
References

��� F� daSilva� Towards a Formal Framework for Evaluation of Operational Semantics� LFCS Report ECS�
LFCS������	
 Edinburgh University
 �����

��� H�P� de Moura� Action Notation Transformations� PhD thesis
 University of Glasgow
 �����

��� Stephan Diehl� Prolog and Typed Feature Structures� A Compiler for Parallel Computers� Masters
thesis
 Worcester Polytechnic Institute
 Worcester
 Massachusetts
 �����

��� Stephan Diehl� A Prolog Positive Supercompiler� �����

��� John Hannan� Making Abstract Machines Less Abstract � In Proc� of FPCA���� LNCS ���
 pages
	���	��� �����

�	� John Hannan� Operational Semantics�Directed Compilers and Machine Architectures � ACM Transac	

tions on Programming Languages and Systems
 �	�������������
 �����

��� U� J�rring and W�L� Scherlis� Compilers and staging transformations� In Thirteenth ACM Symposium

on Principles of Programming Languages� St� Petersburg� Florida
 pages �	��	
 ���	�

��� G� Kahn� Natural Semantics� In
th Annual Symposium on Theoretical Aspects of Computer Science

volume LNCS ���
 pages ������ Springer Verlag
 �����

��� P� Kursawe� How to invent a Prolog machine� In Proc� Third International Conference on Logic Pro	

gramming
 pages �������� Springer LNCS ���
 ���	�

���� Peter Lee� Realistic Compiler Generation� MIT Press
 �����

���� Stephen McKeever� A Framework for Generating Compilers from Natural Semantics Speci�cations � In
P�D� Mosses
 editor
 Proc� of the �st Workshop on Action Semantics
 BRICS�NS������ University Of
Aarhus
 Denmark
 �����

���� P�D� Mosses� Action Semantics� Cambridge University Press
 �����

���� H� Moura and D� A� Watt� Action Transformations in the ACTRESS Compiler Generator� In CC��
�

LNCS ��� Springer Verlag
 �����

���� F� Nielson and H�R� Nielson� Code Generation from Two�Level Denotational Meta�Languages� Springer
LNCS ���
 ���	�

���� Ulf Nilsson� Towards a Methodology for the Design of Abstract Machines for Logic Programming� Journal
of Logic Programming
 pages �	�����
 �����

��	� Mads Tofte� Compiler Generators 	 What they can do� what they might do� and what they will probably

never do�
 volume ��� Springer
 EATCS Monographs in Theoretical Computer Science
 �����

��

term rewriting systems are interpreted in Prolog� The next step will be to generate from the term rewriting
rules an e�cient implementation of the compiler and the abstract machine preferably in C� In addition one
should introduce a program store and labels at this stage ����

� Conclusions

We presented a system
 that generates a compiler and abstract machine from a �BIG speci�cation of a
programming language� We gave the transformations used in our system and as an example we transformed
the �BIG speci�cation of the OR action combinator and the GIVE action� We pointed out
 that the system
was used to generate a compiler and abstract machine for action notation and that these have been used as
a backend of an action semantics�based compiler generator� Finally we discussed future work�

Acknowledgements
This work has been supported by a grant of the �Deutsche Forschungsgemeinschaft�� Finally I want to thank
Stephen McKeever for discussions and his comments on a draft of this paper�

��

is translated into the following action term�

hence�

furthermore�

before�then�give�num�������

bind�i�the�value������

then�allocate�cell�integer���

bind�x�the�cell��������

then�

then�

and�then�give�num�������

give�the�value��������

then�or�give�stored�value�

bound�cell�i���

���

give�bound�value�i������

give�the�value���������

give�add�the�value����the�value���������

store�the�value����bound�cell�x����

Now this action term is converted into a very long abstract machine program by the generated compiler

hence���

furthermore���

before���

then���

� give���num���������

num������

conv�����

test�	���

conv�
���

factor���������

� bind���i�the���value�����

the���value����

conv������

test�����

conv������

factor�����i����

give���num���������

���

The execution of the above program by the abstract machine in the empty environment yields the expected
result� a memory cell is allocated for the variable x and the value � is stored in it�

� Future Work

Given a determinate �BIG speci�cation our system automatically generates a compiler and abstract machine
represented as term rewriting systems� Admittedly the transformations introduce a lot of abstract machine
instructions� Especially the number of conversion instructions introduced by sequentialization should be
reduced by replacing similar instructions by one more general instruction
 e�g� the instructions conv� and
conv� de�ned by the following rules conv�� �truejR� � R and conv�� �falsejR� � R might be replaced by
pop� �F jR�� R
 but this instruction would also pop values di�erent from true and false� Furthermore there
are instructions
 which do nothing besides pattern matching
 i�e� test whether the current state has a required
form
 and it might be safe to remove them in case
 we know that the state will always have the required form�
Thus these and other optimizations have to be investigated further� Currently the �BIG speci�cations and the

��

Figure 	� Transforming the GIVE action �part III�

Now a term rewriting system is generated�
� give�Y�N ��C� �Z� �T�B� S�� � �� � Y � conv�� test�� conv�� factgive�N ��C� ���S�jZ�� �T�B� S���
� factgive�N ��C� �Z� ��D�S�� true�� �� �Z� �completed� �N �� datum�D��� ��� S���
� factgive�N ��C� �Z� ��D�S�� false�� �� �Z� �failed� ��� ��� S��
� test��C� �Z� �D�� �� �Z�D �� nothing�
� conv��C� ���S�jZ�� datum�D��� �� � C� ���S�D�jZ�� �D���
� conv��C� ���S�D�jZ��R�� �� � C� �Z� ��D�S�� R���
Finally we apply the pass separation transformation and we get the following compiler rules�
give�Y�N � �� give�Y�N ��Y � conv�� test�� conv�� factgive�N �
factgive�N � �� factgive�N �
test� �� test�
conv� �� conv�
conv� �� conv�
And the following abstract machine rules�
� give�Y�N ��C� �Z� �T�B� S��� �� � C� ���S�jZ�� �T�B� S���
� factgive�N ��C� �Z� ��D�S�� true��� �� � C� �Z� �completed� �N �� datum�D��� ��� S���

� factgive�N ��C� �Z� ��D�S�� false��� �� � C� �Z� �failed� ��� ��� S���
� test��C� �Z� �D��� �� � C� �Z�D �� nothing� �
� conv��C� ���S�jZ�� datum�D�� � �� � C� ���S�D�jZ�� �D���
� conv��C� ���S�D�jZ�� R�� �� � C� �Z� ��D�S�� R���

�BIG rules adding additional preconditions
 when necessary
 to make the rules determinate� Then we used
our system to generate a compiler and abstract machine represented as term rewriting systems�
Figures � and � demonstrate the generation process by transforming the �BIG rules for the OR action com�
binator� In the transformation of the �BIG rules of the GIVE action shown in Figures �
 � and 	 we also deal
with side conditions�
Our speci�cation consists of ��� �BIG rules de�ning the semantics of �� action notation constructs� After
transformation of side conditions we got ��� rules� Factorization resulted in ��� rules� After sequentialization
we got ��	 rules� Finally pass separation yield ��	 compiler rules and ��	 abstract machine rules� We tested
this compiler and abstract machine by translating mini�� programs based on an action semantics speci�cation
of the language mini�� ���� into action terms� Then we compiled these action terms using the generated
compiler into an abstract machine program and executed the latter by the above abstract machine rules� In
other words we use a �BIG semantics�based compiler generator to generate a compiler and abstract machine
for action notation
 then we use these as the backend in a compiler generator based on action semantics� The
front end of this compiler generator was previously developed and used with a positive supercompiler as its
backend ����
Now we will show how our action semantics�based compiler generator works by means of a simple example�
The semantics of the language mini�� is given by equations like the following one�

��� execute�� X ���� E �� �
evaluate E

then store the value in the cell bound to X

Using the action semantics speci�cation of mini�� the following program

let

const i ��

var x�integer�

in

x��	�i

end

��

Figure �� Transforming the GIVE action �part II�

Now the stack �Z� is introduced and temporary variables are allocated�

Y���SjZ���T�B�S�����SjZ��datum�D�� test�����S�D�jZ���D������S�D�jZ��R� factgive�N ���Z���D�S��R����Z�E�
give�Y�N ���Z��T�B�S����Z�E�

factgive�N �� �Z� ��D�S�� true��� �Z� �completed� �N �� datum�D��� ��� S��

factgive�N �� �Z� ��D�S�� false��� �Z� �failed� ��� ��� S��

test�� �Z� �D��� �Z�D �� nothing�

Next these rules can be sequentialized�

Y� ��SjZ�� �T�B� S��� ��SjZ�� datum�D��
conv�� ��SjZ�� datum�D��� ���S�D�jZ�� �D�� test�� ���S�D�jZ�� �D��� ���S�D�jZ�� R�
conv�� ���S�D�jZ�� R�� �Z� ��D�S�� R�� factgive�N �� �Z� ��D�S�� R��� �Z�E�

give�Y�N ���Z��T�B�S����Z�E�

factgive�N �� �Z� ��D�S�� true��� �Z� �completed� �N �� datum�D��� ��� S��

factgive�N �� �Z� ��D�S�� false��� �Z� �failed� ��� ��� S��

test�� �Z� �D��� �Z�D �� nothing�

conv�� ��SjZ�� datum�D��� ���S�D�jZ�� �D��

conv�� ���S�D�jZ�� R�� �Z� ��D�S�� R��

��� Pass Separation

Pass separation works as described by Hannan �	�� Since it has been described there in great detail and we
did not modify the transformation
 we are not going to explain it here� Pass separation detects such parts of
the term rewriting rule which can be rewritten independently of the environment
 i�e� at compile time�

By s
R
��t we mean
 that t can be obtained from s via several steps using the rules in R� Basically
 pass

separation converts a set of rules R into two sets Rc and Rx
 such that the following holds� if c� e
R
��c�� e� then

c
Rc���c

e
Rc���e

c�
Rc���c�

e�
Rc���e�

�c� �e
Rx���c�� �e�

Note
 that also the environment is compiled
 because there might be code sequences stored in the environment�
This occurs for example in the semantics of higher order languages� The rules in R de�ne an abstract
interpreter
 the rules in Rc a compiler and the rules in Rx an abstract executor� The rules in Rx belong to
a special class of rewrite rules� Their right sides will only match the whole state
 i�e� they never apply to
subterms of the state� As a result they can be implemented more e�ciently than ordinary rewrite rules�

� Transforming a �BIG speci�cation of Action Notation

Action semantics ���� has been developed to allow useful semantics descriptions of realistic programming
languages� The language used to write such semantics descriptions is called action notation� In his PhD
thesis ��� deMoura gives a natural semantics speci�cation of a subset of action notation used in the compiler
generator ACTRESS ����� In this speci�cation the order of rules is important� We converted these rules into

��

Figure �� Transforming the GIVE action �part I�

In the �BIG speci�cation the following rules de�ne the action give which evaluates the yielder Y and returns
the resulting value D as a transient�

Y��T�B�S��datum�D� D ��nothing
give�Y�N ���T�B�S���completed��N ��datum�D������S�

Y��T�B�S��datum�D� not�D ��nothing�
give�Y�N ���T�B�S���failed�������S�

There are two side conditions in the above rules
 one is the negation of the other� Transforming the side
conditions yields�

Y��T�B�S��datum�D� test���D��true
give�Y�N ���T�B�S���completed��N ��datum�D������S�

Y��T�B�S��datum�D� test���D��false
give�Y�N ���T�B�S���failed�������S�

test�� �D�� D �� nothing

After factorization of the above rules we have�

Y��T�B�S��datum�D� test���D��R factgive�N ����D�S��R��E
give�Y�N ���T�B�S��E

factgive�N �� ��D�S�� true�� �completed� �N �� datum�D��� ��� S�

factgive�N �� ��D�S�� false�� �failed� ��� ��� S�

test�� �D�� D �� nothing

where for each rule of the form p� e � e�
 the command p has the form a�x�� � � � � xk�
 a is a new instruction
symbol and fx�� � � � � xkg � V�e�� � V�e��

��� Generation of Term Rewriting Systems

After sequentialization the instructions of each precondition can be proved in the environment resulting from
its preceeding precondition� This property enables us to combine the instructions and generate term rewriting
rules�
Rules of the form c� e � e� are transformed into the rewrite rule �c� p�� e � p� e�
 where p is a new variable
name
 which will be bound to the program rest when the rule is applied�
Rules of the form

c��e��e�� ��� cn�en�e�n
c�e�e�

are converted into

�c� p�� e� �c�� � � � � cn� p�� e�

where p is a new variable name�

�

Figure �� Transforming the OR action combinator �part II�

Now a term rewriting system is generated�
� or�A�� A���C� �Z� �T�B� S��� � � A�� conv�� factor�A���C� ���B� T �jZ�� �T�B� S���
� factor�A��C� �Z� ��T�B�� �completed� T�� B�� S���� � � � C� �Z� �completed� T�� B�� S��� �
� factor�A��C� �Z� ��T�B�� �failed� ��� ��� S���� � � A�C� �Z� �T�B� S���
� conv��C� ��B� T �jZ�� �O� T�� B�� S��� � � � C� �Z� ��T�B�� �O�T�� B�� S���� �
Finally we apply the pass separation transformation and we get the following compiler rules�
or�A�� A�� � or�A�� A���A�� conv�� factor�A��
factor�A� � factor�A�
conv� � conv�
And the following abstract machine rules�
� or�A�� A���C� �Z� �T�B� S��� � � C� ���B� T �jZ�� �T�B� S���
� factor�A��C� �Z� ��T�B�� �completed� T�� B�� S���� � � � C� �Z� �completed� T�� B�� S��� �
� factor�A��C� �Z� ��T�B�� �failed� ��� ��� S���� � � A�C� �Z� �T�B� S���
� conv��C� ��B� T �jZ�� �O�T�� B�� S��� � � � C� �Z� ��T�B�� �O�T�� B�� S���� �

x� � fx � k �� L�x�� �n � L�x� �R�x� � n � k
and �m � m � L�x��m � k
or m � R�x��m 	 kg

x� � fx � k �� R�x�� �n � n � L�x�� n
 k
or n � R�x� � n � k
and �m � m � L�x��m � k
or m � R�x��m � kg

x� � fx � k � C�x�� k �� L�x�
and �n � L�x��R�x� � n � kg

Finally
 if v is empty
 then we do not change the stack� Note
 that allocating temporary variables before
factorization would destroy common initial segments� Consider the two �BIG rules de�ning the OR action
combinator in Figure �� The left hand sides of the �rst precondition of both rules are equal and would be part
of the common segment� In the �rst rule no variable is temporary
 in the second rule the variables T and B
are temporary� Allocating these variables in the second rule would change the left side of its �rst precondition
and it would no longer be part of the common segment of the rules�

��� Sequentialization

Next we will transform the rules
 such that the environment on the right side of a precondition is equal to the
environment on the left side of the subsequent precondition� Furthermore the environment on the right side
of the last precondition is equal to the environment on the right side of the conclusion� More precisely
 a rule
of the form

c��e��e�� ��� cn�en�e�n
c�e�e�

is transformed into

c�� e� � e�� p�� e
�

� � e�
� � �

pn��� en�� � en cn� en � e�n p� e�n � e�

c�e�e�

and we add the rules

p�� e
�

� � e�
���

pn��� e
�

n�� � en
p� e�n � e

�

Figure �� Transforming the OR action combinator �part I�

In the �BIG speci�cation the following rules de�ne the action combinator or� In the rule the environment
are composed of the transients T
 the bindings B and a single�threaded store S� Furthermore there is the
outcome status O
 which can be failed or completed�

A���T�B�S���completed�T��B��S��
or�A��A����T�B�S���completed�T��B��S��

A���T�B�S���failed�������S�� A���T�B�S����O��T��B��S��
or�A��A����T�B�S���O��T��B��S��

There are no side conditions
 so the above rules are next factorized�

A���T�B�S���O��T��B��S�� factor�A�����B�T ���O��T��B��S����E
or�A��A����T�B�S��E

factor�A�� ��B� T �� �completed� T�� B�� S���� �completed� T�� B�� S��

A��T�B�S���O�T��B��S��
factor�A����B�T ���failed�������S���O�T��B��S��

Now the stack �Z� is introduced and temporary variables are allocated
 e�g� in the �rst rule T
B are allocated
on the stack
 because they do not occur on the right side of the �rst precondition�

A�����T�B�jZ���T�B�S������T�B�jZ���O��T��B��S��� factor �A����Z���B�T ���O��T��B��S������Z�E�
or�A��A����Z��T�B�S����Z�E�

factor�A�� �Z� ��B� T �� �completed� T�� B�� S����� �Z� �completed� T�� B�� S���

A��Z��T�B�S����Z��O�T��B��S���
factor�A���Z���B�T ���failed�������S����Z��O�T��B��S���

Next these rules are sequentialized�

A�� ���T�B�jZ�� �T�B�S�� � ���T�B�jZ�� �O�� T��B�� S���
conv�� ���T�B�jZ�� �O�� T�� B�� S��� � �Z� ��B�T �� �O�� T�� B�� S���� factor�A��� �Z� ��B�T �� �O�� T��B�� S����� �Z�E�

or�A��A����Z��T�B�S����Z�E�

factor�A�� �Z� ��B� T �� �completed� T�� B�� S����� �Z� �completed� T�� B�� S���

A��Z��T�B�S����Z��O�T��B��S���
factor�A���Z���B�T ���failed�������S����Z��O�T��B��S���

conv�� ���T�B�jZ�� �O�� T�� B�� S���� �Z� ��B� T �� �O�� T�� B�� S����

L�x� � �i � x occurs in ei�
R�x� � �i � x occurs in e�i�
C�x� � �i � x occurs in ci�

Now we convert the preconditions in the rule as follows� Let c� �s�� e��� �s�� e�� be the k�th precondition in
the rule� Then it is converted into c� ��vjs��� e��� ��vjs��� e�� where v � �x� � x� � x�� � V�c�� and

�

Now C is replaced by�

seg c�j�e�j�e ��e�e�

c�e�e�
�

where e� is a new variable name

c��j	���e��j	���e���j	�� ��� c�m�
�e�m�

�e��m�

��e�j�e��
�

���
cn�j	���en�j	���e�n�j	�� ��� cnm�

�enm�
�e�nm�

��enj�e�n
�

��� Stack Introduction

In the next step the environments in the rules are extended by a stack� This stack will be used later to store
temporary variables�� A rule of the form

c��e��e�� ��� cn�en�e�n
c�e�e�

is converted into

c���s�e����s�e��� ��� cn��s�en���s�e�n�
c��s�e���s�e��

where s is a new variable name�

��� Allocation of Temporary Variables

Intuitively a variable is called temporary in a rule
 if there is an intermediate environment where the variable
does not occur� The rules are transformed
 such that variables are passed in the environment from the pre�
condition of their �rst occurrence to the precondition of their last occurrence� More precisely�

De�nition� A variable X is temporary in a rule

�� if it does not occur in the commands of the left�hand side of the conclusion and

�� its leftmost occurrence is in the right side of a precondition or the left side of the conclusion and

�� it occurs at least a second time in another precondition or in the right�hand side of the conclusion and

�� one of the following conditions is true

� there is a precondition di�erent from the one in �� where it occurs in the right hand side but not
in the left hand side

� there are two successive preconditions �the second being di�erent from the one in ��� where the
variable does not occur in the right side of the �rst precondition
 but in the left side of the second

� it occurs in the right side of the conclusion
 but not in the right side of the last precondition

Consider the rule�

c��e��e�� ��� cn�en�e�n
c��e��e�n	�

We de�ne for every variable name x in the rule
 the lists of its right and left hand side occurrences in
environments and commands�

�An optimization not discussed here stores the results of function calls on the stack�

	

Side conditions of the form not p�t�� � � � � tn� are converted into

a�x�� � � � � xk�� �y�� � � � � ym�� false

where a is a new instruction symbol� Finally we generate a new rule

a�x�� � � � � xk�� �y�� � � � � ym�� p��t�� � � � � tn�

where p� is the characteristic function of the predicate p
 fx�� � � � � xkg � V�c��V�t�� � � � � tn� and fy�� � � � � ymg �
V�t�� � � � � tn� � V�c�� Dividing the variables occurring in the side condition this way
 guarantees
 that only
variables occurring in the commands of the conclusion are arguments of the new instruction� The remaining
variables are passed in the environment�

��� Factorization

A transformation
 which converts determinate inductive rules into deterministic rules has been proven correct
by daSilva ���� The following factorization transformation can be regarded as an instance of this trans�
formation� We also extended the transformation to sets of more than two con�icting rules� Basically the
transformation computes for a set of con�icting rules
 a new rule
 which has the common initial precondi�
tions of the con�icting rules and a precondition
 which calls a new instruction
 as its preconditions� For each
con�icting rule
 we add a rule de�ning the new instruction
 which has the rest of the preconditions of the
con�icting rule as its preconditions�
By �� we will denote equality of terms and formulae modulo renaming of variables� Two rules are con�icting

if they have the same left hand sides in their conclusions� Let C be the largest set of con�icting rules with
respect to the same left hand side�

c���e���e��� ��� c�m� �e�m��e��m�

c��e��e�����
cn��en��e�n� ��� cnm� �enm��e�nm�

cn�en�e�n

where c�� e� �� � � � �� cn� en�
Let � be a renaming of variables and j be the largest integer
 such that for all p� q � f�� � � � � ng� cpj� � cqj�
and for all k � j� �cpk� epk � e�pk�� � �cqk� eqk � e�qk���
Let us call the ordered set �wrt k� of the latter transitions the common segment seg� Furthermore let e be
the common term of e��j� � � � � e

�

nj
 i�e� e � e��j � � � �� e�nj�

e� � e� �������������
�����������

e�� if e�� � e�� are the
same variable name

f�d�� � � � � dn� if e�� � f�a�� � � � � an�

e�� � f�b�� � � � � bn�
and di � ai � bi

c�d�� � � � � dn� if e�� � c�a�� � � � � an�

e�� � c�b�� � � � � bn� and
di � ai � bi

x otherwise
where x is a new variable name

Let � be a new instruction symbol and

V� �Sn

k
� V�ck�j	��� � � � � ckmk
� ek�j	��� � � � � ekmk

� e�k��
V� � V�seg� c� e�� �

Sn

k
� V�ckj � ekj��
V � �V� V��� V�e��
� � ��x�� � � � � xm� where xi � V

�

Figure �� Overview of the Transformations

�BIG Speci�cation
�
�

�
�

�

Transform Side Conditions

�

Factorize

�

Introduce Stack

�

Allocate Temporaries

�

Sequentialize

�

Generate TRS

�

Separate Passes
�
�

�
��

P
P
P
Pq

Abstract Machine

�
�

�
� Compiler
�
�

�
�

�

while�loops into a compiler� We formally de�ned similar transformations and implemented them in Prolog�
Applying our system to the above mentioned toy language yields similar results� The goal of our work is
to apply the method to speci�cations of realistic programming languages and thus detecting missing links

insu�ciencies and possible optimizations of the transformations� We decided to use action notation as such
a programming language
 because it o�ers a rich set of primitives underlying both imperative and functional
programming languages�

� Two�Level Big�Step Semantics ��BIG�

First we give the syntax of �BIG
 a language designed to write natural semantics speci�cations� The language
combines the structural approach of natural semantics ��� with the idea to split general and implementation
details by the use of a separately given interpretation for function symbols ���
 ��
 �	��

T ��� f�T �� j c�T �� j x x variable symbol
�T ��� c� �T �� c constructor symbol
C ��� T f function name
�C ��� �T p predicate name
E ��� T
�E ��� �T
S ��� C�E� E
�S ��� �C� �E � E
Q ��� p�T �� j not p�T ��
J ��� S j Q

R ��� J�

�S

Judgements are transitions of the form C�E�� E� or side conditions of the form p�T �� or not p�T ��� We will
use the term left hand side to refer to C�E� in a transition and the term right hand side to refer to E�� In a
rule of the form J�

�S
the judgements above the line are called preconditions and the judgement below the line

is called the conclusion� We will denote the variables in a term t by V�t�� Furthermore we adopt the notation
for list constructors from Prolog� Speci�cations in �BIG have to be determinate ���
 i�e� whenever two rules
have conclusions
 which unify with a goal at most one of the rules can be successfully applied� The restriction
to determinate rule sets is important
 because determinate rule sets can be converted into deterministic ones

i�e� at most one rule will have a conclusion
 which uni�es with a goal� Deterministic rules can be converted
into term rewriting rules and �nally these rewrite rules can be pass separated into rewrite rules for a compiler
and an abstract machine� In the next section the transformations are discussed in more detail�

	 Generating Compilers and Abstract Machines from �BIG Spec�
i�cations

An overview of the system is given in Figure �� Since the system transforms speci�cations by successively
applying transformations
 we will present the transformations in the order of their application� Actually the
transformations have been devised in reversed order� Starting from the pass separation transformation we
tried to remove restrictions on the input speci�cations by transforming a more general class of speci�cations
into the class of input speci�cations� This process �nally lead to determinate �BIG speci�cations� Note
 that
after each transformation we have an executable speci�cation again�

��� Transformation of Side Conditions

This transformation converts side conditions into judgements� Let c� e� e� be the conclusion of a rule� Side
conditions of the form p�t�� � � � � tn� are converted into

a�x�� � � � � xk�� �y�� � � � � ym�� true

�

Automatic Generation of a Compiler and Abstract Machine for
Action Notation

�Preliminary Results�

Stephan Diehl
FB �� � Informatik� Universit�at des Saarlandes�

Postfach �� �� ��� ����� Saarbr�ucken�

GERMANY � diehl	cs
uni�sb
de

Abstract

We present a system� that generates a compiler and abstract machine from a Natural Semantics

speci�cation of a programming language� First an overview of the system and the transformations

involved are given� Then we apply the system to a speci�cation of Actress Action Notation� As an

example we trace the transformations of rules for an action combinator� The resulting compiler and

abstract machine can be used as a basis for a compiler generator based on Action Semantics� Finally

we discuss future work�

Contents

� Introduction �

� Two�Level Big�Step Semantics ��BIG� �

� Generating Compilers and Abstract Machines from �BIG Speci�cations �
��� Transformation of Side Conditions �
��� Factorization �
��� Stack Introduction � 	
��� Allocation of Temporary Variables � 	
��� Sequentialization �
��	 Generation of Term Rewriting Systems �
��� Pass Separation ��

	 Transforming a �BIG speci�cation of Action Notation �

� Future Work ��

� Conclusions ��

 Introduction

Abstract machines provide an intermediate target language for compilation� First the compiler generates code
for the abstract machine
 then this code can be further compiled into real machine code or it can be inter�
preted� By dividing compilation into two stages abstract machines increase portability and maintainability of
compilers� Usually abstract machines are designed in an ad�hoc manner often based on experience with other
abstract machines� But also some systematic approaches have been investigated� One of those is based on
partial evaluation of example programs ��
 ��
 ��� Another approach is to use pass separation transformations
���� John Hannan �	� introduced a pass separation transformation
 which splits a set of term rewriting rules
representing an abstract interpreter into two sets of term rewriting rules� the �rst set represents a compiler
into an abstract machine language
 the second set represents an abstract machine� Since rewrite rules are a
poor language to specify interpreters
 Stephen McKeever ���� extended Hannans transformations to determi�
nate inductive rules� In McKeevers framework the factorization algorithm of Fabio daSilva ��� plays a central
role� By hand McKeever transformed a natural semantics speci�cation for an imperative toy language with

�

Automatic Generation

of a Compiler and an Abstract Machine

for Action Notation

Stephan Diehl

Technischer Bericht A �����

FB �	
 Informatik
Universit�at des Saarlandes� Postfach �� �� ��

�	� Saarbr�ucken � GERMANY
Phone� ��	�
��
�������

diehl�cs�uni
sb�de

�

