
A Demand-Driven Solver for
Constraint-Based Control Flow Analysis

Dissertation

Zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

von

Diplom-Informatiker

Christian W. Probst

Saarbr ücken
September 2002

Tag des Kolloquiums: 4. Oktober 2002

Dekan: Prof. Dr. Philipp Slusallek

Gutachter: Prof. Dr. Reinhard Wilhelm
Prof. Dr. Uwe Aßmann

Vorsitzender: Prof. Dr. Andreas Zeller

i

Abstract

This thesis develops a demand driven solver for constraint based
control flow analysis. Our approach is modular, flow-sensitive
and scaling. It allows to efficiently construct the interprocedu-
ral control flow graph (ICFG) for object-oriented languages. The
analysis is based on the formal semantics of a Java-like language.
It is proven to be correct with respect to this semantics. The base
algorithms are given and we evaluate the applicability of our ap-
proach to real world programs.
Construction of the ICFG is a key problem for the translation
and optimization of object-oriented languages. The more accurate
these graphs are, the more applicable, precise and faster are these
analyses. While most present techniques are flow-insensitive, we
present a flow-sensitive approach that is scalable.
The analysis result is twofold. On the one hand, it allows to iden-
tify and delete uncallable methods, thus minimizing the program’s
footprint. This is especially important in the setting of embedded
systems, where usually memory resources are quite expensive.
On the other hand, the interprocedural control flow graph gener-
ated is much more precise than those generated with present tech-
niques. This allows for increased accuracy when performing data
flow analyses. Also this aspect is important for embedded sys-
tems, as more precise analyses allow the compiler to apply better
optimizations, resulting in smaller and/or faster programs.
Experimental results are given that demonstrate the applicability
and scalability of the analysis.

ii

Zusammenfassung

Diese Arbeit entwickelt einen Bedarf-gesteuerten L öser f ür Con-
straint-basierte Kontrollflußanalyse. Unser Ansatz ist modu-
lar, fluß-sensitiv and skaliert. Er erlaubt das effiziente Kon-
struieren des interprozeduralen Kontrollflußgraphen f ür objekt-
orientierte Programmiersprachen. Die Analyse basiert auf der for-
malen Semantik einer Java- ähnlichen Sprache und wird als kor-
rekt bez üglich dieser Semantik bewiesen. Wir pr äsentieren die
grundlegenden Algorithmen und belegen die Anwendbarkeit un-
seres Ansatzes auf realistische Programme.
Die Konstruktion des interprozeduralen Kontrollflußgraphen ist
ein Schl üsselproblem bei derÜbersetzung und Optimierung ob-
jekt-orientierter Programmiersprachen. Je genauer diese Gra-
phen sind, desto pr äziser und schneller sind darauf arbeitende
Datenfluß-Analysen. W ährend die meisten heute verbreiteten
Techniken fluß-insensitiv sind, pr äsentieren wir einen skalierba-
ren fluß-sensitiven Ansatz.
Unsere Analyse hat zwei Hauptergebnisse. Einerseits erlaubt sie,
nicht erreichbare Methoden zu identifizieren und zu l öschen, wo-
durch die Gr öße des erzeugten Programmes reduziert wird. Dies
ist besonders f ür eingebettete Systeme wichtig, bei denen zus ätz-
licher Speicherplatz teuer ist. Andererseits ist der mit unserem
Ansatz berechnete interprozedurale Kontrollflußgraph wesentlich
genauer als der von derzeitigen Techniken berechnete Graph.
Dieser pr äzisere Graph erlaubt eine gr ößere Genauigkeit bei Da-
tenflußanalysen. Auch dieser Aspekt ist f ür eingebettete Systeme
von großer Bedeutung, da pr äzisere Analysen bessere Optimie-
rungen erlauben. Hierdurch wird das erzeugte Programm kleiner
und/oder schneller.
Experimentelle Ergebnisse belegen die Anwendbarkeit und Ska-
lierbarkeit unserer Analyse.

Extended Abstract

Programs written in powerful, higher-order languages [...]
should run as fast as their

���������	��

and � counterparts.

They should, but they don’t. A major reason is the level of
optimisation applied to these two classes of languages.

Olin Shivers, [Shi1991].

This thesis contributes a solution to one of the key problems in analyzing, optimizing, and trans-
lating object-oriented languages, namely the construction of the interprocedural control flow
graph (ICFG). The solution is based on a demand driven solver for constraint systems generated
by control flow analysis. Our approach is flow-sensitive and scalable. This is in contrast to the
widely used techniques. Furthermore, by introducing functors into the constraint graph, the our
approach allows to pre-analyze frequently used libraries.

The problem of ICFG construction occurs because object-oriented languages introduce the con-
cept of dynamic dispatch where only at run-time of the compiled program it is decided which
method shall be called. Therefore, at a call statement the compiler cannot easily determine the
possible targets of the call. The well-accepted solution is to compute a conservative approxima-
tion of the ICFG. This results in two drawbacks.

On the one hand, an ICFG as precise as possible is of big importance for the accuracy of data
flow analysis phases. In an ideal world, the ICFG would only contain those edges that really
occur at run-time. Every additional edge between a call site and a method implies a potentially
diluted result of the analysis, because imprecise call edges make the analysis investigate the code
of the called method in a context that will not occur at run-time.

On the one hand, the construction of the ICFG identifies those methods that will never be called
at run-time and thus may be deleted. Object-oriented languages and especially Java come with a
huge collection of standard class libraries. The compilers we deal with always expect the whole
program as input, i. e. the user program plus the libraries used. This approach is necessary,
e. g., to allow application of interprocedural data flow analyzers. However, to compile an object-
oriented program without any optimizations, one needs to compile all classes a program refers to.
This may include lots of methods that will actually never be called. This is due to an immense
interconnection between the classes in the standard class library. In order to translate, e. g.,

iii

iv

���������	�
����������������
, what is an obligatory easy test case when writing compilers for imperative

languages, one needs to be able to translate a big part of those libraries. The reason is, that the� ����� method in a Java program gets an argument of type String and this class refers to lots of
other classes. The number of classes to investigate for compilation of

���������	�
�������
is 209 with

1629 methods.

As the standard libraries are so huge, constructing the ICFG usually allows to remarkably reduce
the size of the created binary. As unreachable methods are deleted relatively early in the compi-
lation chain, all following compiler phases that need to visit all methods in the program will be
sped up. This includes, e. g., all data flow analyzers, optimizers, and code generation. The speed
up is a strong reason to make the ICFG construction phase precise.

The analysis developed in this thesis is based on the well explored control flow analysis (CFA).
This technique has been developed in the world of functional languages. Here, we adopt it to
handle object-oriented languages. The analysis proposed is based on the operational semantics
of � ��������� , a language that defines a subset of Java. We take a widely accepted Java semantics
from literature as a basis for our analysis and prove the correctness of our results with respect to
this.

An intermediate result when performing the analysis is a system of set-based inclusion con-
straints. They are converted to a directed graph, where the edges resemble inclusion. We develop
a demand driven solver that benefits from special properties of this graph. It supports what we
call graph functors that implement the call mechanism and reading and writing from class fields.
Only at solving time we determine which methods to call and what fields to access, based on the
intermediated results. When evaluating the functors, the solver may add new constraints to the
graph.

Based on the computed results, call sites are annotated with the callable methods. From this
information the ICFG is constructed.

The functors allow for another contribution. The standard class library is needed to compile
any program, so one would like to pre-compile as much information as possible. The constraint
graph is modular in the sense that it contains a sub-graph for every method in the program. Those
sub-graphs are initially not connected, so we can for each method generate a description of the
constraints and the graph. Due to the functors, these descriptions are completely independent of
any other methods or run-time data and thus may be precomputed and saved. At compile-time
they are combined with the graphs generated for the methods in the user program. This allows
to speed up graph construction.

We give a small step structural operational semantics of the language used and prove the cor-
rectness of our analysis with respect to this. Additionally we will demonstrate its scalability by
evaluating it on real world programs. This evaluation is performed with � �� , the compiler devel-
oped in the ��!�"�#�" project. It has been funded by the European Community in the 4 $&% framework
as a long time research project.

Ausführliche Zusammenfassung

Programme in Sprachen höherer Ordnung [...] sollten so schnell aus-
geführt werden wie ihre in

���������	��

oder � geschriebenen Gegenstücke.

Sie sollten, aber sie werden es nicht. Ein Hauptgrund hierfür sind die
unterschiedlichen Optimierungen die auf diese beiden Sprachklassen an-
gewandt werden.

Olin Shivers, [Shi1991].

Das Ergebnis dieser Arbeit ist eine L ösung f ür eines der Kernprobleme bei der Analyse, Opti-
mierung und Übersetzung objekt-orientierter Programmiersprachen – die effiziente Konstruktion
eines m öglichst genauen interprozeduralen Kontrollflußgraphen (IKFG). Unser Ansatz basiert
auf einem Bedarf-gesteuerten L öser f ür Constraint-basiert Kontrollflußanalyse. Der pr äsentierte
Ansatz ist fluß-sensitiv und skaliert. Dies ist der entscheidende Unterschied zu den heute weit
verbreiteten Techniken. Durch den Einsatz von Funktoren erlaubt unser Ansatz die Vorabanalyse
h äufig benutzter Bibliotheksfunktionen.

Die Konstruktion des IKFG ist problematisch, da objekt-orientierte Sprachen das Konzept des
dynamic dispatch einf ühren. Erst zur Laufzeit des übersetzten Programmes wird entschieden,
welche Methode ausgef ührt wird. Daher kann derÜbersetzer f ür einen Methodenaufruf nicht
ohne weiteres die m öglichen Zielmethoden bestimmen. Die g ängige L ösung ist, eine konserva-
tive Absch ätzung des IKFG zu berechnen. Hiermit sind jedoch Nachteile verbunden.

Einerseits ist ein m öglichst genauer IKFG von großer Bedeutung f ür Datenflußanalysen. In ei-
ner idealen Welt enthielte der IKFG nur Kanten, die Aufrufen zur Laufzeit entsprechen. Jede
zus ätzliche Kante zwischen einem Aufruf und einer Methode bedingt eventuell ein ungenaue-
res Ergebnis der Analyse, da aufgrund überfl üssiger Aufrufkanten die aufgerufene Methode in
Kontexten analysiert wird, die zur Laufzeit nicht auftreten.

Andererseits werden bei der Konstruktion des IKFG unerreichbare Methoden identifiziert, die
gel öscht werden k önnen. Objekt-orientierte Sprachen im allgemeinen und Java im besonderen
verwenden große Standardklassenbibliotheken. Die von uns betrachteten Übersetzer erwarten
immer das ganze Programm als Eingabe, das heißt das Benutzerprogramm und die verwendeten
Bibliotheken. Dieser Ansatz ist notwendig um zum Beispiel interprozedurale Datenflußana-
lysatoren anwenden zu k önnen. Allerdings m üssen bei derÜbersetzung eines unoptimierten

v

vi

objekt-orientierten Programmes alle Klassen und unaufrufbare Methoden mit übersetzt werden.
Dies liegt an der großen Verflechtung der Standardklassen untereinander. Um zum Beispiel���������	�
����������������

zu übersetzen, muß man beinahe die vollst ändigen Klassenbibliotheken über-
setzen k önnen. Der Grund hierf ür ist, daß die � ����� Methode eines Java Programms ein Argu-
ment vom Typ "�� � � ��� erwartet. Diese Klasse verweist auf eine große Zahl weiterer Klassen,
so daß f ür dieÜbersetzung von

��������� �
�������
209 Klassen mit 1629 Methoden behandelt werden

m üssen.

Da die Standardklassenbibliotheken so groß sind, erlaubt die Konstruktion des IKFG h äufig ei-
ne drastische Reduzierung der Gr öße des erzeugten Programmes. Da außerdem unerreichba-
re Methoden sehr fr üh w ährend derÜbersetzung gel öscht werden, werden alle nachfolgenden
Übersetzerphasen, die alle Methoden bearbeiten m üssen, beschleunigt. Dies gilt insbesondere
f ür alle Datenflußanalysatoren, Optimierer und die Codeerzeugung. Diese Beschleunigung ist
ein wesentlicher Grund daf ür, die Konstruktion des IKFG so genau wie m öglich zu machen.

Die entwickelte Analyse basiert auf der gut erforschten Kontrollflußanalyse. Wir wenden diese
urspr ünglich f ür funktionale Sprachen entwickelte Technik auf objekt-orientierte Sprachen an.
Die vorgestellte Analyse basiert auf der formalen Semantik von � ��������� , einer Sprache die einer
Teilmenge von Java entspricht. Wir verwenden eine weit verbreitete Java Semantik aus der
Literatur als Grundlage unserer Analyse und beweisen bez üglich dieser Semantik die Korrektheit
unserer Ergebnisse.

Ein Zwischenergebnis der Analyse ist ein System von Constraints über Mengen, das als ge-
richteter Graph dargestellt wird. Wir entwickeln einen Bedarf-gesteuerten L öser der besondere
Eigenschaften des Graphen ausnutzt. Er unterst ützt die von uns eingef ührten Graphfunktoren,
die den Aufrufmechanismus und Zugriff auf Klassenfelder implementieren. Erst der L öser be-
stimmt anhand bereits berechneter Informationen die tats ächlich aufzurufenden Methoden und
zu lesenden oder schreibenden Felder. Hierbei k önnen neue Constraints in den Graphen ein-
gef ügt werden. Beruhend auf den berechneten Ergebnissen werden Aufrufstellen mit den an
ihnen aufrubaren Methoden annotiert. Aus diesen Informationen wird der IKFG konstruiert.

Die Funktoren sind Grundlage eines weiteren Ergebnisses dieser Arbeit. Die Standardklassenbi-
bliothek wird f ür dieÜbersetzung aller Programme ben ötigt, so daß man m öglichst viel Informa-
tion vorberechnen m öchte. Der Constraint-Graph mit Funktoren ist modular, d. h. er enth ält f ür
jede Methode einen Teilgraphen, der zu Beginn nicht mit anderen Graphen verbunden ist. Daher
k önnen wir f ür jede Methode eine Beschreibung der Constraints und des Graphen berechnen.
Aufgrund der Funktoren k önnen diese Beschreibungen vorberechnet werden, da sie unabh ängig
von anderen Methoden und Laufzeit-Informationen sind. Zur Übersetzungszeit werden sie zu
dem f ür das Benutzerprogramm berechneten Constraint-Graphen hinzugef ügt. Dies beschleu-
nigt die Konstruktion des Graphen.

Wir pr äsentieren eine strukturelle operationale Semantik unserer Sprache und beweisen die Kor-
rektheit unserer Analyse bez üglich dieser Semantik. Außerdem demonstrieren wir die Skalier-
barkeit durch Anwendung auf realistische Programme. Die Evaluierung wird mit � �� durch-
gef ührt, demÜbersetzer der im ��!�"�#�" Projekt erstellt wurde. Das Projekt wurde im vierten
Rahmenwerk als Langzeit-Forschungsprojekt von der Europ äischen Gemeinschaft gef ördert.

Acknowledgments

The work presented in this thesis has been done at the chair for Compiler Construction of Pro-
fessor Wilhelm. Unfortunately, there is no total order on the importance of people contributing
to this thesis. Therefore, I am going to order them chronological as they appeared in my (or I in
their) life. This order will not always be coherent and I apologize to anybody occurring at the
wrong place or, even worse, not at all.

The first persons I would like to thank are my parents, Ute and Reiner, and my brother, Michael.
They supported me throughout school time, studies and life. They certainly were surprised when
they first noticed my interest in computers and electronics back in 1982. However, they never
complained when I disappeared for hours, hacking 6502 code or soldering computers.

When I finally came to the University of Saarbr ücken, the professor to read the first year course
on computer science was Reinhard Wilhelm. I owe him the interest in compiler construction and
language theory. He also deserves thanks for letting me work in his group and for the freedom
of choosing research topics.

During the first studies I met Florian Martin, whose work on program analyzer generation heav-
ily influenced this work. Using PAG sometimes made life much simpler. During my diploma
thesis, Christian Ferdinand allowed me a lot of freedom and certainly encouraged me to stay at
university thereafter. At that time I also met Uwe Aßmann, who worked for one of the partners
in the project that funded my diploma thesis.

Before starting my Ph.D., Reinhard Wilhelm hired me as a system administrator at the Interna-
tional Meeting and Conference Center, Schloß Dagstuhl. While working at this lovely place, I
happened to come to know my wife, Nicole. She deserves special thanks for bearing my research
and for encouraging me to continue with my Ph.D. whenever I doubted.

When I returned to the group of Reinhard Wilhelm, it was great fun to work together with Stephan
Diehl, Stephan Thesing, Daniel K ästner and Marc Langenbach. Most of the time, they tolerated
my sense of humor – this cannot be overestimated.

The foundations of the work in this thesis have been laid in the ��!�"�#�" project. Special thanks go
to the whole ��!�"�#�" group, especially Marcel Beemster, Ruben van Royen, Kees van Reeuwijk,
Andrzej Bednarzki, Tobias Ritzau, Florian Liekweg, G ötz Lindenmeyer and Peeter Laud. The
integration sessions before reviews where always very intense and productive. Without them,
the evaluation of my work would never have been possible. Holger Dewes deserves thanks for

vii

viii

implementing a data-flow version of this work using PAG in his diploma thesis.

Finally, during I wrote down this thesis, J örg Bauer joined the group. He deserves special thanks
for checking and improving the formal part of this thesis. I know he had a hard time convincing
me that formalism is not evil.

Reinhard Wilhelm, J örg Bauer, Stephan Diehl, Stephan Thesing, Marc Langenbach and the� ��������
program proof read more or less preliminary versions of this work. Often, they found

subtle errors that probably would have made their way in the final version. Thank you.

Contents

1 Introduction 1

1.1 My Thesis . 3

1.2 � �� - the JOSES Compiler . 4

1.3 Structure of the Dissertation . 5

2 Theoretical Background 7

2.1 Program Analysis . 7

2.1.1 Data Flow Analysis . 9

2.1.2 Control Flow Analysis . 13

2.1.3 Interprocedural Analysis . 14

2.2 Rule Induction . 16

2.2.1 Inductive Systems . 16

2.2.2 Relational Inductive Systems . 18

3 The Language 21

3.1 Object-Oriented Languages . 21

3.2 � ��������� – a Subset of Java . 25

3.3 A Type System for � �������� . 28

3.4 The Run-Time Model . 37

3.5 Executing � ����������� . 41

4 Generating Symbolic Constraints 49

4.1 Key Properties . 49

4.2 Abstract Control Flow Analysis . 51

ix

x CONTENTS

4.2.1 Abstractions . 51

4.2.2 The Acceptability Relation
� �

. 52

4.2.3 Well-Definedness of the Acceptability Relation
� �

. 55

4.2.4 Semantic Correctness . 56

4.3 Syntax Directed Control Flow Analysis . 63

4.4 Generating Constraints . 67

4.4.1 Access to Class Members . 68

4.4.2 Function Calls . 70

5 The Demand Driven Solver 75

5.1 Generating Constraint Graphs . 75

5.2 Optimizing Constraint Graphs . 77

5.3 Transformation to Directed Acyclic Graphs . 80

5.4 Solving the Constraint System . 81

5.4.1 Maintaining the Worklist . 82

5.4.2 Adding Edges . 83

5.4.3 Handling Member Nodes and Functions 83

5.4.4 The Solver . 87

5.5 Applying the Results . 87

5.5.1 Writing back the Results . 89

5.5.2 Optimizing the Program . 89

5.6 Analyzing Libraries . 90

5.7 Complexity . 92

6 Extending the Language with Exceptions 95

7 Related Work 101

7.1 Name Based Resolution . 103

7.2 Class Hierarchy Analysis . 104

7.3 Rapid Type Analysis . 104

7.4 Variable Type Analysis . 105

7.4.1 Declared Type Analysis . 107

CONTENTS xi

7.5 Extended Type Analysis . 108

7.6 Control Flow Analysis . 109

8 Evaluation and Applications 111

8.1 Evaluation . 112

8.1.1 Benchmark Programs . 112

8.1.2 Evaluation Criteria . 113

8.1.3 Results . 114

8.2 Practical Applications . 117

8.2.1 Eliminating Null Pointer Checks . 117

8.2.2 Eiffel Type Error . 119

9 Conclusion 121

9.1 Outlook . 122

9.2 Achievements . 122

A Syntax of � ��������� 125

B Precompiled Constraint Files Format 127

xii

List of Figures

1.1 Languages used in software development for embedded systems 2

1.2 The structure of � �� . 4

2.1 Correlation between input data and analysis results 8

2.2 An example program and its reaching definitions 8

2.3 The control flow graph for the example fragment 9

2.4 An object-oriented example program . 13

3.1 Example program . 45

5.1 Constraint graph for the example program . 78

5.2 Node and edge counts for Java libraries . 78

5.3 Optimized constraint graph for the example program 80

5.4 Precompiled information for method # ����� � ���	��� 92

7.1 Extended example program . 102

7.2 The correct call graph . 102

7.3 Number of call edges for the example program. 103

7.4 Class hierarchy graph for the example program 103

7.5 Call graph constructed by Name Based Resolution and Class Hierarchy Analysis 104

7.6 Call graph constructed by Rapid Type Analysis, Declared Type Analysis and
Extended Type Analysis . 105

7.7 Call graph constructed by Variable Type Analysis 106

7.8 Type propagation graph for VTA . 107

7.9 Type propagation graph for DTA . 107

7.10 Type propagation graph for Extended Type Analysis 108

xiii

xiv LIST OF FIGURES

7.11 Constraint graph for � -CFA . 109

8.1 Improvement on class and method counts . 116

8.2 Relation between number of call edges and analyzer steps 118

List of Tables

3.1 � ��������� syntax . 27

3.2 Subclasses deduced from program � . 29

3.3 Relations defined by environments . 32

3.4 Variable and method types . 32

3.5 Widening of class and interface types . 33

3.6 � ����������� syntax . 39

3.7 Configurations for � �������� � . 39

3.8 Executing � ����������� expressions . 41

3.9 Executing � ����������� statements . 42

3.10 Rules for assignments in � ��������� � . 43

3.11 Rules for method calls in � ��������� � . 43

4.1 Acceptability relation
� �

. 53

4.2 Acceptability relation
� �

(cont.) . 54

4.3 Acceptability of intermediate expressions and statements 57

4.4 Rules for analyzing whole programs . 63

4.5 Syntax directed Control Flow Analysis . 65

4.6 Syntax directed Control Flow Analysis (cont.) 66

4.7 Generating constraints for programs and statements 68

4.8 Generating constraints for expressions . 69

5.1 Optimizing constraint graphs . 79

5.2 Adding components to the worklist . 82

5.3 Adding edges to the graph . 84

xv

xvi LIST OF TABLES

5.4 Recomputing the topological order . 85

5.5 Handling functor nodes . 86

5.6 Solving constraint graphs . 88

5.7 Writing back analysis results . 89

6.1 Exceptions in � ��������� . 95

6.2 Extended � �������� semantics for throwing exceptions 96

6.3 Extended � �������� semantics for catching and propagating exceptions 97

6.4 Generating constraints for exception handling 99

8.1 Static characteristics of the benchmark programs 112

8.2 Static characteristics of the generated constraint graphs 112

8.3 Results for RCFA and RTA . 115

8.4 Classification of dispatched call sites . 115

8.5 Changes in the classification of dispatched call sites 116

8.6 Execution counts for call statements . 116

8.7 Execution counts for null pointer checks . 117

8.8 Call edges and analyzer performance . 118

A.1 Syntax of � ��������� . 125

A.2 Syntax in � ��������� (cont.) . 126

B.1 Grammar for precompiled constraints files . 127

Chapter 1

Introduction

In practice, algorithms such as RTA scale well.
The scalability of algorithms such as 0-CFA re-
mains doubtful.

Frank Tip and Jens Palsberg, [TP2000]

It seems to be a popular belief that flow-sensitive construction of the interprocedural control flow
graph (ICFG) for object-oriented languages is neither feasible nor scaling. We present a scaling
and flow-sensitive approach based on control flow analysis for ICFG construction of statically
typed object-oriented programs. Our approach is based on a demand driven solver for constraint
based control flow analysis. By introducing functor nodes it allows to pre-analyze library code.

If one believes marketing, object-oriented languages are widely used nowadays in all regions of
software development. Repeatedly heard buzz words are code reuse and encapsulation. How-
ever, if one looks into the details, this is not totally true. While object-oriented design is quite
well accepted, object-oriented languages still suffer from minor performance. This is mainly due
to two points: the concepts of dynamic dispatching and integrated garbage collection. While the
latter one was introduced to get rid of problems inherent to the memory management of pro-
gramming languages like

, the former one is a property inherently needed for implementing

object-oriented languages. However, both concepts hinder an easy application of Java in the
world of machine level programming.

As a result, object-oriented languages and especially Java are not yet widespread in software
development for embedded systems. Here, developers still prefer languages that are close to
hardware, namely

. However, Java not only gains more and more influence in education, but

also supports the development process with a huge number of class libraries. This results in a
growing interest of the embedded systems industry in Java. Figure 1.1 gives the result of an
industry study on the languages used in development of embedded systems software [JC1999].
As can be seen the numbers for Java are still rather small compared to

and

 ����
. However,

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Languages used in software development for embedded systems

the most important point is the relative increase for Java. This documents the growing industry
interest in Java.

The challenge to be met is that the virtual machine based bytecode approach results in relatively
slow performance. A solution is to compile all libraries needed into the program and to generate
native code instead of bytecode. As has been seen in the JOSES project [GAF

�

1999], one
needs special optimizations in order to generate programs that run not only fast but also have a
reasonable footprint.

Nowadays optimizations to decrease code size and run-time are well understood for imperative
languages. There is a large collection of data flow analyses that almost every modern C compiler
applies during translation of a program. Usually, these analyses require an interprocedural con-
trol flow graph (ICFG). This graph represents the possible program executions at run-time. The
construction of the control flow graph is unspectacular for imperative languages without function
pointers. For every call statement there is exactly one procedure that is called.

The problem gets harder when we allow the language to support function pointers. Here, the
address of a function is taken and passed on in the program. It is then called at some other point.
In order to construct an ICFG for this class of languages, the compiler needs to identify addresses
of those functions that may be passed on at run-time.

The same problem occurs when translating object-oriented languages like C++ or Java. However,
here it is the result of a language feature that is absolutely needed. The programmer defines a

1.1. MY THESIS 3

class hierarchy and uses class libraries, where subclasses inherit and/or overwrite methods from
super-classes. When an object of a class is created at run-time, the compiler creates a data
structure that contains pointers to the implementations of the methods known to the object. If
one of the object’s methods is to be invoked, the implementation is looked up in this data structure
and is then called. The flow of control at a given call site then depends on the types of objects
that reach the site at run-time. To create the ICFG under such circumstances, several approaches
have been developed. An overview of those approaches will be presented in Chapter 7. Coarsely,
they can be classified according to their sensitivity regarding data flow and call contexts. Those
approaches that are totally insensitive are widely spread as they are easy to implement, fast and
already provide acceptable results. Nevertheless, related to sensitive approaches the insensitive
ones of course can only compute less precise results.

Because of their higher complexity, flow- and/or context-sensitive techniques are usually said to
be unusable in practical compilers.

1.1 My Thesis

Our contribution is a demand driven solver for constraint based control flow analysis. To the best
of our knowledge this is the first implemented flow-sensitive and scalable analysis for call graph
construction for object-oriented languages. By introducing functor nodes we can pre-analyze
frequently used library methods and thus speed up analysis. To prove this thesis we develop the
analysis used and the solver and prove their correctness. We give algorithms to implement the
solver. To demonstrate usefulness and scalability we apply the analysis to benchmarks.

The foundations of this work were laid in the JOSES1 project [GAF
�

1999]. The target of the
project was to extend the compiler generation system CoSy [AAvS1994] with the techniques
needed to support object-oriented languages. The targeted hardware was embedded systems,
that usually only provide very few memory resources. In this environment one inevitably needs
techniques like those developed in this thesis for two reasons. First, they allow to identify many
procedures from the class libraries that will never be called and thus may be deleted before
translating the program. Second, these techniques improve the quality of the ICFG generated.
Here quality is measured by the reduction of the number of superfluous call edges. That is, a
better ICFG contains fewer edges.

This is of utmost importance for the compilation process as the time needed by static analyzers
of course depends mostly on two things—the number of procedures to visit and the number of
call edges. Additionally, the analysis result may be diluted if too many procedures that cannot
be called need to be analyzed.

1Java and CoSy Technology for Embedded Systems, Esprit LTR project #28198.

4 CHAPTER 1. INTRODUCTION

1.2
�����

- the JOSES Compiler

During the JOSES project, � �� was developed, a compiler from Java to native code. We will
now give a short overview of its structure.

� �� has been implemented in the CoSy framework [AAvS1994] from ACE Associated Com-
piler Experts b.v. It is an integrated compiler generation system that provides a development
environment, an intermediate representation, and analysis and optimization engines that operate
on the intermediate representation (IR). Originally, CoSy has been developed to support imper-
ative languages like Fortran and C. In the JOSES project it has been extended to also support
object-oriented languages.

User Program

AssemblerC−Code

backend

lowerers

optimizers

barre

jd

javac

JoC

Libraries

OMIR

OMIR

CCMIR

Java Source

Java Byte Code

BAR

Figure 1.2: The structure of � ��

As a matter of fact, the structure of � �� is mainly imposed by the general structure of CoSy
compilers. Figure 1.2 gives an overview of the compiler phases. In order to compile Java source
code some preprocessing is applied. First the Java program is translated to bytecode with an
arbitrary Java compiler. The advantage of starting the actual compilation chain from bytecode
instead of Java is twofold. First, other source languages that can be translated to bytecode may
be handled. Second, many complex structures in the source code have been broken down while
translating them. Thus, the resulting code is in a format that is better manageable. The bytecode
is then translated using

���
, a tool specified based on natural semantics with RML [Pet1994,

Pet1999]. This phase actually unstacks the bytecode and generates an intermediate format named
����� that is closely related both to Java and the intermediate representation used in � �� . It is read
into the compiler by � ������� , the first phase of � �� . Several phases follow that work on the
object-oriented intermediate representation !
	��� . These include special optimizations including

1.3. STRUCTURE OF THE DISSERTATION 5

the one presented in this thesis. At some point in the compiler the object-oriented extensions are
lowered away. After this step, the intermediate representation is in the usual intermediate format
of CoSy compilers,

 � 	��� . What follows are standard optimizations, an outlet for C code and
the backend.

1.3 Structure of the Dissertation

The next chapter will provide some theoretical background. The first part gives a brief overview
on program analysis. It will introduce different approaches to static analysis and their main
properties. Furthermore. some major results and fundamental theorems are presented. The
second part presents rule induction. Chapter 3 gives a short introduction into object-oriented
languages. Then � ��������� is introduced, the language analyzed in this thesis. � ��������� is a subset
of Java. Additionally, in this chapter an operational semantics for � �������� is introduced.

In Chapter 4 the control flow analysis used in our approach is specified and a proof of its semantic
correctness is given. Furthermore, the rules for constraint generation and functors are presented.
Chapter 5 is dedicated to the demand driven solver and the algorithms implementing it. Some
implementation details are given.

The language introduced in Chapter 3 does not support exceptions, an essential feature of object-
oriented languages. These are added to the language and the analysis in Chapter 6.

Chapter 7 presents an overview of related work and compares it to the approach in this thesis.

This will be followed by the evaluation of our practical experiments in Chapter 8. This chapter
also presents the results of practical applications.

To conclude, Chapter 9 sums up the results and gives an outlook on future research. The appendix
contains additional material on � ��������� and the format of pre-compiled information.

6

Chapter 2

Theoretical Background

This chapter presents some fundamental theorems and definitions for program analysis and rule
induction. The former ones allow us to make certain assumptions when specifying our analysis.
This includes the termination of the analysis and the existence of (least) solutions. The section
on rule induction gives a brief overview on inductive systems. These systems define why the
structural operational semantics presented in the next chapter is meaningful.

2.1 Program Analysis

Program analysis is a standard technique in optimizing compilers to determine run-time prop-
erties of a given program without actually executing it. The properties of interest are those that
can be computed without executing the program and that will hold for all possible executions
of it. Examples are the identification of common subexpressions and reaching definitions or the
analysis of the shape of data structures on the heap [SRW1999].

However, some of these properties are undecidable, that is, one will not be able to compute a
complete and correct solution. As one usually does not want to compute an incorrect solution,
program analysis makes a compromise on the side of completeness, but ensures to statically
predict safe and computable approximations to the dynamic run-time behavior of a program. In
Figure 2.1 the region on the left hand side contains data where the analysis correctly states that
the analyzed property holds. The right hand side contains data for which the analysis correctly
computes the answer no. For the data in the middle the analysis computes a conservative answer.
This means that for all cases that fulfill the property analyzed this will be found out. For some
data the analysis still claims that the property holds, while in fact this is not true. What one
demands is that the shaded middle region of imprecise answers is as small as possible.

Introductions to data flow analysis can be found in [WM1995], [NNH1999] and [Hec1977],
which was the first to provide an overview of lattice based monotone frameworks. [CC1977]
introduce abstract interpretation, a general framework for specifying static program analyses.

7

8 CHAPTER 2. THEORETICAL BACKGROUND

yes

Run−time behavior

Analysis result

no

yes no

Figure 2.1: Correlation between input data and analysis results

Based on the semantics of the analyzed programming language, it supports correctness proofs of
the analysis. Both approaches share the idea to analyze programs using abstract values instead
of concrete ones. The main motivation to do so is to avoid the uncomputability problem by
transforming the analysis into a computable one.

All techniques described have in common that in one way or another they abstract the dependence
between data. E. g., data flow analysis uses the control flow graph, control flow analysis labels
program points and relates them to each other. We will focus on the intraprocedural case. Section
2.1.3 will describe the common approaches to implement interprocedural analyses.

The following sections will give an overview of the more important techniques. The definitions
and theorems are based on [NNH1999], [Mar1999b] and [DP2002].

Object-oriented languages like Java are closely related to imperative languages. Therefore, we
will look at those techniques through imperative glasses. For a first overview of the subset of
Java we will use, refer to Appendix A. An example program fragment used for illustrating the
techniques is given in Figure 2.2. The information we want to compute is reaching definitions,
i. e. we want to compute for every using occurrence of a variable the definitions that reach it.
The table on the right gives the line number of reaching definitions for using occurrences of a
variable.

������� ���	�
��
� �������	�

������� ��� �
�������

������� �����
������� �����

� �

1 - -
2 1 -
3 1 -
4 1 2,3

Figure 2.2: An example program and its reaching definitions

2.1. PROGRAM ANALYSIS 9

2.1.1 Data Flow Analysis

Data flow analysis is based on the idea that the program can be modeled as a control flow graph
(CFG), the nodes being elementary blocks and the edges modeling the possible flow of control
between such blocks. In constructing this graph the analysis can choose between different levels
of granularity regarding the nodes – usually the two choices at hand are on the fine side the single
statements and on the coarse side basic blocks. The decision will mainly be influenced by the
semantics of the language of input programs and the analysis that shall be performed. For our
example analysis we map every single statement into its own node in the control flow graph.

The analysis itself will work on the graph and will use it to propagate abstract values from a
domain � through the program. The result of the analysis is a labeling of the CFG with values
from � that have been computed as being valid before and after the nodes. The values are
computed by means of the so called transfer functions ������� � which model how the abstract
values shall be transformed. These functions are associated with the edges in the CFG.

Definition 2.1 (Control Flow Graph)
A control flow graph (CFG) is a quadruple � �	��
�������������

with a finite set

of nodes, a set����
���

of edges, an entry node

����

, and an exit node

����

.

Figure 2.3 gives the control flow graph of our example program. Paths between two nodes in a
CFG are described as sequences of edges according to the following definition. This will allow
an easier treatment of the semantics of execution paths of the program.

y = x; y = 0;

z = y;

if (x > 10)

x = 1;
n1

n2

n3 n4

n5

Figure 2.3: The control flow graph for the example fragment

Definition 2.2 (Path)
Let � ����
�������������

be a CFG, "! � $# �%
 . A path & from node $! to node "# is a sequence
of edges, starting at "! and ending at "# with & � � $! � (' �)��� *' � $+ �)�-,.,.,"��� /#102' � $# � where� 43 � 43 � ' �5���6� �6798:7<;>=9? .
The abstract values propagated through the CFG by the analysis are required to form a complete
lattice. This is needed in order for some of the following theorems to hold.

10 CHAPTER 2. THEORETICAL BACKGROUND

Definition 2.3 (Partial Order)
Let � be a set, 7 � � � � a binary relation.

� � � 7 � is called a partial order iff for all� ���.��� � � : �
7

��
7��	�
� 7 �
��� � ��
7��	�
� 7� � �

7�
Definition 2.4 (Complete Lattice, � , �)
Let � � � � ��� � be a partially ordered set. � is called a complete lattice, iff every subset of �
has a greatest lower bound � and a least upper bound � . The elements � � � ��� and � � � ���
of � are called bottom respectively top element of � . For the greatest lower bound we write� � �

instead of ��� � ����� , respectively � � �
instead of ��� � ����� .

An important example is the powerset lattice ��� �	� � � � �)� � � where � is a set. Here, we have�"!$# and �"!$% . This lattice will be used to abstract concrete data in our analysis in Chapter
4.

Additionally, one usually wants to speak about chains of elements of partially ordered sets.

Definition 2.5 (Ascending,Descending Chain,Stabilizing Chain)
Let � � � � ��� � be a partially ordered set,

�
3 � � and & �('

. A (possibly infinite) ascending
chain

� � 3 � 3*)�+ is a sequence
�
! �

�
' � ,.,., such that ,.- � & � �0/ � �1/

� ' . A chain
� � 3 � 3*)�+ is called

strictly ascending, iff ,.-�� �0/
2� �1/
� ' . A chain

� � 3 � 3*)�+ eventually stabilizes, iff 34- � &��5,/ 76- � �1/ � �58
.

Descending chains are defined analogously.

Chains will be used to compute abstractions in analyses. Namely, � �9�
means that � is more

abstract than
�
. That is,

�
includes � .

Sometimes we will want to check that a certain set is not empty. This is a property of the
following structure.

Definition 2.6 (Moore Family)
Let : ��� � ��� � be a complete lattice. ; � : is called a Moore family if ; is closed under
greatest lower bounds.

A Moore family cannot be empty, because the greatest lower bound of the empty set is the whole
lattice and thus must be included in ; .

In order to compute an abstraction of the possible run-time values of a program the analysis needs
to abstract from the concrete semantics of a programming language. As already mentioned this
is performed by means of transfer functions tf � � � � � � that associate every edge

�
in the

CFG with its abstract semantics. These functions need to have certain properties, too:

2.1. PROGRAM ANALYSIS 11

Definition 2.7 (monotone, distributive functions)
Let � ��� � ��� � be a partially ordered set, � � ��� � . � is called monotone, iff ,�� � ��� � ���
� � � �

�
� � � � � � � � � � . � is called distributive, iff ,�� � � � � � � � � � ��� � � � � � � � �� � � � � .

Using the transfer functions the semantics of a path in the CFG can be defined. This semantics
resembles the semantics of a program execution along that path without the last node.

Definition 2.8 (Abstract Path Semantics)
Let � � �
 ���6���������

be a CFG, � � � � ��� � a partially ordered set, tf � � � � � � a transfer
function and & � � ' � ,.,.,$��� # a path in � . The abstract path semantics � &�� $	� of & is defined as
the composition of the transfer function on the edges of & :

��
�� $	�
� 8�������

� � ' � ,.,.,$���
8
���	� � � � + � ,.,.,"� �

8
������� tf

� � ' �

The solution of a data flow analysis for a node in � is the least upper bound of the semantics
of all paths from entry node

�
to , applied to an initial element from � , that is, the combination

of the result of all exections reaching .

Definition 2.9 (Meet over all Paths Solution)
Let � � ��
 � �����������

be a CFG, � � � � ��� � a partially ordered set, � � � an initial element
and tf � � � � � � a transfer function. The Meet over all Paths solution MOP is defined by

MOP
� � ��� ��� &�� $	� � � � � & is a path from

�
to �

Obviously, MOP computes for a node the abstract value directly before the execution of the
statement represented by . By combining the computed values with � the computed solution is
valid for all possible executions of the program represented by � .

However, the MOP solution is not always computable, e. g. in the presence of loops one obvi-
ously cannot compute the meet over all possible paths. This is why one computes the minimal
fixed point solution MFP. This solution will be computable if three preconditions are fulfilled:

� every ascending chain of the lattice � must eventually stabilize,

� the transfer function tf
�����

must be monotone for all
�����

, and

� the � � � ��� must be computable.

If this is the case, the following definition is constructive in that it describes how to solve the
equation system starting from an initial element.

12 CHAPTER 2. THEORETICAL BACKGROUND

Definition 2.10 (Minimal Fixpoint Solution)
Let � � ��
 � �����������

be a CFG, � � � � ��� � a partially ordered set, � � � an initial element
and tf � � � � � � a transfer function. The Minimal Fixpoint Solution MFP is defined by

MFP
� ��� � �

MFP
� � � � � tf

�����-�
MFP

� �� � � � � � � �� � � ��� �
for
� 2�

An important insight for data flow analysis is the so called coincidence theorem [KU1977,
KS1992]:

Theorem 2.1 (Coincidence Theorem)
Let � � ��
 � �����������

be a CFG, � � � � ��� � a partially ordered set, � � � an initial element
and tf � � � � � � a transfer function.
If tf

� ���
is monotone for all

�����
, and all ascending chains in � eventually stabilize it holds that

,/ ��
 � MOP
� � �

MFP
� ���

If the tf
�����

are even distributive, then

,/ ��
 � MOP
� � �

MFP
� ���

Thus the MFP solution is a safe approximation of the MOP solution. Its computation is based on
solving the recursive equation system from Definition 2.10. The existence of a solution for this
system (the least fixed point) is ensured by Tarski’s Fixed Point Theorem.

Theorem 2.2 (Tarski’s Fixed Point Theorem)
Let

� � ��� � be a complete lattice. If � � � � � is a monotone function, then the set of all fixed
points of ����� � � � � � � � � �

� � � � � � � � �
is nonempty and forms a complete lattice when

ordered by
�

.

Kleene’s Fixed Point Theorem shows how to iteratively compute the least fixed point of an equa-
tion system.

Theorem 2.3 (Kleene’s Fixed Point Theorem)
Let

� � ��� � be a complete lattice where all chains eventually stabilize. If ���	� � � is a
monotone function, then there exists a ; such that � # � � � � � # � ' � � � and � # � � � is the least fixed
point of � .

Kleene’s theorem ensures that the computation will terminate and that the result will be the least
fixed point of � . There are several well known techniques to compute fixed points [Mar1999a,
FS1999]. The most widely used are based on worklist algorithms.

2.1. PROGRAM ANALYSIS 13

��
 � � ����� � � �	�
� ' � ����� � � � + � � � �

�������
��� � ����� � � ����� � ���

��� � � � � �
��� � ��� � � � ���

Figure 2.4: An object-oriented example program

2.1.2 Control Flow Analysis

Data flow analysis as presented in the previous section allows for the propagation of data through
a program. This propagation occurs along the edges of the control flow graph. At every node it
is checked whether any information from the data propagated is needed or needs to be changed.
Often, however, it is expected to be more efficient to propagate data directly from creation to use
points.

Another situation where the control flow graph turns out to be unsuitable is when the succes-
sors or predecessors of program points cannot be identified as easily as for imperative languages
without function pointers. For imperative languages with function pointers, object-oriented lan-
guages, and especially functional languages one usually needs a more powerful technique. If we
replace the example fragment by that given in Figure 2.4, an interprocedural analysis will need
to be able to identify the implementations of � � � �
��� that may be called in line

�
.

Control flow analysis (CFA) has been developed in the world of functional languages for the
computation of a set of functions that may be called by an expression [Shi1991, NNH1999]. It
works by labeling all program points that may contribute to the result of the analysis with labels
from

'
. In the example from Figure 2.4 these labels are shown as superscripts.

The result of a control flow analysis is a pair
�	�
 � �� � where

� �
 associates abstract values with program points

� ��
associates abstract values with variables

This dual to the association of abstract values with nodes in the control flow graph in data flow
analysis.
�
 also is called the abstract cache,

��
the abstract environment. Assuming that the analysis

works on abstract values from a domain
�
Values the result of a CFA may be formalized as

abstract values

Val =

� � �
Values

�
abstract environments

�
Heap = Var �

Val
abstract caches

�
Cache =

' �
Val

The CFA generates a set of equations or constraints. These reflect the definition-use chains in the

14 CHAPTER 2. THEORETICAL BACKGROUND

program and will allow to compute the abstract environments and caches. Based on the semantics
of the analyzed language one may then proof this result to be correct.

In the setting of functional languages an abstract value
� �9�

Val associated with a label
�

is a
set of functions – namely those terms that may be called when the expression labeled

�
will be

evaluated at run-time. In the object-oriented setting, which we will investigate in Chapter 4,�
Values will be the set of classes defined in the program being analyzed. The labeled points are
connected, e. g., by set-based constraints in order to model data flow.

As [NNH1999] points out, control flow analysis is quite similar to definition-use chains for
imperative languages. Both techniques trace data from points of definition to points of use. When
applying CFA to functional languages this means that we trace function creations to function
applications. When computing definition-use chains, definitions are assignments of values to
variables and use points are points where these values are used.

When defining a control flow analysis one often first constructs an abstract CFA that will allow
to determine whether a pair

�	�
 � �� � is an acceptable solution to a given program or not. Accept-
ability is checked by means of the relation � � � �Cache

� �
Heap

�
Exp

�
. This relation is defined

along the rules of the semantics of the language analyzed. One possibility to compute a solution
for the analysis is to generate constraints from the program and to solve these. This approach
will be handled in more detail in Chapters 4 and 5.

Just like data flow analyses, control flow analyses can be distinguished regarding context sensi-
tivity. The simplest form is the so called � -CFA. In contrast to a DFA, the � -CFA already handles
interprocedural data flow. The labels of the arguments to a method call are connected to the labels
of the parameters of the called method. Equally, the label of the return statement of a method is
connected to the label of the expression the returned value is assigned to. A more detailed view
will be given in Chapter 4.

It is instructive to apply the terminology introduced in Section 2.1.1 to control flow analysis.
Labeled program points are equivalent to nodes in the control flow graph. Definition-use chains
are modeled by edges, that is the graph contains a path between a node representing a definition
and a node representing a use. The lattice used for analysis is

� � � �
Values

�)� � �
, the powerset of

abstract data ordered by the subset relation. Using this analogy we can apply the theorems given
above and conclude that there exist fixed points and that we can compute them.

2.1.3 Interprocedural Analysis

Up to now we have only taken intraprocedural analysis into account. However, most programs
consist of several procedures. This is especially true if library code is analyzed together with the
user program. Then one would like to analyze data flow across procedure boundaries. For data
flow analysis there exist several solutions to this problem, one of them will shortly be presented
following [Mar1999b]. Additionally we will sketch the interprocedural form of control flow
analysis, namely ; -CFA.

2.1. PROGRAM ANALYSIS 15

Call String Approach

The approaches for handling of interprocedural data flow analysis include inlining, invalidating,
effect calculation, call strings and static call graphs. For an exhaustive explanation see, e. g.,
[Mar1999b]. We will focus on the call string approach.

The data structure used to represent the interprocedural control flow graph is the super graph.
Additionally to normal edges it contains edges between a call and the method called.

Definition 2.11 (Super Graph)
Let � be a program consisting of procedures �/! , � � � ,�

8
with control flow graphs ��! , � � � , �

8
, � 3 �

��
 3 ��� 3 ��� 3 ��� 3 � . ��� � ��
 � ��� � ��� � ��� � � is the super graph of � . We have
� � � � ! , � � � � ! and

�
 � � �
!�� 3��

8
 �3 . In

 �3 each node ��
 3 representing a call statement is replaced by a call

node �� and a return node � .
� � � � �

!�� 3	�
8 � 3 # ��
�����

. In
��
�����

there are call edges from each call node �� to the
� /

of

methods � �
/ �

callable at �� and return edges from
� /

to � . Additionally there is an edge
from �� to � .

The call string approach works by distinguishing calls to the same method by their path through
the dynamic call tree. This path can be imagined to model the call stack as present, e. g., in the

run-time system. In order to define the call string, all call statements are numbered. Whenever
a call is executed, the number of the statement is appended to the call string. When a method
returns, the last number in the call string is deleted. The problem with this approach is, that there
exist potentially unbounded call sequences in the program. Thus the associated call strings may
have infinite length. In order to handle this, the idea is to limit the call string to only contain ;
numbers, that is the last ; call statements executed. The bigger the value of ; is chosen, the more
contexts can be distinguished. For each method called and each call string, the data flow analysis
stores one abstract value for that method.

Returning from a procedure call is problematic. Whenever the length of the call string has
reached its maximum length and the k $&% method � returns, all possible predecessors of � must
be assumed to have called the method. This may result in diluted analysis results.

On the one side, choosing a bigger ; results in more detailed results. On the other side, also the
complexity is increased, as the length of abstract paths grows.

; -CFA

We have already seen that � -CFA simply connects labels of arguments with labels of parameters.
Thus they cannot distinguish two calls of the same method. The idea applied to overcome this
problem is exactly the same as for data flow analysis. Also here call statements are labeled and

16 CHAPTER 2. THEORETICAL BACKGROUND

are used to construct a string of the ; last calls executed. Using this string, the abstract domains
are extended to distinguish labels and variables occurring in different call contexts.

As with the call string approach for data flow analysis, the complexity of the analysis increases
with increasing values for ; . For ;�� � its complexity is exponential as given in [JW1995].

2.2 Rule Induction

The next chapter will specify the semantics of the language analyzed in this thesis. We will do
so by means of a structural operational semantics [Plo1981], that is, we will specify rules with
premises and conclusions. By simply specifying the rules, however, it is not at all clear that
they have any meaning. This section will provide some fundamental insight. Namely, that the
rules we will specify are just an interpretation of an inductive system. The presentation follows
[Die1996] with the definitions based on [Acz1977, dS1990, dS1992].

2.2.1 Inductive Systems

We start by taking an arbitrary set and defining how to build rules from this set.

Definition 2.12 (Inductive System, Rules, Axioms)
Let � be a set. An inductive rule is a pair

� � ���-� where � � � and
� � � . We call � the

premises and
�

the conclusion of the rule. A rule with � ���
is called an axiom.

An inductive system � is a set of inductive rules. � defines a subset of � . An inductive system is
called finite if the preconditions of all rules are finite.

Definition 2.13 (� -Closed)� � � is � -closed iff for all
� � ���-�5� � we have that � � � � � � � .

Now we assume an arbitrary fixed inductive system and describe the set it defines.

Definition 2.14 (Inductively Defined Set)� � � � ��� � � �
A is � -closed

�
is the set inductively defined by � .

Theorem 2.4
� � � � is � -closed.

Proof Let � � � � � � . From Definition 2.14 we get that for every � -closed set � we have � � � .
With Definition 2.13 this yields

� � ���-� � � � � � � . Finally, we get from Definition 2.14 that� � � � � � . This completes the proof.

As
� � � � is � -closed and is the intersection of all � -closed sets, we get that

� � � � is the least
� -closed set.

2.2. RULE INDUCTION 17

Example 2.1 The infinite, inductive system ����� � � � � � � � �
�
� � � � � ' �

�
� ��� � #� � � � �����)��� � � ��� ����� � � �
	 � �

defines the set
� � ����� � � � � 3 � � / � 	 # � 8 � - � ; � ' �

.

Theorem 2.5 (Principle of Rule Induction)
Let � be a set, & � � a predicate over � , and � an inductive system on � .

� , � � ���1�5� � � � , � � � �
� � & � � � � & �� , � � � � � � � � � &

We want to model our semantics based on the theory of inductive systems. Now we will define
what a proof based on inductive rules looks like. Such a proof is based on a sequence of items.
Each item is either an axiom or follows by a rule and a subset of items preceding that item in the
sequence.

Definition 2.15 (Finite Length Proof)
Let � be an inductive system on a set � , � � ! � ,.,.,"��� 8� a sequence with

� 3 � � . � � ! � ,.,.,"��� 8� is a
finite � proof of

�
if

� � � 8
and , � 79 ��13�� � � � 3 � 8�� � � � � � ����� � � � .

Example 2.2 Continuing the above example, � � � � ����� � since � � ��� � � � ? � . 2 and 3 are axioms;
6 and 12 are proven by the rule

� � � � � �
�
�
.

Theorem 2.6 For every finite inductive system � on � we have that
� � � � � � � � � � � ��

has a finite � -proof
�
.

The proof can be found in [dS1992].

As seen in the example, it is not clear in a proof which subset of the sequence has been used
to imply an item. That is the sequence does hide the structure of the proof. This can be made
explicit using � -trees.

Definition 2.16 (Proof Tree)
Let � be a finite inductive system on the set � ,

��� � . A � -tree or proof tree of
�
, denoted

����� � �)� , is an object ����� �"!$#&%(')')' ����� �"!(* %! where the rule
� � � ' � � � �-��� 8 � ���)� � � and ����� � � 3 � is a � -tree

for
� 3 .

Example 2.3 A proof tree for 42 in ����� is
+ �
� +
� + .

Note that there may be several proof trees for the same proof sequence.

18 CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Relational Inductive Systems

Up to now we have only spoken of arbitrary sets and rules and have not yet attached any meaning
to them. We are now going to add this. To do so, assume that we have a signature � and a a set�

of variables, with ��� � � � denoting the set of terms over � and
�

.

The set of all ground terms over � is denoted by ��� . Ground terms are those that do not contain
any variables. Let � � ��� � � � be a term and � ����� � � � � ��� be a substitution with �

� � � � ��� ;
then �

� � � is a ground instance of � .

Definition 2.17 (Relational Inductive System, Rule, Axiom)
A relational inductive rule is a pair

� � ���-� where � is a finite subset of ��� � � � and
� � ��� � � � .

If � � �
then

� � ���1� is called a relational inductive axiom. A set of relational inductive rules is
called a relational inductive system.

Example 2.4 To continue the above example, we can now define a finite, relational inductive
system, which defines the same set as the infinite, inductive system. To emphasize the difference
we use capitals for variables: � ���	� � � � � ; ��
 � � ��
 � � � ; ��
�� �)��� � � �
���)�.� � � ��� ����� � � ��	�� �

.

Definition 2.18 (Evaluation of Functions)
Assume that the names in � can be divided into function names � and constructor names
with �

�
� #� and � %� � �

. Additionally, let �<��� � '
map each function to its arity,

� � � � � � ��� � � � � � � � � �
and let ����� � � � � !� # ,.,., # �

�
� � � � � � # � � � � �

be an interpretation
of the function names. The evaluation ���

� � � of a ground term � by an interpretation � is defined
as:
Let � � � � � ' � � � �-� �

8 �
. There are two cases:

? � � � � ���
� � � �

�
� � �-� ��� � � ' ��� � � �1� ��� � �

8 � �
if ,/8:����� � � 3 � 2� �

���
� � � � � otherwise� � � � ���
� � � � � � ��� � � ' ��� � � �1� ��� � �

8 � �
if ,/8:����� � � 3 � 2� �

���
� � � � � otherwise

��� naturally extends to sets and tuples.

Example 2.5 The signature in our example is �
� ' # � ��
 � � � , where the interpretation � maps

��
 � � to the multiplication of natural numbers.

Definition 2.19 (Derived Inductive Systems)
Let � be a relational inductive system. The inductive system �� derived from � by an inter-
pretation � is the set of all rules ���

�
�
� � � �$' � � � �1� �

8 � ���1� � �
such that

� � �$' � � � �-� �
8 � ���1� � � , � is a

substitution and �
�

�"' ��� � � �1� � � �
8 �)�

�
� �1�

are ground instances.

2.2. RULE INDUCTION 19

Example 2.6 The derived inductive system for our example is �� ��� � � � � � � � � �
�
� � � � �' � �

� � �* � # � � � � �
������� � � ��� �)��� � � �
	����
. Obviously, this is equal to the inductive system ����� .

As a consequence, the set defined by the relational inductive system is the same as that defined
by the derived inductive system, namely

� � �� ��� � � � � � � ��� � � � � 3 � � / � 	 # � 8 � - � ; � ' �
.

Having presented this excerpt of the theory of inductive systems, the question remains how that
helps us. Actually, what we are going to use as semantics are just rules on a set of terms. Induc-
tive systems as base theory allow us to assume that with the proper interpretation of functions
and constants we end up with a set derived from this system. The proof trees will describe eval-
uations of programs. Example 3.6 will exemplarily show such an execution. The set defined by
the system contains all possible end configurations of evaluations.

20

Chapter 3

The Language

The contents of a language is revealed at best
by those words that cannot be translated.

Marie von Ebner-Eschenbach

This chapter introduces the object-oriented language � ��������� that will be analyzed in the rest of
this thesis. After a short introduction to object-oriented languages we give the abstract syntax
of � ��������� . A program will conceptually be split into two parts – namely the methods and
statements on the one side and a type system on the other. The type system will allow us to
investigate the class hierarchy of programs and the types of methods and variables. As expected,
the statements will be used for describing evaluation of � ��������� programs. This is done by means
of a small step structural operational semantics [Plo1981] for the language. The semantics will
allow us to prove the correctness of the analysis presented in the next chapter. The chapter
concludes with the formal execution of a small example program.

We start with a very short introduction to object-oriented languages, exemplified by Java. This
section shall just ensure that the more common vocabulary of object-oriented languages is at
hand.

3.1 Object-Oriented Languages

Imperative programming languages support the programmer with the concept of procedures for
modularization. In object-oriented languages the main concept is the abstract data type, that is,
the encapsulation of data and functionality. Of course, many concepts can be found in variants
in different language families. We are going to mention those similarities whenever appropriate.
Note that we will not further introduce the syntax of Java.

As the name says, in object-oriented languages the main entities to work on are objects. They

21

22 CHAPTER 3. THE LANGUAGE

can be characterized by a set of variables and methods that access those variables. The variables
are said to reflect the structure of an object, the methods to reflect its behavior.

Example 3.1 (Objects)
Suppose we would like to model candidates for an election. Of course each candidate object
should have a name, a party it represents, and the number of ballots that have voted for the
candidate represented by it. The interface should contain some functionality to get the name of
a candidate, her party, and the number of votes she got. Additionally one would expect a way to
increase the number of votes, which should be called whenever a ballot voting for the candidate
has been found.

As can be seen, objects representing similar entities often have a lot of properties in common.
Furthermore, they usually are expected to support a somehow similar interface. For this reason
object-oriented languages introduce the concept of classes. A class describes objects having the
same type, that is, the same structure and the same interface. That’s how the user may introduce
new types into the language used. The concept of classes can be compared with records in
imperative languages.

By means of a special function
��� �

an object adhering to a class may be created at run time.
Furthermore, constructors may be defined, that initialize the fields of an object when it is created.
Constructors do have the same name as the class they are defined in and syntactically do not have
a return type.

In addition to instance functions and methods, that are local to each object, Java also supports
class variables and methods. These are shared by all instances of a class. They are used like
global variables in imperative programming languages. Both class methods and variables are
marked by the keyword

� � � � � � .

Example 3.2 (Java source code)
A Java class definition for the election example would look like

� ������� # ��� � � ���	� �
"�� �
����� ��� � � �
"�� �
����� ����� � ���� � � �� � ��� �� � � � � � � � � � ����� �
# ��� � � ���	��� � � �� � ��� � ��� �
# ��� � � ���	��� "�� �
� � � ���������� � ��� "�� �
� � � ������������ � � � ���� � � � ���������� � � � ����� � � � ������������ � ��� �
"�� �
����� ��� � ��� � � � � � ��� ��� ��� ��� � � � �
"�� �
����� ��� � ��� � � � � � � ��� ��� � � ���� � ��� �
� � � ��� ��� � � ��� � � � ��� ��� ��� �� � ��� � �
����	� � � �
	�� � � �� � ��� � �� � ��� � ��� ��

3.1. OBJECT-ORIENTED LANGUAGES 23

As can be seen, the class defines three instance variables and one class variable. While the year
of the election should be the same for all instances of the class, the name, the party and the
number of votes of course will be local to each instance, i. e. candidate.
The constructor gets the name of the candidate and her party and stores these values in the
instance variables. Furthermore, the number of votes is set to � . The interface of the class just
defines several methods to read the instance variables and to increase the number of votes.

Another important feature of object-oriented languages is inheritance, which allows to extend
the type hierarchy of a language. This concept exists in several variations, each one with its own
problems. We are not going to investigate this topic further. Java is a language that supports
single inheritance, that is every class in Java has a single super class. This is exactly how inheri-
tance works – when declaring a class one may specify a super class. From this the class inherits
all methods and fields. Methods may be overwritten by methods with the same argument types.
While the class that is extended is called the parent or super class, the inheriting class is dually
called the child or sub class.

Example 3.3 (Inheritance)
Suppose that in addition to an usual election you would also like to be able to decrease the num-
ber of votes a candidate has got. That is you basically want the same structure and interface as
in the class # ��� � � � �	� , but additionally a method to decrease the number of votes. Furthermore a
ballot should be worth two votes instead of one. This can easily be realized by using inheritence:

� � ����� # ��� � � ���	��� � � � ������ # ��� � � � �	� �
� � � � ��� ��� � "�� �
� ��� ���������� � ��� " � �
� ��� ������������ � ��� ��� � � � ���������� � � � ����� � � � ������������ � ��� �
����	� � � � 	�� � � �� � ��� � �� � ��� � � � �
����	� � � � � �
	�� � � �� � ��� � �� � ��� �

� � ��

The new class specifies that it extends class # ����� � ���	� and thus inherits all variables and func-
tionality from it. It then overwrites the definition of tick and defines a new method untick.

As already said, inheritance extends the type system of object-oriented languages. A class is
treated as a type (often these two are even used as synonyms) and a child class as a sub type.
This leads to the so called class hierarchy that states the relations between classes, i. e. types. It
is the set of class names, partially ordered by the binary is subclass of relation.

Object-oriented languages often have a root class, that all classes inherit some basic structure
and interface from. In Java this class is

������� � ������� � !
� ����� � .

24 CHAPTER 3. THE LANGUAGE

Example 3.4 (Class Hierarchy)

The class hierarchy for the two classes just defined would look like the
graph shown on the right hand side. In literature one often finds the
arrows pointing from the child to the parent class. Of course there will
be many more sub classes to the Object class in a real world program.

Object

Election

Election2

For languages like Java, that have a root class, the class hierarchy graph always is a tree.

The class hierarchy (that is type hierarchy) is an important tool when compiling object-oriented
languages. A variable

�
has a declared type, say

�
. This type identifies which objects may be

stored in
�

at run-time. Namely these are objects of those classes that are descendants of
�

in the
class hierarchy graph. E. g., if we have a variable with type # ��� � � � �	� , then we may also store
objects of class # � � � � ��� ��� in it. Why is this? As we have seen above, objects of # ����� � ���	���
share the same structure and interface with objects of # ��� � � � �	� , the parent class. That is, a call� � � � � 	�� � is known to succeed, indepent of the run-time object that is stored in

�
. The only thing

to be checked at compile-time is, that only expressions typed with a sub type of
�

are assigned
to

�
. Allowing super types would fail, as e. g. objects of class # ��� � � ���	��� support the method

untick that is unknown in the super classes.

Java also allows to specify interfaces. Interfaces do not provide method implementations but
just method signatures. Beside extending one super class, a class can specify several interfaces
it assures to implement. This means that the class must provide an implementation for each of
the prototypes in any of the interfaces it implements. Thus the problems combined with multiple
inheritance can be avoided. For a detailed discussion of the inheritance problems c. f. [WM1995].

A main difference between imperative and object-oriented languages is the way methods are
called. In imperative languages a method call will result in a jump to a certain address at run-
time. If the language does not have function pointers this address is even known at compile-time.
In object-oriented languages the idea is that an object decides at run-time which method to call.
The semantics of the used programming language defines how this decision is to be made. This
concept is known as dynamic dispatch.

As just explained, using the declared type of a variable it can be checked at compile-time that
the run-time objects will support the method. However, it is not known, which class the objects
will belong to at run-time. Due to inheritance, different classes may provide different implemen-
tations with the same signature. That’s why the object needs to decide which implementation to
call.

Example 3.5 (Method dispatch)
Assume the following code fragment, using the classes defined above.

� � � � ��� � ������� �
� � � � ��� ��� ������� � �

3.2. ��� � ��"�� – A SUBSET OF JAVA 25

������� � ��� � # ����� � ���	��� ������ ��������� ������������������ � �
��������� � � � 	�� � � ��������� � � � 	�� � �
������� � � � # ��� � � ���	��� � ������� � ������� � � � � � � � 	�� � �

Assigning an object of class # ����� � ���	��� to a variable with declared type # ��� � � ���	� is correct
as the object’s type is a sub type of the variable’s type. The object is then sent the message to
invoke the method � � � 	 . As the object is of class # ��� � � ���	��� it will invoke the implementation
that increases the number of votes by two. The method � � � � � 	 cannot be called on the variable
�������

, as class # ��� � � � �	� does not know about it. However, after assigning cand to cand2 we
may call � � � � �
	 , as # ��� � � � �	��� implements the method.

Each dynamically dispatched method has an implicit parameter � � � � , that points to the object on
that the method has been called. � � � � has the declared type of the class that defines the method.

There are many more concepts associated with object-oriented languages. Classes may inherit
from several classes, objects may be allowed to change their interface during run-time, languages
may support generic data types and many more. However, those concepts described up to now
are the essence of the class of languages that Java belongs to. For a more detailed introduction
see, e. g., [BH1998].

3.2
	�
��
���

– a Subset of Java

Since several years the object-oriented language to analyze is Java [GJS1996]. Complete Java
contains many constructs that do not contribute to the expressiveness of the language. As in
the JOSES framework we use bytecode as input and unstack it to Java code, our input language
consists of a kind of simple structured subset of the full language. Here, we will define this
subset of Java, and name it � ��������� . This choice of name is inspired by the fact that the island
Java belongs to Indonesia. There the official language spoken is Bahasa Indonesia.

The complete syntax of � ��������� can be found in Appendix A. Table 3.1 presents a context-free
grammar with regular expressions as auxiliary constructs. This allows us to avoid the cumber-
some derivations for lists. As can be seen, the language is almost equal to Java. However, it is
somehow simplified in order to allow a convenient treatment. It is defined along the lines of and
borrowing many notations from [DE1999]. Without loss of generality one may assume that all
values are assigned to local variables before being used. Furthermore, all occurences of � � � � ,
that are usually implicit, have been made explicit as in

� � � � � � ��� � � � instead of
� � � � � �
��� � � .

This results in a second change, that is, we need to mark all static methods because they could
not be distinguished from dynamic ones (e. g.

� � � � � � ����	� � ��� � � � � � and
����	� � ��� � � � in

class A both look equal after making � � � � explicit). The marking is done in a type environment�
that will be defined later. The same holds for static fields as those are shared by all instances

created for a class. Finally, we need to mark constructors. Those are identified by having no
return type and the same name as the class they are defined in.

26 CHAPTER 3. THE LANGUAGE

Beside this, the most noteable changes from Java to � ��������� are

� all variables have unique names

� constructors are called explicitly, i. e., the
��� �

method just delivers an object where all
member fields have been initialized to the initial values of their type

� accesses to instance and class members are only one level indirections

� there is no
� � ����� keyword

� casts to a class C are replaced by assignments to a variable with static type C

� the language has neither arrays nor exceptions

� expressions are not further specified

� every class beside
������� � ������� � !
� ����� � extends some other class

� interfaces may have only methods but no fields

The first three changes are merely inspired by the framework that the analysis has been imple-
mented in.

The
� � ����� keyword is just a syntactic enhancement – it actually tells the compiler to call the

method to invoke on the superclass of the class containing the actual implementation. Thus at
compile-time the method to be called can be identified as this decision is independent of the
run-time type of an object.

Casts in Java only have two reasons to exist – one of them is to force the compiler to access mem-
ber fields defined in the class casted to. The other is to tell the type checker that the expression
has a more specific type than the type checker might find out. As we trace actual types through
the program and thus know a set of correct types for each expression we can get rid of the second
type of casts. The first, however, can be simulated by assigning an expression to a variable with
the type casted to as declared type.

Arrays would not add any additional problems due to the kind of our analysis (c. f. Chapter 4).
We will identify variables with types of objects possibly stored in them. This approach also
handles arrays by identifying them with the array class. That is, the analysis can handle arrays,
but their addition to the language would blow it up unnecessarily. Exceptions and their addition
are handled in Chapter 6. Additionally, we make

������� � ��������� !
� ��� � � , the super class of all Java
classes, explicit for all classes that do not have another super class. From now on we will refer
to this class by !
� ��� � � .

Expressions in � �������� are simply constants. The only explicit values are truth values, all other
primitive types, e. g., integers and characters, as well as arithmetic or boolean expressions are
represented by the constant

�
. This design decision tries to emphasize once more that we are

only concerned with classes and not with primitive types.

3.2. ��� � ��"�� – A SUBSET OF JAVA 27

Program � � �
InterfaceDef

��� �
ClassDef

���
InterfaceDef � � ��� � ����
�� ��� � � � � ��
�� ��� � � � � � � ������ �

� � � ����
�� ��� ��� � � � � �� ReturnType 	 � � � ��� � � � �
VarType

������� � � � � � � � �
ClassDef � � � ������� �� ����� � � � � � � ������ ��������
��� � � �

� � � �
��� � ��� � � �
� � � ����
�� ��� ��� � � � � �� VariableDefinition

�
MethodDefinition

� �
Modifier � � � � � � � � �

VariableDefinition � �
Modifier VarType � � � � � �

LocVariableDefinition � �
VarType � ��� � � �

MethodDefinition � �
Modifier ReturnType 	 � � �
��� � � � �

VarType
������� � � ����� � � �

� LocVariableDefinition
�

Stmts ;
� ���

Block � � � Stmts
� �

Stmt ;
Stmts � �

Stmts Stmt ;
�

Stmt � � ��

Expr � ����� Block

�������
Block

� �
	 � �
�

Var
� # � Rhs

�	� �
Call� ��� ��� ��� � Variable
� � �

Rhs � �
Var

� ��� � ��������
��� � � � � �
Call

�
Expr

Call � �
Variable

��
 � 	 � � � ������� � � � Variable
��� � �

Var � �
Variable

�
Member

Variable � � � ������� � �
Member � � ��������
��� � ���
 � 	 � � � � ����� � � �

Variable
�
 � 	 � � � ������� � �

ReturnType � �
Type

� ����	� � ��� � �
VarType � �

Type
�
� � � ����
�� ��� ��� � �

Type � � ��������
��� � � � � � � �
� ����������� � ������

Expr � �
� � � � �
�������� � �

Table 3.1: � ��������� syntax

Interface fields are deleted due to their semantics in Java. They are final, that is they may only
be assigned a value at declaration and are then used like constants. We therefore replace their
occurrences by the value that is assigned to them.

These changes altogether allow us to make some assumptions about the programs that will be an-
alyzed. Moreover, they help us to keep the language grammar, the typing rules, and the analysis
itself quite simple by removing much of the overhead introduced in Java.

The analysis that will be presented in Chapter 4 will need to speak about program points in
� �������� programs. Therefore those points are labeled. The labels l are taken from the set of nat-
ural numbers. They are assigned to those expressions that may result in an object. Accordingly,
parameters and variables are only labeled if they have class type. Similarly, we assign a label to

28 CHAPTER 3. THE LANGUAGE

the body of a method � if the return type of the method is a class type. This label will be used
to collect all the values possibly returned by the method. Furthermore, the objects that are either
sent messages for method invocation or whose fields are accessed are labeled. For reasons of
symmetry we also label the class that is used for access to class members. To be more specific,
we label all using and defining occurrences of expressions that will result in a class type at run-
time. The places that are labeled are given in Table 3.1. Of course, the labels do not change the
semantics of the language.

In what follows we will develop a semantics for � �������� . This will be based on ideas from
[DE1997, DE1999, NvO1998].

In order to allow for a treatment of execution of � �������� programs we will use a slightly mod-
ified version of the language, named � ��������� � (c. f. Table 3.6). Its construction from � �������� is
inspired by that of Java

�

in [DE1999]. In addition, we introduce constructs from Plotkin’s SOS
[Plo1981]. The main difference to � ��������� is that now there may occur addresses. This is due to
the fact that run-time references to objects may occur that are not visible at the normal language
level. Therefore we introduce a new intermediate expression that represents those references.
Additionally we need to model the run-time stack when invoking methods. To do so, similarly
to intermediate expressions we introduce two more intermediate statements � � ��� and

�����
. Just

like references these statements do not occur in � ��������� programs but only at run-time. Using
� � ��� , the run-time stack will be encoded into the intermediate programs.

�����
will identifiy the

end of the statements that belong to a method in order to delete them from the configuration if
the method’s evaluation is finished.

3.3 A Type System for
	�
 ��
 ��

Before handling the run-time model for � ��������� , we will establish a type system. Namely, as
� �������� is just a subset of Java, one can take whatever one’s favorite Java type system is and
use that to type � ��������� programs. We are actually not concerned with typing whole programs
and each and every statement or expression. However, we need to speak about type hierarchy,
subclass relations, and method definitions. That’s why we have chosen a standard Java type
system and have extracted the part that deals with the class structure imposed by a program.
Thus from the program p a class hierarchy can be deduced. For reasons of convenience we will
identify the type of class C with its name. For a complete treatment of how to type Java programs
compare, e. g., [DE1999].

We start by defining some semantic domains.

Definition 3.1 (Semantic Domains, Subclass Relation)
Let p be a

� ���	���	�
program. We define a number of semantic domains and give typical meta

variable we will use:

e
�
 � Term (possibly partial)

�����	���	�
terms

3.3. A TYPE SYSTEM FOR ����������� 29

p � p �	��
����������������������� �����! �"�
��# ��������$ '&%('!'!'�% $
8*),+

'!'!'.- p � �
�0/213�
�0/213� �

�4/ 1 � �� �,/516� � �
�4/ 1 � � �

Table 3.2: Subclasses deduced from program �

� ' � � � � '
a set of labels to be used in programs � 27 �

Classes the set of class names defined in p
�
� � � Interfaces the set of interface names defined in p

OOTypes � �
Classes # Interfaces

Types � �
OOTypes # �98
�� �&: � �<; ��= �	� � �

MT
�

MTypes � � � �*' � ,.,., � 8
� � � � 6 �

� ? 7�8 79 �
�43 � Types

� � � � Types # � ��> 8� � �
� �

VNames the set of names of local variables in methods in p

 �

FNames the set of field names defined in classes in p� � MNames the set of method names defined in classes in p

�@? �
Classes

�
Classes defines the subclass relation imposed by program p. Table 3.2 defines

how to deduce this relation from p.

For the rest of the chapter we assume a partitioning of � �������� programs in the type-related part
and the execution-related part. The type environment contains classes, interfaces, methods, and
variable definitions. In addition, it stores the class and interface hierarchy. The actual program
contains the methods and statements. This partition is performed once for a given program
and is fixed during analysis. A class declaration introduces a new class

as a subclass of a

class
 � , several fields and methods, and optionally, a list of interfaces implemented by

. Field

declarations consist of the name of the field and its type, method declarations of their identifier,
and their type. Both fields and objects may have the modifier

� � � � � � , identifying those members
that are shared by all instances of the class.

An interface declaration introduces a new interface � , possibly as a sub-interface of a list of
other interfaces. Due to our assumptions on the structure of � ��������� programs as explained at the
beginning of this chapter, components of � are methods only.

We will now introduce the type environment, a function that will store relationships between
classes and interfaces, fields and types, and methods and types and local variables. The domain
of
�

ranges over class and interface names. For each of these,
�

stores

� the super class (
 for interfaces)

30 CHAPTER 3. THE LANGUAGE

� the set of implemented or extended interfaces

� a function from field names defined in a class to a pair, containing

– a flag whether the field is static

– the type of the field

� a function from a pair consisting of method name and method type to a triple containing

– a flag whether the method is static

– a flag whether the method is a constructor

– a function ranging over local variable names returning their declared types

We will write MT
/

for a method type as abbreviation of
� � � ' � ,.,., � � ��� �

� � � �
/
.

Definition 3.2 (Type Environment
�

)
Let p be a

� ��� ���	�
program, Static

�
Constructor

�
Bool. The type environment

�
induced

by p is a function

� � OOTypes � �
Classes # �
 � � � � �

Interfaces
� �

�
FNames � �

Static
�

Types
� � �

� �
MNames

�
MTypes

� � �
Static

�
Constructor

� �
VNames � Types

� � �
�

is constructed from p for class and interface declarations in p.

p ! p’
� ������� � � � ������ 27 � � �
��� � ��� � � � ' � � � � � �

8 �

 � ��� ' � � '
 ' � � � �
 � ��� � #

� � �
 � �
��� ��� ' � � ' � ' � � �

� '�� ' %
�

� '�� ' %
,.,., � �

� '��
�
#$%

�

� '��
�
#$% � �

� �

� '�� ' %
� �

� '�� ' % �
� � � � �

� '�� � #$%
���

� '�� � #$% �" � � � � �
� � �
��� ��� � � �

� � � � � �

� � � ' %
�

� � � ' %
,.,., � �

� � �
���
%
�

� � �
���
% � �

� �

� � � ' %
���

� � � ' % �
� � � � �

� � � �
�
%
� �

� � � �
�
% �" � � � � �

p”

� � � � � � � � ��� ' � ,.,.,"� � 8 � �
�
 3$� �

stat3 � � � 3 � � 3
	/'�� ')')' �
� �

� � � 3 � MT 3 � � �
stat 3 � cons 3 � � � �

/
� � �

/ � � # � � � # � � � 3
	/'�� ')')' � ���
/
	/'�� ')')' � � �� #�	/'�� ')')' �

�
�
�

3.3. A TYPE SYSTEM FOR ����������� 31

p ! p’
� � � � ��
�� ��� � � � � ������ ��' � � � � � �

8 ���� ��� ' � � ' � ' � � �

� '�� ' %
�

� '�� ' %
,.,., � �

� '��
�
#$%

�

� '��
�
#$% � �� � �

��� ��� � � �
� � � � � �

� � � ' %
�

� � � ' %
,.,., � �

� � �
���
%
�

� � �
���
% � �

�
p”

� � � � � � �
 � ����' � ,.,.,"� � 8 � � � � �
� � �

/ �
MT

/ � � �
stat

/ �
�������� � � � � � / 	/'�� ')')' � �
�

where

stat
/ � � � � � � if

 � ��� / respectively ��� ��� / equals
� � � � � �

��������
otherwise

cons
/ � � � � � � if � �

/ � ��� � �

��������

otherwise

Interfaces are not allowed to define constructors for obvious reasons, so the constructor flag in�
is always

��������
for interface functions. As those functions are also only declarations, they

cannot have any local variables.

Since the local variables in methods all have unique names, we may merge the functions mapping
those variables to their type.

Definition 3.3 (Function
���

)
Let � be a

����� ��� �
program and

�
the type environment induced by � .

The function
��� � VNames � Types returns the declared type of a variable.

��� � � � � � ���� � �	�
��� � � � if 3 � Classes
� � � MNames � � � � � � � � ; + � � � � � � � �

� � � � � � ��
���� � � � �	�
��� � � � � � > � � � �	�
��� �
undefined otherwise

Just like program p, the environment induced by p also defines a subclass relation
��

and a
dual relation 7 � on interfaces. Furthermore an implements relation � 3 ��� between classes and
interfaces is defined in Table 3.3.

In order to declare variables and methods, one needs to be able to impose restrictions on their
possible types. Those restrictions are given in Table 3.4. Their main reason is to ensure that a
class occurring in a method or variable declaration is really defined in the program.

Definition 3.4 (Functions ArgTypes, ResType)
Let p be a

�����	��� �
program and

�
the environment derived from p.

The functions ArgTypes � MTypes � �
3��2' Types 3 and ResType � MTypes � �

Types # � ���� � � �
return the type of the arguments respectively the return type of a given method type, i. e.

32 CHAPTER 3. THE LANGUAGE

��� ����� � � ���
+ $! � '!'!' � $

8
- �
	 � 3�� ��

 �
	 � � $&%��
 ��4/ � � % �4/ � ��� % ��� 3 � � $ 3 %����������
��� $ ��� ��� �

+ $! � '!'!' � $
8
- � �
)
�
	 � � $&%��

 �$ � � $ % $ � � $ 3 %�� �������

!#"%$ ���#��/ � !#"&$ ���#� ��/ � � �� � / � � � �
�,/ � � � �

$ � � $ �$ � � � $ � �$ � � $ � �
Table 3.3: Relations defined by environments

�,/ � �
�('*) �,+(-/.�"��

$ � � $$ '*) �0+/-(.�"�� � ���1'2) �0+/-(.�"����3��0+1'*) �0+/-(.�"��"%4(4
/') �0+/-(.�"��
-�'*) �0+/-(.�"�� or -5�76 4 ���
- 3 '*) �0+/-(.�"�� , �����8���
- ':9 '!'!' 9 -

8
'2; +�</-/.�"��- ' 9 '!'!' 9 -

8>=
-%'@? ���A3�-(.�"��

Table 3.4: Variable and method types

ArgTypes
� � ' � ,.,., � �

8
� � � � � � ' � ,.,.,2� �

8
ResType

� � ' � ,.,., � �
8
� � � � � � �

Finally, we need a widening relation 7CB �
OOTypes

�
OOTypes between variable types. This

relation will allow us to check assignments between variables and expressions with different
types. Such an assignment is possible if the type of the expression is a subtype of the type of
the variable. Table 3.5 shows the rules for widening of class and interface types. An assignment
between a variable with type T and an expression with type

� � is allowable if
� �47DB �

. In addition
to the rules given in the table, [GJS1996] describe how to widen primitive types. As our main
objective are class types we skip these.

3.3. A TYPE SYSTEM FOR ����������� 33

�(') �0+/-(.�"��
� � B �

� �:B ! "&$ ��� �
� ��
 � B � � �:B �� � B !#"%$ ���#�

�,/ � � �
� � B � �

$ � � $ �$ �:B $ �
��/ � � � , � � � 3 ��� $, $ � � $ �

� � B $ �

Table 3.5: Widening of class and interface types

Next, we specify when an environment is well-formed. Later on, this will allow us to make
certain assumptions regarding environments. Note that this well-formedness results from the
semantic rules for Java respectively � ��������� . However, we still need some more functionality.
From now on we will handle the environment

�
as an implicit parameter wherever needed. This

is justified by the fact that the methods defined work on a fixed program p that defines a fixed
type environment

�
.

Additionally, we need to model the variable and method lookup mechanism of Java. The mecha-
nism is implemented by means of four functions that accept a class or interface name and either
a variable or a method name. FieldDecl returns for a class

and a field name

a pair indicating

the class
 � where

is declared and the type of the field. FieldDecls returns the set of such pairs

for all fields named

that are declared in either

or one of its super classes. This is needed as
all fields declared in one of the super classes of

classes are visible in

. Field access in Java

(and therefore in � ��������� , too) is based on the static type of a variable only.

The function MethodDecls returns for a class

and a method name � a set of pairs
� � � MT

�
. Each

of this pairs represents an implementation of � in
 � with method type MT . These methods are

the implementations that are visible in class

. Finally, MethodSigs returns all different method

types of methods contained in MethodDecls. The last two functions also work on interface types.

Definition 3.5 (Functions FieldDecl, FieldDecls, MethodDecls, MethodSigs)
Let p be a

�����	��� �
program and

�
the environment derived from p with a declaration for class

and interface � , i. e.

� � � � � � � ����' � ,.,.,"� �.3 � � � � / � � � / � �
/ � � / 	/' ����� 8 � � � � # � MT # � � � � # ��� # �
 # � � #�	/' ����� ���

� � � � � �
 � � � ' � ,.,., � � / � � � � � � � � � # � iMT # � � � 8 � # �
�������� � � � � � # 	/' ����� � �
We define the functions

FieldDecl � Classes
�

VNames � Classes
�

Classes
FieldDecls � Classes

�
VNames � � �

Classes
�

Classes
�

MethodDecls � OOTypes
�

MNames � � �
OOTypes

�
MTypes

�
MethodSigs � OOTypes

�
MNames � � �

MTypes
�

34 CHAPTER 3. THE LANGUAGE

by

FieldDecl
� � � � � �� � � � �

/ �
if 3$?�7 -67 ��� � � � /

FieldDecl
� � � � � if

� � � � � � � � � � �
� � � �

FieldDecls
� � � � � �� � � FieldDecl

� !
� ��� � � � � ��� if
 � ! � ��� � �

� FieldDecl
� � � ��� # FieldDecls

� � � � � otherwise

MethodDecls
� � � � � � � � MT

/ � �
if 3$? 7 -�7 � � �

/ � � � #� � � � � MT � � � � � � � � MT � � �5� MethodDecls
� � � � � �

, ?�7 -67 � � � � � / � � ��� � � �
��� �

MT
/ � 2�

ArgTypes
�
MT � � � �

MethodDecls
�
�
� � � � � � � � MT

/ � �
if 3$? 7 -�7 � � �

/ � � � #� � � � � MT � � � 3$? 77-679 �� � � � � MT � �5� MethodDecls
�
�
/ � � � �

, ?�798:7 � � � � � 3
�

ArgTypes
�
MT 3 �

2�
ArgTypes

�
MT � � �

MethodSigs
� � � � � � MT

� 3 � � � Classes � � � � � MT
� �

MethodDecls
� � � � �

MethodSigs
�
�
� � � � � MT

� 3 � � � Interfaces � � � � � MT
� �

MethodDecls
�
�
� � ���

Note that all recursive definitions above are well-founded since a superclass
 � is only accessed

if
 2� !
� ��� � � . This assures that the recursion will stop.

Using these functions we are now able to dynamically identify in the semantics the method to be
called at a given call site. This identification is based on the type of the object that the method is
called on, the method name and the static types of the arguments.

Definition 3.6 (more special, Functions Applicable, MostSpecial)
Let p be a

� ���	���	�
program,

�
the environment derived from p, � � MNames,

 ����� � � �
���

,
� ' � ,.,.,"� �

8
� ' � � � ' � ,.,.,"� � �

8
� ' � Types with AT

� � ' � ,.,., � �
8

and AT � � � � ' � ,.,., � � �
8
.

A signature
� � � ' ��,.,.,(� �

8
� �

8
� ' � is defined to be more special than another signature� � � � � ' � � �

8 � � �
8

� ' � if
 7DB � � , ? 798:79 � � 3*7 B � �3 , written as

� � � ' � �
8
� �

8
� ' ��� � 27 � � � ' � � �

8 � � �
8

� ' �

The set of most special declarations for a call to method m with argument type AT based on an
object with type C is defined by means of two functions MostSpecial

�
Applicable � MNames

�
Classes

� � 8 � ! Types

8
� � �

Classes
� � 8 � ! Types

8 �
Term

�
:

3.3. A TYPE SYSTEM FOR ����������� 35

Applicable
� � � � AT

� � � � � � MT � ��� : ����� � �
� � � MT � �5� MethodDecls

� � � �
where MT � �

AT � � � 3*7DB � �3 , ? 798 7� and
� � ��� � is the body of � �

MostSpecial
� � � � AT

� � � � � � MT � ��� : ����� � �
� � � MT � ��� : ����� � � Applicable

� � � � AT
� �� � � � � MT � � � � � ��� � + � � Applicable

� � � � AT
� �� � � � MT � � ��� � � � MT � �� � � � � MT � � � � � � � MT

�	�4�

The function Applicable is applied to a method � , a class

, and an argument type vector AT . It

looks up all methods � that are defined in

or its super classes with an argument type AT � that
AT can be widened to.

Applicable is used by method MostSpecial. Both functions are applied to the same arguments.
MostSpecial checks the returned set for the method with the most special signature.

It is noteworthy that a � ��������� program p is only typeable if for every call statement the set
MostSpecial

� � � � AT
�

has exactly one element, namely the method that will be called at run-
time. Otherwise the call would be ambiguous and would result in a compile-time error.

is the

run-time type of the object on which a method is called. For a more detailed comment on this
see e. g. [DE1999].

Now we can finally specify what it means for an environment to be well-formed. A well-formed
environment allows us to make certain assumptions regarding the program that induced it. The
most important points are that the program defines all types referred to and that the methods de-
fined by classes and interfaces adhere to the inheritance rules imposed by the language definition
[GJS1996]. E. g., a malformed environment could contain variable declarations with undefined
classes as variable types resulting in run-time errors when checking sub-type relationships at call
sites.

The rules for this assertion
 � are given in the following definition and will be explained subse-
quently. Note that
 � is defined recursively, that is the parts of an environment are well-formed if
the total environment is well-formed, and vice versa. This expresses that, e. g., the class hierarchy
of the whole program is acceptable only if each class has an existing class as superclass.

Definition 3.7 (Well-Formed Type-Environment)
Let p be a program and

�
the type-environment induced by p. We write MT

/
for a method type� � � ' � ,.,., � � ���

�
� � �

/
.�

is defined to be well-formed iff

, � Classes � � � �
 � �$, � � Interfaces � � � � �
 �

36 CHAPTER 3. THE LANGUAGE

where � ����� � means well-formed with respect to
�

.
� � �
 � and

� � � �
 � are defined below. If
�

defines a class
 !

� ������� � � � ������ 27 � � �
��� � ��� � � ��' � � � � � �
8 �

 � ��� ' � � '
 ' � � � �
 � ��� � #
� � �
 � �

��� ��� ' � � ' � ' � � �

� '�� ' %
�

� '�� ' %
,.,., � �

� '��
�
#&%

�

� '��
�
#$% � �

� �

� '�� ' %
� �

� '�� ' % �
� � � � �

� '�� � #&%
� �

� '�� � #$% �"�� � � � �
� � �
��� ��� � � �

� � � � � �

� � � ' %
�

� � � ' %
,.,., � �

� � �
� �
%
�

� � �
� �
% � �

� �

� � � ' %
� �

� � � ' % �
� � � � �

� � � �
�
%
� �

� � � �
�
% �"�� � � � � �

then
� � �
 � holds iff

� � � � 6 � �
2� � � � � � �

/
7 � �

/
, ? 7 - 79

� �
/

 � ��� � � ��� , ? 7 - 7 � MT

/

 	 � � � � � ��� ?�7 - 7 �

� �

� 8
� - �
 � ��� � � ��� , ?�798:7 �

, ? 7 -�7 � 3� 3 � � /��
8 � - or ArgTypes

�
MT 3 �

2�
ArgTypes

�
MT

/ �
, ? 7"- � 8:7 �

, ? 7 - 7 � � MT
�

MethodSigs
� � � �

/ � � ArgTypes
�
MT

� �
ArgTypes

�
MT

/ ��
ResType

�
MT

/ � �
ResType

�
MT

�
, � � MNames

� ? 7"-�79 �� AT � � �
MethodSigs

�
�
/ � � �� 3 � � � AT � � � � MethodSigs

� � � � � � � 7DB �
If
�

defines an interface �	!� � � ���
�� ��� � � � � ������ ��' � � � � � �
8 ���� ��� ' � � ' � ' � � �

� '�� ' %
�

� '�� ' %
,.,., � �

� '��
�
#&%

�

� '��
�
#$% � �� � �

��� ��� � � �
� � � � � �

� � � ' %
�

� � � ' %
,.,., � �

� � �
� �
%
�

� � �
� �
% � �

�
then

� � � �
 � holds iff

 � � 6 �
�

2
7 � � �

/ 2
7 � � �

/
7 � �

/
, ? 7 - 79

MT
/

 	 � � � � � ��� ?�7 -�7 �

� 3 � � /��
8 � - or ArgTypes

�
MT 3 �

2�
ArgTypes

�
MT

/ �
, ? 7"- � 8:7 �

, ? 7 - 7 � � ? 798:7� �� MT
�

MethodSigs
� � � ��3 � �

/ � � ArgTypes
�
MT

� �
ArgTypes

�
MT

/ ��
ResType

�
MT

/ � �
ResType

�
MT

�
, � � MNames

� ? 7"- � 8:79 �� MT ' � MethodSigs
� � � ��3 � � ���

MT + � MethodSigs
�
�
/ � � � � ArgTypes

�
MT ' � �

ArgTypes
�
MT + ��

ResType
�
MT ' � �

ResType
�
MT + �

3.4. THE RUN-TIME MODEL 37

The two parts of this definition describe the requirements for a class respectively interface dec-
laration to be well-formed. First we will look into the class part. Assume that p includes the
class declaration given in the definition. The first requirements are that

 � is not defined to be a
subclass of

as this would introduce a circle in the class hierarchy. Moreover, the super class � and all interfaces implemented by

must be defined. Additionally, all fields and variables

declared in methods must have variable type and all methods must have a method type. The rest
of the restrictions are also on methods and their types. A class may only define one method with
name � and a specific argument type. If the super classes of

define a method with a name and

an argument type that is the same as that of a method defined by

then the return types must be
equal, too. Finally, if one of the interfaces that

implements contains a method declaration, then

must contain a method that has a result type
�

that can be widened to the interface method’s
return type.

The requirements for interfaces are almost identical, so we will skip their explanation. A detailed
discussion of the requirements with respect to classes and interfaces can be found in [GJS1996].

In addition we define methods Static � and Static
�

that return the static flag that
�

associates with
the field or method of the specified type. They use the methods just defined to identify the correct
field or method.

Definition 3.8 (Functions Static � , Static
�

)
Assume

� � � � � �� � ; + � � � 3�� �
�� � � � $&%��
 � , � Classes.
The functions Static � � Classes

�
FNames � Bool and Static

� � Classes
�

MNames
�

MTypes � Bool are defined as

Static �
� �
 � � �

$
�
$ 3 � where

� � � �

�
� �

FieldDecl
� �
 � �� � � � � � � � � ; �+ � � �� 3�� ��
 � � �� � $&%��
 � �

� �� 3�� ��

 �
 � � � �

$
�
$ 3 �
� �

�
�

Static
� � � � � MT

� � �

$
�
$ 3 � where � � � � MT

��� : � ��� ��� �

MostSpecial
� � � � � ArgTypes

�
MT

� � �� � � � � � � � � ; �+ � � �� 3�� ��
 � � �� � $&%��
 � �
� � � $&%��

 � � � MT
� � � �

$
�
$ 3 �
��� � �

8

$
� � � � � � � �

 �
3.4 The Run-Time Model

As mentioned above, � �������� is divided into two parts. We have already introduced the
type related half. Now the execution related part is going to be presented. The language
� �������� � contains the already mentioned intermediate expressions and statements. Having
constructed a well-defined environment, we use the functions

� �
from Definition 3.3 and

MostSpecial from Definition 3.6 to reconstruct � ��������� programs such that they comply to
� �������� � . The abstract syntax of � ��������� � programs with auxiliary constructs is given in Table
3.6. The differences compared to � ��������� are

38 CHAPTER 3. THE LANGUAGE

� Field access expressions are annotated with the static type of the variable used to access
the field

� Method calls are annotated with the vector of static argument types

� Information about super classes, implemented interfaces, parameter and return types and
variable declarations are deleted

� Additional statements � � ��� ,
�����

and an additional expression for references to objects are
added

On the one hand the static types are necessary to access the correct field (namely the one defined
or inherited by the that class) or find the method with the matching signature respectively. On
the other hand most of the type information is stored in

�
so it can safely be deleted.

The � � ��� statement may only occur during evaluation of � �������� � programs. It is used to bind the
arguments passed to a method to the method’s formal parameters. The body of the method called
will be executed in this environment. After the method has finished the caller’s environment
is restored. Thus we can make the run-time stack of a � ��������� program explicit in syntax and
semantics. Also references do only exist during run-time. They will be introduced briefly.

Before going on we define the domains for references, values and objects as well as the structures
for representing variable environments and heaps.

Definition 3.9 (Addresses, References, Values, Objects, Env, Heap)
Let � be a

����� ��� �
program. We define the following domains and give typical meta variables we

will use:

� 3 � Addresses a countably infinite set of locations on the heap
� �3 � References � �

Addresses
�

OOTypes� � � �
Values � �

References # � � � � � �
�������� �
 8 ; � � � # '
> � - � Objects � �

Classes
� � �

FNames
�

Classes
� � Values

�
� �

Heap � �
References � Objects

�
�

Env � � �
VNames # Classes

� � � ' �
Values

�

A reference will be written as � �3 where � 3 is the address and

is the run-time type of the object
that is referenced. Objects are represented by pairs

� � ��� � , where

is the type of the object and
��� is a function mapping a field name and a class to a value. ��� is defined for fields visible in

and the class

 � from which

inherits

. It returns the value stored in that field. Note further that

a state maps a variable
�

to a pair
� � � � �

where
�

is the value actually stored in
�

and
�

is the label
of the left hand side of the statement where

�
was assigned to

�
. This does not at all change the

semantics of the language, but will allow us to simplify the proof of semantic correctness for our
analysis in Chapter 4. � is also defined on classes. It returns a pair consisting of label � and a
reference to an object. This object is used to store the static fields of the class. The value � will

3.4. THE RUN-TIME MODEL 39

Program � � �
ClassDef

���
ClassDef � � � ������� �������� � � � MethodDefinition

� �
MethodDefinition � �

	 � � �
��� � � � � ��� ��� � � ��� � � � � � Stmts
� � � �

Block � � � Stmts
� �

Stmt;
Stmts � �

Stmts Stmt;
�

Stmt � � ��

Expr � ����� Block

�������
Block

� � 	 � � �
Call�

Var
� # � Rhs

� � � ��� ��� ��� � � ������� � � � ��
� � ��� �

� � � �
Stmts �

����� �
Rhs � �

Var
� ����� �� �����
��� � � � � �

Call
�
Expr

Call � �
Variable

�
 � 	 � � �
������� � � � Variable
� � � �

Var � �
Variable

�
Member

Variable � � � ������� � � � � �3 � � � ��� 8 an integer
Member � � ��������
��� � � �
 ��� �� �����
��� � ��� 	 � � � ������� � ��

Variable
�
 ��� ��������
��� � ��� 	 � � � ������� � �

Expr � �
� � � � �
�������� � �

Table 3.6: � ��������� � syntax

Configuration ::= � � � � � �
, � � Term # �
 � � � � Env,

� �
Heap

� : Term �
> �48 �
 � � � 8 > �

> �/8 �
 � � � 8 >
� �

:
> �/8 �
 � � � 8 > �

> "�/8 �
 � � � 8 >

Table 3.7: Configurations for � ��������� �

be used to unify the treatment of return statements; � will be returned by methods that originally
do not return a value.

Table 3.7 describes the configurations used by the operational semantics. The environment �
�

Env that we will use is flat, namely identifiers are mapped to primitive values or to references.
Those references point to objects that are allocated on the heap

� �
Heap. An object and

the reference to it are annotated by the object’s dynamic class. The object itself consists of a
sequence of labels and values. The labels identify the name of the field and the class where it has
statically been defined. The operational semantics � is a mapping from � ��������� � programs and
configurations to configurations. As the program is fixed during execution, we abbreviate this as
� � , which maps configurations to configurations.

Before handling execution of (parts of) programs we first need to specify how execution effects
states and objects on the heap. For this, we will define two functions getfield and setfield. It is

40 CHAPTER 3. THE LANGUAGE

noteworthy how they model the way fields in objects are accessed in Java. For the identification
of the field to be written or read only the static type of the variable whose field is accessed
matters, not the dynamic type of the object stored in the variable. This is in contrast to method
lookup. This is why the static type of the variable is passed as an argument to these functions
and has been added to field accesses in � ��������� � .

Definition 3.10 (State and Heap Update, Functions getfield and setfield)

Let
� � � � � � � � � Objects,

� � � � ��� � � ' � ' � � ����� ' � ,.,.,"�.� �
8 � 8 � � ����� 8�� � be an object of

type
 � , � � � � � Env,

����� �
Values,

� � '
, � � � �3 � � � � � �

/ �
References,

 �
Classes, � � � VNames

identifiers and

 � � 3 � FNames field identifiers.

We define the reading respectively writing access to field

of object
� � � in class

as

getfield � Objects
�

FNames
�

Classes � Values

getfield
� � � � �
 � � � � ����� 3 if

 � � 3 � FieldDecl
� � � � � �

53 � � �
setfield � Objects

�
FNames

�
Classes

�
Values � Objects

setfield
� � � � �
 � � ����� � � ��� � � ' � ' � � ����� ' � ,.,.,"�.� � 3 � 3 � � ����� � ,.,.,"��� �

8 � 8 � � ����� 8�� � �
if

 � � 3 � FieldDecl

� � � � � �
53 � � �

The update of values in the state � and the heap
�

is defined by

� � � �
� � ���� � � � ����� � �

� ��� � � � � � � � � ����� �
if �

� �

�
� � � otherwise

� � � � � � � � � �3 �� � � � � �
� � � � � � � � �/ � � � � � � � if � � � � �

/ � � � � �3� � � � � � �/ �
otherwise

Furthermore we will need to distinguish between those terms that cannot be further rewritten and
those, that may not be further rewritten as they are on left hand sides of assignments.

Definition 3.11 (Ground and L-Ground Expressions)
A
� ���	���	� �

-term � is

� ground iff � is a primitive value or � or 3 8 � ' � �
Classes � � � � �3

� l-ground iff � � � �
for some identifier

�	� �
VNames, or there exist classes

 � � � Classes,
a field

 �
FNames and an integer 8 � '

such that � � � � �3 � � �
 .

3.5. EXECUTING ������� ����� 41

�
Constant � � � ��� ���	��
 �

� �� �)) ��� �����
�
Variable � �) �,+��� �� ��� ������
 �

�
val ��� ����� � �) �0+��� ��(��� ��� � val �

�
Class � � �&
�������� �� ��� ������
 �

�
val ��� ����� � � �
������� ��/��� ��� � val �

�
Field Access 1 �

�
Var ��� ������
 �

�
Var � ��� ������

Var � � �)�� ��� ��� �
 �
�
Var � � � �)�� ��� ��� �

�
Field Access 2 � ��� � �3 � � �

)��
��� ��� �
 �

�
getfield

� � � � � �3 � �
�
� ��� ��� ��� �

�
Object Creation � � ����� ����� ��� ��� �
 �

� � �3 ��� ��� � �
� �3! "$#�%�& � � �� � � � � � �3�'

=)(+* �)

Table 3.8: Executing � ��������� � expressions

3.5 Executing
	�
��
���

�

We are now ready to present the rewriting rules for � ��������� � . The semantics chosen is a small
step one. This will allow for a detailed presentation of the correctness proof in the next chapter.

First, we will introduce the rules for executing expressions, given in Table 3.8. These include
evaluation of constants, access to variables and fields, rewriting of variables and expressions, and
creation of classes and objects. Constants are simply evaluated by function �� , ��(� Term � Values.
We do not touch basic types in any kind so we will not further specify expressions and their
evaluation. The rule for variable access looks up the value of the variable in the environment.
Note that the value is a pair consisting of the actual value

�����
and the label

�
of the last definition

of the variable. Of course only
�����

is returned. For field accesses we first rewrite the variable to a
reference and then pass the object stored in the heap to getfield. Finally, when creating an object
of class

we pick a fresh reference, create an empty object of type

and pass the reference on.

Note that we do not perform any garbage collection but assume an infinite heap where we always
can obtain an unused reference.

Table 3.9 shows how to rewrite statements. Sequences of statements are evaluated from left to

42 CHAPTER 3. THE LANGUAGE

�
sequence 1 �

�
Stmt ��� ��� �
 �

� � ��� � ��� � ��
Stmt;Stmts ��� ��� ��
 �

�
Stmts ��� ����� ���

�
sequence 2 �

�
Stmt ��� ��� �
 �

�
Stmt’ ��� ����� � ��

Stmt;Stmts ��� ��� ��
 �
�
Stmt’;Stmts ��� � ��� ���

�
if then else 1 �

�
c ��� ��� �
 �

�
e � ��� ��� �� � � c �A3�� � Stmts ' �&
���� Stmts + ��� ��� �
 �

� � � e ���A3���� Stmts ' �
���� Stmts + ��� ���	�
�
if then else 2 � � � � �(+ � �*�03���� Stmts ' �&
�� � Stmts + ��� �����
 �

�
Stmts ' ��� ��� �

�
if then else 3 � � � �!�

��
�� �*�A3�� � Stmts ' �&
���� Stmts + ��� ��� �
 �
�
Stmts + ��� ���	�

�
bind 1 �

�
Stmts ��� � ��� � ��
 �

�
Stmts � ��� � � ��� � � �� " � ��� � � ��� ��� � Stmts ��� �����
 �

� " � ��� � � � ��� � � � � Stmts � ��� �����
�
bind 2 � � " � ��� � � ��� ��� � ����� ��� ��� �
 �

� � ��� ��� � �
�
bind 3 �

�
val ��� ������
 �

�
val � ��� ������ " � ��� � � ��� ��� � +���� � +�� val � Stmts � ����� ��� �����
 �

�
val � ��� ��� � �

val � is ground

�
return 1 �

�
Var ��� ��� �
 �

�
e ��� ��� �� +���� � +�� Var ��� ��� �
 �
� +���� � +�� e ��� ��� �

�
return 2 � � +���� � +�� ��� ��� �
 �

� +&��� � +���� ��� ��� �
�
skip � � ����� " ��� ��� �
 �

� � ��� ��� �

Table 3.9: Executing � ����������� statements

3.5. EXECUTING ������� ����� 43

�
assign 1 �

�
Var ��� ������
 �

�
Var � ��� ������

Var � e ��� ��� �
�� � Var � � e ��� ��� � Var is not l-ground

�
assign 2 �

�
e ��� ������
 �

�
e � ��� ������

Var � e ��� ��� ��
�� � Var � e � ��� ��� � Var is l-ground

�
assign 3 � � ��� � # � val ��� ��� �
 �

� � ��� � � � '
= ��� ' � val �

)
�����

val is ground, ��� " VNames

�
assign 4 � � � � �3�� � � � � � val ��� ������
 �

� � ��� ��� � �
val is ground� � � � �3 ��� ('!'!'

* � �
� � � � � � � �3 =

setfield
� � � � � �3 � � � � � � val �

)

Table 3.10: Rules for assignments in � ��������� �

�
call 1 �

�
e # ��� ��� �
 �

�
e � # ��� ��� ��

val ' � � ; -) � val + � '!'!' � val #102' � e # � '!'!' � e
8
� ��� ��� �
 �

�
val ' � � ; -) � val + � '!'!' � val #102' � e � # � '!'!' � e

8
� ��� �����

val
/

is ground, � ���	��
 � �

�
call 2 � � � �3 � � ; - � � val +�%('!'!'�% val

8 � ��� ��� �
 �
� � " � ��� � ����� � � Stmts �����1� � � ��� ���	�

���� , val + � � �3 ,
val 3 is ground for � ��� � � ,
Static

� � ��� � MT � ���
�
��
���� ,

AT �7- � 9 '!'!' 9 -
8
,

MostSpecial
� � � � AT ���

+ � � � � MT � �- � � - + � + �
�
� � '!'!' � -

8
�
8
�
�
* �+

Stmts - ��� � - ,� � � �3 ��� ('!'!'
* �

,� �&� � � � + '
=

val +
)
'!'!' � �

8
'
=

val
8�)

�
call 3 � � � �3 � � ; - � � 6���
 +�% '!'!'�% 6���
 8 � ��� ���	�
 �

� � " � ��� � � ��� � � Stmts �����1� � � ��� ���	�

�� � ,
val 3 is ground for � ��� � � ,
Static

� � � � � MT � ���*�(+ � � ,
AT �7- + 9 '!'!' 9 -

8
MostSpecial

� � � � AT ���
+ � � � � MT � �- � � - + � + �

�
� � '!'!' � -

8
�
8
�
�
* �+

Stmts - � � � - ,� � � �3 ��� ('!'!'
* �

,� �&� � � � + '
=

val +
)
'!'!' � �

8
'
=

val
8)

Table 3.11: Rules for method calls in � ��������� �

44 CHAPTER 3. THE LANGUAGE

right. In
��
 � ����� �������

statements the expression is evaluated first and depending on the value
the � ����� or the

�������
branch is chosen. While we do not actually support expressions the rule has

been added for reasons of completeness. Remember that c represents all expressions with simple
type.

��
 ,.,., � ����� statements can be modeled by choosing the
� 	 � �

statement in one branch.
The � � ��� statement will evaluate its statements in the bound environment and heap. As already
said this will be used to deal with method invocation and will encode the run-time stack into the
program. The

��� ��� � � statement is handled by � ����� , too. The value to be returned and the heap
are passed back to the caller and the local environment of the returning method is disposed. Of
course, garbage will occur whenever the only references to an object have been stored in local
variables. Because of this special handling the return statements just rewrite the returned value
until it is ground. If the method does have return type

����	�
then the special value � is inserted.

The
� 	 � �

statement is consumed without any effect.

The rules in Table 3.10 describe how to execute assignments. First the left hand side is evaluated
to a l-ground value, that is either a local variable or a reference. The next step rewrites the right
hand side to a ground term. This term is then assigned to the left hand side, updating the state � or
the heap

�
accordingly. Note how the label of the right hand side is stored in � for assignments

to local variables.

Note that there are no rules to directly assign values to or dereference references. This is ac-
cording to the design and security principles of Java [GJS1996]. References are only visible
and accessible from inside the language execution process. This has been the motivation for the
semantics design we have chosen, namely to add references only as intermediate expressions to
� �������� � .
One important feature of programming languages is still missing – the evaluation of method
calls. The rewriting rules (c. f. Table 3.11) first evaluate receiver and argument expressions from
left to right. The second and third rule describe how to perform the actual call for either instance
or class methods. The difference is that, no � � ��� reference is passed to static, i. e. class methods.
Those methods are not called on an object but directly. Both rules result in the � � ��� statement
added to the configuration. Note how we save the label of the method body by assigning it to the
� � ��� construct.

For instance methods the method lookup is based on the dynamic type of the receiving object
and the static types of the arguments, i. e. the static method type. The value val ' represents the
object. As that value is passed as the � � ��� pointer to the method, val + must have the same value
and must be at least

�
. The result of MostSpecial is the one method to be called. This method

provides us with the names of parameters and the statements to perform. We then compute the
new state by binding the parameters to the arguments.

For static methods the lookup is just based on the static method type. There are no further
restrictions, that is we look up the method to be called in the result of the call to MostSpecial.
Then the new state is computed and � � ��� is added to the configuration.

There still remains the question how to start the evaluation of a program. In Java the entry-
point of a program is a method with declaration

� ��� ��� � � � � � � � �
���	� � ��� ��� "�� �
� � � ��� �� � � �

3.5. EXECUTING ������� ����� 45

��
��������
���� ��� 4 � �����&������� ! "&$ ��� �
+

� ���4� 4 � ��� �6 4 � ����
���� ��� 4 � ����
���� ��� 4 � ��� ' � +
��� + � � � !#"&$ ���#� � ��� � � ���� � � � ��
����#��� 4 � � � 4 � ��� ��� �
+&��� � +�� �-

6 4 � � ����� � ����
���� ��� 4 � � " � � +
� ����� �� � � " � � � ��
����#��� 4 � � � 4 � ��� �� � ��� � �
� "�+ � � ��
����#��� 4 � � � 4 � ��� � � �+&��� � +�� �-

-
��
��������
���� ��� 4 �
	*������� ������
����#��� 4 �

+
6 4 � ����
���� ��� 4 ��	 ����
���� ��� 4 ��	.��� � +

��� � � � � ��
���� ��� 4 � � ��� ' ! � �+&��� � +�� �-
6 4 � � ����� � ����
���� ��� 4 ��	3�&� ' ' � +

� ��� . �. � �� ' + � � ��
����#��� 4 ��	 � � 4 � �&� �. � .���	 �
�� ' � � � ��
����#��� 4 ��	 � � 4 � �&� � . �+&��� � +�� �-

-

��
������ !#"&$ ���#�
+

6 4 ��� !#"%$ ��� � � !#"%$ ���#� �&� ' � � + +���� � +�� � --
��
������ ; "" �����&������� ! "&$ ��� �

+
�#����������6 4 ���� ���� � � � +

��
���� ��� 4 � ���#��� ; % ��� ����� �
��� ��� ; ' � � ��� ����
����#��� 4 � ��� ' � �
��� ��� ; ' + � � � ��
����#��� 4 � � ���#��� ; ' � ���� ����� ' � � ��� ����
����#��� 4 ��	 � � + ! �
��� ����� + ' � � � ��
����#��� 4 ��	 �!��� ����� + + � ���� ����� + � � � � ���� � �!��� ����� + � � ���� ��� ; + � � � � ���� � �!��� ��� ; + � � �+���� � +�� �-

-

�
� � � ��� � � ��� # � � � �
��� ���� ����� �

� Stmts
�
. So evaluation is initialized with �

� � � � � � �� �
�

$
� 3
8
�3 � and

� � � �
�

$
� 3
8
�3 �� �,.,., � �

$
� 3
8
� � and the body of � �� � as statements.

In order to give an overview of how the semantics works we will now examine an example
program.

Example 3.6 (Execution of
� ���	���	� �

)
Assume the example program given in Figure 3.1 which shows the � ��������� � version of the
slightly modified examples in Section 3.1. The program is supposed to implement a computer
based election system in order to make the counting procedure reliable.

It implements classes � � � , # ��� � � � �	� and # ��� � � ���	��� . The class # � � � � ��� � implements a
method � � � 	 that shall be called whenever a ballot voting for a candidate is found. The class

46 CHAPTER 3. THE LANGUAGE

# ����� � ���	��� extends # ����� � ���	� . Both classes are supposed to be an object creation factory for
objects representing candidates. In order to give the programmer’s favorite candidate a boost,
class # ��� � � ���	��� overwrites the method � � �
	 in order to increase the count by

�
.

The class � � � creates an object of every candidate class and evaluates the two ballots.

As can be seen, the member accesses and method calls have already been rewritten to contain
the static types of the object and the static argument types. Note that the argument types do
not contain the type of the this pointers but are empty, as non of the functions gets an addi-
tional argument. Those pointers additionally have been renamed to unique names as required
for � ��������� programs. The environment

�
induced by the program is given below. Note that for

method types with no arguments we use
����	�

for the empty type.

� � � !
� ��� � � � �
 � � � � � � � � � !
� ��� � � � ���� � � ��� � � � � �
�������� � � � � � !
� ��� � ��� � � ���
� � � � ��� � � � !
� ����� � � � � � � � � � � ��� �
�������� � � � � � � �

� � # ����� � ���	� � ����	� � ��� � � � � �
�������� � � � � � � � � � � # ����� � ���	� � �)��
� � �
	 � ����	� � ����	� � � �
�������� �
�������� � � ����� # � � � � ��� � � � � ���

# � � � � ��� ��� � � # ��� � � ���	� � � � � � � �
� � # ����� � ���	��� � ���� � � ��� � � � � �
�������� � � � � � � � � � � # � � � � ��� ��� � �)��
� � �
	 � ����	� � ����	� � � �
�������� �
�������� � � � � � # � � � � ��� ��� � � � �)�

� � � � � !
� ����� � � � � � � � �
� � � ����� � ����	� � ����	� � � �

� � � � �
�������� � � ������� � � # ����� � ���	� �
������� �6� # ����� � ���	� � � � � �

We will now execute the program. The program entry point is the method main in class App, so
initially a � ����� statement with this procedures body will be in the configuration. Where relevant,
the heap, the environment and the statement to execute next are given. In order to avoid line
breaks we abbreviate # ��� � � � �	� by # and # ��� � � ���	��� by # � in states and heaps.

� � � ��� �$' � � ' � � ������� � ' � � ��� � # ��� � � ���	��� � ' � � ,.,., � ����� � �2! � � !

Initially the environment and the heap are empty, that is �(' � � �
� ' � � �

Now a reference to an # � � � � ��� � object is created and stored in
������� � . This results in

�2+ � � ������� � �� � ?�� � ��� ' � �
� + � � � � ' �� � � � � � � # ����� � ���	� � �

�
� �

� � � ��� �2+ � � + � � ������� � ' + ��� � # ��� � � ���	��� ������� � ' � � ,.,., � ����� � �2! � � !

The two occurrences of
������� � are rewritten to ground terms and constructor # ��� � � � �	� is called,

resulting in a new state � � that binds the local variables and parameters.

� � � ��� �2+ � � + � � � ��� ' � ' + ��� � # � � � � ��� ��� � ��� ' � ' � � ,.,., � ����� � �2! � � !

� �
� � � � �� � ? � � � ' � �

3.5. EXECUTING ������� ����� 47

� � � ��� �2+ � � + � �

� ����� � �
� � + ��� � � + ��� � !
� ��� � � � � ��� � � ,.,., � �����

������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

Now the two occurrences of � � need to be rewritten to ground terms and the constructor !
� ��� � �
is called, again introducing a new state � � .
� � � ��� �2+ � � + � �

� ����� � �
� � + ��� � � � ' � + ��� � !
� ����� � � � � � ' � � � � ,.,., � �����

������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

� �
� � � � �� � ? � � � � ' � �

� � � ��� �2+ � � + � �

� ����� � �
� � + ���

� � ��� � �
� � + � � ��� ��� ��� � �����

� � � ��� # � � � � ��� � ��� � � � � ��� � ��� ��� ��� � �����
������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

As !
� ��� � � returns, the local state � � is disposed and the innermost bind disappears.

� � � ��� �2+ � � + � �

� ����� � �
� � + ���

� � � ��� # � � � � ��� � ��� � � � � ��� � ��� ��� ��� � �����
������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

� � � ��� �2+ � � + � �

� ����� � �
� � + ���

� � � ' � � � � # ��� � � ���	� � � � � � � ��� � ��� ��� � � � �����
������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

Now in the object referenced by � � ' field
� � � � � is updated to ? , resulting in a new heap

�
� . After

the assignment the constructor returns and the execution of � ��� � is continued.
�
�

� � � � ' �� � � � � � � # ����� � ���	� � ?
�

� �
� � � ��� �2+ � � �

� �
������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � �

The execution continues by creating a fresh object of type # ��� � � � �	��� and calling the constructor
of that class. This is almost identical to the initialization just shown, so we only give the resulting
state, heap and configuration.

48 CHAPTER 3. THE LANGUAGE

� �
� � ������� � �� � ?�� � � � ' ��� ������� � �� � ?�� � � � ++ � �

�
�

� � ��� ' �� � � � � � � # ����� � ���	� � ?
�

�
� ��� ++ �� � � � � � � # ��� � � � �	� � ?

�
� + �

� � � ��� � �
� �

�
� �

������� � + � � � � � � �
	�� ������� � + � � � ������� � + � � � � � � �
	�� ������� � + � � � ��� ��� ��� � ����� � �2! � � �

� � � ��� � �
� �

�
� �

� � � ++ � + � ��� � � � � 	�� � � � ++ � + � � � ������� � + � ��� � � � � 	�� ������� � + � � � ��� ��� � � � ����� � �2! � � �

Using
�

, the argument type
� �

and the run-time type # ��� � � ���	��� of reference � � ++ the target
method of this call can uniquely be identified by means of MostSpecial. It is the implementation
of � � � 	�� � in class # ��� � � ���	��� .

� �
� � � � �� � ?�? � ��� ++ � �

� � � ��� �2+ � � �
� �

� ����� � �
� �

�
���

� � � � ' + ��� # ��� � � � �	��������� � � � � ,.,., � �����
������� � ' � � ����� # � � � � ��� ��� � � + ! � ,.,., � ����� � �2! � � !

As can be seen from the source code this will add

�
to the member

� � � � � of the object referenced
by ��� ++ . Thus the result after this method will be a new heap.

�
�

� � � � ' �� � � � � � � # ����� � ���	� � ?
�

�
� � � ++ �� � � � � � � # ��� � � � �	� � � � � + �

� � � ��� � �
� �

�
� �

������� � + � � � � � � �
	�� ������� � + � � � ��� ��� ��� � ����� � �2! � � �

� � � ��� � �
� �

�
� �

� � � ' � + � ��� � � � � 	�� � � � ' � + � � � ��� ��� � � � ����� � �2! � � �

Again the target method of this call can uniquely be identified. Based on the object referenced
by � � ' it is the implementation of � � � 	 in class # � � � � ��� � . The rewriting takes place just like
before, so we just give the final configuration before returning from � ��� � .

� � � ��� � �
� �

�
� �

� ����� � �2! � � �

� �
� � ������� � �� � ?�� � ��� ' ��� ������� � �� � ?�� � ��� ++ � �

�
�

� � ��� ' �� � � � � � � # ����� � ���	� � � � �
� ��� ++ �� � � � � � � # ��� � � � �	� � � � � + �

From � � and
�
� we get that the candidate represented by the object stored in

������� � has got 2
votes while the one represented by the object stored in

������� � has got 3 votes.

Chapter 4

Generating Symbolic Constraints

Theory is the sleep of reason.

Peter Sloterdijk

In Section 2.1.2 we have given a very brief introduction to control flow analysis. We will now fill
in the pieces left out. Our control flow analysis will compute for each interesting subexpression
of a � ��������� program � a set of classes which represent the possible run-time types of objects
associated with the expression. Interesting are those expressions that may result in a class or
interface type. Following the syntax given in Table 3.1, in a � ��������� program � all such points
already have been assigned a label. Using these we will start by taking the Structural Operational
Semantics from Chapter 3. It can be used to analyze all programs, directed by program evaluation
as performed guided by the rewriting rules. This approach will reanalyze method bodies at every
call site. It will allow a proof of semantic correctness, but cannot immediately be implemented
as an efficient algorithm. It is not even computable. This is why we introduce a syntax directed
specification in Section 4.3. It improves on the above by only analyzing each method body once.
Using this we will be able to develop a constraint-based solution that will be used as the basis of
our algorithm.

It is noteworthy that the analysis we describe is a two step approach. Given the program as input,
the control flow analysis will generate a set of constraints. These constraints describe the flow of
data through the program. They are then solved in a second step to produce a solution.

We start with summarizing key properties of our approach.

4.1 Key Properties

In order to allow for a better understanding of some design decisions, we will first give a short
overview of our approach. Not all points may be understood on the first reading – explanations

49

50 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

will be given in this or the next chapter.

As already stated, our approach is a control flow analysis. We label every program point that
may take on a class value. In order to allow for computing a solution, we abstract the program
by a set of inclusion constraints between these labels. For every method we can generate a set
of such constraints, describing the data flow in that method. As long as no class members are
accessed or methods are called, these sets contain only constraints that model data flow between
labels of local variables or parameters. That is, no constraints exist that model flow between two
different methods.

In order to keep this property, we take special care of handling the object-oriented features in
our language, that is access to class or instance members and calling of methods. Chapter 3
explains how these features are based on the run-time type of objects. That is, depending on
the run-time type of an object, different members may be accessed or different methods may be
called. The standard approach as presented in [NNH1999] is to generate conditional constraints,
e. g., �

� �
 � �
�
� � �
 � � ' �6� �
 � � + � . These constraints check whether a type is element of a set

– if yes, the inclusion on the right hand side is evaluated. However, these constraints establish
connections between methods. A typical application is to let the values of actual parameters
flow to the formal parameters of a method. Since the constraints are generated statically before
solving them, we would need to generate a whole set for every call site, for every parameter of
every possibly called method. This would result in a huge number of constraints; for every call
and every argument the solver would need to check the condition in order to decide whether to
propagate data or not.

In order to avoid this, we introduce functor constraints. These represent the object-oriented
features. That is, we have a

� !�� � , a " � ! ��# and a
 � � � functor. Each of them gets as arguments

all information needed to simulate the run-time behavior of calls and member access. As a result,
the constraints generated for a method remain unconnected. This can easily be seen since, e. g. ,
the

 � � � functor only depends on information from the method itself.

In a second phase, the constraint solver evaluates the constraints. Only at this stage the functor
constraints are evaluated. As a result, new constraints may be added to the constraint system.
Now, previously unconnected constraint sets can get connected. This may take place, e. g., if a � � � functor determines a method to be callable and adds constraints to connect actual to formal
parameters.

This approach has two major advantages. It is demand driven, that is, the constraints for a proce-
dure only need to be generated when the method actually is detected to be callable. Furthermore,
it is modular. Since the constraints are not connected, we can precompute them for methods and
can store them separately. When the constraints for a method shall be added, we only need to
check whether the precomputed constraints are still valid. If yes, we can insert them. Only in the
case that the method has changed we need to recompute its constraints.

As pointed out in Chapter 3, Java programs use large standard libraries. The methods in those
libraries are rarely changed and can easily be preprocessed.

4.2. ABSTRACT CONTROL FLOW ANALYSIS 51

4.2 Abstract Control Flow Analysis

We will now describe how to generate constraints from a program. This is done by means of a
0-CFA. That is, we are flow- but not context-sensitive.

As seen in the previous chapter, program points that may have class type are labeled. By virtue
of these labels we compute for each using occurrence of a variable the set of reaching definitions.
This is a simple intra-procedural analysis. Its result is a function � � ��� � � ' � � � '5�

. Some-
times we also want to speak about definition-use chains in program executions. We compute for
each defining occurrence

�
�

the set ��
 � � � � VNames
� ' � � � ' �

. The set ��
 contains the
labels of all occurences of

�
that may use the value assigned at label

�
.

We start by defining the abstract semantic domains.

Definition 4.1 (Abstract Semantic Domains)
Let � be a

����� ��� �
program. We define a number of semantic domains:

�
Values � ��� �

Classes
�

�
Cache � � ' � �

Values�
Heap � �

Classes
�

FNames
�

Classes � �
Values

The abstract values
�
Values that we will trace are sets of classes. These sets are associated with

program points. Each set may be euqal to or a superset of the classes of objects reaching that
point. Abstract caches

�
 � �
Cache, which map labels to abstract values, will handle all labeled

subexpressions of the program being analyzed. Finally, abstract heaps
�� � �

Heap are used to
store the values computed for class and instance members. The arguments are the run-time type,
the member name and the static type of the expression used to access a field.

4.2.1 Abstractions

Before developing the abstract control flow analysis we will first describe and motivate the ab-
stractions used. The entities that we will associate abstract values with are local variables and
class and instance members.

Local Variables and Parameters

Local Variables are modeled rather fine grained. As introduced in the previous chapter, all their
occurrences are labeled. This allows to model the flow between uses and definitions of local vari-
ables and parameters quite accurately. The interprocedural abstraction is performed by unifying
all call contexts of a procedure as described in Section 2.1.3.

52 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

Class and Instance Members

The situation with class and instance members is rather different. Those are the constructs that
allow multiple threads to communicate with each other. That is, the finer we model members,
the more dependencies between using and writing accesses we would have to add. However,
this would increase the analysis’ complexity. This is why we abstract all instances of a class
by a single entity. Of course, this is a very coarse abstraction, adding a lot of imprecision. But
on the other side by doing so we also gain efficiency, as we do not need to perform any kind
of points-to analysis as described in [RMR2001]. The problem is that we would need to know,
which variables point to which object in order to update the correct fields in our abstraction. This
implies knowledge on the layout of the heap, which is a hard problem [SRW1999].

4.2.2 The Acceptability Relation
� �

We are now ready to describe our CFA, which is a � -CFA [NNH1999]. We first specify an
acceptability relation � � � � �

Cache
� �

Heap
�

Term
�

that will help us to identify those solutions that specify acceptable values for the labeled points.

Tables 4.1 and 4.2 define the relation. The expression
� �
 � �� � � �

t

means that the values stored by
�
 and

��
fulfill the requirements imposed by t, i. e. they model

the possible flow of values into t.

The first rule handles expressions of all primitive types. Remember that we have replaced those
by the constant

�
. This is plausible as we only care about class types. Expressions and values of

primitive types shall always be accepted. The next two clauses model how the different possible
forms of Variable shall be handled.

�
�
VarName

�
imposes that at each labeled use of a variable

the labels from all defining occurrences of this variable must be collected. This can easily be
established by accessing the information computed before; � � � � �

contains all labels that identify
defining occurrences of a variable.

The rule
�

�
ClassName

�
is needed to allow a uniform handling of class members by the next rule.

The rule
�

�
Member

�
checks for correct access to member fields of classes and instances. There-

fore, a solution must first assure that the flow to the label
�
� of the variable is established. For

each of the classes the values from the abstract heap
��

must flow to the cache of label
�
. As

the field to access is determined based on the static type of the variable, this type is passed as an
argument to

��
.

The clause
�
�
Create

�
handles occurrences of object creation on the right hand side of assign-

ments. It does so by checking that the singleton set with the name of the created class is added
to the set of the right hand side, labeled

�
.

4.2. ABSTRACT CONTROL FLOW ANALYSIS 53

�
�
Constant

� �	�
 � �� � � � �

always
�

�
VarName

� �	�
 � �� � � � � � ����� � � �

iff , � � � � � � � � � �
 � � � � � �
 � � �
�

�
ClassName

� �	�
 � �� � � � �� �����
��� � � �

iff � �� �����
��� � � �>� �
 � � �
�

�
Member

� �	�
 � �� � � � � � ������
 ��� � 	 � � � ������� � � � �
iff

�	�
 � �� � � � � ��� ��
 � , � � �
 � �
�
� �

�� � � � 	 � � � ������� � � � �5� �
 � � �
�
�
Create

� �	�
 � �� � � � � ��� � ��������
��� � � ��� � �
iff � �� �����
��� � � �>� �
 � � �

�
�
Sequence

� � �
 � �� � � � � � � � � � � � � �
iff

�	�
 � �� � � ��� � � � � �	�
 � �� � � ��� � � � �
� �
If
� �	�
 � �� � � � ��
 � �

� � � ����� � � > � ; ' ������� � � > � ;�+
iff

�	�
 � �� � � � � � > � ; ' � �	�
 � �� � � � � � > � ;�+
�

�
Return 1

� �	�
 � �� � � � ��� ��� ��� � ��� ��� � ��� �

iff
�	�
 � �� � � � � ���
��� � ��� � � �
 � � � � �
 � � � �

where
� �

is the label of the method body analyzed
�

�
Return 2

� �	�
 � �� � � � ��� ��� ���

always
�
�
Skip

� �	�
 � �� � � � � 	 � �

always

Table 4.1: Acceptability relation
� �

54 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

�
�
Assign 1

� � �
 � �� � � � � ������� � � � # � ��� � ���
iff

�	�
 � �� � � � ��� � � � � �
 � � + � � �
 � � ' �
�

�
Assign 2

� � �
 � �� � � � � � ��� �
 � � � 	 � � � ������� � � � � # � ��� � � �
iff

�	�
 � �� � � � � � � �
 � �	�
 � �� � � � ��� � � � � �
 � � + � � �
 � � ' � �
, � � �
 � �

�
� � �
 � � ' � � �� � � � 	 � � � ������� � � � �

�
�
Call

� �	�
 � �� � � � � � ��� �
 ��� � � � 	 � � �
������� � � � � � ����� � � � # � ,.,., � � ������� � � � * ��� �
iff

�	�
 � �� � � � � � � �
 � , ? 7 -�7� �� �	�
 � �� � � � � ������� � � � � �
, � �
 � �

�
� � MostSpecial

�
	 � � �
������� � � � � AT

� �

� � � � MT � � � � 	 � � � ������� � � � � ' � �
�
#' � ,.,.,"� �

8
� �
�
*

8 � � Stmts
� � � � �� ,.- � ? �-,.,.,"� �� �
 � � / � � �
 � �

�
/ � � �	�
 � �� � � �

Stmts �
�
 � � � �5� �
 � � �

Table 4.2: Acceptability relation
� �

(cont.)

The
� �
If
�

rule contains recursive references to the relation. These demand that
�	�
 � �� � is consis-

tent with the two blocks Block ' and Block + . �
�
Return 1

�
handles returning a variable. This is

acceptable, if all reaching definitions of the variable are collected and flow into the label of the
body of the procedure. Remember that this label has been added exactly for this purpose; namely
as an interface from a called method to the callee. The remaining rules

�
�
Return 2

�
and

�
�
Skip

�

are trivial.

The rule for assignments has been split into two parts: the first handles assignments to local
variables, the second to class and instance members. Both have two things in common. First,
they require

�	�
 � �� � to be consistent with the right hand side. Second, they check that the possible
values flow from the label

� + of the right hand side to the label
� ' of the left hand side. For rule�

�
Assign 1

�
this is all that needs to be done as for all using occurrences of the local variable

� ������� � � the label
� ' has been recorded in � � .

However, for rule
�

�
Assign 2

�
the values associated with

� ' need to flow to all possibly addressed
members. These are identified by the classes that may occur at label

�
� , that is all possible

definitions as determined by
� �

.

Last but not least we need to handle calls. To do so, first
�	�
 � �� � is checked to be consistent

with the object or class on that the call is based and the arguments to the call. Having done

4.2. ABSTRACT CONTROL FLOW ANALYSIS 55

so, the possible run-time types of the object must have been stored in
�
 � �
�
�
. Based on this set

the possible target methods are identified by means of function MostSpecial. As pointed out in
Section 4.1, the handling of this step is one of the key points of our approach. For each callable
method � it is checked that the labels of arguments flow to the labels of parameters. Furthermore,
if the method returns a class value, the set associated with the label

� �
of the method body must

flow back to the set associated with the label
�

of the call.

4.2.3 Well-Definedness of the Acceptability Relation
� �

Later on we will need to be able to use some properties of the just defined relation. However,
we still have not justified that

� �
is well-defined. As stated in [NNH1999] the problem is that

the
�
�
Call

�
clause from Table 4.2 is not in a form that allows checking well-definedness by

structural induction. It checks whether
�	�
 � �� � allows the analysis of the body of all possibly

called methods. In contrast to the other rules, this implies that something not syntactically smaller
needs to be analyzed. Instead, the method body will probably be bigger than the call statement
itself. Even worse, the method could call itself recursively. Therefore, we will need to define

� �

by coinduction as the greatest fixed point of a function.

Following [NNH1999] we view Tables 4.1 and 4.2 as defining a function

� � � � �Cache
� �

Heap
�

Exp
� � � � � � � �
�������� � � � � � �

Cache
� �

Heap
�

Exp
� � � � � � � �
�������� � �

The argument is a function
�

and the result another function. We then have e. g.
� � � �1�	�
 � �� � ��� ��� ��� � ��� ��� � ��� � � � � �	�
 � �� � � � �
��� � � � � � � �
 � � �5� �
 � � � �

In order to apply a coinductive definition, we need to show that � is a monotone function on the
complete lattice

� �
Cache

� �
Heap

�
Exp

� � � � � � � �
�������� � ��� �
.

�
is defined by

� ' � � + iff, �	�
 � �� ����� � � � ' �	�
 � �� � ��� �
� � � � �

� � � + �	�
 � �� ����� �
� � � � � .

Theorem 4.1 Let ; ��� �
Cache

� �
Heap

�
Exp

� � � � � � � �
�������� �
, : � � ; ��� �

and � �0; �; . Then � is a monotone function on : .

Proof Let
� ' � � + � ; . We need to show that

� ' � � +
�

� � � ' � � � � � + � . By applying the
definition of

�
, this equals� , �	�
 � �� � � � � � ' �	�
 � �� � � � �

� � � �
� � + �	�
 � �� � � � �

� � � � � ���2�� , �	�
 � �� � � � � � � � ' �-�	�
 � �� � � � �
� � � �

�
� � � + �-�	�
 � �� � � � �

� � � � ����� �
In order to complete the proof we assume

���2�
and show

�����2�
for every rule from Tables 4.1 and

4.2. This is rather easy, for the rules that always hold it is even trivial.

We show the step exemplarily for one rule, namely for
�

�
Assign 1

�
. Define � ! � ������� � ��� # ���� � ���

. We need to show � � � ' �1�	�
 � �� � � � �
� � � �

�
� � � + �1�	�
 � �� � � � �

� � � � . By the definition
of � we get

56 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

� � � ' �1�	�
 � �� � � � � � ' �	�
 � �� � � � � �
 � � + � � �
 � � ' �
With

��� �
we get � � + �	�
 � �� � � � � �
 � � + �5� �
 � � ' �

and with the definition of � this yields
� � � � + �-�	�
 � �� � � �

The other rules are shown analogously.

From Tarski’s Fixed Point Theorem follows that function � has fixed points and as a consequence� �
can be defined coinductively. Namely,

� �
is the greatest fixed point of � .

4.2.4 Semantic Correctness

We will now close a big theoretical gap in this work, the need to ensure that the information
computed by our analysis really is a safe description of the run-time behavior of the program.
This means that no labeled program point may take on a class which is not in the set computed
by the control flow analysis.

The analysis given above still needs to be extended to handle the intermediate expressions and
statements from the semantics of � ��������� � . This is straightforward and is given in Table 4.3. The
rule for the � � ��� statement reveals why the (global) heap is passed on as an argument: we need
to be able to speak about the heap when checking this rule.

In order to establish the proof and to define a relation
� �

, we will need a relation � between the
run-time environment � and the heap

�
on the one side and the abstract environment

� �
 � �� � on
the other. This will be defined by means of another relation � that relates references to objects
with sets of class names.

Definition 4.2 (Correctness Relations)
Let � � �

Env
�

Heap
� � � �

Cache
� �

Heap
�

and � �
References

� �
Values.

We define

� �3 � ; iff �
� ;

�
�
� � � � �	�
 � �� � iff

� , � � � > � � � � ��� �
� � � � � � � � � � � , � � � � � �

� � � � � � � � � �
 � � � �
and , � �3 � � > � � � � � � � � �3 � ��� � ' '5� � � � ' � ,.,.,"�

�
8

8
� � � � 8�� � � � � � / � �� � � �

/ �

/ �
for ? 7 - 79

The relation � checks that the class for an object on the heap is a member of a set of classes.
This relation is used by � twice. The first use is to check variables. Let � be a variable that was

4.2. ABSTRACT CONTROL FLOW ANALYSIS 57

�
�
Inter 1

� �	�
 � �� � � � � � � � �3 � �
 � � � 	 � � � ������� � � � �
iff

�	�
 � �� � � � � � � �3 � ��
 � �� � � � 	 � � � ������� � � � �5� �
 � � �
�
�
Inter 2

� �	�
 � �� � � � � � � � �3 � �
 � � � 	 � � � ������� � � � � # � ��� � ���
iff

�	�
 � �� � � � � � � �3 � ��
 � �	�
 � �� � � � ��� � � � � �
 � � + �5� �
 � � ' � �
�
 � � ' � � �� � � � 	 � � � ������� � � � �

�
�
Inter 3

� �	�
 � �� � � � � � � �3 � ��
 ��� � � � � � � � � � #' � ,.,.,"� � � � � *
8
� �

iff
�	�
 � �� � � � � � � �3 � ��
 � , ?�7 -�79 � �	�
 � �� � � � � � � � �/ �
; > � � � �

��� 8 � � � � � � AT
� �

� � � � MT � � � � � � � ' � �
�
#' � ,.,.,"� �

8
� �
�
*

8 � � Stmts
� � � � �

� , ? 7 - 79 �� �
 � � / � � �
 � �
�
/ � � �	�
 � �� � � �

Stmts �
�
 � � � �5� �
 � � �

�
�
Inter 4

� �	�
 � �� � � � � �

iff
� � � �
 � � �

�
�
Inter 5

� �	�
 � �� � � � �
� ����� �

� � � �
Stmts

� ���
iff

�	�
 � �� � � �
Stmts � � � � � � � �	�
 � �� �

Table 4.3: Acceptability of intermediate expressions and statements

last set at label
�

to point to an object with an arbitrary type

. � verifies that this type is member

of all using labels of the definition
�
. The second use is to verify that for every object

>
on the

heap all abstractions of the fields � of
>

contain the actual types of objects stored in � . That is,� and � state that the abstract domain is a valid description of the concrete one.

Later on we will need the following lemmata. The first one allows to replace the set on the right
hand side of � with a superset. The second one allows to replace in

�� � �
�
 � �

the class

with
the actual class defining

 � .

Lemma 4.1 Let
� �

Values be a value and ;%' � ; + � �
Values be a set of class names with� � ; ' . ; ' � ; + � � � ; +

This can be easily seen as
� � ; ' � � � ; ' � ; + .

58 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

Lemma 4.2 Let
 �
� � � � Classes with

 � � � ,
 � FNames and
� �

OOTypes.

� 8 � � � � ��� � � � � �
 � � � � � � � � �� � �
�
 � � � �� � �

�
 � � �

The basis for the proof of semantic correctness is the operational semantics from Chapter 3.
The proof of correctness is a subject reduction proof, meaning that a solution obtained remains
correct under evaluation.

The idea of the theorem is to relate the concrete and the abstract world. On the concrete side,
we have a � ��������� term

�
, environments � and � � , and heaps

�
and

� � . On the abstract side, we
have an abstract environment

�
 and an abstract heap
��

. The theorem assumes that
�

is rewritten
to
� � by the rules and that

�	�
 � �� � abstract the concrete state and environment
�

and � . The third
assumption is that the relation

� �
accepts

�	�
 � �� � as a correct solution for
�
. The claim is, that

then the state and the heap resulting from rewriting also are abstracted by
�	�
 � �� � and that these

also are correct regarding
� �

for
� � .

Theorem 4.2 (Semantic Correctness)
Let

�
be a

�����	���	� �
program,

�
the type environment induced by � .

If � ���
�
� ��� � �

� � � � � � � � � � � � � ��
�
� � � � �	�
 � �� � � � � �� �
 � �� � � � � � � ���

then holds �
� � � � � � � �	�
 � �� � � � �� �
 � �� � � � � 7 � � �

Proof We assume
�	�
 � �� � � � �

and prove
�	�
 � �� � � � � � by induction on the inference tree for� � �

�
� ��� � �

� � � � � � � ��� . The rules for executing programs have been given in Tables 3.8, 3.9,
3.10 and 3.11 in Chapter 3. Relation

� �
is defined in Table 4.1, 4.2 and 4.3.

We start with the base cases, i. e. those rules that do not require any premises to be fulfilled.

[Variable]
The first rule describes a using occurrence of a variable. The assumptions of the theorem and the
correctness relation state

� � � �
� �

� ������� � � � � � � � � � �
�
�
� � � ����� � � � � � � � � � (1)

� � � �
�

�
� � � ����� � � � � � � ' � � �3 �

� , � � � � � � � � ����� � � � � ' � � � � � � �
 � � � � (2)
� � � �

� , � � � � � � � � � � �
 � � � � � � �
 � � �
(3)

� � � follows immediately from
� � � � as neither � nor

�
change.

�&���
states that

� ' is the label of
the left hand side of the last assignment to � ������� � � . That is,

� ' � � � � � �
and with

� � �
this results

in
�
 � � ' � � �
 � � � � � �3 � �
 � � �

. With the last rule of Table 4.3 this proves
� � � .

4.2. ABSTRACT CONTROL FLOW ANALYSIS 59

[Field Access 2]
This rule describes how to evaluate a using occurrence of an access to the field of an object based
on address � � �3 . The assumptions are

� � � �
� � � � � �3 ��
 � � � � � � � � � ��� � �

� � � � � �/8 � � � � � � � � �3 ��� � � � � � � � � ��� (4)
� � � �

� � � � � �3 � ��� ��' ' � � � � ' �-,.,.,"� �
8

8
� � � � 8�� � �� � � � / � �� � � � �

/ �

/ ��� ? 7 -�7� (5)
� � � �

� � �
 � �� � � � � � � �3 �
 � � ,� � � � �� � �
�
� � �� � � � � � � �5� �
 � � �

(6)

As � and
�

are not changed, again
� � � follows from

� � � � . For
� � � we need to show that

� � � �/8 � � � � � � � � �3 �)� � � � � �
 � � �
(7)

holds. From the definition of �
� � �/8 � � � and

�
�
�

we get with � � �
/

for some ? 7 - 79
� � � �/8 � � � � � � � � �3 ��� � � � � � � � / � �� � � � � �

/ �
(8)

With Lemma 4.2 and the definition of � we get
� � � / � �� � � � �

/ �

�
. From

� � � follows
� � �3 � �� � �

�
� � � � �� � �

�
� � � � � / � �� � � � � � �5� �� � � �

.

[Object Creation]
The last rule from evaluation of expressions is the one for object creation. The assumptions are

� � � �
� � �� � � � � ��� � �

�
� �3 � � � � � � �3 �� �

� � � � (9)
� � � �

� � � � � �3 � ��� � ' '5� � � � ' � ,.,.,"� �
8

8
� � � � 8�� � �� � � � / � �� � � � �

/ �

/ �)� ? 7 - 79 (10)
� � � �

� �� � � �
 � � �
(11)

As � is unchanged during evaluation, in order to show
� � � we need to show

, � � � �/ � � > � � � � � � � � � � � � �/ � ��� � ' '5� � � � ' � ,.,.,"� �
8

8
� � � � 8�� � �� � � � / � �� � � � � �

/ �

/ �)� ? 7 -�79 (12)

For all � � � �
/ 2� � �3 this holds by

� ? �
�
. For the newly introduced � �3 in

�
�
�

note that all fields in
the created object are initialized with the default value of their type, that is

� � ��� for class and
interface types. However, we then have

� � � # � �� � # � � # � , so
� ? � � holds.

In order to show
�	�
 � �� � � � � � �3 � � we must show

� �3 � �
 � � �
(13)

60 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

By definition of � this is equal to showing
� �
 � � �

. With
� ?�? � we have �� � � �
 � � �

, so
� ? ���

holds.

[If then else 1,2], [Return 2], [Skip]
Trivial, as they change neither state nor heap and leave the term part almost unchanged.

[Assign 3]
From the assignment rule we get ��� �

� � � ������� � � �� � � ' � ����� � �

� � � �
� �

� ������� � � � # � ����� ��� � � � ��� � �
�

 � � � � ��� (14)

� � � �
� , � � � > � � � � ��� �

� � � � � � � � � , � � � � � �
� � � � � � � �
 � � � � (15)

� � � �
� �	�
 � �� � � � ����� ��� � �
 � � + �5� �
 � � ' � (16)

As
�	�
 � �� � � �
 we obtain

� � � and only need to show
�
� � � � � � �	�
 � �� � . However, as

�
does

not change we only need to prove

, � � � > � � � � � ��� � � � � � � � � � � � , � � � � � � � � � � � � � �
 � � � � (17)

There are two cases. First, if � 2� � ������� � � then we get
� ? 	�� from

� � � � because then � � � � � �

�
� � � .

Assume � � � ������� � � . From the premises follows � � � � ������� � � � ��� � ' � ����� � , so instead of
� ? 	��

we need to show

, � � � � � � � ������� � � � � ' � � ����� � �
 � � � � � (18)

From
� � ��� and Lemma 4.1 we get

�	�
 � �� � � � ����� ��� � ����� ��� � �
 � � + �
� ����� ��� � �
 � � ' � (19)

Every using occurrence of the value assigned to � ������� � � at label
� ' will be of the form

� ������� � � ��� . From the definition of
� �

we get

, � + � � � � �
�

� � �
 � � + � � �
 � �
�

�
(20)

However,
� ' is the label of a definition reaching

�
� , so from

�&�
�
�

we get
�
 � � ' � � �
 � �

�

�
and with� ? � � this results in

����� � � � �
 � �
�

�
for all

�
�

� � � � � ������� � � � � ' � .
[Assign 4]
With premises

� � � � �3 � ��� ,.,., � � � and
� � � � � � � �3 �� ��� � �48 � � � � � � � � �3 � � � � � � � � � the assump-

tions are

4.2. ABSTRACT CONTROL FLOW ANALYSIS 61

� � � �
� � � � � � �3 � ��
 ��� ��
 � � # � ����� ��� � � � � � � �

� �
�
� � � � (21)

� � � �
� � � � � � �/ � � � � ' '5� � � � ' � ,.,.,"� �

8

8
� � � � 8�� � � �� � � � / � �� � � � � �

/ �

/ �)� ? 7 -�7� (22)
� � ���

� �	�
 � �� � � � � � � � �3 � �
 �
 � � # � ����� � �
� �	�
 � �� � � � � � � �3 � �
 � �	�
 � �� � � � � � � � � � �
 � � + �5� �
 � � ' � �

,� � � �
 � �
�
� � �
 � � ' �5� �� � �

� � � � (23)

As before,
� � � is trivially fulfilled. As � is unchanged, all we need to show is

, � � � ��
� � > � � � � � � � � � � � � ��

� ��� ,.,., � � � � � � � � # � �� � � � � � # � # ��� ? 7<; 79 (24)

with
� � � � � � � �3 �� ��� � �48 � � � � � � � � �3 ��� � � � � � � � � .

There are two cases to distinguish. First assume � � � ��

2� � � �3 . Assume
> � � � � � � ��

� ��� ��' '>�� � � ' � ,.,., � �
8

8
� � � � 8�� � � � and

> � � � � � � � � ��
� ��� � �' �' � � � � � ' � ,.,.,"� � �

8
 �

8 � � � � �
8 � � � � . As only

the object stored at � �3 is changed we have , ? 7"-679 � � � � / � � � � �
/
.

The second case is � � � ��
� � � �3 . Assume

>
and

> � to represent the objects stored in
�

respectively
� � , i. e.

> � � � � � � ��
� ��� ��' '6� � � � ' � ,.,.,$� �

8

8
� � � � 8 � � � � and

> � � � � � � � � ��
� ��� ���' �' �� � � � ' � ,.,., � � �

8
 �

8 � � � � �
8 � � � � .

We now need to inspect all fields �
/

in the objects. We fix � # to be the field that has been changed
by
�.� � �/8 � � � . Again there are two cases. If � #

2� �
/

then
� � � /

is the same in
>

and
> � , so

�$� � �
holds

because of
�&�����

.

If � # � �
/

then
� � � / � � � �

by definition of
�.� � �/8 � � � . We need to show

� � � � �� � � � �
/ �

/ �
(25)

For the only interesting case
� � � � � ���� we get from

�$� ���
that

�	�
 � �� � � � � � � �3 � �
 � � � �
 � �
�
�

(26)�	�
 � �� � � � � � � � � � � � � � �
 � � + � (27)

From Lemma 4.1,
�$� � �

and
�$� 	��

follows that
� � � � �
 � � ' � . From

�$� ���
and

�$� � � we get
�
 � � ' � ��� � � � � � � and with Lemma 4.2 this yields

� � � � �� � � � � � � � �� � � � � �
/ �

.

[Call 2,3]
Calls to instance and class methods are almost identical with the only difference in method
lookup. We will describe the case for instance methods. Class methods are handled analogously.

For a call to an instance method the important premise is ; > � � � �
��� 8 � � � � � � � � � �

�
 � � ; � � � � � � � �(' �

�
�
#' � ,.,.,$� �

8 �
�
�
*

8 � � Stmts
� �

that states how to identify the method called.
The assumptions made by the theorem are

62 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

� � � �
� � � � �3 � �
 ��� � � � � ������� � #' � ,.,.,"� ����� � *

8
� � � � � � � ��

� � ��� � � � � � �
Stmts �

����� � � � � � (28)
� � � �

� � �
 � �� � � � � � �3 � �
 ��� � � � � ������� � #' � ,.,.,"� ����� � *
8
� (29)

We do not need to show anything for
� � � as neither � nor

�
are changed. However, what needs

to be proven is

�	�
 � �� � � �
� ����� ��� � � � �

Stmts � � �
 � �� � � �
Stmts � � � � � � � � �	�
 � �� � (30)

As stated before,
�

is left unchanged, so we only need to handle � � and
�
 in

�&�
�
�
. From the

premises of the operational semantics we get

� � �
� �

�
' �� � � ' � � � � ' �)� ,.,., �

�58
�� � � 8 � � � � 8 � � (31)

With
�&�
�
�

and Lemma 4.1 we get
� � � # � �
 � �

� # � . As the parameters are definition points it follows
by the definition of � � that the values

� � # � � � � # � will flow to all uses. This completes the proof
for this case.

Having completed the handling of the base cases we will now prove the induction step. Most
of the still missing rules are just rewrite rules in the sense that they rewrite expressions ([If then
else 3, Return 1, Assign 2, Call 1, Field Access 1, Assign 1]) to ground or l-ground expressions.
Those rules substitute one expression by another one and are trivially true. The same holds for
the rules ([Sequence 1, Sequence 2, Bind 1]) that separate statements from blocks and execute
them. We will exemplarily prove the rule for returning from a method call.

[Bind 3]
This rule is taking care of returning a value from a called to the calling procedure. From the
theorem we get

� � � �
� � �

� � ��� ��� � � � � � ��� ��� � � ����� � � � 7 � ����� � ��� � � � � � � �
� � ����� 7 � � � � � � � � � (32)

� � � �
� �

�
� � � � �	�
 � �� � (33)

� � � �
� �	�
 � �� � � �

� ����� ��� � � � � � ��� ��� ��� ����� � � � � � � � � � � � �
 � �� � (34)

and need to show

�
�
� � � � � �	�
 � �� � (35)�	�
 � �� � � � � ����� 7 � � �

(36)

�&�
�
�

follows immediately from
�&� � �

for
� � and from

�&�����
for � . To show

�&� � � we will need the in-
duction hypothesis. The precondition of rule [bind 3] is

� � ����� � � � � � � � � � � �
� � ����� 7 � � � � � � � � � � .

4.3. SYNTAX DIRECTED CONTROL FLOW ANALYSIS 63

assume
� ! � � � � ����� � MethDecl

� � � � �
�

�
Program

��� �	�
 � �� � � � �

�

iff
� �
 � �� � � � � � ������� � MethDecl

� � ��	�
 � �� � � � � � �
�
�
Class

��� �	�
 � �� � � � � ��������� � MethDecls
�

iff
� �
 � �� � � � �

MethDecls
�

�
�
MethodDecls

��� �	�
 � �� � � � �

Method MethodDecls

iff
� �
 � �� � � � �

Method � �	�
 � �� � � � �

MethDecls
�

�
Method

��� �	�
 � �� � � � �

Mod RetType 	 � � �
��� � � � Stmts
�

MethDecls

iff
� �
 � �� � � � �

Stmts � �	�
 � �� � � � �

MethDecls

Table 4.4: Rules for analyzing whole programs

The other assumptions to be fulfilled are
�
� � � � � � � �	�
 � �� � and

�	�
 � �� � � � � ����� � �
. The first has

just been shown, the second immediately follows from the definition of
� �

for the intermediate
statement � � ��� in

�&� � �
due to

�	�
 � �� � � � ��� ��� � � ����� � � � �
 � �� � � � ����� � � �
 � � � � �
 � � � �
(37)

Thus we get from the hypothesis

�	�
 � �� � � � � ����� 7 � �
(38)

and with
� � 	��

we have
� � � � � �
 � � � � �
 � � � �

. With Lemma 4.1 this completes the proof.

4.3 Syntax Directed Control Flow Analysis

Having proven the semantic correctness of the abstract analysis we will now turn to implementing
it. However, up to now a method is analyzed at every call site. This property has been necessary
for the proof of correctness but of course is undesirable for an implementation of a � -CFA. There,
one would like to analyze the whole program in one run. This is the main target in a reformulation
of

� �
to

� � �

.

64 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

The rules are given in Tables 4.5 and 4.6; they are mostly equivalent to those from Tables 4.1 and
4.2. Actually the only difference – however an important one – is in the last rule. When calling
a method we do not enforce that the body of the method called is analyzed.

We now may omit intermediate expressions and statements introduced in the previous section.
Those only helped in proving semantic correctness. In contrast to the abstract analysis, we now
start with analyzing the whole program and visiting every method in every class. Each method
is analyzed exactly once. The rules for initiating the analysis for a program � are given in Table
4.4. We will define

� � �

to be the relation satisfying the specification presented. By structural
induction on

�
one can show that there exists exactly one relation with this property. In order to

facilitate the proof of Theorem 4.3 we define the relation
� � � ! gfp

� � � � where � � is the function
defined in Tables 4.5 and 4.6. This is an approach similar to the one used in Section 4.2 when
defining the relation

� �
.

What we will need to prove is that a solution to the syntax directed analysis will always be
a solution to the abstract analysis from the previous section. We restrict the solution of our
analysis to those labels, classes and field names that do actually appear in a fixed program � .
Assume

'��
, Classes

�
and FNames

�
to be the sets of labels, class names and field names that

appear in � , respectively. We define a maximal solution
�	�
 �
� ��

�
�

to be

�
 �
� � � � � � if

� 2� '��
Classes else

��
�
�

� � � � � � � � if

�
 �

2�
Classes

�
or �

2�
FNames

�
Classes else

This makes the domains finite. By inspecting the rules for
� � �

one can see that a solution
�	�
 � �� �

will always fulfill
� �
 � �� � � �	�
 �

� ��
�
�
. This will allow us to relate a solution of

� � �

to a solution
of

� �
.

Theorem 4.3 (Preservation of Solutions)
If
�	�
 � �� � � � � � and

�	�
 � �� � � �	�
 �
� ��

�
�

then
�	�
 � �� � � � � .

The proof structure is identical to a similar proof in [NNH1999]. It is based on coinduction –
this approach is necessary because we had to define

� �
coinductively in Section 4.2.3 due to the

effects of method calls.

Proof Let
� �
 � �� � � � � �

and
�	�
 � �� � � �	�
 �

� ��
�
�
. If Term $ is the set of all sub-terms of � then we

get

,�� � � Term $ �
�	�
 � �� � � � � � 7 (39)

This is obvious from the fact that the specification of
� � �

directly relates to the syntax of
� �������� programs.

4.3. SYNTAX DIRECTED CONTROL FLOW ANALYSIS 65

�
�
Constant

��� �	�
 � �� � � � � �

always
�

�
VarName

��� �	�
 � �� � � � � � ������� � � �

iff , � � � � � � � � � �
 � � � �5� �
 � � �
�

�
ClassName

��� �	�
 � �� � � � � ��������
��� � � �

iff
 ��������
��� � � � �
 � � �

�
�
Member

��� �	�
 � �� � � � � � � ��� �
 ���� � 	 � � � ������� � � � �
iff

�	�
 � �� � � � � � ��� �
 � , � � �
 � �
�
� �

�� � � � 	 � � � ������� � � � � � �
 � � �
�

�
Create

��� �	�
 � �� � � � � � ��� � �������� ��� � � ����� �
iff

 ��������
��� � � � �
 � � �
�
�
If
��� �	�
 � �� � � � � ��

Expr � ����� Block ' �������
Block +

iff
�	�
 � �� � � � �

Block ' � � �
 � �� � � � �

Block +
�

�
Return 1

��� �	�
 � �� � � � � ��� ��� ��� � ���
��� � ��� �

iff
�	�
 � �� � � � � � ���
��� � ��� � � �
 � � � � �
 � � � �

where
� �

is the label of the method body analyzed
�

�
Return 2

��� �	�
 � �� � � � � ��� ��� ���

always
�
�
Skip

��� �	�
 � �� � � � � � 	 ���

always

Table 4.5: Syntax directed Control Flow Analysis

66 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

�
�
Assign 1

��� �	�
 � �� � � � � � ������� � � � # � rhs
���

iff
�	�
 � �� � � � �

rhs
� � � �
 � � + � � �
 � � ' �

�
�
Assign 2

��� �	�
 � �� � � � � � � ��� �
 � ���� 	 � � � ������� � � � � # � rhs
� �

iff
�	�
 � �� � � � � � ��� �
 � �	�
 � �� � � � �

rhs
� � � �
 � � + �5� �
 � � ' � �

, � � �
 � �
�
� � �
 � � ' � � �� � � � 	 � � � ������� � � � �

�
�
Call

��� �	�
 � �� � � � � � � ��� �
 ��� � � � � � � ��� � # � ,.,., � � � � � * ��� �
iff

�	�
 � �� � � � � � ��� �
 � , ?�798:79 �� �	�
 � �� � � � � � ��� � � �
, � �
 � �

�
� � if MostSpecial

� � � � � � � �

� � � � MT � � � � � � � ' � �
�
#' � ,.,.,"� �

8
� �
�
*

8 � � Stmts
� � � � �

then , ? 798 79 �� �
 � � 3 � � �
 � �
� 3 � � �
 � � � � � �
 � � �

Table 4.6: Syntax directed Control Flow Analysis (cont.)

From the definition of the abstract and syntax directed analyses we get
� �

to be gfp
� � � and

� � �

to be gfp
� � � � . Additionally, we define a third relation

�	�
 � � �� � � � � � � � as
�	�
 � � �� � � � � �
 � �� � � � � �

Term $.
If we can show that

� � � � � � � � % � � � �5� � � � � � % � � � � (40)

then we get with � � � � � � � � � � �

that
� � � � % � � � � � � � � � � % � � � � . As � is the greatest fixed point

this results in
� � � % � � � � � �

. Furthermore, as � � Term $ we have
� �
 � �� � � � � � and

�	�
 � �� � � � � �
from the preconditions. However, this would give us the required

�	�
 � �� � � � �
.

In order to prove
� �

�
�

we will assume for every rule from Tables 4.5 and 4.6 that the right hand
side holds for

�	�
 � �� � � � for � � Term� . We then show that for the dual rule from the abstract
analysis in Tables 4.1 and 4.2 the right hand holds, too, after replacing

� �
by

� � � % � �
� .

For all but the last rule from Table 4.6 this is obvious as they are the same in both relations. For
the method call all we need to show is

�	�
 � �� � � � �

Stmts (41)

However, Stmts must be a sub-term of the program � being analyzed. And as we have
�	�
 � �� � �

�	�
 �
� ��

�
�

we get
� � ? � from

�&�
�
�
.

4.4. GENERATING CONSTRAINTS 67

Having proven that the syntax directed analysis is a conservative approximation of the abstract
one, there only remains one more question to be answered. Namely, does the analysis really have
a solution? Actually, it has. This can be derived from the following theorem that states that the
set of solutions for an analysis is a Moore family. As before we now restrict

�
Cache and

�
Heap to

only range over labels, class names, and field names occurring in � :

� �
Cache

� � '�� � � �
Classes

���
� �

Heap
� � Classes

���
FNames

���
Classes

� � � �
Classes

� �
Theorem 4.4 (Existence of Solutions)
Let � be a

����� ��� �
program.

The set ; � � � �	�
 � �� � � �
Cache

��� �
Heap

� � �	�
 � �� � � � � � �
is a Moore family.

Proof Using the above defined maximal element
�	�
 �
� ��

�
�

it is obvious to prove for all sub-terms
� of � by structural induction on ��	�
 �

� ��
�
� � � � �

if
�	�
 ' � �� ' �)�.� �
 + � �� + �5� ; then

� �	�
 ' � �� ' � � �	�
 + � �� + � �5� ;
Thus both claims also hold for � , showing that ; is not empty.

Additionally, we need to show that for every set
�9� ; the least upper bound � � is in ; . We

note that
�

is finite because
�
Cache

� � �
Heap

�
is, too. By induction on the number of elements of

�
we can show that � � � ; .

4.4 Generating Constraints

Finally, we can now turn to generating the basis for computing a solution to our analysis. As
already stated this step is constraint-based. That is, the semantic directed control flow analysis
generates the constraints in one run over the program. Thus the generation of constraints is quite
similar to the conditions for acceptability. The algorithm for solving those will be given in the
next chapter.

We start by defining the domain for constraints. As pointed out in Section 4.1, the constraints
generated play a central role in making our analysis scalable.

Definition 4.3 (Constraints)
The domain Constraints is defined as the union of 3 sub-domains:

Constraints
� � ' � ' � #� � ������� ���
	 ���� � �

Members
�

Classes
� ' � #� � � ����� � �

MNames
� ' � � '�� � ' 8 � !� �

The first sub-domain describes a subset relation between two labeled points.

68 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

�
�
Program

��� � � � �
> � � � � �$� � �

 � �
 � for all classes

defined in the program

�
�
ClassBody

��� � �
� � ��� � > � ��� � � �

 � � � � for all methods � defined in class
�

�
MethodDefinition

��� � �Mod RType 	 � � �
��� � � � VarType
��� ��� � � � � #' � ,.,., �

VarType
������� � � � � *

8
� � Stmts �

� � � �(� �
 � � Stmts �

� � ��� � � ��� 8 � � �
 � � � � � � � � � � � � � � ' � ,.,.,"� � 8 � �
�
�
Block

��� � � � Stmts
� � � �

 � � Stmts �
�
�
Stmts

��� � � Stmt � Stmts �(� �
 � � Stmts �1# � � Stmt �

 � �
 �(�
� �

�
�
If
��� � � if Expr then Block ' else Block + � � � � �Block ' �1# � �Block + �
�

�
Assignment

��� � �Variable
� # = rhs

��� � � �

�

� �Variable
� � ' � #

 �� � rhs
� � + �1# �� � � + � �

� � ' � �
�
�
Call

��� � � �
������� � � � . 	 � � �
������� � � (� ������� � � � #' ,

,.,.,
, � ������� � � � *

8
) � � �

 �� � � � ����� � � � . 	 � � �
������� � � (� ������� � � � #' ,
,.,.,

, � � ����� � � � *
8

)
�
��

�
�
Return

��� � �
��� ��� ��� � ������� � � � �(� �

 �� � � ������� � �
� � �1# �� � � �5�

� � � � �
where

� �
is the label of the method body analyzed

�
�
Skip

��� � �
� 	 � � �(� � �

Table 4.7: Generating constraints for programs and statements

4.4.1 Access to Class Members

The second sub-domain describes access to class members. The components represent

� the name of the member,

� the static type of the variable that is used to access it,

� the label of the variable, and

� the label where the value to store (read) is taken from (written to).

By comparing with Tables 4.5 and 4.6 it becomes obvious how these components relate to the
CFA. As already explained, the static type is needed in order to determine which copy of a
member to access. We will shortly explain the effect of the functors.

4.4. GENERATING CONSTRAINTS 69

�
�
Variable

��� �� � � ���
��� � ���
� � � � � �

� �)���� � � %
�� � � � �5�

� � ���

�

� �
� � � 8 � � � ��� � �*� � �

�
�
Instance Member

��� �� � � ������� � � ��� .
� �� 	 � � � ������� � � � � �"� �

� � ! � � � 	 � � � ������� � � � � � � � � ���
#� �� � � ������� � � � � � �

�

� � �
������� � � � � .

� �� 	 � � � ������� � � � � �(� �

��" � ! ��# � 	 � � � � ����� � � � � � � � � � �
#� �� � � ������� � � � � � �

�
�
Class Member

��� �� � ��������
��� � ��� �
.
� � 	 � � � ������� � � � � �(� �

� � ! � � � 	 � � � ������� � � � �������� ��� � � � � � � � ���
� � ��������
��� � � �>�

� � �5���

�

� �
 ��������
��� � � ��� .

� � 	 � � � ������� � � � � �(� �

��" � ! ��# � 	 � � � � ����� � � � ��������
��� � � � � � � � � �
� � ��������
��� � � �>�

� � �5���

�
�
Call

��� �� � � ������� � � � . � � � � 	 � � �
������� � � (� ������� � � � #' ,
,.,.,

, � ������� � � � *
8

)
� �
$ �(�

�

 �� � � � ����� � �
� � �0# �

3
	/' �����
8 �� � � ������� � � 3 � � 3 �

# � � � � � 	 � � �
������� � � � � � �
$
� � � ' � ,.,.,"� � 8 � � � � � ������� � � ��� � � ���

�
�
Static

��� �� � ��������
��� � ���
. 	 � � �
������� � � (� � ����� � � � #' ,

,.,.,
, � ������� � � � *

8
)
� �
$ �(�

�

� � ��������
��� � � ���

� � ��� # �

3
	/' �����
8 �� � � ������� � � 3 � � 3 �

# � � � � � 	 � � �
������� � � � � � �
$
� � � ' � ,.,.,"� � 8 � � �� �����
��� � � � � � ���

�
�
ClassCreation

��� �� � ��� � ��������
��� � � � � � � �(� � � � ��������
��� � � ���

� � ���

Table 4.8: Generating constraints for expressions

70 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

Example 4.1 First assume a term � ! � � # ��� ��
 � � . When applying
�

� to � we get the constraint�
	 � � �
 � � � ' � � + � stating that in order to access the field

that has been defined in class

we
need to look up the possible types stored in label

� ' , namely the label of the variable
�
. The value

to store in that field is the set associated with label
� + .

Equivalently, by applying �� to � , we get the constraint
� ����� �
 � � � ' � � + � . Again, the meaning

is to access field

that has been defined in class

based on the possible run-time types stored in
label

� ' . The result shall be stored in label
� + .

4.4.2 Function Calls

The same holds for the third sub-domain that is generated for dynamically dispatched methods.
It models the process of determining the matching method at a call site. To do so it gets several
arguments:

� the method name,

� the label of the object,

� the label where a return value is written to (or
 if the return type is not a class type),

� the list of the labels of arguments,

� the static type of the object, and

� the tuple containing the static types of the arguments.

Again, this information will allow the solver to model the run-time behavior of the program
analyzed.

Example 4.2 Assume a statement
� ! � ������ � � � � ��� � . The object on that � is called is sent as the

� � ��� argument to method � . The result of � will contain the functor � �����
� � � � + �
 � � � � � � � � � .

It states that based on the objects associated with the label
� + the method � shall be called. We

do not expect a return value but have one argument to pass on. The label where the information
of that argument is stored is

� . The declared type of the variable on that we call � is

. The

argument type of � is empty as the � � � � argument is ignored.

Assume that there will be only one possible target method � � with
� � �)� � � �

� � � � � � ' ' � � � ' ! � � ,
stating that the label of the body of � � is

� ' ' . This label will collect all possible return types of
� � . Additionally,

� � ��� � � �
� � � states that the label of the argument is

� ' ! . What will happen is that
the functor will cause additional constraints to be added, namely

�
 � � � � �
 � � ' ! � from argument
to parameter label. As we do not expect a return value,

� ' ' is ignored.

4.4. GENERATING CONSTRAINTS 71

As pointed out in Section 4.1, this modeling of the run-time behavior of the program is essen-
tial. The usual way of handling, e. g., dynamic dispatch is by means of conditional constraints
[NNH1999]. These have the form �

� �
 � �
�
� � �
 � � ' �>� �
 � � + � . Using conditional constraints,

a method call is translated into a set of constraints. For every method that might be called at
run-time such a constraint must be added. � is the class that defines the implementation that
might be called on the object labeled

�
� , and

� ' and
� + are the labels of the actual and formal

parameter, respectively. The number of resulting constraints is immense – namely at a given
call site

� �
 � � � ��� # � we need for every callable method � � � ��� � � defined in class � conditional con-
straints �

� �
 � �
�
� � �
 � � ' �6� �
 � � + � for every argument. These constraints check whether the

class defining or inheriting � � is stored in
�
 � �
�
�
. If it is, the set computed for, e. g.,

� ' is unified
with that stored in the formal parameter,

� + .
In the next chapter we will see that another property of conditional constraints is undesirable –
they connect the constraints of different methods, namely the caller and the callee.

Having labeled all interesting program points, the constraints will model the flow of data through
the program. The generation is performed by three functions. One is � for handling programs,
method declarations and statements. The other two (�� and

�

�) handle using and defining
occurrences of expressions. The definitions are given in Table 4.7 for � and in Table 4.8 for ��
and

�

� . The types of these functions are

 � � Term � � �
Constraints

�
 �� � Rhs

� ' � � �
Constraints

�

�

� � Var
� � ' # �
 � � � � �

Constraints
�

The rules for constraint generation immediately follow from the definition of the syntax directed
CFA in Tables 4.5 and 4.6. The additions are those constructs that model the dynamic behavior,
that is method calling and access to class members. They are modeled by three functors, namely
� ! � � , " � ! ��# , and

 � � � . As explained above, the arguments to these functors are the labels and
the type information that they need to establish flow to and from instance or class members and
between caller and callee. While these additions are relatively small, their impact is immense as
we will see in Chapters 5 and 8.

It is important to stress that the result of � ,
�
� , and

�

� are sets of syntactic constructs. Namely,
the

�
 and
��

are translated into rules how to construct a constraint system. To fill this syntax
with live, we would need to translate the and

� ! � � , " � ! ��# , and
 � � � back into

�
 and
��

,
c. f. [NNH1999]. This translation is done by means of the following rules.

� �
 � �� � �� � � � �� � �
 � � �
�	�
 � �� � �� � � �� � � �

�	�
 � �� � �� � ! � � � � � � �
�
� � � � �� � , � � �
 � �

�
� � �� � � � � � �5� �
 � � � �

�	�
 � �� � �� " � ! ��# � � � � �
�
� � � � �� � , � � �
 � �

�
� � �
 � � � � � �� � � � � � �

72 CHAPTER 4. GENERATING SYMBOLIC CONSTRAINTS

� �
 � �� � �� � � � � �
�
� � � � � � ' � � � �1� � 8 � � � AT

� �� � , � � �
 � �
�
� � if MostSpecial

� � � � � � � � �

� � � � � MT � � � � � � � ' � �
�
#' � ,.,.,$� �

8
� �
�
*

8 � � Stmts
� � � � �

then , ? 7�8 7< �� �
 � � 3 �5� �
 � �
� 3 � � �
 � � � � � �
 � � �

Finally, we need an additional satisfaction relation
�	�
 � �� � � � � � � � ��� ��� � � on constraints:

�	�
 � �� � � � � � lhs
�

rhs
� � �	�
 � �� � �� lhs �� � � �
 � �� � �� rhs ���	�
 � �� � � � � functor � �	�
 � �� � �� functor ��

In order to deal with the set of constraints generated for a program, we lift
� � � to work on sets; ��� �

Constraints
�
:

�	�
 � �� � � � � ; iff , � � ; � �	�
 � �� � � � � �
Equivalently to [NNH1999] we then get the following result.

Theorem 4.5 If
�	�
 � �� � � � �
 �

� ��
�
�

then
�	�
 � �� � � � � �

�
� �	�
 � �� � � � � � �

�
� �

Proof The proof is by structural induction on the term
�

to show that
� �
 � �� � � � � �

iff
� �
 � �� � � � �

 � �
� � .

To conclude this chapter we return to Example 3.6. We will for each procedure give the con-
straints and the value of function labels that are generated by the control flow analysis.

Example 4.3 (Constraints for the Example Program)
We start with the constructor !
� ����� � � !
� ��� � � as this is the easiest case – only labels needs to
be defined, as the method body is empty.

labels
� ! � ��� � � � !
� ����� � � �
���	� � ��� � � � � �
 � � ? � � �

For constructor # ��� � � ���	� � # ��� � � ���	� we get the constraints that let the arguments abstractions
flow to the � ����� functor and the object of the access to the field

� � � � � .

labels
� # ��� � � � �	� � # � � � � ��� � � �
���	� � ��� � � � � �
 � � ? � �

�
 � ? � � �
 �&��� �
 � ? � � �
 � � � � � � � !
� ��� � � �
� �
 � � � � � # � � � � ��� � � � � �
�
 � ? � � �
 � � �

The next procedure is # ����� � ���	� � � � � 	 . The constraints only resemble the flow of the argument
of the method to the objects on that the access to the member is based.

labels
� # ��� � � � �	� � � � � 	 � �
���	� � ���� � � � �
 � � � � �

�
 � � � � �
 � � � �
 � � � � �
 �&	��

4.4. GENERATING CONSTRAINTS 73

The constraints for the two methods defined in class # � � � � ��� ��� almost look the same as the two
as those just seen:

labels
� # ��� � � � �	��� � # ��� � � � �	��� � ���� � � ��� � � � � �
 � � � � �

�
 � � � � �
 � � � �
 � � � � �
 � ? �
� � � � � # � � � � ��� � � � �
 � � ? � � � # ��� � � � �	��� � � � �

labels
� # ��� � � � �	��� � � � � 	 � ����	� � ����	� � � �
 � � ? ? � �

�
 � ?�? �5� �
 � ? ��� �
 � ?�? �5� �
 � ? � �

Finally, we give the constraints for the method � � � � � ��� � . Here, we model the creation of two
objects, the flow to the constructor calls and finally to the calls of method � � � 	 .

labels
�
� � � � � �� � � ����	� � ����	� � � �
 � � � �

��# ��� � � ���	� � � �
 � ? � � �
 � ? � �5� �
 � ?�� �
�
 � ?�� �5� �
 � ? 	�� �
 � ?�� �5� �
 � ? � � � � � � # � � � � ��� � � ? 	 �
 � � ? � � � # � � � � ��� � � � � �
��# ��� � � ���	��� � � �
 �&� �

� �
 �&� �
�5� �
 � ?�� �

�
 � ?�� �5� �
 �$� ? � �
 � ?�� �5� �
 �$����� � � � � # � � � � ��� ��� ��� ? �
 � � ��� � � # ��� � � ���	� � � � �
�
 � ?�� �5� �
 �$� � � �
 � ?�� �5� �
 �$� � � � � � � � � � 	 �
� � �
 � � � � � � # � � � � ��� � � � � �
�
 � ?�� �5� �
 �$� � � �
 � ?�� �5� �
 �$� � � � � � � � � � 	 �
� � �
 � � � � � � # � � � � ��� � � � � �

We want to stress once more that none of the constraints for one procedure depends on those of
another one. By detangling the constraints it is possible to compute them independently and store
them procedure-wise. Thus they can be recombined as they are needed for analyzing a program.

74

Chapter 5

The Demand Driven Solver

No tactic ever so good is as successful as a
dumb goal.

Günther Netzer, Soccer World Champion

This chapter will present the algorithm to compute a solution to the constraint system. Up to now
we have seen how the constraints are generated from a program. They will now be transformed
to a graph representation that lends itself to a better handling by the solver.

As already pointed out, when generating constraints for a whole program there exist no edges
that model data flow between two methods. Those constraints will only be generated while the
solution is computed. As a result, we may compute the constraint set and the graph representing
it separately for every method. This allows to keep the constraint graph small since only those
procedures are present, that already have been called. On demand, that is whenever a not yet
inserted procedure shall be called, the nodes representing the constraints for the procedure are
added to the graph.

We start by describing how the graph for a method is constructed. The resulting graph typically
will be suboptimal, that is it may contain superfluous nodes and edges. So the next step is to
optimize the graph. The result can potentially be cyclic. As we deal with set constraints and
unification, the nodes will then be replaced by strongly connected components. This will give
us an acyclic graph. The chapter concludes with the solver algorithm and the continuation of the
example.

5.1 Generating Constraint Graphs

In order to efficiently solve the constraints generated by the techniques from the last chapter,
we first transform them. A common representation for efficient solutions is a directed graph

75

76 CHAPTER 5. THE DEMAND DRIVEN SOLVER

where, in our case, the nodes represent the
� � �

and functor occurrences. The edges represent
the dependencies between labeled program points. Additionally, the graph has a function � that
maps nodes to the set of classes that has been computed for the node.

Definition 5.1 (Constraint Graph, Functions type, �)
Assume � a

�����	���	�
method and ; � �

 �
�

�
�

the set of constraints generated for � . The graph
��� � ��

�
���
�
�

is the constraint graph with
�
�
�

�
�

� . Function type �
 � �' # Functors returns either the label or the functor represented by a node. Function ���
 � �� �
Classes

�
stores the abstract values associated with a node.

� , � and type are initialized from ; as follows:

� , � � �>� �
 � � � � � ; �
 � � ; � � � � � � � �

� , �	�
 � � ' � � �
 � � + � � � ; �
 � #
� ��� ��
 � � � � #

� �	� � ��� � � type
� � #

� � � ' � type
� ��� � � � +

� , � � !�� � �
 � � � ' � � + � � � ; �
 � � �
 � � ��
 � � � ��
 � � � ��� � �
type

� � � � � ! � � �
 � � � ' � � + � � type
� �
 � � �

� � type
� � � � �

� , � " � ! ��# �
 � � � ' � � + � � � ; �
 � � �
 � � ��
 � � � �
 � � � ��� � �
type

� � � � " � ! ��# �
 � � � ' � � + � � type
� �
 � � �

� � type
� � � � �

� , � � � � � � � �
�
� � � � � � �

#
,.,., � �

� � � � AT
� � � ; �

 � � ��
 � � � � � #
� ,.,.,"� � � � ��
 � � � ��
 � � �5��� � �

type
� ��
 � � �

� � type
� � � � � � � � type

� � #
� � � ' � ,.,., � type

� � � � � � � �
� �

type
� � � � � � � � � � �

�
� � � � � � �

#
,.,., � �

� � � � AT
�

We will need to classify nodes in a constraint graph. Special nodes are functor nodes or nodes
that represent a formal parameter, the label of a method body or the source (target) label of a
" � ! ��# (

� ! � �) functor.

Definition 5.2 (Special Nodes)
Let � be a

�����	���	�
program containing procedures � ' � ,.,.,"� � � , � � �
 ��� �

be a constraint
graph. node

��

is called special, if it fulfills one of the following conditions

� type
�
node

� � � � ����� � � ����� ���
	 � �� �
or with

� 8
� �

�
type

�
node

�

5.2. OPTIMIZING CONSTRAINT GRAPHS 77

� 3$? 798:7 � � � � ��� � � � � 8 � � �
 � � � �(3 � � � � � � � � � ' � ,.,.,"� � 8 � � � � 8
� �
� � � � � � ' � ,.,., � � 8 �

� 3 ��
� type
� � � " � ! ��# �
 � � �

�
� � 8
� �
���

type
� � � � !�� � �
 � � �

�
� � 8
� �
�

We define a function special �
 � � � � � � �
�������� �
with special

� � � � �
 � � is special.

In addition, there is the function
�� � Classes

�
Members

�
Classes � � �

Classes
�

from the
last chapter that stores information for class and instance members.

Note how the edges represent dependencies between labeled points in the program. E. g., the
interpretation of an edge between the label

�
� of an object and a call node � is, that whenever

the set of classes � � �
 � associated with the object changes, the solver will need to revisit the
node � . This will be handled in more detail in Section 5.4.

Example 5.1 (Constraint Graph for the Example Program)
Figure 5.1 shows the constraint graphs generated for the methods of the example program. The
upper half of each node shows type

� , �
, the lower half � � , � . The gray boxes group the nodes

belonging to the same procedure.

5.2 Optimizing Constraint Graphs

As can be seen in Figure 5.1, the generated graphs tend to contain superfluous nodes and
edges. One of the reasons for this are the requirements we have imposed on the structure of
� �������� programs in Chapter 3, namely that all values used as, e. g., arguments to method calls
are first assigned to local variables. In order to minimize the graph size we run a graph compact-
ing algorithm before starting the solver. This step is performed by the algorithm optimize given
in Table 5.1. The algorithm performs three phases.

1.) First, it will delete those sequences of nodes that just propagate a value over a chain of
edges through the constraint graph. However, it will leave special nodes untouched. The
phase starts by collecting those nodes that have only one predecessor. The node (and its
in- and outgoing edges) are then deleted and the predecessor of the node is connected to
the successors. This approach can be compared to projection merging from [SFA2000].
Whenever the successor of a deleted node � is a functor node, all references of
 to the
label

�
are adjusted.

2.) The second phase starts with those nodes, that are not special and do not have successors.
That is, these are those nodes that, e. g., represent the label of an object that is used for
accessing class members that do not have class type. This can be seen in the example
constraint graph in Figure 5.1. The nodes with labels 4, 6, 7, 12 and 13 represent those
objects whose

� � � � � field is accessed. As this field has type
� � � , it will not influence the

construction of the interprocedural control flow graph. Thus, these nodes can be deleted, a
task performed by the second phase.

78 CHAPTER 5. THE DEMAND DRIVEN SOLVER

CALL tick

CALL Election2

16

15

17 18

20

19

Election Election2

14

Election2.Election2 App.main Object.Object

1

CALL Object

2 3 4

5

6 7

11

12 13

Election.Election Election.tick Election2.tick

CALL Election

8

9 10

2221

CALL tick

CALL Election

Figure 5.1: Constraint graph for the example program

Class bytecode size Nodes Edges opt. Nodes opt. Edges������� � � ������� ! � ��� � � 1514 123 110 45 15������� � � ������� " � � � � � 3436 1221 1075 424 163������� � � ������� � � � � ��� � 7910 735 673 252 97

Figure 5.2: Node and edge counts for Java libraries

3.) Finally, all isolated nodes that are not special are deleted.

Figure 5.2 shows some examples for graph sizes generated for Java library classes before and
after optimization. The total size of the graph for HelloWorld.java is

�
�
��	��

nodes and
��� � � �

edges in the unoptimized graph and ? � ? ��� nodes and
�

�
� �

edges after applying
� � � � � � � � .

5.2. OPTIMIZING CONSTRAINT GRAPHS 79

procedure
>

� � 8 � 8 � � � � � �
� � � ��
���>� �

� > � ; � 8 � � � � ��
 � �
� �
� � ���)��� ��> � � � � � ? ��� � �

��� 8 � � � � � ;
while

� � > � ; � 8 � �
2� � � � �

 � � � � � � � > � ; � 8 � � � ; � > � ; � 8 � � � � � 8 � � � > � ; � 8 � � � ;�

� �-� � � ��� 8��	��

;� � � � �)� � � � ;
� � � � � � > � � � � ;,/
 ���
 � �1� �

if
� �

� �
� � ���1������> � � �
 � � ? ��� � �

��� 8 � � �
 � �� > � ; � 8 � � � � � �
� �� � � > � ; � 8 � � �
 � ;��

� > � ; � 8 � � � � ��
 � � �
 � �1������> � � � � �
� �� � �

��� 8 � � � � � ;
while

� � > � ; � 8 � �
2� � � � �

 � � � � � � � > � ; � 8 � � � ; � > � ; � 8 � � � � � 8 � � � > � ; � 8 � � � ;
 � �

� �
� � ���)������> � � � ;

� � � � � � > � � � ���
if (

� �
 � �1������> � � � ��� �
� ��� � �

��� 8 � � � � �)� > � ; � 8 � � � � � �
� �� � � > � ; � 8 � � � � � ;�

forall ��

if (� � �

��� 8 � � � � � � � � 8��	��
 # � �
�� � 8�� � �
)

� � � � � � > � � � � � � ;
end

procedure � � � � � � > � � � � � � ��
���>� �

 �
� �� �

;
 � � (' , where �� *' � � �� $+ � � ��� �
�� � 8�� �

;�

� �1� � ��
 � � �
 � �����

;� � � # � � � �
 � �
 ���
 � �1���
forall
 ���
 � �1� �

if type
�
 �5� Functors � � � ��� � � � �

replace
� � ��� � � � with

� � ��� � � � ��
end

Table 5.1: Optimizing constraint graphs

80 CHAPTER 5. THE DEMAND DRIVEN SOLVER

CALL tick

App.main

14

Object.ObjectElection.Election Election.tick Election2.tick

Election2

1 5 11

CALL Object

8

CALL Election

Election2.Election2

16

Election

CALL tick

CALL Election CALL Election2

20

Figure 5.3: Optimized constraint graph for the example program

Example 5.2 (Optimized Constraint Graph)
Figure 5.3 shows the optimized constraint graph of the example program. Note how all the
intermediate nodes have vanished.

It should be noted that it is not typical that almost all non special nodes disappear from the graph.
Every non special node that represents a label with more than one defining label, that is more
than one incoming edge, will still be present.

5.3 Transformation to Directed Acyclic Graphs

The constraint graph we have constructed and especially the graphs that arise during the solving
phase might contain cyclic dependencies between nodes. As the nodes and edges resemble sets
and inclusion constraints between those sets, we know that all nodes that lay in a cycle will end up
with the same set of classes, namely the union of the sets of those nodes. This is why we compute
in a next step the graph containing the strongly connected components of the constraint graph.
This is done by applying one of the standard construction algorithms for strongly connected
components, e. g. [CLR1992].

Later on, during solving the constraint system, edges may be added, eventually resulting in a
cyclic graph. However, the algorithm will make sure that newly created cycles are detected and
collapsed to a new strongly connected component. Thus the graph remains acyclic.

Definition 5.3 (Strongly Connected Components Graph, Functions
��� �

, > � ��� , �
 �� , type

 � �)

5.4. SOLVING THE CONSTRAINT SYSTEM 81

Let � � � ��
 � ��� � �
be a constraint graph.� � � �
 � � � � �

is the graph consisting of the strongly connected components of � � . Functions��� � �
 � �
 �
, > � ��� �
 � � � ��
 � �

return the strongly connected component for a constraint
node respectively the constraint nodes that belong to such a component.
The function �
 � �:� ��
 � #
 � � � � �

Classes
�

is defined by

� � � � � �� � �8
�) 8 � �
 � 8 % � � � � if �
 �

type
� � � otherwise

The function type

 � � � ��
 � #
 � � � � ' # Functors # �� > � � � � � �

is defined by

type

 � � � � � � �� � type

� � if ��
 �
type

� � � if �
 � � > � ��� � � � �� � � � type
� � � � Functors

normal else

We will see later that the special nodes
 � � � ,

� ! � � , and " � ! ��# share a special property: they
will always be the single node in their strongly connected component as they may never have
outgoing edges. This allows us to speak of normal, call, load, and store components, depending
on the nodes contained within, just as we have done for nodes in the constraint graph. Let

� � be
the graph containing the strongly connected components of � � . Obviously,

� � is acyclic. Using
one of the standard algorithms like that in [NNH1999], this property allows us to compute the
topological order on its nodes. This defines a function � > � �
 � � '

that will guide the solver
in selecting nodes to work on. Like the acyclic property, the topological ordering is maintained
when edges are inserted.

5.4 Solving the Constraint System

Having constructed the optimized constraint graph, we apply the solving algorithm. It is worklist
based and will propagate already computed values of �
 � � along the edges. As described below
whenever a functor node is hit the solver may add edges to the constraint graph. We will start by
describing some helper procedures used by the solver. These are

� � ��� � > � > � ; � 8 � � that is in charge of maintaining a clever ordering on the nodes in the work-
list (Table 5.2)

� � ��� � � � � that adds edges, checks for cycles in the graph and readjusts � > � (Table 5.3)

� � � � ��� � > � � and
� >�> ;
 � that handle functor nodes (Table 5.5)

The algorithm itself is given in Table 5.6

82 CHAPTER 5. THE DEMAND DRIVEN SOLVER

procedure � ��� � > � > � ; � 8 � � � � � > � ; � 8 � � �
if (� � > � ; � 8 � �)

return;
� � � > � ; � 8 � � � 8 /8 � 8 � � > � ��� ;
if (� 8 � 8 /8 � 8 � � � �) �

switch (type
� �) �

case " � ! ��# :
� � � > � ; � 8 � � � � � > � � > � ��� ; break;

case
� ! � � :

� � � > � ; � 8 � � � � > � � > � ��� ; break;
case

 � � � :
� � � > � ; � 8 � � � � � � � > � ��� ; break;

default:
� � � > � ; � 8 � � � > � � � � > � ��� ; break;�

while (type
� � � �

type
� � ��� > �

� � � � � > �
� � ��� not last node)

� � �

� � � � ����

insert after � ;
end;

Table 5.2: Adding components to the worklist

5.4.1 Maintaining the Worklist

The worklist is a list that is divided in five parts with a link to the beginning of each part. Nodes
are inserted depending on their type to one of these. The heuristic is that the nodes coming earlier
in the worklist will have a higher impact on the graph. The order is

1. initial nodes

2. " � ! ��# nodes

3.
� ! � � nodes

4.
 � � � nodes

5. normal nodes

5.4. SOLVING THE CONSTRAINT SYSTEM 83

Initial nodes are the root nodes of the constraint graph. Those nodes have a non empty set
� � � , that is, they represent object creations. Functor nodes may cause new edges to be added
to the graph. If a

� ! � � functor is in the worklist, it should only be evaluated after visiting all
" � ! ��# functors. Finally,

 � � � functors may result in new edges to normal nodes.

In addition, each of the worklist parts is ordered in increasing topological order. Thus any com-
ponent that might influence the value of another component �� is visited first. The procedure� ��� � > � > � ; � 8 � � checks the type of the component to add and inserts it in the right place. The
pseudo-code is given in Table 5.2.

5.4.2 Adding Edges

Tables 5.3 and 5.4 show the procedures that handle the addition of edges to the graph. This
process can be split in three phases. First, the edge is added. In a second phase, it must be
checked whether the new edge introduces a cycle. If so, the components that are connected
must be collapsed to a new component, resulting in an acyclic graph. This step is guided by the
topological order on strongly connected components. If � > �

�
to
� � � > �

�
from

�
then the added edge

may be a back edge and may introduce a cycle. The nodes that are in the new component (if any)
are collected and collapsed. The collection starts at from and checks whether to can be reached.
This process also is guided by the topological order. Namely, an edge

� ' � /+ � may only be in a
new component if � > �

� "+ � � � > �
� � > � .

Finally, the third phase checks whether the topological order has been invalidated by the added
edge or the restructuring. If so, the order must be recomputed for the subgraph

�
containing the

edge. We first collect the numbers occurring as values of � > �
� � for nodes in

�
and order them.

Then the subgraph is traversed in topological order and the sorted numbers are assigned to the
nodes, resulting in a valid topological ordering.

As can be seen, adding edges is handled quite efficiently. By keeping the topological order up to
date, checking for cycles is kept simple.

Furthermore, the procedure takes care of adding the target of the new edge to the worklist. This
is necessary, as by adding an edge a new possible flow of data may occur. Thus for the target we
must recompute the value of � � , � .

5.4.3 Handling Member Nodes and Functions

The solver will need to model the abstract run-time behavior introduced in Chapter 4. Each class
or instance member is represented as a node in the graph. We need a function that returns the
strongly connected component in which this node is contained. Additionally, we need a function
to model the lookup mechanism for dynamic dispatching. Both these functions are given in
Table 5.5.

Function � � � ��� � > � � gets as arguments

84 CHAPTER 5. THE DEMAND DRIVEN SOLVER

procedure � ��� � � � � � from
� � > � � � ��
���>� �

if (from
� � > � � from

� � > �5���)
return;� � � # � � from

� � > ��� ;� ��� � > � > � ; � 8 � � � � > � ;
if (� > �

�
from

� � � > �
� � > �) return;

forall ��
 � � � � � � ��� � � �
��������
;

� 8 � 8 � � � � � �
��������
;
�

� � � > � � ��� � ��� �1� � from
� � > � � � ;

if (
�

2� �
) �
 �
 # ��
 � � � ;

�
 �� �
 � � � � �8) � �

 � � � � ;

 > � ��� �
 � � � � �8) �
> � ��� � � ; ,/ � > � ��� �
 � � � � ��� � � � �
 � � ;

� �
� � � � �� � � � � � �5��� �

�

��
�

%
��
 �

;�

� �-� � ��
 � � �
 �5��� �
��

�

��
�

%
�
;� �<� �

�

��
�

%
�
�

��
�

% # � � � �
 � � � � ��� � �
� � � � # � �
 � � �
 � �
 ���
 � �1�4�

;
 �
� �
;

� > �
 �� ;�
� � -�
 � � � > �

� � > � � � �
end;

procedure
� > � � ��� � � � �1� ��� � � � � � � � � � � � �

if (�
� � � � ��� � � � � � � �) return � � � � � � � ;

if (
� 8 � 8 � � � � � � � � � �) return

�
;� 8 � 8 � � � ��� � � � � � �

� � � � ;; � �
;

forall � ��
 � ��� � � � � �
 �5��� � � > �
�
 � 7 � > �

� � � ��� � � � �; � ; # � > � � ��� � � � �1� � � � � � � � � � ;
if (; 2� � � � � � � � � � � ��� � �) �; � ; # � � � � � � � ;
� � � � � ��� � � � � � � � �

� � � � ;�
return ; ;

end;

Table 5.3: Adding edges to the graph

5.4. SOLVING THE CONSTRAINT SYSTEM 85

procedure � � -�
 � � � > �
� � � � �
 ��� � �

forall ��
 � 8 � 8 � � � � � �
��������
;� � � ; � � � � � � � �.� � � � � � � � � � � � ;

� � ��8 � � �
� � 3 � � > � ��� ��� � � � > �

� � � � 8 � ;
forall ��
 � 8 � 8 � � � � � �
��������

;
forall �

� �

� � � �
 � ��� � � � � � � ;
end;

procedure �
� � � � �.� � � � � � � � � � � � �
 ��� � �

if (
� 8 � 8 � � � � �)
return

� � � � �
;� 8 � 8 � � � � � �
� � � � ;

if (� 3 � � � �5���)
� � �� �

;; � �� �
;

forall �
� �� � � � � � �5��� �

� � � ; � � � � � ; � # � � � � � �.� � � � � � � �� � � � ;
forall

� � ��
 � � �
 � �����
� � � ; � � � � � ; � # � � � � � �.� � � � � � � �� �
 � ;

return
� � � ; �

;
end;

procedure �
�
 � �)� � � � � �

if (
� 8 � 8 � � � � �) return;

forall �
� �� � � � � � �5��� �

if (� � 8 � 8 � � � � �
�
)

return;� 8 � 8 � � � � � �
� � � � ;

� > �
� � � � 8� � � � ;

� � � � � � > �
� � � ;

forall
� � ��
 � � �
 � �����

� � � �
 � ��� � � ��� � � ;
return � ;

end;

Table 5.4: Recomputing the topological order

86 CHAPTER 5. THE DEMAND DRIVEN SOLVER

procedure � � � ��� � > � � � � � � ��� � � � � � 8 � �
 $ � $ 3 � � � � �
 ��� � �
if (3 � ��
 � � � � * � ��� ����� ��� �

� � � ! �
� � > � ��� �����)

return
�
;
 �
 # � � 8 � B �

;��� � � � � � * � ��� ����� ��� �
� � � ! �

� � � � 8 � B ;
return

� 8 � B ;
end;

procedure
� >�> ;	
 �

� � � � � > � � � � � ��� � � �
���

� � � � � � � � �
� �) � MostSpecial

� � � � � > � ��� � � � � � � �
���

;

forall
�

� � � � � � � �

����� > � � � � � � � � � � � �� 8 � � �
 � ��� � � 8 � � �
 � ��� # �� � � � � � > � � � � � � � � �
� �

;
return

� 8 � � �
 � ��� ;
end;

Table 5.5: Handling functor nodes

� the name � of the member

� a possible run-time type

for the object

� the static type
�

where the member has been declared

� the constraint graph

It returns the strongly connected component that contains the node that represents the correct
member. If this node does not yet exist, it is added.

Function
� >�> ;
 � gets as arguments

� the name � of the method to be called

� the possible run-time types
�

for the object

� the argument type ATof the method

For every class

in
�

the MostSpecial
� � � � AT

�
is computed and the set of signatures is returned.

5.5. APPLYING THE RESULTS 87

5.4.4 The Solver

Table 5.6 shows the actual solver algorithm. It is worklist based and iterates over the strongly
connected components graph.

The worklist is initialized with all the root components of entry points of the program being
analyzed. Since the graph is still in its pure form, that is there have not yet been added any
edges, each of this components represents exactly one node. By inspecting the rules for node
generation in Section 5.1 one can see that these nodes are exactly those where objects are created.
The boolean flag 8� $8 � 8 � �

ensures that these nodes are at least evaluated once.

In the iteration phase, the first node
�

from the worklist is chosen. Then the union of all the
incoming abstract values is computed. If it differs from the original value � � ��� or 8 /8 � 8 � � ��� �

was
� � � � , all successors of

�
are added to the worklist.

Finally, the type of component
�

is investigated, and depending on it different actions may occur.
If the component is normal, i. e. only represents non-functor nodes, the iteration may continue. If
the component contains a

� ! � � or a " � ! ��# node, all classes that have been computed for label
�
�

are inspected. Note that these classes exactly represent the possible run-time types of the object
that is used for the member access. The node representing the member is identified by means of
� � � ��� � > � � and an edge is added to let the values flow to or from this node � .

If component
�

represents a
 � � � node, we lookup the signatures of all possible targets � by

means of function
� >�> ;
 � . Function � ��� � �

> �
checks whether a callable procedure has already

been inserted into the graph. If not, the constraints are computed, transformed to a graph and
added to the graph. Then, edges are inserted into the graph in order to connect the nodes repre-
senting the call site with the nodes representing the target procedure. Finally, � is added to the
set of called methods.

5.5 Applying the Results

Having solved the constraint graph we are now going to optimize the program using the solution.
This requires two steps. First, we write back the results from strongly connected components to
the nodes represented by them. Then, we annotate every call with the set of methods that are
actually callable. This information can be used by the compiler backend to avoid generation of
dynamically dispatched calls.

This optimization is useful for several reasons. As pointed out already, the call graph will be more
precise and will enable faster and more precise data flow analyses. Additionally, we exactly know
the target procedure for more call sites. This allows further optimizations like inlining. Last but
not least, pipeline and cache analyses like [FHL

�

2001, FW1999] benefit for two reasons. On
the one side, to perform the dynamic dispatch an array access is necessary that might dilute the
cache. On the other side, the pipeline must be stalled, since the target of the call is only known
after the array contents has arrived.

88 CHAPTER 5. THE DEMAND DRIVEN SOLVER

procedure
��> � � � � � � �

let
� � � �
 � � � � �

be an empty constraint graph,
� � � � � � � �

;
forall entry procedures � � � ��� � �

> � � � � � �
�
;
� � � � � � � � � � � � � # � �

�
;
�

forall
���
 �

with
�

� �
� � ���)��� ��> � � ��� � �

� �� � ��� 2��� � � �
> � ��� �5� � � � � � �� ��� � > � > � ; � 8 � � ��� � ; 8� $8 � 8 � � � ��� �

� � � � ;
while

� � > � ; � 8 � �
2� � � � �� � � � � � � � > � ; � 8 � � � ; � > � ; � 8 � � � � � 8 � � � > � ; � 8 � � � ;

�
 � � � � � �
� � �

�
����� � � � �

if
� �
 � � � ��� �8 $8 � 8 � � � ��� �
�������� �

continue;
� � ��� � �

; 8 /8 � 8 � � ��� � �
��������
;

forall
� ��� � ��� � ��� � > � > � ; � 8 � � � � ;

switch type
� ��� �

normal: break;
� !�� � (� ,

,

�
� ,

�
):

forall
� � � � ��� � � ��
 � � �� ��� � � � � � � � � ��� � > � � � � � � � � � � ������� � � � ��� � � � ;

break;

" � ! ��# (� ,

,

�
� ,

�
):

forall
� � � � ��� � � ��
 � �� ��� � � � � � ��� � � � �)� � � � ��� � > � � � � � � � � � � ��� � � � ;

break; � � � (� ,
�
� ,

�
$,[

� ' , ,.,., , � 8
],

,AT):

� � � � � � � � � >�> ;
 �
� � � � � ��� � � �
 � �)� AT

�
;

forall �
� � � � � � � � where

� � �)� � � �
�
� � � � � � � �$' � ,.,.,"� �

8
� � �

if
�

�
2� � � � � � � � � � ��� � �

> � � � � � �
�
;
� � � � � � � � � � � � � # � �

�
;

for ?�798:79 : � ��� � � � � � ��� � � ��� �)����� � � � � �)� � � �� ��� � � � � � ��� � � � � �)��� � � � ��� �)� � � � ;� � � � � � � � � � � � � # � �
�
;�

break;��
end;

Table 5.6: Solving constraint graphs

5.5. APPLYING THE RESULTS 89

procedure � � 8 � ��� � � ; � � � �
 ��� �)� � � � �
 � � � � �)����� �-� �
for all ��

if (type
� �

2�
Functors)�
 � type

� � � � � � ��� � � � � ;
for all � � FNames

� � � � Classes
if (� � � ��� � > � � � � � � � �5�
 �

)�� � � � � � � � � � � � � ��� � > � � � � � � � � � ;�

Table 5.7: Writing back analysis results

5.5.1 Writing back the Results

Having computed a solution for the constraint graph, we need to write back the results. Remem-
ber that the labels originally assigned to program points have been transformed to nodes that may
have been combined to strongly connected components during the solving process.

We need to make sure that the computed sets are written back to the correct label. The procedure
that performs this task is given in Table 5.7. It uses the function

��� �
to look up the strongly

connected component a node � has been joined with. The set computed for the component is
written back to

�
 � � �
. Equivalently, the information computed for member nodes is stored in

��
.

5.5.2 Optimizing the Program

Having reconstructed
�
 and

��
from the constraint graph, we use this information to optimize the

program. The optimization is based on the computed set
�
 � �
�
�
, where

�
� labels an object that is

used to call a method. We start by computing the set of callable methods for
�
 � �
�
�
.

Definition 5.4 (Function Callable)
Let

�
Classes. Function Callable � � MNames

�
Classes

�
Types

� � � � �
Classes

�
� 8 � ! Types

8 �
Term

�
is defined by:

Callable
� � � ; �

AT
� � �

) � MostSpecial
� � � � AT

�

Given a call statement
� ! � �
 � � � � � � � � � � � and ;
 �

Callable
� � ���
 � �

�
���

AT
�
, there are several

cases regarding the size of ;

to consider:

90 CHAPTER 5. THE DEMAND DRIVEN SOLVER

1. the set is empty, that is the call is never reached

2. it is a singleton set, that is exactly one method can be called

3. there exist several callable procedures

In the first case, the compiler might warn the user about an unreachable statement or a call on an
uninitialized object.

In the second case, the compiler can generate a static call instead of the dynamic dispatch. As
motivated in the introduction, this enables or improves further analyses and optimizations like
inlining or cache and pipeline analysis.

The third case allows to apply some more heuristics, depending on the actual size of the set.
There has some work been done on replacing the dynamic call with

��
 � � �
� ����� � � � ������� � � �

constructs [AH1996, DGC1995]. The dispatch process is encoded into the generated code,
with each resulting call site having exactly one target method. The conditions check
the run-time type of the object. In the example program from Example 3.1, the call
������� � + ' ��� � # ��� � � ���	����� ������� � + + � � can be coded as:

if (
������� � instanceOf # � � � � ��� �)
((# ��� � � � �	�)

������� �).
� � � � � 	 (

������� �);
else

((# ��� � � � �	���)
������� �).

� � � � � 	 (
������� �);

In this case, we need to use the cast of
������� � to # ��� � � ���	� respectively # ��� � � ���	��� in order to

enable the type checking phase of the compiler to determine the actual types that are ensured by
the

��

clauses.

5.6 Analyzing Libraries

We have already stated several times that the created constraint graphs can be partitioned. This
section will in detail present how this works.

Example 4.3 has given a practical example of the constraints generated for a program. The
according constraint graphs are given in Figures 5.3 and 5.3. Here, the modularization is empha-
sized by grouping the nodes for the methods.

By inspecting the rules for constraint generation, one can prove the following theorem.

Theorem 5.1 Let
�

be a
� ���	���	�

program with methods ��' � � � �1� �
8

and
��� � �

Constraints
� �

� �

 �
� � �

the set of constraints generated for
�

.

�

can be divided into disjoint sets 3 � � �
Constraints

� � 3 �
 �
� � 3 � for ?�7 867 and

� � ��

' � 3	�
8 53 .

5.6. ANALYZING LIBRARIES 91

Proof By inspecting the rules from Tables 4.7 and 4.8, the definition of � � and ��
 as intrapro-
cedural analyses one easily sees that no constraint graph for one procedure depends on that of
another procedure. The only rules where some dependence could occur are those for member
access and method call. However, these have been modeled as functor nodes that separate the
calling procedure from possible target procedures.

The steps for precompiling a method � are

� generate constraints
�

for �
� construct constraint graph � �
� compute the optimized constraint graph � ��
� compute the strongly connected graph � � ��
� save this graph according to the paths in the Java standard libraries

Example 5.3 (Precomputed Graph for the Example Program)
The precomputed graph for the constructor # ��� � � ���	��� would be stored in a file
# ����� � ���	� � # ��� � � ���	� � ��� � .

The contents of the file is given in Figure 5.4. It states that the method for which the constraints
file has been generated is named # � � � � ��� ��� and that it has 2 nodes. The mapping computed for
the method,

� � ��� � � � # � � � � ��� ��� � , was =�? �.� ? � as the constructor does not return a value and the
label assigned to the one argument is 1. Next follows a list of nodes in the graph; there are two
of them. The first is the node with label 1, representing the argument of the method. The second
node is the call to the constructor # ��� � � � �	� of the super class. Note how the arguments to the
� ����� functor are all present in the file. Furthermore, there is an edge from the first to the second
node, as the call is based on the argument to method # ����� � ���	��� .

As there is no back edge, each of the nodes constitutes its own strongly connected component.
This is stated by the next two lines. Finally, we need to state which edges exist in the graph of
strongly connected components. There is one edge from the component containing the argument
node to that containing the call node.

The construction phase of the constraint graph for the whole program is slightly modified. Orig-
inally, the rule

�
�
Program

���
from Table 4.7 initiated the constraint construction for the whole

program
�

, that is for all methods in all classes in
�

. Now, rule
�

�
MethodDefinition

���
needs to

be modified. It first checks, whether there exists a precompiled file for the method. If that file
exists, it is checked whether the file is still up to date, e. g. by inspecting the file creation date or
by computing a hash value on the method and storing it in the precompiled file. If the file still is
valid, the constraint graph is constructed from the file and added to the graph computed for

�
. If

not, the method is analyzed just as described in this chapter.

Chapter 8 will show the impact that this precompilation has on the total analysis time for rapid
control flow analysis.

92 CHAPTER 5. THE DEMAND DRIVEN SOLVER

� ��! # ��� � � ���	��� ��� �

� ��� # � " �
� � � � �

� �
�������
� ���
 � � � � # ��� � � ���	� ��� � � � �

� � � � � � ������� � � ����� � # ����� � �������������	����� �������
�
�������

� # ��� � � ���	��� �� ��� �����
� �

� � � ��	����� � ���	����� � � ��� � � � � �	����� � �
"��	� � �

"��	� � �

� � � � ������� ��� ��
 � � ���	���� � � �	������� � ��� � � � �
�	����� � �
"�"�
 � " � �

"�"�
 � " �

Figure 5.4: Precompiled information for method # � � � � ��� ���

5.7 Complexity

Finally we want to inspect the overall complexity of our approach. To start, we first repeat the
phases needed:

� label interesting expressions

� compute intraprocedural reaching-definitions and definition-use chains � � and ��
 on labels

� generate constraints

� solve constraints

The labeling is done during parsing and type-checking the program. Its complexity is
� � � as

we need to inspect every expression exactly once. is the size of the program. The complexity
for reaching-definitions and definition-use chains is

� � � for both analyses. For generating
constraints, again we need one pass over the program source code, that is complexity is

� � � .
Finally we need to solve the constraint graph. The number of constraints generated is

� � � for
the functor constraints and

� � + � for the inclusion constraints.

Following [NNH1999] the following theorem can be proven. It states that the solver will termi-
nate and actually compute a least solution.

Theorem 5.2 Let
�

be a
� ��� ���	�

program, � � � � the set of constraints constructed for � ,
� � �

�
 � � � � �
the graph of strongly connected components constructed for � . The algorithm from

5.7. COMPLEXITY 93

Table 5.6 terminates on
� � and the result

�	�
 � �� � computed satisfies

�	�
 � �� � ��� � � �
 � � �� � � � �	�
 � � �� � � � � � � � � � �
making it the least solution to � � � � .

Furthermore, the run-time of the algorithm can be bounded. The initialization takes time
� � � ,

the graph construction takes time
� � + � due to the number of constraints. Optimizing the graph

will take time
� � � , since we only visit such nodes with one predecessor or no successor. The

writing back of solution after solving the graph will take time
� � � . Still left is the loop that

handles the worklist. The graph may have at most
� � + � edges. The number of times they are

visited is limited by the number of classes in the program, that is
� � � again. Thus, the overall

time needed by the algorithm is
� � � � .

However, this is the worst case, if no strongly connected components are found in the graph.
Furthermore, by far not all methods in the graph will be visited and the height of our abstract
domain, the powerset of the defined classes, usually is rather small.

94

Chapter 6

Extending the Language with Exceptions

In this chapter another important feature of object-oriented languages is added to � �������� .

Exceptions not only allow handling of erroneous situations, like trying to access members of a
variable that contains

� � ��� instead of a valid address of an object. They also can be used by the
programmer in two ways. On the one side the compiler can be told about errors that possibly
may occur in a method. Thus at compile-time can be checked that the program really handles
such exceptions. On the other side the programmer also can define her own exceptions and use
them as a replacement for e. g.

��� � � .

We will first add exception-handling to the syntax of � ��������� . Additionally configurations,
� �������� � and the operational semantics from Chapter 3 will be extended. Finally, we extend
the analysis to trace exceptions additionally to normal data.

Table 6.1 shows the extensions that are added to � ��������� . Actually this includes the possibility to
state for a method that it may throw an exception as well as statements for throwing exceptions
and catching them. Note that while executing a Java program there is always only one active
exception that has been thrown and has not yet been caught. This is modelled in the semantics of
� �������� . Namely, there is a new field in the configuration. This field contains either
 or the name

MethodDefinition � �
Modifier ReturnType MethodId (

�
VarType ParamId

� � � �
)

� throws
�

ClassName
� � �� LocVariableDefinition

�
Stmts ;

� � �
Stmt � �

� ����� � � ��� � � ��
� � � Block

� ��� � ��� ��������
��� � � � ��� � � � � � > � ; � �

� ������ � � � > � ;�

� � � Block
� ��� � ��� ��������
��� � � � ��� � � � � � > � ; � �

Table 6.1: Exceptions in � ��������

95

96 CHAPTER 6. EXTENDING THE LANGUAGE WITH EXCEPTIONS

�
throws 1

�

�
� ������� � � � � � � �
 � � �

�
val
�
�
� � �
 ��

� ����� � � ������� � � � � � � �
 � � �
�
� ����� � val

�
�
� � �
 �

�
throws 2

� �
� ����� � � �3 � � � � �
 � � �

�

 � � � � � � �3 �

Table 6.2: Extended � ��������� semantics for throwing exceptions

of the exception class that has been thrown by the program. The definition of a configuration is
changed to be

Configuration ::= � � � � � � ���
, � � Term # �
 � � � � Env,

� �
Heap,

��� �
 � # Classes

The field
�

will be set by the semantics of the � ���� � statement and will be read by the
��� � �	�

statement.

The Java language specification [GJS1996] contains many cases where the run-time system is
supposed to throw an exception. These include null pointer exceptions when a variable does
contain

� � ��� instead of a valid reference and index out-of-bounds exceptions when an array is
accessed with an invalid index. We assume that in � ��������� programs is checked for all these
cases, just like a Java virtual machine would do. That is, a method send expression like

� � � � � �
��� � � � �

would be translated into

��
 � ��� � � � ��� � � ������ � � � � � ��� � � � �������� �� � ��� � � � ��� ���� � � ��� # � ��� � � ��� ��� � �� � � � ��� ���� � � ��� # � ��� � � ��� ��� � � �
� ����� � � ��

This externalisation of exceptions allows to handle the usually implicit exceptions like null
pointer or index out of bounds similar to user defined exceptions.

Table 6.2 contains the rules needed to handle the cases where an exception may be thrown.
Additionally there must be rules for catching and propagating exceptions. After an exception has
been thrown, it must be propagated to either the catch clauses of a surrounding � � � statement or
the end of the procedure. As can be seen in Table 6.3, we can easily identify in which situation
the exception occurs – either, we are in a � � � block, then we check the

��� � ��� clauses for the

97

�
try 1

�

�
Stmt

�
�
� � �
 � � �

�

 � � � � � � �
 ��

� � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � � #

8 � 8
Block

8 �
�
� � �
 � � ��

� � � Stmts
��� � ��� #2' � ' Block ' � � � #

8 � 8
Block

8 �
� � � � � �
 �

�
try 2

�

�
Stmt

�
�
� � �
 � � �

�

 � � � � � � �
 �

� � � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � � #

8 � 8
Block

8

� ������� � Block

8
� ' , � � � �

� � � � � � Stmts

��� � ��� #2' � ' Block ' � � � #
8 � 8

Block
8

 � ������� � Block

8
� ' , � � � � � �

�
catch 1

�

�
Stmt

�
�
� � �
 � � �

�

 � � � � � � � � �/ �

� � � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � �

#
8 � 8

Block
8 �
�
� � �

� � � Block # , � � � � � � �

3$? 7<; 79 �� � 7 B # #, ? 7 � ��; � � 2
7DB � �

� � � �
� � � � # �� � � # � � �/ � �

�
catch 2

�

�
Stmt

�
�
� � �
 � � �

�

 � ��� � � � � ���/ �

� � � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � �

#
8 � 8

Block
8 �
�
� � �

� � ��
 , � � � � � � � �/

, ? 7<; 79 � � 2
7 B � #

�
finally 1

�

� � � �
 ��� � ��� # ' � ' Block ' � � � #
8 � 8

Block
8

� ������� � Block
8

� ' , � � � �

� � � Block
8

� ' � � � � �

�
finally 2

�

�
Stmt

�
�
� � �
 � � �

�

 � � � � � � � � �/ �

� � � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � �

#
8 � 8

Block
8

� ������� � Block

8
� ' , � � � �

� � � Block # Block

8
� ' , � � � � � � �

3$? 7<; 79 �� � 7 B # #, ? 7 � ��; � � 2
7DB � �

� � � �
� � � � # �� � � # � � �/ � �

�
finally 3

�

�
Stmt

�
�
� � �
 � � �

�

 � ��� � � � � ���/ �

� � � � Stmt;Stmts
��� � ��� # ' � ' Block ' � � �

#
8 � 8

Block
8

� ������� � Block

8
� ' , � � � �

� � � Block

8
� ' , � � � � � �

, ? 7<; 79 � � 2

7 B � #

�
bind 4

�

�
s
�
� � � � � �
 � � �

�

 � � � � � � � � � � �3 ��

� � ��� � � � � � � �
s � s � � ����� � � � � �
 � � �

�

 � � � � � � � � �3 �

Table 6.3: Extended � ��������� semantics for catching and propagating exceptions

98 CHAPTER 6. EXTENDING THE LANGUAGE WITH EXCEPTIONS

first matching variable type. If we are not in a � � � block, then we propagate the exception to the
calling procedure.

Like
�
sequence

�
from Table 3.9, the rules

�
try 1

�
and

�
try 2

�
evaluate statements that are en-

closed in a � � � statement.
�
catch 1

�
and

�
catch 2

�
handle exceptions that occur when no

� ������ � block is present. First is checked whether there exists a
��� � �	� block such that the

exception referenced by � �
/

can be widened to the type of variable
� # . If such a block is found,

the exception is cleared and that block is executed. Otherwise, the exception is propagated. The
rules

�
finally 1

�
and

�
finally 2

�
work analogously; additionally the

� �����
block is executed,

even if no exception is thrown. Last but not least, rule
�
bind 4

�
takes care of disposing a method

if an exception occurs. In this case, either a � � � statement must have finished without catching
the exception, or an illegal situation like an access to

� � ��� must have occured. [GJS1996] de-
fine that in this case the method returns immediately. The calling method must either catch the
exception or return itself. This process is continued until either a method handles the exception
or the program is finished.

Having added exception handling to � ��������� � , we now need to adopt our analysis. Just like
the configurations for execution of � �������� � , the abstract configuration will contain exceptions.
However, as the analysis computes one solution for the whole program, we associate the ex-
ceptions with labelled points. This is justified by the fact that exceptions are represented by
classes. Thus, the function domain

�
Cache is redefined to

�
Cache ��� � �

' � � �
Classes

� + , where
the first component is the regular value as computed by the control flow analysis from Chapter
4. In contrast to the concrete case, the abstraction is not one exception but a set of exceptions.
This is similar to the abstractions applied to regular variables. We redefine

�
 to access the first
component of the pair and define

�
to access the second.

Furthermore, method bodies are always labeled. This is necessary in order to propagate unhan-
dled exceptions from the callee back to the caller.

We will now describe the effect of the statements on our analysis as shown in Table 6.4. Instead
of describing all intermediate steps like in Chapter 4 we directly give the rules for constraint
generation. One analysis is needed in addition, namely reaching exceptions, which is denoted
by �

� � � � � ' � � � ' �
. Just like � � , it computes for each label the set of labels where an

exception is defined, i. e. thrown.

The first thing to handle is throwing of exceptions. As shown above, exceptions are created and
initialized just like normal objects. When they are thrown, the rewriting rules store the reference
to the exception object in the configuration. The effect of the abstract � ����� � statement is to store
the set associated with the label of the variable in the second component of

�
 . Additionally, the
exception must be associated with the return label of the procedure.

Care must also be taken to propagate uncaught exceptions from the return label of a method
to the calling methods. This is checked by the not shown adopted rules for the control flow
analysis. With respect to the constraint graph and its solution, this is assured by the semantics of
the

 � � � functor. Namely, the solver not only adds an edge between � � and ��� to let flow back
the result of the method, but also between ���� and ���� . Thus, thrown exceptions can be dealt with

99

�
�
Throw

��� � � throw � ������� � � � � �
 �� �VarName

� � �1# � �
 � � � � �� � � �)� �� � � � � �� � � � � �
where

� �
is the label assigned to the body of the method analyzed

�
�
try

��� � � try � � > � ; $ catch (
 ��������
��� � � � ��� � � ��� � � > � ;�3) ' � 3	� 8

� � �

 � � �
� > � ; $ �1# � ' � 3	�

8
 � � �

� > � ; 3 � #
� � � � � � � �
 � � 3 � � , ?�798:79 � � � � � � � � 3 � �

�
�
try
,.,.,

finally
��� � � try � � > � ; $ catch (

 ��������
��� � � � ��� � � ��� � � > � ;�3) ' � 3	� 8
finally � � > � ; � �(� �

 � � �
� > � ; $ �1# � ' � 3	�

8
 � � �

� > � ; 3 �1# � � � � > � ; � � #� � � � � � � �
 � � 3 � � , ?�798:79 � � � � � � � � 3 � �

Table 6.4: Generating constraints for exception handling

in the calling method.

The graph constructed from a constraint set with exceptions contains two kinds of nodes – those
that origin from the normal program execution and those that deal with exceptions. At � ���� � and
��� � ��� statements, there exist interfaces between these two graphs. As exceptions are modeled
similar to the normal cases, the solving algorithm needs no change.

As easily can be seen, the modularity of our approach is not changed by introducing exceptions.
They are mostly handled by the constraints of the method where they are thrown. Only when the
solver evaluates a

 � � � functor, exceptions may flow between different methods.

100

Chapter 7

Related Work

Much research effort has been put in developing techniques for computing an accurate call graph
for object-oriented languages.

The approaches are either context and flow insensitive, resulting in fast but imprecise solutions,
or do not scale due to bad performance. In presenting the different analyses we will take the
example program provided in Chapter 3. We have extended it to contain a third class # ��� � � ���	� � ,
that increases the number of votes by 3 for every ballot. The program is given in Figure 7.1. As
seen before it consists of method � ��� � in class � � � that creates an object of class # ��� � � ���	� and
one of # ��� � � � �	��� . Figure 7.4 shows the class hierarchy graph including the signatures of the
methods defined.

The program contains two kinds of call sites – those to constructors and those to normal methods.
Calls to constructors are not dispatched since the target method is perfectly known. Thus, the
only call sites that are interesting are the two calls to the method � � �
	 .

In what follows we will present the different analyses. We adopt the classification technique
from [TP2000], where algorithms are classified according to the number of sets they use to
approximate run-time values. We give similar characterizations for all analyses.

For each approach we will present the call graph with the determined call edges between call sites
and methods called. The call graph is an abstraction of the interprocedural call graph. It contains
the methods and for each method � the call sites in � . Figure 7.2 shows the ideal call graph
for the example program that has exactly one edge for each of the two call sites in � � � � � �� � .
We do not show the calls to constructors, as for these there is exactly one target determined at
compile-time, that is, the calls generated are not dispatched.

Figure 7.3 summarizes the number of outgoing edges for the two call sites in the example pro-
gram. Of course this example has been constructed to easily demonstrate the weak points of the
different approaches. However, it is legitimate to suppose that in real world programs similar
situations occur. The results in Chapter 8 prove that this indeed is the case.

What all approaches have in common is a set
�

of reachable methods, that is initialized to the

101

102 CHAPTER 7. RELATED WORK

��
���� !#"%$ ��� �
+

6 4 ��� ! "&$ ��� � � ! "&$ ��� � ��< � + +���� � +�� � --
��
���� ��
����#��� 4 � ������� ����� !#"%$ ���#�

+
� ���4� 4 � �&� �6 4 ������
���� ��� 4 � ����
����#��� 4 � ��� � +

��� � ! "&$ ��� � � ��� � ���� � � 4 � �&� � � � +&��� � +�� �-
6 4 ��� ������ ����
���� ��� 4 �*� " � +

� �&��� �
� � � " � � 4 � �&� �� � � � � �
� " � � 4 � �&� � � �+���� � +�� �-

-
��
���� ��
����#��� 4 ��	 �����&������� ��
����#��� 4 �

+
6 4 ������
���� ��� 4 �
	 ����
���� ��� 4 �
	.��� � +

��� � ��
����#��� 4 � � ��� � �+���� � +�� �-
6 4 ��� ������ ����
���� ��� 4 �
	 ���� +� �&� . �. � �&� � � 4 � �&� �. � .�� � �

�&� � � 4 � �&� � . �+���� � +�� �-
-

��
����� ��
���� ��� 4 ���*������� ��������
���� ��� 4 �
+

6 4 � ����
���� ��� 4 ��������
���� ��� 4 ���3��� � +
�&� � ��
���� ��� 4 � � �&� � �+&��� � +�� �-

6 4 � � ����� � ����
���� ��� 4 ��� � � � +
� ����� �
� � �

�
� � 4 � ��� �

� � � ��� �
�
�
� � 4 � ��� � � �+&��� � +�� �--

��
����� ; "" ������� ����� !#"%$ ���#�
+

�#����������6 4 ���� �&� � � � +
��
���� ��� 4 �0��� ��� ; % ���#����� �
��� ��� ; � ��������
���� ��� 4 � � � �
��� ��� ; � ��
���� ��� 4 � �!��� ��� ; � ���� ����� � ��������
���� ��� 4 � � � �
��� ����� � ��
���� ��� 4 � �!��� ����� � ���� ����� � ��������
���� ��� 4 ��	 ��� �
��� ����� � ��
���� ��� 4 ��	 � ���#������� ���� ����� � ����� � � ���#������� ���� ��� ; � ����� � � ���#��� ; � �+&��� � +�� �-

-

Figure 7.1: Extended example program

App.main Election.tick(Election ta)

Election2.tick(Election2 tc)

Election3.tick(Election3 te)Election

candA.tick(candA)

Election

candA.tick(candA)

Figure 7.2: The correct call graph

7.1. NAME BASED RESOLUTION 103

Analysis call site 1 call site 2

no analysis 3 3
CHA 3 3
RTA 2 2
VTA 1 2
DTA 2 2
XTA 2 2
CFA 1 1

Election.tick: Election −> void

Election.Election: −> constr

Object.Object: −> constr

Election2.Election2: −> constr

Election2.tick: Election2 −> void

Election3.Election3: −> constr

Election3.tick: Election3 −> void

Object

Election

Election3Election2

Figure 7.3: Number of call edges
for the example program.

Figure 7.4: Class hierarchy graph for the example
program

entry points of a program.

7.1 Name Based Resolution

Name based resolution (NBR) is a simple algorithm that exists in two variations. The one kind
only takes the name of methods into account for constructing the call graph. The other kind
requires the signature of methods to be equal. The simpler name based version can be described
by

� � � �
for all entry points

�
of a program

� for each method 	 containing a virtual call site
� � � � ,.,., � and each method 	 � with name� : 	

� � �
	�� � � .

These constraints state that the entry points of a program are reachable and that for each call
site in a reachable method all methods with matching names are reachable. The set

�
we are

interested in is the least set fulfilling these constraints. This allows to delete as many methods as
possible.

For the example program, name based resolution cannot distinguish between the different def-
inition of method � � � 	 . Thus for the two call sites each of the implementations occurs to be
callable. The result is illustrated in Figure 7.5.

104 CHAPTER 7. RELATED WORK

App.main Election.tick(Election ta)

Election2.tick(Election2 tc)

Election3.tick(Election3 te)Election

candA.tick(candA)

Election

candA.tick(candA)

Figure 7.5: Call graph constructed by Name Based Resolution and Class Hierarchy Analysis

7.2 Class Hierarchy Analysis

Class hierarchy analysis (CHA) [DGC1995, Fer1995] provides a slight improvement compared
to name based resolution. Beside the name of a method it also takes into account the defined
type of an expression. Just like NBR, class hierarchy analysis only uses one set

�
for the whole

program.

� � � �
for all entry points

�
of a program

� for every method 	 , every call site
� ��� � � � � � ,.,., � in 	 and each

 � 7 B � � � � �
with

MostSpecial
� � � � � AT

� � � � � � � MT
� � � � � ! 	 � :

	
� � �

	�� � �

The first constraint again demands all entry points of a program to be reachable. The second
constraint is a little bit more restrictive than the second constraint of NBR – in addition it requires
the method to be visible in a sub class

 � of the class of
�

.

Also this approach is not able to limit the number of call edges, as the declared types of the
variables

������� � and
������� � is # ����� � ���	� . Thus any of the implementations of � � � 	 could be

called. Thus as illustrated in Figure 7.5, the call graph constructed based on CHA is the same as
for NBR.

7.3 Rapid Type Analysis

Rapid type analysis (RTA) [Bac1998] has been developed as an extension of CHA. Like that,
it takes into account the declared types of the expressions that are used to call methods. Ad-
ditionally, RTA collects information, objects of which classes may be created. That is, all

�� �
statements are collected in a newly introduced set . The constraints are

� for all entry points
�

of a program
� � �

7.4. VARIABLE TYPE ANALYSIS 105

� for every method 	 , every call site
� ��� � � � � � ,.,., � in 	 and each

 7 B � � � � �
with

MostSpecial
� � � � AT

� � � � � � MT
� � � � � ! 	�� :

	
� � � � � �

	 � � �
� for every method 	 and every object creation

��� � �� � in 	 :
	
� � � � �

As can be seen the constraints are almost equal to that of CHA. The extension is, that the method
selection in the second constraint is restricted to match only those methods that are members of
classes that really are created at run-time.

As the only
��� �

statements in the program create objects of class # ��� � � ���	� and class
# ����� � ���	��� , the implementation of � � � 	 in class # ��� � � ���	� � is detected to be uncallable.

App.main Election.tick(Election ta)

Election2.tick(Election2 tc)

Election3.tick(Election3 te)Election

candA.tick(candA)

Election

candA.tick(candA)

Figure 7.6: Call graph constructed by Rapid Type Analysis, Declared Type Analysis and Ex-
tended Type Analysis

7.4 Variable Type Analysis

Rapid type analysis still is rather coarse grained in a sense that it claims that an object with
declared type � may at run-time point to an object of type � � with � 7 B � � whenever there is an
instantiation of � � anywhere in the program. Variable type analysis (VTA) [SHR

�

2000] not only
inspects the

������� � statements but also looks at assignments between variables. The requirements
imposed on the form of programs are similar to those we formulated in Chapter 3.

The analysis is based on a type propagation graph. Each of the nodes represents a local variable,
a method parameter or a class member that has class type. Just like the labels we assign to
method bodies, there is a special node for methods that return a class value. The edges in the
graph resemble assignments between the entities represented by nodes. For method calls edges
are added between arguments and parameters just as seen in Chapter 4. However, as VTA is a
flow insensitive analysis, the targets of call sites must be approximated statically. Here, a standard
technique like RTA or CHA is used.

VTA is performed in four steps:

1. construct a conservative call graph

106 CHAPTER 7. RELATED WORK

2. build the type propagation graph

3. initialize those nodes with � � �
that represent variables that are assigned a newly created

object of type �
4. propagate this information in order to compute a fixpoint of sets of classes

The first two steps can be combined to be performed at the same time. Again, this can be modeled
by representing the nodes in the type propagation graph as sets.

Then, the constraints again look similar to those already seen:

� for all entry points
�

of a program
� � �

� for every method 	 , every call site
� � � � � � � ��� ' � ,.,., � � 8 � in 	 and each

 7DB � � � � �
with MostSpecial

� � � � AT
� � � � � � MT

� � � ��� ! � � 	�� � � � ' � ' � ,.,., � � �
8

�
8
� :

	
� � � � � �

	 � � � � �
� �
� � �

�

� for every method 	 and every object creation
��� � �� � in 	 :

	
� � � � �

� for every method 	 and every assignment between two entities represented as nodes � %

and � %

:

	
� � �

	
8
���

�

�
	
8 �

�

�

Having constructed the type propagation graph, its strongly connected components are identified
and collapsed. As the resulting graph is static and will not change anymore, algorithms for union
based problems like that presented in [WM1995] can be used to compute the sets in one pass
over the graph.

It is noteworthy, that the overall complexity of the total analysis mainly depends on that of the
analysis used for computing the approximative call graph.

The type propagation graph used to construct the call graph is shown in Figure 7.8. The
nodes represent variables where the upper half contains the variable name in the notation

App.main Election.tick(Election ta)

Election2.tick(Election2 tc)

Election3.tick(Election3 te)Election

Election

candA.tick(candA)

candB.tick(candB)

Figure 7.7: Call graph constructed by Variable Type Analysis

7.4. VARIABLE TYPE ANALYSIS 107

� �������
��� � � � � � � �
������� � � � ��� �
��� � ������� � � . The lower half contains the computed set. The re-
sulting call graph is given in Figure 7.7. As can be seen, VTA has found out that the created
object of # ��� � � ���	��� will not be stored in

������� � .

Election

App.main.candA

App.main.candB

Election.tick.tb

Election2.tick.td

Election,Election2

Election,Election2

Election,Election2

Figure 7.8: Type propagation graph for VTA

Election,Election2

Election,Election2

Election

Election,Election2

Election

Election2

Figure 7.9: Type propagation graph for DTA

7.4.1 Declared Type Analysis

In [SHR
�

2000] the authors also introduce a second technique called declared type analysis which
is far less precise then VTA. Instead of mapping each variable to a node of the type propagation
graph, now a set is associated with each declared type. The resulting graph is given in Figure
7.9. As one would expect, the result given in figure 7.6 is less precise then with VTA, namely
it equals the one created by RTA. In the example this is due to the fact that the two calls are
based on variable with the same declared type. The advantage of DTA is that the resulting type
propagation graph has fewer nodes and edges. However, as the graph resulting from VTA can be
solved in one pass it does not seem to be necessary to choose DTA.

For reasons of completeness we give the constraints. Again, implicitly RTA is used.

� for all entry points
�

of a program
� � �

� for every method 	 , every call site
� � � � � � � ��� ' � ,.,., � � 8 � in 	 and each

 7DB � � � � �
with MostSpecial

� � � � AT
� � � � � � MT

� � � ��� ! � � 	�� � � � ' � ' � ,.,., � � �
8

�
8
� :

	
� � � � � �

	 � � � � � �
� � �

� � �
�

�
�

� for every method 	 and every object creation
��� � �� � in 	 :

	
� � � � �

� for every method 	 and every assignment between two entities represented with static type
� � %

and � � %

:

	
� � �

	 � � � �
�
	 �

�
�

�

As can be seen the constraints are structurally equivalent with those from VTA. The difference
is that all variables and fields with the same declared type are mapped onto the same node in the
type propagation graph.

108 CHAPTER 7. RELATED WORK

7.5 Extended Type Analysis

The algorithms presented up to now can be characterized by an increase in sets used to abstract
the program. Extended type analysis (XTA) as presented by [TP2000] uses a set for each method
and each field. These sets are used to propagate sets of created classes over call edges. The
idea is, that objects created in function � are also visible in functions ��� that are called from � .
Equivalently, if method � � has a class return type, objects created in � � may flow back to � .

The constraints for XTA are formulated by means of a function
�

� � � �

��� � � �
Classes

� �� �
Classes

�
,
�

� � � �

��� � �:� � �� �
 7DB � � � � � �

.

� for all entry points
�

of a program
� � �

� for every method 	 , every call site
� � � � � � � ��� ' � ,.,., � � 8 � in 	 and each

 7DB � � � � �
with MostSpecial

� � � � AT
� � � � � � MT

� � � ��� ! 	 � :�
	
� � � � �

�
� �

	 � � � � �

� � � �

��� � � � � % � � � � � � ��

� � � �

��� � � � � % � � � � � � �
� �
� �

� for every method 	 and every object creation
��� � �� � in 	 :

	
� � � � �

�

� for every method 	 and every read of field � :
	
� � �

�

�
� �

�

� for every method 	 and every write
� ��� � � :

	
� � � �

� � � �

��� �
FieldDecl

�

� � � � % � � ��� �

The resulting constraint graph ensures, that each method is analyzed with the sets of classes of
objects that may reach the method. This is modeled by passing sets of classes along call edges
and back along return edges. Like in our analysis, each class or instance field is modeled by a

App.main

Election, Election2

App.main

Election, Election2

App.main

Election, Election2

App.main

Election, Election2

App.main

Election, Election2

Figure 7.10: Type propagation graph for Extended Type Analysis

7.6. CONTROL FLOW ANALYSIS 109

Election,Election2

Object.Object

Election2.Election2

CALL ElectionCALL Election

Election3.Election3

Election3.tick Election2.tick

1

2

6 12

915

18

21 25

Election.tick

App.main

CALL tick

CALL Election2CALL Election

CALL tick

Election2Election

Election.Election

Election

Election

Election2

Election2

Election2Election

Election2

Election2

Election,Election2

CALL Object

Election,Election2

Figure 7.11: Constraint graph for � -CFA

single set. Whenever a read from or a write to a field

occurs in method � , the set
� � is added to

�
� .

Figure 7.10 shows the constraint graph for the example program. The upper string is the name
of the method 	 represented by the node, the lower strings represent the classnames in

�
� .

Compared to VTA, XTA does not associate single sets with variables. This is the reason, that for
the two call sites the implementations of � � � 	 in # ��� � � � �	� and # ��� � � ���	��� are detected to be
callable. Thus, the call graph equals that computed by RTA and DTA (c. f. Figure 7.6).

7.6 Control Flow Analysis

Control flow analysis originally has been developed for the analysis of functional programming
languages [Shi1991, NNH1999]. A typical feature of imperative languages is, that each node
only has a small number of successors. As this fails for higher–order languages, control flow
analysis tries to identify for each expression the set of possible functions it may evaluate to at
run-time. An introduction can be found in Section 2.1 and Chapter 4.

As described in Chapter 4, CFA labels all interesting program points. Actually, as the example
used in this chapter almost equals that from Chapter 4, we will not repeat the construction of the
constraint graph. Figure 7.11 gives the already solved graph. As seen before, special nodes have
been colored. The resulting call graph is the correct one containing exactly one edge per call site

110 CHAPTER 7. RELATED WORK

as given in Figure 7.2.

The constraint formulation is rather complex as seen in Chapter 4. This is caused by the com-
plexity of the analysis. While the approaches seen up to new are flow and context insensitive,
CFA is not. That is, it actually needs to model the flow of data in procedures and thus needs to
inspect every single statement. This has been shown in Tables 4.7 and 4.8. In our approach, the
set
�

has been modeled in the solver by the set
� � � � � � .

Chapter 8

Evaluation and Applications

This chapter provides an evaluation of rapid control flow analysis. RCFA has been implemented
in � �� , the ��!�"�#�" compiler [RBLP2000]. In order to allow for a comparison with standard
techniques, additionally rapid type analysis has been implemented, c. f. [Bac1998] and Section
7.3. These analyses will be applied to real world programs.

One problem occurring due to the run-time framework developed in the project is that exceptions
are not supported. While they easily fit into our analysis as shown in Chapter 6, their implemen-
tation in the run-time system has not yet been finished. Unfortunately, exceptions are a heavily
used mechanism for execution control in most object-oriented languages. Some researchers even
promote them as a standard approach to control program execution [Hor2000]. Of course, the
choice of benchmarks has been heavily influenced by this limitation. However, as [TP2000]
point out, while the effect of exceptions on program execution is important its impact on the
complexity of call graph construction is minimal.

Additionally, the run-time system is based on a restricted set of the Java standard classes. Fea-
tures like dynamic class loading and reflection have been cut out in order to allow application of
static analyses. The first one allows to dynamically load classes into a running program. As a
result, the program may create objects of this new classes and may call objects on them. That
is, the set of created classes may be changed at run-time. However, all optimizations performed
require this set to be static. There has been some work on how to combine these features with
optimizations, c. f. [ST2000]. This approach may be adopted to a framework using our analysis.
Reflection also is problematic, as it allows the program to determine methods available from a
class. It thus may dynamically construct a method call and execute it. However, this makes it
impossible to predict and limit the set of callable methods.

We will now present the evaluation results. Section 8.2 will demonstrate some practical applica-
tions of the results of the analysis.

All measurements have been taken on a
� # � � ��� � � ��� ��� �� ��� with a 750MHz Pentium III and

384MB main memory.

111

112 CHAPTER 8. EVALUATION AND APPLICATIONS

classes methods stmts calls
benchmark � � �

static dispatched���������	�
�����������������
209 1629 26511 1615 1943

� ���������� ��������� 232 1822 30614 1985 2342� � � � ��� � ��� ��� ��������� 251 2043 37739 2718 3013
� � � ��������� � ������� 265 2128 38132 2436 2972

Table 8.1: Static characteristics of the benchmark programs

sccs edges
� !�� � " � ! ��# � � �

benchmark � � � � �
���������	�
�����������������

948 695 57 52 207
� ���������� ��������� 1877 1438 108 87 444
� � � ��������� ��������� 2150 1701 193 91 490� � � �
��� � ��� ��� � ������� 2855 2139 164 91 732

Table 8.2: Static characteristics of the generated constraint graphs

8.1 Evaluation

Before giving the evaluation results we first give a short overview of the benchmarks used and
the criteria evaluated.

8.1.1 Benchmark Programs

���������	�
����������������

The first benchmark we use is
���������	�
����������������

. This may sound astonishing, as usually trans-
lating and analyzing this program is a typical beginner’s test case. However, recall that we
analyze whole programs. Thus we need to handle the standard Java libraries which makes it
quite a step to be able to handle the one liner.

� � � ��������� ��������� A Java implementation of the well known file compression program
� � � ���������

serves as the second benchmark. We will run the generated binary on input files with
different sizes. This allows to get a feeling for the impact of the optimization on the
dynamic behavior of a program.

� ���������� � ������� The third benchmark program serves to demonstrate that our analysis is
thread aware. Using techniques like those presented in [CKRW1998, CKRW1999],

8.1. EVALUATION 113

� ��������� semantics could easily be extended to handle threads. Due to the abstraction ap-
plied to class and instance members, the analysis can handle threads anyway.

� ������� ����������� � � � 	 � � �
��� � ��� �	� This is a part of the JavaGrande benchmark suite. It tests
method calling on several constructs. For this benchmark we give the data reported by the
benchmark. These cannot be compared to results found in literature. As already pointed
out, our framework lacks some important features compared to others.

Tables 8.1 and 8.2 give an overview of some static characteristics of our benchmarks. These are

� the number of classes and methods in the class, including those from the standard libraries

� the number of call statements in the methods, split into static and dynamic calls

� the size of the generated constraint graph

� the size of the solved constraint graph

The last three include the counts of
� ! � � , " � ! ��# and

 � � � functor nodes in the graph. These
numbers are given for normal and optimized total graph and for the solved graph of the modular
approach.

8.1.2 Evaluation Criteria

The evaluation is based on several criteria, that are typically used to compare techniques for
construction of the interprocedural control flow graph.

Analysis Result. The result is measured by the count of

� types available per method and per program
� monomorphic and polymorphic call sites
� call edges in the resulting graph
� reachable methods

The number of available types per method can be considered the essential measure for call
graph construction algorithms. The number of reachable methods and the number of call
edges directly depends on this count.
Monomorphic call sites are those that have only one possible target. Equivalently, poly-
morphic call sites have two or more possible targets. This classification is of particular
interest, as for monomorphic call sites the constructed call graph is exact.
The number of reachable methods is a measure for the reduction of the resulting program
size.

114 CHAPTER 8. EVALUATION AND APPLICATIONS

Analysis and Optimization Time. This is the total duration of the analysis and the optimiza-
tion, that is including the collection of data from the intermediate representation, analyzing
it and optimizing the IR.

Total Compilation Time. We measure the total run-time of � �� . The time is measured for a
compiler run without any further optimizations. That is, the program is parsed, the analysis
is applied, the object-oriented extensions are lowered and code is generated.

Binary Size. The size of the binary created. This is directly related to the number of reached
methods and is given for reasons of completeness.

Dynamic Counts. We run the created binary and count for each call how often it is executed.
The distinguished calls are

� static calls to class members
� polymorphic dynamic calls
� monomorphic dynamic calls

8.1.3 Results

Table 8.3 gives the results of running RTA and RCFA on our benchmark programs. The first
line gives the relevant numbers for running � �� without any optimization. For each benchmarks
the following lines give the results for running RTA and RCFA. For RCFA three lines are re-
served - RCFA gives the times for recompiling the constraints. In measuring precompiled, the
precompiled constraints have been used. Finally, 1-RCFA gives the results for running a 1-CFA.

There are several interesting points regarding this table. First, the number of reachable methods
is significantly reduced between 16% and 40%. However, what is even more important is the
number of call edges in the resulting call graph. This is reduced to 41% to 69%. This is a
direct consequence of the flow sensitiveness of rapid control flow analysis. The most interesting
results are the numbers for 1-RCFA. While the expectation would be to gain precision when
adding contexts, this obviously is not the case due to the abstraction we use in our solver. Since
we construct the graph consisting of the strongly connected components, we can not perform
destructive update on propagated sets. Thus, even if we have several copies of a method in our
constraint graph, still the set of all classes computed for the object is propagated.

Table 8.4 gives a detailed overview of the classifications of call sites. We give the percentage
of unreached, monomorphic and polymorphic call sites remaining in the program. Additionally,
the changes from RTA to RCFA are given, that is how RCFA improves on the classification
as performed by RTA. It is noteworthy that already RTA does a very good job in classifying
monomorphic call sites.

Finally, Table 8.6 gives an overview of some execution counts. We have instrumented the gener-
ated code to sum executions of static, dispatched and resolved calls, respectively. These numbers

8.1. EVALUATION 115

classes procedures analysis compile rounds call edges setsize
benchmark # # time # # total per method

HelloWorld 209 1629 214.2
RTA 96 200 4.60 109.6 625 50

RCFA 73 159 5.41 103.7 887 352 44 2.79
precompiled 73 159 4.65 102.9 887 352 44 2.79

1-RCFA 73 159 4.69 102.9 1325 352 44 2.79

threads 232 1822 290.7
RTA 123 370 7.3 173.6 1775 92

RCFA 89 233 7.8 149.6 1965 735 63 2.91
precompiled 89 233 6.4 147.1 1965 735 63 2.91

1-RCFA 89 233 6.5 147.3 3695 735 63 2.91

methodbench 251 2043 384.1
RTA 136 421 11.2 227.0 2707 95

RCFA 98 254 13.7 199.2 2948 1166 67 3.02
precompiled 98 254 10.7 195.6 2948 1166 67 3.02

1-RCFA 98 254 11.7 196.6 8202 1166 67 3.02

compress 265 2128 412.4
RTA 129 329 11.0 222.2 1125 84

RCFA 102 278 12.7 210.0 2407 787 67 3.05
precompiled 102 278 11.5 208.7 2407 787 67 3.05

1-RCFA 102 278 11.9 209.1 4865 787 67 3.05

Table 8.3: Results for RCFA and RTA

RTA RCFA
benchmark unreached mono poly unreached mono poly

helloworld 95.4% 4.0% 0.6% 97.1% 2.8% 0.1%
threads 89.7% 8.5% 1.8% 94.5% 5.4% 0.1%
methodbench 88.3% 9.7% 2.0% 93.2% 6.8% 0.1%
compress 92.6% 6.5% 0.9% 94.0% 5.8% 0.2%

Table 8.4: Classification of dispatched call sites

are given for the unoptimized benchmarks and for those optimized with RTA and RCFA. The
compress benchmark has been run on one data file of 1 kByte size for one round and on a 2
kByte big file. What can be seen is that obviously all input size related calls could be resolved
by RTA and RCFA.

116 CHAPTER 8. EVALUATION AND APPLICATIONS

Figure 8.1: Improvement on class and method counts

mono � poly �
benchmark unreached mono unreached mono poly

helloworld 77 158 23 7 7
threads 212 351 104 8 7
methodbench 249 522 134 14 7
compress 64 388 33 11 14

Table 8.5: Changes in the classification of dispatched call sites

unoptimized RTA RCFA
benchmark static disp. res. static disp. res. static disp. res.

helloworld 173 5944 0 173 18 5926 173 10 5934
threads 468 6628 0 468 35 6593 468 20 6608
methodbench 2301 7923 0 2301 270 7653 2301 96 7827
compress 1KB 672 17494 0 672 108 17386 672 74 17420
compress 2KB 672 27605 0 672 108 27497 672 74 27531

Table 8.6: Execution counts for call statements

8.2. PRACTICAL APPLICATIONS 117

unoptimized RTA RCFA
benchmark perf. del. perf. del. perf. del.

helloworld 5926 0 32 5894 30 5896
threads 6585 0 66 6519 60 6525
methodbench 33127 0 715 32412 512 28615
compress 7356 0 85 7271 77 7279

Table 8.7: Execution counts for null pointer checks

8.2 Practical Applications

Having shown the evaluation data for rapid control flow analysis, we now turn to presenting
some practical applications of the results. One of our claims is that static analysis benefits from
the increased accuracy of the interprocedural control flow graph. We will present results for such
an analysis, the elimination of null pointer checks. It has been implemented using the program
analyzer generator

� � � , c. f. [Mar1999b].

Finally, we briefly detour to Eiffel, another statically typed object-oriented language. Some
years ago, there has been a discussion regarding a supposed type error in its type system,
c. f. [Mey1988, Coo1988]. We will show that rapid control flow analysis could have helped
in resolving the problem.

8.2.1 Eliminating Null Pointer Checks

When introducing exceptions in Chapter 6 we mentioned that for every access to an object the
Java language definition [GJS1996] requires that the object is checked to be not

� � ��� . If it
happens to be

� � ��� , a null pointer exception must be thrown. Obviously, this is a very pessimistic
approach. E. g. when a dynamically dispatched method is called, the object on that the call was
executed has been checked already. When this object is in the method to access some class
members or call other methods, clearly no further check should be performed.

The analysis and optimization we have implemented traces already checked variables through
the program. The generated code is instrumented to count necessary and resolved null pointer
checks. Tables 8.7 and 8.8 give the results; these include the analysis effort, that is the steps
performed by the PAG analyzer, and the run-time counts of performed and resolved null pointer
checks. As can be seen in Figure 8.2, the number of steps needed by the analyzer grows expo-
nential with the number of call edges in the call graph. Thus, a call graph as exact as possible is
worth the higher effort needed to compute a flow-sensitive solution.

118 CHAPTER 8. EVALUATION AND APPLICATIONS

Figure 8.2: Relation between number of call edges and analyzer steps

RTA + NPC RCFA + NIL
benchmark edges steps edges steps

helloworld 625 12749 352 5195
threads 1775 46487 735 13844
methodbench 2707 92480 1166 28986
compress 1125 23947 787 15969

Table 8.8: Call edges and analyzer performance

8.2. PRACTICAL APPLICATIONS 119

8.2.2 Eiffel Type Error

Eiffel [Mey1988] is a statically typed object-oriented language, that is, it belongs to the same
language class as Java. In the late eighties there was a discussion regarding a loophole in the
Eiffel type system [Coo1988, Mey1989].

This loophole was introduced because in Eiffel classes may not only inherit, overwrite or define
methods; they also may remove methods from their interface. Assume classes

�
,
�
, where

�
defines a method

(what Eiffel calls features), and

�
extends

�
but removes

from its interface.

One instance of the type loophole phenomenon can be constructed by
� � � � � � � �
� � ����� � � �
� � � � �
� �
 �

This will result in a run-time error, since
�

will point to a
�

object. While the static type of
�

knows about feature

, the run-time type does not. Using flow-sensitive techniques, the compiler

would be able to detect at least some of these errors.

In order to prohibit this kind of run-time errors, the Java designers do not allow a child class to
define a method with more restrictive attributes than the parent class. That is, in Java terms

�
could not declare method

as private.

In [Mey1989] an incremental type checker is proposed, that shall prohibit this type loopholes.
Actually, its functionality is a side effect of rapid control flow analysis.

120

Chapter 9

Conclusion

If you permit yourself to read meanings into
(rather than drawing meanings out of) the ev-
idence, you can draw any conclusion you like.

Michael Keith, ”The Bar-Code Beast”, The
Skeptical Enquirer Vol 12 No 4 p 416

In the previous chapters, we have presented a system for flow-sensitive, scalable interprocedural
control-flow graph construction, using a demand-driven scalable solver for constraint based con-
trol flow analysis. Construction of the ICFG is a key problem when analyzing, optimizing and
translating object-oriented languages.

The problem occurs due to the concept of dynamic dispatch, where only at run-time is decided
which implementation of a method to call. Thus, the compiler may not easily determine possible
targets of method calls. Here, techniques for construction of the ICFG help.

On the one hand, they enable to identify methods that may never be called. Since object-oriented
languages usually use huge standard libraries, this is important when whole-program analysis is
performed. As seen in the evaluation, many methods can be deleted as they can be identified as
unreachable.

On the other hand, having constructed the ICFG the large set of well-known interprocedural data
flow analyses that have been developed for imperative languages may be applied. These analyses
require a fixed control-flow graph that usually does not exist in a compiler for object-oriented
languages.

This chapter gives an outlook on possible future development and concludes the achievements.

121

122 CHAPTER 9. CONCLUSION

9.1 Outlook

The framework we used to implement our analysis seems to be quite powerful. We were able to
implement a 1-CFA using the same formalism as presented in this thesis. Due to time constraints
we could not further investigate the possibilities of our framework. This remains to be done.

The solver we use is based on strongly connected components. These do not directly allow
destructive update, e. g., in the case of 1-CFA. Admittedly this is suboptimal with respect to
precision, but did seem acceptable in order to allow a scaling approach. It has to investigated
further, whether destructive update can be added while at the same time keeping scalability.

The major hindrance for our work has been the run-time system. As soon as exceptions will be
supported, we will be able to investigate the behavior of our approach using these. Due to the
separation of the solution for normal and exceptional data, it should be expected that the result
will be promising.

Last but not least we plan to reconsider the process of inserting edges into the graph. The strong
connectedness of the graph and the topological ordering are properties that should be kept up to
date dynamically. Our approach is fast, but in the worst case it revisits the whole subgraph the
newly inserted edge belongs to.

9.2 Achievements

We have presented an implemented approach to construction of the ICFG. We have taken existing
techniques and have combined them to a scaling approach. A standard Java semantics allowed
us to prove the correctness of our control flow analysis (CFA). The CFA has been transformed
to generate a constraint system. In standard approaches, this constraint system contains all con-
straints needed for analyzing the whole program. By introducing functor constraints, we are
able to partition the graph into independent regions, where each region represents the constraints
generated for one method. Using this independence, we are able to pre-analyze the Java stan-
dard libraries. This allows speed up of the analysis phase, as the constraint generation may be
skipped. The functor constraints are handled by our solver, that evaluates them and, if necessary,
adds new edges to the graph.

The solver has been applied to real-world programs to show applicability and scalability. The
results are twofold.

On the one hand, the generated ICFG is significantly smaller than those generated with currently
widespread techniques which we briefly review in the thesis. These techniques are discussed.

On the other hand, data flow analyzers are sped up enormously since the resulting call graph has
significantly fewer call edges. We exemplarily apply an analysis for elimination of null pointer
checks to our evaluation programs. Null pointer checks are one of the major reasons for bad
performance of Java programs, since at every access to an object it must be checked that the
object is not null. The results for this analysis show a direct correlation between the number of

9.2. ACHIEVEMENTS 123

call edges in the ICFG and the run-time of data flow analyzers. The results show that the number
of steps performed by the analyzer grows exponential with the number of call edges in the ICFG.
The extra effort needed to apply a flow-sensitive like RCFA is not a waste of resources.

This thesis proves that applying flow-sensitive techniques for construction of the ICFG are worth
the effort. Due to the sensitiveness the number of call edges in the ICFG can be reduced dra-
matically. This allows data flow analyzers not only to run faster but also to compute better
results. Additionally, during construction much more methods are detected to be unreachable
than with standard, flow-insensitive techniques. The reduced number of methods and the better
performance of data flow analyzers combine to create fast running binaries with small footprints.

124

Appendix A

Syntax of
�����������

Program � InterfaceList ClassList
ClassList � ClassBody ClassList

�

ClassBody � � ������� �� ����� � � Extends Implements� MemberDecls MethodList

�
InterfaceList � InterfaceBody InterfaceList

�

InterfaceBody � ��� � ����
�� ��� � � � ����
�� ��� � � InterfaceExtends� InterfaceMethodList

�
InterfaceMethodList � InterfaceMethod InterfaceMethodList

InterfaceMethod � ReturnType � � � ����
�� ��� 	 � � �
��� � � �
ParList � �

Extends � � � � ������ ��������
��� � � �

Implements � � � �
��� � ��� � � � � � ����
�� ��� ��� � � InterfaceNames

�

InterfaceNames � � � � � ���
�� ��� ��� � � InterfaceNames

�

MemberDecls � MemberDecl � MemberDecls

�

MemberDecl � VarType 	 � � � ������� � �

VarType � ��������
��� � � �
� � � ���
�� ��� ��� � � �

ArrayType
ArrayType � �������� ��� � � � � �

ArrayType
� �

MethodList � MethodBody MethodList
�

MethodBody � ReturnType 	 � � �
��� � � �
ParList �� VarDecls Stmts

��� ��� ��� �
Var

� � �
ReturnType � ����	� �

VarType
ParList � ParamList

�

ParamList � Param

�
ParamList

�
Param

Param � VarType
������� � ��� � �

Table A.1: Syntax of � ���������

125

126 APPENDIX A. SYNTAX OF ��� � ��" �

VarDecls � VarDecl � VarDecls
�

VarDecl � VarType � � ����� � �
Block � � Stmts

� �
Stmt

Stmts � Stmt � Stmts
�

Stmt � ��

Expr � ����� Block

�������
Block�

Var � Rhs�
Call�
� ���� � Variable�
� � � Block CatchList

CatchList � Catch Catches
�
Catches

��������� � Block
Catches � Catch Catches

�

Catch � ��� � ��� �� �����
��� � � � ������� � � Block

Rhs � Var� ��� � ��������
��� � � � �
�

Call
Call � Variable

� 	 � � �
������� � ��
ArgList �

ArgList � VarList
�

VarList � Variable
�

VarList�
Variable

Var � Variable�
Member

Variable � � ������� � ��
� � ���

Member � �������� ��� � � � 	 � � � � ����� � ��
Variable

� 	 � � � � ����� � �

Table A.2: Syntax in � �������� (cont.)

Appendix B

Precompiled Constraint Files Format

constraintfile � header entries szkinfo
header � PROC name label LABELS label (optlabellist)
entries � entry entries

entry � node
�
classnode

�
callnode

�
loadnode

�
storenode

�
edge

node � N label label
classnode � CLASS label label name

callnode � CALL label name label (optlabellist) name name
loadnode � LOAD label name label label name
storenode � STORE label name label label name

edge � EDGE label label
optlabellist � labellist

�

labellist � label labellist

�
label

name � NAME
label � INTEGER

szkinfo � szklist szksucclist
szklist � szkentry szklist

�

szkentry � szk szknodes

szk � SZK label
szknodes � label szknodes

�

szksucclist � szksucc szksucclist

�

szksucc � SZKSUCCS label labellist

Table B.1: Grammar for precompiled constraints files

127

128

Bibliography

[AAvS1994] Martin Alt, Uwe Aßmann, and Hans van Someren. Cosy compiler phase em-
bedding with the cosy compiler model. In Proceedings of the Conference on
Compiler Construction CC, 1994.

[ACE] ACE Compiler Experts b.v., Amsterdam.
� � � � � ��� � � �

.

[Acz1977] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor, Hand-
book of Mathematical Logic, volume 90 of Studies in Logic and the Foundations
of Mathematics, chapter C.7, pages 739–782. North-Holland, 1977.

[Age1995] Ole Agesen. The cartesian product algorithm: Simple and precise typing of para-
metric polymorphism. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 2–26, 1995.

[AH1996] Gerald Aigner and Urs H ölzle. Eliminating virtual function calls in C++ pro-
grams. Lecture Notes in Computer Science, 1098:142–??, 1996.

[AM1995] Martin Alt and Florian Martin. Generation of Efficient Interprocedural Analyzers
with PAG. In Alan Mycroft, editor, SAS’95, Static Analysis Symposium, volume
983 of Lecture Notes in Computer Science, pages 33–50, 1995.

[Aßm1996] Uwe Aßmann. How to uniformly specify program analysis and transformation
with graph rewrite systems. In Tibor Gyimothy, editor, Compiler Construction,
6th International Conference, volume 1060 of Lecture Notes in Computer Sci-
ence, pages 121–135, 1996.

[Aßm1998] Uwe Aßmann. A tutorial for optimix. Technical Report iratr-1998-14, University
of Karlsruhe, Germany, Computer Science, 1998.

[Aßm2000] Uwe Aßmann. Graph rewrite systems for program optimization. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 22(4):583–637, 2000.

[Aßm2001] Uwe Aßmann. Proceedings of JOSES – Java Optimization Strategies for Embed-
ded Systems Workshop at ETAPS 2001. Technical Report 2001-10, Fakult ät f ür
Informatik, Universit ät Karlsruhe, April 2001.

129

130 BIBLIOGRAPHY

[Bac1998] David Francis Bacon. Fast and Effective Optimization of Statically Typed Object-
Oriented Languages. PhD thesis, University of California, Berkeley, 1998.

[Bau2001] J örg Bauer. A control-flow-analysis for multi-threaded java with security appli-
cations. Master’s thesis, Universit ät des Saarlandes, 2001.

[BH1998] Bernhard Bauer and Riitta H öllerer. Übersetzung objektorientierter Program-
miersprachen. Springer, 1998.

[CC1977] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approximation of fixed
points. In Proceedings of the 4th ACM Symposium on Principles of Programming
Languages (POPL), pages 238–252, 1977.

[CKRW1998] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. From
sequential to multi-threaded Java – an event-based structural operational seman-
tics. Lecture Notes in Computer Science, 1349, 1998.

[CKRW1999] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. An
event-based structural operational semantics of multi-threaded Java. Lecture
Notes in Computer Science, 1523, 1999.

[CLR1992] Thomas H. Cormen, Charles Eric Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press/McGraw-Hill, 1992.

[Coo1988] William Cook. A proposal for making eiffel type-safe. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), 1988.

[DE1997] Sophia Drossopoulou and Susan Eisenbach. Java is type safe — probably.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer Science, 1997.

[DE1999] Sophia Drossopoulou and Susan Eisenbach. Describing the semantics of Java and
proving type soundness. Lecture Notes in Computer Science, 1523, 1999.

[DGC1995] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. Lecture Notes in Computer Sci-
ence, 952, 1995.

[Die1996] Stephan Diehl. Semantics-Directed Generation of Compilers and Abstract Ma-
chines. PhD thesis, Universit ät des Saarlandes, 1996.

[DP2001] Holger Dewes and Christian W. Probst. Static method call in Java. Proceedings
of the Joses Workshop, 2001.

[DP2002] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

BIBLIOGRAPHY 131

[dS1990] Fabio Q.B. da Silva. Toward a Formal Framework for Evaluation of Operational
Semantics. Technical Report ECS-LFCS-90-126, University of Edinburgh, 1990.

[dS1992] Fabio Q.B. da Silva. Correctness Proofs of Compilers and Debuggers: an Ap-
proach Based on Structural Operational Semantics. PhD thesis, University of
Edinburgh, 1992.

[Fer1995] Mary F. Fernandez. Simple and effective link-time optimization of Modula-3
programs. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), pages 103–115, 18–21 June 1995.

[FHL
�

2001] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Rheinhard Wilhelm.
Reliable and Precise WCET Determination for a Real-Life Processor. In Embed-
ded Software Workshop, October 2001.

[FS1999] Christian Fecht and Helmut Seidl. A faster solver for general systems of equa-
tions. Science of Computer Programming, 35(2–3):137–161, November 1999.

[FW1999] Christian Ferdinand and Reinhard Wilhelm. Fast and Efficient Cache Behavior
Prediction for Real-Time Systems. Real-Time Systems, 17((2/3)), 1999.

[GAF
�

1999] Daniela Genius, Uwe Aßmann, Peter Fritzson, Henk Sips, Rob Kurver, Reinhard
Wilhelm, Henk Schepers, and Tom Rindborg. Java and CoSy Technology for
Embedded Systems: the JOSES Project. In Proc. of the European Multimedia,
Microprocessor Systems, Technologies for Business Processing and Electronic
Commerce Conference (EMMSEC’99), 1999.

[GJS1996] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[Hec1977] Matthew S. Hecht. Flow Analysis of Computer Programs,. Elsevier, 1977.

[Hor2000] Nigel Horspool. Implementing Java exceptions efficiently. Talk at the Dagstuhl
seminar 00451, Efficient Implementation of Object-Oriented Programming Lan-
guages, 2000.

[JC1999] Aonix Joe Colloca. Embedded real time systems market and the impact of java.
Talk at the J-Consortium Meeting in Kyoto, 1999.

[JS2001] Thomas Jensen and Fausto Spoto. Class analysis of object-oriented programs
through abstract interpretation. In Furio Honsell and Marino Miculan, editors,
Proceedings of the 4th International Conference, FOSSACS 2001, Lecture Notes
in Computer Science, pages 261–275, 2001.

132 BIBLIOGRAPHY

[JW1995] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in
higher-order languages. In Proceedings of the 22nd ACM Symposium on Princi-
ples of Programming Languages (POPL), pages 393–407, 1995.

[KS1992] Jens Knoop and Bernhard Steffen. The interprocedural coincidence theorem. In
4th International Conference on Compiler Construction, Lecture Notes in Com-
puter Science, pages 125–140, 1992.

[KU1977] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7:305–317, January 1977.

[Lau2000] Peeter Laud. Representation analysis – an overview. Technical Report 8603, The
JOSES Consortium, 2000.

[Lau2001] Peeter Laud. Analysis for object inlining in java. Proceedings of the Joses Work-
shop, 2001.

[Mar1998] Florian Martin. PAG – an efficient program analyzer generator. International
Journal on Software Tools for Technology Transfer, 2(1):46–67, 1998.

[Mar1999a] Florian Martin. Experimental Comparison of call string and functional Ap-
proaches to Interprocedural Analysis. In Stephan Jaehnichen, editor, Proceedings
of the 8th International Conference on Compiler Construction, volume 1575 of
Lecture Notes in Computer Science, pages 63–75, 1999.

[Mar1999b] Florian Martin. Generation of Program Analyzers. PhD thesis, Universit ät des
Saarlandes, 1999.

[Mey1988] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[Mey1989] Bertrand Meyer. Static typing for eiffel, 1989.

[NNH1999] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

[NvO1998] Tobias Nipkow and David von Oheimb. Java � 3 � % $ is type-safe – definitely. In Pro-
ceedings of the 25th ACM Symposium on Principles of Programming Languages
(POPL), pages 161–170. ACM Press, New York, 1998.

[Pet1994] Mikael Pettersson. RML — A new language and implementation for natural
semantics. Lecture Notes in Computer Science, 844, 1994.

[Pet1999] Mikael Pettersson. Compiling natural semantics. Lecture Notes in Computer
Science, 1549, 1999.

[Plo1981] Gordon Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University, 1981.

BIBLIOGRAPHY 133

[Pro1999a] Christian W. Probst. Control flow analysis – an overview. Technical Report 8602,
The JOSES Consortium, 1999.

[Pro1999b] Christian W. Probst. Static method invocation – an overview. Technical Report
8601, The JOSES Consortium, 1999.

[Pro2001] Christian W. Probst. Flow sensitive call graph construction for java. Proceedings
of the Joses Workshop, 2001.

[Pro2002] Christian W. Probst. Control flow analysis for libraries. In Proceedings of the
Static Analysis Symposium, 2002. to appear.

[RBLP2000] Tobias Ritzau, Marcel Beemster, Florian Liekweg, and Christian W. Probst. Joc
- the joses compiler. The Embedded Systems Show, 2000.

[RMR2001] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java
using annotated constraints. pages 43–55, 2001. Proceedings of the 16th ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages
and Applications (OOPSLA).

[SFA2000] Zhendong Su, Manuel F ähndrich, and Alexander Aiken. Projection merging:
Reducing redundancies in inclusion constraint graphs. In Proceedings of the 17th
ACM Symposium on Principles of Programming Languages (POPL), pages 81–
95. ACM, 2000.

[Shi1991] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie-Mellon University, May 1991.

[SHR
�

2000] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call
resolution for Java. ACM SIGPLAN Notices, 35(10):264–280, October 2000.

[SRW1999] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape-analysis via 3-valued logic.
In Proc. of 26th ACM SIGACT-SIGPLAN Symposium on Priciples of Program-
ming Languages, San Antonio, Texas, 1999.

[ST2000] P. F. Sweeney and Frank Tip. Extracting library-based object-oriented applica-
tions. In Proceedings of the 8th International Symposium on the Foundations of
Software Engineering, 2000.

[TP2000] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In Proceedings of the 15th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), Lecture Notes
in Computer Science, 2000.

[WM1995] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

