
A Polyhedral Approach
to Sequence Alignment Problems

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Technischen Fakultät

der Universität des Saarlandes

von

Knut Reinert

Saarbrücken
5. August 1999

Datum des Kolloqiums: 5. August 1999

Dekan der technischen Fakultät:
Professor Dr. Wolfgang Paul

Gutachter:
Professor Dr. Kurt Mehlhorn, MPI für Informatik, Saarbrücken
Professor Dr. John Kececioglu, University of Georgia, Athens, USA

2

3

Abstract

We study two problems in sequence alignment both from a theoretical and a practical
point of view. For the first time in sequence alignment, we use tools from combina-
torial optimization to develop branch-and-cut algorithms that solve these problems
efficiently. The Generalized Maximum Trace formulation captures several forms of
multiple sequence alignment problems in a common framework, among them is the
original formulation of Maximum Trace. The Structural Maximum Trace Problem
captures the comparison of RNA molecules on the basis of their primary sequence
and their secondary structure. For both problems we derive a characterization in
terms of graphs which we use to reformulate the problems in terms of integer linear
programs. We then study the polytopes (or convex hulls of all feasible solutions)
associated with the integer linear program for both problems. For each polytope we
derive several classes of facet-defining inequalities and show that for some of these
classes the corresponding separation problem can be solved in polynomial time. This
leads to a polynomial time algorithm for pairwise sequence alignment that is not
based on dynamic programming. Moreover, for multiple sequences the branch-and-cut
algorithms for both sequence alignment problems are able to solve to optimality
instances that are beyond the range of present dynamic programming approaches.

Zusammenfassung

Wir betrachten zwei Sequenz-Alignment-Probleme von einem theoretischen und prak-
tischen Standpunkt aus. Dabei nutzen wir Methoden der kombinatorischen Opti-
mierung, um Branch-and-Cut-Algorithmen zu entwickeln, die diese Probleme effizient
lösen. Das sogenannte Generalized-Maximum-Trace-Problem beinhaltet verschiedene
Arten von multiplen Sequenz-Alignment in einem einheitlichen Rahmen, darunter auch
das ursprüngliche Maximum-Trace-Problem. Das sogenannte Structural-Maximum-
Trace-Problem beschreibt den Vergleich von RNA-Molekülen, basierend auf deren
Primär- und Sekundärstruktur. Wir leiten für beide Probleme eine graphentheoretis-
che Formulierung her, welche wir dann zur Definition ganzzahliger linearer Programme
benutzen. Wir untersuchen die Polytope (d.h. die konvexen Hüllen aller zulässigen
Lösungen), die mit den ganzzahligen, linearen Programmen assoziiert sind. Für jedes
Polytop leiten wir mehrere Klassen facettendefinierender Ungleichungen her und zeigen,
daß für einige dieser Klassen das entsprechende Separationsproblem in Polynomial-
zeit gelöst werden kann. Dies impliziert unter anderem einen Polynomialzeitalgorith-
mus zum paarweisen Sequenzvergleich, welcher nicht auf dem Prinzip der dynami-
schen Programmierung beruht. Darüber hinaus sind die vorgestellten Branch-and-
Cut-Algorithmen in der Lage, Probleminstanzen einer Größe optimal zu lösen, die
mit Verfahren, welche auf dynamischer Programmierung beruhen, nicht gelöst werden
können.

Acknowledgments

The work on this thesis was carried out during the years 1994-1999 at the Max-Planck-

Institut für Informatik in Prof. Dr. Kurt Mehlhorn’s group. The MPI always provided a

very pleasant working environment. The technical facilities were excellent and the large

number of guests and researchers that visited our group created a stimulating research

atmosphere. I was able to get to know many of these people during my stay at MPI.

This is the place to say “thank you” to a lot of them. Foremost I would like to thank my

advisor Dr. Hans-Peter Lenhof. He certainly was the person who piqued my interest in

Computational Biology and during the past years he had the greatest influence on the

directions of my research. We often had long discussions that taught me a lot, even if

they sometimes were controversial. His enthusiasm and vision for the essential things

make him a distinguished researcher. Apart from him, Kurt Mehlhorn and Dr. Petra

Mutzel always had time to listen and to discuss problems. Petra taught me a lot about

combinatorial optimization and Kurt is simply an inexhaustible source of information

about any problem you can think of. Prof. Dr. John Kececioglu formulated the original

version of one of the problems I address in this thesis. We invited him several times

to the MPI, and each of his stays was valuable and fruitful for me, not only from

a scientific point of view. Our way of thinking about problems is very much alike.

Another person I had the honor to work with was Dr. Martin Vingron who has a very

likeable personality and a great style of working on problems. In addition, he was “a

living library” to me at the times we met or worked together. During the first year at

MPI, Dr. Phil Bradford was my office mate and we had a lot of fun together (we actually

also wrote a paper). Anybody who knows Phil knows what I mean. The contributions

of some of my friends and fellow PhD students cannot be counted here, but nevertheless

I shall try. They were room mates, office mates, correctors, discussion partners, and

they were always willing to cheer me up when the going got tough. Thank you Michael,

Gunnar, Rüdiger, Ralf, Oliver, René, Hannah, Volker, Susan and all the others. Also

many researchers that stayed at the MPI or were editors for some of the papers that

address the problems in the thesis made valuable remarks on some topics. Among all of

them I am particulary thankful to Prof. Dr. Pavel Pevzner and Prof. Dr. Naveen Garg.

Last, but by far not least, I want to thank my wife, Birgit, who always supported me

during this time, proofread the thesis and — being the librarian at the MPI — always

provided me with the papers and books I needed.

Contents

1 Introduction 1

2 Mathematical Preliminaries 17

2.1 Graph Theory . 18

2.2 Linear Algebra . 20

2.3 Polyhedral Theory . 21

2.4 Linear Programming . 22

2.5 Integral Polytopes . 24

2.6 Polyhedral Combinatorics . 25

2.7 Independence Systems . 26

2.8 Stringology . 28

3 Detecting Similarity – Alignments 29

3.1 Conventional Alignments . 30

3.1.1 Pairwise Alignments . 30

3.1.2 Multiple Alignments . 35

3.2 Structural Alignment . 38

4 Detecting Similarity – Traces 45

4.1 Conventional Traces . 46

4.1.1 Pairwise Traces . 46

4.1.2 Multiple Traces . 51

4.2 Structural Traces . 54

4.3 Gapped Traces . 56

CONTENTS

5 The GMT and SMT Problem 59

5.1 Problem Definition . 60

5.2 Dynamic Programming based Algorithms 61

5.2.1 The MT Algorithm . 61

5.2.2 The SMT Algorithm . 64

6 The Combinatorial Optimization Approach 67

6.1 The Generic Branch-and-Cut Algorithm 68

6.1.1 A Cutting Plane Approach . 68

6.1.2 Branch-and-Bound . 72

6.1.3 Branch-and-Cut . 73

6.2 The GMT Problem . 77

6.2.1 A Characterization of the GMT Problem as ILP 77

6.2.2 The Structure of the GMT Polytope 78

6.2.3 Bounds for the GMT Problem 88

6.2.4 Computational Results for the GMT Problem 91

6.3 The SMT Problem . 102

6.3.1 A Characterization of the SMT Problem as ILP 102

6.3.2 The Structure of the SMT Polytope 104

6.3.3 Bounds for the SMT Problem . 111

6.3.4 Computational Results for the SMT Problem 115

7 Discussion 137

8 Deutsche Zusammenfassung 141

9 Glossary 151

Bibliography 155

Index 161

iii

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION

Motivation

In 1865 Gregor Mendel started to conduct experiments about the nature of inheritance.

Based on his research with pea plants, Mendel proposed that the characteristics of an

offspring are determined by discrete units that are inherited from its parents. The

concept of the gene as the basic functional unit of heredity was born. However, it would

take until the middle of the 20th century to understand this concept at a molecular

level. At this time it was known that the nucleus of every living eukaryotic cell contains

long, linear macromolecules – called DNA – that are composed of only four basic

building blocks, the nucleotides adenine (A), cytosine (C), guanine (G), and thymine

(T). Experiments by Frederick Griffith in 1928 and later by Oswald Avery and coworkers

in 1944 pointed out that DNA plays an important role in heredity. Nevertheless,

many scientists were still reluctant to accept the simple DNA molecule as the genetic

material rather than the more complex proteins. Finally, in 1952, Alfred Hershey and

Martha Chase used a radioactively marked virus to conclude incontrovertably that

DNA is the hereditary material. After the central role of DNA in heredity became

-H2O

C

R1

C

H

H2N
O

O H

C

R2

C

H

H2N
O

O H

C

R1

C

H

H2N
O

N

H

C

R2

C

H
O

O H

Figure 1.1: Peptide bond between two amino acid chains.

clear, many researchers tried to determine its exact structure. In 1953, one year after

the Hershey-Chase experiment, Francis Crick and James Watson discovered the double-

helix structure of DNA, which gave exciting new insights into how the genetic material

is replicated. But still it remained unclear where the blueprints describing the formation

of proteins are hidden. It would take another eight years to find out exactly how this

information is encoded in the DNA. In 1961 several researchers revealed the nature of

the code that is used in DNA to encode protein blueprints. The code consists of non-

overlapping triples of nucleotides called codons that stand for different amino acids.

For example, the triplet GCT stands for the amino acid alanine. The stretches of DNA

that code for a protein – the genes – can basically be found in linear order in the DNA,

interspersed with some non-coding regions.

2

Proteins are macromolecules composed of twenty different amino acids that are assem-

bled in a complex organelle of a cell, the ribosome. In a complicated process, genetic

information is transferred to the ribosome, which translates the triplet code into a chain

of amino acids. The general formula for an amino acid is H2N–CHR–COOH, where

the side chain, or R group, uniquely determines the amino acid (e.g., a hydrogen atom

forms the side chain in the amino acid glycine). Amino acids are linked together in

proteins by covalent bonds, called peptide bonds. A peptide bond is formed through a

condensation reaction that involves the removal of a water molecule (see Figure 1.1 on

the facing page). Proteins have a complex structure that is traditionally thought of as

having three (sometimes four) levels. The linear sequence of the amino acids in a pro-

G
G
G
G
U
A U C

G C C
A A G

C
G
G

UAA
GGC

A
C
C
G
G
A
U
U
CUG

A
U
U
C
C
G
GCAU

U
C
CGAGGUU

C
G
A
A U C C U C G

U
A
C
C
C
C
A
G
C
C
A

Figure 1.2: Secondary structure of a tRNA molecule.

tein is called the primary structure of the protein. The secondary structure of a protein

refers to the spatial arrangements that result from interactions between amino acids

that are close together in the linear sequence. Hydrogen bonds between the CO and

NH groups of different residues often cause the polypeptides to bend into regular struc-

tures. Two such structures that frequently occur are the α-helix and the β-sheet. A

protein also has a three-dimensional architecture, termed the tertiary structure, which

is generated by hydrogen bonds and by electrostatic, hydrophobic, and Van-der-Waals

interactions that cause the protein chain to fold back on itself (see also Figure 1.3 on

the next page). The three-dimensional structure determines, to a large extent, the

functionality of a protein. It is assumed that the primary sequence alone should be

sufficient to determine a protein’s tertiary structure and thus its functionality.

The terms primary, secondary, and tertiary structure are also used in the context of

RNA sequences, which – like DNA – are chains constructed from four nucleotides. RNA

3

CHAPTER 1. INTRODUCTION

differs from DNA in that the RNA nucleotides contain the sugar deoxyribose instead

of the sugar ribose, and RNA molecules contain the nucleotide uracil (U) instead of

thymine. The primary structure describes – as for amino acids – the linear order of

the nucleotides. Unlike DNA, however, an RNA molecule is generally a single-stranded

AATAHAQRCG EQGSNMECPN NLCCSQYGYC GMGGDYCGKG ..CQNGACYT
VAATNAQTCG KQNDGMICPH NLCCSQFGYC GLGRDYCGTG ..CQSGACCS
VGLVSAQRCG SQGGGGTCPA LWCCSIWGWC GDSEPYCGRT ..CENK.CWS
AATAQAQRCG EQGSNMECPN NLCCSQYGYC GMGGDYCGKG ..CQNGACWT
AATAQAQRCG EQGSNMECPN NLCCSQYGYC GMGGDYCGKG ..CQNGACWT
......QRCG EQGSGMECPN NLCCSQYGYC GMGGDYCGKG ..CQNGACWT
SETVKSQNCGCAP NLCCSQFGYC GSTDAYCGTG ..CRSGPCRS
RGSAE..QCG RQAGDALCPG GLCCSSYGWC GTTVDYCGIG ..CQSQ.CDG
AGPAAAQNCGCQP NFCCSKFGYC GTTDAYCGDG ..CQSGPCRS
AGPAAAQNCGCQP NVCCSKFGYC GTTDEYCGDG ..CQSGPCRS
RGSAE..QCG QQAGDALCPG GLCCSSYGWC GTTADYCGDG ..CQSQ.CDG
RGSAE..QCG RQAGDALCPG GLCCSFYGWC GTTVDYCGDG ..CQSQ.CDG
TGVAIAEQCG RQAGGKLCPN NLCCSQWGWC GSTDEYCSPD HNCQSN.CK.
......EQCG RQAGGKLCPN NLCCSQYGWC GSSDDYCSPS KNCQSN.CK.

Figure 1.3: Multiple alignment of N-acetylglucosamine-binding proteins and tertiary structure

of one of these proteins, the hevein.

nucleic acid molecule. Some RNA molecules such as rRNA or tRNA fold in space due

to the formation of hydrogen bonds between their bases (see also Figure 1.2 on the

preceding page). This base-paired structure is called the secondary structure of the

RNA molecule, while the actual three-dimensional architecture of the RNA is referred

to as its tertiary structure.

The discovery of the structure and function of DNA was truly a remarkable moment

4

in scientific history. Now, 45 years later at the end of the 20th century, we are at the

brink of a new epoch when humans will soon know their own book of life and medicine

will be revolutionized. Time magazine (Isaacson 1999) even compares the projected

impact of Watson and Crick’s discovery on the next century with the impact that the

discovery of the electron had on the 20th century.

At the time this thesis is being written, huge efforts are being made to sequence and

assemble the entire human genome, which can be represented as a string of ≈ 3.5 billion

nucleotides. In parallel with the assembly efforts, the human genome (and others) is

being searched for the location of genes that code for proteins or other functional units

that are important for cell metabolism. Hence, huge databases are being built that

contain information about thousands of proteins (for example, SwissProt (Bairoch

and Apweiler 1999)), rRNA (for example, the Antwerpen database of ribosomal RNA

(de Rijk et al. 1994)), and nucleotides (for example, the EMBL nucleotide sequence

database (Stoesser et al. 1998)).

The ultimate goal obviously is to understand completely how the complex processes

work that happen every second in an organism. If we know, for example, the function of

a protein, where is this function encoded in its sequence? Can we spot genetic diseases

by inspecting DNA sequences? There are many interesting questions akin to the ones

above that can be answered using sequence comparison techniques.

Evolution reuses and duplicates “successful” patterns in DNA or protein sequences.

It has become common knowledge that life in all organisms is based on a repertoire

of building blocks that are shared by many organisms. What is the nature of these

patterns or building blocks? Biological research has revealed that there are regions in

sequences that are uncritical to evolutionary changes, while in other regions a single

point mutation can cause the loss of functionality. For example, hemoglobin is a protein

consisting of four chains of about 140 amino acids each. It binds and transports oxygen

in many different organisms. While the sequence conservation within one family might

be very high (for example, the hemoglobins of humans and chimpanzees are identical),

there are examples of insect hemoglobin that reveal on average about 100 mutations in

each of the four chains when compared to human hemoglobin, although the molecule

serves the same purpose in both organisms. On the other hand, sometimes a single

point mutation can cause serious diseases such as cystic fibrosis.

At this point (multiple) sequence alignment enters the scene. Alignments are used to

exhibit the commonalities or differences between two or more sequences. An alignment

of k sequences can be considered as an array of k rows. Each row contains a sequence

that is interspersed with blank characters, such that “similar” parts of the sequences are

in the same columns of the alignment (see Figure 1.3 on the preceding page). The only

condition is that there may not be a column that contains only the blank character.

5

CHAPTER 1. INTRODUCTION

If we want to gain insight in how sequences diverge during evolution, the comparison of

sequences can reveal this information. Correctly aligning a set of functionally related

sequences allows the researcher to identify the regions that encode the functionality.

He or she can see what changes in the sequence did not harm the function, or, by

inspecting pathogenic sequences together with functional sequences, try to identify the

harmful mutations.

As an example, consider Figure 1.3 on page 4. It shows a multiple alignment of sub-

sequences of N-acetylglucosamine-binding proteins and the tertiary structure of one of

these proteins, the hevein. The displayed part of the alignment shows a region of the

sequences where they basically share the same tertiary structure. The yellow (or grey)

columns of the alignment exhibit a part of the sequence that contains an important

component for the formation of the tertiary structure. They contain eight cysteins that

form four disulphid bridges that are essential for the formation of the three-dimensional

structure of this protein.

Since Needleman and Wunsch first published their paper on two-sequence alignment

in 1970 the diversity of alignment problems and their associated algorithms has grown

tremendously. There are many applications ranging from fast database searching

(Altschul et al. 1990) to computing consensus sequences during sequence assembly

(Kececioglu and Myers 1995) to detecting subtle common patterns in a family of pro-

teins (McClure, Vasi, and Fitch 1994). It is interesting to note that despite the variety

of problem formulations most alignment problems that have been studied are solved by

dynamic programming. This technique, while quite powerful, has the drawback that

it generally yields an algorithm with a time and space complexity that is exponential

in the number of sequences in the input. Even sophisticated implementations that use

elaborate bounding techniques quickly reach their limits (Lermen and Reinert 1997;

Gupta, Kececioglu, and Schaeffer 1995).

Branch-and-Cut for Sequence Alignment

In this thesis we study a new approach to solving sequence alignment problems based

on an area of combinatorial optimization known as polyhedral combinatorics (Schrijver

1986; Nemhauser, Kan, and Todd 1989). We demonstrate how this approach, when

applied to certain alignment problems, yields an algorithm for each problem that is not

based on dynamic programming but is known as a branch-and-cut algorithm (see for

example Jünger, Reinelt, and Thienel (1995b)). Branch-and-cut algorithms combine

linear programming with the branch-and-bound paradigm, and are currently among the

most successful algorithms for solving hard combinatorial problems. They were first

successfully applied to the Linear Ordering Problem (Grötschel, Jünger, and Reinelt

1984) and to the Traveling Salesman Problem (Padberg and Rinaldi 1987). Since

then they have been applied in many fields of Operations Research and the natural

6

sciences (e.g., Christof et al. (1997), Jünger, Reinelt, and Rinaldi (1995a), Applegate

et al. (1995); for an excellent bibliography see Chapter 4 in Dell’Amico, Maffioli, and

Martello (1997)). In this work branch-and-cut algorithms are used for the first time

in the field of sequence alignment.

As a prerequisite for designing a branch-and-cut algorithm we need to formulate the

problem in terms of an integer linear program (ILP). In Figure 1.4 we illustrate some

basic concepts of a branch-and-cut algorithm. Assume we are given the integer linear

c(a) (b) c

c(c) c(d)

x̄ x̄

x̄

f

f

x̄

Figure 1.4: Adding cutting planes to the LP.

programming formulation of a problem. Then each solution of the problem can be

represented by a high-dimensional vector, the so-called incidence vector. The convex

hull of all feasible incidence vectors (the green points in Figure 1.4) forms the problem

polytope P (the inner, white polytope in Figure 1.4 (d)). If one considers the inequali-

ties of the ILP, they generally describe a larger polytope (the yellow polytope in Figure

1.4), although this polytope does not contain an infeasible integer point (the red points

in Figure 1.4).

Unfortunately, solving an ILP is NP-hard (Garey and Johnson 1979). Hence, we relax

the given integer linear program, for example by dropping the integer condition, and

solve the resulting linear program. If the solution x̄ of the linear program is integral,

it corresponds to a feasible incidence vector that represents an optimal solution. Oth-

7

CHAPTER 1. INTRODUCTION

erwise we search for a valid inequality fx ≤ f0 that “cuts off” the solution x̄, i.e.,

fy ≤ f0 for all y ∈ P and fx̄ > f0; the set {x | fx = f0} is called a cutting plane. The

search for a cutting plane is called the separation problem. Any cutting plane found is

added to the linear program and the linear program is solved again. The generation

of cutting planes is repeated until either an optimal solution is found or the search for

a cutting plane fails. This procedure is illustrated in Figure 1.4 on the page before.

The dotted line is the objective function c for which the large black circle symbolizes

the optimal integer solution. In step (a) the optimal solution x̄ of the linear program

(symbolized by the blue point) is fractional. Hence, we add a cutting plane f (the

red, dashed line) in step (b) to the LP and solve the LP again (thereby cutting off a

piece of the yellow polytope). Again, the optimal solution of the LP is fractional and

thus we search again for a cutting plane to cut off this infeasible solution. The cutting

plane added in step (c) contains the facet of the problem polytope that contains the

optimal integer solution. Hence, solving the resulting LP yields the optimal solution in

the example.

If we fail to generate further cutting planes a branch step follows: We generate two

subproblems by setting one fractional variable to zero in the first subproblem and to

one in the second subproblem and solve these subproblems recursively. This gives rise

to an enumeration tree of subproblems. In each node of the enumeration tree a branch-

and-cut algorithm solves a number of linear programming relaxations and uses integer

and fractional solutions computed during its execution as upper and lower bounds for

the problem. The question arises as to which cutting planes one should add during

the execution of the algorithm. Although there are classes of general cutting planes, it

turns out that problem-specific cutting planes are much more effective. In particular,

the facet-defining inequalities of the problem polytope seem to be useful, as they are

not dominated by any other inequalities in an irredundant description of the polytope

(see also Figure 1.4 (d) where the added cutting plane contains a facet of the problem

polytope). Hence, a good knowledge of the problem polytope is crucial for the good

performance of a branch-and-cut algorithm.

Graphs, traces, and multiple alignment

In this thesis we investigate two rather general alignment problems, the Generalized

Maximum Trace (GMT) problem, and the Structural Maximum Trace (SMT) problem.

To describe the GMT and SMT problem we first review a formulation of multiple

alignment in terms of graphs introduced by Kececioglu (1991) that we extend to model

the two new problems.

Let S = {S1, S2, . . . , Sk} be a set of k strings over an alphabet Σ and let Σ̂ = Σ∪ {−},
where “−” (dash) is a symbol to represent “gaps” in strings. An alignment of S is a

set Ŝ = {Ŝ1, Ŝ2, · · · , Ŝk} of strings over the alphabet Σ̂ that satisfies the following two

8

properties: (1) the strings in Ŝ all have the same length, and (2) ignoring any dashes,

string Ŝi is identical to string Si. An alignment in which each string Ŝi has length l can

be interpreted as an array of k rows and l columns where row i corresponds to string

Ŝi (see also Figure 1.3 on page 4). Two characters of distinct strings in S are said to be

aligned under Ŝ if they are placed in the same column of the alignment array. We view

the character positions of the k input strings in S as the vertex set V of a k-partite

graph G = (V,E) called the input alignment graph. The edge set E connects pairs of

characters that one would like to have aligned in an alignment of the input strings. We

call an edge in E an alignment edge and say that an alignment edge is realized by an

alignment if the endpoints of the edge are placed in the same column of the alignment

array. The subset of E realized by an alignment Ŝ is called the trace of Ŝ. Figure 1.5

C C G

GCG U

C

C

G

G

C

G U-

- -
e f g h

(a) (b)

f h

Figure 1.5: (a) An alignment graph of two sequences CCG and GCGU. Edges e, f and g, h are in

conflict. (b) The trace {f, h} is realized by the alignment shown.

shows an alignment graph of two strings containing four edges and an alignment that

realizes two of the edges. Note that several alignments can have exactly the same trace,

where such alignments differ only in their arrangement of unaligned regions.

The notion of a trace of two strings as illustrated in Figure 1.5 is a basic concept in

sequence comparison (see, for instance, Sankoff and Kruskal (1983) pp. 10–18) which

Kececioglu (1991) generalized to multiple sequence alignment with the notion of a trace

of an alignment graph. The relationship between multiple alignment and multi-partite

graphs was also examined by Vingron and Pevzner (1995) in the context of filtering

pairwise dot-plots of a set of sequences.

The Generalized Maximum Trace Problem

In the Maximum Trace Problem (MT), introduced originally to model the final multiple

alignment phase of DNA sequence assembly, every edge in the alignment graph has a

positive weight representing the benefit of aligning the endpoints of the edge. The goal

is to compute an alignment Ŝ whose trace has maximum weight. Kececioglu (1991)

showed that MT is NP-complete and developed a branch-and-bound algorithm for the

problem based on dynamic programming, with worst-case time complexity O(k22kN)

9

CHAPTER 1. INTRODUCTION

and space complexity O(N), where N =
∏
i |Si|. The algorithm is able to solve to

optimality relatively small problem instances. In this thesis we show how to generalize

the Maximum Trace Problem to accommodate different scoring schemes. In the Gen-

eralized Maximum Trace Problem (GMT) we allow multiple edges between two vertices

in the alignment graph G and we partition the edge set E into a set D of so-called

blocks. A block is a trace in which every edge is incident to nodes in the same pair of

sequences. We regard a block d ∈ D as realized if all the edges in d are realized.

Every block d ∈ D has a weight wd representing the benefit of realizing that block,

and the weight of an alignment is the sum of the weights of the blocks it realizes. The

goal is to compute an alignment Ŝ of maximum weight. Notice that this captures the

construction of a multiple alignment out of local pairwise alignments.

Most commonly used scoring schemes are based on the similarity of single pairs of

characters (for instance, Dayhoff, Schwartz, and Orcut (1979) or Henikoff and Henikoff

(1992)). This corresponds to a partition of the edges into singleton sets as in Figure

1.6 and is equivalent to the original MT formulation. It is worth noting that the

singleton case includes as a special case the well studied sum-of-pairs multiple alignment

problem. GMT also allows more general scoring schemes based on the similarity of pairs

- -

- -

- -

-

--

- -

-

Figure 1.6: An alignment graph with 18 edges. D = {{e1}, {e2}, . . . , {e18}} is a partition into

singleton sets. The alignment on the right realizes 8 edges (and thus 8 singleton sets).

of whole segments of two sequences (see, for instance, Altschul and Erickson (1986),

Morgenstern et al. (1998), and Wilbur and Lipman (1984)). To illustrate how this can

be done, Figure 1.7 shows a partition into sets of edges that form consecutive runs of

matches. Here the edges of a run form a block. Note that blocks d5 and d1 both contain

a different edge that runs between the same pair of vertices. Hence, any alignment that

realizes either d1 or d5 must match the corresponding characters.

The graph-theoretic formulation of the GMT enables us to give an ILP formulation

for the GMT in which we associate with every block d in D a binary variable xd that

indicates whether a block is realized (xd = 1) or not (xd = 0). An integer solution is

feasible if the alignment edges of the realized blocks form a trace. The goal is to find

10

the feasible solution that realizes a set of blocks with maximum overall weight.

As noted above, once the ILP is formulated, it is necessary to investigate the structure

of the problem polytopes. Hence, we studied the GMT polytope thoroughly as a first

essential step on the way to an efficient branch-and-cut algorithm. We were able to

identify numerous classes of facet-defining inequalities, and for many of these classes we

could devise efficient exact or heuristic separation algorithms that turn the theoretical

knowledge about the polyhedra into practical routines for deriving upper bounds.

In the pairwise case we show that the clique inequalities together with the trivial in-

equalities form a complete description of the GMT polytope. Together with our ability

to separate the clique inequalities in polynomial time, this implies the existence of a

polynomial time algorithm for sequence alignment that is not based on dynamic pro-

gramming. A similar observation was already made by Pevzner and Waterman (1993)

who devised a primal-dual algorithm for different sequence alignment algorithms. For

the multiple sequence case we give two more classes of valid inequalities (the mixed

cycle inequalities and ladder inequalities) and show when they are facet-defining. We

∈ d1

∈ d2

∈ d3

∈ d4

-

-

-∈ d5

Figure 1.7: An alignment graph with 18 edges. D is a partition into five blocks d1, d2, d3,d4,

and d5. On the right, an alignment realizes 2 blocks consisting of a total of 9 edges.

describe how a data structure called a pairgraph can be used to represent an exponential

number of clique inequalities in polynomial space and how one can use the pairgraph

to devise an exact and efficient separation routine for the class of clique inequalities.

For the class of mixed cycle inequalities we use the extended alignment graph itself

to develop an efficient separation routine. Our implementation of the branch-and-cut

algorithm for the GMT shows that the use of methods from combinatorial optimization

in the field of sequence alignment leads to algorithms that are comparable or superior

to existing algorithms that are based on dynamic programming. We can, for example,

align up to 18 sequences of length ≈ 200, a problem size not tractable for dynamic

programming based approaches.

The Structural Maximum Trace Problem

The second alignment problem we address is the Structural Maximum Trace Problem

(SMT). The aim is to compute an alignment that maximizes sequence and structure

11

CHAPTER 1. INTRODUCTION

consensus simultaneously. To be more precise, the score that is optimized is a weighted

sum of the sequence similarity and the structural similarity of the sequences under

consideration. In this context structural similarity stands for the similarity of the

secondary structures of the sequences, which are RNA sequences in our examples.

An RNA molecule is generally a single-stranded nucleic acid molecule that folds in space

due to the formation of hydrogen bonds between its bases. Conventional sequence align-

ment algorithms can only account for the primary sequence and thus ignore structural

aspects. Our aim is to align the sequences using the structural information given,

thereby exhibiting not only sequence similarity but also structural similarity. In RNA

molecules it is the secondary structure that carries the functionality and hence tends

to be conserved through evolution. This was strikingly demonstrated by Levitt (1969)

with the prediction of tRNA structure from a set of similar sequences. His work shows

that sets of similar sequences can yield convincing evidence for how an RNA molecule

folds. The computational problem of considering sequence and structure of an RNA

molecule simultaneously was first addressed by Sankoff (1985) who proposed a dy-

namic programming algorithm that aligns a set of RNA sequences while at the same

time predicting their common fold. Algorithms similar in spirit were later proposed

for the problem of comparing one RNA sequence to one or more of known structure.

Corpet and Michot (1994) align simultaneously a sequence with a number of other

sequences using both primary and secondary structure. Their dynamic programming

algorithm requires O(n5) running time and O(n4) space (n is the length of the se-

quences) and thus can handle only short sequences. Corpet and Michot propose an

anchor-point heuristic to divide large alignment problems by fixed alignment regions

into small subproblems so that the dynamic programming algorithm can then be ap-

plied. Bafna et al. (1995) improved the dynamic programming algorithm to a running

time of O(n4), which still does not make it applicable to real-life problems. Gorod-

kin et al. (1997) iterate Sankoff’s dynamic programming algorithm to find motifs

among many RNA sequences. Instead of using dynamic programming the algorithm

of Waterman (1989) searches for common motifs among several sequences. Eddy and

Durbin (1994) describe probabilistic models for measuring the secondary structure and

primary sequence consensus of RNA sequence families. They present algorithms for an-

alyzing and comparing RNA sequences as well as database search techniques. Since

the basic operation in their approach is an expensive dynamic programming procedure,

their algorithms cannot analyze sequences longer than 150–200 nucleotides. Notredame

et al. (1997) implemented a genetic algorithm for the optimization of both alignment

and structure correspondence between two RNA molecules. Their procedure produces

biologically good results although at the expense of considerable running time.

In the case of the SMT problem we were able to extend the GMT formulation in order to

deal with structural information. That means that the input to the SMT problem can

12

be viewed as an alignment graph, where, for each sequence, we additionally are given

a list of possible interactions or base pairs between character pairs of that sequence,

e.g., a list produced by some secondary structure prediction program or a list of all

possible Watson-Crick base pairs (A-U or C-G). Figure 1.8 shows two sequences with

these different kinds of possible interactions.

A structural alignment can realize not only an alignment edge, i.e., the match of two

characters of the sequences, but also an interaction match. A pair of interactions in

two different sequences is said to be aligned or matched if the interacting characters

in the two sequences are aligned. In Figure 1.8 you see two structural alignments of

the sequences. In the upper alignment three pairs of interactions are matched while in

the second only one pair is matched. We devised an ILP formulation for the SMT in

which we associate with every alignment edge e in E a binary variable xe that indicates

whether the edge is realized (xe = 1) or not (xe = 0). For the same purpose we assign

to each interaction match m a binary variable xm. An integer solution is feasible if

the realized alignment edges form a trace and if each character is involved in at most

one realized interaction match. Each variable is assigned a weight that represents the

benefit of realizing the alignment edge or the interaction match. The goal is to find a

feasible solution of maximum overall weight.

ACG-G-CUCAGGU

-CGUGG---ACG-

ACGGCUCAGGU

CGUGGACG

ACGG-CUCAGGU

CGUGGA----CG

Figure 1.8: Two RNA sequences with interactions and two structural alignments of the

sequences.

The investigation of the SMT polytope shows that the trivial and mixed cycle inequal-

ities are in essence the same as for the GMT polytope. We found three new classes

of valid inequalities and showed under what conditions they are facet-defining: the

extended clique inequalities, the interaction inequalities, and the odd cycle inequali-

ties. We implemented a branch-and-cut algorithm for structurally aligning two RNA

sequences and were able to align sequences of length ≈ 1400 provably better than con-

13

CHAPTER 1. INTRODUCTION

ventional algorithms for pairwise sequence alignment. Indeed, to our knowledge, there

is no other algorithm that is able to structurally align sequences of this length to op-

timality. Algorithms based on dynamic programming cannot analyze sequences longer

than a few hundred nucleotides. Moreover, our algorithm can easily be extended to

handle multiple sequences.

Summary

We view as a main contribution of our work the introduction of the polyhedral ap-

proach to the area of sequence alignment. We formulated two rather general alignment

problems that include numerous interesting problem variations. The formulation of the

SMT and GMT problem in terms of graphs allows one to encode restrictions on the

problems very conveniently. The alignment graph can, for example, contain only edges

that either stem from matches occurring in (sub)optimal pairwise alignments (Kece-

cioglu 1993, Reinert et al. 1997), or that fulfill certain context dependencies (Wilbur

and Lipman 1984).

With a polyhedral approach, one formulates the alignment problem to be studied as

an integer linear program; once such a formulation is found, variations of the problem

can often be conveniently modeled through the addition of further constraints to the

basic linear program. With dynamic programming, on the other hand, accommodat-

ing variations such as considering secondary structure in sequence alignment (Bafna,

Muthukrishnan, and Ravi 1995), can cause at a minimum a significant restructuring

of the basic recurrences. With the polyhedral approach, much of the code developed

for the basic problem can be reused for the problem variations; for example, both the

Generalized Maximum Trace and Structural Maximum Trace problems are based on

the same integer linear programming formulation, and separation routines for their ba-

sic formulations are reused in the code for both problems. A polyhedral approach to

a problem creates many research avenues for future investigators, as each researcher is

able to build on prior theoretical work and practical software by discovering new classes

of facet-defining inequalities and devising new separation routines for both known and

newly-discovered classes. Our first implementations of branch-and-cut algorithms for

the GMT and SMT problem already are superior or comparable to dynamic program-

ming based approaches. This indicates that our new approach to sequence alignment

is worthy of further investigation. We feel that this new approach has plenty of room

for future development, while traditional methods based on dynamic programming are

already thoroughly studied and hard to improve.

Guide to the thesis

In Chapter 2 we give basic definitions and notations. We also give the prerequisite

mathematical background by reviewing fundamental theorems from some mathematical

fields as for example polyhedral theory, linear programming, integer polytopes, and

14

polyhedral combinatorics. This chapter is to serve as a repository for the mathematical

notations we use throughout the thesis.

In Chapter 3 we introduce the notion of pairwise and multiple alignments. We give

a general framework for scoring alignments, which describes the most commonly used

scoring functions in a comprehensive way. Then we extend this framework such that it

incorporates structural information. Although we deal exclusively with RNA sequences

in our experiments, the framework is designed to deal with any structural information

that is based on the interaction of pairs of residues in the sequence.

In Chapter 4 we define pairwise and multiple traces. Compared to alignments, traces

are a slightly different but more elegant means of analyzing sequence similarity. We

elaborate on the relationship between traces and alignments and show how variations

of alignment problems can be formulated in terms of certain weighted input graphs. An

alignment corresponds to a subgraph in the input graph that fulfills certain restrictions.

The problem of computing an alignment with optimal score reduces to the problem of

finding a subgraph of maximal weight that fulfills these restrictions.

In Chapter 5 we formally define the GMT and SMT problem and review the currently

best dynamic programming based algorithms for them.

In Chapter 6 we present the polyhedral approach we have taken to solve both problems.

We start by introducing the main concepts of a generic branch-and-cut algorithm in

Section 6.1. Then we describe first for the GMT problem (Section 6.2) and then for

the SMT problem (Section 6.3) the problem specific details. First we give the ILP

formulation for both problems in Section 6.2.1 and 6.3.1. The integer linear program

builds the basis of the polyhedral approach we describe. It can naturally be associ-

ated with a high dimensional polytope (the convex hulls of the incidence vectors of all

feasible solutions). In practice the facet-defining inequalities of the problem polytopes

yield good cutting planes during the execution of a branch-and-cut algorithm. Hence,

we investigate the facial structure of the problem polytope as a next step in Sections

6.2.2 and 6.3.2. In Sections 6.2.3 and 6.3.3 we turn the theoretical knowledge about

the facial structure of the problem polytope into practical routines for separating the

classes of inequalities we have found in the previous section. In Section 6.2.4 and 6.3.4

we present results of our implementations. We demonstrate that the use of methods

from combinatorial optimization in the field of sequence alignment leads to implemen-

tations that are comparable or even superior to existing algorithms based on dynamic

programming.

Finally, we discuss our results and open problems in Chapter 7.

15

Chapter 2

Mathematical Preliminaries

CHAPTER 2. MATHEMATICAL PRELIMINARIES

In this chapter we give a short and succinct overview of all the mathematical tools we

are going to use. The reader familiar with the notions introduced here may skip this

chapter and refer to it when necessary.

2.1 Graph Theory

For an undirected graph G = (V,E) we denote its node set by V = V (G) and its edge

set by E = E(G). Edges of G are denoted by the set of their endnodes, i.e., we write

e = {v, w} for e ∈ E(G). We say that e joins the nodes v and w. Two edges with a

common endnode are called adjacent. For e = {v, w} ∈ E(G), we say that v and w are

adjacent nodes, whereas both nodes v and w are incident to the edge e and vice versa.

An edge e is said to be adjacent to the edge set F if there is an edge f ∈ F which is

adjacent to e.

We denote the number of nodes and edges in a graph with |V | and |E| respectively.

We say that G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. If V ′ ⊆ V ,

we define E(V ′) := {{v, w} ∈ E | v, w ∈ V ′} and call the subgraph G′ = (V ′, E(V ′))
node-induced by V ′. Similarly if E ′ ⊆ E, we define V (E ′) := {v, w ∈ V | {v, w} ∈ E ′}
and call the subgraph G′ = (V (E′), E′) edge-induced by E ′. In both cases we write

G[V ′] respectively G[E ′] as shorthand.

A path of length k is an alternating sequence (v0, {v0, v1}, v1, {v1, v2}, . . . , {vk−1, vk},
vk) of edges and nodes in G such that {vi, vi+1} ∈ E, 0 ≤ i < k and all edges and all

nodes are distinct. A path P together with an edge {vk, vk+1} and a node vk+1 for

k ≥ 2 is called a cycle if v0 = vk+1. Since a path P (or a cycle C) is determined by the

set of edges in P (respectively in C), we often identify paths and cycles by their edge

set.

A bipartite graph G = (V,E) = (V1 ∪ V2, E) is a graph whose node set V is partitioned

into two subsets V1 and V2 such that every edge joins a vertex from V1 with a vertex

from V2.

The complete graph on n vertices is denoted by Kn, the complete bipartite graph with

|V1| = p and |V2| = q as Kp,q .

A clique in a graph G = (V,E) is a subset of nodes VC ⊆ V such that every pair of

nodes u, v ∈ VC is adjacent in G, or, in other words, G[VC] is a complete graph.

We call a graph connected if for every pair u, v ∈ V there exists a path in G connecting

u and v. A graph consisting of a single node is connected by definition. For an arbitrary

graph G = (V,E) the maximal connected, node-induced subgraphs, i.e., the connected

subgraphs G′ = (V ′, E(V ′)) satisfying V ′ ⊆ V and for all v ∈ V \ V ′ : E(V ′ ∪ {v})) =

18

2.1. GRAPH THEORY

E(V ′), are called the connected components of G.

For a directed graph or shortly digraph D = (V,A) we denote the node set by V = V (D)

and the arc set by A = A(D). An arc a ⊂ A × A is an ordered pair of elements of

A. If a = (u, v) is an arc in A then a is said to be incident from u and incident to

v or u is the source and v is the target of a. Two nodes u, v ∈ V are called adjacent

in a digraph D = (V,A) if (u, v) ∈ A or (v, u) ∈ A. A digraph is complete if for any

two nodes u, v ∈ V , u 6= v the set A contains the arcs (u, v) and (v, u). The complete

digraph with n nodes is denoted by Dn. For D = (V,A) and V ′ ⊆ V we define A(V ′) :=

{(u, v) ∈ A | u, v ∈ V ′} and for A′ ⊆ A we define V (A′) := {u, v ∈ V | (u, v) ∈ A′}.

The definition of a (node-induced, arc-induced) subdigraph is analogous to the one

for graphs. There are obvious directed counterparts for paths and cycles in graphs.

W = (v0, (v0, v1), v1, (v1, v2), . . . , (vk−1, vk), vk) is a (di)path of length k if vi 6= vj for

i 6= j. A path P together with an arc (vk, vk+1) and a node vk+1 for k ≥ 1 is called a

(di)cycle if v0 = vk+1. Since a path P (or a cycle C) is determined by the set of arcs

in P (respectively in C), we often identify paths and cycles by their arc set.

We call a digraph strongly connected if for every pair u, v ∈ V there exists a dipath in D

from u and v and from v to u. A graph consisting of a single node is strongly connected

by definition. For an arbitrary digraph D = (V,A) the maximal strongly connected,

node-induced subgraphs (maximal with respect to the cardinality of the node set) are

called the strongly connected components of D.

A mixed graph is a tuple G = (V,E,A), where V is a set of vertices, E is a set of

edges and A is a set of arcs. A path in a mixed graph is an alternating sequence w =

(v0, e0, v1, e1, . . . , vk) of vertices and arcs or edges such that either ei = {vi, vi+1} ∈ E
or ei = (vi, vi+1) ∈ A, for all i, 0 ≤ i < k and all vertices and all edges in the path are

distinct. A path is called a mixed path if it contains at least one arc in A and one edge

in E. A path P together with an edge (or arc) and a vertex v is called a mixed cycle if

v and the first vertex on the path are the same and if P together with v and the edge

(or arc) is a mixed path. Since a mixed path P (or a mixed cycle C) is determined by

the set of arcs and edges in P (respectively in C), we often identify paths and cycles

by their set of edges and arcs.

The length of a mixed path P (cycle C) is the number of edges and arcs it contains and

is denoted by |P | (|C|). The size of a mixed path P (cycle C) is the number of edges

in E it contains.

We call a mixed graph strongly connected if for every pair u, v ∈ V there exists a path

in G from u to v and from v to u. A graph consisting of a single node is strongly

connected by definition. For an arbitrary mixed graph G = (V,E,A) the maximal

strongly connected, node-induced subgraphs (maximal with respect to the cardinality

19

CHAPTER 2. MATHEMATICAL PRELIMINARIES

of the node set) are called the strongly connected components of G.

Note that all above notations and definitions also hold for multigraphs which are graphs

where we allow multiple edges (arcs) between a pair of nodes. The only exception is

that in the undirected case a cycle can have length two.

2.2 Linear Algebra

In this section we introduce some mathematical notation we use throughout the thesis.

We denote the set of real (resp. rational, integer, natural) numbers by R (resp. Q,Z,N).

For an ordered finite set E = {e1, e2, . . . , en} and a field X we denote by XE the set

of vectors in which the components of each vector are indexed by the members of

E. For simplicity, when E = {1, . . . , n} we write Xn. In particular, RE denotes the

|E|-dimensional vector space over the field R.

By convention, the vectors are column vectors. For any fieldX a vector x ∈ XE is called

linear combination of the vectors x1, x2, . . . , xk ∈ XE if there are scalars λ1, . . . , λk ∈ X
such that x =

∑k
i=1 λix

i. If additionally λi ≥ 0 (resp.
∑k

i=1 λi = 1, resp.
∑k

i=1 λi = 1

and λi ≥ 0), then x is called a conic (resp. affine, convex)combination of the vectors

x1, . . . , xk. If S ⊆ XE , we denote by lin(S) (resp. cone(S), aff(S), conv(S)) the linear

hull (resp. conic hull, affine hull, convex hull) of the elements of S, defined as the

set of all vectors which are linear (resp. conic, affine, convex) combinations of finitely

many vectors of S. We define 0 as the zero vector in the respective vector space, i.e.,

lin(∅) := {0}, cone(∅) := {0}, aff(∅) := ∅, and conv(∅) := ∅.

A nonempty finite set S ⊂ XE is called linearly independent (resp. affinely indepen-

dent) if no vector x ∈ S can be expressed as a linear (resp. affine) combination of the

vectors in S \ {x}. Otherwise S is called linearly dependent (resp. affinely dependent).

If S is linearly independent, then S and S ∪ {0} are affinely independent. The rank

(resp. affine rank) of a set S ∈ XE is the cardinality of the largest linearly (resp.

affinely) independent subset of S and denoted by rank(S) (resp. arank(S)). Observe

that for any subset S ∈ XE with 0 ∈ aff(S) the following holds: arank(S) = rank(S)+1;

whereas in the case 0 /∈ aff(S) the following holds: arank(S) = rank(S). The dimension

of a set S ⊆ XE is defined as the maximum number of affinely independent points in S

minus one and denoted by dim(S). S is called full-dimensional if its dimension is |E|.

20

2.3. POLYHEDRAL THEORY

2.3 Polyhedral Theory

In this section we present basic concepts of polyhedral theory. For a comprehensive

treatment of this subject the reader should refer to the books by Pulleyblank (1989),

by Grötschel and Padberg (1985), or by Cook et al. (1998).

Let E and I be two finite, ordered sets. Then a set P ⊆ RE is called polyhedron

if P is the solution of a system of linear inequalities, i.e., P = {x ∈ RE | Ax ≤ b}
for some A ∈ RI×E and b ∈ RI . A bounded polyhedron is called polytope. Another

way to represent polyhedra that was first introduced by Farkas, Weyl, and Minkowski

(Schrijver 1986) is the combination of the convex and conic hull of finite subsets of RE.

Theorem 2.3.1: Every polyhedron P ⊆ RE has a representation of the form P =

conv(V) ∪ cone(I) where V and I are finite subsets of RE.

Thus, polytopes are precisely those sets in RE that are the convex hull of finitely many

points in RE . If a ∈ RE \ {0} and a0 ∈ R, then the polyhedron {x ∈ RE | aTx ≤ a0}
is called a halfspace. Every polyhedron is the intersection of finitely many halfspaces.

An inequality aTx ≤ a0 is called valid with respect to a polyhedron P if P ⊆ {x ∈
RE | aTx ≤ a0}. A set F ⊆ P is called a face of P , if there exists a valid inequality

aTx ≤ a0 for P such that F = {x ∈ P | aTx = a0}. In this case we say that F is

the face of P defined (resp. induced) by the valid inequality aTx ≤ a0. Note that a

face of a polytope is itself a lower-dimensional polytope. Especially important faces of

polyhedra are those of minimum and maximum dimension.

The 0-dimensional faces of a polyhedron P are called vertices of P . Vertices are those

points of a polyhedron that cannot be represented as a convex combination of other

points.

The faces of dimension dim(P) − 1 are called facets of a polytope. We say that an

inequality aTx ≤ a0 defines a facet of P or is facet-defining for P , if {x ∈ P | aTx = a0}
is a facet of P .

The following well known theorem constitutes a basis for proving that a valid inequality

for a polyhedron P defines a facet of P .

Theorem 2.3.2: (Nemhauser and Trotter 1973) Let P ⊆ Rn be a polyhedron and

D ∈ Rm×n, d ∈ Rm such that aff(P) = {x ∈ Rn | D · x = d}. If F is a (nonempty) face

of P then the following assertions are equivalent.

1. F is a facet of P .

2. dim(F) = dim(P)− 1.

21

CHAPTER 2. MATHEMATICAL PRELIMINARIES

3. There exists a valid inequality aTx ≤ a0 with respect to P with the following

three properties:

(a) F = {x ∈ P | aTx = a0}
(b) There exists a vector x̂ ∈ P such that aT x̂ < a0

(c) If bTx ≤ b0 is a valid inequality for P such that F ⊆ F̄ = {x ∈ P | bTx = b0}
then there exists a vector λ ∈ Rm and a number µ ∈ R such that

bT = λTD + µ · aT

b0 = λTd+ µ · a0

Assertions 2 and 3 provide the two basic methods to prove that a given inequality

cTx ≤ c0 is facet-defining for a polyhedron P . The first method, called the direct

method, consists of exhibiting a set of d = dim(P) vectors x1, . . . , xd satisfying cTxi =

c0 and showing that these vectors are affinely independent. The indirect method is the

following: We assume that {x | cTx = c0} ⊆ {x | aTx = a0} for some valid inequality

aTx ≤ a0 and prove that there exists a λ > 0 such that aT = λ · cT and a0 = λ · c0.

2.4 Linear Programming

In the Linear Programming Problem we are given a system Ax ≤ b of linear inequalities

and a linear objective function f(x) = cTx. The task is to find a feasible solution x̄

(which means Ax̄ ≤ b) that maximizes (or minimizes) the objective function. In what

follows we maximize the objective function without loss of generality.

Given a matrix A ∈ Rm×n, a vector b ∈ Rm and a vector c ∈ Rn, the corresponding

linear programming problem, or simply linear program (LP) , is denoted by

max cTx subject to Ax ≤ b

or shortly

max{cTx | Ax ≤ b}.

A feasible solution x∗ is called an optimal solution if cTx∗ ≥ cT x̄ for all feasible solutions

x̄. If a linear program has no feasible solution, it is called infeasible.

An important theory whose development is closely related to linear programming is the

duality theory. For every linear program

(P) : max{cTx | Ax ≤ b}

22

2.4. LINEAR PROGRAMMING

another linear program, called the dual problem to (P), can be associated, which is

defined as

(D) : min{yT b | yTA = cT , y ≥ 0}.

The problem (P) is called the primal problem. Note that the dual of (D) is (P). A

fundamental result in duality theory is stated in the following theorem.

Theorem 2.4.1: (Duality theorem of Linear Programming) Let P = max{cTx | Ax ≤
b} and D = min{yT b | yTA = cT , y ≥ 0}. Then the following holds:

1. If (P) and (D) both have feasible solutions, then they have optimal solutions and

the optimal values of the objective functions are equal.

2. If (P) (respectively (D)) is infeasible, then (D) (respectively (P)) is either infea-

sible or unbounded.

3. If (P) (respectively (D)) is unbounded, then (D) (respectively (P)) is infeasible.

It follows from the definition of optimality that the set of optimal solutions of a linear

program over a polyhedron Q = {x ∈ Rn | Ax ≤ b} is a face of the polyhedron. In

particular, if Q is a nonempty polytope then it has at least one optimal solution x∗

that is a vertex of Q.

Although the Linear Programming Problem is only a special case of the more general

problem of optimizing a multi-dimensional function under certain constraints, linear

programming techniques play a prominent role as one of the most heavily and success-

fully used tools in mathematics. This is certainly due to an efficient solution method,

the simplex method, that was developed by George Dantzig as early as in 1947. Al-

though other methods such as interior point methods are meanwhile successfully applied

to the Linear Programming problem as well, the simplex method is still amongst the

state-of-the-art methods. The interested reader can refer to the books by Schrijver

(1986) and Chvátal (1983).

The Integer Linear Programming Problem, or simply the Integer Linear Program (ILP)

is defined as

max cTx subject to Ax ≤ b, x integral.

Solving ILPs to optimality can be shown to be an NP-complete problem (Garey and

Johnson 1979). Hence, there exist a lot of strategies to approximate or solve such an

ILP. Some of these strategies rely on the LP-relaxation of the ILP. The LP-relaxation

is the linear program, obtained from the above integer linear program, by dropping the

integer condition. Substituting the condition (x is integral) by (x ∈ {0, 1}) we get a

(0/1)-integer linear programming problem.

23

CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.5 Integral Polytopes

Throughout the remainder of the thesis we will restrict ourselves to rational polytopes

P , that means P ⊂ QE . A rational polytope is called integral if all its vertices are

integral. The applicability of polyhedral methods in combinatorial optimization (at

least from a theoretical point of view) often comes down to our ability to prove that

polyhedra are integral. An important tool in this effort is the following characterization

by Hoffmann (1974), which allows us to restrict our attention to the optimal objective

value rather than the actual solutions to linear programming problems over a polytope.

Theorem 2.5.1: (Hoffmann 1974) A rational polytope P is integral if and only if for

all integral vectors w the optimal value of max{wTx | x ∈ P} is an integer.

Proving that polyhedra are integral is often a difficult task that has led to the devel-

opment of various sufficient conditions for integrality, stating that if A and b satisfy

certain conditions, then we know that {x | Ax ≤ b} is integral. One of these sufficient

conditions is the total unimodularity of the constraint matrix.

A matrix A is called totally unimodular if each subdeterminant of A is 0,+1 or −1. In

particular, each entry in a totally unimodular matrix is 0,+1 or −1.

A link between total unimodularity and integer linear programming is given by the

following fundamental theorem.

Theorem 2.5.2: (Schrijver 1986) Let A be a totally unimodular matrix and let b be

an integral vector. Then the polyhedron P := {x | Ax ≤ b} is integral.

Hence, proving a constraint matrix to be totally unimodular gives an elegant way to

prove the integrality of the associated polytope. The following theorem gives a list of

useful characterizations of total unimodularity.

Theorem 2.5.3: (Schrijver 1986) Let A be a matrix with entries 0,+1 or −1. Then

the following statements are equivalent:

1. A is totally unimodular, i.e., each square submatrix of A has determinant 0,+1

or −1.

2. Each collection of columns of A can be split into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector

with entries only 0,+1 or −1.

As we will see later, not all integral polytopes are described by a totally unimodular

constraint matrix. In such a case one can check, whether another sufficient condition is

satisfied, namely whether the primal system Ax ≤ b is totally dual integral. According

24

2.6. POLYHEDRAL COMBINATORICS

to the duality theorem (Theorem 2.4.1 on page 23) the following equation holds if both

the primal and the dual program have feasible solutions:

max{cTx | Ax ≤ b} = min{yT b | yTA = cT , y ≥ 0}. (2.1)

A rational system Ax ≤ b is defined as totally dual integral if the minimum of equation

(2.1) can be achieved by an integral vector y for each integral c for which an optimum

exists. A nice feature of this definition is that we get primal integrality for free, provided

b is integral, as was shown by Hoffmann (1974).

Theorem 2.5.4: (Cook et al. 1998) Let Ax ≤ b be a totally dual integral system such

that P := {x | Ax ≤ b} is a rational polytope and b is integral. Then the polytope P

is integral.

Note that the condition that b is integral is essential for the integrality of P . The fact

alone that a system is totally dual integral does not say anything about the structure

of the polytope.

2.6 Polyhedral Combinatorics

In this section we combine the above introduced concepts of linear algebra, polyhedral

theory and linear programming. A problem in the area of combinatorial optimization

has the following characteristics:

1. a groundset E,

2. a family I of feasible subsets of E,

3. a weight or score we associated with each element e ∈ E.

The goal is to find the feasible set F ∈ I for which the linear objective function

w(F) :=
∑

e∈F we is maximized. For any subset B ⊆ E the incidence vector χB is

defined as χBe = 0 if e /∈ B and χBe = 1 if e ∈ B. This yields a one-to-one correspon-

dence of the feasible sets F with certain (0, 1)-vectors in QE. Hence, a combinatorial

optimization problem can be associated in a natural way with a polytope P by defining

P as the convex hull conv{χF | F ∈ I} over all feasible incidence vectors χF . This

polytope is also called the problem polytope. With the use of the problem polytope the

combinatorial optimization problem can be written as the linear program

max{wTx | x ∈ P},

because the vertices of P are exactly the incidence vectors of the feasible sets F ∈ I. In

order to apply linear programming techniques to solve the above problem it is necessary

25

CHAPTER 2. MATHEMATICAL PRELIMINARIES

to characterize it as the solution of a linear inequality system. The question arises,

under which circumstances can we hope to find such a description?

According to results of Grötschel, Lovász, and Schrijver (1981), Karp and Papadim-

itriou (1980), and Padberg and Rao (1981), we can optimize a linear objective function

over a polytope in polynomial time if and only if we can solve the separation problem

in polynomial time. The separation problem asks – given a vector x̄ ∈ QE – whether

x̄ ∈ P , and if x̄ /∈ P , to find a vector c ∈ QE and a scalar c0 ∈ Q such that the

inequality cTx ≤ c0 separates x̄ from P , i.e., it is valid with respect to P and cT x̄ > c0.

The above result implies that it is very unlikely to find polynomial time separation

routines for NP-hard problems. Indeed, for most NP-hard problems even a complete

description in terms of linear inequalities is either not known or it has exponential size.

Thus our objective can only be to identify a part of such a system. Although that

might not appear very helpful at first sight, there are some good reasons to search

for a partial description of the problem polytope. On the one hand, we only need to

know at most |E| many facet-defining inequalities that describe the optimal vertex of

P , on the other hand, the partial description is a relaxation of the problem that can

be solved in a branch-and-bound framework where cutting plane techniques and linear

programming yield upper and lower bounds. Since an irredundant description of P by

linear inequalities contains only facet-defining inequalities, we concentrate on finding

those valid inequalities that are facet-defining. A more detailed reasoning is given in

Chapter 6.1.

If the feasible sets of a groundset form an independence system, it turns out that a

lot of results about the facial structure of the associated polytope follow easily. In

the following chapter we introduce independence systems that define a special class of

combinatorial optimization problems.

2.7 Independence Systems

A pair I = (E, I) is called an independence system on E if I is a family of subsets

of the finite set E with ∅ ∈ I and the property that F1 ⊆ F2 and F2 ∈ I implies

F1 ∈ I. The members of I are called independent and those of 2E \ I dependent

sets. As an example one might consider the problem of finding a spanning tree in

a complete graph Kn = (V,K). Every set of edges that does not form a cycle is

independent, all other sets of edges are dependent. Hence, the pair I = (K, I) with

I := {E ⊂ K | E does not induce a cycle in G} is an independence system.

Let I = (E, I) be an independence system on E. A basis B of F ⊆ E is a maximal

(with respect to set inclusion) independent subset of F , i.e., a set B ⊆ F with the

26

2.7. INDEPENDENCE SYSTEMS

property that B ∪{e} is dependent for all e ∈ F \B. In our example all spanning trees

in the graph form a basis, because one cannot add another edge without introducing a

cycle.

A circuit C is a minimal dependent subset of E, i.e., a set C ∈ 2E \ I satisfying

C \ {e} ∈ I for all e ∈ C. In the example the cycles in the graph correspond to the

circuits of the independence system, because removing any edge from a cycle results in

an independent set.

With every subset F ⊆ E we associate a number r(F) := max{|B| | B is basis of F}
called the rank of F . In the example the rank of the independence system is n − 1,

because every spanning tree – which forms a basis – has n− 1 edges.

An independence system is called k-regular if each of its circuits is of size k. A set

F ⊆ E is a clique of a k-regular system (E, I) if |F | ≥ k and all
(|F |
k

)
k-subsets of F

are circuits of (E, I). The polyhedron associated with (E, I) is denoted by PI . The

following theorems describe basic facts about independence systems.

Theorem 2.7.1: (Grötschel and Padberg 1985) Let (E, I) be an independence system

and let F = E −⋃ I. Then the dimension of PI is |E| − |F |.

The next theorem for full-dimensional polytopes restricts the number of possible facet-

defining inequalities.

Theorem 2.7.2: (Hammer, Johnson, and Peled 1975) If PI is a full-dimensional poly-

tope associated with the independence system (E, I), then xi ≥ 0 for i = 1, . . . , |E| are

the only facet-defining inequalities with right hand side 0. Moreover, all the nontrivial

facets of PI are defined by inequalities aTx ≤ a0 with a ≥ 0 and a0 > 0.

Theorem 2.7.3: (Nemhauser and Trotter 1973) Suppose F ⊆ E is a maximal clique

in the k-regular independence system (E, I). Then
∑

e∈F xe ≤ k − 1 is a facet of PI .

For F ⊆ E we call I ′ = (F, I ′), where I ′ = {B ∈ I | B ⊆ F}, the subsystem generated

by F . Given a facet-defining inequality
∑

e∈F aexe ≤ a0 for the subsystem (F, I ′), one

may ask whether there is a facet-defining inequality

∑

e∈F
aexe +

∑

e∈E\F
aexe ≤ a0

for the independence system (E, I) ⊇(F, I ′). The process of obtaining inequalities from

inequalities of subsystems is called lifting . For every subset F ⊆ E let PI(F) denote

the polytope {x ∈ PI | xe = 0 for all e /∈ F}.
Theorem 2.7.4: (Nemhauser and Trotter 1973) Let (E, I) be an independence system,

let F ⊆ E and e /∈ F . Suppose
∑

k∈F akxk ≤ a0 defines a facet of PI(F) with a0 > 0.

27

CHAPTER 2. MATHEMATICAL PRELIMINARIES

Set

ae := a0 −max{
∑

k∈F
akχ

I
k | I ⊆ F, {e} ∪ I ∈ I}.

Then aexe +
∑

k∈F akxk ≤ a0 defines a facet of PI(F ∪ {e}).

Thus, a facet-defining inequality aTx ≤ a0 for PI can be derived from a facet-defining

inequality of PI(F) by using the theorem above for all elements e ∈ E \F . In the case

that ae = 0 for all e ∈ E \ F , we also say that the inequality aTx ≤ a0 is derived by

zero-lifting from an inequality of one of its subsystems.

2.8 Stringology

The notion of a string or sequence plays a central role in this work. For the sake of

completeness we introduce the following notation about sequences.

Definition 2.8.1: A sequence of length l is a l-tuple S = (s1, s2, . . . , sl) over a finite al-

phabet Σ. For brevity, we omit the parentheses and commata and write s1s2 · · · sl. The

length l is denoted by |S|. The set of all finite sequences is denoted by Σ∗. The empty

sequence has length 0 and is denoted by ε. The concatenation C = s1 · · · slt1 · · · tm of

two sequences S = s1 · · · sl and T = t1 · · · tm is denoted by the juxtaposition ST . The

reverse sequence of S = s1 · · · sl is denoted by Sr = sl · · · s1. A sequence I = sp · · · sq
with p ≥ 1, q ≤ l is called the infix from p to q of a sequence S = s1 · · · sl and denoted

by S[p:q] . An infix is called the i-th prefix of S = s1 · · · sl if p = 1 and q = i; it is called

the i-th suffix of S = s1 · · · sl if p = i and q = l.

28

Chapter 3

Detecting Similarity –

Alignments

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

In this chapter we give an overview of one of the main concepts that is used for detect-

ing similarity (or distance) between sequences, the concept of alignments. Alignments

represent relations between sequences that should resemble functional relatedness. The

significance of such a relation is quantified with scoring functions that assign numer-

ical values to alignments. It is generally difficult to devise scoring functions in which

extremely scored alignments indeed reveal biological relatedness of the sequences under

consideration. Choosing a representation for similarity and a scoring scheme results in

a well defined optimization problem for which efficient algorithms must be devised.

In the first part of this chapter we introduce the notion of conventional alignment as

a representation of the relation between sequences. We define general scoring schemes

in order to quantify the quality of an alignment for both, pairwise and multiple align-

ments. Although the pairwise case is included in the multiple case, we give it special

attention, because scoring functions for multiple alignments are often based on pairwise

scoring functions. For pairwise alignment we propose three classes of scoring schemes,

the first encompassing scoring functions based on the comparison of two characters of

the sequences, the second using the concept of gaps, while the third is based on the

comparison of whole segments of the two sequences. For multiple alignments we give a

general scoring scheme as well and describe some commonly used scoring functions.

In the second part we extend the framework for conventional alignment in order to deal

with secondary structure information. We adapt the scoring schemes introduced in the

first part in order to quantify similarity between sequences that is not only based on

primary sequence information but also on secondary structure information.

3.1 Conventional Alignments

3.1.1 Pairwise Alignments

Definition 3.1.1: Let Σ be a finite alphabet without the blank character ’-’ and let

Σ̂ = Σ∪{’-’}. If S1, S2 are two sequences over Σ with lengths n1 and n2 then a pairwise

alignment A of S1 and S2 are two strings Ŝ1, Ŝ2 ∈ Σ̂∗ displayed in a 2×n–dimensional

matrix with the following properties:

• ai,j ∈ Σ̂ ∀i = 1, 2, 1 ≤ j ≤ n.

• Sequence Ŝi gives sequence Si if the blanks are removed.

• There is no column consisting only of blank characters, implying

max{n1, n2} ≤ n ≤ n1 + n2.

30

3.1. CONVENTIONAL ALIGNMENTS

We denote the infix of sequence Si from position l to position k by Si,[l:k]. Similarly we

denote the infix of a row of the alignment matrix with Ai,[l:k]. Two characters in Σ̂ are

said to be aligned under A if they are placed in the same column of the alignment array.

A pair of aligned characters is called a substitution or mismatch if a 6= b and none of

the two characters is the blank character. We call it a match if a = b, an insertion if

a = ’-’ or a deletion if b = ’-’ (see also Figure 3.1). Since it is seldomly necessary to

distinguish the case of an insertion from the case of a deletion both cases are called

indel .

A C C G - - - - C G C G A T

A - A G U C A U C G C G - T

S1 = ACCGCGCGAT

S2 = AAGUCAUCGCGT

mismatch matches

deletioninsertions

Figure 3.1: A pairwise alignment.

Scoring Pairwise Alignments

Alignments should reflect the biological relatedness (or difference) of the sequences

under examination. In order to compute a result that is close to the one that would be

produced manually by a biologist, it is necessary to assign some kind of score to each

possible alignment. This should be done in such a way that the biologically meaningful

results are scored extremely, i.e., with high or low score. Then optimization algorithms

can find the alignment(s) with extreme score. We write a pairwise alignment of S1, S2

as A(S1, S2). The set of all alignments between S1 and S2 is denoted by A2(S1, S2)

and the set of all alignments between any two sequences by A2. Formally we define a

pairwise alignment score function and the optimal (pairwise) alignment score as follows.

Definition 3.1.2 (pairwise alignment score): A function sc : A2 → R is called

(pairwise) alignment score function. If A is an alignment of two sequences, then sc(A)

is called (pairwise) alignment score of A. The optimal (pairwise) alignment score of

two sequences S1, S2 is defined as scopt(S1, S2) := optA∈A2(S1,S2)sc(A), where opt ∈
{min,max} depends on the score function sc.

Score functions based on pairs of residues. Most common scoring schemes are

based on the comparison of pairs of letters from Σ̂. This makes sense on the assump-

tion that the nucleotides respectively the amino acids have evolved independently on

different sites of the sequence. A mutation score function quantifies for each pair (a, b)

31

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

of letters in Σ̂ the score of aligning them. In general there are two ways to define

mutation score functions:

• in form of a similarity score sim : Σ̂× Σ̂ → R, where pairs that are chemically

similar are assigned a high score (similarity) and pairs that are chemically dis-

similar are assigned a low score. Scores involving the blank character (sim(’-’, a)

and sim(a, ’-’)) are usually set to the same constant b.

• in form of a distance score dist : Σ̂× Σ̂→ R≥0, where pairs that are chemically

similar are assigned a low score (distance) and pairs that are chemically dissim-

ilar are assigned a high score (distance). Scores involving the blank character

(dist(’-’, a) and dist(a, ’-’)) are usually set to the same constant c.

Normally a mutation score is given in form of a mutation score matrix. For the nucleic

acids they are often rather simple whereas for amino acid sequences more elaborated

matrices are used. They are based on differences in the genetic code (Fitch 1966),

chemical properties of the amino acids (Grantham 1974), secondary structural proper-

ties (Niefind and Schomburg 1991), or they are derived from empirical data by counting

true matches and mismatches in databases of structural alignments and by comput-

ing the most reasonable substitution probability that might have led to the observed

changes (Risler, Delorme, Delacroix, and Henaut 1988; Jones, Taylor, and Thornton

1992; Henikoff and Henikoff 1992; Dayhoff, Schwartz, and Orcut 1979; Benner, Cohen,

and Gonnet 1993).

Given such a score matrix, the most straightforward alignment score function is the

sum of the individual distance or similarity scores, namely

scd : A2 → R≥0 with scd(A) =

n∑

i=1

dist(a1,i, a2,i),

which is also known as weighted edit distance and

scs : A2 → R with scs(A) =
n∑

i=1

sim(a1,i, a2,i).

Distance score functions are often required to be a metric. That means, that the

function is symmetric, fulfills the zero property (scd(a, b) = 0 ⇔ a = b) and the

triangle inequality (scd(a, c) ≤ scd(a, b) + scd(b, c)). If the triangle inequality holds for

a mutation score matrix, this means that the evolutionary event of substituting a by c

is preferable to substituting a by b and then b by c. It is not clear, however, whether

the triangle inequality has a biological justification. While some authors (Beyer, Stein,

Smith, and Ulam 1974; Sankoff and Kruskal 1983) argue in favor of metrics, some of

32

3.1. CONVENTIONAL ALIGNMENTS

the most commonly used mutation score matrices (Dayhoff, Schwartz, and Orcut 1979;

Gonnet, Cohen, and Benner 1992; Henikoff and Henikoff 1992) do not fulfill the triangle

inequality. The triangle inequality is important in proving performance guarantees for

most approximation algorithms for multiple sequence alignment.

Score functions using gaps. If we use only mutation score matrices in score func-

tions we regard a consecutive run of insertions or deletions as a number of independent

events, each of which is assigned a score. On the other hand, if we assume that a sin-

gle mutational event does not change the sequence at a single point (point mutation)

but change longer parts of it, we need some means to score such an event. We call a

consecutive run of insertions or deletions in an alignment a gap and define it formally

as follows.

Definition 3.1.3: A gap of length l in an alignment A is a maximal, consecutive run

of l blank characters in one of the rows of the alignment.

In Figure 3.1 on page 31 there is a gap of length four in the first sequence, whereas the

second sequence contains two gaps of length one.

We define the similarity and distance score function for pairwise alignments with gaps as

a combination of the summed score of matches, mismatches and indels in the alignment

and a gap cost function gd(l) : N→ R≥0 (resp. gs(l) : N→ R≤0) that gives the cost of

a gap of length l in the alignment. The distance score with gaps is normally defined as

scdg : A2 → R≥0 with scdg (A) =
n∑

i=1

dist(a1,i, a2,i) +
∑

l>0

gd(l) ·# gaps of length l in A,

and the similarity score with gaps is normally defined as

scsg : A2 → R with scsg(A) =

n∑

i=1

sim(a1,i, a2,i) +
∑

l>0

gs(l) ·# gaps of length l in A.

Note that in the literature there exists also a slightly different definition for scoring

functions with gaps, because some authors do not sum the individual indel scores but

solely let the gap function account for the gap (see Altschul 1989).

If insertions and deletions have the same score b then a gap of length l has score b · l.
Hence this way of scoring gaps is called linear gap cost (also additive or homogeneous).

It is reasonable to assume that a gap cost function is subadditive, because the penalty

for a gap of length l should always be less than the sum of the penalties for several gaps

of total length l. Assume that a sequence Ŝ contains p gaps of lengths l1, l2, . . . , lp.

In the case of a distance score we would require the gap cost function gd to fulfill

gd(l1 + l2 + · · ·+ lk) ≤ gd(l1) + gd(l2) + · · ·+ gd(lk).

33

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

Apart from the linear gap cost functions there are two other classes of subadditive

functions that are used in practice, namely affine functions (g(l) = a+b · l) and concave

functions (they fulfill the quadrangle inequality g(l+m)−g(l) ≥ g(l+m+n)−g(l+n)).

The subadditivity of these functions can be used to speed up the computation of

optimal, pairwise alignments.

Score functions based on pairs of sequence segments. Another class of score

functions is based on the comparison of whole segments of the sequences under con-

sideration. The motivation for using such score functions is similar to the motivation

for introducing gaps, namely the assumption that the single amino acids or nucleotides

might not have evolved independently. Rather one assumes that a whole segment of

a sequence was inserted, deleted, or replaced. So instead of scoring a pair of charac-

ters from Σ̂ we now score a pair of segments of equal length from Σ̂∗ which we call

a block. A block score function quantifies for each block a score, just as a mutation

score function assigns a score to each pair of characters. Although it is possible to

define a block distance function, all block score functions used in practice are similarity

scores based on a block similarity score function bsim : Σ̂∗ × Σ̂∗ → R. The function

bsim assigns a high score (similarity) to blocks that contain segments that are similar

and a low score to blocks that are dissimilar. Given a block score function the most

A C C G - - - - C G C G A T

A - A︸ ︷︷ ︸ G U C A U︸ ︷︷ ︸ C G C G︸ ︷︷ ︸ - T︸︷︷︸

P = {4, 9, 13}

1.2 0.04 6 1.5

scsP (A) = 1.2 + 0.04 + 6 + 1.5 = 8.74

Figure 3.2: Scoring an alignment with a block score function.

straightforward alignment score function is the sum of the individual block similarity

scores of consecutive blocks in the alignment. Of course the function needs to know

at which position one block ends and the next starts. This information is represented

by a sorted sequence of integers P ⊆ {2, . . . , n} that partitions the interval [1..n] in

consecutive, smaller intervals, i.e., P = {p1, p2, . . . , pl} with 1 < p1 < p2 < · · · < pl ≤ n
(see for example Figure 3.2). Setting p0 = 1 and pl+1 = n + 1 the alignment score

function can be defined as

scsP : A2 → R with scsP (A) =

l+1∑

i=1

bsim(A1,[pi−1:pi−1], A2,[pi−1:pi−1]).

34

3.1. CONVENTIONAL ALIGNMENTS

3.1.2 Multiple Alignments

The definition of pairwise alignments generalizes easily to the case of more than two

sequences.

Definition 3.1.4: Let Σ be a finite alphabet without the blank character ’-’ and let

Σ̂ = Σ ∪ {’-’}. If S1, . . . , Sk are k sequences over Σ with lengths n1, . . . , nk then a

multiple alignment A of S1, . . . , Sk is a k × n–dimensional matrix A = (ai,j) consisting

of k strings Ŝ1, . . . , Ŝk ∈ Σ̂∗. A has the following properties:

• ai,j ∈ Σ̂ ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ n.

• Sequence Ŝi gives sequence Si if the blanks are removed.

• There is no column consisting only of blank characters implying

max{n1, . . . , nk} ≤ n ≤
∑k

i=1 ni.

We also need a notation to talk about the multiple alignment of a subset of the k strings

in an alignment. Such a (sub)alignment is called a projection.

Definition 3.1.5: Let A be a multiple alignment of the k sequences S1, . . . , Sk and

I ⊆ {1, . . . , k} be a set of indices defining a subset of the k sequences. Let AI be

the alignment that results from first selecting all rows of A whose index i is in I and

then deleting all columns that contain only the blank character. Then AI is called the

projection of A on {Si | i ∈ I}. If the set I is given explicitly we simplify notation and

drop the brackets, e.g., A{i,j,k} becomes Ai,j,k.

Scoring Multiple Alignments

We write a multiple alignment of the k sequences S1, . . . , Sk as A(S1, . . . , Sk). The set

of all alignments between the k sequences S1, . . . , Sk is denoted by Ak(S1, . . . , Sk) and

the set of all alignments between any k sequences by Ak. Formally we define a multiple

alignment score function as follows.

Definition 3.1.6 (multiple alignment score): A function sc : Ak → R is called

(multiple) alignment score function. If A is an alignment of k sequences, then sc(A)

is called (multiple) alignment score of A. The optimal (multiple) alignment score of

k sequences S1, . . . , Sk is defined as scopt(S1, . . . , Sk) := optA∈Ak(S1,...,Sk)sc(A), where

opt ∈ {min,max} depends on the score function sc.

Score functions based on pairs of residues. Most score functions for multiple

alignments are based on a combination of pairwise score functions for the projections

35

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

onto pairs of sequences. Three popular score functions are the (weighted) sum of pairs

((W)SOP) score, the tree score, and the consensus score.

Weighted Sum of Pairs Score. Given a pairwise alignment score function sc, the

weighted sum of pairs score simply sums up a weighted sum of the scores of all pairwise

projections of an alignment A, i.e.,

wsop : Ak → R with wsop(A) =

k−1∑

i=1

k∑

j=i+1

wi,j · sc(Ai,j).

There is no sound biological reasoning behind the WSOP score function, although it

seems to work quite well in practice. The SOP score function was first introduced by

Carrillo and Lipman (1988) and subsequently used in numerous publications. Altschul

and Lipman (1989) first introduced the WSOP score function. The weights change the

importance given to a specific pair of sequences and are often intended to reflect known

evolutionary distance between the organisms from which the sequences are obtained.

Using weights, one can try to induce the multiple alignment to more accurately reflect

known evolutionary history. Normally this is done using a evolutionary or phylogenetic

tree which is assumed to be given or has to be computed first (Gupta, Kececioglu,

and Schaeffer 1995; Altschul, Carroll, and Lipman 1989). The weights are intended

to compensate for the over-representation of certain sequence families that have little

evolutionary distance.

Although the WSOP problem can be solved to optimality in exponential time by the

same algorithm that solves the SOP problem, little is known about approximating the

WSOP problem, whereas for the SOP problem a bounded error approximation with

factor 2− l/k is known (Bafna, Lawler, and Pevzner 1994), provided that the distance

score is a metric (l < k is the cardinality of optimally aligned subsets of the sequences).

Tree Score. When a phylogenetic tree T is available that depicts the ancestral rela-

tionships among an ensemble of sequences, one realistic approach is to reconstruct the

ancestral sequences (if not given) and then align the input sequences together with the

reconstructed sequences following the incidence relations of the tree. More formally,

given a pairwise alignment score function sc the tree score of an alignment A is defined

as

treeT : Ak → R with treeT (A) =
∑

(i,j)∈T
sc(Ai,j),

where (i, j) is an edge in the tree. Note that A contains the reconstructed sequences

that may not be known in advance (see also Schwikowski 1998; Altschul and Lipman

1989). For example in Figure 3.3 on the next page you see a multiple alignment together

with an evolutionary tree.

36

3.1. CONVENTIONAL ALIGNMENTS

A C C G - - - - C G C G A T

A - A G U C A U C G C G - T

- C C - - C U U C G C - - T

C C C G U C - - C G C - A T

Figure 3.3: Multiple alignment with evolutionary tree.

Consensus Score. Let i be any column of a multiple alignment A. For a column j

the character xj is called the j-th consensus character if it yields an extremal score for

the consensus function
∑k

i=1 f(xj, ai,j), where f is either similarity or distance score

function. The concatenation of all consensus characters is called consensus sequence.

The consensus score is then defined as the sum over the values of all consensus functions,

i.e.,

consf : Ak → R with consf (A) =

k∑

i=1

n∑

j=1

f(xj, ai,j).

For example in Figure 3.4 the consensus function for each column scores 1 if xj = ai,j
and 0 otherwise. That means the character that appears most often in a column is

the consensus character with ties broken arbitrarily. Then the consensus score of the

alignment is 40.

A C C G - - - - C G C G A T

A - A G U C A U C G C G - T

- C C - - C U U C G C - - T

C C C G U C - - C G C - A T

A C C G U C - - C G C - - T

consensus sequence

Figure 3.4: Multiple alignment with consensus sequence.

Score functions using gaps. In pairwise alignments scoring functions with affine

gap costs help to build alignments that often model the biological truth quite well. For

pairwise alignments an optimal alignment with affine gap costs can be computed in

time O(n1 · n2) by a dynamic programming algorithm (Gotoh 1982) which uses three

lookup tables.

For multiple alignment it is straightforward to extend the above mentioned dynamic

programming algorithm such that its running time is Ω(nk) per stored k-dimensional

table. In addition most multiple alignment score functions could handle gaps in a

37

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

“natural” way (so-called by Altschul (1989)). However, the computational problems

very quickly become intractable because the number of relevant information that must

be stored and updated in each of the Ω(nk) steps of the algorithm grows very quickly

(Altschul (1989) showed that this number grows as O(kk ·
√
k), that means for the

WSOP alignment score function for two sequences we have to lookup 3 two-dimensional

tables per step, whereas for nine sequences we have to lookup 7087261 nine-dimensional

tables).

Therefore, in practice other gap models are used. Implementations of algorithms for

exact multiple sequence alignment under the WSOP score either only use score function

with linear gap costs (Lermen and Reinert 1997) or they use a gap cost function that

do not need that amount of information (Altschul 1989; Kececioglu and Zang 1998),

which yields acceptable results while not slowing down the computation too much.

Score functions based on pairs of segments. Similar to the case of two sequences,

score functions based on the comparison of two segments are usually similarity func-

tions. For multiple alignments one uses combinations of the pairwise block similarity

functions like the WSOP score or the tree score. Since we have to know where a block

starts and ends we now define for every pair Si, Sj of sequences a sorted sequence of in-

tegers P i,j ⊆ {2, . . . , n} with P i,j = {pi,j1 , . . . , pi,jli,j}. The set P = {P i,j | 1 ≤ i < j ≤ n}
completely describes where the blocks start and end. Then an alignment score function

can be defined as

scsP : Ak → R with scsP (A) =
k−1∑

i=1

k∑

j=i+1

li,j∑

m=1

bsim(A
i,[pi,jm−1:pi,jm −1]

, A
j,[pi,jm−1:pi,jm −1]

).

Figure 3.5 on the next page shows an alignment of three sequences and the corre-

sponding blocks. In contrast to the pairwise case the alignment of two gap characters

may occur in a block. This case can easily be accounted for by defining the block

substitution function bsim appropriately.

3.2 Structural Alignment

In structural sequence alignment we not only take into account the primary but also

the secondary structure of the sequences under consideration. RNA is typically a single

stranded molecule which folds intramolecularly to form a number of hydrogen bonded

base pairs, mostly C-G and A-U. These base pairs are called complementary and differ

in the number of hydrogen bonds they form. C-G pairs form three hydrogen bonds and

tend to be more stable than A-U pairs, which form only two. These so called Watson-

Crick base pairs are approximately coplanar and are normally stacked onto other base

38

3.2. STRUCTURAL ALIGNMENT

A C C G - - - - C G C G A T

A - A G U C A U C G C G - T

- C C - - C U U C G C - - T

A C C G - - - - C G C G A T

A - A G U C A U C G C G - T

A C C G - - - - C G C G A T

- C C - - C U U C G C - - T

A - A G U C A U C G C G - T

- C C - - C U U C G C - - T

P 1,2 = {5, 9, 14}

P 1,3 = {4, 9, 12}

P 2,3 = {6, 9, 13}

Figure 3.5: Scoring a multiple alignment with a block score function. Blocks may contain an

aligned pair of gap characters.

pairs in an RNA structure. Contiguous stacked base pairs are called stem or helix ,

C
C C

G

U
U A

G

CGAGG

C C U C G

AGG

C C U
(a) (b)

U

AGG

C C U
4

4’

6

6’

CGAGG

C C U C G

Figure 3.6: Stems with (a) interior loop and (b) bulge

because in three-dimensional space, RNA stems generally form a double helix. Each

side of a stem is called a strand of the stem (or helix). If one strand is numbered x

then the complementary strand is numbered x′ and the whole stem is denoted by x : x′.
Note that this notation has nothing to do with the 3′-end and 5′-end of a sequence.

This whole base-paired structure is called the secondary structure of the RNA (see

Figure 3.7 on the following page). It is worthwile noting that stems or helices may not

be contiguous but rather lack the hydrogen bonding at some points. Single stranded

bases (meaning not having a hydrogen bonded counterpart) occuring within a stem

are called a bulge or bulge loop if the single stranded bases are only on one side of

the stem (see Figure 3.6 (b)), or an interior loop if there are single stranded bases

interrupting both sides of the stem (see Figure 3.6 (a)). In addition to the canonical

Watson-Crick pairs other base pairs may occur as well, the most common of which is

G-U. Non canonical pairs distort the regular form of RNA helices and seem to be the

favored target of proteins specialized for recognizing RNA.

We can think of the secondary structure as a set of interactions between pairs of char-

39

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

G
G
G
G
U
A U C

G C C
A A G

C
G
G

UAA
GGC

A
C
C
G
G
A
U
U
CUG

A
U
U
C
C
G
GCAU

U
C
CGAGGUU

C
G
A
A U C C U C G

U
A
C
C
C
C
A
G
C
C
A

5′

3′
stems

forming

helices

Figure 3.7: Representation of a structured sequence with base pairs grouped together.

acters in the primary structure. The only limitation we require is that any character

is involved in at most one pairwise interaction. We represent an interaction between

the i-th and the j-th character of a sequence S of length n by an ordered pair (i, j),

1 ≤ i < j ≤ n. We say that an interaction (i, j) encloses another interaction (i ′, j′)
if i < i′ < j′ < j. Two interactions are called nested if one encloses the other. Inter-

actions almost always occur in a nested fashion in RNA secondary structure. If two

interactions (i, j), (i′, j′) are not nested they build a pseudoknot meaning i < i′ < j < j′

or i′ < i < j′ < j. In Figure 3.7 and Figure 3.8 you see two possible representations of a

ACCGACCCCAUGCUCCUAAGCUUGGAGCCUUACGGCCUUAGUCUUAGGCCACGGAAAUGGCGAACCGCUAUGGGG5′ 3′

Figure 3.8: Linear representation of a structured sequence.

tRNA (transfer RNA) sequence together with its secondary structure. The first figure

resembles the spatial distance of the nucleotides by grouping base pairs next to each

other. The second figure shows a linear representation of the primary sequence. This

drawing neatly displays the nested structure of a secondary structure without pseu-

doknots. This nested structure can also be represented as a tree in which the nodes

40

3.2. STRUCTURAL ALIGNMENT

correspond to interactions. An edge between two nodes symbolizes the immediate en-

closure of an interaction by another (see also Figure 3.9 for the tree corresponding to

the structure of the tRNA in Figure 3.7 and Figure 3.8).

Note that the representations in Figure 3.7 and Figure 3.9 are not well suited for

representing a secondary structure with pseudoknots while in the linear representation

it appears as two “crossing edges”. Therefore we will use this representation to display

a sequence with its secondary structure. We now define the notions introduced above

more formally.

Definition 3.2.1: Let S be a sequence over Σ̂ with length m. A pair (i, j) with

1 ≤ i < j ≤ m is called interaction if si 6= ’-’ and sj 6= ’-’. A set P of interactions is

called annotation of S. Two interactions (i, j), (k, l) in an annotation are in conflict if

i = k or i = l or j = k or j = l. A (secondary) structure is an annotation with no two

interactions in conflict. If S is a sequence and P an annotation we call the pair (S, P)

an annotated sequence. If P is a (secondary) structure we call it a structured sequence.

Figure 3.9: Tree representation of a structured sequence (must be without pseudoknots).

While in conventional sequence alignment the input consists of k (primary) sequences, in

structural sequence alignment it consists of k annotated sequences (S1, P1), . . . , (Sk, Pk).

Similar to conventional sequence alignment we represent the similarity among the k

sequences by an alignment, the so-called structural (multiple) alignment.

Basically a structural alignment consists of k structured sequences (Ŝ1, P̂1), . . . , (Ŝk, P̂k)

such that the i-th sequence without blanks is equal to Si and the pairs in P̂i correspond

to a subset of pairs in Pi that form a secondary structure. We introduce the function

gaps : {1, . . . , k} × {1, . . . , n} → N with

gaps(i, j) = |{l < j | ai,l = ’-’}|.

The value gaps(i, j) is the number of gap characters in the j-th prefix of sequence Ŝi.

Definition 3.2.2: Let Σ be a finite alphabet without the blank character ’-’ and let

Σ̂ = Σ ∪ {’-’}. If (S1, P1), . . . , (Sk, Pk) are k annotated sequences ∈ Σ∗ with lengths

n1, . . . , nk then a multiple structural alignment A of (S1, P1), . . . , (Sk, Pk) is a k × n–

41

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

dimensional matrix consisting of k structured sequences (Ŝ1, P̂1), . . . , (Ŝk, P̂k) with the

following properties:

• ai,j ∈ Σ̂ ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ n.

• Sequence Ŝi gives sequence Si if the blanks are removed.

• There is no column consisting only of blank characters implying

max{n1, . . . , nk} ≤ n ≤
∑k

i=1 ni.

• ∀(l,m) ∈ P̂i the following holds (l − gaps(i, l),m − gaps(i,m)) ∈ Pi.

The last condition in the above definition ensures that the secondary structures of the k

structured sequences (Ŝ1, P̂1), . . . , (Ŝk, P̂k) only contain interactions that are present in

the annotations of the input sequences. For example in Figure 3.10 on the next page the

interaction in the second sequence of the second structural alignment is (2, 12). This is

a valid interaction, because (2 − gaps(2, 2), 12 − gaps(2, 12)) = (1, 8) is an interaction

in the annotation of the second input sequence.

A pair of interactions (i, j), (k, l) in two different sequences is said to be aligned or

matched if i = k and j = l, that means the interacting characters in the two sequences

are aligned. In Figure 3.10 on the facing page you see two structural alignments of the

annotated sequences in the figure. In the upper alignment three pairs of interactions

are matched while in the second, only one pair is matched. Note that a structural align-

ment can contain unmatched interactions in the secondary structures of its structured

sequences.

Scoring Structural Alignments

Like in conventional alignment a structural alignment should reflect the biological relat-

edness of the sequences under examination. In contrast to the conventional case we have

as information not only the primary but also the secondary structure of the sequences.

As we have argued above, this additional information may be crucial for detecting sim-

ilarity, because in some cases it is not the sequence itself that is conserved through

evolution but the structure. Since it is not straightforward to define a distance score

function for structural alignment and since all scoring functions used in practice are

based on similarity scores for pairs of residues, we restrict ourselves to similarity score

functions based on the comparison of two residues. We write a structural alignment of

k annotated sequences (S1, P1), . . . , (Sk, Pk) as As((S1, P1), . . . , (Sk, Pk)). The set of all

structural alignments of (S1, P1), . . . , (Sk, Pk) is denoted by Aks((S1, P1), . . . , (Sk, Pk))

and the set of all alignments between any k annotated sequences by Aks . Formally we

42

3.2. STRUCTURAL ALIGNMENT

ACGG-CUCAGGU

CGUGGA----CG

ACGGCUCAGGU

CGUGGACG

ACG-G-CUCAGGU

-CGUGG---ACG-

Figure 3.10: Two annotated RNA sequences and two structural alignments of them.

define a structural alignment score function and the optimal structural alignment score

as follows.

Definition 3.2.3 (structural alignment score): A function sc : Aks → R is called

structural alignment score function. If As is a structural alignment of k annotated

sequences, then sc(As) is called structural alignment score of As. The optimal struc-

tural alignment score of k annotated sequences (S1, P1), . . . , (Sk, Pk) is defined as

scopt((S1, P1), . . . , (Sk, Pk)) := maxAs∈Aks ((S1 ,P1),...,(Sk,Pk)) sc(As).

Scoring functions for structural alignment are usually composed of two parts. One part

that evaluates the alignment of the characters in the sequence, and another part that

evaluates the alignment of the interactions in the secondary structures. Most scoring

functions use a weighted sum to combine these two parts.

In the pairwise case one could for example use the similarity score sim defined as on

page 32 in order to score the alignment of the characters in As and one could use an

interaction score isim : Σ4 → R that assigns a score to two pairs of aligned characters

that are defined by two matching interactions (note that an interaction never connects

a gap character to another character).

We use annotated RNA sequences to illustrate how such an interaction score can be

defined. The amount of information given may vary from little information (the an-

notation contains all possible Watson-Crick interactions) to specific information (the

annotation is a secondary structure). These two possibilities for the annotation of an

input RNA sequence give rise to three slightly different variations of the problem:

• We are given two annotated sequences (S1, P1) and (S2, P2), where the annota-

tions consist in both sequences of all possible base pairs.

43

CHAPTER 3. DETECTING SIMILARITY – ALIGNMENTS

• We are given two annotated sequences (S1, P1) and (S2, P2), where the first an-

notation is a secondary structure and the second consist of all possible base pairs

(see also Figure 3.10 on the preceding page).

• We are given two annotated sequences (S1, P1) and (S2, P2), where the annota-

tions consist in both sequences of secondary structures.

Since secondary structure is highly conserved in RNA sequences, we assign a positive

score to matching interactions. Among two alignments with almost the same conven-

tional score we would prefer the one with more matching interactions.

The following structural alignment score function rna : A2
s → R could be used to

identify alignments that have both, high sequence and high structure conservation:

rna(As) =

n∑

i=1

sim(a1,i, a2,i) +
∑

(j,l)∈P̂1,(q,r)∈P̂2

(q,r)=(j,l)

isim(a1,j , a1,l, a2,q, a2,r).

The above function assigns a high score not only to alignments with many matching

characters in the sequence but also to alignments that show few such matches but

represent structural conservation. For example in Figure 3.10 on the page before one

sees two structural alignments of two annotated sequences. The first has more matching

interactions whereas the second has more matching characters. If we score a character

match with 1 and an interaction match with 3, the first alignment would be scored

higher (score 10) than the second (score 8). This shows how structural information

encoded in the annotations can help to find biologically more relevant alignments.

For multiple structural alignment, we can combine pairwise structural scoring functions

similar to conventional alignment, that means we could define a weighted sum of pairs

score or a tree alignment score, just like in conventional alignment.

44

Chapter 4

Detecting Similarity – Traces

CHAPTER 4. DETECTING SIMILARITY – TRACES

In this chapter we give an overview of another important concept that is used for

detecting similarity between sequences, the trace. Similar to alignments traces represent

relations between sequences that should resemble functional relatedness. In contrast

to alignments they make no distinction between different arrangements of unaligned

regions. We show that traces can be formulated in terms of graphs, which proves very

useful in the formulation of integer linear programs for trace problems. The ILPs in turn

are the basis for the polyhedral approach to solving these problems. In this chapter we

proceed analogously to Chapter 3 on page 29 intending to illustrate the differences and

similarities of traces and alignments. We start by introducing the notion of conventional

traces as representation of the relation between two sequences. Then we define scoring

schemes based on both, the comparison of two characters of the sequences and the

comparison of whole segments of the sequences. Although the latter scheme includes

the former as a special case, we nevertheless give it special treatment, because most of

the commonly used scoring schemes are based on the comparison of two residues. The

pairwise scoring schemes are then used to define scoring functions for multiple traces.

In the second part we extend the notion of a trace in order to deal with secondary

structure information. We show how the scoring schemes introduced in the first two

parts can be adapted in order to quantify a similarity between sequences that is not

only based on primary but also on secondary sequence information.

4.1 Conventional Traces

4.1.1 Pairwise Traces

Assume we are given a pairwise alignment A(S1, S2) of two sequences S1 and S2. We

can identify the characters of S1 and S2 as the vertices V of the complete bipartite

graph G = (V,E) = Kn1,n2 , i.e., V = S1 ∪ S2 where Si := {si,j | 1 ≤ j ≤ ni}. We call

G the input alignment graph. The edges in G are called alignment edges and represent

possible (mis)matches of the characters in the two sequences. We say that a (mis)match

in the alignment A realizes the edge in E that joins the aligned characters. The set of

all edges in E that is realized by an alignment is called a trace, a notion first introduced

by Sankoff and Kruskal (1983). In Figure 4.1 on the next page an alignment and the

corresponding trace are shown. Of course not all edges can be realized simultaneously.

For an edge e ∈ E we denote by start(e) the position (or index) of the letter of S1

where the edge e starts and by end(e) the position of the letter of S2 where the edge

e ends. For two alignment edges e and f (e 6= f) we define the irreflexive, transitive

partial order ‘≺’ as follows:

Definition 4.1.1: Two alignment edges e, f ∈ E are in relation e ≺ f if they both

46

4.1. CONVENTIONAL TRACES

A C C G -

A A - G U

A

A

G

U

C C

A G

Figure 4.1: A pairwise trace and the alignment that realize that trace

start in Si, end in Sj , and if

start(e) > start(f) and end(e) ≤ end(f) or

start(e) = start(f) and end(e) < end(f).

Two alignment edges e and f are in conflict if either e ≺ f or f ≺ e.

In Figure 4.2 you see an alignment graph with four edges e, f, g and h. The two

alignment edges e and f cannot be realized simultaneously, because they are both

adjacent to the same node in the first sequence (e ≺ f). Likewise the two alignment

edges g and h cannot be both realized, because we are not allowed to change the order

of the characters in the sequence (h ≺ g). By choosing a proper subgraph of the

C C G

GCG U

e f g h

Figure 4.2: An alignment graph with four alignment edges e, f, g and h. The sets {e, f} and

{g, h} contain conflicting alignment edges.

complete bipartite graph Kn1,n2 rather than Kn1,n2 itself, one can conveniently encode

restrictions on the set of all possible traces. We will discuss this in Section 7 in more

detail and define now a pairwise trace as follows.

Definition 4.1.2: Let Σ be a finite alphabet and S1, S2 be two sequences over Σ with

lengths n1 and n2. Let G = (V,E) be a bipartite graph where V corresponds to the

characters of S1 and S2. A pairwise trace of G is a subset T ⊆ E with the property

that no two edges in T are in conflict.

At this point there are two things to note. Firstly, if the input alignment graph is

47

CHAPTER 4. DETECTING SIMILARITY – TRACES

not the complete bipartite graph, then the alignment of two characters may not realize

an alignment edge if it is not contained in the input alignment graph. For example in

Figure 4.3 there is no alignment edge between the second character of the first sequence

C and the second character of the second seuqence A. Hence the alignment of these

two characters does not realize an alignment edge. Secondly, as a mode of analysis,

pairwise alignments are richer than pairwise traces in the sense that an alignment makes

some order distinctions between adjacent indels which a trace does not as Figure 4.3

illustrates. Note that there can be several alignments that realize all edges in the same

A

A

G

U

C C

A G

A C C G -

A - A G U

A C C G -

A A - G U

A C - C G -

A - A - G U

Figure 4.3: A pairwise trace and three pairwise alignments that realize that trace

trace. In a mathematical sense the mapping from alignments to traces is many-to-one

and onto.

Scoring Pairwise Traces

In contrast to alignment scoring functions where the two concepts of distance and

similarity occur, trace score functions are similarity scores. Given an alignment graph

G = (V,E), we denote the set of all pairwise traces in that graph by T 2(G) and the

set of all traces in any pairwise alignment graph by T 2. Formally we define a pairwise

trace score function and an optimal (pairwise) trace score as follows.

Definition 4.1.3 (pairwise trace score): A function sc : T 2 → R is called (pairwise)

trace score function. If G = (V,E) is an alignment graph for two sequences S1 and S2

and T ⊆ E is trace in G, then sc(T) is called (pairwise) trace score of T . The optimal

pairwise trace score of S1, S2 is defined as scopt(S1, S2) := maxT∈T 2(G) sc(T).

Score functions based on pairs of residues. Traces neglect the order of unaligned

residues and therefore only matches and mismatches are scored. Since the (mis)matches

correspond to the alignment edges in the input alignment graph, we assign each align-

ment edge e ∈ E a weight we representing the benefit of realizing that edge. Then a

48

4.1. CONVENTIONAL TRACES

pairwise trace score function can be defined as

sc : T 2 → R with sc(T) =
∑

e∈T
we.

It is worthwile to note that the standard similarity and distance score functions for

alignments can be used to define similarity trace score functions.

This can be done under the reasonable assumption that the score for an indel is a

symbol-independent constant x and that for a similarity score sim(a, b) ≥ sim(a, ’-’) +

sim(’-’, b) = 2x, which simply means that the single mutational event of substituting

a by b should be scored higher than the two mutational events of deleting a and then

inserting b. Analogously, we require for a distance score dist(a, b) ≤ dist(a, ’-’) +

dist(’-’, b) = 2x which is obviously true if dist is a metric.

We show how to transform a similarity alignment score function to a trace score function

assuming that the two above assumptions hold. It should be noted that for distance

score functions that are a metric a similar construction is possible even for symbol-

dependent indel costs (Kececioglu 1998).

If the above conditions hold and we are given a similarity alignment score function

sc1 : A2 → R with sc1(A) =

n∑

i=1

sim(a1,i, a2,i),

where n is the length of the alignment, then we can shift the values of the mutation

score matrix in such a way that indels are scored zero and the optimal alignment(s)

under the standard similarity stay(s) optimal. Define sim′(a, b) = sim(a, b) − 2x,

sim′(a, ’-’) = 0 = sim(a, ’-’)− x, sim′(’-’, b) = 0 = sim(’-’, b)− x, and

sc2 : A2 → R with sc2(A) =

n∑

i=1

sim′(a1,i, a2,i).

Let A be any alignment of S1 and S2 and let m be the number of (mis)matches that

occur at position p1, . . . , pm in that alignment. Then the following holds:

sc1(A) =

n∑

i=1

sim(a1,i, a2,i)

=

m∑

i=1

(sim(s1,pi , s2,pi)− 2x) + 2mx+ (n1 + n2 − 2m)x

=
n∑

i=1

sim′(a1,i, a2,i) + (n1 + n2)x

= sc2(A) + (n1 + n2)x.

49

CHAPTER 4. DETECTING SIMILARITY – TRACES

That means the score of any alignment A under sc1 differs only by a constant from its

score under sc2. Therefore an optimal alignment under sc1 is also optimal under sc2.

If we are given a complete alignment graph we can define the trace score function

sc3 : T 2 → R with sc3(T) =
∑

e∈T
sim′(s1,start(e), s2,end(e)),

that means we sum the similarity score of all pairs of characters that are incident to an

edge in T . If we have an optimal alignment Aopt under sc2 then this alignment realizes

in G a trace T opt with the property sc3(T opt) = sc2(Aopt). Hence, if the above mild

assumptions hold, the computation of an optimal trace and an optimal alignment yield

alignments with the same score. Generally, we can use shifted mutation score matrices

that assign positive scores to matches and mismatches.

Score functions based on pairs of sequence segments. In the case of traces we

can incorporate segment-to-segment based scoring functions by introducing a partition

D of the alignment edges in the alignment graph G = (V,E) and by allowing multiple

edges in G. We require that each element of the partition must be a trace and call

such a set of edges a block. We define the surjective function v : E → D which maps

each edge e ∈ E to the block d ∈ D in which e is contained. As a shorthand we write

v(T) := {v(e) | e ∈ T}, T ⊆ E. We regard a block d ∈ D as realized if all the edges in

d are realized. Analogously to a block in an alignment we assign to each block d ∈ D

-

--

-

∈ d1

∈ d2

∈ d3

∈ d4

D = {d1, d2, d3, d4}, w(d1) = 3.4, w(d2) = 4.5, w(d3) = 3.0, w(d4) = 1.7

sD(T) = w(d1) + w(d2) = 3.4 + 4.5 = 7.9

Figure 4.4: Scoring a trace with a block score function. The blocks d1 and d2 are realized by

the shown alignment.

a positive score wd representing the benefit of realizing that block. Then we can define

50

4.1. CONVENTIONAL TRACES

the score of a given trace T as the sum of the scores of the blocks it realizes

scD : T 2 → R with scD(T) =
∑

d∈v(T)

wd.

In Figure 4.4 on the preceding page you see an alignment graph whose edges are parti-

tioned into four blocks d1, d2, d3 and d4 (note that we allow multiple edges between a

pair of vertices). The trace shown in the figure realizes the blocks d1 and d2.

4.1.2 Multiple Traces

Kececioglu (1991) first generalized Kruskal’s notion of a trace in an alignment graph to

more than two sequences. Similar to the pairwise case, we view the characters of the k

input strings as the vertex set V of a k-partite graph. The edge set E represents pairs

of characters that one would like to have aligned in an alignment of the input strings.

The notion of a conflict between two alignment edges, however, is no longer sufficient

to test whether a set of alignment edges forms a trace or not. Figure 4.5 shows an input

alignment graph for three sequences. The alignment edges e and f cannot be realized

simultaneously, because they are in conflict (e ≺ f). Neither can the three alignment

edges g, h and i be realized simultaneously, although these three edges are not mutually

in conflict. We can characterize such forbidden combinations of edges as mixed cycles

e f

g

h

i

Figure 4.5: Alignment graph for three sequences.

in an extension of the input alignment graph G = (V,E) (see Chapter 2.1 on page 18

for the definition of mixed graph and mixed cycle). We extend G to a mixed graph by

adding a set of directed “horizontal” arcs

H = {(si,j, si,j+1) | 1 ≤ i ≤ k, 1 ≤ j < ni},
where si,j is the vertex that corresponds to letter j in sequence i. We call this graph

the extended alignment graph (EAG) (see Figure 4.6 on the following page for the two

mixed cycles induced by the edges e, f, g, h and i from Figure 4.5).

We call a mixed cycle R in G critical if for all i, 1 ≤ i ≤ k, all vertices in R ∩ Si occur

consecutively in R. Informally this means that a critical mixed cycle enters and leaves

each sequences at most once.

51

CHAPTER 4. DETECTING SIMILARITY – TRACES

The extended alignment graph gives us a simple way of testing whether an edge set

may be realized by some alignment or not by simply looking for a critical mixed cycle

in it. We give the formal statement in the following theorem.

Theorem 4.1.1: Let G = (V,E,H) be an EAG, let T ⊆ E and let G′ = (V, T,H)

be the EAG induced by T . Then there exists a multiple alignment A that realizes all

edges in T iff there is no critical mixed cycle in G′.

Proof. To prove one direction of the equivalence, we first assume that A is an alignment

that realizes all edges in T . A arranges the vertices of G into columns such that all

edges in T connect vertices in the same column and such that all arcs in H run from

left to right. Thus G′ contains no mixed cycle.

g
h

i e f

Figure 4.6: Extended alignment graph. Two critical mixed cycles (dashed) are shown.

To prove the converse direction, we assume next that G′ contains no critical mixed

cycle. We show first that G′ contains no mixed cycle and then construct an alignment

that realizes all edges in T . Assume first that G′ contains a mixed cycle. Consider a

mixed cycle R of smallest size (see Section 2.1 on page 18 for a definition of size) and

assume that it is not critical. Then there is some i such that the vertices in R∩Si are not

consecutive in R. Let y be the rightmost vertex in R∩Si and let Q be the subpath of R

starting in y and ending in the next vertex x on R∩Si (note that x is left of y or equal to

y). If x = y, then either Q or R without the “loop” Q is a mixed cycle smaller than R.

If x 6= y, then Q together with the path of arcs between x and y is a mixed cycle smaller

than R. In both cases we have a contradiction. Thus G′ contains no mixed cycle. Let

C1,. . . ,Cm be the connected components of (V, T) (note that each connected component

contains at most one vertex from each sequence). Define a directed graph with vertex

set {C1, . . . , Cm} and arc set {(Ci, Cj) | (x, y) ∈ H with x ∈ Ci and y ∈ Cj }. This

graph is acyclic (because G′ has no mixed cycle) and hence may be sorted topologically.

We obtain an alignment that realizes T by making each component a column of the

alignment and by ordering the columns as given by the topological ordering.

Using Theorem 4.1.1 we can formally define a multiple trace.

52

4.1. CONVENTIONAL TRACES

Definition 4.1.4: Let Σ be a finite alphabet and S1, . . . , Sk be k sequences over Σ

with lengths n1, . . . , nk. Let G = (V,E,H) be a an extended alignment graph where

V corresponds to the characters of S1, . . . , Sk. A multiple trace of G is a subset T ⊆ E
with the property that the extended alignment graph induced by T ∪ H contains no

critical mixed cycle.

Scoring Multiple Traces

Given an extended alignment graph G = (V,E,H) for k sequences we denote the set

of all multiple traces in that graph by T k(G) and the set of all traces in any extended

alignment graph by T k. Formally we define a multiple trace score function and an

optimal (multiple) trace score as follows.

Definition 4.1.5 (multiple trace score): A function sc : T k → R is called (mul-

tiple) trace score function. If G = (V,E,H) is an extended alignment graph for the

k sequences S1, . . . , Sk and T ⊆ E a trace in G, then sc(T) is called (multiple) trace

score of T . The optimal (multiple) trace score of the k sequences S1, . . . , Sk is defined

as scopt(S1, . . . , Sk) := maxT∈T k(G) sc(T).

Score functions based on pairs of residues. Defining a multiple trace score is

easy. We simply sum up the weights of the edges in the multiple trace:

sc : T k → R with sc(T) =
∑

e∈T
we.

Note that the above trace score incorporates numerous scoring functions depending on

how the input EAG is generated.

∈ d1

∈ d2

∈ d3

∈ d4

-

-

-∈ d5

Figure 4.7: Scoring a trace with a block score function. The blocks d1 and d2 are realized by

the shown alignment.

Score functions based on pairs of segments. Similar to the two sequence case,

we define a partition D of the alignment edges into blocks. A block is a trace in which

53

CHAPTER 4. DETECTING SIMILARITY – TRACES

every edge is incident to nodes in the same pair of sequences. We regard a block d ∈ D
as realized if exactly all edges in d are realized.

We extend the function v in order to handle sets of directed and undirected edges

occurring in an extended alignment graph, namely v : E ∪H → D ∪ {∅} with

v(e) =

{
d if e ∈ d,
∅ if e ∈ H,

that means the function maps each edge e ∈ E to the block d ∈ D in which e is

contained. As a shorthand we write v(C) := {v(e) | e ∈ C}, C ⊆ E ∪H.

Analogously to a block in an alignment we assign to each block d ∈ D a positive

score wd representing the benefit of realizing that block. Since we want to score a

block only if all alignment edges in the block are realized we define for each trace T

r(T) = {d ∈ v(T) | |T \ d| = |T | − |d|}. Then we can define the score of a given trace

T in an EAG G = (V,E,H) as the sum of the scores of the blocks it realizes

scD : T k → R with scD(T) =
∑

d∈r(T)

wd.

In Figure 4.7 on the preceding page you see an alignment graph whose edges are parti-

tioned into five blocks d1, d2, d3, d4 and d5. The alignment shown in the figure realizes

the blocks d1 and d3. Note that the two blocks d5 and d1 contain a different edge that

joins the same pair of vertices. Hence, any alignment that realizes either d1 or d5 must

match the corresponding characters.

4.2 Structural Traces

First we introduce an additional edge set I to the input EAG in order to reflect all

possible interactions in an annotated sequence. We say that two interaction edges

ip, iq ∈ I are in conflict if they are adjacent. A subset B ⊆ I is called (secondary)

structure if no two edges in B are in conflict. We call G = (V,E,H, I) the structural

extended alignment graph (SEAG). In Figure 4.8 on the next page there is a SEAG

for two sequences. The interaction edges of the sequences form secondary structures

where the second structure contains a pseudoknot (see Section 3.2 on page 38). Similar

to structural alignment we define a structural trace.

Definition 4.2.1: Let Σ be a finite alphabet and (S1, P1), . . . , (Sk, Pk) be k annotated

sequences over Σ. Let G = (V,E,H, I) be a structural extended alignment graph. A

(multiple) structural trace of G is a pair (T,B) with T ⊆ E, B ⊆ I with the property

54

4.2. STRUCTURAL TRACES

Figure 4.8: Structural extended alignment graph.

that the subgraph induced by T ∪H does not contain a critical mixed cycle and there

are no two conflicting interaction edges in B.

For example Figure 4.9 on the next page shows two possible structural traces (the

green, dashed edges and the red, dotted edges).

Scoring Structural Traces

Let ip, iq be two interaction edges contained in secondary structures of two different

sequences in a structural trace (T,B). We say that ip matches iq if the two alignment

edges el, er joining the two left resp. two right nodes adjacent to ip and iq are realized,

that means are contained in T . We call the set {ip, iq, el, er} interaction match and

el, er the connecting edges of the interaction match.

Given a structural extended alignment graph G = (V,E,H, I) for k annotated se-

quences (S1, P1), . . . , (Sk, Pk) we denote the set of all structural traces in that graph

with T ks (G) and the set of all structural traces in any structural extended alignment

graph by T ks . Formally we define a structural trace score function and the optimal

structural trace score as follows.

Definition 4.2.2 (structural trace score): A function sc : T ks → R is called struc-

tural trace score function. If G = (V,E,H, I) is a structural extended alignment graph

of k annotated sequences (S1, P1), . . . , (Sk, Pk) and (T,B) with T ⊆ E, B ⊆ I is a

structural trace in G, then sc((T,B)) is called structural trace score of (T,B). The

optimal structural trace score of k annotated sequences (S1, P1), . . . , (Sk, Pk) is defined

as scopt((S1, P1), . . . , (Sk, Pk)) := max(T,B)∈T ks (G) sc((T,B)).

In conventional traces a pair of matching characters is represented by an alignment edge

e. Therefore we assign a weight we to each alignment edge e, representing the benefit

of matching these two characters. In structural traces the connecting edges el, er of

55

CHAPTER 4. DETECTING SIMILARITY – TRACES

i

j

l r

Figure 4.9: Two possible structural traces.

an interaction match {ip, iq, el, er} completely describe a pair of matching interactions.

Hence we denote an interaction match {ip, iq, el, er} with ml,r and assign a weight wl,r
to it. Let M be the set of all interaction matches ml,r of a given SEAG G = (V,E,H, I),

namely

M = {ml,r | ml,r = {ip, iq, el, er} is an interaction match in G}.

We then can define a structural trace score for k annotated sequences as follows:

sc : T ks → R with sc((T,B)) =
∑

e∈T
we +

∑

ip,iq∈B, el,er∈T
{ip,iq ,el,er}∈M

wl,r

That means we score the alignment edges that are realized by (T,B) as well as the

interaction matches that are realized.

4.3 Gapped Traces

It is possible to account for scoring functions with gaps by extending the EAG to a so

called gapped EAG (GEAG). A gapped EAG G = (V,E,H,A) has an additional set

A =
⋃
Ai,j of so called gap edges. For each pair Si, Sj of sequences with i 6= j the set

Ai,j is defined as {gi,j,l,m = {sj,l, sj,m}, 1 ≤ l ≤ nj, l ≤ m ≤ nj}. A gap edge gi,j,l,m
represents a gap in row i of an alignment. The gap runs in sequence Sj from position l

to position m inclusively and hence has length m− l+ 1 (note that the edge joins two

vertices in Sj but represents a gap in row i, see also Figure 4.10 on the facing page).

Each gap edge gi,j,l,m is assigned a weight wi,j,l,m representing the penalty of the gap.

We say that a gap edge gi,j,l,m encloses all nodes in {sj,q | l ≤ q ≤ m}. For example in

56

4.3. GAPPED TRACES

C--GT-U

-AGGTC-

g1,2,1,2

g2,1,1,1 g2,1,4,4

g1,2,5,5

Figure 4.10: GEAG for two sequences. In the middle is an alignment that realizes the gapped

trace on the right.

Figure 4.10 the lower left gap edge encloses the first two nodes of the second sequence

and represents the gap of length two in the first row of the alignment.

In an alignment, for each pair of sequences a character is either aligned with a character

in the other sequence or it is aligned to a gap character. In order to model this

for gapped traces, for any pair of sequences a node must either be incident to an

alignment edge or must be enclosed by exactly one gap edge. In addition we require

that a consecutive run of gap characters is regarded as one gap rather than as the

concatenation of two shorter gaps. This leads to the following definition of a gapped

trace.

Definition 4.3.1: Let G = (V,E,H,A) be an gapped alignment graph. A pair (T,C)

with T ⊆ E and C ⊆ A is called gapped trace if

1. T is a trace.

2. For each vertex sj,q holds: For all i = 1, . . . , k, i 6= j, sj,q is either

• incident to an alignment edge adjacent to a node in Si or

• C contains exactly one gap edge gi,j,l,m that encloses sj,q, that is, l ≤ q ≤ m.

3. C contains no two adjacent gap edges.

Given a gapped extended alignment graph G = (V,E,H,A) for k sequences we denote

the set of all gapped (multiple) traces in that graph by Gk(G) and the set of all gapped

traces in any gapped extended alignment graph by Gk. Formally we define a gapped

trace score function and the optimal gapped trace score as follows.

57

CHAPTER 4. DETECTING SIMILARITY – TRACES

Definition 4.3.2 (gapped trace score): A function sc : Gk → R is called gapped

trace score function. If G = (V,E,H,A) is a gapped extended alignment graph of k

sequences S1, . . . , Sk and (T,C) with T ⊆ E, C ⊆ A is a gapped trace in G, then

sc((T,C)) is called gapped trace score of (T,C). The optimal gapped trace score of k

sequences S1, . . . , Sk is defined as scopt(S1, . . . , Sk) := max(T,C)∈Gk(G) sc((T,C)).

We define a gapped trace score function as follows:

sc : Gk → R with sc((T,C)) =
∑

e∈T
we −

∑

g∈C
wg.

Note that in the gapped trace formulation it is trivial to encode affine, convex or any

other reasonable gap cost function. We just have to precompute the weight of each gap

edge in A, depending on the gap function we would like to use. Then we simply assign

to each gap edge the gap cost depending on its length, position, etc.

58

Chapter 5

The GMT and SMT Problem

CHAPTER 5. THE GMT AND SMT PROBLEM

In this chapter we formally define the Generalized Maximum Trace Problem (GMT) and

the Structural Maximum Trace Problem (SMT) using the notations from the previous

chapter. Then we briefly describe the two algorithms of Kececioglu (1993) and Bafna,

Muthukrishnan, and Ravi (1995) for the MT and SMT problem respectively. Both

algorithms are based on dynamic programming. While the SMT algorithm is only

designed for structurally aligning two sequences, the algorithm of Kececioglu can deal

with k ≥ 2 sequences.

5.1 Problem Definition

In the GMT formulation the input consists of an EAG G = (V,E,H), a partition D

of the alignments edges into blocks, and a block trace score function that assigns a

positive weight wd to each block d ∈ D. Using Theorem 4.1.1 we define the GMT

problem as follows:

Generalized Maximum Trace Problem:

Given an EAG G = (V,E,H) and a partition D into blocks

with weights wd (∀d ∈ D). Find a set M ⊆ D of maximum weight

such that
⋃
d∈M d does not induce a critical mixed cycle on G.

In contrast to the original Maximum Trace (MT) formulation (Kececioglu 1991) that

can only handle residue-to-residue based trace score functions, the GMT problem can

deal with both, segment-to-segment based trace score functions and residue-to-residue

based trace score functions. For the former the branch-and-cut algorithm proposed in

this thesis is the first algorithm that is able to solve the GMT to optimality. For a

restricted version Morgenstern et al. (1998) give a heuristic procedure that computes

a trace using a greedy strategy.

For residue-to-residue based trace score functions Kececioglu (1993) proposed a dy-

namic programming based approach that solves the MT problem to optimality. Ke-

cecioglu’s algorithm was introduced originally to model the final multiple alignment

phase of DNA sequence assembly. Kececioglu showed that MT is NP-complete and

developed a branch-and-bound algorithm for the problem based on dynamic program-

ming, with worst-case time complexity O(k22kN) and space complexity O(N), where

N =
∏
i ni. The algorithm is able to solve to optimality relatively small problem in-

stances. In Chapter 5.2.1 we review Kececioglu’s algorithm, because it currently is the

best dynamic programming approach for the MT problem.

The second problem we address is the Structural Maximum Trace Problem (SMT).

The input for the SMT problem is an structural extended alignment graph (SEAG).

60

5.2. DYNAMIC PROGRAMMING BASED ALGORITHMS

As structural trace score function we use a weighted sum of the weights of the alignment

edges and the weights of interaction matches as described in Chapter 4.2 on page 54.

Recall that M is the set of all interaction matches in G, namely

M = {ml,r = {ip, iq, el, er} | ml,r is an interaction match in G}.

Given a subset M ′ of M let I(M ′) be all interaction edges of the interaction matches

in M ′, that is

I(M ′) = I ∩
⋃

ml,r∈M ′
ml,r.

Then we define the SMT problem as follows:

The Structural Maximum Trace Problem

Given an SEAG G = (V,E,H, I) with weights we(∀e ∈ E) and wl,r(∀ml,r ∈M),

find the structural trace (E ′, I(M ′)), E′ ⊆ E, M ′ ⊆M with maximum weight.

Bafna, Muthukrishnan, and Ravi (1995) introduced a number of problem formulations

for computing similarity between two annotated sequences among them two variations

of the SMT problem. In the first variation they align two structured sequences whereas

in the second variation they infer the secondary structure of the first sequence to the

second by allowing any Watson-Crick base pair in the annotation of the second sequence

and then aligning it with the first structured sequence. In their paper they gave two

different recurrences for the two above mentioned variations of the problem with a

time bound of O(n2
1 · n2

2) in the case that P1 and P2 are both secondary structures and

O(n2
1 · n2

2 + n1 · n3
2) in the case that P2 is no secondary structure. We will show that

a slight modification of their recurrence can solve any variation of pairwise structural

alignment in time O(n2
1 · n2

2). In Chapter 5.2.2 we review their algorithm, because it

currently is the best dynamic programming approach for the SMT problem.

5.2 Dynamic Programming based Algorithms

5.2.1 The MT Algorithm

Kececioglu (1993) showed that the MT problem, like most multiple sequence alignment

problems, can be solved by dynamic programming, and is equivalent to finding a longest

path from a designated source to a designated sink in a k-dimensional acyclic mesh-

shaped digraph, the so-called dynamic programming graph.

For simplicity assume that the input alignment graph is the complete k-partite graph.

In this case the dynamic programming graph DP = (V,A) has the node set V =

61

CHAPTER 5. THE GMT AND SMT PROBLEM

{v = (v1, v2, . . . , vk) | vi ∈ {0, . . . , ni}} and the arc set A = {(p, q) | p, q ∈ V, p 6=
q and q − p ∈ {0, 1}k}.

If Si,[1:j] is the j-th prefix of sequence Si, then each node in DP is a k-dimensional

vector symbolizing the subproblem of finding a maximum trace for the subgraph of the

alignment graph that is induced by the set of the respective prefixes Si,[1:vi] of the k

input sequences.

Each arc in A represents a possible column of the alignment realized by a trace. Moving

from node p = (p1, . . . , pk) to node q = (q1, . . . , qk) using arc (p, q) means that the

alignment of the prefixes induced by p is extended by a column c. The i-th entry of c

consists of the next character of Si if qi− pi = 1 or of the blank character if qi− pi = 0.

Hence the set of all source-to-sink paths codes all possible alignments. The weight of

an arc is the sum of the weights of the edges in the input alignment graph that are

realized by the corresponding column and the weight of the alignment is the sum of

the weights of the arcs on a source-to-sink path in DP .

Therefore finding a maximum trace corresponds to finding a longest source-to-sink path

in DP . This can be accomplished by a breadth-first search (BFS) starting from the

source node of the graph and visiting the nodes in lexicographical order. The search

maintains a queue of nodes with the property that the length of a longest path is known

from the source node to the node at the head of this queue. The generic step removes

node v from the head of the queue, examines all arcs (v, w) leaving v, and updates the

longest path information (length and predecessor) on w if the longest path to v followed

by (v, w) is longer than the current longest path to w. Then w is added to the queue

in lexicographical order, if it is not already queued.

The running time of this algorithms is easily analyzed. For each node O(2k − 1) arcs

need to be checked in order to update the longest path information on the target nodes.

For each arc the score function has to be computed which accounts to s(k) time (e.g.,

O(k2) for the WSOP scoring function). Since there are N =
∏
i ni nodes in V this yields

an algorithm with worst case time complexity of O(s(k) · 2k ·N) and space complexity

O(N), which is feasible only for very small problem instances.

However, the above algorithm does not need to construct DP before conducting the

BFS. Rather the dynamic programming graph is constructed on the fly. Starting with

nothing but the start node s = (0, 0, . . . , 0) all neighboring arcs and nodes are generated

during the execution of the algorithm. If the input alignment graph is not complete

this does not necessarily comprise all 2k−1 possible nodes. Thus we can view this step

as a branch step within a branch-and-bound framework (see also Section 6.1.2 for a

general description of the branch-and-bound paradigm for integer linear programming).

A bounding step can be added before putting a node w into the queue. Suppose we

62

5.2. DYNAMIC PROGRAMMING BASED ALGORITHMS

l(v)

v

w

u(w)

source

sink

Figure 5.1: Branch and bound step in a three-dimensional DP graph

have a lower bound l on the length of the longest source to sink path, for example the

score of multiple trace computed by some heuristic. If we have in addition an upper

bound u(w) on the length of the longest path from w to the sink, then we can avoid

putting w into the queue if

l(v) + sc(v, w) + u(w) ≤ l,

where l(v) is the length of the longest path from the source to v and sc(v, w) is the

weight of arc (v, w) (see also Figure 5.1).

As mentioned above, only in the case of the complete k-partite graph the branch step

has to consider k neighboring nodes. If the input alignment graph is sparse, generally

fewer neighboring nodes have to be examined.

Kececioglu (1993) gave an elaborate procedure to further reduce the number of nodes

to be examined. His method is based on the computation of a minimum cut which

eliminates some nodes from consideration (Kececioglu 1999). This sparsification of

the problem inherent in the input alignment graph speeds up the computation of the

longest path in this dynamic programming algorithm.

63

CHAPTER 5. THE GMT AND SMT PROBLEM

5.2.2 The SMT Algorithm

Bafna, Muthukrishnan, and Ravi (1995) introduced a number of problem formulations

for computing similarity between two annotated sequences (S1, P1) and (S2, P2), among

them two variations of the SMT problem. In the first variation they align two struc-

tured sequences whereas in the second variation they infer the secondary structure of

the first sequence to the second by allowing any Watson-Crick interaction in the anno-

tation of the second sequence and then aligning it with the first structured sequence.

Although they claim that their algorithms can be extended to handle pseudoknots in

the secondary structure they do not explain how this could be done.

In their paper they gave two different recurrences for the two above mentioned variations

of the problem with time bound of O(n2
1 · n2

2) in the case that P1 and P2 are both

secondary structures and O(n2
1 · n2

2 + n1 · n3
2) for the case that P2 is no secondary

structure.

We will show that a slight modification of their second recurrence leads to a dynamic

programming algorithm with running time O(n2
1 · n2

2) for all variations of pairwise

structural alignment, that means P1 and P2 may be any annotation and may contain

pseudoknots.

Since they do not use a gap cost functions the two problems they address can be

regarded as instances of the SMT problem. Since Bafna et al. presented their algorithm

as an alignment algorithm we describe the modified recurrence in terms of structural

alignments (see Chapter 3) rather than using the structural trace terminology (see

Chapter 4).

They use a weighted sum of a sequence similarity score sim : Σ̂2 → R and an interaction

score isim : Σ4 → R as structural alignment score function, namely, in our notation,

rna : A2
s → R with

rna(As) 7→
n∑

i=1

sim(a1,i, a2,i) +
∑

(j,l)∈P̂1,(q,r)∈P̂2

(q,r)=(j,l)

isim(a1,j , a1,l, a2,q, a2,r).

Assume that we are given two structured sequences (S1, P1) and (S2, P2) together with

the structural alignment score function rna. The goal is to compute an optimal struc-

tural alignment with respect to rna. We use a four-dimensional array A to record

the value of solutions of subproblems. The entry A[i1, j1, i2, j2] contains the score of

an optimal structural alignment between the annotated sequences (S1,[i1:j1], P1,[i1:j1])

and (S2,[i2:j2], P2,[i2:j2]) where Pi,[j:k] is the set of all interaction (x, y) ∈ P with

j ≤ x < y ≤ k. Hence A[1, n1, 1, n2] contains the score of the optimal structural

alignment between (S1, P1) and (S2, P2). The base cases for this recurrence are as

64

5.2. DYNAMIC PROGRAMMING BASED ALGORITHMS

follows:

1. The score of aligning an empty infix of (S1, P1) with an empty infix of (S2, P2) is

zero. Hence A[i1, j1, i2, j2] = 0 for all quadruples (i1, j1, i2, j2) with j1 < i1 and

j2 < i2.

2. Aligning an empty infix of (S1, P1) with an nonempty infix of (S2, P2) yields

as score the sum of all insertion scores for the infix of the second sequence,

i.e., A[i1, j1, i2, j2] =
∑

i2≤k≤j2 sim(’-’, s2,k) for all quadruples (i1, j1, i2, j2) with

j1 < i1 and j2 ≥ i2.

3. Aligning an empty infix of (S2, P2) with an nonempty infix of (S1, P1) yields

as score the sum of all deletion scores for the infix of the second sequence,

i.e., A[i1, j1, i2, j2] =
∑

i1≤k≤j1 sim(s1,k, ’-’) for all quadruples (i1, j1, i2, j2) with

j2 < i2 and j1 ≥ i1.

For the case that both infixes are nonempty, consider the following recurrence for all

1 ≤ i1 < j1 ≤ n1 and 1 ≤ i2 < j2 ≤ n2.

Â[i1, j1, i2, j2] = max
{
Â[i1, j1 − 1, i2, j2] + sim(s1,j1 , ’-’),

Â[i1, j1, i2, j2 − 1] + sim(’-’, s2,j2),

Â[i1, j1 − 1, i2, j2 − 1] + sim(s1,j1, s2,j2),

Â[i1 + 1, j1, i2, j2] + sim(s1,i1 , ’-’),

Â[i1, j1, i2 + 1, j2] + sim(’-’, s2,i2),

Â[i1 + 1, j1, i2 + 1, j2] + sim(s1,i1 , s2,i2)
}

(5.1)

This recurrence describes all possible ways to optimally align the infixes

(S1,[i1:j1], P1,[i1:j1]) and (S2,[i2:j2], P2,[i2:j2]) provided that there are no two interactions

(i1, j1) ∈ P1 and (i2, j2) ∈ P2, and provided we know the score of the optimal structural

alignments of all smaller infixes. The optimal alignment of the two infixes is obtained

by extending an optimal alignment of smaller infixes either to the left or to the right

with either a deletion, an insertion, or a match. For each of this cases we add the

similarity score of the (mis)match or indel to the known optimal score of structurally

aligning the smaller infixes.

However, if (i1, j1) ∈ P1 and (i2, j2) ∈ P2, then matching the two character pairs at the

end of the infix yields an interaction match with positive score and hence may change

the optimal structural alignment. This case is accounted for in the second part of the

65

CHAPTER 5. THE GMT AND SMT PROBLEM

recurrence.

A[i1, j1, i2, j2] = max
{
Â[i1, j1, i2, j2],

A[i1 + 1, j1 − 1, i2 + 1, j2 − 1]

+ sim(s1,j1 , s2,j2)

+ sim(s1,i1 , s2,i2)

+ isim(s1,i1 , s1,j1 , s2,i2 , s2,j2)
}

(5.2)

Filling the four-dimensional table requires time O(n2
1 · n2

2), because for each quadruple

the maximum is taken over a constant number of terms. The dynamic programming

table can be filled bottom up. The table entries are visited in lexicographical order of

the length of the infixes, i.e., we first compute the entries for all infixes of length one

in the first sequence and all infixes of length one in the second sequence. Then the

entries for all infixes of length one in the first sequence and all infixes of length two in

the second sequence and so on. In contrast to the second recurrence of Bafna et al. our

recurrence can cope with pseudoknots and is less involved.

66

Chapter 6

The Combinatorial Optimization

Approach

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

In this chapter we describe in detail the polyhedral approach we take in order to develop

efficient branch-and-cut algorithms for the GMT and SMT problem. In the previous

chapter we have formulated both problems in terms of graphs, i.e., as combinatorial

optimization problems. We start this chapter by describing a general branch-and-cut

framework in Section 6.1. Then we give specific details for the GMT problem in Section

6.2 and for the SMT problem in Section 6.3. Each of the two sections contains problem-

specific details for the general branch-and-cut algorithm and is divided in four parts:

(1) Definition of the ILP and of the polytope (or polyhedron) P associated with the

problem (Sections 6.2.1 and 6.3.1).

(2) Investigation of the facial structure of P ; this yields a partial description (also

called relaxation), defining a polytope R ⊇ P (Sections 6.2.2 and 6.3.2).

(3) Devising separation routines over the relaxed polytope R (Sections 6.2.3 and

6.3.3).

(4) Presenting results of our implementations (Sections 6.2.4 and 6.3.4).

6.1 The Generic Branch-and-Cut Algorithm

In this section we describe the algorithmic technique we used to solve the GMT and

SMT problem to optimality. This so-called branch-and-cut algorithm is a combination

of the cutting plane technique and the well known branch-and-bound paradigm. While

the enumerative frame involved basically stays the same for every combinatorial opti-

mization problem, the main work of computing good lower and upper bounds is rather

problem specific.

In Section 6.1.1 we outline the general cutting plane algorithm which yields upper

bounds for a given combinatorial optimization problem like the SMT and GMT prob-

lem. If we are interested in an exact solution of a combinatorial optimization problem,

generally a cutting plane approach will not be sufficient. Rather we have to combine

the cutting plane approach with the branch-and-bound paradigm which is reviewed in

Section 6.1.2. This combination is called branch-and-cut approach and is described in

Section 6.1.3 in a general way.

6.1.1 A Cutting Plane Approach

Suppose we are given a combinatorial optimization problem P over a ground set of

cardinality n (see also Chapter 2). Let P be described by the (0/1)-integer linear

68

6.1. THE GENERIC BRANCH-AND-CUT ALGORITHM

programming problem I = max{cTx subject to Ax ≤ b, x ∈ {0, 1}}. Also assume

that we are given a heuristic solution to this problem with objective value l, which

is hopefully not to far away from the optimal solution of P . One way to derive a

statement about the quality of the heuristic solution is to compute an upper bound

u on the optimal solution of P . Then we know that the heuristic solution is at most

a fraction of (u − l)/u away from the optimal solution of P . An upper bound can

be computed using a cutting plane algorithm. In a cutting plane algorithm linear

programming techniques are used to solve a sequence P0, P1, . . . , Pk of relaxations of

P , where the solutions of these relaxations provide a series of non-increasing upper

bounds to the original problem.

A relaxation of a combinatorial optimization problem P is another optimization prob-

lem Q, whose set of feasible solutions properly contains all feasible solutions of the

original problem. The objective function of Q is an extension of the objective function

of P . Hence, the value of the optimal solution of the relaxation of P is at least as high

as the value of the optimal solution of the original problem. Consequently, solving a

relaxation of P yields an upper bound for P itself.

Since we use linear programming techniques in a cutting plane algorithm, the relax-

ations of the original problem P are expressed in terms of systems of linear inequalities.

They differ from each other in the sense that during the algorithm inequalities are added

to the system describing the current relaxation. To be more specific, if we consider re-

laxation Pi described by Aix ≤ bi, we add at least one or more inequalities to Aix ≤ bi,
which yields relaxation Pi+1. As noted above, the algorithm guarantees that the so-

lutions of the relaxations provide a series of decreasing upper bounds for the original

problem.

The inequalities we add stem from the solution of the general separation problem which

is defined as follows:

The general separation problem

Given a class of valid inequalities for a combinatorial optimization problem,

and a vector y ∈ Qn, either prove that y satisfies all inequalities of this class,

or find an inequality of this class which is violated by y.

The solution of the general separation problem gives the cutting plane algorithm its

name, because it “cuts” off the current optimal solution which is not feasible for the

original ILP I, or proves that the solution is feasible for the examined class of inequal-

ities.

The hyperplane defined by the set of points that fulfills the separating inequality with

equality is therefore called cutting plane. An algorithm which solves the general sepa-

ration problem is called exact separation algorithm in contrast to a heuristic separation

69

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

algorithm, which may find violated inequalities, but if it fails, it is not guaranteed that

no inequality of the class is violated.

If we want to apply a cutting plane algorithm to a combinatorial optimization prob-

lem P we generally face two problems, each of which can be circumvented by using

appropriate relaxations of the ILP I that describes P .

1. Solving a (0/1)-ILP is NP-hard, meaning that no efficient algorithm for solving an

ILP is known and that it is very unlikely that such an algorithm exists. Therefore

we relax the ILP I by dropping the integrality constraint and adding the two

trivial inequalities xi ≥ 0 and xi ≤ 1 for each variable xi. The resulting linear

programming problem L = max{cTx subject to Ax ≤ b, 0 ≤ xi ≤ 1} can be

solved efficiently, that means in polynomial time in the size of the LP.

2. Unfortunately, the linear program L can contain an exponential number of in-

equalities in its constraint matrix. In this case solving L would take polynomial

time in the size of L but result in an exponential algorithm in the size of the

original problem. We circumvent this by further relaxing L. We start with an

initial linear program L′ containing only a polynomial number of constraints. L′

can then be solved in time polynomial in the size of the original problem. (Note

that this relaxation even is applied in cases when a class of inequalities does not

contain an exponential, but a large number of inequalities.)

Applying these two relaxations to the original problem, we start the cutting plane

algorithm with the linear program L′ containing a polynomial number of inequalities

in its constraint matrix.

Let x′ be the optimal solution of L′. Since the system of inequalities does not contain

all inequalities from the original system Ax ≤ b, we first have to solve the general sep-

aration problem for the classes of inequalities occurring in the original ILP description

of the problem. We call this set of inequalities ILP inequalities.

If we find a violated inequality from Ax ≤ b, we add it to the current set of inequalities

and solve the problem again. Note that we need to employ exact separation algorithms,

no matter whether x′ is integral or fractional. Otherwise we would not know whether

an integral solution is optimal or whether only the heuristic separation routine failed

to identify a violated inequality.

If the exact separation routine confirms that no ILP inequalities are violated we have

to consider two cases.

1. x′ is integral.

Then x′ is an optimal solution to the original problem, because no ILP inequality

70

6.1. THE GENERIC BRANCH-AND-CUT ALGORITHM

is violated and because x′ is the optimal solution of a relaxation of the original

problem, yielding an upper bound on the value of an optimal solution of the

original problem.

2. x′ is fractional.

In this case we have to keep on solving the separation problem for other classes

of valid inequalities. At this point we can employ heuristic separation methods,

as long as we use exact methods for the ILP inequalities.

We now rise the question how further cutting planes can be found, if the optimal

solution of the current LP is not integral and no ILP inequality is violated.

One way is to consider classes of cutting planes that can be applied to any combinatorial

optimization problem, such as, for example, Gomory cuts (see Gomory 1958). We call

such cutting planes general purpose cutting planes, because they are not problem spe-

cific and can be employed to solve any combinatorial optimization problem. Although

there has been intensive research in finding good general purpose cutting planes, they

seem to be of limited use for solving combinatorial optimization problems. Successful

computational work relies on specific cutting planes for a particular problem.

A very successful method for deriving problem specific cutting planes is the investi-

gation of the polytope associated with the combinatorial optimization problem under

consideration. Especially the facet-defining inequalities are useful, because they are

valid for the integer linear programming formulation and are not dominated by any

other valid inequality. Hence, they are in some sense the best cutting planes. In gen-

eral, however, it is not simple to identify classes of facet-defining inequalities for the

problem polytope (see Chapter 6 for facet-defining inequalities for the SMT and GMT

polytope). Even if one has identified such a class, this is algorithmically only useful if

their separation problem can be solved exactly or at least be attacked with heuristic

separation routines.

Cutting plane algorithms using problem specific cutting planes, e.g., facet-defining

inequalities, often have to stop without finding an optimal solution. This can have

two different reasons. Firstly, for no NP-hard combinatorial optimization problem a

complete linear description is known. Secondly, even if a big class of facets is known,

no efficient algorithm may be available for the solution of the exact separation problem

for this class. Nevertheless, large instances of NP-hard combinatorial optimization

problems can be solved with the help of facet-defining cutting planes in combination

with the branch-and-bound paradigm.

71

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

6.1.2 Branch-and-Bound

The cutting plane approach outlined so far does not necessarily solve a problem instance

to optimality for various reasons discussed above. We can end up in a solution which is

not a feasible incidence vector of the combinatorial optimization problem. If we then are

not able to find a cutting plane that would allow us to create a new relaxation we can

employ another basic algorithmic paradigm for solving hard combinatorial problems,

branch-and-bound.

Branch-and-bound is a divide-and-conquer approach trying to solve the original prob-

lem by dividing it into smaller problems for which lower and upper bounds are com-

puted. This gives rise to an enumeration tree of subproblems. In the context of (0/1)-

integer linear programs the root of this tree corresponds to the original problem and

each internal node has two children representing the two subproblems generated by

setting one variable to zero in the one subproblem and to one in the other subproblem.

Each path from the root to another node in the tree exactly describes the constraints

start

initialize

y

compute

global lower

bound glb

and local

upper bound

lub

stop

output

glb < lub feasible

list empty

select

branch

fathom

n

n

n

y

y

Figure 6.1: Flowchart of a branch-and-bound algorithm.

on the subproblem, namely the variables which are set and the values to which they are

set during a branch step. The crucial part of a successful branch-and-bound algorithm

is the computation of upper bounds for these subproblems. We call an upper bound

lub local , if it is computed for a subproblem in the enumeration tree. If the solution

found for the subproblem happens to be feasible for the original problem (i.e., there

are no contradictions to the variable settings imposed by the path in the enumeration

tree leading to the node of the subproblem) and has a higher objective value than any

72

6.1. THE GENERIC BRANCH-AND-CUT ALGORITHM

feasible solution found so far, it is memorized and the global lower bound (glb) for the

objective function is increased accordingly.

The whole algorithm is depicted in Figure 6.1 on the facing page. A branch-and-bound

algorithm maintains a list of subproblems of the original problem, which is initialized

with the original problem itself. In each major iteration step, the algorithm selects a

subproblem from this list, computes a local upper bound for this problem and tries to

improve the global lower bound. If the local upper bound does not exceed the global

lower bound, the current subproblem is fathomed, because its solution cannot possibly

be better than the best known feasible solution.

If the local upper bound exceeds the global lower bound and no feasible solution was

found for the current problem, we perform a branching step by dividing the current

problem into two subproblems by selecting one branching variable which is set to zero

in the one subproblem and to one in the other.

If the list of subproblems becomes empty, then the memorized feasible solution whose

objective function value is equal to the global upper bound can be output as the

optimum solution.

6.1.3 Branch-and-Cut

We will now discuss the general branch-and-cut algorithm which is the combination

of the cutting plane approach and the branch-and-bound paradigm, both explained

above.

Its main difference from the classical branch-and-bound method is the use of LP re-

laxations and the employment of problem specific cutting planes at every node of the

enumeration tree. This feature incurs several technical details that make the design

and implementation of a branch-and-cut algorithm a nontrivial task.

Figure 6.2 on the next page shows a flowchart of a branch-and-cut algorithm. The

four dashed boxes resemble the corresponding boxes of the normal branch-and-bound

algorithm depicted in Figure 6.1 on the facing page. They basically can be identified

with the four rectangular boxes in Figure 6.1 that stand for bounding, branching,

selecting and fathoming. The most important part is the problem-specific bounding

which we will describe in more detail in Sections 6.3.3 and 6.2.3 for the SMT and GMT

problem respectively. The main difference to a branch-and-bound algorithm lies in

the bounding part. Here cutting planes are iteratively added to the relaxed program

thereby making the current solution infeasible and (normally) improving the upper

bound for the problem. If no further cutting planes can be found the bounding part is

left and the execution of the branch-and-bound algorithm continues.

73

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

start

initialize

initialize
new node

solve LP

infeasible LP

glb < lpval

exploit LP

feasible

tailing off

fix and set

contradictions

separate

new constraints eliminate

glb < lpval feasible

fathom

fix

set logical

glb < ulb

contradictions

list empty

select

branch

new values

contradictions

fix and set

n

n

n

n

n

n

n

n

n

n

n

n

n

y

y

y

y

y

y

y
y

y

y

y

y

output

stop

Figure 6.2: Flowchart of a branch-and-cut algorithm.

Already a short inspection of Figure 6.2 shows that this explanation is a gross simpli-

fication of a branch-and-cut algorithm. Nevertheless it describes the main idea. In the

74

6.1. THE GENERIC BRANCH-AND-CUT ALGORITHM

next part we describe the additional details of the branch-and-cut algorithm depicted

in Figure 6.2. The reader who is content with the simplified explanation above may

skip this part. It is intended to reflect the complexity of the general branch-and-cut-

algorithm without eluding technicalities too much. A very profound treatment of this

topic can be found in Jünger, Reinelt, and Thienel (1995b).

Let lpval be the value of the current relaxed LP and glb be the current global lower

bound of the problem. In the bounding (or cutting plane) part (the leftmost dashed

box in Figure 6.2 on the preceding page), there is an additional step after the first test

of glb < lpval called exploit LP. In this step the lower bounding of Figure 6.1 on

page 72 is done. Before proceeding to the computation of new upper bounds (called

separate) the current fractional solution is exploited to improve the lower bound. This

is done by trying to generate a feasible (0/1) solution, either by rounding fractional

variables or by employing other problem specific procedures.

If we succeed in finding a new feasible solution we leave the bounding part. If not,

we check whether we have made a significant decrease in lpval during the last few

cutting plane iterations. If not, it is reasonable to abort the cutting plane generation.

This strategy is called tailing off, where the decision to abort is made according to

two parameters k and p. If, during the last k iterations in the bounding part, lpval

did not decrease at least by p percent, then new subproblems are generated instead of

generating further cutting planes. Good choices for the parameters p and k are rather

problem specific and dependent on the quality of the available cutting plane generation

procedures. Finally, before entering the separation, the values of some variables can

be fixed to zero or one, according to their reduced costs in the current solution. For

details we again refer to Jünger, Reinelt, and Thienel (1995b). Once we have fixed

some variables by reduced costs, it may occur that we can fix even more variables

by logical implications, that means, for example, if one alignment edge variable

in the GMT is fixed to one by its reduced costs we can fix all conflicting alignment

edge variables to zero. We can also set variables using the same criteria as for fixing.

However, in contrast to fixing, the setting is only locally valid, i.e., only for the current

branch-and-cut node and its descendants. Fixing and setting of variables may result in

contradictions to variables previously set or fixed. If such contradictions are detected

the current node is fathomed.

The upper bounding is done in the part separate. If we find here new cutting planes we

add them to the current LP. However, this could result in a large number of inequalities.

As a remedy for this, the step eliminate deletes inequalities that are no longer needed

according to some specific criterion. One criterion could be, for example, that the

inequality is non-binding in the current solution.

This concludes the bounding part. In the branching part (the lower middle dashed

75

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

box in Figure 6.2 on page 74) some variable is chosen as the branching variable and two

new branch-and-cut nodes are created and added to the set of active branch-and-cut

nodes. An active branch-and-cut node is a leaf in the enumeration tree that is not yet

fathomed. In the first node the variable is set to one, in the second to zero. If one

can separate the ILP inequalities exactly, then there is at least one fractional variable

which is a reasonable candidate for a branching variable. There are different strategies

of choosing among fractional variables, for example,

• Choose the variable closest to 0.5.

• Choose the variable closest to 0.5 and among those the one with biggest objective

function coefficient.

• Choose the fractional variable with the biggest objective function coefficient.

In the selecting part a branch-and-cut node is selected (if possible) and removed from

the list of active branch-and-cut nodes. If the list of active branch-and-cut nodes is

empty, the best known feasible solution is also the optimal solution. Otherwise the

selected node is processed. After a selection the set variables (including the branching

variables) must be adjusted. If it turns out that some variable must be set to 0 or

1, yet has been fixed to the opposite value in the meantime, we have a contradiction

and hence fathom the current node. If the local upper bound lub of the selected node

does not exceed the global lower bound glb, the node is fathomed immediately and

the selection process is continued. Similar to the branching part there are different

strategies of how to select a branch-and-cut node.

• In the case of depth-first search a branch-and-cut node with maximum depth in

the branch-and-cut tree is selected.

• In the case of breadth-first search a branch-and-cut node with minimum depth in

the branch-and-cut tree is selected.

• In the case of best-first search the most “promising” branch-and-cut node is se-

lected, i.e., in the case of a maximization problem, the node with the maximum

local upper bound.

Finally, the last dashed box describes the fathoming part. A branch-and-cut node

does not need to be considered any longer as soon as one of the following applies:

• the objective value of the current best feasible solution glb is at least the value of

the (local) upper bound obtained in this branch-and-cut node,

76

6.2. THE GMT PROBLEM

• the branch-and-cut node is infeasible, that means, the linear program does not

contain a point in the solution space,

• a contradiction occurs, for example, we have to fix a variable to one which has

been set to zero before.

6.2 The GMT Problem

6.2.1 A Characterization of the GMT Problem as ILP

Recall the definition of the GMT problem on page 60. The input consists of an EAG

G = (V,E,H), a partition D of the alignments edges into blocks, and a block trace

score function that assigns a positive weight wd to each block d ∈ D. The goal is to

find the set of blocks with maximum overall weight. Note that the only conditions on

D are (1) every d ∈ D is a trace between a pair of sequences, i.e., it does not contain

two conflicting edges, and (2) D is a partition, i.e., any edge in E is contained in

exactly one block of D. A feasible set over D is a set M of blocks such that the union

U =
⋃
d∈M d does not induce a mixed cycle on G. In that case U is a trace according

to Theorem 4.1.1. Let T := {M ⊂ D | ⋃d∈M d is a trace} be the set of all feasible

solutions. We define the GMT polytope as the convex hull of all incidence vectors of D

that are feasible, i.e.,

PT (G) := conv{χM ∈ {0, 1}|D| |M ∈ T },

where the incidence vector χF for a subset F ⊆ D is defined by setting χFd = 1 if d ∈ F
and setting χFd = 0 if d /∈ F . For reasons of clarification we speak in the singleton case

also of the MT polytope.

Recall the definition of the surjective function v : E∪H → D∪{∅} (see also on page 54).

The function v maps each edge e ∈ E to the block d ∈ D in which e is contained.

It is now easy to formulate GMT as an integer linear program. For every d ∈ D we

have a binary variable xd ∈ {0, 1} indicating whether d is in the solution or not. In

view of Theorem 4.1.1 the GMT-problem

max
∑

d∈D
wd · xd subject to x ∈ PT (G)

77

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

is equivalent to

maximize
∑

d∈D
wd · xd

subject to
∑

d∈v(C)

xd ≤ |v(C)| − 1, ∀ critical mixed cycles C in G (6.1)

xd ∈ {0, 1}, ∀d ∈ D

We call the inequalities in Equation (6.1) mixed-cycle inequalities. All mixed cycle

inequalities are valid inequalities for the GMT polytope of G. In Section 6.2.2 we

derive conditions under which they are facet-defining.

6.2.2 The Structure of the GMT Polytope

In this section we investigate the structure of the GMT polytope. First we consider the

case of two sequences and then the case of multiple sequences. Recall that D is the set

of all blocks that might be realized by an alignment. A subset of D is called feasible if

the alignment edges in the block do not induce a mixed cycle in the input EAG.

Since every subset of a feasible set of blocks is also feasible and the empty set is feasible

as well, the pair IT (G) = (D, T) forms an independence system on D. We call the

set of blocks which have non-zero coefficients in an inequality cTx ≤ c0 the support of

the inequality. According to the definition of circuits in an independence system we

observe the following:

Observation 1: Let R be any critical mixed cycle in an extended alignment graph

G = (V,E,H). Then the incidence vectors of v(R) form a circuit of the independence

system IT (G).

Lemma 6.2.1: Let G = (V,E,H) be an extended alignment graph. PT (G) is full-

dimensional and the inequalities xd ≥ 0, d ∈ D are facet-defining for PT (G). Further

let d be any block in D. Then the inequality xd ≤ 1 is facet-defining iff no edge of d is

in conflict with another edge.

Proof. Since every d ∈ D is independent, it follows by Theorem 2.7.1 that PT (G) is full-

dimensional. From Theorem 2.7.2 follows that the inequality xd ≥ 0 is facet-defining

for PT (G) for all d ∈ D.

To prove the last statement, let us assume that no edge of d is in conflict with another

edge. Then A = {{s, d} ⊆ D | s ∈ D \ d} ∪ {{d}} is a set of |D| many feasible solu-

tions whose incidence vectors are affinely independent. According to Theorem 2.3.2 on

page 21 the inequality xd ≤ 1 defines a facet of PT (G).

78

6.2. THE GMT PROBLEM

On the other hand, assume that there is an edge e ∈ d in conflict with another edge

f . Then each incidence vector χM of a feasible solution M ⊆ D satisfying χMd = 1

has to satisfy χMv(f) = 0, so dim{x ∈ PT (G) | xd = 1} ≤ |D| − 2. Thus xd ≤ 1 is not

facet-defining.

We call the inequalities defined in the lemma above the trivial inequalities for the GMT

problem.

For two sequences all circuits of IT (G) (recall that IT (G) = (D, T)) are of cardinality

two because a critical mixed cycle visits every sequence at most once (see also Theo-

rem 4.1.1 on page 52). Hence, the independence system is 2-regular, which means that

in a clique of IT each pair of blocks contains edges e1, e2 with e1 ≺ e2. Theorem 2.7.3

implies that the inequalities

∑

d∈C

xd ≤ 1, C is a maximal clique of IT (G)

are facet-defining for PT (G). We call these inequalities clique inequalities.

It is known that the two-sequence case of MT problem can be reduced to the problem

of computing the heaviest increasing subsequence of an integer sequence. Therefore

the question arises whether the trivial and clique inequalities already give a complete

description of the (G)MT polytope. In fact it can be shown that for the MT the clique

inequalities together with the trivial inequalities build a complete description of the

MT polytope.

To prove this, we need a more intuitive understanding of cliques in the independence

system IT (G). Observe that (V,E) is a subgraph of the complete bipartite graph Kp,q

with nodes x1, . . . , xp and y1, . . . , yq.

Definition 6.2.1: Let PG(Kp,q) be the p× q directed grid graph, such that the arcs

go from right to left and from bottom to top. Row r, 1 ≤ r ≤ p of PG(Kp,q) contains q

nodes which correspond from left to right to the q edges that go between node xr and

node y1, . . . , yq in Kp,q. We call PG(Kp,q) the pairgraph of Kp,q (see Figure 6.3 on the

following page) and a node in the pairgraph essential if it corresponds to an edge in E.

The graph PG(Kp,q) has exactly one source and one sink and there is a path from node

n2 to node n1 in PG(Kp,q) iff e1 ≺ e2 for the corresponding edges e1, e2 in Kp,q. For

example in Figure 6.3, e3 is the source and e5 ≺ e3, because there is a path from e3 to

e5. Recall that the two singleton sets {e1} and {e2} form a circuit in IT (G) iff e1 and

e2 are in conflict, i.e., if either e1 ≺ e2 or e2 ≺ e1.

Lemma 6.2.2: Let p = n1, . . . , np+q be a source-to-sink path (n1 is the source) in

PG(Kp,q) and let e1, . . . , el, l ≤ p + q be the edges in E that correspond to essential

79

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

nodes in p. Then C := {{e1}, . . . , {el}} is a clique of IT (G) if |C| ≥ 2. Moreover, every

maximal clique of IT (G) is represented by a source-to-sink path in PG(Kp,q).

Proof. For any two nodes ni and nj in p with i > j the corresponding edges ei and

ej are in relation ei ≺ ej and hence {ei} and {ej} form a circuit of IT (G). Thus

{{e1}, . . . , {el}} is a clique of IT (G). Conversely, the edges in the singleton sets of any

clique C = {{e1}, . . . , {el}} of IT (G) can be totally ordered with respect to ≺ because

≺ is transitive and the edges in any two singleton sets of C are in relation ≺. We

assume w.l.o.g. e1 ≺ e2 ≺ · · · ≺ el. As noted above that means that there exists a

path from ni to ni+1 for 1 ≤ i < l. This implies the existence of a source-to-sink path

containing the essential nodes n1, . . . , nl. This path cannot contain another essential

node, because otherwise C would not be maximal.

1

1 2
4

5 6
3

2 3

4 5 6

Figure 6.3: The K2,3 and the corresponding pairgraph.

The pairgraph is a powerful data structure. It represents (2n−2)!
(n−1)!2

= Ω(2n) clique inequal-

ities where n is the number of edges in Kp,q. If G is sparse, however, it is unnecessary

to store nonessential nodes. In this case the space consumption can be reduced using

a sparse pairgraph. In a sparse pairgraph there are only essential nodes and paths con-

sisting of nonessential nodes are replaced by arcs (see also Figure 6.4). In practice, the

space consumption of a sparse pairgraph is linear in the number of edges in G, although

there are examples, in which the sparse pairgraph needs more space, because of a high

number of arcs.

To prove the integrality of the MT polytope we could prove that the constraint matrix

formed by the trivial and clique inequalities is totally unimodular. Unfortunately this

is not the case. We can construct a counterexample in which we can identify a set of

columns in the constraint matrix with the following property: There is no partition of

the set in sets S+ and S− such that the sum of the column vectors in S+ minus the

sum of the column vectors in S− yields a vector with entries 1,0 or −1. According to

Theorem 2.5.3 on page 24 this cannot be for a totally unimodular matrix.

Lemma 6.2.3: There are instances of the MT problem for two sequences such that the

constraint matrix formed by the trivial and clique inequalities is not totally unimodular.

80

6.2. THE GMT PROBLEM

1

2 345

6

1

2 3

4
5

6

Figure 6.4: Instance of MT with corresponding sparse pairgraph (in black) that has no totally

unimodular constraint matrix (white nodes are nonessential).

Proof. The proof is conducted by exhibiting an instance of the MT problem which gives

rise to a constraint matrix that is not totally unimodular. Figure 6.4 shows an instance

of MT and the corresponding sparse pairgraph. It is easy to verify that the matrix C in

Figure 6.5 gives the coefficients for all clique inequalities: If we choose the columns 2, 3

and 6 there are exactly three ways to partition them w.l.o.g. into S+ and S−, namely

1. S+ = {2} and S− = {3, 6}.

2. S+ = {3} and S− = {2, 6}.

3. S+ = {6} and S− = {2, 3}.

Subtracting the vectors in S− from the vector in S+ yields the following three vectors:

1. (1, 0, 0,−1, 0,−1,−1,−2)T

2. (−1,−2, 0,−1, 0,−1, 1, 0)T

3. (−1, 0, 0, 1,−2,−1,−1, 0)T

Each of these vectors has an entry different from 0,1 and −1. According to Theorem

2.5.3 this is not possible for a totally unimodular matrix.

Deprived of this convenient way of showing that the trivial and cliques inequalities

form a complete description of the MT polytope we try a more direct way by using the

pairgraph in a constructive proof.

Theorem 6.2.1: In the two-sequence case of the MT problem the trivial and the clique

inequalities together form a complete description of the MT polytope.

Proof. Let P be the polytope defined by the trivial and the clique inequalities. Then

certainly PT (G) ⊆ P . If we could prove that P is integral, i.e., has only integral vertices,

81

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

C =

1 1 0 0 1 0

1 1 0 0 0 1

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

0 1 1 0 0 1

0 0 1 1 1 0

0 0 1 1 0 1

Figure 6.5: Coefficient matrix C.

we would have equality since a full-dimensional polytope has – up to a multiplicative

factor – a unique description.

Lemma 6.2.4: P is integral.

Proof. Assume that P has a fractional vertex x̂. Let w be a vector of weights such

that x̂ is the unique optimum solution of max{wTx | x ∈ P}; any w lying in the cone

generated by supporting hyperplanes of x̂ is suitable.

Assign to each node ne in PG(Kp,q) that corresponds to an edge e in E the value x̂{e}
of the singleton set {e} and assign zero to all other nodes. Now let PG′ be the subgraph

of PG(Kp,q) that consists of tight paths, i.e., the subgraph that is induced by the edges

that are contained in some source-to-sink path, where the values of the nodes on that

path sum up exactly to one. Note that such a tight path exists, because otherwise x̂

would not be optimal. Moreover, all paths in PG′ are tight because for any node ne in

PG′ holds that all paths from the source to ne have the same value and all paths from

ne to the sink have the same value. This follows, because otherwise there would exist

at least one source-to-sink path that has a value greater than one. This in turn would

imply a violated clique inequality which would contradict the feasibility of x̂.

Let s be the source of PG′. We construct node sets of PG′, such that every source-

to-sink path goes exactly once through each node set. Let C1 be the set of nodes

with nonzero value such that the nodes in C1 are the first nodes with nonzero value

on a source-to-sink path. Such a set exists, as we have only tight paths in PG ′. Let

m be the minimal value of the nodes in C1. Clearly m < 1, because we assume a

fractional solution. Let M ⊆ C1 be the set of all nodes of C1 with value m. Further

let N(M) be the set of the first nodes with nonzero value reachable from M and let

C2 = (C1 \M)∪N(M). This leads to the following observations (see also Figure 6.6):

82

6.2. THE GMT PROBLEM

m

M

N(M)
m

C1

C2

node with nonzero value

node with zero value

source

sink

Figure 6.6: PG′(Kp,q) with the node sets C1 and C2.

1. There is no arc from ne to nf between any two nodes ne, nf ∈ C1. Otherwise

there would be two paths with different value from s to nf , one with value x{f}
and one with value x{f} + x{e} which is impossible.

2. There is no arc from ne to nf between any two nodes ne, nf ∈ N(M). Otherwise

there would be two paths with different values from s to nf , namely one with

value m+ x{f} and one with value m+ x{f} + x{e}.

3. The nodes in C1 \M cannot have an edge to a node in N(M). Again, this would

result in two paths of different value from the source to an edge in N(M).

From the above observations it follows that every source-to-sink path visits C1 and C2

exactly once. Define S1 =
∑
{e|ne∈M}w{e} and S2 =

∑
{e|ne∈N(M)} w{e}. Here w{e} is

the weight (in the weight vector w) of the singleton set {e}. Assume S1 ≤ S2. We then

decrease the value of the nodes in M by m and increase the value of the nodes in N(M)

by this amount. Then all tight paths are still tight, as by our invariant every tight path

goes once through C1 and once through C2. However, we have a new fractional solution

which achieves at least the optimum weight. This is a contradiction to the assumption

that we have a unique optimal solution. Therefore the solution must be integral. The

case S1 > S2 can be handled analogously by increasing the value in M and decreasing

the value in N(M) by m′, the minimum value of nodes in N(M).

The proof of the integrality of P concludes the proof of Theorem 6.2.1.

The above lemma can also be proved in a different way which we sketch briefly. Pevzner

and Waterman (1993) showed that for two conjugate partial orders @ and @∗ over a

set Q and a weight function w over Q the length of a heaviest @-sequence equals the

size of a minimum cover of w by @∗ sequences. Here two partial orders @ and @∗ are

83

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

called conjugate, if for any two q1, q2 ∈ Q holds:

p1 and p2 are @ -comparable⇔ p1 and p2 are @∗ -incomparable.

A family C = {C} of subsets of Q is called a cover of a function w if ∀q ∈ Q there exist

at least w(q) subsets in C containing q. The proof is conducted by an easy application

of Dilworth’s theorem.

Since the relation ≺ which we defined on the alignment edges E is a partial order, we

can naturally define a conjugate partial order ≺∗ which sets two edges in relation if

they are not in relation ≺. Then it follows that the weight of a maximum trace equals

the size of a minimal clique cover for the trace score function. In other words, if Ax ≤ b
is the system of the clique inequalities from the lemma above, then for each integral

vector c holds max{cx | Ax ≤ b} = min{yT b | yTA = c, y ≥ 0}. The equality of the

solution of the primal and dual problem for each integral c implies that Ax ≤ b is

totally dual integral. Together with the integrality of b this implies that P is integral

(see Theorem 2.5.4 on page 25).

It is not clear whether the clique inequalities and the trivial inequalities always form a

complete description of the GMT polytope.

We now switch to the case of multiple sequences. For more than three sequences

Kececioglu (1991) showed that the MT is NP-hard. Hence, we cannot expect to find a

complete description of the GMT polytope in this case.

First we will show that the facet-defining inequalities of the two-sequence case of the

GMT are also facet-defining in the multiple-sequence case. If an inequality is facet-

defining for a polytope P1 associated with some subgraph G1 of the EAG, then it is

still facet-defining for a polytope P2, if the EAG G2 associated with P2 is augmented

only by edges that do not induce a mixed cycle with edges in G1. An application of

the lifting theorem (see Theorem 2.7.4) yields that the coefficients of all blocks whose

edges do not induce a mixed cycle with the edges in G1 are zero. This reads formally

as follows:

Lemma 6.2.5: (Zero lifting) Let G = (V,E,H) be an extended alignment graph,

U ⊆ D and cTx ≤ c0 be a facet-defining inequality for PT (G[E \⋃s∈U s]) (where G[A]

with A ⊆ E is the subgraph of G induced by A). Choose any d ∈ U whose edges do not

induce a mixed cycle with an edge in the support of cTx ≤ c0. Then cTx ≤ c0 defines

a facet of PT (G[(E \⋃s∈U s) ∪ d]).

If we apply Lemma 6.2.5 to the clique inequalities, we get the following theorem:

Theorem 6.2.2: Let G = (V,E,H) be the extended alignment graph for k > 2

sequences and D be a partition into blocks. Let Di,j be the set of blocks be-

tween sequences Si and Sj, and let PT (Gi,j) be the GMT polytope for the subgraph

84

6.2. THE GMT PROBLEM

Gi,j = (Vi,j , Ei,j,Hi,j) induced by the edges in
⋃
d, d ∈ Di,j. Then every facet-defining

inequality of PT (Gi,j) is also facet-defining for PT (G).

Proof. Lemma 6.2.5 implies that a facet-defining inequality cTx ≤ c0 is also facet-

defining for PT (G), because no edge in a block in D \Di,j can form a mixed cycle with

an edge in the support of cTx ≤ c0.

We now turn our attention to the next class of inequalities, the mixed cycle inequalities.

This is an important class of inequalities, because they appear in the formulation of

the problem as an integer linear program. We need some more notation.

Definition 6.2.2: Let C be a critical mixed cycle in an extended alignment graph.

We call an edge e = {v, w} ∈ E a chord of C if C1∪{e} and C2∪{e} are critical mixed

cycles where C1 and C2 are obtained by splitting C at v and w.

For reasons of convenience we write x(F) =
∑

f∈F xf .

Lemma 6.2.6: Let G = (V,E,H) be an extended alignment graph, D be a partition

into blocks and C be a critical mixed cycle of size `. Then the inequality

x(v(C)) ≤ `− 1

defines a facet of PT (G) if and only if C has no chord.

Proof. Assume that C is a critical mixed cycle of size ` without a chord. Let e1, . . . , e`
be the ` edges on C. Note that by definition of D, v(e1) 6= v(e2) 6= · · · 6= v(e`). We

obtain ` different feasible solutions by taking only the edges in v(C) and removing

the edges in v(ei), 1 ≤ i ≤ `. The incidence vectors of these solutions are linearly

independent and satisfy x(v(C)) = `− 1. Since C has no chord, we can add any block

from D \v(C) to one of the above solutions without inducing a mixed cycle on G. This

yields another |D| − ` vectors that fulfill x(v(C)) = `− 1.

Moreover, the incidence vectors of all sets of blocks constructed above are linearly

independent. Thus x(v(C)) ≤ `− 1 is a facet-defining inequality.

On the other hand, if C has a chord e then each incidence vector χM of a solution

M ⊆ D satisfying x(v(C)) = `−1 has to satisfy χMv(e) = 0, so dim{x ∈ PT (G)|x(v(C)) =

`− 1} ≤ |D| − 2. Thus x(v(C)) ≤ `− 1 is not a facet-defining inequality.

The next lemma addresses the case in which we have a mixed cycle with a chord.

Lemma 6.2.7: Let G = (V,E,H) be an extended alignment graph consisting of a

critical mixed cycle C of size ` with a chord e and D be a partition into blocks. Then

85

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

the inequality

x(v(C ∪ {e})) ≤ `− 1

defines a facet of PT (G).

Proof. From Lemma 6.2.6 we know that x(v(C)) ≤ `− 1 is a facet-defining inequality

for PT (G[E \v(e)]). Since IT is an independence system we can use the lifting theorem

to obtain the coefficient of the block v(e) in the above facet-defining inequality. First

we observe that there are solutions that satisfy x(v(C)) = `−1. In order to construct a

feasible solution containing the block v(e), we have to remove a block from any feasible

solution of satisfying x(v(C)) = ` − 1, because e induces two critical mixed cycles

together with the edges in C. Theorem 2.7.4 implies that the coefficient of xv(e) is 1

which proves the lemma.

There is in fact an even stronger version of Lemma 6.2.7 for the case that there are

several chords in a critical mixed cycle such that they form an r-ladder of size `. A

r-ladder of size ` is a mixed cycle that contains r chords, such that each pair of chords

together with at least one arc in C induce a mixed cycle in G. We define r-ladder of

size ` inductively as follows:

Definition 6.2.3: Let C be a critical mixed cycle of size ` and e1, . . . , er be r chords in

C. The chords split C into Ci1 and Ci2 for 1 ≤ i ≤ r. The set C ∪{e1, . . . , er} is called

r-ladder of size ` if for each ei, 1 ≤ i ≤ r holds: {e1, . . . , er} \ {ei} can be partitioned

into two (possibly empty) sets U = {eu1 , . . . , euj} and L = {el1 , . . . , elk} with j, k ≥ 0

and j+k = r−1 such that Ci1 ∪U ∪{ei} is a j-ladder of size |Ci1 |+1 and Ci2 ∪L∪{ei}
is a k-ladder of size |Ci2 |+ 1.

In terms of Definition 6.2.3 a critical mixed cycle without a chord is a 0-ladder and a

critical mixed cycle with one chord is a 1-ladder. Figure 6.7 on the next page shows

two different drawings of an EAG consisting of a 3-ladder of size 4 (we ommited the

arrows of the arcs in the right part). We can use the lifting theorem in an inductive

proof to show that in an EAG consisting of an r-ladder of size ` the ladder inequality

x(v(C ∪ {e1, . . . , er})) ≤ `− 1 is facet-defining.

Lemma 6.2.8: Let G = (V,E,H) be an extended alignment graph and D be a parti-

tion into blocks. If G consists of a r-ladder C ∪{e1, . . . , er} of size ` then the inequality

x(v(C ∪ {e1, . . . , er})) ≤ `− 1

defines a facet of PT (G).

Proof. The proof follows an inductive argument over the number of chords. The base

cases are given by Lemma 6.2.7 and Lemma 6.2.6. Assume inductively that for a

86

6.2. THE GMT PROBLEM

i
j

k

e

f

g

h

e

f

g

h
i

j

k

Figure 6.7: A 3-ladder of size 4.

k-ladder with k < r the lemma holds, i.e., the ladder inequality for the k-ladder is

facet-defining for the EAG induced by the edges in the blocks of the k-ladder.

Let ei be any of the r chords in C. Since ei splits C it follows that Ci1 ∪ U ∪ {ei} is a

j-ladder of size |Ci1 |+1 and Ci2 ∪L∪{ei} is a k-ladder of size |Ci2 |+1 for some j, k ≥ 0

with j + k = r − 1 and |Ci1 |+ |Ci2 | = `. By the induction hypothesis the inequalities

• x(v(Ci1 ∪ U ∪ {ei})) ≤ |Ci1 |

• x(v(Ci2 ∪ L ∪ {ei})) ≤ |Ci2 |

• x(v(C ∪ {e1, . . . , er} \ {ei})) ≤ `− 1

are facet-defining for the corresponding EAGs. This implies that there are solutions

satisfying the above inequalities with equality. Surely these inequalities are still valid

in G. That means that in each solution containing v(ei) we can choose at most |Ci1 |−1

additional blocks from v(Ci1∪U) and at most |Ci2 |−1 additional blocks from v(Ci2∪L)

which sums up to |Ci1 |−1+ |Ci2 |−1 = `−2 additional blocks from v(C ∪{e1, . . . , er}\
{ei}).

On the other hand, a feasible solution satisfying x(v(C ∪ {e1, . . . , er} \ {ei})) = ` − 1

may contain `−1 blocks. Since we just argued that we can have at most `−2 additional

blocks in any solution containing v(ei), we have to remove a block from each solution

satisfying x(v(C∪{e1, . . . , er}\{ei})) = `−1. Theorem 2.7.4 implies that the coefficient

of xv(ei) is 1 which proves the lemma.

We call the inequalities defined in the two preceding lemmas mixed-cycle inequalities,

chorded-mixed-cycle inequalities and ladder inequalities respectively.

87

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

6.2.3 Bounds for the GMT Problem

Computation of Lower Bounds

For the computation of lower bounds we employed two heuristics. In the singleton

partition case of the GMT problem we used John Kececioglu’s package PRIMAL which

implements an iterative alignment heuristic in order to compute a heuristic solution to

the MT problem (Kececioglu 1993).

In the general case, it is still an open question to devise a good heuristic for the GMT

problem. In our experiments we used a simple greedy strategy which sorts the blocks

according to their score and then tries to incorporate as many as possible blocks from

that list as long as a newly considered block does not induce a mixed cycle in the EAG.

Computation of Upper Bounds

In order to specialize the generic branch-and-cut algorithm we need to describe sepa-

ration algorithms for our various classes of inequalities.

Mixed Cycle Inequalities. First we describe how to solve the separation problem

for the mixed cycle inequalities. Assume the solution x̄ of the linear program is frac-

tional. Our problem is to find a critical mixed cycle C in the extended alignment graph

G = (V,E,H) which violates the mixed-cycle inequality
∑

d∈v(C) xd ≤ |v(C)| − 1.

First assign for each block d the cost 1 − x̄d to each edge e ∈ d and 0 to all a ∈ H.

Then compute for each arc a = (u, v) = (si,j, si,j+1), 1 ≤ i ≤ k, 1 ≤ j < ni the shortest

path from v to u. Together with the arc a this path forms a mixed cycle. During this

computation we have to take care that we compute the shortest path with the fewest

edges. This can be done by ordering paths lexicographically according to their costs

and then according to the number of edges. Then the lexicographically shortest mixed

cycle is also critical (see also definition of critical mixed cycle on page 51).

If a shortest path P from v to u is found, it must contain l ≥ 2 edges e1, . . . , el from

different blocks. If the cost of P is less than 1, i.e.,
∑

d∈v(P)(1 − x̄d) < 1, a violated

inequality is found, namely
∑

d∈v(P) x̄d > |v(P)| − 1.

Theorem 6.2.3: The separation problem for the mixed-cycle inequalities in an ex-

tended alignment graph G = (V,E,H) can be solved in polynomial time by computing

at most |H| shortest paths in G.

Unfortunately this might still result in a big number of shortest path computations.

This is particularly annoying for partitions with large blocks, because there is a lot

88

6.2. THE GMT PROBLEM

∈ d1

∈ d2

∈ d3

Figure 6.8: Extended alignment graph with 13 edges partitioned into 3 blocks d1, d2, d3. Only

the dotted purple arcs need to be checked.

of different paths resulting in the same inequality. For example Figure 6.2.3 shows an

EAG with a partition into three blocks. The only mixed cycle inequality that can be

found is xd1 + xd2 + xd3 ≤ 2. With the naive approach, we would have to make 15

shortest path computations. We will show that in this example it is safe to make only

two such computations (for the dotted purple arcs).

We call two paths P and P ′ equivalent if v(P) = v(P ′). The set of all paths forms

equivalence classes under the above relation. We will now show how to pick a subset

A ⊆ H of arcs, such that we only have to compute a shortest path from v to u for each

a = (u, v) ∈ A. We do that by excluding certain arcs from consideration.

We say that an alignment edge e is right of an alignment edge f in a block d ∈ D if

start(e) > start(f) and end(e) > end(f). Let D(u, i) be the set of all blocks that have

an edge incident to u and to a node in sequence Si, i.e.,

D(u, i) := {d ∈ D | ∃e = {u, si,x} ∈ d for some 1 ≤ x ≤ ni}.

Then the following lemma holds:

Lemma 6.2.9: Let a = (u, v) be an arc in sequence Si with D(u, j) ⊆ D(v, j) for some

1 ≤ j 6= i ≤ k. Then for any critical mixed cycle C that contains a and that enters Si
from Sj through an edge e incident to u, there is an equivalent critical mixed cycle C ′

using an edge f ∈ v(e) which is right of e.

Proof. Since a = (u, v) is an arc and D(u, j) ⊆ D(v, j) both nodes u and v must be

incident to edges in v(e), namely to e and f . Since the block v(e) is a trace, f must

be right of e. Let w be the node in Sj that is incident to e and w′ be the node in Sj
incident to f . We can construct C ′ from C by deleting e and a from C and replacing

it by the path consisting of the arcs running from w to w ′ followed by f (see Figure

6.9).

We can therefore discard an arc a = (u, v) in sequence Si from consideration if for all

j = 1, . . . , k, j 6= i holds that D(u, j) ⊆ D(v, j), because

89

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

fe
a

u v

w w′

Figure 6.9: Two equivalent critical mixed cycles

1. for any critical mixed cycle C that enters at node u there is an equivalent critical

mixed cycle C ′, and

2. any critical mixed cycle that contains a and enters Si before u must contain an

additional arc in Si. Thus we do not need to check arc a.

Theorem 6.2.4: The separation problem for the mixed-cycle inequalities in an ex-

tended alignment graph G = (V,E,H) can be solved in polynomial time by computing

at most |A| shortest paths in G, where A ⊆ H is defined as {(u, v) ∈ H | ∃i ∈
{1, . . . , k} such that D(u, i) (D(v, i)}.

It turns out that the application of Lemma 6.2.4 can reduce the running time for the

mixed cycle separation considerably. There are examples where the number of shortest

path computations is reduced by a factor of ten.

Clique Inequalities. In the separation algorithm for the class of clique inequalities

we make use of the pairgraph PT (Gi,j) (see Definition 6.2.1 on page 79) for the sequences

Si and Sj for 1 ≤ i < j ≤ k. Again, assume the solution x̄ of the linear program is

fractional. Our problem is to find a clique C which violates the clique inequality∑
d∈v(C) x̄d ≤ 1. For each edge e ∈ d assign the cost x̄d to the node ve in PT (Gi,j).

Recall that no two edges in the same block can lie on a source-to-sink path, and that

all maximal cliques in the independence system are represented by some source-to-sink

path.

We compute the longest source-to-sink path C in PT (Gi,j). If the cost of C is greater

than 1, i.e.,
∑

d∈v(C) x̄d > 1 we have found a violated clique inequality. Since PT (Gi,j)

is acyclic, such a path can be found in time polynomial in the size of the EAG by simply

exploring the graph in topological order and examining the arcs incident to each node.

The longest path to a certain node is computed by taking the maximum over the value

of all incident arcs plus the length of the longest path to the source of that arc.

Theorem 6.2.5: The separation problem for the clique inequalities in an extended

90

6.2. THE GMT PROBLEM

alignment graph G = (V,E,H) can be solved in polynomial time by computing a

longest source-to-sink path in the
(k

2

)
pairgraphs PT (Gi,j) for 1 ≤ i < j ≤ k, where k

is the number of sequences.

The separation of clique inequalities is fast and efficient. Using sparse pairgraphs as

explained on page 80 make this separation routine the backbone of our branch-and-cut

algorithms.

Separation and Branching Strategy. In our computational experiments we tried

several separation strategies, that means different orders in which we test a class for

violated inequalities. The following strategy turned out to be the best. In the branch-

and-cut algorithm we first separate the clique inequalities as described above. If we

cannot find a violated clique inequality we check whether the EAG contains a mixed

cycle by computing a number of shortest paths from v to u for each arc a = (u, v)

in a set A as defined in Theorem 6.2.4. If we find one or more such paths we add

the corresponding mixed cycle inequalities to the LP and resolve it. Finally, if we do

not find any violated inequalities or if the solution value of the LP does not improve

significantly over a number of iterations, we branch. In the branching phase we choose

the fractional base pair variable which is closest to 0.5 and among those the one with

the highest objective function coefficient. After the branching we iterate the process

on the two subproblems.

6.2.4 Computational Results for the GMT Problem

In this section we report on the results computed with our program. The implementa-

tion is coded in C++ using the Library of Efficient Data Types and Algorithms LEDA

(Mehlhorn and Näher 1995) and the branch-and-cut framework ABACUS (Jünger and

Thienel 1997).

We tested three different approaches to generate the extended alignment graph, each

with a different trace score function. We used the following data sets in order to test

our algorithms:

• Two sets of 38 and 18 protein sequences that were found in SwissProt (Bairoch

and Apweiler 1999) by conducting a similarity search with hevein, a protein that

binds N-acetylglucosamin (a sugar). We call the two test sets hevein1 and

hevein2. These data sets stem from the GELENA project in which the MPI

für Informatik participates together with other partners. In this project new gen

transfer methods based on nanoparticles are investigated. The goal is to repair

genetic defects of certain cells. These cells have N-acetylglucosamin oligomers on

91

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

their surface. Hence, peptides that have a high binding affinity to these sugar

molecules can be used in docking reactions to identify these cells and to insert

genetic material into them.

• 12 Globin sequences from the data set of (McClure, Vasi, and Fitch 1994).

McClure used this test sets to compare the performance of alignment methods.

• 18 Prion proteins from the SwissProt (Bairoch and Apweiler 1999) protein

database. This set contains highly similar but long prion proteins from differ-

ent species.

• 9 Tyrosine kinases used as example by Kececioglu (1993).

We present different alignments for each of the three approaches, because a test set

that took minutes in the one approach would not finish within a day in the other

approach. The difficulty of a problem instance in each of the three approaches is not

easily measured. It depends on the number of sequences in the test set and their degree

of homology. The more sequences we consider and the less homology they have, the

more complex the input EAG and the longer the optimization takes.

If space allows, we present an alignment as in Figure 6.10 together with the global lower

bound we used in the branch-and-cut algorithm, the optimal score, and the running

time in seconds that the main optimization phase took. Small letters indicate that

the respective residue is not aligned with another residue in the optimal solution. The

alignment in Figure 6.10 contains the same sequences as in Kececioglu (1993) but the

input alignment graph uses a different mutation score matrix.

Generating the Input

We tested three different approaches to generate the extended alignment graph.

• As an example of a scoring scheme based on the comparison of two residues

(MT) we adapted the PRIMAL package by Kececioglu (1993). The value of the

approximate solution of this program is used as a lower bound in our branch-and-

cut algorithm.

• As an example for a scoring scheme based on the comparison of segment pairs

we adopted two ways to generate the input for the branch-and-cut algorithm.

The first takes the set of blocks that are computed by Burkhard Morgenstern’s

DIALIGN package (Morgenstern, Dress, and Werner 1996). The weight of DI-

ALIGN’s greedy heuristic is used as a lower bound for the branch-and-cut algo-

rithm.

92

6.2. THE GMT PROBLEM

Exact value: 45769

Approximate value: 45693

Total time : 261 sec.

v-src 0 -----GLAKDAWEIPRESLRLEAKLGQGCFGEVWMGTWN-DTTRVAIKTLKPGTMSP---

v-yes 0 -----GLAKDAWEIPRESLRLEVKLGQGCFGEVWMGTWNG-TTKVAIKTLKLGTMMP---

v-abl 0 tIYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAVKTLKEDTM---EV

v-fes 0 -VLNRAVPKDKWVLNHEDLVLGEQIGRGNFGEVFSGRLRADNTLVAVKSCRE-TLPPDIK

v-fps 0 -VLTRAVLKDKWVLNHEDVLLGERIGRGNFGEVFSGRLRADNTPVAVKSCRE-TLPPELK

v-raf 0 -------SSYYWKMEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKILKVVDP-T--PEQL

v-src 60 EAFLQEAQVMKKLRHEKLVQLYAVVS-EEPIYIVIEYMSKGSLLDFLKG-EmG-KYLRLP

v-yes 60 EAFLQEAQIMKKLRHDKLVPLYAVVS-EEPIYIVTEFMTKGSLLDFLKEGE-G-KFLKLP

v-abl 60 EEFLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECN-R-QEVSAV

v-fes 60 AKFLQEAKILKQYSHPNIVRLIGVCTQKQPIYIVMELVQGGDFLTFLRT-E-GAR-LRMK

v-fps 60 AKFLQEARILKQCNHPNIVRLIGVCTQKQPIYIVMELVQGGDFLSFLRS-K-GPR-LKMK

v-raf 60 QAFRNEVAVLRKTRHVNILLFMGYMT-KDNLAIVTQWCEGSSLYKHLHV-Q-ETK-FQMF

v-src 120 QLVDMAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIEDNEYTARQG

v-yes 120 QLVDMAAQIADGMAYIERMNYIHRDLRAANILVGDNLVCKIADFGLARLIEDNEYTARQG

v-abl 120 VLLYMATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTGDTYTAHAG

v-fes 120 TLLQMVGDAAAGMEYLESKCCIHRDLAARNCLVTEKNVLKISDFGMSREAADGIYAASGG

v-fps 120 KLIKMMENAAAGMEYLESKHCIHRDLAARNCLVTEKNTLKISDFGMSRQEEDGVYASTGG

v-raf 120 QLIDIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVE

v-src 180 AK-FPIKWTAPEAALY---GRFTIKSDVWSFGILLTELTTKGRVPYPGMVNR-EVLDQVE

v-yes 180 AK-FPIKWTAPEAALY---GRFTIKSDVWSFGILLTELVTKGRVPYPGMVNR-EVLEQVE

v-abl 180 AK-FPIKWTAPESLAY---NKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLS-QVYELLE

v-fes 180 LRQVPVKWTAPEALNY---GRYSSESDVWSFGILLWETFSLGASPYPNLSNQ-QTREFVE

v-fps 180 MKQIPVKWTAPEALNY---GWYSSESDVWSFGILLWEAFSLGAVPYANLSNQ-QTREAIE

v-raf 180 QPTGSVLWMAPEVIRMqddNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRdQIIFMVG

v-src 240 RGYRMP----CPPECPESLHDLMCQCWRKDPEERPTFKYLQAQLLPACVLEVAE------

v-yes 240 RGYRMP----CPQGCPESLHELMKLCWKKDPDERPTFEYIQSFLEDYFTAAEPSGY----

v-abl 240 KDYRME----RPEGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETMFQESSIS------

v-fes 240 KGGRLP----CPELCPDAVFRLMEQCWAYEPGQRPSFSAIYQELQSIRKRHR--------

v-fps 240 QGVRLE----PPEQCPEDVYRLMQRCWEYDPHRRPSFGAVHQDLIAIRKRHR--------

v-raf 240 RGYASPdlsrLYKNCPKAIKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKINRsape

Figure 6.10: Optimal trace of six tyrosine kinase sequences. Input was generated using

PRIMAL.

93

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

• In the second approach we compute (sub)optimal local alignments between two

sequences that do not share (mis)matches. We call the procedure that produces

the blocks LOCAL. Here we employed a simple greedy strategy to compute lower

bounds for the branch-and-cut algorithm.

In the following we describe the three approaches in more detail and present multiple

alignments we have computed with our branch-and-cut algorithm.

Results

All tests were conducted on a single 333 MHz processor of a Sun Enterprise 10000 with

12 gigabyte of main memory, where a single process can use up to 2 gigabyte.

Exact value: 38239

Approximate value: 37787

Total time : 1507 sec.

HEVE_HEVBR 0 ---------------MNIFIVVLLCLTGVAIAEQCGRQAGGKLCPNNLCC

HEVP_HEVBR 0 --------------------------------EQCGRQAGGKLCPNNLCC

WIN2_SOLTU 0 -------MVKLSCGPILLALVLCISLTSVANAQQCGRQRGGALCGNNLCC

WIN1_SOLTU 0 -------MVKLISNSTILLSLFLFSIAAIANAQQCGRQKGGALCSGNLCC

S18750 0 ----------MSVW-AFAFFSLFLSLSVRGSAEQCGQQAGDALCPGGLCC

CHIB_POPTR 0 ----------MSVW-AFAFFSLFLSLSVRGSAEQCGQQAGDALCPGGLCC

CHI6_POPTR 0 ----------MSVWALFAFFSLFLSLSVRGSAEQCGRQAGDALCPGGLCC

CHIC_POPTR 0 ----------MSVWAFFAFFSLFLSLSVRGSAEQCGRQAGDALCPGGLCC

S40414 0 MSTPRAAASLAKKAALVALAVLAAALATAARAEQCGAQAGGARCPNCLCC

S39979 0 MSTPRAAASLAKKALAVALAVLAAALATAARAEQCGAQAGGARCPNCLCC

HEVE_HEVBR 50 SQWGWCGSTDEYCSPDHNCQSNCKDSGEGVGGGSAS--NVLATYHL

HEVP_HEVBR 50 SQYGWCGSSDDYCSPSKNCQSNCKGGG-------------------

WIN2_SOLTU 50 SQYGWCGSSDEYCSPSQGCQSQCTGSGPDPGQGGSA-QNVRATYHI

WIN1_SOLTU 50 SQFGWCGSTPEFCSPSQGCQSRCTGTGGSTPTPSGSaQNVRATYHI

S18750 50 SSYGWCGTTADYCG--DGCQSQCDGGGGGGGGGGGG-GG-------

CHIB_POPTR 50 SSYGWCGTTADYCG--DGCQSQCDGGGGGGGGGGGG-GG-------

CHI6_POPTR 50 SSYGWCGTTVDYCGI--GCQSQCDGGGGGDGGDDGC-DGG-DD---

CHIC_POPTR 50 SFYGWCGTTVDYCG--DGCQSQCDGGDGCDGGGG------------

S40414 50 SRWGWCGTTSDFCG--DGCQSQCSGCGPTPTPTPPS-P--------

S39979 50 SRWGWCGTTSDFCG--DGCQSQCSGCGPTTPTPPSP----------

Figure 6.11: Optimal trace of 10 proteins from hevein2. Input was generated using PRIMAL.

94

6.2. THE GMT PROBLEM

Blocks computed by PRIMAL. To generate an extended alignment graph PRI-

MAL computes all pairwise alignments of the sequences whose score is within a fixed

difference of the optimum.

(As parameters for PRIMAL we chose the blosum80 mutation score matrix, shifted

to make all similarity values positive and in the range 0 to 24, a gap penalty of 40,

and collected all pairwise alignments that scored within 10 of optimum, unless stated

otherwise.)

Exact value: 82166

Approximate value: 81822

Total time : 345 sec.

AGI1_WHEAT 0 AQRCGEQGSNMEC-PNNLCCSQYGYCGMGGDYCGK--G--CQNGAC

AGI_ORYSA 0 AQTCGKQNDGMIC-PHNLCCSQFGYCGLGRDYCGT--G--CQSGAC

CHI4_BRANA 0 -------SQNCGC-APNLCCSQFGYCGSTDAYCGT--G--CRSGPC

CHIA_MAIZE 0 -------AQNCGC-QPNFCCSKFGYCGTTDAYCGD--G--CQSGPC

CHIP_BETVU 0 -------AQNCGC-APNLCCSNFGFCGTGTPYCGV--GN-CQSGPC

CHI4_PHAVU 0 -------AQNCGC-AEGLCCSQYGYCGTGEDYCGT--G--CQQGPC

CHIT_DIOJA 0 -------Q-NCQCdTTIYCCSQHGYCGNSYDYCGP--G--CQAGPC

AGI_URTDI 0 AQRCGSQGGGGTC-PALWCCSIWGWCGDSEPYCGR--T--CENK-C

CHI1_ORYSA 0 GEQCGSQAGGALC-PNCLCCSQYGWCGSTSDYCGA--G--CQSQ-C

CHI2_ORYSA 0 AEQCGSQAGGAVC-PNCLCCSQFGWCGSTSDYCGA--G--CQSQ-C

CHIX_PEA 0 AEQCGSQAGGAVC-PNGLCCSKFGFCGSTDPYCGD--G--CQSQ-C

CHI1_TOBAC 0 AEQCGSQAGGARC-PSGLCCSKFGWCGNTNDYCGP--GN-CQSQ-C

CHI5_PHAVU 0 GEQCGRQAGGALC-PGGNCCSQFGWCGSTTDYCGK--D--CQSQ-C

CHIB_POPTR 0 AEQCGQQAGDALC-PGGLCCSSYGWCGTTADYCGD--G--CQSQ-C

CHI2_BRANA 0 AEQCGRQAGGALC-PNGLCCSEFGWCGDTEAYCKQP-G--CQSQ-C

HEVE_HEVBR 0 AEQCGRQAGGKLC-PNNLCCSQWGWCGSTDEYCSP--DHNCQSN-C

WIN1_SOLTU 0 AQQCGRQKGGALC-SGNLCCSQFGWCGSTPEFCSPSqG--CQSR-C

HEVL_ARATH 0 GQQCGRQGGGRTC-PGNICCSQYGYCGTTADYCSP--TNNCQSN-C

CHI8_POPTR 0 TAQCGSQAGNATC-PNDLCCSSGGYCGLTVAYCCA--G--CVSQ-C

Figure 6.12: Optimal trace of the set hevein1. Input was generated using PRIMAL.

PRIMAL then superimposes all alignment edges corresponding to the (mis)matches in

these pairwise alignments to form an alignment graph. Our input is the corresponding

extended alignment graph. When the input is generated with a residue-to-residue

based scoring scheme, the problem can be divided into independent subproblems by

splitting the input EAG into its strongly connected components. The optimal trace for

the original input EAG is simply the union of the optimal traces for its components.

95

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

This procedure normally produces a lot of small components if the sequences under

consideration have high homology and only a few components (sometimes only one) if

the sequences have little homology. Note that this was already observed by Kececioglu,

and that his code takes also advantage of this fact.

In Figure 6.10 on page 93 we already showed an optimal trace for the six tyrosine

kinases sequences used by Kececioglu (1993). The next example shows the quality of

the traces we computed. For the hevein1 data set and a subset of the hevein2 data

set we generated input EAGs using PRIMAL.

The optimal traces in Figure 6.12 on the page before and Figure 6.11 on page 94 exhibit

the four disulphid bridges that are essential for the formation of the three-dimensional

structure of this protein. These bridges are built by the eight cysteins (shown in yellow)

that are perfectly aligned. Also the N-acetylglucosamin-binding sites (the main part is

shown in red) are well aligned. The next example shows a trace for 18 relatively similar

prion sequences. Despite the high homology, PRIMAL could not optimally align this

dataset.

For this number of sequences the bottleneck is normally the space consumption which

is not the case for our approach. It is not so sensitive to the number of sequences but to

the structure and size of the extended alignment graph. The branch-and-cut algorithm

produced the alignment shown in Figures 6.13 and 6.14 in 7178 seconds.

Blocks computed by DIALIGN. In the DIALIGN program (Morgenstern, Dress,

and Werner 1996) the blocks are called diagonals, because a block represents a gapless

alignment which is a diagonal run in the corresponding dynamic programming matrix.

The algorithm greedily picks the best diagonal from all possible diagonals which is

consistent with previously chosen diagonals. Although this input could be modeled in

the GMT formulation it is far too big. Therefore we input solely diagonals stemming

from optimal pairwise alignments that are not in conflict.

The weight wd of a diagonal d is defined as follows: Let ld be the length of the diagonal

and sd be the sum of the individual similarity values of residue pairs within this diago-

nal. Let P (ld, sd) be the probability that a random diagonal of the same length ld has

at least the same sum sd of similarity values. Then wd is defined to be − logP (ld, sd).

For a more in depth treatment see Morgenstern et al. (1998).

Unfortunately, we cannot divide the problem into smaller subproblems by splitting the

input EAG in its strongly connected components. This might put alignment edges of

the same block (or diagonal) into different components. Hence, we have to consider

the whole graph. On the positive side, we have fewer variables in the ILP formulation,

because the blocks contain many alignment edges.

96

6.2. THE GMT PROBLEM

prio_night 0 ---------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQSSPGGNRYPPQSGG-W

prion_amer 0 MVKSHIGSWLLVLFVATWSDIGFCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_blac 0 ---------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGG---

prion_mand 0 ---------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_pres 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_crab 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_gree 0 --MANLGCWMLVVFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGG--

prion_brow 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNLYPPQGGG-W

prion_chim 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_oran 0 --MANLGCWMLVLFVATWSNLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_gori 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_huma 0 --MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_bovi 0 MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_shee 0 MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_mule 0 MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGW

prion_rat 0 -------------------------------GGWNTGGSRYPGQGSPGGNRYPPQSGGTW

prion_gold 0 --MANLSYWLLALFVAMWTDVGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGGGTW

prion_mous 0 --MANLGYWLLALFVTMWTDVGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQGG-TW

prio_night 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWNKPSKPKTN

prion_amer 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGgWGQ--------GGGSHGQWGKPSKPKTN

prion_blac 60 ------GWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWNKPSKPKTN

prion_mand 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWHKPNKPKTS

prion_pres 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHSQWNKPSKPKSN

prion_crab 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWHKPSKPKTS

prion_gree 60 ------GWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWHKPSKPKTS

prion_brow 60 GQPHGGGWGQPHGGGWGQPHGGSWGQPHGGG-WGQ--------GGGTHNQWNKPSKPKTS

prion_chim 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHSQWNKPSKPKTN

prion_oran 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHSQWNKPSKPKTN

prion_gori 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHSQWNKPSKPKTN

prion_huma 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHSQWNKPSKPKTN

prion_bovi 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQphggggwgQGGTHGQWNKPSKPKTN

prion_shee 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-GWG--------QGGSHSQWNKPSKPKTN

prion_mule 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-GWG--------QGGTHSQWNKPSKPKTN

prion_rat 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WSQ--------GGGTHNQWNKPSKPKTN

prion_gold 60 GQPHGGGWGQPHGGGWGQPHGGGWGQPHGGG-WGQ--------GGGTHNQWNKPSKPKTN

prion_mous 60 GQPHGGGWGQPHGGSWGQPHGGSWGQPHGGG-WGQ--------GGGTHNQWNKPSKPKTN

prio_night 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_amer 120 MKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYKPVDQ

prion_blac 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_mand 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_pres 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_crab 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_gree 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_brow 120 MKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_chim 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDQ

prion_oran 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_gori 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDQ

prion_huma 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDE

prion_bovi 120 MKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGSDYEDRYYRENMHRYPNQVYYRPVDQ

prion_shee 120 MKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDR

prion_mule 120 MKHVAGAAAAGAVVGGLGGYMLGSAMNRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDQ

prion_rat 120 LKHVAGAAAAGAVVGGLGGYMLGSAMSRPMLHFGNDWEDRYYRENMYRYPNQVYYRPVDQ

prion_gold 120 MKHMAGAAAAGAVVGGLGGYMLGSAMSRPMMHFGNDWEDRYYRENMNRYPNQVYYRPVDQ

prion_mous 120 LKHVAGAAAAGAVVGGLGGYMLGSAMSRPMIHFGNDWEDRYYRENMYRYPNQVYYRPVDQ

Figure 6.13: Optimal trace of 18 prion protein sequences (part 1). Input was generated using

PRIMAL.

97

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

prio_night 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKIMERVVEQMCITQYEKESQAYYQ-

prion_amer 180 YSNQNNFVHDCVNITVKQHTVTTTTKGENFTETDMKIMERVVEQMCVTQYQRESEAYYQ-

prion_blac 180 YNNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_mand 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYYQ-

prion_pres 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYYQ-

prion_crab 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYYQ-

prion_gree 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYYQ-

prion_brow 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_chim 180 YSSQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_oran 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_gori 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_huma 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ-

prion_bovi 180 YSNQNNFVHDCVNITVKEHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYYQ-

prion_shee 180 YSNQNNFVHDCVNITVKQHTVTTTTKGENFTETDIKIMERVVEQMCITQYQRESQAYYQ-

prion_mule 180 YNNQNTFVHDCVNITVKQHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYYQ-

prion_rat 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYYDG

prion_gold 180 YNNQNNFVHDCVNITIKQHTVTTTTKGENFTETDIKIMERVVEQMCTTQYQKESQAYYDG

prion_mous 180 YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYYDG

prio_night 240 -RGSSMVLFSSPPVILLISFL------

prion_amer 240 -RGASAILFSPPPVILLISLLILLIVG

prion_blac 240 -RGSSMVLFSSPPVILLISFLI-----

prion_mand 240 -RGSSMVLFSSPPVILLISFLI-----

prion_pres 240 -RGSSMVFFSSPPVILLISFLIFLIVG

prion_crab 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_gree 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_brow 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_chim 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_oran 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_gori 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_huma 240 -RGSSMVLFSSPPVILLISFLIFLIVG

prion_bovi 240 -RGASVILFSSPPVILLISFLIFLIVG

prion_shee 240 -RGASVILFSSPPVILLISFLIFLIVG

prion_mule 240 -RGASVILFSSPPVILLISFLIFLIVG

prion_rat 240 -RRSSAVLFSSPPVILLISFLIFLIVG

prion_gold 240 -RRSSAVLFSSPPVILLISFLIFLMVG

prion_mous 240 rRSSSTVLFSSPPVILLISFLIFLIVG

Figure 6.14: Optimal trace of 18 prion protein sequences (part 2). Input was generated using

PRIMAL.

Figure 6.15 on the next page shows an optimal trace of 10 globin sequences from

McClure’s data set. All five motifs except the first one (shown in red) are correctly

aligned. Inspecting the red motif shows that in the first 8 sequences gaps are inserted

before the motif, whereas the last two sequences contain a gap right of the motif. Simply

removing these gaps yields the correct alignment of the first block.

These gaps have no “biological” meaning. They are rather introduced by the out-

put procedure of an optimal trace, which sorts the strongly connected components in

topological order and then outputs the components in this order.

Hence, the strange gaps in the first motif stem obviously from the fact, that the input

98

6.2. THE GMT PROBLEM

EAG contained no alignment edges between the aligned blocks in the last two sequences

and the aligned blocks in the first eight sequences.

HUMA 0 ----VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTK--------TYFPHF--

HAOR 0 ----MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTK--------TYFSHF--

HADK 0 ----VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTK--------TYFPHF--

HBHU 0 --VH-LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQ--------RFFESFGD

HBOR 0 --VH-LSGGEKSAVTNLWGKV--NINELGGEALGRLLVVYPWTQ--------RFFEAFGD

HBDK 0 --VH-WTAEEKQLITGLWGKV--NVADCGAEALARLLIVYPWTQ--------RFFASFGN

MYHU 0 -G---LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETL--------EKFDKFKH

MYOR 0 -G---LSDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETL--------EKFDKFKG

GPYL 0 g---VLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKd-LFSFLK--------

GPUGNI 0 ----ALTEKQEALLKQSWEVLKQNIPAHSLRLFALIIEAAPESK-yVFSFLK--------

HUMA 60 ----DLSHGSAQVKGHGKKVADALTNAVAHVD--------DMPNALSALSDLHAHKLRVD

HAOR 60 ----DLSHGSAQIKAHGKKVADALSTAAGHFD--------DMDSALSALSDLHAHKLRVD

HADK 60 ----DLSHGSAQIKAHGKKVAAALVEAVNHVD--------DIAGALSKLSDLHAQKLRVD

HBHU 60 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD--------NLKGTFATLSELHCDKLHVD

HBOR 60 LSSAGAVMGNPKVKAHGAKVLTSFGDALKNLD--------DLKGTFAKLSELHCDKLHVD

HBDK 60 LSSPTAILGNPMVRAHGKKVLTSFGDAVKNLD--------NIKNTFAQLSELHCDKLHVD

MYHU 60 LKSEDEMKASEDLKKHGATVLTALGGILKKKG--------HHEAEIKPLAQSHATKHKIP

MYOR 60 LKTEDEMKASADLKKHGGTVLTALGNILKKKG--------QHEAELKPLAQSHATKHKIS

GPYL 60 -GSSEVPQNNPDLQAHAGKVFKLTYEAAIQLEVNG-AVAS--DATLKSLGSVHVSKGVVD

GPUGNI 60 -DSNEIPENNPKLKAHAAVIFKTICESATELRQKGhAVWD--NNTLKRLGSIHLKNKITD

HUMA 120 PVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVL--------TSKYR------

HAOR 120 PVNFKLLAHCILVVLARHCPGEFTPSAHAAMDKFLSKVATVL--------TSKYR------

HADK 120 PVNFKFLGHCFLVVVAIHHPAALTPEVHASLDKFMCAVGAVL--------TAKYR------

HBHU 120 PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANAL--------AHKYH------

HBOR 120 PENFNRLGNVLIVVLARHFSKDFSPEVQAAWQKLVSGVAHAL--------GHKYH------

HBDK 120 PENFRLLGDILIIVLAAHFTKDFTPECQAAWQKLVRVVAHAL--------ARKYH------

MYHU 120 VKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDM--------ASNYKELGFQG

MYOR 120 IKFLEYISEAIIHVLQSKHSADFGADAQAAMGKALELFRNDM--------AAKYKEFGFQG

GPYL 120 A-HFPVVKEAILKTIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMKDaa-----------

GPUGNI 120 P-HFEVMKGALLGTIKEAIKENWSDEMGQAWTEAYNQLVATIKAEMKE-------------

Figure 6.15: Optimal trace of 10 globin protein sequences from McClure’s data set. Input was

generated using DIALIGN.

One could compress these gaps, but then information would be lost. On the other

99

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

hand, one can distinguish the “artifical” gaps from biological relevant gaps by a simple

inspection of the alignment.

In the next example we use DIALIGN to generate the input EAG for the 18 prion

sequences. The maximum trace was computed in 4296 seconds with a lower bound of

53474.2 and an optimal solution of 59862.5. This shows that we were able to improve

the heuristic solution of DIALIGN considerably.

Blocks computed by LOCAL. In this approach we proceed as follows for all pairs

of sequences. First we compute an optimal local alignment with affine gap costs.

HUMA 0 V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-

HAOR 0 M-LTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHF-

HADK 0 V-LSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHF-

HBHU 0 VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFG

HBOR 0 VHLSGGEKSAVTNLWGKV--NINELGGEALGRLLVVYPWTQRFFEAFG

HBDK 0 VHWTAEEKQLITGLWGKV--NVADCGAEALARLLIVYPWTQRFFASFG

HUMA :48 DLS-----HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH

HAOR :48 DLS-----HGSAQIKAHGKKVADALSTAAGHFDDMDSALSALSDLHAH

HADK :48 DLS-----HGSAQIKAHGKKVAAALVEAVNHVDDIAGALSKLSDLHAQ

HBHU :48 DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCD

HBOR :48 DLSSAGAVMGNPKVKAHGAKVLTSFGDALKNLDDLKGTFAKLSELHCD

HBDK :48 NLSSPTAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFAQLSELHCD

HUMA :96 KLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLT

HAOR :96 KLRVDPVNFKLLAHCILVVLARHCPGEFTPSAHAAMDKFLSKVATVLT

HADK :96 KLRVDPVNFKFLGHCFLVVVAIHHPAALTPEVHASLDKFMCAVGAVLT

HBHU :96 KLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALA

HBOR :96 KLHVDPENFNRLGNVLIVVLARHFSKDFSPEVQAAWQKLVSGVAHALG

HBDK :96 KLHVDPENFRLLGDILIIVLAAHFTKDFTPECQAAWQKLVRVVAHALA

HUMA :144 SKYR

HAOR :144 SKYR

HADK :144 AKYR

HBHU :144 HKYH

HBOR :144 HKYH

HBDK :144 ARYH

Figure 6.16: Optimal alignment of 6 globin sequences. Input was generated using LOCAL.

100

6.2. THE GMT PROBLEM

----------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQSSPGGNRYPPQs--GGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

MVK-SHIGSWLLVLFVATWSDIGFCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

----------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYP----------PQGGGWGQPHGGGWGQPHGGGWGQPHG

----------MLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVVFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ---

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNLYPPQ-GGG-WGQPHGGGWGQPHGGGWGQPHGGSWGQPHG

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVLFVATWSNLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGCWMLVLFVATWSDLGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

MVK-SHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

MVK-SHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

MVK-SHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQ-GGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

--------------------------------GGWNTGGSRYPGQGSPGGNRYPPQ-SGGTWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLSYWLLALFVAMWTDVGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGGTWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

---MANLGYWLLALFVTMWTDVGLCKKRPKP-GGWNTGGSRYPGQGSPGGNRYPPQ-GGT-WGQPHGGGWGQPHGGSWGQPHGGSWGQPHG

GG--WGQ---------GGGTHNQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GGg-WGQ---------GGGSHGQWGKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYKPV

GG--WGQ---------GGGTHNQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHNQWHKPNKPKTSMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHSQWNKPSKPKSNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHNQWHKPSKPKTSMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

----------------GGGTHNQWHKPSKPKTSMKHMAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHNQWNKPSKPKTSMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPM

GG--WGQ---------GGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPM

GG--WGQ---------GGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPM

GG--WGQphggggwgq-GGTHGQWNKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGSDYEDRYYRENMHRYPNQVYYRPV

GG-GWGQ----------GGSHSQWNKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG-GWGQ----------GGTHSQWNKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMNRPLIHFGNDYEDRYYRENMYRYPNQVYYRPV

GG--WSQ---------GGGTHNQWNKPSKPKTNLKHVAGAAAAGAVVGGLGGYMLGSAMSRPMLHFGNDWEDRYYRENMYRYPNQVYYRPV

GG--WGQ---------GGGTHNQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPMMHFGNDWEDRYYRENMNRYPNQVYYRPV

GG--WGQ---------GGGTHNQWNKPSKPKTNLKHVAGAAAAGAVVGGLGGYMLGSAMSRPMIHFGNDWEDRYYRENMYRYPNQVYYRPV

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKIMERVVEQMCITQYEKESQAYY----QRGSSMVLFSSPPVILLISFL------

DQYNNQNNFVHDCVNITVKQHTVTTTTKGENFTETDMKIMERVVEQMCVTQYQRESEAYY----QRGASAILFSPPPVILLISLLILLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLI-----

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYY----QRGSSMVLFSSPPVILLISFLI-----

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYY----QRGSSMVFFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYEKESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DEYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYY----QRGSSMVLFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITVKEHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYY----QRGASVILFSSPPVILLISFLIFLIVG

DRYSNQNNFVHDCVNITVKQHTVTTTTKGENFTETDIKIMERVVEQMCITQYQRESQAYY----QRGASVILFSSPPVILLISFLIFLIVG

DQYNNQNTFVHDCVNITVKQHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYY----QRGASVILFSSPPVILLISFLIFLIVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYY--DG-RRSSAVLFSSPPVILLISFLIFLIVG

DQYNNQNNFVHDCVNITIKQHTVTTTTKGENFTETDIKIMERVVEQMCTTQYQKESQAYY--DG-RRSSAVLFSSPPVILLISFLIFLMVG

DQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYYdg--RRSSSTVLFSSPPVILLISFLIFLIVG

Figure 6.17: Optimal alignment of 18 prion protein sequences. Input was generated using

DIALIGN.

101

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

This naturally gives rise to a number of blocks by cutting the alignment at the gapped

positions and taking the consecutive runs of (mis)matches as a block.

Then we continue to compute the next best local alignment between these two sequences

that shares no matches or mismatches with alignments already output. We stop this

procedure when the length of the local alignments falls below a given value. For a

pair of sequences we now have a collection of diagonals stemming from “good” local

alignments not sharing a common (mis)match. The score wd of a diagonal d is defined

as follows: Let ld be the length of the diagonal and md be the number of matching

residue pairs within this diagonal. Let P ′(ld,md) be the probability that a random

diagonal of the same length ld has at least the md matches. Then wd is defined to be

− log P ′(ld,md).

Since the greedy heuristic that we used does not yield very good lower bounds, we could

not solve very large problem instances to optimality. Nevertheless the procedure pro-

duced blocks of high quality as the alignment of six globin sequences in Figure 6.16 on

page 100 indicates.

6.3 The SMT Problem

6.3.1 A Characterization of the SMT Problem as ILP

Recall the definition of the SMT problem on page 61. The input for the SMT problem

is a structural extended alignment graph (SEAG). As structural trace score function we

use a weighted sum of the weights of the alignment edges and the weights of interaction

matches as described in Chapter 4.2 on page 54. Recall that M is the set of all

interaction matches in G, namely

M = {ml,r = {ip, iq, el, er} | ml,r is an interaction match in G}.

Given a subset M ′ of M let I(M ′) be all interaction edges of the interaction matches

in M ′, that is

I(M ′) = I ∩
⋃

ml,r∈M ′
ml,r.

The goal is to find the structural trace (E ′, I(M ′)), E′ ⊆ E, M ′ ⊆ M with maximal

weight.

For every alignment edge ei ∈ E we define a binary alignment variable xi indicating

whether ei is realized by the structural alignment (E ′, I(M ′)) or not. Likewise, for every

ml,r ∈M we define a binary interaction match variable xl,r that indicates whether the

interaction match ml,r is realized. The set of realized alignment edges and interaction

102

6.3. THE SMT PROBLEM

matches can be represented by a |E ∪M |-dimensional incidence vector χA. Let

R := {A = (E ′,M ′), E′ ⊆ E,M ′ ⊆M | (E′, I(M ′)) is a structural trace of G}

be the set of all feasible solutions. We define the SMT polytope of G as the convex hull

of the incidence vectors of all feasible solutions, i.e.,

PR(G) := conv{χA ∈ {0, 1}|E∪M | | A ∈ R}.

It is now easy to formulate the SMT problem as an integer linear program. Let wi and

wl,r be the score of realizing the alignment edge ei, respectively the interaction match

ml,r. The problem

max
∑

a∈E∪M
wa · xa subject to x ∈ PR(G)

can then be formulated as follows:

maximize
∑

ei∈E
wi · xi +

∑

mi,j∈M
wi,j · xi,j

subject to
∑

e∈C
xe ≤ |C ∩E| − 1, ∀ critical mixed cycles C in G (6.2)

∑

j

xi,j ≤ xi,
∑

i

xi,j ≤ xj, ∀ interaction match variables xi,j (6.3)

xi, xi,j ∈ {0, 1}

Any solution of the above ILP corresponds to a structural trace (see Definition 4.2.1 on

page 54). Given an incidence vector χA for A = (E′,M ′), we have to ensure that T is a

trace and that the interaction edges in I(M ′) do not conflict. These two requirements

are taken care of by the mixed cycle inequalities (Equations 6.2) and the interaction

inequalities (Equations 6.3).

The former ensure that the chosen alignment edges form a trace in G while the latter

guarantee the following two properties:

1. An interaction match ml,r is only realized if el and er are both realized.

2. There can be no conflict between two interaction edges, because only one inter-

action match can “use” a specific alignment edge ei as its left or right connecting

edge.

103

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

6.3.2 The Structure of the SMT Polytope

In this section we investigate the structure of the SMT polytope. Unfortunately the

pair IR(G) = (E ∪M,R) does not form an independence system on E ∪M , because

the interaction matches are dependent on the alignment edges. This deprives us of an

elegant way of proving results about the SMT polytope and forces us to prove even

trivial properties in a different manner. First we state some basic results about the

SMT polytope and then define four non-trivial classes of valid inequalities and show in

which case they are facet-defining.

Lemma 6.3.1: Let G = (V,E,H, I) be a SEAG with n alignment edges and m inter-

action matches. Then

• PR(G) is full-dimensional and

• the inequality xi ≤ 1 is facet-defining iff there is no ej ∈ E in conflict with ei.

Proof. The first part of the lemma is proven by exhibiting n+m+ 1 affinely indepen-

dent incidence vectors of feasible solutions. We can easily do that by constructing n

feasible solutions consisting of one alignment edge and m feasible solutions consisting

of one interaction match. Together with the zero vector this yields n+m+ 1 affinely

independent incidence vectors.

To prove the second part, we assume that there is no ej ∈ E which is in conflict with

ei. We define n − 1 sets {ej , ei}, ∀ej ∈ E \ {ei} and m sets {ei} ∪ml,r, ∀ml,r ∈ M .

Together with the set {ei} this yields n + m feasible solutions Ak, k = 1, . . . , n + m

whose incidence vectors χAk are affinely independent and satisfy χAki = 1.

On the other hand, if there is a ej ∈ E which is in conflict with ei, then for every

incidence vector χ of a feasible solution, χi = 1 would imply χj = 0. Therefore

dim{x ∈ PR(G) | xi = 1} ≤ n + m − 1 and hence xi ≤ 1 is not a facet-defining

inequality.

Lemma 6.3.2: Let G = (V,E,H, I) be a SEAG with n alignment edges and m inter-

action matches.

1. The inequality xi ≥ 0 is facet-defining iff ei is not contained in an interaction

match.

2. For each interaction match mi,j the inequality xi,j ≥ 0 is facet-defining.

Proof. (1) Let ei ∈ E be an alignment edge which is not contained in an interaction

match. Then the n− 1 feasible solutions consisting of one alignment edge other than

104

6.3. THE SMT PROBLEM

ei and the m feasible solutions consisting of one interaction match form a collection

of n + m − 1 feasible solutions Ak, k = 1, . . . , n + m − 1 whose incidence vectors

χAk are affinely independent. Together with the zero vector this yields n+m affinely

independent incidence vectors with χAki = 0. Therefore xi ≥ 0 is a facet-defining

inequality. On the other hand, if ei ∈ E is contained in an interaction match mi,j, then

for every incidence vector χ, χi = 0 would imply χi,j = 0. Therefore dim{x ∈ PR(G) |
xi = 0} ≤ n+m− 1 and hence xi ≥ 0 is not a facet-defining inequality.

(2) Let mi,j ∈ M be an interaction match. The n feasible solutions consisting of one

alignment edge and the m−1 feasible solutions consisting of one interaction match other

than mi,j form n+m− 1 feasible solutions Ak, k = 1, . . . , n+m− 1 whose incidence

vectors χAk are affinely independent. Together with the zero vector this yields n+ m

affinely independent incidence vectors satisfying χAki,j = 0. Therefore xi,j ≥ 0 is a

facet-defining inequality.

We now show that the interaction inequalities of the ILP formulation are facet-defining.

Theorem 6.3.1: Let G = (V,E,H, I) be a SEAG. Let ei be an alignment edge and let

Mi be the set of interaction matches that contain ei. Then the interaction inequality∑
mi,j∈Mi

xi,j − xi ≤ 0 is facet-defining for PR(G).

Proof. Denote the interaction inequality by cTx ≤ c0. Obviously condition 3 (b) of

Theorem 2.3.2 holds because for the incidence vector χi of the set {ei} holds cTχi < c0.

Therefore it is sufficient to show that every valid inequality aTx ≤ a0 with {x | cTx =

c0} ⊆ {x | aTx = a0} is – up to a multiplicative factor – equal to cTx ≤ c0.

Assume that {x | cTx = c0} ⊆ {x | aTx = a0}. Since c0 = 0 it follows that a0 = 0. The

incidence vectors χ{e} of the |E| − 1 sets {e}, ∀e ∈ E \ {ei} fulfill cTχ{e} = aTχ{e} = 0.

Hence, ae = 0, ∀e ∈ E \ {ei}. Similarly the |M | − |Mi| incidence vectors χ
Aml,r of the

sets Aml,r = ml,r, ∀ml,r ∈ M \Mi fulfill cTχAml,r = aTχAml,r = 0. Hence, aml,r = 0,

∀ml,r ∈M \Mi.

The sets Ami,j = mi,j, ∀mi,j ∈ Mi form feasible solutions whose incidence vectors

χAmi,j satisfy cTχAmi,j = 0 and therefore aTχAmi,j = 0. If one subtracts aTχAmi,j = 0

from aTχ
Am

i,j′ = 0, ∀mi,j′ ∈ Mi \ {mi,j} this yields ami,j = · · · = ami,j′ , because we

have just shown that all other coefficients except aei are zero. Since ami,j = −aei we

can choose λ =
cmi,j
ami,j

which yields λ · aT = cT .

In the ILP formulation the mixed cycle inequalities for two sequences are of the form

xl+xk ≤ 1, ∀l, k with el in conflict with ek. They ensure that only one of the conflicting

alignment edges can be realized. We can tighten these inequalities by augmenting them

to sets of alignment edges and interaction matches, the members of which are mutually

105

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

in conflict. We say that an interaction match ml,r is in conflict with an alignment edge

ei, if one of its connecting edges el, er is in conflict with ei. Two interaction matches

ml,r and ms,t are in conflict if el or er is in conflict with es or et.

a) b) c)

e1

e2

e3 e4 e1 e2 e3
e1 e2 e3

e4

e5
e4

i2,4

i′2,4

i1,4

i2,3

i1,3

i′2,3

i′1,2
i′1,3

Figure 6.18: One redundant (a) and two contributing (b,c) extended cliques.

Definition 6.3.1: Let G = (V,E,H, I) be a SEAG, M ′ ⊆ M be a set of interaction

matches and E(M ′) be the set of connecting alignment edges inM ′. Let E′ ⊆ E\E(M ′)
be a set of alignment edges in G. If each pair of elements of the set C = E ′ ∪M ′ is in

conflict then C is called an extended clique.

It is clear that only one element from an extended clique can be realized by a structural

trace. Therefore the extended clique inequality x(C) =
∑

ei∈E′ xi +
∑

mi,j∈M ′ xi,j ≤ 1

is valid. We will prove that an extended clique inequality is facet-defining unless it is

redundant, i.e., if one can replace an interaction match by one of its connecting edges

such that the resulting set is still an extended clique. If an extended clique is not

redundant, we call it contributing. For example in Figure 6.18 (a) the set {e1, e3} ∪
m2,4 = {e2, e4, i2,4, i

′
2,4}} builds an extended clique. However, when replacing the

interaction match m2,4 by the connecting edge e2 this also yields an extended clique

{e1, e2, e3}. In Figure 6.18 (b) and (c) there is no way of replacing one of the interaction

matches by a connecting alignment edge such that the resulting set is still an extended

clique. In case (b) the set m1,5 ∪m2,3 ∪ {e4} is a contributing extended clique, in case

(c) the set m1,4 ∪ {e2, e3} .

Theorem 6.3.2: Let G = (V,E,H, I) be a SEAG. Let C = E ′ ∪M ′ be a maximal

contributing extended clique in G. Then the inequality x(C) ≤ 1 is facet-defining for

PR(G).

Proof. Denote the extended clique inequality by cTx ≤ c0. Condition 3 (b) of Theorem

2.3.2 holds, because for the zero incidence vector cTχi < c0. Therefore it is sufficient

106

6.3. THE SMT PROBLEM

to show that every valid inequality aTx ≤ a0 with {x | cTx = c0} ⊆ {x | aTx = a0} is

– up to a multiplicative factor – equal to cTx ≤ c0.

Assume that {x | cTx = c0} ⊆ {x | aTx = a0}. All coefficients ae of alignment edges

e ∈ E′ are equal to a0 because the set {e} is a feasible solution. Let e be any alignment

edge not in C. Then there must be an element in C such that this element and e are

not in conflict; otherwise C would not be maximal or it would be redundant. There

are two cases:

1. There is an alignment edge e′ ∈ E′ such that e′ and e are not in conflict. In that

case the two sets A = {e′} and A′ = {e, e′} build feasible solutions which satisfy

cTχ = c0 and therefore aTχ = a0 for χ = χA and χ = χA
′
. Subtracting ae′ = a0

from ae + ae′ = a0 yields ae = 0.

2. There is no alignment edge e′ with the above mentioned property. Consequently

there must exist an interaction match m′l,r ∈M ′ that is not in conflict with e and

whose connecting alignment edges e′l and e′r are different from e. Otherwise C

would not be a maximal contributing extended clique. In this case the two sets

A = m′l,r and A′ = m′l,r ∪ {e} build feasible solutions which satisfy cTχ = c0 and

therefore aTχ = a0 for χ = χA and χ = χA
′
. Subtracting am′l,r + ae′l + ae′r = a0

from am′l,r + ae′l + ae′r + ae = a0 yields ae = 0.

Since the coefficients of all alignment edges in E \ E ′ are zero, the coefficients of in-

teraction matches M ′l,r ∈ M ′ are equal to a0. Let ml,r be an interaction match not in

M ′. Then ml,r is a feasible solution. If one of its connecting edges is in C then the

other connecting alignment edge is in E \ E ′, because connecting edges cannot be in

conflict. Since one of the coefficients of the connecting edges is a0 and the other is 0

the coefficient aml,r has to be 0. If both connecting edges of ml,r are in E \ E ′ then

their coefficients are 0 and there are again two cases:

1. There is an alignment edge e′ ∈ E′ such that e′ and ml,r are not in conflict.

In that case the two sets A = {e′, el, er} and A′ = ml,r ∪ {e′} build feasible

solutions which satisfy cTχ = c0 and therefore aTχ = a0 for χ = χA and χ = χA
′
.

Subtracting ae′ + ael + aer = a0 from ae′ + aml,r + ael + aer = a0 yields aml,r = 0.

2. There is no alignment edge e′ with the above mentioned property. Consequently

there must exist an interaction match ml′,r′ ∈M ′ that is not in conflict with ml,r

and whose connecting alignment edges are different from el and er. In this case the

two sets A = ml′,r′ ∪ {el, er} and A′ = ml′,r′ ∪ml,r build feasible solutions which

satisfy cTχ = c0 and therefore aTχ = a0 for χ = χA and χ = χA
′
. Subtracting

aml′,r′ +ael′ +aer′ +ael +aer = a0 from aml′,r′ +ael′ +aer′ +ael +aer +aml,r = a0

yields aml,r = 0.

107

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

This completes the proof that the coefficients of edges not in C are 0. The rest of

the coefficients is equal to a0. Choosing λ = a0
c0

we have a0 = λ · c0 and aT = λ · cT .

Therefore cTx ≤ c0 is a facet-defining inequality for PR(G).

The above mentioned classes of facet-defining inequalities do not form a complete de-

scription of the SMT polytope for two sequences. It is indeed an open question to find

such a complete description. We were able to identify another class of inequalities that

is not always facet-defining, the so called odd cycle inequalities. In the following we

characterize this class and prove that it is facet-defining for certain SEAGs. All indices

are to be read modulo 2i+ 2.

Definition 6.3.2: Let G = (V,E,H, I) be a SEAG containing 2i + 1 contributing

extended cliques C1, . . . , C2i+1. The set C := C1 ∪ C2 ∪ · · · ∪ C2i+1 is called odd

cycle of length i if for all f ∈ Cj, 1 ≤ j ≤ 2i + 1 holds: f is in conflict with each

g ∈ Cj−1 ∪ Cj \ {f} ∪ Cj+1 and not in conflict with some g ∈ Ck, k 6= j − 1, j, j + 1.

e3

e4
e5

e6

e7
e8

i′2,5

i′1,6

x1,11 + x2,10 + x3 + x4 + x5 + x6 + x7 + x8 + x9 ≤ 3

e1

e2 e9

e10

i1,6

e11

Figure 6.19: A SEAG forming an odd cycle of length 3.

Given a SEAG consisting of an odd cycle C of length i, only i elements in C can be

realized simultaneously, namely one out of every other extended clique. Therefore for

any odd cycle C the odd cycle inequality

x(C) =
∑

ml,r∈C∩M
xl,r +

∑

ej∈C∩E
xj ≤ i

is valid. Note that an odd cycle must contain at least one interaction match.

In Figure 6.19 an odd cycle of length 3 is shown. More specifically C1 = {m1,10,m2,9},
C2 = {e3}, C3 = {e4},. . . , C6 = {e7} and C7 = {e8}.

The odd cycle inequality is indeed facet-defining, if the input SEAG G consists of an

odd cycle together with its connecting alignment edges. We prove this in the following

theorem using the notations from Definition 6.3.2.

108

6.3. THE SMT PROBLEM

Theorem 6.3.3: Let G = (V,E,H, I) be a SEAG consisting of an odd cycle C. Then

the odd cycle inequality

x(C) =
∑

ml,r∈C∩M
xl,r +

∑

ej∈C∩E
xj ≤ i

is facet-defining for PR(G).

Proof. Denote the odd cycle inequality by cTx ≤ c0. Clearly condition 3 (b) of Theorem

2.3.2 holds. If we realize any element contained in one of the extended cliques of an

odd cycle, we have a feasible solution, the incidence vector of which fulfills cTχi < c0.

Hence, it is sufficient to show that every valid inequality aTx ≤ a0 with {x | cTx =

c0} ⊆ {x | aTx = a0} is – up to a multiplicative factor – equal to cTx ≤ c0.

Assume that {x | cTx = c0} ⊆ {x | aTx = a0}. Throughout the proof dj denotes either

an interaction match in Cj or an alignment edge in Cj .

First we show that the coefficients of all connecting alignment edges in G are zero.

Let ml,r be an interaction match contained in some contributing extended clique Cj.

Since ml,r is in conflict with all elements in Cj−1 (resp. Cj+1) and with all elements

in Cj+1 (resp. Cj−1) it follows from the definition of conflict that el is in conflict with

all elements in Cj−1 and er is in conflict with all elements in Cj+1. Additionally there

must exist an element in Cj+1 that is not in conflict with el and an element in Cj−1

that is not in conflict with er. If this was not true, Cj would be a redundant extended

clique in the odd cycle, because one could replace ml,r by its left or right connecting

edge.

Therefore there exist sets Lj := dj−2 ∪ dj+1 ∪ dj+3 ∪ · · · ∪ dj−4 and Rj := dj−1 ∪ dj+2 ∪
· · · ∪ dj−3 that form feasible solutions satisfying cTχ = c0 and hence aTχ = a0. Also

the sets Lj ∪ {el} and Rj ∪ {er} form feasible solutions satisfying cTχ = c0 and hence

aTχ = a0. The subtraction of the two equalities yields ael = aer = 0. Since the above

argument holds for any interaction match in C it follows that the coefficients of all

connecting alignment edges in G are zero.

Next we show that the coefficients of all variables in an odd cycle inequality are equal.

Define for k = 1, . . . , i+ 1 the sets

Mk := d2 ∪ d4 ∪ · · · ∪ d2k−2 ∪ d2k+1 ∪ d2k+3 ∪ · · · ∪ d2i+1

that means Mk contains one element from each extended clique with even indices from

2 to 2k − 2 and one element from each extended clique with odd indices from 2k + 1

to 2i + 1. Every Mk forms a feasible solution and its incidence vector χMk satisfies

cTχMk = c0 and hence aTχMk = a0. Subtracting aTχMk+1 = a0 from aTχMk = a0

yields ad2k+1
= ad2k

for k = 1, . . . , i.

109

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

Next we define for k = 0, . . . , i the sets

Nk := d1 ∪ d3 ∪ · · · ∪ d2k−1 ∪ d2k+2 ∪ d2k+2 ∪ · · · ∪ d2i

that means Nk contains one element from each extended clique with odd indices from 1

to 2k−1 and one element from each extended clique with even indices from 2k+2 to 2i.

Every Nk forms a feasible solution and its incidence vector χNk satisfies cTχNk = c0 and

hence aTχNk = a0. Subtracting aTχNk+1 = a0 from aTχNk = a0 yields ad2k+2
= ad2k+1

for k = 0, . . . , i− 1.

Putting the above arguments together we have ad1 = ad2 = · · · = ad2i+1
. Since the

argument holds for any alignment edge e ∈ Ci and any interaction match ml,r ∈ Ci
the coefficients in the odd cycle C are equal. Choosing λ = a0

c0
we have a0 = λ · c0 and

aT = λ · cT . Therefore cTx ≤ c0 is a facet-defining inequality for PR(G).

In the multiple sequence case we show that the mixed cycle inequalities are facet-

defining for PR(G) if and only if they contain no chord.

Lemma 6.3.3: Let G = (V,E,H, I) be a SEAG and C be a critical mixed cycle with

|C ∩E| = `. Then the inequality

x(C ∩E) ≤ `− 1

defines a facet of PR(G) if and only if C has no chord.

Proof. Assume that C is a critical mixed cycle with |C ∩ E| = ` and without chord.

Let e1, . . . , e` be ` edges on C. We obtain ` different feasible solutions by removing

the edge ei, 1 ≤ i ≤ ` from C. The incidence vectors of these solutions are linearly

independent and satisfy x(C ∩ E) = ` − 1. Since C has no chord and is a critical

mixed cycle we can add either an interaction match ml,r ∈ M or an alignment edge

e ∈ E \ C to one of the above solutions without introducing a mixed cycle in G. This

yields another m+ n− ` vectors that fulfill x(C ∩E) = `− 1. Moreover, the incidence

vectors of all sets constructed above are linearly independent. Thus x(C ∩E) ≤ `− 1

is a facet-defining inequality.

On the other hand, if C has a chord e then each incidence vector χA of a solution

A ⊆ E ∪B satisfying x(C ∩E) = `− 1 has to satisfy χAe = 0, so dim{x ∈ PR(G)|x(C ∩
E) = `−1} ≤ |E|+|M |−2. Thus x(C∩E) ≤ `−1 is not a facet-defining inequality.

110

6.3. THE SMT PROBLEM

6.3.3 Bounds for the SMT Problem

Computation of Lower Bounds

In order to compute a lower bound for the SMT problem we compute an optimal

conventional alignment with affine gap costs without considering the annotations of

both sequences. This alignment realizes some interaction matches and can be considered

as a structural alignment. The score of the structural alignment is taken as a lower

bound in the branch-and-cut algorithm.

Computation of Upper Bounds

In order to specialize the generic branch-and-cut algorithm for the SMT problem we

need to describe separation algorithms for the classes of inequalities described in Chap-

ter 6.

Mixed Cycle Inequalities. The computation of mixed cycle inequalities is done in

the same way as for the GMT. The only thing to note is that in the SMT formulation

we deal with a singleton partition of the alignment edges.

Extended Clique Inequalities. Recall that all maximal extended cliques C that

do not contain an interaction match are contributing and therefore the extended clique

inequality of C is facet-defining for the SMT polytope. For the GMT problem we

showed that those inequalities can be separated in polynomial time by computing a

longest path in a pairgraph.

The other maximal extended cliques contain at least one interaction match and are

by Theorem 6.3.2 facet-defining if and only if they are contributing. Unfortunately we

have not found an efficient way of separating this class of inequalities. We chose two

ways of handling this situation.

1. If the SEAG is not too dense, we enumerate all maximal extended cliques con-

taining a fractional interaction match variable xi,j. With the use of bit vectors

and an adaption of an algorithm by Tsukiyama et al. (Tsukiyama, Ide, Ariyoshi,

and Shirawaka 1977) this can be done in reasonable time for up to 20000-30000

cliques. Adding these clique inequalities to the current linear program cuts off the

infeasible solution and considerably shrinks the enumeration tree in the branching

phase.

111

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

2. If the SEAG is too dense and therefore the number of cliques in the above men-

tioned enumeration explodes, we refrain from enumerating the extended cliques

(which we do in most cases).

Odd Cycle Inequalities. For separating the odd cycle inequalities we developed a

heuristic procedure that works in two phases. In the first phase we solve the separation

problem for a subset of all possible odd cycle inequalities by a dynamic programming

procedure. If we find a violated inequality in that subset we try to strengthen the

inequality by a heuristic procedure in the second phase of the heuristic.

In the first phase we look for a fractional interaction match variable xl,r representing

that interaction match {ip, iq, el, er}. Then we compute a maximal value linking chain

for that interaction match. A linking chain for a given interaction match is an ordered

list of alignment edges, such that the first edge in the chain is in conflict with the left

connecting edge el and the last edge with the right connecting edge er. We then say

that the linking chain for el and er starts with the first edge. Every other edge in

the chain is exactly in conflict with its two neighboring edges in the chain. The value

of a linking chain is the sum of the corresponding variable values in the current LP

solution divided by the number of edges in the chain. The linking chain together with

the interaction match forms an odd cycle if there is an even number of edges in the

chain. For example in Figure 6.20 the set {e4, e5, e6, e7, e8, e9} is a linking chain for

the interaction matches {i1,6, i′1,6, e1, e11} and {i1,6, i′2,5, e3, e10}. We compute a chain

e3

e4
e5

e6

e7
e8

i′2,5

i′1,6

x1,11 + x2,10 + x3 + x4 + x5 + x6 + x7 + x8 + x9 ≤ 3

e1

e2 e9

e10

i1,6

e11

Figure 6.20: A SEAG containing an odd cycle of length 3.

of maximum value by dynamic programming. The following three arrays are used.

• suc(ei) stores the variable number of the edge right of ei in the maximal linking

chain for el and er.

• num(ei) stores the number of variables right of ei in the maximal linking chain

112

6.3. THE SMT PROBLEM

for el and er.

• val(ei) stores the sum of the variable values of the edges right of ei in the maximal

linking chain for el and er.

For all edges f that are in conflict with er and not with el we initialize the arrays with

suc(f) = undef , num(f) = 1 and val(f) = xf .

Then we compute two lists of edges, the x-list and the y-list. In the x-list are edges e

with start(e) smaller or equal than start(el) and end(e) greater than or equal end(el)

that are not in conflict with er. In the y-list are edges e with start(e) greater than or

equal start(el) and end(e) smaller than or equal end(el) that are not in conflict with

er.

Consider for example interaction match {i1,6, i′1,6, e1, e11} in Figure 6.20 on the preced-

ing page. Then the x-list contains the edge e2 while the y-list contains e4. In order

to illustrate our heuristic we assume that we are given the following fractional solu-

tion (x1 = 0.5, x2 = 0, x3 = 0, x4 = 0.5,x5 = 0.5, x6 = 0.5, x7 = 0.5, x8 = 0.5, x9 =

0.5, x10 = 0, x11 = 0.5, x1,11 = 0.5, x2,10 = 0). This solution fulfills the ILP inequalities

and violates the odd cycle inequality x1,10 +x2,11 +x3 +x4 +x5 +x6 +x7 +x8 +x9 ≤ 3.

The edges in these two lists are possible starting points of a maximal linking chain. We

now recursively compute the maximal value linking chain starting with an edge in the

x-list or y-list.

For an edge f in the x-list ({e2} in the example) we search the conflicting edges g with

end(el) < end(g) ≤ end(f), i.e., g is in conflict with f and not with el (in our example

there is no such edge). Then we recursively compute the maximal linking chain for g

and el starting in the y-list.

For an edge f in the y-list ({e4} in our example) we proceed analogously. We search the

edges g such that start(el) < start(g) ≤ start(f), i.e., g is in conflict with f and not

with el (in our example e3 and e5 fulfill that condition). Then we recursively compute

the maximal linking chain for g and er starting in the x-list.

Having recursively computed the maximal linking chain starting with each of the above

edges ({e3, e6, e7, e8, e9} and {e5, e6, e7, e8, e9} in the example), we can compute the

maximal linking chain starting with f as follows. We pick from all the edges g for

which the quotient val(g)/num(g) is maximal (in our example the quotient for the

first chain is 2/5 and for the second chain 2.5/5, hence we choose the second). We

then set val(f) = val(g) + xf , num(f) = num(g) + 1 and suc(f) = g (in our example

val(e4) = val(e5) + xf = 2.5 + 0.5, num(e4) = num(e5) + 1 = 6 and suc(e4) = e5) so

that we can retrieve the maximal linking chain by following the pointers.

113

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

By choosing the edge f in the x-list or y-list that has the maximal quotient we can check

whether we have found a violated odd cycle inequality by testing whether xl,r+val(f) >

num(f)/2 (in our example we find that x1,11 + val(e4) = 3.5 > 3 = num(e4)/2).

We now could add the violated, valid inequality (x1,10 +x4 +x5 +x6 +x7 +x8 +x9 ≤ 3

in the example) as solution of the heuristic separation procedure to the LP and solve

it again. However, this is not an odd cycle inequality for the SEAG in Figure 6.20 on

page 112. It is easy to see that setting x5 to 0 and x3 to 0.5 results again in a fractional

solution where the above inequality is not violated.

As a remedy, we try to tighten the violated inequality as follows. For each edge e in

the linking chain we compute the extended clique with the maximal number of objects

(note that an extended clique can contain alignment edges and interaction matches)

that contains e and with the property that all objects in the clique are in conflict with

the two neighboring edges in the linking chain.

To do this we compute the maximal extended cliques containing e (for example

{e3, e5, e6} is a maximal clique containing e5). Each maximal extended clique c is inter-

sected with the set of all objects that is in conflict with the two neighboring edges in the

linking chain (for example {e3, e5, e6} is intersected with {e1, e2, e3, e5} and {e3, e5, e7}
yielding the set {e3, e5}). We choose the maximal cardinality intersection c(e) and

regard it as a preliminary extended clique in an odd cycle. We do this for each edge in

the linking chain and for the interaction match ml,r.

Clearly the sets c(e) not necessarily fulfill the conditions of the odd cycle definition.

Therefore we cycle through the maximal linking chain and the interaction match and

enforce locally the odd cycle definition, which means that we delete from the current

set c(e) all objects that are not in conflict with all objects in the neighboring extended

cliques. We iterate this procedure in a round robin fashion until none of the extended

cliques changes anymore for one round.

Still, this is not sufficient, because an object in c(e) may not only be in conflict with

all objects in the neighboring extended cliques, but also with objects in other extended

cliques. In order to ensure that c(e) contains only edges that are exactly in conflict

with edges in the neighboring extended cliques we subtract the intersection between

c(e) and the conflict set of every object in the maximal value linking chain that is not

a neighbor of e.

In our example this procedure finds indeed the odd cycle in Figure 6.20 on page 112

and instead of adding the weak inequality x1,10 +x4 +x5 +x6 +x7 +x8 +x9 ≤ 3 to the

LP we can add the odd cycle inequality x1,10 +x2,11 +x3 +x4 +x5 +x6 +x7 +x8 +x9 ≤ 3

to the LP.

114

6.3. THE SMT PROBLEM

Separation and Branching Strategy

By using the pairgraph we can exactly separate all extended cliques that contain no

interaction match. Since the interaction inequalities are part of the initial LP this

implies that an integer solution is feasible.

If we cannot find a violated extended clique inequality and our solution is still fractional

we apply the heuristic separation routine for finding violated odd cycle inequalities. If

this also fails we branch. In the branching phase we choose the fractional interaction

match variable that is closest to 0.5 and has the highest objective function coefficient.

6.3.4 Computational Results for the SMT Problem

In this section we report on the results of our computational experiments computed.

We implemented the branch-and-cut algorithm in C++ using the library of efficient

data types and algorithms LEDA (Mehlhorn and Näher 1995) and the branch-and-cut

framework ABACUS (Jünger and Thienel 1997).

Our test sequences consist of 23S ribosomal RNA sequences from the Antwerpen rRNA

database (de Rijk, de Peer, Chapelle, and de Wachter 1994). We used sequences from

the small ribosomal subunit which are approximately 1500 bases long. According to

the notation used in this database the following symbols are used to denote nucleotides:

• Completely identified nucleotides.

U,C,A,G standing for (U)racil, (C)ytosine, (A)denine and (G)uanine.

• Partially identified nucleotides.

– Y : stands for U or C.

– R : stands for A or G.

– M : stands for A or C.

– K : stands for U or G.

– W : stands for U or A.

– S : stands for G or C.

– B : stands for U, C or G.

– D : stands for U, A or G.

– H : stands for U, C or A.

– V : stands for C, A or G.

• We did not consider sequences with unidentified nucleotides.

115

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

Apart from the sequence information, the Antwerpen database contains the secondary

structure of the sequences in form of special characters that are intertwined with the

sequence characters and indicate the beginning or end of complementary strands of a

helix (also called stem, see Section 3.2). In addition there is a “helix numbering” string

naming the strands of a helix. Basically this corresponds to the linear representation

introduced in Section 3.2 (see Figure 3.8 on page 40) where the edges joining the

complementary base pairs are implicitely given by the special symbols which are:

• [and]: symbolizes the beginning respectively the end of one strand of a helix.

• ^ : symbolizes in one character the simultaneous end of one strand and beginning

of another, i.e., ^=][.

• { and }: symbolizes beginning and end of an internal loop or bulge loop inter-

rupting a helix strand.

• (and) : encloses a base forming a non-standard base-pair (any pair other than

G-C,A-U or G-U).

We adapted that notation to output a pairwise structural alignment as follows (see

Figure 6.21 on the next page). The output starts with some statistical information for

each of the two sequences as there is:

• the name and length of the sequence,

• the number of interactions in its annotation (resp. secondary structure),

• the number of helices in the secondary structure,

• the alignment score (in brackets the sequence similarity score and the interaction

match score is given).

Then there follow four strings with a line break after a certain number of characters.

The first and second string belong to the first sequence, while the third and the fourth

belong to the second sequence.

The first string contains the helix numbering for the first sequence (and the fourth

string for the second). For each number x that symbolizes one strand of a helix there

is also a number x′ that symbolizes the complementary strand of that helix. The helix

itself is therefore denoted by x : x′.

The second string contains the first sequence itself (the third string the second sequence)

intertwined with the above mentioned special symbols (,),[,],{,},^. A number in

the helix numbering string starts always at the same position at which the symbol [or

116

6.3. THE SMT PROBLEM

Alignment of sequences

0.Desulfurococcus mobilis (length = 1495)

1.Halobacterium halobium (length = 1473)

Sequence 0 has secondary structure

interacts. : 458

helices : 51

Sequence 1 has secondary structure

interacts. : 429

helices : 51

Alignment has value 11562(4698,6864)

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

A C U[C C G G U]U G A[U C C U^G C C G G]U[C C C G A C C G C U]A[U

A U U[C C G G U]U G A[U C C U^G C C G G]A[G G C C A U U G C U]A[U

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

C G G G G U G G]G G C U A A[G C C{A}U G G]G A[G U C{G C}A C G C

C G G A G U C C]G A U U U A[G C C{A}U G C]U A[G U U{G U}G C G -

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

- - - - - - - - -6’ - - - - - - - - - - - - - - - - -7- - - - - -

U C C G C]C G C U[G C G G G G C G U G G C]G G A C G G[C U G]A G U

- - - - G]- G U U[U{A G A C C}C G C A G C]G G A A A G[C U C]A G U

- - - - - - - - -6’ - - - - - - - - - - - - - - - - -7- - - - - -

Figure 6.21: Part of a structural alignment output.

^ is written in the second string. Consider for example the first row of the alignment

in Figure 6.21. One strand of helix 1 : 1′ starts after the third non blank character

of the second string (there is a [right behind that character and the [begins at the

same position as the 1 in the helix numbering string). The complementary strand 1 ′

starts after the fifteenth non blank character of the second string (there is a ^ right

behind that character). Note that ^ symbolizes the end of one strand (here 2) and the

beginning of another strand (here 1′). The characters in complementary strands form

complementary base pairs, the first character of x with the last of x′, the second of

x with the second last of x′ and so forth. That means that in the above alignment

the first sequence contains in its secondary structure, among others, the interactions

(3, 19), (4, 18), (5, 17), (6, 16), (7, 15). In helix 6 : 6′ there is an internal loop symbolized

by { and }. The characters within these brackets do not form an interaction with

117

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

another character.

Generating the Input

Recall that the input for the SMT problem is a structural extended alignment graph

G = (V,E,H, I). In our experiments we restricted ourselves to pairwise structural

traces. For every pair of sequences we need to describe how we construct the set I of

interaction edges and the set E of alignment edges. Once we have specified the SEAG

(and therefore the set M of interaction matches) we only need to give a structural trace

score function to run our algorithm.

Generating the interaction edges. In our experiments we tested the variant of

structural sequence alignment where the secondary structure of the first sequence is

known while the secondary structure of the second sequence is unknown. That means

that the annotation of the first sequence is the secondary structure as given by the

Antwerpen RNA database while the annotation of the second sequence contains all

possible standard interactions (A-U,C-G and G-U).

Generating alignment edges. We have to determine a set of reasonable alignment

edges. In principle, we use for this purpose alignment edges realized by some subopti-

mal alignment, i.e., an alignment with a score close to optimal. In contrast to Lenhof,

Reinert, and Vingron (1998), we do not take all the edges realized by any suboptimal

alignment scoring better than a fixed threshold s below the optimal. Rather we em-

ploy a windowing technique to make the alignment graph denser in certain regions and

thinner in others. The reason for applying the windowing technique described below is

w w
i

ACCGU---CGUCGUCG-GC---GUU

AGCGUCGCCG---CCGUGCAAAGU-

Match=2, Mismatch=−1, Quotient = 3/9

Figure 6.22: Calculation of quotient at position i with window of width 4

that conventional suboptimal alignments have frequently shown insufficient deviation

from the optimal alignment to cover the alignment edges necessary to build the struc-

118

6.3. THE SMT PROBLEM

turally correct alignment. On the other hand, upon inclusion of a sufficient number of

suboptimal alignments the number of edges to consider became too large.

0 500 1000 1500
Position in sequence one

0

0.2

0.4

0.6

0.8

1
Su

bo
pt

im
al

ity
 c

oe
ff

ic
ie

nt

Figure 6.23: Plot of c(i) for an optimal conventional alignment.

As a remedy we designed a windowing technique that adjusts the suboptimality cutoff

according to the local quality of an alignment. Where the alignment appears to be

very good no suboptimal alternatives are considered. In alignment regions showing

little sequence conservation more suboptimal alternatives are taken into account.

We proceed as follows: For a given optimal conventional alignment we compute for

each position i in the first sequence, say, an coefficient q(i). Let a(i) be the position

of the i-th character of the first sequence in the alignment and n1 be the length of the

first sequence. Then, for a given window size w, we sum the mutation score matrix

values of the aligned characters from alignment position max{0, a(i)−w} to alignment

position min{a(l), a(i) + w} and divide it by the length of the window. This quality

coefficient q(i) is a measure for the local quality of the optimal alignment at sequence

position i. See Figure 6.22 on the preceding page for an example with window width 4.

Now we compute a suboptimality coefficient c(i) as follows: First we normalize q(i) to a

value p(i) between 0 and 1 and then define c(i) = (1−p(i))2. The coefficient c(i) is near

0 in regions where the alignment is reliable and near 1 in regions where it is not reliable.

Finally, we insert in the SEAG all alignment edges at position i that are realized by some

alignment that is at most c(i) · s worse than the optimal conventional alignment, where

119

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

the parameter s is the (maximal) suboptimality. Figure 6.23 on the preceding page

140 160 180 200 220 240
Position in Sequence 1

100

150

200

250

Po
si

tio
n

in
 s

eq
ue

nc
e

2

Figure 6.24: Dot plot to show effectivness of c(i) computation.

shows a plot of c(i) for the optimal conventional alignment between Desulfurococcus

Mobilis (1495 nucleotides) and Halobacterium Halobium (1473 nucleotides). One can

see three prominent peaks where indeed our experiments show that the conventional

alignment is wrong and hence we need to insert more alignment edges into the SEAG

in the hope that the correct ones are contained.

Figure 6.24 shows the effectiveness of this approach. We use a dot plot representation

to overlay the correct alignment with the optimal conventional alignment and the all

possible matches in the SEAG. A mark at position (i, j) in the plot indicates, that

the i-th character of the first sequence is aligned with the j-th character of the second

sequence. The more (mis)matches of an alignment coincide with the (mis)matches from

the correct alignment, the better the alignment.

Figure 6.24 shows the region between characters 140 and 240 of the first sequence

(Desulfurococcus Mobilis). The black plus sign indicate (mis)matches occurring in an

optimal conventional alignment, the red diamonds indicate (mis)matches occurring in

the correct alignment. A blue circle at position i indicates a (mis)match occurring in

some suboptimal alignment that is at most c(i) · s worse than the optimal conventional

alignment.

In the displayed region the suboptimality coefficient c(i) has its first peak (see Fig-

120

6.3. THE SMT PROBLEM

ure 6.23 on page 119) indicating a possibly unreliable conventional alignment. Indeed,

the optimal conventional alignment (black plus sign) deviates considerably from the

correct alignment (red diamonds). However, since c(i) is near 1.0 in this region, the

alignment edges contained in the SEAG build a “cloud” covering all but a few correct

(mis)matches. Note that this is essential for the branch-and-cut algorithm to identify

the correct structural alignment. Hence, our windowing strategy is an effective way to

limit the number of alignment edges in the SEAG and therefore the number of vari-

ables in the ILP formulation, while inserting enough alignment edges to guarantee good

results.

Assessing the Quality of the Results

The given secondary structure should direct the optimal alignment towards the detec-

tion of conserved structural patterns. For reasons of convenience we call the structural

alignment that realizes the optimal structural trace the structural alignment and the

optimal conventional alignment simply the conventional alignment. Both alignments

realize a certain number of interaction matches, which in turn determines their sec-

ondary structure. We used three ways of assessing the quality of a structural alignment

compared to the quality of a conventional alignment.

• The first is the number of realized interaction matches. We compare it to the

number of interaction matches of the correct alignment given in the database.

Since the second annotation in the input SEAG contains only standard interac-

tions, we can compute only interaction matches, with a standard interaction in

the second annotation. Hence, we assign a positive score only to such interaction

matches. It should be noted, that in the correct alignment occasionally occur

other interaction matches. Generally, the more interaction matches we realize,

the better the alignment.

• The second is the comparison of the sequence alignment from the database (which

we assume to be the “correct” alignment) with the structural and conventional

alignment. We use two ways to display the quality of the alignment in selected

regions. The alignment itself as displayed in Figure 6.21 on page 117 and a

dot plot representation as described above to overlay the correct alignment with

either the conventional alignment or the structural alignment. A mark at position

(i, j) in the plot indicates, that the i-th character of S1 is aligned with the j-th

character of S2. The more (mis)matches of an alignment coincidence with the

(mis)matches from the correct alignment, the better the alignment.

• The third way is the alignment score. For each alignment (correct, conventional,

and structural) we compute their score. Since our structural trace score function

121

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

is a combination of a score for the sequence similarity and for the structural

similarity, we give both parts of the score. The hope is that a better overall

score can be achieved by realizing more interaction matches while sacrificing some

sequence similarity.

Results

We initially tested the algorithm on small problem instances like tRNA alignments and

alignments of 5S RNA sequences. For the cases studied the algorithm reproduced the

correct alignments. Here we want to present more challenging examples of 23S riboso-

mal RNA sequences from the Antwerpen rRNA database (de Rijk, de Peer, Chapelle,

and de Wachter 1994). We computed a structural optimal trace for all pairs of the

Seq. Family Sequence Length # inter.

1 Crenarchaeota Acidianus Brierley 1492 438

2 Crenarchaeota Acidianus Sp 1493 441

3 Crenarchaeota Desulfurococcus Mobilis 1495 458

4 Crenarchaeota Pyrodictium Occultum 1497 446

5 Crenarchaeota Sulfolobus Acidocaldarius 1493 446

6 Crenarchaeota Thermofilum Pendens 1509 444

7 Euryarchaeota Archaeoglobus Fulgidus 1492 433

8 Euryarchaeota Halobacterium Halobium 1473 429

9 Euryarchaeota Halococcus Morrhuae 1475 426

10 Euryarchaeota Haloferax Denitrificans 1469 418

11 Euryarchaeota Methanobacterium Formicium 1476 430

12 Euryarchaeota Natronobacterium Magadii 1466 412

Figure 6.25: Set of test sequences

sequences shown in Figure 6.25. Note that the alignments are not symmetric, because

we use the known secondary structure of the first sequence while we allow any standard

interaction in the annotation of the second sequence. We used 6 sequences from each of

two different families (Crenarchaeota and Euryarchaeota) of archaebacteria. For these

twelve sequences we build 132 test sets which we number as an ordered pair. The test

set (i, j) corresponds to an SEAG for the i-th and j-th sequence that is constructed as

described in the previous section.

For each test set we construct a SEAG as described above, e.g., for test set (3, 11)

the SEAG constructed for the sequences Desulfurococcus Mobilis and Halobacterium

Halobium, where for the first sequence the secondary structure is given, while the

122

6.3. THE SMT PROBLEM

- 0

A 0 4

U 0 1 4

C 0 1 1 4

G 0 1 1 1 4

Y 0 1 2 2 1 4

R 0 2 1 1 2 1 4

M 0 2 1 2 1 2 2 4

K 0 1 2 1 2 2 2 1 4

W 0 2 2 1 1 2 2 2 2 4

S 0 1 1 2 2 2 2 2 2 1 4

B 0 1 2 2 2 2 1 1 2 1 2 4

D 0 2 2 1 2 1 2 1 2 2 1 2 4

H 0 2 2 2 1 2 1 2 1 2 1 2 2 4

V 0 2 1 2 2 1 2 2 1 1 2 2 2 2 4

- A U C G Y R M K W S B D H V

Figure 6.26: Mutation score matrix used for experiments.

annotation of the second contains all standard base pairs. The conventional alignment

is computed with a dynamic programming algorithm with affine gap costs. The gap

initiation penalty was 6 and the gap prolongation penalty 2. The mutation score matrix

we used is given in Figure 6.26 (values above the main diagonal are symmetrical).

We computed for each pair a number of structural traces with increasing suboptimality.

Our results are summarized tables that depict data for different structural alignments

(e.g., the table in Figure 6.27 on the next page).

For each alignment we display its total score followed by the structural similarity score

and the sequence similarity score (columns tsc, isc and asc). The next column con-

tains the number of scored interactions followed by the number of alignment edge

variables, the number of interaction match variables, and the time in seconds that

the branch-and-cut algorithm ran. Those three columns are of course only filled for

structural alignments computed by our algorithm.

The tables starts with the correct structural alignment from the Antwerpen database,

followed by the conventional alignment which was computed using affine gap costs.

Then we give the data for the structural alignments optx where x is the level of subop-

timality the alignment was computed with.

123

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

set (1,0) Acidianus Sp(455) Acidianus Brierleyi(451)

alignment tsc isc asc #sci #nav #niv time

corr. 12458 7056 5402 441 - - -

conv. 12419 7008 5411 438 - - -

opt0 12419 7008 5411 438 1499 445 17

opt1 12419 7008 5411 438 1499 445 17

opt2 12419 7008 5411 438 1499 445 18

opt3 12419 7008 5411 438 1499 445 18

opt4 12419 7008 5411 438 1499 445 20

opt5 12419 7008 5411 438 1499 445 22

opt6 12419 7008 5411 438 1503 445 36

opt7 12419 7008 5411 438 1508 447 43

opt8 12448 7040 5408 440 1519 455 20

opt9 12448 7040 5408 440 1519 455 21

opt10 12448 7040 5408 440 1530 465 25

Figure 6.27: Test run of two sequences stemming from the same family.

set (1,11) Acidianus Sp(455) Natronobacterium Magadii(439)

alignment tsc isc asc #sci #nav #niv time

corr. 11195 6688 4507 418 - - -

conv. 10790 6208 4582 388 - - -

opt0 10870 6288 4582 393 1486 405 17

opt1 10870 6288 4582 393 1486 405 17

opt2 10957 6384 4573 399 1525 428 20

opt3 11116 6528 4588 408 1570 449 22

opt4 11136 6560 4576 410 1620 469 31

opt5 11136 6560 4576 410 1662 502 78

opt6 11136 6560 4576 410 1710 541 146

opt7 11184 6608 4576 413 1808 628 317

opt8 11213 6640 4573 415 1917 738 322

opt9 11277 6704 4573 419 2021 900 512

opt10 11277 6704 4573 419 2109 997 717

Figure 6.28: Test run of two sequences stemming from different families.

After testing different strategies of assigning different scores to standard or non-

124

6.3. THE SMT PROBLEM

set (0,7) Acidianus Brierleyi(451) Halobact. Halobium(447)

alignment tsc isc asc #sci #nav #niv time

corr. 11272 6736 4536 421 - - -

conv. 10888 6288 4600 393 - - -

opt0 10936 6336 4600 396 1490 402 24

opt1 10936 6336 4600 396 1490 402 40

opt2 10987 6384 4603 399 1503 407 41

opt3 11108 6496 4612 406 1537 420 34

opt4 11111 6496 4615 406 1558 427 45

opt5 11140 6528 4612 408 1594 448 54

opt6 11195 6608 4587 413 1699 499 40

opt7 11197 6608 4589 413 1804 578 82

opt8 11297 6704 4593 419 1894 662 190

opt9 11314 6720 4594 420 1949 723 237

opt10 11342 6736 4606 421 2111 977 4809

Figure 6.29: Test run of two sequences stemming from different families.

standard interaction matches, we found out that making such a distinction seemed

to have little effect on the quality of the structural alignments. Hence each interaction

match has the same score of 16.

Note, however, that for the computation of a optimal structural alignment we did not

use a score function with gaps. Therefore we applied this gapless score function to

the optimal conventional alignment in order to derive a lower bound for our algorithm.

That implies that the score of the conventional alignment may be less than the score

of the structural alignment, simply because the conventional alignment is optimal with

respect to another score function.

Figure 6.27 on the facing page shows a table for a pair of sequences stemming from

the same family. It can be seen that the improvement in the score and in the number

of realized interaction matches is not very significant. This behavior can be observed

for most sequence pairs stemming from the same family. The reason for this is simply

that within a family sequence conservation is high. Hence, conventional algorithms

perform well and we cannot improve the alignment by taking into account the structural

similarity.

This changes completely if the pair of sequences is chosen from different families as

shown in the three Figures 6.28, 6.29, and 6.30. Here, the structural elements are

conserved although in some helices the sequence conservation is very poor.

125

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

The figures show that conventional alignments realize significantly less interaction

matches than correct alignments, whereas optimal alignments with suboptimality 0

already realize more interaction matches than conventional alignments. With increas-

ing suboptimality this number rises. Note that while the total score of the optimal

alignments increases this is mainly due to the structural similarity score. The sequence

similarity score even decreases in most cases. This is exactly the effect we expected.

Sequence similarity is sacrificed in order to give a better structural alignment.

While the running times in Figure 6.27 on page 124 basically stay the same, the other

examples show that they become (sometimes significantly) worse with increasing sub-

optimality. However, our experiments show that in many cases the structural alignment

computed in a couple of minutes is already significantly better than the conventional

alignment and only seldomly one would like to increase the suboptimality even further.

set (2,9) Desulf. Mobilis(458) Haloferax Denitrificans(440)

alignment tsc isc asc #sci #nav #niv time

corr. 11423 6768 4655 423 - - -

conv. 11116 6400 4716 400 - - -

opt0 11321 6608 4713 413 1516 427 19

opt1 11321 6608 4713 413 1516 427 20

opt2 11321 6608 4713 413 1518 427 22

opt3 11362 6640 4722 415 1537 436 24

opt4 11372 6656 4716 416 1552 441 25

opt5 11408 6688 4720 418 1571 453 26

opt6 11456 6736 4720 421 1607 470 40

opt7 11530 6816 4714 426 1638 496 32

opt8 11578 6864 4714 429 1700 532 48

opt9 11602 6896 4706 431 1765 592 86

opt10 11606 6912 4694 432 1824 643 176

Figure 6.30: Test run of two sequences stemming from different families.

Another set of figures shows the total score, the alignment score, and the interaction

score of all 132 test sets for suboptimality 0 (Figures 6.31,6.33, and 6.32) and for

suboptimality 8 (Figures 6.34,6.36, and 6.35). For this values all but 6 computations

needed less than 30 minutes to find an optimal solution, most of them only a couple

of minutes (see Figure 6.38 on page 131 for the timings with suboptimality 8 and

Figure 6.37 on page 131 for timings with suboptimality 0).

All of the above figures are sorted. In the figures that display the scores, the test sets

126

6.3. THE SMT PROBLEM

are sorted in increasing order according to the correct score. The figures displaying the

timings are sorted in increasing order according to the time. Inspecting the results of

all test sets validates the statements we made by looking at the selected test sets in the

tables.

Finally we show for the pair (0, 8) a part of the actual alignment. Figures 6.39 on

page 132, 6.40 on page 133, and 6.41 on page 134 show the beginning of the correct,

the conventional and the structural alignment. Looking, for example, at the two he-

lices 6 : 6′ and 10 : 10′ reveals that the structural alignment indeed almost perfectly

reconstructed the correct alignment while the conventional alignment succeeded only

partially for helix 6 : 6′ and not at all for helix 10 : 10′. A closer look at the alignment

part that contains helix 10 : 10′ reveals that the sequence similarity is indeed rather

small.

Figure 6.42 on page 135 shows a dot plot of the correct, conventional and structural

alignment for the region in which helix 10 : 10′ lies. In this example the structural

alignment does not completely coincide with the correct alignment. This may be due

to the lacking (mis)matches in the input SEAG (see Figure 6.43 on page 135). Nev-

ertheless, as can be seen in Figure 6.41 on page 134, the structural alignment does

realize almost all interactions of helix 10 : 10′, thereby giving an alternative structural

alignment compared to that of the database.

127

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

0 50 100
test set number

10500

11500

12500

sc
or

e

correct alignment
conventional alignment
structural alignment

Figure 6.31: Plot of the total structural alignment scores for all test sets, computed with

suboptimality 0.

0 50 100
test set number

6000

6500

7000

sc
or

e

correct alignment
conventional alignment
structural alignment

Figure 6.32: Plot of the interaction match scores for all test sets, computed with

suboptimality 0.

128

6.3. THE SMT PROBLEM

0 50 100
test set number

4400

4900

5400

sc
or

e
correct alignment
conventional alignment
structural alignment

Figure 6.33: Plot of the mutation matrix scores for all test sets, computed with suboptimality

0.

0 50 100
test set number

10600

11600

12600

sc
or

e

correct alignment
conventional alignment
structural alignment

Figure 6.34: Plot of the total structural alignment scores for all test sets, computed with

suboptimality 8.

129

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

0 50 100
test set number

6000

6500

7000

7500
sc

or
e

correct alignment
conventional alignment
structural alignment

Figure 6.35: Plot of the interaction scores for all test sets, computed with suboptimality 8.

0 50 100
test set number

4400

4900

5400

sc
or

e

correct alignment
conventional alignment
structural alignment

Figure 6.36: Plot of the mutation matrix score scores for all test sets, computed with

suboptimality 8.

130

6.3. THE SMT PROBLEM

0 50 100
test set number

10

20

30

40

50

tim
e

in
 se

c

Figure 6.37: Plot of running time for all test sets, computed with suboptimality 0.

0 50 100
test set number

0

1000

2000

3000

4000

5000

tim
e

in
 s

ec

Figure 6.38: Plot of running time for all test sets, computed with suboptimality 8.

131

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

Alignment of sequences

0.Acidianus brierleyi (length = 1492)

1.Halococcus morrhuae (length = 1475)

Sequence 0 has secondary structure

interacts. : 451

helices : 51

Sequence 1 has secondary structure

interacts. : 445

helices : 51

Alignment has value 11258(4570,6688)

- - -1- - - - - - - - 2- - - -1’ - - - -1’ - - - - -3- - - - - -

A U U[C C G G U]U G A [U C C U^G C C G U^G C C G G]A[C C A G A U

A U U[C C G G U]U G A [U C C U^G C C G U^G C C G G]A[G G C U A U

- - -1- - - - - - - - 2- - - -1’ - - - -1’ - - - - -3- - - - - -

- - - - -4- - - - - - - - - - - - - - -5- - - - - - - - -6- - - -

C G C U]A[U G G G G A U A G]G G C U A A[G C C{A}U G G]G A[G U C{G

U G C U]A[U C G G G G U C C]G A U U C A[G C C{A}U G C]U A[G U U{G

- - - - -4- - - - - - - - - - - - - - -5- - - - - - - - -6- - - -

- - - - - - - - - - - - - - 6’- - - - - - - - - - - - - - - -7-

U}A C G C U C U C]G G U A A[G A G G G C G U G G C]G G A C G G[C

U}A C G G G U]- - - U C A G - -[A C C C G U A G C]A A A U A G[C

- - - - - - - - - - - - - - - -6’ - - - - - - - - - - - - - -7-

- - - - - - - - -8- -9- -

U G]A G U A A C A[C G U G G U C{A A}C C{U A A}C C U C G G G]A[C U

U C]C G U A A C A[C G U G G U C{A A}A C{U A C}C C U C U G G]A[C C

- - - - - - - - -8- -9- -

- - - - - - - - - - - - - - - - -9’ - - - - - - - - - - - - - -

U G{G A U A C}C U C C G G]G A A A[C U G G A G{C U A A U C}C A A

G G{G A U A U}C C U C G G]G A A A[C U G A G G{U C A A U C}C C A

- - - - - - - - - - - - - - - - -9’ - - - - - - - - - - - - - -

- - - - -10 - - - - - - - - - - - - - - - -10’- - - - - - - - - -

G]A U A G[G C A A A G G A{A}U C]U G G A A C[G A U C C U U U G C]U

G]A U A C U[G C U U U C{A}U G U]U G G A A U[A C A G A A A G U]C G

- - - - - -10 - - - - - - - - - - - - - - -10’- - - - - - - - - -

Figure 6.39: Part of the correct alignment of test set (0, 8).

132

6.3. THE SMT PROBLEM

Alignment of sequences

0.Acidianus brierleyi (length = 1492)

1.Halococcus morrhuae (length = 1475)

Sequence 0 has secondary structure

interacts. : 451

helices : 51

Sequence 1 has secondary structure

interacts. : 387

helices : 51

Alignment has value 10847(4655,6192)

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

A U U[C C G G U]U G A[U C C U^G C C G G]A[C C A G A U C G C U]A[U

A U U[C C G G U]U G A[U C C U^G C C G G]A[G G C U A U U G C U]A[U

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

G G G G A U A G]G G C U A A[G C C{A}U G G]G A[G U C{G U}A C G C

C G G G G U C C]G A U U C A[G C C{A}U G C]U A[G U U{G U}A C G]-

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

- - - - - - - - -6’ - - - - - - - - - - - - - - - -7- - - - - - -

U C U C]G G U A A[G A G G G C G U G G C]G G A C G G[C U G]A G U A

- - - G G U U C A G A - C C[C G U A G C]A A A U A G[C U C]C G U A

- - - - - - - - - - - - - -6’ - - - - - - - - - - -7- - - - - - -

- - -8- -9- - - - - - -

A C A[C G U G G U C{A A}C C{U A A}C C U C G G G]A[C U U G{G A U

A C A[C G U G G U C{A A}A C{U A C}C C U C U G G]A[C{C}G G{G A U

- - -8- -9- - - - - - -

- - - - - - - - - - - -9’ - - - - - - - - - - - - - - - - - - -10

A C}C U C C G G]G A A A[C U G G A G{C U A A U C}C A A G]A U A G[G

A U}C C U C G G]G A A A[C U G A G G{U C A A U C}C C{A}G]A U A - -

- - - - - - - - - - - -9’ -

- - - - - - - - - - - - - - - -10’- - - - - - - - - - - - - - -1

C A A A G G A{A}U C]U G G A A C[G A U C C U U U G C]U U A A A G[

- - - - - - - - - C U G - - - C U U U C - - A U G U U G G A A U

- -

Figure 6.40: Part of the conventional alignment of test set (0, 8).

133

CHAPTER 6. THE COMBINATORIAL OPTIMIZATION APPROACH

Alignment of sequences

0.Acidianus brierleyi (length = 1492)

1.Halococcus morrhuae (length = 1475)

Sequence 0 has secondary structure

interacts. : 451

helices : 51

Sequence 1 has secondary structure

interacts. : 416

helices : 51

Alignment has value 11281(4625,6656)

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

A U U[C C G G U]U G A[U C C U^G C C G G]A[C C A G A U C G C U]A[U

A U U[C C G G U]U G A[U C C U^G C C G G]A[G G C U A U U G C U]A[U

- - -1- - - - - - - -2- - - -1’ - - - - -3- - - - - - - - - - -4-

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

G G G G A U A G]G G C U A A[G C C{A}U G G]G A[G U C{G U}A C G C

C G G G G U C C]G A U U C A[G C C{A}U G C]U A[G U U{G U}A C G G

- - - - - - - - - - - - - -5- - - - - - - - -6- - - - - - - - -

- - - - - - - - -6’ - - - - - - - - - - - - - - - -7- - - - - - -

U C U C]G G U A A[G A G G G C G U G G C]G G A C G G[C U G]A G U A

G{U}U C]- - - - A[G A - C C C G U A G C]A A A U A G[C U C]C G U A

- - - - - - - - -6’ - - - - - - - - - - - - - - - -7- - - - - - -

- - -8- -9- - - - - - -

A C A[C G U G G U C{A A}C C{U A A}C C U C G G G]A[C U U G{G A U

A C A[C G U G G U C{A A}A C{U A C}C C U C U G G]A[C{C}G G{G A U

- - -8- -9- - - - - - -

- - - - - - - - - - - -9’ - - - - - - - - - - - - - - - - - - -10

A C}C U C C G G]G A A A[C U G G A G{C U A A U C}C A A G]A U A G[G

A U}C C U C G G]G A A A[C U G A G G{U C A A U C}C C{A}G]A U A C[U

- - - - - - - - - - - -9’ - - - - - - - - - - - - - - - - - - -10

- - - - - - - - - - - - - - - -10’- - - - - - - - - - - - - - -

C A A A G G A{A}U C]U G G A A C[G A U C C U U U - G C]U U A A A

G{C}U U U C A{U}G]- - - - - - - -[U U G G A A{U A}C A]- - - - -

- - - - - - - - - - - - - - - - -10’- - - - - - - - - - - - - -

Figure 6.41: Part of the optimal alignment of test set (0, 8).

134

6.3. THE SMT PROBLEM

140 160 180 200 220 240
Position in Sequence 1

100

150

200

250

Po
si

tio
n

in
 s

eq
ue

nc
e

2
structural alignment
correct alignment
conventional alignment

Figure 6.42: Dot plot displaying the correct, conventional, and optimal alignment of test set

(0, 8).

140 160 180 200 220 240
Position in Sequence 1

100

150

200

250

Po
si

tio
n

in
 s

eq
ue

nc
e

2

correct alignment
input SEAG

Figure 6.43: Dot plot of (mis)matches contained in the input SEAG and the correct alignment

for test set (0, 8).

135

Chapter 7

Discussion

CHAPTER 7. DISCUSSION

In this thesis we present for the first time the application of methods from polyhedral

combinatorics to the field of sequence alignment. We define two general sequence align-

ment problems, the GMT problem and the SMT problem and formulate both problems

in terms of integer linear programs. The investigation of the associated problem poly-

topes leads to the characterization of several classes of facet-defining inequalities for

the polytopes, for most of which we give exact or heuristic separation routines. We

implemented these separation routines with the help of the branch-and-cut framework

ABACUS and show that even this first implementation is able to solve to optimality

problem instances to big for dynamic programming based approaches.

Our approach may have some disadvantages, such as the dependence on a lot of ad-

ditional software or the unpredictable running time of the branch-and-cut algorithm.

However, we think that the strengths of our approach outweigh the disadvantages by

far:

• Various alignment problems can be expressed within the GMT and SMT problem

by simply choosing an appropriate (structural) alignment score.

• The polyhedral approach is new and leaves a lot of room for improvement, while

the dynamic programming based approaches are thoroughly studied and hard too

improve.

• Once a scoring function is chosen, the SEAG and EAG can easily encode re-

strictions on the input. An optimal multiple trace always corresponds to an

alignment that agrees as much as possible with the information encoded in the

extended alignment graph. We give a few examples of how to restrict the set of

alignment edges in the input EAG or SEAG:

– Choose from (sub)optimal pairwise alignments. For example, take all edges

that are realized by alignments that are optimal under a pairwise alignment

score function with gaps (Kececioglu 1993; Reinert et al. 1997). One could

also take edges that are realized by alignments whose score is at most a

certain constant off the optimal alignment score. An edge could be weighted

using a (shifted) mutation score matrix.

– Context dependencies could be encoded. For example, we could consider a

match only significant if it occurs between two additional matches and insert

only edges into the alignment graph that meet this condition. This would

reduce the number of edges in the EAG and make the problem computa-

tionally easier (Wilbur and Lipman 1984).

– Consider a set of diagonals, i.e., a consecutive run of aligned characters.

Insert alignment edges between the aligned pairs of characters of a diagonal

138

and regard them as a block. The weight of a block can be determined by some

probabilistic considerations (Morgenstern et al. 1998). As a subset of all

possible blocks one could consider blocks that can be found in (sub)optimal

pairwise alignments (Lenhof, Morgenstern, and Reinert 1999).

– Consider short local alignments as blocks. Each (mis)match creates an edge

in the EAG. In contrast to choosing diagonals, a block now symbolizes a

possibly gapped local alignment. The weight of a block could again be

determined by probabilistic considerations.

– When structural traces are considered one can also encode restrictions for

the alignment edges similar to the ones mentioned above. But also for the

interaction edges it is straightforward to encode restrictions. For example,

for structured RNA sequences one could require a minimum distance m

between two interacting nucleotides, i.e., j − i ≥ m for an interaction (i, j).

• The solution of each relaxation provides good upper bounds for a problem. These

bounds can be used to evaluate the quality of heuristic methods.

• We extended the GMT formulation in order to handle arbitrary gap costs.

Obviously there are many open questions and new problems that we could not solve

or attack in this thesis. Partially they are of theoretical nature, but there are also

algorithmic problems that could directly be used to improve the performance of the

branch-and-cut algorithm. Below we give a list of interesting open problems.

• In Section 4.3 on page 56 we gave a graph-theoretic formulation for gapped traces.

This formulation can be used to describe multiple sequence alignment with ar-

bitrary gap costs. Below we formally define the Gapped Trace Problem and give

the corresponding ILP. The question is, whether the study of the gapped trace

polytope also leads to practical algorithms for multiple alignment with arbitrary

gap costs.

Gapped Trace Problem:

Given an GEAG G = (V,E,H,A) with weights we (∀e ∈ E) and wg (∀g ∈ A).

Find the gapped trace (T,C), T ⊆ E, C ⊆ A with maximum weight.

Define for each gap edge g ∈ A a binary variable xg and for each alignment

edge e ∈ E a binary variable xe that indicate whether the respective edges are

contained in a gapped trace. Then the following ILP describes the gapped trace

problem. The objective function is

maximize
∑

e∈E
we · xe −

∑

g∈A
wg · xg.

139

CHAPTER 7. DISCUSSION

According to the definition of gapped trace (see Definition 4.3.1 on page 57) we

have to ensure three conditions for a pair (T,C). First the alignment edges in T

must not induce a mixed cycle in G. This is ensured by

∑

e∈P
xe ≤ |P ∩E| − 1, ∀ critical mixed cycles P in G.

The second condition for a gapped trace is that for any pair of sequences a node

must either be incident to an alignment edge or must be enclosed by exactly

one gap edge. This is ensured by inequalities that are defined for any node sj,q,

1 ≤ q ≤ nj, and any sequence Si, i 6= j. We denote the set of all alignment edges

that are incident to sj,q and a node in Si by Ej,q,i. Then the inequality is as

follows: ∑

e∈Ej,q,i
xe +

∑

gi,j,l1,l2∈A
with l1≤q≤l2

xi,j,l1,l2 = 1.

Finally we require that a consecutive run of gap characters is regarded as one

gap rather than the concatenation of two shorter gaps. This is ensured by the

following inequality for 1 ≤ i 6= j ≤ k, 1 ≤ q < nj:

∑

1≤l1≤q
xi,j,l1,q +

∑

q+1≤l2≤nj
xi,j,q+1,l2, ≤ 1.

• Neither for the MT nor for the GMT problem a constant factor approximation is

known. It is also not clear whether it exists at all.

• For the SMT problem, we could not find an efficient way to exactly separate all

extended clique inequalities. Is the general separation problem for this class hard,

or can an efficient algorithm be found?

We hope that our work provides some insight in the beauty and power of polyhedral

combinatorics. Our novel approach may be a first step to establish this optimization

technique in the field of sequence alignment and that our methods and results can

provide a basis for more practical algorithms for (multiple) sequence alignment.

140

Chapter 8

Deutsche Zusammenfassung

CHAPTER 8. DEUTSCHE ZUSAMMENFASSUNG

Die Erforschung funktionaler Zusammenhänge zwischen verschiedenen biologischen

Makromolekülen basiert zu großen Teilen auf Techniken aus dem Gebiet des Sequenz-

vergleiches. Zu den wichtigsten Methoden in diesem Gebiet gehören Algorithmen,

welche zwei oder mehr Sequenzen so alignieren, daß ihre Gemeinsamkeiten und Unter-

schiede zu Tage treten. Ein Alignment von k Sequenzen kann als eine Matrix mit k

Zeilen dargestellt werden. Jede Zeile enthält eine der Sequenzen vermischt mit einem

sogenannten Lücke-Symbol, wobei keine Spalte nur aus Lücke-Symbolen bestehen darf.

Seit Needleman und Wunschs Veröffentlichung (1970) über paarweises Sequenz-

Alignment hat die Anzahl und Vielfalt der verschiedenen Alignment-Methoden

beträchtlich zugenommen. Die Anwendungen sind vielfältig und zum Teil recht un-

terschiedlich. Sie reichen von schnellen Datenbanksuchen (Altschul et al. (1990)) über

Anwendungen in der Sequenzassemblierung (Kececioglu und Myers (1995)) bis hin zur

genauen Analyse verschiedener Proteinfamilien (McClure et al. (1994)).

Trotz der großen Anzahl verschiedener Problemformulierungen beruhen die meisten Al-

gorithmen zum Sequenz-Alignment auf dem Prinzip der dynamischen Programmierung.

Obwohl diese Technik ein oft genutztes und weit verbreitetes Optimierungsverfahren

ist, hat sie im Rahmen des Sequenz-Alignments den Nachteil, daß sie im Allgemeinen

einen Algorithmus liefert, dessen Zeit- und Platzkomplexität exponentiell in der An-

zahl der betrachteten Sequenzen ist. Sogar komplizierte Implementierungen, welche

ausgefeilte Techniken benutzen (Lermen und Reinert (1997), Gupta, Kececioglu und

Schaeffer (1995)) erreichen relativ schnell ihre Grenzen.

In dieser Arbeit untersuchen wir einen neuen Ansatz, um Sequenz-Alignment-Probleme

zu lösen, welcher auf einem Gebiet der kombinatorischen Optimierung basiert, das als

polyhedrische Kombinatorik bekannt ist (Schrijver (1986), Nemhauser et al. (1989)).

Wir zeigen auf, wie man diesen Ansatz benutzen kann, um für gewisse Alignment-

Probleme Algorithmen zu entwickeln, die nicht auf dem Prinzip der dynamischen Pro-

grammierung beruhen. Diese Algorithmen nennt man Branch-and-Cut -Algorithmen

(Jünger, Reinelt und Thienel (1995b)). Sie vereinen Branch-and-Bound -Techniken

mit linearer Programmierung und gehören momentan zu den erfolgreichsten Algorith-

men, um schwierige kombinatorische Probleme zu lösen. Sie wurden bei bekannt

schwierigen Problemen wie dem Linear-Ordering-Problem (Gr̈otschel et al. (1984))

und dem Traveling-Salesman-Problem (Padberg und Rinaldi (1987)) zum ersten Mal

erfolgreich angewandt und gehören inzwischen zu den anerkannten Optimierungstech-

niken in vielen naturwissenschaftlichen und technischen Gebieten (z. B. Christoph et

al. (1997), Jünger und Reinelt (1995a), Applegate et al. (1995); für eine hervorragende

Übersicht siehe auch Kapitel 4 in Dell’Amico et al. (1997)). In dieser Arbeit werden

Branch-and-Cut-Algorithmen zum ersten Mal für Probleme des Sequenz-Alignments

entwickelt.

142

Eine wesentliche Voraussetzung beim Design eines Branch-and-Cut-Algorithmus

besteht darin, das betrachtete Problem als ganzzahliges lineares Programm (GLP)

zu formulieren. Nehmen wir an, daß wir eine solche Formulierung gefunden haben.

Das heißt, daß jede Lösung des Problems durch einen hochdimensionalen (0/1)-Vektor

repräsentiert werden kann, welchen wir als Inzidenz -Vektor bezeichnen. Die konvexe

Hülle aller zulässigen Inzidenz-Vektoren bildet das sogenannte Problempolytop P . Das

Problempolytop ist nicht mit dem Polytop zu verwechseln, welches durch den Schnitt

der Hyperebenen gebildet wird, die als Nebenbedingungen im GLP erscheinen, obwohl

auch dieses Polytop keinen unzulässigen ganzahligen Punkt enthält.

Da das Lösen ganzzahliger, linearer Programme ein NP-schweres Problem ist, relax-

ieren wir das GLP, indem wir z. B. die Ganzzahligkeitsbedingung fallen lassen. Das

dadurch entstehende lineare Programm läßt sich effizient entweder mit dem Simplex-

Algorithmus oder interior-Point -Methoden lösen. Wenn die Lösung x̄ des linearen

Programms ganzzahlig ist, entspricht dies einem Inzidenz-Vektor, der eine optimale

Lösung repräsentiert. Anderenfalls suchen wir eine gültige Hyperebene f mit fx ≤ f0.

Gültig bedeutet hier, daß die Hyperebene f die unzulässige Lösung x̄ vom Polytop

“abschneidet”, ohne eine zulässige Lösung abzuschneiden, d.h. fy ≤ f0 für alle y ∈ P
und fx̄ > f0. Die Menge {x | fx = f0} wird auch Schnittebene (cutting plane) genannt.

Eine Schnittebene wird gefunden, indem man das Separierungsproblem für alle Klassen

von gültigen Ungleichungen löst. Jegliche Schnittebenen, die gefunden werden, werden

zu den Nebenbedingungen des linearen Programms hinzugefügt, worauf das so erwei-

terte lineare Programm wieder gelöst wird. Die Generierung von Schnittebenen wird

wiederholt, bis man entweder eine ganzzahlige (und somit optimale) Lösung erhält oder

bis man keine Schnittebene mehr findet. Falls man keine Schnittebene mehr findet, er-

folgt ein Verzweigungsschritt (branch step). Wir generieren zwei Unterprobleme, indem

wir eine gebrochene Variable des linearen Programms im ersten Unterproblem auf eins

und im zweiten Unterproblem auf null setzen und dann diese Unterprobleme rekursiv

lösen. Durch diese Vorgehensweise erhält man einen Enumerationsbaum von Unter-

problemen. In jedem Knoten dieses Enumerationsbaumes löst der Branch-and-Cut

Algorithmus eine gewisse Anzahl von relaxierten, linearen Programmen, wobei zu je-

dem solchen Programm eine gewisse Anzahl neuer Nebenbedingungen durch das Lösen

des Separierungsproblems hinzukommt. Es zeigt sich, daß problemspezifische Schnitt-

ebenen wesentlich effektiver sind. Insbesondere Schnittebenen, die eine Facette des

Problempolytops bilden, scheinen sehr geeignet, da sie in einer irredundanten Beschrei-

bung des Problempolytops nicht durch andere Ungleichungen dominiert werden. Dies

bedeutet, daß eine möglichst genaue Beschreibung des Poblempolytops unerläßlich für

die Effizienz eines Branch-and-Cut-Algorithmus ist.

Graphen, Traces und multiples Alignment

Wir beschreiben nun die untersuchten Probleme im Detail. Es handelt sich

143

CHAPTER 8. DEUTSCHE ZUSAMMENFASSUNG

zum einen um das Generalized-Maximum-Trace-Problem (GMT), zum anderen um

das Structural-Maximum-Trace-Problem (SMT). Dazu betrachten wir zunächst eine

graphentheoretische Formulierung von multiplem Sequenz-Alignment, eingeführt von

Kececioglu (1991), und zeigen dann, wie wir diese Formulierung so erweitern können,

daß sie die beiden oben genannten Probleme beinhaltet.

Sei S = {S1, S2, . . . , Sk} eine Menge von k Strings über einem Alphabet Σ und

sei Σ̂ = Σ ∪ {−}, wobei “−” (minus) ein Symbol ist, welches “Lücken” in Strings

repräsentiert. Ein Alignment von S ist eine Menge Ŝ = {Ŝ1, Ŝ2, · · · , Ŝk} von Strings

über dem Alphabet Σ̂, mit den folgenden beiden Eigenschaften: (1) die Strings in Ŝ

haben alle die gleiche Länge l, und (2) entfernt man die Minuszeichen, dann ist der

String Ŝi identisch mit dem String Si. Somit kann man ein Alignment der Länge l als

eine Matrix mit k Zeilen und l Spalten interpretieren, wobei die i-te Zeile dem String

Ŝi entspricht. Wir bezeichnen zwei Buchstaben in verschiedenen Strings als aligniert

durch Ŝ, wenn sie sich in der gleichen Spalte der Alignment-Matrix befinden.

Wir können die Positionen der Buchstaben der k Eingabe-Strings auch als die Knoten-

menge V eines k-partiten Graphen G = (V,E) betrachten, den wir den Eingabe-

Alignment-Graph nennen. Dabei repräsentieren die Kanten inE Paare von Buchstaben,

welche in einem Alignment möglicherweise aligniert werden können. Wir nennen eine

Kante inE Alignment-Kante und bezeichnen in einem Alignment eine Alignment-Kante

als realisiert, wenn sich die Endpunkte der Kante in der gleichen Spalte der Alignment-

Matrix befinden. Darüber hinaus bezeichnen wir die Teilmenge von E, die insgesamt

von einem Alignment Ŝ realisiert ist, als den Trace von Ŝ. Der Begriff des Traces von

zwei Strings ist ein grundlegendes Konzept im Bereich des Sequenzvergleiches (siehe

z. B. Sankoff und Kruskal (1983) S. 10–18), der durch Kececioglu (1991) auf multiples

Sequenz-Alignment erweitert wurde. Kececioglu führte auch als erster den Begriff des

Alignment-Graphen ein. Die Beziehung zwischen multiplem Alignment und multipar-

titen Graphen wurde auch von Vingron und Pevzner (1995) betrachtet.

Das Generalized-Maximum-Trace-Problem

Im sogenannten Maximum-Trace-Problem (MT), welches ursprünglich bei der Sequenz-

assemblierung dem Erstellen eines Konsensus-Alignments diente, hat jede Kante im

Alignment-Graph ein positives Gewicht, welches den Nutzen der Realisierung dieser

Kante repäsentiert. Das Ziel besteht darin, ein Alignment zu finden, dessen Trace von

insgesamt maximalem Gewicht ist. Kececioglu (1991) bewies, daß das MT-Problem

NP-vollständig ist und entwickelte einen Branch-and-Bound-Algorithmus, der auf dem

Prinzip der dynamischen Programmierung beruht und eine worst-case Zeitkomplexität

von O(k22kN) und Platzbedarf von O(N) hat, wobei N =
∏
i |Si|. Dieser Algorithmus

kann relativ kleine Probleminstanzen zur Optimalität lösen.

Wir generalisieren das Maximum-Trace-Problem so, daß man die verschiedensten Be-

144

wertungsfunktionen verwenden kann. Im Generalized-Maximum-Trace-Problem er-

lauben wir Mehrfachkanten zwischen zwei Knoten des Alignment-Graphen G, und

partitionieren die Kantenmenge E in eine Menge D von sogenannten Blöcken. Ein

Block ist ein Trace, in dem jede Kante inzident zu Knoten im gleichen Sequenzpaar ist.

Wir nennen einen Block realisiert, wenn alle Kanten in ihm realisiert sind.

Jeder Block d ∈ D hat ein Gewicht wd, welches den Nutzen der Realisierung dieses

Blocks repräsentiert. Das Gewicht eines Alignments ist die Summe der Gewichte der

Blöcke, die es realisiert. Man beachte, daß diese Formulierung die Konstruktion eines

multiplen Alignments aus paarweisen, lokalen Alignments beinhaltet.

Die meisten Bewertungsschemata für Alignments basieren auf der Ähnlichkeit einzel-

ner Paare von Buchstaben (welche für Amino- oder Nukelinsäuren stehen; siehe auch

Dayhoff et al. (1979) oder Henikoff und Henikoff (1992)). Solche Schemata können im

Alignment-Graph modelliert werden, indem wir die Alignment-Kanten in einelementige

Mengen partitionieren, was dem ursprünglichen Maximum-Trace-Problem entspricht.

Im Gegensatz zum MT-Problem kann das GMT-Problem auch allgemeinere Bewer-

tungsschemata modellieren, die auf dem Vergleich ganzer Segmentpaare basieren (siehe

auch Altschul und Erickson (1986), Morgenstern et al. (1998) und Wilbur und Lipmann

(1984)).

In der Formulierung des Problems als ganzzahliges, lineares Programm definieren wir

für jeden Block d in D eine binäre Variable xd, welche anzeigt, ob der Block realisiert

ist (xd = 1) oder nicht (xd = 0). Eine ganzzahlige Lösung ist zulässig, wenn die

Alignment-Kanten der realisierten Blöcke einen Trace darstellen. Das Ziel ist es, eine

zulässige Lösung zu finden, die eine Menge von Blöcken mit insgesamt maximalem

Gewicht realisiert.

Wie weiter oben bemerkt, ist es nun notwendig, das Problempolytop näher zu un-

tersuchen, um einen effizienten Branch-and-Cut-Algorithmus zu erhalten. Im Falle

des GMT-Problems konnten wir verschiedene Klassen von facetten-definierenden Un-

gleichungen identifizieren und für viele dieser Klassen effiziente Separierungsalgorith-

men entwickeln. Im paarweisen Fall zeigen wir, daß die clique-Ungleichungen zusam-

men mit den trivialen Ungleichungen eine vollständige Beschreibung des Problem-

polytops bilden. Zusammen mit einem Polynomzeitseparierungsalgorithmus für die

clique-Ungleichungen impliziert dies die Existenz eines Polynomialzeitalgorithmus für

Sequenz-Alignment, der nicht auf dem Prinzip der dynamischen Programmierung

beruht. Im Falle mehrerer Sequenzen beschreiben wir zwei weitere Klassen von gültigen

Ungleichungen (die mixed cycle-Ungleichungen und die ladder -Ungleichungen) und

zeigen auf, unter welchen Bedingungen sie facetten-definierend sind. Wir beschreiben

eine Datenstruktur, welche wir pairgraph nennen, die eine exponentielle Anzahl

von clique-Ungleichungen in nur polynomiell viel Platz repräsentiert und wie man

145

CHAPTER 8. DEUTSCHE ZUSAMMENFASSUNG

diese Datenstruktur dazu benutzen kann, einen effizienten, exakten Separierungsal-

gorithmus für clique-Ungleichungen zu entwickeln. Zur Separierung der mixed-cycle-

Ungleichungen benutzen wir die graphentheoretische Formulierung selbst, um eine ef-

fiziente Separierungsroutine zu entwerfen. Unsere Implementierung des Branch-and-

Cut-Algorithmus für das GMT-Problem zeigt, daß der Einsatz von Methoden der kom-

binatorischen Optimierung beim Lösen harter Sequenz-Alignment-Probleme zu Algo-

rithmen führt, die vergleichbar oder besser sind als existierende Algorithmen, die auf

dynamischer Programmierung beruhen. So konnten wir z. B. 18 Sequenzen einer Länge

von ≈ 200 optimal alignieren; eine Problemgröße, die nicht durch Algorithmen gelöst

werden kann, die auf dynamischer Programmierung beruhen.

Das Structural-Maximum-Trace-Problem

Das zweite Alignment-Problem, das wir betrachten, ist das Structural-Maximum-

Trace-Problem (SMT). Hier ist das Ziel, ein Alignment zu berechnen, welches si-

multan Sequenz- und Strukturübereinstimmung maximiert. Präziser ausgedrückt, be-

nutzen wir als Bewertungsfunktion eine gewichtete Summe von Bewertungen der Se-

quenzähnlichkeit und Strukturähnlichkeit beider Sequenzen. Strukturähnlichkeit be-

deutet in diesem Kontext die Ähnlichkeit der beiden Sekundärstrukturen der Sequen-

zen, in unseren Beispielen RNA-Sequenzen.

Bafna et al. (1995) schlagen einen Algorithmus mit Laufzeit O(n4) vor, wobei n die

Länge der Sequenzen ist. Diese Laufzeit erlaubt es nicht, reale Beispiele zu betrachten,

in denen man Sequenzen einer Länge von ≈ 1400 untersuchen möchte.

Die Eingabe für das SMT-Problem kann man ebenfalls als Alignment-Graph betrach-

ten, wobei wir für jede Sequenz zusätzlich eine Liste von möglichen Interaktionen oder

Basenpaaren zwischen zwei Buchstaben der Sequenz haben. Eine solche Liste kann z. B.

durch ein Sekundärstruktur-Vorhersage-Programm geliefert werden, oder sie kann alle

möglichen Watson-Crick Basenpaare (A-U or C-G) enthalten.

Ein strukturelles Alignment kann im Unterschied zu einem konventionellen Alignment

nicht nur eine Alignment-Kante realisieren, d.h. zwei Buchstaben der Sequenz ali-

gnieren, sondern es kann auch zwei Interaktionen alignieren, oder anders ausgedrückt,

einen Interaktions-Match realisieren. Dabei bezeichnen wir zwei Interaktionen als

aligniert, wenn die in der Interaktion beteiligten Buchstaben in beiden Sequenzen

miteinander aligniert sind.

In der Formulierung des SMT-Problems als ganzzahliges lineares Programm assoziieren

wir mit jeder Alignment-Kante e in E eine binäre Variable xe, welche angibt, ob die

Kante realisiert ist (xe = 1) oder nicht (xe = 0). Zum gleichen Zweck ordnen wir jedem

Interaktions-Match m eine binäre Variable xm zu. Eine ganzzahlige Lösung ist zulässig,

wenn die realisierten Alignment-Kanten einen Trace bilden und wenn jeder Buchstabe

146

in höchstens einem realisierten Interaktions-Match vorkommt. Jede Alignment-Kante

und jeder Interaktions-Match hat ein Gewicht, welches den Nutzen der Realisierung

dieser Kante beziehungsweise dieses Interaktions-Matches repräsentiert. Das Ziel ist

es, eine zulässige Lösung maximalen Gewichts zu finden.

Bei der näheren Untersuchung des SMT-Polytops zeigt sich, daß die trivialen und

Mixed-Cycle-Ungleichungen im Prinzip die gleichen sind wie beim GMT-Polytop. Wir

konnten drei neue Klassen von gültigen Ungleichungen finden und zeigen, unter welchen

Bedingungen sie facetten-definierend sind: die Extended-Clique-Ungleichungen, die In-

teraktions-Ungleichungen und die Odd-Cycle-Ungleichungen.

Das Studium des SMT-Polytops führte zu einem Branch-and-Cut-Algorithmus zum

strukturellen Alignment zweier RNA-Sequenzen, mit welchem wir Sequenzen einer

Länge von ≈ 1400 nachweislich besser alignieren können als konventionelle Alignment-

Algorithmen. Uns ist kein anderes Verfahren bekannt, welches Sequenzen dieser Länge

optimal strukturell alignieren kann.

Fazit

Als ein Hauptbeitrag unserer Arbeit betrachten wir die Einführung von Methoden der

polyedrischen Kombinierung in das Gebiet des Sequenz-Alignments. Wir definieren

zwei allgemein gehaltene Alignment-Probleme, die leicht adaptiert werden können,

so daß sie zahlreiche Sequenz-Alignment-Probleme beinhalten. Die Formulierung des

SMT- und GMT-Problems als graphentheoretisches Problem erlaubt eine einfache

Kodierung zusätzlicher Restriktionen. So könnte der Alignment-Graph z. B. nur Kan-

ten enthalten, die von der Alignierung zweier Buchstaben in (sub)optimalen Alignments

stammen (Kececioglu (1993), Reinert et al.(1997)), oder aber, er könnte nur Kanten

enthalten, die kontextabhängig sind (Wilbur und Lipmann (1984)).

Basierend auf einer bestehenden Formulierung als ganzahliges, lineares Program können

neue Probleme oft durch das Hinzufügen von Nebenbedingungen oder Variablen leicht

modelliert werden. Bei dynamischer Programmierung hingegen erfordert die Anpassung

einer bestehenden Formulierung, wie z. B. die Erweiterung von konventionellem Align-

ment zu strukturellem Alignment (Bafna et al. (1995)), zumindest eine beträchtliche

Restrukturierung der zugrundeliegenden Rekursionsformel. Beim polyedrischen Ansatz

können große Teile des Programm-Codes, der für das ursprüngliche Problem formuliert

wurde, wiederverwendet werden. So basieren z. B. das GMT- und auch das SMT-

Problem beide auf dem gleichen ganzzahligen, linearen Programm, und Separationsrou-

tinen für Ungleichungen in dieser Formulierung werden in beiden Programmen gleicher-

maßen benutzt. Unser Ansatz hat weiterhin den Vorteil, daß andere Forscher auf den

erreichten theoretischen und praktischen Ergebnissen leicht aufbauen können. Un-

sere ersten Implementierungen der Branch-and-Cut-Algorithmen für das SMT- und

GMT-Problem zeigen, daß eine weitere Untersuchung unseres Ansatzes für Sequenz-

147

CHAPTER 8. DEUTSCHE ZUSAMMENFASSUNG

Alignment vielversprechend erscheint. Wir meinen, daß die vorgestellte Methode noch

reichlich Raum für Verbesserungen bietet, wohingegen traditionelle Methoden, welche

auf dem Prinzip der dynamischen Programmierung beruhen, schon seit langem unter-

sucht werden und deshalb schwierig zu verbessern sind.

Übersicht

In Kapitel 2 definieren wir grundlegende mathematische Begriffe und Notationen. Wir

wiederholen unter anderem fundamentale Sätze aus der polyedrischen Kombinatorik,

der linearen Programmierung und der Theorie der Polyeder. Dieses Kapitel dient

als Referenz für mathematische Notationen, die in der Arbeit ohne weitere Definiton

vorkommen.

In Kapitel 3 führen wir zunächst den Begriff des paarweisen und multiplen Alignments

ein. Wir definieren in einem allgemeinen Rahmen gebräuchliche Bewertungsfunktionen

und erweitern diesen Rahmen so, daß er auch auf strukturelle Alignments angewandt

werden kann. Trotzdem wir uns in unseren Experimenten ausschließlich mit RNA-

Sequenzen beschäftigen, sind unsere Formulierungen so ausgelegt, daß wir jegliche In-

formation verarbeiten können, die auf der Interaktion zweier Buchstaben in der Sequenz

beruht.

In Kapitel 4 definieren wir den Begriff des paarweisen und multiplen Traces. Traces sind

eine elegante Repräsentierung von Sequenzähnlichkeit, obwohl sie gewisse Unterschiede

zu Alignments aufweisen. Wir stellen die Unterschiede und Gemeinsamkeiten von

Traces und Alignments dar und zeigen, wie man viele verschiedene Alignment-Probleme

mit Hilfe gewisser gewichteter Eingabe-Graphen dargestellen kann. Ein Alignment

entspricht dann einem Untergraphen des Eingabegraphens, der gewisse Bedingungen

erfüllt. Somit reduziert sich das Problem, ein optimales Alignment zu berechnen, auf

das Problem, einen Untergraphen maximalen Gewichtes zu finden, der diese Bedingung-

en erfüllt.

In Kapitel 5 definieren wir formal das GMT- und SMT-Problem. Im Anschluß daran

stellen wir in kurzer Form die momentan besten Algorithmen für beide Probleme vor,

die auf dynamischer Programmierung beruhen.

In Kapitel 6 präsentieren wir den von uns gewählten Ansatz. Wir beginnen damit, in

Abschnitt 6.1 die grundlegende Funktionsweise eines Branch-and-Cut-Algorithmus de-

tailiert zu beschreiben. Danach beschreiben wir die problemspezifischen Details zuerst

für das GMT-Problem in Abschnitt 6.2 und dann für das SMT-Problem in Abschnitt

6.3. In jedem der beiden Abschnitte gehen wir wie folgt vor: Zuerst formulieren wir

das Problem als ganzzahliges, lineares Programm in Abschnitt 6.2.1 beziehungsweise

6.3.1. Das ganzzahlige, lineare Programm bildet die Grundlage des von uns gewählten

Ansatzes. Es kann in natürlicher Weise mit einem hochdimensionalen Polytop assozi-

148

iert werden (die konvexe Hülle der Inzidenz-Vektoren aller zulässigen Lösungen). In der

Praxis zeigt sich, daß die facetten-definierenden Ungleichungen des Problempolytops

gute Schnittebenen darstellen. Aus diesem Grund untersuchen wir die Struktur des

Problempolytops näher in Abschnitt 6.2.2 respektive 6.3.2. Das so gewonnene theo-

retische Wissen über das Problempolytop wird in Abschnitt 6.2.3 beziehungsweise 6.3.3

in effiziente Separierungsroutinen umgewandelt. Diese benutzen wir dann in einer Im-

plementierung unseres Algorithmus, deren Resultate wir in den Abschnitten 6.2.4 und

6.3.4 beschreiben. Dabei zeigen wir auf, daß der Einsatz von Methoden der kombi-

natorischen Optimierung für Sequenz-Alignment Probleme zu Algorithmen führt, die

vergleichbar oder sogar besser als vorhandene Algorithmen sind, welche auf dynami-

scher Programmierung beruhen.

In Kapitel 7 diskutieren wir unsere Ergebnisse und zeigen interessante offene Probleme

auf, welche wir im Zuge der Arbeit identifiziert haben.

149

Chapter 9

Glossary

3’-end

The 3’-end of a single DNA strand is named after the orientation of the 3’ and 5’

carbon atoms in the sugar ring at this end of the strand. By convention a DNA

string is read from the 5’-end to the 3’-end.

5’-end

The 5’-end of a single DNA strand is named after the orientation of the 3’ and 5’

carbon atoms in the sugar ring at this end of the strand. By convention a DNA

string is read from the 5’-end to the 3’-end.

adenine

A purine base that pairs with thymine.

anticodon

A nucleotide triplet in a tRNA molecule that aligns with a particular codon in

mRNA under the influence of the ribosome, so that the amino acid carried by the

tRNA is inserted in a growing protein chain.

codon

A section of DNA (three nucleotide pairs) that codes for a single amino acid.

complementary base pair

In double helix DNA ansd intramoleculary folded RNA bases build hydrogen-

bonded pairs. The most favorable ones are adenine-thymine (or uracil) and

cytosine-guanine.

cytosine

A pyrimidine base that pairs with guanine.

CHAPTER 9. GLOSSARY

gene

The fundamental physical and functional unit of heredity that carries information

from one generation to the next; a segment of DNA, composed of a transcribed

region and a regulatory sequence that make transcription possible.

guanine

A purine base that pairs with cytosine.

hydrogen bond

A weak bond involving the sharing of an electron with a hydrogen atom; hydrogen

bonds are important in the specifity of base pairing in nucleic acids and the

determination of protein shape.

inosine

A rare base that is important at the wobble position of some tRNA anticodons.

mRNA (messenger RNA)

An RNA molecule transcribed from the DNA of a gene, from which a protein is

translated by the actions of ribosomes.

phylogenetic tree

A rooted tree that depicts the anchestral relationship of species. The vertices

correpond to species. The children of a vertex represent direct descendents of

that vertex whereas that vertex is the direct ancestor of its children. Two leaves

that have a common ancestor near the root are assumed to have diverged earlier

in evolutionary history than two leaves that have a common ancestor far from

the root. The edges of the tree may be weighted to measure the evolutionary

distance.

promoter

A regulator region at a short distance from the 5’-end of a gene that acts as the

binding site for RNA polymerase.

pseudoknot

RNA molecules fold intramolecularly and form hydrogen-bonded base pairs. This

secondary structure occurs normally such that it can be depicted as a planar

graph. Base pairs that destroy the planarity are called pseudoknots.

purine

A type of nitrogen base; the purine bases in DNA are adenine and guanine.

pyrimidine

A type of nitrogen base; the pyrimidine bases in DNA are cytosine and thymine;

in RNA uracil instead of thymine.

152

RNA

Ribo Nucleic Acid. A generally single-stranded nucleic acid similar to DNA but

having ribose sugar rather than deoxyribose sugar and uracil rather than thymine

as one of the bases.

RNA polymerase

An enzyme that catalyzes the synthesis of an RNA strand from a DNA template.

In eukaryotes, there are several classes of RNA polymerase. Structural genes for

proteins are transcribed by RNA polymerase II.

ribosome

A complex organelle that catalyzes translation of messenger RNA into amino acid

sequence. Composed of proteins and ribosomal RNA (rRNA).

template

A molecular “mold” that shapes the structure or sequence of another molecule;

for example, the nucleotide sequence of DNA acts as a template to control the

nucleotide sequence of RNA during transcription.

thymine

A pyrimidine base that pairs with adenine.

transcription

The synthesis of RNA using a DNA template.

translation

The ribosome-mediated production of a polypeptide whose amino acid sequence

is derived from the codon sequence of an mRNA molecule.

tRNA

A class of small RNA molecules that bear specific amino acids to the ribosome

during translation; the amino acid is inserted into the growing polypeptide chain

when the anti-codon of the tRNA pairs with a codon on the mRNA being trans-

lated.

uracil

A pyrimidine that appears in RNA in place of thymine found in DNA.

Watson-Crick

J.D. Watson and Crick first showed the hydrogen bonded structure of DNA. The

two most common base pairs A-U and C-G are therefore commonly referred to as

Watson-Crick pairs.

153

Bibliography

Altschul, S. 1989. Gap costs for multiple sequence alignment. Journal of Theoretical

Biology 138, 297–309.

Altschul, S., Carroll, R., and Lipman, D. 1989. Weights of data related by a tree.

Journal of Molecular Biology 207, 647–653.

Altschul, S., and Erickson, B. 1986. Locally optimal subalignments using nonlinear

similarity functions. Bulletin Mathematical Biology 48, 633–660.

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. 1990. A basic local

alignment search tool. Journal of Molecular Biology 215, 403–410.

Altschul, S., and Lipman, D. 1989. Tree, stars, and multiple biological sequence

alignment. SIAM Journal Applied Mathematics 49(1), 179–209.

Applegate, D., Bixby, R., Chvátal, V., and Cook, B. 1995. Finding cuts in the

TSP. DIMACS Technical Report 95-05, DIMACS.

Bafna, V., Lawler, E. L., and Pevzner, P. A. 1994. Approximation algorithms

for multiple sequence alignment. In: Proceedings Fifth Annual Symposium on

Combinatorial Pattern Matching (CPM-94), 43–54.

Bafna, V., Muthukrishnan, S., and Ravi, R. 1995. Computing similarity between

RNA strings. In: Z. Galil, and E. Ukkonen, eds., Proceedings of the Sixth

Annual Symposium on Combinatorial Pattern Matching (CPM-95), no. 937 in

Lecture Notes in Computer Science, 1–16, Springer, Berlin.

Bairoch, A., and Apweiler, R. 1999. The swiss-prot protein sequence data bank

and its supplement TrEMBL in 1999. Nucleic Acids Research 27, 49–54.

Benner, S., Cohen, M., and Gonnet, G. 1993. Empirical and structural models

for insertions and deletions in the divergent evolution of proteins. Journal of

Molecular Biology 220, 1065–1082.

Beyer, W., Stein, M., Smith, T., and Ulam, S. 1974. A molecular sequence metric

and evolutionary trees. Mathematical Biosciences 19, 9–25.

BIBLIOGRAPHY

Carrillo, H., and Lipman, D. J. 1988. The multiple sequence alignment problem in

biology. SIAM Journal on Applied Mathematics 48(5), 1073–1082.

Christof, T., Jünger, M., Kececioglu, J., Mutzel, P., and Reinelt, G. 1997. A

branch-and-cut approach to physical mapping with end-probes. In: Proceed-

ings of the First Annual International Conference on Computational Molecular

Biology (RECOMB-97), 84–93, ACM Press, Santa Fe.

Chvátal, V. 1983. Linear Programming . A Series of Books in the Mathematical

Sciences, Freeman, New York.

Cook, W., Cunningham, W., Pulleyblank, W., and Schrijver, A. 1998. Combi-

natorial Optimization. Wiley-Interscience Series in Discrete Mathematics and

Optimization, John Wiley & Sons.

Corpet, F., and Michot, B. 1994. RNAlign program: alignment of RNA sequences

using both primary and secondary structures. CABIOS 10(4), 389–399.

Dayhoff, M., Schwartz, R., and Orcut, B. 1979. A model of evolutionary change in

proteins. In: M. Dayhoff, ed., Atlas of Protein Sequence and Structure, vol. 5,

345–352, National Biomedical Research Foundation, Washington, D.C.

de Rijk, P., de Peer, Y. V., Chapelle, S., and de Wachter, R. 1994. Database on

the structure of the small ribosomal subunit RNA. Nucleic Acids Research 22,

3495–3501.

Dell’Amico, M., Maffioli, F., and Martello, S., eds. 1997. Annotated bibliographies

in combinatorial optimization. Wiley-interscience series in discrete mathemat-

ics and optimization, John Wiley & Sons, Chichester.

Eddy, S., and Durbin, R. 1994. RNA sequence analysis using covariance models.

Nucleic Acids Research 22(11), 2079–2088.

Fitch, W. 1966. An improved method of testing for evolutionary homology. Journal

of Molecular Biology 16, 9–16.

Garey, M., and Johnson, D. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman.

Gomory, R. 1958. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society 64, 275–278.

Gonnet, G., Cohen, M., and Benner, S. 1992. Exhaustive matching of the entire

protein sequence database. Science 256, 1443–1445.

Gorodkin, J., Heyer, L., and Stormo, G. 1997. Finding the most significant com-

mon sequence and structure motifs in a set of RNA sequences. Nucleic Acids

Research 25, 3724–3732.

156

BIBLIOGRAPHY

Gotoh, O. 1982. An improved algorithm for matching biological sequences. Journal

of Molecular Biology 162, 705–708.

Grantham, R. 1974. Amino acid difference formula to help explain protein evolu-

tion. Science 185, 862–864.

Grötschel, M., Jünger, M., and Reinelt, G. 1984. A cutting plane algorithm for

the linear ordering problem. Operations Research 32, 1195–1220.

Grötschel, M., Lovász, L., and Schrijver, A. 1981. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica 1, 169–197.

Grötschel, M., and Padberg, M. 1985. Polyhedral theory. In: E. Lawler, J. Lenstra,

and A. R. Kan, eds., The Traveling Salesman Problem: A Guided Tour of

Combinatorial Optimization, Wiley Interscience, Chichester.

Gupta, S., Kececioglu, J., and Schaeffer, A. 1995. Improving the practical space

and time efficiency of the shortest-paths approach to sum-of-pairs multiple

sequence alignment. Journal Computational Biology 2, 459–472.

Hammer, P., Johnson, E., and Peled, U. 1975. Facets of regular 0-1-polytopes.

Mathematical Programming 8, 179–206.

Henikoff, S., and Henikoff, J. 1992. Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Science 89, 10915–10919.

Hoffmann, A. 1974. A generalization of max flow-min cut. Mathematical Program-

ming 6, 352–359.

Isaacson, W. 1999. The biotech century. Time 153(1), 42–43.

Jones, D., Taylor, W., and Thornton, M. 1992. The rapid generation of mutation

data matrices from proteins sequences. CABIOS 8, 275–282.

Jünger, M., Reinelt, G., and Rinaldi, G. 1995a. The traveling salesman problem.

In: M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, eds., Handbook

on Operations Research and Management Science, 225–330, Elsevier, North

Holland.

Jünger, M., Reinelt, G., and Thienel, S. 1995b. Practical problem solving with cut-

ting plane algorithms in combinatorial optimization. In: W. Cook, L. Lovász,

and P. Seymour, eds., Combinatorial Optimization: Papers from the DIMACS

Special Year , no. 20 in DIMACS Series in Discrete Mathematics and Theoret-

ical Computer Science, 111–152, AMS, Providence, RI.

Jünger, M., and Thienel, S. 1997. The design of the branch and cut system ABA-

CUS. Tech. Rep. 97.260, Institut für Informatik, Universität zu Köln.

Karp, R., and Papadimitriou, C. 1980. On linear characterizations of combinatorial

optimization problems. In: Proceedings of the 21st Annual Symposium on the

157

BIBLIOGRAPHY

Foundations of Computer Science (FOCS 80), 1–9.

Kececioglu, J. 1991. Exact and approximation algorithms for DNA sequence recon-

struction. Ph.D. thesis, University of Arizona.

Kececioglu, J. 1993. The maximum weight trace problem in multiple sequence

alignment. In: Proceedings of the 4th Symposium on Combinatorial Pattern

Matching (CPM 93), no. 684 in Lecture Notes in Computer Science, 106–119,

Springer.

Kececioglu, J. 1998. Personal communication.

Kececioglu, J. 1999. Personal communication.

Kececioglu, J., and Zang, W. 1998. Aligning alignments. In: Proceedings of the 9th

Annual Symposium on Combinatorial Mattern Matching (CPM-98), no. 1448

in Lecture Notes in Computer Science, 189–208.

Kececioglu, J. D., and Myers, E. W. 1995. Combinatorial algorithms for DNA

sequence assembly. Algorithmica (13), 7–51.

Lenhof, H.-P., Morgenstern, B., and Reinert, K. 1999. An exact solution for the

segment-to-segment multiple sequence alignment problem. BIOINFORMAT-

ICS 15(3), 203–210.

Lenhof, H.-P., Reinert, K., and Vingron, M. 1998. A polyhedral approach to RNA

sequence structure alignment. In: Proceedings of the Second Annual Interna-

tional Conference on Computational Molecular Biology (RECOMB-98), 153–

162, ACM Press, New York.

Lermen, M., and Reinert, K. 1997. The practical use of the A∗ algorithm for exact

multiple sequence alignment. Research Report MPI-I-97-1-028, Max-Planck-

Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany.

Levitt, M. 1969. Detailed molecular model for transfer ribonucleic acid. Nature

224, 759–763.

McClure, M., Vasi, T. K., and Fitch, W. M. 1994. Comparative analysis of multiple

protein-sequence alignment methods. Mol. Biol. Evol. 4(11), 571–592.

Mehlhorn, K., and Näher, S. 1995. LEDA, a platform for combinatorial and geo-

metric computing. Communications of the ACM 38(1), 96–102.

Morgenstern, B., Atchley, W., Hahn, K., and Dress, A. 1998. Segment-based scores

for pairwise and multiple sequence alignments. In: J. Glasgow, T. Littlejohn,

F. Major, R. Lathrop, D. Sankoff, and C. Sensen, eds., Proceedings of the Sixth

International Conference on Intelligent Systems for Molecular Biology (ISMB-

98), (in press), 115–121, AAAI Press.

158

BIBLIOGRAPHY

Morgenstern, B., Dress, A., and Werner, T. 1996. Multiple DNA and protein

sequence alignment based on segment-to-segment comparison. In: Proceedings

of the National Academy of Science, no. 93, 12098–12103.

Needleman, S., and Wunsch, C. 1970. A general method applicable to the search

for similarities in the amino-acid sequence of two proteins. Journal Molecular

Biology 48, 443–453.

Nemhauser, G., Kan, A. R., and Todd, M., eds. 1989. Optimization, vol. 1 of

Handbooks in Operations Research and Management Science. North-Holland,

Amsterdam.

Nemhauser, G., and Trotter, L. 1973. Properties of vertex packing and indepen-

dence system polyhedra. Mathematical Programming 6, 48–61.

Niefind, K., and Schomburg, D. 1991. Amino acids similarity coefficients for pro-

tein modeling and sequence alignment derived from main-chain folding angles.

Journal of Molecular Biology 219, 481–497.

Notredame, C., O’Brien, E., and Higgins, D. 1997. RAGA: RNA sequence align-

ment by genetic algorithm. Nucleic Acids Research 25, 4570–4580.

Padberg, M., and Rao, M. 1981. The Russian method for linear inequalities III:

Bounded integer programming. GBA Working Paper 81–39, New York Univer-

sity.

Padberg, M. W., and Rinaldi, G. 1987. Optimization of a 532 city symmetric

traveling salesman problem by branch and cut. Operations Research Letters 6,

1–7.

Pevzner, P. A., and Waterman, M. S. 1993. Generalized sequence alignment and

duality. Advances in Applied Mathematics 14, 139–171.

Pulleyblank, W. 1989. Polyhedral combinatorics. In: G. Nemhauser, A. R. Kan,

and M. Todd, eds., Handbooks in Operations Research and Management Sci-

ence, North Holland, Amsterdam.

Reinert, K., Lenhof, H.-P., Mutzel, P., Mehlhorn, K., and Kececioglu, J. 1997. A

branch-and-cut algorithm for multiple sequence alignment. In: Proceedings of

the First Annual International Conference on Computational Molecular Biology

(RECOMB-97), 241–249, ACM Press, Santa Fe, NM.

Risler, J., Delorme, M., Delacroix, H., and Henaut, A. 1988. Amino acid substitu-

tions in structurally related proteins. A pattern recognition matrix. Journal of

Molecular Biology 204, 1019–1029.

Sankoff, D. 1985. Simultaneous solution of the RNA folding, alignment and pro-

tosequence problems. SIAM Journal on Applied Mathematics 45(5), 810–825.

159

BIBLIOGRAPHY

Sankoff, D., and Kruskal, J. 1983. Time Warps, String Edits and Macromolecules:

the Theory and Practice of Sequence Comparison. Addison-Wesley.

Schrijver, A. 1986. Theory of Linear and Integer Programming . Wiley-interscience

series in discrete mathematics and optimization, Wiley, Chichester.

Schwikowski, B. 1998. A new algorithmic approach to the construction of multiple

alignments and evolutionary trees. Ph.D. thesis, Universität Bonn.

Stoesser, G., Moseley, M., Sleep, J., McGowran, M., Garcia-Pastor, M., and Stark,

P. 1998. The EMBL nucleotide sequence database. Nucleic Acids Research

26(1), 8–15.

Tsukiyama, S., Ide, M., Ariyoshi, H., and Shirawaka, I. 1977. A new algorithm for

generating all the maximal independent sets. SIAM Journal on Computing 6,

505–517.

Vingron, M., and Pevzner, P. 1995. Multiple sequence comparison and consistency

on multipartite graphs. Advances in Applied Mathematics 16, 1–22.

Waterman, M. 1989. Consensus methods for folding single-stranded nucleic acids.

In: Mathematical Methods for DNA Sequences, 185–224, CRC Press.

Wilbur, W., and Lipman, D. 1984. The context dependent comparison of biological

sequences. SIAM Journal on Applied Mathematics 44(3), 557–567.

160

Index

Symbols

(0/1)-integer linear program 23

A(S1, S2) . 31

As((S1, P1), . . . , (Sk, Pk))42

Dn . 19

G[E′] . 18

G[V ′] . 18

Kn . 18

Kp,q . 18

ε . 28

gaps . 41

A2 . 31

A2(S1, S2) . 31

Aks .42

Aks((S1, P1), . . . , (Sk, Pk)) 42

T ks (G) . 55

T ks .55

3’-end . 151

5’-end . 151

A

active node . 76

adenine . 151

adjacent . 18, 19

aff(S) . 20

aligned character 31

alignment

multiple . 35, 41

pairwise . 30

structural. .41

alignment graph . 46

extended . 51

alignment score

optimal . 31, 35

optimal structural 43

annotation . 41

anticodon. .151
arank(S) . 20
arc . 19

B
base pair . 38

complementary 38, 151
basis .26
block. .34, 50
branch-and-cut . 68
branching variable 76
bulge . 39

C
chord . 85
circuit . 27
clique

extended . 106
contributing 106
redundant 106

in a graph . 18
in an independence system.27

codon . 2, 151
coefficient

quality . 119
suboptimality 119

combination
affine . 20
conic . 20
convex. .20
linear . 20

cone(S) . 20
conflict

of alignment edge and interaction
match . 106

of interactions 41
connected components 19

INDEX

consensus
character . 37
function . 37

conv(S). .20
cover . 84
cutting plane . 8, 69

general purpose 71
Gomory . 71

cycle. .18
mixed . 19
odd . 108

cytosine . 151

D
deletion. .31
dependent

affinely . 20
linearly . 20

dicycle . 19
digraph

complete . 19
strongly connected. 19
strongly connected components . 19

dim(S) . 20
dimension . 20
dipath . 19
distance score. 32
dual problem . 23
duality theory . 22

E
edge

adjacent . 18
alignment . 46
connecting. 55
gap . 56
interaction. .54

extended alignment graph
gapped . 56
structural. .54

F
face. .21
facet . 21
feasible . 22

full-dimensional . 20

G
gap . 33

cost of . 33
length of . 33

gap cost
additive . 33
affine . 34
concave. 34
function . 33
homogeneous 33
linear . 33

gene . 2, 152
generated subsystem 27
global lower bound.73
graph

bipartite . 18
complete . 18
complete bipartite 18
connected . 18
connected components 19
directed . 19
mixed . 19
undirected . 18

groundset . 25
guanine. .152

H
halfspace . 21
helix . 39
hull

affine . 20
conic . 20
convex. .20
linear . 20

hydrogen bond . 152

I
incidence vector . 25
incident. .18

from. 19
to . 19

indel . 31
independence system.26

162

INDEX

independent
affinely . 20
linearly . 20

inequality
clique. .79
ILP . 70
interaction . 103
odd cycle . 108
trivial . 11
valid. .21

infeasible . 22
inosine . 152
insertion . 31
integer linear program 23
integer linear programming problem 23
integral

polytope. 24
totally dual 24, 84

interaction . 39, 41
aligned. .13, 42
edge

conflict of . 54
enclosure . 40
match . 55
matched . 13, 42
nested . 40

interior loop . 39

J
join . 18

K
k-regular . 27

L
lifting. .27
lin(S) .20
linear algebra . 20
linear program. 22
linear programming 22
linking chain. .112
loop

bulge . 39
interior . 39

LP-relaxation . 23

M
match . 31

interaction. .55
metric . 32
mismatch . 31
mixed cycle . 19

critical . 51
length . 19
size of . 19

mixed graph
strongly connected. 19
strongly connected components . 20

mixed path . 19
length of . 19
size of . 19

mRNA . 152
multigraph . 20
mutation score

function . 31
matrix. 32

N
node

active . 76
adjacent . 18
enclosed . 56
essential . 79

O
objective function. 22
optimal solution . 22

P
pairgraph . 79

sparse . 80
path . 18, 19

equivalent . 89
phylogenetic tree 152
point mutation . 33
polyhedral combinatorics 25
polyhedral theory 21
polyhedron . 21
polytope . 21

integral . 24
rational. .24

163

INDEX

SMT . 103
primal problem . 23
problem polytope 25
projection . 35
promoter . 152
pseudoknot . 152
purine . 152
pyrimidine . 152

Q
quadrangle inequality 34

R
rank . 20, 27

affine . 20
rank(S) . 20
relaxations. .69
ribosome . 3, 153
RNA . 153

messenger . 152
transfer . 153

RNA polymerase 153

S
score

(weighted) sum of pairs 36
consensus. 37
distance . 32
interaction. .43
similarity . 32

score function
alignment 31, 35
block . 34
block similarity 34
gapped trace 57
structural alignment 43
structural trace 55
trace . 48, 53

SEAG . 54
secondary structure 39
separation . 69

exact . 69
heuristic . 70
problem . 69

general . 69

separation problem 26
sequence . 28

annotated . 41

concatenaction 28
consensus. 37

empty . 28

infix . 28
length . 28

prefix. 28

reverse . 28
structured . 41

suffix . 28

set
dependent . 26

feasible . 25

independent . 26
similarity score . 32

simplex method. 23

SMT problem. .61
source . 19

stem. 39
strand . 39

string . 28

strongly connected components. .19, 20
structure

secondary 39, 41

subadditive . 33
subdigraph . 19

arc-induced . 19

node-induced 19
subgraph . 18

edge-induced 18

node-induced 18
substitution. .31

support . 78

T

tailing off . 75

target . 19
template. .153

thymine . 153

totally unimodular 24
trace

gapped . 57

164

INDEX

multiple . 53
pairwise . 47
structural. .54

trace score
optimal . 53
optimal gapped 57
optimal structural 55

transcription . 153
translation. .153
tree

evolutionary . 36
phylogenetic . 36

triangle property.32
tRNA. 40, 153

U
upper bound

global . 73
local . 72, 73

uracil . 153

V
variable

alignment . 102
branching . 73
fixing . 75
interaction match.102
setting. .75

vertex . 21

W
Watson-Crick . 153
weighted edit distance 32

Z
zero lifting see lifting
zero property . 32

165

