
Generating Analyzers with PAG

Martin Alt

Florian Martin

Reinhard Wilhelm

Technischer Bericht A������
Universit�at des Saarlandes

FB �� Informatik

����� Saarbr�ucken

December ��� ����

Abstract

To produce high quality code� modern compilers use global optimization algorithms based on abstract
interpretation� These algorithms are rather complex� their implementation is therefore a non�trivial task
and error�prone� However� since they are based on a common theory� they have large similar parts� We
conclude that analyzer writing better should be replaced with analyzer generation�

We present the tool PAG that has a high level functional input language to specify data �ow analyses� It
o�ers the speci�cation of even recursive data structures and is therefore not limited to bit vector problems�
PAG generates e�cient analyzers which can be easily integrated in existing compilers� The analyzers are
interprocedural� they can handle recursive procedures with local variables and higher order functions� PAG
has successfully been tested by generating several analyzers 	e�g� alias analysis� constant propagation� interval
analysis
 for an industrial quality ANSI�C and Fortran� compiler� This technical report consists of two
parts� the �rst introduces the generation system and the second evaluates generated analyzers with respect
to their space and time consumption�
Keywords� data �ow analysis� speci�cation and generation of analyzers� lattice speci�cation� abstract
syntax speci�cation� interprocedural analysis� compiler construction

�

Contents

� The System �
��� Introduction �
��� Theoretical Background �
��� The System �

����� Overall Structure �
��� The Speci�cation Language �

����� The Domain Speci�cation Language �
����� The Data Flow Description Language �
����� Analyzer Description �
����� The Interface Description �

��� Interprocedural Analysis �
����� Fundamental Algorithms �
����� Our Approach �
����� Formal Description �
����� Mappings ��

��� Practical Results ��
��� PAG and Beyond ��

� Practical Evaluation ��
��� Time and Space consumptions ��
��� The Orderings ��
��� Practical Measurement ��
��� Conclusion and Further Work ��

�

Chapter �

The System

��� Introduction
Research in compiler generation has concentrated mostly on front end and lately on back end generation�
The optimization phase has not received much attention� Only a few systems ���� ��� ��� for generation
of analyzers were designed and built� All of them apply ad�hoc methods or heuristics if the language has
subroutines� We present a new generative system for interprocedural analyses� PAG� that is able to produce
analyzers which can be applied in several di�erent compilers by instantiation of a well designed interface� The
system is based on the theory of abstract interpretation� The philosophy of PAG is to support the designer
of an analyzer by providing three languages for specifying the data �ow problem� the abstract domains� and
the compiler interface� This simpli�es the construction process of the analyzers as well as the correctness
proof and it results in a modular structure� The speci�er is neither confronted with the implementation
details of domain functionality nor with the traversal of the control �ow graph or syntax tree nor with the
implementation of suitable �xpoint algorithms� In the paper� we �rst brie�y summarize the theory of the
data �ow analysis in section ���� then we introduce the structure of the generating system in ���� Section ���
discusses the speci�cation languages� followed by the presentation of our interprocedural solution mechanism
in section ���� Some measurements are presented in section ���� Finally� section ��� summarizes the related
works and exhibits some possible extensions�

��� Theoretical Background
The data �ow analysis practiced nowadays was introduced mainly by ���� and re�ned by ����� It is based
on a control �ow graph �CFG� that contains a node for every statement or basic block in a procedure and
an edge for a possible �ow of control� Furthermore we add a unique entry node s and exit node e and a
labelling function that yields a syntax tree fragment for every node� A data �ow analysis problem �DFP�
or instance of a data �ow analysis framework is a combination of such a graph with a complete lattice of
values� called the underlying lattice� and a family of functions 	one for each node
� These functions express
the local semantics and are therefore called transfer functions� If every transfer function is monotonic the
problem is called a monotone problem� If they are even distributive it is a distributive problem�
To describe the solution of a data �ow problem we�ll �rst de�ne the semantics of a path � � n�� � � � � nk in
the CFG�

����� �

�
id if � � ��

��	n�� � � � � nk
�� � ��n��� otherwise

The desired solution of the DFP is the union of the semantics of all paths applied to bottom� historically
called the meet over all paths solution�

MOP	n
 �
G

f�����	�
 j � is a path from s to ng

for every node n of the CFG� where � is the bottom element of the lattice� As the set of all paths from s

to n is usually in�nite� this solution is in general not computable� Therefore� the minimal �xpoint solution

�
� denotes the empty path

�

was introduced�

MFP	n
 �

�
��s��	�
 if n � s

��n�� 	
F
fMFP	m
 j m predecessor ng
 otherwise

Kam has proved in ���� that for every monotone data �ow problem the MFP is greater 	with respect to the
ordering of the lattice
 than the MOP solution� and therefore a save approximation� Moreover� if the DFP
is distributive� both are equal� The interprocedural version of this theorem is presented in �����

To solve a data �ow problem� di�erent iterative solution algorithms can be used which are guaranteed to
terminate if the problem is monotone and the underlying lattice has no in�nite ascending chains� Some of
them� like the worklist algorithm� are presented in ����� Other algorithms are the bounded �xpoint iteration
from ���� or the higher order chaotic iteration sequences in ����� If the chains in the lattice are in�nite or if
a speed up of the �xpoint operation is needed� widening and narrowing� explained in ���� is an appropriate
method to solve the equation system�

��� The System
So let�s recall what�s needed for a data �ow analyzer�

�� a complete lattice D�

�� a meta transfer function which� if applied to a node of a CFG� yields a 	monotone
 transfer function
from D to D�

�� a �xpoint algorithm with the appropriate data structures� e�g� an iteration algorithm and a working
list�

�� a control �ow graph� which is the input for the analyzer�

Some of these parts do not change much from one analyzer to another� To shorten the time of implementation
and to simplifymaintenance of the resulting system� we designed a special purpose programming language to
describe 	and create
 such analyzers� By freeing the compiler designer from routine matters� he can focus on
the crucial details� Our support language needs three speci�cation components� the underlying lattice� the
transfer functions and the solution method� This idea is not new� There have been a couple of experiments
of generating analyzers� but only a few of them were successful� On one hand� the speci�cation language
should be powerful enough to cover a large class of problems� on the other hand the generated code must be
su�ciently e�cient if it is intended to work in a real compiler and not only to be a prototype for performing
some tests�

����� Overall Structure

PAG has been designed to generate analyzers for compilation systems� The basic assumption is that such a
compilation system o�ers an interface to the syntax tree and the control �ow graph of the program to be
analyzed� This representation of the intermediate structures can be found in nearly any compiler�

The interface to the control �ow graph has to o�er functions to walk over the graph� to get the identi�er
of a node� and to fetch the syntax tree which is the label of the node� To decouple the implementation of data
structures of the graph from their logical functionality� the compiler designer has to write an interface which
can be used for all generated analyzers working with this compiler� It is necessary to know the structure
of the abstract syntax tree� It can be best de�ned by an extended tree grammar� From this grammar� the
appropriate access and walk functions can be generated� Therefore PAG takes as input a �le which describes
the structure of the possible trees� Furthermore there are input �les that construct the underlying lattice�
the transfer functions and global parameters of the analyzer like the used �xpoint algorithm� All these
input �les are described in detail in section ���� An overview of the di�erent input �les to PAG is shown in
�gure ����

��� The Speci�cation Language
A PAG speci�cation is divided in four parts� one for the de�nition of data types in the language DATLA�
another for the description of the syntax trees� a third to specify the main structure of the analyzer� and
a last to de�ne the transfer functions in a language called FULA� This whole description is compiled into

�

PAG Output

DATLA
Source

Syntax Tree
Description

FULA
Source

Analyzer
Description

PAG Input Templates
Iterator

Generation
PAG Code

Generation
FULA Code

Type Checker

Generation
Data Structure

Templates
Data Structure

C Code
for Data

Structures

Control
Flow

Library

C Code for
Transfer

Functions

Analyzer
Driver

C Compiler
and Linker

Front End

Control Flow Analyzer

Executable
Analyzer

Back End

Compiler

PAG

Figure ���� The Structure of PAG

ANSI C code that performs the analysis outlined in section ���� The structure of these four parts will be
shown in detail now� First� we present some notational conventions� We use typewriter style for reserved
words� and italic style for nonterminal symbols� Among these �v� is used for variables� �p� for patterns� �e�
for expressions in general and �b� for boolean valued ones� Finally �fg� is used for grouping and �a�� and �a��
for the usual repetitions� A complete example of an analyzer speci�cation is given in appendix ���� It is the
description of an analyzer to detect assignments to live variables�

��	�� The Domain Speci
cation Language
It is used to de�ne the data types and data manipulation routines for the analyzer� Therefore the language
is called DATLA� an acronym for data type de�nition language� We distinguish between sets and domains
	complete lattices
� They are constructed bottom up� This means that simple sets like numbers or enumer�
ated sets build the base for more complicated sets like the set of all functions from numbers to truth values�
which can be used as input for other set generating operators again� So we have some basic sets� and set
operators� In addition there are operators to construct domains from sets� and to combine domains to new
domains�

The speci�cation is divided into two subparts� one for the set de�nitions starting with the keyword SET

and the other for the domain de�nitions with the keyword DOMAIN� Each de�nition is an equation with a
single name that has to be de�ned on the left side and an operator applied to a couple of names on the
right side� The prede�ned sets are up to now� snum� the set of signed integers� unum� the set of unsigned
integers� real� the set of all �oating point numbers� bool� the set of truth values true and false� chr� the
character set 	ASCII
� and string� the set of all character sequences� This list can easily be extended even
with user�de�ned types� These must have implementations of every function the interface contains� Another
possibility to generate a basic set is to enumerate a �nite number of elements� Complex sets can be formed
out of the basic ones through the following operators�

�� disjoint union of a �nite number of sets� Disjointness is obtained by tagging the element of the sets
participating in the union�

�� construction of the tuple space of a �nite number of sets

�� power sets� building the set of all subsets of the original set

�� set of lists of elements of a set

�� set of functions from a set S� to a set S�

�

In the second part of the speci�cation� domains can be formed in one of the following ways�

�� enumeration of elements and of a 	complete
 partial order� The system checks whether it forms a
lattice�

�� �attening of a set S� S is transformed into a domain by adding a least element � and a greatest
element �� The elements of S are pointwise incomparable�

�� lifting of a domain D� new top and bottom elements are added which are greater respectively smaller
than all other elements� The ordering of D is preserved�

�� building the power domain of a set or domain� the generated ordering is set inclusion�

�� construction of the tuple space of a �nite number of domains� Tuples are ordered component�wise�

�� building the domain of functions from a set into a domain with point�wise ordering�
In contrast to other generators� PAG allows simultaneously recursive de�nition of sets and domains� In this
way� for instance� the tree type can be easily expressed� But this and other features in DATLA result in
the fact that in�nite sets and domains� even with in�nite chains� can be de�ned� Therefore the user has to
make sure that only a �nite part of the domain is used� or has to guarantee the termination of the analysis
in another way� Environments are an example where only a �nite part of some in�nite domain is used� It
is typical for program analysis that at each program point� some kind of information is stored for every
variable that occurs in the program� This is usually modelled by a function from variables to the needed
information� Obviously this domain has in�nite chains because the set of variables is in�nite� But in every
program only a �nite subset of variables is used� and so termination is guaranteed�

��	�� The Data Flow Description Language
The main part of the description of an analyzer is the speci�cation of the data �ow functions� For every node
in the control �ow graph� there has to be a function that transforms an incoming �ow value into an outgoing
one� This is expressed in a functional language FULA which was designed especially for that purpose� FULA
programs can be compiled to e�cient C code�
Overview� FULA is a �rst order functional language with eager evaluation� It has static scoping rules
and the user de�ned types from DATLA� Interestingly� the language does not provide an explicit �xpoint
operator� As we will see� the absence of an embedded �xpoint operator and the eager evaluation semantics
do not restrict signi�cantly the language constructs that PAG is able to analyze� In FULA every expression
has a unique type that can be derived statically by a type inference algorithm� There are no implicit
type casts in FULA� Any change of the type must be made explicit� For occurrences of a variable the
corresponding de�nition is the syntactically innermost de�nition for that variable� Binding constructs are
function de�nitions� case and let expressions�
Transfer Functions� The whole FULA source is split in two parts� one for de�nitions of auxiliary functions
and one for the transfer functions� These transfer functions are written in a special notation� they don�t need
a name and are de�ned via patterns matching the labels of the control �ow graph� They have an implicit
parameter named � which is the incoming data �ow value and they have to return a data �ow value again�
Functions� There are two di�erent types of functions in FULA� Firstly the functions de�ned in the language
itself� and secondly those declared in DATLA� The latter are seen as datatypes and can be arguments to the
�rst sort� This distinction is made because of the �rst order character of the language� So it is possible to
write a 	FULA
 function� that takes a 	DATLA
 function as argument� For example a function that modi�es
the value of an environment for a given variable�
Functions can only be de�ned with a name� which means that there is no lambda expression� De�nitions are
made by using patterns� and the cases can be spread over the whole speci�cation� A single case looks like
f	p�
 � e� For each function there can be an additional type de�nition� Nested functions are not allowed in
FULA�
Patterns� They are used to de�ne functions and in case expressions� Only linear patterns are usable�
which means that the same variable is allowed only once per pattern� Pattern expressions may be nested�
The following patterns are de�ned� while some static semantical restrictions� like type conditions� are to be
followed�

�� constants� these can be elements of prede�ned sets like integers as well as user de�ned constants of
enumerated sets or domains� Two special constants are � and �� the bottom and top elements of all
lattices�

�

�� variables� but each variable once per nested pattern�

�� empty list and empty set� There are two types of empty lists� those de�ned in DATLA and those
introduced by the syntax tree 	see �����
� They are notated as � � or ��� and fg for the empty set�

�� cons patterns for both types of lists� p�p�

�� tuples� �p�� � ��� Notice that a tuple pattern matches always if the sub patterns match�

�� wild card� it is denoted by an underbar and matches every input�

Expressions can be�

�� constants 	built�in and enumerated

�� if expressions� if b then e� else e� endif for conditionals� This can be seen as the only non eager
construct in DATLA� because e is evaluated �rst� and then e� or e� but never both�

�� let expressions� let f vi � ei� g� in e to introduce a number of variables vi local to the expression e�
The eagerness results in the fact that every ei is evaluated before e is evaluated�

�� case expressions� case fvjg
� of ffpjg

�
i �� ei� g

� endcase gives the possibility to examine the
structure of one or more expressions bound to the variables vj � The result of this expression is the
value of the �rst ei for which all pj �s match the values of the vj �s

�� function application� both kinds of functions DATLA and FULA can be applied to zero or more ex�
pressions� The number of expressions applied to must correspond to the arity of the function because
functional expressions that would result if a function is applied to more or less arguments than de�ned�
are not allowed in a �rst order language�

�� print expressions� print 	 e�
 		 e is equivalent to the expression e with the side e�ect that e� is
printed out�

�� built in function application 	pre� and in�x notation
� These are functions that are generated for
certain data types� All these functions are listed below 	for a more re�ned documentation see ����
�

� for every type� equal
 and not equal �

� for every domain additionally� lub� glb� v� w� �� �

� unum� snum �real� mathematical operations like� plus 	� minus �� times �� integer division �
modulo �� amount j � j� bitwise operations� and �� or �� xor �� comparison functions� greater ��
greater equal ��� less �� less equal ��� cast functions� snum� unum� chr� real

� bool� and ��� or ��� not �

� chr� cast functions snum� unum� real

� string� concatenation �� character selection � � �

� �atted� lifted domains� lift� drop

� lists� cons �

� sums� is�type name� down�type name� up�type name to lift an element of a sum component into
the sum and vice versa�

� tuples� select �� tuple construction 	e�� � � � � en

� power sets� add an element �� subtract an element �� member test ��

� functions� application �f � g� value changing �� � n � �� creation with default element �� � � �

��	�� Analyzer Description
In order to generate analyzers� some additional declarations are necessary�

�� direction� values can be forward or backward� This speci�es whether the data �ow is along the
edges of the control �ow graph or in the opposite direction�

�� carrier� the name of the domain that is used for the analysis� i�e� the type of the �ow values�

�� combine� the name of a FULA function� that merges information which comes over di�erent edges�
This is usually the function lub for the least upper bound�

�� init� the initial value that is associated with every control �ow node� Usually the neutral element of
the combine function 	�
�

�� init start� an initialization value for the start node 	the end node for a backward problem
�

�

��	�	 The Interface Description
This part of the speci�cation is used to de�ne the structure of the syntax tree which is constructed from the
source program by the compiler� With this de�nition� the PAG compiler is able to generate access functions
for the tree� following certain naming conventions� This is needed because the generated analyzer must be
able to walk over the syntax tree to determine for instance the instruction given on a control �ow node�
The form of the tree is introduced as a tree grammar with two additions� Firstly� there is a notation to
introduce lists of nonterminals in order to gain more simplicity in notation and handling� Secondly we have
a notation nonterminal

 simple type to identify a class of nonterminals with a built in type� For such a
rule� PAG generates functions to cast an element of nonterminal into an element of simple type� Generally
the nonterminals of the syntax tree and lists of them are considered as types that are usable in FULA� The
concrete syntax is quite obvious� and is skipped here with a pointer to the PAG reference manual �����

Another part of the interface is that to the control �ow graph� But this interface is quite simple and
�xed irrespective of the programming language� So the control �ow graph is abstracted by a library that
has to be supported by the compiler� It includes functions to fetch the successors or ancestors of a node� or
to access the corresponding syntax tree fragment�

��� Interprocedural Analysis
In the previous sections� we have focused our interest on intraprocedural analysis� Yet good programming
style requires a lot of small procedures that are used at many program points� So it is a must not only to
look inside every procedure on its own but at the whole program in order to achieve good analysis results�
As already mentioned� the number of problems with interprocedural analysis is large� to achieve excellent
results very much time is needed� and fast algorithms do not �nd out everything possible� So one has to �nd
a compromise between time consumption and precision�

����� Fundamental Algorithms
There are di�erent methods to handle procedures in data �ow analysis� We shortly summarize some tech�
niques�

� Non�recursive procedures can be inlined� and the intraprocedural algorithm can be applied� This is
only applicable for small programs because the transformed program may grow exponentially�

� Procedure calls may be considered as ordinary statements that make all available information invalid�
Or destroy only all information based on those objects that may be modi�ed by that call� this assumes
a previous analysis phase that computes for each procedure the set of potentially modi�ed variables
	data �ow problem over call graph
�

� Use a two�level algorithm� �rst compute an abstract form of the procedure 	called e�ect or jump in
����
� which maps �ow information from the beginning of a procedure to its end� then do standard
iteration and use the related e�ect function at any procedure call� the computation of the e�ect
functions brings up new restrictions on the underlying lattice� as they cannot be computed in general
or even if they can� the representation may grow exponentially 	���
 This method is especially useful if
the lattices are �nite� Many restricted versions of the constant propagation relay on that� e�g� constant
copy propagation ���� or even demand�driven versions ����

� Do an analysis within the procedure body� one variant of this method summarizes the e�ects of all
calls at the beginning of a procedure and another keeps di�erent calls separate� This approach is also
known as call string approach and is described in �����

����� Our Approach
Our approach tries to achieve the following goals�

� to guarantee termination for every input and every analyzer that terminates intraprocedurally�

� to keep the additional e�ort of the compiler designer for the interprocedural analysis low�

� time and space complexity should be as low as possible to guarantee the practical usability of the
generated analyzer�

�

� the results from the interprocedural analysis should be as good as possible�
To get a precise solution 	this means the MOP solution
 for the interprocedural case for all problems that
are terminating intraprocedurally is not possible� As stated in ���� this is only possible if the domain is �nite
or the DFP is distributive or if there is no recursion in the program� All three cases restrict our mentioned
goals too much� The approach we have chosen is similar to the call string method� because it o�ers a �exible
technique that can niftily trade time and space for precision 	see section �����
� One can observe that in most
�every day live� programs calls to a procedure from di�erent call sites� are made with distinct values� And
in addition to that� a large number of function calls are non�recursive� So the di�erent call sites are worth
the e�ort to analyze them separately� Furthermore it can be useful to keep deeper levels of calls separated�
This will be clari�ed by the following example�
static int i�

main�� �

i
 ��

r���

r���

�

r�� �

q���

�

q�� �

i 	
 ��

�

If we separate every call chain of length up to two� in a constant propagation analyzer 	compare ���

we can �gure out that the call of q in r is made twice with di�erent values� The separation of the calls is
achieved by introducing arrays or vectors of data �ow values for each node of the control �ow graph instead
of using only one value per node� In the di�erent array elements we can store the data that comes from
di�erent call sites� If there are dynamically more calls than there are �elds in the vector 	which has a static
length
 they will be merged together with the 	speci�ed
 combination operation�

After the analysis has �nished� an extra advantage of this vector is that it can be used in di�erent ways�
for a simple optimization inside the procedure the meet of all elements can be used because that is the �ow
value which is valid for all incarnations of the procedure� But it can also be used to determine if it is useful
to specialize the procedure for certain values�

����� Formal Description
De�nition � �Program Representation�
We represent a program P with the procedures P�� � � � � Pn� where P� is the main procedure as a super
graph G� � 	N�� E�� s�� e�
� G� consists of a number of intraprocedural control �ow graphs G�� � � � � Gn

which represent the procedures of P � In di�erence to the standard CFGs� every call in G� is represented by
three nodes� a call site node� a return site node� and a local node� The call node has one edge to the entry
node of the called procedure and another to the local node� The return node has the exit node of the called
procedure and the local node as a predecessor�

Figure ��� is an example of a super graph� The local node between call and return node is useful to model
the behavior of local variables� the compiler designer can specify that after the local node the �ow value is
constantly bottom�� Then the implicitly performed combine operation before the return node will always
yield the value returned from the procedure� But in the constant propagation for example it is also possible
to set all global variables at the local node and all variables local to the call at the procedure exit to bottom�
Then the local variables arrive at the return node directly from the call and all other variables are coming
from the procedure exit� This is correct if none of the local variables can be modi�ed 	due to aliasing
 in
the procedure� Therefore the concept of the local node results in a large variety of possibilities to handle
local values for the speci�er of the analyzer� the interface to the abstract syntax tree allows even to access
information that has been computed by other compiler parts� e�g� alias graphs�

There are two problems with the construction of a super graph� if a call is made to a function variable
the called procedure is not known� Then� there must be an edge to the entry of every 	potentially called

procedure� The second one arises if the called procedure is not known because it�s not in the source code
like any kind of library function� Then we introduce a dummy procedure with which the unknown call is
connected� The analyzer designer has to specify worst case assumptions for that dummy procedure� or can

�i�e� di�erent places in the source code
�if the combine function is speci�ed as a meet

�

ENTRY
proc

CALL
proc

RETURN
proc

EXIT
proc

CALL
proc

ENTRY
main

CALL
proc

ENTRY
main

RETURN
proc

EXIT
main

local

RETURN
proc

EXIT
main

local local local

EXIT
proc

RETURN
proc

ENTRY
proc

CALL
proc

Figure ���� A super graph and its extended super graph

do better if he knows the behavior of the library function� Thus� PAG supports unlike all other generators a
speci�cation mechanism for the semantics of libraries�

In a super graph we can carry out a standard intraprocedural data �ow analysis� So we don�t have
any additional expenses for computing the e�ect of the functions� As a re�nement we should use only
interprocedural valid paths in the graph� A path is called a valid interprocedural path if it contains only
matching pairs of call and return nodes of a procedure like a correctly braced expression� Exact de�nitions
can be found in ���� ���

Now we can introduce the discrimination of the data of di�erent call sites by assigning not only a single
value of the lattice with every control �ow node� but an array of values� It is clear that the length of these
arrays in every procedure should be the same for each of its control �ow nodes� and at least one�

De�nition � �Graph Extension�
For a super graph G�� we de�ne the triple 	G��Arity�mapc
 to be a graph extension if Arity is a function
that maps every node n � N� to a natural number� the length of the data �ow array� and mapc is a family
of functions for every call site c � call P where mapc � ����Arity	c
� � ����Arity	entry P
� maps every
position of the data �ow array of the calling procedure to a position in the array of P �

Instead of considering paths between nodes of the super graph� we use now paths between the elements of
the data �ow arrays� So a new graph with pairs of nodes and vector positions as nodes can be de�ned�

De�nition � �Extended Super Graph�
For a graph extension 	G��Arity�mapc
 we call the graph G�

E � 	N�
E � E

�
E� s

�
E �

e�E
 extended super graph� with N�
E � f	n� i
 j n � N� and i � ����Arity	n
�g� s�E � 	s�� �
� e�E � 	e�� �
� and

		n�� i�
 � 	n�� i�

 � E�
E i� n� is an entry node and i� � mapn�	i�
� or n� is an exit node and i� � mapc	i�

with c being the call belonging to n�� or i� � i��

An extended super graph with its extended paths is shown in �gure ���� The interprocedural analysis can
be performed by applying an intraprocedural �xpoint algorithm to the extended super graph� The merging
of the data at di�erent call sites is done automatically� if the mapc are chosen appropriately� In �gure ����
the two edges of the call to proc from itself are leading into the same data �ow element at the head of proc�
So a meet of the two values of the call site will be calculated if the second element of the vector at the entry
of proc is needed� The corresponding element from the exit node will be duplicated and propagated to the
return node inside proc� To solve a data �ow problem with extended graphs� it is necessary to �nd suitable

�

map and arity functions� With these it is possible to tune the analysis� the higher the arities the better the
precision we can achieve� but the more time and space is needed�

����	 Mappings
The task to select a mapping is mainly to �nd a compromise between time�space complexity and preciseness
of the analysis� So we will now explain some methods to calculate pairs of arity and mapping�

�� In the simplest case� the arity of each procedure is one� and the mapping functions are the identity� So
the information of each call to a procedure is mixed together�

�� Another simple way is to count the number of calls to a procedure p in the program text 	this is the
number of control �ow edges in the super graph that are leading to the entry of p
 and to take this
number as the arity of p� Of course one must choose the arity of P� as one although it is formally
not called� Then the mapc functions project all elements of the tuple at the call site to a single �xed
position in the array of the called procedure�
The e�ect of these functions is that the meet of the data �ow information at every call site in the
program is kept separately in the called procedure p� but if there are further calls from p to some other
procedure q the information is mixed up with the �ow values of all other calls to p� In practice� it
has shown that the arity of some procedures calculated with this method becomes quite large in real
programs 	up to �
� So it seems to be reasonable not to use higher values for the arities in large
programs� due to space and time restrictions�

�� To be more precise� it is necessary to keep deeper levels of the call separated� If there are for example
two di�erent call sites c� and c� of a procedure p and p calls q we would like to have as many �elds in
the array of q as there are �elds at c� plus the number of �elds that are at c� in which we can map
the resulting information of c� and c�� So the arity of a procedure should be the sum of the arities of
all call sites� As induction base we have Arity	entry P�
 � �� But this works only if the call graph is
acyclic which means that the program is non�recursive�

So we have to �nd the strongly connected components 	SCC� see ����
 in the call graph G and consider
them as a single procedure in a call graph G�� To this acyclic call graph G� we can apply the method
described for the non�recursive case� with the additional rule that the arity of a SCC is the arity
calculated for the non�recursive case multiplied by a constant k which re�ects the fact that there can
be many recursive calls inside the SCC� Afterwards� we expand the melted nodes again and assign to
every procedure the arity of the compound node�
The resulting mapping for calls leading to a procedure outside any SCC or calls from outside into a
SCC is simple because every element in the call site vector has a corresponding one in the vector at
the procedure entry� For the other mappings� di�erent ways can be chosen� An example is shown in
�gure ����

�� If the underlying lattice D is �nite a mapping can be constructed that results in the precise solution
of the DFP� Call chains of length up to jDj� 	K 	K is the number of call sites in the program
 must
be analyzed separately�

Summary
So let�s shortly summarize the advantages and disadvantages of our approach�

� we are usually not precise� but this can be achieved by using an appropriate mapping if the domain is
�nite�

� complex lattices and large programs result in analyzers that use a lot of memory and time� to overcome
the space problems� we added a garbage collector for the �ow elements 	FULA is functional and therefore
has a copy semantics
�

� every intraprocedural DFP can be extended to an interprocedural analyzer without further restrictions
of the domain�

� additional speci�cation is only needed for parameters� return values and local variables�

� tuning is possible through the choice of arity and mappings�

� the method yields detailed results about the di�erent calls�

��

proc �

proc �

proc �

proc �

proc �

proc �

�

�

�

�

�

�

�

� �
�

k

�

� �

��k��	
k

��k��	
�k

�

proc ��

proc �

proc �

�� proc ��

Figure ���� The calculation of the arity in method �� The numbers on the edges mean the numbers of call
sites� and the numbers at the nodes are the calculated arities� e�g� the edge proc � to proc � means that
there are two call sites of proc � in proc ��

Lines of Speci�cation Generated Interface
DATLA FULA syntax

P
Code �kB� �lines�

copy constant propagation ��� �� ��� ��	 �
� ����
linear constant propagation ��� �� ��� ��� ��	 ����
full constant propagation
�� �� ��� �� �� ����

alias analysis ��� �� ��� �� ��� ����
live variables 	� �� ��� ��	 ��� ����
dominator analysis �� � ��� �
	 �� ����

Figure ���� The size of speci�cation and the generated analyzer

��� Practical Results
PAG generated analyzers have successfully been tested in a large compiler system with ANSI�C and Fortran�
front ends as well as with di�erent back ends 	including SPARC
 in the ESPRIT project COMPARE� We
have speci�ed the following data �ow problems�

� copy constant propagation� only assignments of the form x �
 c where c is a constant� and x �
 y

are taken into account�

� linear constant propagation� here additionally� statements of the form x �
 c�y 	 d are considered�
where c and d are constants�

� full constant propagation� every right side is taken into account� Note that the lattice for this analyzer
is in�nite and the transfer functions are not distributive�

� alias analysis� computes must and may aliases

� liveness� a well known bit vector problem

� dominator� similar to liveness
These analyzers run together with handwritten and generated compiler phases 	called engines
 in the CoSy
compilation model that has been introduced by ���� In �gure ��� we have listed the size of the di�erent
speci�cations and analyzers� The speci�cation of the syntax tree is the same for all analyzers as well as a
large part of the hand coded interface listed in the last row� As there are some di�erences in the subsequent
treatment of the computed data� they are not fully identical� We measured the practical relevance of the ��
mapping of section ����� by applying the full and the copy constant propagation to several �real� programs�
The results are shown in �gure ���� We have also generated analyzers for a completely di�erent compiler
which takes a subset of Pascal as input�

��

program procs nodes objects IPCC IPCF CONC CONF �objC �objF �sC �sF

cdecl �� ���	 ��� ���� ���� ���� ���� �� ��
ed �
 ���� �� 	 ���� ���	 ��	 ���	 ��� ���

fft
�� �	� � � ��	 ��	 ���	 ���	
�
�
flex ��� ��	� ���� �	 �	 �	�
 �	�� �	���� �	���
 ��� ���
flops �
�� ��	 	 	 ����
��	 	��� �
��
� ��� ����

gzip 		 ���� ��� �� �� ���� ���� �
���� ����� ���� ����
heap � �
� 	� � � ���� ���� ����� ����� �� ��
linpack �� ��	
 ��

 ��
�� ����� ����� �	� �	�

ratfor �� ����
� � � 	�� 	��
���
��� ��� ���
twig �� ���� ����

 ���� ���� ��
� ��
� �� ��
xmodem �� ��
� ��� �� �� ���	 �	
�
��
� ����

 ��� ��

clinpack �� ��� ���

�
	� ����� ����� �	� �	�
cloops ��
 ����
�� �� ��� ����� ����
 �
��
���	 �� ����
dhry ��

� ��	 � � �	 ��
 ���� ���� 		 		

search � �	 �� � � ��	 ��	 �� �� 	 	
whet �	� ��� � � �	 ��� �
��� ����	 ��� ���

Practical results measured for the copy constant propagation �XC� and the full constant propagation�XF ��
IPC� the number of constant objects at the procedure headersP

entry p
jfoj�tArity�p	i�� flow�p��i���o� �� ���gj

CON� the sum of the number of constant object at all nodesP
flownode n

jfoj�tArity�n	i�� flow�n��i���o� �� ���gj

�obj� x�y� x the number of constant source code variables�
y the number of constant temporaries �frontend introduced�

�s� foldings of subexpressions
Figure ���� Practical Measurements

��	 PAG and Beyond
As far as we know� only a few analyzer generators have been implemented� Many papers have discussed
analyzer generators from a theoretical point of view� but not many serious e�orts have been undertaken to
produce practical implementations� Projects we know about are the following�

�� Tjiang and Hennessy ���� presented an analyzer generator Sharlit which uses path compression for
evaluating the path functions� The user has to give simpli�cation rules and has to support the im�
plementation of the �ow values and graph routines in low level C code� There is no possibility of
automatic generation of the domain code and no automatic handling of procedures�

�� Venkatesch and Fischer ���� presented a tool Spare which is based on the abstract interpretation
framework� It is developed mainly for testing purpose of some abstract interpretations� Moreover it
has no built in facilities to handle a function mechanism�

�� Yi and Harrison ���� developed an abstract interpretation based analyzer generator� It has the ability
to tune the analysis by using a restricted form of narrowing� But it allows only domains of �nite
cardinality�

We have shown in this paper that PAG is able to generate analyzers that can analyze large programs�
Specifying an analysis like the copy propagation shortens the time of implementation to something between
one and two hours if the interface is already there 	which is needed only once per compilation system
� One
of the authors was able to adapt an already existing speci�cation of constant propagation to include alias
information within three man hours�

For the future we plan to investigate additional things�

� new �xpoint algorithms� we plan to implement some other �xpoint algorithms and investigate a hybrid
approach� where we can mix di�erent algorithms and keep the correctness and termination properties�

� reduction of the space consumption� the vectors of the data �ow elements will be large� if the program
mainly consists of procedure calls� In that case most of the entries at procedure headers are the

��

same� thus� a melting of these elements may result in less precise data �ow information� however�
with decreased time and space consumption� This can be generalized by replacing the equality with
a distance notion� This distance can be inductively de�ned on the structure of the lattices� The user
can specify a concrete distance d and during the analysis elements e�� e�� within this distance� are
replaced by the result of the 	speci�ed
 combination function combine	e�� e�
� Then the mappings of
section ����� are dynamically rede�ned�

� automatically reasoning over PAG speci�cations� an interesting research direction is the analysis of
PAG speci�cations� Using an eager �rst�order functional language for specifying the transfer functions
allows automatic proof of some properties like monotonicity�

��

Chapter �

Practical Evaluation

��� Time and Space consumptions

There exists few knowledge about the space and time consumption of global data �ow analyzers on real world
programs as well as the accuracy of the results� The combination of �xpoint algorithm� abstract domain�
transfer functions� and call string length has big e�ects on the practical usability� Here we present the results
of applying some of the di�erent combinations of these parameters to realistic programs�

The main challenge in building an interprocedural data �ow analyzer is the exponential space and time
consumption for speci�c programs that has been proven in theory� However� sometimes full analysis is needed�
independently of the costs� In ��� the data �ow analyzer generation system PAG has been introduced� It
generates e�cient interprocedural data �ow analyzers from high level speci�cations for compilation systems
that are �ow based� PAG allows to specify the abstract domains� the transfer functions and the interface
for control �ow graph access� The �xpoint algorithm is currently implemented using a worklist approach
	also known as single step technique
� The worklist contains the set of nodes that have to be processed
at least once� Then a node is selected and processed 	related transfer function is applied
� If the data
�ow value changes� its successors are inserted in the worklist 	for a forward problem
� The e�ciency of the
analyzers depends on a smart selection of the next node� which has been discussed extensively in the past
for the intraprocedural case 	���� ���
� The most general and common idea is that nodes are ordered and
the worklist implementation selects the minimal or maximal node� This technique is called priority queue�
For some control �ow graphs an optimal ordering can be computed e�g� the reducible �ow graphs 	����
�

PAG generated analyzers have to handle control �ow graphs which are often irreducible� that arises from
the presence of procedures 	higher order
� non�local jumps and exceptions� We have investigated the e�ect
of di�erent orderings on the costs of interprocedural analyzers� We speci�ed and generated a conditional
constant propagator 	����
 for ANSI�C and applied it to realistic programs 	table ���
�

��� The Orderings

We implemented a bottom�up �xpoint algorithm that is based on a worklist containing those control �ow
nodes whose data �ow values have to be recomputed� In opposition to other implementations� where the
members of the priority queue are control �ow nodes� we use pairs of nodes and indices to represent extended
super graph nodes� We implemented the worklist using a priority queue� The priorities of the control �ow
nodes are given by seven di�erent heuristics�

The optimal ordering is computable� but assumes an explicit representation of the extended super graph
which is too large for use in practise� But the extended super graph di�ers only at the procedure entry and
exit points from the super graph and can be safely approximated by it� Thus we base our heuristics only on
the structure of the super graph�

In the remainder of this section we describe the di�erent orderings of the control �ow nodes� We have
implemented seven di�erent orderings of the control �ow nodes� They di�er in the treatment of edge types
and the visiting order of successors� The �rst four orderings do not take the types of edges into account i�e�
they handle procedure call�return edges like ordinary �ow edges�

��

dfs� depth �rst order
the nodes are ordered according to a depth �rst search visiting sequence of the control �ow nodes�

bfs� breath �rst search
the nodes are ordered according to a breath �rst search visiting sequence of the control �ow nodes�

sccd� strongly connected components 	scc

it �rst computes the strongly connected components of the super graph� They are ordered by a
topological ordering 	����
� The nodes of the sccs are ordered by the dfs strategy�

sccb� strongly connected components
it �rst computes the strongly connected components of the super graph� They are ordered by a
topological ordering� The nodes of the sccs are ordered using the bfs strategy�

hypd�
it �rst computes the strongly connected components of the super graph� They are ordered by a variant
of a topological ordering 	ATS
� The nodes of the sccs are ordered using the dfs strategy�

hypb�
it �rst computes the strongly connected components of the super graph� They are ordered by a variant
of a topological ordering 	ATS
� The nodes of the sccs are ordered using the bfs strategy�

In addition we used the chaotic ordering 	cha
 which means� that the worklist is implemented as a stack�
We now present an algorithm for the computation of a topological ordering of sccs� Because the sccs are

computed intraprocedurally� the projection of the interprocedural graph to these sccs may be cyclic� we start
from the set of sccs and order them as long as there are minimal elements� if none exists we have to apply
a heuristic to determine which cycle we want to break up and where� Our heuristic is to choose a scc that
has a minimal number of predecessor 	control �ow
 nodes which belong to sccs that are already ordered�

Algorithm ATS�
The algorithm ATS orders the strongly connected components of a control �ow graph� The root 	Re
 of a
scc e is the node which is reached �rst by a dfs algorithm� The algorithm is related to that of ���� because
it de�nes a weak topological ordering�
Input� strongly connected components of a �ow graph fs�� � � � � smg
Output� total ordering ord of sccs

SCC �� fs�� � � � � smg� count����
 i � f�� � � � �mg ord	si
 �� �
while SCC �� � do

if s � SCC with no predecessor then sel �� s�
else

select fy�� � � � � yng � SCC with minimal po	Ryi
 and on cycle	Ryi
 � true

if i with yi is procedure begin node then sel �� yi� else
if i with yi is procedure end node then sel �� yi� else
sel � y�� endif
ord	sel
��count���endif

SCC �� SCC � fselg
enddo

The function po 	predecessors ordered
 is de�ned as �

po	x
 � jfz j ord	Rz
 �� � edge z � x�� Rx� � Rxgj

It computes the size of the set of control �ow nodes that belong to sccs which are predecessors of x� A
small value indicates that this node can be selected next� A better strategy is not to select the node with
minimal number of unordered predecessors but the node with the largest fraction of already ordered number
and the total number of predecessors� This assumes a more sophisticated arithmetic and is not e�cient
enough� The predicate on cycle determines whether a node belongs to a cycle of the control �ow graph� this
is justi�ed because cycle should be analyzed completely before leaving it�

��

program description lines procedures �ow nodes objects table

�t fast fourier trans� ��� � � ��� ���
�ex scanner generator ���� ��� ��� ��� ����
ed editor ��� �� ���� ��� ���
bison parser generator ���� ��� ���� ���� ����
heap heapsort ��� � �� �� ���
twig code generator ��� �� ���� ��� ����
gzip� compactor ��� � ��� ��� ���
xmodem communication �� �� ���� ���� ���
whetstone benchmark �� � ��� ��� ���
linpack benchmark ��� �� �� ��� ���
cdecl part of C�� compiler ���� �� ���� ��� ���
�nd� unix command ���� ��� ��� ��� ���

Table ���� Testsuite

��� Practical Measurement

The testsuite consists of a rather fair set of real programs of reasonable size� We listed in table ��� the
name of the program� the number of source code lines� the number of procedures� the number of control �ow
nodes 	not of the extended super graph
� the number of objects 	superset of variables
 and the number of
the table with the related results� The star � means that this program contains higher order functions� The
conditional constant propagator consists of ��� lines of analyzer speci�cation� �� lines of lattice speci�cation
and ��� lines of interface speci�cation� The PAG generated code is ���kB ANSI�C�

We investigated all combinations of the seven orderings and mappings with call string length zero and
one and compared the results in time and preciseness� The tables have the following structure�

Structure of the Tables
The �rst row contains the name of the program whereas the second shows the preciseness in terms of available
constants 	constant objects� which are not necessarily used
� interprocedural constants 	ipc� constants at
procedure headers
 and foldings of form y	x
� it means that x source code variables are replaced by their
constant values� and y foldings are done caused by the former replacements� i�e�

ipc� the number of constant objects at the procedure headersP
entry p jfoj	t

Arity�p�
i�� flow	p
�i�
	o
 �� �x��gj

available� the sum of the number of constant objects at all nodesP
flownode n jfoj	t

Arity�n�
i�� flow	n
�i�
	o
 �� ���gj

We listed for each program the steps of the control 	how often a node is selected
� the time for the analysis
in seconds and the average size of the priority queue during analysis� The winner of each competition is
marked with a �� and the loser with a �� The following table contains the results for speci�c programs�
where an enlarged call string length results in higher preciseness�

xwe use the lattice variables � �at�num��real��string�

��

Program call string available ipc foldings steps time work strategy
length

ed � ���� � � 	��
 ���� ���� �� hypb
xmodem � ��� �� �� 	��
 ����� ����� �� hypd
whetstone � ��� � �� 	��
 ���� ��� �� hypd
linpack � ��� � � 	��
 ���� ��� � hypd
cdecl � ��� � � 	�
 ���� ���� �� hypb

� �� � � 	�
 ����� ���� ��� hypb
�ex � ���� � �� 	��
 ���� ����� ��� hypb

� ���� ��� �� 	��
 ����� ���� ��� hypb
� ���� ��� �� 	��
 ������ ������ ��� hypb

heap � ��� � � 	��
 ���� ��� � hypb

Results�
For most programs the strategy cha 	chaotic iteration
 behaves worst whereas hypb is the fastest one�
Increasing the call string length from to � gives always more available constants� but does not necessarily
result in code improvement because they are not used 	table ���
� Available interprocedural constants are
found in most of the programs�

Observation �
The selection best ordering of the control �ow nodes depends on the program and the call string length�

We can see the correctness of this theorem by observing that the runtime of the analyzer consists of two
parts� the time inside the control 	priority queue� binomial heaps� straightforward list
 and the time inside
the abstract functions� A very fast control which selects unfortunately more often nodes with expensive
abstract functions may be less e�cient than a very sophisticated control which selects expensive node less
often� Thus� the combination which cooperates best has to be found�

Observation �
The analysis time is not a monotonic function in terms of precision�

Assume the abstract functions do follow the ascending chains in the lattice step by step� the earlier this
process stops� the faster and more precise are the analysis results� This does not mean that shorter analysis
yields always better results�

Observation �
The preciseness is not a strictly monotonic function in terms of the call string length even not before
stabilisation�

This means that the preciseness can be the same for two lengths of the call string but increase again for
higher values� The implication is bad� if we don�t get more preciseness by increasing the call string length�
we can not claim that this is also true for all larger call strings� That is clear from the theoretical point of
view� but we have found the practical con�rmation�

We now discuss the table for each program in detail� for this we will use csl as short cut for call string
length and ats as short cut for the two ats strategies hypd and hypb�

	t�table �
��� The number of available constants and ipcs increases from csl to � but unfortunately no
code optimization can be done� The bfs strategies are better than the dfs based ones for this program�
csl larger than � does not give additional constants�

linpack�table �
��� The number of foldings increases from csl to � and the analysis time decreases for all
except the chaotic iteration� The size of the worklist increases with the call string length�bfs strategies
behave worse than dfs based ones�

�nd�table �
��� The precision increases with the csl and more foldings can be done� The analysis times
are high due to the use of higher order functions�

��

heap�table �
��� cha has best runtimes which is very surprising� The dfs strategies behave generally worse
than its bfs counterparts� For csl � the �expected� results are obtained� the ats strategies win� The
precision does not grow for csl bigger than ��

gzip�table �
��� The analysis times look very bad for gzip but that arises from intensive use of higher order
functions� This is probably also the reason why no interprocedural constants are found at all�

ed�table �
�� The precision increases from csl to �� but csl � �nds only more available constants� Al�
though di�erent ats strategies win� the distance to others is not signi�cant�

cdecl�table �
��� The precision increases for csl to �� bfs strategies behave worse than dfs ones� For csl
� the runtime is very long� The ats methods can analyze it in reasonable time�

whetstone�table �
��� The precision increases from csl to �� here we have the interesting fact that the
foldings are equal for csl and �� but increase signi�cantly for csl �� The analysis time decreases for
csl � and one gets more precise information in short time�

xmodem�table �
���� The precision and the number of foldings increase from csl to �� csl � �nds a lot
of interprocedural constants� but needs also more analysis time�

bison�table �
���� The precision increases with the csl� but does not result in more foldings� The analysis
times are relative close compared to the other programs�

�ex�table �
���� The precision increases from csl to � and results in more foldings for csl � �� bfs
strategies are better than its dfs counterparts� but only the ats are suited for practical use�

twig�table �
���� The precision increases remarkably from csl to ��

��� Conclusion and Further Work

We have presented the results of applying a 	generated
 conditional constant propagator which also keeps
track of reference parameter and function results to a set of real�world programs� Our analyzer is based
on the call string approach 	����
� It separates di�erent context information for di�erent calls up to a �xed
depth� We implemented a bottom�upx �xpoint algorithm using a priority queue� where the priorities are
computed according to an ordering of the control �ow node� The classical ordering like depth �rst search
	����
� intervals analysis 	���� ���
 or chaotic iteration strategies 	���
 fail either in the interprocedural setting�
are only applicable to reducible �ow graph or assume further properties like absence of non�local gotos or
deal with slightly di�erent topics like the search of nearly optimal widening points� We developed a new
method 	ats
 which has been proven practically relevant�

We currently implement the functional approach of ���� and plan to compare it with our �rst technique�
Additionally� we plan to generate parallel analyzers 	���
�

xdue to non�local gotos� which make top�down algorithms very complicated

��

	t
avail���� ipc� fol�	
 avail���� ipc�� fol�	

call string length

order steps time size

cha ���� ��� ��
bfs ���� ��� ��
dfs � ���� ��� ��
sccd �� ��� ��
sccb ��� ��� ��
hypd ���� ��� �
hypb � ��� �� �

call string length �

order steps time size

cha � ���� ���� �
bfs ���� ��� ��
dfs ����� ���� ��
sccb � ��� ��� ��
sccd ���� ���� �
hypd ���� ��� �
hypb � ���� ��� �

Table ���� Results for fft

linpack
avail���� ipc�� fol���	�
 avail�� ipc�� fol��	��

call string length

order steps time size

cha ���� ��� ��
bfs � ����� ���� ��
dfs ��� ��� ��
sccd � ��� ��� ��
sccb ����� ����� ��
hypd ���� ��� ��
hypb ���� ��� ��

call string length �

order steps time size

cha ����� ���� ��
bfs ���� ���� ��
dfs ���� ��� ��
sccd ��� ��� ��
sccb � ���� ���� ��
hypd � ���� �� ��
hypb ���� ��� ��

Table ���� Results for linpack

nd
avail���� ipc�� fol���	��
 avail����� ipc��� fol���	��

call string length

order steps time size

cha ���� ����� ���
bfs ����� ��� ��
dfs � ����� ����� ��
sccd ����� ����� ���
sccb � ���� ���� ���
hypd ���� ���� ���
hypb ����� ���� ���

call string length �

order steps time size

cha � ��� �� ���
bfs ����� ����� ���
dfs ������ ������ ���
sccd ����� ���� ���
sccb ������ ����� ���
hypd � ����� ���� ���
hypb ������ ����� ���

Table ���� Results for find

�

heap
avail���� ipc�� fol��	�
 avail��� ipc�� fol��	��

call string length

order steps time size

cha � ���� ��� �
bfs ���� ��� ��
dfs � ���� ��� ��
sccd ���� ��� ��
sccb ���� ��� ��
hypd ��� ��� ��
hypb ��� ��� ��

call string length �

order steps time size

cha � ��� ��� ��
bfs ���� ��� ��
dfs ���� ��� ��
sccb ��� ��� ��
sccd ���� ��� �
hypd ���� ��� ��
hypb � ���� ��� ��

Table ���� Results for heap

gzip
avail����� ipc� fol���	��
 avail����� ipc� fol���	��

call string length

order steps time size

cha ���� ���� ���
bfs ���� ����� ��
dfs ����� ����� ��
sccd ����� ����� ��
sccb � ���� ����� ��
hypd ���� ��� ���
hypb � ����� ���� ���

call string length �

order steps time size

cha � ��� ��� ���
bfs ����� ����� ���
dfs � ������ ����� ���
sccd ������ ����� ���
sccb ������ ���� ���
hypd � ����� ����� ���
hypb ����� ����� ���

Table ���� Results for gzip

ed
avail���� ipc�� fol��	�
 avail����� ipc�� fol��	��

call string length

order steps time size

cha � ���� ���� ��
bfs ��� �� ��
dfs ���� ��� ��
sccd ���� ���� ���
sccb ���� ��� ��
hypd ���� ��� ��
hypb � ���� �� ��

call string length �

order steps time size

cha � ����� ���� ��
bfs ����� ���� ��
dfs ����� ��� ��
sccd ���� ��� ���
sccb ����� ���� ��
hypd � ����� ���� ��
hypb ����� ���� ��

Table ���� Results for ed

��

cdecl
avail��� ipc�� fol��	�
 avail���� ipc�� fol��	�

call string length

order steps time size

cha � �� ����� ��
bfs ���� ��� ���
dfs ��� ��� ���
sccd ��� ��� ���
sccb ���� ��� ���
hypd ���� �� ���
hypb � ���� ��� ���

call string length �

order steps time size

cha ������ ������� ���
bfs � ��� � ����� ���
dfs ����� ���� ���
sccd ����� ���� ��
sccb ������ ������ ���
hypd � ����� ���� ��
hypb ����� ���� ��

Table ���� Results for cdecl

whetstone
avail���� ipc�� fol���	�
 avail���� ipc�� fol���	�

call string length

order steps time size

cha ���� �� ��
bfs ��� ��� ��
dfs � ���� ���� ��
sccd ���� ���� �
sccb ��� ��� ��
hypd ��� �� �
hypb � ��� �� �

call string length �

order steps time size

cha � ����� ��� ��
bfs � ���� ���� ��
dfs ��� ��� ��
sccd ���� ���� ��
sccb ����� ���� ��
hypd ���� ���� ��
hypb ��� ���� ��

Table ���� Results for whetstone

xmodem
avail���� ipc�� fol��	�
 avail����� ipc�� fol��	��

call string length

order steps time size

cha � ���� ���� ���
bfs ����� ���� ���
dfs ���� ���� ���
sccd ���� ���� ��
sccb ��� ��� ���
hypd �� ���� ���
hypb � ��� ��� ���

call string length �

order steps time size

cha � ��� �� ���
bfs ���� ���� ���
dfs ����� ���� ���
sccd ����� ����� ��
sccb ��� ���� ���
hypd � ��� ���� ���
hypb ����� ��� ���

Table ���� Results for xmodem

��

bison
avail����� ipc��� fol��	�
 avail����� ipc��� fol��	�

call string length

order steps time size

cha � ���� ���� ��
bfs ����� ���� ���
dfs ����� ��� ���
sccd ����� ��� ���
sccb ����� ���� ���
hypd ����� ���� ��
hypb � ���� ���� ��

call string length �

order steps time size

cha � ������ ����� ��
bfs ����� ����� ���
dfs ������ ����� ���
sccd ������ ����� ��
sccb ����� ����� ���
hypd ����� ����� ���
hypb � ����� ����� ���

Table ����� Results for bison

�ex
avail����� ipc��� fol���	��
 avail����� ipc��� fol���	��

call string length

order steps time size

cha � ����� ���� ���
bfs ���� ���� ���
dfs ����� ��� ���
sccd ����� ���� ���
sccb ���� ���� ��
hypd ���� ���� ���
hypb � ����� ���� ���

call string length �

order steps time size

cha ������ ����� ���
bfs ������ ������ ���
dfs � ����� ����� ���
sccd ������ ������ ���
sccb ����� ����� ���
hypd ���� ���� ���
hypb � ����� ���� ���

Table ����� Results for flex

twig
avail���� ipc� fol��	�
 avail����� ipc��� fol���	��

call string length

order steps time size

cha ���� ��� ��
bfs ���� ��� ���
dfs ���� ���� ���
sccd ���� ���� ���
sccb � ���� ����� ���
hypd ��� ���� ���
hypb � ���� ���� ���

call string length �

order steps time size

cha ����� ��� ��
bfs ����� ��� ���
dfs ����� ���� ���
sccd � ����� ����� ���
sccb ���� ����� ���
hypd ����� ���� ���
hypb � ����� ���� ���

Table ����� Results for twig

��

Bibliography

��� Martin Alt� Uwe A mann� and Hans van Someren� Cosy Compiler Phase Embedding with the Cosy
Compiler Model� In 	th International Conference for Compiler Construction in Edinburgh� volume
LNCS���� Springer� �����

��� Martin Alt and Florian Martin� Generation of e�cient interprocedural analyzers with PAG� In SAS
���
Static Analysis� LNCS ���� pages ����� Springer� �����

��� Francois Bourdoncle� E�cient chaotic iteration strategies with widenings� In Conference on Formal
Methods in Programming and their Applications� number ��� in LNCS� pages �������� Springer Verlag�
�����

��� David Callahan� Keith D� Cooper� Ken Kennedy� and Linda Torczon� Interprocedural constant propaga�
tion� SIGPLAN Notices� ��	�
��������� July ����� Proceedings of the ACM SIGPLAN
	 Symposium
on Compiler Construction�

��� P� Cousot and R� Cousot� Abstract Interpretation� A Uni�ed Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints� In Conference Record of the �th ACM
Symposium on Principles of Programming Languages� pages �������� �����

��� Patrick Cousot and Radhia Cousot� Systematic design of program analysis frameworks� In Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming Languages� pages ��������
San Antonio� Texas� January �����

��� Patrick Cousot and Radhia Cousot� Abstract interpretation frameworks� Journal of Logic Computation�
�	�
��������� �����

��� Dhananjay M� Dhamdhere� Barry K� Rosen� and F� Kenneth Zadeck� How to analyze large programs
e�ciently and informatively� SIGPLAN Notices� ��	�
��������� July ����� Proceedings of the ACM
SIGPLAN
�� Conference on Programming Language Design and Implementation�

��� Evelyn Duesterwald� Rajiv Gupta� and Mary Lou So�a� Demand�driven computation of interprocedural
data �ow� In Conference Record of POPL
��� ��nd ACM SIGPLAN�SIGACT Symposium on Principles
of Programming Languages� pages ������ San Francisco� California� January �����

��� Yong fong Lee� Thomas J� Marlowe� and Barbara G� Ryder� Performing data �ow analysis in parallel�
In Proceedings of Supercomputing
��� pages �������� New York� November ����

���� Susan L� Graham and Mark Wegman� A fast and usually linear algorithm for global �ow analysis�
In Conference Record of the Second ACM Symposium on Principles of Programming Languages� pages
������ Palo Alto� California� January �����

���� Dan Grove and Linda Torczon� Interprocedural Constant Propagation� A Study of Jump Function
Implementations� In Proceedings of the ACM SIGPLAN
�� Conference on Programming Language
Design and Implementation� pages ����� �����

���� M� S� Hecht and J� D� Ullman� Flowgraph reducability� SIAM Journal on Computing� ��������� June
�����

��

���� M�S� Hecht� Flow Analysis of Computer Programs� North Holland� New York� �����

���� Neil D� Jones and Steven S� Muchnick� Even simple programs are hard to analyze� In Conference Record
of the Second ACM Symposium on Principles of Programming Languages� pages ������� Palo Alto�
California� January �����

���� J�B� Kam and Je�rey D� Ullman� Monotone data �ow analysis frameworks� Acta Informatica� ���������
�����

���� Gary A� Kildall� A uni�ed approach to global program optimization� In Conference Record of the ACM
Symposium on Principles of Programming Languages� pages ������� Boston� Massachusetts� October
�����

���� Jens Knoop and Bernhard Ste�en� The interprocedural coincidence theorem� In Proceedings of the �th
International Conference on Compiler Construction �CC
���� pages ������� Springer�Verlag LNCS
���� �����

���� T� Reps M� Sagiv and S� Horwitz� Precise interprocedural data�ow analysis with application to constant
propagation� In TAPSOFT
��� Arhus� Denmark� LNCS� Springer�Verlag� �����

��� Florian Martin� Die Generierung von Daten�u analysatoren� Master�s thesis� Universit!at des Saarlan�
des� �����

���� Florian Martin� PAG Reference Manual� Universit!at des Saarlandes� �����

���� Kurt Mehlhorn� Data Structures and Algorithms �� Graph Algorithms and NP�Completeness� Springer
Verlag� ����� ISBN �����������X�

���� Hanne Riis Nielson and Flemming Nielson� Bounded �xed point iteration� In Conference Record of the
Nineteenth Annual ACM SIGPLAN�SIGACT Symposium on Principles of Programming Languages�
pages ������ Albequerque� New Mexico� January �����

���� Mads Rosendahl� Higher�order chaotic iteration sequences� In PLILP
��� Tallinn� Estonia� number ���
in LNCS� pages �������� Springer�Verlag� �����

���� Micha Sharir and Amir Pnueli� Two approaches to interprocedural data �ow analysis� In Steven S
Muchnick and Neil D Jones� editors� Program Flow Analysis� Theory and Applications� chapter ��
pages �������� Prentice�Hall� �����

���� R� Tarjan� Depth��rst search and linear graph algorithms� SIAM Journal on Computing� �	�
��������
June �����

���� Steven W� K� Tjiang and John L� Hennessy� Sharlit � A tool for building optimizers� In Proceedings
of the Conference on Programming Language Design and Implementation �PLDI�� pages ������ San
Francisco� CA USA� ��� ����� ACM Press � New York� NY � USA� Published as SIGPLAN Notices�
volume ��� number ��

���� Toda� On the complexity of topological sorting� Information Processing Letters� ��� ����

���� G�V� Venkatesch and Charles N� Fischer� Spare� A development environment For Program Analysis
Algorithms� In IEEE Transactions on Software Engineering� volume ��� �����

��� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with conditional branches� In Confer�
ence Record of the Twelfth Annual ACM Symposium on Principles of Programming Languages� pages
�������� New Orleans� Louisiana� January �����

���� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with conditional branches� ACM
Transactions on Programming Languages and Systems� ��	�
�������� April �����

���� Reinhard Wilhelm and Dieter Maurer� Compiler Design� International Computer Science Series�
Addison�Wesley� �����

��

���� Kwangkeun Yi and Williams Ludwell Harrison III� Automatic generation and management of interpro�
cedural program analyses� In Conference Record of the Twentieth Annual ACM SIGPLAN�SIGACT
Symposium on Principles of Programming Languages� pages �������� Charleston� South Carolina� Jan�
uary �����

��

Appendix A� Speci�cation of Liveness
DOMAIN
varset � set�unum�
vars � lift�varset�

PROBLEM livevar
direction � backward
carrier � vars
init � bot
init�start� lift�bot�

combine � comb

TRANSFER

Assign�e��e���

minus�	�def�e��� lub use�e�� lub use�e��

Evaluate�exp��
	 lub use�exp�

If�exp�t�f��
	 lub use�exp�

FuncCall���params����

	 lub use�list�params�

Call���params��
	 lub use�list�params�

default�
	

SUPPORT

comb�a�b� � a lub b

�� Subtracts a list of unums from a set of unums

minus�� vars� �unum �� vars

minus�l�set�list� �
let x �� l�set

in lift� case list of

a�as �� x � a

� �� x

endcase�

�� Calculate the used objects of expressions
use�list���� � lift����

use�list�x��xs� � use�x� lub use�list�xs�

�� Calculate the used objects of an expression
use��EXPR �� vars

use�Content�ObjectAddr�obj��� � lift��� � id�obj��

use�Content�exp�� � lift�top�

use�Subscript�exp��exp��� � use�exp�� lub use�exp��

use�Member�exp���� � use�exp�

use�Convert�exp���� � use�exp�

use�Cast�exp�� � use�exp�

use�Abs�exp�� � use�exp�

use�Neg�exp�� � use�exp�

use�Not�exp�� � use�exp�

use�Plus�exp��exp����� � use�exp�� lub use�exp��

use�Diff�exp��exp����� � use�exp�� lub use�exp��

use�Mult�exp��exp����� � use�exp�� lub use�exp��

use�And�exp��exp����� � use�exp�� lub use�exp��

use�Or�exp��exp����� � use�exp�� lub use�exp��

use�Xor�exp��exp����� � use�exp�� lub use�exp��

use�Div���exp��exp����� � use�exp�� lub use�exp��

use�Quo���exp��exp����� � use�exp�� lub use�exp��

use�Mod���exp��exp����� � use�exp�� lub use�exp��

use�Rem���exp��exp����� � use�exp�� lub use�exp��

use��� � lift����

�� calculate a list of the defined objects in an expression
def�ObjectAddr�obj�� � id�obj���

def��� � �

�� Get the identifier of an object
id�obj� � unum�val�INT�

case obj of
DataGlobal�id��� �� id

Local�id����� �� id

Parameter�id����� �� id

Register�id����� �� id

� �� error��Unknown object��

endcase��

SYNTAX

START � STMT

STMT� Evaluate�Expr�EXPR�
� BeginProcedure�Params�Object��Locals�Object��
� Assign�Lhs�EXPR�Rhs�EXPR�

� Call�Proc�EXPR�Params�EXPR��
� FuncCall�Proc�EXPR�Params�EXPR��Res�EXPR�
� CallRet�Params�Object��Locals�Object��
� EndProcedure�Params�Object��Locals�Object��

� Goto�Target�EXPR�
� Return�Value�EXPR�Next�EXPR�
� If�Cond�EXPR�Then�EXPR�Else�EXPR�
� EndFuncCall�Res�EXPR�
� EndCall��

EXPR� NoExpr��
� IntConst�Value�UNIV�INT�
� RealConst�Value�UNIV�REAL�
� BoolConst�Value�BOOL�

� ObjectAddr�Obj�Object�
� Content�Addr�EXPR�
� Subscript�Base�EXPR�Index�EXPR�
� Member�Base�EXPR�Field�Object��
� Convert�Value�EXPR�Rounding�ROUNDING�

� Cast�Value�EXPR�
� Abs�Value�EXPR�
� Neg�Value�EXPR�
� Not�Value�EXPR�

� Plus�Left�EXPR�Right�EXPR�Strict�BOOL�
� Diff�Left�EXPR�Right�EXPR�Strict�BOOL�
� Mult�Left�EXPR�Right�EXPR�Strict�BOOL�
� And�Left�EXPR�Right�EXPR�Strict�BOOL�
� Or�Left�EXPR�Right�EXPR�Strict�BOOL�

� Xor�Left�EXPR�Right�EXPR�Strict�BOOL�
� Div�OnZero�EXPR�Left�EXPR�Right�EXPR�Strict�BOOL�
� Quo�OnZero�EXPR�Left�EXPR�Right�EXPR�Strict�BOOL�
� Mod�OnZero�EXPR�Left�EXPR�Right�EXPR�Strict�BOOL�
� Rem�OnZero�EXPR�Left�EXPR�Right�EXPR�Strict�BOOL�

ROUNDING� Truncation��
� Nearest��
� Floor��
� Ceiling��

Object� DataGlobal�cpid�INT�IsVolatile�BOOL�
� Local�cpid�INT�IsVolatile�BOOL�Procedure�Object�
� Parameter�cpid�INT�IsVolatile�BOOL�ParamKind�ParamKIND�
� Register�cpid�INT�IsVolatile�BOOL�RegisterId�INT�

Section� Section�Sname�NAME�

ParamKIND� ByValue��

� ByReference��
� ByCopyInOut��

BOOL �� bool

NAME��str

INT��snum

UNIV�INT �� snum

UNIV�REAL �� real

UNIV�ADDRESS �� unum

��

