � ��� �
holds for all edge weights excluding � � � � 	 �

� � , we have
� � � � � � #�� * �� � ���4� � � � � � � � � �

for any � � � � �	� � 
 if � � ����� � � � ��� � # � 	 � # 
 . We find � � � � � � � � � � �
: depending

on � � � � 	 �
� � , the edge

� � � 	 �
� � either belongs to the set of light edges leaving � � or not.

Furthermore, � � � � � � � � � � for any � �� � � . Using the results above we deduce

� � �
���
� 	 � � � � � � � � � � � � � �  � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � # � * �� �

� � � ����� � ��� � � � � � � ����� � ��� � � � � � � � ��� � � � � � � � � � � � � � ��� � � � � � �
for some positive constant � ��� � .

Finally, we will examine how much  ����� � � � � � � � � � � � � � � � �  may change if � � � � 	 �
� �

is modified. Recall from Lemma 14 that � � � � � is defined to be  
 ����� � � � � ��#" 
 ����� � � �  � ��  . For

the edge
� � � 	 �

� � we consider node pairs from the sets
� � �� and

�� � �� where 2 ranges from����� � � ����� � degree
� � � � � 	 � ����� � degree

�
�
� � � 
 to � ����� � ��� � �

. The drawing below provides
an example.

v’ w’

CCi i
w’v’

Any node � �
�� � �� can be reached from �

�
via a simple

� # � � � -path in � � . Put
differently, �

� � � �� for every � �
�� � �� . If � � � � 	 �

� � is decreased, then the node � �
and further nodes of

� � �� may enter
� �� (if they did not belong to it before). Concretely

speaking,  � ��  may increase by at most
� �  � � ��  . On the other hand, if � � � � 	 �

� � grows
then  � ��  may shrink by at most

� �  � � ��  . Since � � ��� � holds for all edges excluding� � � 	 �
� � , we have  � ��  � � � � � � 	 	 � � � � � ��� ��� � for any � � � � � �	� � 
 , 2 � � ����� � ��� � �

and
� � � ��� � � � ��� � # � 	 � # 
 . Hence,

� � ��� � � � � � � � ����� � ��� � # � � � � � � � � 	 	 � � � ��� ��� ��� � � � � if � �
�� � �� for some � �

and � � � � � � � � � � otherwise. The event � � ��� � also implies  �� � ��  � � � � � � 	 	 � � � ��� ��� ��� � .
Thus,

� � �
���
�

��� � � ��� � � � ����� � ��� � # � � � � � � � � � 	 	 � � � ��� ��� ��� � � � � � �



50 Sequential SSSP Algorithms

It remains to incorporate the factor
� � � � � � � � � :

� � �
���
� 	 � � � � � � � � � � � � � �  � �

� ��� � � � � � � � � � � � � � � � � � �
���
�

��� � � � � � � � � # � * �� �
� � � ����� � ��� � # � � � � � � � 	 	 � � � ��� ��� ��� � �� � ����� � ��� � # � � � � � � � � � 	 	 � � � � � ��� ��� � � � � � � � � � ��� � � � � � � � � � � �
� � � 	 � � � ��� ��� � for some positive constant

� ��� � �
In fact,

� ��� � can be chosen in a way that

� � � � � � � �
���
�
� � � � � � � � �

���
� 	 � � � � � ��� � � � � � � �  � � �
� � �
���
� 	 ��� � � � ��� � � � � � � �  � �

� � ����� � ��� � � � � ��� � � � � � � � � � 	 � ��� ��� ��� � � #6� � � 	 � ��� ��� ��� �
if � � ����� � � � ��� � # � 	 � # 
 .

3.9 Implications for the Analysis of other SSSP Algorithms

In this section we will re-use the analysis for the bucket-splitting algorithms SP-C and
SP-C* (Sections 3.6 and 3.8) in order to yield average-case results for simpler SSSP al-
gorithms. We consider the “Approximate Bucket Implementation of Dijkstra’s algorithm”
(ABI-Dijkstra) [25], which we already sketched in Section 3.3, and our refinement, the
sequential � -Stepping.

3.9.1 ABI-Dijkstra and the Sequential
�

-Stepping

The � -Stepping algorithm maintains a one-dimensional array � of buckets where � � 2 �
stores the set �	� � � � � is queued and

+����1+ � � � � � 2 � � 	 � 2 � � � � � � 
 . As before, the
parameter � is a positive real number, which is also called the “bucket width”. Let � max

� ������ � ��	 � � � � denote the maximum edge weight. For maximum shortest-path weight � ������ � &('*),+ � % 	 � �  &('#),+ � % 	 � ��� - 
 , the algorithm traverses ���� � buckets. However, by cycli-
cally reusing empty buckets, only space for

�
max ���  max� � � �

buckets is needed. In that
case, a node � with tentative distance

+����1+ � � � is kept in bucket � � � +����1+ � � � � ��� � � & �
max

�
.

The � -Stepping approach distinguishes light edges and heavy edges: a light edge has
weight at most � , the weight of a heavy edge is larger than � . In each phase, the algorithm
scans all 4 nodes from the first nonempty bucket (current bucket) and relaxes all light edges

4Similar to the bucket-splitting approaches, the nodes of the current bucket could also be scanned one-by-
one in FIFO order. However, in view of the parallelizations in Chapter 4 we consider them in phases already
now.



3.9 Implications for the Analysis of other SSSP Algorithms 51

out of these nodes. The relaxation of heavy edges is not needed at this time since they can
only result in tentative distances outside of the scope of the current bucket, i.e., they will
not insert nodes into the current bucket. Once the current bucket finally remains empty
after a phase, all nodes in its distance range have been assigned their final distance values
during the previous phase(s). Subsequently, all heavy edges emanating from these nodes are
relaxed once and for all. Then the algorithm sequentially searches for the next nonempty
bucket. As in the case of SP-C and SP-C*, single buckets of the array can be implemented
as doubly linked lists; inserting or deleting a node, finding a bucket for a given tentative
distance and skipping an empty bucket can be done in constant time. A simple preprocessing
can restructure the adjacency lists in order to support efficient access to the subsets of light
edges.

The ABI-Dijkstra algorithm can essentially be seen as the sequential � -Stepping with-
out distinction between light and heavy edges, i.e., all outgoing edges of a scanned node are
relaxed immediately.

In the following we will transfer our analysis on the average-case number of node res-
cans from SP-C and SP-C* to ABI-Dijkstra and � -Stepping, respectively:

Theorem 7 Consider directed graphs with � nodes, � edges and independent random edge
weights uniformly distributed in � � 	���� . Let * � and � � denote upper bounds5 on the maximum
node degree * and the maximum shortest-path weight � , respectively. Choosing the bucket
width as � � � # ��
 ����� � � � , ABI-Dijkstra and � -Stepping run in

��� � � � � 4 � * � � � � time on
the average. Additionally, for � � � # ��
 ����� � � � � , the � -Stepping algorithm requires

��� � �
� � * � � � � � time with high probability. Both algorithms need

��� � � ��� time in the worst
case.

Proof: We examine a reformulation of the algorithms SP-C and SP-C* with
# 
 ����� � � � �� � # � * � �

initial buckets at level � , each of them having width � � � � # ��
 ����� � � � .
Scanning low-degree nodes from buckets of reduced width will clearly not increase the
probability of rescans. Furthermore, due to the revised choice of � � none of the initial
buckets will ever be split. Hence, the bucket structure remains one-dimensional, and target-
bucket searches always succeed in constant time. In other words, for the chosen bucket
widths, the reformulated algorithms SP-C and SP-C* coincide with ABI-Dijkstra and � -
Stepping, respectively.

As compared to the standard versions of SP-C and SP-C*, at most
�

�� ��� � ��� ����� � � #$� * � �
extra buckets may have to be traversed. Therefore, disregarding

��� 4 � * � � � � additional oper-
ations, the asymptotic average-case performances of ABI-Dijkstra and � -Stepping reduce
to those of the standard versions SP-C and SP-C*, respectively. The average-case bounds
follow from Theorem 5 and Lemma 21. If * ��* � and � � � � then the high-probability
bound for the � -Stepping is inherited from Theorem 6.

Using * � � � ��� � � ��� for arbitrary edge weights in � � 	���� the worst-case running-times
are easily derived from the proofs of Theorem 4 and Lemma 19.

5Actually, it is sufficient if these bounds hold with high probability.



52 Sequential SSSP Algorithms

3.9.2 Graphs with Constant Maximum Node-Degree

By Theorem 7, both ABI-Dijkstra and the sequential � -Stepping run in linear average-case
time on graphs with independent random edge weights uniformly distributed in � � 	���� where
the term 4 � * � � � concerning the chosen source % is bounded by

��� � � ��� . For the edge
weights under consideration, we have the trivial bound � � � that is valid for arbitrary
directed graphs and any choice of the source node. Therefore:

Corollary 5 ABI-Dijkstra has linear average-case complexity on arbitrary directed graphs
with random edge weights and constant maximum node degree. For the same graph class,
the sequential � -Stepping algorithm runs in linear time with high probability.

Important graph families with small constant degree – thus implying linear average-case
time – frequently arise for transportation and communication problems. Furthermore, grid-
graphs of small dimensions where a certain fraction of edges is missing frequently occur in
applications of percolation research [73].

Another important input family that can be efficiently tackled by ABI-Dijkstra and the
� -Stepping is the class of random graphs with random edge weights, which we will con-
sider in the next subsection.

3.9.3 Random Graphs

Over the last forty years, the theory of random graphs [17, 46] has developed into an in-
dependent and fast-growing branch of mathematics with applications to reliability of trans-
portation and communication networks or natural and social sciences. Frequently, random
graphs are chosen to average the performance of an algorithm over all possible structural
inputs.

We use the random digraph model
� � � 	��* � � � , which was introduced by Angluin and

Valiant [9]. An instance of
� � � 	 �* � � � is a directed graph with � nodes where each edge

is present with probability
�* � � , independently of the presence or absence of other edges.

Hence, each node has expected out-degree (and in-degree)
�* .

Let us turn to the maximum node degree * of a random graph. There are deep results on
this topic partially taking into account the whole degree sequence of random graphs, e.g.,
see [16, 101, 126]. However, for our purposes, a very simple proof yields a sufficient bound:

Lemma 26 Let � � ��� 	�� � be a random graph from
� � � 	 �* � � � . The maximum node

degree * satisfies * � �����* � ����� � � whp.

Proof: Define � �  � to be the binary random variable that is one if
� � 	 � � � �

, and zero
otherwise. Let � � (

� � ) denote the number of outgoing (incoming) edges of node � . Hence,4 � � � � �  � �
� 4 � � �  � � � �* and 4 � � � � �. � �
� 4 � � �  � � � �* � Using the formula of the
Chernoff bound from Lemma 7 we find

� � � � � � � � � � ���* � �6� � � � � � � � � � ���* � � � � ���� ��� �  � ������ ��� �
Note the dependence between � � and

� � caused by the edge
� � 	 � � . However, using Boole’s

inequality, each in-degree and each out-degree of � is at most
� � � � � � �* with probability

at least
� 5 # � � � � � ���� ��� �  � ��� �� ��� . Choosing � � ����� � � � � �* � � � � � # � �	� � � 	 � 
 for



3.10 Lower Bounds 53

some arbitrary constant � � �
, we find that the sum of maximum in-degree and maximum

out-degree exceeds
# � ����� � # � �* 	 �* � � � � � � # � � � � � 
 with probability at most � �  .

Next we examine the maximum shortest-path weight � of random graphs with indepen-
dent random edge weights uniformly distributed in � � 	���� . Again, we can rely on intensive
previous work: in order to bound � for sparse random graphs with random edge weights
we can use a known result on the their diameter. Let � '��() '���� � � 	 � � denote the minimum
number of edges needed among all paths from � to � in a graph � � ���
	�� � if any, 5 -
otherwise. Then the diameter of � is defined to be � � � ����� �  ���
� � � '��() '���� � � 	 � � 	�� 
 . Reif
and Spirakis [125] gave the following bound on the diameter of random graphs:

Lemma 27 ([125]) The diameter of a random directed graph from
� � � 	��* � � � is bounded

by
��������� � � with probability at least

� 5 � �  for some arbitrary constant � � �
and for all

�* � � � � � 	���� 5 � � � � � 	 # � � � � � � where � � � �
is some constant that depends on � .

Since each edge has weight at most one, � � ��������� � � whp for nearly all choices of
�* .

However, the more random edges are added to the graph, the smaller the expected max-
imum shortest-path weight: based on a careful review of [57, 80], Priebe [120] shows
� � ��� ����� ��� � whp for

�* � � � ����� � where
�

is some sufficiently large constant. Combining
these observations we can immediately deduce the following simple bound (we will show a
stronger result in Chapter 4):

Corollary 6 For a directed random graph from
� � � 	 �* � � � with independent random edge

weights uniformly distributed in � � 	���� , the maximum shortest-path weight � is bounded by��� ����� � �
�� � whp for all

�* � # � � � where � � � �
is the constant from Lemma 27.

Consequently, by Lemma 26 and Corollary 6, * � � � ��� � �* � ����� � � � �����
� �
�� � � ��������� � � �

with probability at least
� 5 # � � �  for some arbitrary constant � � �

. Hence, taking � � #
and recalling the worst-case bound * � � � ��� � � � , this implies 4 � * � � � � ��������� � � � � # �
� �  � ��� � � � � ��������� � � � . Therefore, we conclude the following from Theorem 7:

Corollary 7 Assuming independent random edge weights uniformly distributed in � � 	���� ,
ABI-Dijkstra and � -Stepping run in linear average-case time on directed random graphs
from

� � � 	 �* � � � where
�* � # � � � for the constant � � of Lemma 27. On this graph class, the

� -Stepping even runs in linear time with high probability.

So far we have given upper bounds on the average-case complexity of some sequential
SSSP algorithms. In the following section we will provide superlinear lower bounds on the
average-case running time of certain SSSP algorithms.

3.10 Lower Bounds

Looking at the average-case performance of the sequential SSSP approaches considered so
far, one might conclude that random edge weights automatically result in good algorithmic
performance. Limitations for simple algorithms like ABI-Dijkstra as seen for graph classes
with high maximum degree * might be artifacts of a poor analysis. For example, up to



54 Sequential SSSP Algorithms

now we have not excluded that taking a bucket width � � � � * � for ABI-Dijkstra would still
reasonably bound the overhead for node rescans while the resulting reduction of the number
of buckets to be traversed might facilitate linear average-case time. In this section we tackle
questions of that kind. We provide graph classes with random edge weights that force
a number of well-known label-correcting SSSP algorithms into superlinear average-case
time.

Worst-case inputs for label-correcting algorithms are usually based on the following
principle: Paths with a few edges are found earlier but longer paths have smaller total
weights and hence lead to improvements on the tentative distances. Each such improvement
triggers a node rescan (and potentially many edge re-relaxations), which eventually make
the computation expensive. We shall elucidate this strategy for the Bellman–Ford algorithm.

The shortest-paths algorithm of Bellman–Ford [15, 50], BF for short, is the classical
label-correcting approach. It maintains the set of labeled nodes in a FIFO queue % . The
next node � to be scanned is removed from the head of the queue; a node � �� % whose
tentative distance is reduced after the relaxation of the edge

� � 	 � � is appended to the tail of
the queue; if � already belongs to % then it will not be appended. We define a round of BF
by induction: the initialization, during which the source node is added to % , is round zero.
For 2 � � , round 2 scans the nodes that were added to the queue during round 2 5 �

.

Fixed Edge Weights

Now we explicitly construct a difficult input graph class with fixed edge weights for BF; see
Figure 3.7 for a concrete instance. Let us call the class � �

�
� � 	 � � . The shortest path from

the single source % � ��� to the node � � � � is given by � ��� ��� 	 ��� 	������ 	 � � � � 	 � � � . Each
edge on � has weight one. Furthermore, there are edges

� ��� 	 � � , � � 2 � �
, having weight

� � ��� 	 � � � # � ��� 5 2 ��5 �
. Let us assume that these edges appear first in the adjacency lists

of their respective source nodes. Finally, � has � 5 � 5 �
outgoing edges to nodes that are

not part of � . Hence, for any choice of
�
, � �

�
� � 	 � � consists of at most

# � � edges.

1111

357

q=vvvvs=v 1 2 3 r0

Figure 3.7: Difficult input graph � �
�
� � � 	 � � with fixed edge weights. It causes the

Bellman–Ford algorithm to scan node � four times.

For this graph class,
���

shows the following behavior: at the beginning of round 2 ,� � 2 � � 5 �
, the nodes ��� and � are in % with

+����0+ �
� � � #	� � 532 and

+����0+ � ��� � ��2 ,
respectively. Due to the order of the adjacency lists and the FIFO processing, � will be
scanned before ��� in round 2 . Scanning ��� first reduces

+����1+ �
� � to 2 � #�� ��� 5 2 � 5 � � #�� � 5 2 5 �

,
thus adding � to % again; then the node scan of �1� also relaxes the edge

� ��� 	 ��� � � � , hence
reducing

+����0+ � ��� � � � to 2 � �
. However, since the edge

� �0� 	 ��� � � � is relaxed after the edge� ��� 	 � � , the node ��� � � is appended to % after � is already in % again. This maintains the
malicious setting for the next round. Altogether, � is scanned

�
times. Each scan of �



3.10 Lower Bounds 55

relaxes all its � 5 � 5 �
outgoing edges. If we choose

� � � � # , then BF performs � � � � �
operations for this graph with

��� � � edges with fixed weights.
For random edge weights it is unlikely that a given long path has a small total path

weight (e.g., compare Lemma 17 for paths of total weight at most 1). Moreover, the ex-
pected path weight is linear in the number of edges. In fact, if we replace the fixed edge
weights in the graph class above by random edge weights then the expected number of
rescans of � is constant and therefore the expected time for BF is linear in that case.

3.10.1 Emulating Fixed Edge Weights

Our main idea for the construction of difficult graphs with random edge weights is to emu-
late single edges � � having fixed weight by whole subgraphs � � with random edge weights.
Each � � contains exactly one source % � and one sink ��� . Furthermore, the subgraphs are
pairwise edge-disjoint and can only share sources and sinks. Each subgraph � � is built by a
chain of so-called

� � 	 � 	 � � -gadgets:

Definition 4 An
� � 	 � 	 � � -gadget consists of � � # nodes � , � , � � 	������ 	 � � and the

# � � edges� � 	 � � � and
�

� � 	 � � . The parameter � is called the blow-up factor of a gadget.

As before, we will assume that random edge weights are independent and uniformly drawn
from � � 	���� .
Lemma 28 The expected shortest path weight between � and � in a

� � 	 � 	�� � -gadget is
�
,

in a
� � 	 � 	 # � -gadget it is

# � � � � .

Proof: For � � �
, there is only one � - � path in the

� � 	 � 	�� � -gadget and its expected total
weight is clearly

# � � � # � �
.

For � � # , let - � and - � be the random variables that denote the weight of the paths
� � 	 � � 	 �� and � � 	 � � 	 ��� , respectively. Let

� � � � � denote the density function for the weight
of the single edge � :

� � � � � � � �
� for

� �0� � �
otherwise

Using the definition above, the density function for - � is given by

���
�
� � � �

� � (
�)( � 	 �  � � � ��1 � � � 	 � �  � � � � 5 1 � * 1

�
� ������ �  ' ������ � �  ' � � � � � � * 1 �

� � # 5 � for
� �,� � �
� �,� � #

The distribution function for the shortest path weight in a
� � 	 � 	 # � -gadget is given by

� � � � � � 5 	 � 5 � 

�
��� � � � � * � � � 	 � 5 � 


�
��� � � � �	*+� �

�
� ��
 �

� � � �
��
 �
� � # � � � 5 � � � � � � �

� 5 � for
� � � � �
� � � � #��

Finally, 4 � � '�� �3- � 	 - � 
 � � � �
� � � �

� � �	*+�



56 Sequential SSSP Algorithms

where

�
�

� � �
� 5 � � � # � �

5 � � � � � � � 5 ��# �
� � � for

� � � � �
� � � � #

denotes the derivative of � � � � . A simple calculation yields

4 � � '�� �3- � 	 - � 
 � �
� �
� 5 � � � #6� � � * � � � �

� 5 � � � �6� � � 5 ��# � � � � � � � * �
�

�
� � �

�� � �
# �
� �

�

Large fixed edge weights are emulated by chains of

 � �

gadgets, each of which has blow-
up factor one. Smaller fixed weights are emulated using either fewer gadgets or higher
blow-up factors for a fraction of the gadgets in their respective subgraphs. If we take the
parameter



large enough then the actual shortest path weights in the chain subgraphs of

gadgets will just slightly deviate from their expected values with high probability. In case
the gradations between these expected values are much higher than the deviations then the
emulated behavior will be as desired.

3.10.2 Inputs for Algorithms of the List Class

Now we provide a concrete conversion example, which works for several SSSP label-
correcting algorithms that apply simple list data-structures (like FIFO queues), among them
the Bellman–Ford algorithm. As a basis we use the input class � �

�
� � 	 � � with fixed edge

weights of Figure 3.7. Let � � � � � � � be some arbitrary constant. The new input class
with random edge weights – called � � � � 	 � � – is derived as follows: the fixed-weight edges
entering the node � in � �

�
� � 	 � � are replaced by

� � � � ��� � � subgraphs � � , � � 2 � �
,

each of which consists of a chain with

 � � � ��� gadgets. More specifically, � � contains� 2 � � � ��� ��� � ��� 	�� 	 # � -gadgets whereas the remaining


 5 2 � � � ��� ��� gadgets in �$� have blow-up
factor one. Altogether this accounts for � � � � gadgets, that is at most

� � � � � � nodes and
edges. Each �$� is reachable from % along a chain of 2 � �

auxiliary edges; one further
edge connects each � � to � . Thus, the shortest path � � from % to � through � � comprises# � � � ��� � 2 � # edges. Figure 3.8 shows the principle. All these auxiliary edges account for
at most another � � � � ��� � � nodes and edges in the graph. Finally, � has outgoing edges to the
remaining

" � � � nodes of the graph. Hence, � � � � 	 � � consists of
" � � � edges. Similarly to

� �
�
� � 	 � � , the adjacency lists of the nodes % � �1� 	 ��� 	������ 	 � � � � are ordered in a way that

the edge
� � � 	 � � � is relaxed first when � � is scanned.

Let � � be the random variable denoting the weight of the shortest path �6� from % to �
through � � in � � � � 	 � � . Due to the auxiliary edges that connect � � with % , we find

� � � � � � 
 5 2 � � � � � � � � ��� ��� � � 2 � # � � #��
Hence,

� � � � � 5 � � � � � � � � � � � � � � � ��� ��� 5 � � # . We will make use of yet another variant
of the Chernoff bounds in order to show that � � � � � � � with high probability:



3.10 Lower Bounds 57

S

S

S

S

qs v v v
1 2 r−1

0

r−1

1

2

Figure 3.8: An instance of the graph class � � � � 	 � � with random edge weights; it is designed
to cause large average-case running-times for label-correcting SSSP algorithms of the list
class.

Lemma 29 ([45, 82]) Let the random variables � � 	������ 	 � � be independent, with ��� �� �	� � � for each � , for some arbitrary reals �(� , � � . Let � �. � � � . Then for any � � � ,

� � �� 5 4 � � �  � � � � # � � ��� 	 5 #6� � �
 � � � �65 ��� � �

� �
(3.21)

Lemma 30 Let � be the event that the random variables � � for the weight of the shortest
path � � from % to � through � � in � � � � 	 � � satisfy

� � � � � � �����
� � � � ��� ��� � � �

For every constant � � � � � � � and sufficiently large � , � holds with probability at least� 5 � � � � .
Proof: Lemma 29 is applied as follows: for � � �

, � � is the sum of � � ��� � 2 � # � # � � � ���
independent random variables: � � ��� random variables for the shortest-path distances of the
respective � � ��� gadgets in �$� , and 2 � # random variables for the weights of the external
edges that connect � � with % and � . Each of these random variables takes values in the
interval � � 	 # � . Thus,

� �  � � 5 4 � � � � �� � � � � ��� ��� � � � � #6� � ��� � 5 #6� � � � � � ��� ���#6� � � ��� � � � � #6� � � � � � � �
By Boole’s inequality,  � � 5 4 � � � �  � � � � � ��� ��� � � for all 2 , � � 2 � � � ��� � � , with
probability at least

� 5 # � � � ��� � � � � � � � � � � � 5 � � � � for ��� - . We still have to check
that  � �$5 4 � � � �  � � � � � ��� ��� � � and  � � � � 5 4 � � � � � �  � � � � � ��� ����� � together imply� � � � � � � :

� � 5 � � � � � 4 � � � � 5 � � � � ��� ��� � � 5 � 4 � � � � � � � � � � � ��� ����� �  
� � � � � � � � ��� ��� 5 � � # 5 � � � � ��� ����� � � � for �	� - �



58 Sequential SSSP Algorithms

If the event � holds then we have achieved our main emulation goal: paths from % to � of
larger size (i.e., more edges) have smaller total weight. In the following we study how some
label-correcting algorithms perform on graphs from � � � � 	 � � if � holds.

The Bellman–Ford Algorithm

The graph class � � � � 	 � � was derived from the input class � �
�
� � 	 � � , which had been tuned

to the Bellman–Ford algorithm. Therefore, most of the subsequent observations are simple
consequences of the discussion in Section 3.10. If the event � of Lemma 30 holds then the
following actions take place: The node � is first reached via the shortest path � � through the
subgraph � � ; � will be queued. However, � will have been removed from the queue before
the outgoing edge of the last node in ��� will be relaxed. The relaxation via � � improves+����1+ �

� � ; therefore, � is queued again. After the removal of � ,
+����0+ �

� � is improved via � � ,
etc. Consequently, the node � is scanned

�
times. Each time � is scanned, its

" � � � outgoing
edges are relaxed. Thus, if � holds, then BF requires non-linear

" � � � ��� � � � operations on
graphs from � � � � 	 � � .
Lemma 31 There are input graphs with

��� � � nodes and edges and random edge weights
such that the Bellman–Ford algorithm with a FIFO queue requires

" � � � ��� � � � operations
whp for any constant ��� � � � � � .

Proof: Follows immediately from the discussion above.

Implementations of the BF algorithm often apply the so-called parent-checking heuristic:
the outgoing edges of a node � in the queue are only relaxed if � ’s parent, � , concerning
the current shortest path tree is not in the queue as well; otherwise

+����1+ � � � was recently
improved and

+����0+ � � � is surely not final. Consequently, � is discarded from the queue.
The heuristic does not improve the performance of the Bellman-Ford algorithm on

graphs from � � � � 	 � � : the only nodes affected by this heuristic are the successor nodes
of � when

+����0+ �
� � is improved. However, none of these nodes has outgoing edges; remov-

ing them from the queue is asymptotically as costly as scanning them.
The input class � � � � 	 � � also yields poor performance on other SSSP label-correcting

approaches belonging to the category of list algorithms. In the following we briefly con-
sider two examples: the incremental graph algorithm of Pallottino [117] and the topological
ordering algorithm of Goldberg and Radzik [69].

The Algorithms of Pallottino and Goldberg–Radzik

Pallottino’s algorithm [117] – PAL for short – maintains two FIFO queues % � and % � .
Labeled nodes that have been scanned at least once are stored in % � whereas labeled nodes
that have never been scanned are maintained in %	� . At any time, each node is in at most
one queue. The next node to be scanned is removed from the head of % � if this queue is not
empty and from the head of % � otherwise. Initially, % � is empty and % � holds the source
node % . If

+����0+ � � � is reduced due a relaxation of the edge
� � 	 � � while scanning � then � is

only added to either % � or % � if it is currently not stored in any of them: if � was scanned
before then it will be added to the tail of % � , or to the tail of % � otherwise. This approach



3.10 Lower Bounds 59

has worst-case execution time
��� � � � ��� but performs very well on many practical inputs

[25, 145].
Due to the structure of our graph class � � � � 	 � � the only nodes that can ever appear in

queue % � are the node � and its immediate successors. Similarly to the BF algorithm the
FIFO queues in PAL enforce that � is reached via paths � � in order of increasing 2 . Since� � � � � � �����

� � � � � whp, PAL frequently puts � into % � and thus relaxes the
" � � �

outgoing edges of � before the computation carries on. Altogether PAL needs
" � � � ��� � � �

operations whp.

The algorithm of Goldberg and Radzik [69], abbreviated GOR, maintains two sets of
nodes, % � and % � , as well. Initially, % � is empty and % � contains the starting node. At the
beginning of each round, the basic version of GOR builds % � based on % � and makes % � the
empty set. % � is linearly ordered. During a round, the nodes are scanned from % � according
to this order; target nodes whose tentative distances are reduced by the scanning will be put
into % � . After % � is empty it is refilled as follows: let % � be the set of nodes reachable from
% � via edges

� � 	 � � in the subgraph � � having reduced costs
+����1+ � � � � � � � 	 � � 5 +����1+ � � � � � .

Using depth first search, % � is assigned the topologically sorted6 set % � such that for every
pair of nodes � and � in % � with

� � 	 � � � � � , � precedes � in % � . Thus,
� � 	 � � will be

relaxed before � is scanned from % � .
An edge

� � 	 � � � �
with

+����1+ � � � � - and
+����1+ � � � � - only belongs to � � if

� � � 	 � � � � . Let �
�

be the event that the input graph � � � � 	 � � contains no edges with
weight zero. For independent random edge weights uniformly drawn from � � 	���� , � �

holds
with probability

�
. Given �

�
, it is easily shown by induction that (1) in the � -th round,

GOR scans nodes that are reachable from % via paths of at most
#	� � edges; (2) the DFS

search in � � at the end of round � only finds nodes that can be reached from % in � � � � 	 � �
via paths of at most

# � � � # edges.
If the event � of Lemma 30 and �

�
hold then the node � of � � � � 	 � � is scanned for the

first time in round � � ��� � �
, based on a path from % to � via � � having

# � � � ��� � # edges. The
next better paths via � � and �$� comprise

# � � � ��� � � edges and
# � � � ��� � �

edges, respectively;
thus, they are not discovered by the DFS search at the end of round � � ��� . Therefore, the
respective last nodes of � � and �$� are not scanned before � in round � � ��� � �

. Similarly,
a rescan of � during round � � ��� � � � 2 is due to a path from % to � though � � � � ; none of
the better paths via � � � � � � 	������ 	 � � � � has been found by the previous DFS searches. Thus,
once � has been reached for the first time in round � � ��� � �

, its
" � � � outgoing edges will

be re-relaxed during each of the next � ��� 5 � � � # � phases again. We conclude that �����
requires � � � � ��� � � � operations if � and �

�
hold, which happens with high probability.

3.10.3 Examples for Algorithms with Approximate Priority Queues

After having discussed difficult input graphs with random edge weights for some algorithms
with simple list data structures in Section 3.10.2, we now turn to SSSP algorithms which
apply some simple “approximate” priority queues.

6Topological sorting of � � is possible for nonnegative edge weights, since there are no cycles with negative
total weight in � � ; cycles of weight zero are either contracted or the respective back edges discovered during
the DFS computation are deleted from � � .



60 Sequential SSSP Algorithms

Simple Bucket Approaches

Let us reconsider the sequential � -Stepping approach of Section 3.9.1 that applies an array
� � � � with buckets of width � . For maximum node degree * and maximum shortest-path
weight � , our analysis showed that it is sufficient to take buckets of width � � " � � � * �
in order to limit the average-case overhead for node rescans and edge re-relaxations by��� � � ��� . However, ��� � � � � " � � � * � buckets have to be traversed for that choice of � .
The resulting total average-case time

��� 4 � � � * � � � � ��� may be largely dominated by the
term 4 � � � * � . To which extent can � be increased in order to find an optimal compromise
between the number of traversed buckets and the overhead due to node rescans?

In the following we will show that there are graphs with
��� � � edges where any fixed

bucket width � results in � � � � � ����� � � ����������� � � operations on the average. This provides
another motivation for the need of improved algorithms like the adaptive bucket splitting
approaches SP-C and SP-S.

In principle, we would like to re-use the graph class � � � � 	 � � of Section 3.10.2 in order
to construct difficult inputs for the � -Stepping. But there, in order to deal with random
deviations, single fixed edge weights had been emulated by long chains of � � ��� gadgets
with random edge weights; each chain accounted for a total path-weight of

" � � � ��� � on
the average. Our analysis for SP-C (and the � -Stepping), however, pointed out that node
rescans can be attributed to paths of small total weight (at most � � �

). Therefore, we
will design another input class for the � -Stepping, featuring short chains and gadgets with
rapidly increasing blow-up factors. The following lemma bounds the probability that the
shortest path weight of a single

� � 	 � 	 � � -gadget deviates too much from its expected value:

Lemma 32 The shortest path weight between the nodes � and � in a
� � 	 � 	 � � -gadget, � �

� � � � , lies in the interval
� �

� � � ��� � 	 ��� �� � � with probability at least
� 5 ���� � � for � � # � .

Proof: As in the proof of Lemma 28, let - � be the random variable denoting the weight
of the path � � 	 � � 	 ��� via the intermediate node � � within the gadget. Furthermore, let
� � � '�� � - � be the weight of the shortest path between � and � . The density function
for - � is given by

� �
�
� � � � � if � � � � �

(compare the proof of Lemma 28), hence� � - � �,� � � � � # � � � for � �0� � �
. Therefore,

� �
� �

�

 � � � � � � � 	 � 5 �

# �
�

� � � � � �
� � � � 5

�
# �

�
� ��� � � �

� � � � 5
�

� � � � �

In order to show � �
� � ��� �

� � � � � 5 ��� ���� � �  , let � � be a binary random variable such

that � � � �
if both � � � 	 � � � � ��� �� � � � and � � � � 	 � � � ��� �� � � � , and � � � � otherwise. Due to

independent random edge weights, � � � � � � � � � 5 ��� � �
� � � . Clearly, � � ��� �

� � if  � � � � �
.

Hence,

� �
� �

� � �

 � � �0�

� �
� � � � � � � � 5 	 � 5 � � � �

� � �
� � � � 5 � � � �

� �
� � � 5

�
� � � �

for � � # � . Therefore, by Boole’s inequality, � � �
� � � ��� � � � � ��� �

� � � � � 5 ���� � � �



3.10 Lower Bounds 61

Lemma 32 is used in the construction of a difficult graph class for the � -Stepping algorithm:

Lemma 33 There are input graphs with
��� � � nodes and edges and random edge weights

such that the � -Stepping algorithm requires � � � � � ����� � � ����������� � � operations on the
average, no matter how � is chosen.

Proof: Consider the following graph class: from the starting node % to some node � with
� � � outgoing edges there are

�
chains

� � 	������ 	 � � of gadgets. Node % is the entering node
of the first gadget of each chain. Similarly, � is the leaving node of the last gadget of each
chain. Chain

� � , � � 24� �
, consists of 2 gadgets � � with blow-up factor �0� � � � � � � � each.

Finally, a separate chain �
�

of � � � edges branches from node % as well; compare Figure 3.9.

k k

G G G

k k

k k

s q

G G

C
~

G1 1

r r r

2 2

r r

2 2

1

Figure 3.9: Difficult input class for the � -Stepping algorithm. Chain
� � consists of 2 gad-

gets � � with blow-up factor � � � � � � � � � each. An extra chain �
�

causes a high maximum
shortest-path weight on the average.

Due to �
�

, the average-case maximum shortest-path weight in the graph satisfies 4 � � � �
� � � . Thus, if the bucket width is chosen as � � �	��� ��� ��� ���� � ( � �

for � � - ) then the

� -Stepping algorithm has to traverse at least 4 � � � � � � � 	 � � � ��� ���� ��� � � buckets on the

average. Henceforth we will assume
� � � �

� ��� ��� ��� ���� � .
Let ��� denote the number of light edges ( � � � � � � ) emanating from node � . Unless+����1+ �
� � � &('*),+ �

� � , the � -Stepping algorithm only relaxes light edges out of � . We find4 � ��� � � � � � � � � # � � � � ��� ��� ���� � . By Chernoff bounds (Lemma 7),

� � � � � 4 � ��� �# � � � � � � #�� � ��� � � �
�
� �
	 � ��� ���� ��� �

�
# � for � � # � �

Having
�

chains
� � , . . . ,

�
� accounts for a total of  ���(� � � 2 � � � gadgets. We aim to

choose
�

large under the condition that all these gadgets contribute at most � � � nodes and#�� � � � edges in total. It is sufficient to consider the inequality
� � � � � � � � � � � � �4� � � � ; after

some simple transformations it turns out that
� � ��� ��,� � ��� ��� � is a feasible choice for � � # � .



62 Sequential SSSP Algorithms

By Lemma 32, the weight of the shortest path within each single gadget of
� � exceeds

the interval
� �

� � � � ��� � 	 ��� �� � � � with probability at most ���� � � if � � # � .
Let � be the event that the shortest-path weights of all gadgets are bounded as stated

above, and that node � has at least 4 � � � � � # outgoing light edges. Hence,

� � � � � � 5
�
# � 5

� � � #
� � � � � � 5

�
# � 5

� � � �
� � � � ��� � � � � � �

� #
� � � � � � 5

�
# � 5

�
# � � ���� �

�

Let � � be the shortest-path weight of chain
� � . If � holds, then

� � � 2
 ��� � � � � �
� 2 � � � � � � �
 ��� � � � � � �

� 2 � � � � � � �
� � � � � � � � � � 	 (3.22)

and therefore � � � � � � �����
� � � with probability at least

�� � . In other words, given
� , we managed to produce an input graph where paths from % to � of larger size (i.e., more
edges) have smaller total weight. How often � is scanned and how many outgoing (light)
edges of � are relaxed during these scans depends on the chosen bucket width � : however,

if � holds and � �
� � � ��� ��� ���� � , already the shortest-path from % to � through

� � , �/% 	 ���  � 	 ��� ,
has total weight at most

��� �
� ����� � � ���� � � � � . Therefore, % , � �  � , and � are scanned from the

current bucket � � � � in phases
�
,
#
, and � , respectively. In phase � , the node � is scanned

from � � � � again since the � -Stepping finds a better path �/% 	 ���  � 	 ���  � 	 ���  � 	 ��� through
� � .

Altogether, if � holds and � �
� � � ��� ��� ���� � then � is scanned

� � ��� ��,� � ��� ��� � times. Each

such scan involves the relaxation of at least 4 � � � � � # � � � � ��� ��� ���� � light edges leaving � .

Hence – given � – the � -Stepping performs at least
��,� � � ��� ���� ��� � edge relaxations. The

claim follows from the fact that � holds with probability at least � �
� � .

The “Approximate Bucket Implementation” [25] of Dijkstra’s algorithm (ABI-Dijkstra)
essentially boils down to the sequential � -Stepping without distinction between light and
heavy edges, i.e., all outgoing edges of a removed node are relaxed. Hence, repeating the
two parts of the proof above for either � � � � � � � � � � � or � � � � � � � � � � � when all
edges out of node � are relaxed after each removal of � yields:

Corollary 8 There are graphs with
��� � � nodes and edges and random edge weights such

that ABI-Dijkstra requires � � � � ����� � � ����������� � � operations on the average.

A comparison between Lemma 33 and Corollary 8 seems to reveal an advantage of the
� -Stepping over ABI-Dijkstra due to the distinction of light and heavy edges: for the un-
derlying graph class and a proper choice of � , the � -Stepping approach computes SSSP
in
" � � � � ����� � � ����� ����� � � time on the average, whereas ABI-Dijkstra requires � � � �

����� � � ����� ����� � � operations on the average. However, it might still be possible to con-
struct graphs with

��� � � nodes and edges and random edge weights where both approaches
provably need � � � � ����� � � ����������� � � operations on the average.

Threshold Algorithm

Glover et al. suggested several variants [64, 65, 66] of a method which combines ideas lying
behind the algorithms of Bellman–Ford and Dijkstra: the set of queued nodes is partitioned



3.10 Lower Bounds 63

into two subsets, NOW and NEXT. These sets are implemented by FIFO queues. The algo-
rithms operate in phases; at the beginning of each phase, NOW is empty. Furthermore, the
methods maintain a threshold parameter � whose value is computed as an average (weighted
by constant factors) between the smallest and the average tentative distance among all nodes
in NEXT. During a phase, the algorithms append nodes � from NEXT having

+����1+ � � �6� �
to the FIFO queue of NOW and scan nodes from NOW. The algorithmic variants differ in
the concrete formulae for the computation of the threshold value � ; there are other options
as well, e.g., whether nodes � in NEXT having

+����0+ � � � � � are immediately appended to
NOW or just after NOW remains empty.

The general strategy of the threshold method is potentially much more powerful than
the � -Stepping with fixed bucket width: an appropriate re-selection of the threshold value �
after each phase might avoid superfluous edge relaxations. Furthermore, no operations are
wasted for the traversal of a large number of empty buckets. However, subsequently we
will demonstrate that very similar graph classes as those for the � -Stepping also cause
superlinear average-case time for the threshold algorithms with FIFO queues.

k

G G

k k

A

A

B

B

k
k

G

G k

G G

s q1

r r

2 2

n´

1

n´

1

r
r

r

1 1

2 2

Figure 3.10: Modified input class for the threshold approach.

Lemma 34 There are input graphs with � nodes, � � ��� � � edges and random edge
weights such that the standard threshold method with two FIFO queues requires � � � ������ � � ����� ����� � � operations on the average.

Proof: In the following we assume that nodes from NEXT are only transferred to NOW
after NOW becomes empty. We re-use the notation and graph class developed in the proof
of Lemma 33 with slight modifications, compare Figures 3.9 and 3.10: the separate long
chain �

�
is omitted, and the

" � � � edges out of the node � are extended to � � � " � � �
independent paths � � � � � 	 � � 	 � �� � of two edges each. Similarly, � � independent paths
� � � �/% 	 �1� 	 � �� � of length two each branch from the node % .

With at least constant probability it is true that (1) the event � from the proof of
Lemma 33 holds, (2)

" � � � edges from both � � and � � have weight at least
� � # . We



64 Sequential SSSP Algorithms

will assume that these conditions hold. The basic rationale behind the chains �	� and �6�
is to keep the set NEXT well filled with nodes having tentative distances at least

� � # , thus
maintaining a large threshold value.

After the edges of % are relaxed, NEXT contains the inner nodes of the first gadget
from each chain

� � and also
" � � � nodes ��� from the chains �6� . As a consequence, given

the conditions on the edge weights as stated above, the threshold value will be � � " � � � .
Hence, a constant fraction of the nodes in NEXT will be moved to NOW, and – as � holds –
the nodes on the shortest paths of the chains

� � are among them. The relaxation of all edges
out of nodes in NOW will put another

" � � � nodes � �� from � � into NEXT, thus keeping the
threshold value large ( � � " � � � ) whereas

+����1+ �
� �6� � � � � � � due to � and a path �/% 	 � � 	 ���

where � � � � � .
Subsequently, one observes

� 5 � � " ������� � � ����� ����� � � cycles of the same pattern:
scanning � from NOW will cause NEXT to store

" � � � nodes
� � or

� �� from � � for the next
two phases. Therefore, the threshold value remains sufficiently high to ensure that those
nodes of

� � that are required for the next improvement of � are transferred to NOW. As a
consequence, � is re-inserted into NOW with improved distance value, and the next cycle
starts. Note that subsequent updates for

+����1+ �
� � are separated by a phase where � is not part

of NOW; however, as the queues operate in FIFO mode, the order of these updates will be
maintained. Hence, with at least constant probability there are

" ������� � � ����� ����� � � cycles,
each of which requires

" � � � operations.

3.10.4 Summary Difficult Input Graphs

We have given provably difficult graph classes for a number of label-correcting algorithms,
demonstrating that random edge weights do not automatically ensure good average-case
performance. The proved lower bound results for graphs with � � ��� � � edges are sum-
marized in Table 3.2.

Algorithm Running Time

Bellman–Ford Alg. � � � � ��� � � �
Pallottino’s Incremental Graph Alg. � � � � ��� � � �
Basic Topological Ordering Alg. � � � � ��� � � �
Threshold Alg. � � � ������� � � ����������� � �
ABI–Dijkstra � � � � ����� � � ����� ����� � �
� -Stepping � � � � � ����� � � ����������� � �

Table 3.2: Average-case running times for difficult input classes with � � ��� � � edges and
random edge weights.

3.11 Conclusions Sequential SSSP

We have presented the first SSSP algorithms that run in linear average-case time on ar-
bitrary directed graphs with random edge weights. Worst-case time

" � � ����� ��� ��� can



3.11 Conclusions Sequential SSSP 65

still be guaranteed by monitoring the actual time usage and switching back to Dijkstra’s
algorithm if required. The proofs for the label-setting version turned out to be significantly
easier. However, as we shall see in Chapter 4, the label-correcting scheme has the advan-
tage to support parallelization. Besides implications of our results for the analysis of simpler
SSSP algorithms, we have shown how to construct difficult input graphs with random edge
weights for many traditional label-correcting algorithms.

3.11.1 Open Problems

As for sequential SSSP, maybe the most interesting and most difficult open question is
whether one can devise a worst-case linear time algorithm for arbitrary directed graphs with
non-negative edge weights. If such an algorithm exists at all, then it seemingly requires
completely new ideas.

In the following we will sketch some problems that are closer connected to the sequen-
tial SSSP algorithms presented in this thesis.

Dependent Random Edge Weights

Our analyses to obtain the high-probability bounds on the running time of our sequential
SSSP algorithms crucially depend on the assumption of independent random edge weights.
However, there are input classes with dependent random edge weights where the whp-
bounds still hold: for example, consider random geometric graphs [40, 130] from the class
� �� ��� � where � nodes are randomly placed in a unit square, and each edge weight equals the
Euclidean distance between the two involved nodes. An edge

� � 	 � � is included in the graph
if the Euclidean distance between � and � does not exceed the parameter

� � � � 	���� . Tak-
ing

� � " � � ����� � � � � � � results in a connected graph with maximum shortest-path weight
� � ��� � � whp. Even though the nodes are placed independently and uniformly at random,
the resulting random edge weights are dependent, see Figure 3.11. Still, choosing the bucket
width for ABI-Dijkstra or the sequential � -Stepping as � � � �

, both algorithms will run
in linear time with high probability; each node is scanned from the current bucket at most
twice, and therefore each edge is re-relaxed at most once. This is easily understood:

r

c

a

b
w

v

u

Figure 3.11: Dependent edge weights for random geometric graphs from � �� ��� � : � � � � � .
Consider a node � with final distance

& '#),+ � � � in the range � � 	
� � � � of the current

bucket � cur. Let � be scanned from � cur for the first time in phase � . As seen in the proof
of Lemma 14 for the local rescans of SP-C, a rescan of � from � cur in phase � � � , � � # ,



66 Sequential SSSP Algorithms

requires a path � � � � � ��� 	������ 	 ��� � �� of total weight � � � � � � such that node �0�
is scanned from � cur in phase � � 2 , and

+����0+ � � � � � � � � � +����0+ � � � . However, due to the
definition of � �� ��� � , if such a path exists in � , then the graph also contains the edge

� � 	 � �
having weight � � � 	 � � � � � � � . Hence, the relaxation of the edge

� � 	 � � after scanning
� in phase � will immediately reduce

+����0+ � � � so much that no further improvement can
be achieved via the path � . Therefore, if at all, � is re-inserted at most once more for
phase � � �

.
Random geometric graphs have a very special structure, and their edge weights obey the

triangle-inequality. It would be interesting to identify weaker conditions under which our
algorithms reach the stated high-probability bounds even though the random edge weights
are dependent.

In order to show the linear average-case complexity of SP-C with improved edge re-
laxations (Section 3.7) we used independence only in the proof of Lemma 17. It is unclear
whether the same result can be shown for dependent random edge weights.

Negative Edge Weights

Shortest-paths instances with (some) negative edge weights are apparently much more dif-
ficult to solve than instances where all weights are non-negative: the best known worst-case
bound for sequential SSSP with arbitrary edge weights,

��� � � ��� , is due to the classic
Bellman-Ford algorithm [15, 50]; only recently Fakcharoenphol and Rao [47] presented an��� � ������� � � � algorithm for planar graphs. The best known average-case bound was given
by Cooper et al. [32]; they show

��� � � � expected time for the complete graph with random
edge weights generated according to the vertex-potential model [25]. Their algorithm ex-
ploits two structural properties that are exhibited on complete graphs with high probability.
Firstly, the number of edges can be reduced significantly without changing the shortest-path
weights. Secondly, each shortest path consists of at most

��������� � � edges.
However, for arbitrary graphs with random real edge weights, these conditions will

usually not hold. It would be interesting to see whether our methods of adaptive bucket-
splitting can result in any improvement for the average-case complexity of SSSP on such
graphs.



Chapter 4

Parallel Algorithms

Having dealt with sequential single-source shortest-paths algorithms in the previous chapter
we now turn to parallel SSSP. Some of our results are straightforward parallelizations of
the sequential label-correcting approaches with buckets of Chapter 3; we show how the
operations of a phase for the current bucket can be done in parallel and investigate how
many phases are needed. For certain graph classes this simple strategy already yields good
results. However, with an alternative scanning rule the number of phases can sometimes be
reduced significantly without increasing the total number of operations. In particular, we
give the first algorithms that achieve both sublinear average-case time and linear average-
case work for random graphs, and graphs modeling the WWW, telephone calls or social
networks. In order to facilitate easy exposition we focus on CRCW PRAM algorithms and
only sketch extensions to DMMs.

This chapter is organized as follows: Section 4.1 provides an overview of previous and
related work. Then we give a list of our contributions (Section 4.2). Before we discuss fur-
ther details of our new algorithms we review some basic PRAM results and techniques in
Section 4.3. Sections 4.4 and 4.5 deal with parallelizations of the sequential label-correcting
algorithms from Chapter 3. Further improvements for random graphs are discussed in Sec-
tion 4.6. Eventually, Section 4.7 provides our most efficient parallel SSSP algorithm, which
uses different step widths on disjoint node sets at the same time. Some concluding remarks
(also concerning potential parallelizations of Goldberg’s new algorithm [67]) are given in
Section 4.8.

4.1 Previous and Related Work

4.1.1 PRAM Algorithms (Worst-Case Analysis)

The parallel SSSP problem has so far resisted solutions that are fast and work-efficient
at the same time: no PRAM algorithm is known that terminates with

��� � ������� � � ���
work and sublinear running time for arbitrary digraphs with nonnegative edge weights. The��� � � ����� � � ��� -work solution by Driscoll et al. [44] (refining a result of Paige and Kruskal
[116]) has running time

��� � ������� � � . An
��� � � -time algorithm requiring

��� � � ����� � � work
was presented by Brodal et al. [20]. The algorithms above scan the nodes one by one in the
order of Dijkstra’s algorithm; only edge relaxations are performed in parallel. Hence, using

67



68 Parallel Algorithms

this method there is no possibility to break the worst-case time-bound of � � � � . All other
known SSSP algorithms for arbitrary graphs trade running time against efficiency.

The algorithm by Han et al. [78] (based on [35]) implicitly solves the APSP problem by
reducing the shortest-paths computation to matrix multiplications over semirings: it needs��������� � � � time and

��� � � � ������������� � � ����� � � � ��� � work. Applying randomized minimum
computations [58] on a CRCW PRAM, the algorithm can also be implemented to run in��������� � � time using

��� � � � ����� � � work. Deterministically, it is possible to achieve
���

� � � ������ � � time using
��� � � ��� ������� � � work for an arbitrary constant � � � . Furthermore, there

is a randomized algorithm [92] for SSSP on sparse graphs with integral nonnegative edge
weights summing to � . It requires

��� � � ��� ����� � � � � � � time and
��� � � � ��� � � � � ��� ����� � � �� � � work. Recently, Mulmuley and Shah [113] gave a lower bound of � ������� � � execution

time for SSSP on PRAMs without bit operations using a polynomial number of processors.
The lower bound even holds when the bit lengths of the edge weights are restricted to be of
size

��������� � � � .
Several parallel SSSP algorithms are based on the randomized parallel breadth-first

search (BFS) algorithm of Ullman and Yannakakis [141]. In its simplest form, the BFS
algorithm first performs

� 
 � ������� � � -limited searches from
��� 
 � � randomly chosen dis-

tinguished nodes in parallel. Then it builds an auxiliary graph of the distinguished nodes
with edge weights derived from the limited searches and solves an APSP problem on this
auxiliary graph. Finally, the distance values of non-distinguished nodes are updated. This
simple BFS algorithm takes

��� 
 � � � � ��� ����� � � � � time using
��� 
 � � � � � � ��� ����� � � � � work

with high probability. A more involved version achieves
��� � � � � ��� ����� � � � � time using��� � 
 � � � � � � � � � � � � � � � � � � � ��� ����� � � � � work for any �4� 
 � whp.

Klein and Subramanian [93] extended the BFS idea of Ullman and Yannakakis to
weighted graphs. They gave a parallel randomized approximation scheme for

� � � � � -
approximate single-source shortest-paths computations that runs in

��� 
 � � � � � �	����� � �
����� � � � time using

��� 
 � � � � ����� � � work. Furthermore, they showed how to use the result
above to compute exact single-source shortest-paths with maximum path weight � by solv-
ing a series of

��������� � � sub-instances. The algorithm takes
��� 
 � ������� � ������� � ������� � � �

time and
��� 
 � � � � ����� � � ����� � � work.

Similar results have been obtained by Cohen [28], and Shi and Spencer [131]. Recently,
Cohen [29] gave an

� � � � � -approximation algorithm for undirected graphs that runs in poly-
logarithmic time and takes near linear work. Unfortunately, there seems to be no way to use
it for exact computations by repeated approximations. Cohen also proposed a SSSP algo-
rithm for graphs with a given

��� � � � -separator decomposition that takes polylogarithmic
time and

��� � � � � � � � � � � � ��� ����� � � � � work.

More efficient parallel SSSP algorithms have been designed for special graph classes.
Here are some examples: Combining the data structure of [20] with the ideas from [140]
gives an algorithm which solves the SSSP problem on planar digraphs with arbitrary non-
negative edge weights in

��� � � � � � � � � � � time and
��� � � ��� � work on a CREW PRAM. In

contrast, the randomized algorithm of [92] requires planar graphs and integral edge weights
summing to � . It runs in

��� � � ��� ����� � � � � � � time using
��� � � � � ��� ����� � ��� � � � work.

Work-efficient SSSP algorithms for planar layered graphs have been proposed by Subrama-
nian et al. [134] and Atallah et al. [10]. Furthermore, there is an

��������� � � � -time linear-work



4.1 Previous and Related Work 69

EREW PRAM algorithm for graphs with constant tree width [23].

4.1.2 PRAM Algorithms (Average-Case Analysis)

Random graphs [17, 46] with unit weight edges have been considered by Clementi et al.
[27]: their solution is restricted to edge probabilities

" � � � or
" ������� � � � � � for � � �

. In the
latter case

��������� � � � � � time and optimal
��� � � ����� � � � work is needed on the average.

Reif and Spirakis [125] bounded the expected diameter of the giant component of sparse
random graphs with unit weights by

��������� � � . Their result implies that the matrix based
APSP algorithm needs

��������� ����� � � iterations on average provided that the edge weights
are nonnegative and satisfy the triangle inequality.

Frieze and Rudolph [58], and Gu and Takaoka [75] considered the APSP problem with
random edge weights and showed that the standard matrix product algorithm can be imple-
mented in

��������������� � � time and
��� � � � ����������� � � work on average.

Crauser et al. [33] gave the first parallel label-setting algorithms that solve SSSP for
random graphs with random edge weights in sublinear time using

��� � � ����� � � ��� work
on the average. Their algorithms maintain the set of candidate nodes in a parallel priority
queue, which is implemented by a number of sequential relaxed heaps [44] with random
node assignment. The algorithms operate in phases: each phase first identifies a set of
candidate nodes with final tentative distances; then these nodes are scanned in parallel.
The OUT-approach applies the OUT-criterion of Lemma 6 in order to find scan-eligible
nodes. It needs

" � 
 � � phases on the average. Similar performance on random graphs is
obtained if the OUT-criterion is replaced by the IN-criterion from Lemma 5 (IN-approach).
Changing between IN- and OUT-criterion after each phase (INOUT-approach), may speed-
up the computation; for random graphs, however, � � � � ��� � phases are still needed on the
average.

The analysis for the OUT-approach was generalized in [103] to arbitrary graphs with
random edge weights and maximum shortest-path weight � � ����� � &('#) + � � �  &('#),+ � � � � - 
 :
the algorithm achieves ��� � ��� 4 � 
 � � � ��� ����� � � � average-case time using

��� � � ����� � �
� � ��� � work.

4.1.3 Algorithms for Distributed Memory Machines

PRAM algorithms can be emulated on distributed memory machines. The loss factors de-
pend on the concrete parameters of the models; e.g. see [61] for emulation results on the
BSP model. However, existing implementations [1, 22, 84, 85, 86, 139] on parallel comput-
ers with distributed memory usually avoid such emulations; they rather apply some kind of
graph partitioning, where each processor runs a sequential label-correcting algorithm on its
subgraph(s). Heuristics are used for the frequency of the inter-processor data-exchange con-
cerning tentative distances, load-balancing, and termination detection. Depending on the in-
put classes and parameter choices, some of these implementations perform fairly well, even
though no speed-up can be achieved in the worst case. However, no theoretical average-case
analysis has been given.



70 Parallel Algorithms

4.2 Our Contribution

We present new results on the average-case complexity of parallel SSSP assuming indepen-
dent random edge weights uniformly drawn from � � 	���� . The average-case performance of
our algorithms is expressed in terms of rather general properties of the input graph classes
like the maximum shortest-path weight or the node degree sequence. For the purpose of an
easy exposition we concentrate on the CRCW PRAM (Concurrent-Read Concurrent-Write
Parallel Random-Access Machine) [52, 72, 88] model of computation. However, we shall
sketch extensions to distributed memory machines when this is appropriate.

Straightforward Parallelizations

In Section 4.4 we prove that already a simple parallelization of the � -Stepping algorithm
from Section 3.9.1 performs reasonably well on a large class of graphs: for maximum
shortest-path weight � (see Definition 2) and maximum node degree * , the parallelization
takes

��� 4 � * � ��* � � � �(������� � � � time using
��� � � � � 4 � * � ��* � � � � � ����� � � � work on the

average. If � � � � and * � �,* denote high-probability bounds on � and * , then an improved
version of the parallel � -Stepping presented in Section 4.5 achieves

��� ��* � � � � � ������� � � �
time using

��� � � � � ��* � � � � � � ����� � � � work whp.
For several important graph classes with random edge weights, � is sufficiently small,

i.e., ��* � � � ������� � � � �
� � � with high probability; in that case the improved parallel � -

Stepping runs in sublinear time and linear work with high probability. A typical example
are random graphs from the class

� � � 	 �* � � � as defined in Section 3.9.3: by Lemma 26 and
Corollary 6 we already know * � ��� �* � ����� � � and � � ��� �����

� �
�� � with high probability.

This implies that SSSP on random graphs from
� � � 	 �* � � � with random edge weights can

be solved in
��������� � � � � � � �* � � ������� � � time using linear work with high probability.

Improvements for Random Graphs

In Section 4.6 we reconsider random graphs with random edge weights. We will improve
the high-probability bound on � from Corollary 6 to

��� � � � �* � ������� � � . For random graphs
from

� � � 	 �* � � � , the step width for the advanced parallel � -Stepping algorithm may be
chosen as big as � � " � � � �* � instead of

" � � � � �* � ����� � � � . Together with an appropriate
preprocessing of the input graph this yields the following result: SSSP on random graphs
with random edge weights can be solved in

��������� � � � time using linear work on the average.

Improved Parallelizations for Graphs with Unbalanced Node Degrees

For arbitrary graphs, the simple parallelizations above require � � * � � � phases. This is often
too much if * and � happen to be large. In Section 4.7 we consider parallel SSSP for graphs
with unbalanced node degrees, that is, input graphs, where the maximum node degree * is
significantly larger than the average node degree

�* . Typical examples are degree sequences
that follow a power law: the number of nodes,

1
, of a given in-degree � is proportional

to � � � for some constant parameter
�
� � . For most massive graphs,

# � � � �
: for

example, Kumar et al. [95] and Barabasi et al. [13] independently reported
��� #�� �

for
the in-degrees of the WWW graph, and the same value was estimated for telephone call



4.2 Our Contribution 71

graphs [5]. In spite of constant average in-degree
�* , one expects to observe at least one

node with in-degree � � � � � 	 � � � � � , i.e., * � � � � ��� � � for
� � #�� � . The observed diameters

are usually very small; however, � ��� � � � .
Unfortunately, if � � � � � � , all parallelizations introduced above require � � * � time.

This drawback is partially removed by our new parallel label-correcting method, the Par-
allel Individual Step-Widths SSSP (PIS-SP) algorithm: it utilizes a number of different
approximate priority-queue data structures in order to maintain nodes of similar degrees
in the same queue. The algorithm applies different step widths for different queues at the
same time. The approach can be easily implemented with a collection of sequential relaxed
heaps. In that case it requires

� � � � 	 ����� � � � 4 �
� '���

� � # � � � � �  � � � 	 in-degree
� � � � # � �� � � time

using
��� � ������� � � � � � � � work on average. By virtue of a split-free bucket structure

and an improved node selection strategy, another logarithmic factor can be gained on both
running time and work. The resulting algorithm is the first to achieve �

� � � � � � average-case
time and

��� � � ��� work for graphs modeling the WWW or telephone calls.

Comparison

Table 4.1 provides an overview of our new parallel SSSP algorithms. For each algorithm
we list average-case time and work as functions of node degrees and maximum shortest-
path weight. We have suitably instantiated these general formulae for three sample graph
classes in order to demonstrate the performance differences. As already discussed for ran-
dom graphs, even better results can be obtained if additional knowledge concerning the
input graphs is used to optimize the parameter setting of the algorithms. For comparison we
also listed the respective numbers of the best previous

��� � ������� � � ��� -work algorithm,
the label-setting OUT-approach of [33].

It turns out that for all graph classes listed in Table 4.1 at least one of the new algorithms
is both faster and requires less work than the OUT-approach. In particular, the PIS-SP
algorithm is uniformly better. For random graphs, the performance gain is significant. In
fact, the average-case execution-time of the two algorithms comes closest for graphs with" � 4 �


 � � � � � nodes of degree
" � � � 4 �


 � � � � � each: in that case the OUT-approach
requires � � � � ��� 4 � 
 � � � � � ����� � � � time on average using

��� � � ����� � � � � � � � work
whereas PIS-SP succeeds after � � � � ��� 4 � 
 � � � �$� ����� � � � time with

��� � � � � � � �
work on the average.

In fairness, however, it should be mentioned that the OUT-approach may be augmented
by intermediate applications of the IN-criterion (as it was done in [33] for random graphs).
Still, the resulting average-case running times of the augmented algorithm will be in � � � � ��� �
for the general case, even if * and � are small. Furthermore, on sparse graphs, the aug-
mented algorithm will require superlinear average-case time. On the other hand, it is an
interesting open problem, whether the OUT-criterion (or some modification of it) can be
profitably included into our linear work algorithms based on buckets.

Early results on the average-case analysis of our parallel SSSP algorithms on random graphs



72 Parallel Algorithms

Algorithm Average-Case Performance

Simple Parallel � � ��� 4 � * � ��* � � � �(� ����� � � �
� -Stepping � � ��� � � � � � �

(Section 4.4) RAND: � � ��������� � � �
POW: � ��� � � � � 	 � � � � � WWW: � ��� � � �
ART: � � � � � �

Advanced Parallel � � ��� 4 � ��* � � � �(� ����� � � �
� -Stepping � � ��� � � � � � �

(Section 4.5) RAND: � � ��������� � � �
POW: � ��� � � � � 	 � � � � � WWW: � ��� � � ��� � �
ART: � � ��� � � ��� � ����� � � �

Parallel Individual � � ��������� � � � 4 � � '�� � � � # � � � � �  � � � 	 in-degree
� � ��� # �  
 � �

Step-Widths SSSP � � ��� � � � � � �
PIS-SP RAND: � � ��������� � � �

(Section 4.7) POW: � � ��� � � � � � ����� � � � WWW: � � �
� � ��� � � �

ART: � � ��� � � ��� � ����� � � �
Best Previous: � � ��� 4 � � � � ��� � � � � � ����� � � �
Label-Setting � � ��� � � ����� � � � � � �

OUT-Approach RAND: � � ��� � � � � � ����� � � � � �
[33, 103] POW: � � ��� � � � � � ����� � � � � � WWW: � � ��� � � � � � ����� � � � � �

ART: � � ��� � � ��� � ����� � � �
Table 4.1: Average-case performance of our parallel SSSP algorithms on graphs with max-
imum node degree * and maximum shortest-path weight � . For each algorithm, � and �
denote average-case parallel time and work, respectively. We give concrete instantiations
of � for three graph classes with

��� � � edges and random edge weights: RAND denotes
sparse random graphs, POW refers to graphs with 4 � � � � ��������� � � , where the node in-
degrees follow a power law with parameter

�
. WWW is a subclass of these graphs having� � #�� � , i.e., * ��� � � ��� � � and �

� � ��� � � � nodes of in-degree � � � ��� � � � in expectation. ART
denotes an artificial graph class with 4 � � � � " � � � ��� � , where all but

" ������� � � nodes have
constant degree, the remaining nodes have degree

" � � � � � � .
have been published in [33, 106]; a version of the advanced parallel � -Stepping for non-
random graphs appeared in [107]. Parallelizations of the adaptive bucket-splitting algorithm
have been sketched in [104]. A precursor of the PIS-SP algorithm [105] has been presented
in [103].

4.3 Basic Facts and Techniques

In this section we list a few facts and methods for PRAM algorithms, which we will use
later on. It is not meant to be a tutorial on parallel algorithms; appropriate textbooks are,
e.g., [6, 62, 63, 88, 96]. Readers with some background-knowledge in parallel algorithms
may choose to skip this section.



4.3 Basic Facts and Techniques 73

Our PRAM algorithms are usually described in the work-time framework, a gener-
alization of Brent’s scheduling principle [18]: if a parallel algorithm does � operations
(work) in time � , then on 
 processors, the same algorithm can be done in time ��� where
��� � ��� � � �

� � . This “slow-down” feature facilitates the following accounting scheme: if
an algorithm � consists of sub-algorithms � � 	������ 	 �6� , where � � can be solved in � � time us-
ing � � work for 2
� � 	������ 	 � , then � can be executed in time

���  ��#" � ��� � using
���  ��#" � ��� �

work. In the following we will state the time bounds of a few basic work-optimal PRAM
sub-algorithms; see also Table 4.2.

Algorithm Time Work Model
(Segmented) Prefix/Suffix Sums [97]

��������� � � ��� � � EREW
Fast Min/Max [132]

��������������� � � ��� � � CRCW
Randomized Min/Max [58]

��� � � whp
��� � � whp CRCW

Sorting � integers from � � 	������ 	 � 
 [122]
��������� � � whp

��� � � whp CRCW

Table 4.2: Performances for some basic PRAM algorithms

Many parallel algorithms use prefix and suffix sums in order to assign sub-problems to
processors: consider a sequence � � � � � 	 � � 	������ 	 � � � of � elements from some set �
together with a binary associative operation

�

, e.g., sum, product, minimum or maximum;
the prefix sums of � are the � expressions %�� � � � � � � �	����� � � � , where

� � 2 � � .
Equivalently, the suffix sums are defined by % �� � � � � � � � � � ����� � � � , for

� � 2 � � . The
segmented version of prefix sums assumes an additional Boolean array - of length � such
that

1 � � 1 � � �
; for each 2 � � 2 � where

1 � � � 1 � � � �
and

1 � � � for all 2 � � � � 2 � , we
wish to compute the prefix sums of the sub-array

� � � � � � 	������ 	 � � � � of � . For the segmented
suffix sums we are interested in the sub-arrays

� � � � 	������ 	 � � � � � � . Using balanced binary
trees, all these prefix/suffix computations can be done in

��������� � � time with
��� � � work

[97].

Frequently, (small) sets of data must be copied to (many) other memory cells in parallel:
let � � � � � 	 � � 	������ 	 � � � be an array of � elements, and let �0� � � � � � � ����� � ��� � �
be a set of indices. The segmented broadcasting problem is that of computing the array- � ��1 � 	21 � 	������ 	21 � � such that

1 � ��� � � , for ��� � � � 
 � ��� and
# � 2 � % . It can be solved

with the same resource usage as the prefix/suffix problems.

Computing a single minimum or maximum is a special case of the prefix sum prob-
lem. On a CRCW PRAM, it can be done in

��������������� � � time and linear work [132]. The
algorithm uses the method of accelerated cascading [30] together with a constant-time algo-
rithm that requires quadratic work. Based on this worst-case constant-time approach, Frieze
and Rudolph [58] developed a randomized CRCW algorithm that runs in

��� � � time while
requiring only linear work with high probability.

Integer sorting is a simple way to reorganize data items. In particular, it is useful to
bundle distributed data items that belong together: it is sufficient to assign common integers
to the items of the same sub-groups and then sort the items according to the associated
integers. In [122] it is shown how � integers with values in � � 	������ 	 � 
 can be sorted in��������� � � time using a linear number of operations with high probability.



74 Parallel Algorithms

4.4 Simple Parallel
�

-Stepping

After having listed a few general-purpose PRAM routines in Section 4.3 we now turn to our
first parallelization of an SSSP algorithm. Concretely speaking, we will provide a simple
parallel version of ABI-Dijkstra and the sequential � -Stepping from Section 3.9. Recall
that these algorithms keep the candidate nodes in an approximate priority-queue � � � � with
buckets of width � � # ��
����� � � , where * denotes the maximum node degree in the in-
put graph. That is, a queued node � having tentative distance

+����0+ � � � is stored in bucket
� � � +����1+ � � � � ��� � . The current bucket � cur denotes the first nonempty bucket of � � � � . In
a phase, all nodes in the current bucket are scanned (where the � -Stepping initially only
relaxes light edges); after the current bucket becomes empty (and the � -Stepping has re-
laxed the associated heavy edges as well), the algorithms sequentially search for the next
nonempty bucket. The simple parallelizations of this section will be restricted to the op-
erations within a phase; searching for the next non-empty bucket is still done sequentially
(in Section 4.7 we propose improved algorithms that support parallel search for the next
non-empty buckets).

As already seen in Section 3.9, for maximum shortest-path weight � , the algorithms
traverse �$� � � � � ��� � * � � � � buckets; also compare Remark 1 in Section 3.4.4. The
number of phases, however, may be bigger since scanned nodes can be re-inserted into the
current bucket. Hence, we are left with two problems:

(a) Providing efficient parallelizations for a phase.

(b) Bounding the number of phases.

The total work over all phases should be
��� � � ��� on the average. Disregarding some

initialization procedures, the total parallel time of the resulting algorithms will be given by
the sum of the times for the phases. An upper bound on the number of phases is easily
obtained: from Lemma 14 and Lemma 22 we can conclude that in the case of random edge
weights there are at most

��� ����� ������ ����� � � phases for each current bucket with high probability.
As the current bucket is advanced at most

��� � * � � � � times we find:

Corollary 9 For graphs with random independent edge weights uniformly distributed in
� � 	���� , maximum shortest-path weight � and maximum node degree * , both ABI-Dijkstra
and � -Stepping require

��� 4 � � * � � � � � ����� ������ ����� � � phases on the average. If � � � � and* � �6* denote upper bounds (that hold with high probability) then the number of phases is��� � * � � � � � � ����� ������������ � � with high probability, too.

4.4.1 Parallelizing a Phase via Randomized Node Assignment

If it is possible to scan several nodes during a phase in parallel then this work has to be
distributed among the available � � � processors in a load-balanced way. Furthermore,
finding an appropriate distribution itself should not consume too much time and work. A
simple yet efficient load-balancing method is to apply an initial random assignment of graph
nodes to processors. Using an array

'��(& � � � of independent random PU indices uniformly
distributed in � � 	������ 	 � 5 � 
 , entry

'��(& � � � gives the PU responsible for node � . The bucket
structure is distributed over the processors, too. In a phase, each PU does the work for the



4.4 Simple Parallel � -Stepping 75

nodes randomly assigned to its own structure. That is, for � � 2 � � , PU 
 � is in charge of
the bucket array � � � � � , and a queued node � will be kept in � �� � � � � � � +����1+ � � � � ��� � . A phase
of the simple parallelization comprises the following basic steps:

Step 1: Identifying the global value � � � � � , where �
� � � '�� � +����0+ � � � � � queued 
 .

Step 2: Node removal from the respective buckets � � � � � � ��� � .
Step 3: Generating requests for edge relaxations.

Step 4: Assigning requests to their responsible PUs.

Step 5: Performing the relaxations according to the assigned requests.

Step 1: Finding � � � ��� . The key feature of ABI-Dijkstra and � -Stepping is to restrict
node scanning to those queued nodes � having

+����1+ � � � � � � � � ��� � � � � � , where �
denotes the smallest tentative distance among all queued nodes. In the sequential version
(without cyclical bucket re-usage), � � � � � is simply the index of the first non-empty bucket
� � � � � ��� � . Now that in the parallel version � � � � is distributed over � arrays �	� � � � , the
algorithm needs to find the globally smallest index � � � � � � � � � among all non-empty
buckets � � � � � and all � � 2 � � .

Let �
�

denote the smallest tentative distance among all queued nodes at the beginning
of the previous phase. Starting from � � � � � � � � � � , for � � 2 � � , PU 
 � sequentially
searches for the first non-empty bucket in � � � � � . Skipping � empty buckets can be done in
time

� � � � ����� � � : each PU can traverse empty buckets of its dedicated bucket structure
in constant time per bucket; every

" ������� � � iterations it is checked whether any PU has
found a nonempty bucket and, if so, the globally smallest index with a nonempty bucket is
found. The latter check can be done with the basic gather- and broadcasting algorithms of
Section 4.3 in

���������
� � � ��������� � � time.

Steps 2 and 3: Dequeuing nodes and generating requests. Once the value of � � � ���
has been detected, PU 
 � removes all nodes from � � � � � � ��� � in Step 2. Let us denote the
resulting node set by

� � . Afterwards PU 
 � is in charge of generating requests
�

�
	 +����0+ � � � �

� � � 	 � � � for edges
� � 	 � � � � emanating from nodes � � � � . Depending on whether we

are parallelizing ABI-Dijkstra or the � -Stepping, requests are created for either all outgoing
edges or (as long as the current bucket does not change) just for the light outgoing edges,
which have weight at most � . Let � ��� � � � be the set of requests generated for node � . The
work of an arbitrary PU 
 � for a node � � � � during steps 2 and 3 can a seen as job of size� � �� ��� � � � �� ��� * � whose execution takes time linear in its size.

Due to the random assignment of nodes to processors, the work performed during
steps 2 and 3 can be analyzed using classical results of the occupancy (“balls into bins”)
problem [89, 94, 112, 129]. In particular, arguing along the lines of [7, Lemma 2] one finds:

Lemma 35 Consider any number of subproblems of size in � � 	 � � . Let � denote the sum
of all subproblem sizes. If the subproblems are allocated uniformly and independently at
random to � PUs, then the maximum load of any PU will be bounded by

���
� � � � � ������ � � � � � � with high probability.1

1The seemingly unrelated parameter � comes into play since we based our definition of “whp” on it.



76 Parallel Algorithms

Proof: Consider an arbitrary but fixed PU 
 � . It suffices to show that PU 
 � receives load
exceeding � � � � � � � � � � � � ��� � � � with probability at most � � � � � for any

�
� � and

an appropriately chosen � depending on
�

only. Let there be
�

subproblems, where � � ,. . . ,
� � � � denote the respective sizes of the these subproblems. Define the 0-1 random variable� � to be one if and only if subproblem � is assigned to 
�� . Let - � �  � � � � � � � � denote
the “normalized load” received by PU 
 � . Note that 4 � - � � � � � �

� � � . Since the � � are
independent and the weights � � � � are in

� � 	���� , we can apply another version of the Chernoff
bound [121, Theorem 1] which states that for any � � �

,

� � - � � � 4 � - � � � 	 � � � �� �
� � � � � �

First we rewrite
��� � �� � � ��� � �� � � � � � � � 	 � � �� � ��� � � � � . Then by setting � � 4 � - � � � � � � � � � � �

� � � � � � � � we get � ��� � � � � �
� � � � � � � � � � � � � � �$� . Now we can start to simplify:

� ��- � � � 4 � - � � � � 	 � � �� � ��� � � � � � � � � � � � 	 � � �� � ��� � � � � � 	�� ��� � � � ��� 	�� � � ���
� � 	 � � ����� � � � � ��� 	�� � � � � � ��� � ��� 	�� � � � for � � � �
� � � 	 ��� � � � ��� � � � � ��� � � � � 	 ��� � � � �

�

Setting � � � ��� � � � � 	 � � � concludes the proof.

Thus, if a parallel phase of ABI-Dijkstra or � -Stepping with � � � PUs removes  �  nodes
and generates �� � �  requests, then Steps 2 and 3 take

� � �  �  � �� � �  � � � � * � ����� � � time
with high probability according to Lemma 35.

Steps 4 and 5: Assigning and performing relaxation requests. Let � ��� � be the set of
requests generated by PU 
 � . Any request

�
�
	 � � � � � � � must now be transferred to the

bucket structure associated with PU 
 �� � � � � . Using Lemma 35, it can be seen that due to the
random indexing, each PU receives

� �  � � � � �  � � � * � ����� � � requests whp. The value
of  � � ��� �  can be obtained and broadcast in

� ������� � � time. Each PU sets up an empty
request buffer which is a constant factor larger than needed to accommodate the requests
directed to it whp.

The requests are placed by “randomized dart throwing” [108] where PU 
 � tries to
write

�
�
	 � � � � ��� � to a random position of the target buffer of PU 
 �� � � � � (see Figure 4.1).

Several PUs may try to write to the same memory location. This is the only step of the
parallelization that needs the CRCW PRAM. Due to the choice of the buffer sizes each
single placement succeeds with constant probability. Using Chernoff bounds it is straight-
forward to see that the dart throwing terminates in time proportional to the buffer size,� �  � � ��� �  � � � * � ����� � � whp. For the unlikely case that a buffer is too small, correct-
ness can be preserved by checking periodically whether the dart throwing has terminated
and increasing the buffer sizes if necessary.

In step 5, each PU examines all slots of its request buffer and performs the associated
relaxations in the order they are found. Since no other PUs work on its nodes the relaxations
will be atomic.



4.4 Simple Parallel � -Stepping 77

0

1

2

3

0

1

2

3

P P PP0 1 2 3 0P P1 P2 P3

BUF

BUF

BUF

BUF

BUF

BUF

BUF

BUF

Figure 4.1: Placing requests into buffers by randomized dart-throwing. Processor 
 � suc-
ceeds in placing its currently treated request in ��� � � and can turn to its next request. 
 �
and 
 � contend for a free slot in ��� � � . 
 � wins. 
�� has to probe another position in
��� � � . 
 � fails because the chosen position is already occupied.

Theorem 8 (Simple Parallelization.) Consider directed graphs with � nodes, � edges
and independent random edge weights uniformly distributed in � � 	���� . Let * � and � � denote
upper bounds2 on the maximum node degree * and the maximum shortest-path weight � , re-
spectively. On a CRCW PRAM, the simple parallelization of ABI-Dijkstra and � -Stepping
with � � # ��
 ����� � � � runs in � � ��� * � 4 � ��* � � � � � ����� � � � time using

��� � � � � � � work on
the average. Additionally, for � � � # ��
 ����� � � � � , the simple parallel � -Stepping algorithm
requires � � � ��� * � � ��* � � � � � � ����� � � � time and

��� � � � � � � � work with high probability.

Proof: Using the basic algorithms of Section 4.3, the initialization of the data structures
and the reordering of the adjacency lists concerning light and heavy edges can be done in��� � ��� ��� � � � ����� � � � � time. By Corollary 9, there are

��� 4 � � * � � � � � ����� � � phases on
the average and

��� ��* � � � � � � ����� � � phases with high probability. If the five steps of the
2 -th parallel phase remove  � 	 � �  nodes and generate �� ��� 	 � �  requests then this phase takes��� �  � 	 � �  � �� � � 	 � �  � � � � * � ����� �  time with high probability. From the discussion of

the sequential ABI-Dijkstra and � -Stepping in Section 3.9 we deduce 4 �  �  � 	 � �  � � ��� � �
and 4 �  � �� ��� 	 � �  � � ��� � � ��� ; for the � -Stepping these bounds even hold with high prob-

ability. Thus, the total time is bounded by
� � � � �� � * � 4 � � * � � � �(� ����� � �  on the average

and
��� � � �� � * � � � * � � � � � � ����� � �  with high probability. The theorem follows by choos-

ing � � � � � �
� � � � 
 � � � � � � ����� � � � � � PUs for the average-case bound and � � � � � �

� � � 
 � � � � � � � ����� � � �
PUs for the high-probability bound.

2Actually, it is sufficient if these bounds hold with high probability.



78 Parallel Algorithms

4.5 Advanced Parallelizations

The simple parallelization of the phases as shown above is already quite good for sparse
graphs like road-maps, where the maximum node degree * is not much larger than � � � .
However, if *�� � � � then the running time becomes less attractive. With an alternative
load-balancing, one can save a factor of

" � * � :
Theorem 9 With the parameters and machine model defined as in Theorem 8, parallel
SSSP can be solved in � � ��� 4 � ��* � � � � ������� � � � time using

��� ��� � � � � work on the
average. Additionally, the advanced parallel � -Stepping algorithm can be implemented to
run in � � � ��� * � � ��* � � � � � � ����� � � � time using

��� � � � � � � � work with high probability.

In the following we describe the necessary modifications:

4.5.1 Improved Request Generation

The new feature we add is to explicitly organize the generation of requests. Instead of
generating the set of requests derived from the bucket structure of PU 
 � exclusively by PU

 � , now all PUs cooperate to build the total set of requests. This can be done by computing
a prefix sum over the adjacency list sizes of the nodes in the request set first and then assign
consecutive groups of nodes with about equal number of edges to the PUs. Nodes with
large out-degree may cause several groups containing only edges which emanate from this
very node. The extra time needed to compute the prefix sums and schedules is

��������� � � per
phase.

4.5.2 Improved Request Execution

What makes executing requests more difficult than generating them is that the in-degree of
a node does not convey how many requests will appear in a particular phase. If some target
node � is contained in many requests of a phase then it might even be necessary to set aside
several processors to deal with the request for � .

Instead of the brute-force randomized dart-throwing as in Section 4.4, we use an ex-
plicit load balancing which groups different requests for the same target and only executing
the strictest relaxation. On CRCW PRAMs, grouping can be done efficiently using the
semi-sorting routine explained in Lemma 36. Then we can use prefix sums to schedule
� �  � ��� � � �  � �� ���  � PUs for blocks of size at least �� ���  � � and to assign smaller groups
with a total of up to  � ���  � � requests to individual PUs. The PUs concerned with a group
collectively find a request with minimum distance in time

� � �� ���  � � � �����
� � . Thus, each

target node receives at most one request for relaxation. These selected requests will be load
balanced over the PUs whp due to the random assignment of nodes to PUs. Figure 4.2
provides an illustration. Summing over all phases yields the desired bound.

Lemma 36 Semi-sorting � records with integer keys, i.e., permuting them into an array of
size � such that all records with equal key form a consecutive block, can be performed in
time

� � � � � � ����� � � on a CRCW-PRAM with high probability.



4.5 Advanced Parallelizations 79

1

2

3

0

selected
requests

request for a relaxation of edge (i,j)

P

P

P

P

dequeued nodes
with adjacency lists

generated
requests

after inte−
ger sorting

transferred to
target processors

i j

Figure 4.2: Load balancing for generating and performing requests: Requests are denoted
by a box for the source node and a circle for the target node, colors are used to code node
indices. The processors cooperate in building the total set of requests: Large adjacency lists
are handled by groups of PUs. Subsequently, the generated requests are grouped by target
nodes using semi-sorting. Then superfluous requests are filtered out, and the remaining
request are sent to the processors which host the appropriate bucket structures. Without
the balancing, processor 
 � would be over-loaded during the generation, and processor 
 �
would receive too many requests.

Proof: First find a perfect hash function � � � � � � 	������ 	 � � � 
 for an appropriate constant
� . Using the algorithm of Bast and Hagerup [14] this can be done in time

� � � � � � �����
� �

(and even faster) whp. Subsequently, we apply a fast, work efficient sorting algorithm for
small integer keys such as the one by Rajasekaran and Reif [122] to sort by the hash values
in time

� � � � � � ����� � � whp.

4.5.3 Conversion to Distributed Memory Machines

The straightforward way to obtain a DMM algorithm out of a PRAM algorithm is to use
an efficient PRAM simulation method: given certain conditions, a step of a CRCW PRAM
with �

�
-processors can be simulated on a � -processors BSP machine in

���
�
� � � � time if

�
� � � � ��� for any constant � � � ; see [142]. Hence, if � is defined as in Theorem 8, the

distributed algorithm runs in
���

�
� � � � � � ��� �� � time.

Alternatively, for a direct coding on a DMM machine, one first has to solve the data
allocation problem. Fortunately, the simple PRAM algorithm from Section 4.4 is already
almost a distributed memory algorithm. The index array

'�� & � � � used in the PRAM algorithm
can be replaced by a hash function

'��(& ��� � . PU 
 � maintains the bucket structure � � � � � , and



80 Parallel Algorithms

also stores the adjacency lists of all nodes whose indices hash to the value 2 . Hence, the
relaxation requests can be generated locally. The dart throwing process for assigning re-
quests can be replaced by simply routing a request

�
�
	 � � to PU

'��(& �
� � . The relaxations

for the received requests happens locally again. As for the PRAM version, if the number
of processors, is reasonably bounded then the accesses to the memory modules are suf-
ficiently load-balanced in each phase with high probability. Each phase of the algorithm
can be performed in a number of supersteps each of which consists of local computations,
synchronization, and communication.

The advanced parallelization requires additional measures; for example long adjacency
lists have to be spread over the local memories of the processors. Important ingredients for
the conversion are standard DMM implementations for tree based reduction and broadcast-
ing schemes [88]. They are needed for prefix-sum / minimum computations and distribution
of values, e.g., when all edges

� � 	 � � � of a high-degree node � are to be relaxed, then the
value of

+����1+ � � � must be made available to all PUs that store outgoing edges of � . The
grouping steps of the algorithm can be implemented by DMM integer-sorting algorithms,
e.g., [12]. The choice of the sorting algorithm determines how many supersteps are needed
to implement a phase of the PRAM algorithm, and hence how many processors can be
reasonably used.

4.6 Better Bounds for Random Graphs

So far we collected the following results for random graphs with random edge weights from
class the class

� � � 	 �* � � � as defined in Section 3.9.3: by Lemma 26 and Corollary 6 we
know * � ��� �* � ����� � � and � � ��� � � � �* � � ����� � � � with high probability. For the advanced
PRAM algorithm of the previous section (Theorem 9) this implies

��������� � � � � � � �* � ������� � � �
time using linear work with high probability. In the following we will improve the high-
probability bound on � to

��� � � � �* � ������� � � and sketch two further algorithmic modifications
for random graphs.

4.6.1 Maximum Shortest-Path Weight

Theorem 10 There is a constant � � � �
such that for random graphs from

� � � 	��* � � � ,
�* ��� � � � , with independent random edge weights uniformly drawn from � � 	���� , the maximum
shortest-path weight is bounded from above by

��� � � � �* � � ����� � � whp.

Proof: Due to the results of [32, 57, 80, 120] on the maximum shortest-path weight for
dense random graphs with random edge weights we can concentrate on the case � � � � �
�* � " ������� � � where � � � �

is the constant from Lemma 27.
The set of nodes reachable from % , denoted by

� � % � , is either small, that is  � � % �  ���� � � � �* � ������� � � whp, or giant, that is  � � % �  � " � � � whp [90]. If
� � % � is small, then

Theorem 10 follows immediately: any node in
� � % � can be reached by a path of at most

 � � % �  edges, each of which has weight at most one. Therefore, we may assume that  � � % � 
is giant.

Our proof proceeds as follows. First we show that a subgraph � � of � contains a
strongly connected component

� �
of
" � � � nodes so that any pair of nodes from

� �
is con-



4.6 Better Bounds for Random Graphs 81

nected by a path of total weight
��� � � � �* � � ����� � � whp. Then we prove that there is a path

from % to
� �

not exceeding the total weight
��� � � � � � �* � � ����� � � whp. Finally, we show for

all nodes in
� � % � that cannot be reached from % directly along a path of

��� � � � � � �* � � ����� � �
edges, that these nodes can still be reached from

� �
via a path of weight

��� � � � � � �* � ������� � �
whp. For

�* � ��������� � � the above path weights sum up to
��� � � � �* � � ����� � � whp. Figure 4.3

depicts the such a concatenated path from the source node % to a target node � � � � % � .

C’
s

v

t’ t’

Figure 4.3: Example for a concatenated path of small total weight from the source % to a
reachable node � : after at most � � � ��� ����� ��� � edges the strongly connected component

� �
is reached. There is a light path within

� �
to an intermediate node from which � can be

reached via a path of another � � edges.

For this proof call edges with weight at most � � � � � �* tiny. Consider the subgraph
� � � ���
	�� � � of � obtained by retaining tiny edges only. � � is a random graph with edge
probability � � � � � � ; � � has a giant strong component

� �
of size � � � � with probability at

least
� 5 � ��� for some arbitrary constant � � �

where the positive constant � � depends on
the choice of � (e.g. [8, 90]).

By Lemma 27, the diameter of the subgraph induced by the nodes in
� �

and its adjacent
edges in

� �
is at most

��������� � � with probability at least
� 5 � �  . Since all edges in

� �
have

weight at most � � � � � �* , any pair of nodes from
� �

is connected by a path of total weight��� � � � �* � � ����� � � with probability at least
� 5 � �  .

Now we show that there is a path from % to
� �

not exceeding the total weight
��� � �

� � � �* � ������� � � whp. We apply the node exploration procedure of [90] and [8, Section 10.5]
starting in the source node % and using the edges in

�
: Initially, % is active and all other

nodes are neutral. In each iteration we select an arbitrary active node � , declare it dead and
make all neutral nodes � with

� � 	 � � � � active. The process terminates when there are no
active nodes left. Let - � be the number of active nodes after � iterations ( - � � �

). We are
interested in the set of nodes reached from % after � � � � � � ��� �

�� iterations for some appropriate
constant

�
�

�
. Let ����� � � 	 �

�
denote the binomial distribution with parameters � and � ,

i.e., the number of heads in � independent coin tosses with probability of heads � . Provided
that - � � � � �

, - � is distributed as follows [8, 90]: ����� � � 5 � 	�� 5 � � 5 �* � � � � � � � 5 � ,
i.e., - � is sharply concentrated around

� � � � � � � � 5 � � � � � 5 � � 5 �* � � � � � � � 5 � �



82 Parallel Algorithms

In fact, we can assume - � � � � � �
since otherwise all nodes of

� � % � are reached using paths
of total weight

��� � � � �* � � ����� � � . We use the inequality

� � 5 � � � � � 5 � ��1 � � � � 1 � �# if � � 1 � �

� � 5 �� � � ��1 if
#6� � �31 � �

in order to derive a lower bound on �
� � � � . Indeed we have

# � ��� � � � � � � ���� � . Hence, for
� � - and

�* � � � � � � � , we find

� � � � � � � � 5 � � � �� � �* � � � � � � � 5 �
� �

�*
�
� � � �

� ��� � �
�

�

Thus, for - � � � � � �
, 4 � - � � � � � � ��� �� . Furthermore, - � � � � � � � � ��� � � with probability

at least
� 5 � � � � � � � � ��� � � 5 � � � � � � by the Chernoff bounds (Lemma 7). That is high

probability if the constant
�

is chosen sufficiently large. So, there are - � � � � � � � � ������� �
active nodes whp whose outgoing edges have not yet been inspected in the search procedure
from % . Let � be the set of these nodes. We are interested in the probability that there is at
least one edge from a node in � to a node in

� �
(if the node sets overlap then we are done

as well).
We can assume that � � (and hence

� �
) has been generated without complete knowledge

of � in the following way: For every ordered pair of nodes
� � 	 � � we first throw a biased

coin with � � ������� � ��� � � � � �* and only if it shows a head we find out whether
� � 	 � � � � : in

this case we generate a random tiny edge weight, and
� � 	 � � is put to

� �
. This information

suffices to determine
� �

. Hence, looking at the two node sets � and
� �

with � � � � and
�
� � � �

it is still true that
� � � 	 �

� � � �
with probability ��� , and these probabilities are

independent for all ordered pairs of nodes
� � � 	 �

� � . Therefore, we expect  � �  �  �  � ��� edges
from � to

� �
. Since  � � ��$� � � � with probability at least

� 5 � ��� and  � �� � � � � � � � � �
with probability at least

� 5 � � � � � � , the probability that there exists at least one edge
� � 	 � �

between � and
� �

is at least

� 5 � ��� 5 � � � � � � 5 	 � 5 �*
�
� � � � � � 	 � � � � � ��� � � � 5 � ��� 5 � � � � � � 5 � � � � � � � � 	 � � � � � ��� �

� � 5 � ��� 5 � � � � � � 5 � ��� � � � � � (4.1)

which is high probability for appropriately chosen constants (in particular, we are free to
chose � and

�
large). Consequently, there is a path from % to

� �
using at most

��� � � � � � �* � ������ � � edges whp. Since all edges on this path have weight at most one, the desired bound
on the total path weight from % to

� �
follows immediately.

The same technique is applied to show that any node � � � � % � that neither belongs to� �
nor is reached from % directly along a path of � � edges, can still be reached from

� �
via

a path of
��� � � � � � �* � � ����� � � edges whp. However, now the search procedure follows the

edges in the opposite direction. Note that the different search procedures are not mutually
independent. Still, each single search succeeds with the probability bound given in (4.1).
Hence, using Boole’s inequality all nodes from

� � % � can be reached along paths with total
weight

��� � � � � � �* � ������� � � with probability at least
� 5 � �  5 � � � � ��� 5 � � � � � � 5 � ��� � � � � � � .

This completes the proof of Theorem 10 for � � � � � �* � " ������� � � .



4.6 Better Bounds for Random Graphs 83

4.6.2 Larger Step Width

In Section 3.9 we have seen that ABI-Dijkstra and � -Stepping cause
��� � � node rescans on

the average if the bucket width is chosen as � � # ��
 ����� � � � for maximum node degree * .
The result was obtained by reducing the analysis to that of SP-C (Section 3.6) with a single
hierarchy level and buckets of width � . In particular, the number of times a node � is
scanned on the average had been bounded by the expected number of simple paths of total
weight � into � (proof of Lemma 18); we argued that there are at most * � simple paths of



edges into � . Using the fact that long paths with small total weight are unlikely (Lemma 17)
it turned out that node � is rescanned at most  (� " � * � � � �	� � 
�� times on average.

For random graphs from
� � � 	 �* � � � , we have seen * � ��� �* � ����� � � with high proba-

bility (Lemma 26). However, due to the random graph structure, the average-case number
of simple paths with



edges into a node � is bounded by

�* � . Thus, the number of rescans
for node � is at most  (� " � �* � � � �	� � 
�� � ��� � � for � � # � � ����� � �� � on the average. In other
words, for sparse random graphs we can choose the bucket width larger without risking
increased overhead due to node rescans. This results in less phases for the parallel SSSP
algorithm.

4.6.3 Inserting Shortcuts

Our parallelizations of Sections 4.4 and 4.5 need
��������� � � ����� ����� � � phases whp before

they turn to the next non-empty bucket. However, under certain conditions, a constant
number of phases per bucket suffices. We have already seen this behavior for random
geometric graphs (Section 3.11.1): we exploited the fact that whenever there is a path� � � � � ��� 	������ 	 ��� � ��� of total weight � � � � � � � # � � ����� � �� � in the input graph
� , then � also contains the “shortcut” edge

� � 	 � � having weight � � � 	 � � � � � � � . Our idea
for random graphs is to manually insert these shortcut edges.

Shortcuts for random graphs from
� � � 	 �* � � � are found by exploring � -paths emanating

from all nodes in parallel. This is affordable for random edge weights because we know that
there are only few simple � -paths: for each node we expect  (� " � �* � � � �	� � 
�� � ��� � � such
outgoing paths. Furthermore, none of these paths is longer than

��������� � � ����������� � � with
high probability. The only additional complication is that we have to make sure that only
simple paths are explored.

Figure 4.4 outlines a routine which finds shortcuts by applying a variant of the Bellman-
Ford algorithm to all nodes in parallel. It solves an all-to-all shortest path problem con-
strained to � -paths. The shortest connections found so far are kept in a hash table of ex-
pected size

��� � � . The set % stores active connections, i.e., triples
� � 	 � 	21 � where

1
is the

weight of a shortest known path from � to � and where paths
� � 	������ 	 � 	 � � have not yet been

considered as possible shortest connections from � to � with weight
1 � � � � 	 � � . In iteration

2 of the main loop, the shortest connections using 2 edges are computed and are then used to
update ‘found’. Using similar techniques as in Section 4.5, this routine can be implemented
to run in

� � ����� � � � ����������� � � parallel time using
� � � � ��� work on average: we need��������� � � ����� ����� � � iterations each of which takes time
� ������� � � and work

� �  %  �  % �  �
whp. The overall work bound holds since for each simple � -path

� � 	������ 	 � � , � � 	 ��� can be
a member of % only once. Hence, 4 �  �  %  � � � � � � and 4 �  �  % �  � � � � � � ��� .



84 Parallel Algorithms

Function findShortcuts( � ) : set of weighted edges
found : HashArray[

� � �
] (* return - for undefined entries *)

% := � � � 	 � 	 � �  � � � 
 (*
� ),+ � � + 	 & � ),+ '�� � + ' � � 	�� � ' ��� + � *)

% � : MultiSet
while % ���� do
% � := �
foreach

� � 	 � 	 � � � % dopar
foreach light edge

� � 	 � � � � dopar
% � := % � � � � � 	 �

	 � � � � � 	 � � � 

semi-sort % � by common start and destination node
% := � � � 	 � 	 � � �� � � '�� � 1  � � 	 � 	21 � � % � 
 

% := � � � 	 � 	 � � � % �� � � � � ��� ��� �(& � � � 	 � � � 

foreach

� � 	 � 	 � � � % dopar found � � � 	 � � � := �
return � � � 	 � 	 � � �� ��� �(& � � � 	 � � � � - 


Figure 4.4: CRCW-PRAM routine for finding shortcut edges

Combining the observations of Section 4.6.1 (better bound on � ), Section 4.6.2 (larger
bucket width), and Section 4.6.3 (less phases per bucket after preprocessing) with the ad-
vanced parallelization of Section 4.5 we find:

Corollary 10 SSSP on random graphs with independent random edge weights uniformly
distributed in � � 	���� can be solved on a CRCW PRAM in

��������� � � � time using linear work
on the average.

4.7 Parallel Individual Step-Widths

The parallelizations presented so far perform poorly if the maximum node degree * happens
to be huge and the expected maximum shortest-path weight is at least constant: in that case� � * � parallel time is needed on the average. This is not surprising since the underlying
sequential algorithms (ABI-Dijkstra oder � -Stepping with � � # ��
 ����� � � � suffer from the
same shortcoming. Therefore, let us look at a straightforward parallelization of the linear
average-case time SP-C algorithm from Section 3.4: similar to the previous parallelizations,
it could perform the operations for all nodes of the current bucket in parallel. Unfortunately,
at least one phase is needed for each non-empty current bucket: for example, consider the
graph with source node � , and the edges

� � 	�� � 	 � � 	 # � 	������ 	 � � 	 � 5 � � . The expected number
of non-empty intervals � 2�� � 	 � 2 � � � � � � for the distances of nodes

�
, . . . , � 5 �

is asymptotic
to � � � � 5 � � � �
��� � � � � 129

�
. Processing the source node � of the graph above with SP-C

creates a second bucket level of
" � � � new buckets. An expected constant fraction of them

is non-empty. Hence, � � � � phases are still needed on the average.
The example above highlights a weakness of a parallel SP-C algorithm: once a node

with large degree forced a reduction of the step-width in order to limit the risk of node re-
insertions, this step-width is kept for a certain distance range – even if no high-degree nodes



4.7 Parallel Individual Step-Widths 85

remain in the new buckets of this range. In the following we will show how to remove this
drawback.

4.7.1 The Algorithm.

In this section we introduce the new parallel SSSP algorithm called PIS-SP (for Parallel
Individual Step-Widths). The algorithm applies different step-widths on disjoint node sets
at the same time using a new split-free bucket data structure.

PIS-SP applies a queue data structure % that consists of
��� � � buckets in total, organized

into
��������� � � arrays � � � � � : each array covers a total tentative distance range of width two.

The buckets of each array are used in a cyclical fashion in order to subsequently store nodes
with larger and larger tentative distances. The array � � � � � , � ��2 � � ����� � ��� � � � consists
of
# � � � buckets of width � � � � # � � � � each. �6� � � � exclusively stores nodes with in-degree in

� # � � � 	������ 	 # � 5 � 
 . Hence, for example a node � with in-degree * � � and tentative distance+����1+ � � � � � � � is stored in the array � � � � � , 2 � � ����� � * � � � � � , and more concretely in
bucket � � � � � � � � � � & # � � � � � � � � � � � ��� � � � � � ��# � � � � � � � # � � . Note that there is no array
for vertices with in-degree zero, as they cannot be reached anyway.

PIS-SP works as follows: initially, all nodes � reachable from the source node % via
an edge

� % 	 � � are put in parallel into their respective bucket arrays using the edge weights
� � % 	 � � as tentative distances. After that, PIS-SP operates in phases: At the beginning of
a phase it first determines the globally smallest tentative distance �

� � � '�� ����� +����1+ � � �
among all currently queued nodes. This step is quite intricate since the bucket structure
only implements an approximate priority queue. Hence, � is not readily available; not
too many operations must be used to find it. In Section 4.7.3 we will show how � can be
obtained efficiently. Knowing � , PIS-SP scans all nodes from � � � � � � � � & # � � � � � � in
parallel for each 2 , � � 2 ��� . This may insert new nodes into % or reinsert previously
scanned nodes with improved tentative distances. However, each phase settles at least one
node. The algorithm stops if there are no queued nodes left after a phase. Hence, it requires
at most � phases.

Each bucket is implemented by a separate array with dynamic space adjustment; addi-
tional arrays are used in order to keep track of tentative distances and to remember in which
bucket and which array cell a queued node is currently stored. Removing nodes from buck-
ets in parallel is clearly congestion-free. However, insertions must be organized more care-
fully, see Figure 4.5: Having removed all nodes from the buckets � � � � � � � � & # � � # � � � ��� �
for a phase (resulting in a node set

�
), the set � � � of all edges emanating from nodes in�

is built. An immediate parallel relaxation of the set � � � might cause conflicts, there-
fore � � � is first grouped by target nodes (using semi-sorting with small hashed values as
seen in Section 4.5), and then the strictest relaxation request for each target node (group)
is selected. The selected requests are grouped once more by target buckets and finally each
group is appended in parallel after the last used position in the array for the target bucket.
If there are not sufficiently many contiguous free positions left (the free positions may be
scattered due to nodes that have been moved to other buckets during edge relaxations), then
the whole content of this bucket is compacted and then copied to a new array of twice the
size.

Each phase can be performed in
��������� � � average-case time; the respective number of



86 Parallel Algorithms

PIS-SP

foreach
� % 	 � � � � dopar

2 � � � ����� � indegree
� � � � � �

Insert � into � � � � � � % 	 � � � # � � � � � �
while % ���� do

Determine �
� � � '�� ����� +����1+ � � � /* Phase starts */

foreach
� �32�� � ����� � ��� dopar

Empty bucket � � � � � � � � & # � � # � � � � � �
� node set

�
Build set � ��� for all edges out of

�
.

Group � � � by target nodes.
foreach target node � of � ��� dopar

Select best relaxation of an edge into � .
Group selected edges by target buckets.
Perform relaxations (& enlarge buckets if needed). /* Phase ends */

Figure 4.5: Pseudo-code for PIS-SP.

operations excluding array size adjustments is linear in  �  � �� ���  . The total work needed
to adjust the array sizes can be amortized over the total number of edge (re-) relaxations.

4.7.2 Performance for Random Edge Weights.

In the following we consider the expected numbers of node rescans and phases for PIS-SP
on graphs with random edge weights:

Definition 5 Let 
 � � � � � 	������ 	 � � � be a path into an arbitrary node � � . 
 is called degree-
weight balanced (dwb) if � � ��� � � 	 ��� � � # ��� ����� � �� �	� ��� � � 	 � � ��� � � , for all 2 , � �32 ��� .
Lemma 37 For each node � � � , the number of rescans during the execution of PIS-SP is
bounded by the number of simple dwb paths into � .

Proof: Let
+����0+ � � � � and % � denote the value of

+����1+ � � � and the set of nodes in % at the
beginning of phase � , respectively; define �

� � � � '�� ��� � � +����1+ � � � � . Clearly, for nonnega-
tive edge weights, �

� � � � � �
and

+����1+ � � � � � � � +����1+ � � � � for all � � �
and � � � . Let� � � 	 � � denote the total number of rescans for node � during the phases

�
to � ; let

� � � 	 � 	 � �
denote be the � -th rescan of he node � happening in phase � .

The proof of the lemma is by induction; we show that all rescans of the phases
�

to �
can be injectively mapped onto simple paths. More specifically, a rescan of a node � � � in
phase � is mapped onto a simple dwb path 
 � � � � 	������ 	 � � 	 � � � ��� of


 � ��5 �
edges into �

where � � is scanned in phase ��5 � , and
+����1+ � � � � � � � � � � � � � � � � � � 	 � � � � +����1+ � � � � � � � . It

follows immediately that rescans of different nodes are mapped onto different simple paths.
In the remainder we are concerned with different rescans of the same node.

Each node is scanned at most once per phase; no node is rescanned in the first phase.
If the node � with degree * � is scanned for the first time in phase � then it is scanned from



4.7 Parallel Individual Step-Widths 87

bucket � � � � � � � � � � & # � � � � � � � where 2 � � � ����� � * � � � �
, and

�
� � & '#),+ � � � � +����0+ � � � � � �

�
�
� � � � � � � � � � � � �

� �
� � � � � � � � � # ��� ����� � � � � � � �

Now we consider
� � � 	 � 	 � � where � � � � � � # (i.e.,

+����1+ � � � � � ��� +����0+
� � � � and � � � 	 � 5� � � � 5 �
). As � was scanned for the first time in some phase � � � � , all nodes with final

distances less than �
� � were already settled at that time; their respective edges into �� (if

any) will neither be relaxed in phase � � nor later. Therefore,
� � � 	 � 	 � � requires that some

node � � �� � having
� � � 	 � � � � is scanned in phase ��5 �

(i.e.,
& '#),+ � � � � � � � � � � � � � )

where
+����0+�� � � � �

+����0+ � � � � � � � � � � � � 	 � �!� +����0+ � � � � � � ��� � � � # ��� ����� � � � � � � �
These conditions imply � � � � 	 � � � # �������� � � � � � � .

If � � � � 	 � 5 � � � � then
� � � 	 � 	 � � can be uniquely mapped onto the edge

� � � 	 � � , which
is relaxed for the first time in phase � 5 �

. Obviously, � � � 	 �� is a simple dwb path into � of
at most � 5 �

edges because � � � � 	 � � � # ��� ����� � � � � � � .
Otherwise, i.e., if � � � � 	 ��5 � � � � � � � then

� � � � 	 � � 	 ��5 � � was inductively mapped
onto some simple dwb path 
 � � � � �� � 	������ 	 � � � 	 � �� � � � � of


 � � � 5 # edges where � �� is
scanned in phase ��5 � 5 � , and

+����0+ � � � � � � � �� � � � � � � � �� � � 	 � �� � � +����0+�� � � � � � � �� � . Hence,+����1+ � � � � � � � �� � � +����1+ � � � � � �� � , whereas
+����1+ � � � � � � � �	� +����0+ � � � � � � � +����0+ � � � � � �� � for all

� � � � 
 � . Consequently, � is not part of 
 � . We map
� � � 	 � 	 � � onto the path 
 � � 
 � 	 ��

that is built from the concatenation of 
 � and
� � � 	 � � . As required, 
 is a simple dwb path

of at most ��5 �
edges where the nodes are scanned in proper order and the equations for

the tentative distances hold. Furthermore, 
 is different from any other path �
 � � �
 � 	 ��
constructed for some

� � � 	 �� 	 �� � where
� � �� � �� � � � � : when constructing �
 we either

considered another edge
� � � � 	 � � �� � � � 	 � � , but then the subpaths 
 � and �
 � end in different

nodes; or we considered different rescans
� � � � 	 � � 	 ��5 � � and

� � � � 	 � � � 	 ���5 � � of the same
node � � , but then these rescans were mapped on different paths 
 � and �
 � by induction.

Lemma 38 For random edge weights uniformly drawn from � � 	���� , PIS-SP rescans each
node at most once on the average.

Proof: Let � � � denote the number of simple dwb paths of

 � �

edges into an arbitrary
node ��� of a graph � . We first show 4 � � � � � � # �	� . The argument is by induction: let *�
denote the in-degree of node ��� . Excluding self-loops there is a set � � of at most *1� edges
into node � � , hence 4 � � � � � �,* � � # �������� � �  � � � �0* � � # � ����� � �  � � � � � # .

Now consider the set � � � � � � 	������ � � 
 of all simple paths with



edges into node ��� in
� . By assumption 4 � � � � � �  � � ��� � � � � � is dwb

� � # �	� .
For each � � � � ��� 	������ 	 ��� � � � � there are at most *1� edges into ��� so that the con-

catenation with � � results in a simple path of

 � �

edges into �1� . In particular, for each
such path � � � 	 ��� 	������ 	 ��� � , the weight of the newly attached edge

� � � 	 ��� � is independent
of the weights on � � � 	������ 	 � � � . Therefore, � ��� � � 	 � � 	������ 	 � � � is dwb

� � # ��� ����� � � � � � � �



88 Parallel Algorithms

� �� ��� 	������ 	 ��� � is dwb
�
. By linearity of expectation, 4 � � � � � � � is bounded from above by�

� � ��� � *�� � # ��� �����
� � � � � � � � � � � � � ��� 	������ 	 ��� � is dwb

�

� �
� � ��� �

� � # � � � � � is dwb
� � � � # � 4 � � � � � � # �	� � � �

By Lemma 37, ��� is rescanned at most  � � � � � � times, therefore the average-case number
of rescans of � � is at most  � � � 4 � � � � � �  � � � # � � � �

.

Lemma 39 For graphs with random edge weights uniformly drawn from � � 	���� , PIS-SP
needs

� � ��������� � � � '�� � � # � � 4 � � � �  � �  
 � phases on the average where � denotes the
maximum shortest-path weight and  � �� is the number of graph vertices with in-degree at
least

# � .
Proof: Let � , � � � � � ����� � ��� 5 �

, be some arbitrary integer. For the analysis, let
us distinguish two kinds of phases for the algorithm: � ' -phases scan only nodes with in-
degree less than

# ' whereas � ' -phases scan at least one node with in-degree
# ' or larger.

Let % ' denote the number of � ' -phases. By Lemma 38, each node is rescanned
��� � � times

on average. Hence, 4 � % ' � � ���  � '  � .
In the following we are interested in � ' -chunks: for some constant �	� �

, a � ' -chunk
consists of � � � � � � � ������� � � � �

consecutive � ' -phases without any intermediate � ' -
phases. Observe that less than

� % ' � � � � � of all � ' -phases do not belong to any � ' -chunk.
Let �

�
be the smallest tentative distance among queued nodes at the beginning of the � -th

phase of a � ' -chunk. We will show

� � � � � ' � � � � � � � ' � with high probability
�

(4.2)

During the � -th phase of the � ' -chunk, PIS-SP scans all nodes from the current buckets
�6� � � � � � � � & # � � � � � � , � � 2 ��� . Let

� � denote the set of these nodes. Observe that
(4.2) holds if

� �
� � � � & # � � � � � �� � �

�
� � � & # � � � � � for at least one 2 , � � 2 � � ,

i.e., PIS-SP has advanced at least one current bucket from � � � � ��	������ 	 � ' � � � according to
the cyclical ordering. So, let us assume that the current buckets from � � � � ��	������ 	 � ' � � � in
phase � are those of phase

�
. But then there must be at least one node � � � �

� with+����1+ � � � � � � � � � ' . In particular, there must be a simple dwb path 
 � � � � 	������ � � � of
total weight less than � ' � # � ' � � where � � � � � , and all � � , � � � � � , have in-degree
less than

# ' . Into any node � � �
� there are less than

# ' � 	 � � � � such paths. As shown in
Lemma 17, the sum of



independent random edge weights (uniformly distributed in � � 	���� )

is at most � � �
with probability at most � � � 
�� . Hence, the probability that such a path

exists into any node � � �
� is bounded by � � # ' � 	 � � � � � � � � �' � � � 5 � � � � � � # � � � � �

� �  � � . That proves (4.2). Therefore, after �$� � � ' � � ' -chunks the current buckets have
been advanced so much that no node remains in the bucket structure with probability at
least

� 5 �$� � � ' � � � �  � � � � 5 � �  � � . This accounts for at most another
��� # ' � � � ����� � �

� ' -phases with probability at least
� 5 � �  � � ; as PIS-SP requires at most � phases in the

worst case, it needs at most
��� # ' � 4 � � � � ����� � � � � � �  � � � = ��� # ' � 4 � � ��������� � � additional

� ' -phases on the average.



4.7 Parallel Individual Step-Widths 89

Altogether the algorithm runs in
��� � # ' � 4 � � � �  � '  � � ����� � � phases on the average.

Since this analysis holds for any integer � , the average-case bound for all phases can be
restated as

��� � '�� � � # � � 4 � � � �  � �  
 � ����� � � . Note once more that the algorithm itself does
not have to find an optimal compromise between � ' -phases and � ' -phases; they are just a
theoretical concept of the analysis.

4.7.3 Fast Node Selection.

In the following we show how the bucket data structure can be modified in order to deter-
mine � fast and efficiently: each array � � � � � is augmented by a pointer to the first nonempty
bucket � �� of range � � �� 	 � �� � � � � according to the cyclic ordering.

Lemma 40 For random edge weights uniformly drawn from � � 	���� , the total number of oper-
ations needed to maintain the pointers to � �� during the execution of PIS-SP is bounded by��� � � ��� on the average. For each phase, maintaining the pointers takes at most

��������� � �
time.

Proof: � �� may have changed after a phase due to (i) an insertion of a node � into �	� � � � , (ii)
a decrease of

+����1+ � � � where � � � � � � � , (iii) a scan of � from � � � � � . Cases (i) and (ii) are
straightforward: if � moves to a bucket dedicated to smaller tentative distances then � �� is
set to this new bucket otherwise it stays unchanged. The grouping and selection procedure
taking place in each phase prior to parallel node insertions can be adapted such that for each
array the smallest inserted tentative distance is determined as well. Only this value needs to
be checked for a possible update of � �� .

Maintaining � �� for case (iii) is only non-trivial if the bucket of the scanned node �
remains empty after a phase: all buckets of � � � � � must be checked in order to find the new
first nonempty bucket according to the cyclic ordering. On a PRAM this can be accom-
plished using standard parallel prefix-sum and minimum computations [88] in

��������� � �
time and

��� # � � � � work. These operations can be attributed to the degree of the scanned
node � , which is at least

# � � � . Since all degrees add up to
��� ��� and since each node is

scanned
��� � � times on average (Lemma 38), the total amount of operations needed for all

occurrences of case (iii) is bounded by
��� � � ��� on the average, as well.

Finding the Minimum. We show how the values ���� of the first nonempty buckets
� �� � � � �� 	 � �� � � � � introduced above are used to identify the value � of the glob-
ally smallest tentative distance among all queued nodes. At the beginning of a phase
PIS-SP computes the suffix-minima of the values ���� , i.e., for each 2 , it builds �

� 2 � � �� '�� � � �� 	 � �� � � 	������ 	 � �� 
 � We set � �� � � � - if � � � � � is empty. Note that �
� � �6� � �

�
� � � � � � . Next, the procedure refines safe estimates

�
� �	� � � ��$� for the globally

smallest tentative distance among all queued nodes: initially, we set
�
� � � � �

� � � and�� � � � � � � � � � � . The minimum detection takes place in at most � stages:

For the first stage, PIS-SP checks the bucket � � ��� � �� � � � & # � � � ��� � : either, this

bucket is empty, or it constitutes the bucket � �� keeping the node with smallest tentative

distance for the array � � � � � . All nodes from � �� � � � ��� � �
� � � � & # � � � ��� � can be scanned



90 Parallel Algorithms

during the phase according to the scan criterion. Let � � be the smallest tentative distance
among all nodes of � �� ( � � � � - if � �� is empty). The value of � � is determined with
a parallel minimum algorithm causing work linear in the number of elements stored in
bucket � �� . If � '�� � � � 	 �� � 
3� �

� # � then either the whole bucket structure is empty or
a node � � with globally smallest tentative distance is stored in � �� , and therefore � �� '�� � � � 	 �� � 
 . The procedure stops. Otherwise, if � '�� � ��� 	 �� � 
 � � � # � , the queued node
with smallest tentative distance may still be found in one of the subsequent arrays � � � � � , . . . ,
� � � � � . Therefore, the procedure sets

�
� � � � � � # � , �� � � � � '�� � � � 	 �� � 	 � � # � � � � 
 , and it

continues with stage
#

on the bucket array � � � � � .
In general, if the detection procedure reaches stage 2 � # then we may assume by in-

duction that it has identified estimates
�
� � ��� �

��$� � �
� � � � � . The procedure computes

the smallest distance value � � among the nodes in � � � � � �� � � � & # � � � � � � . Observe that
this bucket is either empty (then � � � � � - ) or its nodes will be scanned by PIS-SP. There-
fore, the work to identify � � can be amortized over the node scans. Having computed � �
we may find � '�� � � � 	 �� � 
 � � � 2 � � � , then � '�� � � � 	 �� � 
 definitely equals � ; the proce-
dure stops. Otherwise, that is if � '�� � � � 	 ��$� 
 � � � 2 � � � , we only know for sure that
�
� 2 � � � ��� � � � '�� � �$� 	 ��$� 	 � � 2 � � � � � � � � 
 . The procedure will continue in � � � � � � �

with the new estimates:
�
� � � � � � � � 2 � � � and

��$� � � � � � '�� � �$� 	 �� � 	 � � 2 � � � � � � � � 
 .
After at most � � ��������� � � stages, � is eventually determined. Figure 4.6 provides an
example.

Scanning the nodes from the examined buckets can be overlapped with the global mini-
mum detection. However, asymptotically this does not improve the running time. The time
required for a phase depends on the applied procedure for the

��������� � � local minimum com-
putations: with the standard approach based on balanced trees [88] a phase of PIS-SP needs��������� � � � time and

��� � � ����� � � � work where � denotes the number of nodes scanned in
that phase. Using the constant-time linear-work randomized minimum computation from
[58] reduces the time by a logarithmic factor. Combining the results of this section we find:

Theorem 11 For graphs with random edge weights uniformly drawn from � � 	���� , PIS-SP
requires � � ��������� � � � � '�� � � # � � 4 � � � �  � �� 
 � average-case time using

��� ��� � � � �
operations on a CRCW PRAM where � denotes the maximum shortest-path weight and  � ��
is the number of graph vertices with in-degree at least

# � .

4.7.4 Performance Gain on Power Law Graphs.

Many sparse massive graphs such as the WWW graph and telephone call graphs share
universal characteristics which can be described by the so-called “power law” [5, 13, 95]:
the number of nodes,

1
, of a given in-degree � is proportional to � � � for some constant�

� � . For most massive graphs,
# � � � �

: independently, Kumar et al. [95] and
Barabasi et al. [13] reported

� � #�� �
for the in-degrees of the WWW graph, and the same

value was estimated for telephone call graphs [5]. Further studies mentioned in [13] on
social networks resulted in

� � #�� � , and for graphs of the electric power grid in the US,� � �
.

The observed diameters are usually very small; on random graph classes – with
��� � �

edges – that are widely considered to be appropriate models of real massive graphs like



4.7 Parallel Individual Step-Widths 91

B : 32−63B : 16−31B : 8−15B : 4−7B : 2−3B : 1 3 4 5

1/4 1/8 1/16 1/32 1/64 1/128

1 2 6

M(1)

M(3)

M(4)

M(5)

M(2)

M

M(6)

Figure 4.6: Determination of the smallest tentative distance � in the bucket structure. The
circles denote the smallest distance � � in each array � � � � � . In this example, only the nodes in
the first nonempty buckets of � � � � � , � � � � � , and � � � � � are examined to obtain � : after testing
the nodes from the first nonempty bucket of � � � � � we find � � � � � # � ; hence, the bucket
� � � � � � � # � � � & # � � � � � � is tested, but this bucket is empty. As

�� � � � � � � � � � � � , the
search continues in � � � � � � � � � � � & # � � � � � � where we find a new smallest element ( � � ),
but it is still larger than �

� � � . We continue in � � � � � � � � � � � & # � � � � � � where no smaller
element is found. Finally, �

� � � is larger than the smallest distance seen so far ( � � ). Thus,
all other elements in � � � � � , 24� � will be larger as well, therefore � � � � .
the WWW it turns out that � � ��������� � � whp [98]. For such graphs the number of nodes
having in-degree at least * � is approximately given by

" � � �  ' � � � � � � � , which for constant� � # and arbitrary * � � �
can be bounded by

" � � � % (� � � � � * � � � " � � � *�� � � � � � . Taking* � � � � � � one expects
��� � � � � � � � 	 � � � � � � � ��� � � � � � nodes with in-degree at least * � .

On the other hand, we expect at least one node with in-degree * � � � � �
� �
� � by solving

� � * � � � � � �
.

Therefore, assuming independent random edge weights uniformly distributed in � � 	���� ,
the average-case time for SSSP on WWW-like graphs can be estimated as follows: The

parallel linear average-case work SSSP algorithm from Section 4.5 requires � � � �
� �
� � time

since it has to traverse � � * � ��� � � �
� �
� � buckets sequentially. PIS-SP needs only

��������� � � �
� � � � � � ����� � � � � � � � � � ��� � � � � � ����� � � � average-case time using linear

��� � � ��� work.
Hence, while retaining the linear work bound, the average-case running time could be im-
proved by a factor of � � � � � 	 � � � � � � ����� � � � .



92 Parallel Algorithms

4.8 Conclusions

Our parallel SSSP algorithms - different as they are - share a common feature: they operate
in phases, and any node � that needs at least � edges to be reached from the source node %
in the graph will not be found before phase � . Hence, the diameter of the input graph is
a lower bound on the parallel time of our approaches. Any work-efficient algorithm with
sublinear running time that is independent of the diameter would be of great interest.

For the future it would also be desirable to solve the SSSP on WWW-like graphs in
polylogarithmic time using at most

��� � � ����� � � ��� work.
In order to obtain fast SSSP algorithms with linear average-case work, one might also try

to parallelize Goldberg’s new sequential label-setting algorithm [67]. A parallel version of
this algorithm can be seen as an improved implementation of the IN-approach [33] (see also
Lemma 5) in the sense that exact priority queues are not needed: the smallest used bucket-
width of the radix heap equals the globally smallest edge weight. Hence, for random edge
weights there are still at most

��������� � � buckets in the whole radix heap data structure whp;
a linear number of operations can be achieved on the average. Both approaches maintain
(explicitly or implicitly) a set " that keeps nodes � having

+����0+ � � �45 � '�� � � � �
	 � �	� �

where � denotes the smallest tentative distance currently stored in the heap. All nodes in" can be scanned in parallel (in a phase). The algorithms differ in the way " is refilled
after a phase: the IN-approach considers all queued nodes whereas Goldberg’s algorithm
only checks a subset: namely those nodes whose tentative distances were just improved
or nodes in the first non-empty level of the radix heap. Thus, the total number of phases
for Goldberg’s algorithm is definitely not smaller than that for the IN-approach. In the
following we prove comparably poor average-case performance of the IN-approach on a
simple graph class:

Lemma 41 There are graphs with � nodes,
��� � � edges, independent random edge weights

uniformly distributed in � � 	���� , and maximum shortest-path weight � � �
such that the

IN-approach requires � � 
 � � phases on the average.

Proof: Let the node with index zero be the source. For the remaining nodes with index 2 ,� � 2 � � 5 �
, we include the edges

� � 	 2 � and
� 2 	 2 � , thus resulting in a graph with#	� � 5 # edges. Due to the simple star graph structure, after relaxing the outgoing edges

of % , all nodes are already assigned their final distances
&('*),+ � 2 � � �

. However, some of the
otherwise meaningless self-loop edges will have small edge weights, thus preventing the
IN-approach to remove these nodes fast from the heap. Let � be the set of nodes having a
self-loop edge of weight less than

� � � � � 
 � 5 �
, then 4 �  �  � � 
 � 5 �

. Furthermore,
let us subdivide the range of final node distance into pieces of width

� � � � � 
 � 5 �
each,

such that
� � 2 � denotes the range � 2 � � 	 � 2 � � � � � � . Finally, let � let denote the number

of distinct pieces of
� � � � occupied by nodes of the set � ; 4 � � � � " � 
 � � . Consider the

beginning of a phase for the IN-approach where some node � defines the minimum distance
� among all nodes in the priority queue for this phase, i.e. � � &('#) + � � � . Let us assume&('*),+ � � � � � � � � , then the current phase is unable to remove any queued node � � � where&('*),+ � � � � � � 2 � and 2���� � # :

+����1+ � � � 5 � '��� � � �
	 � � � � � � # � � � 5 � � � � � � � � � ��� �



4.8 Conclusions 93

Therefore, after � phases of the IN-approach, the remaining number of queued nodes be-
longing to the set � is at least � 5 # � � . Using 4 � � � � " � 
 � � we see that � � 
 � � phases
are needed on the average to remove all nodes of from the queue.

The graph class used to show Lemma 41 features one node with degree
" � � � whereas all

other nodes have constant degree, and ��� �
. Hence, this graph class allows solving SSSP

with the PIS-SP algorithm in polylogarithmic time and linear work on the average. Alterna-
tive constructions with constant maximum node degree3 result in similar lower bounds for
the IN-approach; � � 
 � � ����� � � phases are needed on the average, whereas even the simple
parallelizations of ABI-Dijkstra run in polylogarithmic average-case time and linear work.

Reviewing the proof of Lemma 41, one might argue that both the IN-approach and
Goldberg’s algorithm could be properly adapted in order not to consider certain irrelevant
incoming edges like self-loops or edges out of nodes that cannot be reached from % them-
selves. However, even such an adapted criterion can still will be weak: we may augment
the graph by an extra path path �/% 	������ 	 �$� of

" ������� � � edges, thus increasing � to
��������� � � ;

furthermore, we replace each self-loop
� 2 	 2 � by an edge

� � 	 2 � . This modification will most
probably not influence the distances of the previous nodes 2 in the star since

&('#),+ � 2 � � �
but&('*),+ � � � ��� ������� � � with high probability. However, the adapted criterion will consider all

incoming edges. Hence, even the adapted algorithm requires � � 
 � � phases on the average.

3For example, one can take a complete binary tree where the root is the source node and the edges are
directed towards the leafs. Additionally, each leaf node is equipped with a self-loop edge.



Bibliography

[1] P. Adamson and E. Tick. Greedy partitioned algorithms for the shortest path problem.
International Journal of Parallel Programming, 20(4):271–298, 1991.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[4] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the
shortest path problem. Journal of the ACM, 37(2):213–223, 1990.

[5] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proc.
32nd Annual ACM Symposium on Theory of Computing, pages 171–180. ACM, 2000.

[6] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, 1989.

[7] P. Alefragis, P. Sanders, T. Takkula, and D. Wedelin. Parallel integer optimization
for crew scheduling. Annals of Operations Research, 99(1):141–166, 2000.

[8] N. Alon, J. H. Spencer, and P. Erdõs. The Probabilistic Method. Wiley, 1992.

[9] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian paths and
matchings. J. Comput. System Sci., 18:155–193, 1979.

[10] M. J. Atallah, D. Z. Chen, and O. Daescu. Efficient parallel algorithms for planar
% � –graphs. In Proc. 8th. Int. Symp. Algorithms and Computation, volume 1350 of
LNCS, pages 223–232. Springer, 1997.

[11] K. B. Athreya and P. Ney. Branching Processes. Springer, 1972.

[12] D. A. Bader, D. R. Helman, and J. Jájá. Practical parallel algorithms for personalized
communication and integer sorting. Journal of Experimental Algorithms, 3(1):1–42,
1996.

[13] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

[14] H. Bast and T. Hagerup. Fast and reliable parallel hashing. In 3rd Symposium on
Parallel Algorithms and Architectures, pages 50–61, 1991.

94



BIBLIOGRAPHY 95

[15] R. Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[16] B. Bollobás. Degree sequences of random graphs. Discrete Mathematics, 33:1–19,
1981.

[17] B. Bollobás. Random Graphs. Academic Press, 1985.

[18] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–208, 1974.

[19] G. S. Brodal. Worst-case efficient priority queues. In Proc. 7th Ann. Symp. on Dis-
crete Algorithms, pages 52–58. ACM–SIAM, 1996.

[20] G. S. Brodal, J. L. Tr äff, and C. D. Zaroliagis. A parallel priority queue with constant
time operations. Journal of Parallel and Distributed Computing, 49(1):4–21, 1998.

[21] A. Brodnik, S. Carlson, J. Karlsson, and J. I. Munro. Worst case constant time priority
queues. In Proc. 12th Annual Symposium on Discrete Algorithms, pages 523–528.
ACM–SIAM, 2001.

[22] K. M. Chandy and J. Misra. Distributed computation on graphs: Shortest path algo-
rithms. Communications of the ACM, 25(11):833–837, 1982.

[23] S. Chaudhuri and C. D. Zaroliagis. Shortest paths in digraphs of small treewidth.
Part II : Optimal parallel algorithms. Theoretical Computer Science, 203(2):205–
223, 1998.

[24] S. Chaudhuri and C. D. Zaroliagis. Shortest paths in digraphs of small treewidth. Part
I : Sequential algorithms. Algorithmica, 27(3/4):212–226, 2000.

[25] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest path algorithms: Theory
and experimental evaluation. Math. Programming, 73:129–174, 1996.

[26] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[27] A. Clementi, J. Rolim, and E. Urland. Randomized parallel algorithms. In Solving
Combinatorial Problems in Parallel, volume 1054 of LNCS, pages 25–50, 1996.

[28] E. Cohen. Using selective path-doubling for parallel shortest-path computations.
Journal of Algorithms, 22(1):30–56, January 1997.

[29] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. Journal of the ACM, 47:132–166, 2000.

[30] R. Cole and U. Vishkin. Approximate coin tossing with applications to list, tree and
graph porblems. In Proc. 27th Ann. Symp. on Foundations of Computer Science,
pages 478–491. IEEE, 1986.



96 BIBLIOGRAPHY

[31] J. Cong, A. B. Kahng, and K. S. Leung. Efficient algorithms for the minimum shortest
path Steiner arborescence problem with applications to VLSI physical design. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 17(1):24–39,
1998.

[32] C. Cooper, A. Frieze, K. Mehlhorn, and V. Priebe. Average-case complexity of
shortest-paths problems in the vertex-potential model. Random Structures and Al-
gorithms, 16:33–46, 2000.

[33] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. In Proc. 23rd Symp. on Mathematical Foundations of Com-
puter Science, volume 1450 of LNCS, pages 722–731. Springer, 1998.

[34] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser,
R. Subramanian, and T. von Eicken. LogP: A practical model of parallel computation.
Communications of the ACM, 39(11):78–85, November 1996.

[35] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM
Journal on Computing, 10(4):61–67, 1981.

[36] E. V. Denardo and B. L. Fox. Shortest route methods: 1. reaching pruning and
buckets. Operations Research, 27:161–186, 1979.

[37] N. Deo and C. Pang. Shortest–path algorithms: Taxonomy and annotation. Networks,
14:275–323, 1984.

[38] R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering. Commu-
nications of the ACM, 12(11):632–633, 1969.

[39] R. B. Dial, F. Glover, D. Karney, and D. Klingman. A computational analysis of alter-
native algorithms and labeling techniques for finding shortest path trees. Networks,
9:215–248, 1979.

[40] J. Dı́az, J. Petit, and M. Serna. Random geometric problems on � � 	���� � . In RAN-
DOM: International Workshop on Randomization and Approximation Techniques in
Computer Science, volume 1518 of LNCS, pages 294–306. Springer, 1998.

[41] J. Dı́az, J. Petit, and M. Serna. A guide on concentration bounds. In S. Rajasekaran,
P. Pardalos, J. Reif, and J. Rolim, editors, Handbook of Randomized Computing,
pages 457–507. Kluwer, 2001.

[42] E. W. Dijkstra. A note on two problems in connexion with graphs. Num. Math.,
1:269–271, 1959.

[43] E. A. Dinic. Economical algorithms for finding shortest paths in a network. In
Transportation Modeling Systems, pages 36–44, 1978.

[44] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An alter-
native to Fibonacci heaps with applications to parallel computation. Communications
of the ACM, 31(11):1343–1354, 1988.



BIBLIOGRAPHY 97

[45] D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of
randomized algorithms. Draft Manuscript, http://www.brics.dk/˜ale/

papers.html, October 1998.

[46] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci., 5(A):17–61, 1960.

[47] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. In Proc. 42th Symp. on Foundations of Computer Science
(FOCS). IEEE, 2001.

[48] W. Feller. An introduction to probability theory and its applications, volume I. Wiley,
1968.

[49] W. Feller. An introduction to probability theory and its applications, volume II.
Wiley, 1971.

[50] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,
NJ, 1963.

[51] A. Formella, J. Keller, and T. Walle. HPP: A high performance PRAM. In
Proc. Euro-Par 1996 Parallel Processing, volume 1124 II of LNCS, pages 425–434.
Springer, 1996.

[52] S. Fortune and J. Wyllie. Parallelism in random access memories. In Proc. 10th
Symp. on the Theory of Computing, pages 114–118. ACM, 1978.

[53] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[54] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. System Sci., 47:424–436, 1993.

[55] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. System Sci., 48:533–551, 1994.

[56] A. Frieze. Shortest path algorithms for knapsack type problems. Mathematical Pro-
gramming, 11:150–157, 1976.

[57] A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, 10:57–77, 1985.

[58] A. M. Frieze and L. Rudolph. A parallel algorithm for all-pairs shortest paths in a
random graph. In Proc. 22nd Allerton Conference on Communication, Control and
Computing, pages 663–670, 1985.

[59] G. Gallo and S. Pallottino. Shortest path methods: A unifying approach. Math.
Programming Study, 26:38–64, 1986.

[60] G. Gallo and S. Pallottino. Shortest path algorithms. Ann. Oper. Res., 13:3–79, 1988.



98 BIBLIOGRAPHY

[61] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms.
Journal of Parallel and Distributed Computing, 22(2):251–267, August 1994.

[62] A. M. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

[63] A. M. Gibbons and W. Spirakis. Lectures on Parallel Computation. Cambridge
University Press, 1993.

[64] F. Glover, R. Glover, and D. Klingman. Computational study of an improved shortest
path algorithm. Networks, 14:23–37, 1984.

[65] F. Glover, D. Klingman, and N. Phillips. A new polynomially bounded shortest path
algorithm. Operations Research, 33:65–73, 1985.

[66] F. Glover, D. Klingman, N. Phillips, and R. F. Schneider. New polynomial shortest
path algorithms and their computational attributes. Management Science, 31:1106–
1128, 1985.

[67] A. V. Goldberg. A simple shortest path algorithm with linear average time. In Proc.
9th Ann. European Symposium on Algorithms (ESA), number 2161 in LNCS, pages
230–241. Springer, 2001.

[68] A. V. Goldberg. Shortest path algorithms: Engineering aspects. In Proc. 12th Intern.
Symposium on Algorithms and Computation (ISAAC 2001), number 2223 in LNCS,
pages 502–513. Springer, 2001.

[69] A. V. Goldberg and T. Radzik. A heuristic improvement of the Bellman-Ford algo-
rithm. Applied Mathematics Letters, 6:3–6, 1993.

[70] A. V. Goldberg and R. E. Tarjan. Expected performance of Dijkstra’s shortest path
algorithm. Technical Report TR-96-062, NEC Research, 1996.

[71] B. Golden and T. Magnanti. Transportation planning: Network models and their
implementation. Studies in Operations Management, pages 365–518, 1978.

[72] L. M. Goldschlager. A unified approach to models of synchronous parallel machines.
Journal of the ACM, 29(4):1073–1086, 1982.

[73] G. R. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wis-
senschaften. Springer, 2nd edition, 1999.

[74] G. R. Grimmett and D. R. Stirzaker. Probability and random processes. Oxford
University Press, 3. edition, 2001.

[75] Q. P. Gu and T. Takaoka. A sharper analysis of a parallel algorithm for the all pairs
shortest path problem. Parallel Computing, 16(1):61–67, 1990.

[76] T. Hagerup. Improved shortest paths on the word RAM. In 27th Colloquium on
Automata, Languages and Programming (ICALP), volume 1853 of LNCS, pages 61–
72. Springer, 2000.



BIBLIOGRAPHY 99

[77] T. Hagerup and C. R üb. A guided tour of Chernoff bounds. Information Processing
Letters, 33:305–308, 1990.

[78] Y. Han, V. Pan, and J. Reif. Efficient parallel algorithms for computing all pair
shortest paths in directed graphs. Algorithmica, 17(4):399–415, 1997.

[79] T. Harris. The Theory of Branching Processes. Springer, 1963.

[80] R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math.
Oper. Res., 10(4):557–564, 1985.

[81] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algo-
rithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,
August 1997.

[82] W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58:13–30, 1964.

[83] D. Houck, J. Picard, M. Queyranne, and R. Vemuganti. The traveling salesman
problem as a constrained shortest path problem: Theory and computation experience.
Opsearch (India), 17:94–109, 1980.

[84] M. R. Hribar and V. E. Taylor. Performance study of parallel shortest path algorithms:
Characteristics of good decompositions. In Proc. 13th Ann. Conf. Intel Supercom-
puters Users Group (ISUG), 1997.

[85] M. R. Hribar, V. E. Taylor, and D. E. Boyce. Termination detection for parallel
shortest path algorithms. Journal of Parallel and Distributed Computing, 55:153–
165, 1998.

[86] M. R. Hribar, V. E. Taylor, and D. E. Boyce. Implementing parallel shortest path for
parallel transportation applications. Parallel Computing, 27(12):1537–1568, 2001.

[87] M. S. Hung and J. J. Divoky. A computational study of efficient shortest path algo-
rithms. Comput. Oper. Res., 15(6):567–576, 1988.

[88] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, 1992.

[89] N. L. Johnson and S. Kotz. Urn Models and Their Applications. Wiley, 1977.

[90] R. M. Karp. The transitive closure of a random digraph. Random Structures and
Algorithms, 1(1):73–93, 1990.

[91] R. M. Karp and Y. Zhang. Finite branching processes and AND/OR tree evaluation.
Technical Report TR-93-043, ICSI, Berkeley, 1993.

[92] P. N. Klein and S. Subramanian. A linear-processor polylog-time algorithm for
shortest paths in planar graphs. In Proc. 34th Annual Symposium on Foundations
of Comptuer Science, pages 259–270. IEEE, 1993.



100 BIBLIOGRAPHY

[93] P. N. Klein and S. Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 25(2):205–220, November 1997.

[94] V. F. Kolchin, B. A. Sevatyanov, and V. P. Chistiakov. Random Allocations. V. H.
Winston, 1978.

[95] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for
emerging cyber-communities. In Proc. 8th International World-Wide Web Confer-
ence, 1999.

[96] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.
Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

[97] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, 1980.

[98] L. Lu. The diameter of random massive graphs. In Proc. 12th Ann. Symp. on Discrete
Algorithms, pages 912–921. ACM–SIAM, 2001.

[99] M. Marı́n. Asynchronous (time-warp) versus synchronous (event-horizon) simula-
tion time advance in BSP. In Proc. Euro-Par 1998 Parallel Processing, volume 1470
of LNCS, pages 897–905, 1998.

[100] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics,
volume 16 of Algorithms and Combinatorics, pages 195–248. Springer, 1998.

[101] B. D. McKay and N. C. Wormald. The degree sequence of a random graph, I: The
models. Random Structures and Algorithms, 11:97–118, 1997.

[102] K. Mehlhorn and V. Priebe. On the all-pairs shortest-path algorithm of Moffat and
Takaoka. Random Structures and Algorithms, 10:205–220, 1997.

[103] U. Meyer. Heaps are better than buckets: Parallel shortest paths on unbalanced
graphs. In Proc. Euro-Par 2001 Parallel Processing, volume 2150 of LNCS, pages
343–351. Springer, 2001.

[104] U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-
case time. In Proc. 12th Ann. Symp. on Discrete Algorithms, pages 797–806. ACM–
SIAM, 2001.

[105] U. Meyer. Buckets strike back: Improved parallel shortest paths. In Proc. 16th Intern.
Parallel and Distributed Processing Symposium (IPDPS 2002). IEEE, 2002.

[106] U. Meyer and P. Sanders. � -stepping: A parallel single source shortest path algo-
rithm. In Proc. 6th Ann. European Symposium on Algorithms (ESA), volume 1461 of
LNCS, pages 393–404. Springer, 1998.

[107] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proc. Euro-
Par 2000 Parallel Processing, volume 1900 of LNCS, pages 461–470. Springer,
2000.



BIBLIOGRAPHY 101

[108] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 1: Fundamentals. In S. Mi-
cali, editor, Advances in Computing Research 5: Randomness and Computation. JAI
Press, 1989.

[109] A. Moffat and T. Takaoka. An all pairs shortest path algorithm with expected time
� � � � ����� � � . SIAM Journal on Computing, 16:1023–1031, 1987.

[110] M. Molloy. The Probabilistic Method. In M. Habib, C. McDiarmid, J. Ramirez-
Alfonsin, and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Math-
ematics, volume 16 of Algorithms and Combinatorics, pages 1–35. Springer, 1998.

[111] J.-F. Mondou, T. G. Crainic, and S. Nugyen. Shortest path algorithms: A compu-
tational study with the C programming language. Comput. Oper. Res., 18:767–786,
1991.

[112] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[113] K. Mulmuley and P. Shah. A lower bound for the shortest path problem. In Proc.
15th Annual Conference on Computational Complexity, pages 14–21. IEEE, 2000.

[114] M. Nonato, S. Pallottino, and B. Xuewen. SPT L shortest path algorithms: review,
new proposals and some experimental results. Technical report TR-99-16, University
of Pisa, Department of Computer Science, 1999.

[115] K. Noshita. A theorem on the expected complexity of Dijkstra’s shortest path algo-
rithm. Journal of Algorithms, 6:400–408, 1985.

[116] R. C. Paige and C. P. Kruskal. Parallel algorithms for shortest path problems. In
International Conference on Parallel Processing, pages 14–20. IEEE Computer So-
ciety Press, 1985.

[117] S. Pallottino. Shortest-path methods: Complexity, interrelations and new proposi-
tions. Networks, 14:257–267, 1984.

[118] U. Pape. Implementation and efficiency of Moore-algorithms for the shortest route
problem. Math. Programming, 7:212–222, 1974.

[119] S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and
additions. In Proc. 13th Ann. Symp. on Discrete Algorithms, pages 267–276. ACM-
SIAM, January 6–8 2002.

[120] V. Priebe. Average-case complexity of shortest-paths problems. PhD thesis, Univer-
sit ät des Saarlandes, 2001.

[121] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37:130–143,
1988.

[122] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized parallel
sorting algorithms. SIAM Journal on Computing, 18(3):594–607, 1989.



102 BIBLIOGRAPHY

[123] R. Raman. Priority queues: Small, monotone and trans-dichotomous. In 4th Annual
European Symposium on Algorithms (ESA), volume 1136 of LNCS, pages 121–137.
Springer, 1996.

[124] R. Raman. Recent results on the single-source shortest paths problem. ACM SIGACT
News, 28(2):81–87, June 1997.

[125] J. Reif and P. Spirakis. Expected parallel time and sequential space complexity of
graph and digraph problems. Algorithmica, 7:597–630, 1992.

[126] O. Riordan and A. Selby. The maximum degree of a random graph. Combinatorics,
Probability and Computing, 9:549–572, 2000.

[127] C. Scheideler. Probabilistic Methods for Coordination Problems. HNI–Verlags-
schriftenreihe Vol. 78, University of Paderborn, 2000.

[128] M. Schwartz and T. E. Stern. Routing techniques used in computer communication
networks. IEEE Transactions on Communications, pages 539–552, 1980.

[129] R. Sedgewick and P. Flajolet. An Introduction to the analysis of algorithms. Addison-
Wesley, 1996.

[130] R. Sedgewick and J. S. Vitter. Shortest paths in euclidean graphs. Algorithmica,
1:31–48, 1986.

[131] H. Shi and T. H. Spencer. Time–work tradeoffs of the single-source shortest paths
problem. Journal of Algorithms, 30(1):19–32, 1999.

[132] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. Journal of Algorithms, 2(1):88–102, 1981.

[133] P. M. Spira. A new algorithm for finding all shortest paths in a graph of positive arcs
in average time � � � � ����� � � � . SIAM Journal on Computing, 2:28–32, 1973.

[134] S. Subramanian, R. Tamassia, and J. S. Vitter. An efficient parallel algorithm for
shortest paths in planar layered digraphs. Algorithmica, 14(4):322–339, 1995.

[135] T. Takaoka. Theory of 2-3 heaps. In Computing and Combinatorics, volume 1627 of
LNCS, pages 41–50. Springer, 1999.

[136] M. Thorup. Undirected single-source shortest paths with positive integer weights in
linear time. Journal of the ACM, 46:362–394, 1999.

[137] M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms,
35:189–201, 2000.

[138] M. Thorup. On RAM priority queues. SIAM Journal on Computing, 30:86–109,
2000.

[139] J. L. Tr äff. An experimental comparison of two distributed single-source shortest
path algorithms. Parallel Computing, 21:1505–1532, 1995.



BIBLIOGRAPHY 103

[140] J. L. Tr äff and C. D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. Journal of Parallel and Distributed Com-
puting, 60(9):1103–1124, 2000.

[141] J. D. Ullman and M. Yannakakis. High-probability parallel transitive closure algo-
rithms. SIAM Journal on Computing, 20(1):100–125, February 1991.

[142] L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

[143] M. S. Waterman. Mathematical Methods for DNA Sequences. CRC Press, Boca
Raton, FL, 1988.

[144] J. W. J. Williams. Heapsort. Communications of the ACM, 7(6):347–348, 1964.

[145] F. B. Zhan and C. E. Noon. Shortest path algorithms: An evaluation using real road
networks. Transportation Science, 32:65–73, 1998.

[146] U. Zwick. Exact and approximate distances in graphs - a survey. In Proc. 9th Ann.
European Symposium on Algorithms (ESA), number 2161 in LNCS, pages 33–48.
Springer, 2001.



Summary

This thesis deals with the average-case complexity of algorithms for a basic combinatorial-
optimization problem: computing shortest paths on directed graphs with weighted edges.
We focus on the single-source shortest-paths (SSSP) version that asks for minimum weight
paths from a designated source node of a graph to all other nodes; the weight of a path
is given by the sum of the weights of its edges. Shortest-paths problems are among the
most fundamental and also the most commonly encountered graph problems, both in them-
selves and as subproblems in more complex settings. We consider SSSP algorithms under
the classical sequential (single processor) model and for parallel processing, that is, hav-
ing several processors working in concert. Computing SSSP on a parallel computer may
serve two purposes: solving the problem faster than on a sequential machine and/or taking
advantage of the aggregated memory in order to avoid slow external memory computing.
Currently, however, parallel and external memory SSSP algorithms still constitute major
performance bottlenecks. In contrast, internal memory sequential SSSP for graphs with
nonnegative edge weights is quite well understood: numerous SSSP algorithms have been
developed, achieving better and better asymptotic worst-case running times. On the other
hand, many sequential SSSP algorithms with less attractive worst-case behavior perform
very well in practice but there are hardly any theoretical explanations for this phenomenon.
Mathematical average-case analysis for shortest-paths algorithms has focused on the All-
Pairs Shortest-Paths problem for a simple graph model, namely the complete graph with
random edge weights.

One of the main contributions of this thesis is a thorough mathematical average-case
analysis of sequential SSSP algorithms on arbitrary directed graphs. Our problem instances
are directed graphs with � nodes and � edges whose edge weights are randomly chosen
according to the uniform distribution on � � 	���� . We present both label-setting and label-
correcting algorithms that solve the SSSP problem on such instances in time � � � � ���
on the average. For independently random edge weights, the average-case time-bound can
also be obtained with high probability. All previous algorithms required superlinear time.
The new SSSP algorithms do not use exact priority queues, but simple hierarchical bucket
structures with adaptive splitting instead: The label-setting algorithm SP-S aims to split the
current bucket until a single vertex remains in it, whereas the label-correcting algorithm SP-
C adapts the width of the current bucket to the maximum degree of the vertices contained
in it. Our result also yields an

��� � � � � � ��� average-case time algorithm for All-Pairs
Shortest-Paths, thus improving upon the best previous bounds on sparse directed graphs.

Only very little is known about the average-case performance of previous SSSP algo-
rithms. Our research yields the first theoretical average-case analysis for the “Approximate

104



Bucket Implementation” of Dijkstra’s algorithm (ABI–Dijkstra): for random edge weights
and either random graphs or graphs with constant maximum node degree we show how the
bucket width must be chosen in order to achieve linear

��� � � ��� average-case execution
time.

Worst-case inputs for label-correcting SSSP algorithms are usually based on the follow-
ing principle: Paths with a few edges are found earlier but longer paths have smaller total
weights and hence lead to many costly updates on the tentative distances. For random edge
weights, however, it is unlikely that a given long path has a small total path weight. Thus,
the carefully constructed worst-case graphs will usually not cause large running times. We
present a general method to deal with this problem. We come up with constructive existence
proofs for graph classes with random edge weights on which ABI–Dijkstra and several other
well-known SSSP algorithms are forced to run in superlinear time on average. It is worth
mentioning that the constructed graphs contain only

��� � � edges, thus maximizing the per-
formance gap as compared to our new approaches with linear average-case time.

The second part of the thesis deals with parallel SSSP algorithms. The parallel random
access machine (PRAM) is one of the most widely studied abstract models of a parallel
computer. A PRAM consists of � independent processors and a shared memory, which
these processors can synchronously access in unit time. The performance of PRAM algo-
rithms is usually described by the two parameters time (assuming an unlimited number of
available PUs) and work (the total number of operations needed). A fast and efficient paral-
lel algorithm minimizes both time and work; ideally the work is asymptotic to the sequential
complexity of the problem. A number of SSSP PRAM algorithms has been invented to fit
the needs of parallel computing. Unfortunately, most of them require significantly more
work than their sequential counterparts.

We present new results for a number of important graph classes; for example, we pro-
vide the first work-optimal PRAM algorithms that require sublinear average-case time for
sparse random graphs, and graphs modeling the WWW, telephone calls or social networks.
Most of our algorithms are derived from the new sequential label-correcting approach ex-
ploiting the fact that certain operations can be performed independently on different proces-
sors or disks. The algorithms are analyzed in terms of quite general graph properties like
(expected) diameter, maximum shortest-path weight or node degree sequences. For certain
parameter ranges, already very simple extensions provably do the job; other parameters re-
quire more involved data structures and algorithms. Sometimes, our methods do not lead to
improved algorithms at all, e.g., on graphs with linear diameter. However, such inputs are
quite atypical.

105



Zusammenfassung

In dieser Arbeit untersuchen wir die average-case-Komplexit ät von Algorithmen f ür das
K ürzeste-Wege Problem mit einem Startpunkt (Single-Source Shortest-Paths, SSSP). K ür-
zeste-Wege Probleme nehmen einen breiten Raum der kombinatorischen Optimierung ein
und haben viele praktische Anwendungen.

Um Aussagen über das “durchschnittliche Verhalten” eines Algorithmus zu treffen wer-
den die Eingaben gem äß einer Wahrscheinlichkeitsverteilung auf der Menge aller m öglichen
Eingaben erzeugt. Eingaben f ür SSSP bestehen aus gerichteten Graphen mit � Knoten, �
Kanten und nichtnegativen Kantengewichten. Im Gegensatz zu den meisten fr üheren Ar-
beiten nehmen wir lediglich eine zuf ällige Verteilung der Kantengewichte an; die Graph-
struktur kann beliebig sein. Deshalb k önnen sich unsere Algorithmen nicht auf struk-
turelle Eigenarten verlassen, die bei Graphen mit zuf älliger Kantenverkn üpfung mit hoher
Wahrscheinlichkeit auftreten und die SSSP Berechnung erleichtern.

Alle bisherigen SSSP Algorithmen ben ötigten auf d ünnen gerichteten Graphen super-
lineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten
Graphen mit zuf älligen Kantengewichten eine beweisbar lineare average-case-Komplexit ät��� � � ��� besitzt. Sind die Kantengewichte unabh ängig, so wird die lineare Zeitschranke
auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis ver-
besserte average-case-Schranken f ür das All-Pairs Shortest-Paths (APSP) Problem auf Gra-
phen mit �

� � � ����� � � Kanten.

Der neue Algorithmus benutzt eine approximative Priorit äts-Datenstruktur. Diese be-
steht anfangs aus einem eindimensionalen Feld von Buckets. Je nachdem wie sich die
Eintr äge in der Datenstruktur verteilen, k önnen die Buckets feiner unterteilt werden. Durch
wiederholtes Aufspalten der Buckets bildet sich eine Hierarchie, die es erm öglicht kritische
Eintr äge schnell zu lokalisieren.

Unser neuer Ansatz kommt in zwei Varianten: SP-S folgt dem label-setting-Paradigma,
w ährend SP-C einen label-correcting-Algorithmus darstellt. Die besten beweisbaren Lauf-
zeitschranken f ür SSSP wurden bisher durchg ängig f ür label-setting-Algorithmen gefun-
den. Andererseits waren label-correcting-Ans ätze in der Praxis oft erheblich schneller
als label-setting-Algorithmen. Unsere Arbeit zeigt, daß zumindest im average-case beide
Paradigmen eine asymptotisch optimale Leistung erlauben.

Quasi als Nebenprodukt der Analyse f ür SP-C erhalten wir die erste theoretische aver-
age-case-Analyse f ür die “Approximate Bucket Implementierung” von Dijkstras SSSP Al-
gorithmus (ABI-Dijkstra): insbesondere f ür Zufallsgraphen und Graphen mit konstanten
Knotengraden ist die durchschnittliche Laufzeit bei zuf älligen Kantengewichten linear.

Zuf ällige nichtnegative Kantengewichte erleichtern das SSSP Problem insofern, als daß

106



das Auftreten langer Pfade mit kleinem Gesamtgewicht sehr unwahrscheinlich wird. An-
dererseits beruhen worst-case-Eingaben f ür viele altbekannte label-correcting-Algorithmen
wie ABI-Dijkstra gerade auf einer Staffelung langer Pfade mit kleinen Gesamtgewichten:
w ährend der Ausf ührung findet der Algorithmus immer wieder bessere Verbindungen, die
das Korrigieren vieler Distanzwerte erfordern, und somit den Algorithmus ausbremsen.
Dieses ausgekl ügelte Schema f ällt bei zuf älligen Kantengewichten in der Regel vollkom-
men in sich zusammen.

Wir stellen eine allgemeine Methode vor, um worst-case-Eingaben mit festen Kan-
tengewichten in schwierige Eingaben mit zuf älligen Kantengewichten zu verwandeln. Mit-
tels dieser Methode zeigen wir, daß es Graphklassen mit zuf älligen Kantengewichten gibt,
auf denen eine Reihe etablierter SSSP Algorithmen superlineare average-case-Laufzeiten
ben ötigen. F ür den Bellman-Ford Algorithmus ergibt sich zum Beispiel eine durchschnit-
tliche Laufzeit von � � � � ��� � � � f ür beliebig kleine � � � ; bei ABI-Dijkstra betr ägt die durch-
schnittliche Laufzeit auf solchen Graphklassen immerhin noch � � � � ����� � � ����� ����� � � . Diese
Ergebnisse unterstreichen die Bedeutung unseres neuen SSSP Algorithmus, der auf beliebi-
gen Graphen mit zuf älligen Kantengewichten in linearer average-case-Zeit terminiert.

Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell untersuchen wir
das SSSP Problem auch f ür Parallelverarbeitung. Ein guter paralleler Algorithmus ben ötigt
sowohl wenige parallele Schritte (Zeit) als auch eine m öglichst geringe Gesamtzahl an
Operationen (Arbeit). Leider gibt es bisher keine parallelen SSSP Algorithmen, die bei
beiden Parametern beweisbar gut abschneiden. Wir erzielen Verbesserungen f ür umfan-
greiche Graphklassen mit zuf älligen Kantengewichten, wie z.B. d ünne Zufallsgraphen oder
Graphen, die das WWW, Telefonanrufe oder soziale Netzwerke modellieren. Unsere Ans ät-
ze stellen die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer
Arbeit dar.

Dabei betrachten wir zun ächst einfache Parallelisierungen des ABI-Dijkstra Algorith-
mus. Diese sind schon recht effizient, wenn der maximale Knotengrad nicht wesentlich
gr ößer ist als der durchschnittliche Knotengrad. Bei extrem unbalancierten Knotengraden
st ößt diese Methode jedoch sehr schnell an ihre Grenzen: zu viele Buckets m üssen nachein-
ander durchlaufen werden. Eine direkte Parallelisierung von SP-C w ürde das Problem
nur teilweise beseitigen, da es durch dynamische Bucket-Spaltungen immer noch zu einer
großen Zahl zu traversierender Buckets kommen k önnte. Deshalb haben wir eine spezielle
parallele Variante entwickelt, die auf mehreren Bucketstrukturen unterschiedlicher Auspr ä-
gung gleichzeitig arbeitet und ohne Bucket-Spaltungen auskommt. Innerhalb jeder Bucket-
struktur k önnen leere Buckets schnell übersprungen werden. Bei durchschnittlich linearer
Arbeit kann SSSP auf Graphen wie sie zum Beispiel durch das World-Wide-Web gegeben
sind in �

� 
 � � durchschnittlicher paralleler Zeit gel öst werden.

107



Curriculum Vitae

Personal Data

Last name Meyer
First names Ulrich
Citizenship German
Place of birth Dudweiler, Germany
Date of birth 10-11-1971
Social status married, one daughter

Education

Secondary School 1982-1991 Staatliches Gymnasium Sulzbach

Study 1991 -
1997

Computer Science (Minor: Economics) at
Univ. des Saarlandes, Saarbr ücken

Bachelor’s degree 1993 Grade : good
Master’s degree 1997 Grade : very good

Ph.D. research 1997 - Max-Planck Institute (MPI) for Computer
Science, Saarbr ücken. Advisor: Prof. Dr.
Kurt Mehlhorn

Guest researcher 01/2002 - Computer and Automation Research Institute
02/2002 of the Hungarian Academy of Sciences

Publications

Master Thesis:

[1] U. Meyer. Deterministische Simulation einer PRAM auf Gitterrechnern. Mastersthesis
(in German), Universit ät des Saarlandes, 1995.

108



Refereed Conference Papers:

[2] L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. In Proc. 7th Intern. Workshop on Algorithms and Data Structures (WADS
2001), volume 2125 of LNCS, pages 471–482. Springer, 2001.

[3] K. Brengel, A. Crauser, U. Meyer, and P. Ferragina. An experimental study of priority
queues in external memory. In Proc. 3rd Intern. Workshop on Algorithm Engineering
(WAE-99), volume 1668 of LNCS, pages 345–359. Springer, 1999.

[4] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. In Proc. 23rd Symp. on Mathematical Foundations of Com-
puter Science, volume 1450 of LNCS, pages 722–731. Springer, 1998.

[5] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos. Randomized
external-memory algorithms for some geometric problems. In Proc. 14th ACM Sym-
posium on Computational Geometry (SCG-98), pages 259–268. ACM, 1998.

[6] S. Edelkamp and U. Meyer. Theory and practice of time-space trade-offs in memory
limited search. In Proc. Joint German/Austrian Conference on Artificial Intelligence
(KI-2001), volume 2174 of LNAI, pages 169–184. Springer, 2001.

[7] M. Kaufmann, U. Meyer, and J. F. Sibeyn. Towards practical permutation routing on
meshes. In Proc. 6th IEEE Symposium on Parallel and Distributed Processing, pages
656–663. IEEE, 1994.

[8] M. Kaufmann, U. Meyer, and J. F. Sibeyn. Matrix transpose on meshes: Theory and
practice. In Proc. 11th International Parallel Processing Symposium (IPPS-97), pages
315–319. IEEE, 1997.

[9] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O.
In Proc. 10th Ann. European Symposium on Algorithms (ESA), volume 2461 of LNCS,
pages 723–735. Springer, 2002.

[10] U. Meyer. External memory BFS on undirected graphs with bounded degree. In Proc.
12th Ann. Symp. on Discrete Algorithms, pages 87–88. ACM–SIAM, 2001.

[11] U. Meyer. Heaps are better than buckets: Parallel shortest paths on unbalanced graphs.
In Proc. Euro-Par 2001 Parallel Processing, volume 2150 of LNCS, pages 343–351.
Springer, 2001.

[12] U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-
case time. In Proc. 12th Ann. Symp. on Discrete Algorithms, pages 797–806. ACM–
SIAM, 2001.

[13] U. Meyer. Buckets strike back: Improved parallel shortest paths. In Proc. 16th Intern.
Parallel and Distributed Processing Symposium (IPDPS 2002). IEEE, 2002.

109



[14] U. Meyer and P. Sanders. � -stepping: A parallel single source shortest path algorithm.
In Proc. 6th Ann. European Symposium on Algorithms (ESA), volume 1461 of LNCS,
pages 393–404. Springer, 1998.

[15] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proc. Euro-Par
2000 Parallel Processing, volume 1900 of LNCS, pages 461–470. Springer, 2000.

[16] U. Meyer and J. F. Sibeyn. Simulating the simulator: Determinstic pram simulation
on a mesh simulator. In Eurosim ’95, pages 285–290. Elsevier, 1995.

[17] U. Meyer and J. F. Sibeyn. Gossiping large packets on full-port tori. In Proc. Euro-Par
1998 Parallel Processing, volume 1470 of LNCS, pages 1040–1046. Springer, 1998.

[18] J. F. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external depth first search
on directed graphs. In Proc. Symposium on Parallel Algorithms and Architectures
(SPAA), pages 282–292. ACM, 2002.

Refereed Journal Papers:

[19] K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An experimental study of priority
queues in external memory. Journal of Experimental Algorithmics, 5, 2000.

[20] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos. I/O-optimal
computation of segment intersections. In Proc. DIMACS Workshop on External Al-
gorithms and Visualization, volume 50 of DIMACS Series in Discr. Math. and Theor.
Comp. Sci., pages 131–138. AMS, 1999.

[21] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. A. Ramos. Randomized
external-memory algorithms for line segment intersection and other geometric prob-
lems. International Journal of Computational Geometry and Applications, 11(3):305–
338, June 2001.

[22] M. Kaufmann, U. Meyer, and J. F. Sibeyn. Matrix transpose on meshes: Theory and
practice. Computers and Artificial Intelligence, 16(2):107–140, 1997.

[23] U. Meyer and P. Sanders. � -stepping: A parallelizable shortest path algorithm. Jour-
nal of Algorithms, 2002. Accepted for publication.

[24] U. Meyer and J. F. Sibeyn. Oblivious gossiping on tori. Journal of Algorithms,
42(1):1–19, 2002.

110


