
Formal Methods for Real-Time

Requirements Engineering

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

von

Georg Rock

Saarbrücken, Januar 2004

Kolloquium 30. Januar 2004
Vorsitz Prof. Dr. Harald Ganzinger, Max-Planck-Institut für Informatik
Gutachter Prof. Dr. (PhD) Jörg Siekmann, Universität des Saarlandes

Priv.-Doz. Dr. Werner Stephan, Universität des Saarlandes
Prof. Dr. Wolfgang Reisig, Humboldt-Universität zu Berlin

Dekan Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes

Contents

Acknowledgements ix

Abstract xi

Kurzzusammenfassung xiii

Extended Abstract xv

Zusammenfassung xvii

1. Introduction 1

2. Real-Time 7

2.1 Real-Time . 7

2.2 Specification of Real-Time . 8

2.2.1 Temporal Logic as Basis . 9

2.2.2 Expressing Timing Constraints 10

2.2.3 Real-Time Logics . 12

2.3 Models of Time . 13

2.3.1 Basics . 14

2.3.2 Relations between Basic Time Elements 14

2.3.3 Time Model Used . 16

3. Gasburner Scenario 19

3.1 An Abstract Version . 20

4. Formal Methods 23

4.1 TLA - Temporal Logic of Actions 23

4.1.1 Fundamentals of TLA . 23

4.1.2 Enabled Predicate . 29

ii CONTENTS

4.1.3 Fairness . 30

4.1.4 Further Definitions . 30

4.1.5 Real-Time in TLA . 32

4.1.6 Proofs in TLA . 34

4.2 VSE-II - Verification Support Environment 37

4.2.1 Introduction . 37

4.2.2 Abstract Data Types . 38

4.2.3 Concurrent System Specifications 40

4.2.4 Assumption Guarantee Specifications 42

4.2.5 Structured Deduction . 43

4.2.6 A Simple Real-Time Example in VSE-II 43

4.2.7 The Gasburner in VSE-II 54

4.2.8 A more Complex Real-Time Example in VSE-II 60

4.3 Hybrid Automata . 71

4.3.1 Syntax . 71

4.3.2 Semantics . 73

4.3.3 Property Specifications . 77

4.3.4 Example Proof with Hybrid Automata 79

5. Integration of Hybrid Automata and VSE-II 83

5.1 Translating Hybrid Automata to VSE-II 85

5.1.1 Translation Function . 85

5.2 Main Theorem . 96

5.2.1 Discretisation . 96

5.2.2 Granularity Change . 104

5.3 Nested Temporal Operators . 118

5.3.1 Leads-to Properties . 119

5.3.2 A more general Approach 122

5.3.3 Invariants . 122

5.3.4 Generalisation . 123

6. Observer Methodology 125

6.1 Observer Models for Real-Time Properties 126

6.2 A General Specification Scheme for Observer Models 128

6.3 Gasburner as Real-Time Observation 130

6.3.1 Underlying Datatypes . 131

6.3.2 Scheduling . 132

CONTENTS iii

6.3.3 Environment . 133

6.3.4 Controller . 134

6.3.5 Observer . 136

6.3.6 The Gasburner as VSE-II Specification 141

6.3.7 The Behaviour of the Real Gasburner 142

6.3.8 Handling of the Constant c 142

6.3.9 Refinement Proof . 143

6.3.10 Summary . 144

6.4 Storm Surge Barrier . 145

7. Other Methods 147

7.1 Duration Calculus . 147

7.1.1 Syntax of the Duration Calculus 148

7.1.2 Semantics of the Duration Calculus 148

7.1.3 The Gasburner Example in the Duration Calculus 152

7.2 Timed CSP . 155

7.2.1 Introduction to Timed CSP 155

7.3 Automata . 165

7.3.1 Timed Automata . 165

7.3.2 UPPAAL Timed Automata 168

8. Conclusion and Future Work 173

A. Specification of the SVKO 177

B. Real-Time in TLA and VSE-II 203

B.1 Lossy Queue . 203

B.1.1 Non-lossy Version . 206

B.1.2 Reasoning about Time . 211

B.1.3 The Lossy Queue in VSE-II 211

B.1.4 The Non–Lossy Real-time Version of the Queue in VSE-II . 213

B.2 Specification of the Lossy and the Timed Queue 217

C. VSE-II Proof Rules 225

C.1 Basic Rules . 225

C.1.1 Axiom . 225

C.1.2 2 Rules . 225

C.1.3 3 Rules . 226

iv CONTENTS

C.1.4 U Rules . 226

C.1.5 Step Rule . 226

C.1.6 Induction Rule . 227

C.1.7 Quantifiers . 227

C.2 Definitions . 227

C.2.1 Mapping into Next State . 227

C.2.2 Filters selecting Invariant Formulae 228

C.2.3 Progress Conditions . 230

Bibliography 231

Index 241

List of Figures

1. Introduction . 1

2. Real-Time . 7

3. Gasburner Scenario . 19

3.1 Gasburner . 19

4. Formal Methods . 23

4.1 Syntactical structure of TLA . 24

4.2 Freely Generated Data Types . 39

4.3 Development Graph . 44

4.4 Func Theory . 45

4.5 TLSPEC System . 45

4.6 TLSPEC Safety . 46

4.7 Proof of the Safety Property . 47

4.8 Proof Structure . 48

4.9 Development Graph: Concurrent Version 49

4.10 CompSys Specification . 49

4.11 Proof of export-axiom1 . 51

4.12 Proof Structure . 52

4.13 Development Draph of the Gasburner Specification 54

4.14 Proof Tree of the Gasburner Scenario 59

4.15 The gates of the ECS . 61

4.16 The Complete Scenario . 62

4.17 A possible Behaviour of a Real-Time System 65

4.18 The VSE-II Development Graph of the ECS 68

4.19 Gasburner as Hybrid Automaton 72

4.20 Gasburner as HyTech Specification 80

5. Integration of Hybrid Automata and VSE-II 83

5.1 Relation: VSE-II- Hybrid Automata- Specification 85

5.2 Non-Normalised Hybrid Automaton 92

5.3 Normalised Hybrid Automaton . 92

vi LIST OF FIGURES

5.4 Graphical Representation: Hybrid Automaton 93

5.5 Leaking Gas Burner as (δ) Discretised (Hybrid) Automaton 97

5.6 Discretised and Granularity Changed Leaking Gas Burner 105

5.7 Simple Hybrid Automaton . 118

5.8 Copied hybrid automaton . 120

6. Observer Methodology . 125

6.1 Observer Models . 127

6.2 General Scenario (Observer Model Instantiated) 129

6.3 Development Graph of the Real Gasburner 130

6.4 Theories Defining the Underlying Datatypes 131

6.5 Scheduling . 132

6.6 A Scheduling Alternative . 132

6.7 Specification of the Environment 133

6.8 Specification of the Controller . 135

6.9 Refinement Relation . 137

6.10 Specification of the Observer (part 1) 138

6.11 Specification of the Observer (part 2) 139

6.12 Gasburner Hybrid Automaton . 141

6.13 Example Behaviour with Refinement Mapping 143

6.14 Hybrid Automaton for the Timer 145

6.15 Hybrid Automaton for Environment 145

6.16 Hybrid Automaton for Open Close Signal 146

7. Other Methods . 147

7.1 Stimulus Response Automaton . 168

8. Conclusion and Future Work . 173

A. Specification of the SVKO . 177

B. Real-Time in TLA and VSE-II . 203

B.1 Lossy Queue . 203

B.2 TLA Specification of the Lossy Queue 205

B.3 TLA Specification of the Non-Lossy Queue 208

B.4 Example Behaviour of the Timed Queue 209

B.5 Specification of the Lossy Queue in VSE-II 212

B.6 Specification of Time. 213

B.7 Specification of the Naturals with an Infinity Element. 214

B.8 Specification of the Timed Queue (1) 215

B.9 Specification of the Timed Queue (2). 216

B.10 Combined Specification of Time and the Timed Queue 218

LIST OF FIGURES vii

B.11 Refinement Mapping . 218

C. VSE-II Proof Rules . 225

viii LIST OF FIGURES

Acknowledgements

In the first place I want to thank my supervisors Werner Stephan and Andreas
Nonnengart. Without their constant support, strong encouragement and patience
this work would not have been possible. I had the pleasure to work with them
for many years now and they guided me through the maze of science. The many
fruitful discussions we had turned out to be a source of ideas that never seems to
run dry.

I am also indebted to Jörg Siekmann for his confidence and outstanding support
in writing this thesis. He gave me the opportunity to work in such a well known
and excellent research group at DFKI. I also want to thank all the members of
the group providing such a fruitful research environment. Special thanks to Bruno
Langenstein for so many interesting discussions and helpful comments.

I also want to thank Wolfgang Reisig for his instant commitment to become
one of the referees and for many helpful comments.

I benefited from the comments and help of many people and it seems impossible
to list them without forgetting the one or the other. I thank them all and want
them to know that I highly appreciate their accompany.

Last but not least I want to thank Monika for her encouragement and patience
and in particular my parents and my sister who made it at all possible for me to
study computer science. Words cannot express my thankfulness.

Saarbrücken, January 2004 Georg Rock

x ACKNOWLEDGEMENTS

Abstract

Timed model checking turned out to be a very successful technique for the verifi-
cation of real-time systems. In general, however, large-scale systems require more
than a mere real-time perspective: They utilise, for example, Abstract Data Types
and Fairness Aspects. VSE-II (Verification Support Environment) is a general tool
which supports the design and the verification process of such large-scale systems.

The basic machinery within VSE-II is theorem proving rather than model check-
ing and one of its underlying formalisms is close to TLA (Temporal Logic of Ac-
tions), i.e. it is based on linear discrete time.

In this thesis we develop a technique to perform an exact discretisation of dense
real-time aspects, i.e. a discretisation that is not just an approximation but rather
mirrors dense behaviour exactly. This discretisation is achieved without an explicit
or implicit introduction of rational numbers.

With the help of the exact discretisation we define an embedding of Hybrid Au-
tomata into VSE-II such that model checking strategies for Hybrid Automata can
be used in VSE-II. Vice versa, the embedding allows the model checking strategies
to benefit from the proof work done in VSE-II.

This thesis introduces a general methodology for formal requirements analysis,
namely observer models, that deals with particular perspectives on a system rather
than with particular aspects of it. This way, different specialised approaches can
be integrated and used to describe the overall system requirements. One such view,
for example, is a real-time view which uses a new discretisation technique.

xii Abstract

Kurzzusammenfassung

In der Verifikation von Realzeit-Systemen haben sich Model-Checking Verfahren
bewährt. Im Allgemeinen kann man jedoch sagen, dass große industrielle Anwen-
dungen nicht nur die Realzeit Dimension aufweisen. Sie bestehen vielmehr aus einer
Vielzahl weiterer Dimensionen (Sichten) wie eine Informationsflusssicht oder eine
Security-Sicht. Zur Spezifikation dieser Sichten werden beispielsweise Abstrakte
Datentypen oder auch Fairness Aspekte verwendet. VSE-II (Verification Support
Environment) ist ein Werkzeug, welches den formalen Entwicklungsprozess vom
Design bis hin zur Verifikation solcher Anwendungen unterstützt.

Der Kern des VSE-II Werkzeugs ist ein interaktives Beweissystem, das auf einem
Sequenzenkalkül basiert, der neben der Logik erster Stufe und Dynamischer Logik
auch die Temporale Logik der Aktionen (TLA) beinhaltet. TLA beruht auf einem
Zeitmodell, welches linear und diskret ist.

In dieser Arbeit beschreiben wir eine Technik, die eine exakte Diskretisierung
von dichten Realzeitaspekten erlaubt, so dass das VSE-II System diese Aspekte
mit den vorhandenen Verfahren und Regeln behandeln kann. Die Diskretisierung
ist so definiert, dass sie nicht nur eine Approximation ist, sondern sie spiegelt
vielmehr das dichte Verhalten exakt wider. Dies wird ohne die explizite oder im-
plizite Einführung von rationalen Zahlen erreicht.

Mit Hilfe der exakten Diskretisierung wird eine Einbettung von Hybriden Auto-
maten in VSE-II definiert, die es ermöglicht Teilbeweise, die von Modelcheckingver-
fahren für Hybride Automaten gefunden wurden, ohne weiteren Beweis in VSE-II
zu verwenden und umgekehrt.

Weiterhin wird eine Methodologie zur formalen Anforderungsanalyse eingeführt,
die verschiedene Sichten auf ein System und nicht nur verschiedene Aspekte eines
Systems behandelt. Diese Methodologie, genannt Observer Models, ermöglicht die
Integration unterschiedlicher spezieller Werkzeuge bzw. Verfahren zur Beschreibung
der einzelnen Sichten und somit zur Beschreibung der gesamten Systemanforderun-
gen. Eine solche Sicht stellt beispielsweise eine Realzeit-Sicht dar, welche auf der
oben erwähnten Einbettung beruht.

xiv Kurzzusammenfassung

Extended Abstract

“Formal methods” are the means to apply mathematical techniques and mathe-
matical based reasoning in the analysis of computer software or hardware. Formal
methods attempt to supply precise techniques for specifying and reasoning about
a system’s behaviour using techniques based mainly on the axiomatic method of
mathematics. The basic idea of the axiomatic method is to specify properties which
are required or assumed as axioms in some formal language, and to supply every-
thing that can be used in reasoning about the specified artifact. To show that the
specification has some property not explicitly mentioned in the axioms, it must be
proved that this property is a logical consequence of the axioms. Thus a formal
specification can be probed and tested by posing and proving theorems that we call
lemmata. Similarly, to show that a system meets its requirements, we must prove
that each requirement is derivable from the axioms specifying the system. All we
need to know in a formal proof about the particular problem area is encoded in the
statement of the theorem and the axiomatisation of its premises. The “truth” of
the theorem can be established by syntactical operations according to the inference
rules. The validity of the proof depends on the “form” of the proof and neither on
the unrecorded knowledge of the problem area, nor on the intuition about what
the theorem says. Yet knowledge and intuition are essential for the invention of
useful axiomatisations and theorems, for their interpretations and for the discov-
ery of proofs. In fact, most of the systems supporting the formal development of
software operate with interactive theorem provers as for example VSE [52, 51, 54]
or the B-Tool [11, 27, 31]. From experience we know that many of the problems
arising in the verification of a system need induction. We might take this as a hint
that, in general, theorems cannot be proved fully automatically. But if there is a
possibility to prove a lemma automatically we should use this advantage and save
time and effort.

The aim of this work is to introduce a combination of interactive and automatic
verification techniques. Such a combination is established with respect to a certain
real-time specification and verification technique (Hybrid Automata). To achieve
an embedding of Hybrid Automata into VSE-II, that allows us to use the proof
results based on model checking strategies for Hybrid Automata in VSE-II and
vice versa without doing any further proof work, a technique is introduced in this
thesis that allows us to perform an exact discretisation of dense real-time aspects

xvi Extended Abstract

such that VSE-II can cope with them. This discretisation is defined in such a way
that is not just an approximation but rather mirrors dense behaviour exactly and
that without an explicit or implicit introduction of rational numbers.

The author does not intend to favour the one or the other approach to deal
with real-time, especially when the question about interactive theorem provers
used in tools like VSE-II [52, 51, 54] or model checkers [72, 50] arises. All of these
approaches have their advantages and disadvantages. In this work we try to ex-
ploit the advantages of these approaches and to incorporate them in an integrated
methodology that we call observer models. The presented methodology is not lim-
ited to the area of real-time systems. It rather gives the possibility to integrate
different techniques or tools to handle different perspectives of a system specifica-
tion where real-time could be one of the perspectives. Other perspectives could be
information flow or security. The methodology is built in such a way that a for-
mal system engineer has the possibility to work purely interactively (if necessary),
purely automatic (if possible) or in an interleaved way. Thus, parts of the problem
can be solved automatically with push button technologies. These parts can now
be used in the interactive proof components. But also, the interactively proven
theorems can be used to support the automatic techniques by providing additional
information.

We claim that it is not always necessary to invent a new logic together with
a new calculus and build a new tool around all this in order to establish such an
integration. This work rather exploits methods and tools available on the market,
takes the parts that fit best and makes a methodology available to integrate them
syntactically as well as semantically. This leads to synergetic effects so that the
resulting method is more than just the sum of its components.

The thesis first introduces the logics that are used to implement real-time spec-
ifications and to realize the mentioned methodology: VSE-II (Verification Support
Environment), TLA (Temporal Logic of Actions) and Hybrid Automata. Then an
approach to handle real-time systems with VSE-II is illustrated on a real Storm
Surge Barrier that is completely formalised in VSE-II. A generalisation of this ap-
proach results in the new methodology observer models that is illustrated with
the help of VSE-II, which represents (but is not limited to) the basic specification
and verification engine used within observer models and Hybrid Automata. For
this purpose we have defined a syntactical and semantical embedding of Hybrid
Automata in VSE-II that allows us to exploit automatically computed results with
respect to Hybrid Automata in VSE-II and interactively proven results with respect
to VSE-II in Hybrid Automata.

Finally, a few other formal approaches to deal with real-time together with a
summary of the work and possibilities for future extension are presented.

Zusammenfassung

“Formale Methoden” verstehen sich als das Werkzeug zur Anwendung von mathe-
matischen Techniken und mathematisch basierten Beweisverfahren zur Analyse von
Software und Hardware. Formale Methoden stellen präzise Techniken zur Spezi-
fikation und Verifikation von Systemen zur Verfügung, die auf der axiomatischen
Methode der Mathematik basieren. Die Grundidee der axiomatischen Methode
ist es die erwarteten oder angenommenen Eigenschaften als Axiome in einer for-
malen Sprache zu spezifizieren und alles notwendige, welches zum Schlussfolgern
über das spezifizierte Artefakt benötigt wird, zur Verfügung zu stellen. Um Eigen-
schaften nachzuweisen, die nicht explizit in den erwähnten Axiomen vorkommen,
müssen diese als logische Folgerungen aus den Axiomen abgeleitet werden. Somit
kann eine formale Spezifikation durch das Aufstellen von Theoremen und dem an-
schließenden Beweisversuch der entsprechenden Theoreme, die Lemmas genannt
werden, getestet und somit präzisiert werden. Um nachzuweisen, dass ein System
die gestellten Anforderungen erfüllt, muss auf ähnliche Weise gezeigt werden, dass
die Anforderungen aus den Axiomen ableitbar sind, die das Verhalten des Sys-
tems spezifizieren. Alles, was in einem formalen Beweis in einem speziellen Gebiet
benötigt wird, ist in der Axiomatisierung der Prämissen und der Formulierung des
zugehörigen Theorems enthalten. Die “Gültigkeit” eines Theorems wird durch syn-
taktische Manipulationen, die nach vorgegebenen Ableitungsregeln durchgeführt
werden, bestimmt. Die Gültigkeit des Beweises hängt von der Form des Beweises
und nicht von unbenutztem Wissen aus der Problembeschreibung oder von der In-
terpretation des Theorems ab. Trotzdem sind Intuition und das genaue Kennen
des Problems essentiell zur Erstellung einer sinnvollen Axiomatisierung und ihrer
Theoreme. Die meisten Systeme, die die formale Entwicklung von Software un-
terstützen, basieren auf einem interaktiven Beweissystem, wie beispielsweise VSE
[52, 51, 54] oder das B-Tool [11, 27, 31]. Die Erfahrung zeigt, dass viele der zu
beweisenden Eigenschaften nur mit Hilfe von Induktion bewiesen werden können.
Dies könnte man nun als Hinweis darauf sehen, dass Theoreme, die im Gebiet der
Softwareverifikation auftauchen, nicht voll automatisch bewiesen werden können.
Aber, wenn es die Möglichkeit gibt ein Lemma automatisch zu beweisen, sollte man
diesen Vorteil nutzen und Zeit auf Aufwand sparen.

Das Ziel dieser Arbeit ist es eine Kombination von interaktiven und automa-
tischen Verifikationstechniken zu realisieren. Eine solche Kombination ist zwischen

xviii Zusammenfassung

VSE-II und einer Realzeit Spezifikations- und Verifikationstechnik (Hybride Auto-
maten) erarbeitet worden. Um diese Einbettung von Hybriden Automaten in das
VSE-II System in der Art zu ermöglichen, dass Beweisergebnisse, die aus Model-
Checking Strategien für Hybride Automaten resultieren in VSE-II zu nutzen und
umgekehrt, ist eine Technik in dieser Arbeit entwickelt worden, die eine exakte
Diskretisierung von dichtem Realzeitverhalten ermöglicht, so dass diese mit VSE-
II behandelt werden können. D.h., es ist eine Diskretisierungstechnik definiert
worden, die nicht nur eine Approximation darstellt, sondern eher das dichte Ver-
halten exakt widerspiegelt und dies ohne die explizite oder implizite Einführung
der rationalen Zahlen erreicht.

Wenn die Frage nach interaktiven Beweissystemen, wie sie beispielsweise in
VSE-II [52, 51, 54] verwendet werden, oder Model-Checkern, wie beispielsweise in
[72, 50] beschrieben, gestellt wird, favorisiert der Autor nicht den einen oder an-
deren Ansatz zur Behandlung von Realzeit. All diese Ansätze haben ihre Vorteile
aber auch ihre Nachteile. In dieser Arbeit versuchen wir die Vorteile beider Ansätze
zu nutzen und sie in einer integrierten Methodologie, die wir Observer Modelle
genannt haben, zu vereinen. Die vorgestellte Methodologie ist nicht auf die Be-
handlung von Realzeit-Systemen beschränkt. Sie erlaubt vielmehr die Integra-
tion verschiedener Techniken oder Tools, die verschiedene Sichten auf ein Sys-
tem repräsentieren, wobei die Realzeit-Sicht eine spezielle Sicht darstellt. Andere
Sichten sind beispielsweise eine Informationsfluss-Sicht oder eine Security-Sicht.
Die Methodologie ist so entworfen, dass ein Systemingenieur die Möglichkeit hat
interaktiv (wenn nötig), vollautomatisch (wenn möglich) oder mit beiden Ansätzen
zu arbeiten. Somit können Teile des Problems mit “Push-Button” Technologien
gelöst werden, die wiederum im interaktiven Beweis Verwendung finden können.
Ebenso können die interaktiv bewiesenen Theoreme in den automatischen Ver-
fahren benutzt werden, in dem zusätzliche Informationen zur Verfügung gestellt
werden.

Es muss nicht immer eine neue Logik zusammen mit einem neuen Kalkül ent-
wickelt werden, welche dann in einem neuen Tool integriert werden, um eine solche
Methodologie zu realisieren. In dieser Arbeit werden vielmehr Methoden und Tools,
die verfügbar sind verwendet, und die Teile, die geeignet sind, werden syntaktisch
wie auch semantisch integriert. Dies resultiert in einer Synergie, wobei die resul-
tierende Methode mehr ist als nur die Summe ihrer Komponenten.

In dieser Arbeit werden zunächst die Logiken eingeführt, die sowohl zur Spe-
zifikation von Realzeit-Systemen verwendet werden als auch zur Realisierung der
genannten Methodologie: VSE-II (Verification Support Environment), TLA (Tem-
porale Logik der Aktionen) und Hybride Automaten. Hiernach wird eine Methode
zur Behandlung von Realzeitsystemen an dem Beispiel eines Sturmflutwehres il-
lustriert, welches komplett in VSE-II spezifiziert wurde. Die Verallgemeinerung
dieser Methode resultiert in der bereits oben erwähnten neuen Methodologie der
Observer Modelle. Diese werden mit Hilfe von VSE-II, welches die grundlegende
Spezifikations- und Verifikationsmaschinerie zur Verfügung stellt, und Hybriden

xix

Automaten illustriert. Wir haben eine syntaktische und semantische Einbettung
von Hybriden Automaten in VSE-II definiert, die es uns ermöglicht, automatisch
berechnete Ergebnisse in einem interaktiven Beweis zu verwenden und umgekehrt.

Zum Abschluss der Arbeit werden einige weitere formale Ansätze zur Behand-
lung von Realzeit vorgestellt. Die Arbeit endet mit einer Zusammenfassung und
der Erwähnung von zukünftig möglichen Erweiterungen.

xx Zusammenfassung

1
Introduction

Before considering special terminologies and special logics for expressing real-time
properties, we like to present an informal view of what is called formal methods
and the role of real-time within formal methods.

“Formal methods” are the means to apply mathematical techniques and mathe-
matical based reasoning to the analysis of computer software or hardware. It is
fully accepted and often even required that engineers in established disciplines use
mathematical models or mathematical reasoning to predict or to simulate the be-
haviour of the systems they have built. For example, in today’s car manufacturing
industry it is common not only to develop the design of a new car on a computer but
the whole car including all of its safety functionalities. Even the behaviour of a car
in critical driving and crash situations is computed by special programs, which im-
plement in some sense a “model” of the car and its behaviour. The real tests made
later in the development of a new car are performed primarily to validate accuracy
of the model and to measure final performance parameters. Another example can
be found in the development of airplanes. The computational design of the wings
of an airplane requires mathematical models to predict their behaviour. In these
areas mathematical models are not only fully accepted, they are a necessity.

But this process of reasoning with mathematical models is not so widespread
in the development of software or hardware. In this field prototyping and testing
still remain the principal methods to explore designs and validate implementations.
These methods or strategies certainly have their justification, but their usefulness
depends on the area in which they should be applied. If no particular safety or

2 Chapter 1. Introduction

security requirements are demanded these more or less informal methods can be
applied since they are faster and (in general) less expensive. Some people would
say now that informal methods are always faster and first of all less expensive with
respect to the development time and costs. At first glance, this may be the case, but
when we consider the whole life-cycle of a product from the development through
marketing to the maintenance phase, then things change. Often the maintenence
costs are not considered in the costs of the project which are computed right after
the project is finished and the system is sold.

The informal methods are possibly dangerous as they only provide partial cov-
erage of the range of behaviours that a piece of software may exhibit. The problem
is that computer hardware and software are discrete systems. Their behaviour is
determined by succession of discrete state changes. The succession of states does
not need to produce a behaviour that varies smoothly or continuously. Instead, it
can exhibit discontinuities and abrupt transitions. The ability to select alternative
courses of action is a source of power and flexibility provided by computer systems,
but it is also the reason why their behaviour is hard to predict and to validate. Tests
merely provide information on the state sequences which are actually examined.
Without continuity there is little reason to extrapolate the behaviour from tested
cases to untested ones. The caveats of testing are becoming particularly acute
in the case of distributed and real-time systems, such as the embedded systems
used for spacecraft control. Coordination of the various subsystems and redundant
components can depend on delicate timing relationships which can be difficult and
very complex to fully explore with tests. Consequently, a large number of major
spacecraft anomalies occur due to timing problems.

The difficulty of predicting and testing timing behaviour results from the pos-
sibility that hardware failures may occur at any time. For example, some observa-
tions were lost when the heavy radiation environment at Jupiter caused one of the
clocks on the Voyager spacecraft to jump several seconds [25]. More robust clock
synchronisation was provided for later encounters, but the mechanisms of fault tol-
erance and recovery are complex and add more difficulty of validating behaviour
by testing. Thus, for example, the failure in the first attempt to launch the Space
Shuttle was due to a synchronisation problem of the redundant computers [40].

Formal methods confront the discrete behaviour of computer systems by using
discrete mathematics as a model. Discrete mathematics builds directly on mathe-
matical logic and proofs of theorems take the place of the numerical calculations
which, as mentioned before, are familiar in most other engineering disciplines. That
is, instead of using a mathematical model to calculate a value for some numerical
quantity, in formal methods for computer science we prove theorems about the
modelled behaviour. In formal methods the problem of discontinuities and the
unsoundness of extrapolating from a finite number of tests are overcome using
methods of proof based on mathematical induction, so that an infinite (or finite
but very large) number of possible behaviours is fully covered in a finite proof.

Furthermore, formal methods offer much more to computer science than just

3

proofs of correctness for programs and digital circuits. Many of the problems in
software and hardware design are due to imprecision, ambiguity, incompleteness,
misunderstanding and just plain mistakes in the statement of top-level require-
ments, in the description of intermediate designs, or in the specifications of compo-
nents and interfaces. Some of these problems can be attributed to the difficulty of
describing large and complex artifacts in natural language, but others may be due
to the lack of a suitably precise conceptual framework for describing and reasoning
about certain classes of behaviours. Real-time systems seem to fall into the latter
class. With the exception of scheduling theory, there is little foundation for an
engineering discipline of real-time systems.

Formal methods attempt to supply precise techniques for specifying and rea-
soning about a system’s behaviour using techniques based mainly on the axiomatic
method of mathematics. The basic idea of the axiomatic method is to specify
properties required or assumed as axioms in some formal language, and to provide
everything that can be used in reasoning about the artifact. To show that the
specification has some property not explicitly mentioned in the axioms, it must be
proved that this property is a logical consequence of the axioms. Thus, a formal
specification can be probed and tested by posing and proving theorems that we call
lemmata. Similarly, to show that a system meets its requirements, we must prove
that each requirement is derivable from the axioms specifying the system. All we
need to know in a formal proof about the particular problem area is encoded in the
statement of the theorem and the axiomatisation of its premises. The “truth” of
the theorem can be established by syntactical operations according to the inference
rules. The validity of the proof depends on the “form” of the proof and neither on
the unrecorded knowledge of the problem area, nor on the intuition about what the
theorem might say. Yet knowledge and intuition are essential to the invention of
useful axiomatisations and theorems, to their interpretations and to the discovery
of proofs. In fact, most of the systems, which support the formal development of
software, operate with interactive theorem provers as for example VSE [52, 51, 54]
or the B-Tool [11, 27, 31]. From experience we know that most of the problems in
the verification of a system need induction. We might take this as a hint that, in
general, theorems cannot be proved fully automatically.

Above all, if we use formal methods, then the specification and the reasoning
about a system is a repeatable exercise, whereas this is not the case in informal
methods. Thus, if errors were found during the specification or the verification
process, then these errors can be checked by examining exactly what has been
done before.

Despite the arguments mentioned above, formal methods are still not widespread
in the development of (software) systems. The reason may be the combination of
knowledge that a system engineer must have in applying a formal method to a prob-
lem. We will exemplary state what this means using the VSE-tool as an example for
a tool supporting the whole formal development process from specification through
deduction/proving to maintenance of the development. The engineer has to learn

4 Chapter 1. Introduction

the input language which consists of a language describing temporal logic compo-
nents as well as abstract datatypes1. The writing of specifications is rather easy,
the difficult part is to specify the system the engineer has in mind, i. e., using the
syntactical constructs to specify the desired semantical behaviour of the system.
The engineer has to learn the semantics of the logics and the operators used in the
specification language2. At this point, a programmer’s work using an ordinary pro-
gramming language is usually finished. After a successful compilation the program
is tested. The formal system engineer now has to make a type check that checks
whether the specification is type-correct and then to prove that the specification
fulfils the desired properties. This is done by transforming the specification into its
logical representation. During this transformation process proof obligations arise
that have to be proved. The engineer has to know about the different logics used in
the tool and their corresponding proof rules. There are heuristics that help but in
general he has to know the rules for temporal logic, first-order logic and dynamic
logic, if datatype refinements occur. With this more technical knowledge, the en-
gineer has to apply the rules in order to prove that the specified system fulfils the
desired properties. In the course of such a proof it is often necessary to invent
invariants that help in proving the properties. Thus, finding such a proof is far
from being a trivial task and cannot be automated in general.

In considering real-time requirements on systems things do not get easier and it
is even more important to have a methodology realizing a smooth transition from
informal or semi-formal to formal development techniques.

The aim of this work is to introduce a combination of interactive and auto-
matic verification techniques. This has been done with respect to special real-time
specification and verification techniques. But the approach is not limited to this
area. For such an integration we claim that it is not always necessary to invent a
new logic together with a new calculus and build a new tool around all this. This
work rather exploits methods and tools available on the market, takes the parts
that fit best and integrates them syntactically as well as semantically. This results
in synergetic effects so that the resulting method is more than just the sum of its
components.

At this point I do not necessarily favour the one or the other approach to handle
real-time, especially when the question about interactive theorem provers used in
tools like VSE-II [52, 51, 54] or model checkers [72, 50] arises. All of these ap-
proaches have their advantages and disadvantages. In this work we take a more
general view to apply the paradigm presented above to exploit the advantages of
these approaches and to incorporate them into an integrated methodology. Such
a methodology gives a formal system engineer the possibility to work purely inter-

1In the case of VSE-II this is not difficult, since there is a syntax oriented editor implemented
as part of the front end of the tool. Using this editor writing syntactical correct expressions is a
trivial task.

2Experience shows that this part is the first difficult hurdle an engineer has to overcome using
formal methods.

5

actively (if necessary), purely automatically (if possible) or in an interleaved way,
i.e. parts of the problem can be solved automatically with push button technologies
and these parts can then be used in the interactive search for a proof. But also,
the interactively proven theorems can be used to support the automatic techniques
by providing additional information.

The thesis is organised in six parts. The first part contains a short survey on
the possibilities to handle real-time formally. In addition, the time models used
in this work are presented. The second part introduces a real-time example that
is analysed in all the formal development techniques presented. This allows us to
compare the various approaches. The third part is concerned with the description
of the formal methods used in this work. We then turn our attention to the
integration of the formal approaches such that we can use the one to support
the other. The fifth part presents a methodology for (real-time) requirements
engineering and exploits the results from the fourth part. The final part of this
work consists of Chapters 7, 8 and the Appendixes A, B and C. There we present
other formal approaches to handle real-time, summarise this work and discuss
future possibilities. Detailed VSE-II specifications of systems mentioned in the
earlier chapters conclude this thesis.

6 Chapter 1. Introduction

2
Real-Time

2.1 Real-Time

A real-time system depends not only on the values of its outputs but also on
the times at which they are produced. Generally, a real-time system executes a
collection of tasks that are subject to deadline, periodic or aperiodic constraints.

A task has to produce its output before its deadline. Periodic constraints are
activated for example by a timer whereas aperiodic constraints can be activated
by some external event at any time. Strict constraints arise for example in some
systems dependent on I/O devices that require precise timing between inputs and
outputs [68] and in some systems it can be important not to produce a result too
early, so that deadlines are better treated as intervals than points in time.

Hard real-time exists in systems in which the passing of a deadline time con-
straint can have severe consequences. For soft real-time constraints there is still
some use of the results of a task that has missed its time constraint [2]. What we
can see is that real-time systems, that are considered to be correct or useful, must
work within their specified time constraints, either without exception or with high
probability [44].

In the development of real-time systems there are two main issues:

1. The derivation of timing constraints.

2. The construction of a system structure (particularly a scheduling regimen)
that guarantees the satisfaction of those constraints.

8 Chapter 2. Real-Time

The second of these (especially scheduling theory) has received the most attention,
but it can be argued that the first is more fundamental.

A real-time system usually contains some qualitative timing requirements, such
as constraints on the simultaneity and ordering of events. For example, in a railroad
crossing scenario, cars and trains should not be on the railroad at the same time
for obvious reasons. Often qualitative requirements are not enough, so there are
quantitative requirements. For instance, the gasburner that should close the valve
1 second after leaking and there is no new ignition for at least 30 seconds, or a
control loop that must execute at a rate of 40 Hz with no more difference than 2
msec.

A question that arises in this context is whether real-time is needed to specify or
to reason about qualitative timing requirements. Since simultaneity and ordering
can be expressed without explicit use of real-time, the question can be answered
with “no”: As an example consider the railroad crossing scenario where one re-
quirement says that a train and a car should not be at the crossing at the same
time. This can be expressed with the (pseudo) formula1:

always(¬ at crossing(car) ∨ ¬ at crossing(train))

The ordering of events can be handled as in the following example. Event1 should
happen always before Event2. This requirement can be expressed by the formula:

always(Event1 ⇒ eventually(Event2)) ∧
always(always-in-past(Event2 ⇒ eventually-in-past(Event1))

Until now, we have used temporal expressions only informally using natural
language notions that everyone can understand or at least reasonably interpret.

The next section shows how real-time is introduced into temporal logics in-
cluding the different operators and what decisions can be taken depending on the
problem to be handled.

2.2 Specification of Real-Time

Temporal logics do not provide the means to reason about time in a direct or quan-
titative sense. Temporal logic is the designation for a modal logic whose operators
are however interpreted in a temporal manner. The main operators 2 and 3 are
interpreted as “always” and 3 as “eventually”, respectively. Pnueli [82] was one
of the first to propose temporal logic to specify the behaviour of reactive systems.
With temporal logic qualitative temporal requirements can be expressed including
invariants, precedence and responsiveness [83]. But traditional temporal operators

1Formulas written in emphasised style represent temporal operators. Since we have not intro-
duced these operators yet we cannot use them here.

2.2 Specification of Real-Time 9

cannot express quantitative temporal requirements or hard real-time requirements
as timing deadlines for the behaviour of reactive systems. One possibility is to
extend temporal logics in order to deal with quantitative timing behaviours. Lam-
port showed in [4] that another way is to use an explicit time variable (see 2.2.2.3
and 2.2.3). Before we proceed we first present some of the design decisions that can
be made in choosing the underlying temporal logic. We can classify most systems
of TL (Temporal Logics) used for reasoning about concurrent programs along a
number of axes:

• propositional versus first-order,

• branching versus linear,

• points versus intervals,

• discrete versus continuous and

• past versus future tense.

We will concentrate in our work on two approaches which are linear time, dis-
crete, compositional future tense (VSE-I [52], VSE-II [54]) and branching time,
continuous, compositional future tense (Hybrid Automata [47]). However, to give
the reader an idea of the wide range of possibilities in formulating a system of
Temporal Logic, we describe various alternatives in more detail in the next section.

2.2.1 Temporal Logic as Basis

If we decide to use temporal logic we have to make decisions concerning the kind
of temporal logic to use. It might be point or interval based or its operators talk
about the past or the future or both. Some additional possibilities are:

• One decision to be taken is whether we need first-order logic or just the
propositional fragment. Clearly, this choice depends on the system/problem
to be specified and the data domains over which the reactive systems operate.

• Many temporal logics used in the specification and verification of reactive
systems are divided into linear-time and branching-time logics.

– Linear time logics are interpreted over linear structures of states. Every
state sequence represents an execution of the reactive system under con-
sideration. An example of a linear time logic is TLA [66]. The typical
response property that “every inquiry must be followed by an answer”
is defined in TLA by the formula

2(P → 3Q)

10 Chapter 2. Real-Time

It says that in any possible behaviour in which inquiry P happens, i.e. is
observed in some state, there must be a state at some later point in which
the answer Q is given, i.e. Q is observed in this state.

Real-Time extensions of PTL [58] introduce time bounded temporal
operators. They can be used to express the time-bounded version of the
response property that says that “every inquiry must be followed by an
answer within n time units”. It is given for example by the following
formula:

2(P → 3≤nQ)

– Branching time temporal logics, on the other hand, are interpreted over
tree structures of states. Every tree represents a reactive system where
every path in the tree represents an execution sequence of the system.
Examples of branching time logics are CTL [41, 38] and CTL∗ [35]. The
above mentioned property that “every inquiry must be followed by an
answer” is expressed in CTL by the formula:

∀2(P → ∀3Q)

This formula asserts that in any behaviour, i.e. in all branches and in
every node on that branch, if P is observed then in all possible contin-
uations of that branch Q is observed at some later point.

Real-Time variants of CTL allow us to put time bounds on the distance
between the observation of P and the observation of Q.

• The next decision is concerned with the choice of the temporal operators.
The temporal operator most typically employed is the until operator (It can
be used to define the always operator [70]). Some temporal logics exclude
the next operator to ensure that the formulae of the logic remain invariant
under stuttering [66]. Other logics contain past operators such as since. In
branching time logics path quantifiers are used whereas in linear time logics
these path quantifiers are not available, in fact, every formula is interpreted
over all paths.

2.2.2 Expressing Timing Constraints

In defining the syntax of an extension of a temporal logic we have to decide how
to incorporate timing constraints (timing requirements) into the logic. Among all
the possibilities available we chose three of the principal techniques in this work
that are taken from [20].

2.2.2.1 Bounded Temporal Operators

A common idea to introduce real-time in a temporal logic is to extend the syntax
by bounded temporal operators which replace the unrestricted ones. Examples for

2.2 Specification of Real-Time 11

such operators are 2[1,2]P and 3[1,2]Q. The first formula expresses that P holds
within 1 to 2 time units . The second formula asserts that Q holds somewhere
between 1 to 2 time units. This approach of introducing real-time is proposed in
[60, 59, 85] whereas [30] can be viewed as a precursor.

There are many interesting articles about bounded operators that treat the
expressiveness and complexity of bounded operators [37, 13, 19, 18] and their ap-
plications.

2.2.2.2 Freeze Quantification

The bounded-operator notation can relate only adjacent temporal contexts. Con-
sider, for instance, the property that “every inquiry P is followed by a response
Q and, then, by another response R such that R happens within 5 time units of
the inquiry P”. There is no direct way of expressing this timing requirement us-
ing time-bounded operators. This shortcoming of bounded temporal operators can
be remedied by extending temporal logic with explicit references to the times of
temporal contexts. We discuss two such methods. In this subsection, we access
the time of a state through a quantifier, which binds (”freezes”) a variable to the
corresponding time; in the next subsection, we access the time of a state through
a (dynamic) state variable.

The idea of freeze quantification was introduced and has been analysed in [21,
45, 12, 46]. We present the propositional linear-time case here for completeness.
The freeze quantifier x. binds the associated variable x to the time of the current
temporal context: the formula x.Φ(x) holds at time t if and only if Φ(t) does.
Thus, in the formula 3y.Φ, the time variable y is bound to the time of the state at
which Φ is “eventually” true. By admitting atomic formulae that relate the times
of different states, we can write the time-bounded response property as

2x.(P → 3y.(Q ∧ y ≤ x+ 3))

We read this formula as “in every state with time x, if P holds, then there is a
later state with time y such that Q holds and y is at most x + 3”. The non-local
property that “every inquiry P is followed by a response Q and, then, by another
response R within 5 time units of the stimulus P” may be specified by the formula

2x.(P → 3(Q ∧ 3z.(R ∧ z ≤ x + 5)))

Freeze quantifiers allow us to refer to times that are associated with states. Conse-
quently, the freeze quantifier x. behaves differently from standard first-order quan-
tifiers over time; it is, for example, its own dual:

¬(x.Φ) ↔ x.(¬Φ)

Since the expressive power of a modal logic with freeze quantification lies, in
general, between the expressive power of the corresponding propositional and first-

12 Chapter 2. Real-Time

order modal logics, a logic with freeze quantification is referred to as half-order
[45].

2.2.2.3 Explicit Time Variable

The third possibility we sketch here is to introduce real-time by an explicit clock
variable. This approach is based on standard first-order temporal logic.

The syntax simply uses a variable now as the clock variable that can be in-
cremented in a computation step. In addition, we allow quantification over global
variables on the time domain. An example for a time-bounded response property
is the following:

∀x.2((P ∧ now = x) → 3(Q ∧ now ≤ x+ 3))

This formula asserts that whenever P holds and now has the value of x then
eventually Q will hold and the value of now is less or equal to x+ 3. Examples of
this method describing real-time can be found for example in [84, 4].

This approach has some similarities to the freeze quantification approach de-
scribed earlier as variables like x catch a point in time given by the variables now.
That way, this point in time can be related to later on in the formula.

2.2.3 Real-Time Logics

We now present some real-time temporal logics and point to the decisions that
have been taken within these logics concerning the various choices we have sketched
before. We divide the logics we consider in linear time and branching time logics:

Linear-time logics The logics MTL (Metric Time Logics) [19], TPTL (Timed
propositional temporal logic) [21], RTTL (Real-Time Temporal Logic) [81], XCTL
(Explicit Clock Temporal Logic) [42] and TLA (Temporal Logic of Actions) [66] are
linear time logics.

• MTL is a propositional bounded-operator logic. Its temporal operators are
time-bounded versions of until, next, since and previous (the past dual of
next) operators.

• TPTL is a propositional half-order logic [20] that uses the future operators
until and next. The atomic timing constraints contain the primitives ≤ (com-
parison), ≡c (congruence modulo a constant), and +c (addition by an integer
constant).

• RTTL is a first-order explicit-clock logic with no restrictions on the assertion
language for atomic timing constraints.

2.3 Models of Time 13

• XCTL is a propositional explicit-clock logic whose assertion language for tim-
ing constraints allows for comparison and addition. The timing constraints of
XCTL are richer than those of the previously mentioned logics, which prohibit
the addition of time variables. XCTL, however, prohibits explicit quantifi-
cation over time variables. Thus, all global time variables are universally
quantified.

• TLA is a first-order explicit clock logic. It is described in detail in Section
4.1.

Most of the logics mentioned above assume integer time whereas TLA is not re-
stricted to a special time domain. It is rather a logic in which the user specifies the
time domain according to the requirements. If, for example, the system is analog,
as e.g. the steam boiler [10], then the reals can be chosen as time domain, whereas
in other examples the integers or the naturals might be more suitable.

Branching-time logics The Real-Time Computation Tree Logic (RCTL) [37]
is a propositional branching-time logic for synchronous systems. It is a bounded-
operator extension of CTL.

The logic TCTL (Timed Computation Tree Logic) [13] is a propositional bran-
ching-time logic. It is also a bounded-operator extension of CTL with a less re-
strictive semantics than RTCTL.

We have presented possibilities concerning the choice of a temporal logic and
how to extend this temporal logic in order to to express quantitative timing con-
straints.

However, we have not specified exactly the time model which underlies the logic.
Most of the logics mentioned here use integers as time domain but others take the
reals or the integers as the time domain. In the next section we present a short
overview of the models of time.

2.3 Models of Time

The models of time can be subdivided along the following lines:

• basics and

• relations.

In the basics we look at several choices that can be made with respect to basic time
elements. The relations part points out what relations we might have between basic
time elements.

14 Chapter 2. Real-Time

2.3.1 Basics

There are three main subdivisions of the basic time elements. The basic elements
can be points, intervals or events.

2.3.1.1 Points as Basic Time Elements

Points in time might be indicated by a clock which counts time with a certain
measure so that every point in time is eventually reached by the clock. When
we think of a point in time we imagine the state of the world or that part of the
world we are interested in and which is observable at this point. Intervals can be
simulated by convex sets of points.

2.3.1.2 Intervals as Basic Time Elements

Often intervals are taken to be a convex subset of some ground set, say R, the
real numbers. But if intervals are the basic time elements, then there are some
difficulties such as determining the order of two actions taking place in the same
interval or determining the position of a moving object in an interval. Intervals
are especially suited as basic elements in continuous time models. Furthermore,
intervals can be used as well as points as basic time elements since we can simulate
points simply by indivisible intervals.

2.3.1.3 Events as Basic Time Elements

Events and actions (actions are atomic events), where events are built from actions,
do not involve proper time. In fact they constitute time. Thus, time becomes a
derived notion, and does not exist explicitly. In real–time systems, it is often the
case that time is imitated by an event, for example the ticking of a clock.

In this thesis we say that points are taken as the basic time elements and that
intervals can be viewed at as constructed from convex sets of points and events
take place over intervals. The following considerations are with respect to points
as basic time elements.

2.3.2 Relations between Basic Time Elements

There are two obvious relations on time, independent of the choice of the basic
time elements: equality (=) and the precedence (<) relation. Equality is a natural
relation in any logical structure and the precedence relation is characteristic for
models of time. There are some other relations which seem to be natural and
which can be derived from equality and precedence:

• Inequality: Ineq(x, y) ⇔ ¬x = y

2.3 Models of Time 15

• Later than: Lt(x, y) ⇔ y < x

• Betweenness: Bet(x, y, z) ⇔ y < x < z ∨ z < x < y

Many possible properties of the precedence relation < are considered in temporal
logic. We give a formulation of the properties in first order logic, if possible:

Transitivity : ∀x, y, z. (x < y ∧ y < z → x < z)
Irreflexivity : ∀x.¬x < x
Asymmetry : ∀x, y. (x < y → ¬y < x)
Linearity : ∀x, y. (x < y ∨ x = y ∨ y < x)
L − Linearity : ∀x, y, z. ((y < x ∧ z < x) → (y < z ∨ y = z ∨ z < y))
R − Linearity : ∀x, y, z. ((x < y ∧ x < z) → (y < z ∨ y = z ∨ z < y))
F − Directedness : ∀x, y, z. (x < y ∧ x < z → ∃w. (y < w ∧ z < w))
P − Directedness : ∀x, y, z. (y < x ∧ z < x→ ∃w. (w < y ∧ w < z))
P − Serial : ∀x. ∃y. y < x
F − Serial : ∀x. ∃y. x < y
Density : ∀x, y. (x < y → ∃z. (x < z ∧ z < y))

Some of the relations given here have corresponding axiom schemata in temporal
logics. If we take the above properties as properties of the reachability relation
of a Kripke structure [61], then we have the following correspondence to axiom
schemata:

Transitivity : 2Φ → 22Φ
Irreflexivity : not axiomatisable [95]
Asymmetry : not axiomatisable [95]
Linearity : not axiomatisable [95]
L − Linearity : 2P (2P Φ → Ψ) ∨2P (2P Ψ → Φ)
R − Linearity : 2F (2F Φ → Ψ) ∨2F (2F Ψ → Φ)
F − Directedness : 3F 2F Φ → 2F 3F Φ
P − Directedness : 3P 2P Φ → 2P 3P Φ
P − Serial : 2P Φ → 3P Φ
F − Serial : 2F Φ → 3F Φ
Density : 22Φ → 2Φ

The informal semantics of the past and future temporal operators is as follows:

• 2P Q means that Q holds always in the past.

• 2F Q means that Q holds always in the future.

• 3P Q means that Q holds sometimes in the past.

• 3F Q means that Q holds sometimes in the future.

We have used three different boxes, namely 2, 2P and 2F . We interpret 2Q
as a formula asserting that Q holds in all worlds of a Kripke structure that are

16 Chapter 2. Real-Time

reachable via the reachability relation R. In this case we do not say more about R.
In the case of 2P and 2F we assume R to be the earlier-later, later-earlier relation
respectively.

Some of the reachability relations that we can think of are not expressible
in first-order logic and some of the relations do not have a corresponding axiom
schemata expressible in propositional or first-order modal logics. Discreteness in
the sense of “Between two time points (worlds or states) there are only finitely many
time points (worlds or states)” is a property of the reachability relation which is not
describable in first-order logic. But we can imagine some kind of weak discreteness
which is first-order definable and for which, for example, a next-operator would
make sense2, namely by:

∀x, y (x < y → ∃z (x < z ∧ ¬∃u (x < u < z)))

∀x, y (x < y → ∃z (z < y ∧ ¬∃u (z < u < y)))

Again as in some examples of properties of the reachability relation we do not
have a corresponding axiom schema in modal logics for these formulae. Before
slipping too deep into this field we end these considerations by giving an axiom
schema that expresses the discreteness used for example in logics like TLA (see
Chapter 4.1) where the underlying reachability relation is transitive and reflexive:

2(Φ → 3(¬Φ ∧ 3Φ)) → (Φ → 23Φ)

Since investigations concerning this correspondence are not a main concern of this
work the interested reader is inter alia referred to [76, 34].

2.3.3 Time Model Used

We use two different time models in our work for the specification of time in VSE-II
and Hybrid Automata. Both models have in common that points are the basic time
entities. The time domain we have chosen to work with are naturals (or integers)
in case of VSE-II and the rationals (or reals) in case of Hybrid Automata.

Since VSE-II is not tailored especially to specify and verify real-time systems,
it does not depend on this or any other time domain. We could equally have
chosen the reals for this work. It is rather a question of what we think is necessary
(adequate) in order to specify and reason about real-time systems within VSE-II.
In case of Hybrid Automata this question does not arise, since they are usually
based on the rationals or the reals.

The time model for VSE-II used in this work is as follows:

2The next operator plays an important role in applications like program specification and
verification and the existence of this operator is evidently closely related to the discreteness of
the underlying reachability relation.

2.3 Models of Time 17

• Points as basic time entities.

• The points in time are of type integer.

• The earlier-later-relationship between the basic time entities is transitive,
reflexive, discrete and has an F-Successor.

The time model for Hybrid Automata is:

• Points as basic time entities.

• The points in time are modelled by the rationals or the reals.

• The earlier-later-relation between the basic time entities is transitive, dense
and has an F-Successor.

The main difference lies in the density, respectively the discreteness of the
earlier-later relation. Furthermore, the semantics of the query language for Hybrid
Automata is a branching time semantics whereas the query language for VSE-II
has a linear time semantics.

In the sequel we shall show that a connection of the time models of VSE-II
and that of Hybrid Automata can be achieved by translating/embedding Hybrid
Automata into VSE-II. The question why we are not working directly with the one
or the other method or tool is easy to answer: It is the aim of this work to connect
both methodologies such that the advantages of the different approaches can be
exploited in a way that it is adaptable to the problem at hand. If a problem is
suited best to be attacked by model checking strategies and it is concerned with real-
time, then Hybrid Automata work very well. On the other hand model checking
strategies have their well known limitations. If one of these limits is reached one
has to look for a more general approach which does not have these limitations.
Here the solution is VSE-II. It is not concerned with the typical model checking
limitations as it supports the use of induction techniques. Using tools like VSE-II
or similar tools as for example the B-tool as an interactive verification system, then
our embedding creates a smooth way from automatic to interactive strategies and
in this respect integrates model checking into interactive theorem proving.

The embedding saves those properties that are already shown by automatic
means. This means that not only the system itself but also the properties expressed
in the Hybrid Automata property specification language (PSL) are translated to
VSE-SL (the VSE-II specification language). This way the translated properties
hold for the translated system. The approach described in this work to specify and
reason about real-time systems translates continuous systems into discrete systems
and handles these with well known conventional techniques if necessary.

Talking about system design and specification in general, we use the translation
technique introduced in this work as an example for a general approach to specify
industrial sized systems and their requirements. Our paradigm is the separation

18 Chapter 2. Real-Time

of concerns. The presented methodology separates different requirement aspects
and uses adequate techniques for their specification. In this work we have looked
especially at real-time aspects of systems. But the approach is not limited to
real-time. Information flow [71] could be another aspect of a system specification.
It is clear that there are other specification techniques that are better suited to
handle information flow than Hybrid Automata. Embedding these techniques into
VSE-II as it is done in this work for Hybrid Automata results in a general formal
development methodology where each aspect can be adequately formalised and
treated. Having such a methodology at hand a formal system engineer has an
instrument to handle small parts of a system as well as the complete system and
all its requirements in an adequate formal and integrated way.

In what follows we show how to marry the two methodologies, Hybrid Automata
and VSE-II, in a way that respective advantages are preserved and that each can
benefit from the other. We will now start the presentation by giving a simple
example that is used throughout this work for illustration.

3
Gasburner Scenario

As a running example to present the solution by different techniques for the same
problem, we take the well-known gasburner scenario [3]. Since there exist several
versions of the gasburner in the literature, we describe informally our choice here.

���
�

��
Gas Supply

Flame Detector

On

Off

Controller

External Switch

Gasflow Sensor

������������������������������

������������������������������

������������������������������

������������������������������

Figure 3.1: Gasburner

The gasburner scenario that we propose is illustrated in Figure 3.1. It consists
of the following components:

20 Chapter 3. Gasburner Scenario

• a controller,

• an external switch,

• a gasflow sensor and

• a flame detector.

The controller represents the central control unit of the gasburner. It is connected
to a gasflow sensor and a flame sensor. Depending on the values provided by the
sensors the controller computes whether to stop or release the gasflow. For example,
if the gasflow sensor signals that gas flows out of the nozzle of the gasburner and
the flame sensor signals that there is no flame, then, after a certain amount of time,
the gasburner stops the gasflow, waits another amount of time and starts one more
try to lit the flame. In real scenarios the waiting times depend for example on the
room the gasburner is located in. In smaller rooms the critical gas concentration
is reached much faster than in larger rooms. A safety engineer is supposed to
compute the time bounds that avoid risks and this way, we abstract from the real
gas concentration in the room. Equally one could specify the system by directly
computing the gas concentration in the room the gasburner is located in.

In all scenarios of the gasburner presented in this work we abstract from the
realistic version described here. For example, all versions abstract from the gas
concentration measured in the room and so they all rely on time bounds computed
by an external expert. For comparison, we assume the same time bounds for all
versions.

3.1 An Abstract Version

Although there are solutions in the literature as in [64] where the gasburner specifi-
cation problem is based on continuous mathematics by specifying integral equations
in TLA+, we abstract from continuous mathematics for the sake of simplicity. The
safety requirement of the more concrete gasburner is that the gas concentration
should not overtake a critical threshold. We assume that a safety engineer has
calculated that the ventilation required for normal combustion would prevent dan-
gerous accumulations of gas provided that the proportion of leakage time does not
exceed one twentieth of the elapsed time in intervals of at least one minute.

So far a safety requirement is described. What remains are the design decisions
which should be compatible to the safety requirements.

The first decision is that a leak is detectable/stoppable within one second. The
second assumes that it is acceptable to wait another thirty seconds before risking
another leak again by switching on the gasflow.

From the description given above we can isolate four informal statements which
have to be formalised using the different methods proposed in the rest of this thesis:

3.1 An Abstract Version 21

1. The proportion of time spent in the leak state is not more than one twentieth
of the elapsed time.

2. The system is observed for at least one minute, otherwise the requirements
are trivially satisfied.

3. A leak is stoppable within one second.

4. After the detection of a leak there are at least thirty seconds of waiting time
before the gas is again switched on.

The abstract version of the gasburner described in this section is used as the
running example in this work. A more realistic gasburner scenario is used in later
chapters to illustrate the formal approach and to introduce observer models. We
shall show that according to a special refinement mapping the realistic version of
the gasburner is a refinement of the abstract one given here.

Now we start the presentation of the formal methods used in this work. We
begin with the description of the Temporal Logic of Actions (TLA) [66] followed
by VSE-II (Verification Support Environment) [54, 89] and Hybrid Automata [15,
24, 22].

22 Chapter 3. Gasburner Scenario

4
Formal Methods

4.1 TLA - Temporal Logic of Actions

The temporal logic used in VSE-II is based on the Temporal Logic of Actions (TLA
[66]) and we shall now present it from a logical perspective. We just concentrate on
its syntax and semantics. Lamport’s original work [66] provides more additional,
useful material we shall not explain in detail here. Other papers discuss mechanical
verification in TLA [62, 39], refinement and composition [5, 7], model checking
TLA specifications [97] and real-time systems [4]. We focus in this chapter on a
description of the fundamentals and on the real-time aspects in TLA. This chapter
is based on [66] and [6].

4.1.1 Fundamentals of TLA

TLA is a variant of temporal logic, designed for the specification and verification
of reactive systems in terms of their actions. Its semantics is given in terms of
possible world structures1.

4.1.1.1 Syntax of TLA

The syntactical structure of TLA is divided into four layers which are illustrated
by the pyramid shown in Figure 4.1.

1The syntax and the semantics of the state-based part in VSE-II is similar to the one presented
here.

24 Chapter 4. Formal Methods

primed variables, unprimed variables]

[transition functions, transition predicates,

rigid variables, flexible variables]

Temporal formulae

State formulae

Constants

[rigid variables]

[state functions, state predicates,

Reasoning about

Reasoning about states

Reasoning about data types

Action formulae

[constants, state formulae, transition formulae,]

3.

2.

1.

4.

Lay
er

s o
f T

LA

Reasoning about
computation steps

(sequences of states)
behaviours

Figure 4.1: Syntactical structure of TLA

1. Layer one is concerned with formulae whose meaning is state independent.
It covers the reasoning about abstract data types. These formulae are called
constants. Within these formulae rigid variables may occur.

2. Layer two is concerned with formulae whose meaning is state dependent.
These formulae are called state formulae. They are built from state functions
and state predicates (actions) and may contain constants and rigid variables.

3. The third layer is concerned with reasoning about computation steps. These
formulae are called transition functions and transition predicates. Flexible
variables may occur primed and unprimed in these formulae. The primed
variables are evaluated in a successor state.

4. The fourth layer is concerned with reasoning about behaviours, i.e. infinite
sequences of states. The formulae of this layer are called temporal formulae
(or behaviour predicates).

The building principle of this pyramid of TLA (Figure 4.1) is that the formulae of
a lower layer are used to build formulae of a higher layer.

In the following we assume an infinite set of variables V which is partitioned
into an infinite set VR of rigid variables and an infinite set VF of flexible variables.
In addition, we assume a set of symbols L, partitioned into a set LP of predicate
symbols and a set LF of function symbols. To each of the symbols in L a natural
number, its arity, is assigned. The sets V and L and the set of special symbols ¬,
∧, 2, ∃, ∃∃∃, . . . are pairwise disjoint.

4.1 TLA - Temporal Logic of Actions 25

With these definitions as a basis we define transition formulae where V ′
F repre-

sents the set of primed flexible variables {x′ | x ∈ VF} and VE stands for the union
of the sets of rigid, flexible and primed flexible variables.

Definition 4.1.1 (Transition function)
A transition function is a first-order expression over the predicate and function
symbols of L and over the variables of VE . The set of transition functions is the
smallest set such that:

• If x ∈ VE , then x is a transition function.

• If f ∈ LF is an n-ary function symbol and v1, . . . , vn are transition functions,
then f(v1, . . . , vn) is a transition function.

Definition 4.1.2 (Transition predicate)
A transition predicate is a first-order predicate over the predicate and function
symbols of L and over the variables of VE . Transition predicates are commonly
called actions and the set of actions is the smallest set such that:

• If v1 and v2 are transition functions, then v1 = v2 is a transition predicate.

• If p ∈ LP is a n-ary predicate symbol and v1, . . . vn are transition functions,
then p(v1, . . . , vn) is a transition predicate.

• If A is a transition predicate, then so is ¬A.

• If A and B are transition predicates, then so is A ∧B.

• If x ∈ VR and A is a transition predicate, then so is ∃x.A.

Moreover, constant functions and constant predicates do not contain free flexible
variables. The notion of “free variables” (FV) is defined over the set of variables
VE as usual in first-order logic.

Definition 4.1.3 (State function, State predicate)
A state function is a transition function with no free primed variables. A state
predicate is a transition predicate with no free primed variables.

The definition of temporal formulae is based on behaviour predicates.

Definition 4.1.4 (Behaviour predicates)
The set of behaviour predicates is the smallest set such that:

• If P is a state predicate, then P is a behaviour predicate.

• If A is a transition predicate and v is a state function, then 2[A]v is a beha-
viour predicate.

26 Chapter 4. Formal Methods

• If F is a behaviour predicate, then so is ¬F .

• If F and G are behaviour predicates, then so is F ∧G.

• If F is a behaviour predicate, then so is 2F .

• If x ∈ VR and F is a behaviour predicate, then so is ∃x.F .

• If x ∈ VF and F is a behaviour predicate, then so is ∃∃∃x.F .

The notion of free variable occurrences is extended to behaviour predicates (see
also [6]) as follows. This definition is needed for the formulation of the proof rules
given in Section 4.1.6.

Definition 4.1.5 (FVbeh)
The set of free variables of a behaviour predicate FVbeh is defined as follows:

• FVbeh(P) = FV (P), where P is a state predicate.

• FVbeh(2[A]v) = {x ∈ V : x ∈ FV (A) or x′ ∈ FV (A)} ∪ FV (v), where A is a
state predicate and v is a state function.

• FVbeh(¬F) = FVbeh(F)

• FVbeh(F ∧G) = FVbeh(F) ∪ FVbeh(G)

• FVbeh(2F) = FVbeh(F)

• FVbeh(∃x.F) = FVbeh(F)/{x}

• FVbeh(∃∃∃x.F) = FVbeh(F)/{x}

After the presentation of the syntactical constructs of TLA we give meaning to
TLA expressions by introducing their semantics.

4.1.1.2 Semantics of TLA

The semantics of TLA formulae is formalised in terms of possible worlds.

Definition 4.1.6 (Structure)
A structure M = (U ,R,F) where U is a non-empty set, R is a set of relations on
U and F is a set of functions on U . Each relation and each function has a natural
number associated with it, its arity.

Definition 4.1.7
A structure M is a structure for L if

• for each n-ary relation symbol R in L there is a relation RI ∈ R with RI ⊆
Un, and

4.1 TLA - Temporal Logic of Actions 27

• for each n-ary function symbol F in L there is a function F I ∈ F with
F I : Un → U .

Definition 4.1.8 (Variable Interpretation)
An interpretation over a set of variables V is a mapping from V to U .

Definition 4.1.9 (State)
A state s is an interpretation over VF , written s(x) where x ∈ VF . Thus, s(x) ∈ U
for every x ∈ VF .

Definition 4.1.10 (similar upto)
If I and J are interpretations over a set of variables V, then I and J are similar
up to x, written I 'x J , if and only if J = I[x/e], with I[x/e] equals I except
that it maps x to e.

The definition of the semantics of TLA formulae is based on the definitions given
above. We start by presenting the semantics of first-order expressions. Having this
definition as a basis we were able to define the semantics of behaviour predicates.

Definition 4.1.11
The semantics of first-order expressions is the usual one:

• If x ∈ VE , then [[x]]I is I(x).

• [[f(v1, . . . , vn)]]I is fI([[v1]]I , . . . , [[vn]]I), where fI is a function in the structure
M .

• [[v1 = v2]]I is true if and only if [[v1]]L and [[v2]]I are equal.

• [[p(v1, . . . , vn)]]I is true if and only if pI([[v1]]I , . . . , [[vn]]I) is true, where pI is
a predicate in the structure M .

• [[¬A]]I is true if and only if [[A]]I is not true.

• [[A ∧B]]I is true if and only if [[A]]I is true and [[B]]I is true.

• [[∃x.A]]I is true if and only if [[A]]J is true for some J 'x I.

Definition 4.1.12 (Interpretation)
Given an interpretation I over VR and a pair of states (s, t) we define the inter-
pretation [[x]]I,(s,t) as follows:

[[x]]I,(s,t) =

{ I(x) if x ∈ VR

s(x) if x ∈ VF

t(x) if x ∈ V ′
F

}

where s(x) and t(x) represent the values of the variable x in state s and t respec-
tively.

28 Chapter 4. Formal Methods

The semantics of a transition formula A under I and a pair of states (s, t) is
[[A]]I,(s,t). The semantics of a state formula at a pair of states does not depend on
the second state of the pair. Therefore, we may shorten [[P]]J ,(s,t) if P is a state
formula to [[P]]J ,s. Analogously, the semantics of a constant formula at a pair of
states does not depend on the states at all.

Definition 4.1.13 (Behaviour)
A behaviour σ is an infinite sequence of states denoted by σ = 〈s0, s1, s2, . . .〉.

If σ = 〈s0, s1, . . .〉 is a behaviour, then σ|n is its suffix 〈sn, sn+1, . . .〉2. A finite
prefix of the first n elements of a behaviour σ is the sequence s0, s1, . . . , sn, written
as σ|n.

In order to allow for refinement and for composition of components the concept
of stuttering has been introduced in TLA. The behaviour of a single component
is simply a sequence of states that fit to the specified actions. In case of several
components running in parallel we have to define what it means that the composed
system executes a step. In TLA an interleaving semantics is realised by allowing
only one component to do a step whereas all the variables owned by the other
components are not changed. In general, we say that a step is a stuttering step for
a component if it leaves all of its variables unchanged.

Definition 4.1.14 (Stuttering equivalence)
Stuttering equivalence is the finest equivalence relation of behaviours such that any
two behaviours ρ ◦ 〈t, t〉 ◦ σ and ρ ◦ 〈t〉 ◦ σ are stuttering equivalent, where ◦ is the
concatenation of behaviours.

Definition 4.1.15 (Equal up to)
Two behaviours σ and τ with σ = s0, s1, . . . and τ = t0, t1, . . . are equal up to x if
and only if si 'x ti for all i.

Definition 4.1.16 (Similar up to)
Two behaviours σ = s0, s1, . . . and τ = t0, t1, . . . are similar up to x, σ 'x τ , if and
only if there exists σ′ and τ ′ such that:

• σ′ and τ ′ are equal up to x,

• σ and σ′ are stuttering equivalent, and

• τ and τ ′ are stuttering equivalent.

Now we come to the definition of the semantics of behaviour predicates with
respect to an interpretation I over VR and a behaviour σ = s0, s1,

2For better readability we sometimes omit the parenthesis 〈. . .〉 and simply write s0, s1, . . . for
a sequence of states.

4.1 TLA - Temporal Logic of Actions 29

Definition 4.1.17 (Semantics of behaviour predicates)
Let P be a state predicate, A a transition predicate, F a behaviour predicate, and
let I be an interpretation over VR and σ = s0, s1, . . . be a behaviour, then:

• [[P]]I,σ is [[P]]I,σ0 .

• [[2[A]v]]I,σ is true if and only if [[A ∨ (v′ = v)]]I,(sn,sn+1) is true for all n ≥ 0.

• [[¬F]]I,σ is true if and only if [[F]]I,σ is false.

• [[F ∧G]]I,σ is true if and only if [[F]]I,σ and [[G]]I,σ are true.

• [[2F]]I,σ is true if and only if [[F]]I,σ|n is true for all n ≥ 0.

• If x ∈ VR, then [[∃x.F]]I,σ is true if and only if [[F]]β,σ is true for some β 'x I.

• If x ∈ VF , then [[∃∃∃x.F]]I,σ is true if and only if [[F]]I,τ is true for some τ 'x σ.

Having defined the syntax and the semantics of TLA we are now able to write
TLA expressions and to interpret them. The behaviours we are able to describe
until now have (in some cases) the possibility to stutter forever. To prevent such
behaviours we introduce the notion of fairness. This is done using the enabled
predicate of the next section.

4.1.2 Enabled Predicate

The predicate Enabled (A), where A is an action, is true in a state s if and only if
an A step can be taken in state s. Formally, the enabled predicate is defined as
follows:

[[Enabled(A)]]s =̂ ∃t ∈ St : [[A]](s,t)

for any state s.

Syntactically Enabled (A) is defined by:

Enabled(A) =̂ ∃c1, . . . , cn : A(v1
′/c1, . . . , vn

′/cn)

where A(v1
′/c1, . . . , vn

′/cn) represents the action A after substitution of the primed
variables vi

′ in A by the rigid variables ci.

Example 4.1.1

Enabled(y = (x′)2 + n) ≡ ∃c : y = c2 + n

If A represents an atomic operation of a program, then Enabled (A) is true in
those states where it is possible to perform the operation.

30 Chapter 4. Formal Methods

4.1.3 Fairness

We distinguish two kinds of fairness, namely weak fairness (WF) and strong fair-
ness (SF). Informally, weak fairness expresses that an action has to be taken if it
is enabled long enough.

Strong fairness says that an action has to be taken if it was often enough possible
to execute it. “Often enough” can be interpreted as infinitely often so that the
meaning of strong fairness is that an action is taken or that it is not infinitely often
possible to execute it. Something that is not infinitely often possible is eventually
impossible.

To give a formal definition of weak and strong fairness we use the temporal
operator 3, where 3F =̂ ¬2¬F . This formula asserts that it is not the case that
F is always false. This means that F is eventually true.

WF : 2(3 executed ∨ 3 impossible)
SF : 2(3 executed ∨ 32 impossible)

Applying some temporal logic rules together with the linearity of behaviours
we get:

WF : 23 executed ∨ 23 impossible
SF : 23 executed ∨ 32 impossible

In order to give a complete formal definition of WF and SF we have to clarify how
to interpret executed and impossible. To this end we take advantage of the enabled
predicate defined above.

executed is defined by: 〈A〉f
impossible is defined by: ¬Enabled(〈A〉f)

where 〈A〉f is defined to A ∧ f ′ 6= f where f is a state function. Thus, the formal
definition of weak and strong fairness becomes:

WFf (A) =̂ 23〈A〉f ∨ 23¬Enabled(〈A〉f)
SF f(A) =̂ 23〈A〉f ∨ 32¬Enabled(〈A〉f).

4.1.4 Further Definitions

A TLA specification allows stuttering steps, i.e. steps that leave all the variables
appearing in the formula unchanged. A stuttering step represents a change only to
some part of the system not described by the formula; adding it to the behaviour
should not affect the truth of the formula.

Definition 4.1.18 (Formula Invariant under Stuttering)
We say that a formula F is invariant under stuttering if and only if adding or
deleting a stuttering step to a behaviour σ does not affect whether σ satisfies F .

4.1 TLA - Temporal Logic of Actions 31

In TLA there is no possibility to write formulae that are not invariant under stut-
tering.

Definition 4.1.19 (Property)
A property is a set of behaviours that is invariant under stuttering. The set of all
behaviours satisfying a TLA formula can be identified with the formula itself.

Definition 4.1.20 (Safety Property)
A formula F is a safety property if and only if the following holds: F contains a
behaviour if and only if it is satisfied by every finite prefix of the behaviour.

Intuitively, a safety property asserts that something “bad” does not happen. An
example for a safety property is the formula 2[A]〈f〉.

Definition 4.1.21 (Canonical Form)
A formula that consists of a conjunction of an initial predicate, a term of the form
2[A]〈f〉 and fairness properties is in canonical form.

Definition 4.1.22 (Invariant under Stuttering)
A logic is invariant under stuttering, if none of its formulae can distinguish between
two stuttering-equivalent behaviours.

Invariance under stuttering is important in connection with refinement. A funda-
mental result about TLA is that it is invariant under stuttering, namely:

Theorem 4.1.2 If F is a behaviour predicate, I is an interpretation over VR, and
σ and τ are two stuttering equivalent behaviours, then [[F]]I,σ = [[F]]I,τ

An immediate consequence of theorem 4.1.23 is that a formula in canonical form
is always invariant under stuttering4. Furthermore, assuming that the initial state is
consistent, it is not possible to write down inconsistent TLA formulae (formulae in
canonical form), because every behaviour has the possibility to stutter, i.e. nothing
happens at all5.

As we have seen in Section 2.1, TLA is a logic without past operators. As
shown in [6] without a concept of past and the corresponding rules, a TLA proof
system is incomplete. Therefore, a concept of history-determined [66] variables was
introduced in TLA. Informally, a history-determined variable is a variable whose
value can be inferred from the actual and the past values of the other variables.

A formal definition of history-determined variables is the following.

3The proof of this theorem is given in [6].
4A TLA formula is invariant under stuttering even if the subscript does not contain all vari-

ables.
5Often such behaviours, where at a certain point nothing happens, indicate a faulty or unde-

sired behaviour and consequently a faulty specification.

32 Chapter 4. Formal Methods

Definition 4.1.23
A variable h is a history-determined variable for a formula Φ if and only if Φ implies
the formula Hist(h, f, g, v), where f and v are state functions, g is a transition
function and h does not occur freely in f or in v and h′ does not occur freely in g
and Hist(h, f, g, v) is defined by

Hist(h, f, g, v) =̂ (h = f) ∧ 2[(h′ = g) ∧ (v′ 6= v)]〈(h,v)〉

We use history-determined variables in the example of the non-lossy queue in
Appendix B.1.1.

4.1.5 Real-Time in TLA

In this section we show how TLA deals with real-time, the main part of which is
taken from [4].

As indicated in Section 2.2.3 TLA is not specially tailored to handle real-time.
TLA rather constitutes a more general logical framework in which real-time can be
specified (using the logical constructs TLA provides).

Real-Time is expressed in TLA specifications with the help of the variable now.
Although now has a special interpretation, it is a flexible variable in TLA. now has
the following properties:

• The value of now is always a real number6, i.e. now ∈ R.

• The value of now in a behaviour never decreases.

These properties are expressed by the formula RT :

RT =̂ (now ∈ R) ∧ 2[now′ ∈ (now,∞)]〈now〉

where R is the set of real numbers and (r,∞) is an open interval representing the
set {t ∈ R : t > r}. The formula RT describes behaviours where either now is
incremented or it remains unchanged (stuttering index).

It is convenient to separate time advancing steps from program steps. This
separation results in a structured and more readable specification7.

The separation is done by strengthening the constraints on now inRT as follows:

RTv =̂ (now ∈ R) ∧ 2[now′ ∈ (now,∞) ∧ (v′ = v)]〈now〉

where v represents the tuple of the program variables.

6One can also use the rational or even natural numbers, if it is adequate for the system to be
specified.

7To some extent the observer models described later in section 6 support exactly this idea of
describing different parts of the specification separately and it extends this idea by generating
different views on a specification.

4.1 TLA - Temporal Logic of Actions 33

Since RTv is equivalent to RT ∧ 2[now = now′]〈v〉, we get a conjunction of a
canonical form with RTv:

Init ∧ 2[N]〈v〉 ∧ RTv = Init ∧ 2[N ∧ (now′ = now)]〈v〉 ∧ RT

Real-Time properties can be expressed8 by placing timing bounds on actions.
These timing bounds are represented by a so-called timer. These timers restrict
the way the variable now can change.

Definition 4.1.24 (Timer)
A timer for a formula Φ is a state function t, such that

Φ → 2(t ∈ R ∪ {+
−∞})

Definition 4.1.25 (Upper–Bound Timer)
A timer t is used as an upper–bound timer by conjoining the formula:

MaxT ime(t) =̂ (now ≤ t) ∧ 2[now′ ≤ t′]〈now〉

MaxT ime(t) asserts that now is never greater than t.

Definition 4.1.26 (Lower–Bound Timer)
A timer t is used as a lower–bound timer for an action A by conjoining the formula:

MinT ime(t, A, v) =̂ 2[¬A ∨ (t ≤ now)]〈v〉

MinT ime(t, A, v) asserts that an 〈A〉v step can never occur if t is greater than
now. If an 〈A〉v step is taken then now is at least t or now is already greater than
t.

We now present two different TLA timers that have their origin in different
interpretations of the timing conditions inferred from the following example.

Example 4.1.3 A common type of timing constraints on an action A is the fol-
lowing. Action A must be taken within δ seconds after it is enabled. After an A
step the next A step must occur within δ seconds when action A is re-enabled.

We get at least two different interpretations for the timing constraints on A.

1. An A step must occur if A is continuously enabled for δ seconds. This con-
straint can be expressed using MaxT ime(t) where t is a timer that satisfies

8There are other possibilities to express real-time properties in TLA. The interested reader is
referred to [64].

34 Chapter 4. Formal Methods

the following formula:

V T imer(t, A, δ, v) =̂ t = if Enabled(〈A〉v) then now + δ
else ∞

∧ 2[t′ = if (Enabled(〈A〉v))′
then if 〈A〉v ∨ ¬Enabled(〈A〉v)

then now + δ
else t

else ∞
∧ v′ 6= v]〈t,v〉

Such a timer is called a volatile timer9.

2. An A step must occur if A has been enabled for a total time of δ seconds.
We express this constraint again by using MaxT ime(t) where t satisfies the
formula

PT imer(t, A, δ, v) =̂ t = now + δ
∧ 2[t′ = if Enabled(〈A〉v)

then if 〈A〉v then now + δ
else t

else t + (now′ − now)
∧ (v, now) 6= (v, now)′]〈t,v,now〉

Such a timer is called a persistent timer.

Since we have described these timers only by giving their informal interpreta-
tions and their definitions, we present in Appendix B a more demanding example
where timing constraints are used to make a lossy queue non-lossy.

4.1.6 Proofs in TLA

Until now we have given the syntax and the semantics of TLA formulae together
with special formulae to handle real-time. This is sufficient for writing specifications
and for some informal reasoning about these specifications. However, for formal
proofs we need rules of inference. We do not give all the proof rules for TLA and
only sketch some of them and show how they are built and how they are used.
The reader interested in detailed information concerning proofs in TLA is refered
to [6, 4].

The basic rules for temporal logic and rules for existential quantification are
mainly taken from [6].

9Other versions of the V T imer are mentioned in [64, 63].

4.1 TLA - Temporal Logic of Actions 35

4.1.6.1 Invariants

Most proofs require the invention of invariants as a starting point. Whether an
invariant holds can be proved with the following rule of inference:

P ∧ (N ∨ v′ = v) → P ′

P ∧ 2[N]v → 2P

In this rule P is a state predicate, N is an action and v is a state function. This
rule is sound in the sense that if we assume that P ∧ (N ∨v′ = v) → P ′ is valid, i.e.
it is true for all its interpretations and behaviours, then so is P ∧ 2[N]v → 2P .
Using this rule we can prove an invariant of a system that performs the actions
specified in N .

When an invariant P is proved it can be used. This is done according to the
following rule:

P ∧ P ′ ∧ (N ∨ v′ = v) → (M ∨ u′ = u)

2P ∧ 2[N]v → 2[M]u

As can be seen in this rule the invariant P is added to the antecedent of the formula
to be proved. Applying the rule we semantically jump to an arbitrary state of a
behaviour expressed syntactically by removing the 2 symbols. In this state we can
use P and P ′ to prove the theorem, since we know that P is an invariant for the
system. A generalisation of this rule is given in [6].

4.1.6.2 Quantification

The rules for existential quantification are familiar from first-order logic:

G→ F

∃x.G → F
, x ∈ VR, x 6∈ FVbeh(F)

G→ F [b/x]

G→ (∃x.F)
, x ∈ VR, b constant function

The rules for the temporal existential quantification (∃∃∃) are:

G→ F

∃∃∃x.G→ F
, x ∈ VF , x 6∈ FVbeh(F)

G→ F [b/x]

G→ (∃∃∃x.F)
, x ∈ VF , b state function

The existential quantification over flexible variables corresponds to hiding [66].
These rules play an important role in the refinement proofs for reactive systems.

4.1.6.3 Verification

Most TLA proofs [66, 4, 6] are done manually with the help of rules like the ones
above.

Another direction within the TLA approach is taken by the TLA+ model checker
TLC[97]. TLA+[65] is a specification language for concurrent and reactive sys-
tems that combines the temporal logic TLA with full first-order logic and Zermelo

36 Chapter 4. Formal Methods

Fränkel Set Theory. Furthermore, it supports large modular system specifications.
A language that satisfies all the needs of industrial applications will be too expres-
sive for model checking techniques and thus it can hardly be applied as the only
means to verify systems. TLC can handle a subclass of TLA+ specifications and
has mainly been used to debug specifications. The largest of these specifications
had more than 2000 lines of TLA+ specification. The interested reader is best
refered to [67] to see what TLC can cope with.

Since the VSE-II temporal logic specifications (TLSPEC’s) that we are going
to explain in the next chapter are rather similar to TLA, we skip the presentation
of the gasburner example within TLA and present it there.

4.2 VSE-II - Verification Support Environment 37

4.2 VSE-II - Verification Support Environment

4.2.1 Introduction

The VSE-II system is a tool for the formal development of software systems. It
consists of

• a basic system for editing and type checking specifications and implementa-
tions written in the specification language VSE-SL,

• a facility to display the development structure,

• a theorem prover for treating the proof obligations arising from development
steps as for example refinements,

• a central database to store all aspects of the development including proofs,
and

• an automatic management of dependencies between development steps.

Compared to VSE-I [52, 53], which was based on a simple, non-compositional
approach for state-based systems, VSE-II [54, 55] is extended with comprehensive
methods in order to deal with distributed and concurrent systems [87]. Furthermore,
it was enhanced by a more efficient and uniform proof support which makes use
of implicit structuring of the proof obligations. The basic formalism used in VSE-
II to specify and to verify state-based systems is close to TLA (Temporal Logic
of Actions) [66]. A refined correctness management allows for an evolutionary
software development [56, 90].

VSE-II is based on a methodology which uses the structure of a given specifi-
cation (e.g. parameterisation, actualisation, enrichment, or modules) to distribute
the deductive reasoning into local theories [89]. Each theory is considered as an
encapsulated unit, with its own local signature and axioms. Relations between
different theories, as they are given by the model-theoretic structure of the speci-
fication, are represented by

consequences or lemmata obtained by using local axioms and other formulae
included from linked theories.

This method of a structured specification and verification is reflected in the cen-
tral data structure of a development graph (see for example Figure 4.9), the nodes
of which correspond to the units mentioned above. It also provides a graphical
interface for the system under development. Different types of specifications are
displayed as different types of nodes, e.g. abstract data types as hexagons, while
the relations between the nodes are displayed as links in the development graph.

38 Chapter 4. Formal Methods

4.2.2 Abstract Data Types

Formal specification techniques treat data objects in computer science as mathe-
matical objects of a certain domain. To get rid of the technical details of data types
in real programming languages one either considers a single domain, which hap-
pens to be rich enough, as it is done in Z [94] or one abstracts away from incidental
properties of a particular domain by considering whole classes of structures as it is
done in the abstract data type approach [69, 26]. Here data objects are viewed as
resulting from the nested application of certain functions and a (concrete) data type
is given by a collection of domains (carriers) and functions on these domains. To
introduce abstraction, one separates syntax from semantics and considers classes of
algebras (or models) A which are interpretations of a fixed collection Σ of function
symbols f as functions fA on the carriers of A. Classes of algebras are restricted by
axioms of a logical language (over Σ) which is usually a sublanguage of first-order
predicate logic. The various approaches to abstract data types differ in the classes
of algebras that are considered and the corresponding description techniques that
are used for specification.

In VSE-II [55] full first-order logic is used to specify data types. In general, all
models A satisfying the axioms Ax, written A |= Ax, are considered. Two models
A1 and A2 of Ax will not necessarily be isomorphic, that is, they may differ not
only in the concrete representation of data objects. This allows for a really abstract
style of specification where one describes what a function does but not how this is
realized. A well-known example is encoding and decoding. On the abstract level it
might suffice to know that dec(enc(v)) = v leaving open a wide range of perhaps
highly sophisticated implementations for later refinements.

VSE-II also supports a more constructive style of specification, that allows the
user to introduce recursive data structures like lists and trees. Classes of algebras
are restricted by requiring that certain carriers are generated by constructors from
some Σ′ ⊂ Σ which means that for each element a of the corresponding carrier A,
there is a term τ over Σ′ that denotes a. In particular, we consider freely generated
structures where each element a ∈ A has a unique representation in Σ′. Figure
4.2 shows the specification of lists and the enrichment of the list data type by a
function and a predicate. Generated clauses bring about induction principles that
have to be used if inductive theorems or lemmata have to be proven. The axiomatic
counterpart of these clauses is generated by the system when the deduction unit
belonging to the specification is generated.

So far, we have discussed elementary (unstructured) specifications. In VSE-II
there are two ways of structuring data type specifications: generic specifications
and the import of specifications. By importing (using) several specifications en-
richment and (disjoint) union can be modelled in VSE-II. Generic specifications
provide an additional slot (parameter part) to describe the formal parameter in-
cluding axioms. Upon actualisation of a generic theory as part of the “using slot”
of some other theory, proof obligations are generated for these axioms. In Figure

4.2 VSE-II - Verification Support Environment 39

THEORY elems

PURPOSE "type element with default constant"

TYPES element

FUNCTIONS default : element

THEORYEND

BASIC list_data

PARAMS elems

USING NATURAL

list = nil WITH nilp |

cons(first : element, rest : list) WITH consp

VARS x, y, z : list

SIZE FUNCTION length : list -> NAT

BASICEND

THEORY list

PURPOSE "concatenation of lists and element-predicate"

PARAMS elems

USING list_data[element, default]

FUNCTIONS append : list, list -> list

PREDICATES _ ELEM _ : element, list

VARS x, y, z : list;

a : element

AXIOMS

FOR append :

append(nil, x) = x;

append(cons(a, x), y) = cons(a, append(x, y))

FOR ELEM :

a ELEM x <-> (EX y, z : x = append(y, cons(a, z)))

THEORYEND

Figure 4.2: Freely Generated Data Types

40 Chapter 4. Formal Methods

4.2 there is an example for such a parameterised specification. The parameter
theory Elems contains the definition for a type element. So list data can be
instantiated to form lists of elements of any kind. Furthermore, list data is used
in the theory list where additional functions (append) and predicates (ELEM) are
defined.

Structured theories are not flattened in VSE-II. Each specification is an entity
in its own right and linked to other specifications according to the used specifica-
tion building operation. The semantic counterparts of these operations determine
the translation into logical formulae (renaming) and also the flow of information
between the units corresponding to the specification entities.

VSE-II implements an elaborated theory of data type refinements [86]. Op-
erations of an (abstract) export algebra are implemented by programs that use
operations from some (more concrete) import algebra. The axioms of the export
specification give rise to proof obligations that are assertions about the implement-
ing programs. Properties of the import specifications are used in the course of
verifying the assertions in a programming logic.

4.2.3 Concurrent System Specifications

Large specifications are structured in several subcomponents which constitute the
complete system specification including the environment specification. In the de-
scription of these units elementary specifications and different structuring operators
for state-based systems are used.

4.2.3.1 Elementary Specifications

For the specification of state transition systems a specification language close to the
specification language of TLA [7, 66, 9] (see also Section 4.1) is used. In addition to
the theory of compositional development presented in [9], which covers the compo-
sition of systems using input and output variables, shared variables are supported
by the structuring operators in VSE-II. Furthermore, the form of a specification of
a component, also discussed in [9], is ∃∃∃ x1, . . . , xn.(Init∧2[SYS-STEPS]v̄ ∧FAIR),
where

• SYS-STEPS are the actions (steps) made by the system,

• v̄ is the stuttering index, which contains flexible variables of the system,

• Init is a predicate which holds initially,

• x1, . . . , xn are the internal variables, and

• FAIR stands for the fairness requirements of the system.

4.2 VSE-II - Verification Support Environment 41

In addition to the normal form, the user can specify an elementary specification
using a pseudo programming language which will be translated in subsequent steps
into the normal form given above. Moreover, it is possible to specify a system’s
behaviour by an arbitrary temporal logic formula. This specification style is usually
non-constructive and the proof support for such specifications is restricted to the
usual temporal logic proof rules.

4.2.3.2 Structuring of Specifications

One of the main means to manage complexity in real world applications is to
structure the development process. As a first step we have to provide operators
to structure specifications. Based on one or more such operators we then look for
a modular way of proving properties and of treating refinements. In the VSE-II
approach refinement proofs are supported by a general modular proof method.

In specifying industrial sized systems, composition operators play a central role.
Large specifications can only be handled in a safe and time saving way if the spec-
ification is structured. The search for suitable composition operators is connected
with the problem of modular proving and modular refinement of specifications.
Both the proving of properties of the composed system and the refinement proofs
should be done in a (local) independent way, if possible. In this context a refine-
ment proof appears to be a special case of the general methodology of modular
proofs.

In VSE-II there are two operators to structure state-based specifications: com-

bine and include. We focus on the combine-operator which models the concur-
rent execution of two components given by the specifications S1 and S2 but we
mention also the include operator and its semantics.

Components communicate by input-output variables or by shared variables. In
both cases large parts of the inner structure of the components, in particular the
flow of control, is hidden to the outside world. To achieve a proper synchronisation
with the environment, components may have to wait for a “response”.

Concurrency is modelled by considering all possible interleavings of actions of
the combined systems. Basically, a behaviour s̄ is a behaviour of the combined
systems if and only if it is a behaviour of both S1 and S2. However, in order to model
the concurrent execution of S1 and S2 by conjunction, that is by S1∧S2, we have to
allow environment steps in the (local) specifications S1 and S2. In [9] environment
steps are modelled by stuttering. This technique only works for communication by
input-output variables. It does not work in the presence of shared variables. A
more general approach [89, 54] is to record for each step the active component. For
this, a special predicate activespec is used. By using activespec it becomes possible
to distinguish steps of a component from steps of the environment which might
consist of several other components. Let A1, . . . , An be the elementary actions of
a component given by S. The action formula POSSIBLE–STEPS has to be of the

42 Chapter 4. Formal Methods

form

((A1 ∨ . . . ∨ An) ∧ activeS) ∨ (¬activeS ∧ x̄ = x̄′ ∧ ō = ō′) ,

where x̄ and ō are the internal and output variables of S. The second disjunct
claims that environment steps do not affect the variables “owned” by S. The system
builds this formula automatically from the list of actions for VSE-SL specifications
in canonical form.

Given two elementary systems S1 and S2 as above the combined system is given
by

S1 ∧ S2 ∧ 2(¬activeS1 ∨ ¬activeS2) .

For specifications in canonical form consistency is preserved by the combine

operator. This does not mean that the combined system really exhibits the intended
behaviour.

The second operator for the composition of systems, say S and S ′, is include.
S include S ′ represents a mechanism to provide certain functionalities which are
often used in the specification of systems without re-specifying them. It allows for
a hierarchical composition of state machines. The semantics of S include S ′ is
the conjunction of S and S ′. The steps of S ′ in the composed system are not left
open but the actions of the system S ′ occur now in the system S. In this way
the externally visible behaviour of S is also determined by the system S ′. This
composition style can end up in an inconsistent system. So proof obligations arise
which have to be proved in order to assure the consistency of the composition.

4.2.4 Assumption Guarantee Specifications

One of the advantages in working with VSE-II is that systems can be specified and
verified in a modular way. This means that a system needs not to be specified as a
single monolthic block, but as an arbitrary number of components with well-defined
interfaces for communication. Also the verification process supports the modular
specification style by allowing to prove properties local to components using as-
sumptions about the environment of the component. This style of specification
and verification has several advantages:

• The specification and the verification is not as sensitive to changes as it would
be in a monolthic specification style.

• Proofs become easier, since we do not always have to consider the whole
specification, i. e. the whole system behaviour, as a precondition.

• The understanding of the specified system gets deeper, a point corroborated
by the experience we made in specifying systems. For modular systems one
has to define the assumptions of each component explicitly. Thus, the de-
pendencies between the different system parts become obvious and explicit.

4.2 VSE-II - Verification Support Environment 43

• Systems are often embedded in an environment within which they are ex-
pected to work. Refining a system does not mean to refine the system and
the environment. Refinement of the system or part of the system separately
is only possible in a modular specification.

The assumption guarantee theory in the presence of shared variables is ex-
plained in detail in [89, 88], where we used a distributed Producer-Channel-Consu-
mer example to explain the theory and discuss the proof of the property that “no
information is lost in the communication between the components”.

4.2.5 Structured Deduction

Structuring specifications as described above supports readability and makes it
easier to edit specifications by allowing the user to use local notions. However, the
system exploits the structure beyond this purely syntactical level. Components of
a combined system can be viewed as systems in their own right, where certain parts
can be observed from the outside while most of the inner structure, including the
flow of control and local program variables are hidden.

In particular we can prove properties of a combined system in a modular way.
This means that we attach local lemma bases to components where local proofs
are conducted and stored. Exchange of information between lemma bases is on
demand. This approach has two main advantages: First, the given structure of
the specification is used to reduce the search space in the sense that large parts
of the overall system are not visible and, second, the revision process is supported
by storing the proofs local to certain lemma bases, thus making the export and
import of information (between lemma bases) explicit.

We now show some cases, the first two are simple real-time examples. After
these we present the gasburner and a more complex real-time example specifying
a control software for a storm surge barrier. These examples demonstrate how
real-time can be specified and how real-time properties can be verified in VSE-II.

4.2.6 A Simple Real-Time Example in VSE-II

Real-time constraints are usually used to place an upper bound on how long it
may take for a system to do something. In this sense real-time constraints can
be considered as a strong form of liveness, specifying not only that something
eventually happens but also when it must happen. In the specifications presented
here, real-time constraints usually replace liveness properties.

The example is first presented in a monolthic or so-called closed specification.
There is no environment and the system specification contains everything we need
to know about its behaviour. This version of the example is called the “non-
concurrent” version. After showing how a simple property of this specification can
be proved, we transform the non-concurrent version into a concurrent one. This

44 Chapter 4. Formal Methods

version is examined in the same way as the non-concurrent one. Hereafter, we
try to summarise the effects of this transformation and argue that the concurrent
version has some advantages over the non-concurrent one.

4.2.6.1 The Non-Concurrent Version

The development graph of our example is shown as a VSE-II screen shot in Figure
4.3. In our model we use a theory named Func where some constants and a function

Figure 4.3: Development Graph

rand are specified. This theory can be seen in Figure 4.4. The meaning of the
constants becomes clear when looking at the temporal logic part of the system.
The constant duration is defined to be greater than zero and the function rand is
defined as the sum of two natural numbers10.

The temporal logic part is represented by the temporal logic specification (TL-
SPEC) System shown in Figure 4.5. Within this component we have specified three
interface variables of type natural: x, timer and now. The behaviour of the system
is defined with the help of the action definitions of tick and send. The system
starts in an initial state where x and now are equal to 0 and timer is equal to
duration. The system can take a tick step, a send step or it can stutter which
means that all the variables mentioned in the stuttering index remain unchanged.
The effect of the tick action is that now gets incremented by one and x and timer

remain unchanged. The send action sets x to some “random” value which depends

10Natural numbers are predefined data-types in VSE-II. This is graphically indicated by a
zig-zag shape of the corresponding theory.

4.2 VSE-II - Verification Support Environment 45

Figure 4.4: Func Theory

Figure 4.5: TLSPEC System

46 Chapter 4. Formal Methods

on the time represented by the variable now and the value of x itself11. The timer

is set to the sum of now and duration and now remains unchanged.

This specification realizes an upper bound timer for the change of the variable
x. This means that we can guarantee (under some assumptions concerning the
function rand) that there are at least two different values for x in every interval of
length greater than duration. In other words, this means that if we compare the
value of the variable x at some time with the value it had at least duration time
units before, then it will have changed. This property can be expressed with the
following temporal logic formula:

2((now = t ∧ x = s) → 2(x = s→ now ≤ t+ duration))

We want to check whether this property holds for our specified system. Therefore,
we insert this formula into the safety model represented by the temporal logic
specification Safety (see Figure 4.6).

Figure 4.6: TLSPEC Safety

In order to start the proof of the mentioned property we have to translate the
specifications given in Figure 4.3 to logic. This is done automatically in VSE-II by
starting the verification process. In this process the logical representation of the
specification of the system is generated in the deduction unit. Hereafter we can
start proving the corresponding safety property (see Figure 4.6) that assumes the
name Export-axiom-1 (see Figure proof-structure) in the deduction unit.

11For simplicity we have taken rand to be a function that computes the sum of its arguments.

4.2 VSE-II - Verification Support Environment 47

Proof of the Property in VSE-II Proofs are visualised in VSE-II by trees
where nodes contain sequents and represent the result of rule applications. Part of
the main proof of our property is shown in Figure 4.7, where the nodes of the proof
tree can be “clicked on” to show the corresponding sequent . In order to close the

Figure 4.7: Proof of the Safety Property

proof of the property shown in Figure 4.6 we make use of two lemmata:

1. help-inv1: 2((x = s ∧ now = t) → 2(x = s→ timer ≤ t+ duration))

2. help-inv5: 2(x = s→ 2(x ≥ s))

To prove these two lemmata we need another three lemmata:

1. help-inv4: 2(now ≥ 0)

2. help-inv6: 2((x = s ∧ timer ≤ u) → 2(x = s→ timer ≤ u))

3. help-inv7: 2(timer ≤ now + duration)

We show the lemmata in their originally specified form together with their
dependencies. We do not tune the lemma-base in this small example12.

12It is clear that this lemma base could be optimised as some lemmata could be joined together
to one lemma or some of them might even be superfluous.

48 Chapter 4. Formal Methods

help-in5

Export-axiom-1

help-inv1

help-inv6 help-inv7

help-inv4

= uses^

Figure 4.8: Proof Structure

As can be seen in Figure 4.8 there is no circle in the “using” structure. Since
we have specified a closed system we do not need assumptions in the proofs that
are made completely in VSE-II and we are done.

In the following we have separated our example into two components, a system
and a clock component and we show the consequences which result from the new
concurrent design of the system with respect to specification and verification.

4.2.6.2 The Concurrent Version

The development graph of the concurrent version can be seen in Figure 4.9. There
we have a combine node (CompSys) that represents the composition of the temporal
logic specifications of the System and the Clock.

The System component consists of a single action send. This action is basically
the same as in the monolthic case (see Figure Figure 4.5). The same holds for the
tick action in the Clock component.

Whereas in the non-concurrent version communication was implicitly possible
because all the variables are visible to all the actions, communication has to be
specified explicitly in the concurrent version. It is realized via the variables timer
and now as indicated in Figure 4.9 by dotted lines between the System and Clock

components. In Figure 4.10 the syntactical representation of this connection in
VSE-II is given. Semantically the arrows indicate that

• the System component is only allowed to read the values of the variable now,

4.2 VSE-II - Verification Support Environment 49

Figure 4.9: Development Graph: Concurrent Version

but not to change it, and

• the Clock component may only read the timer variable.

Figure 4.10: CompSys Specification

The composed specification is represented by the CompSys component in Fig-
ure 4.9. Semantically, this is the conjunction of the System and Clock compo-
nents. The safety requirement shown in Figure 4.6 represents the property that
this specification should satisfy. The underlying datatype specifications as well as
the specification of the safety property are identical to the non-concurrent version.

50 Chapter 4. Formal Methods

Proofs in the Concurrent Version As in the monolthic version the proof
obligation corresponding to the satisfies-link is generated automatically. Its proof
can be done local to some component: System or Clock.

As indicated earlier in this work finding proofs local to components can have
advantages over a monolthic specification and proving style. In our small example it
is not a necessity to structure the specification, but it exhibits the general principle
we follow throughout this work. Considering refinement it is often the case that
only the system specification and not the clock specification has to be refined and
this might simplify the refinement steps of such specifications.

Recall that searching for proofs local to the System component we know nothing
about the environment (that consists of the Clock component in this case). All
the knowledge about the environment has to be inserted via assumptions that are
stored in the lemma base of the System component. The assumptions made about
the environment are used in this proof. The proof tree in Figure 4.11 represents
the proof of the proof obligation corresponding to the satisfies-link between the
components CompSys and Safety. This proof uses the CompSys-Export-axiom1

lemma13 as a main lemma inserted in the lemma base of the System component.
Changing the Safety component only affects this proof and not the proofs local to
the System component in which the CompSys-Export-axiom1 lemma was proved.

The proof of the main local System lemma CompSys-Export-axiom1, which is
identical to the proof obligation export-axiom1 (generated by the VSE-II system),
uses the same lemmata as the corresponding proof in the monolthic version. But in
this proof additional information is needed about the behaviour of the environment
which was explicitly given in the monolthic version. We need two assumptions
about the Clock in the System component:

1. Clock-ass-1: 2(¬is active(system) → (now′ = now ∨ now′ = now + 1))

2. Clock-ass-2: 2(is active(system) → now′ = now)

By introducing assumptions we are able to insert the proof relevant part of the
environment of the System component. We have to take care of the fact that the
assumptions have to be discharged in later proof steps. This means that a proof has
to be given that the environment really satisfies the assumptions the system has
made. For example, in writing Clock-ass-1 as 2(¬is active(system) → now ′ =
now + 1) we are not able to discharge this assumption since it does not represent
one of the possible behaviours of the environment of the System, namely the Clock.

The overall proof structure is illustrated in Figure 4.12. As can be seen there
it is very similar to the structure in the monolthic case if we omit the assumptions
and their proofs. The structure is not identical since some of the proofs are done
in different deduction units. The proof of Export-axiom-1 is done (virtually) in
the satisfies-link. This proof uses the lemma CompSys-Export-axiom1 which is

13This lemma is identical to the formula shown in Figure 4.6.

4.2 VSE-II - Verification Support Environment 51

Figure 4.11: Proof of export-axiom1

52 Chapter 4. Formal Methods

CompSys-Export-axiom1

help-inv6help-inv7

clock-ass-1 clock-ass-2 help-inv2help-inv1

TLSPEC System

clock-ass-1

clock-full-behavior disjoint-clock-system clock-full-behavior disjoint-clock-system

clock-ass-2

TLSPEC CompSys

Export-axiom-1

Satisfies Link

= uses^

= insert-spec-lemma^
clock-ass-1 = po-assumption-1

clock-ass-2 = po-assumption-4

Figure 4.12: Proof Structure

4.2 VSE-II - Verification Support Environment 53

a local lemma in the TLSPEC System. In order to prove this lemma we have
used help-inv1, help-inv2, help-inv6 and help-inv7 which are known from
the monolthic example. The assumptions clock-ass-1 and clock-ass-2 were
needed for the proof as indicated in Figure 4.12. These assumptions are inserted
since, by executing steps (actions) of the specified system within the process of
proving, we have to know what happens to the variables that are not changed
by the System component. Furthermore, we have to know how the IN variables
(input variables) of the System component are changed, if the System is not active.
All this has to be done since performing proofs local to a component means that
our knowledge is mainly restricted to the facts known about the component itself.
Thus, we know nothing about the behaviour of the environment. In the case of
the monolthic system specification the use of assumptions was not needed since all
proof-relevant information is available in the closed system specification. In the
concurrent version this was simulated by doing the proofs local to the CompSys

component.

Two interesting points concerning local and global proofs are:

• Since verification is not a one-way process it is often the case that one has
to adjust the specification in order to get the desired behaviour or to fix
specified bugs. Searching for proofs relative to the complete system means
that these changes of the specification always result in redoing all the proofs
unless they are not completely independent of the specification. Although
the system supports this work by reuse and replay techniques, it often ends
up in a far too big effort. In the other case the situation is usually14 much
better. Suppose for example, that we change the specification of the Clock

component. Since we have not done any proof local to the Clock component
only the proofs of the assumptions become invalid. So we only have to redo
these proofs and all other work can be saved15.

• In specifying a system concurrently and in structuring proofs by using lem-
mata it seems to be natural also to structure the proofs with respect to the
specification structure. In many cases even where assumptions were needed it
results in less proof work to do. Furthermore, it detects dependencies of the
specified system parts which are not obvious. In searching for a proof local to
a system component without using assumptions we definitely know that this
theorem was independent of the behaviour of the environment, whereas if we
do not succeed in closing the proof we realize at some point that we need
at least some parts of the behaviour of the environment within this proof.
With this “deep understanding” of the specified system we are often able

14It is clear that in the worst case where the changes of the specification are so profound that
the lemmata are no longer satisfied, we have to adapt the lemmata and search for new proofs.

15If the changes of the Clock component have the effect that we cannot discharge the
assumptions, we are not able to close the proof and we have to redo the proof of the
CompSys-Export-axiom1 (see Figure 4.12).

54 Chapter 4. Formal Methods

to insert only that part of the behaviour of the environment that is really
needed. This again results in a much clearer and explicit understanding of
the dependencies of the system components.

We present the gasburner example as it is specified and verified in VSE-II,
followed by the presentation of a more complex real-time example introducing a
general methodology to specify real-time in VSE-II.

4.2.7 The Gasburner in VSE-II

The development graph of the gasburner specified in VSE-II is shown in Figure
4.13. It consists of

Figure 4.13: Development Draph of the Gasburner Specification

• the abstract data type definitions natural and definition, and

• the temporal logic specifications gasburner and safety.

The abstract datatype natural is a predefined datatype in VSE-II. Natural
numbers are generated by zero and succ, i.e. every natural number is obtained by
a finite number of applications of the successor function succ on zero16.

The abstract datatype definition consists of the definition of a constant c

of type natural which is greater than 0. It contains the type declaration states

defined as an enumerated type. This type is used to model the safe (non leak)
and unsafe (leak) states of the gasburner. These states play an important role in
the specification of the behaviour of the gasburner.

16This specification is not monomorphic since it does not determine what the predecessor of
zero is. It can be any natural number.

4.2 VSE-II - Verification Support Environment 55

The Temporal Logic Specification The TLSPEC gasburner describes the
behaviour of the gasburner by declaring its interface and action definitions.

TLSPEC gasburner

PURPOSE "Specification of the gasburner."

USING definition

DATA OUT x, y, t : nat

OUT state : state_t

ACTIONS

phi_1 ::= state = leaking AND

state’ = non_leaking AND

x’ = 0 AND

UNCHANGED(y, t)

phi_2 ::= state = non_leaking AND

state’ = leaking AND

x >= 30 * c AND

x’ <= c AND x’ = 0 AND

UNCHANGED(y, t)

phi_1_star ::= state = leaking AND

state’ = non_leaking AND

NOT x + 1 <= c AND

x’ = 0 AND

UNCHANGED(y, t)

psi_1 ::= state = leaking AND

state’ = leaking AND

x + 1 <= c AND

y’ = y + 1 AND

x’ = x + 1 AND

t’ = t + 1

psi_2 ::= state = non_leaking AND

state’ = non_leaking AND

x’ = x + 1 AND

y’ = y + 1 AND

UNCHANGED(t)

SPEC INITIAL x = 0 AND y = 0 AND t = 0 AND state = leaking

TRANSITIONS [phi_1, phi_2, phi_1_star, psi_1, psi_2]

{x, y, t, state}

FAIRNESS WF(phi_1_star) {x, y, t, state},

WF(psi_1) {x, y, t, state},

WF(psi_2) {x, y, t, state}

SATISFIES Safety

TLSPECEND

56 Chapter 4. Formal Methods

The specification of the gasburner makes use (USING slot) of the abstract datatype
definition. In the following DATA slot the interfaces are defined using the flexible
variables x, y, t and state with the following meaning:

• The variable y accumulates overall time.

• The variable x represents a control clock that guarantees that the system
remains for at most c time units within the leak state and for at least 30 ∗ c
time units within non leak state.

• The variable t counts leakage time, i.e. the amount of time the system resides
in the leak state17.

• The variable state can have the values leaking or non leaking. It repre-
sents in some sense the state of the gasburner. If the variable has the value
leaking, then unlit gas flows out of the nozzle of the gasburner. In the
non leaking state this is not the case. This means that the gas flows out
and is burned or there is no gasflow at all. The specification of the gasburner
given here is able to distinguish between a leaking and a non-leaking situa-
tion. But it cannot distinguish whether the gas is burned or there is gasflow
at all in a non-leaking situation.

The mentioned variables occur in the specification within the five specified actions
of the system: phi 1, phi 2, phi 1 star, psi 1 and psi 2. Whereas the actions
phi 1, phi 2 and phi 1 star describe a change of the variable state, i.e. state

is changed from leaking to non leaking or vice versa, it remains the same in the
actions psi 1 and psi 2.

The specification uses symbolic values to express time bounds. For example, in
action phi 2 the term x >= 30 * c is used as a guard. The constant c makes the
system independent of a chosen time unit. Let us assume, for example, the value
of c is 10, then x has to be incremented 300 times, before the barrier is reached. If,
however, c is 1000, x has to be incremented 30000 times to reach the barrier. That
is, if we consider seconds as the basic time unit, then steps take 1

10
of a second or

a millisecond, respectively.

However, the real proof of the (safety) property is independent of specific values
of the constant c. Therefore, it is valid for all possible integer values and thus for
all granularities (even infinitesimal).

As you can see in the SPEC slot phi 1 star, psi 1 and psi 2 are assumed to be
executed in a fair manner. This way we prohibit the gasburner from doing anything
but stuttering.

17The variables t as well as y are needed to have the possibility to express properties like
safe and round (see Section 4.2.7.1). One of the first versions of the gasburner has used only
the variable x in its description. In order to prove something interesting about this system, the
property specification language was extended to introduce new clocks (so-called integrators). In
later versions of the gasburner these clocks were added to the system description.

4.2 VSE-II - Verification Support Environment 57

4.2.7.1 Proof in the Gasburner Scenario

In this section we present the proof of a theorem in the VSE-II system which treats
a property of the gasburner specified already in Section 4.2.7 (see also Section 4.3).
Besides others the following properties are proved with the VSE-II system:

1. 2(y ≥ 60c⇒ 20t < y) (safe)

2. 2(t ≥ 3c⇒ y ≥ 60c) (round)

Whereas safe expresses something about the right functioning of the system, it is
an objective of the system specification, the formula round expresses something like
a requirement on the system’s behaviour18. round guarantees that if the gasburner
was at least 3c time units in the leaking state, then the total time measured by y
is at least 60c time units.

In order to prove that safe and round are properties of the gasburner, we have
to find a suitable invariant. Such invariants are used together with the system
specification to prove properties like safe or round. Using such an invariant is
correct if it is proved to be a consequence of the system specification.

Finding a suitable invariant is, in general, not a mechanical process, but an
inventive process where the user must generate the appropriate idea.

In order to prove the safe condition we need to prove a proposition about the
relation between the time t the system spends in the state leak and the total time
y of observation. Considering the specification we can see that the leak state is
changed to non-leak after at most c time units, whereas non-leak can only be
left earliest after 30c time units. This amounts to a minimum ratio of 1 to 30 after
each full cycle of the state-machine, i.e. at the moment when the state enters leak.
Then the condition 30t ≤ y − t holds. We cannot prove this condition directly,
since it can only be proved as a consequence of the states visited before. Therefore,
we will formulate an invariant that also covers all possible states in-between. While
the automaton remains in one of the states leak or non-leak the ratio is changed
in one of both direction depending on the state. During state = leak the leak
time t grows exactly as fast as the time x since entering the current state. This
yields 30(t−x) ≤ y− t. When leaving and entering state non leak the value x has
reached at most c. Therefore, at this moment we have 30t ≤ y− t+30c. Again we
have to subtract x for the other states after entering and before leaving non leak

resulting in 30t ≤ y− t+30c−x. Now we are ready to present the whole invariant
I:

2(state = leaking ⇒ 30(t− x) ≤ y − t ∧
state = non leaking ⇒ 30t ≤ y − t+ 30c− x)

We are now going to show how this invariant can be used to prove the formulae
safe and round. Both cases are very similar, so we concentrate on the proof of

18From a logical viewpoint, safe and round are invariants of the gasburner.

58 Chapter 4. Formal Methods

the property safe. We represent the proof by identifying sequents by numbers in
brackets, (1) for example, and we use triples T consisting of

1. a number identifying a sequent,

2. a list of rules applied to that sequent where the application is in the order
the rule is mentioned, and

3. a set of result sequents which are represented by a set of numbers identifying
sequents.

The names of the sequents we are using and the corresponding sequences are
given in the following table:

(1) =̂ 2(state = leaking ⇒ 30(t− x) ≤ y − t ∧
state = non leaking ⇒ 30t ≤ y − t + 30c− x)

`
2(y ≥ 60c⇒ 20t < y)

(2) =̂ state = leaking ⇒ 30(t− x) ≤ y − t,
state = non leaking ⇒ 30t ≤ y − t+ 30c− x, y ≥ 60c
`
20t < y

(3) =̂ state = leaking, 30(t− x) ≤ y − t, y ≥ 60c ` 20t < y

(4) =̂ state = non leaking, 30t ≤ y − t + 30c− x, y ≥ 60c ` 20t < y

(5) =̂ state = leaking, x ≤ c, 20t ≤ y − 11t+ 30x, y ≥ 60c ` 20t < y

(6) =̂ t < 3c, y ≥ 60c ` 20t < y

(7) =̂ t ≥ 3c, x ≤ c, y ≥ 60c, 20t ≤ y − 11t+ 30x ` 20t < y

The proof rules applied are described in detail in Appendix C. There we have
listed a summary of the proof rules taken from the manuals of the VSE-II system
description. The proof is represented by the following sequence of triples of type
T 19:

19We omit some steps for readability.

4.2 VSE-II - Verification Support Environment 59

[(1), (always left, always right), {(2)}]
[(2), (case distinction on state = leaking), {(3), (4)}]
[(3), (Insert-lemma : 2(state = leaking ⇒ x ≤ c),

always left, case distinction on state = leaking), {(5)}]
[(5), (cut with t < 3c), {(6), (7)}]
[(6), (arithmetic, inequations), {}]
[(7), (arithmetic, inequations), {}]

Figure 4.14: Proof Tree of the Gasburner Scenario

We do not present the details for the proof of subgoal (4) because it can be
done analogously to the proof of subgoal (3). All the proofs including the lemmata
mentioned have been found with the help of the VSE-II system.

The critical point in finding such a proof is to find the right invariant. This
point is often neglected in the relevant literature, but it is obvious that finding the

60 Chapter 4. Formal Methods

right invariant is a very important, perhaps the most important, step in such a
proof.

The proof of the safety property using all the introduced lemmata and invariants
is shown as a VSE-II proof tree in Figure 4.14.

In examining finite systems we are normally not confronted with such problems.
They have the advantage that we do not need to invent such an invariant because
the whole behaviour of the system can be finitely computed. It might take a very
long time but in the case of the gasburner it is a solvable task for many properties.
How this can be done and how the gasburner is handled with the help of hybrid
automata is shown in Section 4.3.

4.2.8 A more Complex Real-Time Example in VSE-II

In this section we present a real-time modelling technique in VSE-II which is based
on a global clock architecture with a discrete time scale. We argue that this model
can be applied to a wide range of scenarios. We illustrate the modelling technique
with an example that describes an emergency closing system (ECS) that physically
consists of several huge gates to isolate the North Sea from the Eastern Scheldt, a
control system and several sensors to measure the water levels inside and outside
the gates. The emergency control system which is part of the overall system keeps
track of the changes of the water levels and closes the gates if the water level reaches
a dangerous limit. The specification and the proofs are generated with the VSE-II
tool [54, 87, 89].

A picture of the gates (see Figure 4.15) gives an impression of the ECS, actu-
ally the part of the ECS, the gates, that are controlled by the ECS control unit.
Specification and verification of the ECS was part of an industrial project at the
DFKI Safety and Security Department.

4.2.8.1 General Principles

In this section we discuss a general technique used to model real-time systems like
the ECS using the VSE-II system. Since ECS is a very special system which in some
aspects might not be considered typical for the kind of systems the methodology is
designed for, the discussion in this section is more general than necessary for the
formal model of the ECS.

Requirement Engineering A formal model like the one of the ECS is only one
constituent of the requirements engineering process. Starting point in the case of
the ECS is a document containing the (informal) requirements specification.

The requirements are given by verbal descriptions and an informal, mainly
graphical design of the system. The most important requirements deal with the
behaviour of the system in time. While the verbal description is not very precise

4.2 VSE-II - Verification Support Environment 61

Figure 4.15: The gates of the ECS

and therefore not sufficient in itself, the graphical description contains many details
of a particular solution, actually it is already close to a technical realization.

Our aim was to provide a formal requirement specification that does not refer to
the internal structure of the system and then to prove that these requirements are
satisfied by a system specification that is as close as possible to the design given in
the document. In contrast to the technical description in the document, the formal
system specification does not use concrete physical entities, like seconds, meters,
and milliamperes. In a separate step one would have to choose concrete values that
are in accordance with the constraints given by the formal specification.

Overall Structure of the Model The formal model consists of three compo-
nents: the system, the environment, and a component containing a global clock (see
Figure 4.16). The system takes as inputs values from sensors measuring various
water levels and values from switches that are set by an operator. Basically, it
computes two output signals, one for closing the barrier and one for opening it.
The design is fail safe in the sense that the first signal going down means close.

Both, the environment and the clock are separated from the system to allow for
a refinement of the abstract specification to the actual system. The environment
records the changes of the water levels as well as the different stati of the switches,

62 Chapter 4. Formal Methods

i.e. in this case there are no complex assumptions about the possible behaviour of
the environment. However, the steps of the three components have to be synchro-
nised to model the assumptions about their behaviour with respect to time. In
particular, not all states can be given a meaningful interpretation, Therefore, the
component containing the clock updates certain visible variables upon each tick. All
the remaining variables are internal and cannot be accessed by an observer. Note
that the synchronisation among the components as well as the choice of observable
variables implicitly formalises our way of looking at the system and is therefore
relevant for the notion of correctness.

The requirements specification only refers to the visible variables and has access
neither to the variables local to the system nor to the synchronisation mechanism.
However, it uses a variable time that provides with the current time in each state.

All three components are needed to formalise the safety properties of the ECS,
and in particular, the environment is modelled explicitly in a separate component
that computes new values for the input variables. Although an approach based

Figure 4.16: The Complete Scenario

on assumptions about the environment might be more abstract, the closed system
approach proposed here makes it easier to impose “rules” on the interaction between
the three components. This is done by realizing the flow of control with shared
variables acting as guards (indicated by circles within the components in Figure
4.16). An action (step) of a component can only be executed if the guard’s value
is true. For ECS we have imposed the following rules: First, the system reacts

4.2 VSE-II - Verification Support Environment 63

immediately (i.e. without any delay) to a change of the input variables caused
by the environment or the clock. Second, whenever the system has updated its
output values there has to be a tick of the clock. There is a problem with the first
rule. Immediately after the environment has changed some input value, the output
values of the system (in general) do not have the desired values. Moreover, since
there was no tick of the clock either, we might have different input values at the
same time. To solve this problem we distinguish between internal variables and
variables visible to the outside. The environment, the system, and the clock (in the
update component) change only internal variables. Whenever the clock ticks the
corresponding visible variables are updated with the current values of the internal
ones. With this in mind we can reformulate our rules: First, the system reacts
immediately (without any delay) to a visible change of the input variables caused
by the environment or the clock, and second, whenever the system has updated its
output values there has to be a tick of the clock and the new values of the internal
variables become visible to the outside. There are many ways of implementing
these rules. We have chosen a liberal implementation illustrated in Figure 4.16.
Less liberal but perhaps more systematic ones (excluding certain behaviours as
“not meaningful”) are obviously possible as well.

Environment actions Environment actions model changes in the state of the
environment. In the simplified scenario there is only one action which models the
change of the waterlevel (chw). In the general case there might be other actions.
All of these might occur in an arbitrary order but at most once before the system
updates its outputs and the next tick occurs. This behaviour is realized as follows.
If the environment is enabled and there has been a step, i.e. the waterlevel has
changed, it becomes disabled. The next step can only be done by the system20

component after which the clock ticks and enables the environment again.

A very general description of the behaviour of the environment is as follows:

enable − chw = true ∧
(waterlevel′ ≥ waterlevel ∨ waterlevel′ < waterlevel) ∧
enable − chw′ = false ∧
enable − clock′ = false

If there is more than one sensor for the waterlevel that provides an input to the
system each of them is treated separately. Any number of sensors may change (at
most) once between two updating steps of the system.

System The system itself is modelled as a single action which updates its outputs
according to certain conditions. One of the outputs is to set the timer appropriately.

20In talking about the “system component” we mean, depending on the context, either the
control part of the overall system or the whole system including all the subcomponents.

64 Chapter 4. Formal Methods

In general, the system can be modelled by several actions constituting its pos-
sible behaviour. But we have to take care of the fact that there should be no
environment and no clock steps as long as the system computes its outputs. There
are several solutions to this. In the ECS scenario we have chosen the simplest one,
where the system component consists of only one action. Since actions are atomic
there can be no intersection with the other components in this step.

Updates of the system are always possible. An update enables the clock. In
the simple scenario the system is modelled by the following step:

enable− clock′ = true ∧
waterlevel ≤ triggerlevel → timer′ = timer ∧
¬waterlevel ≤ triggerlevel → timer′ = time + duration ∧
time < timer′ → out′ = 0 ∧
¬time < timer′ → out′ = 1

In the first conjunct the system enables the clock, since the system has computed
the new signals. The computation of the outputs of the system depends on the
levels measured by the environment. If the waterlevel is less than the critical limit,
timer remains unchanged. Otherwise the timer is started. If the actual time is
less than the timer, the output out is 0 which in our system means that the gates
should close. Otherwise the gates should open.

A perhaps more regular behaviour is obtained if the update disables (blocks)
all environment actions.

Clock The clock component has to be specified as a single action. The clock
gets the waterlevels from the environment and the open or close signals from the
system as inputs. With every tick action the clock component makes these values
visible to the outside world. This architecture has the consequence that changes
of the environment, i.e. changes of the waterlevels, are immediately noticed by the
system.

Fairness In order to model the scenario properly we need fairness constraints.
As mentioned above, the update operation (made by the system) is always enabled
and therefore weak fairness suffices. If the clock becomes enabled by the execution
of an update21, it remains so until it is executed, since the waterlevel cannot be
changed again. In the general case where we have more than one environment
action like chw (change waterlevel) it might happen that an action that has not
yet been executed is taken. However, this can occur only finitely many times.
Hence, also in the case of the clock we can use weak fairness.

It is not too difficult to prove that the clock ticks infinitely often, that changes
of the environment lead to updates, and that changes of the waterlevel are enabled

21This does not hold for the first state.

4.2 VSE-II - Verification Support Environment 65

infinitely often. Formally this is written as

23〈tick〉time

2(enable − chw = true→ 3〈update〉enable−clock)

23enabled − chw = true

Safety properties We consider the property: When the waterlevel becomes
higher than the triggerlevel, then the output signal is low for the time given by
duration. The formalisation of this assertion is

2((t0 = time ∧ level > triggerlevel) →
2((t0 < time ≤ t0 + duration) → out = 0))

Time We assume a global discrete time scale with a clock that increases the value
of a flexible variable time (of type Nat) by one upon each tick. By a small example
(different from the ECS) we illustrate the general approach and argue that it is
applicable for many scenarios.

Figure 4.17 shows a possible behaviour of a system that reacts to an input signal
(signal−1). A safety requirement could be the following: If signal−1 is high for at

Figure 4.17: A possible Behaviour of a Real-Time System

least 1
500

sec starting from t0 and signal−2 is low at t0, then after at most 1
100

sec
signal−2 will be high for at least 1

4
sec. If we have the conditions

t1 − t0 ≥ 1

500
sec

t2 − t0 ≤ 1

100
sec

t3 − t2 ≥ 1

4
sec

for the time points t0, t1, t2 and t3, then this particular behaviour fulfils the require-
ment.

66 Chapter 4. Formal Methods

Our aim is to provide a formal specification of the system, (assumptions about)
the environment, and the clock, where in more complicated cases the system spec-
ification might by structured into several components running in parallel. In a
separate specification we formalise safety requirements like the one above. Since in
the formal model we use a discrete time scale we have to replace concrete durations
by constants that stand for an arbitrary but fixed number of time steps. The above
mentioned requirement can be formulated as a temporal logic formula in VSE as
follows:

2∀t0.((t0 = time ∧ signal−2 = low

∧ 2(t0 ≤ time ≤ t0 + d1 → signal−1 = high))

→
∃t2.((t2 − t0) ≤ d2 ∧ 2((t2 ≤ time ≤ t2 + d3) → signal−2 = high)))

The premise that signal−1 is high for at least d1 time units and that the allowed
delay is d2 time units take the fact into account that the system might need a
certain time d4 to react and also a certain time d5 to compute new output values.
In the case of ECS both reaction time and computation time are considered to be
zero according to the given documents22. For d3 it holds that t3 − t2 ≥ d3. In order
to prove the timing requirements the specification has to make certain assumptions
about relations between the durations mentioned. In our example the assumptions
d4 ≤ d1 and also (d4 + d5) ≤ d1 are required.

Having successfully proved the safety requirements we are free to choose con-
crete values for the durations according to the above mentioned constraints.

4.2.8.2 The Formal Model of the ECS in VSE-II

The specification of the ECS is modelled with VSE-II. The development graph
of the specification is shown in Figure 4.18. The structure of the development
graph is very similar to the description of the general scenario given in Figure 4.16.
The three nodes environment data, SVKO system and Update from Figure 4.18
correspond to the env, system and update nodes of Figure 4.16, respectively. The
node SVKO combine in Figure 4.18 represents the composed system and consists of
three concurrent components. The properties the system has to satisfy are specified
in the temporal logic specification SVKO safety. The whole VSE-II specification
of the Emergency Closing System is shown in Appendix A.

Synchronisation According to the requirements23 we started with, it can be
assumed that the system immediately (i.e. without any delay) notices a change of

22These documents describe the desired behaviour of the ECS. They were written by the com-
pany that has implemented the first version of the control system.

23These requirements are stated in the original system description of the manufacturing com-
pany.

4.2 VSE-II - Verification Support Environment 67

the input variables caused by the environment or the clock and instantaneously
computes an output. Obviously, the concurrent execution of the three components
has to be restricted appropriately to model this assumption. For example, if the
environment changes the waterlevel and the clock ticks twice before the system
has computed new output values, then there can be an intermediate state where a
safety requirement is violated. So the clock has to be blocked until the system has
finished its computation. Note that in cases where there are certain (restricted)
reaction and computation times a similar, slightly more complicated scheduling
regime is necessary to rule out behaviours where reaction or computation takes
too much time. In all these situations fairness, which forces a step to be executed
sometimes in the future, is not enough.

Technically the scheduling among the three components is realized by shared
variables acting as guards. An action (step) of a component can only be executed
if the guard is evaluated to true.

Unless there was a tick of the clock the variable time remains unchanged. When
the environment has changed the input for the system and the system has computed
the outputs, then the clock component should do a tick step. Otherwise there would
be two different situations with the same time stamp.

But even if the clock ticks frequently enough for the intermediate states we
may have different input values at the same time. Moreover, immediately after the
environment has changed some input values, the output values of the system might
not have the values requested by the requirements specification.

To overcome this problem we distinguish between internal variables and vari-
ables visible to the outside according to our general model. The environment, the
system, and the clock change only internal variables. Whenever the clock ticks the
corresponding visible variables are updated with the current values of the internal
variables. The observable variables remain unchanged in the intermediate states
mentioned above. If the internal variables are finally hidden (by existential quan-
tification over flexible variables), no regular behaviour can be observed for them in
the resulting system.

There are many ways of implementing these rules. We have chosen a liberal im-
plementation shown in Figure 4.16. The underlying datatype definitions are made
in the theories StatFunctions and BasicDatas (see Figure 4.18). The theories
natural and boolean are predefined theories in the VSE-II system.

In the following we describe the specifications of the different components.

Environment Specification In our application scenario, the physical environ-
ment consists of the natural changes of waterlevels which have various complex
causes. Since we do not want to specify these causes and since our main inter-
est is in specifying the real-time behaviour of the SVKO system we have specified
the environment as abstract as possible. There is only one action which repre-
sents the change of the (inside and outside) waterlevel sensors. These changes are

68 Chapter 4. Formal Methods

Figure 4.18: The VSE-II Development Graph of the ECS

transmitted to the SVKO system and to the Update component.

System Specification The data delivered from the environment to the system
are the values of the inside and outside waterlevel sensors. These data are used
in the SVKO system to compute the values of two signals: the CLOSE and the OPEN

signal. If the CLOSE signal is true, then the system should close the gates and if
the conditions for the OPEN signal are true, then the system should again open the
gates.

The computation of the system is modelled in a single action and separated
into two parts: a static and a dynamic part. In the static part we have modelled
diagrams from the original (graphical) description of the ECS as abstract data-
types and their corresponding functions. A very simple example is a 2/3 voter. It
returns true if at least two of the three inputs are true and false otherwise. This
voter is specified simply as a predicate voter2from3 with the following axiomatic
definition:

ALL sig1, sig2, sig3 :

voter2from3(sig1,sig2,sig3) <->

(sig1 = T AND sig2 = T) OR

(sig2 = T AND sig3 = T) OR

(sig1 = T AND sig3 = T)

4.2 VSE-II - Verification Support Environment 69

The specification of the dynamic part is more complex. This is mainly concerned
with the description of the timing behaviour of the system. To give an example
think of a mono-stable multivibrator24 which starts working by a high to low trigger
and then keeps the output signal low for at least d time units and leaves the
signal high in all other cases. To remember the values on the input line of the
multivibrator and thus to determine whether such a trigger has happened, we have
inserted a flexible variable (CLOSE TRIGGER) which stores the “old” value on the line
and the current value. Depending on the relationship between the old and the new
value the multivibrator is active or not. This is specified by a timer (timer CLOSE)
which is set in case the multivibrator is active and which remains unchanged in all
other cases. The following specification part models such a multivibrator:

IF (CLOSE_TRIGGER = T AND

CLOSE_TRIGGER’ = F)

THEN timer_CLOSE’ = time + d

ELSE timer_CLOSE’ = timer_CLOSE

In this formula we refer to a flexible variable time which represents the actual time
in the system. This variable is sent from the Update component to the SVKO system

component.

Update Specification The specification of the Update component models mainly
two properties of the whole system specification. First, it filters the signals visible
to the outside world, and second, it represents the global clock and increments the
time variable. The specification of the update component consists of a single action
which increments the time in every step and makes the variables representing the
CLOSE and the OPEN signal together with the variables representing the waterlevel
sensor values visible to the outside world.

Property Specification The ECS should satisfy some safety properties which
are important for the correct functioning of the system. We proved among others
the following two properties:

1. 2(¬(OPEN = T ∧ CLOSE = T))

2. 2((time = t0 ∧ Change Sensor Sig) =⇒
2((t0 < time ≤ t0 + d+ 1) =⇒ CLOSE = T))

Property 1 says that the OPEN and the CLOSE signal are never true at the same
time. Property 2 says that if the waterlevels get dangerous (expressed by the

24A monostable multivibrator knows exactly one stable state. If it is set to an unstable state,
then it will turn back to the stable state after a certain amount of time except it is again set to
the unstable state.

70 Chapter 4. Formal Methods

formula Change Sensor Sig) at time t0, then the system reacts by setting the
CLOSE signal to true for at least d time units beginning at time t0 + 1.

The proofs of these properties are all local within the SVKO system component.
Property 1 can be be proved without assumptions whereas the proof of property
2 is more complex. It needs assumptions which have to be guaranteed by the
environment of the SVKO system.

4.2.8.3 Summary

We have presented a general methodology how to specify real-time systems in
VSE-II and we have illustrated the methodology using a well-known example from
the literature and also a “real life” scenario with a very high potential risk. The
requirements engineering phase of the specification of the ECS used diagrams as
e.g. Figure 4.17 to analyse the timing behaviour of the system. Although numerous
tests have been performed, the formal analysis reveals some minor design and
specification problems and in particular one severe specification error that results
in the necessity to finally redesign the control unit.

Nevertheless, this way of analysing a real-time system is not very effective and
satisfying, because we can only show one special property of such real-time systems.
A more abstract and structured way would be to use timed automata [16] or hybrid
automata [47] to specify the timing behaviour of a system. The integration of these
automata into a formal software development process supported by VSE-II is shown
in the following chapter 5.

4.3 Hybrid Automata 71

4.3 Hybrid Automata

Hybrid Systems [16] are real-time systems which are embedded into an analog
environment. They contain discrete and continuous components and interact with
the physical world through sensors and actuators. Since they typically operate in
safety-critical situations, rigorous techniques for analysis are of high importance.

A common model for hybrid systems can be found in hybrid automata. Briefly,
such hybrid automata are finite graphs whose nodes correspond to global states.
Such global states represent some sort of general observational situation, as, for
instance, “the heater is on” or the “the heater is off”. During these global states
some continuous activity takes place. For example, coming back to the heater from
above, depending on the global state, the temperature rises or falls continuously
according to a dynamical law until there is a transition from one node to another.

These transitions are usually guarded with some constraint formula. that is
required to hold if the transition is supposed to be taken. Similarly, nodes have
some attached constraint formula that describes an invariant for this very node, i.e.,
some property that has to be true while the system resides within this node. The
dynamics of the system’s behaviour, on the other hand, is given by a description
of how the data changes with time.

Additionally, transitions are annotated with a general assignment that is re-
sponsible for the discrete action to be performed by taking the transition.

In what follows we formally describe hybrid automata, i.e., we define their
syntax as well as their semantics.

4.3.1 Syntax

As noted earlier, transition guards and node invariants are formulated by constraint
formulae. These are defined as follows.

Definition 4.3.1 (Constraint Terms, Constraint Formulae)
The set CT of Constraint Terms over a fixed variable set X is defined as the
smallest set containing X, and a set RC of real-valued constants, and, moreover, it
is closed under addition, subtraction, and multiplication with real-valued constants.

The set CF of Constraint Formulae (over the variable set X) is defined as the
smallest set that is closed under conjunction and contains > (truth) and ⊥ (falsity)
as well as all atoms of the form t1 > t2, t1 ≥ t2, t1 < t2, t1 ≤ t2, and t1 = t2, where
t1 and t2 are constraint terms taken from CT.

Such constraint terms and formulae are a prerequisite for the formal description
of the hybrid automata which are as follows.

Definition 4.3.2 (Hybrid Automata)
Hybrid Automata are tuples of the form (X,L, E , dif , inv , guard, act), where

72 Chapter 4. Formal Methods

• X is a finite set of real-valued data variables,

• L is a finite set of locations, i.e. nodes of a graph,

• E ⊆ L × L is a finite (multi)set of transitions, i.e. edges of the graph with
nodes from L,

• dif : L × X 7→ CT is a mapping that associates with each location and each
data variable a constraint term (with free variables taken from X), represent-
ing the change of the data variable within this location over time,

• inv : L 7→ CF is a mapping that associates with each location a constraint
formula (with free variables taken from X), representing the location invari-
ant,

• guard : E 7→ CF is a mapping that associates with each edge a constraint
formula (with free variables taken from X), representing the condition that
has to hold in order to travel along the edge, and

• act : E ×X 7→ CT is a mapping that associates with each edge and each data
variable a constraint term (with free variables taken from X), representing
the value of the variable after travelling along the edge.

As already noted earlier, we illustrate hybrid automata as graphs. As an ex-
ample we consider the gasburner example (see section 3).

ẋ = 1

ẏ = 1

ṫ = 1

x ≤ 1

ẋ = 1

ẏ = 1

ṫ = 0

Leaking Non Leaking

x := 0, y := 0,

t := 0

> | x := 0

x ≥ 30 | x := 0

Figure 4.19: Gasburner as Hybrid Automaton

The graphical representation of the gasburner in Figure 4.19 describes its formal
realisation with a Hybrid Automaton.

The nodes Leaking and Non Leaking represent discrete locations, whereas x, y
and t are data variables. Within each location we describe the location invariant
(x ≤ 1 in location Leaking) and the continuous activity which describes how the
values of the data variables change in time. In the example above the value of x
increases by 1 per time unit (say, second), i.e., the first derivative of the function
describing the behaviour of x over time is the constant 1.

4.3 Hybrid Automata 73

Edges are annotated with guards and discrete actions. Guards form a constraint
on the data variables to hold if a transition via the corresponding edge is to be
performed. The discrete action specifies how the data variables are to be changed
after taking the transition. In the above example the guard of the edge from
Non Leaking to Leaking is x ≥ 30 and the corresponding action is to set x to 0.

The above hybrid automaton thus describes the following behaviour: it starts at
location Leaking with data variables all set to 0. Within these locations the value
of the data variables increases by 1 every second. However, there is one exception.
The clock t has slope 0 in location Non Leaking, therefore it stopped there.

The automaton leaves location Leaking the latest after one second and resets x
to 0. Similarly, it remains within Non Leaking for at least 30 seconds and reenters
Leaking after having reset x to 0 again.

The clock x, therefore, acts as a control variable, y accumulates overall time and
t counts leakage time (the amount of time that the system resides within Leaking).

4.3.2 Semantics

The semantics of hybrid automata is defined by a formal description of all possible
“computations” of the automaton. These are sequences of states that represent
the temporal behaviour.

Definition 4.3.3 (State)
We define a state of a hybrid system as a pair (L, φ), where L ∈ L is a location
and φ : X 7→ R is a valuation of the data variables.

φ extends to (constraint) terms and (constraint) formulae as follows.

Definition 4.3.4
Let x ∈ X and c ∈ RC, where RC is a set of real-valued constants. Then

• If x ∈ X, then φ(x) is defined as in Definition 4.3.3.

• If c ∈ RC, then φ(c) = c.

• If t1, t2 ∈ CT , then φ(t1 ◦ t2) = φ(t1) ◦ φ(t2), where ◦ ∈ {+,−}.

• If c ∈ RC and x ∈ X, then φ(c ∗ x) = c ∗ φ(x).

Definition 4.3.5
Let P1 and P2 be constraint formulae and t1, t2 be constraint terms, then φ is
extended to constraint formulae as follows:

• φ(>) equals true and φ(⊥) equals false.

• φ(t1 ◦ t2) is true if and only if φ(t1) ◦ φ(t2) holds, where ◦ ∈ {<,≤, >,≥,=}.

74 Chapter 4. Formal Methods

• φ(P1 ∧ P2) is true if and only if φ(P1) and φ(P2) hold.

Definition 4.3.6 (admissible)
A state (L, φ) is called admissible if φ(inv (L)) holds, i.e. if the valuation of the
data variables does not violate the location invariant.

Definition 4.3.7 (transition-reachable)
Given two admissible states σ = (L, φ) and σ′ = (L′, φ′) we say that σ′ is transition-

reachable from σ – denoted by σ
tr7→ σ′ – if there exists a transition T = (L, L′) ∈ E

with source L and target L′, and both φ(guard(T)) and φ′(x) = φ(act(T, x)) for
each x ∈ X.

In other words, σ′ is transition-reachable from σ (via transition T) if the corre-
sponding guard is true and the valuation of the data variables in σ ′ is changed
according to the discrete transition action.

Definition 4.3.8 (timely-reachable)
We call σ′ = (L′, φ′) timely-reachable from σ = (L, φ) with delay δ – denoted by

σ
δ7→ σ′, where δ is a non-negative real number – if

1. L = L′ and

2. for each x ∈ X there exists a differentiable function fx : [0, δ] 7→ R, with the
first derivative ḟx : (0, δ) 7→ R, such that

(a) fx(0) = φ(x) and fx(δ) = φ′(x) and

(b) for all ε ∈ R with 0 < ε < δ: both inv (L)[x1/fx1(ε), . . . , xn/fxn
(ε)] and

ḟx(ε) = dif (L, x)[x1/fx1(ε), . . . , xn/fxn
(ε)] are true.

σ′ is timely-reachable from σ – denoted by σ
?7→ σ′ – if there exists a non-

negative δ ∈ R such that σ
δ7→ σ′.

Definition 4.3.9 (reachable)
σ′ is said to be reachable from σ with respect to H, σ 7→

H

σ′, if (σ, σ′) ∈ (
?7→ ∪ tr7→)∗.

Definition 4.3.10 (run)
A run ρ of H with initial state σ0 = (L0, φ0) is a sequence of states represented as

ρ = σ0 7→t0
f0
σ1 7→t1

f1
σ2 7→t2

f2
σ3 7→t3

f3
· · ·

where ti ∈ R≥0 and fi : [0, ti] 7→ (X 7→ R), such that

1. fi(0) = φi and

4.3 Hybrid Automata 75

2. inv (Li)[xj/fi(t)(xj)] holds for all 0 ≤ t ≤ ti, xj ∈ X, (Li, fi(ti))
tr7→ σi+1 and

for all 0 ≤ t′ ≤ t′ + δ ≤ ti : (Li, fi(t
′))

δ7→ (Li, fi(t
′ + δ)).

Given such a run ρ, we call the state σ0 the starting state of ρ and denote it
by start(ρ). The set of states contained in ρ is given as States(ρ) = {(Li, fi(t)) |
t ∈ R, 0 ≤ t ≤ ti}. The set of all runs of a hybrid system H with initial state σ is
denoted by runs(H, σ).

Definition 4.3.11 (position)
A position π of a run ρ = σ0 7→t0

f0
σ1 7→t1

f1
σ2 7→t2

f2
σ3 7→t3

f3
· · · is a pair π = (i, r) ∈

N × R such that 0 ≤ r ≤ ti.

We denote the set of positions of a run ρ as pos(ρ). Positions are ordered
lexicographically, i.e. (i, r) < (j, s) if and only if i < j or (i = j and r < s). Also,
(i, r) ≤ (j, s) if and only if (i, r) < (j, s) or (i = j and r = s). By ρ(π) with
π = (i, r) we denote the state (Li, fi(r)). Thus, States(ρ) = {ρ(π) | π ∈ pos(ρ)}.

Definition 4.3.12 (suffix)
Given a run ρ = (L0, φ0) 7→t0

f0
(L1, φ1) 7→t1

f1
· · · , an i ≥ 0, and a t with 0 ≤ t ≤ ti,

we define the suffix of ρ, starting at (Li, fi(t)) as

(Li, fi(t)) 7→ti−t
f ′

i
(Li+1, φi+1) 7→ti+1

fi+1
(Li+2, φi+2) 7→ti+2

fi+2
· · ·

where f ′
i(t

′) = fi(t+ t′). By suf(ρ′, ρ) we indicate that ρ′ is a suffix of ρ.

Lemma 4.3.1 Let ρ1, ρ2 be two runs with suf(ρ1, ρ2). Then there exists a position
(i, r) with (i, r) ∈ pos(ρ2) such that

start(ρ1) = ρ2((i, r))

ρ1((i
′, r′)) = ρ2((i + i′, r′)) for each (i′, r′) ∈ pos(ρ1), i

′ ≥ 1

ρ1((0, r
′)) = ρ2((i, r + r′)) for each (0, r′) ∈ pos(ρ1)

Definition 4.3.13 (non-zeno)
A run is said to be non-zeno if

∑n
i=0 ti diverges.

In general, it is assumed that the runs of the hybrid system under consideration
are all non-zeno.

Within hybrid automata data variables change both continuously and discretely.
The change is given by some rational number where the underlying base unit is in
general neglected. Nevertheless, we usually have certain base units in mind when
we specify systems, be it seconds, meters, or what have you. However, there might
be a need for switching the base unit, for example from seconds to milliseconds.
One reason for such a need will be found in Section 5 where we present the final
translation step from Hybrid Automata to VSE-II specifications. In the following
we define such a change of the base units formally.

76 Chapter 4. Formal Methods

Definition 4.3.14 (Granularity Change)
Given a Constraint Term T we define the granularity change of T by ∆ as

∆ ? x = x for x ∈ X

∆ ? (i ∗ x) = i ∗ x for x ∈ X, i ∈ Q

∆ ? i = ∆ ∗ i for i ∈ Q

∆ ? (t1 + t2) = ∆ ? t1 + ∆ ? t2

where Q represents the rationals.

For constraint formulae F “?” distributes in an natural way.

For some given hybrid automaton, H = (X,L, E , dif , inv , guard, act), we define

∆ ?H = (X,L, E , dif , inv ′, guard′, act′)

where

• inv ′(L) = ∆ ? inv (L) for all L ∈ L,

• guard′((L1, L2)) = ∆ ? guard((L1, L2)) for all (L1, L2) ∈ E , and

• act′((L1, L2), x) = ∆ ? act((L1, L2), x) for all (L1, L2) ∈ E , x ∈ X.

Moreover, we extend the notion of granularity change to runs as follows: Given

ρ = (L0, φ0) 7→t0
f0

(L1, φ1) 7→t1
f1

(L2, φ2) · · ·

then ∆ ? ρ is defined as

(L0,∆ ? φ0) 7→∆∗t0
∆?f0

(L1,∆ ? φ1) 7→∆∗t1
∆?f1

(L2,∆ ? φ2) · · ·

where (∆ ? fi)(∆ ∗ t) = ∆ ? fi(t) and (∆ ? φi)(x) = ∆ ∗ φi(x).

This change of the granularity is used within the proof of the correctness of the
translation of hybrid automata to VSE-II.

A typical procedure to prove temporal safety properties of hybrid automata is
to compute all the states that are reachable from the initial state and to check the
temporal property against this set of reachable states. This obviously requires that
this set of reachable states is finitely computable and representable25.

25In this work we shall not go into details what this verification approach is concerned. We
rather emphasise on how to use the results of the hybrid automata verification in the VSE-II
system and vice versa.

4.3 Hybrid Automata 77

4.3.3 Property Specifications

In the following we describe the syntax and the semantics of the (linear temporal
logic) property specification language (PSL) we utilise in this work. In chapter
5 the general scenario illustrated in Figure 5.1 indicates the usage of PSL and it
shows that the specification languages PSL and VSE-SL correspond in some sense.

Syntax of PSL We assume a set CT of constraint terms and a set CF of con-
straint formulae as defined in Definition 4.3.2. We add to the set CF constraint
formulae of the form state = L with L ∈ L where state is a reserved keyword of
PSL. Furthermore, we extend the definition of the set CF by assuming a variable
set X ∪ {state} where state is new to X. The rest of the definition of the PSL
syntax is as follows:

Definition 4.3.15 (Syntax of PSL)

1. Any constraint formula P ∈ CF is a formula of PSL.

2. If P and Q are formulae of PSL, then so are P ∧Q and P ∨Q.

3. If P is a formula of PSL, then so are 2P and 3P .

4. The expression state = L is a PSL formula, where L ∈ L and state is a
special variable not occurring in X.

We extend the notion of granularity change to PSL formulae as follows26:

∆ ? (P1 ∨ P2) = ∆ ? P1 ∨ ∆ ? P2,

∆ ? (P1 ∧ P2) = ∆ ? P1 ∧ ∆ ? P2,

∆ ? (3P) = 3(∆ ? P)

∆ ? (2P) = 2(∆ ? P)

∆ ? (state = L) = (state = L)

After the definition of the syntax of PSL we come to the definition of the
semantics.

Semantics of PSL The semantics of PSL formulae are defined with respect to
a hybrid automaton H and a run ρ of that automaton and in accordance with
Definition 4.3.2.

26Note that the case of a constraint formula is already covered by Definition 4.3.14.

78 Chapter 4. Formal Methods

Definition 4.3.16 (Semantics of PSL)
Let H be a hybrid automaton and σ be its initial state, then the semantics of PSL
formulae is defined as follows:

1. (H, σ) |= P iff (H, ρ) |= P for all ρ ∈ runs(H, σ)

2. (H, ρ) |= state = L iff start(ρ) = (L, φ) for some φ.

3. (H, ρ) |= t1 ◦ t2 iff start(ρ) = (L1, φ1) with t1, t2 ∈ CT , ◦ ∈ {<,≤, >,≥,=}
and φ1(t1) ◦ φ1(t2).

4. (H, ρ) |= P ∧Q iff (H, ρ) |= P and (H, ρ) |= Q

5. (H, ρ) |= P ∨Q iff (H, ρ) |= P or (H, ρ) |= Q

6. (H, ρ) |= 2P iff (H, ρ̄) |= P for every ρ̄ with suf(ρ̄, ρ)

7. (H, ρ) |= 3P iff (H, ρ̄) |= P for some ρ̄ with suf(ρ̄, ρ)

We have defined a linear time semantics for PSL formulae according to the
linear time semantics which is given to VSE-II specifications. In the literature,
for example in [23], property specification languages for hybrid automata are often
given a branching time semantics. There are two more temporal operators with
the following (informal) semantics:

• ∃2P holds iff P holds in any state of some run.

• ∃3P holds iff P holds in some state of some run.

Because of the fact that we use linear time semantics in VSE-II, it is more con-
venient to have also linear time semantics on the hybrid systems side in order to
define a translation function from one to the other.

Our experience in the field of formal specification and verification made by
specifying and verifying safety and security critical systems shows us that many
properties are of the kind 2φ, 3φ or 23φ. Therefore, we have chosen to take
a linear time semantics for hybrid automata. Nevertheless, we know that we lose
the ability to express properties of the kind that there is a state in some behaviour
where a property does not hold (description of a counterexample). This point is
related to further work to be done in this field. It is concerned with the extension
of the VSE-II semantics to branching time which includes the insertion of new
temporal operators and the extension of the current calculus available in the VSE-
II deduction unit.

4.3 Hybrid Automata 79

4.3.4 Example Proof with Hybrid Automata

In Section 4.2.7 we have presented how the property safe 2(y ≥ 60c ⇒ 20t < y)
of the gasburner can be specified and verified using the VSE-II system. In this
section we are going to present how it is proved using hybrid automata. However,
the property we are going to prove here is syntactically not the same:

2(y ≥ 60 ⇒ 20t < y)

The only difference is that there is no multiplication of the number 60 with the
constant c in this formula27. Here we assume some ground unit for constants like
60 (for example seconds). Although it is of no importance for the sequel, let us
assume for the moment that we mean sixty seconds in writing 60 in formulae like
above.

The informal description of the gasburner given as a graph in Figure 4.19 is
now converted to a formal description according to Definition 4.3.2:

Let

• X = {x, y, t},

• L = {Leaking,Non Leaking},

• E = {(Leaking,Non Leaking), (Non Leaking, Leaking)}, and

• init be defined as {(Leaking, (x := 0, y := 0, t := 0))}

then dif , inv , guard and act are defined as follows:

dif (Leaking, x) = 1 dif (Leaking, y) = 1

dif (Leaking, t) = 1 dif (Non Leaking, x) = 1

dif (Non Leaking, y) = 1 dif (Non Leaking, t) = 0

inv (Leaking) = x ≤ 1 inv (Non Leaking) = >
guard(Leaking,Non Leaking) = > guard(Non Leaking, Leaking) = x ≥ 30

act((Leaking,Non Leaking), x) = 0 act((Leaking,Non Leaking), y) = y

act((Leaking,Non Leaking), t) = t act((Non Leaking, Leaking), x) = 0

act((Non Leaking, Leaking), y) = y act((Non Leaking, Leaking), t) = t

To analyse whether the property safe holds for this hybrid automaton, we may
utilise all the proof procedures which are in some sense “compatible” to our se-
mantics of hybrid automata. One of the best known proof procedures is HyTech

27Why there is a c in the formula safe is explained in detail in Section 5.

80 Chapter 4. Formal Methods

[48]. There are other techniques presented in the literature as for example in [79]
which could have been taken as well.

In the following we first present the HyTech input file of the gasburner, then
we explain the input language according to this example28.

-- leaking gasburner

var x, -- time spent in current location

y: clock; -- total elapsed time

t: stopwatch -- leakage time

automaton gasburner

synclabs:;

initially leaking & t=0 & x=0 & y=0;

loc leaking: while x<=1 wait {dt=1 & dx=1 & dy=1}

when True do {x’=0} goto non_leaking;

loc non_leaking: while True wait {dt=0 & dx=1 & dy=1}

when x>=30 do {x’=0} goto leaking;

end

var init_reg, final_reg,b_reachable: region;

init_reg := loc[gasburner] = leaking & x=0 & t=0 & y=0;

final_reg := y>=60 & t>=1/20 y;

b_reachable := reach backward from final_reg endreach;

If empty(b_reachable & init_reg)

then prints ‘‘Non_leaking duration requirement satisfied’’;

else prints ‘‘Non_leaking duration requirement not satisfied’’;

endif;

Figure 4.20: Gasburner as HyTech Specification

The explanations we give here are mainly taken from the HyTech user guide
[48]. For a detailed description on how to use and how to write input files the
reader is best referred to this guide. The description of our automaton is separated
into the description of the system and the analysis commands:

• Input language: System description:

– Variables: In the var slot the variables are declared. The variable types
used here are clock and stopwatch (see the variable declarations for

28Note that there are many other possibilities and language constructs in the HyTech input
language which are not used in this example and therefore not presented here.

4.3 Hybrid Automata 81

x, y and t). A clock variable always has rate 1 whereas the rate of a
stopwatch must be 1 or 0.

– Linear constraints: A linear constraint is an inequality (<, <=, >, >=)
or equality (=) between linear expressions. Note that rational coefficients
must either be an integer, have an integer as numerator and a nonzero
integer as denominator or be omitted, in which case it is understood to
be 1. An example for such a linear constraint could be found in the
definition of the location Leaking.

– Automaton components: Each automaton is given a name which may
be used later in the specification. Its synchronisation labels29 are de-
clared. Its location and the initial condition on its variables must also
be provided. In our example the name of the automaton is gasburner.

Each automaton component (there is only one in the gasburner defi-
nition) includes a list of locations that is described in Figure 4.20 and
terminated by the keyword end.

– Locations: Each location is named and labelled with its invariant. Rate
conditions may also be provided where the term dx is used to denote ẋ.

Invariants are conjunctions of linear constraints. Each location is asso-
ciated with a list of transitions originating from it.

– Transitions: Each transition lists a guard on enablement and the succes-
sor location. Both the synchronisation label and the update information
are optional.

• Input language: Analysis commands:

– Region expressions: Region expressions in our example are built from
linear inequalities, constraints on locations, and region names, reacha-
bility, and conjunction.

∗ Linear inequalities: The most basic region expression is a linear
inequality. For example y>=60 is a region expression defining the
set of all states where the variable y has a value greater than or
equal to 60.

∗ Location constraints: For example loc[gasburner]=leaking is a
location constraint consisting of the location name leaking in the
automaton gasburner.

∗ Boolean combinations: The disjunction and conjunction (&) of re-
gion expressions is a region expression.

∗ Reachability: There are two specialised expressions for returning the
set of states reachable from any arbitrary region: one for forward
reachability and one for backward reachability. In the gasburner
example backward reachability is used.

29These labels are used to compute the composition out of the automaton components.

82 Chapter 4. Formal Methods

– Boolean expressions: The unary predicate empty applied to a region
expression evaluates to true if and only if its argument contains no states.

– Command statements: There are commands to perform common tasks
such as error-trace. Command statements are built from primitives for
printing and assigning errors. The only command statement used in the
gasburner is prints which prints its argument.

Now we are ready to give the gasburner specification as input to HyTech. It
computes the following output:

Non leaking duration requirement satisfied.

Looking at the temporal logic representation of the property we want to prove

2(y ≥ 60 ⇒ 20t < y)

we can see that it differs from the definition of the final reg region. That is
because the applied strategy was backward reachability. This means that we start
in some arbitrary state where final reg holds. From this state we go back and
try to reach a state in which init reg holds. If this succeeds we know that there is
at least one trace of the automaton which reaches a state where final reg holds.
Then the evaluation of empty on b reachable and init reg yields True. However,
the formula used to define final reg was the negated original formula. What we
have shown now is that from a state in the region init reg there is no way to a
state in the region final reg. It follows that in all states reachable from init reg

the negated final reg formula holds and we are done.

Now, as can be seen in the next chapter, our concern is to connect such a tech-
nique with the VSE-II system in an integrated way. Such a connection would have
advantages for both sides. On the one hand, the use of techniques as model check-
ing in VSE-II means that we introduce automation into an interactive verification
system. On the other hand, we give a tool like HyTech the possibility to use the
results of interactive verification techniques where induction plays an important
role. In the sequel we describe the theoretical aspects of this connection and how
it is achieved.

5
Integration of

Hybrid Automata
and VSE-II

So far we introduced VSE-II and (linear) hybrid automata using the specification
of the gasburner as an example. Our aim now is to embed linear hybrid automata
into VSE-II.

Integrating Hybrid Automata into VSE-II is an interesting theoretical task.
But there is also a practical perspective. Applying formal methods in industrial
sized systems often results in complicated specifications and large proofs and the
specification of real-time constraints does not ease the task of the software engineer
either. So we need a methodology which helps to control this complexity. The VSE-
II system supports the whole formal software development process, but it does not
explicitly support the specification of real-time systems. Hence the need for an
integration and our methodology is illustrated in Figure 5.1. Starting point is the
specification of the behaviour of a system with special emphasis on real-time using
a hybrid automaton Hybrid-AutSpec as indicated in Figure 5.1. Properties that
should be satisfied by this automaton are specified in Hybrid-PropSpec. The idea
is now to translate the hybrid automaton specification into a VSE-SL specification.
From this translated specification, we want to prove that the properties described
in VSE-PropSpec hold. A part of these properties is created by translating the

84 Chapter 5. Integration of Hybrid Automata and VSE-II

properties in Hybrid-PropSpec into VSE-SL properties. The properties can be
proved in the VSE-II tool. The proof can equally be done with a tool supporting
hybrid automata. In that case we can guarantee (see Theorem 5.2.18) that the
translated VSE-SL specification also fulfils these properties.

The advantages of such a method are:

1. A better support for the specification and verification of real-time systems
and properties.

2. A more adequate choice of means to specify and verify systems.

3. Integration of a fully automated technique into the VSE-II system.

Coming back to the gasburner example given in Section 3 and its realisation
with VSE-II and Hybrid Automata in sections 4.2.7 and 4.3.4 respectively, we make
a very simple observation. Whereas in the proof of the property safe in VSE-II we
have to invent an invariant, in the Hybrid Automata approach we have to decide
which proof strategy (forward or backward reachability analysis) is to be applied.
In such a “push button technology” the proof procedure automatically computes
the answer, provided it can handle the problem at all1. For problems where the
procedure does not succeed, techniques like abstraction, as for example presented
in [14], have to be applied. Such techniques need in general an interactive proof
system in order to show the correctness of the abstraction. Our method gives a
user the possibility to decide which technique to apply or to use both techniques
in an interleaved way. A scenario for this is the following. There are problems
where model checkers are not able to prove the desired property without using
additional lemmata or abstractions. In our approach we can first translate the
hybrid automaton into VSE-SL. There we can prove a lemma that helps to find
a proof for the property under consideration since VSE-II is not limited in the
way model checkers are. It is clear that this process needs user interaction because
already finding such a lemma (invariant) is not a trivial task in general. This lemma
then may help the Hybrid Automata tool to prove the more general property. The
scenario also works the other way round. The proof results for a hybrid automaton
using a tool like HyTech can be used in VSE-II without additional proof work. In
this way it is possible to work in an interleaved way where both sides gain their
benefits.

It is clear that we inherit the usual restrictions on automated methods as model
checking (usually they use a restricted form of induction, for example fixpoint
computations).

As indicated in Figure 5.1 we have to define the “satisfies”- and the “trans-
lation”-relation between the given specifications. “Satisfies” in both cases means

1Usually model checking strategies are limited to finite state problems in the sense that the
underlying fixpoint computation is guaranteed to terminate. Hybrid Systems are not finite state
systems in this strict sense.

5.1 Translating Hybrid Automata to VSE-II 85

Hybrid-AutSpec

VSE-AutSpec VSE-PropSpec

Hybrid-PropSpec

tr
an

sl
at

io
n

tr
an

sl
at

io
n

satisfies

satisfies

Figure 5.1: Relation: VSE-II- Hybrid Automata- Specification

model inclusion. In the VSE-II setting this is expressed by a satisfies-link in the real
specification as can be seen for example in Figure 4.13. In the hybrid automaton
setting the satisfies-link indicates that the hybrid automaton fulfils the specified
property. How this is implemented ([48, 78, 79]) is not our main concern at this
point, though.

5.1 Translating Hybrid Automata to VSE-II

The system we are considering is a hybrid automaton together with a definition of
an initial state and a description of properties of that automaton. The translation
has to be defined for all of these three parts.

5.1.1 Translation Function

Since hybrid automata as introduced in Section 4.3 do not have an explicit initial
location, we have to extend the definition accordingly. We assume that there is a set
init of pairs of type (CF, L) where every pair marks an admissible initial location
L with a predefined variable valuation represented by a constraint formula CF . In
our applications the set init consists of only one element. The definition of the
translation is divided into the translation of init, the translation of the continuous
actions and the translation of the discrete actions.

We use π as the name of the translation function. As can be seen in the next
definitions we have overloaded π in order to make the definitions more readable.
It will always be clear from the context which π is meant.

We first define π on constraint terms and constraint formulae. This definition
includes the main ideas of the translation of hybrid systems into VSE-SL specifica-
tions. It is the technical kernel of the translation. As we shall see later there will

86 Chapter 5. Integration of Hybrid Automata and VSE-II

be a quantification over the (rigid) variables c and n, occurring in the translation
of constraint formulae, depending on the property to be proved.

Definition 5.1.1 (Translation of Constraint Formulae)
Let f1, f2 ∈ CF , t1, t2 ∈ CT , x ∈ X, e ∈ Q and c, n be rigid variables of type N.
Then π is defined as follows:

π(f1 ∧ f2)
.
= π(f1) ∧ π(f2)

π(t1 ◦ t2) .
= π(f1) ◦ π(f2), with ◦ ∈ {=, <,>,≤,≥}

π(>)
.
= TRUE

π(⊥)
.
= FALSE

π(t1 ◦ t2) .
= π(t1) ◦ π(t2), with ◦ ∈ {+,−}

π(−t1) .
= −π(t1)

π(e ∗ x) .
= e ∗ x

π(x)
.
= x

π(e)
.
= c ∗ n ∗ e

Example 5.1.1 Let x, y ∈ X be variables. Then π(x ≤ 1)
.
= x ≤ c ∗ n and

π(3 ∗ x+ 2 ≤ y)
.
= 3 ∗ x + 2 ∗ c ∗ n ≤ y.

Definition 5.1.2 (Translation of initial states and automata)
Let init be a one element set {(f, L)} representing the initial state of an automaton
with f ∈ CF and L ∈ L, and let {x, x1, . . . , xn} be data variables and L1, L2

locations. Then we define π using the following formulae:

π({(f, L)}) .
= π(f) ∧ state = L

φ ≡ ∨
(L1,L2)∈E

(
state = L1 ∧ state′ = L2 ∧ π(guard((L1, L2)))∧

∧
x∈X

(x′ = π(act((L1, L2), x))) ∧ (π(inv (L2)))[x1/x
′
1, . . . , xn/x

′
n]

)

φ∗ ≡
∨

(L1,L2)∈E

(
state = L1 ∧ state′ = L2 ∧ π(guard((L1, L2)))∧

¬(π(inv (L1)))[x1/x1 + dif (L1, x1), . . . , xn/xn + dif (L1, xn)]∧

∧
x∈X

(x′ = π(act((L1, L2), x))) ∧ (π(inv (L2)))[x1/x
′
1, . . . , xn/x

′
n]

)

5.1 Translating Hybrid Automata to VSE-II 87

ψ ≡
∨

L∈L

(
state = L ∧ state′ = L ∧

∧
x∈X

(x′ = x + dif (L, x))∧

(π(inv (L)))[x1/x1 + dif (L, x1), . . . , xn/xn + dif (L, xn)]

)

stuttering ≡
∧

x∈X

x′ = x

The translation of a hybrid automaton including an initial condition (and treating
the safety part of the translation) is given by

π(H, init) .
= π(init) ∧ 2(φ ∨ φ∗ ∨ ψ ∨ stuttering)

a formula in VSE-SL normal form.

An initial state of a hybrid automaton is translated by setting the variable state
to the initial location and applying π to the constraint formula describing the initial
conditions of the hybrid automaton. This results in the initial state of the VSE-II
temporal logic specification.

Additionally, π is divided into three cases:

φ: This formula represents the translation of the discrete actions taken by the
hybrid automaton. The result of the translation is a disjunction with one
disjunct for every edge in the hybrid automaton. These disjunctive parts are
built from conjunctions representing the translation of locations, of the guard
of this edge, and of the action the hybrid automaton would take in travelling
along that edge. A further conjunct that acts as an enabling condition is
added to this formula. It represents the translation of the invariant of location
L2 where (L1, L2) is the edge under consideration. The variables in this
invariant are replaced by the values that the variables have after travelling
along the edge.

φ∗: The formula φ∗ is very similar to φ. It has an additional conjunct that
describes the case where the invariant of the location would be violated if the
system would make the next ψ step. As can be seen in the translation for
ψ, all actions represented by ψ are disabled. In such a situation the system
has to leave the location. This is ensured by requiring weak fairness of φ∗.
Together with the enabling condition of φ∗ it is assured that a φ∗ step will
be performed.

Removing φ∗ from the translation and requiring weak fairness of φ would
result in a behaviour violating the presented semantics of hybrid automata,
since not all discrete actions that can be taken have to be performed in a fair
manner.

ψ: Whereas φ and φ∗ represent the translation of the discrete part of the hybrid
automaton, ψ represents the translation of the continuous part. ψ is a dis-
junction of conjunctions. For every location in the hybrid automaton there
is a disjunct consisting of

88 Chapter 5. Integration of Hybrid Automata and VSE-II

– a conjunction representing the translation of the location,

– the constraint term describing the change of the data variables in this
location, and

– the translation of the location invariant.

Translation of Locations In the translation definition, the locations of the
hybrid system are used as enabling conditions for the VSE-SL actions. They are
used to indicate the change of a location.

Treatment of Fairness Since hybrid automata are assumed to behave fair in
the sense that they do not stop2, we have to add fairness constraints in a generic
way. There are some special situations which have to be analysed.

The treatment of fairness is divided into two cases. First, all the translations
of continuous actions from a hybrid system have to be fair. This is because time
is assumed not to stop in a hybrid automaton. Every disjunctive part (action) of
ψ is assumed to be executed in a fair manner. Therefore, we impose weak fairness
on every disjunct of ψ.

The second case is concerned with discrete actions. In this situation, which is
somehow more difficult, we can not impose fairness on every discrete action in the
VSE-SL translation since not every discrete action in a hybrid system is executed
fairly. A hybrid system which is in location Li and has no location invariant can stay
in this location forever executing the continuous actions without taking a discrete
action even if some guard is forever satisfied. In the Non Leaking location of the
gasburner there is exactly this scenario. We are not allowed to require fairness of
the discrete action in this situation. We are also not allowed to omit the fairness
constraints on the discrete actions in general. To illustrate this, think of a hybrid
automaton that is located in location Li and has a location invariant x ≤ 1 (see
the leaking state in the gasburner example). The automaton has only one discrete
action with source Li with a true guard. When the variable x is about to violate the
location invariant, the semantics of a hybrid automaton requires that the discrete
action has to be executed. The same has to take place in the translated version
and this can only be achieved by imposing fairness on the discrete action.

The solution we suggest3 deals with the insertion of actions in the translation
which are always executed in a fair manner, but which are only enabled if the
action must take place. This is realized by the formula φ∗ (see Definition 5.1.2).
The structure of φ∗ is close to that of φ with the exception that all disjunctive
parts of φ∗ have an additional enabling condition guaranteeing that these actions

2This holds for the non-zeno automata that are considered in this work.
3We know that there are other solutions to this problem. One that is also presented in this

section is for example to collect all the actions of a system in one action and to require weak
fairness for this very action.

5.1 Translating Hybrid Automata to VSE-II 89

are enabled if and only if a discrete action has to be taken. Because of fairness
they will be executed.

The translation of fairness as described above assures that a discrete action
must be taken if the local invariant requires it. Furthermore, if there is no invariant,
then the system can stay in this location forever. This behaviour of the translated
VSE-SL specification represents the behaviour of a hybrid automaton.

Thus, the translation of a hybrid automaton is represented by the following
formula:

π(H, init) .
= π(init) ∧ 2(φ ∨ φ∗ ∨ ψ ∨ stuttering) ∧ FAIR(φ∗) ∧ FAIR(ψ)

where FAIR(. . .) stands for the application of weak fairness as defined in Section
4.1.3.

Before presenting an example translation of a hybrid automaton we give another
possibility to handle fairness constraints. As explained before, we have to impose
fairness restrictions on the actions resulting from the translation process. In the
translation function π we have explicitly handled fairness by inserting the formula
φ∗ and impose weak fairness on it. Another, perhaps on the specification side more
elegant possibility is the following. We redefine π as follows.

Definition 5.1.3 (Translation of initial states and automata)
Let init be a one element set {(f, L)} representing the initial state of an automaton
with f ∈ CF and L ∈ L, and let {x, x1, . . . , xn} be data variables and L1, L2

locations. Then we define π using the following formulae:

π({(f, L)}) .
= π(f) ∧ state = L

φ ≡
∨

(L1,L2)∈E

(
state = L1 ∧ state′ = L2 ∧ π(guard((L1, L2))∧

∧
x∈X

(x′ = π(act((L1, L2), x))) ∧ (π(inv (L2)))[x1/x
′
1, . . . , xn/x

′
n]

)

ψ ≡ ∨
L∈L

(
state = L ∧ state′ = L ∧ ∧

x∈X

(x′ = x+ dif (L, x))∧

(π(inv (L)))[x1/x1 + dif (L, x1), . . . , xn/xn + dif (L, xn)]

)

stuttering ≡ ∧
x∈X

x′ = x

The only difference to the Definition 5.1.2 is that the formula φ∗ is removed and
we impose weak fairness on the disjunction of φ and ψ. The result is shown in the
following behaviour description:

π(H, init) .
= π(init) ∧ 2(φ ∨ ψ ∨ stuttering) ∧ FAIR(φ ∨ ψ)

90 Chapter 5. Integration of Hybrid Automata and VSE-II

Both translations4 are behaviour equivalent, this can be seen by the following
(informal) argument. The safety part of both translations is identical except the
formula φ∗. It is clear that φ∗ implies φ. Furthermore, we know that the only
situation in which φ∗ is enabled is reached, if and only if the next step of a ψ-
action would violate the location invariant. In this situation the corresponding
φ-action is enabled too. This results in the identical successor state compared to
the φ∗-action. We further know that in such a situation all the ψ-actions are not
enabled. With this we can see that φ∗ does not contribute anything new to the
safety part of the behaviour of the translated automaton.

Concerning the fairness part we examine the accepted behaviours of both vari-
ants of the translation. Both specifications, resulting from the different transla-
tions, require that if a ψ-action is enabled it has to be taken in a fair manner. In
the π2-translation this fairness is not as explicit as in the π1-translation but has the
same effect on the behaviour. Fairness of the disjunction of all φ- and ψ-actions
is required in the result of the π2-translation. In the following we investigate the
situations in which fairness influences the behaviour of the translated specifications
and compare the results of both translations.

• First, we reside within a location and only the continuous actions are enabled,
i.e. all the φ or φ∗ actions are disabled5. It is easy to see that both translations
require that the next step to be taken is a ψ-step.

• Second, we are in a situation where the next ψ-step would violate the loca-
tion invariant and there are some φ-steps enabled6. This situation is already
analysed with respect to the translation π1. It results in a specification where
the next action that has to be taken is a φ∗ action7. Considering the specifi-
cation resulting from π2 we know that all the ψ-actions are disabled in such a
situation and we can reduce ψ to false in the formula FAIR(φ∨ψ) and get
FAIR(φ). Because of the construction of the translations we can see that
the resulting behaviours are identical.

• The third case does not deal with situations as described in the first two
cases. It is more concerned with the fact that the translations should not
impose too many restrictions via fairness on the behaviours. In this case at
least two discrete actions are enabled simultaneously. As explained in the
introduction of the translation π1, the specification should not require that
every φ-action is executed fairly. We have already looked at this problem
during the introduction of φ∗. Also for π2 the requirement is fulfilled since

4In the following we will use π1 (see Definition 5.1.2) and π2 (see Definition 5.1.3) to name
the different translations. Where only π is mentioned the results apply to both.

5If actions are enabled, they can take place but they need not take place. This holds for both
translations.

6If there are no further enabled φ-steps, then we have a deadlock and thus a zeno automaton.
7The difference between a φ∗- and a φ-action in this case is that a φ-action can take place but

if no φ-action takes place, then a φ∗-action must take place because of the fairness constraints.

5.1 Translating Hybrid Automata to VSE-II 91

imposing fairness on the disjunction of all ψ- and φ-actions does not mean
to impose fairness on every disjunctive part. In the result of the translation
π2, it is only required that one of the φ-actions has to be taken if no other
action is enabled.

Thus, both translations result in behaviour equivalent specifications, i.e. they
accept the same behaviours. Therefore, the advantages of one over the other can
only lie in proof theoretic arguments. Taking this as a measure, it depends on the
proof technique to be used during a proof. With the deduction unit of VSE-II as
an exemplary proof environment we made the following observations. In proving
safety properties the only difference between the results of both translations is that
for π1 there is an additional case to be handled namely the one that is concerned
with φ∗. Because of the fact that this part of the proof can be handled identically
to the corresponding φ case, proofs do not become more difficult. In VSE-II there
is a reuse/replay technique implemented that can be used to do the part of the
proof concerned with φ∗ automatically. However, the fairness part changes. At
least in VSE-II it seems to be more convenient to have explicit fairness constraints
on the different actions constituting the behaviour of a system. The reason is,
that looking at the fairness of all the actions of a translated system at once results
in more complicated proofs than having to incorporate the fairness constraints of
single actions into a proof. This argumentation cannot be generalised however for
all VSE-II specifications containing fairness constraints.

Translation of PSL Formulae The translation function π distributes over
boolean and temporal operators in PSL formulae. A small example illustrates
this. The formulae 2(y ≥ 60 ⇒ 20t < y) and 3(x ≥ 3

2
⇒ y ≥ 9

10
) are translated

into 2(y ≥ 60cn ⇒ 20t < y) and 3(2x ≥ 3cn ⇒ 10y ≥ 9cn) respectively. In this
example we assumed a normalisation procedure applied to formulae of PSL.

Normalisation of a Hybrid Automaton We assume a certain kind of normal-
isation of hybrid automata that results in a hybrid automaton with no fractions
either in the guard, the initial condition, nor in the discrete or continuous action
definitions. A simple example will clarify the normalisation procedure.

Consider the hybrid automaton given in Figure 5.2. The normalised version of
this automaton is given in Figure 5.3.

Within this normalisation process the initial conditions, the guards and the
discrete changes are converted in a straightforward way by simply multiplying each
constraint formula with the denominators occurring in this formula. The result8 is
a constraint formula with no denominators as shown in Figure 5.3.

8This is done for cosmetic reasons here. Within the translation of a hybrid automaton a
granularity change is done that results in an automaton without fractions.

92 Chapter 5. Integration of Hybrid Automata and VSE-II

ẋ = 1
2

ẏ = 3
4

x ≤ 3
2

ẋ = 1

ẏ = 2
9

y ≤ x

L1 L2

x := 1
3 , y := 2

7

x = 3
2
| x := 0

y ≤ x | y := 1
2

Figure 5.2: Non-Normalised Hybrid Automaton

ẋ = 2

ẏ = 3

2x ≤ 3

ẋ = 9

ẏ = 2

y ≤ x

L1 L2

3x := 1, 7y := 2
2x = 3 | x := 0

y ≤ x | 2y := 1

Figure 5.3: Normalised Hybrid Automaton

The continuous part is handled differently. Here it is important to take care of
the rates of the variables within one location. This relation has to stay constant.
We achieve this by computing the least common multiplier of the denominator of
the slopes of all the variables in one location and multiply these slopes with it. In
our example these were ẏ = 3

4
and ẋ = 1

2
in location L1 and ẏ = 2

9
in location

L2. For location L1 the least common multiplier is 4 and for location L2 it is 9.
Performing the normalisation results in the automaton shown in Figure 5.3. The
comparison of the relation of the rates of the variable x and y in location L1 reveals
that it is identical to this relation in the original non-normalised automaton.

Translation of an Example We are now ready to give the translation of a
special hybrid automaton to demonstrate the translation.

Example 5.1.2 The hybrid automaton described here is an artificial example to
illustrate the translation π. The hybrid automaton exhibits a faulty or at least
undesired property of the specification; a zeno behaviour9. Without the zeno part
the automaton fulfils simple properties as for example 2(y ≤ x).

The automaton is illustrated in Figure 5.4 and formally completely defined as
follows:

9In this work we usually do not consider zeno automata, but even then the translation would
work correct.

5.1 Translating Hybrid Automata to VSE-II 93

Let X = {x, y}, L = {L1, L2, L3}, E = {(L1, L2), (L2, L1), (L1, L3), (L3, L1)}
and init be defined as {((x := 0, y := 0), L1)} then dif , inv , guard and act are
built as follows:

dif (L1, x) = 1 dif (L1, y) = 0 dif (L2, x) = 0

dif (L2, y) = 2 dif (L3, x) = 1 dif (L3, y) = 0

inv (L1) = (x ≤ 2) inv (L2) = (y ≤ x) inv (L3) = (x ≤ 1)

guard(L1, L2) = (x = 2) guard(L2, L1) = (y ≤ x) guard(L1, L3) = (x ≤ 1)

guard(L3, L1) = (x ≥ 2)

act((L1, L2), x) = 1 act((L1, L2), y) = y act((L2, L1), x) = x

act((L2, L1), y) = 0 act((L1, L3), x) = 0 act((L1, L3), y) = y

act((L3, L1), x) = 0 act((L3, L1), y) = y

ẋ = 1

x ≤ 2

ẏ = 2

y ≤ x

ẋ = 1

x ≤ 1

L1 L2

L3

x := 0, y := 0 x = 2 | x := 1

y ≤ x | y := 0

x
≤

1
|x

:=
0 x

≥
2
|
x

:=
0

Figure 5.4: Graphical Representation: Hybrid Automaton

The π-translation of this automaton is as follows:
π(init)

.
= x = 0 ∧ y = 0 ∧ state = L1

stuttering ≡ x′ = x ∧ y′ = y

94 Chapter 5. Integration of Hybrid Automata and VSE-II

φ ≡ (state = L1 ∧ state′ = L2 ∧ x = 2 ∗ c ∗ n ∧ x′ = c ∗ n ∧ y′ = y ∧
y′ ≤ x′) (φ1)

∨
(state = L2 ∧ state′ = L1 ∧ y ≤ x ∧ x′ = x ∧ y′ = 0 ∧ x′ ≤ 2 ∗ c ∗ n) (φ2)

∨
(state = L1 ∧ state′ = L3 ∧ x ≤ c ∗ n ∧ x′ = 0 ∧ y′ = y ∧ x′ ≤ c ∗ n) (φ3)

∨
(state = L3 ∧ state′ = L1 ∧ x ≥ 2 ∗ c ∗ n ∧ x′ = 0 ∧ y′ = y ∧
x′ ≤ 2 ∗ c ∗ n) (φ4)

ψ ≡ (state = L1 ∧ state′ = L1 ∧ x′ = x+ 1 ∧ y′ = y ∧ x + 1 ≤ 2 ∗ c ∗ n) (ψ1)

∨
(state = L2 ∧ state′ = L2 ∧ x′ = x ∧ y′ = y + 2 ∧ y + 2 ≤ x) (ψ2)

∨
(state = L3 ∧ state′ = L3 ∧ x′ = x+ 1 ∧ y′ = y ∧ x + 1 ≤ c ∗ n) (ψ3)

φ∗ ≡ (state = L1 ∧ state′ = L2 ∧ ¬(x + 1 ≤ 2 ∗ c ∗ n) ∧ x = 2 ∗ c ∗ n∧
x′ = c ∗ n ∧ y′ = y ∧ y′ ≤ x′) (φ∗

1)

∨
(state = L2 ∧ state′ = L1 ∧ ¬(y + 1 ≤ x) ∧ y ≤ x ∧ x′ = x∧
y′ = 0 ∧ x′ ≤ 2 ∗ c ∗ n) (φ∗

2)

∨
(state = L1 ∧ state′ = L3 ∧ ¬(x + 1 ≤ 2 ∗ c ∗ n) ∧ x ≤ c ∗ n∧
x′ = 0 ∧ y′ = y ∧ x′ ≤ c ∗ n) (φ∗

3)

∨
(state = L3 ∧ state′ = L1 ∧ ¬(x + 1 ≤ c ∗ n) ∧ x ≥ 2 ∗ c ∗ n∧
x′ = 0 ∧ y′ = y ∧ x′ ≤ 2 ∗ c ∗ n) (φ∗

4)

5.1 Translating Hybrid Automata to VSE-II 95

The translation has the following form:

(x = 0 ∧ y = 0 ∧ state = L1)∧
2(φ1 ∨ . . . ∨ φ4 ∨ φ∗

1 ∨ . . . ∨ φ∗
4 ∨ ψ1 ∨ . . . ∨ ψ3 ∨ stuttering)∧

WFx,y(φ
∗
1) ∧ . . . ∧WFx,y(φ

∗
4) ∧WFx,y(ψ1) ∧ . . . ∧WFx,y(ψ3)

This form is equivalent to the normal form:

(x = 0 ∧ y = 0 ∧ state = L1)∧
2[φ1, . . . , φ4, φ

∗
1, . . . , φ

∗
4, ψ1, . . . , ψ3]x,y ∧

WFx,y(φ
∗
1) ∧ . . . ∧WFx,y(φ

∗
4) ∧WFx,y(ψ1) ∧ . . . ∧WFx,y(ψ3)

Applying π2 from Definition 5.1.3 to the hybrid automaton results in the formula:

(x = 0 ∧ y = 0 ∧ state = L1)∧
2[φ1, . . . , φ4, ψ1, . . . , ψ3]x,y ∧
WFx,y(φ1 ∨ . . . ∨ φ4 ∨ ψ1 ∨ . . . ∨ ψ3)

The formulae φ3, φ4 and ψ3 show the “undesired behaviour” of the automaton.
From the formal description and from Figure 5.4 we see that if we are in location
L3, we can never leave it because the location invariant and the guard on the edge
(L3, L1) do not “fit”. The same happens in the translated version of the automaton.
Let us assume that we are located in state L3, then the only action which leads
to another state is φ4. This action is never enabled since being in state L3 means
that x is always less or equal to c ∗ n and in the enabled condition of φ4 x has to
be greater or equal to 2 ∗ c ∗ n10. In such a situation the translated automaton can
only do stuttering steps forever.

The following situation is another source for errors or design flaws in the speci-
fication of an automaton. Imagine a variant of the described automaton where the
action on the edge (L3, L1) is changed to x = 1 | x := 3. We have constructed a
situation where performing the discrete action would result in a situation where the
location invariant in L1 would be immediately violated. The π-translation solves
this problem like this. It adds an additional enabling condition to discrete actions
ensuring that these actions are only enabled if they do not lead to an inconsistent
state.

Other systems processing hybrid automata suggest different solutions to such
a situation. In [79] false would be the result in such a situation which indicates
that the system is not consistent.

10Remember that c and n are both greater than zero.

96 Chapter 5. Integration of Hybrid Automata and VSE-II

There are also other possibilities for the translation π, for example an exception
handling could be incorporated. This would be achieved by testing whether the
location invariant and the action would lead to an inconsistent state. Only in cases
where the location invariant is not violated the action can be taken. In the other
cases the action would lead to an exception state which can not be left. In this
way we can mark such an error in the translation of such an automaton.

It is clear that in both cases an indicator to show when the situation can appear
is needed. This indicator is already built into the π-translation.

The translation of the changed automaton is different in the action definition
of φ4. It is changed to φ′

4:

φ′
4 ≡ (state = L3 ∧ state′ = L1 ∧ x = c ∗ n ∧ x′ = 3 ∗ c ∗ n ∧ y′ = y ∧ x′ ≤ 2 ∗ c ∗ n)

Because of the fact that the formulae x′ = 3 ∗ c ∗ n and x′ ≤ 2 ∗ c ∗ n cannot be
satisfied in a behaviour (c ∗ n is assumed to be greater than zero), the action φ′

4

is never enabled. This implies that the state L3 can never be left in the VSE-SL
specification.

5.2 Main Theorem

Up to now we defined the translation function π and what remains to be shown is
that π behaves as desired, i.e. the diagram shown in Figure 5.1 commutes taking
π as the indicated translation. Before stating the theorem we first give some
preliminaries needed for the proof. We present the discretisation technique which
is followed by some lemmata concerning the granularity change (see Definition
4.3.14) and the discretisation applied to hybrid automata.

5.2.1 Discretisation

The discretisation of a hybrid automaton H that is performed by Γδ results in a
parameterised (δ) and discretised version of H. Later on we shall see that the con-
catenation of the discretisation and the granularity change of a hybrid automaton
is implemented by the π-translation.

Definition 5.2.1 (Discretisation)
Given a hybrid automaton H with H = (X,L, E , dif , inv , guard, act) and X =
{x1, . . . , xn} we define

Γδ(H) = (X,L, E ∪ E ′, dif ′, inv ′, guard ∪ guard′ ∪ guard′′, act ∪ act′)

where

• E ′ =
⋃

L∈L L× L,

5.2 Main Theorem 97

• dif ′(L, x) = 0 for all L ∈ L, x ∈ X,

• inv ′(L) = > for all L ∈ L,

• act′((L, L), x) = x+ dif (L, x) ∗ δ for all new (L, L) ∈ E ′, x ∈ X and

• guard′((L, L)) = inv (L)[x1/act′((L, L), x1), . . . , xn/act′((L, L), xn)] for all new
(L, L) ∈ E ′

• guard′′((L1, L2)) = inv (L2)[x1/act((L1, L2), x1), . . . , xn/act((L1, L2), xn)] for
all (L1, L2) ∈ E

Thus, Γδ(H) increases the data variables by multiples of δ.

Note that Γδ(H) can hardly be called a hybrid automaton anymore. It is rather
a standard (infinite state) automaton of the form (X,L, E ∪ E ′, guard ∪ guard′ ∪
guard′′, act∪act′) that is parameterised with δ. An example for such a discretisation
is the following.

Example 5.2.1 (Discretisation) As a starting point we take the graphical rep-
resentation of the gasburner presented in Figure 4.19. The discretisation computed
by Γδ results in the automaton shown in Figure 5.5.

ẋ = 0

ẏ = 0

ṫ = 0

>

ẋ = 0

ẏ = 0

ṫ = 0

Leak Non-Leak

x + δ ≤ 1 | x := x+ δ

y := y + δ

t := t + δ

> | x := x + δ

y := y + δ

t := t

x := 0, y := 0,t := 0 > | x := 0

x ≥ 30 | x := 0

Figure 5.5: Leaking Gas Burner as (δ) Discretised (Hybrid) Automaton

As can be seen in Figure 5.5 all the continuous changes are set to 0 and only
discrete steps remain. Within these steps the variables are incremented by the

98 Chapter 5. Integration of Hybrid Automata and VSE-II

rational number δ which is a free parameter. δ can be interpreted as any rational
number, especially it can be arbitrarily small and Corollary 5.2.7 will show that it
can be reduced to have the form 1

m
with m ∈ N.

Further important properties of a discretised automaton are given in the lem-
mata 5.2.2, 5.2.4, and 5.2.6.

Lemma 5.2.2 Let H = (X,L, E , dif , inv , guard, act) be a hybrid automaton with
initial state initH = (L, φ). Then it holds:

σ1 7→
H

σ2 if and only if σ1 7−→
Γδ(H)

σ2 for some δ ∈ Q+ with δ = n
m

, m,n ∈ N.

Proof: “⇐”: This direction follows obviously because we are considering only
linear hybrid automata.
“⇒”: The proof is by induction on i, where a position in a run ρ of H is given by
p = (i, r) with i ∈ N, r ∈ Q according to Definition 4.3.11.

Base case 1: p = (0, 0): Since the initial states of H and of Γδ(H) do not differ
because it is not changed during the discretisation process, we are done with this
case.

Base case 2: p = (0, r) with r ∈ Q: Informally this means that the hybrid
automaton H is still in its initial location, but the automaton has made some time
steps. This means that σ1

r7→ σ2 with σ1 = (L, φ), σ2 = (L, φ′), fx(0) = φ and
fx(r) = φ′ for all x ∈ X where X is the set of variables occurring in H.

From r ∈ Q it follows that r = n
m

with m, n ∈ N. Choosing δ = n
m

, we can
conclude as follows: Since σ1 7→

H

σ2 the location invariant of location L is never

violated during the time-transition steps done by H to reach state σ2. During the
discretisation process this location invariant is changed to a guard of the discretised
automaton Γδ(H). So we can conclude that the corresponding discrete action in
the discretised automaton is enabled in the initial state and can be executed. Thus,
it follows that σ1 7→

Γδ(H)
σ2 where the term x + dif (L, x) ∗ n

m
is identical to fx(r) for

all x ∈ X.

Induction steps:

1. Timely reachable case: p = (i, δ1):

The last step done was a change of the data-variables in some location. We

consider the run: σ1 7→
H

σ′
1

δ17→ σ2, where the position of σ′
1 is (i, 0) and the

position of σ2 is (i, δ1).

By the induction hypothesis there exists a δ ∈ Q with δ = n
m

, n, m ∈ N,

such that σ1 7−→
Γδ(H)

σ′
1. Since δ1 ∈ Q it follows that δ1 = n′

m′ with n′, m′ ∈ N.

Choosing δ′ = 1
m∗m′ we can conclude as follows: We see that σ′

1 is reachable
from σ1 in the automaton Γδ′(H), i.e. σ1 7−→

Γ
δ′

(H)
σ′

1, since each run ρ with

5.2 Main Theorem 99

σ1 7−→
Γδ(H)

σ′
1 can be extended to a run ρ′ with σ1 7−→

Γ
δ′

(H)
σ′

1 by replacing each

new discrete step, the steps introduced by the discretisation of Γδ(H), by
taking (n ∗ m′) times the corresponding discrete steps of Γδ′(H). Thus, we
divided one macro step of Γδ(H) into n ∗ m′ micro steps of Γδ′(H). All of
these micro steps can be extended. Otherwise, if one of the discrete steps of
Γδ′(H) cannot be executed, then with Lemma 5.2.3 this must have been the
case for Γδ(H) which is a contradiction to the precondition σ1 7−→

Γδ(H)
σ′

1.

Extending σ1 7−→
Γ

δ′
(H)

σ′
1 by σ′

1
tr7→ σ′

11
tr7→ . . .

tr7→ σ′
1(n′∗m) = σ2, i.e. we extend

the run by n′ ∗m discrete steps where in each of these steps the change of
the variables is computed by x + dif (L, x) ∗ δ′ = x + dif (L, x) ∗ 1

m∗m′ for all
x ∈ X. Executing this discrete action n′ ∗m times the incrementation of the
variable x is given by

x+ dif (L, x) ∗ n′ ∗m
m′ ∗m = x + dif (L, x) ∗ n′

m′
= x + dif (L, x) ∗ δ1 = fx(δ1)

for all x ∈ X. Again all of these steps can be executed, since otherwise there
must have been a state in the run of the original automaton H such that σ2

is not timely reachable from σ′
1 which is a contradiction to the precondition.

From this it follows that the constructed run is a run of Γδ′(H) and that
σ1 7−→

Γ
δ′

(H)
σ′

1 7−→
Γ

δ′
(H)

σ2 holds. This concludes this case.

2. Transition reachable case: p = (i+ 1, 0):

We are in a situation where the last step done by the automaton H was a
discrete one, i.e. σ1 7→

H

σ′
1

tr7→ σ2 where the position of σ′
1 is (i, r) with r ∈ Q

and the position of σ2 is (i+ 1, 0).

By the induction hypothesis there exists a δ = n
m

with n, m ∈ N such that
σ1 7−→

Γδ(H)
σ′

1. Because of the fact that we are considering only admissible states

in the run of H and since the discrete actions of Γδ(H) differ from the discrete
actions of H only with respect to an additional constraint in the guard of the
discrete action that expresses exactly the admissibility of the next state to
be reached executing this discrete step, we can conclude that σ1 7−→

Γδ(H)
σ′

1 and

thus that σ1 7−→
Γδ(H)

σ2.

This concludes the proof. 2

The following lemma makes use of the linearity of the constraints used in linear
hybrid automata. It states that a constraint formula that holds at some point
in time and that still holds δ time units later must be true at every time instant
inbetween.

100 Chapter 5. Integration of Hybrid Automata and VSE-II

Lemma 5.2.3 Let C be a constraint formula and let xi, 1 ≤ i ≤ n, be the variables
occurring in C. If C and C[xi/xi + ki ∗ δ] hold then it follows that C[xi/xi + ki ∗ δ′]
holds with δ′ ∈ {0 ≤ δ′ ≤ δ}.

Proof: The proof is by structural induction on constraint formulae.

Base case 1: C =̂ a1x1 + . . .+ anxn = b with a, b ∈ RC.
From the precondition we know that (1) a1x1 + . . .+anxn = b and that (2) a1(x1 +
k1δ) + . . . an(xn + knδ) = b. Using (1) and (2) we can conclude the following:

a1(x1 + k1δ) + . . .+ an(xn + knδ) = b

a1x1 + . . .+ anxn + a1k1δ + . . .+ anknδ = b

b + a1k1δ + . . .+ anknδ = b

a1k1δ + . . .+ anknδ = 0

δ(a1k1 + . . .+ ankn) = 0

From this we can infer that δ = 0 or that (a1k1 + . . . + ankn) = 0. Thus, we can
conclude as follows:

a1(x1 + k1δ
′) + . . . an(xn + knδ

′) =

a1x1 + . . .+ anxn + a1k1δ
′ + . . .+ anknδ

′ =

b + a1k1δ
′ + . . .+ anknδ

′ =

b + δ′(a1k1 + . . .+ ankn) (5.1)

We know that δ = 0 or that (a1k1 + . . . + ankn) = 0. The result of 5.1 is in both
cases b and we are done.

Base case 2: C =̂ a1x1 + . . .+ anxn < b with a, b ∈ RC.
From the preconditions we can infer the following:

a1(x1 + k1δ) + . . .+ an(xn + knδ) < b

a1x1 + . . .+ anxn + a1k1δ + . . .+ anknδ < b

δ(a1k1 + . . .+ ankn) < b− (a1x1 + . . .+ anxn) (5.2)

Now we have to prove that

a1x1 + . . .+ anxn + δ′(a1k1 + . . .+ ankn) < b (5.3)

For the sequel we assume that δ 6= 0 since otherwise we can conclude that δ ′ = 0
and from the precondition we know that a1x1 + . . .+anxn < b holds. Thus, we can
conclude that 5.3 holds and we are done in this case.

Now we consider three cases for the term a1k1 + . . .+ ankn:
Case a1k1 + . . . + ankn = 0: In this case we can immediately conclude that 5.3 is
less than b because of the precondition that a1x1 + . . .+ anxn < b holds.

Case a1k1 + . . .+ankn < 0: It is evident that 5.3 is less than b under this condition.

5.2 Main Theorem 101

Case a1k1 + . . .+ ankn > 0: With 5.2 we get the following:

δ′(a1k1 + . . .+ ankn) ≤ δ(a1k1 + . . .+ ankn)

< b− (a1x1 + . . . anxn) (5.4)

With 5.4 we can infer:

a1x1 + . . .+ anxn + δ′(a1k1 + . . . ankn)

< a1x1 + . . .+ anxn + b− (a1x1 + . . .+ anxn)

= b

Thus, it follows that (5.3) holds and we are done.

Induction step: C =̂C1 ∧ C2

We know that

C1 ∧ C2 ∧ (C1 ∧ C2)[xi/xi + kiδ]) (5.5)

holds. From 5.5 we can conclude that

C1 ∧ C1[xi/xi + kiδ] ∧ C2 ∧ C2[xi/xi + kiδ]) (5.6)

holds. By the induction hypothesis we get the following

C1[xi/xi + kiδ
′] ∧ C2[xi/xi + kiδ

′]) for δ′ ∈ {0 ≤ δ′ ≤ δ} (5.7)

From 5.7 we know that

(C1 ∧ C2)[xi/xi + kiδ
′] for δ′ ∈ {0 ≤ δ′ ≤ δ} (5.8)

follows and this concludes the proof. 2

Lemma 5.2.4 Let H be a hybrid automaton, then for all δ ∈ Q+:

σ1 7−→
Γδ(H)

σ2 if and only if ∀n ∈ N : σ1 7−→
Γ δ

n

(H)
σ2

Proof: “⇐”: Choosing n to be 1 we are done.
“⇒”:
We are considering only admissible states in a run of H. Therefore, we can confine
ourselves to consider only the new discrete actions of Γδ(H) and Γ δ

n
(H) inserted

within the discretisation process.

The proof is by induction on the position p = (i, r) in the run ρ of Γδ(H) with
start(ρ) = σ1. Because of the discretisation of Γδ(H) the positions p in the run ρ
are of the form p = (i, 0).

102 Chapter 5. Integration of Hybrid Automata and VSE-II

Base case: p = (0, 0):
Since the initial states of Γδ(H) and Γ δ

n
(H) are not changed by the discretisation

process, we are done with the base case.

Induction step: p = (n, 0):
We assume that σ1 7−→

Γδ(H)
σ2 and that ρ((n + 1, 0)), which means that the position

of σ2 in the run ρ is (n + 1, 0). Let σ′
2 be the state of the run ρ of Γδ(H) with

position (n, 0). By the induction hypothesis we know that σ1 7−→
Γ δ

n

(H)
σ′

2 holds. As

argued before we have to consider only the new discrete actions of Γδ(H) (Γ δ
n
(H))

respectively, since in case that σ2 is reached from σ′
2 by an originally discrete step

of H, then this step is the same for Γδ(H) and Γ δ
n
(H) because the discretisation

does not change these steps and we are done.

Let C be the guard of the discrete action of Γδ(H) taken in state σ′
2 that leads

to state σ2: Then we know that C[xi/xi + ki ∗ δ] holds in state σ′
2 where xi are the

variables occurring in the discrete action and the ki represent the corresponding
growth rates.

By Lemma 5.2.3 we can conclude that C[xi/xi + ki ∗ δ′] with δ′ ∈ {0 ≤ δ′ ≤ δ}
holds in state σ′

2. From this we can deduce that ∀n ∈ N : C[xi/xi +ki ∗ δ
n
] holds. It

follows that the corresponding guard in the automaton Γ δ
n
(H) is true throughout

the n-times execution of the discrete action. Thus, we have that σ ′
2 7−→

Γ δ
n

(H)
σ2 and

together with the induction hypothesis it follows that σ1 7−→
Γ δ

n

(H)
σ2 and we are done.

2

Lemma 5.2.5 For any atemporal PSL-formula Φ we have

H, σ |= 2Φ if and only if ∀δ ∈ Q+ Γδ(H), σ |= 2Φ

Proof: “⇒”: obvious
“⇐”:
Assume that H, σ |= 2Φ does not hold. Then we can conclude as follows:
¬(H, σ |= 2Φ) if and only if
¬(H, ρ |= 2Φ for all ρ ∈ runs(H, σ)) if and only if
¬(H, ρ̄ |= Φ for all ρ̄ with suf(ρ̄, ρ) for all ρ ∈ runs(H, σ)) if and only if

H, ρ̄ |= ¬Φ for some ρ̄ with suf(ρ̄, ρ) for some ρ ∈ runs(H, σ)
Let τ = start(ρ̄) and σ 7→

H

τ with Φ does not hold in τ . With Lemma 5.2.2 we

have:
σ 7→

Γδ(H)
τ for some δ ∈ Q+ and Φ does not hold in τ . It follows that there exists

a δ ∈ Q+, such that Γδ(H), σ 6|= 2Φ which is a contradiction to the precondition. 2

5.2 Main Theorem 103

The following theorem, which expresses that a hybrid automaton and the Γδ-
transformed version of it exhibit the same PSL-properties, is one of the most im-
portant theorems needed in Theorem 5.2.18, the main theorem.

Theorem 5.2.6 Let Φ be an atemporal PSL-formula, i.e. Φ contains no temporal
operator. Then

H, σ |= 2Φ if and only if ∀δ ∈ Q+ ∃n ∈ N : Γδ/n(H), σ |= 2Φ

H, σ |= 3Φ if and only if ∃δ ∈ Q+ ∀n ∈ N : Γδ/n(H), σ |= 3Φ

Proof: Proof of the first case:
“⇒”:
From H, σ |= 2Φ it follows that ∀δ ∈ Q+ : Γδ(H), σ |= 2Φ holds by Lemma 5.2.5.
Choosing n to be 1 we are done.
“⇐”:
Assume that H, σ 6|= 2Φ. With Lemma 5.2.5 we can conclude that ∃δ ∈ Q+ :
Γδ(H), σ 6|= 2Φ holds. From this we know that on every run ρ of Γδ(H) with
start state σ there is a state where φ does not hold. From Lemma 5.2.4 it follows
that this state is also reachable for Γ δ

n
(H) for all n ∈ N. From this we have that

∃δ ∈ Q+ : ∀n ∈ N : Γ δ
n
(H), σ |= 3¬Φ that is a contradiction to the precondition.

Proof of the second case:
Let us first consider the direction from left to right, i.e. suppose H, σ |= 3Φ holds.
This is equivalent according to Definition 4.3.16 to ∀ρ ∈ runs(H, σ) : H, ρ |= 3Φ.
Now assume that ∀δ ∃n ∃ρ ∈ runs(Γδ/n(H), σ) : ρ |= 2¬Φ, i.e. for each δ ∈ Q+

there exists a run of the form

σ = σ0 7→ σ1 7→ σ2 7→ σ3 7→

where we assume that it takes ki δ/n-steps to go from σi to σi+1. Evidently, each
such run can easily be extended to a (prefix of a) run for H11 and this can only
prevent an immediate contradiction if all these runs would stop before they reach
the Φ-moment. However, in this case we can try another (smaller) fraction of δ to
proceed for the discretised automaton. If it really were the case that for no fraction
of δ there is a further step, then the original hybrid automaton already would have
no possibility to proceed as well, which contradicts our preliminaries. Therefore,
the assumption cannot be true and we are done with this direction.

For the direction from right to left assume that ∃ρ ∈ runs(H, σ) : ρ |= 2¬Φ.
Then, given δ, we can find for each finite prefix of ρ a suitable n such that σi+1 is
reachable from σi in ki δ/n steps. It would thus be possible to construct a discrete
run ρ′ such that ρ′ |= 2¬Φ which contradicts the precondition. 2

11Recall that we are dealing with linear constraints.

104 Chapter 5. Integration of Hybrid Automata and VSE-II

Corollary 5.2.7 The above lemmata and theorems hold also in case we consider
special δ’s, namely those of the form 1/m where m is a positive integer.

Proof: This is due to the fact that for any δ of the form l/m we can equivalently
consider a δ′ = 1/m but repeat the steps l times. With Lemma 5.2.4 it follows
that every state reachable before with δ would also be reachable with δ ′ used in
the discretisation process. 2

At first glance it might be surprising that Theorem 5.2.6 works only in case there
are no nested temporal operators. In fact, the theorem would not hold otherwise, at
least in general. If, however, one insists on nested temporal operators – for example
to be able to express certain types of liveness properties – then some additional
machinery is necessary. We do not go into details here and refer the interested
reader to Section 5.3.

5.2.2 Granularity Change

The formal definition of a granularity change is given in Section 4.3.2 in Definition
4.3.14. We motivated the introduction of the granularity change by the need for
switching the base units in some cases. In this section we present the granularity
changed version (see Figure 5.6) of the (δ) discretised gasburner (see Figure 5.5)
and a theorem which gives the correlation between a hybrid automaton H and its
granularity changed version with respect to a PSL formula P . To this end, we
make use of the lemmas 5.2.9 and 5.2.10 given below.

Example 5.2.8 As can be seen in Figure 5.6 the change of the granularity of a
discretised hybrid automaton results in an automaton where

• variables are only changed in discrete actions,

• the change of the variables is always a natural number, and

• all sole occurrences of rational numbers are replaced by some constant c ∗ n
or multiples of it.

This translation from a hybrid automaton to a VSE-II specification is rather sim-
ple and all safety properties of the original automaton hold also for the changed
automaton.

Lemma 5.2.9 expresses that the set of suffixes of a run ρ with changed granu-
larity is equal to the set of granularity changed suffixes of ρ.

Lemma 5.2.9 For any given run ρ: {ρ1 | suf(ρ1,∆ ? ρ)} = {∆ ? ρ2 | suf(ρ2, ρ)}

5.2 Main Theorem 105

ẋ = 0

ẏ = 0

ṫ = 0

>

ẋ = 0

ẏ = 0

ṫ = 0

Leak
Non-Leak

x + 1 ≤ ∆ | x := x+ 1

y := y + 1

t := t+ 1

> | x := x + 1

y := y + 1

t := t

x := 0, y := 0,t := 0

> | x := 0

x ≥ 30 ∗ ∆ | x := 0

Figure 5.6: Discretised and Granularity Changed Leaking Gas Burner

Proof: Let ρ = (l0, φ0) 7→t0
f0

(l1, φ1) 7→t1
f1

(l2, φ2) · · · and fix any ∆ ∈ N(Q+).
⇒: For some position (i, q) we then get

ρ1 = (li, (∆ ? fi)(q)) 7→∆∗ti−q
(∆?fi)′

(li+1, φi+1) 7→∆∗ti+1

∆?fi+1
· · ·

where 0 ≤ q ≤ ∆ ∗ ti and

(∆ ? fi)
′(t) = (∆ ? fi)(q + t) = ∆ ? fi(

q + t

∆
).

To show that ρ1 ∈ {∆ ? ρ2 | suf(ρ2, ρ)}. To this end, let ρ2 be the suffix of ρ that
starts at position (i, q

∆
), i.e.,

ρ2 = (li, fi(
q

∆
)) 7→ti−

q
∆

f ′
i

(li+1, φi+1) 7→ti+1

fi+1
· · ·

where f ′
i(t) = fi(

q
∆

+ t). Then

∆ ? ρ2 = (li,∆ ? fi(
q

∆
)) 7→∆∗ti−q

∆?f ′
i

(li+1,∆ ? φi+1) 7→∆∗ti+1

∆?fi+1
· · ·

Note that

(∆ ? f ′
i)(t) = ∆ ? f ′

i(
t

∆
) = ∆ ? fi(

q

∆
+

t

∆
) = ∆ ? fi(

q + t

∆
) = (∆ ? fi)

′(t).

Therefore

∆ ? ρ2 = (li, (∆ ? fi)(q)) 7→∆∗ti−q
(∆?fi)′

(li+1, φi+1) 7→∆∗ti+1

∆?fi+1
· · · = ρ1

106 Chapter 5. Integration of Hybrid Automata and VSE-II

and we are done.
⇐: This is tantamount to showing that if suf(ρ2, ρ) holds, then suf(∆ ? ρ2,∆ ? ρ)
holds too. Therefore, take any suffix ρ2 of ρ, say at position (i, q), and consider
∆ ? ρ2, i.e.

∆ ? ρ2 = (li,∆ ? fi(q)) 7→∆∗(ti−q)
∆?f ′

i
(li+1,∆ ? φi+1) 7→∆∗ti+1

∆?fi+1
· · ·

where f ′
i(t) = fi(q + t). For ∆ ? ρ we know that

∆ ? ρ = (l0,∆ ? φ0) 7→∆∗t0
∆?f0

(l1,∆ ? φ1) 7→∆∗t1
∆?f1

· · · .

Now consider the suffix of ∆ ? ρ starting at position (i,∆ ∗ q), i.e. we consider the
run

(li, (∆ ? fi)(∆ ∗ q)) 7→∆∗ti−∆∗q
(∆?fi)′

(li+1,∆ ? φi+1) 7→∆∗ti+1

∆?fi+1
· · · .

As mentioned above, we know that (∆ ? f ′
i)(t) = (∆ ? fi)

′(t) and, moreover (by
Definition 4.3.14), that (∆?fi)(∆∗q) = ∆?fi(q). Hence, the above suffix is exactly
∆ ? ρ2 and we are done. 2

Lemma 5.2.10 For any valuation φ and term t ∈ CT : (∆ ? φ)(∆ ? t) = ∆ ∗ φ(t).

Proof: The proof is by induction on the structure of the constraint term t.

Base case 1: Let t=̂x with x ∈ X, then with Definition 4.3.14 we have
(∆ ? φ)(∆ ? t) = (∆ ? φ)(∆ ? x) = (∆ ? φ)(x) = ∆ ∗ φ(x)

Base case 2: Let t=̂d with d ∈ RC, then with Definition 4.3.4 we have
(∆ ? φ)(∆ ? d) = (∆ ? φ)(∆ ∗ d) = ∆ ∗ d = ∆ ∗ φ(d)

Induction step:

Let t = d ∗ x with d ∈ RC and x ∈ X, then we have

(∆ ? φ)(∆ ? t) = (∆ ? φ)(∆ ? (d ∗ x)) = [by Definition 4.3.14]

(∆ ? φ)(d ∗ x) = [by Definition 4.3.4]

d ∗ (∆ ? φ)(x) = [by Definition 4.3.14]

d ∗ (∆ ? φ)(∆ ? x) = [by ind. hypothesis]

d ∗ ∆ ∗ φ(x) = [by Definition 4.3.4]

∆ ∗ φ(d ∗ x) =

∆ ∗ φ(t)

5.2 Main Theorem 107

Let t = t1 ◦ t2 with ◦ ∈ {+,−}, then

(∆ ? φ)(∆ ? t) =

(∆ ? φ)(∆ ? (t1 ◦ t2)) = [by Definition 4.3.14]

(∆ ? φ)(∆ ? t1) ◦ (∆ ? φ)(∆ ? t2) = [by ind. hypothesis]

∆ ∗ φ(t1) ◦ ∆ ∗ φ(t2) =

∆ ∗ (φ(t1) ◦ φ(t2)) =

∆ ∗ φ(t1 ◦ t2) = ∆ ∗ φ(t)

which concludes the proof. 2

Together with Lemma 5.2.10 and Lemma 5.2.9 we are in a position to prove
Theorem 5.2.11 which specifies the relation of a hybrid automaton and its granu-
larity changed version with regard to a property of the hybrid automaton.

Theorem 5.2.11 Let H be a hybrid automaton, F a PSL formula then

H, ρ |= F if and only if ∆ ?H,∆ ? ρ |= ∆ ?F

Proof: The proof is by induction on the structure of F . We consider the cases
F = 2F1, F = t1 ◦ t2 and F = F1 ∧F2 with t1, t2 ∈ CT . The remaining cases can
be proved analogously.

(H, ρ) |= 2F1 iff (H, ρ′) |= F1 for all ρ′ with suf(ρ′, ρ) [by Definition 4.3.16]

iff (∆ ?H,∆ ? ρ′) |= ∆ ? F1 for all ρ′ with suf(ρ′, ρ) [ind. hyp.]

iff (∆ ?H, ρ′) |= ∆ ? F1 for all ρ′ with suf(ρ′,∆ ? ρ) [L.5.2.9]

iff (∆ ?H,∆ ? ρ) |= 2(∆ ? F1) [by Definition 4.3.16]

iff (∆ ?H,∆ ? ρ) |= ∆ ? (2F1) [by Definition 4.3.14]

108 Chapter 5. Integration of Hybrid Automata and VSE-II

(H, ρ) |= F1 ∧ F2 iff (H, ρ) |= F1 and (H, ρ) |= F2 [by Definition 4.3.16]

iff (∆ ?H,∆ ? ρ) |= ∆ ? F1 and

(∆ ?H,∆ ? ρ) |= ∆ ? F2 [by ind. hyp.]

iff (∆ ?H, ρ) |= ∆ ? F1 ∧ ∆ ? F2 [by Definition 4.3.16]

iff (∆ ?H, ρ) |= ∆ ? (F1 ∧ F2) [by Definition 4.3.14]

(H, ρ) |= t1 ◦ t2 iff φ(t1) ◦ φ(t2) where start(ρ) = (L, φ) [by Def. 4.3.16]

iff ∆ ∗ φ(t1) ◦ ∆ ∗ φ(t2) [by arithmetic]

iff (∆ ? φ)(∆ ? t1) ◦ (∆ ? φ)(∆ ? t2) [by Lemma 5.2.10]

iff φ′(∆ ? t1) ◦ φ′(∆ ? t2) with φ′ = ∆ ? φ

iff (∆ ?H,∆ ? ρ) |= (∆ ? t1) ◦ (∆ ? t2)

with start(∆ ? ρ) = (L, φ′) and φ′ = ∆ ? φ

iff (∆ ?H,∆ ? ρ) |= ∆ ? (t1 ◦ t2) [by Definition 4.3.14]

This completes the proof. 2

Before proving the main theorem we define a relation between states of a hybrid
automaton and states of a temporal logic specification12.

Definition 5.2.2 (=̃)
A state σj = (Lj, φj) of a run σ and a state ti of a behaviour t are in the relation
=̃, i.e. σj=̃ti if and only if ti(state) = Lj and ti(x) = φj(x) for all x ∈ X, where X
is the set of variables occurring in σ respectively t and “state” is a special variable
according to Definition 5.1.2.

In the following lemma we use an assumption about the growth rate of the
data-variables in linear hybrid automata. Such a growth rate is normally given
by a rational number, say q ∈ Q. We can assume without loss of generality that
q ∈ N holds, since only the relation of the growth rates of the variables within one
location is of interest. The growth rates qi, with qi ∈ Q within one location can
be normalised so that all qi are natural numbers by simply multiplying all qi = ni

mi

with the least common multiplier of all the mi as described in Section 5.1.1 in the
normalisation of a hybrid automaton.

12Although the notion of a state is different in the context of hybrid automata and temporal
logic specifications, we have overloaded it. However, from the context it should be clear which
one is meant.

5.2 Main Theorem 109

In the discretisation step of hybrid automata we use δ to prescribe a discrete,
but arbitrarily small step of the discretised automaton. According to Corollary
5.2.7 we can assume without loss of generality that all the δ have the form δ = 1

m

where m ∈ N.

The following lemma tells us something about the relation between a discretised
and granularity changed automaton and the π-transformed version of it. In a sense,
Lemma 5.2.12 and Lemma 5.2.13 prove some kind of bi-simulation between the two
transformations of a hybrid automaton.

Lemma 5.2.12 Let H = (X,L, E , dif , inv , guard, act) be a hybrid automaton and
let initH be a representative for a possible initial state of H with L0 as its initial
location. Let H̃ = (X,L, E ∪ E ′, dif ′, inv ′, guard∪ guard′ ∪ guard′′, act∪ act′) = ∆ ?
(Γ δ

n
(H)), initH̃ = ∆ ? initH and Ĥ = π(H, initH). Furthermore, let ρ ∈ runs(H̃),

σi, σj be two states of the run ρ with σi
tr7→ σj and σi=̃ti with ti is a state in the

behaviour t of Ĥ. Then there exists an action A in the description of Ĥ where
[[A]]ti ,tj holds, with σj=̃tj.

Proof: The proof is by case analysis:
Case initial state: Initially in H the constraint formula initH holds. The defini-
tion of Γ δ

n
given in 5.2.1 shows that Γ δ

n
leaves initH unchanged. The definitions of

π and ? show that they transform initH identically where we assume that ∆ = n
δ

and c = 1
δ
13. Furthermore, initially state = L0 holds in the description of Ĥ which

fits the initial state of H̃. This concludes the initial case.

Considering an arbitrary step σi
tr7→ σj in H̃ with σi = (Li, φi) and σj = (Lj, φj).

This step results from the translation of either a transition or a time step of H.
We will consider these two cases separately.

Case of a transition step of H: We know the following facts:

• The discretisation of H has no effect on the guards or on the actions of H.

• φi(∆ ? guard((Li, Lj)) holds

• φj(x) = φi(∆ ? act((Li, Lj), x))

• Since σj is taken to be a successor state of σi we know that this step can also
be taken by H̃. Therefore, the corresponding guard added by the discretisa-
tion step cannot be violated. Formally this means that the following formula
holds:

φi(∆ ? inv (Lj)[x1/∆ ? act((Li, Lj), x1), . . . xn/∆ ? act((Li, Lj), xn)])

13Recall that according to Corollary 5.2.7 we can assume that δ is of the form 1

m
with m ∈ N.

110 Chapter 5. Integration of Hybrid Automata and VSE-II

The π-translation of H results in the description of the temporal logic specifi-
cation Ĥ that contains the following part:

φ ≡ . . .

(
state = Li ∧ state′ = Lj ∧ (5.9)

π(guard((Li, Lj)) ∧ (5.10)

∧

x∈X

(x′ = π(act((Li, Lj), x))) ∧ (5.11)

(π(inv (Lj)))[x1/x
′
1, . . . , xn/x

′
n]

)
. . . (5.12)

• From ti(state) = Li and tj(state) = Lj it follows that the first part of φ, 5.9,
fits to the pair of states (ti, tj).

• From

φi(∆ ? guard(Li, Lj)) = [by Def. 4.3.14, def. of π and with ∆ = n
δ
, c = 1

δ
]

φi(π(guard(Li, Lj))) = [by σi=̃ti]

ti(π(guard(Li, Lj)))

it follows that formula 5.10 is satisfied in state ti.

• From

tj(x) = φj(x) = [because of the preconditions]

φi(∆ ? act((Li, Lj), x)) = [by Def. 4.3.14, def. of π, ∆ = n
δ

and c = 1
δ
]

φi(π(act((Li, Lj), x))) = [by σi=̃ti]

ti(π(act((Li, Lj), x)))

it follows that formula 5.11 fits to the pair of states (ti, tj).

• From

φi(guard′′((Li, Lj))
= [by def. of Γ δ

n
and Def. 4.3.14]

φi((∆ ? inv (Lj))[x1/∆ ? act((Li, Lj), x1), . . . , xn/∆ ? act((Li, Lj), xn)]
= [by Def. 4.3.14 and def. of π]
φi(((π(inv (Lj)))[x1/π(act((Li, Lj), x1)), . . . , xn/π(act((Li, Lj), xn))]
= [by σi=̃ti and x′k = π(act((Li, Lj), xk)) for k = 1, . . . , n]
ti((π(inv (Lj)))[x1/x

′
1, . . . , xn/x

′
n])

it follows that formula 5.12 fits to the pair of states (ti, tj) that concludes the
transition step.

5.2 Main Theorem 111

Case of a time step of H:

Looking at a time step of H, σi
ξ7→ σj that is transformed to a discrete step in H̃

by Γ δ
n

we know the following facts about the definition and the behaviour of H̃:

1. For a run ρ of H̃ it holds that fi : [0, ti] 7→ (X 7→ Q) is constantly φi.

2. ξ is arbitrary but finite.

3. The source location and the target location are identical: Li = Lj

4. For each x ∈ X:

(a) ḟx : (0, ξ) 7→ 0

(b) fx(0) = φi(x)

(c) fx(ξ) = φj(x)

5. The new discrete actions in the definition of H̃ according to the definition of
Γ δ

n
are:

For all (L, L) ∈ E ′, x ∈ X : (act′((L, L), x) = ∆ ? (x+ dif (L, x) ∗ δ
n
), where ∆

can be chosen to be n
δ
.

6. The new discrete actions get the new additional guard:
guard′((L, L)) = ∆ ? inv (L)[x1/act′((L, L), x1), . . . , xn/act′((L, L), xn)]

Considering the π-translation of H, ψ has the following formula as a disjunctive
part:

ψ ≡ . . .

(
state = Li ∧ state′ = Li ∧ (5.13)

∧

x∈X

(x′ = x + dif (Li, x)) ∧ (5.14)

(π(inv (Li)))[x1/x1 + dif (Li, x1), . . . , xn/xn + dif (Li, xn)]

)
(5.15)

Now we check whether this action description fits to the pair of states (ti, tj).

• From ti(state) = Li and with state′ = Li from equation (5.13), it follows that
tj(state) = Li. This shows that the first part of ψ fits to the pair of states
(ti, tj).

• Let x ∈ X with dif (Li, x) 6= 0, then
φi(guard′((Li, Li)))
= [by definition of guard′((Li, Li))]
φi((∆ ? inv (Li))[x1/x1 + dif (Li, x1) ∗ δ

n
, . . . , xn/xn + dif (Li, xn) ∗ δ

n
])

= [by σi=̃ti, def. of π and with ∆ = n
δ
, c = 1

δ
]

112 Chapter 5. Integration of Hybrid Automata and VSE-II

ti(π(inv (Li))[x1/x1 + dif (Li, x1), . . . , xn/xn + dif (Li, xn)])

From this it follows that formula 5.15 is satisfied in state ti and the corre-
sponding action is enabled.

• From the definition of H̃ in the time transition case we know for all xi with
i = 1, . . . , n that

φj(xi) =

φi(act′((Li, Lj), xi)) =

φi(∆ ? (xi + dif (Li, xi) ∗ δ
n
)) = [by ∆ = n

δ
]

φi(x + dif (Li, xi) = [with σi=̃ti]

ti(x+ dif (Li, xi)) = [with formula (5.14)]

tj(xi)

It follows that the formula 5.14 fits to the pair of states (ti, tj).

This concludes the transition part and thus the proof. 2

The above lemma says that for every action taken in a discretised granularity
changed hybrid automaton H, there is a corresponding action that can be executed
in the π-translated version of H. The following lemma treats the reverse case. It
says that for every action in the π-translated version of H there is a corresponding
one in the discretised granularity changed version of H.

Lemma 5.2.13 Let H = (X,L, E , dif , inv , guard, act) be a hybrid automaton and
let the constraint formula initH be a representative for a possible initial state of H
with L0 as its initial location.

Let H̃ = (X,L, E∪E ′, dif ′, inv ′, guard∪guard′∪guard′′, act∪act′) = ∆?(Γ δ
n
(H)),

initH̃ = ∆?initH and Ĥ = π(H, init). Furthermore, let t = t0, t1, . . . be a behaviour

of Ĥ, let ti be an arbitrary state of t and ti+1 be its successor state and let σi be
a state of the run ρ of H̃ with σi=̃ti. Then there exists a discrete action in the
description of H̃ that can be taken in state σi resulting in a state σj with σj=̃tj.

Proof: The proof of this lemma is by case analysis similar to Lemma 5.2.12. 2

After the examination of the relation between a discretised hybrid automaton
with changed granularity and its π-translated version, we have to analyse the re-
lation of the properties of a hybrid automaton expressed in PSL. We consider in
the following lemma the granularity changed version and the π-translated version
of such a property.

5.2 Main Theorem 113

Lemma 5.2.14 Let H be a hybrid automaton and let H̃ be the discretised, granular-
ity changed version of H, i.e. H̃ = ∆? (Γδ(H)). Furthermore, let ρ = σ0, σ1, σ2, . . .
be a run of H̃ and let τ = s0, s1, . . . be constructed according to Lemma 5.2.12 and
Definition 5.2.2, i.e. ∀si : σi=̃si. Then

φi(∆ ? t) = si(π(t))

with σi = (Li, φi), t is a constraint term and ∆ = c ∗ n, c, n ∈ N.

Proof: The proof is by induction on the structure of term t.

Base case 1: Let t =̂ state = L with L ∈ L, then

φi(∆ ? (state = L)) = [by Definition 4.3.14]

φi(state = L) = [by σi=̃si]

si(state = L) = [by Definition 5.1.2]

si(π(state = L))

Base case 2: Let t =̂x with x ∈ X, then
φi(∆ ? x) = φi(x) = si(x) = si(π(x)) by Definition 4.3.14 and 5.1.1.

Base case 3: Let t=̂r with r ∈ R a rational valued constant, then
φi(∆ ? r) = ∆ ∗ r = π(r) = si(π(r)) by Definition 4.3.14 and 5.1.1.

Induction step: Let t = t1 ◦ t2 with ◦ ∈ {+,−, ∗}, then

φi(∆ ? (t1 ◦ t2)) = [by Definition 4.3.14]

φi((∆ ? t1) ◦ (∆ ? t2)) = [by induction hypotheses]

φi(∆ ? t1) ◦ φi(∆ ? t2) = [by definition of π and si]

si(π(t1)) ◦ si(π(t2)) = si(π(t1 ◦ t2))
This concludes the proof. 2

In what follows we establish the relationship between a discretised, granularity
changed hybrid automaton and it’s π-translated version. The operators introduced
next are used in Theorem 5.2.17 that expresses the desired relationship.

Definition 5.2.3 (ˆ-operator)
Let H be a hybrid automaton, H̃ = ∆ ? (Γδ(H)), ρ ∈ runs(H̃) and ρ = σ0

tr7→ σ1
tr7→

σ2
tr7→ . . . with σi = (Li, φi). Then ρ̂ is defined as follows: ρ̂ = s0, s1, s2, . . . where

si are states, i.e. valuations of variables and for all variables x ∈ X

si(x) :=

{
Li if x = state

φi(x) else

114 Chapter 5. Integration of Hybrid Automata and VSE-II

Corollary 5.2.15 Let H be a hybrid automaton, H̃ = ∆? (Γδ(H)), ρ ∈ runs(H̃)
then it holds for ρ̂ that σi=̃si for all i.

Proof: The proof follows immediately from the definitions 5.2.2, 5.2.3, and the
lemmata 5.2.12 and 5.2.13. 2

Definition 5.2.4 (˘-operator)
Let H be a hybrid automaton, H̄ = π(H, init) and let t = s0, s1, . . . be a behaviour

of H̄. Then t̆ is defined as follows: t̆ = σ0, σ1, σ2, . . . with σi := (Li,Φi) with Li :=
si(state) for the variable state. For all other variables x it holds that Φi(x) := si(x)

Lemma 5.2.16 Let H = (X,L, E , dif , inv , guard, act) be a hybrid automaton. Let
H̃ = ∆ ? (Γδ(H)) be the discretised granularity changed version of H and ρ ∈
runs(H̃). Then the following holds:

{ρ′′ | suf(ρ′′, ρ̂)} = {ρ̂′ | suf(ρ′, ρ)}

Proof: w:
We have a trace ρ = σ0, σ1, . . . of H̃ with suf(ρ′, ρ). Let ρ′ = σi, σi+1, Applying
the -̂operator to ρ′ results in ρ̂′ = si, si+1, In concatenating this sequence of
states with the sequence s0, . . . , si−1 = ρ̂ |i−1 we obtain ρ̂ which is a behaviour of
Ĥ according to Lemma 5.2.12. It follows that ρ̂′ is a suffix of ρ̂.

v:
We have a trace ρ̂ = s0, s1, . . . of Ĥ with suf(ρ′′, ρ̂) according to Definition 5.2.3.
Let ρ′′ = si, si+1, Applying the -̆operator to ρ′′ results in ρ̆′′ = σi, σi+1, In
concatenating this sequence with the sequence σ0, . . . , σi−1 = ˘̂ρ |i−1 we obtain ρ
which is a behaviour of H̃ according to Lemma 5.2.13. It follows that ρ̆′′ is a suffix

of ρ and that
ˆ̆
ρ′′ ∈ {ρ̂′ | suf(ρ′, ρ)}. With

˘̂
ρ′′ = ρ′′ we are done. 2

According to the Lemmata 5.2.12, 5.2.13 and 5.2.2 we can assume in the fol-
lowing theorem that ∆ = n

δ
, δ = 1

m
and c = 1

δ
for m,n ∈ N.

Theorem 5.2.17 Let H = (X,L, E , dif , inv , guard, act) be a hybrid automaton,
initH = (L0, φ0) be the initial state of H and let H̃ = ∆?(Γ δ

n
(H)), initH̃ = ∆?initH

and Ĥ = π(H, initH). Furthermore, let (σ0, σ1, . . .) = ρ ∈ runs(H̃) and let P be a
PSL formula with no nested temporal operators. Then

H̃, ρ |= ∆ ? P if and only if [[π(P)]]τ

where τ = so, s1, . . . is a behaviour of Ĥ and si=̃σi for all i.

Proof: The proof is by induction on the structure of P .

5.2 Main Theorem 115

Base case 1: Let P =̂ t1 ◦ t2 with t1, t2 ∈ CT then

H̃, ρ |= ∆ ? (t1 ◦ t2) iff φ0(∆ ? (t1 ◦ t2)) with start(ρ) = σ0 and σ0 = (L0, φ0)

iff s0(π(t1 ◦ t2)) [by Lemma 5.2.14]

iff [[π(t1 ◦ t2)]]s0 [by definition of [[.]]σ]

iff [[π(P)]]τ with τ = s0, s1, . . . is a behaviour of H̃
according to Lemma 5.2.12 with si=̃σi for all i

Base case 2: Let P =̂ state = L with L ∈ L, then

H̃, ρ |= ∆ ? (state = L) iff H̃, ρ |= state = L [by Definition 4.3.14]

iff start(ρ) = σ0 = (L, φ0)

iff s0(state) = L [by Lemmata 5.2.12 and 5.2.13]

iff [[π(state = L)]]τ is true with τ = s0, s1, . . . [by

definition of [[.]]σ]

Induction steps:

Let P =̂2F , then

H̃, ρ |= ∆ ? (2F) iff H, ρ |= 2(∆ ? F) [by Definition 4.3.14]

iff H, ρ̄ |= ∆ ? for all ρ̄ with suf(ρ̄, ρ) [by Definition 4.3.16]

iff [[π(F)]] ˆ̄ρ for all suf(ρ̄, ρ) [by induction hypothesis and

with ˆ̄ρ constructed according to Definition 5.2.3]

iff [[π(F)]]ρ′ is true for all ρ′ with suf(ρ′, ρ) [by Lemma 5.2.16]

iff [[π(2F)]]ρ̂ is true with ρ̂ = s0, s1, . . . [by Definition 5.1.2]

Let P =̂F1 ∧ F2, then it holds

H̃, ρ |= ∆ ? (F1 ∧ F2) iff H̃, ρ |= (∆ ? F1) and H̃, ρ |= (∆ ? F2)

iff [[π(F1)]]τ is true and [[π(F2)]]τ is true [by induction

hypothesis]

iff [[π(F1) ∧ π(F2)]]τ

iff [[π(F1 ∧ F2)]]τ holds with τ = s0, s1, s2, . . . [by

Definition 5.1.2]

116 Chapter 5. Integration of Hybrid Automata and VSE-II

The ∨-case is analogous to the ∧-case. 2

Now we come to the main theorem which states the connection between a hybrid
automaton and its π-translated version using discretisation and granularity change
as a bridge between them.

Theorem 5.2.18 (Main Theorem) Let H be a hybrid automaton with initial
state initH represented by σ, let P be an atemporal PSL formula, C a constraint
formula, Q1 and Q2 PSL formulae with no nested temporal operators, c, n ∈ N,
δ ∈ Q+ and let t be a behaviour of π(H, initH) constructed according to Lemma
5.2.12 and Definition 5.2.2. Then the following holds:

(i) H, σ |= 2P if and only if ∀c : ∃n : π(H, initH), t |= π(2P)

(ii) H, σ |= 3P if and only if ∃c : ∀n : π(H, initH), t |= π(3P)

(iii) H, σ |= Q1 ∧Q2 if and only if H, σ |= Q1 and H, σ |= Q2

Proof:

(i) Lemma 5.2.5 allows us to choose n to be 1. According to lemmata 5.2.12, 5.2.13
and 5.2.2 we can assume furthermore that ∆ = 1

δ
, δ = 1

m
and c = 1

δ
for m ∈ N.

Thus, we can conclude as follows:

H, σ |= 2P iff ∀δ ∈ Q+: Γδ(H), σ |= 2P [by Theorem 5.2.6 and Lemma 5.2.5]

iff ∀δ ∈ Q+: ∆ ? (Γδ(H)), ρ |= ∆ ? (2P) for all ρ ∈ runs(H) where

ρ = σ, σ1, σ2, . . . and

start(ρ) = σ [by Theorem 5.2.11]

iff for all c ∈ N it holds: [[π(2P)]]t is true with t = so, s1, . . . is a

behaviour of π(H, initH) and σ0 = σ and si=̃σi for all i [by

Theorem 5.2.17]

iff ∀c ∈ N : π(H, initH), t |= π(2P)

(ii) According to the Lemmata 5.2.12, 5.2.13 and 5.2.2 we can assume in the fol-
lowing proof that ∆ = n

δ
, δ = 1

m
and c = 1

δ
for m,n ∈ N. Thus, we can conclude

5.2 Main Theorem 117

as follows:

H, σ |= 3P iff ∃δ ∈ Q+: ∀n ∈ N : Γ δ
n
(H), σ |= 3P [by Theorem 5.2.6]

iff ∃δ ∈ Q+: ∀n ∈ N : ∆ ? (Γ δ
n
(H)), σ |= ∆ ?3P for all ρ ∈ runs(H)

with ρ = σ, σ1, σ2, . . . and start(ρ) = σ [by Theorem 5.2.11]

iff there exists a c ∈ N such that ∀n ∈ N it holds: [[π(3P)]]t is true

with t = so, s1, . . . is a behaviour of π(H, initH) and σ0 = σ

and si=̃σi for all i [by Theorem 5.2.17]

iff ∃c ∈ N : ∀n ∈ N : π(H, initH), t |= π(3P)

(iii) H, σ |= Q1 ∧Q2 iff H, ρ |= Q1 ∧Q2 for all ρ ∈ runs(H) with start(ρ) = σ

[by Definition 4.3.16]

iff H, ρ |= Q1 for all ρ ∈ runs(H) with start(ρ) = σ and

H, ρ |= Q2 for all ρ ∈ runs(H) with start(ρ) = σ [by

Definition 4.3.16]

iff H, σ |= Q1 and H, σ |= Q2

2

Summarising the proof cases we have done a discretisation step according to
the definition of Γ δ

n
and Theorem 5.2.6 that results in a discrete hybrid automaton

Γ δ
n
(H) such that Γ δ

n
(H) satisfies the same PSL formulae as H does. Note that

Γ δ
n
(H) is an automaton that is parameterised with δ and n. In the next step

we perform a granularity change according to Theorem 5.2.11 with ∆ = n
δ
. This

results in an automaton H′ = ∆ ? Γ δ
n
(H) that satisfies ∆ ? P . Applying Theorem

5.2.17 we are done with the proof.

The purpose of H′ = ∆ ? Γ δ
n
(H) was to come as close as possible to π(H) such

that there is only one more simple transformation step in order to achieve π(H).
The property ∆?P is identical to π(P) with ∆ = n

δ
, c = 1

δ
and δ = 1

m
with m ∈ N.

5.2.2.1 Summary of Discretisation and Granularity Change

The ultimate goal of the theoretical framework introduced above was to provide the
means necessary for a translation from hybrid automata to VSE-II specifications.
We ended up in a series of lemmata and theorems that can be combined to achieve
this goal.

To this end consider the problem H, σ |= F . The automaton H as well as the
formula F might contain rational numbers. If so, we first normalise H as introduced

118 Chapter 5. Integration of Hybrid Automata and VSE-II

in Section 5.1.1. Then we perform a discretisation step which transforms H to
Γ δ

n
(H). According to Corollary 5.2.7 we can assume without loss of generality

that δ is a rational number of the form 1/m, where m is a positive integer. We
then change the granularity by ∆ = n ∗ m = n

δ
. This results in an (infinite

state) automaton that can immediately be translated into the VSE-II specification
language.

The direct translation into VSE-II is described in Section 5, and together with
the theorems in this section we showed the soundness and completeness proof for
this translation.

The next section gives an idea of how to extend this method for the integration
of Hybrid Automata into VSE-II to properties with nested temporal operators.
Until now the presented methodology is not suited to handle nested temporal op-
erators. Although many of the properties we want to prove about a system are
of the kind 2P or 3P where P is an atemporal formula, we sometimes want to
be able to handle nested temporal formulae as for example reactivity expressed as
23P .

5.3 Nested Temporal Operators

Until now we have introduced theoretical results and the translation schema to
integrate Hybrid Automata into VSE-II to prove simple temporal formulae. That
means the properties we are able to embed into the VSE-II environment from Hy-
brid Automata are limited to formulae with no nested temporal operators. The
translation does not work for nested temporal operators because of the quantifica-
tion of the variables n and c resulting from the π translation. A simple example
will clarify this.

ẋ = 1

x ≤ 3

L1

| x := 0

x :=
1

Figure 5.7: Simple Hybrid Automaton

Example 5.3.1 Let H be the hybrid automaton shown in Figure 5.7. and let

5.3 Nested Temporal Operators 119

• P1 : 2x ≤ 3,

• P2 : 3x = 0 and

• P3 : 23x = 0

be properties of the hybrid automaton. Looking at the π-translation of the hybrid
automaton we get the following φ with the initial condition x = n ∗ c ∧ state = L1:

φ ≡ (state = L1 ∧ state′ = L1 ∧ x′ = 0 ∧ x′ ≤ 3nc) (φ1)

∨
(state = L1 ∧ state′ = L1 ∧ ¬(x + 1 ≤ 3nc) ∧ x′ = 0 ∧ x′ ≤ 3nc) (φ∗

1)

∨
(state = L1 ∧ state′ = L1 ∧ x+ 1 ≤ 3nc ∧ x′ = x+ 1) (ψ1)

This form is equivalent to the normal form:

x = n ∗ c ∧ state = L1 ∧ 2[φ1, φ
∗
1, ψ1]x ∧WFx(φ

∗
1) ∧WFx(ψ1)

The quantification of the variables n and c depends on the property to be proved.
We have proven in the chapters before that in case of a safety property we can
assume n to be 1 and so only c remains. For P1 the translation process results in:

x = c ∧ state = L1 ∧ 2[φ1, φ
∗
1, ψ1]x ∧WFx(φ

∗
1) ∧WFx(ψ1)

where all the occurrences of n in φ1, φ
∗
1 and ψ1 are substituted by 1.

In case of property P2 we get the following formula:

∃c ∀n(x = n ∗ c ∧ state = L1 ∧ 2[φ1, φ
∗
1, ψ1]x ∧WFx(φ

∗
1) ∧WFx(ψ1))

In case of property P3 we can not proceed as in the two cases before. The reason
is that the quantification over the variables c and n in the translation function π is
only able to capture a single temporal operator with a hybrid automaton. There
are no means in the machinery introduced so far to talk about several instances of
hybrid automata with the corresponding quantifications over c and n.

An extension of this machinery is given in the next section. There we introduce
a proposal how to deal with leads-to properties.

5.3.1 Leads-to Properties

Let us assume that we aim to prove a formula of the form 2(P → 3Q) where
P and Q do not have further temporal operators. This means that we have to

120 Chapter 5. Integration of Hybrid Automata and VSE-II

check whether (P → 3Q) holds for all reachable states. Now suppose we had two
copies of the original hybrid automaton and we add transitions from each location
of the first copy to its respective twin location without adding any guard or action.
Then the original problem can be reformulated as: Changing from the first to the
second automaton there are two possibilities in this situation. First, P does not
hold and we are done since P → 3Q holds in this case. Second, if P holds, then we
have to check whether 3Q holds for the second automaton. Note that the “initial
state” of the second automaton corresponds to an arbitrary reachable state of the
first automaton in which P holds. Hence, the first copy is responsible for the first
temporal operator and the second copy for the rest of the formula. In case of the
property P3, 23P , we proceed analogously.

The π-translation of an automaton or a formula introduces the variables c and n.
Depending on the temporal operators of the properties to be proved they are univer-
sally or existentially quantified as indicated in Theorem 5.2.18. The π-translation
of the second automaton has to introduce new variables c and n. This results in a
nesting of first-order quantifiers originating from the nesting of temporal operators.

Applying this approach to the example shown in Figure 5.7 we get the automa-
ton presented in Figure 5.8.

ẋ = 1

x ≤ 3

L1

| x := 0

x := 1

ẋ = 1

x ≤ 3

L11

|
x

:=
0

Figure 5.8: Copied hybrid automaton

In the presence of leads-to properties we have to generalise the given approach
and adjust the translation function π. For the given example (see Figure 5.8) the
translation has the following result:

5.3 Nested Temporal Operators 121

(state = L1 ∧ state′ = L1 ∧ x′ = 0 ∧ x′ ≤ 3n1c1) (φ1)

∨
(state = L1 ∧ state′ = L1 ∧ ¬(x + 1 ≤ 3 ∗ n1c1) ∧ x′ = 0∧
x′ ≤ 3 ∗ n1c1) (φ∗

1)

∨
(state = L1 ∧ state′ = L1 ∧ x′ = x + 1 ∧ x + 1 ≤ 3 ∗ n1c1) (ψ1)

∨
state = L1 ∧ state′ = L11 ∧ x′ = x (χ1)

∨
(state = L11 ∧ state′ = L11 ∧ x′ = 0 ∧ x′ ≤ 3n2c2) (φ11)

∨
(state = L11 ∧ state′ = L11 ∧ ¬(x + 1 ≤ 3 ∗ n2c2) ∧ x′ = 0∧
x′ ≤ 3 ∗ n2c2) (φ∗

11)

∨
(state = L11 ∧ state′ = L11 ∧ x′ = x + 1 ∧ x + 1 ≤ 3 ∗ n2c2) (ψ11)

In case of property P3 π computes the following formula:

∀c1, ∃n1 ∃c2 ∀n2(x = n1 ∗ c1 ∧ state = L1∧
2[φ1, φ

∗
1, ψ1, χ1, φ11, φ

∗
11, ψ11]x∧

WFx(φ
∗
1) ∧WFx(ψ1) ∧WFx(φ

∗
11) ∧WFx(ψ11))

As well as the translation of the automaton also the translation of the property
is changed. P3

14 is translated to

2((state = L1 ∧ state′ = L11) → 3x = 0)

Having a closer look at the π-translation we see that in changing P3 to P ′
3 =

(23x = 1) the result of π is:

2((state = L1 ∧ state′ = L11) → 3x = n2 ∗ c2)

The first part of the formula, 2(state = L1 ∧ state′ = L11), indicates the change
from the first automaton to the second one. Semantically this means that we

14state′ stands for the value of the variable state in the next state.

122 Chapter 5. Integration of Hybrid Automata and VSE-II

are located in some arbitrary state which is the new initial state for the second
automaton. In this new initial state the variables c1 and n1 introduced by the
π-translation play an important role in the sense that the current values of these
variables influence the new initial state. This is the reason why we only talk about
n2 and c2 in the property P ′

3.

So far this approach is limited to response or leads-to properties, arbitrary
temporal formulae can be handled as sketched in the next section.

5.3.2 A more general Approach

A generalisation of the approaches given so far requires some extra machinery and
cannot be done with the means we have at hand.

5.3.3 Invariants

There is a “normal” way to prove safety properties of the form 2Φ, with Φ atem-
poral. However, in practice this does not work satisfactorily. Instead, one tries to
find a so called invariant, i.e. another atemporal formula ΦI , that implies Φ and
for which it is much easier to prove 2ΦI .

Formally, suppose we have to prove H, σ |= 2Φ and we know that

|= ΦI → Φ

H, σ |= 2ΦI

Then, by necessitation we know that

|= 2 (ΦI → Φ)

and therefore also

H, σ |= 2Φ

Thus, whenever it becomes too complicated or even impossible to prove 2Φ directly,
the task is to find such a suitable ΦI .

In general, finding such a suitable ΦI is a creative act and can hardly be au-
tomatised. Yet it often shows to be the only way to follow the original goal.

Certainly, it would be sufficient to find a less restrictive ΦI . For instance, it
would be enough to show

H, σ |= 2 (ΦI → Φ)

However, this is in general at least as complicated as the original problem and
therefore would not be too helpful here.

5.3 Nested Temporal Operators 123

5.3.4 Generalisation

Now consider the more general problem of proving H, σ |= 2Φ, where Φ is not
necessarily atemporal, i. e. Φ might contain further temporal operators.

In this case we proceed as above, i. e. we try to find an atemporal formula ΦI

such that

|= ΦI → Φ

H, σ |= 2ΦI

However, although this would certainly help to find such a ΦI , we cannot seriously
expect to find one. The problem lies with the Φ, which is not atemporal. Therefore,
|= ΦI → Φ will only hold for the rather trivial cases.

Obviously, we have to take the Hybrid System into account when we consider
Φ not atemporal. It would be nice to prove ΦI → Φ for all σ′ that are reachable
from σ in H. Formally,

H, σ |= 2 (ΦI → Φ)

This together with H, σ |= 2ΦI would immediately lead to the desired result.
However, it is not enough to find such a suitable candidate, we also have to prove
that this formula holds. But how could we possibly do that? Certainly not with
the translation technique, for, if Φ contains temporal operators we again have a
formula with nested operators in hand.

One way out of the dilemma would be to find a ΦI such that

H, σ′ |= ΦI → Φ

for all σ′, not only for those that are reachable from σ.

Then, together with H, σ |= 2ΦI we also immediately obtain the desired result.

The general schema thus looks as follows:

H, σ |= C iff σ |= C, for constraint formulae C

H, σ |= state = L iff σ = (L, φ)

H, σ |= Φ1 ∧ Φ2 iff H, σ |= Φ1 & H, σ |= Φ2

and similarly for the other boolean connectives

H, σ |= 2Φ iff H, σ |= 2ΦI &

H, σ′ |= ΦI → Φ for all σ′

for some suitable atemporal ΦI

H, σ |= 3Φ iff H, σ |= 3ΦI &

H, σ′ |= ΦI → Φ for all σ′

for some suitable atemporal ΦI

124 Chapter 5. Integration of Hybrid Automata and VSE-II

The latter two cases only apply in case Φ contains further temporal operators.
Otherwise the discretisation can be done immediately.

Thus, the original problem (with nested operators) is reduced to one or more
subproblems with fewer temporal operators. Obviously, deeper nestings of opera-
tors then require a recursive descent through the PSL-formula.

As an example, suppose we want to prove that H, σ |= 23(C1∧3C2). A direct
translation would not work. Therefore, we have to find an atemporal Φ1 such that

H, σ |= 2Φ1

H, σ′ |= Φ1 → 3(C1 ∧ 3C2) for all σ′

This second proof obligation still contains some nested operators. Thus, again, we
have to find a suitable atemporal Φ2 such that

H, σ |= 2Φ1

H, σ′ |= Φ1 → 3Φ2 for all σ′

H, σ′ |= Φ2 → C1 ∧ 3C2 for all σ′

All the remaining proof obligations do not contain any nested temporal operators
and therefore can be handled with the machinery described in this work, provided
one is able to find such suitable atemporal formulae Φ1 and Φ2. In general, this is
a creative act.

6
Observer

Methodology

Thirty years ago, i.e. in the early seventies of last century, formal methods in
software engineering had rather limited scope and the subject was well defined.
However, classical code verification in Hoare style with a verification condition
generator and subsequent proving of the verification conditions failed not only
because of its inability to cope with complexity but also because this restricted
approach did not meet important needs in software engineering. Meanwhile the
situation has changed drastically and we are confronted with an enormous variety
of formal approaches and tools. Although we have seen enormous progress in
the development of automatic methods, still little attention has been paid to the
integration of the many different and often highly specialised approaches and to the
overall development process, in particular the early stages of software development.

Formal techniques for requirements analysis usually deal with particular as-
pects of the system to be designed. Examples are properties of information flow,
correctness of (cryptographic) protocols, or real-time behaviour. It is not difficult
to imagine a system that separates different applications by controlling the flow
of information between them using authentication protocols as one of the security
mechanisms and that has to satisfy certain additional real-time requirements.

Although it is well known that many errors occur in the early stages of the
development process, later design stages like architectural design and implementa-
tion are also error prone and have to be treated formally in case of high assurance

126 Chapter 6. Observer Methodology

levels. For example level EAL5 of the Common Criteria (CC) [1] requires a formal
high-level design and a “correspondence proof” covering the so-called Functional
Specification. In the case of real-time systems one has to define how the intended
global behaviour is realized by separating the control component from its environ-
ment and assumptions (like delays, cycle time) have to be made explicit. This
scenario is described in Section 6.2.

In other words, various views for requirements analysis have to be linked to a
single abstract system specification that serves as a starting point for the refinement
process (see Figure 6.1). Rather than having a satisfies relation between a
specification and a collection of simple properties, requirements analysis will be
based on its own descriptions (views) and postulated properties that refer to these
descriptions. The description of a particular view will not necessarily use the same
terminology as the system specification and often application specific formalisms
and tools provide the means for an efficient analysis. For example, for establishing
information flow properties a technique called non-interference, which is based on
closure properties of sets of (system) traces, has to be used [71]. The analysis
of protocols is based on a different kind of traces [74] that include steps of an
attacker. A number of tools, like for example the one described in [73], has been
used in this area. The real-time view can be implemented by Hybrid Automata
[14] or by Timed Automata [16]. Tools like HyTech [48] provide efficient techniques
to establish real-time properties.

In the following we present a general technique called observer models to link
abstract descriptions of the real-time behaviour of a system to a system specification
consisting of a control component, an environment, and a clock by means of an
observer mapping. After an outline of the general technique we shall illustrate our
approach using the specification of the Controller1 for a gasburner as an example.

6.1 Observer Models for Real-Time Properties

Requirements of a system are usually specified and analysed by different formalisms
that are specific for a particular view on that system. The choice of the formalisms
can be influenced by several factors:

• preferences or expertise of the user,

• special features that need certain constructs in the specification language,

• particular system support, or

• the re-use of already existing specifications.

1Whenever we talk about system components in general we use small capitals, but special
components of our methodology are written with a capital letter. Special components of a speci-
fication are denoted in typewriter format, Controller for example.

6.1 Observer Models for Real-Time Properties 127

 . . .
 . . .

Observer-Spec

OS-SD-SPEC OS-SD-Prop-Spec

OS-Properties

satisfies

translation translation

1

1

satisfies*

1

1

1 1

OS-SD-Spec

Observer-Spec

OS-SD-Prop-Spec

OS-Properties

satisfies

satisfies

translationtranslation

N

**
N

N N

N N

fulfills

satisfiesSystem Design
Spec.

Obs.

Map.
1

Obs.

Map.
N

sat
isf

ies

fulfills

*

*

Figure 6.1: Observer Models

In Figure 6.1 each view is represented by an Observer-Speci following its own
description technique and formalism. One of these specifications might contain a
global description of the runs of a protocol while another view concentrates on
real-time properties. In the following we shall assume that the real-time view is
given by Hybrid Automata [14].

A view will also include properties called OS-Propertiesi in Figure 6.1 that
have to be established from the Observer specification. Real-Time requirements
can be formulated and proven using tools like HyTech [48]. Note that we consider
Hybrid Automata as a kind of comprehensive tool for the description of the entire
system behaviour with respect to timing constraints. As can be seen from our
example, the description is global in the sense that it does not distinguish between
the control part of a system and its environment. States of the Hybrid Automaton
therefore do not directly correspond to internal states of the controller. They rather
describe certain situations that might occur in a run of the components constituting
the complete system specification as there are a controller, an environment, and a
clock in our general specification schema presented in Section 6.2.

To integrate various views into a common formal development, the Obser-

ver-Speci and the OS-Propertiesi have to be translated into the language used
to specify System Design Spec. The resulting specifications are OS-SD-Spec and
OS-SD-Prop-Spec. The translation of Hybrid Automata into the specification lan-
guage of VSE-II (see translation1 in Figure 6.1) was presented in Section 5.

In Section 5 it is shown that the satisfies relation between OS-SD-SPECi

and OS-SD-Prop-Speci holds, if and only if the satisfies relation holds between

128 Chapter 6. Observer Methodology

Observer-Speci and OS-Propertiesi
2. First of all this means that results obtained

by using a tool like HyTech can be safely integrated into the overall development.
However, since the language of OS-SD-Spec and OS-SD-Prop-Spec is more expres-
sive (than that of Hybrid Automata) requirements specifications that are still “in
the style of Hybrid Automata” but more general than these can be used in this con-
text if one is inclined to use deductive techniques instead of model-checking. As an
example one might wish to consider state transitions where one of the parameters
(like speed) changes arbitrarily.

We are still left with the problem of establishing a link between the system
specification and the particular real-time view we have defined. This is done by
a mapping (called Obs.Mapi in Figure 6.1) that (in the case of real-time require-
ments) interprets a given state of the interleaved computation of the controller, the
environment, and the clock as a state of the (translation of the) hybrid automaton.
It thereby turns the entire controller scenario into a model (in the sense of Hybrid
Automata). For this we need to be sure that the translation faithfully preserves
the semantics of Hybrid Automata. This result is established is Section 5.

6.2 A General Specification Scheme for Observer

Models

The general scenario (see Figure 6.2), which we shall instantiate now using a re-
alistic yet abstract gasburner specification, consists of three components: an En-
vironment, a Controller and an Observer/Clock component. Which role do the
individual components play? Generally, given a system design it is not always ob-
vious which parts are to be assigned to the Environment and which parts belong to
the Controller. In the application of formal methods we are often interested in the
safety critical parts of the system to be developed. The other parts are considered
to be irrelevant for the safety of the system. These parts consist for example of
monitoring units3. It is important that the Controller, which possibly needs to be
refined later, should contain all the safety critical parts.

The behaviour of the Environment is given by the specification of its interface,
i.e. the Environment supplies the values for the various system interfaces (in time).
To guarantee the right functioning of the system we have to make assumptions
about the correct behaviour of the Environment4, which can then be used in the
proof of the system’s properties. If the Environment component does not only
exist as an interface definition but also as a component with accurately specified

2This is proved for the described real-time observation and for the specification languages
VSE-SL and Hybrid Automata respectively.

3Of course, this is not always an uncritical unit. Just think of flight control devices that
provide the pilot with the actual status of the plane.

4If one is interested in fault-tolerant systems, the possible faults can be described in the speci-
fication of the Environment, so that the control system must detect these and behave accordingly.

6.2 A General Specification Scheme for Observer Models 129

Actions
Data

TLSPEC Gasburner

Actions
Data

TLSPEC Controller

Actions
Data

TLSPEC Observer

Actions
Data

TLSPEC Environment

outside world
Interfaces to the VSE TLSPEC

...

OS−SD−SPEC1

translation
1

Hybrid Automaton
Gasburner

Scheduling

Scheduling

Sc
he

du
lin

g

Communication

C
om

m
un

ic
at

io
n

C
om

m
unication

Environment
VSE TLSPEC

...

Controller
VSE TLSPEC

...

Observer
VSE TLSPEC

...

Abstract Datatype Definitions

System Design Spec

satisf
ies

...

...

1Obs. map.

Observer−Spec

Leak Non−Leak

fulfils

1

Figure 6.2: General Scenario (Observer Model Instantiated)

behaviour, then one can prove these assumptions about the Environment based on
its behaviour. Of course, the type, range, and depth of the specification of both
the Environment and Controller depend on the properties that should be fulfilled.

The Environment and the Controller are specified as usual temporal logic spec-
ifications. Both components can be structured into subcomponents.

The specification of the Observer/Clock component differs in some aspects from
these usual specifications. One of the tasks of the Observer is that it is respon-
sible for the time. But this fact does not influence the method described here.
There could equally be an additional component which manages the time. The
essential part of the Observer is that it observes the behaviour generated by the
Controller and the Environment. These observations are filtered by the Observer
and communicated to the outside world. This filtration of the behaviour of the
whole system constitutes a special view on the system that will be a real-time
view in our example described in Section 6.3. This is indicated by the right part
of Figure 6.2 consisting of Observer-Spec.1 (instantiated by the Hybrid Automa-
ton Gasburner) and the translation of this gasburner into a VSE-II specification
(see OS-SD-SPEC1 in Figure 6.2). The languages used in the real specification
are VSE-SL (VSE-II-Specification Language) and Hybrid Automata as indicated
in Figure 6.2.

130 Chapter 6. Observer Methodology

6.3 Gasburner as Real-Time Observation

The real-time scenario is obtained from the the general scenario in Figure 6.2 by
instantiating it for the Observer, Environment and Controller components, i.e. the
TLSPECS Environment, Controller and Observer respectively. Also we have
to instantiate the System Design Spec, OS-SD-SPEC1 and Observer-Spec1 from
Figure 6.1. A screenshot of the VSE-II development graph [52, 54] of the implemen-
tation of the gasburner scenario is given in Figure 6.3 where the Environment5,
the Controller and the Observer component are combined to the gasburner

component representing the real gasburner.

Next, we show that the gasburner component satisfies the observation which is
represented by the VSE-II specification resulting from the translation of the hybrid
gasburner into VSE-II [77] as shown in Figure 6.3 by the temporal logic specification
of gasprop6. We see that this observation given as a VSE-II specification represents
a complex real-time property of the realistic gasburner.

Figure 6.3: Development Graph of the Real Gasburner

5In Figure 6.3 we use Env to name the environment component.
6This corresponds to the OS-SD-SPEC1 specification in the general scenario shown in Figure

6.2.

6.3 Gasburner as Real-Time Observation 131

6.3.1 Underlying Datatypes

The definitions of the datatypes are located in the theories def1, def2, def3, and
Definition in Figure 6.3. They define the possible values of the flexible variables
of the component specifications. The definition of the datatypes is given in Figure
6.4. The whole system can either be “switched on” or “switched “off”. These

THEORY def3

TYPES OnOff_t =

ENUMERATED BY on |

off

THEORYEND

THEORY def1

TYPES gas_t =

ENUMERATED BY blocked | run

THEORYEND

THEORY Definitions

USING def1; def2; def3; boolean

TYPES schedule_t =

ENUMERATED BY obs | env | contr

Theoryend

THEORY def2

USING natural

TYPES state_t =

ENUMERATED BY leaking |

non_leaking

FUNCTIONS c : nat

AXIOMS c > 0

THEORYEND

Figure 6.4: Theories Defining the Underlying Datatypes

states are described in the datatype OnOff t. The datatype gas t contains the
states the gasflow can be in. It flows out of the nozzle of the gasburner (indicated
by run) or it is blocked (indicated by blocked). The datatype state t represents
the virtual state of the real system, i.e. the system can be leaking or not leaking
represented by leaking and non leaking, respectively. If the system is in the
leaking state, then unburned gas flows out of the nozzle of the gasburner. The
system is non-leaking if the gas is burned or there is no gasflow at all. Finally we
need a scheduling datatype (schedule t) which is used to determine the possible

132 Chapter 6. Observer Methodology

interactions between the different components.

A central role in the scenario plays the definition of the constant c7. As pre-
sented in the theory of the integration of hybrid automata into VSE-II in Section
5, c is used to realize an exact discretisation of a hybrid automaton. Note that it
is defined as a natural number greater than zero.

6.3.2 Scheduling

The scheduling between the components of the gasburner, i.e. Environment, Con-
troller, and Observer is realised with the help of the shared variable who. In
the absence of such a scheduling variable, component steps are simply interleaved
and can happen whenever they are enabled. Thus, the scheduling implements in
some sense a filter for the enabling conditions. Combining the components without
scheduling would result in a situation where we did not know which component
computes next. In particular, we would not know when the observer makes its next
observation. In order to define an observer component that is not too complex and
in order to guarantee that the observer really observes something when there are
significant changes we control the interleaving by a scheduler where computation
of the components starts with the observer followed by the controller. After this
first phase the computing order of the components is: environment, observer, con-
troller. The scheduling is illustrated in Figure 6.5. Of course, there are other

.....obs contrenvobs contrinit

Figure 6.5: Scheduling

possibilities to schedule the components. One of these is to start with an initial
sequence consisting of observer, controller and again the observer and after that
the repeated computation order is environment, observer, controller and observer.
This scheduling is shown in Figure 6.6. It turned out that this scheduling results in

.....obscontrobsobs contrinit obsenv

Figure 6.6: A Scheduling Alternative

a more complicated behaviour description of the Observer and in more complicated
proofs. The implementation of the scheduling can be taken from the description of
the various components shown in Figures 6.10, 6.11, 6.8 and 6.7.

The chosen scheduling assures that all the values of now become visible to the
outside world, i.e. every point in time has an observation associated to it.

7The variable n introduced in Section 5 is omitted here since we are dealing only with safety
properties (see also Theorem 5.2.6 and the corresponding Lemma 5.2.5).

6.3 Gasburner as Real-Time Observation 133

6.3.3 Environment

The specification of the Environment component in VSE-II is shown in Figure 6.7.
It consists of the definition of the possible initial states and the actions that the

TLSPEC Env

PURPOSE "Specification of the Environment"

USING Definitions

DATA OUT panel_contr, panel_obs : OnOff_t

OUT leak_sensor_obs, leak_sensor : bool

IN gasflow_env : gas_t

SHARED INOUT who : schedule_t

ACTIONS

env_act ::= /*scheduling*/

who = env AND who’ = obs AND

(/*switch the gasburner on or off*/

(panel_contr’ = on AND panel_obs’ = on) OR

(panel_contr’ = off AND panel_obs’ = off)) AND

/*Environment behaves correct*/

IF (panel_obs’ = off OR gasflow_env = blocked)

THEN (leak_sensor’ = F AND leak_sensor_obs’ = F)

ELSE (leak_sensor’ = T AND leak_sensor_obs’ = T) OR

(leak_sensor’ = F AND leak_sensor_obs’ = F) FI

SPEC INITIAL leak_sensor = T AND

leak_sensor_obs = T AND

panel_obs = on AND

panel_contr = on AND

who = obs

TRANSITIONS [env_act] {panel_obs, panel_contr, who,

leak_sensor, leak_sensor}

TLSPECEND

Figure 6.7: Specification of the Environment

environment can perform8. Note that, because of the initialisation shown in Figure
6.7, the initially observed situation is leaking.

The action the environment can take is described in the ACTIONS-slot by the
action env act. The environment is specified such that the panel can change
arbitrarily, but the leak sensor representing the sensor to measure whether un-
burned gas flows out has to work correctly. This means that in a situation in which
the panel is off or the gasflow is blocked the sensor is expected to deliver the

8The doubling of the variables has technical reasons. It simulates an identical output sent to
several components.

134 Chapter 6. Observer Methodology

right values. Specifying the environment this way results in the assumption that
the environment is expected never to fail. Faulty sensors are excluded from the
model9.

6.3.4 Controller

The TLSPEC of the Controller component is given in Figure 6.8 and has the
following external interfaces:

• gasflow env and timer as output

• leak sensor, now and panel as input and

• cstate as internal interface.

Its initial state description forces the gasburner observation to start in the leaking
state. Moreover, the values of the controller’s variables fit to the values of the
environment’s variables (and similarly for the initial value of the scheduling variable
who). The actions the controller can take are described in the ACTIONS slot by A1

through A7. Actions A1, A2 and A7 describe the actions in which the panel is
off10. The result of switching the gasburner off depends on the system’s previous
state. This state is given by the values of the variables leak sensor and cstate.
Depending on this the control state cstate is set to off, the gasflow is stopped
and the timer is started. The safety property we want to prove and which states
that there is at most five percent of leakage time in observation intervals with a
certain minimal length cannot be bypassed by simply switching the system off and
on again. This is prevented by setting the timer in action A2 to the actual value
of now. If we had reset the variables after switching off the system, the safety
property would be violated. When the system is switched on, i.e. panel is set to
on, the actions A3, A4, A5 and A6 describe the possible actions of the Controller. For
instance, A5 checks whether the elapsed time since the last blocking of the gasflow
is greater than or equal to 30 ∗ c time units. In this case the gasflow gets rerun.
The behaviour of the controller’s actions is explained in the following enumeration.

A1 reacts on the gasburner being switched off by blocking the gasflow when there
is no leak.

A2 handles the situation in which the gasburner is switched off but is still leaking.
Because of the definition of the environment we see that this action is never
enabled and we could remove it from the system description11. Such an action
would be needed if the environment’s sensors could deliver faulty values.

9Faulty sensors can be specified by giving them the possibility to change non-deterministically.
Such problems do not concern us in this work, though.

10Only the Environment env can change the value of panel.
11Whether an action is never enabled has to be proven. Here we can show that the property

2(panel = off ⇒ leak sensor = F) holds.

6.3 Gasburner as Real-Time Observation 135

TLSPEC Controller

USING Definitions

DATA INTERNAL cstate : OnOff_t

OUT timer : nat;

gasflow_env, gasflow : gas_t

IN leak_sensor : bool;

now : nat;

panel : OnOff_t

SHARED INOUT who : schedule_t

ACTIONS

A1 ::= cstate = on AND panel = off AND leak_sensor = F AND

cstate’ = off AND gasflow’ = blocked AND

gasflow_env’ = blocked AND UNCHANGED(timer)

A2 ::= cstate = on AND panel = off AND leak_sensor = T AND

cstate’ = off AND gasflow’ = blocked AND

gasflow_env’ = blocked AND timer’ = now

A3 ::= cstate = on AND panel = on AND leak_sensor = F AND

UNCHANGED(cstate, gasflow, gasflow_env, timer)

A4 ::= cstate = on AND panel = on AND leak_sensor = T AND

cstate’ = off AND gasflow’ = blocked AND

gasflow_env’ = blocked AND timer’ = now

A5 ::= cstate = off AND panel = on AND

now >= timer + (30 * c) AND

cstate’ = on AND gasflow’ = run AND

gasflow_env’ = run AND UNCHANGED(timer)

A6 ::= cstate = off AND panel = on AND

now < timer + (30 * c) AND

UNCHANGED(cstate, gasflow, gasflow_env, timer)

A7 ::= cstate = off AND panel = off AND

UNCHANGED(cstate, gasflow, gasflow_env, timer)

A1to7 ::= who = contr AND who’ = env AND

A1 OR A2 OR ... OR A7

/*Definition of the behaviour of the gasburner */

SPEC INITIAL gasflow = run AND

gasflow_env = run AND

cstate = on AND

timer = 0 AND

who = obs

TRANSITIONS [A1to7]

{gasflow, gasflow_env, timer, cstate}

TLSPECEND

Figure 6.8: Specification of the Controller

136 Chapter 6. Observer Methodology

A3 describes a situation in which the controller does not have to react, since there
is no leaking indicated by the leak sensor. This action leaves the variables
unchanged.

A4 reacts to the leaking sensor of the environment. Since the system is in a
leaking state, the gasflow is blocked and the timer is started. A consequence
is that the gasflow can be opened again at the earliest 30 ∗ c time units later
(see action A5).

A5 checks whether the elapsed time since the last blocking of the gasflow is
greater than or equal to 30 ∗ c time units. If this is the case, the gasflow is
run again.

A6 handles the situation in which the time spent in a non-leaking situation,
where the control state is set to off, is not yet greater than 30 ∗ c time units.
In this case all the variables remain unchanged, i.e. the gasflow stays blocked.

The actions are disjunctively connected to a single action A1toA7. Since in every
moment of the execution only one of these actions is enabled, only this very action
can be taken unless the controller stutters.

Up to now we have specified the controller and its environment. By adding a
clock component that mimics the flow of time (the change of the variable now) we
end up in a system for which we can prove some real-time properties.

As described in Section 6 our methodology is different in the sense that we are
interested in a complete real-time perspective on a system rather that in particular
aspects of it. Thus, it is not our main aim to prove single real-time properties of a
system, we rather want to check its entire real-time behaviour. How this is realised
is explained in the following section.

6.3.5 Observer

As can be seen from the specification of the Controller and the Environment, a
simple refinement mapping [7] is not enough to prove the refinement. One reason
is that in a refinement mapping only those variables can be mapped that are known
in the actual state. In this sense a refinement mapping is a filter that maps the
states of the implementing system to the states of the implemented system. The
refinement model described here uses the usual refinement mapping extended by
an observer component. The observer component together with the refinement
mapping represents an external observer which filters the observed behaviour and
maps these filtered behaviours to special observer behaviours represented in our
case by the translated hybrid gasburner as shown in Section 6.3.6. As already
mentioned in Section 6, we might look at the system from different angles, which
could be a data flow perspective or, as in the example presented here, a real-
time perspective. The responsibility of the observer is to map the states of the

6.3 Gasburner as Real-Time Observation 137

real gasburner to the (virtual) states of the translated hybrid gasburner. In the
simplest case the mapping consists only of a variable mapping which just renames
or recomputes the values of the variables according to certain given functions. The
mapping of the variable state of the translated hybrid gasburner is somewhat
more complicated since there is no immediate correlation between variables of the
implementing system and the variable state. Moreover, the mapping does not
only depend on the actual state of the implementing system but also on some other
information given by the behaviour of the observer. This situation is illustrated
in Figure 6.9. Some of the steps of the hybrid gasburner in Figure 6.9 relate to

Observer

Controler Env

System
(internal)

Output

Controler Env

Observer

Observer

hy hy

Controler

hy

Observer

hy

Observer

hy

Observer

hy

Observer

hy

Figure 6.9: Refinement Relation

stuttering steps and some relate to real steps. Thus, the observer calculates steps
of the hybrid gasburner from the steps of the environment and the controller. In
addition, the observer makes the clock available to all the system components.

We now come to the actual specification of the Observer (given in Figures 6.10
and 6.11).

The observer’s responsibility is to observe the controller and the environment
and to map their behaviours to the behaviour of the hybrid gasburner. It thus
determines our view or perspective on the system from the outside.

This specification should not rebuild the specification of the hybrid gasburner
shown in Section 6.3.6. This can be accomplished by certain syntactical restrictions
on the observer’s actions. In order to enable or disable the actions the observer
can take, it is only allowed to use the input variables sent from the controller or
the environment. Also, the variables used in the refinement mapping now out, x,
t obs and state may only be used in equations (in-equations) where there is at
least one primed occurrence of that variable (with the exception of the initial state).
In other words, these variables are not allowed to influence the behaviour of the
observer in that they enable or disable possible actions of the observer. Only the
variables of the controller and the environment are used in the enabling conditions
of the observer’s actions. Specifying the observer that way prevents the user from

138 Chapter 6. Observer Methodology

TLSPEC Observer

USING Definitions

DATA IN panel_obs:OnOff_t;

leak_sensor:bool;

gasflow:gas_t;

timer:nat

SHARED INOUT who:schedule_t

OUT panel_out:OnOff_t;

leak_sens_out:bool;

gasflow_out:gas_t;

now, now_out:nat;

x,t_obs:nat;

state:state_t

INTERNAL leak_sens_int:bool;

gas_int:gas_t

ACTIONS

/*Condition for the initial phase*/

init_cond :: = leak_sens = T AND leak_sens_int = T AND

gasflow = run AND gas_int = run

/*Condition for the leaking to non_leaking phase*/

leak_to_non_leak ::= gasflow =blocked AND gas_int = run AND

leak_sens = F AND leak_sens_int = T

/*Condition for the non_leaking to leaking phase*/

non_leak_to_leak ::= gasflow =run AND leak_sens = T AND

leak_sens_int = F

/*Special case for initial phase*/

obs1 ::= state’ = leaking AND

unchanged(x, ...,gas_int, now, now_out)

/*leaking to non_leaking action*/

obs2 ::= state’ = non_leaking AND x’ = 0 AND t_obs’ = t_obs AND

now’ = now AND now_out’ = now_out AND gas_int’ = gasflow

AND leak_sens_int’ = leak_sens

Figure 6.10: Specification of the Observer (part 1)

6.3 Gasburner as Real-Time Observation 139

/*non_leaking to leaking action*/

obs3 ::= state’ = leaking AND x’ = 0 AND

now’ = now AND now_out’ = now_out AND t_obs’ = t_obs

AND leak_sens_int’ = T AND gas_int’ = run

/*Action describing the remaining in non_leaking state.

Enabled if: not init_cond AND not leak_to_non_leak

AND not non_leak_to_leak*/

obs4 ::= state’ = non_leaking AND

x’ = x + 1 AND

now’ = now + 1 AND

now_out’ = now_out + 1 AND

t_obs’ = t_obs AND

leak_sens_int’ = leak_sens AND

gas_int’ = gasflow

/*Observer action with scheduling and setting of output

variables*/

obs_act ::= who = obs AND who’ = contr AND

gasflow_out’ = gasflow AND

panel_out’ = panel_obs AND

leak_sens_out’ = leak_sensor AND

IF init_cond

THEN obs1

ELSE IF leak_to_non_leak

THEN obs2

ELSE IF non_leak_to_leak

THEN obs3 ELSE obs4

FI

FI

FI

SPEC INITIAL who = obs AND panel_out = on AND

leak_sens_out = T AND gasflow_out = run AND

gas_int = run AND leak_sens_int = T

AND now = 0 AND now_out = 0 AND x = 0

AND t_obs = 0 AND state = leaking

TRANSITIONS [obs_act] {now, gasflow_out, panel_out,

leak_sens_out, who, leak_sens_out}

TLSPECEND

Figure 6.11: Specification of the Observer (part 2)

140 Chapter 6. Observer Methodology

rebuilding the hybrid gasburner in the observer component what would result in
an inadequate observation of the controller and the environment.

All variables of the observer are initialised by the INITIAL predicate in the SPEC
slot. The initialisation of the variables used in the refinement mapping (x, state,
now and t obs) has to fit to the initial values of the variables of the hybrid gasburner
so that the real gasburner starts in a leaking situation (gasflow out = run and
leak sens out = T).

The observer has to handle the following situations that might occur in the
hybrid gasburner:

• The system is in its initial state and gas flows out of the nozzle without being
burned.

• The system changes from leaking to non-leaking.

• The system remains non-leaking.

• The system changes from non-leaking to leaking.

To recognise these situations in the observer component it is not enough to have a
look at the values of the input variables in the actual state. Just by looking at these
variables the observer could not recognise whether there was a situation change
from leaking to non leaking or not. In order to detect all these situation changes
the observer stores parts of the previous observation in internal variables (gas int

and leak sens int). With the help of these internal variables the situation is
unambiguously recognisable. They are used in the enabling conditions for the
actions obs1 through obs4 and they are defined in the actions

• init cond,

• leak to non leak and

• non leak to leak

as described in Figure 6.10.

Let us have a more detailed look at one of the possible situations. Assume that
the condition leak to non leak (see Figure 6.10) is satisfied. This means that the
actual values of the variables gasflow and leak sens are blocked and F (false),
respectively. Moreover, assume that the previous observations of the observer were
that there was a running gas flow and a leak, i.e. gas int is run and leak sens int

is T. This situation indicates that the system happened to be in a leaking situation
and changed to a non-leaking situation. The observer reacts on this change by
setting the state variable to non leak and by resetting the variable x to 0. This
corresponds exactly to the behaviour of the hybrid system in such a situation. That
way the behaviour of the hybrid gasburner is filtered out of the behaviour of the
controller and the environment.

6.3 Gasburner as Real-Time Observation 141

6.3.6 The Gasburner as VSE-II Specification

As usual we illustrate hybrid automata as annotated graphs. The hybrid gasburner
is pictured in Figure 6.12: The meaning of the variables of the hybrid gasburner in

ẋ = 1

ẏ = 1

ṫ = 1

x ≤ 1

ẋ = 1

ẏ = 1

ṫ = 0

>

leaking non leaking

x := 0, y := 0,

t := 0

> | x := 0

x ≥ 30 | x := 0

Figure 6.12: Gasburner Hybrid Automaton

Figure 6.12 is as follows. y accumulates overall time. x represents a control clock
that guarantees that the system remains for at most 1 time unit within location
leaking and for at least 30 time units within location non leaking. t counts
leakage time, i.e. the amount of time the system resides within leaking.

The translation of the hybrid gasburner (see [77] and Section 5) then results in
the VSE-II gasburner specification:

TLSPEC gasburner

PURPOSE "Specification of the gasburner. "

USING definition

DATA OUT x, y, t : nat

OUT state : state_t

ACTIONS

phi_1 ::= state = leaking AND state’ = non_leaking AND

x’ = 0 AND UNCHANGED(y, t)

phi_2 ::= state = non_leaking AND state’ = leaking AND

x >= 30 * c AND x’ <= c AND x’ = 0 AND

UNCHANGED(y, t)

phi_1_star ::= state = leaking AND state’ = non_leaking AND

NOT x + 1 <= c AND x’ = 0 AND

UNCHANGED(y, t)

psi_1 ::= state = leaking AND state’ = leaking AND

x + 1 <= c AND y’ = y + 1 AND

x’ = x + 1 AND t’ = t + 1

142 Chapter 6. Observer Methodology

psi_2 ::= state = non_leaking AND state’ = non_leaking AND

x’ = x + 1 AND y’ = y + 1 AND UNCHANGED(t)

SPEC INITIAL x = 0 AND y = 0 AND

t = 0 AND state = leaking

TRANSITIONS [phi_1, phi_2, phi_1_star, psi_1, psi_2]

{x, y, t, state}

FAIRNESS WF(phi_1_star) {x, y, t, state},

WF(psi_1) {x, y, t, state},

WF(psi_2) {x, y, t, state}

SATISFIES Safety

TLSPECEND

This VSE-II gasburner specification constitutes the gasprop TLSPEC given in
Figure 6.3 and represents a complex real-time property we want to prove from the
gasburner.

6.3.7 The Behaviour of the Real Gasburner

This section consists mainly of the table in Figure 6.13 which represents a possible
behaviour of the real gasburner (see the upper part of the table) including the
mapping done by the observer component and the refinement mapping12. The
table shows how the observer component works and, therefore, how it maps the
behaviour of the real gasburner to the hybrid gasburner (see the lower part of Table
6.13). The proof given in Section 6.3.9 finally states that every behaviour of the
real gasburner is mapped to a behaviour of the hybrid gasburner in a way that the
refinement relation can be established. For readability we use the abbreviations
n l for non leaking and bl for blocked in Table 6.13. If we just consider the lower
part we can see that this is a possible behaviour of the hybrid gasburner.

6.3.8 Handling of the Constant c

The constant c, as introduced in Sections 5 and 4.2, plays a special role in the
example presented here. It is used to get an exact discretisation of the continuous
behaviour of the original hybrid gasburner. In the specification of the controller
(see Figure 6.8) c is used in the actions A5 and A6.

The role of the natural constant c is the same as in the translation of hybrid
automata in Section 5. It frees the system from choosing a time unit. Let us
assume, for example, the value of c is 10. Then the clock has to make 300 steps,

12The refinement mapping is shown in the development graph of the real gasburner in Figure
6.3. It consists of a mapping of the variables to be implemented to terms constructed from the
variables of the implementing system.

6.3 Gasburner as Real-Time Observation 143

init obs contr env obs contr env obs contr env obs ...

cstate on on off off off off off off of off off ...

timer 0 0 0 0 0 0 0 0 0 0 0 ...

gasflow run run bl bl bl bl bl bl bl bl bl ...

panel on on on on on on on on on on on ...

leak sens T T T F F F F F F F F ...

now 0 0 0 0 0 0 0 1 1 1 2 ...

gas int run run run run bl bl bl bl bl bl bl ...

leak sens int T T T T F F F F F F F ...

y 0 0 0 0 0 0 0 1 1 1 2 ...

x 0 0 0 0 0 0 0 1 1 1 2 ...

t 0 0 0 0 0 0 0 0 0 0 0 ...

state l l l l n l n l n l n l n l n l n l ...

Figure 6.13: Example Behaviour with Refinement Mapping

before the barrier is reached. If, however, c is 1000 the clock has to tick 30.000
times to reach the barrier. If we consider seconds as the basic time unit, then steps
take 1

10
of a second or a millisecond, respectively.

However, the real proof of the (safety) properties has to be done independently
from specific values of the constant c. Therefore, it is valid for all possible integer
values and thus for all granularities (even the infinitesimal).

6.3.9 Refinement Proof

We sketch the refinement proof indicated in Figure 6.3 by a VSE-II satisfies-
link. The proof is done locally to the observer component. During the proof one
immediately realises that assumptions about the behaviour of the environment of
the observer are needed. These assumptions deal with two different proof situations.
First, we have to know whether we are in a leaking or a non-leaking state. We insert
this knowledge by the following invariants into the proof:

2(intern(observer) ∧ init cond→ state = leak)

2(intern(observer) ∧ leak non leak → state = leak)

2(intern(observer) ∧ non leak leak → state = non leak)

2(intern(observer) ∧ non leak non leak → state = non leak)

144 Chapter 6. Observer Methodology

The definitions of init cond, leak non leak, non leak leak and non leak non leak
are given below.

init cond =̂ leak sens = T ∧ leak sens int = T ∧ gasflow = run

∧ gas int = run

leak non leak =̂ gasflow = bl ∧ gas int = run ∧ leak sens = F

∧ leak sens int = T

non leak leak =̂ leak sens = T ∧ leak sens int = F ∧ gasflow = run

non leak non leak =̂ ¬(init cond ∨ leak non leak ∨ non leak leak)

The formula intern(observer) represents the internal behaviour of the observer
component, i.e. the behaviour of the observer without the hiding quantification.

In the second proof we need knowledge about the behaviour of the controller in
the non leak leak situation. Again this knowledge is inserted with the following
assumptions:

2((leak sens = T ∧ leak sens int = F ∧ gasflow = run)

→ now ≥ timer + 30 ∗ c)
2((leak sens = T ∧ leak sens int = F ∧ gasflow = run) → x = now − timer

It is evident that the proofs of these assumptions need knowledge about the con-
troller component as well as about the scheduling. Finally, the proof is performed
locally to the observer component and is exported as a lemma to the global proof
obligation.

6.3.10 Summary

We have presented a methodology (observer models) for formal requirements engi-
neering. Its applicability is illustrated with the help of a realistic gasburner.

One of the open issues is how to refine a specification without doing the whole
proof work again. This problem seems to be very similar to that of a refinement in
the security area, for example in protocol analysis.

6.4 Storm Surge Barrier 145

6.4 Storm Surge Barrier

Another application scenario we have presented in Section 4.2.8 is the Storm Surge
Barrier. We have shown there how this real-time system can be specified and how
special real-time properties can be specified and verified within VSE-II. In this
section we present how the observer methodology can be applied to the Storm
Surge Barrier as well. We sketch how the real-time properties of the Storm Surge
Barrier, or more precisely the real-time properties of its control system, can be
specified using hybrid automata as a real-time observation description. One of the

ṫ = 0 ṫ = 1

t ≤ d

T off T on

t := 0

L : lowhigh, close t | t := 0

t = d

L
: low

high |
t
:=

0

Figure 6.14: Hybrid Automaton for the Timer

real-time constraints in the description of the SVKO in Section 4.2.8 (see also the
specification in Appendix A) was that a timer awakes at a certain signal and it is
cumulatively re-enabled, i.e. if the signal is sent repeatedly within the time period
the timer is running, then the whole time period the timer is running is extended
by this new amount of time. This behaviour is specified in the VSE-II specification
given in Appendix A in the TLSPEC SVKO system component.

This property can be specified using a hybrid automata which is a composition
of the hybrid automata given in Figures 6.14 and 6.15.

Low High
L : lowhigh

L : highlow

Figure 6.15: Hybrid Automaton for Environment

The automaton in Figure 6.14 describes the behaviour of the timer itself. If the
automaton is in state T off this means that the timer is off and it waits for a trigger
from the environment, i.e., an event of the environment that in our case expresses
that the sensors measure a critical waterlevel. The trigger is delivered by the
automaton shown in Figure 6.15. This automaton represents a very abstract version

146 Chapter 6. Observer Methodology

of the behaviour of the environment. The state low means that the waterlevel is
not critical. In case where the environment delivers a lowhigh trigger this means
that the waterlevel is critical and the automaton changes location from Low to
High. This behaviour enforces the automaton from Figure 6.14 to change location
from location T off to T on. Within this action the variable t representing the
timer is reset to 0.The timer is switched off, if t reaches d where the automaton
switches again to T off.

The before mentioned cumulative behaviour is specified by the transition that
has location T on as both source and target. This action is only enabled if the
environment sends a lowhigh signal that says that there is another change from
Low to High caused by the environment. The timer t is reset and the system control
stays again for at least d time units in location T on.

Finally, we give an automaton that describes the behaviour for the closing of
the gates. The automaton shown in Figure 6.16 has two locations, one for the open
state and one for the close state.

Open Close

L : close t | out := 0

L : highlow, t ≥ d | out := 1

Figure 6.16: Hybrid Automaton for Open Close Signal

The location change from Open to Close is triggered by the timer automaton
via the label close t. The signal is again set to open if the environment changes
from high to low and the timer t has at least advanced until d.

The behaviour of the environment is by no means restricted just as it was the
case in the VSE-II specification. Thus, we can guarantee that the behaviour of the
specified system reacts correctly to arbitrary changes of the environment. That
way we do also catch the changes of the waterlevels as they might really occur and
treat them correctly.

The real-time behaviour of the control system is built by the composition of
the automata from Figures 6.15, 6.14 and 6.16. Recall that, in order to apply the
observer methodology we had to specify an observer mapping and show that the
specification of the Storm Surge Barrier from Section 4.2.8 satisfies (implements)
the π-translation of the composed automaton.

7
Other Methods

The expert reader is no doubt aware of the contemporary literature about other
formal methods that deal with the specification and/or verification of real-time
systems. In fact, there are just too many approaches to list and describe them
completely here. Our choice, however, seems to be representative for most of them
and in the following we shall present the Duration Calculus, Timed CSP, and Timed
Automata.

As usual, each of these description methods has its advantages and shortcom-
ings. For example, if the system under consideration can best be described in terms
of how long certain situations last rather than when they occur, the Duration Cal-
culus might be the best choice. If, on the other hand, the system can best be
described in terms of successive events, Timed CSP might simplify matters.

Interestingly, all these methods do not contradict the observer methodology
proposed in this thesis. On the contrary, the general ideas that led to the embedding
of Hybrid Automata into the VSE-II framework equally apply to the Duration
Calculus, Timed CSP, and, in particular and most easily, Timed Automata.

In this chapter we shall briefly describe all three approaches, and emphasise
both the differences and the common grounds with the approach proposed in this
thesis.

7.1 Duration Calculus

The duration calculus extends interval temporal logic with assertions about the
duration of states, there is no absolute time [33]. We present the duration calculus

148 Chapter 7. Other Methods

by its syntax and semantics and revisit the gasburner example in order to show
how real-time systems can be specified and how properties can be verified in this
calculus.

7.1.1 Syntax of the Duration Calculus

The syntax of the duration calculus is introduced in three steps. We first give the
syntax of state expressions followed by the syntax of terms. After that we present
the syntax of formulae.

State expressions are defined by

s ::= 0 | 1 | v | ¬s | s1 ∨ s2

where 0 and 1 are boolean constants representing true and false respectively. v
stands for a state variable with v ∈ Vs and V is an infinite set of variables which
consists of a set Vs of state variables and a set Vg of global variables.

A term t is defined as

t ::= c | x |
∫
s

where c represents a constant, x ∈ Vg (x is time independent) and s is a state
expression.

A formula F is defined by

F ::= true | t1 ◦ t2 | ¬F | F1 ∨ F2 | F1
aF2 | ∀x.F

where x ∈ Vg, ◦ ∈ {=, <,>,≤,≥} = R is a set of binary relations and “a” relates
two formulas in subsequent intervals.

7.1.2 Semantics of the Duration Calculus

The semantics of the Duration Calculus is given with respect to three possible
time domains in the literature [33, 32]: N, Q+ and R+, for discrete, rational and
continuous time respectively. In this context an N-interval is defined as a (bounded,
closed) interval whose endpoints b and e are natural numbers. A real interval is
defined by {r ∈ R+| b ≤ r ≤ e}. In the following we denote by time one of the
time domains N, Q+ or R+.

The semantics of state expressions is defined by the interpretation I s which
relates state expressions to (total) functions with domain R+ and codomain {0, 1}:

7.1 Duration Calculus 149

Is(0) = 0R+

Is(1) = 1R+

Is(v) = Is
v : R+ → {0R+, 1R+} with v ∈ Vs

Is(¬s1) = ¬̄Is
s1

with Is
s1

: R+ → {0R+, 1R+} and s1 is a state

Is(s1 ∨ s2) = Is
s1
∨̄Is

s2
where s1 and s2 are states

The operators ¬̄ and ∨̄ are defined by:

¬̄ : {0, 1} → {0, 1}
¬̄(0) = 1

¬̄(1) = 0

∨̄ : {0, 1}, {0, 1} → {0, 1}

a∨̄b =

{
1 if a = 1 or b = 1

0 if a = 0 and b = 0

}

The difference between ∨ and ∨̄ at the semantical level was made explicit, but for
clarity we omit this distinction in the following for readability. From the context
it will be clear which one is meant.

The semantics of a term t in an interpretation I is a function I t defined by
I t : term,Val,R,R → R, where Val is a set of valuations and a valuation ν ∈ Val
associates a value ν(x) ∈ time to every variable x ∈ Vg in an observation interval
[b, e]. I t is defined with respect to a valuation ν ∈ Val as follows:

I t(c, ν, b, e) = c̄ with c̄ ∈ time

I t(
∫
s1, ν, b, e) =

∫ e

b
Is(s1)(y)dy with b, e ∈ time and s1 a state

I t(x, ν, b, e) = ν(x), where x ∈ Vg.

The semantics of a constant c is defined as a value c̄ ∈ time. The semantics
of global variables is defined using a valuation ν. The most interesting part in the
semantic definition is that of the term

∫
s1. It is defined using the semantical defi-

nition of states and the (Riemann/Lebesgue) integral . Integrals on the semantical
side always have their given limits. We write

∫ e

b
f(t)dt for a Riemann/Lebesgue

integral.

The last step is the definition of the semantics of formulae. The semantics of a
formula F in an interpretation I is defined by an interpretation function If with
valuation ν ∈ Val as:

150 Chapter 7. Other Methods

If(true, ν, b, e) = T

If(t1 ◦ t2, ν, b, e) = T iff I t(t1, ν, b, e) � I t(t2, ν, b, e) holds where

t1, t2 are terms, ◦ ∈ R and � is the corresponding

relation to ◦ on time

I t(x, ν, b, e) = ν(x), where x ∈ Vg

If(¬F, ν, b, e) = T iff If (F, ν, b, e) = F

If(F1 ∨ F2, ν, b, e) = T iff If (F1, ν, b, e)= T or If(F2, ν, b, e)= T

If(F1
aF2, ν, b, e) = T iff for some m ∈ time with m ∈ [b, e]:

If (F1, ν, b,m) = T and If(F2, ν,m, e) = T

If(∀xF [x], ν, b, e) = T iff If(F [x], ν̂, b, e) = T for all ν̂ x-equivalent

to ν.

Definition 7.1.1
Two valuations ν and ν̂ are x-equivalent if and only if for all y 6= x ν(y) = ν̂(y).

Now we can define truth, validity and satisfiability.

Definition 7.1.2
A formula F is true in the interpretation I (I |= F) if and only if I f (F, ν, b, e) = T
for every valuation ν ∈ Val.

Definition 7.1.3
A formula F is valid (|= F) if and only if I |= F holds for every interpretation I.

Definition 7.1.4
A formula F is satisfiable if and only if there exists an interpretation I and a
valuation ν such that If(F, ν, b, e) = T . If If(F, ν, b, e) = T then we say that F
holds for the interpretation If in the interval [b, e].

After these rather standard definitions we present some abbreviations that are
frequently used:

dP e =̂

∫
P =

∫
1 ∧ ¬

∫
1 =

∫
0 (7.1)

de =̂ ¬d1e (7.2)

3F =̂ trueaF atrue (7.3)

2F =̂ ¬3¬F (7.4)

The formula 7.1 means that P is lifted from a state expression to a formula.
Informally it means that P holds almost everywhere on a non-point interval. The

7.1 Duration Calculus 151

expression “almost everywhere” indicates that there could be a finite number of
exceptions in the interval where P does not hold.

If the formula 7.2 holds on an interval, then we know that this interval is a point
interval. With the abbreviation given in 7.1 the formula de reduces to

∫
1 =

∫
0.

The formula 7.3 says that F holds for some subinterval whereas the formula
7.4 expresses that F holds in every subinterval. Note that if we write 2dP e, then
this does not mean that P holds on every point on a non-point interval. It means
that dP e holds on every subinterval and that P holds almost everywhere in every
non-point subinterval.

Before specifying and verifying the gasburner example presented in Section
7.1.3, we list some axioms and give an induction rule (introduced in [33]) that are
used in the example.

Axiom 7.1.1 ∫
0 = 0

Axiom 7.1.2 For an arbitrary state P :

∫
P ≥ 0

Axiom 7.1.3 For arbitrary states P and Q:

∫
P +

∫
Q =

∫
P ∨Q +

∫
P ∧Q

Axiom 7.1.4 Let P be a state and r, s non-negative reals.

(∫
P = r + s

)
⇔

(∫
P = r

)
a

(∫
P = s

)

The following induction rule extends a hypothesis over adjacent subintervals.

Rule 7.1.5 (Induction Rule) Let X denote a formula occurring in the formula
R(X) and let P be a state. If R(de) holds and R(X∨X adP e∨X ad¬P e) is provable
from R(X), then R(true) holds.

The induction rule relies on the finite variability property of states and on the
finitude of the intervals: any interval can be split into a finite alternation of states
P and ¬P .

The difficulties in applying the induction rule essentially come with defining the
formula R(X). An example demonstrating how the Duration Calculus can be used
for the specification and verification of a system is given in the next chapter.

152 Chapter 7. Other Methods

7.1.3 The Gasburner Example in the Duration Calculus

The requirements and the design decisions we have defined in Section 3.1 (item 1
to item 4), where item 1 and item 2 describe the safety property expressed by the
following formula:

∫
1 ≥ 60sec⇒ 20

∫
Leak ≤

∫
1 (Safe)

Expressing that a leak is stoppable within one second, is formulated by the
formula:

2(dLeake ⇒
∫

1 ≤ 1sec (Des-1)

Finally, to guarantee that the system will remain non leaking for at least 30
seconds is represented as

2[(3dLeake)a(3d¬Leake)a(3dLeake) ⇒
∫

1 ≥ 30sec] (Des-2)

Before we present the proof sketch summarised from [33], some remarks on the
specification style in the duration calculus seem opportune:

• The specification is not constructive in the sense that the specification de-
scribes what the properties of the system are and not how the system fulfils
these properties.

• As the example shows, in-constructive specifications of systems can be very
short but concise.

• The coding of the requirement and of the design decisions is relatively straight-
forward.

For proving the property Safe in [33] two lemmata are used.

Lemma 7.1.6 Des-1 ∧ Des-2 ⇒ 2(((dLeake∧
∫

1 ≤ 0.5sec)ad¬LeakeadLeake) ⇒
20

∫
Leak ≤

∫
1)

Lemma 7.1.7 dLeake ⇒ dLeakea(dLeake ∧
∫

1 ≤ 0.5sec)

We do not go into more detail concerning the proofs of the lemmata. They are
given in [33]. The main difficulty with these lemmata is not their proof but their
invention. As mentioned earlier in this work, finding invariants is a non-trivial task
in a verification/proof process.

The main proof of Des-1 ∧ Des-2∧
∫

1 ≥ 60sec ⇒ 20
∫
Leak ≤

∫
1 is sketched

in [33]. It uses the fact that for a state P (trueadP e) ∨ (truead¬P e) ∨ de holds.
This lemma divides the proof into three cases. The de case is trivial because the

7.1 Duration Calculus 153

premise
∫

1 ≥ 60sec is not satisfied. The two other cases are proven with the
induction rule defining R(X) by the predicate:

(Des-1 ∧ Des-2 ∧
∫

1 ≥ 60sec) ⇒
((X adLeake ⇒ 20

∫
Leak ≤

∫
1) ∧

(X ad¬Leake ⇒ 20
∫
Leak ≤

∫
1) ∧

(X ad¬Leake ⇒ (d¬Leake ∨
(20

∫
leak ≤

∫
1)a(dleake ∧

∫
1 ≤ 0.5sec)ad¬Leake)))

The proof is far from being straightforward since there are several critical points
to decide on:

• Finding and proving the right lemmata (invariants).

• Defining the right R(X) for the application of the induction rule.

More elaborate versions of the proof of the property mentioned above using the
RAISE justification tool [96] for the verification show the complexity of the proof
when it is done in detail. In the version presented in [96] several lemmata are used
to simplify the proving process and the main proof is several pages long.

The basic time elements in the Duration Calculus are intervals over R. The
relations between these basic time elements are equality, betweenness, precedence
or adjacent, for example.

There are many other issues concerning the Duration Calculus that are not
treated in this section. One such research topic is to analyse decidability results
for the Duration Calculus. The reader who is interested in this field is referred to
[32].

154 Chapter 7. Other Methods

7.2 Timed CSP 155

7.2 Timed CSP

7.2.1 Introduction to Timed CSP

In this chapter we give a short introduction to Timed CSP (Timed Communicating
Sequential Processes). It is mainly a summary of [92] and [93]. The language of
Timed CSP is a simple extension of Hoare’s Communicating Sequential Processes.
The language of CSP was designed for describing systems of interacting compo-
nents, and is supported by an underlying theory for reasoning about them. It
is an abstract language to describe communication patterns of concurrent system
components that interact through message passing.

The conceptual framework taken by CSP is to consider system components as
processes. They are independent self-contained entities with particular interfaces
through which they interact with their environment.

Before we describe the language and a semantics of timed CSP, we first introduce
the notation used in untimed CSP including definitions of events and processes.

7.2.1.1 Untimed CSP

Systems are modelled in terms of the events they can perform. The set of all
possible events is denoted by Σ. Events are atomic communications between an
object and its environment. The word process is used to denote the behaviour
patterns of a system component. Processes are described in terms of possible
events that they may be engaged in.

• The process STOP is the process that can engage in no events at all (dead-
lock).

• The output c!v → P first performs c.v, the output of v on channel c. Hereafter
it behaves as P .

• The input c?x : T → P (x) can accept any input of type T on channel c. Its
first event will be any event of the form c.t with t ∈ T . After that it behaves
as P (t).

• The process P2Q (P choice Q) can behave as P or as Q. Its possible com-
munications are those of P and those of Q.

• The process P u Q is able to behave non-deterministically either as P or as
Q.

• Processes may also be composed in parallel. If D is a set of events, then the
process P ‖ [D] ‖ Q behaves as P and Q acting concurrently with the request
that they have to synchronise on any event in the synchronisation set D;

156 Chapter 7. Other Methods

events which are not in D may be performed by either process independently
of the other. P ‖ Q is equivalent to P ‖ [{}] ‖ Q.

• The expression µX·F (X) is used to denote the unique fixed point of the
semantic domain mapping represented by F 1.

Processes may be recursively defined by means of equational definitions. Process
names must appear on the left hand side of such definitions, and CSP expressions
which may include those names appear on the right hand side.

Example 7.2.1 LIGHT = on→ off → LIGHT

This defines a process LIGHT whose only possible behaviour is to perform on
and off alternately. Mutually recursive processes may also be defined where a
(possible infinite) collection of process names Xk appear on the left hand side

of definitions, and CSP expressions Fk(~X) possibly involving any of those names
appear on the right. For a set of recursive definitions to be a mutual recursion,
each name appearing in any of the process bodies must be bound in one of the
recursive definitions.

Example 7.2.2

COUNT0 = up→ COUNT1

COUNTn+1 = (up→ COUNTn+22(down→ COUNTn)

This defines a collection of processes; COUNT0 can do a number of up and down
events but can never do more down’s than up’s.

7.2.1.2 Semantics of Untimed CSP

The semantics of a process P is defined to be the set of sequences of events
(traces(P)) that it may possibly perform. Examples of traces include

• 〈〉, the empty trace, which is possible for any process and

• 〈on, off, on〉 which is a possible trace of LIGHT .

There are many definitions of operators on traces. An incomplete selection is
the following:

Definition 7.2.1 (Projection)
If D is a set of events, then the trace trdD is defined to be the maximal subsequence
of tr all of whose events are drawn from D.

1Only recursions that admit such fixed points are allowed.

7.2 Timed CSP 157

Definition 7.2.2 (Message Extraction)
Message extraction tr ↓ C, where tr is a trace and C a set of channel names,
provides the maximal sequence of messages passed on channel C.

Definition 7.2.3 (Event Extraction)
If tr is a sequence, then σ(tr) is the set of events appearing in the sequence tr. The
operator σ naturally extends to processes: σ(P) is the set of events that appear in
some trace of P .

With the notion of traces of a process P we are able to define a refinement
relation between two processes.

Definition 7.2.4 (Refinement)
Let P and Q be processes, then if traces(P) ⊆ traces(Q) then we say that Q is a
refinement of P , written P v Q.

With the help of the semantics we define what it means for a specification to
satisfy a property.

Definition 7.2.5 (sat)
Specifications or properties are given as predicates on traces, and a process P sat-
isfies a specification S if all of its traces satisfy S:

P sat S ⇔ ∀tr ∈ traces(P).S

Using the definition of sat we can define proof rules (a proof system) associated
with the traces model for CSP. We present only one proof rule here since it is often
possible to give more specialised proof rules for special application areas. This
amounts to developing a specialised theory and proof system.

For each operator there is a proof rule. For example, the rule for the prefix
operator is:

P sat S(tr)

a→ P sat (tr = 〈〉 ∨ (tr = 〈a〉̂ tr′ ∧ S(tr′)))

This proof rule says that if the hypotheses holds that the process P satisfies
the specification S on trace tr of P , then we can deduce that the process a → P
satisfies the specification tr = 〈〉, which is a property of every process, or it satisfies
the property tr = 〈a〉̂ tr′ ∧S(tr′) which says that the trace tr starts with the event
a and S(tr′) holds where 〈a〉̂ tr′ = tr.

At this point the proof rules to analyse processes can be built as done in [91].
In this paper a specific theory to analyse authentication protocols is built on top
of the general CSP semantic framework presented before.

Since we are interested in the specification and verification of real-time systems
we now present the language and the semantics of timed CSP.

158 Chapter 7. Other Methods

7.2.1.3 The Language of Timed CSP

The language of timed CSP [92] is a simple extension of untimed CSP. It con-
sists of several process constructors including primitives for parallel composition,
nondeterministic choice and hiding.

Syntax In timed CSP each of the untimed CSP operators is interpreted in a
timed context, and two timing operators are added. The syntax of TCSP terms is
given by the following BNF rule:

P ::= STOP SKIP WAIT a
t−→ P P ; P

P2P P t P P �
t P P A ‖A P P ||| P

F (P) P \ A µX·F (X)

In the above rule, event a is taken from the set of all synchronisations Σ. The
event set A ranges over the set of subsets of Σ, and t is a non-negative real number.
There is no lower bound on the interval between consecutive events. This allows
one to model asynchronous processes in a satisfactory fashion without artificial
constructs on the traces at which independent events may be observed.

In the following we will explain the syntactical constructs of TCSP in more
detail2.

The terms STOP , SKIP and
√

have the same meaning in TCSP as in untimed
CSP.

• The process WAITt is a delayed SKIP . It represents a process which does
nothing except terminate successfully after time t.

• The process a
t−→ P will behave as P precisely t time units after synchroni-

sation event a is observed.

• The sequential composition operator provides a means of transferring control
on termination. In the construct P ; Q, control is passed from P to Q if and
when P performs the termination event

√
.

• The event
√

is not visible to the environment, and occurs as soon as it
becomes available.

• The external choice P 2Q may be resolved by the environment.

• The environment has no influence on an internal choice P uQ. The outcome
of such a choice is non-deterministic.

2There will be some explanations repeated and some will be new. All will be mentioned for
the sake of completeness.

7.2 Timed CSP 159

• The timeout operator P �
t Q transfers control from P to Q if no commu-

nications occur before time t. If an attempt at communication involving P
is made at time t precisely, then the outcome will be nondeterministic. If
either of the components should terminate, then the entire timeout construct
terminates immediately.

• In the construct P A ‖B Q term P may perform events in A, term Q may
perform only those events in B, and the two terms must cooperate on events
drawn from the intersection of A and B.

• The asynchronous parallel combinator, |||, allows both components to evolve
concurrently without interacting.

• The hiding operator provides a mechanism for abstraction in TCSP. The term
P\A behaves as P except that events in a are concealed from the environment.
Concealed events no longer require the cooperation of the environment, and
so occur as soon as P is ready to perform them3.

• The relabelled term f(P) has a similar control structure to term P , with
observable events renamed according to function f .

In untimed CSP, the term a→ P models a system which is initially prepared to
engage in event a, and then eventually behaves as P . To model real-time systems
we must be able to model constraints upon the time between the observation of an
a and the onset of P .

The relation between prefix and delay is:

a
t1+t2−→ P ≡ a

t1−→WAITt2 ; P

Example 7.2.3 The formalisation of a process P that makes event b available
exactly four seconds after event a is observed, only to halt two seconds after b is
performed, is:

P = a
4−→ b

2−→ STOP

Events are considered to be instantaneous. If the duration of an action is of
interest, then that action may be modelled by specifying the beginning and the
end of the action as separate events.

3There is a slight different explanation of the hiding operator in the literature. For example,
in [49] P \C is a process which behaves like P , except that each occurrence of any event in C is
concealed which means that the alphabet of P \ C is the alphabet of P without the alphabet of
C.

160 Chapter 7. Other Methods

7.2.1.4 Semantics of Timed CSP

The language of CSP considers processes as interacting system components. Al-
though processes may have differing internal behaviours, they are solely analysed
in terms of their external behaviour, i.e. only activities at the interface can have
any effect on a context in which processes might be placed. In particular, if two
processes cannot be distinguished within any CSP environment, then they should
be considered equivalent.

In the timed world, contexts can be more sensitive to the behaviour of their
components than in the untimed world. It is not only important which events a
component is able to perform or to refuse, but also the time point at which this
happens. Thus, components can also be distinguished by their respective timing
behaviour.

For example, the process Q1 = a→ STOP and Q2 = WAIT2; a→ STOP are
both able to perform the event a, and both processes will have the same traces.
However, the times at which the a is on offer are different, so the processes should
be distinguished on the basis of their timed behaviour. If placed in parallel with
the time-sensitive process (a→ STOP) �

1 STOP the first resulting system is able
to perform the event a but the second is not. A timed semantics must differentiate
Q1 from Q2.

Another example shows two processes that cannot be distinguished by any
environment:

(WAIT2; a→ STOP) u (WAIT2; b→ STOP)

and

WAIT2; ((a→ STOP) u (b→ STOP))

Although both processes have different executions, the first process resolves the
internal choice at time 0 whereas the second process does not resolve the internal
choice until time 2, there is no environment that can distinguish between the two
processes.

A semantics for timed processes that makes the required distinctions is described
for example in [92, 93]. In [93] a compositional model is described that considers
processes as sets of timed failures where a timed failure is a record of an execution,
consisting of a timed trace containing informations about the performed events,
and a timed refusal containing information about when events could be refused.
Timed failures information captures those aspects of a process’s behaviour that can
be observed by interacting with it.

We omit the exact definition of the semantics of Timed-CSP4, instead we give
an example that shows how real-time systems can be specified using Timed-CSP.

4The interested reader is refered to [92, 93].

7.2 Timed CSP 161

7.2.1.5 Gasburner in Timed-CSP

The specification of the gasburner in this section is taken from [43]. In this work
a method is presented how to use Z [94] and Timed-CSP for the specification of
software for safety-critical applications. The formal specification of a system is
structured in a dynamic and a functional part. In the dynamic part the reactive
behaviour of a component is specified. Real-time requirements and the ordering of
events are handled within this part using Timed-CSP. In the functional part the
internal behaviour is specified. It is mainly concerned with the structure of the
possible system states and system operations that are defined as relations between
inputs, outputs and the system state before and after the execution of an operation.
Z is used to handle the functional part of the specification.

In the description of the example we mainly refer to the dynamic part, the
Timed-CSP part, of the specification of the gasburner. The architecture of the
gasburner described in [43] is as follows.

• The gas actuator controls the emission of gas and receives the commands to
start or stop the emission of gas from the controller.

• The ignition actuator starts or stops the ignition of escaping gas from the
nozzle of the gasburner.

Both actuators can be triggered by the controller at arbitrary time instants. The
decisions of the controller are based on observations made by the two sensors,
the thermometer and thermostat sensor. The thermometer sensor measures the
temperature and reports it to the controller. The thermostat sensor signals the
controller whether there is a request by the user to activate or deactivate the
gasburner.

In the following description we will concentrate on the dynamic behaviour of
the gasburner and we will only mention the functional behaviour without a formal
definition as it is given in [43] using Z. Furthermore, only the controller part of the
gasburner is described. The environment is represented by the actuators and the
sensors in the model as mentioned above.

The dynamic behaviour of the gasburner controller is given by the real-time
CSP process GasBurnerControl.

GasBurnerControl =̂ GasBurnerInit→
(GasBurnerControlReady ‖
T imer1 ‖
T imer2)

The process GasBurnerControl starts with the initialisation represented by the
event GasBurnerInit. This event expresses that the gasburner is in an idle mode

162 Chapter 7. Other Methods

where there is no gas flow and no flame. The event GasBurnerInit is followed by
the three parallel processes GasBurnerControlReady, T imer1 and T imer2.

In order to define the GasBurnerControlReady process the fixpoint operator µ is
used where µX·F (X) is the least fixed point of the function F (X). The µ-operator
allows recursive processes to be defined without the need to name them.

GasBurnerControlReady =̂ µX·

HighPriority

2

heat on request→ Waitε; if BurnerIsDeactivated

then set timer1 → HeatOnRequestExecution→ ActuatorCtr; X

else ShutDownExecution→ ActuatorCtr; Stop fi

2

flame on→ (HighPriority �
ε if IgitionIsActivated

then reset timers → IgnitionOKExecution→ ActuatorCtr; X

else ShutDownExecution→ ActuatorCtr; Stop fi)

2

flame off → (HighPriority �
ε if F lamePresent

then F lameFailureExecution → ActuatorCtr; X

else ShutDownExecution→ ActuatorCtr; Stop fi)

2

timer1 elapsed→ (HighPriority�
ε

set timer2 → IgnitionExecution → ActuatorCtr; X)

2

timer2 elapsed→ (HighPriority�
ε

IgnitionFailureExecution → ActuatorCtr; X)

In the description of GasBurnerControlReady there are several processes and
events that are explained informally as follows:

• heat on request (heat off request) marks a situation in which there is a re-
quest from outside to start (stop) the controller.

• flame off describes a state in which there is no flame.

7.2 Timed CSP 163

• timer1 elapsed (timer2 elapsed) marks a situation in which timer1 (timer2)
is elapsed.

• BurnerIsDeactivated marks a situation in which the controller of the gas-
burner is not active.

• IgnitionIsActivated represents a situation in which the ignition is activated
and can be started.

• F lamePresent describes a state in which the flame of the gasburner is burn-
ing.

• set timer1 sets timer1 to a specific value.

• reset timers resets the timer at a given point in time.

• HeatOnRequestExecution marks the beginning of an request to start the
gasburner.

• IgnitionOKExecution reflects a situation in which ignition is executed suc-
cessfully.

• IgnitionExecution marks the beginning of an ignition phase.

• IgnitionFailureExecution describes a situation in which there is an ignition
failure.

• F lameFailureExecution reflects a behaviour in which there should be no
flame since there has been a flame off event.

• ShutDownExecution: This event represents the shut down of the controller.

• ActuatorCtr: A process that communicates with the physical real gasburner.
It sends the commands of the controller to the actuators.

• HighPriority: The process that specifies the behaviour of the controller in
case that the event heat off request occurs. It is defined as follows:

HighPriority =̂

heat off request→Waitε;

if ¬BurnerIsDeactivated
then reset timers → HeatOffRequestExecution→

ActuatorCtr; GasBurnerControlReady

else ShutDownExecution→ ActuatorCtr; Stop fi

164 Chapter 7. Other Methods

The process definition of the controller is recursive. This represents the cyclic
behaviour of the controller that continuously reacts to incoming events from the
sensors. The two timer components consist of a set timer event, followed by a
wait process and a timer elapsed event. These processes can be interrupted by
reset timers at any time.

In this version of the specification of the gasburner there are two classes of events
that can occur simultaneously: high priority and low priority events. If two such
events happen simultaneously5, then only the high priority event is treated. This
is expressed with the help of the timeout operator �

ε. The event heat on request
is neither a high nor a low priority event.

A property of this definition of a gasburner that is manually proven in [43] is
that in each interval of 30 seconds there may be gas leaking from the nozzle of the
gasburner at most 2 + 2ε seconds, where ε is the response time for the technical
components.

5In this model this means with a time difference of at most ε.

7.3 Automata 165

7.3 Automata

Since we use Hybrid Automata (see section 4.3) as one of the basic formalisms in
this work we give a short overview of a common definition of timed automata and
argue that hybrid automata can be viewed as an extension of timed automata by
relaxing some of the syntactic constraints. Therefore, all the theoretical results
developed in Sections 5 and 6 can also be applied to timed automata.

We start by giving a very common definition of timed automata and explain
the behaviour of such an automaton by a small example. After that, we present
the version of timed automata used in the UPPAAL tool together with a short
description of the tool itself.

7.3.1 Timed Automata

Timed automata generalise finite automata by additional constraints so that real-
time systems can be handled. They were proposed as an abstract model for real-
time systems in [36, 17].

A timed automaton operates with a finite control, i.e. a finite set of locations
and a finite set of real-valued clocks. All clocks proceed at the same rate and
measure the amount of time that has elapsed since they were started (or reset).
Each transition of the automaton may reset some of the clocks. Each location of
the automaton puts certain constraints on the values of the atomic propositions
as well as on the values of the clocks. The control of the automaton can reside in
a particular location only if the values of the propositions and clocks satisfy the
corresponding constraints.

A formal definition of a timed automaton is as follows.

Definition 7.3.1 (timed automata)
A timed automaton A is defined by an eight-tuple A = (P, L, L0, C, µ, ν, E, F) where
the elements of the tuple have the following meaning:

• P is a finite set of propositions.

• L is a finite set of locations.

• L0 is a set of initial locations with L0 ⊆ L.

• C is a finite set of clocks.

• A mapping µ that associates with each location in L a boolean formula over the
set P of propositions. If l ∈ L, then the formula µ(l) is called a propositional
constraint.

• A labelling function ν that associates with each location in L a timing con-
straint over the variables in C. Each timing constraint is a boolean combina-
tion of atomic timing constraints, i.e. comparisons between terms involving

166 Chapter 7. Other Methods

clock variables and primitive operations as, for instance, addition by con-
stants.

• A set E ⊆ L× L× P(C) of transitions where each transition (edge) (l, l′, λ)
consists of a source location l, a target location l′ and a set λ ⊆ C of clocks
to be reset. P(C) denotes the power set of C.

• A family F ⊆ P(C) the acceptance set of locations.

A run of a timed automata is defined as a timed state sequence. At any time
instant during a run, the configuration of the automaton is completely determined
by the location in which the control resides and by the values of all propositions
and all clocks. The values of the clocks are given by a clock interpretation.

Definition 7.3.2 (clock interpretation)
The clock interpretation is a mapping γ : C → R from the set of clocks to the real
numbers. For any clock x ∈ C the value of x under the interpretation γ is the
non-negative real number γ(x).

Definition 7.3.3 (state)
A state of the timed automaton A is a triple (l, σ, γ), where l ∈ L is a location and

• σ ⊆ P is an observation that satisfies the propositional constraint µ(l).

• γ is a clock interpretation that satisfies the timing constraint ν(l).

Before we present the formal definition of a run, first some intuition: Suppose
that at time t ∈ R a timed automaton is in state (l, σ, λ). Assume further that the
location l of the automaton and the observation σ remain unchanged during the
time interval I6 with l(I) = t. We know that all clocks proceed with the same rate
as time elapses. The value of a clock x at time t′ ∈ I is γ(x) + t′ − t. During this
interval the clock values satisfy the timing constraint that is associated with l:

(γ(x) + t′ − T) |= ν(l)

If the automaton changes its location at time r(I) = t′′ along the edge (l, l′, λ),
then this change can happen in two ways.

1. I is right closed: The state at time t′′ is (l, σ, γ + t′′ − t).

2. I is right open: In this case the state at time t′′ is (l′, σ′, γ′), where σ′ is an
observation satisfying µ(l′) and the clock interpretation γ ′ is defined by

(a) γ′(x) = 0 for all clocks to be reset, i.e. for all clocks x with x ∈ λ, and

(b) γ′(x) = γ(x) + t′′ − t for all other clocks.

6l(I) (r(I)) denotes the left (right) end-point of the interval I .

7.3 Automata 167

Definition 7.3.4 (run)
A run of the automaton A = (P, L, L0, C, µ, ν, E, F) is a finite or infinite sequence

r: 7→γ0
r1 7→λ1

γ1
r2 7→λ2

γ2
r3 7→λ3

γ3
· · ·

with triples ri = (li, σi, Ii) where li are locations li ∈ L, σi are observations σi ⊆ P ,
Ii are intervals, λi are clock sets λi ⊆ C and γi are clock interpretations γi : C → R

such that

• l0 ∈ L0;

• (ri, ri+1, λi) ∈ E for all i ≥ 0;

• σi satisfies µ(li) for all i ≥ 0;

• I = I0I1I2 . . . is an interval sequence;

• for all x ∈ C and i ≥ 0, γi+1(x) = 0 if x ∈ λi+1, and γi+1(x) = γi(x)+r(Ii)−
l(Ii) otherwise;

• γi + t− l(Ii) satisfies ν(li) for all i ≥ 0 and t ∈ Ii;

• either I = I0I1I2 . . . is finite and {ln} ∈ F , or r is infinite and {l | l =
li for infinitely many i ≥ 0} ∈ F

Every run r of the timed automata A uniquely determines a timed state sequence
τr.

As a first example of timed automata we give an automaton that satisfies the
stimulus response property as described in Section 2.2.2.2.

The automaton in Figure 7.1 has the locations l0, . . ., l4. The initial location is
l0 indicated by an arrow without a given source. The automaton starts in location
l0 where p and q do not hold. If the stimulus p occurs the automaton changes
to location l1 and sets the clock x to 0. The automaton is not allowed to stay in
location l1 because of the condition x = 0 and changes immediately to location l2.
The clock x is used to measure the time that elapses since the time of the stimulus.
In location l2 the automaton decides within one time unit to go back to location l0
or to go to location l3. This decision is taken nondeterministically. Going back to
location l0 means not to respond, whereas going to location l3 means to respond the
stimulus and that within 2 time units after the stimulus occurred. The automaton
changes to location l0 and waits for another stimulus.

Unfortunately, the gasburner automaton given in Figure 4.19 in Section 4.3
cannot be expressed by the version of timed automata as presented here, because
stop watches or guards on transitions describing state changes cannot be expressed.

In the next section we present another version of timed automata used in the
UPPAAL tool.

168 Chapter 7. Other Methods

¬p
¬q

p

¬q
x = 0

¬q

x ≤ 1

¬q

x = 2

¬q

l0 l1 l2

l4 l3

x := 0

Figure 7.1: Stimulus Response Automaton

7.3.2 UPPAAL Timed Automata

In this section we sketch the version of timed automata used in the UPPAAL tool
[29, 28]. In UPPAAL finite-state automata extended with clock and data variables
are used to describe processes and networks of such automata. UPPAAL timed
automata are very similar to the timed automata described before except for some
slight differences concerning the composition and synchronisation techniques.

7.3.2.1 Syntax of UPPAAL Timed Automata

Alur and Dill developed the theory of timed automata [17] as an extension of
classical finite-state automata with clock variables. In a finite-state automaton, a
transition has the form l

α−→ l′ meaning that the process modelled by the automa-
ton will perform an α-transition in state l and reach state l′. Alur and Dill [17]

extended the un-timed transition to the timed version l
α,g,Φ−→ l′, where g is a simple

linear constraint over the clock variables and Φ is a set of clocks. Intuitively, this
means that a process in location l may perform the α-transition instantaneously
when g is true and reach location l′ after having reset the clocks in Φ. g is called
the guard of the transition.

Assume a finite set of clock variables C denoted by x, y or z and a finite set of
data variables V denoted by i, j or k. We use G(C, V) to denote the set of formulae
ranged over by g with the following syntax: g ::= a | g∧g where a is either a timing
constraint over C or a data constraint over V . A timing constraint is in the form
x ◦ n or x − x′ ◦ n where n is a natural number and ◦ ∈ {≤,≥,=, <,>}. A data
constraint is of the same form, i.e. i ◦ j or i − i′ ◦ j where i,j may be integer.

7.3 Automata 169

G(C, V) is called a guard.

Reset-Operations Clock and data variables are manipulated by a reset opera-
tion. Since the timed automata used in UPPAAL are distinguished in clock vari-
ables and data variables, there are two reset operations: A reset of a clock variable
has the form x := n where n is a natural number and a reset operation on an
integer variable (data variable) should be in the form: i := c ∗ i + c0 where c and
c0 are integer constants. Note that c and c0 can be zero or negative. We use R to
denote the set of all possible reset operations.

Channel and Synchronisation We assume that processes synchronise with
each other via channels. We further assume that each communication synchronises
two processes (handshake). Let A be a set of channel names. We use Act = {α? |
α ∈ A} ∪ {α! | α ∈ A} to denote the set of actions that processes can perform to
synchronise with each other.

Committed Locations Communication between processes is one-to-one, i.e.
only two processes can be synchronised. In this way broadcasting can not be
implemented since the atomicity of a broadcast will be lost if it is implemented
with several one-to-one synchronisations. To clarify the situation assume that a
sender S wants to broadcast a message m to two receivers R1 and R2. As men-
tioned before this requires synchronisation between three processes and cannot be
expressed directly in the timed automata used in UPPAAL, where synchronisation,
as in CCS [75], is between two processes based on complementarity of actions. How-
ever, a broadcast can be implemented using the notion of a committed location.
Committed locations are locations that must be left immediately. In this way S
can first synchronise with R1 on m1 and then with R2 on m2 and the intermediate
location S2 of S that starts in location S1 and ends up in location S3 is marked as
committed location.

Formal Syntax Definition In the following we give a formal syntax definition
of timed automata with constraints and committed locations used in UPPAAL.

Definition 7.3.5 (Syntax)
An automaton A over actions Act with clock variables C and data variables V is
a tuple 〈L, l0, E, C, I〉 where

1. L is a finite set of locations,

2. LC ⊆ L is the set of committed locations,

3. l0 is the initial location,

170 Chapter 7. Other Methods

4. E ⊆ L×G(C, V)×Act×P(R)×L is the set of transitions between locations7,
and

5. I is a function that assigns to each location l a clock constraint I(l). This
constraint is called invariant of l and has the form x ◦ n where ◦ ∈ {<,≤}.

A transition from the location l to location l′ with guard g, action a to be
performed and a set r of variable reset operations is represented by l

g,a,r−→ l′

7.3.2.2 Informal Semantics

Informally, a process modelled by an automaton starts at location l0 where all the
clocks and data variables are initialised to 0. The values of the clocks increase
synchronously with the time at location l0. If the current values of the clocks
satisfy the enabling condition g, the process can change the location by following
an edge l

g,a,r−→ l′. Executing this transition the variables are updated by r.

To be more precise about the semantics of UPPAAL timed automata we would
have to introduce such notions as runs (see section 4.3) or trajectories [80]. These
definitions are very similar to the ones given in Section 4.3. We omit them and pro-
ceed with an example. The reader interested in a formal definition of the semantics
is referred to [80, 29].

7.3.2.3 Example Timed Automaton

As in the case of the version of timed automata presented in Section 7.3.1 we are
not able to express the gasburner presented in Section 4.3 because in the timed
automata used in UPPAAL there are no stop watches. One could think now that
timed automata are only able to express very simple systems but that is not true.
It is surprising how complex systems can be expressed and proved using the timed
automata version of UPPAAL. Of course, there has to be always a compromise
between expressiveness of the specification language and the proof support available
for the language. Since it is not a main concern to investigate the expressiveness of
timed automata in this work, we only refer to a result using timed automata and
UPPAAL. In terms of complexity the Philips Audio-Control Protocol with bus-
collision is a comprehensive case-study to which UPPAAL has been successfully
applied. More information about the modelling or the protocol itself can be found
in [57].

7.3.2.4 Conclusion

The timed automata we have presented in this section are all covered by the ap-
proach presented in Section 5, i.e. our examinations concerning linear hybrid au-
tomata are also applicable to timed automata. We use linear hybrid automata

7P(R) represents the powerset of R.

7.3 Automata 171

since they are more general and in some cases more natural (adequate) to express
real-time system behaviours.

Nevertheless, there are translation techniques from linear hybrid automata to
timed automata [80]. But these techniques are limited to Non-Zero Constant Slope
Hybrid Systems (CSHS 6=0).

172 Chapter 7. Other Methods

8
Conclusion and

Future Work

In our society, much of the quality of life is tied to the quality and reliability of
the information and computing systems we use. Highly complex computer systems
are now to be found in almost every component of our infrastructure: government,
education, health care, entertainment, e-commerce, manufacturing, telecommuni-
cations, transport, aerospace, defence, hazardous environments, and energy. Such
systems depend intrinsically on the software that controls them, and so our quality
of life and in some cases, even life itself, depends on the reliability of software and
the computer. Modern computing systems typically run on distributed, heteroge-
neous networks and are subject to complex constraints for their functionality and
performance. Although progress has been made in sound development methods, no
single software development technique is adequate to address all issues of complex
system development.

All engineering disciplines use mathematics and mathematical models to de-
scribe and analyse the behaviour of their devices and systems. Using formal meth-
ods in software (system) development is the consequent next step now in computer
science as well. This way, formal software development becomes an engineering
discipline.

The first step is done: The available methods are mature and have shown their
applicability in many industrial applications. The next step is to provide method-
ologies to ease the use of formal methods and to integrate different approaches

174 Chapter 8. Conclusion and Future Work

in order to exploit their respective advantages. The resulting synergetic effect al-
lows for the separation of different aspects of a system and for the use of adequate
description means.

In this work we presented a methodology (observer models), based on the very
general approach taken by the VSE-II system, to relate different views of the same
system based on one specification that covers all these views. The methodology
separates different views on that system and allows for different specification tech-
niques or tools to realize such a view. Since all the views relate to one common
specification that is given in VSE-II and since all the views are embedded into
VSE-II the consistency among these views is assured. Think for example of a
telecommunication system or an e-commerce system. There are protocols control-
ling the communication with real-time constraints on answers in that protocol, and
databases held in the background that are updated according to the events that
have taken place. Our methodology supports specialised description techniques for
databases as well as for protocols. The methodology was applied to a real-time sce-
nario. We have embedded Hybrid Automata into VSE-II in a way that both tools,
VSE-II and for example HyTech, have advantages from this marriage. VSE-II with
its interactive deduction system is now also connected directly to model checking
approaches. Automatically computed results can be shipped from the model check-
ing shore to the VSE-II shore. These automatically computed results can be used
in the interactive proofs as lemmata. Vice versa, the developed technique allows
for an integration of VSE-II lemmata into the model checking approach. Imagine a
situation where the model checker does not terminate and imagine further that we
have an idea of an invariant that helps the model checker to find the proof. Then
we can switch to the VSE-II side and prove this invariant with the interactive de-
duction unit. When we are back in the model checker we are allowed to use this
invariant as an invariant for the model checker because of the developed theory.

To achieve this for the specification of real-time systems using Hybrid Automata
we have developed a discretisation technique for Hybrid Automata that allows for
an exact discretisation. This means that we do not lose any property by translating
such an automaton to his discretised version in VSE-II. This translation technique
is not only usable for the translation of Hybrid Automata to VSE-II. The discreti-
sation technique is general enough so that it can be applied to a wide range of
other hybrid description techniques.

We have shown how real-time systems can be specified and verified in (pure)
VSE-II using a general description technique for real-time systems. Several exam-
ples such as the familiar gasburner are used to illustrate this methodology.

Our main aim is to give the system engineer a methodology at hand that s/he
can start to work without being confronted with the whole world of formal methods.
This goal is achieved by the Observer Model which can be used for a smooth
entrance into the world of formal methods starting with relatively easy applications
and description techniques and going on to more complicated ones using more
elaborate techniques, if necessary.

175

Future work will concentrate on branching time semantics. Our Property Spec-
ification Language (PSL) can express the usual linear temporal properties, but in
Hybrid Systems it is common to have a branching time semantics, such that we can
describe counter examples which is not possible in linear time semantics. Another
extension of VSE-II would be to have automata (Hybrid Automata) as components
in a VSE-II development graph at the same level as temporal logic specifications
(TLSPEC’s). Problems in this context are for example: How can we define the
composition of a TLSPEC and a Hybrid Automaton? How can we prove properties
of Hybrid Automata in the presence of assumptions about the environment?

176 Chapter 8. Conclusion and Future Work

A
Specification of the

SVKO

In this chapter we have listed the specification of the Emergency Closing System
(SVKO) presented in Chapter 4.2.8. The specification is available in the VSE-II
tool and is identical (up to some minor improvements for readability) to this pre-
sentation. The graphical representation, i.e. the development graph of the SVKO,
is given in Chapter 4.2.8. Working on the specification means usually manipulating
the development graph and the specifications in it using a syntax-oriented editor.
Users used to the tool can also specify a system in an arbitrary editor and then
import these specifications into the development graph.

Before we present the specification first some remarks. The names in the specifi-
cation are rather long because first we print the specification with the full qualified
names of the variables. In the VSE tool there is the possibility to produce online a
short view on the variables where this part is removed. But in order to be unam-
biguous and to avoid problems in reading the specification we decided to have the
full qualified version. The second reason is that we take the names from the origi-
nal description. We tried to stay as close to the original names and functionalities
of these variables as possible to make it easier for the engineers to understand the
specification1.

1Everyone who has already specified a non-trivial system knows that a good naming of variables
is not trivial and important for better understanding.

178 Chapter A. Specification of the SVKO

1. BasicDatas

=============

THEORY BasicDatas

PURPOSE

"basic operations for the hardwired protection system"

USING natural;

boolean

TYPES zustand =

GENERATED BY s1 |

s2 |

s3

FUNCTIONS

/* global setting */

/* time durations _|- and -|_ resp. : */

down, up : nat;

/* allowed signal limits */

max_val, min_val : nat;

minus : nat, nat -> nat;

/* initial setting of the environment variables */

IWL_OWL_const : nat;

IWL_TRIGGER_HIGH1_const, IWL_TRIGGER_HIGH2_const,

IWL_TRIGGER_HIGH3_const : nat;

IWL_TRIGGER_LOW1_const, IWL_TRIGGER_LOW2_const,

IWL_TRIGGER_LOW3_const : nat;

OWL_TRIGGER1_const, OWL_TRIGGER2_const,

OWL_TRIGGER3_const : nat;

OPEN_DIFFERENCE1_const, OPEN_DIFFERENCE2_const,

OPEN_DIFFERENCE3_const : nat

PREDICATES less_comp : nat, nat;

voter2from3 : bool, bool, bool

VARS n1, n2 : nat;

b1, b2, b3 : bool

AXIOMS FOR max_val : max_val > min_val + 1

FOR min_val : min_val < max_val - 1 AND

min_val > 0

FOR less_comp : ALL n1, n2 :

less_comp(n1,n2) <->

/* B > A */

n1 < n2 AND

n2 > min_val AND

n2 < max_val AND

n1 > min_val AND

179

n1 < max_val

FOR voter2from3 : ALL b1, b2, b3 :

voter2from3(b1,b2,b3) <->

/* 2/3 */

(b1 = t AND

b2 = t) OR

(b2 = t AND

b3 = t) OR

(b1 = t AND

b3 = t)

FOR minus : ALL n1, n2 :

IF n1 >= max_val OR

n1 <= min_val OR

n2 >= max_val OR

n2 <= min_val OR

n2 > n1

THEN minus(n1,n2) = 0

/* signal value 0 < min_val and is

not valid */

ELSE minus(n1,n2) = n1 - n2

FI

FOR IWL_OWL_const :

/* not_CLOSE must be TRUE in INIT state,

therefore: */

IWL_OWL_const < OWL_TRIGGER1_const AND

IWL_OWL_const < OWL_TRIGGER2_const AND

IWL_OWL_const < OWL_TRIGGER3_const

THEORYEND

2. SVKO_combine

===============

TLSPEC SVKO_combine

PURPOSE

" combine of the SVKO components"

USING Basicdatas

DATA OUT

/* output of the system time.*/

time_out : nat;

/* general output datas */

not_CLOSE_out, OPEN_out, OPEN_ALLOWED_out : bool;

/* environment datas */

IWL_GEM1_out, IWL_GEM2_out, IWL_GEM3_out : nat;

180 Chapter A. Specification of the SVKO

IWL_TRIGGER_HIGH1_out, IWL_TRIGGER_HIGH2_out,

IWL_TRIGGER_HIGH3_out : nat;

IWL_TRIGGER_LOW1_out, IWL_TRIGGER_LOW2_out,

IWL_TRIGGER_LOW3_out : nat;

OWL_GEM1_out, OWL_GEM2_out, OWL_GEM3_out : nat;

OWL_TRIGGER1_out, OWL_TRIGGER2_out,

OWL_TRIGGER3_out : nat;

OPEN_DIFFERENCE1_out, OPEN_DIFFERENCE2_out,

OPEN_DIFFERENCE3_out : nat;

SELECT_HIGH_TRIGGER_LEVEL_out, FORBID_OPEN_out : bool

COMBINE environment_data SHARED

[EnEnv <- Update.EnEnv ,EnEnv <- SVKO_system.EnEnv];

/* environment.out -> SVKO_system.in */

SVKO_system

[SVKO_system.IWL_GEM1_sys_in <-

environment_data.IWL_GEM1_sys_out,

SVKO_system.IWL_GEM2_sys_in <-

environment_data.IWL_GEM2_sys_out,

SVKO_system.IWL_GEM3_sys_in <-

environment_data.IWL_GEM3_sys_out,

SVKO_system.OWL_GEM1_sys_in <-

environment_data.OWL_GEM1_sys_out,

SVKO_system.OWL_GEM2_sys_in <-

environment_data.OWL_GEM2_sys_out,

SVKO_system.OWL_GEM3_sys_in <-

environment_data.OWL_GEM3_sys_out,

SVKO_system.IWL_TRIGGER_HIGH1_sys_in <-

environment_data.IWL_TRIGGER_HIGH1_sys_out,

SVKO_system.IWL_TRIGGER_HIGH2_sys_in <-

environment_data.IWL_TRIGGER_HIGH2_sys_out,

SVKO_system.IWL_TRIGGER_HIGH3_sys_in <-

environment_data.IWL_TRIGGER_HIGH3_sys_out,

SVKO_system.IWL_TRIGGER_LOW1_sys_in <-

environment_data.IWL_TRIGGER_LOW1_sys_out,

SVKO_system.IWL_TRIGGER_LOW2_sys_in <-

environment_data.IWL_TRIGGER_LOW2_sys_out,

SVKO_system.IWL_TRIGGER_LOW3_sys_in <-

environment_data.IWL_TRIGGER_LOW3_sys_out,

SVKO_system.OWL_TRIGGER1_sys_in <-

environment_data.OWL_TRIGGER1_sys_out,

SVKO_system.OWL_TRIGGER2_sys_in <-

environment_data.OWL_TRIGGER2_sys_out,

SVKO_system.OWL_TRIGGER3_sys_in <-

181

environment_data.OWL_TRIGGER3_sys_out,

SVKO_system.OPEN_DIFFERENCE1_sys_in <-

environment_data.OPEN_DIFFERENCE1_sys_out,

SVKO_system.OPEN_DIFFERENCE2_sys_in <-

environment_data.OPEN_DIFFERENCE2_sys_out,

SVKO_system.OPEN_DIFFERENCE3_sys_in <-

environment_data.OPEN_DIFFERENCE3_sys_out,

SVKO_system.SELECT_HIGH_TRIGGER_LEVEL_sys_in <-

environment_data.SELECT_HIGH_TRIGGER_LEVEL_sys_out,

SVKO_system.FORBID_OPEN_sys_in <-

environment_data.FORBID_OPEN_sys_out,

SVKO_system.time <- Update.time] SHARED

[EnSys <- Update.EnSys,

EnUpd <- Update.EnUpd,

EnEnv <- Update.EnEnv ,

EnEnv <- environment_data.EnEnv];

/*environment.out -> Update.in,

SVKO_system.out -> Update.in,

Update.out -> SVKO_combine.in */

Update [Update.time_comb -> SVKO_combine.time_out,

Update.not_CLOSE_upd_in <- SVKO_system.not_CLOSE_sys_out,

Update.OPEN_upd_in <- SVKO_system.OPEN_sys_out,

Update.OPEN_ALLOWED_upd_in <-

SVKO_system.OPEN_ALLOWED_sys_out,

Update.IWL_GEM1_upd_in <-

environment_data.IWL_GEM1_upd_out,

Update.IWL_GEM2_upd_in <-

environment_data.IWL_GEM2_upd_out,

Update.IWL_GEM3_upd_in <-

environment_data.IWL_GEM3_upd_out,

Update.OWL_GEM1_upd_in <-

environment_data.OWL_GEM1_upd_out,

Update.OWL_GEM2_upd_in <-

environment_data.OWL_GEM2_upd_out,

Update.OWL_GEM3_upd_in <-

environment_data.OWL_GEM3_upd_out,

Update.IWL_TRIGGER_HIGH1_upd_in <-

environment_data.IWL_TRIGGER_HIGH1_upd_out,

Update.IWL_TRIGGER_HIGH2_upd_in <-

environment_data.IWL_TRIGGER_HIGH2_upd_out,

Update.IWL_TRIGGER_HIGH3_upd_in <-

environment_data.IWL_TRIGGER_HIGH3_upd_out,

182 Chapter A. Specification of the SVKO

Update.IWL_TRIGGER_LOW1_upd_in <-

environment_data.IWL_TRIGGER_LOW1_upd_out,

Update.IWL_TRIGGER_LOW2_upd_in <-

environment_data.IWL_TRIGGER_LOW2_upd_out,

Update.IWL_TRIGGER_LOW3_upd_in <-

environment_data.IWL_TRIGGER_LOW3_upd_out,

Update.OWL_TRIGGER1_upd_in <-

environment_data.OWL_TRIGGER1_upd_out,

Update.OWL_TRIGGER2_upd_in <-

environment_data.OWL_TRIGGER2_upd_out,

Update.OWL_TRIGGER3_upd_in <-

environment_data.OWL_TRIGGER3_upd_out,

Update.OPEN_DIFFERENCE1_upd_in <-

environment_data.OPEN_DIFFERENCE1_upd_out,

Update.OPEN_DIFFERENCE2_upd_in <-

environment_data.OPEN_DIFFERENCE2_upd_out,

Update.OPEN_DIFFERENCE3_upd_in <-

environment_data.OPEN_DIFFERENCE3_upd_out,

Update.SELECT_HIGH_TRIGGER_LEVEL_upd_in <-

environment_data.SELECT_HIGH_TRIGGER_LEVEL_upd_out,

Update.FORBID_OPEN_upd_in <-

environment_data.FORBID_OPEN_upd_out,

Update.not_CLOSE_upd_out ->

SVKO_combine.not_CLOSE_out,

Update.OPEN_upd_out -> SVKO_combine.OPEN_out,

Update.OPEN_ALLOWED_upd_out ->

SVKO_combine.OPEN_ALLOWED_out,

Update.IWL_GEM1_upd_out -> SVKO_combine.IWL_GEM1_out,

Update.IWL_GEM2_upd_out -> SVKO_combine.IWL_GEM2_out,

Update.IWL_GEM3_upd_out -> SVKO_combine.IWL_GEM3_out,

Update.OWL_GEM1_upd_out -> SVKO_combine.OWL_GEM1_out,

Update.OWL_GEM2_upd_out -> SVKO_combine.OWL_GEM2_out,

Update.OWL_GEM3_upd_out -> SVKO_combine.OWL_GEM3_out,

Update.IWL_TRIGGER_HIGH1_upd_out ->

SVKO_combine.IWL_TRIGGER_HIGH1_out,

Update.IWL_TRIGGER_HIGH2_upd_out ->

SVKO_combine.IWL_TRIGGER_HIGH2_out,

Update.IWL_TRIGGER_HIGH3_upd_out ->

SVKO_combine.IWL_TRIGGER_HIGH3_out,

Update.IWL_TRIGGER_LOW1_upd_out ->

SVKO_combine.IWL_TRIGGER_LOW1_out,

Update.IWL_TRIGGER_LOW2_upd_out ->

SVKO_combine.IWL_TRIGGER_LOW2_out,

183

Update.IWL_TRIGGER_LOW3_upd_out ->

SVKO_combine.IWL_TRIGGER_LOW3_out,

Update.OWL_TRIGGER1_upd_out ->

SVKO_combine.OWL_TRIGGER1_out,

Update.OWL_TRIGGER2_upd_out ->

SVKO_combine.OWL_TRIGGER2_out,

Update.OWL_TRIGGER3_upd_out ->

SVKO_combine.OWL_TRIGGER3_out,

Update.OPEN_DIFFERENCE1_upd_out ->

SVKO_combine.OPEN_DIFFERENCE1_out,

Update.OPEN_DIFFERENCE2_upd_out ->

SVKO_combine.OPEN_DIFFERENCE2_out,

Update.OPEN_DIFFERENCE3_upd_out ->

SVKO_combine.OPEN_DIFFERENCE3_out,

Update.SELECT_HIGH_TRIGGER_LEVEL_upd_out ->

SVKO_combine.SELECT_HIGH_TRIGGER_LEVEL_out,

Update.FORBID_OPEN_upd_out ->

SVKO_combine.FORBID_OPEN_out] SHARED

[EnSys <- SVKO_system.EnSys ,

EnUpd <- SVKO_system.EnUpd ,

EnEnv <- SVKO_system.EnEnv ,

EnEnv <- environment_data.EnEnv]

SATISFIES SVKO_safety

TLSPECEND

3. SVKO_safety

==============

TLSPEC SVKO_safety

PURPOSE

" Specification of the safety model of the SVKO system."

INCLUDE SVKO_inc = SVKO_combine

VARS t0 : nat

SPEC [] ((SVKO_inc.time_out = t0 AND

WL_less_TL(SVKO_inc.IWL_GEM1_out,

SVKO_inc.IWL_GEM2_out, SVKO_inc.IWL_GEM3_out,

SVKO_inc.IWL_TRIGGER_HIGH1_out,

SVKO_inc.IWL_TRIGGER_HIGH2_out,

SVKO_inc.IWL_TRIGGER_HIGH3_out,

SVKO_inc.IWL_TRIGGER_LOW1_out,

SVKO_inc.IWL_TRIGGER_LOW2_out,

SVKO_inc.IWL_TRIGGER_LOW3_out,

SVKO_inc.OWL_GEM1_out,

184 Chapter A. Specification of the SVKO

SVKO_inc.OWL_GEM2_out,

SVKO_inc.OWL_GEM3_out,

SVKO_inc.OWL_TRIGGER1_out,

SVKO_inc.OWL_TRIGGER2_out,

SVKO_inc.OWL_TRIGGER3_out,

SVKO_inc.SELECT_HIGH_TRIGGER_LEVEL_out) = T) ->

[] ((SVKO_inc.time_out = t0 + 1 AND

WL_less_TL(SVKO_inc.IWL_GEM1_out,

SVKO_inc.IWL_GEM2_out,

SVKO_inc.IWL_GEM3_out,

SVKO_inc.IWL_TRIGGER_HIGH1_out,

SVKO_inc.IWL_TRIGGER_HIGH2_out,

SVKO_inc.IWL_TRIGGER_HIGH3_out,

SVKO_inc.IWL_TRIGGER_LOW1_out,

SVKO_inc.IWL_TRIGGER_LOW2_out,

SVKO_inc.IWL_TRIGGER_LOW3_out,

SVKO_inc.OWL_GEM1_out,

SVKO_inc.OWL_GEM2_out,

SVKO_inc.OWL_GEM3_out,

SVKO_inc.OWL_TRIGGER1_out,

SVKO_inc.OWL_TRIGGER2_out,

SVKO_inc.OWL_TRIGGER3_out,

SVKO_inc.SELECT_HIGH_TRIGGER_LEVEL_out) = F) ->

((t0 + 1 < SVKO_inc.time_out AND

SVKO_inc.time_out < t0 + 1 + down) ->

SVKO_inc.not_CLOSE_out = F)));

[] (NOT (SVKO_inc.OPEN_out = t AND

NOT (SVKO_inc.not_CLOSE_out = t)))

TLSPECEND

4. SVKO_system

==============

TLSPEC SVKO_system

PURPOSE

" SVKO system (determination of the not CLOSE

and OPEN signals)"

USING StatFunctions

DATA OUT

/*to update*/

not_CLOSE_sys_out, OPEN_sys_out : bool;

OPEN_ALLOWED_sys_out : bool

INTERNAL timer_not_CLOSE, timer_OPEN : nat;

185

not_CLOSE_TRIGGER_out, OPEN_TRIGGER_out,

OPEN_PULS_out : bool;

state : zustand

IN

/* from environment */

IWL_GEM1_sys_in, IWL_GEM2_sys_in,

IWL_GEM3_sys_in : nat;

IWL_TRIGGER_HIGH1_sys_in, IWL_TRIGGER_HIGH2_sys_in,

IWL_TRIGGER_HIGH3_sys_in : nat;

IWL_TRIGGER_LOW1_sys_in, IWL_TRIGGER_LOW2_sys_in,

IWL_TRIGGER_LOW3_sys_in : nat;

OWL_GEM1_sys_in, OWL_GEM2_sys_in, OWL_GEM3_sys_in : nat;

OWL_TRIGGER1_sys_in, OWL_TRIGGER2_sys_in,

OWL_TRIGGER3_sys_in : nat;

OPEN_DIFFERENCE1_sys_in, OPEN_DIFFERENCE2_sys_in,

OPEN_DIFFERENCE3_sys_in : nat;

SELECT_HIGH_TRIGGER_LEVEL_sys_in,

FORBID_OPEN_sys_in : bool;

time : nat

SHARED INOUT

/* scheduling variables */

EnEnv, EnUpd, EnSys : bool

VARS IWL1_TRIGGER, IWL2_TRIGGER, IWL3_TRIGGER : bool;

OWL1_TRIGGER, OWL2_TRIGGER, OWL3_TRIGGER : bool;

OWL1_IWL1, OWL2_IWL2, OWL3_IWL3 : bool;

IWL1_OWL1_OPEN_DIFFERENCE1, IWL2_OWL2_OPEN_DIFFERENCE2,

IWL3_OWL3_OPEN_DIFFERENCE3 : bool;

not_CLOSE_TRIGGER, not_CLOSE : bool;

CONSIDER_OPEN, OPEN_TRIGGER, OPEN_PULS,

OPEN_ALLOWED, OPEN : bool

ACTIONS

SVKO_Action ::= EX IWL1_TRIGGER, IWL2_TRIGGER, IWL3_TRIGGER,

OWL1_TRIGGER, OWL2_TRIGGER, OWL3_TRIGGER,

OWL1_IWL1, OWL2_IWL2, OWL3_IWL3,

IWL1_OWL1_OPEN_DIFFERENCE1,

IWL2_OWL2_OPEN_DIFFERENCE2,

IWL3_OWL3_OPEN_DIFFERENCE3,

not_CLOSE_TRIGGER, not_CLOSE,

CONSIDER_OPEN, OPEN_TRIGGER, OPEN_PULS,

OPEN_ALLOWED, OPEN :

/* static computations */

IWL1_TRIGGER =

IWL_TRIGGER_comparator(IWL_GEM1_sys_in,

186 Chapter A. Specification of the SVKO

IWL_TRIGGER_HIGH1_sys_in,

IWL_TRIGGER_LOW1_sys_in,

SELECT_HIGH_TRIGGER_LEVEL_sys_in)

AND

IWL2_TRIGGER =

IWL_TRIGGER_comparator(IWL_GEM2_sys_in,

IWL_TRIGGER_HIGH2_sys_in,

IWL_TRIGGER_LOW2_sys_in,

SELECT_HIGH_TRIGGER_LEVEL_sys_in)

AND

IWL3_TRIGGER =

IWL_TRIGGER_comparator(IWL_GEM3_sys_in,

IWL_TRIGGER_HIGH3_sys_in,

IWL_TRIGGER_LOW3_sys_in,

SELECT_HIGH_TRIGGER_LEVEL_sys_in)

AND

OWL1_TRIGGER =

OWL_TRIGGER_comparator(OWL_GEM1_sys_in,

OWL_TRIGGER1_sys_in)

AND

OWL2_TRIGGER =

OWL_TRIGGER_comparator(OWL_GEM2_sys_in,

OWL_TRIGGER2_sys_in)

AND

OWL3_TRIGGER =

OWL_TRIGGER_comparator(OWL_GEM3_sys_in,

OWL_TRIGGER3_sys_in)

AND

OWL1_IWL1 =

OWL_IWL_comparator(OWL_GEM1_sys_in,

IWL_GEM1_sys_in)

AND

OWL2_IWL2 =

OWL_IWL_comparator(OWL_GEM2_sys_in,

IWL_GEM2_sys_in)

AND

OWL3_IWL3 =

OWL_IWL_comparator(OWL_GEM3_sys_in,

IWL_GEM3_sys_in)

AND

IWL1_OWL1_OPEN_DIFFERENCE1 =

OPEN_DIFFERENCE_comparator(OWL_GEM1_sys_in,

IWL_GEM1_sys_in,

187

OPEN_DIFFERENCE1_sys_in)

AND

IWL2_OWL2_OPEN_DIFFERENCE2 =

OPEN_DIFFERENCE_comparator(OWL_GEM2_sys_in,

IWL_GEM2_sys_in,

OPEN_DIFFERENCE2_sys_in)

AND

IWL3_OWL3_OPEN_DIFFERENCE3 =

OPEN_DIFFERENCE_comparator(OWL_GEM3_sys_in,

IWL_GEM3_sys_in,

OPEN_DIFFERENCE3_sys_in)

AND

not_CLOSE_TRIGGER =

input_puls_func(IWL1_TRIGGER,

IWL2_TRIGGER,

IWL3_TRIGGER,

OWL1_TRIGGER,

OWL2_TRIGGER,

OWL3_TRIGGER,

OWL1_IWL1,

OWL2_IWL2,

OWL3_IWL3)

AND

not_CLOSE =

not_CLOSE_func(time,

timer_not_CLOSE’,

not_CLOSE_TRIGGER)

AND

CONSIDER_OPEN =

CONSIDER_OPEN_func(IWL1_OWL1_OPEN_DIFFERENCE1,

IWL2_OWL2_OPEN_DIFFERENCE2,

IWL3_OWL3_OPEN_DIFFERENCE3)

AND

OPEN_TRIGGER = OPEN_TRIGGER_func(state’, state)

AND

OPEN_ALLOWED = OPEN_ALLOWED_func(state’)

AND

OPEN_PULS = OPEN_PULS_func(time, timer_OPEN)

AND

OPEN = OPEN_func(not_CLOSE_sys_out’,

OPEN_PULS_out’)

AND

/* dynamic computations */

188 Chapter A. Specification of the SVKO

not_CLOSE_sys_out’ = not_CLOSE

AND

not_CLOSE_TRIGGER_out’ = not_CLOSE_TRIGGER

AND

OPEN_PULS_out’ = OPEN_PULS

AND

OPEN_sys_out’ = OPEN

AND

OPEN_TRIGGER_out’ = OPEN_TRIGGER

AND

OPEN_ALLOWED_sys_out’ = OPEN_ALLOWED

AND

IF (not_CLOSE_TRIGGER_out = T AND

not_CLOSE_TRIGGER = F)

THEN

/* -|_ */

timer_not_CLOSE’ = time + down

ELSE timer_not_CLOSE’ = timer_not_CLOSE

FI AND

/* state machine */

(IF state = s1 AND

not_CLOSE = F AND

FORBID_OPEN_sys_in = F

THEN state’ = s2 AND

timer_OPEN’ = timer_OPEN

ELSE IF state = s2 AND

FORBID_OPEN_sys_in = T

THEN state’ = s1 AND

timer_OPEN’ = timer_OPEN

ELSE IF state = s2 AND

CONSIDER_OPEN = T AND

not_CLOSE = T AND

FORBID_OPEN_sys_in = F

THEN state’ = s3 AND

timer_OPEN’ = time + up

ELSE IF state = s3 AND

OPEN_PULS_out = T

THEN state’ = s1 AND

timer_OPEN’ = timer_OPEN

ELSE state’ = state AND

timer_OPEN’ = timer_OPEN

FI

FI

189

FI

FI) AND

/* scheduling actions */

EnSys = T AND

EnSys’ = F AND

EnUpd’ = T AND

EnEnv’ = F

SPEC INITIAL

/* initiation of the pulsgever timers */

timer_not_CLOSE = 0;

timer_OPEN = 0;

/*initiation of the visible output

and internal variables */

state = s1;

not_CLOSE_sys_out = T;

OPEN_sys_out = F;

OPEN_ALLOWED_sys_out = F;

not_CLOSE_TRIGGER_out = T;

OPEN_TRIGGER_out = F;

OPEN_PULS_out = F;

EnSys = T

TRANSITIONS [SVKO_Action] {timer_not_CLOSE,

timer_OPEN,

not_CLOSE_sys_out,

OPEN_sys_out,

OPEN_ALLOWED_sys_out,

not_CLOSE_TRIGGER_out,

OPEN_TRIGGER_out,

OPEN_PULS_out, state}

HIDE timer_not_CLOSE, timer_OPEN,

not_CLOSE_TRIGGER_out,

OPEN_TRIGGER_out,

OPEN_PULS_out, state

TLSPECEND

5. StatFunctions

================

THEORY StatFunctions

PURPOSE

"description of the intermediate values functions "

USING BasicDatas

FUNCTIONS IWL_TRIGGER_comparator : nat, nat,

190 Chapter A. Specification of the SVKO

nat, bool -> bool;

OWL_TRIGGER_comparator : nat, nat -> bool;

OWL_IWL_comparator : nat, nat -> bool;

OPEN_DIFFERENCE_comparator : nat, nat, nat -> bool;

input_puls_func : bool, bool, bool,

bool, bool, bool,

bool, bool, bool -> bool;

not_CLOSE_func : nat, nat, bool -> bool;

CONSIDER_OPEN_func : bool, bool, bool -> bool;

OPEN_PULS_func : nat, nat -> bool;

OPEN_func : bool, bool -> bool;

OPEN_TRIGGER_func : zustand, zustand -> bool;

OPEN_ALLOWED_func : zustand -> bool;

WL_less_TL : nat, nat, nat, nat,

nat, nat, nat, nat,

nat, nat, nat, nat,

nat, nat, nat, bool -> bool

VARS n1, n2, n3 : nat;

b1, b2, b3, b4, b5, b6, b7, b8, b9 : bool;

z1, z2 : zustand;

ig1, ig2, ig3, ith1, ith2, ith3,

itl1, itl2, itl3, og1, og2, og3, ot1, ot2, ot3 : nat

AXIOMS FOR IWL_TRIGGER_comparator :

IWL_TRIGGER_comparator(n1,n2,n3,b1) = T <->

/* IWLx < TRIGGER */

less_comp(n1,n2) AND

(less_comp(n1,n3) OR

b1 = T)

FOR OWL_TRIGGER_comparator :

OWL_TRIGGER_comparator(n1,n2) = T <->

/* OWLx < TRIGGER */

less_comp(n1,n2)

FOR OWL_IWL_comparator :

OWL_IWL_comparator(n1,n2) = T <->

/* OWLx < IWLx */

less_comp(n1,n2)

FOR OPEN_DIFFERENCE_comparator :

OPEN_DIFFERENCE_comparator(n1,n2,n3) = T <->

/* IWLx - OWLx > OPEN_DIFFERENCE */

less_comp(n1,minus(n2,n3))

FOR input_puls_func :

input_puls_func(b1,b2,b3,b4,b5,b6,b7,b8,b9) = T

<->

191

/* >= 1 (Figure 5.) */

voter2from3(b1,b2,b3) OR

voter2from3(b4,b5,b6) OR

voter2from3(b7,b8,b9)

FOR not_CLOSE_func :

DEFFUNC not_CLOSE_func(n1, n2, b1) =

/* not_CLOSE (Figure 5.) */

IF n1 <= n2

THEN b1 && F

ELSE b1 && T

FI

FOR CONSIDER_OPEN_func :

CONSIDER_OPEN_func(b1,b2,b3) = T <->

/* CONSIDER_OPEN */

voter2from3(b1,b2,b3)

FOR OPEN_TRIGGER_func :

OPEN_TRIGGER_func(z1,z2) = F <->

/* OPEN_TRIGGER (Figure 6.) */

z1 = s1 OR

FOR OPEN_ALLOWED_func :

DEFFUNC OPEN_ALLOWED_func(z1) =

/* OPEN_ALLOWED (Figure 6.) */

IF z1 = s1

THEN F

ELSE T

FI

FOR OPEN_PULS_func :

OPEN_PULS_func(n1,n2) = T <->

/* OPEN_PULS */

n1 <= n2

FOR OPEN_func :

DEFFUNC OPEN_func(b1, b2) =

/* OPEN signal (Figure 6.) */

b1 && b2

FOR WL_less_TL :

WL_less_TL(ig1,ig2,ig3,ith1,

ith2,ith3,itl1,itl2,

itl3,og1,og2,og3,

ot1,ot2,ot3,b1) = T

<->

/* water level < trigger level description

for the safety property */

192 Chapter A. Specification of the SVKO

input_puls_func(

IWL_TRIGGER_comparator(ig1,ith1,itl1,b1),

IWL_TRIGGER_comparator(ig2,ith2,itl2,b1),

IWL_TRIGGER_comparator(ig3,ith3,itl3,b1),

OWL_TRIGGER_comparator(og1,ot1),

OWL_TRIGGER_comparator(og2,ot2),

OWL_TRIGGER_comparator(og3,ot3),

OWL_IWL_comparator(og1,ig1),

OWL_IWL_comparator(og2,ig2),

OWL_IWL_comparator(og3,ig3)) = T

THEORYEND

6. Update

=========

TLSPEC Update

PURPOSE

"time update of the system"

USING BasicDatas

DATA OUT

/* to user */

not_CLOSE_upd_out, OPEN_upd_out : bool;

OPEN_ALLOWED_upd_out : bool;

time, time_comb : nat;

IWL_GEM1_upd_out,

IWL_GEM2_upd_out,

IWL_GEM3_upd_out : nat;

IWL_TRIGGER_HIGH1_upd_out,

IWL_TRIGGER_HIGH2_upd_out,

IWL_TRIGGER_HIGH3_upd_out : nat;

IWL_TRIGGER_LOW1_upd_out,

IWL_TRIGGER_LOW2_upd_out,

IWL_TRIGGER_LOW3_upd_out : nat;

OWL_GEM1_upd_out,

OWL_GEM2_upd_out,

OWL_GEM3_upd_out : nat;

OWL_TRIGGER1_upd_out,

OWL_TRIGGER2_upd_out,

OWL_TRIGGER3_upd_out : nat;

OPEN_DIFFERENCE1_upd_out,

OPEN_DIFFERENCE2_upd_out,

OPEN_DIFFERENCE3_upd_out : nat;

SELECT_HIGH_TRIGGER_LEVEL_upd_out,

193

FORBID_OPEN_upd_out : bool

IN

/* from system */

not_CLOSE_upd_in, OPEN_upd_in : bool;

OPEN_ALLOWED_upd_in : bool;

/* from environment */

IWL_GEM1_upd_in,

IWL_GEM2_upd_in,

IWL_GEM3_upd_in : nat;

IWL_TRIGGER_HIGH1_upd_in,

IWL_TRIGGER_HIGH2_upd_in,

IWL_TRIGGER_HIGH3_upd_in : nat;

IWL_TRIGGER_LOW1_upd_in,

IWL_TRIGGER_LOW2_upd_in,

IWL_TRIGGER_LOW3_upd_in : nat;

OWL_GEM1_upd_in,

OWL_GEM2_upd_in,

OWL_GEM3_upd_in : nat;

OWL_TRIGGER1_upd_in,

OWL_TRIGGER2_upd_in,

OWL_TRIGGER3_upd_in : nat;

OPEN_DIFFERENCE1_upd_in,

OPEN_DIFFERENCE2_upd_in,

OPEN_DIFFERENCE3_upd_in : nat;

SELECT_HIGH_TRIGGER_LEVEL_upd_in,

FORBID_OPEN_upd_in : bool

SHARED INOUT

/* scheduling variables */

EnEnv, EnUpd, EnSys : bool

ACTIONS

Update_Action ::= IWL_GEM1_upd_out’ = IWL_GEM1_upd_in AND

IWL_GEM2_upd_out’ = IWL_GEM2_upd_in AND

IWL_GEM3_upd_out’ = IWL_GEM3_upd_in AND

OWL_GEM1_upd_out’ = OWL_GEM1_upd_in AND

OWL_GEM2_upd_out’ = OWL_GEM2_upd_in AND

OWL_GEM3_upd_out’ = OWL_GEM3_upd_in AND

IWL_TRIGGER_HIGH1_upd_out’ =

IWL_TRIGGER_HIGH1_upd_in AND

IWL_TRIGGER_HIGH2_upd_out’ =

IWL_TRIGGER_HIGH2_upd_in AND

IWL_TRIGGER_HIGH3_upd_out’ =

IWL_TRIGGER_HIGH3_upd_in AND

IWL_TRIGGER_LOW1_upd_out’ =

194 Chapter A. Specification of the SVKO

IWL_TRIGGER_LOW1_upd_in AND

IWL_TRIGGER_LOW2_upd_out’ =

IWL_TRIGGER_LOW2_upd_in AND

IWL_TRIGGER_LOW3_upd_out’ =

IWL_TRIGGER_LOW3_upd_in AND

OWL_TRIGGER1_upd_out’ =

OWL_TRIGGER1_upd_in AND

OWL_TRIGGER2_upd_out’ =

OWL_TRIGGER2_upd_in AND

OWL_TRIGGER3_upd_out’ =

OWL_TRIGGER3_upd_in AND

OPEN_DIFFERENCE1_upd_out’ =

OPEN_DIFFERENCE1_upd_in AND

OPEN_DIFFERENCE2_upd_out’ =

OPEN_DIFFERENCE2_upd_in AND

OPEN_DIFFERENCE3_upd_out’ =

OPEN_DIFFERENCE3_upd_in AND

SELECT_HIGH_TRIGGER_LEVEL_upd_out’ =

SELECT_HIGH_TRIGGER_LEVEL_upd_in AND

FORBID_OPEN_upd_out’ =

FORBID_OPEN_upd_in AND

time’ = time + 1 AND

time_comb’ = time’ AND

not_CLOSE_upd_out’ = not_CLOSE_upd_in AND

OPEN_upd_out’ = OPEN_upd_in AND

OPEN_ALLOWED_upd_out’ = OPEN_ALLOWED_upd_in

AND

/* scheduling actions */

EnUpd = T AND

EnUpd’ = F AND

EnSys’ = T AND

EnEnv’ = T

SPEC INITIAL

/* initiation of the visible output */

not_CLOSE_upd_out = T AND

OPEN_upd_out = F AND

OPEN_ALLOWED_upd_out = F AND

/* setting of the scheduling variable */

EnUpd = F AND

/* the time initiation */

time = 0 AND

time_comb = 0 AND

/* transfer from the environment init state */

195

IWL_GEM1_upd_out = IWL_OWL_const AND

IWL_GEM2_upd_out = IWL_OWL_const AND

IWL_GEM3_upd_out = IWL_OWL_const AND

OWL_GEM1_upd_out = IWL_OWL_const AND

OWL_GEM2_upd_out = IWL_OWL_const AND

OWL_GEM3_upd_out = IWL_OWL_const AND

IWL_TRIGGER_HIGH1_upd_out =

IWL_TRIGGER_HIGH1_const AND

IWL_TRIGGER_HIGH2_upd_out =

IWL_TRIGGER_HIGH2_const AND

IWL_TRIGGER_HIGH3_upd_out =

IWL_TRIGGER_HIGH3_const AND

IWL_TRIGGER_LOW1_upd_out =

IWL_TRIGGER_LOW1_const AND

IWL_TRIGGER_LOW2_upd_out =

IWL_TRIGGER_LOW2_const AND

IWL_TRIGGER_LOW3_upd_out =

IWL_TRIGGER_LOW3_const AND

OWL_TRIGGER1_upd_out =

OWL_TRIGGER1_const AND

OWL_TRIGGER2_upd_out =

OWL_TRIGGER2_const AND

OWL_TRIGGER3_upd_out =

OWL_TRIGGER3_const AND

OPEN_DIFFERENCE1_upd_out =

OPEN_DIFFERENCE1_const AND

OPEN_DIFFERENCE2_upd_out =

OPEN_DIFFERENCE2_const AND

OPEN_DIFFERENCE3_upd_out =

OPEN_DIFFERENCE3_const AND

SELECT_HIGH_TRIGGER_LEVEL_upd_out = F AND

FORBID_OPEN_upd_out = F

TRANSITIONS [Update_Action]

{not_CLOSE_upd_out, OPEN_upd_out,

OPEN_ALLOWED_upd_out, time, time_comb,

IWL_GEM1_upd_out, IWL_GEM2_upd_out,

IWL_GEM3_upd_out,

IWL_TRIGGER_HIGH1_upd_out,

IWL_TRIGGER_HIGH2_upd_out,

IWL_TRIGGER_HIGH3_upd_out,

IWL_TRIGGER_LOW1_upd_out,

IWL_TRIGGER_LOW2_upd_out,

IWL_TRIGGER_LOW3_upd_out,

196 Chapter A. Specification of the SVKO

OWL_GEM1_upd_out,

OWL_GEM2_upd_out,

OWL_GEM3_upd_out,

OWL_TRIGGER1_upd_out,

OWL_TRIGGER2_upd_out,

OWL_TRIGGER3_upd_out,

OPEN_DIFFERENCE1_upd_out,

OPEN_DIFFERENCE2_upd_out,

OPEN_DIFFERENCE3_upd_out,

SELECT_HIGH_TRIGGER_LEVEL_upd_out,

FORBID_OPEN_upd_out}

TLSPECEND

7. environment_data

===================

TLSPEC environment_data

PURPOSE

"SVKO environment"

USING BasicDatas

DATA OUT

/* system datas */

IWL_GEM1_sys_out,

IWL_GEM2_sys_out,

IWL_GEM3_sys_out : nat;

OWL_GEM1_sys_out,

OWL_GEM2_sys_out,

OWL_GEM3_sys_out : nat;

IWL_TRIGGER_HIGH1_sys_out,

IWL_TRIGGER_HIGH2_sys_out,

IWL_TRIGGER_HIGH3_sys_out : nat;

IWL_TRIGGER_LOW1_sys_out,

IWL_TRIGGER_LOW2_sys_out,

IWL_TRIGGER_LOW3_sys_out : nat;

OWL_TRIGGER1_sys_out,

OWL_TRIGGER2_sys_out,

OWL_TRIGGER3_sys_out : nat;

OPEN_DIFFERENCE1_sys_out,

OPEN_DIFFERENCE2_sys_out,

OPEN_DIFFERENCE3_sys_out : nat;

SELECT_HIGH_TRIGGER_LEVEL_sys_out,

FORBID_OPEN_sys_out : bool;

/* update datas */

197

IWL_GEM1_upd_out,

IWL_GEM2_upd_out,

IWL_GEM3_upd_out : nat;

OWL_GEM1_upd_out,

OWL_GEM2_upd_out,

OWL_GEM3_upd_out : nat;

IWL_TRIGGER_HIGH1_upd_out,

IWL_TRIGGER_HIGH2_upd_out,

IWL_TRIGGER_HIGH3_upd_out : nat;

IWL_TRIGGER_LOW1_upd_out,

IWL_TRIGGER_LOW2_upd_out,

IWL_TRIGGER_LOW3_upd_out : nat;

OWL_TRIGGER1_upd_out,

OWL_TRIGGER2_upd_out,

OWL_TRIGGER3_upd_out : nat;

OPEN_DIFFERENCE1_upd_out,

OPEN_DIFFERENCE2_upd_out,

OPEN_DIFFERENCE3_upd_out : nat;

SELECT_HIGH_TRIGGER_LEVEL_upd_out,

FORBID_OPEN_upd_out : bool

SHARED INOUT

/* scheduling variables */

EnEnv : bool

ACTIONS

WaterLevelChange ::= EnEnv = T AND

EnEnv’ = F

SPEC INITIAL

/* setting of the scheduling variable */

EnEnv = F AND

/* initiation of the system input */

IWL_GEM1_sys_out = IWL_OWL_const AND

IWL_GEM2_sys_out = IWL_OWL_const AND

IWL_GEM3_sys_out = IWL_OWL_const AND

OWL_GEM1_sys_out = IWL_OWL_const AND

OWL_GEM2_sys_out = IWL_OWL_const AND

OWL_GEM3_sys_out = IWL_OWL_const AND

IWL_TRIGGER_HIGH1_sys_out =

IWL_TRIGGER_HIGH1_const AND

IWL_TRIGGER_HIGH2_sys_out =

IWL_TRIGGER_HIGH2_const AND

IWL_TRIGGER_HIGH3_sys_out =

IWL_TRIGGER_HIGH3_const AND

IWL_TRIGGER_LOW1_sys_out =

198 Chapter A. Specification of the SVKO

IWL_TRIGGER_LOW1_const AND

IWL_TRIGGER_LOW2_sys_out =

IWL_TRIGGER_LOW2_const AND

IWL_TRIGGER_LOW3_sys_out =

IWL_TRIGGER_LOW3_const AND

OWL_TRIGGER1_sys_out =

OWL_TRIGGER1_const AND

OWL_TRIGGER2_sys_out =

OWL_TRIGGER2_const AND

OWL_TRIGGER3_sys_out =

OWL_TRIGGER3_const AND

OPEN_DIFFERENCE1_sys_out =

OPEN_DIFFERENCE1_const AND

OPEN_DIFFERENCE2_sys_out =

OPEN_DIFFERENCE2_const AND

OPEN_DIFFERENCE3_sys_out =

OPEN_DIFFERENCE3_const AND

SELECT_HIGH_TRIGGER_LEVEL_sys_out = F AND

FORBID_OPEN_sys_out = F AND

/* initiation of the update input */

IWL_GEM1_upd_out = IWL_OWL_const AND

IWL_GEM2_upd_out = IWL_OWL_const AND

IWL_GEM3_upd_out = IWL_OWL_const AND

OWL_GEM1_upd_out = IWL_OWL_const AND

OWL_GEM2_upd_out = IWL_OWL_const AND

OWL_GEM3_upd_out = IWL_OWL_const AND

IWL_TRIGGER_HIGH1_upd_out =

IWL_TRIGGER_HIGH1_const AND

IWL_TRIGGER_HIGH2_upd_out =

IWL_TRIGGER_HIGH2_const AND

IWL_TRIGGER_HIGH3_upd_out =

IWL_TRIGGER_HIGH3_const AND

IWL_TRIGGER_LOW1_upd_out =

IWL_TRIGGER_LOW1_const AND

IWL_TRIGGER_LOW2_upd_out =

IWL_TRIGGER_LOW2_const AND

IWL_TRIGGER_LOW3_upd_out =

IWL_TRIGGER_LOW3_const AND

OWL_TRIGGER1_upd_out =

OWL_TRIGGER1_const AND

OWL_TRIGGER2_upd_out =

OWL_TRIGGER2_const AND

OWL_TRIGGER3_upd_out =

199

OWL_TRIGGER3_const AND

OPEN_DIFFERENCE1_upd_out =

OPEN_DIFFERENCE1_const AND

OPEN_DIFFERENCE2_upd_out =

OPEN_DIFFERENCE2_const AND

OPEN_DIFFERENCE3_upd_out =

OPEN_DIFFERENCE3_const AND

SELECT_HIGH_TRIGGER_LEVEL_upd_out = F AND

FORBID_OPEN_upd_out = F

TRANSITIONS [WaterLevelChange]

{IWL_GEM1_sys_out, IWL_GEM2_sys_out,

IWL_GEM3_sys_out, OWL_GEM1_sys_out,

OWL_GEM2_sys_out, OWL_GEM3_sys_out,

IWL_TRIGGER_HIGH1_sys_out,

IWL_TRIGGER_HIGH2_sys_out,

IWL_TRIGGER_HIGH3_sys_out,

IWL_TRIGGER_LOW1_sys_out,

IWL_TRIGGER_LOW2_sys_out,

IWL_TRIGGER_LOW3_sys_out,

OWL_TRIGGER1_sys_out,

OWL_TRIGGER2_sys_out,

OWL_TRIGGER3_sys_out,

OPEN_DIFFERENCE1_sys_out,

OPEN_DIFFERENCE2_sys_out,

OPEN_DIFFERENCE3_sys_out,

SELECT_HIGH_TRIGGER_LEVEL_sys_out,

FORBID_OPEN_sys_out, IWL_GEM1_upd_out,

IWL_GEM2_upd_out, IWL_GEM3_upd_out,

OWL_GEM1_upd_out, OWL_GEM2_upd_out,

OWL_GEM3_upd_out,

IWL_TRIGGER_HIGH1_upd_out,

IWL_TRIGGER_HIGH2_upd_out,

IWL_TRIGGER_HIGH3_upd_out,

IWL_TRIGGER_LOW1_upd_out,

IWL_TRIGGER_LOW2_upd_out,

IWL_TRIGGER_LOW3_upd_out,

OWL_TRIGGER1_upd_out,

OWL_TRIGGER2_upd_out,

OWL_TRIGGER3_upd_out,

OPEN_DIFFERENCE1_upd_out,

OPEN_DIFFERENCE2_upd_out,

OPEN_DIFFERENCE3_upd_out,

SELECT_HIGH_TRIGGER_LEVEL_upd_out,

200 Chapter A. Specification of the SVKO

FORBID_OPEN_upd_out}

;

[] (IWL_GEM1_sys_out = IWL_GEM1_upd_out AND

IWL_GEM2_sys_out = IWL_GEM2_upd_out AND

IWL_GEM3_sys_out = IWL_GEM3_upd_out AND

OWL_GEM1_sys_out = OWL_GEM1_upd_out AND

OWL_GEM2_sys_out = OWL_GEM2_upd_out AND

OWL_GEM3_sys_out = OWL_GEM3_upd_out AND

IWL_TRIGGER_HIGH1_sys_out =

IWL_TRIGGER_HIGH1_upd_out AND

IWL_TRIGGER_HIGH2_sys_out =

IWL_TRIGGER_HIGH2_upd_out AND

IWL_TRIGGER_HIGH3_sys_out =

IWL_TRIGGER_HIGH3_upd_out AND

IWL_TRIGGER_LOW1_sys_out =

IWL_TRIGGER_LOW1_upd_out AND

IWL_TRIGGER_LOW2_sys_out =

IWL_TRIGGER_LOW2_upd_out AND

IWL_TRIGGER_LOW3_sys_out =

IWL_TRIGGER_LOW3_upd_out AND

OWL_TRIGGER1_sys_out =

OWL_TRIGGER1_upd_out AND

OWL_TRIGGER2_sys_out =

OWL_TRIGGER2_upd_out AND

OWL_TRIGGER3_sys_out =

OWL_TRIGGER3_upd_out AND

OPEN_DIFFERENCE1_sys_out =

OPEN_DIFFERENCE1_upd_out AND

OPEN_DIFFERENCE2_sys_out =

OPEN_DIFFERENCE2_upd_out AND

OPEN_DIFFERENCE3_sys_out =

OPEN_DIFFERENCE3_upd_out AND

SELECT_HIGH_TRIGGER_LEVEL_sys_out =

SELECT_HIGH_TRIGGER_LEVEL_upd_out AND

FORBID_OPEN_sys_out = FORBID_OPEN_upd_out)

TLSPECEND

===========================

Crossreference of Relations

===========================

201

BasicDatas [Theory]

References:

Update [Tlspec]

StatFunctions [Theory]

SVKO_combine [Tlspec]

environment_data [Tlspec]

SVKO_combine [Tlspec]

References:

SVKO_safety [Tlspec]

SVKO_safety [Tlspec]

References:

SVKO_combine [Tlspec]

SVKO_system [Tlspec]

References:

SVKO_combine [Tlspec]

StatFunctions [Theory]

References:

SVKO_system [Tlspec]

Update [Tlspec]

References:

SVKO_combine [Tlspec]

environment_data [Tlspec]

References:

SVKO_combine [Tlspec]

202 Chapter A. Specification of the SVKO

B
Real-Time in TLA

and VSE-II

B.1 Lossy Queue

As a specification and verification example taken from [4] we describe the lossy
queue shown in Figure B.1 in TLA. The queue is a closed system, i.e. it does not
communicate with the environment. The environment is thus part of the system
itself and does not communicate.

q: . . .

last:

oval

obit

ival

ibit

Figure B.1: Lossy Queue

The lossy queue is specified using the following flexible variables with their
corresponding meanings:

204 Chapter B. Real-Time in TLA and VSE-II

• ival: input value

• ibit: input flag

• oval: output value

• obit: output flag

• q: the sequence of messages received but not yet output.

• last: a flag that prohibits the queue from inserting a message more than once.

The lossy queue receives a message m as a pair consisting of the input value ival
and the input flag ibit. The receiver, the queue, notifies a new message by keeping
track of the flag ibit. If this bit is changed, then there is a new input. The output
consists of a pair oval, obit.

Since there is no implemented acknowledgement protocol concerning the inser-
tion of elements into the queue, it must not catch all the values ever sent.

Being more precise, inputs are always lost in pairs, i.e. if in the actual input,
a pair (ival, ibit), is lost, then the next input will also be lost because of the use
of the variable ibit, see Figure B.2. We see that the specification of the lossy
queue allows for behaviours where input values are lost. A property that the queue
can guarantee is that the sequence consisting of output values is a “part of” the
sequence of the input sequence. The informal definition of the relation “part of”
is that a sequence of values σ is part of a sequence τ if and only if all the elements
from σ also occur in the sequence τ and the order of the elements is maintained.

The specification of the described lossy queue is given in Figure B.2.

The actions perform the following steps:

• InitQ: Initially the values of the variables ibit and obit are arbitrary booleans.
The values of ival and oval are taken from some set Msg representing the
set of all possible messages. q is set to the empty sequence and last is set to
be equal to ibit.

• Inp: Inp describes the state changes representing the sending of an input
value. The Inp action is always enabled. It follows that input values can be
sent at every time without any preconditions. When an input is sent then
the flexible variable ibit is inverted. The new value is taken from the set Msg
of allowed messages and all the other variables remain unchanged.

• EnQ: The message is received and inserted into the queue q. The enabling
condition for Enq is last 6= ibit. After the insertion of the message into the
queue the last flag is set to ibit. This way it is not possible to insert a message
more than once into the queue when it was sent only once. It is clear that
this condition does not prevent the reception of the same message more than
once. All the other variables remain unchanged.

B.1 Lossy Queue 205

InitQ =̂ ibit, obit ∈ {true, false}
∧ ival, oval ∈ Msg

∧ last = ibit

∧ q =��
Inp =̂ ibit′ = ¬ibit

∧ ival′ ∈Msg

∧ (obit, oval, q, last)′ = (obit, oval, q, last)

EnQ =̂ last 6= ibit

∧ q′ = q◦ � ival �
∧ last′ = ibit

∧ (ibit, obit, ival, oval)′ = (ibit, obit, ival, oval)

DeQ =̂ q 6=��
∧ oval′ −Head(q)

∧ q′ = Tail(q)

∧ obit′ = ¬obit
∧ (ibit, ival, last)′ = (ibit, ival, last)

NQ =̂ Inp ∨ EnQ ∨DeQ
v =̂ ibit, obit, ival, oval, q, last

ΠQ =̂ Initq ∧ 2[NQ]〈v〉

ΦQ =̂ ∃∃∃q, last : ΠQ

Figure B.2: TLA Specification of the Lossy Queue

206 Chapter B. Real-Time in TLA and VSE-II

• DeQ: In some sense DeQ is the inverse action to EnQ. It removes the head
element of the queue q and sets the output variable oval to that value. An
action like DeQ makes only sense if the queue q is not the empty queue.

• NQ is defined to be the disjunction of all the possible actions described above.

• ΦQ represents the definition of the lossy queue where the variables q and last
are hidden, i.e. internal variables.

The specification as given in Figure B.2 describes the behaviour of the lossy
queue with respect to the variables ibit, obit, oval, ival and abstracts from the values
of the variables q and last.

A behaviour fulfils ΦQ if and only if there are sequences of values for q and last
such that PiQ is fulfilled, where PiQ represents the specification of ΦQ without
hiding (see Definition 4.1.17).

In TLA specifications variables can have arbitrary values from a given domain.
TLA itself is not typed. Type-correctness can be expressed using a type invariant
TQ:

TQ =̂ ibit, obit, last ∈ {true, f lase}
∧ ival, oval ∈Msg

∧ q ∈Msg∗

where Msg∗ represents the set of all finite sequences of messages. Type-correctness
is expressed by the formula ΠQ =⇒ 2TQ that has to be proved.

The formulae ΠQ and ΦQ allow for behaviours that behave “well” in the begin-
ning and then stop, i.e. they stutter forever. Such behaviours are omitted from the
possible behaviour by imposing additional fairness constraints. The formula ΦQ is
then changed to:

∃∃∃q, last : (InitQ ∧ 2[NQ]〈v〉 ∧WF v(DeQ) ∧ SF v(EnQ))

As mentioned in Section 4.1 the formula WF v(DeQ) expresses that if action DeQ
is always enabled, then it is infinitely often executed. The formula SF v(EnQ)
describes that if action EnQ is infinitely often enabled, then it is infinitely often
executed. If infinitely many messages are sent, then there are infinitely many
messages inserted into the queue. Looking at both fairness constraints we can
derive that infinitely many inputs result in infinitely many outputs although some
inputs are lost.

B.1.1 Non-lossy Version

In this section we extend the lossy queue specification with real-time constraints
that prevent the queue from losing input values. Technically this is achieved by

B.1 Lossy Queue 207

the introduction of timers (see Section 4.1). There are four constraints added to
the specification of the lossy queue from Section B.2:

• Values are sent at most all δsnd seconds. This constraint results in two timers,
one for the input and one for the output interface. The timers are δsnd–timer
tInp and tDeQ for the actions Inp and DeQ as lower bound timers.

• A value must be inserted into the queue ∆rcv seconds after its sending. This
constraint is expressed by the ∆rcv–timer TEnQ for the EnQ action. This
timer is an upper bound timer.

• A value that is inserted into the queue must be output within ∆snd later when
it was inserted into the queue. This is expressed by the ∆snd–timer TDeQ as
an upper–bound timer for the DeQ action.

The timed queue Πt
Q is obtained by conjoining the corresponding timing re-

quirements introduced to the specification ΠQ.

Πt
Q =̂ ΠQ ∧ RTv

∧V T imer(tInp, Inp, δsnd, v) ∧MinT ime(tInp, Inp, v)

∧V T imer(tDeQ, DeQ, δsnd, v) ∧MinT ime(tDeQ, DeQ, v)

∧V T imer(TEnQ, EnQ,∆rcv, v) ∧MaxT ime(TEnQ)

∧V T imer(TDeQ, DeQ,∆snd, v) ∧MaxT ime(TDeQ)

The formula

V T imer(TEnQ, EnQ,∆rcv, v) ∧MaxT ime(TEnQ)

expresses that a 〈EnQ〉v action cannot be continuously enabled for more than ∆rcv

seconds without being executed.

The formula

V T imer(tInp, Inp, δsnd, v) ∧MinT ime(tInp, Inp, v)

implies that an 〈Inp〉v action has to be enabled for at least δsnd seconds before it
can be executed. The meaning of the other timing requirements can be explained
analogously.

The specification Πt
Q can be transformed into the canonical form given in Figure

B.3.

The specification Φt
Q including the hiding of the timers is obtained by existential

quantifying the timers and the variables q and last.

An example for a behaviour of the timed non-lossy queue is given in Figure
B.4 that clarifies that this version does not lose any values. The table in Fig-
ure B.4 describes in every row the execution of an action and the corresponding
consequences.

208 Chapter B. Real-Time in TLA and VSE-II

InittQ =̂ InitQ

∧ now ∈ R

∧ tInp = now + δsnd

∧ tDeQ = TEnQ = TDeQ = ∞
Inpt =̂ Inp

∧ tInp ≤ now

∧ t′Inp = now′ + δsnd

∧ T ′
EnQ = if last′ 6= ibit′ then now′ + ∆rcv else ∞

∧ (tDeQ, TDeQ)′ = if q =�� then (∞,∞) else (tDeQ, TDeQ)

∧ now′ = now

EnQt =̂ EnQ

∧ T ′
EnQ = ∞

∧ (tDeQ, TDeQ)′ = if q =�� then (now + δsnd, now + ∆snd)

else (tDeQ, TDeQ)

∧ (tInp, now)′ = (tInp, now)

DeQt =̂ DeQ

∧ tDeQ ≤ now

∧ (tDeQ, TDeQ)′ = if q′ =�� then (∞,∞)

else (now + δsnd, now + ∆snd)

∧ T ′
EnQ = if last′ = ibit′ then ∞ else TEnQ

∧ (tInp, now)′ = (tInp, now)

QTick =̂ now′ ∈]now,min(TDeQ, TEnq)]

∧ (v, tInp, tDeQ, TDeQ, TEnQ)′ = (v, tInp, tDeQ, TDeQ, TEnQ)

vt =̂ (v, tInp, tDeQ, TDeQ, TEnQ)

Πt
Q =̂ Initt

∧ 2[Inpt ∨ EnQt ∨DeQt ∨QTick]vt

Figure B.3: TLA Specification of the Non-Lossy Queue

B
.1

L
o
ssy

Q
u
e
u
e

209

Action QTick QT ick Inpt QTick EnQt QTick Inpt EnQt . . .

Act. No. 1 2 3 4 5 6 7 8 . . .

ival ∈Msg ∈Msg ∈Msg 1 1 1 1 2 . . .

ibit t t t f f f f t . . .

q �� �� �� �� �� � 1 � � 1 � � 1 � . . .

last t t t t t f f f . . .

oval ∈Msg ∈Msg ∈Msg ∈Msg ∈Msg ∈Msg ∈Msg ∈Msg . . .

obit t t t t t t t t . . .

now now(= 0) n1 n2 n2 n3 n3 n4 n4 . . .

tInp now + δsnd δsnd δsnd n2 + δsnd n2 + δsnd n2 + δsnd n2 + δsnd n4 + δsnd . . .

tDeQ ∞ ∞ ∞ ∞ ∞ n3 + δsnd n3 + δsnd n3 + δsnd . . .

TEnQ ∞ ∞ ∞ n2 + ∆rcv n2 + ∆rcv ∞ ∞ n4 + ∆rcv . . .

TDeQ ∞ ∞ ∞ ∞ ∞ n3 + ∆snd n3 + ∆snd n3 + ∆snd . . .

0 n1 δsnd n2 n3 n2 + ∆rcv n2 + δsnd n4 n3 + δsnd n3 + ∆snd

Figure B.4: Example Behaviour of the Timed Queue

210 Chapter B. Real-Time in TLA and VSE-II

In Figure B.4 a time line gives the ordering of the different timers used in the
example with respect to the time variable now.

Some remarks on the specification of the non-lossy queue.

• There is only one operation enabled in the initial state, QTick. Inpt is
enabled if the value of the time variable now is greater than the timer δsnd,
now > δsnd. This is a difference to the lossy version. In this version the input
action Inp was always enabled. In the non-lossy version Inp must be enabled
for at least δsnd before it can be taken.

• The action QTick changes only the value of the variable now and leaves all
the other variables unchanged.

• After action 4 (see Figure B.4) the Inp cannot take place since the condition
tInp ≤ now is not fulfilled right after the QTick action.

• In action 6 the value of the variable now is not allowed to be increased over
n3 + ∆snd.

• If the timer ∆snd is less than the timer δsnd, then after action 8 a time blocked
state is reached. This means that the action QTick can be taken but there is
an upper bound for the enlargement of now, n3 +∆snd. The only actions that
can change the value of the timer TDeQ are Inpt and DeQt. But these actions
are not enabled because of the fact that tInp as well as tDeQ are greater as the
actual value of the variable now. The action QTick has to increase the value
of now in order to enable one of these actions, which is in this case impossible
since the upper bound for now is TDeQ and it holds that TDeQ < tDeQ.

A specification as Πt
Q is called Zeno which means that it allows the system

only to change the variable now, but with an upper bound for now. Usually
such behaviours indicate an error in the specification of the system. The error
in this case was that we have imposed a time constraint on the output with
the intention to block the input of values.

• Generally it is possible that the action QTick is the only action ever taken
since the timers that restrict the variable now are set to ∞ in the initial state.

• If ∆rcv ≥ δsnd, then a state can be reached where an old message can be
overwritten by a new one without having inserted the old message into the
queue. The consequence of that is that the timed queue would also be lossy.
Therefore, the condition ∆rcv < δsnd must be required.

The formula Πt
Q is a TLA specification that fulfils each maximum delay constraint

by preventing now from advancing before the constraint has been satisfied. That
way one could think that the specification implements timing constraints by stop-
ping the time. But this is not the case. The formula Πt

Q only says that an action
cannot be executed when its timing requirements are not satisfied, i.e. an action
can only take place if now has advanced to a certain value.

B.1 Lossy Queue 211

B.1.2 Reasoning about Time

A property that the timed queue should satisfy is that under certain timing condi-
tions no input values are lost. Since TLA has no past temporal operators, the past
has to be specified explicitely. This is done with the history-determined variables
hin with

Hin =̂ hin =��
∧2[hin′ = hin◦ � ival′ � ∧(ival, ibit)′ 6= (ival, ibit)]〈hin,ival,ibit〉

for the inputs and hout with

Hout =̂ hout =��
∧2[hout′ = hout◦ � oval′ � ∧(oval, obit)′ 6= (oval, obit)]〈hout,oval,obit〉

for the outputs. As can be seen in the definition of the variables hin and hout,
hin collects all the inputs and hout stores all the outputs ever made. The property
that the timed queue does not lose any value is expressed by the following formula:

Πt
Q ∧Hin ∧Hout =⇒ (hout � hin)

where α � β holds if and only if α is an initial prefix of β.

Trying to prove this property we have to find an invariant that helps to prove
it. The following invariant is taken from [8].

TQ ∧ (tInp, now ∈ R) ∧ (TEnQ, tDeQ, TDeQ ∈ R ∪ {∞})
∧ now ≤ min(TEnQ, TDeQ)

∧ (last = ibit) =⇒ ((TEnQ = ∞) ∧ (hin = hout ◦ q))
∧ (last 6= ibit) =⇒ ((TEnQ < tInp) ∧ (hin = hout ◦ q ◦ � ival �))

∧ (q =��) ≡ (TDeQ = ∞)

In order to prove the mentioned property the assumption ∆rcv < δsnd is needed.
Having proved the invariant it immediately follows that 2(hout � hin) holds and
we are done. The reader who is interested in the TLA proof is best referred to [8].

B.1.3 The Lossy Queue in VSE-II

In this section we present the specification of the previous described lossy queue
done in VSE-II. We show only the temporal logic part of the specification since it
is the most interesting one in this context. It defines the behaviour of the whole
system whereas the underlying datatypes define the types, functions or predicates

212 Chapter B. Real-Time in TLA and VSE-II

TLSPEC LossyQueue

PURPOSE

" Specification of the lossy queue"

PARAMS QueueData

USING Queue[QueueDataType]

DATA INTERNAL q : QueueType;

last : bool

OUT ibit, obit : bool;

ival, oval : QueueDataType

ACTIONS

Init ::= last = ibit AND

q = emptyqueue

Inp ::= ibit’ /= ibit AND

UNCHANGED(obit, oval, q, last)

Enq ::= last /= ibit AND

q’ = enqueue(ival, q) AND

last’ = ibit AND

UNCHANGED(ibit, obit, ival, oval)

Deq ::= q /= emptyqueue AND

oval’ = head(q) AND

q’ = tail(q) AND

obit’ = ~ obit AND

UNCHANGED(ibit, ival, last)

SPEC INITIAL Init

TRANSITIONS [Inp, Enq, Deq] {ibit, obit, ival, oval, q, last}

HIDE q, last

TLSPECEND

Figure B.5: Specification of the Lossy Queue in VSE-II

B.1 Lossy Queue 213

used in this specification. The complete specification can be found in Appendix
B.2.

As can be seen in Figure B.5 the lossy queue has ibit, obit, ival, oval

and q as flexible variables where q and last are internal variables and hidden from
the outside world.

The formula in the SPEC slot describes the behaviour of the specification. As
can easily be recognised the specification is very similar to the TLA specification
of the lossy queue and therefore no further explanations are needed.

B.1.4 The Non–Lossy Real-time Version of the Queue in

VSE-II

In this section a real-time version of the Lossy Queue is specified. The added timing
requirements prohibit the losing of values.

B.1.4.1 Time

In the following example we use discrete time in the specification. As the domain
for the time we choose the natural numbers. In this way we avoid the temporal
version of Zeno’s paradox. We represent time as a variable now in the specification.
Because of the fact that time advances forever we have specified it in a separate
temporal logic specification that is shown in Figure B.6.

TLSPEC Time

USING HelpTheory

DATA OUT now : natinf

ACTIONS

tick ::= now’ = now + 1

SPEC INITIAL now = 0

TRANSITIONS [tick] {now}

FAIRNESS WF(tick) {now}

TLSPECEND

Figure B.6: Specification of Time.

The TLSPEC Time consists of one action that increments now. We could have
chosen as well a predefined timestep that is specified as a rigid variable in the
TLSPEC Time. This rigid variable defines the difference between now and now’.
For simplicity we have taken the constant 1. The tick action has no explicit
enabling condition and therefore it can happen at any time. The behaviour of the
specification is described in the SPEC slot. Initially the value assigned to now is
0 and the only action that can be taken is the tick action. The variable now is
advanced forever which is expressed by a weak fairness condition.

214 Chapter B. Real-Time in TLA and VSE-II

The type natinf used in the specification of Time consists of the natural num-
bers together with an infinity symbol infinity (see Figure B.7).

BASIC NatInf

USING natural

natinf = infinity WITH infinityp |

nat2natinf(natinf2nat : nat) WITH natinfp

BASICEND

THEORY NatInfTheory

USING NatInf

FUNCTIONS _ + _ : natinf,natinf -> natinf

PREDICATES _<_ : natinf, natinf;

<= : natinf, natinf

VARS n1, n2 : natinf

AXIOMS FOR + : DEFFUNC n1 + n2 =

IF natinfp(n1) AND natinfp(n2)

THEN nat2natinf(natinf2nat(n1) + natinf2nat(n2))

ELSE infinity

FI

FOR < : DEFPRED n1 < n2 <->

IF natinfp(n1) AND natinfp(n2)

THEN natinf2nat(n1) < natinf2nat(n2)

ELSE IF infinityp(n1)

THEN FALSE

ELSE TRUE

FI

FI

FOR <= : DEFPRED n1 <= n2 <->

n1 < n2 OR

n1 = n2

THEORYEND

Figure B.7: Specification of the Naturals with an Infinity Element.

We have two possibilities to insert time into the lossy queue specification.

• We can include the TLSPEC Time in the specification of the lossy queue.
The semantics of the new specification is that there is a time represented
by now and time keeps advancing forever. Additionally, all behaviours of
the so specified queue must fulfil the queue specification as well as the time
specification. We can refer in the actions of the queue to the variable now.
This is done in such a way that now is not changed by the queue itself (there
are no primed occurrences of now) but only by the tick action.

B.1 Lossy Queue 215

• We can combine the queue and the time specification. Again in this case
the behaviour of the composed system must be a behaviour of the queue and
the time system. This is achieved without inconsistencies with the combine
operator. The variable now is an IN variable for the queue specification and
an OUT variable for the time specification. The queue is not able to change
the time, since it is an IN variable for the queue.

We have taken the second possibility to specify the timed queue, since this
seemed to be more adequate in this case. The specification in VSE-II is given in
Figure B.8 and B.9.

TLSPEC TimedQueue

PURPOSE

" Specification of the timed Non--Lossy Queue "

PARAMS QueueData

USING Queue[QueueDataType];

HelpTheory[QueueDataType]

DATA INTERNAL T_Deq, T_Enq, tInp, tDeq : natinf;

q : QueueType;

last : bool

IN now : natinf

OUT ibit, obit : bool;

ival, oval : QueueDataType

VARS D_rcv, D_snd, dsnd : natinf

ACTIONS

Init_t ::= last = ibit AND q = emptyqueue AND

tInp = now + dsnd AND tDeq = infinity AND

T_Enq = infinity AND T_Deq = infinity

Inp_t ::= ibit’ = ~ ibit AND tInp < now AND

tInp’ = now + dsnd AND

T_Enq’ = fT_Enq(last’, ibit’, now, D_rcv) AND

tDeq’ = ftTDeq(q, tDeq) AND T_Deq’ = ftTDeq(q, T_Deq)

Enq_t ::= last /= ibit AND q’ = enqueue(ival, q) AND

last’ = ibit AND T_Enq’ = infinity AND

tDeq’ = ftDeq2(q, now, dsnd, tDeq) AND

T_Deq’ = fT_Deq2(q, now, Dsnd, T_Deq) AND

UNCHANGED(ibit, tInp, obit, ival, oval)

Figure B.8: Specification of the Timed Queue (1)

Inspecting the specification reveals that the first part of every action is the
same as in the specification of the lossy queue. The remaining parts of the actions
contain the change to the variables that are called timers in TLA (tInp, T Enq,
etc). With these timers we determine what actions are enabled and how far time

216 Chapter B. Real-Time in TLA and VSE-II

Deq_t ::= q /= emptyqueue AND oval’ = head(q) AND

q’ = tail(q) AND obit’ = ~ obit AND

tDeq <= now AND

(q’ = emptyqueue -> (tDeq’ = infinity AND

T_Deq’ = infinity)) AND

(q’ /= emptyqueue -> (tDeq’ = now + dsnd AND

T_Deq’ = now + D_snd)) AND

(last’ = ibit’ -> T_Enq’ = infinity) AND

(last’ /= ibit’ -> T_Enq’ = T_Enq) AND

UNCHANGED(tInp, ibit, ival, last)

Limit_now ::= now <= min(T_Deq, T_Enq)

SPEC INITIAL Init_t

TRANSITIONS [Inp_t, Enq_t, Deq_t]

{ibit, obit, ival, oval,

q, last, tInp, tDeq, T_Deq, T_Enq}

;

INITIAL TRUE

TRANSITIONS [Limit_now]

{ibit, obit, ival, oval, q, last, tInp, tDeq,

T_Deq, T_Enq}

HIDE tInp, tDeq, q,

last, T_Deq, T_Enq

TLSPECEND

Figure B.9: Specification of the Timed Queue (2).

B.2 Specification of the Lossy and the Timed Queue 217

can be advanced without violating the specification. This seems as if we would
stop advancing of time with the action Limit now, but this is not the case. To
understand that put it the other way around. If there is a behaviour which is not
accepted by our specification, because of the behaviour of now, then this is not a
behaviour of the specified system.

The semantics of the timers used in the specification B.8 and B.9 is:

• tInp: A value must be put on the input wire ival at most once every dsnd

seconds. This is a timer on the input action.

• tDeq: A value must be put on the output wire oval at most once every dsnd

seconds. This is a timer on the dequeue action.

• TEnq: A value must be added to the queue at most Drcv seconds after it
appears on the input wire. This is a timer on the enqueue action.

• TDeq: A value must be added to the queue at most Drcv seconds after it
appears on the input wire. This is a timer on the enqueue action.

Analysing these timers we see that the queue is non-lossy if Drcv < dsnd. In
this case the sending of values is slower than the insertion of values into the queue.

The composition of the specification of the timed queue and the specification
of time is shown in Figure B.10.

Comparing the timed and the untimed specifications of the queue, it is clear
that the timed queue is non–lossy. This can be proved by introducing history
variables to keep track of the values sent to the queue and removed from the
queue. Comparing the results in every step of each system leads to the desired
result that the lossy queue can lose values and the timed queue does not.

Furthermore, it is clear that the timed queue is a refinement of the untimed
queue. To prove this, we have to map the visible variables of the timed queue to
the variables of the lossy queue. The mapping is given in Figure B.11.

Depending on this mapping VSE-II generates proof obligations that can easily
be proved.

In the next section we list the complete specification of the lossy and the timed
queue in VSE-II.

B.2 Specification of the Lossy and the Timed

Queue

MAPPING Timed_Lossy_Queue

EXPORTSPEC LossyQueue

IMPLEMENTATION Combined_Time_TimedQueue

218 Chapter B. Real-Time in TLA and VSE-II

TLSPEC Combined_Time_TimedQueue

PURPOSE

" Composition of the TLSPECS Time and TimedQueue "

PARAMS QueueData

USING HelpTheory[QueueDataType]

DATA OUT ibit, obit : bool;

ival, oval : QueueDataType

OUT now : natinf

COMBINE TimedQueue [TimedQueue.ibit ->

Combined_Time_TimedQueue.ibit,

TimedQueue.obit ->

Combined_Time_TimedQueue.obit,

TimedQueue.ival ->

Combined_Time_TimedQueue.ival,

TimedQueue.oval ->

Combined_Time_TimedQueue.oval,

TimedQueue.now <-

Time.now] ;

Time [Time.now -> Combined_Time_TimedQueue.now]

TLSPECEND

Figure B.10: Combined Specification of Time and the Timed Queue

MAPPING Timed_Lossy_Queue

EXPORTSPEC LossyQueue

IMPLEMENTATION Combined_Time_TimedQueue

MAPS Combined_Time_TimedQueue.ibit IMPLEMENTS LossyQueue.ibit;

Combined_Time_TimedQueue.obit IMPLEMENTS LossyQueue.obit;

Combined_Time_TimedQueue.ival IMPLEMENTS LossyQueue.ival;

Combined_Time_TimedQueue.oval IMPLEMENTS LossyQueue.oval

MAPPINGEND

Figure B.11: Refinement Mapping

B.2 Specification of the Lossy and the Timed Queue 219

MAPS Combined_Time_TimedQueue.ibit IMPLEMENTS LossyQueue.ibit;

Combined_Time_TimedQueue.obit IMPLEMENTS LossyQueue.obit;

Combined_Time_TimedQueue.ival IMPLEMENTS LossyQueue.ival;

Combined_Time_TimedQueue.oval IMPLEMENTS LossyQueue.oval

MAPPINGEND

TLSPEC TimedQueue

PURPOSE

" Specification of the timed Non Lossy Queue "

PARAMS QueueData

USING Queue[QueueDataType];

HelpTheory[QueueDataType]

DATA INTERNAL T_Deq, T_Enq, tInp, tDeq : natinf;

q : QueueType;

last : bool

IN now : natinf

OUT ibit, obit : bool;

ival, oval : QueueDataType

VARS D_rcv, D_snd, dsnd : natinf

ACTIONS

Init_t ::= last = ibit AND

q = emptyqueue AND

tInp = now + dsnd AND

tDeq = infinity AND

T_Enq = infinity AND

T_Deq = infinity

Inp_t ::= ibit’ = ~ ibit AND

tInp < now AND

tInp’ = now + dsnd AND

T_Enq’ = fT_Enq(last’, ibit’, now, D_rcv) AND

tDeq’ = ftTDeq(q, tDeq) AND

T_Deq’ = ftTDeq(q, T_Deq)

Enq_t ::= last /= ibit AND

q’ = enqueue(ival, q) AND

last’ = ibit AND

T_Enq’ = infinity AND

tDeq’ = ftDeq2(q, now, dsnd, tDeq) AND

T_Deq’ = fT_Deq2(q, now, Dsnd, T_Deq) AND

UNCHANGED(ibit, tInp, obit, ival, oval)

Deq_t ::= q /= emptyqueue AND

oval’ = head(q) AND

q’ = tail(q) AND

obit’ = ~ obit AND

220 Chapter B. Real-Time in TLA and VSE-II

tDeq <= now AND

(q’ = emptyqueue ->

(tDeq’ = infinity AND

T_Deq’ = infinity)) AND

(q’ /= emptyqueue ->

(tDeq’ = now + dsnd AND

T_Deq’ = now + D_snd)) AND

(last’ = ibit’ ->

T_Enq’ = infinity) AND

(last’ /= ibit’ ->

T_Enq’ = T_Enq) AND

UNCHANGED(tInp, ibit, ival, last)

Limit_now ::= now <= min(T_Deq, T_Enq)

SPEC INITIAL Init_t

TRANSITIONS [Inp_t, Enq_t, Deq_t]

{ibit, obit, ival, oval, q, last,

tInp, tDeq, T_Deq, T_Enq}

;

INITIAL TRUE

TRANSITIONS [Limit_now]

{ibit, obit, ival, oval, q, last,

tInp, tDeq, T_Deq, T_Enq}

HIDE tInp, tDeq, q, last, T_Deq, T_Enq

TLSPECEND

TLSPEC Time

PARAMS QueueData

USING HelpTheory[QueueDataType]

DATA OUT now : natinf

ACTIONS

tick ::= now’ = now + nat2natinf(1)

SPEC INITIAL now = nat2natinf(0)

TRANSITIONS [tick] {now}

FAIRNESS WF(tick) {now}

TLSPECEND

THEORY HelpTheory

PARAMS QueueData

USING boolean;

NatInfTheory;

Queue[QueueDataType]

FUNCTIONS ftDeq2, fT_Deq2 : QueueType, natinf, natinf, natinf ->

B.2 Specification of the Lossy and the Timed Queue 221

natinf;

ftTDeq : QueueType, natinf -> natinf;

fT_Enq : bool, bool, natinf, natinf -> natinf;

min : natinf, natinf -> natinf

VARS q : QueueType;

n1, n2, n3 : natinf;

b1, b2 : bool

AXIOMS FOR fT_Deq2 : DEFFUNC fT_Deq2(q, n1, n2, n3) =

IF q = emptyqueue

THEN n1 + n2

ELSE n3

FI

FOR ftDeq2 : DEFFUNC ftDeq2(q, n1, n2, n3) =

IF q = emptyqueue

THEN n1 + n2

ELSE n3

FI

FOR ftTDeq : DEFFUNC ftTDeq(q, n1) =

IF q = emptyqueue

THEN infinity

ELSE n1

FI

FOR fT_Enq : DEFFUNC fT_Enq(b1, b2, n1, n2) =

IF b1 /= b2

THEN n1 + n2

ELSE infinity

FI

FOR min : DEFFUNC min(n1, n2) =

IF n1 = infinity

THEN n2

ELSE IF n2 = infinity

THEN n1

ELSE IF n1 <= n2

THEN n1

ELSE n2

FI

FI

FI

THEORYEND

THEORY Queue

PURPOSE

222 Chapter B. Real-Time in TLA and VSE-II

" Specification of the datatype queue"

PARAMS QueueData

USING boolean

TYPES QueueType =

FREELY GENERATED BY emptyqueue |

enqueue(head : QueueDataType,

tail : QueueType)

FUNCTIONS last : QueueType -> QueueDataType

VARS queue : QueueType

AXIOMS FOR last : DEFFUNC last(queue) =

IF queue /= emptyqueue

THEN IF tail(queue) /= emptyqueue

THEN last(tail(queue))

ELSE head(queue)

FI

FI

THEORYEND

THEORY QueueData

PURPOSE

" Definition of the types of the elements of the queue"

TYPES QueueDataType

THEORYEND

TLSPEC LossyQueue

PURPOSE

" Specification of the lossy queue"

PARAMS QueueData

USING Queue[QueueDataType]

DATA INTERNAL q : QueueType;

last : bool

OUT ibit, obit : bool;

ival, oval : QueueDataType

ACTIONS

Init ::= last = ibit AND

q = emptyqueue

Inp ::= ibit’ /= ibit AND

UNCHANGED(obit, oval, q, last)

Enq ::= last /= ibit AND

q’ = enqueue(ival, q) AND

last’ = ibit AND

B.2 Specification of the Lossy and the Timed Queue 223

UNCHANGED(ibit, obit, ival, oval)

Deq ::= q /= emptyqueue AND

oval’ = head(q) AND

q’ = tail(q) AND

obit’ = ~ obit AND

UNCHANGED(ibit, ival, last)

Nq ::= Inp OR

Enq OR

Deq

SPEC INITIAL Init

TRANSITIONS [Nq] {ibit, obit, ival, oval, q, last}

HIDE q, last

TLSPECEND

BASIC NatInf

USING natural

natinf = infinity WITH infinityp |

nat2natinf(natinf2nat : nat) WITH natinfp

BASICEND

THEORY NatInfTheory

USING NatInf

FUNCTIONS _ + _ : natinf,natinf -> natinf

PREDICATES _<_ : natinf, natinf;

<= : natinf, natinf

VARS n1, n2 : natinf

AXIOMS FOR + : DEFFUNC n1 + n2 =

IF natinfp(n1) AND natinfp(n2)

THEN nat2natinf(natinf2nat(n1)

+ natinf2nat(n2))

ELSE infinity

FI

FOR < : DEFPRED n1 < n2 <->

IF natinfp(n1) AND natinfp(n2)

THEN natinf2nat(n1) < natinf2nat(n2)

ELSE IF infinityp(n1)

THEN FALSE

ELSE TRUE

FI

FI

FOR <= : DEFPRED n1 <= n2 <->

224 Chapter B. Real-Time in TLA and VSE-II

n1 < n2 OR

n1 = n2

THEORYEND

TLSPEC Combined_Time_TimedQueue

PURPOSE

" Composition of the TLSPECS Time and TimedQueue "

PARAMS QueueData

USING HelpTheory[QueueDataType]

DATA OUT ibit, obit : bool;

ival, oval : QueueDataType

OUT now : natinf

COMBINE

TimedQueue [TimedQueue.ibit -> Combined_Time_TimedQueue.ibit,

TimedQueue.obit -> Combined_Time_TimedQueue.obit,

TimedQueue.ival -> Combined_Time_TimedQueue.ival,

TimedQueue.oval -> Combined_Time_TimedQueue.oval,

TimedQueue.now <- Time.now] ;

Time [Time.now -> Combined_Time_TimedQueue.now]

TLSPECEND

C
VSE-II Proof Rules

There are many rules implemented in the deduction component of the VSE-II tool,
namely rules for dynamic logic, first-order logic and temporal logic. We confine
ourselves to the rules of temporal logic. The description of these rules is taken
from the VSE-II manual.

C.1 Basic Rules

C.1.1 Axiom

∃v.x = v,Γ ` ∆
flex range left

• x is a flexible variable

• v is a rigid variable

C.1.2 2 Rules

φ,©φ,Γ ` ∆

2φ,Γ ` ∆
always left

Al(Γ) ` φ,Ev(∆)

Γ ` 2φ,∆
always right

226 Chapter C. VSE-II Proof Rules

• Al and Ev select invariant formulae.

Γ ` φ,∆ φ,Al(Γ) ` ©φ,Ev(∆)

Γ ` 2φ,∆
always right induction

• Al and Ev select invariant formulae (see C.2.2).

C.1.3 3 Rules

φ,Al(Γ) ` Ev(∆)

3φ,Γ ` ∆
eventually left

Γ ` φ,©φ,∆

Γ ` 3φ,∆
eventually right

• Al and Ev select invariant formulae.

C.1.4 U Rules

φ2,Γ ` ∆ φ1,©(φ1 unless φ2),Γ ` φ2,∆

φ1 unless φ2,Γ ` ∆
unless left

Γ ` φ2,∆

Γ ` φ1 unless φ2,∆
unless right exit

Γ ` φ1,∆ Γ ` ©(φ1 unless φ2),∆

Γ ` φ1 unless φ2,∆
unless right step

Γ ` φ1, φ2,∆ φ1,AlUnlφ2(Γ) ` φ2,©(φ1 ∨ φ2),Ev(∆)

Γ ` φ1 unless φ2,∆
unless right induction

• AlUnlφ2 selects invariant formulae, and also preserves U formulae.

• Ev selects invariant formulae of the succedent.

C.1.5 Step Rule

Alm(Γ) ` Evm(∆)

Γ ` ∆
step

• m maps all free flexible, non-primed variables onto new rigid variables.

• Alm and Evm select invariant formulae, and transfer formulae which are not
invariant to next state.

C.2 Definitions 227

C.1.6 Induction Rule

2∀v.(v � v0 → φ[v]),Al(Γ) ` φ[v0],Ev(∆)

Γ ` ∀v.φ[v],∆
temporal induction 1

• a size function � for v must exist

• v0 is a new rigid variable, and

• φ[v] indicates that the variable v occurs in the formula φ.

C.1.7 Quantifiers

φ[x],Γ ` ∆

∃y.φ[y],Γ ` ∆
hide left

• φ must be invariant under stuttering

• x is a new flexible variable

Γ ` φ[τ],∆

Γ ` ∃y.φ[y],∆
hide right

• φ[τ] is the substitution of y by term τ ; τ may contain flexible and primed
variables; substituting terms in temporal logic is different from substitution
in predicate logic (s. [6])

C.2 Definitions

C.2.1 Mapping into Next State

Nxm is defined as follows:

Nxm(©φ) = φ

Nxm(φ[(ξ, ξ′)]) = φ[(m(ξ), ξ)] φ a predicate logic formula

Nxm(∀v.φ) = ∀v.Nxm(φ) if Nxm(φ) 6= nil

Nxm(∃v.φ) = ∃v.Nxm(φ) if Nxm(φ) 6= nil

Nxm(φ) = nil otherwise

228 Chapter C. VSE-II Proof Rules

C.2.2 Filters selecting Invariant Formulae

If a temporal rule is applied, it is often necessary to modify also the context of the
formula, which was the focus of the rule application. If a premise states properties
about an arbitrary future step in the temporal trace, only invariant properties of
the context are preserved.

C.2.2.1 Standard Filters

Al is defined as follows:

Al(2φ) = 2φ

Al(SF (φ){x}) = SF (φ){x}
Al(WF (φ){x}) = WF (φ){x}
Al(φ) = φ φ is rigid

Al(φ) = nil otherwise

Ev is defined als follows:

Ev(3φ) = 3φ

Ev(φ) = φ φ is rigid

Ev(φ) = nil otherwise

C.2.2.2 Filters mapping into Next State

Alm is defined as follows:

Alm(2φ) = 2φ

Alm(SF (φ){x}) = SF (φ){x}
Alm(WF (φ){x}) = WF (φ){x}

Alm(φ) = Nxm(φ) otherwise

Evm is defined as follows:

Evm(3φ) = 3φ

Evm(φ) = Nxm(φ) otherwise

C.2 Definitions 229

C.2.2.3 Filter preserving U Formulae

AlUnlχ is defined as follows:

AlUnlχ(2φ) = 2φ

AlUnlχ(SF (φ){x}) = SF (φ){x}
AlUnlχ(WF (φ){x}) = WF (φ){x}
AlUnlχ(φ) = φ φ is rigid

AlUnlχ(ψ1 unless ψ2) = (2(ψ2 → χ)) → (ψ1 unless ψ2)

AlUnlχ(φ) = nil otherwise

C.2.2.4 Filters respecting Stuttering Variables

Als is defined as follows:

Als(φ� Γ) = Als(φ) � Als(Γ)

Als(2φ) = 2φ

Als(SF (φ){x}) = SF (φ){x}
Als(WF (φ){x}) = WF (φ){x}
Als(φ) = φ φ a predicate logic formula

and flexvars(φ) ⊆ s

Als(φ) = nil otherwise

with � ∈ {∧,∨, . . .}.
Evs is defined as follows:

Evs(φ� Γ) = Evs(φ) � Evs(Γ)

Evs(3φ) = 3φ

Evs(φ) = φ φ a predicate logic formula

and flexvars(φ) ⊆ s

Evs(φ) = nil otherwise

230 Chapter C. VSE-II Proof Rules

C.2.3 Progress Conditions

Fs(P,Γ) is defined as

Fs(P ,Γ) = Fs(Steps(P),Γ)

Fs(φ,Γ) = nil if WF (φ){x} /∈ Γ

and SF (φ){x} /∈ Γ

Fs(φ,Γ) = Enabled (φ ∧ x′ 6= x) if flexvars(φ) ⊆ s

Fs(φ,Γ) = 23(Enabled (φ ∧ x′ 6= x)) if SF (φ){x} ∈ Γ

Fs(φ,Γ) = 32(Enabled (φ ∧ x′ 6= x)) if WF (φ){x} ∈ Γ

Bibliography

[1] Common criteria for information technology security evaluation (CC),
U. S. National Institute of Standards and Technology, Version 2.1, August
1999.

[2] Stankovic J. A. and K. Ramamritham. What is predictability for realtime
system. volume 2, pages 247–254. Kluwer Academic Publishers, 1990.

[3] K. M. Hansen A. P. Ravn, H. Rischel. Specifying and verifying requirements
of realtime systems. IEEE Transactions on software Engineering, 19(1):41–55,
January 1993.

[4] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In J.W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real
Time: Theory in Practice, pages 1–27. Springer Verlag, New York, LNCS 600,
1992.

[5] M. Abadi and L. Lamport. Composing specifications. In ACM Transactions
on Programming Languages and Systems, volume 15(1), pages 73 – 132, 1993.

[6] M. Abadi and S. Merz. On tla as a logic. In M. Broy, editor, Deductive
Program Design, NATO ASI series, pages 235–272. Springer, 1996.

[7] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[8] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–1571,
September 1994.

[9] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transac-
tions on Programming Languages and Systems, 17(3):507–534, May 1995.

[10] J. Abrial, E. Boerger, and H. Langmaack, editors. Formal Methods for In-
dustrial Applications: Specifying and Programming the Steam Boiler Control,
volume 1165 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

232 BIBLIOGRAPHY

[11] J-R. Abrial. The B tool. In G. Goos and J. Hartmanis, editors, VDM – The
Way Ahead. Proc. 2nd VDM-Europe Symposium, volume 328 of Lecture Notes
in Computer Science, pages 86–87. VDM-Europe, Springer-Verlag, 1988.

[12] R. Alur. Techniques for Authomatic Verification of Real-Time Systems. PhD
thesis, Stanford University, 1991.

[13] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time systems.
In Proceedings of the 5th Annual Symposium on Logic in Computer Science,
pages 414–425, 1990.

[14] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifaksi, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[15] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid sys-
tems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors,
Hybrid Systems, pages 209–229. Springer Verlag, Lecture Notes in Computer
Science, vol. 736, 1993.

[16] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[17] R. Alur and D.L. Dill. Automata for modeling real-time systems. In ICALP
90: Automata, Languages and Programming, number 443 in Lecture Notes in
Computer Science, pages 322–355, 1990.

[18] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctual-
ity. In Proceedings of the 10th Annual Symposium on Priciples of Distributed
Computing, pages 139–152. ACM, 1991.

[19] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
In Proceedings of the 5th Annual Symposium on Logic in Computer Science,
pages 390–401. IEEE Computer Society Press, New York, 1990.

[20] R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real
Time: Theory in Practice, pages 74–106. Springer Verlag, New York, LNCS
600, 1992.

[21] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the Associ-
ation for Computing Machinery, 41(1):181–204, 1994.

[22] R. Alur, T. A. Henzinger, and E. Sontag, editors. Hybrid Systems III. Lecture
Notes in Computer Science, Springer Verlag, 1996.

BIBLIOGRAPHY 233

[23] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic
verification of embedded systems. IEEE Transactions on Software Engineer-
ing, 22(3):181–201, 1996.

[24] Rajeev Alur, Thomas A. Henzinger, and Howard Wong-Toi. Symbolic analysis
of hybrid systems. In Proceedings of the 36th International IEEE Conference
on Decision and Control (CDC 1997), pages 702–707, 1997.

[25] Anonymous. Reprogramming capability proves key to extending voyager 2’s
journey. In Aviation Week and Space Technology, page 72, August 1989.

[26] Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors.
Algebraic foundations of systems specification. IFIP state-of-the-art reports.
Springer, Berlin, 1999.

[27] B Core UK Ltd. B-Tool manual, 1994.

[28] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise.
New generation of uppaal. In International Workshop on Software Tools for
Technology Transfer, Aalborg, Denmark, 1998.

[29] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. UPPAAL - a tool suite for automatic verification of real-time
systems. In Hybrid Systems, pages 232–243, 1995.

[30] A. Bernstein and P. K. Jr. Harter. Proving real-time properties of programs
with temporal logic. In Proceedings of the 8th Annual Symposium on Priciples
of Programminig Languages, pages 1–11. ACM Press, 1981.

[31] D. Bert. B’98: Recent advances in the development and use of the B method.
In Second International B Conference, volume 1393 of LNCS. Springer-Verlag,
April 1998.

[32] Z. Chaochen, M. Hansen, and P. Sestoft. Decidability and undecidability
results for duration calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner,
editors, Symposium on Theoretical Aspects of Computer Science (STACS 93),
volume 665 of Lecture Notes in Computer Science, pages 58–68. Springer-
Verlag, 1993.

[33] Zhao Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40:269–276, 1991.

[34] Brian F. Chellas. Modal logic an introduction. Cambridge University Press,
1980.

[35] E. M. Clarke, , E. A. Emerson, and A. P. Sisla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Programming Languages and Systems, 8(2):244–263, 1986.

234 BIBLIOGRAPHY

[36] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Proceedings CAV 89: Automatic Verification
Systems for Finite-State Systems, pages 197–212. Springer Verlag, Lecture
Notes in Computer Science, vol. 407, 1989.

[37] E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. In CAV 90: Computer Aided Verification, pages 163–145. Lecture
Notes in Computer Science, vol. 531, Springer Verlag, New York, 1990.

[38] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletons. Science of Computer Program-
ming, 2(3):241–266, 1982.

[39] U. Engberg, P. Grnning, and L. Lamport. Mechanical verification of concur-
rent systems with tla.

[40] J. Garman. The bug heard ‘round the world. In ACM Software Engineering
Notes, volume 6-5, pages 3–10, 1981.

[41] Hafer and Thomas. Computation tree logic CTL* and path quantifiers in the
monadic theory of the binary tree. In Annual International Colloquium on
Automata, Languages and Programming, 1987.

[42] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In
Proceedings of the 5th Annual Symposium on Logic in Computer Science, pages
402–413. IEEE Computer Society Press, New York, 1990.

[43] M. Heisel and C. Sühl. Formal specification of safety-critical software with z
and real-time csp. In E. Schoitsch, editor, Proceedings 15th International Con-
ference on Computer Safety, Reliability and Security (SAFECOMP), pages
31–45. Springer Verlag, 1996.

[44] C. L. Heitmeyer, B. G. Labaw, P. C. Clements, and A. K. Mok. Engineering
CASE tools to support formal methods for real-time software development. In
G. Forte, N. H. Madhavji, and H. A. Mueller, editors, Proceedings of the Fifth
International Workshop on Computer-Aided Software Engineering, Montreal,
Canada, 1992. IEEE Computer.

[45] T. A. Henzinger. Half-order modal logic: How to prove real-time properties. In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing, pages 281–286. ACM, New York, 1990.

[46] T. A. Henzinger. The Temporal Specification and Verification of Real-Time
Systems. PhD thesis, Stanford University, Stanford, Ca., 1991.

[47] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
LICS, pages 278–292. IEEE Comp. Soc. Press, 1996.

BIBLIOGRAPHY 235

[48] T. A. Henzinger and P.-H. Ho. HyTech: The cornell hybrid technology tool.
In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems II,
pages 265–293. Springer Verlag, Lecture Notes in Computer Science, vol. 999,
1995.

[49] Charles Anthony Richard Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[50] G. Holzmann. The model checker spin. In IEEE Transactions on Software
Engineering, volume 23, pages 279–295, 1997.

[51] D. Hutter, B. Langenstein, C. Sengler, J. Siekmann, W. Stephan, , and
A. Wolpers. Verification support environment (vse). In Journal of High In-
tegrity Systems, 1996.

[52] Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Deduction in the Verification Support En-
vironment (VSE). In Marie-Claude Gaudel and James Woodcock, editors,
Proceedings Formal Methods Europe 1996: Industrial Benefits and Advances
in Formal Methods. SPRINGER, 1996.

[53] Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Verification support environment (vse). High
Integrity Systems, 1(6):523–530, 1996.

[54] Dieter Hutter, Heiko Mantel, Georg Rock, Werner Stephan, Andreas Wolpers,
Michael Balser, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel. VSE:
Controlling the complexity in formal software developments. In D. Hut-
ter, W. Stephan, P. Traverso, and M. Ullmann, editors, Proceedings Current
Trends in Applied Formal Methods, FM-Trends 98, Boppard, Germany, 1999.
Springer-Verlag, LNCS 1641.

[55] Dieter Hutter, Georg Rock, Jörg H. Siekmann, Werner Stephan, and Roland
Vogt. Formal Software Development in the Verification Support Environment
(VSE). In Bill Manaris Jim Etheredge, editor, FLAIRS-2000: Proceedings
of the Thirteenth International Florida Artificial Intelligence Research Society
Conference, pages 367–376. AAAI-Press, 2000.

[56] Dieter Hutter and Axel Schairer. Towards an evolutionary formal software de-
velopment. In Proceedings 16th IEEE International Conference on Automated
Software Engineering, ASE-2001, San Diego, USA, 2001. IEEE Computer So-
ciety.

[57] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an audio protocol with bus collision
using UPPAAL. In Rajeev Alur and Thomas A. Henzinger, editors, Proceed-
ings of the Eighth International Conference on Computer Aided Verification

236 BIBLIOGRAPHY

CAV, volume 1102, pages 244–256, New Brunswick, NJ, USA, 1996. Springer
Verlag.

[58] Y. Kesten, O. Lichtenstein, and A. Pnueli. A complete axiomatization of ptl.
Technical report, Weizmann Institute, 1995.

[59] R. Koymans and W. P. Deroever. Examples of a real-time temporal logic
specification. In B. T. Denvir, W. T. Harwood, M. I. Jackson, and M. J.
Wray, editors, Analysis of Concurrent Systems, volume 207, pages 231–251.
Springer-Verlag, Berlin-Heidelberg-New York, 1985.

[60] R. Koymans, J. Vytopyl, and W. de Roever. Real-time programming and asyn-
chronous message-passing. In Proceedings of the Second Annual Symposium
on Priciples of Distributed Computing, pages 187–197. ACM Press, 1983.

[61] Saul A. Kripke. Semantical analysis of modal logic I. In Zeitschrift für mathe-
matische Logik und Grundlagen der Mathematik, volume 9, pages 67–96, 1963.

[62] R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond.
In Costas Courcoubetis, editor, Proceedings of the Fifth International Confer-
ence, CAV’93, Computer-Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 166–179. Springer-Verlag, June 1993.

[63] S. Merz L. Lamport. Specifying and verifying fault-tolerant systems. In J. Vy-
topil H. Langmaack, W. P. de Roever, editor, Formal Techniques in Real-Time
and Fault-Tolerant Systems, 1994, Lübeck: 3rd International Symposium, or-
ganized jointly with the Working Group Provably Correct Systems ProCoS,
Lübeck, Germany, September 19-23, 1994, volume 863 of Lecture Notes in
Computer Science, pages 41–76. Springer-Verlag, 1994.

[64] L. Lamport. Hybrid systems in TLA+. In R. L. Grossman, A. Nerode, A. P.
Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 77–102. Springer-Verlag, 1993.

[65] L. Lamport. Specifying concurrent systems with tla+. In M. Broy and
R. Steinbruggen, editors, Calculational System Design, number 173 in F: Com-
puter and Systems Sciences, pages 183–247. IOS Press, Amsterdam, 1999.

[66] Leslie Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, 1994.

[67] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2003.

[68] C. D. Locke. Software architecture for hard real-time applications: cyclic
executives vs. fixed priority executives. Real-Time Systems, pages 37–53, 1992.

BIBLIOGRAPHY 237

[69] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Ab-
stract Data Types. Teubner, Chichester;New York;Brisbane, 1996.

[70] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer Verlag, New York, 1992.

[71] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In Proceed-
ings of the 13th IEEE Computer Security Foundations Workshop, Cambridge,
England, 2000. IEEE Computer Society Press.

[72] K. McMillan. The smv system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

[73] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of
Logic Programming, 26(2):113–131, 1996.

[74] Jonathan K. Millen. CAPSL: Common authentication protocol specifica-
tion language. The MITRE Corporation, Technical Report MP 97B48, 1997.
http://www.csl.sri.com/ millen/capsl.

[75] R. Milner. Communicating and Concurrency. Prentice Hall, New York, 1989.

[76] A. Nonnengart. A resolution-based calculus for temporal logics. In PhD Thesis.
Universität Saarbrücken, December 1995.

[77] A. Nonnengart, G. Rock, and W. Stephan. Expressing Realtime Properties in
VSE-II. In ESA Workshop on On-Board Autonomy, volume WPP-191, pages
447–454, October 2001.

[78] Andreas Nonnengart. A deductive model checking approach for hybrid sys-
tems. Research Report MPI-I-1999-2-006, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, November 1999.

[79] Andreas Nonnengart. Hybrid systems verification by location elimination. In
Nancy Lynch and Bruce H. Krogh, editors, Proceedings of the 3rd International
Workshop HSCC 2000, pages 352–365. Springer Verlag, LNCS 1790, 2000.

[80] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verication of
linear hybrid systems. In Proceedings of the 6th Computer-Aided Verication,
CAV, volume 818 of LNCS, pages 81–94, 1994.

[81] J. S. Ostroff. Temporal Logic of Real-Time Systems. Research Studies Press,
Taunton, England, 1990.

[82] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57. IEEE Com-
puter Society Press, New York, 1977.

238 BIBLIOGRAPHY

[83] A. Pnueli. Applications of temporal logic to the specication and verication of
reactive systems: a survey of current trends. In J. W. Bakker, editor, Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Science,
pages 510 – 584. Springer-Verlag, 1986.

[84] A. Pnueli and E. Harel. Applications of temporal logic to the specification
of real-time systems. In Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 84–93. Lecture Notes in Computer Science, vol. 331, Springer
Verlag, New York, 1988.

[85] Koymans R. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[86] W. Reif. Correctness of generic modules. In Nerode and Taitslin, editors,
Symposium on Logical Foundations of Computer Science, volume 620 of LNCS.
Springer, 1992.

[87] Georg Rock, Werner Stephan, and Andreas Wolpers. Tool support for the com-
positional development of distributed systems. In Tagungsband 7. GI/ITG-
Fachgespräch Formale Beschreibungstechniken für verteilte Systeme, number
315 in GMD Studien. GMD, 1997.

[88] Georg Rock, Werner Stephan, and Andreas Wolpers. Assumption–
Commitment Specifications and Safety-Critical Systems. In Hartmut Knig
and Peter Langendrfer, editors, FBT’98. Formale Beschreibungstechniken für
verteilte Systeme, pages 125–135. Shaker Verlag, Aachen, 1998. 8. GI/ITG-
Fachgespräch.

[89] Georg Rock, Werner Stephan, and Andreas Wolpers. Modular Reasoning
about Structured TLA Specifications. In R. Berghammer and Y. Lakhnech,
editors, Tool Support for System Specification, Development and Verification,
Advances in Computing Science, pages 217–229. Springer, WienNewYork,
1999.

[90] Axel Schairer and Dieter Hutter. Proof transformations for evolutionary formal
software development. In Proceedings 9th International Conference on Alge-
braic Methodology And Software Technology, AMAST2002. Springer-Verlag,
LNCS 2422, 2002.

[91] S. Schneider. Using csp for protocol analysis: the needham-schroeder publickey
protocol. Technical Reprot CSD-TR-96-14, University of London, 1996.

[92] S. Schneider, J. Davies, D. Jackson, G. Reed, J. Reed, and A. Roscoe. Timed
csp: Theory and practice. In J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg, editors, Proceedings of Real-Time: Theory in Practice,
volume 600 of Lecture Notes of Computer Sience, pages 640–675, June 1992.

BIBLIOGRAPHY 239

[93] Steve Schneider. Concurrent and real-time systems : the CSP approach.
Worldwide series in computer science. Wiley, 1999.

[94] J. M. Spivey, editor. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice-Hall, New York, second edition, 1992.

[95] Johan van Benthem. The Logic of Time. Reidel, Dordrecht, 1990.

[96] X. Yong. A justification assistant for duration calculus. Technical Report 126,
United Nations University, 1997.

[97] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+

specifications. In Conference on Correct Hardware Design and Verification
Methods, volume 1703 of Lecture Notes in Computer Science, pages 54–66.
Springer, 1999.

240 BIBLIOGRAPHY

Index

Symbols
Γδ . 96
˘. .114
↓ . 156
ˆ. .113
d . 156
Q . 76
π . 85
? . 76
=̃ .108

A
Abstract Data Type 38
admissible . 74
ADT . 38
always left rule 225
always right induction rule 226
always right rule 225
aperiodic. .7
assumption . 42
asymmetry. .15

B
behaviour . 28
behaviour predicate 25
bounded temporal operator 10
branching time 9, 10

C
canonical form . 31
clock. .12
combine . 41
concurrency. .40
constraint formula 71
constraint term 71

continuous time . 9
copy automaton 119
CSP . 155

D
DC, induction rule 151
deadline . 7
density . 15
directedness. .15
discrete time . 9
discretisation . 96
Duration Calculus 147
Duration Calculus, formula 148
Duration Calculus, gasburner 152
Duration Calculus, semantics 148
Duration Calculus, state expr. . . . 148
Duration Calculus, syntax 148
Duration Calculus, term 148

E
enabled . 29
equal up to . 28
event extraction 157
eventually left rule 226
eventually right rule 226

F
fairness . 30, 206
flex range left rule 225
formal methods . 1
freely generated 38
freeze quantification.11
future operator 15

G

242 INDEX

gasburner . 19
granularity change 75
guarantee . 42

H
history-determined variable 31
Hybrid Automata 71

I
include . 41
integral . 149
integration . 83
interleaving . 41
interpretation . 27

K
Kripke structure 15

L
leads-to . 119
linear time . 9
linearity . 15

M
message extraction.156
model checker. .35

N
nested . 118
non-zeno . 75
now. .32

O
observer model 126

P
past operator . 15
periodic . 7
position .75
projection . 156

Proof rules, VSE-II 225
property . 31
Property Specification Language . . 77
PSL, semantics 77
PSL, syntax . 77

Q
qualitative, time 8
quantitative, time 9
queue, lossy. .203
queue, non-lossy 206

R
reachable . 74
real-time . 71
requirements engineering 60
run . 74

S
safety property.31
seriality . 15
similar up to 27, 28
state . 27, 73
state function . 25
state predicate . 25
step rule . 226
strong fairness 30, 206
stuttering . 28
stuttering equivalence 28
stuttering invariant 31
suffix . 75
SVKO . 60
SVKO, specification 177

T
temporal induction rule 227
temporal logic . 9
temporal operator.10
temporal quantifier rules 227
Timed CSP . 155
timely-reachable 74
TLA, lower-bound timer 33

INDEX 243

TLA, MaxTime 33
TLA, MinTime 33
TLA, pyramid . 23
TLA, real-time.32
TLA, semantics 26
TLA, syntax . 23
TLA, Temporal Logic of Actions . . 23
TLA, timer . 33
TLA, TLC. 35
TLA, upper-bound timer.33
TLC . 35
transition formula25
transition function 25
transition predicate 25
transition-reachable 74
transitivity. .15

U
unless rules . 226

V
variable, history-determined.31
Verification Support Environment . 37
VSE-I . 37
VSE-II . 37, 225

W
weak fairness30, 206

