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Abstract

Physically based image synthesis remains one of the most demanding tasks in the
computer graphics field, whose applications have evolved along with the techniques
in recent years, particularly with the decline in cost of powerful computing hardware.
Physically based rendering is essentially a niche since it goes beyond the photore-
alistic look required by mainstream applications with the goal of computing actual
lighting levels in physical quantities within a complex 3D scene. Unlike mainstream
applications which merely demand visually convincing images and short rendering
times, physically based rendering emphasises accuracy at the cost of increased
computational overhead. Among the more specialised applications for physically
based rendering is lighting simulation, particularly in conjunction with daylight.

The aim of this thesis is to investigate the applicability of a novel image synthe-
sis technique based on Monte Carlo particle transport to daylight simulation. Many
materials used in daylight simulation are specifically designed to redirect light, and
as such give rise to complex effects such as caustics. The photon map technique
was chosen for its efficent handling of these effects. To assess its ability to produce
physically correct results which can be applied to lighting simulation, a validation
was carried out based on analytical case studies and on simple experimental se-
tups.

As prerequisite to validation, the photon map’s inherent bias/noise tradeoff is
investigated. This tradeoff depends on the density estimate bandwidth used in the
reconstruction of the illumination. The error analysis leads to the development of a
bias compensating operator which adapts the bandwidth according to the estimated
bias in the reconstructed illumination.

The work presented here was developed at the Fraunhofer Institute for Solar
Energy Systems (ISE) as part of the FARESYS project sponsored by the German
national research foundation (DFG), and embedded into the RADIANCE rendering
system.



Zusammenfassung

Die Erzeugung physikalisch basierter Bilder gilt heute noch als eine der rechen-
intensivsten Aufgaben in der Computergraphik, dessen Anwendungen sowie auch
Verfahren in den letzten Jahren kontinuierlich weiterentwickelt wurden, vorangetrie-
ben primär durch den Preisverfall leistungsstarker Hardware. Physikalisch basiertes
Rendering hat sich als Nische etabliert, die über die photorealistischen Anforde-
rungen typischer Mainstream-Applikationen hinausgeht, mit dem Ziel, Lichttechni-
sche Größen innerhalb einer komplexen 3D Szene zu berechnen. Im Gegensatz
zu Mainstream-Applikationen, die visuell überzeugend wirken sollen und kurze Re-
chenzeiten erforden, liegt der Schwerpunkt bei physikalisch basiertem Rendering
in der Genauigkeit, auf Kosten des Rechenaufwands. Zu den eher spezialisierten
Anwendungen im Gebiet des physikalisch basiertem Renderings gehört die Licht-
simulation, besonders in Bezug auf Tageslicht.

Das Ziel dieser Dissertation liegt darin, die Anwendbarkeit eines neuartigen
Renderingverfahrens basierend auf Monte Carlo Partikeltransport hinsichtlich Ta-
geslichtsimulation zu untersuchen. Viele Materialien, die in der Tageslichtsimulati-
on verwendet werden, sind speziell darauf konzipiert, Tageslicht umzulenken, und
somit komplexe Phänomene wie Kaustiken hervorrufen. Das Photon Map verfahren
wurde aufgrund seiner effizienten Simulation solcher Effekte herangezogen. Zur
Beurteilung seiner Fähigkeit, physikalisch korrekte Ergebnisse zu liefern, die in der
Tageslichtsimulation anwendbar sind, wurde eine Validierung anhand analytischer
Studien sowie eines einfachen experimentellen Aufbaus durchgeführt.

Als Voraussetzung zur Validierung wurde der Photon Map bezüglich seiner
inhärenten Wechselwirkung zwischen Rauschen und systematischem Fehler (Bias)
untersucht. Diese Wechselwirkung hängt von der Bandbreite des Density Estimates
ab, mit dem die Beleuchtung aus den Photonen rekonstruiert wird. Die Fehlerana-
lyse führt zur Entwicklung eines Bias compensating Operators, der die Bandbreite
dynamisch anhand des geschätzten Bias in der rekonstruierten Beleuchtung an-
passt.

Die hier vorgestellte Arbeit wurde am Fraunhofer Institut für Solare Energie-
systeme (ISE) als teil des FARESYS Projekts entwickelt, daß von der Deutschen
Forschungsgemeinschaft (DFG) finanziert wurde. Die Implementierung erfolgte im
Rahmen des RADIANCE Renderingsystems.



Detailed Abstract

The lighting industry is increasingly turning to computer simulations to analyse ar-
tificial lighting both in visual and numeric terms. While architectural scale models
are still used to some degree, they are time consuming and expensive to construct.
CAD models coupled with computer shading techniques offer a viable alternative
at a fraction of the cost required for traditional methods. The aim of the simulation
is to aid the lighting engineer in deciding over the choice of lighting fixtures and
their placement during the planning phase. Computer graphics techniques provide
a computer generated prediction of the lighting levels expected for a given lighting
configuration. Obviously, physical accuracy is imperative for such an application
since the prediction is a decisive factor contributing to the comfort (and therefore
the productivity) of the inhabitants once the building is completed and the lighting
installed.

Daylight simulation follows the same principles as artificial lighting simulation,
but under the utilisation of sunlight (possibly in conjunction with artificial light). Tech-
niques have been developed which exploit as well as manipulate natural light in
buildings to reduce power consumption, glare, and heat buildup in summer. These
techniques include the installation of daylight systems designed to redirect or block
direct sunlight while transmitting diffuse skylight, i.e. they are angularly selective.
These systems are constructed from specular materials which are crucial for their
selectivity. Consequently, a reliable daylight simulation requires an accurate model
of both the system’s geometry and its materials.

Most image synthesis tools cannot adequately simulate the light transport aris-
ing from the specular properties of angularly selective daylight systems, and there-
fore fail to predict lighting levels within reasonable accuracy, as well as locating
potential sources of glare. The specular reflections from these systems give rise to
caustics, which cannot be efficiently sampled with traditional backward raytracing
techniques. A novel forward raytracing approach is required to accurately account
for these effects, and the photon map discussed in this thesis is one such algorithm.

The aim of this thesis is to develop an efficient and accurate image synthesis
tool based on forward raytracing specifically for daylight simulation, but which can
also be used for more general visualisation. The primary motivation for doing so
is the difficulty imposed by specular daylight systems on already existing lighting
simulation tools, specifically the RADIANCE system which reveals shortcomings in
simulating the redirecting properties of these systems. The photon map is used as
basis for the extensions and integrated into RADIANCE. Its applicability to daylight
simulation is assessed in the form of a validation by comparing the results with
analytical solutions and measurements from an experimental setup.

As a prerequisite to validation, the problem of bias and noise in the illumination
reconstructed from the photon map using nearest neighbour techniques is also in-
vestigated, leading to the proposal of a novel bias compensating algorithm which
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improves the accuracy of caustics in particular. The bias/noise tradeoff is rarely ad-
dressed in detail in the literature. Since this thesis aims to endorse the photon map
as a lighting analysis tool, it is imperative to analyse its fundamental limitations and
develop a means of compensating for them.

Bias and noise are inversely related to each other and subject to the density
estimate bandwidth. In situations involving caustics, low bias is preferred in order
to preserve detail. On the other hand, in situations involving uniform irradiance,
low noise is preferred. This implies that an optimal bandwidth must be dynamically
adjustable to the illumination. The proposed bias compensating operator uses a
binary search within a specified range for the optimum bandwidth. This search is
governed by error estimates extracted from the reconstructed irradiance in order
to identify probable bias using the central limit theorem. Unlike previous work, the
operator is specifically geared toward quantitative analysis such as applications in
lighting design. It is conceptually simple and general enough to be used in most
density estimation frameworks because it does not rely on additional information,
but rather makes use of what can be deduced from the reconstructed irradiance.

Analytical validation is an effective means of ascertaining the accuracy and fun-
damental soundness of a global illumination algorithm. Though necessarily simple
and constrained in scope, this approach defines a controlled environment which is
generally more tractable than even the simplest setup used in a physical validation.
A spherical “furnace” type scene is used with diffuse reflection and with a special
case of the Lafortune BRDF model to confirm that the photon map produces minimal
deviations compared to the analytical solution for the constant indirect irradiance on
the sphere’s inner surface. The derivation of the solution is based on a series ex-
pansion of the rendering equation which is greatly simplified by the symmetry of the
setup.

The experimental validation is based on photometric measurements of a simple
scale model using an artificial light source. A validation methodology is proposed
which emphasises tractability and error minimisation. To this end, simple compo-
nent case studies are initially carried out to test individual light transport modes (i.e.
single diffuse and specular reflection). These serve as foundation for more complex
compound case studies which test interreflection (diffuse only and in conjunction
with a single specular reflection). Analytical solutions are drawn upon as reference
where possible to assess not only the accuracy of the simulation, but also of the
measurements themselves.

Physical accuracy is imperative for a validation, thereby necessitating the in-
tegration of the light source EDF (emission distribution function) and the material
BRDFs into the simulation. The EDF is obtained with a novel method based on
extraction from HDR (high dynamic range) camera images. The BRDFs of the
materials are obtained from goniophotometric measurements. Physical validation
requires attention to detail and scrutiny in order to minimise errors on the physical
side. Since the simulations use measured BRDF data, errors on the physical side
will be carried over into the simulation. Consequently, both data sets are subjected
to analysis and verification prior to simulation, as well as correction in the case of
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the BRDF data due to limitations of the goniophotometer device. The BRDF data
also necessitates the development of a resampling technique based on nearest
neighbour lookups in a bilevel kd-tree in order to efficiently evaluate the BRDF at
arbitrary incident and exitant directions during the simulation.

The uncertainties inherent in a physical validation are discussed, particularly
pertaining to measurement inaccuracies. Primary sources of error are identified
and accounted for where necessary. These uncertainties are carried over into the
results as error bounds. The most problematic factor of the experimental validation
are the material BRDFs. An accurate simulation is accomplished by using the mea-
sured BRDF data directly, with a fitted analytical BRDF model providing the PDF
(probability density function) for the sample ray distribution.

The validation results show that both forward and backward raytracers (repre-
sented by photon map and RADIANCE, respectively), deliver very similar results.
However, while both algorithms perform similarly as far as accuracy is concerned,
the computation times differ substantially. This disparity is largely attributed to the
fact that the photon map constructs a complete, reusable global illumination solu-
tion in the forward pass. RADIANCE, on the other hand, depends on the recursion
governed by the number of ambient bounces. If this parameter is set too low, un-
derprediction results. This is particularly important with scenes characterised by
high reflectance as shown in the analytical validation. Furthermore, backward ray-
tracers are fundamentally inefficient in adequately resolving caustics such as those
produced by daylight systems.



Detaillierte Zusammenfassung

Die Beleuchtungsindustrie wendet in zunehmendem Maße Computersimulationen
an zur Analyse künstlicher Beleuchtung hinsichtlich qualitativer sowie auch quan-
titativer Aspekte. Obwohl architektonische Modelle noch teilweise Verwendung fin-
den, ist deren Aufbau vergleichsmäßig teuer und zeitraubend. CAD-Modelle, die
per Computer visualisiert werden, sind eine attraktive Alternative die einen Bruch-
teil der Kosten traditioneller Methoden aufwenden. Ziel der Simulation ist es, den
Beleuchtungstechniker bei der Wahl der Leuchten und deren Plazierung während
der Planungsphase zu unterstützen. Verfahren aus der Computergraphik liefern ei-
ne Voraussage der zu erwartenden Beleuchtungsstärken für eine gegebene Konfi-
guration. Offensichtlich ist physikalische Genauigkeit unabdingbar für diese Anwen-
dung, denn die darauf beruhende Simulation entscheidet letztendlich auch über das
Behagen (und somit die Produktivität) der Bewohner, wenn das Gebäude errichtet
und dessen Beleuchtung installiert wurde.

Tageslichtsimulation beruht auf den gleichen Prinzipien wie die Beleuchtungs-
simulation mit Kunstlicht, jedoch unter verwendung von Sonnenlicht (teilweise auch
in Kombination mit Kunstlicht). Verfahren zur Ausnutzung von Tageslicht innerhalb
Gebäuden sind entwickelt worden, die darauf abzielen, Blendung und Erwärmung
im Sommer, sowie auch den Stromverbrauch durch Kunstlicht zu reduzieren. Zu
diesem Zweck werden Tageslichtsysteme installiert, die dazu konzipiert sind, di-
rektes Sonnenlicht zu blockieren oder umzulenken, während diffuses Himmelslicht
durchgelassen wird, d.h. sie arbeiten richtungsselektiv . Diese Systeme sind aus
spiegelnden Materialien beschaffen, die entscheidend für dessen Selektivität sind.
Folglich setzt eine akkurate Tageslichtsimulation auch ein genaues Modell der Sy-
stemgeometrie sowie dessen Materialien voraus.

Die meisten Visualisierungsverfahren sind nicht in der Lage, den durch die spie-
gelnden Eigenschaften richtungsselektiver Tageslichtsysteme entstehenden Licht-
transport adäquat zu simulieren, und somit auch keine verlässliche Voraussage
über Beleuchtungsstärken sowie potentielle Blendungen liefern können. Die spie-
gelnden Reflexionen dieser Systeme erzeugen Kaustiken, die mit traditionellem
Backward Raytracing nur ineffizient erfasst werden können. Hierzu wird ein For-
ward Raytracer benötigt, um diese Effekte akkurat zu simulieren, und dazu wird
das Photon Map Verfahren als populärster Vertreter dieses Genres im Rahmen die-
ser Dissertation untersucht.

Ziel dieser Dissertation ist die Entwicklung eines effizienten und akkuraten Vi-
sualisierungstools basierend auf Forward Raytracing, daß speziell zur Tageslichtsi-
mulation, aber auch zur allgemeineren Visualisierung einsetzbar ist. Die Motivation
liegt hauptsächlich in den Schwierigkeiten, die spiegelnde Tageslichtsysteme bei
einer Vielzahl der vorhandenen Lichtplanungstools bereiten, insbesondere das RA-
DIANCE System, das erhebliche Einschränkungen bei der Simulation der lichtlen-
kenden Funktion dieser Systeme aufweist. Der Photon Map ist die Ausgangsbasis
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für die Erweiterungen, die in das RADIANCE System integriert werden. Dessen
Anwendbarkeit im Rahmen der Tageslichtsimulation wird in Form einer Validierung
beurteilt, in der die Ergebnisse mit analytischen Lösungen sowie auch Messungen
an einem experimentellen Aufbau verglichen werden.

Als Voraussetzung zur Validierung wird das Problem des Rauschens und Bi-
as (zufälliger resp. systematischer Fehler) in der vom Photon Map mittels Nearest
Neighbour Suche rekonstruierten Beleuchtungsstärke untersucht. Dies führt zur
Entwicklung eines neuartigen Algorithmus zur Biaskompensierung, der inbeson-
dere die Rekonstruktion von Kaustiken verbessert. Die Wechselwirkung zwischen
Rauschen und Bias wird in der Fachliteratur selten ausführlich erläutert. Da diese
Arbeit darauf abzielt, den Photon Map als Werkzeug zur Beleuchtungssimulation zu
untersuchen, ist eine Analyse dessen Grundsätzlichen Einschränkungen, sowie die
Entwicklung eines Verfahrens zu dessen Kompensierung, notwendig.

Bias und Rauschen verhalten sich invers zueinander und sind abhängig von
der Bandbreite des Density Estimates, mit dem die Beleuchtungsstärke aus dem
Photon Map rekonstruiert wird. Im Falle von Kaustiken wird niedriges Bias zugun-
sten der Auflösung von Details bevorzugt. In Bereichen gleichmäßiger Beleuchtung
wird dagegen niedriges Rauschen bevorzugt. Dies deutet darauf hin, daß eine op-
timale Bandbreite durch dynamische Anpassung an die Beleuchtung erzielbar ist.
Der vorgestellte Algorithmus zur Biaskompensierung basiert auf einer Binärsuche
nach einer optimalen Bandbreite innerhalb eines vorgegebenen Intervalls. Diese
Suche wird durch Fehlerabschätzungen gesteuert, die aus der rekonstruierten Be-
leuchtungsstärke extrahiert werden, um wahrscheinlichen Bias mittels des Zentra-
len Grenzwertsatzes zu erkennen. Im Gegensatz zu vorangegangenen Arbeiten ist
der Algorithmus speziell für quantitative Analysen gedacht, wie z.B. in der Lichtpla-
nung. Das Konzept ist einfach und allgemein, und kann somit im Rahmen der mei-
sten Density Estimation Verfahren angewandt werden, da es nicht auf zusätzliche
Informationen beruht, sondern sich allein auf das bezieht, was aus der rekonstru-
ierten Beleuchtung abgeleitet werden kann.

Analytische Validierung ist eine effektive Methode um die Genauigkeit und
grundsätzliche Gültigkeit eines Global Illumination Algorithmus zu ermitteln. Ob-
wohl notwendigerweise einfach und eingeschränkt im Umfang, definiert dieser An-
satz eine kontrollierte Umgebung die generell nachzuvollziehbarer ist, als den ein-
fachsten experimentellen Aufbau im Rahmen einer physikalischen Validierung. Als
Testszene dient der Innenraum einer Einheitskugel (sogenannter “Ofen”), dessen
Innenfläche durch diffuse, sowie auch spiegelnde Reflexion (definiert durch ein
Sonderfall des Lafortune BRDF-Modells) charakterisiert ist. Hiermit wird vergewis-
sert, daß der Photon Map tatsächlich minimale Abweichungen gegenüber der ana-
lytischen Lösung für die konstante Beleuchtungsstärke auf der Innenfläche der Ku-
gel aufweist. Die Herleitung der Lösung basiert auf einer Reihenentwicklung der
Rendering-Gleichung, die durch die Symmetrie der Szene stark vereinfacht wird.

Die experimentelle Validierung basiert auf photometrischen Messungen an ei-
nem einfachen physikalischen Modell unter Verwendung einer Kunstlichtquelle. Der
Schwerpunkt der vorgestellten Validierungsmethodologie liegt in der Nachvollzieh-
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barkeit und Fehlerminimierung. Zu diesem Zweck werden anfangs einfache Kom-
ponentenstudien durchgeführt, um einzelne Lichttransportpfade zu testen (d.h. ein-
fache Diffus- bzw. Spiegelreflexion). Diese Studien dienen als Voraussetzung für
darauf folgende, komplexere Kombinationsstudien, die Interreflexion testen (aus-
schließlich diffus sowie auch kombiniert mit einfacher Spiegelreflexion). Analytische
Lösungen werden, soweit möglich, herangezogen, um nicht nur die Genauigkeit der
Simulation, sondern auch der Messungen zu überprüfen.

Physikalische Korrektheit ist zwingend für eine Validierung; dies erfordert die
Integration der LVK (Lichtverteilungskurve) der Lichtquelle sowie der BRDFs der
Materialien in die Simulation. Die LVK wird durch ein neuartiges Verfahren aus Auf-
nahmen einer Leuchtdichtekamera extrahiert. Die BRDFs der Materialien werden
dagegen mit Messungen eines Goniophotometers erhalten. Eine physikalische Va-
lidierung erfordert sorgfältiges Vorgehen, um Meßfehler zu minimieren. Da die ge-
messenen BRDF-Daten in die Simulation eingehen, werden diese Meßfehler auch
übertragen. Folglich müssen LVK und BRDFs im Vorfeld analysiert, verifiziert, und,
im Falle der BRDF aufgrund Einschränkungen des Goniophotometers, auch korri-
giert werden. Die Verwendung der BRDF-Daten in der Simulation erfordert auch die
Entwicklung eines Resamplingverfahrens basierend auf Nearest Neighbour Suche
in einem zweistufigen kd-Baum, um die gemessene BRDF effizient für beliebige
Ein- und Ausfallswinkel auszuwerten.

Ferner werden die inhärenten Unsicherheiten einer physikalischen Validierung
erläutert, besonders in Bezug auf Meßfehler. Die hauptsächlichen Fehlerquellen
werden identifiziert und, wenn notwendig, auch berücksichtigt. Die Unsicherheiten
gehen in die Ergebnisse ein in Form von Fehlerbalken. Die größten Schwierigkei-
ten in der experimentellen Validierung bereiten die BRDFs der verwendeten Mate-
rialien. Eine genaue Simulation wird erzielt, indem die gemessenen BRDF-Daten
direkt verwendet werden, wobei ein darauf optimiertes analytisches BRDF-Modell
die Wahrscheinlichkeitsdichte für die Strahlenverteilung liefert.

Die Validierung zeigt, daß Forward sowie Backward Raytracer (repräsentiert
durch Photon Map resp. RADIANCE) sehr ähnliche Ergebnisse liefern. Obwohl
beide Algorithmen vergleichbar sind bezüglich deren Genauigkeit, unterscheiden
sich die Rechenzeiten jedoch erheblich. Dieses Mißverhältnis ist auf die Tatsache
zurückzuführen, daß der Photon Map eine komplete, wiederverwendbare Lösung
zur globalen Beleuchtung konstruiert. RADIANCE, dagegen, beruht auf Rekursion,
die durch die Anzahl der Ambient Bounces begrenzt wird. Wird dieser Parame-
ter zu niedrig gesetzt, fällt die errechnete Beleuchtungsstärke zu niedrig aus. Dies
spielt besonders eine Rolle in Szenen mit hoher Reflektivität, wie in der analyti-
schen Validierung gezeigt wird. Ferner haben Backward Raytracer grundsätzliche
Effizienzprobleme beim adäquaten Auflösen von Kaustiken, wie sie z.B. von Tages-
lichtsystemen produziert werden.
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“Research is what I’m doing when I don’t know what I’m doing.”
– Wernher von Braun
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Chapter 1

Introduction

This chapter introduces the focus and aims of this thesis and how it contributes to
computer graphics research. The problem at hand is explained, and an overview of
the thesis is presented.

1.1 Daylight Simulation

The lighting industry is increasingly turning to computer simulations to analyse ar-
tificial lighting both in visual and numeric terms. While architectural scale models
are still used to some degree, they are time consuming and expensive to construct.
CAD models coupled with computer shading techniques offer a viable alternative at
a fraction of the cost required for traditional methods.

Lighting simulations are generally applied to projects in such diverse fields as:

architecture: offices and public buildings, both interiors and exteriors

industry: factory lighting

transport: lighting for ships, train stations, airports, and roads

emergency: exit signs and emergency markings

The aim of the simulation is to aid the lighting engineer in deciding over the
choice of lighting fixtures and their placement during the planning phase. The fac-
tors that govern these choices include the characteristics of the fixtures themselves,
such as the directional intensity distribution (also known as a goniometric diagram)
and spectral distribution. Often this planning is carried out by contractors for a client.
Computer graphics techniques provide a computer generated prediction of the light-
ing levels expected for a given lighting configuration. Obviously, physical accuracy
is imperative for such an application, and can mean the difference between a sat-
isfied client and an embarrassment once the building is completed and the lighting
installed.

12
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Daylight simulation follows the same principles as artificial lighting simulation,
but under the utilisation of sunlight (possibly in conjunction with artificial light). Tech-
niques have been developed which exploit as well as manipulate natural light in
buildings to reduce power consumption, glare, and heat buildup in summer. These
techniques include the installation of daylight systems designed to redirect sunlight.
To evaluate a daylighting proposal, computer analyses of natural light levels using
daylight systems are carried out, often encompassing seasonal changes over an
entire year (figure 1.1). Such a simulation requires the exact position (latitude and
longitude) of the building as well as the time of day and year to determine the sun’s
position.

Daylight systems for glare reduction are often integrated or mounted outside
windows in the form of façades (figure 1.2). These systems are generally designed
to redirect or block direct sunlight while transmitting diffuse skylight. Not only does
this increase visual comfort for the inhabitants in the vicinity of the window, but it also
reduces the sun’s thermal influence on the interior. These daylight systems are con-
structed from specular materials which are crucial for their function. Consequently,
a reliable daylight simulation requires an accurate model of both the system’s ge-
ometry and its materials. Integrating the material properties into the simulation,
particularly in the form of measured reflection / transmission data, is a challenge,
since the appropriate parameters must be determined for analytical models which
reproduce this behaviour, and only the more complex models account for the ma-
jority of material properties one is likely to encounter.

Most image synthesis tools cannot adequately simulate the effects arising from
the specular properties of sophisticated daylight systems, and therefore fail to pre-
dict lighting levels within reasonable accuracy, as well as locating potential sources
of glare. The specular reflections from these systems give rise to caustics, which
cannot be efficiently sampled with traditional ray tracing techniques. A novel ap-
proach with a modified sampling scheme is required to accurately account for these
effects, and the photon map discussed in this thesis is one such algorithm.

1.1.1 Evaluation Methods

The analysis of a lighting concept can be carried out in qualitative or quantitative
terms. Qualitative analysis concerns the visual impression of the lighting and is
primarily geared towards optimising aesthetics. Consequently, the analysis entails
generating images of the illuminated scene, typically from different perspectives and
with several candidate lighting designs. On the other hand, quantitative analysis
considers the actual lighting levels in the design and may not even require rendering
images, but rather generating illuminance values at a set of discrete points in the
scene corresponding to actual measurements with a luxmeter1. In some cases
a combined qualitative and quantitative analysis can be presented in the form of
contour maps, or falsecolour images such as figure 1.2.

1Technically, these measurement points are essentially treated as viewpoints for computer gener-
ated images



CHAPTER 1. INTRODUCTION 14

Summer

Spring/autumn

Winter

Figure 1.1: Seasonal daylight availability study in office space for june,
september, and december 20th at 3:00 pm. The sky is based on the CIE
clear sky model (described in appendix C.2). Glare at workplane height can
severely impair legibility on desks and computer monitors, as is the case
here for spring/autumn and winter.
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Figure 1.2: Falsecolour image of luminance (cd/m2) on daylight system.
The system is designed to reduce glare and heat buildup from direct sun-
light (incident in the upper right), while still admitting diffuse skylight. In this
particular system this is achieved through retroreflection from prisms inte-
grated into the lamella. Without such a system, glare would penetrate into
the room and dramatically impair the occupants’ visual comfort, particularly
on desks and monitors in office environments.

Techniques for the generation of computer images, or rendering, are usually
subject to a tradeoff between accuracy and performance, which affects the pre-
dicted lighting levels. The acceptable relative error tolerance for lighting applications
is generally considered to be ±10%. However, depending on the particular global
illumination algorithm used and its parametrisation, this error margin is not always
guaranteed in all conceivable situations.

A popular and intuitive quantitative evaluation method is the daylight factor ,
which characterises the daylight quantity in a building’s interior [Lit90]. It is defined
as the percentage of the indoor illuminance Ei(~x) at a point~x, usually at workplane
height (ca. 0.8 m from the floor) to the outdoor horizontal illuminance Eo of an
overcast sky:

DF (~x) = 100
Ei (~x)

Eo
. (1.1)

Because it is defined for uniform overcast skies, the daylight factor is independent
of the building’s orientation. Furthermore, since daylight is minimal during overcast
conditions, the factor is a measure of interior daylight levels in a worst case scenario.

1.1.2 Simulation Components

A scene description for daylight simulation consists of the following components
(see figure 1.3):
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• the scene geometry (e.g. room with daylight systems), often obtained from a
CAD model

• the materials used by the geometry, which may be obtained from measure-
ments as directional reflection distributions

• optional goniometric data for artificial lights (if any)

• a sky model comprising a localised solar source and a diffuse sky source.

The scene description is passed into the renderer along with either a camera
model or a set of measuring points for illuminance data, depending on whether a
visual or numeric analysis is performed.

Qualitative
analysis

Quantitative
analysis

Camera model

Measuring points

Materials

Luminaire
data

CAD
model

Sky model

description
Scene PredictionRenderer

Figure 1.3: Components of daylight simulation

1.1.3 Daylighting Geometry

Daylight simulation differs from artificial lighting simulation mainly in the light sources
it uses. While artificial lighting simulation uses local light sources (which are con-
tained within the scene geometry), daylight simulation requires distant light sources
in order to model the sun and sky. These light sources are external to the scene
geometry and conceptually infinitely distant, such that their illuminance is transla-
tionally invariant throughout the scene. They are defined by an incident direction
and a solid angle around this direction, which are both independent of the position
in the scene. RADIANCE [War94] is one of the few renderers which offer these
primitives specifically for daylight simulation.

A typical daylight simulation geometry is depicted in figure 1.4. It consists of the
following components:

• an interior space (often an office environment) containing the viewpoint or
measuring points
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• a daylight system under consideration for glare reduction

• a hemispherical source to account for diffuse skylight, usually subject to a
directional luminance distribution obtained from an analytical sky model (see
appendix C for some commonly used models)

• a small (ca. 1◦) solar source for direct sunlight with very high emission (typi-
cally on the order of 106 W/m2sr)

• a second hemispherical source to account for sunlight reflected diffusely from
the ground (with a typical reflectance of ca. 20%).

Solar source

Viewer

Diffuse ground source

Diffuse sky source

system
Daylight

Figure 1.4: Typical daylight simulation geometry

1.2 Thesis Aim and Contribution

The aim of this thesis is to develop an efficient and accurate image synthesis tool
for daylight simulation, but also for more general visualisation. The primary motiva-
tion for doing so is the difficulty imposed by specular daylight systems on already
existing lighting simulation tools, specifically the RADIANCE system which reveals
shortcomings in simulating the redirecting properties of these systems. The photon
map is used as basis for the extensions and integrated into RADIANCE. Its applica-
bility to daylight simulation is assessed in the form of a validation by comparing the
results with analytical solutions and measurements from an experimental setup.

The experimental validation also encompasses the acquisition of material
BRDFs and light source emission distributions. This includes the verification, cor-
rection (if necessary), and integration of the measured data into the simulation. This
nontrivial task requires the development of novel approaches in the context of the
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validation. Given the complexity of the task, the validation also aims at developing a
sound methodology emphasising tractability and error minimisation. Such method-
ologies are rarely described in detail in the literature available to date.

Furthermore, the problem of bias and noise in the illumination reconstructed
from the photon map using nearest neighbour techniques is also addressed, lead-
ing to the proposal of a novel bias compensating algorithm which improves the
accuracy of caustics in particular. The bias/noise tradeoff is rarely addressed in
detail in the literature. Since this thesis aims to endorse the photon map as a light-
ing analysis tool, it is imperative to analyse its fundamental limitations and develop
a means of compensating them. While some of the other proposals brought for-
ward to address these problems rely on perceptive error metrics (and are therefore
solely geared towards qualitative analysis), the method developed in this thesis is
specifically designed for quantitative analysis.

While image synthesis tools and techniques abound, few satisfy the demands
of daylight simulation, which is still very much a niche in the rendering field. Such an
application for the photon map has not yet been explored. Because of its popularity,
validating the photon map for demanding applications such as lighting analysis is an
undertaking that contributes to computer graphics research. Furthermore, physical
validations of global illumination algorithms are very rare, and therefore significant
in advancing the state of the art.

1.3 Thesis Outline

The outline of the thesis is as follows:

• Chapter 2 introduces the basics of physically based image synthesis, includ-
ing radiometric terminology, BRDFs, and Monte Carlo ray tracing, thereby
laying the theoretical foundation for the work presented here.

• Chapter 3 introduces the concept of forward ray tracing techniques, and the
photon map in particular.

• Chapter 4 describes features and implementation details of the RADIANCE
photon map and presents daylight simulation examples generated with the
module.

• Chapter 5 presents an analysis of the bias/noise tradeoff inherent in the pho-
ton map and proposes a bias compensating operator which attempts to min-
imise this error.

• Chapter 6 describes the analytical validation of the RADIANCE photon map.

• Chapter 7 describes the experimental validation.
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• The appendices provide supplementary material and validation data. The
supplements include an overview of the RADIANCE rendering system, the
BRDF models used in the validation, and sky models.



Chapter 2

Physically Based Image
Synthesis

Computer image synthesis, or rendering, is the process of generating images of
a 3D scene via an algorithm designed for a specific appearance. Many such al-
gorithms exist, having different properties. They fall into a variety of categories to
suit different requirements, based on how they model light interaction with the en-
vironment. Most algorithms can be classified as being local or global with respect
to the simulated illumination. Local illumination algorithms are based on the rather
naı̈ve assumption that the illumination of a surface depends solely on the local ma-
terial properties and the incident light sources. Interaction with other surfaces in the
scene is disregarded. By contrast, global illumination algorithms model this interac-
tion and have become the staple of research in the physically based rendering field,
and have been refined over the last two decades.

The ultimate goal of image synthesis is photorealism: producing renderings in-
distinguishable from a photograph of the real object being modeled. However, the
human eye is extremely adept at discerning fakes from reality, much to the vexation
of computer graphics researchers. To them, photorealism is all about fooling the
eye, and through their efforts they’ve come pretty close. Sophisticated rendering
algorithms deliver stunning results, and the motion picture industry employs com-
puter generated imagery extensively nowadays to save costs on props or for special
effects which would be impossible to accomplish by traditional means. The fact that
the audience is for the most part ignorant of the bogus imagery on the screen which
they perceive as reality bears tribute to the success of photorealistic rendering tech-
niques.

Photorealism is the mainstream application of image synthesis. Compromises
must usually be made to obtain results in a timely fashion, as long as the imagery is
still visually convincing. By contrast, physically based rendering is a niche outside
this mainstream, and goes well beyond the goal of visual realism: the images are
not only photorealistic, but also physically plausible in terms of the radiometric units
quantifying the illumination on the surfaces. To this end, physically based algorithms

20
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operate in radiometric units and reflection functions subject to physical constraints
(energy conservation) which can be measured and verified. Consequently, these al-
gorithms are more complex and slower than those tailoured for photorealism alone.
Physical basis is the prerequisite for application of rendering techniques to applica-
tions such as lighting simulation. Only by applying physical units can a rendering
have physical meaning and thus be considered a simulation. But before a phys-
ically based renderer can be used with confidence for applications which require
accuracy it should be validated , i.e. checked for physical correctness by comparing
its results with analytically derived as well as measured quantities using simple test
scenes.

This chapter introduces physically based rendering concepts, and gives an
overview of the major classes of global illumination algorithms. A comprehensive
treatment of the techniques presented here can be found in the standard reference
by Glassner [Gla95], while Philip Dutré’s compendium [Dut03] is an excellent col-
lection of relevant formulae and definitions.

2.1 Radiometry

Radiometric units [IES86, NRH+77] are the conventions by which physical quan-
tities pertaining to light transport are measured. These are actually functions of
wavelength, position, direction, time, and polarisation. When applied to computer
graphics, these terms are usually simplified by ignoring the last two parameters.
Rather than considering all possible wavelengths in the visible spectrum, these are
typically narrowed down to the red, green, and blue primaries of the additive colour
system.

2.1.1 Solid Angle

The solid angle ω is the 3D extension of the familiar 2D concept of angle. The 2D
angle subtended by an object is the ratio of the arc length of its projection to the arc’s
radius. By the same token, the 3D solid angle subtended by an object is the ratio of
the area of its hemispherical projection to the hemisphere’s squared radius (figure
2.1), and is measured in steradians (sr). Note that both definitions are independent
of the radius. Since the surface area of a sphere is 4πr2, the maximum solid angle
is 4π sr.

ω =
A
r2

[
sr =

m2

m2

]
(2.1)

2.1.2 Flux

The basic unit quantifying energy is the joule (J), denoted Q. Moving energy such
as electromagnetic radiation (including light) is quantified by J/s, or watts (W). This
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ω

A

Figure 2.1: Solid angle

is termed the radiant flux Φ. It describes the energy passing through an arbitrary
surface per unit time.

Φ =
dQ
dt

[
W =

J
s

]
(2.2)

2.1.3 Irradiance

Irradiance E quantifies the flux entering an area, measured in watts per square
meter.

E =
dΦi

dA

[
W
m2

]
(2.3)

2.1.4 Radiosity

The counterpart to irradiance is the Radiosity B, which is defined similarly but spec-
ifies the flux leaving an area.

B =
dΦr

dA

[
W
m2

]
(2.4)

2.1.5 Radiant Intensity

This unit is often encountered when dealing with light source emission distributions
(often termed goniometric diagrams), which specify the flux emitted per solid angle.
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I =
dΦ
dω

[
W
sr

]
(2.5)

2.1.6 Radiance

The most important radiometric term is the radiance L. This expresses the flux
arriving at or leaving from a surface per unit solid angle and per unit projected
(or foreshortened) area. The latter refers to the projection of the surface onto the
plane perpendicular to the direction of flux propagation. It is measured in watts per
steradian per square meter.

L =
d2Φ

dωdA⊥
=

dI
dA⊥

=
dE
dω

[
W

sr ·m2

]
(2.6)

2.2 Photometry

Radiometry is the objective description of the physics behind radiative transport
over the entire electromagnetic spectrum. Conversely, photometry restricts itself
to wavelengths visible to humans and deals with the subjective issues involved.
Photometry is particularly important in judging the perception of physically based
renderings, based on knowledge of the human visual system (HVS). The HVS has
a non-uniform response to a very small range in the electromagnetic spectrum,
known as the visual band from 380 to 780 nm. This is characterised by the luminous
efficiency function V (λ) (figure 2.2).
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Figure 2.2: Luminous efficiency function of the HVS

Since physically based renderings are computed in radiometric units they are in-
dependent of the HVS and require adaptation by weighting them with the response
curve. Photometry has developed its own set of units which are derived from their
radiometric counterparts by weighting them according to V (λ). These units are
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listed in table 2.1. Photometric quantities are often encountered in physical light
measurements and will be used extensively in this document.

Radiometric Photometric

Radiant flux [W ] Luminant flux [lumen (lm)]

Irradiance
[W

m2

]
Illuminance

[ lm
m2 = lux (lx)

]

Radiosity
[W

m2

]
Luminosity

[ lm
m2 = lux (lx)

]

Radiant intensity
[W

sr

]
Luminant intensity

[ lm
sr = candela (cd)

]

Radiance
[ W

sr·m2

]
Luminance

[ cd
m2 = nit

]

Table 2.1: Radiometric and photometric units

Adapting computer generated images to subjective viewing is a complex task
which requires a mapping from radiometric to photometric quantities capable of
modelling the reponse of the HVS to the rendered scene. This tone mapping pro-
cess is still under research and some very sophisticated methods have been devel-
oped.

The most important aspect of a tone mapping operator is the ability to compress
the dynamic range of the rendering into a range suitable for display on an output
device. Real word scenes have very high dynamic ranges; for example, a typical
sunlit scene spans six orders of magnitude. A physically based renderer will repro-
duce this range. The HVS is capable of adapting to this dynamic range, hence a
tone mapping operator is indispensable in simulating this adaptation process, par-
ticularly for applications such as lighting. Additionally, a tone mapping operator may
simulate deficiencies of the HVS such as scattering within the lens and reduced
acuity in low lighting. These limitations are also exploited by perceptionally based
rendering techniques by optimizing computations to omit details which would not be
perceivable by a human observer.

2.3 The BRDF

The bidirectional reflectance distribution function fr, or BRDF, provides a general
mechanism for describing arbitrary surface properties. Unlike empirical reflectance
models, the BRDF has physical basis and can be measured. It is the most flexible
representation of material properties, ranging from simple (e.g. Lambertian reflec-
tion) to complex (e.g. anisotropic reflection from brushed metal or varnished wood).

Given a point~x, an incident direction~ωi, and direction of reflection~ωr, the BRDF
fr(~x,~ωi,~ωr) specifies the amount of radiance incident on~x along~ωi that is reflected
along ~ωr (figure 2.3). It is formally defined as the ratio of the reflected radiance
Lr(~x,~ωr) to the irradiance E(~x,~ωi).
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~N~x

~ωr ~ωi

~x

dωi

Figure 2.3: BRDF geometry

fr (~x,~ωi,~ωr) =
Lr (~x,~ωr)

E (~x,~ωi)
=

dLr (~x,~ωr)

Li (~x,~ωi) |~ωi ·~N~x|dωi
, (2.7)

where ~N~x is the surface normal at point~x and dωi is a differential solid angle around
~ωi. The counterpart for transmission is the bidirectional transmission distribution
function (BTDF) ft .

The directional-hemispherical reflectance ρdh is defined as the integral of the
BRDF over all reflected directions for a given incident direction:

ρdh (~x,~ωi) =
Z

~ωr∈Ωr

fr (~x,~ωi,~ωr) |~ωr ·~N~x|dωr, (2.8)

where Ωr is the set of all reflected directions in the hemisphere centered at~x. The
directional-hemispherical transmittance τdh is defined similarly:

τdh (~x,~ωi) =
Z

~ωt∈Ωt

ft (~x,~ωi,~ωt) |~ωt ·~N~x|dωt . (2.9)

In this document, these quantities will simply be referred to as the reflectance ρ and
transmittance τ. Furthermore, unless noted otherwise, reflection and transmission
are analogous and interchangeable for the rest of this discussion.

In order to be physically plausible a BRDF must meet the following require-
ments:

• Helmholtz reciprocity: the BRDF is invariant with respect to inversion of the
direction of light transport, i.e.

fr (~x,~ωi,~ωr) = fr (~x,−~ωr,−~ωi) (2.10)

• Conservation of energy: the radiance reflected in all directions can never
exceed the irradiance, i.e.

ρ(~x,~ωi)≤ 1, ∀~ωi ∈Ωi (2.11)

BRDFs can be represented in a number of ways:
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• As analytical models [LFTG97, War92]

• As decompositions into basis functions, such as spherical harmonics
[WAT92] or spherical wavelets [SS95].

While some analytical models are expensive to evaluate they generally allow a
closed form representation to generate reflected directions for Monte Carlo sam-
pling purposes. Decompositions into basis functions usually do not offer this luxury,
but they are more general and can represent complex BRDFs which would be diffi-
cult to model by analytical means. Decomposition methods incur a tradeoff between
accuracy and memory requirements, as they are capable of lossy compression.

BRDFs can be acquired from several sources, including:

• Theoretical models [HTSG91]

• Simulated microfacet geometry [WAT92]

• Measurements from actual material samples with a goniophotometer [AB95]
or an imaging reflectometer [War92].

Measurents are the most useful BRDF source, however these are prone to
teething problems such as noise and inherent limited precision on the part of the
measuring device and the light sources used. Currently BRDF measurement is a
laborious process. An overview of BRDF representation and acquisition techniques
and their respective merits can be found in a survey by Rusinkiewicz [Rus97].

2.4 The EDF

The emission distribution function Le(~x,~ωe), or EDF, describes the distribution of
radiance emitted from a point~x on a light source in a direction ~ωe. It can be consid-
ered as an analogon to the BRDF for light sources. It is related to the light source’s
radiant intensity I (whose distribution is usually available as goniometric data) as in
equation 2.6.

Integrating the EDF over all points on the light source surface A and all emission
directions Ωe gives the total emitted flux Φe:

Φe =
Z

~x∈A

Z

~ωe∈Ωe

Le (~x,~ωe)cosθed~ωedA. (2.12)

2.5 The Rendering Equation

A formalised representation of the global illumination problem was proposed by
Kajiya, known as the rendering equation [Kaj86]. It expresses the radiance Lr(~x,~ωr)
reflected by a point ~x on a surface along ~ωr in terms of the incident radiance from
all surfaces in the scene. The radiance reflected from these latter surfaces is, in
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turn, defined by the rendering equation, hence the equation provides a recursive
definition of light transport. The radiance emitted by a surface is also included, thus
catering for light sources.

Lr (~x,~ωr) = Le (~x,~ωr)+
Z

~ωi∈Ωi

Lr (~x, ~ωi, ~ωr)dωi (2.13)

= Le (~x,~ωr)+Z

~ωi∈Ωi

fr (~x,~ωi,~ωr)Li (~x,~ωi) |~ωi ·~N~x|dωi (2.14)

where:

• Le(~x,~ωr) is the radiance emitted by the surface at point~x along ~ωr.

• Li(~x,~ωi) is the radiance incident at ~x along direction ~ωi. This incoming radi-
ance is itself defined by recursively applying the equation.

The rendering equation forms the theoretical basis for global illumination meth-
ods. The goal of a global illumination algorithm is to solve this equation.

2.6 Raytracing

The bulk of global illumination algorithms is based on the raytracing paradigm orig-
inally proposed by Whitted in 1980 [Whi80], which is inspired by geometric optics.
It is based on the assumption of point light transport in the form of infinitessimal
rays along which the radiance L is invariant. Raytracing follows a recursive scheme
in which primary rays are traced starting from the viewer followed by a series of
secondary reflected or refracted rays from intersections with objects in the scene.
For each intersected object, the irradiance due to light sources is evaluated and the
radiance reflected according to the BRDF is accumulated and propagated along the
ray back to the viewer. This is essentially the reversed photographic process; since
rays are traced from the viewer back into the scene, the traditional raytracing algo-
rithm is also termed backward raytracing to distinguish it from the forward raytracing
algorithms introduced in the next chapter.

Raytracing’s popularity stems from its ability to efficiently handle specular re-
flections due to its point light transport paradigm. The rendering equation translates
literally into the raytracing algorithm. Raytracing solves the rendering equation nu-
merically by distributing rays based on Monte Carlo methods.

2.6.1 Monte Carlo Methods

The rendering equation is an integral over all incident directions ~ωi in the hemi-
sphere Ωi centered at point~x. Each such direction gives rise to recursion, making
an evaluation by analytical methods difficult.



CHAPTER 2. PHYSICALLY BASED IMAGE SYNTHESIS 28

Numerical methods such as Monte Carlo integration [HH64, Rub81] provide an
alternative. Disregarding the emission term, the application of Monte Carlo methods
to equation 2.14 consists of estimating the integral in the right hand term:

I =
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr)dωi. (2.15)

The essence of Monte Carlo lies in taking random samples ~ωi from the do-
main of incident directions Ωi and recursively evaluating Lr(~x,~ωi,~ωr) by tracing rays
along −~ωi to sample the environment. Formally, this is represented by a primary
estimator Î1 for the integral I:

Î1 = Lr (~x,~ωi,~ωr) . (2.16)

The distribution of the sample ray directions ~ωi is characterised by a probability
density function (PDF) p(~ωi) defined over Ωi which specifies the likelihood for the
choice of a particular direction to sample. Given this sample distribution, we can
determine the expected value E of the estimator:

E
[
Î1
]

=
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr) p(~ωi)dωi. (2.17)

The basic primary estimator uses uniformly distributed samples, i.e. p(~ωi) = 1,
which implies that its expected value is equal to the integral I.

The accuracy of a Monte Carlo estimator can be expressed by the two quantities
bias and variance. The bias β indicates the deviation of the estimator Î1 from the
actual integral I:

β
[
Î1
]

= E
[
Î1
]
− I. (2.18)

Since E[Î1] = I, the primary estimator is unbiased , which is of course optimal. If an
estimator does introduce bias, it must be compensated for.

The variance V characterises the random noise in the estimator:

V
[
Î1
]

= σ2 [Î1
]

= E
[
Î2
1
]
−E2 [Î1

]
(2.19)

=
Z

~ωi∈Ωi

L2
r (~x,~ωi,~ωr)dωi− I2, (2.20)

where σ is the standard deviation. Obviously, the variance of the estimator is related
to the variance of the illumination function Lr. For this reason, a uniform distribution
of ωi cannot handle specular components efficiently.

The primary estimator Î1 based on a single sample will inevitably have a high
variance, which can be reduced by averaging the primary estimators for N samples.
Equivalently, we can break up the integral I into a sum of integrals I j:

I =
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr)dωi (2.21)

=
N

∑
j=1

Z

~ωi j∈Ωi

Lr (~x,~ωi j,~ωr)

N
dωi j (2.22)

=
N

∑
j=1

I j. (2.23)
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This leads to a secondary estimator Î2 which is based on an average of primary
estimators:

Î2 =
N

∑
j=1

Î1 j =
1
N

N

∑
j=1

Lr (~x,~ωi j,~ωr) . (2.24)

The expected value of this estimator is:

E
[
Î2
]

= E

[
1
N

N

∑
j=1

Lr (~x,~ωi j,~ωr)

]
(2.25)

=
1
N

N

∑
j=1

E [Lr (~x,~ωi j,~ωr)] (2.26)

=
1
N

N

∑
j=1

E
[
Î1 j
]

(2.27)

= I, (2.28)

since E[Î1 j] = I, and hence this secondary estimator is also unbiased. The variance
now becomes:

σ2 [Î2
]

= σ2

[
1
N

N

∑
j=1

Lr (~x,~ωi j,~ωr)

]
(2.29)

=
1

N2

N

∑
j=1

σ2 [Lr (~x,~ωi j,~ωr)] (2.30)

=
1
N

σ2 [Lr (~x,~ωi,~ωr)] (2.31)

=
1
N

σ2 [Î1
]
. (2.32)

Equation 2.32 is essential to classical Monte Carlo as it expresses the rate of
convergence using N samples based on the primary estimator Î1. From this we can
see that the error is reduced by a factor of 1/

√
N. This is a slow convergence rate,

for which Monte Carlo methods in general are notorious. However, a notable feature
of Monte Carlo integration is the fact that the rate of convergence is independent
of the dimension of the integral. For this reason, Monte Carlo is also viable for
high-dimensional integrals.

More sophisticated Monte Carlo methods exist which strive to reduce the vari-
ance of the primary estimator Î1 by distributing the samples ~ωi more intelligently.
Equation 2.32 serves as a basis to compare these methods. The major represen-
tatives found in practice are stratified and importance sampling.

2.6.1.1 Stratified Sampling

The Monte Carlo estimator Î2 introduced in the last section has an implicit draw-
back: the samples may cluster in one part of the domain, while other (possibly
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more significant) parts may not be sampled at all. To avoid this, we can divide the
domain Ωi of incident directions into smaller subdomains, or strata, and sample
each in turn (figure 2.4). The underlying assumption here is that the illumination
is approximately constant within each stratum, which is why stratified sampling is
often employed to sample diffuse illumination.

~ωiN

~ωr

~ωi1

~x

Figure 2.4: Stratified sampling

In basic stratified sampling, the strata have uniform size and are each repre-
sented by a single sample. We can break the integral I under consideration up into
a sum of N subintegrals for each stratum Ωi j:

I =
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr)dωi (2.33)

=
N

∑
j=1

Z

~ωi j∈Ωi j

Lr (~x,~ωi j,~ωr)dωi j (2.34)

=
N

∑
j=1

I j. (2.35)

Assuming the samples are distributed according to the PDF p(~ωi j) = N, the
unbiased primary estimator is:

Î1 j =
Lr (~x,~ωi j,~ωr)

N
, ~ωi j ∈Ωi j. (2.36)

The secondary estimator is then simply the sum of the primary estimators:

Î2 =
N

∑
j=1

Î1 j =
1
N

N

∑
j=1

Lr (~x,~ωi j,~ωr) . (2.37)

While this is identical to equation 2.24, the sample distribution is different, since
~ωi j ∈ Ωi j. The expected value is also identical to equation 2.28, and hence this
estimator is also unbiased. However, the variance is now the sum of the primary
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estimator variances:

σ2 [Î2
]

=
N

∑
j=1

σ2 [I1 j] (2.38)

=
1

N2

N

∑
j=1

[
E
[
L2

r (~x,~ωi j,~ωr)
]
−E2 [Lr (~x,~ωi j,~ωr)]

]
(2.39)

=
1

N2

N

∑
j=1

[Z

~ωi j∈Ωi j

L2
r (~x,~ωi j,~ωr)Ndωi j−

[Z

~ωi j∈Ωi j

Lr (~x,~ωi j,~ωr)Ndωi j

]2
]

(2.40)

=
1
N

Z

~ωi∈Ωi

L2
r (~x,~ωi,~ωr)dωi−

N

∑
j=1

I2
j . (2.41)

Since
N

∑
j=1

I2
j ≥

1
N

I2, (2.42)

this variance is lower than that of the standard secondary estimator (equation 2.32).
This can be improved further by making the strata nonuniform, such that smaller
strata (denser samples) are used where the illumination exhibits an increase in
variance. This of course requires some knowledge of the illumination. If this knowl-
edge is available, or the illumination is at least sufficiently predictable, we can apply
importance sampling instead of stratified sampling.

2.6.1.2 Importance Sampling

A more effective approach to Monte Carlo sampling is to base the sample ray distri-
bution on some a priori knowledge of the indirect illumination. Some regions of the
incident hemisphere may be more important than others, particularly those which
have high irradiance or high gradients compared to their neighbours. Concentrating
samples in these regions can reduce the variance and lead to faster convergence,
depending on the accuracy of the information available about the integral. This is
the underlying concept of importance sampling [KW86] (figure 2.5).

The PDF p(~ωi) provides the information required for the sampling density and
should thus correlate with the incident indirect illumination. Since this knowledge is
generally not available a priori, the surface’s reflection characteristics are often used
instead to approximate this information [BSS94, Lan91]. Specifically, the BRDF may
serve as a PDF and guide the raytracing algorithm by associating high probabilities
with those incident directions ~ωi which yield high reflectivity for the given reflecting
direction ~ωr. Importance sampling is therefore often applied to specularly reflected
rays. However, this does not rule out situations in which the directional distributions
of the BRDF and the unknown irradiance are vastly disparate, resulting in increased
variance.
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~ωi1
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Figure 2.5: Importance sampling

Since the sample ray distribution is nonuniform, the primary estimator requires
adaptation to avoid introducing bias. This is implied when rearranging the integral I
under consideration:

I =
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr)dωi =
Z

~ωi∈Ωi

Lr (~x,~ωi,~ωr)

p(~ωi)
p(~ωi)dωi. (2.43)

The primary estimator Î1 is then

Î1 =
Lr (~x,~ωi,~ωr)

p(~ωi)
. (2.44)

This estimator is unbiased, as its expected value is still equal to the integral I. The
variance becomes

σ2 [Î1
]

=
Z

~ωi∈Ωi

[
Lr (~x,~ωi,~ωr)

p(~ωi)

]2

p(~ωi)dωi− I2 (2.45)

=
Z

~ωi∈Ωi

L2
r (~x,~ωi,~ωr)

p(~ωi)
dωi− I2. (2.46)

Comparing this to equation 2.20 implies that the variance of importance sam-
pling depends on the PDF; a good choice of PDF can reduce the variance compared
to that of the standard primary estimator, while a poor choice can actually increase
it. An optimal PDF would be p(~ωi) = Lr(~x,~ωi,~ωr)/I, in which case the variance
would be zero. However, since this requires the integral I this is utopian. Hence in
practice the PDF must approximate I as closely as possible.

In order to apply importance sampling, the PDF must satisfy the following re-
quirements:

• p(~ωi)> 0 when Lr(~x,~ωi,~ωr) 6= 0

• the PDF is normalised:
R
~ωi∈Ωi

p(~ωi)dωi = 1



CHAPTER 2. PHYSICALLY BASED IMAGE SYNTHESIS 33

• the PDF is invertible with respect to its cumulative density (or cumulative
distribution) function (CDF) P(~ωi), which is defined as:

P(~ωi) =
Z

~ω≤~ωi

p(~ω)dω. (2.47)

This assumes some ordering of the directions ~ω, e.g. by mapping their cor-
responding polar coordinates (θ,φ) to a one-dimensional index. The CDF ef-
fectively expresses the likelihood that samples below ~ωi will be chosen from
the domain. Samples can be generated according to the PDF by evaluating
P−1(ξ) for a uniform random number ξ ∈ [0,1]. Unfortunately, not all CDFs
are invertible and thus not amenable to importance sampling.

Monte Carlo techniques have become the standard for physically based raytrac-
ers, but their slow convergence also led to the evolution of an alternative branch of
physically based rendering called Radiosity .

2.7 Radiosity

Radiosity [GTGB84] is another popular global illumination method based on radia-
tion transfer in a closed system. Its name is derived from the radiometric unit upon
which it operates. It departs from the point transport approach of raytracing and
assumes all reflections are diffuse only; specular reflection is entirely disregarded.
While conceptually different from raytracing, Radiosity can be expressed in terms
of the rendering equation, thus providing the fundamental link between the two ap-
proaches [CW93].

The method models diffuse interreflection between surfaces by setting up and
solving a system of linear equations

Bri = Bei + ρi

N

∑
j=1

Br j Fi j i ∈ [0,N] , (2.48)

where

• N is the number of surfaces in the scene

• Bri and Br j is the radiosity reflected from surface i and j, respectively

• Bei is the radiosity emitted from surface i

• ρi is the reflectance of surface i

• Fi j is the form factor characterising the exchange between surfaces i and j.
This is a geometric term that specifies the fraction of the radiosity reflected
from surface j that arrives at surface i. It takes into account the relative
orientation, distance, and visibility of the two surfaces.
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While standard Gaussian techniques can be applied in solving this system, the
performance and storage requirements are substantial. Iterative methods which re-
fine on an initial guess for Bri and ultimately converge provide a practical alternative
[GCS94].

There are some advantages to Radiosity over raytracing: it can be supple-
mented by rendering hardware, and since the reflection is diffuse and therefore
view-independent, the solution of the radiosity equation can be reused to create
real-time, interactive walk-throughs. However, radiosity has the disadvantage of ne-
cessitating tesselation of curved objects into polygons, since the algorithm relies on
planar surfaces which may also be adaptively subdivided into patches where high
radiosity gradients are detected. This may introduce visible artifacts due to discon-
tinuities at the seams. This tesselation cannot be applied to arbitrary geometries, in
particular procedurally defined objects like fractals. Thus radiosity is restricted with
respect to the scene geometries it can handle.

Classical radiosity has quadratic memory and time requirements due to the ma-
trix representing the linear equations. The development of progressive refinement
[CCWG88], which operates on one matrix column at a time and computes form
factors on the fly, marked a turning point. More recent developments include hi-
erarchical [HSA91] and clustering [SAG94] techniques, which have substantially
improved radiosity’s standing. Specular effects have also been supplemented via
directional form factors [ICG86], but this once again incurs a substantial increase in
storage requirements and is rarely used in practice.

Radiosity has established itself as a mainstream rendering method alongside
raytracing and is still actively researched. It is a fast method capable of producing
stunning images; the quality of diffuse reflections surpasses that of Monte Carlo
raytracing methods. However, the lack of specular effects restricts its applicabil-
ity. Daylight simulation requires specular components to model glare, precluding
radiosity for this specific task.

2.8 Hybrid Renderers

The caveat that raytracing excels at specular and radiosity at diffuse effects leads to
the assumption that a combination of these methods yields the best of both worlds.
Hybrid methods exist which combine radiosity and raytracing [WCG87, SP89, RT90,
SAWG91], however simply serializing the two methods does not account for all light
transport paths. The more sophisticated hybrid algorithms do infact model all light
paths, but they still require object tesselation which is plagued by the problems
discussed above.
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Forward Raytracing

The classical raytracing approach by Whitted and its Monte Carlo derivates includ-
ing RADIANCE share a common characteristic: they are all backward raytracers,
i.e. they trace rays from the viewer to the light sources.

A major drawback of backward raytracing is the inability to adequately handle
caustics. These are highly directional global illumination components which occur
through specular reflections onto diffuse surfaces. They are often noticeable as
iridescent highlights on otherwise dull materials from nearby specular objects. A
popular example is the cardioid pattern seen in rings, glasses, mugs, etc (figure
3.1).

Figure 3.1: Photograph of metal ring caustic

Since a backward raytracer traces rays from the observer toward the light
sources it cannot predict the occurrence of caustics, as this would imply knowl-
edge of which paths contribute to the caustic and ultimately reach the light source
(figure 3.2). Without such knowledge, rendering caustics with a backward raytracer

35
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borders on an exercise in futility, as the chances of finding paths which contribute to
a caustic are miniscule.

?

?

Source

?

Figure 3.2: Rendering caustics with backward raytracing. A
backward raytracer cannot predict which paths contribute to
the caustic

In the case of RADIANCE, the caustic is only partially captured by those rays
sampling the indirect diffuse component which happen to strike the metal ring. The
left rendering in figure 3.3 is an example of the metal ring caustic using RADIANCE.
The caustic is sampled by the stratified ambient rays and exhibits severe noise de-
spite high rendering times. By contrast, reversing the backward raytracing process
using a forward raytracer performs the task of sampling caustics far more efficiently.
The right rendering in figure 3.3 is an example of forward raytracing applied to the
metal ring, showing a clearly defined caustic. To put the efficiency issue into per-
spective: this rendering took under 8% of the computation time required for the
RADIANCE rendering.

The idea behind forward raytracing is simple: to complement the backward ray-
tracing process starting from the viewer with a forward pass starting from the light
sources and coupling them by some means. In essence this connects light trans-
port paths originating at the light sources with those terminating at the viewer, thus
accounting for all possible paths (figure 3.4). This is a more natural and intuitive
approach since in reality light is propagated from the sources, not the observer.
In general, forward raytracers perform a separate forward pass in object space fol-
lowed by a backward pass in image space, but they differ in the methods used to link
the two. Most existing physically based backward raytracers can be supplemented
with a forward pass in a fairly straightforward manner. The computation of direct
illumination is not affected by this modification.
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Figure 3.3: Metal ring caustic rendered with RADIANCE’s standard backward ray-
tracing algorithm (left) and forward raytracer (right).

SourceViewer

Figure 3.4: Linking forward and backward raytracing

3.1 The Photon Map

The photon map developed by Wann Jensen [JC95, Jen96, JC00] is a forward ray-
tracing algorithm that has gained considerable popularity. It differs from other for-
ward raytracing methods (notably the geometry-bound method developed by Shirley
and Walter et al [SWH+95, WHSG97]) by decoupling the information generated by
the forward raytracer from the geometry. Wann Jensen’s primary intent was to iso-
late the photon map from the objects in the scene so that it may be applied to
arbitrary geometries, such as fractal topologies and even volumetric data such as
participating media [JC98]. This is a clear advantage over geometrically more con-
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strained finite element methods such as Radiosity. A further consequence of this
separation is that the photon map scales well to the complexity of the geometry
[Suy02, p.106].

The method is based on a Monte Carlo simulation of light particle (photon)
transport in the rendered scene, from which it derives its name. The forward pass
is a preprocess and consists of distributing photons from the light sources, while
the backward (rendering) pass performs lookups in the photon map to evaluate the
indirect illumination. This effectively establishes a link between the forward and
backward raytracers and takes all light transport paths into account.

3.1.1 Forward Pass

In the forward pass photons are emitted from each light source into the scene and
traced as they are scattered at the surfaces. Upon emission, each photon is as-
signed an initial flux, direction, and origin on the light source. The photon is then
traced as it undergoes a series of intersections with objects in the scene. Upon
striking a surface, it is stored along with its flux, 3D location (intersection point),
and surface normal at that location in a space subdividing data structure for effi-
cient lookup. No reference to the intersected object is made, thus decoupling the
photons from the geometry; photons just dangle in space. Once it has been stored,
the photon is subjected to a probabilistic scattering event, the outcome of which is
either diffuse scattering1, specular scattering, or absorbtion. If the photon is scat-
tered, it can interact with the scene and still contribute to indirect illumination. If it is
absorbed, the path is terminated probabilistically (a statistical process aptly named
russian roulette) and a new photon is emitted.

The photon map’s contribution to indirect illumination is governed by the photon
flux and density. Standard particle tracing methods modulate both attributes, but
a constrained variant can also be used which maintains a constant photon flux in
order to reduce the variance of the reconstructed illumination.

3.1.1.1 Particle tracing

A general procedure for particle tracing entails the following steps:

Emission: photons are emitted according to a PDF pe based on the position on
the light source~x and the emitted direction ~ωe. The emitted photon flux Φp is
then proportional to the EDF Le [Suy02, p.28]:

Φp (~x,~ωe) =
Le (~x,~ωe)cosθe

Ne pe (~x,~ωe)
dAdωe =

dΦe (~x,~ωe)

Ne pe (~x,~ωe)
, (3.1)

where Ne is the number of emitted photons.

1The term scattering is used here to generalise reflection and transmission.
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Absorbtion: photons could be absorbed once their flux falls below some threshold.
While this seems intuitive, it introduces the risk of bias. A workaround is to
apply russian roulette and absorb photons with a probability pa while bloating
the flux of those which survive during scattering (see below), thus compen-
sating for the photons which were terminated [AK90]. It can be shown that
this does not alter the expected value of the photon flux and that the method
is therefore unbiased [Jen01, p.62].

Scattering: photons are scattered according to a PDF pr. The photon flux Φp is
attenuated by the surface’s BRDF fr and weighted by a factor 1

pa
to compen-

sate for russian roulette [Suy02, p.28]:

Φp (~ωr) = Φp (~ωi)
fr (~ωi,~ωr)cosθi

pa pr (~ωi,~ωr)
. (3.2)

This general approach has the advantage that it employs arbitrary emission and
scattering PDFs. This property is particularly useful when exact Monte Carlo inver-
sion of the EDF and BRDF is not possible, thus precluding importance sampling. In
the simplest case the PDFs can be uniform, yielding a stratified sampling scheme
which is particularly easy to implement.

The drawback with this approach is that the variable flux increases the variance
in the reconstructed illumination [Jen01, p.64], since on a receiving surface both
flux and density will fluctuate (even with uniform sampling), and the reconstructed
illumination inherits this variance as implied by equation 2.20.

3.1.1.2 Constant Photon Flux

Particle tracing with constant flux is a constrained case of the above in which all
photons share a uniform flux Φp, while the density is variable. This method is also
known as analog simulation [Suy02, p.28]. It differs from the general approach in
the following steps:

Emission: the emission PDF pe is based on the emitted radiance distribution Le

to concentrate photons in regions of high emission, thereby implementing an
importance sampling distribution. The constant photon flux Φp is derived
from the total flux Φe emitted from all light sources [Suy02, p.28]:

Φp =
Le (~x,~ωe)cosθe

Ne pe (~x,~ωe)
dAdωe (3.3)

=
dΦe (~x,~ωe)

Ne
dΦe(~x,~ωe)R

~x∈A
R
~ωe∈Ωe dΦe(~x,~ωe)

(3.4)

=
Φe

Ne
. (3.5)
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Absorption: the photon density is attenuated according to the surface’s re-
flectance ρ by absorbing photons with a probability pa = ρ.

Scattering: the scattering PDF pr is based on the surface’s BRDF fr to generate
a new photon direction, thereby also implementing an importance sampling
distribution as for emission. The photon flux Φp is not modified [Suy02, p.29]:

Φp = Φp
fr (~ωi,~ωr)cosθi

pa pr (~ωi,~ωr)
(3.6)

= Φp
fr (~ωi,~ωr)cosθi

ρ(~ωi)
fr(~ωi,~ωr)cosθi

ρ(~ω)

(3.7)

= Φp. (3.8)

This approach is used in most photon map implementations, and is preferable
to the unconstrained particle tracing paradigm because the flux is uniform at re-
ceiving surfaces and only the density fluctuates. Consequently, the reconstructed
illumination will exhibit less variance [Suy02, p.28,112]. The price to pay is a higher
implementational and computational overhead due to Monte Carlo inversion of the
BRDF and EDF.

While spectral effects are easily accounted for with variable flux, this is not
straightforward with a constant flux. To overcome this difficulty, we can extend the
concept by splitting the constant photon flux Φp into a set of components Φp,c for
each colour channel c such that their average is Φp [Jen01, p.63]. This of course
implies that the components themselves are variable and can introduce some spec-
tral variance in the reconstructed illumination. We maintain a constant average flux
Φp by normalising and scaling the photon flux at every emission and scattering
event2. The particle tracing steps are adapted to this convention as follows:

Emission: the emitted photon’s flux components are weighted by the spectral EDF
Le,c:

Φp,c (~x,~ωe) = Φpnorm(Le,c (~x,~ωe)) , (3.9)

with the spectral normalisation factor defined as

norm(gc) =
gc

g
, (3.10)

where g denotes the average over all colour channels.

Scattering: the scattered photon’s flux components are weighted by the incident
flux modified by the spectral BRDF fr,c:

Φp,c (~ωr) = Φpnorm(Φp,c (~ωi) fr,c (~ωi,~ωr)) . (3.11)

2Depending on the implementation, this scaling can only be done subsequent to completion of the
photon distribution pass, since the number of emitted photons Ne and therefore the uniform photon
flux Φp are unknown up to that point.
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3.1.1.3 Photon Types

Wann Jensen’s original proposal included a separate global and caustic photon
map. The former is dedicated to photons accounting for global diffusely reflected
illumination (specularly reflected global illumination is sampled separately using
standard Monte Carlo methods). The latter is a subset of the global map accounting
only for caustics. Both photon maps differ in the means by which their illumination
is evaluated. The caustic photon density is usually much higher than that of global
photons to account for detail in the caustics, since these effects tend to have higher
gradients than indirect diffuse illumination.

A global photon is stored in the global map on every indirect intersection (i.e.
excluding those occuring immediately after emission) with a diffuse3 surface. Using
Heckbert’s regular expression notation to classify transport path vertices [Hec90],
global photons account for L(D|S)+D paths [Jen01, p.99] [Suy02, p.37], where L
denotes the light source, and D and S denote diffuse resp. specular scattering.
Note that these paths start at the light sources and terminate on diffuse surfaces,
thus characterising a forward raytracer. It is the backward pass that supplies the
viewpoint, or eye vertex (denoted E in Heckbert’s notation).

If a diffuse surface is struck immediately following a series of specular scattering
events, a caustic photon is stored in addition to the global photon4. This translates
to paths of the form LS+D [Jen01, p.97] [Suy02, p.37].

Christensen [Chr00] suggested extending this to account for secondary caus-
tics: if reradiated by diffuse scattering, the photon can form additional, albeit less
intense, caustics after subsequent specular scattering events. As he claims, these
can also lead to significant contributions to the indirect illumination. Suykens
[Suy02, p.48] shows an example of this, referring to the phenomenon as indirect
caustics. These caustics are characterised by paths of the form L(D|S)∗SD. The
remaining discussion takes secondary caustics into consideration.

Figure 3.5 summarizes the photon distribution process in flowchart form. Figure
3.6 depicts an example of photon distribution in a simple Cornell box with a glass
sphere.

3.1.2 Backward Pass

The backward pass traces rays from the viewpoint, or eye vertex E, towards the
objects in the scene. It links to the forward pass at the intersected objects, thereby
completing the transport paths computed by the latter.

3In this document, the terms diffuse and specular refer to the presence of such components in the
BRDF. They do not necessarily imply lambertian resp. mirror reflection. Diffuse or specular scattering
is subject to the relative magnitudes of these components and thus stochastic. Terms like glossy or
directional diffuse are not explicitly used here for simplicity, since they are implied by combinations of
diffuse and specular.

4This 1:1 correspondence is somewhat simplified, but serves to illustrate the principle. In practice,
a mechanism is used to control the relative densities of the two photon types, and caustic and global
photons are selectively stored based on their density requirements.
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Figure 3.5: Photon distribution flowchart. The distribution step is driven by
the outcome of scattering events, which can be either diffuse scattering,
specular scattering, or absorbtion.

The backward pass uses standard Monte Carlo backward raytracing for the di-
rect illumination (LE and L(D|S)E) and primary specular reflections (LS+E), but the
photon map for all indirect illumination on diffuse surfaces with partial path (DS∗E),
i.e. those seen directly by the eyepoint or via a series of primary specular reflec-
tions5 [Jen01, p.85].

Contributions from the photon map are obtained by nearest neighbour search,
i.e. locating a number of nearby photons in the neighbourhood of the point whose
illumination is under consideration (figure 3.7). The underlying data structure for

5Note that these paths are evaluated from right to left in the backward pass.
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Figure 3.6: Global photon distribution in the Cornell box. Left: global and caustic
photon paths during forward pass. Dots indicate stored photons, where blue repre-
sents global photons, and red represents caustic photons. Right: photon distribution
after completion of forward pass. Note the concentration of caustic photons on the
back wall reflected from the glass sphere.

this search is explained in section 3.1.4 below. The resulting irradiance from the
photons is evaluated using a technique known as density estimation covered in
section 3.1.3.

~ω5

~ω6

~ω1

~ω2

~x

~ω4 ~ω3

Figure 3.7: Photon gathering via nearest neighbour search

3.1.2.1 Direct Visualisation

The simplest variant of rendering photon contributions is direct visualisation [Suy02,
p.39]. The global photon map (which also contains caustics, albeit typically of lower
density) is visualised directly on all diffuse surfaces visible at primary rays or via
primary specular reflections. Linking the corresponding partial paths from the for-
ward and backward raytracers results in complete paths of type L(D|S)+DS∗E. A
separate caustics photon map is not even needed, since it would introduce redun-
dant light paths. While this visualisation strategy is fast, the inherent noise in global
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photon irradiance is evident. Unless a very large number of global photons is used,
the quality of the resulting images will be poor.

3.1.2.2 Final Gathering

A more sophisticated approach to photon map visualisation is to mask the noise in
the global photon irradiance by relaying its evaluation via an intermediate (usually
stratified) diffuse sampling step, adding a secondary diffuse reflection to the partial
transport paths provided by the backward pass (i.e. DDS∗E). This approach, known
as final gathering [Suy02, p.39,115], is inherently slower than direct visualisation,
but improves the quality of the indirect illumination on diffuse surfaces substan-
tially. Combining partial forward and backward paths, global photons account for
L(D|S)+DDS∗E. While this component is evaluated indirectly, the irradiance from
caustic photons is evaluated directly at the primary diffuse reflection, accounting
for combined paths of type L(D|S)∗SDS∗E. Figure 3.8 illustrates final gathering in
schematic form.

Primary ray

View point

irradiance
Global photon

Diffuse sampling +
caustic photon irradiance

Figure 3.8: Photon visualisation during backward pass using final gather-
ing. Caustic photons are visualised at the primary ray, while global photons
are visualised via an intermediate diffuse sampling step.

Having formulated the paths associated with each component, we proceed to
verify that the sum of all components actually accounts for all transport paths (see
also [Suy02, p.116] for a similar breakdown). Combining the contributions from
global and caustic photons, we obtain:

(L(D|S)+DDS∗E) | (L(D|S)∗SDS∗E) = L(D|S)+DS∗E, (3.12)

i.e. all indirect illumination on diffuse surfaces visible directly or via specular reflec-
tions is accounted for. We now add the primary specular reflections obtained with
standard Monte Carlo backward raytracing:

(L(D|S)+DS∗E) | (LS+E) = L(D|S)+E. (3.13)
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All indirect illumination is therefore accounted for. Finally, we add the direct illumi-
nation obtained by explicitly sampling the light sources:

(L(D|S)+E) | (L(D|S)E) | (LE) = L(D|S)∗E. (3.14)

This implies that all possible transport paths are accounted for, confirming – in
theory – that the photon map coupled with final gathering is a full global illumination
solution.

It is important to suppress redundant light paths during the backward pass
[Suy02, p.39]. This is accomplished by truncating all backward paths beyond the
primary diffuse reflection, i.e. limiting these to DS∗E. Failure to do so would result
in overcounting and introduce bias in the solution. The fact that these paths can
be neglected during the backward pass even constitutes a significant bonus: it can
result in a dramatic speedup over a standard backward raytracer, since it prunes all
branches below the first diffuse reflection in the ray tree.

3.1.2.3 Importance Guided Final Gathering

Instead of using stratified sampling for the intermediate diffuse reflection, Wann
Jensen proposed distributing the sample rays based on importance obtained from
the global photons [Jen95]. In this variant, the global photon map supplies an es-
timate of the spatial distribution of the indirect illumination to guide the sampling
process by identifying those directions which actually yield high indirect irradiance,
effectively amounting to importance sampling. This requires tabulating the accumu-
lated photon flux according to the photons’ incident directions. While this approach
is more sophisticated than simple stratified sampling, there is a high computational
overhead incurred by constructing and inverting the PDF for every primary diffuse
intersection. Futhermore, the photon incident directions require additional storage.

3.1.2.4 Precomputed Photon Irradiance

Per Christensen proposed a modification to the photon map using precomputed
irradiance from global photons [Chr00, Jen01]. Christensen realised that there is
considerable spatial overlap in photon map lookups during the backward pass, im-
plying a considerable degree of redundancy in density estimates. His proposal was
therefore to precompute the global photon irradiance at the photon locations and to
store it with the photons in place of the photon flux. He suggested precomputing
about 1

4 of the global photons while discarding the rest after precomputation. With
this approach, Christensen reports speedups by a factor of 5–8.

During the backward pass global photons are visualised by looking up the sin-
gle closest global photon and using its irradiance. This effectively forms a Voronoi
diagram with each cell shaded with the irradiance from its associated precomputed
photon (figure 3.9). This piecewise constant illumination is a valid approximation
under the assumption that this irradiance has a low gradient. This optimisation is
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therefore not suitable for caustic photons, since their irradiance typically has a high
gradient.

Figure 3.9: Precomputed global photon irradiance. Note the caustic from
the glass sphere.

3.1.3 Density Estimation

The irradiance contributed by the photons is reconstructed based on their incident
flux and density [Jen97] by applying a technique known as density estimation. Given
the Np nearest photons found around the point ~x under consideration, the density
estimate f̂ (~x,Np) can be derived from the definition of the irradiance E(~x) under
the assumption that each photon contributes flux dΦ along its incident direction ~ω j:

E (~x) =
Z

~ω j∈Ωi

d2Φ(~ω j)

dAdω
dω (3.15)

≈
Np

∑
j=1

K (‖~x−~x j‖)dΦ(~ω j) (3.16)

= f̂ (~x,Np) , (3.17)

where K is a kernel function used to weight the photons based on their distance
from~x. The number of photons Np used for the density estimate is often termed the
kernel width or bandwidth, as it defines the domain on which the kernel operates.
The kernel function K assigns weights based on the proximity of the photons in
order to reduce blurring in the reconstructed irradiance. This function is radially
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symmetric and normalised over the domain [0,rp]:
Z rp

0
K (s)ds = 1, (3.18)

where rp is the maximum distance from ~x to the Np photons. In 2D density esti-
mates, the normalisation factor accounts for the surface area covered by the ker-
nel’s bandwidth, which is assumed to be planar. Asymptotically this will be the case
as the photon density approaches infinity.

Typical 2D kernels for density estimation on surfaces include:

• The uniform kernel

K0 (s) =
1

πr2
p
, (3.19)

which assigns a constant weight to all photons and consequently does not
compensate at all for blurring.

• The cone filter

Kc (s) =
1− s

krp

πr2
p
(
1− 2

3k

) k ≥ 1, (3.20)

where k is a constant defining the filter slope. This weighting method was
suggested by Wann Jensen [Jen97, Jen01].

• The 2D Epanechnikov kernel

Ke (s) =
2

πr2
p

[
1−
[

s
rp

]2
]
, (3.21)

which Walter et al [WHSG97] employed in their geometry-bound particle trac-
ing method.

• The 2D Silverman kernel

Ks (s) =
3

πr2
p

[
1−
[

s
rp

]2
]2

, (3.22)

used by Shirley et al [SWH+95] in their particle tracing implementation. This
kernel has higher-order smoothness properties than the Epanechnikov ker-
nel, which is desirable as they are inherited by the density estimate.

These kernels are plotted in figure 3.10. While this document focuses specifically
on 2D density estimation, generalised forms of the kernels for higher dimensional
cases (e.g. volume photon visualisation) can be found in [Sil86].

Density estimation is a straightforward means of reconstructing photon irradi-
ance, but the blurring effect which the kernels try to suppress is its inherent draw-
back. It affects the renderings not only visually, but also quantitatively, implying
the potential for bias in the reconstructed irradiance. This will be elaborated on in
chapter 5.
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Figure 3.10: Density estimation kernels

3.1.4 Data Structure

The photon map is implemented as a spatial data structure which maintains a set of
3D keys corresponding to the photon positions which are sorted by space subdivi-
sion. It must be capable of efficient retrieval, particularly nearest neighbour queries
[FBF77]. Several such data structures exist for geometric databases. Wann Jensen
applied the k-d tree [Ben75, Ben79, BF79] as it is one of the more general spatial
data structures, being a logical extension of the conventional binary search tree.

Each node S in the tree has a k-dimensional key (where k = 3 in this application)
(s0, . . . ,sk−1) and a discriminator d ∈ [0,k−1] such that:

• ld < sd for every node L in the left subtree with key (l0, . . . , lk−1), and

• rd > sd for every node R in the right subtree with key (r0, . . . ,rk−1).

Equality between sd and another key in dimension d is resolved by cyclic com-
parison in each dimension. This implies that no two nodes in the tree may have
identical keys which match in all dimensions.

The discriminator can be graphically interpreted as subdividing the space con-
taining all nodes below S in dimension d.

As with many tree structures, balancing guarantees logarithmic search times
and is imperative for optimum performance. This is particularly viable for the photon
map since it remains static once the forward pass is complete.



Chapter 4

The RADIANCE Photon Map

This chapter describes implementation details of the forward ray tracing module em-
bedded in the RADIANCE package which are specific to daylight simulation. The
photon map module will be referred to as the RADIANCE photon map, while RA-
DIANCE’s standard backward raytracing method will be referred to as RADIANCE
Classic. Results obtained with the module are presented in the form of daylight
simulation examples at the end of the chapter.

4.1 Implementation

The RADIANCE photon map1 is implemented as two components; the forward pass
is a separate preprocessor (mkpmap) which produces a portable photon heap file
(essentially a compact balanced k-d tree), while the backward pass is incorporated
into the original RADIANCE ray tracer (rpict, rtrace, rview) and reads the photon
heap. This allows reusing the distribution for a series of renderings in which the
geometry remains static, e.g. walkthroughs.

The implementation employs a number of optimisations mentioned in chapter
3. The forward pass uses constant photon flux extended to the red, green, and
blue colour channels (cf. section 3.1.1.2) and accounts for secondary caustics (cf.
section 3.1.1.3). The backward pass can visualise photons either directly or via final
gathering (cf. section 3.1.2.2).

Apart from global and caustic photons, the RADIANCE photon map also sup-
ports volume photons as described in [JC98], which can be used with the RADI-
ANCE mist primitive.

4.1.1 Photon Distribution

In order to meet the requirements of lighting simulation, the photon distribution step
must be capable of accepting arbitrary EDFs for light sources, and emit photons

1Available at http://www.ise.fhg.de/radiance/photon-map
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accordingly. Furthermore, the distribution step must be capable of photon emission
from distant light sources used specifically for daylight.

The forward pass emits Ne photons from all light sources in the scene. To
accurately simulate the emission characteristics of a source, an explicit integration
over finite elements on the light source surfaces is performed to obtain the emitted
flux. The reason for this overhead arises from the necessity to account for EDFs
which may not only vary in direction, but also in location. Light sources with uniform
emission over the surface and emitting angle (which are unrealistic) of course don’t
require this overhead, and can be optimised with a trivial analytical derivation of the
emitted flux.

The total flux Φe emitted from all sources is determined by integrating the EDF
Le(~x,~ωe) over the set of exitant directions Ωe and over the source surfaces A (cf.
equation 2.12):

Φe =
Z

~x∈A

Z

~ωe∈Ωe

Le (~x,~ωe) |~ωe ·~N~x|d~ωedA. (4.1)

We can approximate the intergral by a Monte Carlo estimator Φ̂e using parti-
tions ∆A of approximately equal size on the light source surfaces generated with
RADIANCE’s light source sampling code (normally used to simulate penumbrae).
For each partition i, we choose a random point~xi within the partition and integrate
Le(~xi,~ωe) to yield the flux Φ̂e,i emitted from the partition:

Φ̂e =
N∆A

∑
i=1

∑
~ωe∈Ωe

Le (~xi,~ωe) |~ωe ·~N~xi |∆~ωe∆A (4.2)

=
N∆A

∑
i=1

∑
~ωe∈Ωe

∆Φ̂e (~xi,∆~ωe) (4.3)

=
N∆A

∑
i=1

∆Φ̂e,i, (4.4)

where N∆A is the number of partitions. Highly peaked distributions may require very
small surface partitions ∆A or differential solid angles ∆~ωe. Furthermore, Ωe may
be arbitrary, ranging from very small solid angles to an entire sphere for a distant
source providing uniform illumination from all directions2.

Once we have obained the source flux through integration, we can determine
the constant photon flux Φp (cf. equation 3.5):

Φp =
Φ̂e

Ne
. (4.5)

Photons are emitted from each partition in turn. We choose a new origin within
the current partition for each photon in order to break up clustering artifacts. The

2Such a source would be unrealistic, but can nevertheless be modeled in RADIANCE. The max-
imum solid angle encountered in practice would correspond to a hemisphere such as used for sky
sources.
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number of photons Ne,i to emit from source partition i is then proportional to the
partition’s emitted flux:

Ne,i = Ne
∆Φe,i

Φe
, (4.6)

where Φ denotes the flux averaged over all colour channels.
Each photon is emitted according to an importance sampling PDF pe propor-

tional to the differential flux emitted along ~ωe (cf. equation 3.4):

pe (~xi,~ωe) ∝ ∆Φ̂e (~xi,∆~ωe) . (4.7)

The EDF can be specified as an arbitrary function or data in RADIANCE, but the
associated CDF (cumulative density function) P is not readily invertible by analytical
means for Monte Carlo sampling. A standard numeric inversion method consists
of constructing a lookup table T in which each index j is associated with a differ-
ential solid angle ∆~ωe, j and T ( j) = P(∆~ωe, j). A photon emission direction is then
obtained by finding the array index j such that T ( j− 1) < ξ ≤ T ( j) for a uniform
random variable ξ ∈ [0,1], and emitting into ∆~ωe, j. See also [Jen95] for further de-
tails. This table lookup is inherently slow, but can be substantially accelerated by
applying a binary search.

4.1.2 Local vs. Distant Sources

The photon emission from a local source is a straightforward application of the
above, since the light sources are part of the scene geometry. Figure 4.1 is an
example of emission from a partitioned local polygonal source.

~x2

~x1
~x3

Figure 4.1: Photon emission from local light source

In contrast, distant sources such as those used for the solar and sky sources
in daylight simulation (see figure 1.4) require a different treatment with the photon
map. A distant source has no associated geometry contained in the scene, thus
emission from its surface is impossible. A workaround is to reciprocate the above
methodology and partition the faces of the bounding cube containing the entire
scene and integrate the incident emission on them. Photons are then emitted into
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the scene from these partitions within the source’s solid angle [Jen01, p.58] (figure
4.2).

~x1

~x3

~x2

Figure 4.2: Photon emission from partitioned scene cube face for distant
light source

The explicit flux integration need only be performed once for each scene cube
face, since distant sources are invariant with respect to location. Thus all partitions
on a scene cube face have the same incident flux.

For large solid angles, this brute force approach can become extremely inef-
ficient. This comes as no surprise, since it creates a situation for which forward
raytracing is fundamentally inappropriate. The emission overhead increases with
the solid angle (worst case: the entire sphere) and the size of the scene cube, and
can require emitting millions of photons, of which only a small fraction may actually
contribute to the photon map. This situation may be further aggravated by confin-
ing the region of interest to an interior space in daylight simulation, which is only
accessible to photons through windows and daylight systems.

This is a prime example of an application requiring a selective photon distribu-
tion mechanism such as the “importons” proposed by Peter and Pietrek [PP98]. A
path mutation strategy similar to the Metropolis algorithm [VG97] is also conceiv-
able. However, these extensions were not investigated in the scope of this work
due to time constraints. Instead, a simpler alternative was devised, which directs
the photons through user-specified “ports” into the interior.

4.1.3 Photon Ports

Conceptually, photon ports are apertures through which photons emitted from dis-
tant sources can enter the interior space containing the viewpoint. These can be
windows, skylights, but also invisible polygons within the scene (figure 4.3). The
user must define the port geometries for all apertures through which photons can
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enter in order to obtain a physically valid simulation. The interior and exterior sides
of a port are defined by its surface normal.

Photon
port

Viewer

Daylight
system

Figure 4.3: Typical daylighting geometry with window as photon port for
distant sources.

Ports emit photons directly, bypassing the scene cube surfaces. Consequently
the photon loss factor will be reduced dramatically, resulting in a substantial in-
crease in performance over brute force emission from the scene cube. Photons
originating from ports are scattered by their respective port as if they had passed
through it. As with the brute force approach, the incident flux from each distant
source is integrated on the partitioned port surfaces. Additionally, the sources are
checked for occlusion. In the case of an occluded source one might consider per-
forming an interreflection calculation (via backward raytracing) in order to account
for exterior geometry, e.g. adjacent buildings. However, the resulting impact on per-
formance would most likely forfeit the gain from using ports in the first place. This
option was not investigated, and the current implementation does not account for
external interreflection.

Though it caters to the majority of daylighting situations, this simple photon port
concept lacks flexibility. Consider the atrium geometry in figure 4.4. The photons
must pass through the skylights and subsequently find their way into one of the
offices facing the atrium through its window. Essentially this scene consists of two
interiors: the atrium, and the office nested within the atrium. This calls for an ex-
tension to the photon port concept which requires categorising ports according to
the nesting level of the interiors they give access to. There can be several ports per
level if an interior is accessible through multiple apertures, so that photons need
only pass through one port within each level. The first ports through which photons
must pass are termed primary ports and correspond to ports in the simple concept
outlined above. Primary ports emit photons into the primary interior. The photons
are then directed from the primary interior to the secondary interior(s) via secondary
ports, from whence they may be further directed by tertiary ports, etc. The last port
level finally directs the photons into the space containing the viewpoint. In figure
4.4, the primary ports are the skylights, which direct photons into the atrium. From
there they are directed into the office via the secondary port, which is the office
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window.

Secondary
photon port

Primary photon ports

Viewer

Figure 4.4: Atrium geometry with skylights as primary photon ports, and
office window as secondary photon port.

In order to direct photons from one interior to next they must be scattered us-
ing importance information. Importons can supply this information, although the
method requires adaptation to the port concept, since emitting importons from the
viewpoint will inevitably clutter most importons within the space containing the view-
point, while very few will pass through its ports and contribute importance for the
outer ports. Instead, an importon is only stored if it has passed through all port
levels, such that it contributes importance for an entire path from the primary port
to the innermost space.

This extended port concept was not implemented in the course of this work due
to time constraints, and is presented here as a proposal. Whatever the performance
gains may be, there are caveats with importance based photon distribution which
one must bear in mind:

• Photons must be scattered using numeric Monte Carlo inversion for all mate-
rials (even Lambertian), since the BRDFs must be combined with the impor-
tance for each scattering direction. This can impact performance dramatically.

• Like all importance sampling methods, the photon flux must be adjusted to
compensate for the bias introduced by nonuniform sampling. This can in-
crease noise and even produce outliers.

• The resulting photon maps are view dependent with respect to the spaces
through which the photons are guided. Once the viewer leaves one of these
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spaces, the photon map must be regenerated. This limits the use of extended
ports in walkthroughs somewhat.

The photon port concept can accelerate the photon distribution step dramat-
ically in difficult situations involving distant light sources. Figures regarding the
speedup obtained in practice are given for the daylight simulation examples that
follow.

4.1.4 Forward Pass Parametrisation

The photon distribution as described above is parametrised by the number of emit-
ted photons Ne. However, this number bears no relation to the actual number of
photons stored in the photon map after the forward pass is complete. The number
of stored photons is a function of the photon absorbtion and leakage ratios, both of
which in turn depend on the scene geometry, light sources, and surface character-
istics. We won’t know the outcome of the particle transport simulation a priori, and
it is very difficult to predict. Even an experienced user will have trouble estimating
how many photons must be emitted to generate a photon map of a given size, and it
would be far more convenient to simply specify the approximate number of photons
to be stored in the map.

The majority of photon map implementations do not consider arbitrary EDFs,
and emit photons based on simple ones which can be sampled easily via analytical
means. Photons are then emitted in a loop from a random source until the required
number of photons is stored in the map. The EDFs can be sampled at little cost for
each emitted photon, so the overhead per loop iteration is relatively small.

On the other hand, the necessary support for arbitrary EDFs becomes a burden
for the RADIANCE photon map, because it can be expensive to construct the CDFs
from the EDFs (both in terms of time and memory), and we cannot perform this
process in a loop for every photon. It would also be prohibitive to keep all the CDFs
in memory during distribution, particularly since this would be required for every
surface partition to account for EDFs which vary over the light source surfaces (e.g.
in applications requiring near-field photometry). Instead, we must commit ourselves
to emitting a number of photons from each source partition in turn, and construct
the CDF only once, without knowning how many photons are stored in the map until
we are done with this partition.

We can, however, break the distribution process up into two passes, at the
additional cost of repeating the CDF construction once. The first pass emits a frac-
tion of the specified number of photons to store, and its outcome can be used to
estimate how many remaining photons must be emitted to approximate the specifi-
cations. This exploits the linear scalability of the forward pass, provided that the set
of source partitions and differential solid angles is the same for every source in both
passes. While this is straightforward, we must tackle the problem of working with
different photon map types, which will differ in density.
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Given m user specified photon maps of different type requiring n1, . . . ,nm stored
photons, the two pass distribution algorithm selectively stores photons according
to the relative photon map densities in order to approximate the specified photon
count for each. The primary pass emits Ne,1 = k min(n1, . . . ,nm) photons, with k
being a constant affecting the accuracy of the estimate for the remaining number
of photons to emit. Since the number of stored photons rarely exceeds the number
emitted (except for closed scenes in which photons cannot terminate by leakage),
this constant is usually less than 1.

The result of the primary pass is m partial photon maps containing N1, . . . ,Nm

photons. If one of the maps is empty, we double k and repeat the primary pass,
assuming that there is no anomaly in the scene which prevents the creation of a
particular photon type (e.g. caustic photons specified for lambertian geometry).
However, if there is an anomaly in the scene this will inevitably lead to an infinite
loop, hence k is limited to a user specified maximum kmax before aborting.

After completion of the primary pass, the remaining number of photons to emit
in the secondary pass is

Ne,2 = Ne,1 max(r1, . . . ,rm) , (4.8)

where

r j = max
(

n j

N j
,1
)
−1, j ∈ [1,m] . (4.9)

The r j ratios are clamped to 0 if the required number of stored photons is exceeded
for a photon map in the primary pass. Overshooting the specifications is usually
inconsequential, since it is more inconvenient to wind up with too few photons than
with too many.

We must control the relative densities of each photon map in order to approx-
imate the desired number of stored photons for each map in the secondary pass.
The density control mechanism used by the RADIANCE photon map does not lo-
cally modify the photon densities based on local requirements throughout the scene
geometry as is the case with Suykens’ proposal [SW00], but merely the global rel-
ative densities of the individual photon maps.

The relative densities d j ∈ [0,1] are found by normalising the r j ratios:

d j =
r j

max(r1, . . . ,rm)
, j ∈ [1,m] . (4.10)

These are the probabilities of storing a photon in the corresponding photon map in
the secondary pass. The photon map with the maximum r j has a density of 1 and
therefore is not affected. For the others this results in a density reduction in order
to avoid exceeding the specifications. Since we are modifying the density we must
compensate by increasing the photon flux used in the first pass separately for each
map. Photons emitted in the primary pass have uniform flux

Φp,1 =
Φe

Ne,1 + Ne,2
. (4.11)
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Since Ne,2 is unknown during the primary pass, the flux must be scaled after the
distribution is complete. Photons emitted in the secondary pass have the modified
flux

Φp,2, j =
Φp,1

d j
, j ∈ [1,m] . (4.12)

Although this contradicts our philosophy of constant flux for all photons, it does not
invalidate our approach, because we are effectively combining the partial photon
maps from the primary and secondary passes. Since their respective flux to den-
sity ratios are the same, the reconstructed illumination would be similar to a single
photon map with the same flux to density ratio [Chr01]. Using two different photon
flux levels may however incur a slight increase in noise.

The two pass distribution is summarised in algorithms 4.1 and 4.2. Emitted
photons which strike an object during distribution are scattered (and eventually ter-
minated via russian roulette) by a generic procedure scatterPhoton(. . .), which calls
addPhoton(. . .) to store incident photons. The former contains material specific
code and scatters / absorbs according to the BRDF, while the latter performs the
bookkeeping regarding the number of stored photons and modifying the photon flux
according to the relative distribution ratios.

4.2 Daylight Simulation Examples

This section presents examples in which the photon map is applied to daylight sim-
ulation. The examples only encompass a qualitate analysis. Quantitative analysis
can only be done with confidence if the simulation tool has been validated, a topic
adressed in chapters 6 and 7. These examples are intended to demonstrate the
photon map’s ability to model the functional characteristics of daylight systems while
revealing RADIANCE Classic’s shortcomings in side-by-side comparisons.

The standard environment for the simulations is an office space with a window
fitted with a daylight system. Glare is reduced at eye level from the lower windows
with a diffuse screen (conventional blinds can also be used), while the respective
daylight system is installed in the top windows.

A clear, sunny sky was generated for all examples for 12:00 pm, corresponding
to a relatively high solar altitude of 49◦. In order to demonstrate a system’s response
to different sun positions, a second sky at 5:00 pm was also generated for some
systems, corresponding to a low solar altitude of 7◦. Sun shading daylight systems
are generally designed to block sunlight at high solar altitudes, while not affecting it
at low solar altitudes, thus implementing an angular selectivity which reduces glare.

The examples rendered with the photon map used 250000 global photons with
precomputed irradiance (see section 3.1.2.4), and 1000000 caustic photons, with
the windows defined as photon ports, which typically accelerated the forward pass
by a factor of 2. Examples rendered with RADIANCE Classic used 10 ambient
bounces and zero ambient value.
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procedure distribPhotons(n1, . . . ,nm,k) {generate m photon maps containing
n1, . . .nm photons}
compute total light source flux Φe

N1 = . . .= Nm = 0
d1 = . . .= dm = 1
while N j = 0, j ∈ [1,m] do {perform prepass}

Ne,1 = k min(n1, . . . ,nm)
for l = 1 to Ne,1 do

emit and trace photon pl
if object hit then

scatterPhoton(pl)
end if

end for
k = 2k
if k > kmax then {too many iterations, one or more maps still empty}

abort
end if

end while
for j ∈ [1,m] do {figure out how many more photons to emit}

d j = max(n j/N j,1)−1
end for
Ne,2 = Ne,1 max(d1, . . . ,dm)
for j ∈ [1,m] do {normalise relative densities}

d j = d jNe,1/Ne,2
end for
for l = 1 to Ne,2 do {perform main pass}

emit and trace photon pl
if object hit then

scatterPhoton(pl)
end if

end for
for j ∈ [1,m] do

for l = 1 to N j do {scale photon flux}
Φ(pl) = Φ(pl)/(Ne,1 + Ne,2)

end for
end for

return
Algorithm 4.1: Two pass photon distribution
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procedure addPhoton( j, p) {add photon p to map j ∈ [1,m]}
if random ξ ∈ [0,1]< d j then

Φ(p) = Φe/d j {compensate for nonuniform photon densities}
store photon p in map j
N j = N j + 1

end if
return
procedure scatterPhoton(p)
. . .
if photon of type j then

addPhoton( j, p)
end if
. . .

return
Algorithm 4.2: Two pass photon distribution (continued)

The office is rendered without daylight system in figure 4.5 with both RADIANCE
Classic and photon map. Both algorithms required similar rendering times. As
expected, the RADIANCE Classic and the photon map renderings are very similar.
The crucial difference is that RADIANCE renders the sunlit area on the floor with
direct illumination, whereas the photon map renders it as caustics arising from the
transmission through glass.

4.2.1 Example 1: Y-Glass

The Y-glass system manufactured by INGLAS GmbH3 consists of a plexiglass panel
containing air filled lamella at regular intervals, and can be sandwiched between
glazings for easy maintenance. The system redirects light via total internal reflec-
tion at the lamella boundaries, while light passing between the lamella is simply
refracted, delineating a Y-shaped light path which lends its name (figure 4.6). The
lamella are angled towards the interior by 7◦ and implement an angular selectivity
by reducing the transmittance between lamella with increasing solar altitude (figure
4.7). The system’s appeal lies in its simplicity, effectiveness, and ease of mainte-
nance.

Figure 4.8 is a photon map rendering depicting Y-glass’s redirecting properties
for normal and 50◦ incidence. These images were obtained by inserting a polygon
in the plane of incidence to visualize caustics, and using a spotlight as the incident
beam. 250000 caustic photons were used here. At normal incidence, the majority
of light is transmitted, with a small downward redirection as a result of reflection
at the underside of the lamella. At 50◦ incidence, the incident beam is split into
an intense beam which is reflected upwards by the lamella, and less intense beam
which passes through the lamella, forming the Y-shaped light path. There are also a

3http://www.inglas.de/Home/Produkte/INGLAS_-_Y_/inglas_-_y_.html
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Figure 4.5: Office without daylight system rendered with RADIANCE Classic (top)
and photon map (bottom). Both algorithms yield very similar results.
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Figure 4.6: Schematic of light redirection in Y-glass panel.
Courtesy of Georg Mischler, Schorsch.com.

Figure 4.7: Photographs of a Y-glass sample. The air filled lamella reduce the
transmittance for light incident from high angles, as demonstrated by inclining the
sample.

number of weaker beams resulting from reflection while entering the dielectric and
from multiple reflections inside the system, but these are exaggerated by the tone
mapping due to the high dynamic range and do not actually contribute significantly.

Figure 4.9 depicts renderings of the office fitted with the Y-glass system at a high
solar angle. As expected, there is an obvious caustic at the ceiling resulting from re-
flection off the lamella, which the photon map simulates faithfully. The ceiling reflec-
tion increases the ambient luminance in the room compared to RADIANCE Classic.
The relative increase in luminance can be deduced from the falsecolour image in
figure 4.10. It depicts the relative difference (in percent) between the RADIANCE
Classic and photon map renderings. The ceiling caustic shows an increase of up to
400% compared to the RADIANCE Classic rendering, and the ambient luminance
on the walls and floor outside the caustic is also raised by 40-60%. This constitutes
a significant difference for daylight analysis and illustrates the necessity of forward
raytracing in this application.

The photon map rendering in figure 4.9 also confirms that the majority of light
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Figure 4.8: Y-glass redirection rendered with the photon map. At normal incidence
(left), the beam is transmitted, while at 50◦ incidence (right) the beam is split into an
intense beam redirected upward, and a less intense transmitted beam. The result
is a Y-shaped light path as depicted in figure 4.6.

is redirected to the ceiling, thereby reducing glare at eye level. This is evident
by comparing the luminance of the sunlit region on the floor resulting from light
transmitted between the lamella with the luminance without daylight system in figure
4.5. The ratio of redirected to transmitted sunlight increases with the solar angle.

Figure 4.11 depicts the Y-glass installation at a low solar angle. The ceiling
caustic is no longer present in the photon map rendering since the solar angle
deviates only marginally from the lamella inclination, consequently most sunlight
passes unaffected between the lamella. As a result, both renderings are similar.
The rendering times for photon map and RADIANCE Classic were about the same
in this example.

4.2.2 Example 2: Compound Parabolic Concentrator

Compound parabolic concentrators, or CPCs, consist of an array of specular (tradi-
tionally metallic) parabolic profiles designed to concentrate light entering the system
[WW78]. The concentrating effect is accomplished via reflection at adjacent profiles
in dependence of the angle of incidence, thereby implementing angular selectivity.
Light entering the system within a solid angle around the normal (termed the ac-
ceptance range) is concentrated at the emitting aperture, while light incident from
directions outside this range is reflected back out (rejected) after multiple bounces
within the system (figure 4.12). The acceptance range is typically well defined,
characterised by an abrupt transition from acceptance to rejection. CPCs are very
versatile systems and can be employed in a number of ways, primarily to increase
radiative gain in applications ranging from lasers to solar energy collectors.

A novel application of CPCs is in façades for sun shading [Kuc02]. This applica-
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Figure 4.9: Y-glass installation rendered with RADIANCE Classic (top) and photon
map (bottom) at high solar altitude. The photon map correctly models the behaviour
of Y-glass, producing a caustic at the ceiling from reflection off the lamella and
resulting in increased ambient luminance from ceiling reflection. As a consequence
of redirection, transmitted light incident on the floor is reduced compared to figure
4.5.



CHAPTER 4. THE RADIANCE PHOTON MAP 64

Figure 4.10: Relative difference between RADIANCE Classic and photon map ren-
derings in figure 4.9. The increase in ambient illumination from the ceiling caustic
raises the ambient luminance in the room by 40-60%, while the ceiling caustic itself
accounts for a luminance increase of up to 400%.

tion is still under development and no manufacturer currently markets such a sys-
tem. Sun shading CPCs differ in material and behaviour from conventional CPCs.
These systems consist of a solid dielectric profile, and the concentrating effect is
accomplished via total internal reflection (see figure 4.13). The emitting aperture
is coated with an opaque reflecting layer, which may be specular or diffuse. In this
way glare from direct sunlight which falls within the acceptance range is concen-
trated and reflected back out of the system by the opaque aperture. On the other
hand, diffuse skylight which enters outside the acceptance range is not subject to to-
tal internal reflection and is instead transmitted at the profile walls, in stark contrast
to conventional metallic CPCs (figure 4.14). Sun shading CPCs therefore exhibit
complementary behaviour to conventional CPCs. A desirable property of sun shad-
ing CPCs is that rays transmitted by the system are fanned out due to the curved
geometry of the concentrator walls, giving the illumination a diffuse quality.

The versatility of CPCs gives rise to a number of possible sun shading config-
urations [Kuc02]. The system can be installed as fixed horizontal or vertical panels
with an acceptance range optimised to block direct sunlight throughout the sum-
mer months, while allowing it to pass through the system in winter, when the sun is
low and less instense. The CPCs can then be mounted with a fixed angle, without
the need to manually correct the alignment during seasonal changes. Alternatively,
the CPCs can also be installed as manually adjustable lamella to fully utilise their
redirecting characteristics to cover a broad range of shading or daylight utilisation
needs.

Sun shading CPCs are manufactured from clear plastic or resin in an elaborate
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Figure 4.11: Y-glass installation rendered with RADIANCE Classic (top) and photon
map (bottom) at low solar altitude. Sunlight mostly passes between the lamella, and
no caustic is formed. Consequently, both algorithms yield similar results.
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αααα

Figure 4.12: Schematic of light redirection in conventional CPC. Rays inci-
dent within the acceptance angle α (left) are concentrated via reflection at
the metallic parabola walls and emitted below. Rays incident outside this
range (right) are reflected back out.

Figure 4.13: Photograph of dielectric sun shading CPC array. Reproduced
from [Kuc02].

moulding or extrusion process. The difficulties in manufacture arise from the low
tolerances; minute roughness and deformations in the CPC’s walls can reduce the
effect of total internal reflection and therefore degrade the system’s performance.
Glass has also been investigated as an alternative material since it is more resistant
to long term UV exposure than plastics if the CPCs are mounted externally [Kuc02].

The photographs in figure 4.15 depict the relationship between viewing angle
and the sun shading CPC’s acceptance range, which serves to illustrate the sys-
tem’s behaviour. Viewing the sample within the acceptance range causes the sys-
tem to appear opaque, since incident rays are blocked by the opaque layers on the
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Figure 4.14: Schematic of light redirection in dielectric sun shading CPC.
Rays incident within the acceptance angle α undergo total internal reflec-
tion at the walls and are concentrated at the opaque peak below, where
they are reflected back out. Rays incident outside this range are transmit-
ted and refracted at the parabola walls. This behaviour is complementary
to that of conventional CPCs as seen in figure 4.12.

emitting apertures. Viewing the sample outside the acceptance range causes the
system to appear translucent, since the system is now in a transmitting configura-
tion.

Figure 4.15: Sun shading CPC acceptance range vs. viewing angle. Left: viewing
angle within acceptance range, system is opaque. Right: viewing angle outside
acceptance range, system is translucent. Photographs reproduced from [Kuc02].

Figure 4.16 succinctly illustrates the redirecting behaviour of a sun shading
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CPC. These photographs were taken in a gaseous environment with a laser. At
normal incidence, the beam is incident within the acceptance range and reflected
back. At incidence outside the acceptance range the beam is transmitted by the
system and redirected.

Figure 4.16: Photographs of laser redirection in sun shading CPC. Left: beam inci-
dent within acceptance range, the beam is reflected back out. Right: beam incident
outside acceptance range, beam is transmitted and redirected. Reproduced from
[Kuc02].

The redirecting properties of a sun shading CPC are also rendered with the
photon map in figure 4.17. These renderings are inspired by figure 4.16 and serve
as comparison. As in the photographs, the beam is reflected back if it is incident
within the acceptance range, while at incidence outside the acceptance range, the
system transmits and fans out the emitted light. The breakup into stripes visible in
the fan-out is an artifact resulting from the faceted model used for the parabola walls.
The renderings are similar to those in figure 4.16, although the geometries of the
rendered and photographed CPCs are not identical. The absence of the downward
redirection in the photographs is explained by the smaller coverage of the laser
compared to that of the beam in the rendering. This is corroborated by figure 4.14,
since a narrow incident beam partially covering the CPC width would only account
for a portion of the rays shown. With the incident beam covering only the right
portion of the CPC, the system will only emit on the right side, corresponding to the
configuration seen in the photographs.

Figures 4.18 and 4.19 depict renderings of the office fitted with an external
sun shading CPC lamella system at high solar angle in accepting and redirecting
settings, respectively. In the accepting setting the CPCs are inclined by the solar
angle, such that sunlight is incident within the acceptance range and reflected out of
the system. Consequently the photon map and RADIANCE Classic renderings are
similar, except for a slight increase (up to 10%) in ambient luminance in the photon
map rendering. This is contributed by a small fraction of caustic photons which were
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Figure 4.17: Sun shading CPC redirection rendered with the photon map. At normal
incidence (left), the beam is concentrated in the system and reflected back out at
the opaque apertures, whereas at 50◦ incidence (right) the beam is transmitted and
fanned out. Note also the reflection while entering the dielectric. Compare these
images to figures 4.14 and 4.16.

not subject to total internal reflection and therefore transmitted into the room.
In the redirecting setting the CPCs are vertical, such that sunlight is incident

outside the acceptance range and transmitted towards the floor and ceiling. This
effect is reproduced by the photon map, but not by RADIANCE Classic, as expected.
Consequently, there is a dramatic increase in ambient luminance contributed by
caustics. From figure 4.20 we can see that this increase amounts to 100% or more
on the walls and ceiling. The caustics on the floor are even more intense, resulting
in an increase of almost 300%. Again, this is a point in case for the application of
forward raytracing in daylight simulation.

Unlike the previous examples, in which the systems were mounted internally,
the photon ports for the top windows were replaced by an invisible alcove encas-
ing the CPCs outside the window. The ambient noise in the RADIANCE Classic
renderings is typical for situations involving high gradients in the ambient irradiance
(conceivably due to the occasional ambient ray which found a caustic path), and
can only be effectively suppressed with denser stratified samples, leading to exor-
bitant rendering times. The rendering times for RADIANCE Classic in this example
already exceeded those of the photon map by a factor of 2.5-3.

4.2.3 Example 3: Lightpipe

The lightpipe [EGW98] is representative of those systems which cannot be ade-
quately simulated with RADIANCE Classic. Daylight is conducted into building in-
teriors by the pipe, and can be decoupled where necessary to reduce the need for
artificial lighting. This is achieved by lining the pipe’s inner surface either with a



CHAPTER 4. THE RADIANCE PHOTON MAP 70

Figure 4.18: Sun shading CPC installation rendered with RADIANCE Classic (top)
and photon map (bottom) at high solar altitude with CPCs in accepting setting. The
photon map correctly models the acceptance range, reflecting sunlight out of the
CPC panels towards the exterior, and thus not giving rise to any noticeable caustics.
There is however a slight increase in ambient luminance due to a small fraction of
caustic photons which were not subject to total internal reflection, and admitted
into the room. This minor difference appears somewhat exaggerated by the tone
mapping applied to the renderings.
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Figure 4.19: Sun shading CPC installation rendered with RADIANCE Classic (top)
and photon map (bottom) at high solar altitude with CPCs in redirecting setting. The
photon map correctly models the redirection of sunlight as caustics towards the floor
and ceiling, resulting in a dramatic increase in luminance compared to RADIANCE
Classic. Note the high level of noise in the RADIANCE Classic rendering, in spite
of higher rendering times than required with the photon map.
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Figure 4.20: Relative difference between RADIANCE Classic and photon map ren-
derings in figure 4.19. There is a substantial increase in luminance on the ceiling
and walls due to caustics in excess of 100%. The caustics on the floor constitute
an increase of nearly 300%.

mirror finish or with a prismatic foil, the latter conducting the majority of the light
via total internal reflection, while still transmitting a small fraction which lends the
system an appealing self-luminous appearance. Sunlight is usually directed into
the pipe’s aperture with a heliostat and concentrated with a Fresnel lens in order to
increase the system’s gain.

Figure 4.21 shows an example of a lightpipe installation in the 1st floor corridor
of Fraunhofer ISE. An externally mounted heliostat which tracks the sun’s path di-
rects light onto the centre of a fixed mirror. This mirror directs sunlight downward
onto a second fixed mirror, which in turn directs it horizontally onto a Fresnel lens
mounted in the corridor window before entering the lightpipe. The lightpipe runs the
entire length of the building (26 metres), partly illuminating the corridor through its
prismatic foil and transporting the majority of light to a kitchenette and a small com-
puter room at the end of the corridor, both of which lack windows. Lightpipes can
also be employed in subterranean environments such as basements, underground
parking lots, and subways. Figure 4.22 is an example of lightpipes installed at Pots-
damer Platz subway station, Berlin. In this case the pipes are mounted vertically
and conduct daylight to the subway platforms below. Each pipe is fitted with its own
heliostat.

Figure 4.23 depicts renderings of a lightpipe installed in a corridor. The light-
pipe has a mirror finish, and extends through several doorways towards the outside
above the window in the far wall. A heliostat was modeled and placed at the pipe
aperture outside. It is aligned towards the sun, reflecting sunlight directly into the
pipe, which is then conveyed through the pipe towards the viewer. A mirror inclined
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Figure 4.21: Lightpipe installation in 1st floor corridor at Fraunhofer ISE. Sunlight
is directed into the pipe via a heliostat and two fixed mirrors (top). Daylight is then
conducted by the pipe’s prismatic foil through the corridor (left) and directed into
rooms lacking windows (right). Images reproduced from [EGW98].

at 45◦ (seen from the back) decouples light from the lightpipe and directs it to the
ceiling, illuminating the room indirectly. Figure 4.25 is an overview of the scene,
depicting a cross-sectional rendering using the photon map. The corridor has been
shortened for clarity.

The difference between the photon map and RADIANCE Classic renderings is
striking, yet not surprising. The photon map clearly simulates the principle behind
the system, directing caustic photons into the pipe via the heliostat, conveying them
through the pipe and up to the ceiling, finally illuminating the room via diffuse re-
flection. Photon ports were defined for the window, pipe aperture, and the heliostat.
Because the pipe represents such a severe bottleneck for the photon distribution,
the use of ports in this scene has a far greater impact than in the previous exam-
ples, yielding a dramatic speedup by a factor of 175. 500000 global photons and
1000000 caustic photons were used for this example.
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Figure 4.22: Lightpipes in vertical configuration at Potsdamer Platz subway station,
Berlin. The pipes conduct daylight to the subway platforms below (left). At night
they conduct artificial light from lamps mounted within (right).

RADIANCE Classic has serious problems here, and only manages to produce
a vestige of the expected caustic, since few ambient rays find their way into the
pipe via the mirror, and towards the solar source via the heliostat at the far end of
the pipe. To quantify the extreme divergence between the two algorithms in this
example, we note that the photon map increases the ambient illuminance on the
walls at the near end of the corridor by a hefty 3000-6000%, while deviations in the
ceiling caustic even exceed a staggering 100000%!

The futility of capturing caustics via backward raytracing comes fully to bear in
this example, particularly when considering that RADIANCE Classic required the
sixfold rendering time of the photon map to render this scene. This is the direct
result of extreme parameter settings in order to suppress noise in the ambient lumi-
nance from what little caustics is sampled.

4.3 Conclusions

The photon map is capable of producing a complete, accurate global illumination so-
lution suitable for daylighting applications. The daylight simulation examples have
shown that it is capable of modelling the functional charateristics of some represen-
tative daylighting systems. Furthermore, it outperforms RADIANCE Classic in most
situations.

However, the distant light sources typically used in daylighting applications pose
fundamental problems for a forward raytracer. In these cases, the gain in perfor-
mance over RADIANCE Classic is achieved primarily by applying the proposed
photon port mechanism, which significantly improves the efficiency of the forward
pass at the expense of some user intervention.
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Figure 4.23: Corridor with lightpipe rendered with RADIANCE Classic (top) and
photon map (bottom). The photon map correctly simulates the principle behind the
system, conducting caustic photons from the far end of the corridor to the near
end, where they illuminate the room via ceiling reflection. RADIANCE Classic only
manages a vague hint of the caustic, leaving the room in darkness.
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Figure 4.24: Relative difference between RADIANCE Classic and photon map ren-
derings in figure 4.23. The deviations in luminance due to the caustic are stag-
gering, amounting to 3000-6000% on the walls and even 100000% in the caustic
itself.

Figure 4.25: Cross-section of lightpipe scene rendered with photon map. The view-
point in figure 4.23 is positioned at the right end of the corridor, facing the doorway.



Chapter 5

Bias Compensation

Few publications have subjected the photon map to an error analysis. Indeed, most
of the relevant literature is scant on the subject and rarely questions the validity of
the method, merely pointing out that errors in the reconstructed indirect illumination
can be reduced by simply increasing the number of photons. While this is true in
general (as for all Monte Carlo methods), we would like to characterise these er-
rors and make them more concrete. Furthermore, since daylighting simulation is
an application which demands accuracy, we must concern ourselves with a means
of estimating and reducing this error. Little research has been done here in con-
junction with the photon map, and is the subject of this chapter. After introducing
the bias/noise tradeoff and its relation to density estimation, we develop a proposal
for a bias compensating operator specifically for radiometric applications which dy-
namically adapts the bandwidth for nearest neighbour density estimates.

5.1 Density Estimation Error

Given a photon map, we are interested in finding the error in density estimates
based on nearest neighbour search in dependence of the bandwidth Np. As de-
scribed in section 2.6.1 for Monte Carlo methods in general, this error can be broken
down into two components: variance and bias.

Variance is the fundamental random error common to all Monte Carlo methods
and is visible as noise in the renderings. This error drops as Np increases, but
typically at the modest rate proportional to 1/

√
Np derived in equation 2.32. The

variance σ2 of a set of density estimates f̂ (~x,Np) is defined as:

σ2 [ f̂ (~x,Np)
]

= E
[

f̂ 2 (~x,Np)
]
−E2 [ f̂ (~x,Np)

]
. (5.1)

Unlike noise, bias is the systematic error in the reconstructed illumination. It is
defined as the deviation of the expected value of the estimator f̂ from the actual
illumination f :

β
[

f̂ (~x,Np)
]

= E
[

f̂ (~x,Np)
]
− f (~x) . (5.2)

77
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This implies that bias cannot be quantified without knowing the actual illumination,
which is generally not available.

Bias resulting from nearest neighbour density estimation can be classified into
three categories based on the source of the error. In this document, these are
referred to as proximity, boundary, and topological bias.

Proximity bias is a fundamental problem with density estimation arising from the
fact that photons from nearby regions are drawn upon for the density esti-
mate. The expected value of a density estimate f̂ (~x,Np) is

E
[

f̂ (~x,Np)
]

=
Z

{~y:‖~x−~y‖≤rp}
K (‖~x−~y‖) f (~y)d~y, (5.3)

where~y are nearby points within the kernel bandwidth defined by the search
radius rp. This means that the estimate converges to the actual illumination
function f convolved with the kernel K used to weight the photons, rather than
to f proper [WJ95]. This is visible as smearing of details in the renderings,
particularly caustics. Effectively, proximity bias displaces illumination from
nearby regions to areas where it should not contribute, thus locally violating
energy conservation [Suy02, p.113]. Proximity bias is typically introduced in
those regions where the bandwidth crosses some illumination feature bound-
ary.

Boundary bias is visible as a darkening of density estimates at polygon bound-
aries and occurs when the bandwidth extends beyond the polygon boundary,
where no photons are located [Suy02, p.112]. This results in a spurious de-
crease in density.

Topological bias is the error introduced by the density estimate under the as-
sumption that the area occupied by the photons is planar. Any curvature
will generally lead to underestimation of this area and thus overestimation of
the illumination [Suy02, p.111].

Regardless of its source, bias increases with the bandwidth Np. We will be
primarily concerned with proximity bias in this chapter, which is the most common
form, and unless specified, bias is due to proximity.

Myszkowski [Mys97] and Walter [Wal98] are among the few who have investi-
gated bias in density estimation. Myszkowski reported substantial bias with caustics
(in excess of 10%) using nearest neighbour methods, clearly implying that a naive
approach to density estimation cannot satisfy the requirements for daylighting sim-
ulation.

5.2 A Bias Case Study

A simple case study to illustrate the behaviour of noise and bias is shown as photon
distribution plot in figure 5.1. The 50000 photons are distributed directly in the
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plane rather than being distributed from a light source in order to rule out any bias
inherent in the particle tracing step. The circular highlight in the centre has the
tenfold irradiance (10 W/m2) of the surrounding area (1 W/m2) and represents a
situation analogous to a caustic.

Bias Case Study: Highlight Distribution

Figure 5.1: Photon distribution for highlight case study. The dense highlight
region in the centre of the plane has the tenfold irradiance of the surround-
ings. Density estimates for the case study are taken at points on the green
circumference.

Figure 5.2 is a plot of the RMS (root mean square) noise and mean bias for
1000 density estimates taken outside the highlight on the circumference shown in
figure 5.1. The density estimates are graphed for the uniform, cone, Epanechnikov,
and Silverman kernels.

For all kernels, the noise drops slowly as expected for Monte Carlo, while the
bias hugs the zero axis until ca. 3300 photons per estimate. Bias sets in once
the bandwidth crosses the highlight boundary and photons are gathered from its
interior. For the uniformly weighted density estimates, the bias rises dramatically,
while those using nonuniform weights fare better and suppress bias considerably,
as well as slightly reducing noise. The Silverman kernel appears to be particularly
effective. However, none of the kernels actually eliminate the bias, but merely delay
its onset as the bandwidth increases.

A visual impression of extreme bias can be seen in figure 5.3, which is a false-
colour rendering using the uniform kernel with a bandwidth of 5000 photons. Note
that the highlight barely exceeds an irradiance of 4 W/m2, less than half its actual
value, and boundary bias leads to darkening well into the interior.

Bias and noise are antithetic; while increasing the bandwidth reduces noise, it
can increase bias, and vice versa. This leads to the conflicting requirement of a
large bandwidth to reduce noise, yet a small bandwidth to preserve details and re-
duce bias. Instead of using kernels, what is needed is an adaptive density estimate
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Figure 5.2: Mean bias (top) and RMS noise (bottom) for highlight case
study using 1000 density estimates with uniform, cone, Epanechnikov, and
Silverman kernels.

that adjusts the bandwidth to the illumination.
Wann Jensen recognised the problems inherent in his photon map early on

and proposed a differential checking method [JC95, Jen01]. This limits the band-
width during a photon gathering step if the irradiance monotonically increases or
decreases as more photons are used. While simple and efficient, this approach is
sensitive to noise and difficult to control.

Shirley et al [SWH+95] used density estimation to obtain caustics on a polyg-
onal mesh suitable for viewing with an interactive walkthrough. Their method uses
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Figure 5.3: Falsecolour rendering of highlight case study using uniform ker-
nel and a bandwidth of 5000 photons.

the Silverman kernel and counters boundary bias by reflecting samples near bound-
aries. The bandwidth is adapted to the particle density of each polygon, but is
constant over the polygon surface.

Myszkowski [Mys97] was one of the first to thoroughly investigate bias in den-
sity estimation. He reported substantial bias with caustics (in excess of 10%) using
nearest neighbour methods. He developed an enhanced nearest neighbour (ENN)
method which uses a number of density estimates around the point under consid-
eration to derive a combined bias/noise error estimate for the density estimate at
the centre. The method evaluates this error for a number of bandwidths and selects
one that minimises the error.

Walter et al [WHSG97] extended Shirley’s polygonal mesh approach with more
sophisticated compensation methods. They reduce boundary bias with an elabo-
rate polynomial regression using local weights based on the Epanechnikov kernel.
This requires transforming regression into a density estimation problem. In his PhD
thesis [Wal98], Walter augments this with a bandwidth selection strategy based on
perceptual error metrics for the noise and bias. He uses the Central Limit theorem
to derive a target standard deviation for the initial bandwidth of a density estimate
such that the expected fluctuations will not be visible to a human observer.

More recently, Hey and Purgathofer [HP02] have proposed an advanced den-
sity estimation method, which departs from the assumption that the area containing
the photons is planar, thus compensating for topological bias. The actual area is
derived by tesselating the geometry contained in the density estimate bandwidth.
However, this conflicts with the philosophy of generality behind Wann Jensen’s orig-
inal proposal: the independence of photons from geometry. This constrains Hey’s
method somewhat, since some geometries cannot be readily tesselated, and tes-
selation may also introduce discontinuities in the reconstructed irradiance.

The bias compensating operator proposed here combines aspects from Wann
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Jensen’s and Walter’s approaches. The operator also evaluates density estimates
with increasing bandwidth for the same point under consideration (i.e. concentri-
cally, in contrast to Myszwoski’s approach). The crucial difference is the application
of a binary search within a user-specified bandwidth range. Furthermore, the op-
erator is more robust with respect to noise compared to Wann Jensen’s method
since it estimates the noise in the reconstructed irradiance. We apply the Central
Limit Theorem as Walter has done, but in a different manner. Walter uses it to
obtain an initial bandwidth and detects bias by thresholding deviations in the den-
sity estimates against the estimated noise using a user-specified scaling factor. By
contrast, the proposed method uses the theorem to obtain the likelihood the devia-
tions in the density estimates are due to noise, and use this as a heuristic to drive
a binary search with the goal of minimising probable bias. Because our operator
is designed specifically for more rigorous radiometric applications, we do not apply
any perceptually driven rationale as Walter has done. Unlike Hey and Purgathofer’s
method, the operator knowns nothing about the geometry the photons reside on.
Consequently, it does not compensate for topological bias.

5.3 A Bias Compensating Operator

The general idea of the proposed operator is to perform a binary search for an opti-
mal bandwidth Np during density estimation based on the likelihood that deviations
in the irradiance are due to noise or bias. In order to determine this probability, we
use a running average from which we estimate the variance.

Given an initial minimum and maximum bandwidth Nmin and Nmax, the opera-
tor first determines the expected value, or mean µ of the irradiance from density
estimates f̂ (~x,1), . . . , f̂ (~x,Nmin) using 1, 2, . . . , Nmin photons for point~x:

µ
[

f̂ (~x,Np)
]

=
Nmin

∑
j=1

w( j)
Nw

f̂ (~x, j) , (5.4)

Nw =
Nmin

∑
j=1

w( j) , (5.5)

where w( j) is a normalised weighting function for each sample based on its band-
width, which increases monotonically and ensures that density estimates with high
bandwidth outweigh less reliable ones with low bandwidth. Nw is the weight nor-
malisation factor. The choice of weights is investigated later in section 5.4. Good
results are achieved with quadratic weights of the form w( j) = j2.

µ is our first estimate for the irradiance; any bias present in the estimates up to
Nmin photons cannot be detected. We therefore assume that the irradiance within
Nmin is uniform and contains no bias.

Next, the operator estimates the sample variance σ̂2 based on the mean:

σ̂2 [ f̂ (~x,Np)
]

= µ
[

f̂ 2 (~x,Np)
]
−µ2 [ f̂ (~x,Np)

]
. (5.6)
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The weighting function w( j) used to evaluate µ enforces a reduction in σ̂2 with
increasing bandwidth. We consider σ̂2 an estimator because we make the assump-
tion that the photons are independent and identically distributed. Strictly speaking,
photon distributions are generally not independent and identically distributed, since
there is a correlation along photon paths during distribution as well as in the result-
ing hit points on surfaces. However, we make the simplifying assumption that the
photons within the bandwidth Nmin are identically distributed, based in turn on our
assumption that the irradiance within this bandwidth is uniform and unbiased.

The effectiveness of the bias compensation hinges on µ and σ̂2, we therefore try
to extract a maximum of information to start with. Once initialised, these variables
drive the binary search that follows.

Each recursion of the binary search consists of splitting the interval [Nmin,Nmax]
at Nmid = (Nmin +Nmax)/2, and deciding which subinterval to recurse in based on a
density estimate f̂ (~x,Nmid) using Nmid photons. As for the initial density estimates,
we assume that the irradiance within the current lower bound for the bandwidth Nmin

is uniform and contains no bias. The choice of subinterval hinges on identifying the
potential bias introduced by the estimate f̂ (~x,Nmid). We cannot evaluate the bias
exactly because this requires the actual irradiance f , but we can assume that our
average µ is a reliable estimate of f . From this we can estimate a combined error ε
consisting of noise and an unknown amount of bias. This is simply the deviation of
the new density estimate from the average µ:

ε
[

f̂ (~x,Nmid)
]

= f̂ (~x,Nmid)−µ
[

f̂ (~x,Np)
]
. (5.7)

Since we cannot separate the two components without knowning the exact bias, we
must estimate the noise in ε. We can do this by determining the likelihood that the
deviation is due to noise using the Central Limit Theorem.

Principally, this theorem states that the noise in a set of independent and iden-
tically distributed samples converges to a Gaussian distribution. Many unknown
distributions in nature tend to be Gaussian, and we intend to apply these findings to
the noise distribution in density estimates. Here we make the same assumption as
in the evaluation of the variance estimator (equation 5.6), and assume the photons
are independent and identically distributed.

We verify the applicability of the Central Limit Theorem emprically based on a
series of density estimates in regions of uniform density. Figure 5.4 is a plot of
the noise distribution relative to the mean of 50000 (unbiased) density estimates
in a uniform photon distribution using 1000 photons each. The noise distribution
matches the superimposed Gaussian, which is parametrised by the variance of the
density estimates.

Thus, the probability p that ε is attributed to noise is:

p = e−ε2[ f̂ (~x,Nmid)]/2σ̂2[ f̂ (~x,Np)]. (5.8)

It is normalised to lie in the interval [0,1], and we can apply a rejection sampling
scheme to decide whether we should treat ε as a noise artifact or as genuine bias.
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Figure 5.4: Noise distribution using 50000 density estimates of 1000 pho-
tons each. The distribution matches the superimposed Gaussian based on
the variance of the density estimates, implying that the Central Limit Theo-
rem is applicable to density estimation in areas of uniform density.

We do this by thresholding p against a uniform random variable ξ ∈ [0,1], and ac-
cepting ε as noise if ξ lies within the Gaussian. This effectively amounts to applying
fuzzy logic to the Gaussian boundary.

If ξ< p we recurse in the subinterval [Nmid,Nmax] in order to increase the band-
width. In this case the density estimate f̂ (~x,Nmid) is deemed unbiased and included
in the average µ and estimated variance σ̂2 (equations 5.4 and 5.6), which are up-
dated for the next iteration.

On the other hand, when p is low, recursion will likely take place in the subinter-
val [Nmin,Nmid ] in order to reduce the bandwidth. The density estimate f̂ (~x,Nmid) is
assumed to contain bias and µ and σ̂2 remain unchanged.

The operator thus effectively increases the bandwidth until a probable bias
threshold is reached, in other words, when a systematic error protrudes from
the noise “blanket”. As with all binary methods, the recursion terminates when
Nmin = Nmid = Nmax, with f̂ (~x,Nmid) being the final density estimate.

Since it is difficult to predict how many photons will actually be used by the
operator, the gathering step will need to retrieve all Nmax photons prior to applying
bias compensation. An exception to this rule may be if there is some coherence
between subsequent gathering steps (i.e. neighbouring points), but this is not the
case in general. The photons must be sorted by distance in accordance with in-
creasing bandwidth. In most implementations, the photon gathering routine does
not fully sort the photons for reasons of efficiency, but merely keeps track of the fur-
thest photon by maintaining a maxheap [Jen01, Sed92]. The entire set of gathered
photons could be quicksorted prior to the binary search, but it is more efficient to
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partition each recursive subset such that all photons in [Nmin,Nmid − 1] are closer
than those in [Nmid + 1,Nmax], with the median at Nmid . This way only the photons
are sorted in the recursed intervals, effectively implementing a partial quicksort.

We can tailour the operator to also handle chromatic bias by evaluating equa-
tions 5.4, 5.6, 5.7 and 5.8 in separate colour channels (this assumes the scalar
representation of the irradiance f̂ is an unweighted average over all colour chan-
nels, as would be the case for radiometric applications). No additional recursion
of the binary search is required; the evaluations can be performed for each colour
channel per recursion, based on the spectral irradiance. When deciding upon the
interval to recurse in, we average p over all colour channels and threshold the result
against ξ.

Since the operator is detached from the geometry, it can also be applied to
density estimates with volume photon maps in participating media [JC98]. Volume
caustics would benefit from this, although these phenomena are rarely encountered
in practice.

The initial bandwidth range [Nmin,Nmax] is subject to caveats which the user
should be aware of. Setting Nmin too low may bring out more detail in the illumi-
nation, but also reduce the accuracy of the initial expected value and variance es-
timates for bandwidths up to Nmin. Consequently, the operator may mistake noise
for bias upon evaluating density estimates at higher bandwidths and terminate the
binary search with too low a bandwidth, resulting in excessive noise. On the other
hand, setting Nmin too high will stabilize the binary search in terms of reliably detect-
ing bias, but any bias in the initial density estimates up to Nmin will not be detected,
blurring any detail therein. Setting Nmax too high will impact performance during
photon lookups. The user should therefore choose bandwidths in a reasonable
range, typically where Nmax is roughly 5–20 times Nmin.

The bias compensating operator is summarised as pseudocode in algorithm
5.1. The routine partition(i, j, k) performs the partitioning of the photon subsets
relative to the median at j as described above.

5.4 Results

Applying bias compensation to our highlight case study with initial Nmin = 50 and
Nmax ranging from 50 to 5000 yields the error plots in figure 5.5. The effect of the
sample weighting function w( j) is shown for uniform (w( j) = 1), linear (w( j) = j),
quadratic (w( j) = j2), cubic (w( j) = j3), and exponential (w( j) = e0.003 j) cases.
Uniform weights perform almost as poorly as uniform kernel density estimates, while
linear weights yield only a modest improvement. These functions are not steep
enough with respect to the bandwidth, resulting in a large influence of noisy low-
bandwidth density estimates on the expected value µ. This in turn raises the vari-
ance estimator σ̂2 and the probability of deviation p. Consequently, bias is often
mistaken for noise and a high bandwidth results. Exponential weights also perform
poorly because their initial gradient is too low, rising dramatically once the band-
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procedure biascomp(~x,min,max)
Nmin = min
Nmax = max
gather Nmax photons
for j = 1 to Nmin do

partition( j, j + 1,Nmax)
get irradiance estimate f̂ (~x, j) for j closest photons
include f̂ (~x, j) in average µ

end for
evaluate σ̂2

while Nmin < Nmax do
Nmid = (Nmin + Nmax)/2
partition(Nmin,Nmid,Nmax)
get irradiance estimate f̂ (~x,Nmid) for Nmid closest photons
ε = f̂ (~x,Nmid)−µ
p = exp(−ε2/2σ2)
if random ξ ∈ [0,1]< p then {ε probably noise, recurse in [Nmid ,Nmax]}

include f̂ (~x,Nmid) in average µ
update σ2

Nmin = Nmid
else {ε probably bias, recurse in [Nmin,Nmid ]}

Nmax = Nmid
end if

end while
return f̂ (~x,Nmid)

Algorithm 5.1: Bias compensating operator
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width already extends well beyond the bias threshold. On the other hand, quadratic
and cubic weights yield consistenly lower bias and noise than the other functions.
The results that follow all use a quadratic weighting scheme.
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Figure 5.5: Mean bias (top) and RMS noise (bottom) for the highlight case
study using bias compensation with uniform, linear, quadratic, cubic, and
exponential sample weights w( j).

Comparing figure 5.5 to the kernel density estimates in figure 5.2, we can see
that the operator clearly reduces bias with quadratic weights at the expense of a
slight increase in noise. Due to the stochastic nature of the bias compensation,
there remains a small residual bias of ca. 0.2% from the occasional density estimate
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in which bias is mistaken for noise. By contrast, the bias continues to rise with kernel
based estimates.

Figure 5.6 is a falsecolour representation of the highlight case study rendered
with bias compensation, and the bandwidths used in the rendering. Boundary bias
is substantially reduced, and the highlight contours are preserved. The irradiance
values agree favourably with the reference (10 W/m2 in the highlight, 1 W/m2 out-
side). Predictably, some noise is visible around boundaries. The bandwidth image
confirms that the operator is consistent in using a low bandwidth at boundaries and
a high bandwidth where the irradiance is uniform. The average bandwidth was
about 1030.

Figure 5.6: Falsecolour renderings of highlight case study with bias com-
pensation using a bandwidth of 50–5000 photons (top), and resulting band-
width (bottom). Bias compensation reduces the bandwidth around bound-
aries, while increasing it in regions of uniform irradiance.

Figure 5.7 is a cross-sectional irradiance plot of the highlight case study using
a fixed bandwidth and bias compensation. Bias causes the flanks of the highlight
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to flare and the plateau to taper. With bias compensation, the flanks are steep and
the plateau’s width is preserved to a large extent. The price to pay is the obvious
noise in the highlight. The plot also exhibits a notable characteristic of the bias
compensating operator: it overpredicts the bandwidth on the rising (left) flank as
it makes the transition into the highlight, and underpredicts the bandwidth on the
falling (right) flank as it leaves the highlight region. This explains the asymmetry
of the bias compensated plot. This behaviour is directly influenced by the sample
weighting scheme.
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Figure 5.7: Cross-sectional irradiance plot of highlight case study using a
fixed bandwidth of 2500 photons, and bias compensation with a variable
bandwidth of 50–2500 photons. Bias affects the flanks of the highlight,
which bias compensation strives to preserve. The resulting tradeoff in noise
is evident.

Figure 5.8 shows the results of applying chromatic bias detection. The chroma
case study consists of uniformly distributed photons of different colours divided into
red and blue sections. The photon flux averaged over all colour channels is identical.
Treating µ, σ̂2, ε, and p as scalars derived from the averaged (monochromatic)
photon flux leads to chromatic bias; the boundary between the red and blue sections
goes undetected, and a high bandwidth is used throughout. By evaluating these
variables in separate colour channels, the operator can detect the boundary and
modulate the bandwidth accordingly.

Having tested and developed the operator primarily to handle caustic contours,
we now apply the operator to a smooth gradient. The photons for this case study
are distributed in a linear density gradient to yield an irradiance ranging from 0 to
1 W/m2 as shown in figure 5.9. Density estimates are performed on the green
line passing through the plane. The resulting irradiance plot can be seen in figure
5.10 for density estimates using a fixed bandwidth of 50 photons and a variable
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(a) (b) (c) (d)

Figure 5.8: Chromatic bias case study. Fixed bandwidths of (a) 50 and (b) 1000
photons, (c) monochrome and (d) chromatic bias compensation with bandwidth of
50–1000 photons.

bandwidth of 50–1000 photons. There is considerable noise in both cases, indi-
cating that bias compensation detects the gradient and favours low bandwidths.
More importantly though, there is no apparent bias with respect to the actual irra-
diance. However, because the operator is nondeterministic, it does introduce noisy
patches as seen in the falsecolour renderings shown in figure 5.11. These arise
from instances in which the gradient causes the operator to curtail the bandwidth
dramatically. The basic problem here is that there is no information about the band-
widths chosen in the vicinity of these regions in order to enforce some degree of
coherence.

Bias Case Study: Gradient Distribution

Figure 5.9: Photon distribution for gradient case study. The irradiance
ranges from 0 to 1 W/m2. Density estimates are taken at uniform inter-
vals on the green line bisecting the plane.

An example of bias compensation applied to real caustics can be seen in figure
5.12. The metal ring caustic was rendered using ca. 500000 caustic photons. The
renderings with fixed bandwidths used 50 and 2000 photons. While 50 photons
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Figure 5.10: Cross-sectional irradiance plot of gradient case study compar-
ing density estimates with a fixed bandwidth of 50 photons, density esti-
mates using bias compensation with a bandwidth of 50–1000 photons, and
the actual irradiance per analytical solution.

produce well defined contours, there is some noise in the interior of the caustic.
Using 2000 photons drastically reduces the noise, but also blurs the contours which
we would like to preserve. Applying bias compensation to this scene with a band-
width of 50–2000 photons yields a satisfactory trade-off between the two extremes.
Noise is reduced in the interior of the caustic by raising the bandwidth, yet contours
are preserved by lowering it. The average bandwidth in the rendering is ca. 270
photons, indicating that low bandwidths to preserve details dominate in this scene.

Figure 5.13 is a more complex situation involving caustics. The venerable Cor-
nell box is flooded with water, resulting in a caustic ripple pattern in the lower portion
of the box from 250000 photons. Since the water surface is specular, the sub-
merged portion of the box is entirely illuminated by caustics. Faint caustics are also
visible on the ceiling from reflections on the water surface. These caustics are prob-
lematic because they are smooth and lack well-defined contours, and may therefore
be mistaken for low frequency noise. As a consequence, bias compensation using
50–500 photons exhibits noisy patches in the submerged portion from inconsisten-
cies similar to those in the gradient case study. Rendering with a fixed bandwidth of
50 photons produces obvious noise in the caustics, particularly on the floor. With a
fixed bandwidth of 500 photons, the caustics are noticeably darker and lack sparkle
as a result of proximity bias. There is also some minor boundary bias at the floor
edges.
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Figure 5.11: Falsecolour renderings of gradient case study with fixed bandwidths of
50 and 1000 photons (top and centre), and bias compensation using a bandwidth
of 50–1000 photons (bottom). While bias compensation favours low bandwidths in
order to reduce bias, the lack of coherence among neighbouring density estimates
leads to noisy patches.
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Figure 5.12: Metal ring caustic rendered with fixed bandwidths of 50 and 2000 pho-
tons (top and centre), and with bias compensation using 50–2000 photons (bottom).
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Figure 5.13: Flooded Cornell box with fixed bandwidths of 50 and 500 photons (top
and centre), and with bias compensation using 50–500 photons (bottom).
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5.5 Performance

Given the initial bandwidth range [Nmin,Nmax], the operator performs Nmin initial
density estimates which requires sorting the Nmin closest photons according to their
distance. The subsequent binary search performs dlog2(Nmax−Nmin + 1)e itera-
tions, during each of which the subintervals of size Nmax−Nmin +1,(Nmax−Nmin +
1)/2, · · · ,2 are partitioned. The partitioning routine is responsible for the bulk of
the additional overhead incurred by bias compensation, since it must recurse within
each subinterval until the median is in place (this interval subdivision can be eas-
ily implemented iteratively), which is tantamount to quicksorting a single element
[Sed92]. Since the found photons are stored in a maxheap during the nearest
neighbour search, they may infact be partially sorted. For this reason we minimise
the average number of recursions while partitioning by choosing our median in the
middle of the interval. In our results, we observed an average of only 1 recursion
in the partitioning routine when choosing the median from the middle. By contrast,
choosing a median at the interval extremes increased the average number of recur-
sions to 4.

Another aspect affecting performance is the number of photons to search for
prior to subjecting them to bias compensation. Conservativism could backfire as
we may gather too few photons and would have to restart the search with a higher
bandwidth. Ideally, we should find as many photons as will actually be used by
the operator. This would require a prediction for the bandwidth, which is difficult to
achieve reliably. Depending on the raytracing algorithm, a prediction may be made
based on a density estimate history if there is some coherence between subsequent
gathering steps (i.e. neighbouring points)1. In general, however, this is not the case,
and the gathering step will need to retrieve all Nmax photons to start with, as is done
in the current implementation.

Performing the bias compensation during photon gathering is not an option, ei-
ther. Wann Jensen’s analogy that the nearest neighbour search entails “expanding
a sphere around the intersection point until it contains enough photons” [Jen01]
is intuitive, but misleading. In actuality, nearest neighbour search constrains the
search volume until it contains the required number of photons. Bias compensation,
on the other hand, would effectively require expanding the search volume during the
binary search. Consequently, bias compensation cannot be performed “on the fly”
during nearest neighbour search.

Table 5.1 lists rendering times for the examples in section 5.4 using the bias
compensating operator compared to renderings using the fixed minimum and max-
imum bandwidths Nmin and Nmax. The location and number of density estimates is
identical for fixed and variable bandwidths per scene. Total times refer to the time
spent rendering photon contributions, and are expressed relative to Nmin for each
scene. Each total is broken down into the percentage spent in the density estimate

1Coherence could also be enforced through a caching and interpolation scheme of bandwidths at
neighbouring points.
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(summing of photon flux, also binary search and evaluation of µ and σ̂2 with bias
compensation), photon lookup in the k-d tree, and photon partitioning (with bias
compensation). We can see that bias compensation incurs an additional overhead
of 20–30% compared to renderings using Nmax. Most of this is attributed to photon
partitioning, which typically takes up 10–20% of the total rendering time. The time
spent in the density estimate is also increased by a factor of 1.5–4 by the binary
search, although its contribution to the total is small. Not surprisingly, the bulk of
the rendering time in all cases is taken up by photon lookups. These are particu-
larly dominant with the metal ring, where bias compensation affects performance
only marginally. This is because the renderings were done with an increased initial
search radius for photon lookups in order to bring out the faint caustic from reflection
off the outer rim.

Time
Scene Bandwidth Total Density

estimate [%]
Photon
lookup [%]

Partitioning
[%]

Highlight 50 1.0 5 95 0
5000 107.3 7 93 0
50/5000/1030 131.0 7 75 18

Chroma 50 1.0 5 95 0
1000 22.0 5 95 0
50/1000/655 29.3 13 71 16

Gradient 50 1.0 4 96 0
1000 21.0 5 95 0
50/1000/378 27.5 11 72 17

Metal ring 50 1.0 1 99 0
2000 3.9 1 99 0
50/2000/269 4.0 2 95 3

Cornell box 50 1.0 2 98 0
500 9.6 1 99 0
50/500/247 11.7 8 81 11

Table 5.1: Performance of fixed bandwidth vs. bias compensation. Total rendering
times are relative to the minimum bandwidth for each scene. Each total is broken
down into the percentage spent in the density estimate, photon lookup, and photon
partitioning (when using bias compensation). Bandwidths for bias compensation
are given as minimum/maximum/average.

5.6 Conclusions

This chapter has presented a breakdown of errors inherent in the photon map, con-
sisting of noise and various forms of bias. These errors are inversely related to
each other and subject to the density estimate bandwidth. In situations involving
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caustics, low bias is preferred in order to preserve detail. On the other hand, in
situations involving uniform irradiance, low noise is preferred. This implies that an
optimal bandwidth must be dynamically adjustable to the illumination, motivating the
development of a bias compensating operator.

The operator uses a binary search within a specified range for the optimum
bandwidth. This search is governed by error estimates extracted from the recon-
structed irradiance in order to identify probable bias using the Central Limit Theo-
rem. Unlike previous work, the operator is specifically geared toward quantitative
analysis such as applications in lighting design. It is conceptually simple and gen-
eral enough to be used in most density estimation frameworks because it does not
rely on additional information, but rather makes use of what can be deduced from
the reconstructed irradiance.



Chapter 6

Analytical Validation

The validation of a global illumination algorithm and its implementation is a prereq-
uisite to demanding practical applications such as lighting simulation. It serves as
an indication of the error incurred in the simulation by comparing the results with
a reference in a series of representative case studies to which the algorithm is ap-
plied.

The primary reference for such a validation are analytical case studies. These
involve applying radiometric theory to very simple geometry for which a solution
is tractable and can be computed by hand. The scope of such a validation is quite
limited, but its results are most reliable. Consequently, there is an emerging demand
for a standardised set of analytical test scenes in the global illumination research
community. Szirmay-Kalos et al. [SKKA01] proposed such a set, and more recently,
technical committee TC 3.33 of the Commission Internationale de l’Éclairage (CIE)
has been formed specifically to develop a set of test scenes based on analytical
solutions and measurements [MF03].

6.1 Validation Case Study

A very simple analytical solution based on a diffuse unit sphere containing an
isotropic point light source at its origin can serve as a validation case study. This
setup results in a constant irradiance E and radiance L at every point on the in-
ner surface of the sphere. This type of scene is commonly referred to as a fur-
nace [SJ00, SKKA01, MF03]1, since it is based on radiation transfer in a uniform
closed environment. The sphere is a special case of the furnace which is particu-
larly amenable to analytical solution, as demonstrated by Szirmay-Kalos [SKKA01]
for diffuse and ideal specular surfaces when using arbitrary isotropic EDFs.

Since the illumination within the sphere is uniform, there is no proximity bias.
There is also no boundary bias for density estimates on the sphere’s surface.
This setup effectively simulates an integrating sphere, originally used to measure

1The author was initially unaware of these references and developed the spherical case study
independently. The references were subsequently added for completeness.

98
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a lamp’s emitted flux. Integrating spheres can also be applied as reflectometers to
measure the reflectance of material samples.

Given the light source intensity Il , the irradiance from the light source at a point
~x on the surface of the unit sphere is

El (~x) = Il
cosθ
|~x|2

= Il . (6.1)

RADIANCE does not support point sources, but this can be approximated by
a sufficiently small spherical source so as to minimise obstruction of reflected pho-
tons. For the direct component, spherical sources are not partitioned and thus
behave like point sources. For a spherical source of radius rl � 1 and radiance Ll ,
the irradiance is then

El (~x) = Ll cosθdω = Llπ
(

rl

|~x|

)2

= Llπr2
l . (6.2)

Given the sphere reflectance ρ, the irradiance on the inner sphere surface can
be found by expanding the diffuse rendering equation into a geometric series, and
taking the limit as the number of reflections approaches infinity:

E = El +
Z

~ωi∈Ω
L(~ωi)cosθdω (6.3)

= El + L
Z

Ω
cosθdω (6.4)

= El + πL (6.5)

= El + π
[ρ

π
[El + E]

]
(6.6)

= El + ρEl + ρ2El + ρ3El + · · · (6.7)

= El

∞

∑
i=0

ρi (6.8)

=
El

1−ρ
. (6.9)

Paradox though it may seem, the spherical case study also has the advantage
of being exempt from topological bias2. To verify this, consider the geometry in
figure 6.1. During a density estimate, the photons found on the inner surface of
the sphere occupy a spherical cap, or zone, extending to the furthest photon with
distance rp. The estimated area populated by the photons (included in the kernel
normalisation factor) will be Â = πr2

p. The actual area A is that of the cap, and can
be found from its solid angle ω:

A = ω |~x|2 = 2π(1− cosθ) . (6.10)

2This holds not only for the unit sphere, but also in the general case.
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~x

θ

‖~x‖= 1

rp

Figure 6.1: Geometry for photon gathering in spherical case study. The
area of the cap occupied by the photons and the assumed (planar) area
are equal, hence the case study is not subject to topological bias.

The angle θ subtended by the cap is related to rp by

sin
θ
2

=
rp

2 |~x| =
rp

2
. (6.11)

Substituting this into the area confirms the estimated and actual areas are the same:

A = 2π
(

1− cos
(

2sin−1 rp

2

))
(6.12)

= 2π
(

1−
(

1−2sin2
(

sin−1 rp

2

)))
(6.13)

= πr2
p = Â. (6.14)

6.2 Results

The spherical case study was used to validate the diffuse indirect illumination re-
constructed from the global photon map. The reflectance of the sphere was chosen
to be high (ρ = 0.9) in order to bloat the error propagated during particle tracing.
The direct component El computed analytically by the stock RADIANCE code was
subtracted, since we are only interested in the photon map’s contribution. The vali-
dation consisted of constructing photon maps of Np = 50000, . . . ,1000000 photons,
and using each map in an rtrace run with a bandwidth of 0.05Np photons. Each
rtrace run evaluated the irradiance at 1000 uniformly distributed points on the
inner surface of the sphere. The irradiance was evaluated directly via density es-
timation at the points under consideration (no ambient rays were spawned for final
gathering).

As with all Monte Carlo simulations, the quality of the photon distribution step
hinges on the underlying random number generator (RNG). An RNG exhibiting
strong correlation or spectral shifts in the sequences it produces can be a source of
bias in the simulation. Three RNGs available in standard libraries on UNIX platforms
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were used for the validation: SystemV-style drand48() and erand48(), and BSD-
style random(). The former two are standard linear congruential generators and
deemed obsolete according to the documentation, while the latter is (theoretically) a
more sophisticated additive feedback generator. The RNG seeds were identical for
each test run. In the case of erand48() separate generator states were maintained
for photon emission, scattering, and russian roulette.

The flux stored with each photon was represented as a float triple in order to
eliminate the bias introduced by the popular RGBE representation [War91b]. This
format represents RGB flux as 3 mantissa bytes and a common exponent byte, re-
sulting in rounding errors and therefore underestimation. The mantissas are only
accurate to the second digit for saturated colours, yet considering the memory sav-
ings (almost 30% for this implementation), the minor bias incurred is a small price
to pay. In this case study, the RGBE representation was found to introduce a bias
of ca. -0.5%.

In the course of the validation it was also discovered that bias in low band-
width density estimates is reduced by gathering an extra photon and using the av-
eraged distances of the two furthest photons for the maximum photon distance rp

in equation 3.17 (the extra photon will be beyond this averaged distance and must
be discarded). This confirms the validity of this optimisation suggested by Chris-
tensen [Chr01]. Without this measure, overprediction of 1% or more was observed
for bandwidths below 50 photons. While such low bandwidths are not uncommon
in practice (particularly for caustics), the merits of this optimisation are debatable
given the small reduction in bias.

The results of the analytical validation are plotted as relative bias in figure 6.2.
The particle transport simulation is carried to completion in the forward pass, hence
the photon map is already converged, although there is the inevitable noise in the
data. The noise tends to decrease as more photons are distributed and gathered.
Increasing the number of photons only affects the noise, not the bias (recall that
the spherical topology does not introduce bias of any kind with uniform irradiance).
The graph also reveals erratic behaviour resulting from the different RNGs. The
random() generator, which is generally accepted as a superior RNG, performed
disappointingly with several seeds. The resulting illumination strays considerably
above and below the zero axis. The simpler drand48() delivers slightly better re-
sults, but with a slight positive bias. The erand48() generator with separate states
gives the most consistent results and appears to introduce less noise, presumably
due to stronger decorrelation compared to using a single state. With this RNG, the
bias typically lies within the ± 0.5% margin, which is more than adequate for even
the most demanding applications.

The disparities of the tested RNGs are quite surprising, particularly given that
random() is well tested and documented. Yet research in practical application of
RNGs has shown that generators which perform well in statistical tests can fail in
Monte Carlo applications [Hel98, Cod93]. While random() has a very large period
(on the order of 231− 1), this does not guarantee good spectral properties or the
absence of correlation. Furthermore, unlike drand48() and erand48(), the se-
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Figure 6.2: Relative bias for spherical case study applied to photon maps
of 50k-1M photons using the drand48(), erand48(), and random() gen-
erators.

quences produced by random() are not portable across different platforms when
using identical seeds. This appears to arise from differences in the size and ini-
tialisation of the state array used by the RNG. Portable sequences are a desirable
property in rendering, particularly when correlation is needed between frames in
animations [Chr01].

Applying the case study to RADIANCE Classic allows comparison with the pho-
ton map. While the photon map is already converged, we are interested in the
convergence rate of RADIANCE Classic. The two governing parameters in this
test are the number of ambient bounces (-ab) and the number of ambient divisions
(stratified samples, -ad). The former affects the bias of the solution, while the latter
influences the noise. As with the photon map, we subtract the direct component.

RADIANCE Classic’s ambient illumination code is optimised to terminate rays
based not only on their recursion depth, but also on their weights, which are thresh-
olded against a weight limit (specified with the -lw option). Rays below this limit are
truncated and an ambient value (specified with -av) is used instead. This ambient
value can be moderated with the computed ambient illumination to form a moving
average for scenes in which the indirect illumination fluctuates little. More accurate
results can then be achieved with fewer ambient bounces by making an educated
guess for a suitable ambient value.

The ambient illumination code attenuates the ray weights based on an assumed
average reflectance of 0.5 for all surfaces. For scenes involving high reflectance
such as the spherical case study, this clearly leads to premature truncation of am-
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bient rays and thus substantial negative bias. To avoid this when applying the case
study, ray weights were not thresholded (-lw 0). Furthermore, the direct threshold
was also set to zero (-dt 0), which disables RADIANCE’s optimisation of estimat-
ing the direct illumination from light sources based on statistical visibility estimates,
and forces it to perform an explicit visibility test via shadow rays instead. Together,
these measures force RADIANCE Classic to consider all relevant higher order am-
bient bounces and direct illumination components to attain maximum accuracy. We
have thus tailoured RADIANCE Classic to suit the validation, whereas under stan-
dard conditions the described optimisations are in effect and can compromise the
results.

A factor which must generally be taken into consideration for a validation is
RADIANCE’s irradiance cache. Its interpolatory behaviour results in smearing and
proximity bias very similar to the photon map. However, proximity bias is not an
issue in this case study and should only affect the noise, not the bias. Disabling
the irradiance cache is not an option anyway, as it results in prohibitive computation
times.

Figure 6.3 is a plot of the relative bias for rtrace runs using up to 40 ambient
bounces with the number of ambient samples set to 1000. The plots used different
settings of -av in order to assess its effect on the bias. With an ambient value of
zero, RADIANCE Classic converges from below, starting with an enormous bias of
-90%, which is of course expected with such a high reflectance. The bias drops
below 1% after 33 ambient bounces. In practical application, RADIANCE Classic
is rarely used with more than 7 ambient bounces. With an overestimated ambient
value of 4.5El , RADIANCE starts with a positive bias of 30% and already drops
below 1% after 25 bounces. Note that the convergence rate itself does not improve,
but rather the error introduced by the truncated ambient rays. Specifying the exact
indirect illumination (uniform incident radiance of 9El/π) for the ambient value, RA-
DIANCE Classic is immediately converged with no bias to speak of. This is however
a contrived situation, since in practice the exact ambient illumination is unknown and
must be either estimated or determined via trial and error. While scenes with a high
reflectance as in this case study are rarely encountered in practice with RADIANCE
Classic, the validation shows that there is a potential for bias with reflectances over
0.5 when using conservative settings of -ab, or if -av is poorly chosen or not used
at all.

Figure 6.4 compares the relative performance of the photon map and RADI-
ANCE Classic with respect to computation time. For the photon map this also in-
cludes the time spent in the forward pass. Times are for a Pentium II 400 MHz
system running Linux, and are presented on a logarithmic scale. RADIANCE’s slow
convergence is evident, while the photon map delivers results with sufficient accu-
racy in a fraction of the computation time. RADIANCE is only on par with the photon
map if the optimum ambient value is used, although it is up to the user to find this
setting. Estimating reasonable ambient values can be difficult and time consuming;
the practical implications therefore speak in favour of the photon map.
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Figure 6.3: Relative bias for spherical case study with RADIANCE Classic.
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6.3 Validation with Lafortune BRDF

Because the radiance and irradiance is uniform for every point in the spherical case
study, the setup cannot reveal errors in the sample ray distribution. In this sec-
tion we take this paradigm further, and validate the photon map based on specular
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reflection. Rather than using RADIANCE’s built in Gaussian model, we use the
popular multilobed Lafortune BRDF model as an example. This model will become
significant in the next chapter due to its application in the experimental validation.
As a prerequisite it must therefore be validated in conjunction with the photon map.
Details on the Lafortune model can be found in appendix B.2.

The validation BRDF consists of a constant diffuse term fr,d and a single cosine
lobe with coefficients Cx,Cy,Cz and exponent n. The derivation of the solution is
greatly simplified by setting Cx = Cy = 0, whereby the cosine lobe is aligned with
the surface normal. This results in rotational symmetry with respect to the incident
and exitant directions, reducing them to angles θi and θr relative to the normal.

fr (θi,θr) = fr,d +(Cz cosθi cosθr)
n . (6.15)

Such a material is obviously highly unrealistic, but still fulfills the requirements for a
physically valid BRDF. In particular, Helmholtz reciprocity is satisfied if θi and θr are
exchanged in equation 6.15.

The solution is based on a series expansion similar to equation 6.9, but bur-
dened by the directional component of the BRDF. As a consequence, the irradiance
is constant for any point on the inner sphere surface, but the radiance varies with
the incident angle. The derived expression appears to defy a closed form represen-
tation, and is instead distilled into a recursive schema. Details of the full derivation
can be found in appendix D.

Using the simplified Lafortune BRDF defined in equation 6.15, the solution for
the irradiance E at any point on the sphere’s inner surface is:

E = El [1 + a] , (6.16)

where

a = 2π
[

fr,d

2
[1 + a] +

Cn
z

n + 2
[1 + b]

]
, (6.17)

b = 2π
[

fr,d

n + 2
[1 + a] +

Cn
z

2n + 2
[1 + b]

]
. (6.18)

Strictly speaking, this solution is not analytical, since the expression must be
evaluated numerically. It is nevertheless a means to obtain a theoretical reference
value, and this is the essence of analytical validation in the broad sense.

The results of the validation are shown for the photon map in figure 6.5. As in
the diffuse case, three RNGs were tried (drand48(), erand48(), and random()).
As above, the photon flux was represented as float triples, and photon irradiance
was visualised directly.

The RNGs exhibit similar behaviour as in the diffuse case, with erand48() once
again producing the most consistent results in terms of proximity to the zero axis,
with a minimal bias also within the ± 0.5% margin.
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6.4 Conclusions

Analytical validation is an effective means of ascertaining the accuracy and funda-
mental soundness of a global illumination algorithm. Though necessarily simple and
constrained in scope, this approach defines a controlled environment which is gen-
erally more tractable than even the simplest setup used in a physical validation. The
spherical case study has shown both for diffuse reflection and for a special case of
the Lafortune BRDF model that the photon map produces minimal deviations within
± 0.5%. These deviations are predominantly attributed to noise, which gradually
diminishes with increasing bandwidth. However, we have also seen that the devia-
tions can vary significantly depending on the random number generator used, and
that a well behaved generator is essential for unbiased Monte Carlo applications.

The photon map’s primary advantage is that it is a complete solution to the indi-
rect illumination in the scene. RADIANCE Classic, on the other hand, depends on
the recursion governed by the number of ambient bounces (-ab). If this parameter
is set too low, underprediction results. This is particularly important with high re-
flectances as is the case with our spherical case study. Furthermore, optimisations
such as thresholding based on ray weights can also result in underprediction in
such scenes due to the assumption that the average reflectance is 0.5, and modify-
ing the ray weights accordingly. In order to obtain an unbiased solution comparable
to that of the photon map, RADIANCE Classic requires over 30 ambient bounces for
our case study – a value almost never used in practice. Naturally, the performance
suffers and computation times are inordinately higher compared to photon map. All



CHAPTER 6. ANALYTICAL VALIDATION 107

things considered, the findings of the analytical case study speak well in favour of
the photon map.



Chapter 7

Experimental Validation

The preceding chapter covered the analytical validation of the RADIANCE photon
map. Where the complexity of the case studies precludes analytical solution, one
may be tempted to resort to a numeric solution – only to realise that this is exactly
what a global illumination algorithm effectively implements. In the case of novel
algorithms like the photon map, however, comparison with numerical solutions pro-
vided by a tried and proven algorithm like RADIANCE Classic may be feasible,
provided the latter has itself been validated.

The ultimate validation reference lies in experiments involving radiometric or
photometric measurements of physical models. This is the most flexible validation
method, with the scope only limited by the constraints of the experimental setup.
However, it involves innumerable problems that can compromise the accuracy of
the measurements, which is in general difficult to quantify. A large number of pa-
rameters can introduce errors, and the bulk of the time and effort invested in the
validation is geared toward reducing this error in order to obtain a reliable reference
to compare with the simulation. For this reason, even the simplest physical valida-
tion turns out to be a formidable, highly complex, and time consuming undertaking.

Experimental validations are very rare in computer graphics, primarily because
they are difficult and generally go beyond the scope of what’s required in main-
stream applications – mainly to produce visually pleasing and convincing imagery.
Not so with lighting simulation, where physical accuracy is paramount. With the ad-
vent of physically based rendering, validations have become increasingly important
as a benchmark for physically based algorithms.

To date, there are very few documented instances of experimental validation
applied to density estimation algorithms, hence part of the work in developing the
RADIANCE photon map involved the challenge of validating the module with mea-
surements. Drago and Myszkowski [DM01] are among the few who undertook a
validation of a geometry-bound density estimation particle tracing algorithm similar
to Walter’s [Wal98] using lighting measurements of the Aizu University atrium, as
well as perceptual comparison with the actual scene.

RADIANCE Classic, on the other hand, has been subject to more analysis.

108
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Grynberg undertook one of the first attempts at an experimental validation [Gry89],
while Mardaljevic [Mar99] undertook a more recent validation under daylight condi-
tions using a variety of measured skies and importing these into RADIANCE using
sky models. Reinhart and Walkenhorst [RW01] also undertook a validation of dy-
namic daylight coefficients using RADIANCE in a full scale test office fitted with
external venetian blinds based on over 10000 measured sky conditions.

The purpose of the validation presented here was to test the principle behind
the photon map, rather than to concentrate on the daylighting aspects. The valida-
tion should therefore be considered exemplary, and by no means comprehensive.
Furthermore, the emphasis lies in methodology and error handling rather than the
case studies themselves. Consequently, the case studies are kept simple for the
sake of tractability.

7.1 Validation Methodology

The primary qualities one strives for in an experimental validation are:

Accuracy: the measurements should be a reliable reference for comparison

Reproducibility: the measurements are carried out in a controlled environment
such that identical setups produce identical results for different measure-
ments and with a minimum of preparation

Tractablity: the complexity of the setup is limited to the extent where it can be
broken down in such a way that sources of error can be isolated both on the
physical and simulation side

The guiding principle behind the methodology chosen for the photon map is to
break the validation up into tractable component case studies which can be checked
individually. Where possible, the accuracy of the measurements can be assessed
by comparing them to analytical estimates. Once the accuracy of the components
has been ascertained, they can be combined to form more complex compound
case studies which would be too complex and intractable to validate as a whole. It
is assumed that the validity of the component case studies ensures the validity of
the compound case studies.

7.2 Validation Setup

The validation setup is shown in figure 7.1. It consists of the following components:

• A test box with a window. A very simple geometry to study light transport
with.
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Figure 7.1: Experimental validation setup

• Absorbing and reflecting materials on the inner walls of the box. Absorb-
ing materials allow isolation of individual light transport modes in component
case studies, thereby contributing to tractability.

• Illuminance sensors in the box. These are the instruments which deliver the
data for the validation.

• An artificial light source. This is preferable to daylight in terms of stability and
contributes to reproducibility.

• A diffuse panel which is placed over the front of the box to determine the
lamp’s emission distribution.

• An HDR (high dynamic range) camera to acquire intensity distribution images
on the panel.

• An absorbing curtain with a cutout to constrain the incident light to the solid
angle subtended by the front of the box in order to suppress stray reflections.

These components are described in detail in the following subsections.

7.2.1 Test Box

The simple test box was constructed with the proportions of a typical office (0.6 ×
0.5 × 1.2 m). It consists of an aluminium frame and panels held in place by clamps
for easy assembly. The box’s interior is accessible via a removable lid. A window
admits light and can be supplemented with a daylight system. Apertures at the front
and back faces can accomodate an HDR camera lens to allow visual monitoring of
the lighting levels within. These apertures are covered with the wall material during
illuminance measurements. Figure 7.2 is an HDR image of the test box.
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Figure 7.2: Experimental validation test box

7.2.2 Illuminance Sensors

The top, bottom, and sides of the box have slots spanning the entire length for three
sensors which measure illuminance in the box interior and can be positioned at arbi-
trary distances to the window in 1 cm increments. It was assumed that the influence
of these interior sensors on the interreflection within the box was negligible, given
the small sensor area.

The sensors are guided along belts. Each belt is covered with the box’s current
wall material in order to prevent light leakage through the slot. The material strip is
fastened to the belt with a spring mechanism. This ensures that the strip moves with
the belt, yet can be exchanged with little effort. The three belts per side are driven in
parallel by a shaft, which is operated manually via a handwheel with detents. This
setup can also be upgraded with a stepper motor, which could perform the mea-
surements much faster under software control. The sensor guidance mechanism is
shown in figure 7.3. Positioning errors for this mechanism are estimated at ±2mm,
and considered negligible in their effect on the measurements.

The sensors are equipped with a V (λ) filter which defines a photometric spec-
tral response. They cover a dynamic range of 100000 lx which is divided into a
low and high range with transition at 10000 lx. The sensor error is a combination
of absolute and relative components relating to its electrical and photometric char-
acteristics. The absolute error is mainly incurred by its circuitry (voltage to current
converter, amplifier) and is specified as ±0.05% of the maximum for each range,
i.e. ±5 and ±50 lx for the low and high ranges, respectively. The relative error ac-
counts for deviations in the V (λ) filter, the cosine factor correction, and the linearity
of the signal, specified as ±4%. Each sensor is individually calibrated against a
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Figure 7.3: Schematic of sensor guidance mechanism, top and side views.

reference sensor prior to the validation.
Data from the illuminance sensors is collected with an Agilent multimeter con-

nected via RS-232 interface to a garden variety PC, running in-house software un-
der Linux. The error incurred by the multimeter is on the order of 0.1% and therefore
negligible. Five measurements are made per sensor position in order to obtain av-
eraged values.

7.2.3 Light Source

Rather than using sunlight as a light source, which is subject to fluctuation and re-
quires the use of empirical sky models, it was decided to perform the validation with
a powerful floodlight with known intensity distribution. This ensures that the mea-
surements are carried out in a controlled and reproducible environment. The flood-
light (Philips ArenaVision) is equipped with a 1 kW HID (high intensity discharge)
bulb and mounted on a fully extended tripod. Due to limited ceiling clearance, the
box is also inclined to obtain an effective incident angle of ca. 60◦ to the box win-
dow. Stray light is blocked by a curtain between the lamp and box, with a cutout
large enough to just illuminate the box’s front face.

Four additional exterior sensors were mounted on the front face of the box near
the window corners in order to monitor the direct illuminance from the light source.
This avoids having to depend on specifications from the lighting manufacturer, since
the emission is subject to a maintenance factor accounting for depreciation and
aging. This factor can vary dramatically [DM01] and linearly influences the results of
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the simulation. The actual direct illuminance can thus only be determined accurately
by measurement, which is what the exterior sensors accomplish.

These sensors helped establish the warm-up duration for the lamp at the begin-
ning of each validation measurement (ca. 30 minutes). The sensors also revealed
slight temporal fluctuations in the lamp illuminance during the course of measure-
ments (figure 7.4). These fluctuations directly affect the illuminance of the interior
sensors. To cancel them, the data from the interior sensors is taken relative to the
average illuminance of the four front sensors, which is measured simultaneously
with the interior sensors for each sensor positioning cycle. This dimensionless rela-
tive illuminance data can be compared and plotted coherently. An additional benefit
is the fact that the lamp model used in the simulation can have an arbitrary emitted
luminance.
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Figure 7.4: Illuminance plot of the four exterior sensors at the box window
corners monitoring the light source over a period of ca. 19 minutes. The
illuminance for each sensor fluctuates by up to±2%. The light source EDF
(covered in section 7.3.6.2) is responsible for the higher illuminance at the
upper sensors, and is not subject to fluctuation.

7.2.4 Materials

The inner surfaces of the test box were intended to be lambertian, and the compo-
nent case studies required absorbing (black) and reflecting (gray) walls. Unfortu-
nately, real materials don’t work this way; no material is perfectly diffuse or 100%
absorbing. Candidate materials had to be selected based on their approximation of
our ideal, and simulated accordingly. Therein lay the biggest challenge of the entire
validation. One candidate was barium sulphate, a highly reflective substance com-
monly used to coat the interior of integrating sphere reflectometers. Although this
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would have come close to our ideal, it exhibits some degree of specularity and was
rejected on grounds of cost and the compound’s fragility, which would have made
it difficult to reassemble the test box without chipping the coating. The BRDFs of
candidate materials were analysed with a goniophotometer, and the choice was nar-
rowed down to textiles. The wall material chosen was heavy molleton in black and
light gray. The molleton was attached to the aluminium panels with velcro, which
facilitated exchanging the wall material.

The validation also called for a case study involving caustics. However, many
daylight systems are difficult to model realistically. Particularly systems composed
of plastics such as those discussed in section 4.2 have manufacturing tolerances
which can vastly affect the resulting caustics observed in reality. These result from
deformation of the material during the moulding or extrusion process, often in the
form of warped surfaces or rounded edges. While they can be measured, manu-
facturing defects are difficult to model, and the simulation will deviate significantly if
these are not fully accounted for.

In the light of these difficulties, validation case studies involving problematic sys-
tems like Y-glass and CPCs were foregone in favour of the most primitive daylight
system: the light shelf. The light shelf is simply a large metal profile designed to
reflect light towards the ceiling. While real light shelves are often curved, the light
shelf used in the validation consisted of a flat sandblasted aluminium profile. Sand-
blasting was necessary to eliminate any anisotropy from grooves which accumulate
on the surface during the rolling process in manufacture. It also has the desirable
side effect of lending the surface a glossy finish, which is less critical to sample than
highly peaked specular reflection and facilitates comparison between forward and
backward raytracing.

7.3 Validation Procedure

Figure 7.5 gives an overview of the validation procedure. It is composed of modules
pertaining to specific problems in the validation. The arrows in the diagram indicate
dependencies, where intersections should be interpreted as branches; a path from
A to B denotes that B requires A and depends on it as input. By this token, the dia-
gram conveys the complexity of the validation. The modules and their constituents
are as follows:

BRDF Acquisition: the BRDFs of the materials used in the validation must be
obtained in order to be taken up in the simulation. This requires two tasks:

Goniophotometer measurement: the BRDF is measured from material
samples using a goniophotometer

Artifact removal: spurious shadowing artifacts incurred by the goniopho-
tometer during acquisition must be removed because they adversely
affect the simulation.
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Figure 7.5: Experimental validation procedure overview. The validation is
composed of modules encompassing tasks aimed at handling a specific
problem in the validation. The arrows denote dependencies.

BRDF Fit: a BRDF model is fitted to the measured BRDF data subsequent to ar-
tifact removal. The fitted model is required to sample the measured BRDF
data in the simulation. Here we perform the following tasks:

Fit to model: we fit a suitable BRDF model to the measured BRDF using a
standard fitting algorithm.

Comparison: We assess the quality of the fit by comparing the fitted model
with the measured BRDF.

BRDF Resampling: the measured BRDFs must be evaluated for arbitrary incident
and outgoing directions in the simulation. Since the goniophotometer mea-
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sures at a finite number of non-uniformly distributed locations, the BRDF must
be resampled in the simulation. The resampling requires two tasks:

Resampling: development of the resampling method. This requires the
measured BRDF data as input after artifacts have been removed.

Bias test: verification of bias inherent in the resampling method. Here we
resample and compare the fitted BRDF model.

BRDF Verification: here we assess the accuracy of the goniophotometer mea-
surement. Though a preliminary task with high priority, the BRDF resampling
is partly a prerequisite. We verify the BRDF as follows:

Comparison with integrating sphere: we obtain the reflectance from an
integrating sphere reflectometer and compare it to the reflectance com-
puted from the goniophotometer data. This can be done immediately
after BRDF acquisition.

Reciprocity test: we verify that the goniophotometer data complies with
Helmholtz reciprocity. This requires the resampled BRDF in order to
evaluate it at arbitrary reciprocated directions. Furthermore, the poten-
tial bias incurred by the resampling must be known before this test can
be applied with confidence.

Case Study: the preliminary work done in the above modules culminates in the
individual case studies. Each case study involves the following tasks:

Lamp EDF: we acquire the emission distribution of our light source via a
high dynamic range camera. This must be done per case study since
the box is modified and therefore moved.

Simulation: the case study simulation requires the EDF, measured BRDF
(subject to resampling), and fitted BRDF model as input (used as sam-
ple ray distribution). The output is simulated illuminance data sampled
at the sensor positions.

Illuminance measurement: measured illuminance data is acquired from
the sensors in the validation setup.

Comparison and derivation of error: we compare the measured and sim-
ulated illuminance and derive error bounds which take the constituent
errors of the validation setup into account.

Each of these procedural components is described in detail in the following subsec-
tions.
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7.3.1 BRDF Acquisition

7.3.1.1 Goniophotometer Measurement

The BRDFs of the molleton and aluminium were obtained from Fraunhofer ISE’s go-
niophotometer [AB94, ABH98]. The device has four degrees of freedom as shown
in figure 7.6: two for the sample disc, and two for the detector arm. The incident
beam is obtained from a fixed lamp (usually xenon) with condensor and diaphram.
The orientation of the sample disc relative to the incident beam accounts for the
incident direction, while the orientation of the detector relative to the disc accounts
for the exitant direction.

~ωi

Lamp

Sample

~ωr

Detector

Figure 7.6: Diagram of Fraunhofer ISE’s goniophotometer used for BRDF
acquisition. The device has four degrees of freedom: two for the sample
disc, and two for the goniophotometer detector. The incident beam is ob-
tained from a fixed lamp.

Due to optical and mechanical limitations of the device, the maximum angle
measured was 78◦, yielding only a partial BRDF. These limitations result from light
source occlusion towards grazing angles by the clamp holding the sample in place.
Furthermore, the illuminated sample area elongates to the point where it extends
beyond the sample boundaries, causing a falloff in measurement. Lastly, the raw
goniophotometer data must be divided by cosθr per definition in order to obtain the
BRDF, which introduces numerical instabilities at grazing angles. These limitations
preclude obtaining data for grazing angles (where BRDFs really exhibit interesting
behaviour) and are common in goniometric BRDF acquisition.

BRDF measurement is a laborious task with numerous problems pertaining to
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calibration and physical limitations. Installations for BRDF acquisition are few and
far between, and the results can vary dramatically depending on design and calibra-
tion. To illustrate this, Leonard and Pantoliano [LP88, LPR89] conducted a round
robin exercise in which BRDF measurements of identical samples were collected
from a number of facilities. The outcome of the experiment was devastating, reveal-
ing massive deviations. These difficulties are of course carried over in any physical
validations which use these measurements, further complicating the validation pro-
cess. As a consequence, the data should be verified with other references (e.g.
integrating sphere reflectometer) before its application in the validation.

The BRDF plots obtained from the goniophotometer (figure E.1) reveal the light
grey molleton is not entirely diffuse; they exhibit highly diffuse reflection at normal
incidence, but with an emerging specular component towards grazing angles. The
position of the peak is also shifted well beyond the direction of specular reflection.
This phenomenon is termed off-specular reflection, and is typical of very rough
materials; off-specularity increases with roughness, with the peak position tending
towards grazing angles for very rough surfaces [TS65, TS67]. This characteristic
results from a decrease in apparent roughness along the incident and exitant direc-
tions, giving rise to specular reflection. The specular component rises dramatically
at grazing angles to the point where it significantly affects the illuminance measure-
ments in the box. This is a challenge because it has to be taken into account, but is
difficult to simulate with most BRDF models. It should be noted that of all the diffuse
candidate materials, this was the most benign – foiled by reality once more.

At first glance, the aluminium’s glossy reflection as evidenced from the BRDF
measurements (figure E.2) exhibits more benign behaviour. One would therefore
expect this material to be readily amenable to BRDF modelling. However, closer
examination of the BRDF plots reveals two phenomena which may pose problems
for the BRDF model. Firstly, the peak is slightly off-specular. Secondly, it is asym-
metric, elongating along θr towards grazing angles. These characteristics are also
difficult to account for in a BRDF model, and constrained the choice of model to use
in the validation.

7.3.1.2 BRDF Artifact Removal

A problem deserving attention during BRDF acquisition were the goniophotome-
ter shadowing artifacts visible particularly in the molleton BRDF plots (figure 7.7).
These come in two forms: shadows cast by the goniophotometer arm, giving rise to
rifts across the interior of the plots, and shadows cast by the sample clamp, giving
rise to an abrupt falloff at the periphery of the plots.

The goniophotometer arm shadow dominates at normal incidence and wanders
towards the periphery of the plots with increasing incident angle. It arises from
an obstruction of the fixed incident beam by the goniophotometer arm bearing the
detector, which pivots about the sample (figure 7.8). The arm casts a penumbra
which tends to be quite broad, with an estimated coverage of roughly 20◦ in the
plane of exitance, corresponding to the angle αs between the planes delineating
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Figure 7.7: Molleton BRDF at normal incidence before (left) and after (right) arti-
fact removal. Artifacts arise from shadows cast by the goniophotometer arm in the
interior of the plots, and shadows cast by the sample clamp at the boundary.

the penumbra limits in figure 7.8.
The goniophotometer arm shadow is usually not a problem with specular mate-

rials, since these artifacts only arise if the BRDF reflects a significant component in
the vicinity of the incident direction, which is typically the case with diffuse or retrore-
flecting materials. For this reason, the specular aluminium BRDF is largely devoid
of these artifacts, whereas the mostly diffuse molleton BRDF suffers considerably.
This warrants correcting these artifacts to some degree.

To this end, the BRDF data was subjected to an algorithmic artifact removal
which simply deletes samples which are affected by shadows cast by the sample
clamp or the goniophotometer arm (the resulting “gaps” are filled in during BRDF
lookups by the nearest neighbour resampling described in section 7.3.4). The al-
gorithm is extremely simple and relies on heuristics and manual specification of
shadow parameters rather than autodetection.

A BRDF sample fr(~ωi,~ωr) is removed if:

• the sample lies in the goniophotometer arm’s penumbra defined by the user
specified angle αs, i.e. if

α
αs
≤ 1

2
, (7.1)

where α is the angle between the incident direction ~ωi and the goniopho-
tometer arm plane defined by the exitant direction ~ωr.

• the sample is below a user specified fraction of the BRDF average for the
measured angle of incidence, and its angle of exitance θr is above a user
specified θmax:

fr (~ωi,~ωr)< cb fr (~ωi) , θr ≥ θmax. (7.2)

This treats the boundary falloff caused by the shadows cast by the sample
clamp as outliers. Imposing a limit on the exitant angle prevents removal
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~ωi
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Figure 7.8: Goniophotometer shadowing artifacts during BRDF acquisition.
The goniophotometer arm (not shown) bearing the detector pivots about
the sample, and can obstruct the incident beam, attenuating the measured
BRDF. The shadow covers an angle αs in the plane of exitance. Rays
incident within this range are obscured.

of samples in the interior. This heuristic can be improved for mostly diffuse
BRDFs such as molleton by using a cosine weighted average. This reduces
the impact of specular components at grazing angles on the average.

Figure 7.9 shows statistics of the artifact removal. For both molleton and alu-
minium, the percentage of samples removed drops with increasing incident angle.
This is explained by the concentration of samples at the specular components by
the goniophotometer’s adaptive scanning algorithm. Since these wander outside
the influence of the goniophotometer arm shadow with increasing incident angle,
the number of samples removed decreases. This effect is particularly evident with
the aluminium BRDF, while it is more gradual with the molleton due to the emer-
gence of the specular component towards grazing angles.

Figure E.3 shows the plots of the molleton BRDF after artifact removal. The rifts
visible across the plots in figure E.1 arising from the goniophotometer arm shadow
have been largely removed, and the falloff at the boundaries arising from the sample
clamp shadow has been clipped. Figure E.4 shows plots of the aluminium BRDF
after artifact removal. Here the goniophotometer arm shadow is only significant up
to an incident angle of ca. 15◦, beyond which it lies outside the specular peak.
Due to the negligible diffuse component, there are no significant boundary artifacts.
The goniophotometer arm shadow was specified for both materials with an angle
of αs = 20◦, while boundary artifacts beyond θmax = 70◦ were thresholded with a
factor of cb = 0.7 for the molleton, and cb = 0 for the aluminium.
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Figure 7.9: Percentage of BRDF samples removed during artifact removal
as a function of incident angle. The percentage drops with increasing in-
cident angle as the specular component wanders outside the influence of
the goniophotometer arm. Because the molleton BRDF’s specular compo-
nent emerges towards grazing angles, the effect is more gradual with this
material.

7.3.2 BRDF Verification: Integrating Sphere

We verify the goniophotometer measurement by comparing its reflectance to the
results obtained from Fraunhofer ISE’s integrating sphere reflectometer. The photo-
metric directional-hemispherical reflectances of the black and light gray molleton
at normal incidence were 0.0164 and 0.7094, respectively. The light gray mol-
leton BRDF data obtained from the goniophotometer correlates with the findings
obtained with the integrating sphere; the reflectance increases towards grazing in-
cident angles due to the off-specular component (figure 7.10). Here we also see
the quantitative impact of the shadowing artifacts incurred by the goniophotometer
during BRDF acquisition by comparing the reflectance of the BRDF before and after
artifact removal. The drop in reflectance due to shadowing artifacts in the original
BRDF accounts for an average deviation of ca. 4% and a maximum of nearly 10%.
These deviations would become significant in case studies involving interreflection,
which justifies the task of artifact removal.

The reflectance from the goniophotometer BRDF is obtained by integrating over
a Voronoi diagram of the measured points [ABH98, Har95]. Due to the limited
measurement range of the goniophotometer, data will be missing at the hemisphere
boundary. The reflectance is therefore extracted in the form of an upper and lower
bound based on assumptions of what lies beyond the boundary. The upper bound
is based on the assumption that the BRDF is constant beyond the measurement
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limit, while the lower bound is based on the assumption of an abrupt falloff to zero
beyond the boundary. Given the molleton’s off-specularity, clipping the BRDF to
zero beyond the boundary would clearly underestimate the reflectance. On the
other hand, the good agreement of the upper bound with the reflectance obtained
from the integrating sphere confirms the validity of the measurements conducted
with the goniophotometer.
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Figure 7.10: Molleton reflectance obtained with integrating sphere reflec-
tometer and goniophotometer. The goniophotometer reflectance is shown
before and after artifact removal. The upper and lower bounds for the go-
niophotometer reflectance arise from treating BRDF data beyond the mea-
surement limits as constant and zero, respectively.

7.3.3 Fit to BRDF Model

The parameters for the BRDF model used in the validation simulations are extracted
by fitting the model to the goniophotometer data. Fitting describes the class of nu-
merical optimisation methods by which parameters for a mathematical model ap-
proximating a data set are found such as to minise the deviations based on some
error metric [PTVF92]. Depending on the specific algorithm, model, initial param-
eters, and size of data set, this can be a very slow process. To ensure a good fit,
the unknown parameters must be estimated with reasonable accuracy, which re-
quires some experience with the specific model used. The BRDF model was fitted
simultaneously for all measured incident angles after artifact removal, yielding one
parameter set. These parameters are subject to the caveat that, since they were ob-
tained from a partially measured BRDF due to goniophotometer constraints, there
are unknown deviations towards grazing angles.
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RADIANCE’s built in gaussian model (defined in appendix B.1) cannot ac-
count for all the characteristics of the BRDFs used in the validation (notably off-
specularity), and this is obvious in the BRDF plots of the fitted models (figures E.5
and E.6). The alumium BRDF is approximated with an average difference of 0.153
between the fitted model and the measured BRDF. The fit to the molleton BRDF de-
viates as a result of the off-specularity with an average difference of 0.035. For both
materials, the fit tends towards physically implausible values, producing a spec-
ularity greater than 1 for the aluminium, and a reflectance greater than 1 for the
molleton. These values were clamped to 1 in figures E.5 and E.6, although this is
obviously unrealistic and indicates the model’s unsuitability to off-specular materi-
als.

In the light of the problems with the molleton BRDF and the principal role the
material plays in the validation, the choice of BRDF model was reconsidered, lead-
ing to the investigation of the Lafortune model (defined in appendix B.2) as an alter-
native. Because it is more general, it can account for off-specularity, although the
price to pay is the larger number of parameters, which affects the complexity and
stability of the fit.

The popular Levenberg-Marquardt nonlinear least squares fitting method
[PTVF92, AB95] proved unsuitable for the Lafortune fit. This method is based on a
gradient descent within the parameter space and involves inverting a matrix consist-
ing of partial derivatives for each parameter. With the Lafortune model, this matrix
tends to exhibit singularities due to the tight interdependence of the parameters,
causing the matrix inversion and consequently the algorithm to fail. In contrast to
the Ward model, the Lafortune model suffers from the fundamental problem that
modifying one parameter requires modifications to other parameters during each
iteration of the fit.

A more robust but also less efficient alternative is the downhill simplex method
[PTVF92, NM65]. This method does not compute derivatives, but merely requires
evaluations of the BRDF model. For n parameters, the algorithm operates on an
n-dimensional geometric simplex in the parameter space consisting of n + 1 ver-
tices. During each iteration, it attempts to contract the simplex towards a minimum
vertex. If the parameter space contains a large number of minima, the algorithm
must repeatedly restart with new parameters in order to find a global minimum. The
Lafortune model’s parameter interdependence and the relatively high dimensional-
ity of the fit (four parameters per lobe) gives rise to such a situation, dramatically
impacting the fit’s performance. No fitting algorithm can be expected to find a global
minimum in such a parameter space in reasonable time. Lacking viable alterna-
tive BRDF models, an optimimum was therefore chosen from a limited number of
minima.

The error metric used in the fit was a straight sum of differences over all points.
Although other metrics such as reflectance and cosine weighting were tried, the
results of the fit did not differ remarkably.

The Lafortune model was fitted for multiple lobes in conjunction with a Lamber-
tian term. The effect of the number of cosine lobes on fit deviation is shown in figure
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7.11. The graph indicates that 3 lobes and a Lambertian term are sufficient for
the validation simulations, as there is negligible improvement with additional lobes.
BRDF plots of the fitted Lafortune model can be found in figures E.7 and E.8.
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Figure 7.11: Number of cosine lobes in the fitted Lafortune BRDF model
versus fit error compared to the fitted Ward BRDF model. The error metric
is the average difference between measured and fitted data points

With the aluminium BRDF, the Ward and Lafortune models exhibit somewhat
complementary behaviour; while off-specularity appears to be the dominant source
of error with the Ward model, the Lafortune model’s errors arise mainly from the
peak’s elongation. It is apparent from the BRDF plots that the Ward model actu-
ally elongates the peak towards grazing angles, whereas the Lafortune model does
not, giving rise to two lobes flanking the location of the measured peak in the dif-
ference plots. While the aluminium BRDF still poses problems for both the Ward
and Lafortune models, the molleton BRDF is substantially better approximated by
the latter, reducing deviations by 50% compared to the Ward model. Disregarding
residual boundary artifacts, the corresponding BRDF difference plots are relatively
flat compared to those of the Ward model.

The average differences between the fitted Lafortune model and the measured
BRDFs were 0.12 for the aluminium and 0.016 for the molleton. This compares
favourably to the respective fit deviations of 0.15 and 0.035 obtained with the Ward
model. In both cases there is a residual error resulting from noise and smaller arti-
facts in the measured BRDF. There remain, however, some deviations from BRDF
features which neither the Ward nor Lafortune models can account for by principle.

We could use the fitted BRDF model directly in the validation simulations, in
which case we would expect the fit deviations to be the principal source of error.
We could obtain a spatially distributed estimate for this error which is propagated
along with the ray luminance in the simulation, but we could do even better by sam-
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pling the actual measured BRDF in the simulation, thereby eliminating this error.
Instead of using the fitted BRDF model in the simulation directly, we use it as a PDF
to sample the measured BRDF. The justification for doing so is that the Lafortune
BRDF is fitted to the measured BRDF, making it a suitable PDF for applying im-
portance sampling to the latter. Although this approach demotes the fitted BRDF
model to an ancillary role, deviations from the measured data will introduce noise
to the sampling, which is why a suitable choice of model and goodness of fit are still
important. In what follows, all validation simulations use the fitted Lafortune BRDF
model as PDF.

7.3.4 BRDF Resampling

Integrating the measured BRDF into the simulation requires storing it in a suitable
data structure which allows quick retrieval for a given pair of incident and outgoing
directions. Furthermore, the data must be available for arbitrary directions, not just
those which were actually measured. This is particularly important because the
goniophotometer does not sample the reflecting hemisphere at regular intervals,
but rather adaptively, concentrating samples where high gradients (specular com-
ponents) are detected [AB94]. Retrieving the measured BRDF at arbitrary points
therefore effectively constitutes resampling the data, which is not a trivial matter
and can itself contribute some deviations.

Point resampling is particularly relevant in 3D mesh reduction and specific algo-
rithms have been developed in this field. A simpler approach was used to resample
the measured BRDF by using the already available photon map code and storing
the measured data in a bilevel kd-tree as shown in figure 7.12. The top level kd-
tree contains 3D keys corresponding to the cartesian1 incident directions ~ωi, j from
the set of measured incident directions Ωi,m. Each incident node with direction
~ωi, j points to a kd-subtree containing the set of corresponding measured exitant
directions Ωr,m(~ωi, j) (recall that the goniophotometer scans adaptively, thus Ωr,m

is a function of ~ωi, j). Each such exitant direction ~ωr,k has a node in the subtree
containing a measured BRDF sample fr,m(~ωi, j,~ωr,k).

The resampled BRDF f̂r,m(~ωi,~ωr) can be evaluated with a bilevel nearest neigh-
bour lookup for the closest matches to the incident and outgoing directions under
consideration (figure 7.13). The lookup consists of finding the N closest incident
directions to ~ωi in the set of incident samples Ωi,m. For each such direction ~ωi, j,
we perform a lookup in its corresponding subtree for the closest exitant directions
~ωr,k from the set of exitant samples Ωr,m(~ωi, j). We then sum these BRDF sam-
ples weighted by a function w based on the sample distance to obtain a subsample
f̂r,m(~ωi, j,~ωr) for each incident direction. These subsamples are, in turn, weighted

12D polar coordinates would yield a more compact representation at the expense of cumbersome
handling of the 0◦/360◦ wraparound.
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~ωi, j

Ωi,m

fr,m(~ωi, j,~ωr,k)
~ωr,k

Ωr,m(~ωi, j)

Figure 7.12: Data structure for BRDF resampling. The top level kd-tree
contains measured incident directions~ωi, j ∈Ωi,m, while each incident node
points to the kd-subtree containing the measured exitant directions ~ωr,k ∈
Ωr,m(~ωi, j). Each subtree node then contains measured BRDF samples
fr,m(~ωi, j,~ωr,k).

by a function w and summed over the found incident directions to obtain f̂r,m(~ωi,~ωr):

f̂r(~ωi,~ωr) =
N

∑
j=1

N

∑
k=1

w(‖~ωi, j,~ωi‖)w(‖~ωr,k,~ωr‖) fr,m (~ωi, j,~ωr,k) ,

~ωi, j ∈Ωi,m, ~ωr,k ∈Ωr,m (~ωi, j) . (7.3)

A simple cone filter was chosen as weighting function to resample the measured
BRDF data in the validation simulations:

w(s j) =
1− s j

max(s1,...,sN)

∑N
k=1 w(sk)

, j ∈ [1,N] . (7.4)

The resampling method is summarised as pseudocode in algorithm 7.1.
The distance metric for the nearest neighbour lookup must be adapted to the

spherical topology. The concept of solid angle is amenable here (figure 7.13), with
the distance between two vectors ~ω1 and ~ω2 equivalent to the solid angle ω sub-
tended by~ω1 around~ω2, or vice versa. Since ω is proportional to the angle between
the two vectors, we can use

‖~ω1,~ω2‖ ∝ cos−1 (~ω1 ·~ω2) , (7.5)

which suffices for comparison during the search.
The bilevel paradigm is necessary in order to guarantee a balanced incident /

exitant nearest neighbour lookup, i.e. with N neighbours in both dimensions. With-
out this constraint, BRDF lookups may be distorted by disproportionate incident and
exitant solid angles, leading to excessive bias in one dimension, and noise in the
other.

The BRDF resampling is however subject to a major caveat for points outside
the measured range arising from the constraints of the goniophotometer; since
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Figure 7.13: Nearest neighbour lookup over incident and exitant directions
for BRDF resampling. A lookup consists of finding the N closest incident
directions ~ωi, j around ~ωi in the set of incident samples Ωi,m, then finding
the N closest exitant directions ~ωr,k around ~ωr in the set of exitant samples
Ωr,m(~ωi, j) for each incident direction found. On a spherical topology, the
search space is a solid angle.

there is no BRDF data available beyond the measurement boundary, the BRDF
must be extrapolated, resulting in unknown deviations in these regions. In this case,
the resampling method draws on nearest neighbours at the boundary, effectively
implementing the constant extrapolation strategy used by the Voronoi integration to
obtain the reflectance from the goniophotometer data2 (section 7.3.2). Of course,
this strategy still leads to underestimation of the molleton’s off-specular peak, which
continues to rise beyond the boundary. These deviations are not expected to be
significant, however, due to the cosine term inherent in scattering during the light
transport simulation.

The reflectance of the resampled molleton BRDF using 5 nearest neighbours is
compared to the measurement from the integrating sphere reflectometer in figure
7.14. There is good agreement after artifact removal, with deviations within 2.5%
up to an incident angle of ca. 78◦, where the measurement boundary is exceeded
and the resampling extrapolates over incident directions, causing the reflectance to
level off. Comparing this to figure 7.10, we see the resampled reflectance agrees
more favourably with the integrating sphere measurement than the reflectance up-
per bound obtained via Voronoi integration of the goniophotometer data. Although
both methods use constant extrapolation at the boundary, the Voronoi integration
computes the reflectance over the Voronoi sites corresponding to actual measure-
ment points, whereas the resampled reflectance is computed over the vertices of a
geodesic subdivision of the hemisphere [Dut90], which extend beyond the bound-
ary. Because the Voronoi sites are all within the measurement bounds, the co-
sine weights assigned to boundary cells are overestimated, leading to a higher

2Unlike the photon map, BRDF resampling is not a density estimation problem and as such does
not suffer from boundary bias resulting from a spurious decrease in density as discussed in chapter
5.
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procedure BRDFresample(~ωi,~ωr,Ωi,m,N) {Get resampled BRDF f̂r,m(~ωi,~ωr)
from incident kd-tree Ωi,m containing BRDF samples via search for N nearest
neighbours}
f̂r,m(~ωi,~ωr) = 0
Si = BRDFnearest(~ωi,Ωi,m,N) {Find nearest incident neighbours}
for j = 1 to N do {~ωi, j ∈ Si}

f̂r,m(~ωi, j,~ωr) = 0
Sr = BRDFnearest(~ωr,Ωr,m(~ωi, j),N) {Find nearest exitant neighbours}
for k = 1 to N do {~ωr,k ∈ Sr}

f̂r,m(~ωi, j,~ωr) = f̂r,m(~ωi, j,~ωr) + w(‖~ωr,k,~ωr‖) fr,m(~ωi, j,~ωr,k) {Sum exitant
samples}

end for
f̂r,m(~ωi,~ωr) = f̂r,m(~ωi,~ωr) + w(‖~ωi, j,~ωi‖) f̂r,m(~ωi, j,~ωr) {Sum incident sam-
ples}

end for
return f̂r,m(~ωi,~ωr)

Algorithm 7.1: BRDF resampling algorithm

reflectance. The resampled reflectance, on the other hand, is obtained by also
explicitly integrating over points beyond the boundary, extrapolating the BRDF in
the process but using the correct cosine weights. The resampled refectance can
therefore be regarded as the more accurate solution.
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Figure 7.14: Resampled molleton reflectance using 5 nearest neighbours
before and after BRDF artifact removal compared to reference obtained
from integrating sphere.
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7.3.4.1 Resampling Bias Test

The nearest neighbour search used in the BRDF resampling is prone to the same
proximity bias investigated in chapter 5 for the photon map, and can therefore in-
troduce an error into the resampling. The BRDFs under investigation here did not
exhibit highly localised peaks, and this error was therefore not expected to be sig-
nificant.

To quantify this bias, tests were conducted using the Lafortune model fitted to
the molleton and aluminium BRDFs. The analytical model is particularly useful for
the test because, unlike the measured BRDF data, it can be evaluated at arbitrary
points. The BRDF was evaluated and stored in the kd-tree for incident and exitant
direction pairs present in the measured BRDF data after artifact removal. This treats
the Lafortune BRDF as measured data and ensures the sample distribution is iden-
tical to that of the actual measurement. The bias was estimated by comparing the
analytical and resampled Lafortune BRDF for a number of sample points obtained
from a geodesic subdivision of the hemisphere.

The resampled BRDF plots are shown for molleton and aluminium in figures E.9
and E.10, respectively. The resampled BRDF fitted to molleton exhibits deviations
under the emerging specular peak beyond the measurement boundary. The con-
stant extrapolation overestimates the falling flank of the peak at low incident angles,
causing negative deviations. Conversely, it underestimates its rising flank at high in-
cident angles, resulting in positive deviations. The ridge visible across the plot at 10◦

incidence results from samples in the goniophotometer arm’s shadow which were
deleted during artifact removal. Nearest neighbour search across the resulting gap
creates a discontinuity in the rising flank of the specular component. The resampled
BRDF fitted to aluminium exhibits similar deviations. As with molleton, resampling
overestimates the falling flank of the peak beyond the measurement boundary, and
underestimates its rise at grazing incident angles. At low incident angles there are
deviations in the peak resulting from proximity bias, although these are small be-
cause the peak is relatively broad; an amenity brought about by sandblasting the
aluminium. While the incident directions for the first three plots for both materials
are within the measured range (< 78◦ incidence), requiring only extrapolation over
the exitant directions, the last plot at 85◦ incidence requires extrapolation over the
incident and exitant directions, which inevitably results in larger deviations.

Figure 7.15 shows plots of the relative mean bias in the resampled BRDFs as a
function of incident angle. For molleton, the bias is within 0.5% for incident angles
within the measured range (θi < 78◦), where boundary values are only extrapolated
over exitant directions. Beyond this limit, the resampled BRDF is extrapolated over
incident directions as well, raising the bias to ca. 3% for 10 nearest neighbours. As
indicated by the corresponding difference plots (figure E.10), the aluminium exhibits
obvious deviations due to the falling and rising flank of the peak subject to boundary
extrapolation. Here too, these deviations result in positive and negative bias which
is more prominent than with molleton because the specular component dominates
here, raising deviations to over 3% for 10 nearest neighbours once the peak crosses
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the measurement boundary.
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Figure 7.15: BRDF resampling bias test: mean bias of resampled Lafortune
BRDF fitted to molleton (top) and aluminium (bottom) using 1, 2, 5, and 10
nearest neighbours (NN) compared to analytical evaluation of model.

A further test was conducted by comparing the analytically computed re-
flectance of the Lafortune BRDF to a numerical integration of resampled BRDF
values. This was intended as an indication of the bias present in the scattering due
to the cosine factor, which is more relevant to the validation simulations. As in the
previous test, the Lafortune BRDF was resampled from sample points identically
distributed to those in the measured BRDFs after artifact removal.

The results of the resampled reflectance test are shown in figure 7.16. As ex-
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pected, the resampled reflectance levels off for both materials as a result of constant
extrapolation, and deviations increase overall with the number of nearest neigh-
bours. As a consequence, 5 nearest neighbours were deemed adequate for the
validation simulations, for which the predicted bias in figure 7.15 is within 3% for
both materials. Given this small error, resampling bias was not considered an issue
and disregarded in the validation simulations.
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Figure 7.16: BRDF resampling bias test: analytically computed reflectance
of Lafortune BRDF fitted to molleton (top) and aluminium (bottom) com-
pared to a numerical integration of the resampled BRDF model using 1, 2,
5, and 10 nearest neighbours (NN).
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7.3.5 BRDF Verification: Helmholtz Reciprocity Test

With the BRDF resampling code in place, we can further verify the goniophotometer
BRDF data by subjecting it to a Helmholtz reciprocity test (equation 2.10). This
test determines the relative deviations resulting from exchanging the incident and
exitant directions while resampling the measured BRDFs. The deviations give an
indication of the accuracy of the goniophotometer data. Due to the goniophotometer
constraints, the test is limited to the measured range of directions (up to incident and
exitant angles of ca. 78◦). The resampling points within this range are once again
obtained from a geodesic subdivision of the hemisphere.

Using 5 nearest neighbours for BRDF resampling, the average deviations are
within 0.1% and 2% for the molleton and aluminium BRDFs, respectively. The sub-
stantially larger deviations for aluminium are expected due to the more localised
nature of the BRDF compared to molleton, and the fact that the relative deviations
are bloated by the low diffuse component outside the specular lobe. These devia-
tions are a combined product of positioning errors on behalf of the goniophotome-
ter, as well as resampling errors in regions with sparse samples, particularly at the
boundary (θi,θr ≥ 78◦).

Figure 7.17 is a plot of the molleton and aluminium BRDFs and their reciprocals
in the plane of incidence for the incident angle typically used in the validation case
studies (θi = 62◦). The aluminium BRDF deviates noticeably for incident angles
around 40◦ and in the boundary region beyond 70◦. Reducing the number of near-
est neighbours for the resampling introduces aliasing and only yields a marginal
reduction in deviations. The deviations in the boundary region are expected, since
this is where exitant samples (or incident samples for the reciprocal) are extrapo-
lated. However, they do not come to bear in the simulations due to the cosine term
applied in photon scattering.

Reciprocity deviations have consequences for the validation simulations: the
resampled BRDF f̂r,m(~ωi,~ωr) used by the forward raytracer will deviate from the
reciprocal BRDF f̂r,m(~ωr,~ωi) used by the backward raytracer3, yielding deviations
in illuminance. This was particularly noticeable in the caustic from the aluminium
light shelf.

A simple countermeasure was attempted by averaging the resampled BRDF
and its reciprocal in the simulations. However, this tended to yield complementary
results: while deviations with forward raytracing were reduced, those with back-
ward raytracing were often increased, or vice versa. Instead, a selective approach
was adopted whereby an additional simulation using the reciprocal BRDF was per-
formed. This reciprocal solution was compared to the nonreciprocal, and the more
accurate of the two chosen for evaluation. This was only necessary for the compo-
nent case study involving the light shelf.

3Here we assume ~ωi and ~ωr are in local coordinates and both point away from the surface.
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Figure 7.17: Helmholtz reciprocity within plane of incidence for molleton
(top) and aluminium (bottom) BRDFs.

7.3.6 Simulation

Simulation runs using RADIANCE Classic and photon map were conducted for each
case study to obtain the illuminance at the measured sensor positions.

The photon map simulations used global photons only (recall that this includes
caustics), which were visualised directly rather than via final gathering, as in the an-
alytical validation. Circa 1000000 photons were used, with a relatively large band-
width of 5000 photons in order to suppress noise. Boundary bias in the density
estimates was not expected to be significant, particularly for the middle sensors,
neither was proximity bias, since the sandblasted aluminium light shelf does not
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produce a highly localised caustic.
While the photon map parametrisation affected primarily the noise in the sim-

ulation, the parameters for RADIANCE Classic were critical as they can give rise
to genuine bias if choosen too conservatively. This tendency was already evident
in the analytical validation in the form of systematic underprediction resulting from
premature termination of rays sampling the indirect illumination. Consequently, the
number of ambient and specular reflections (-ab, -lr) for case studies involving inter-
reflection was set to 40, while 2 reflections were sufficient for case studies involving
a single reflection (the additional reflection accounts for background illuminance).
As in the analytical validation, ray weights were not thresholded (-lw 0). Together,
these settings ensure that RADIANCE Classic produces lighting levels comparable
to those obtained with the photon map. Noise was expected in case studies involv-
ing caustics, which was adequately suppressed with ca. 8000 ambient samples
for interreflection case studies, and 16000 for single reflection case studies. The
irradiance cache was also parametrised for high accuracy (-aa 0.05, -ar 512).

The validation simulations require two principal components obtained by mea-
surement: the BRDFs of the molleton lining the box interior and the aluminium light
shelf, and the lamp’s EDF. These components are discussed in the following sec-
tions.

7.3.6.1 BRDF Simulation

Incorporating the measured BRDF into the simulation requires sampling an arbi-
trary signal lacking an analytical representation. Monte Carlo inversion of arbitrary
BRDFs with a numeric technique similar to that described in section 4.1.1 for pho-
ton emission would be prohibitively expensive in this case, since the construction
for the CDF lookup table would require numerous nearest neighbour lookups in the
kd-tree, and this process must be performed for every reflection. This is where the
combined utility of the fitted Lafortune BRDF and the resampled BRDF data comes
in; we can sample the former and compensate by scaling each sample with a fac-
tor proportional to the latter. We combine this with the scaling factor for floating
point exponents in equation B.12 since this is required in order to sample the fitted
model. This effectively gives us a bias-free estimator for the measured BRDF as if
we had actually sampled it, except that we sample the Lafortune model analytically
instead, which is far more efficient. We do this as in appendix B.2 by selecting a
lobe j of the Lafortune BRDF based on its reflectance ρ̃l, j and then sampling it with
compensating factors to obtain the estimator:

L̂(~ωi) =

Measured BRDF compensation︷ ︸︸ ︷
f̂r,m (~ωi,~ωr)

fr,l (~ωi,~ωr)
·

Lobe compensation︷ ︸︸ ︷
ρ̃l (~ωi)

ρ̃l, j (~ωi)
·

Direction compensation︷ ︸︸ ︷
Ĩl, j (~ωi)

f̃r,l, j (~ωi,~ωr)
·

fr,l, j (~ωi,~ωr)L(~ωr)cosθr,

~ωr ∈ Ω,
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j ∈ [1,N], (7.6)

where f̂r,m is the measured BRDF obtained by resampling (equation 7.3), and the
remaining terms are defined as in appendix B.2. The respective compensating
factors are identified in overbraces.

When using a photon map with constant flux (section 3.1.1.2), ρ̃l is already
accounted for by russian roulette, while the compensating factors modify the photon
flux. This clearly violates the constant flux convention, but does not introduce bias
because these are correction factors for nonuniform sampling. However, deviations
in the fitted and measured BRDFs (where f̂r,m/ fr,l 6= 1) will introduce variance in
the photon flux and consequently in the density estimates.

7.3.6.2 Lamp EDF Simulation

The ideal lamp for a validation would be a point source with uniform EDF. Reality
complicates things; real lamps have finite area and can sometimes exhibit highly
localised EDFs. Theoretically, this would require placing the lamp as far as possible
from the box in order to approximate a point source. In practice, there are of course
limitations, since this dramatically reduces the illuminance at the box window and
compromises the accuracy of the sensor measurement made in the box interior.
On the other hand, closer placement of the lamp reduces the uniformity of the dis-
tribution, revealing two lobes from the lamp reflector at distances under 3 m (figure
7.18). A compromise was found with a distance of 4.6 m, at which the two lobes
have fully coalesced.

A significant challenge in the validation is obtaining the lamp’s EDF required for
the validation simulations. While this can be obtained from the lighting manufacturer
as goniometric measurements based on the design data, the resolution is often too
low (considering that in our setup the box only subtends a solid angle of ca. 0.01 sr
at the light source). Furthermore, this data does not account for manufacturing
tolerances, which we found to be quite significant with our lamp, particularly on
behalf of the reflector. Custom high resolution goniometric measurements, on the
other hand, are very costly.

A simple approach was devised to extract the lamp’s EDF without actually per-
forming any goniometric measurements. We assume our lamp is a point source
as in far-field photometry, since its distance/size ratio easily satisfies the “five-
times-rule” [Ash95]. Our EDF extraction setup is shown in figure 7.19. A diffuse
60 × 60 cm panel was placed in front of the box. Next, an image of the distribu-
tion pattern on the panel was taken with the HDR camera mounted on a low tripod,
pointing upwards to avoid casting a shadow. The aluminium camera body and tri-
pod were draped with black cloth to eliminate any specular reflection which may
affect the illuminance on the panel. The relative positions and orientation of the
lamp, camera, and panel were then measured and recorded, yielding the param-
eters shown in figure 7.19. These include the panel’s inclination θp relative to the
camera (defining the panel’s normal ~Np = [Np,x,Np,y,Np,z] in terms of the camera’s
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Figure 7.18: Lamp EDF at distances of 2.5–6.0 m. A distance of ca. 4.6 m
was used for the validation, since the distribution is dominated by two lobes
at closer placement, and the illuminance is too low at greater distances.

coordinate system), the focal length of the camera lens dc (from the camera’s spec-
ifications), and the distance dp between the camera’s centre of projection and the
panel.

A ray ~R emitted from the light source will strike the panel at a point ~pp which is
projected onto a point ~pc = [pc,x, pc,y,dc] in the camera’s projection plane (and thus
in the HDR image), hence ~pp = t~pc for some factor t. By solving for t, we reverse the
projection and obtain ~pp in terms of the panel’s coordinate system defined by ~Np

4.
Given two points that lie on the panel, ~pp and the panel’s midpoint ~pm = [0,0,dp],
we use the plane equation to obtain

(~pp−~pm)~Np = 0 (7.7)

t~pc~Np = dpNp,z (7.8)

t =
dpNp,z

~pc~Np
. (7.9)

Having solved for t, the HDR image pixels can be tabulated as EDF samples using
[pp,x, pp,y] as indices into a 2D light field slice [LH96] positioned at the panel.

4Note that we project in terms of ~Np rather than θp to distinguish between upward and downward
inclination of the panel.
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Figure 7.19: Extraction of lamp EDF. The HDR image of the panel taken
with the camera is projected back onto the panel subject to the angle θp

between the camera’s view direction and the panel’s normal.

The positioning of the panel on the box is crucial, with four markers on the panel
serving as reference points for known coordinates on the box face. The extraction
process automatically locates these markers in the HDR image and determines the
offset and scaling required to align the extracted distribution with the box geometry.

To render the acquired EDF, the light field data is converted to a RADIANCE
brightdata file, which modifies the light source’s luminance [LS98]. The light field is
then accessed by computing the intersection ~pp of a source ray ~R with the light field
plane (see figure 7.19), the latter essentially acting as an impostor for the panel
used during acquisition. ~pp is computed with an auxiliary user defined function,
and the light field data is indexed at [pp,x, pp,y] as in the acquisition. This results
in a projection of the EDF onto the box and its interior. Note that the source ray’s
direction is irrelevant; it may point towards or away from the source, thus catering to
backward resp. forward raytracing.

Simple as this EDF acquisition scheme is, it is severely limited. Only a small
region of the EDF required for the validation is extracted, and it is constrained to
the geometry used during acquisition; altering the position or orientation of the light
source during rendering will invalidate the EDF data. Furthermore, the extracted
EDF is only a 2D function of the coordinates on the panel, rather than the complete
4D function, since there is no information available on the rays’ origins during ac-
quisition (obtaining this data would require at least two planes bisecting the EDF
[LH96]). This method is therefore unsuitable for near-field photometry.

Far more elaborate and comprehensive methods for EDF extraction exist, such
as that proposed by Goesele et al [GGHS03]. The setup described here is similar
to Goesele’s using a diffuse reflector. However, no filtering or projection onto ba-
sis functions was done, but rather the raw luminance data obtained from the HDR
camera was used.
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Figure 7.20 shows an example of an extracted EDF. This distribution is rendered
with RADIANCE Classic’s direct component as well as with the photon map by visu-
alising the direct photon hits on the panel, which provides a check for the accuracy
of the photon emission. The renderings as well as the HDR image are normalised
for comparison. This normalisation is not a conventional mapping of the maximum
intensity to 1, but rather a mapping of the average intensity to 0.55. The reason for
this is that the maximum intensity is prone to noise in the photon map renderings
and therefore falsifies the error metric, since we are interested in the mean bias,
not the noise. Consequently, mapping the average to 0.5 results in a more robust
normalisation which enables reliable quantitative comparison.

Figure 7.20: Falsecolour images of lamp EDF. Left: HDR camera image of panel
in front of box. Centre: extracted distribution rendered with RADIANCE Classic’s
direct component. Right: extracted distribution rendered with direct photons. The
superimposed boundary marks the location of the box window. The four markers
are used to align the distribution with the box geometry.

RADIANCE Classic’s direct calculation approximates the HDR image very well,
with a mean deviation of ca. 1% within the window area. This accuracy is also
achievable with the photon map; the photon map rendering used 1000000 photons
with a bandwidth of 100 photons. This does require extreme parameters in order
to resolve the distribution, however, with 100000 samples/sr for the emission PDF
and over 2000 partitions on the light source surface, which impacts the time spent
in the forward pass substantially. By contrast, using a uniform distribution (figure
7.21) produced deviations of up to 14%, which would particularly affect the interior
illuminance in case studies involving caustics.

There are of course factors in the extraction scheme which inevitably introduce
some error. The texture of the panel’s surface produces minor artifacts in the HDR
image. Furthermore, the periphery of the HDR image is slightly distorted by the
camera’s wide angle lens. Lastly, the relative position and orientation of the lamp,
camera, and panel can only be measured with limited accuracy. Measured dis-
tances and angles are estimated to be accurate within ±10mm and ±0.5◦, respec-
tively. Given the parameters for our setup in equation 7.9, this results in a projection
error of roughly ±1%, which is deemed negligible.

5Obviously this does not necessarily map the maximum to 1, but this is inconsequential for the
purpose of comparison.
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Figure 7.21: Falsecolour images of panel rendered with RADIANCE Classic (centre)
and photon map (right) using a uniform EDF. The HDR camera image of the actual
source distribution is shown at left.

7.3.7 Error Analysis

Figure 7.22 shows a breakdown of the errors conceivably involved in the validation,
categorised according to their origin. The total error in the simulation is composed
of a number of deviations arising from the measurement or simulation side. Ideally,
we would like to subtract each error from the total in order to find the one error
we are really interested in: the light transport simulation error. Practically, this is
impossible, because the majority of the errors cannot be exactly determined. We
can, however, roughly estimate each component error’s contribution and include it
in the data on either the physical or simulation side (depending on where the error
arises) in order to obtain error margins.

The major contributors to deviations identified in figure7.22 are discussed in the
following subsections.

7.3.7.1 Illuminance Sensors

These are deviations inherent in the illuminance sensors, which consist of an abso-
lute error δsens of 5 lx and 50 lx for the low (0–10000 lx) and high (10000–100000
lx) ranges, respectively, as well as a relative error εsens of 4%. The sensor error
becomes significant with low illuminance, particularly when measuring the back-
ground illuminance necessary for analytical estimates. Error estimates accounting
for illuminance sensor tolerance are therefore included in the measurements and in
the analytical solutions which include the background illuminance.

7.3.7.2 Spectral Distribution

The spectral distributions of the validation components are plotted in figure 7.23.
These include the spectra of the light source emission, molleton reflectance (ob-
tained from the integrating sphere reflectometer), and the illuminance sensor re-
sponse, the latter closely approximating the photopic response function V (λ). The
validation simulations, on the other hand, are monochromatic and use only the pho-
topic values obtained from the measurements. Potential deviations incurred by this
simplification must be investigated and accounted for if necessary.
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Figure 7.22: Principal components contributing to validation error. The light
transport simulation error is sought, and can theoretically be obtained by
subtracting the error contributions from the total. Since this requires the
exact deviations introduced by each component, this is practically impos-
sible. Instead, error estimates can be derived for the measurements and
simulations.

The lamp spectrum exhibits peaks in the green and orange bands at ca. 540
and 590 nm, respectively. This is not critical, however, as long as the lamp’s spec-
trum is not modified significantly by reflection off the molleton within the sensor’s
spectral response range, resulting in a spectral shift. While the molleton is not
spectrally neutral, its reflectance exhibits a gentle gradient within the V (λ) peak in
figure 7.23. Consequently, it is not expected to have a significant effect.

To assess the extent of the spectral shift, a spectral error estimate can be de-
rived by convolving the lamp emission, molleton reflectance, and sensor response
spectra, and comparing this integral with its monochromatic counterpart used in
the simulation. This estimate accounts for the indirect illuminance within a furnace
type scene as used for the analytical validation in chapter 6. We therefore neglect
geometric factors in the light transport. Since our validation box has an opening
and only one side receives direct illumination, this estimate is considered an upper
bound.

The upper bound for the measured indirect illuminance arriving at an interior
sensor relative to the direct illuminance measured at the exterior sensors can be
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Figure 7.23: Spectral distribution of light source emission, molleton re-
flectance, and illuminance sensor response. V (λ) is superimposed as ref-
erence.

approximated by

Em ≤
R

El (λ)
[
∑n

i=1 ρi (λ)
]
V (λ)dλR

El (λ)V (λ)dλ
, (7.10)

where ρ is the spectral reflectance of the molleton as measured in the integrating
sphere for normal incidence (where the material exhibits diffuse behaviour), El is
the lamp’s spectral illuminance, and n is the number of reflections. In the numer-
ator, the lamp’s emission spectrum is modified by one or more reflections off the
molleton, and finally weighted by V (λ) at the interior sensor. In the denominator,
the lamp’s emission spectrum is not modified, but rather weighted by V (λ) directly
at the exterior sensors.

For component case studies involving a single reflection n = 1, whereas for
compound case studies involving interreflection n = ∞, giving rise to a geometric se-
ries. The reasoning behind this approximation is analogous to that of the spherical
case study in chapter 6, namely the assumption that each point in the box receives
the cumulative indirect illuminance from 1 reflection, 2 reflections, 3 reflections, etc.

On the simulation side, we have

Es ≤
[
R

El (λ)V (λ)dλ]∑n
i=1 [

R
ρ(λ)V (λ)dλ]iR

El (λ)V (λ)dλ
=

n

∑
i=1

ρi
V , (7.11)

where ρV is the photopic (V (λ) weighted) molleton reflectance. Here, any spectral
shift effected by the molleton on the lamp’s emission spectrum is not taken into
account, giving rise to a potential error.

Numeric evaluation and comparison of equations 7.10 and 7.11 for single re-
flection and interreflection predicted a relative error εspec of up to 0.5% and 4%
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below the measured illuminance, respectively. This error estimate is included in the
simulated illuminance data for validation case studies.

7.3.7.3 Light source EDF

These are deviations in the direct component of the simulation. They have been
discussed in section 7.3.6.2 and were estimated at ca. 1–2% for both RADIANCE
Classic and the photon map. As mentioned above, temporal fluctuations in the
lamp’s emission are eliminated by obtaining illuminance values from the interior
box sensors relative to the direct illuminance (the spatial distribution of the EDF is
not subject to fluctuation). The actual effect of the distribution error on the indirect
illuminance is conceivably small, and this error is deemed negligible. The simulation
parameters for figure 7.20 were used in the case study simulations to minimise this
error.

Furthermore, the EDF is also subject to deviations in measurements of the
acquisition geometry (relative position and orientation of the HDR camera, light
source, and panel). The measured parameters have an estimated accuracy of
±10mm and ±0.5◦, resulting in minor deviations during EDF extraction which may
also be disregarded.

7.3.7.4 Fitted BRDF Model

These are deviations of the BRDF model fitted to the measured BRDF. They are
subject to the model’s ability to account for the measured BRDF’s characteristics.
The fit is also subject to deviations and limitations incurred by the goniophotometer
during BRDF measurement, such as the inability to measure grazing angles. Be-
cause of these deviations, we sample the measured BRDF using the fitted BRDF as
PDF as outlined in section 7.3.6.1. Deviations will then merely increase the noise
level in the simulation, but not introduce bias.

7.3.7.5 Resampled BRDF Data

Errors incurred by the goniophotometer can still directly affect the measured BRDF
data which is sampled in the simulation via the fitted BRDF. Primary contributors to
this error are the goniophotometer shadowing artifacts and the lack of grazing an-
gles in the data. The shadowing artifacts have been removed as outlined in section
7.3.1.2, while the missing grazing angles are “filled in” via constant extrapolation
beyond the measured range by the resampling method used to evaluate the mea-
sured BRDF at arbitrary points. Resampling can also introduce some bias, but as
discussed in section 7.3.4.1, this error is considered negligible and need not be
accounted for.

Reciprocity deviations in the resampled BRDF data can also lead to notice-
able deviations between forward and backward raytracing. As mentioned in section
7.3.5, these deviations depend on the accuracy of the goniophotometer and the
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density of the samples used in BRDF resampling. The aluminium BRDF exhibits
considerable reciprocity deviations and is treated accordingly by comparing simula-
tions using the original and reciprocal resampled BRDFs, then choosing the more
accurate of the two.

7.3.7.6 Light Transport Simulation

This is the error we seek. Systematic residual deviations after accounting for the
other error components would indicate an error in the global illumination algorithm.

7.3.7.7 Error Bounds

To account for the potentially significant errors in our validation (i.e. spectral shift
and sensor tolerance), we represent the measured and simulated illuminance as
lower and upper bounds indicating possible error margins. These bounds are rep-
resented as bars in the illuminance plots for each case study (figures 7.24, 7.26,
7.29, 7.32, and 7.35). As discussed in section 7.2.3, they are expressed relative
to the direct illuminance. Measured and simulated illuminance bounds are derived
separately as follows:

Measurement: bounds account for sensor error. For a given measured illuminance
Em, the corresponding lower and upper bounds Em,lo and Em,hi relative to the
averaged direct illuminance Em,l measured by the front sensors are defined
as:

Em,lo =
Em (1− εsens)−δsens

Em,l (1 + εsens)+ δsens
, (7.12)

Em,hi =
Em (1 + εsens)+ δsens

Em,l (1− εsens)−δsens
, (7.13)

where εsens and δsens are the relative and absolute sensor errors for the range
containing Em as defined in section 7.3.7.1. Note that we also account for the
sensor error in Em,l .

Simulation: bounds are only derived for case studies involving interreflection using
molleton (figures 7.32 and 7.35), where they account for potential underpre-
diction due to spectral shift in the simulation. For a given simulated illumi-
nance Es, the lower and upper bounds Es,lo and Es,hi relative to the simulated
direct illuminance Es,l are defined as:

Es,lo =
Es

Es,l
, Es,hi =

Es (1 + εspec)

Es,l
, (7.14)

where εspec is the estimated relative error due to spectral shift derived in sec-
tion 7.3.7.2.
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In order to ultimately assess the accuracy of the simulation, we evaluate the
relative error between the measured and simulated illuminance, carrying the asso-
ciated bounds over into the evaluation. This results in relative error margins εlo and
εhi defined as:

εlo = min(εs,lo,εs,hi) , εhi = max(εs,lo,εs,hi) , (7.15)

where εs,lo and εs,hi are the error extremes defined by the closest and furthest pairs
of measured and simulated illuminance bounds.

εs,lo =
Es,lo

Em,hi
−1, εs,hi =

Es,hi

Em,lo
−1. (7.16)

These bounds are indicated by bars in the relative error plots in figures 7.27, 7.30,
7.33, and 7.36.

7.4 Validation Case Studies

The measurements are divided into component and compound case studies. Com-
ponent case studies comprise preliminary measurements to validate individual light
transport modes in order to maintain tractability, and, where possible, to compare
against an analytical solution to check the validity of the measurements and the val-
idation methodology as a whole. Compound case studies combine the component
case studies, resulting in more complex light transport which cannot be validated
with confidence if the individual components themselves have not undergone vali-
dation.

Illuminance data from the interior sensors was measured for window distances
of ca. 20–100 cm in 2 cm increments. For all twelve sensors this resulted in a data
set comprising some 490 sample points per case study. In all case studies, the box
has an effective inclination of ca. 30◦ to the lamp, and only the floor (and lightshelf,
if applicable) receives direct illuminance. Since we are primarily interested in the
indirect illuminance, we restrict the results to the ceiling sensors in this chapter.
Results for the complete compound case study data set can be found in appendix
F.

7.4.1 Component Case Study 1: Absorbing Box

7.4.1.1 Description

Illuminance is measured in the “absorbing” box (interior clad in black molleton). The
purpose of the case study is to determine the background illuminance incurred by
the black molleton fabric, which must be included in analytic solutions derived in the
subsequent component case studies.
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7.4.1.2 Results

The low illuminance results in high error bounds for the measurements due to the
sensor tolerance, indicated by the large error bars in figure 7.24. This translates
to an average illuminance range of 14–25 lx. This error is taken into account in
analytical solutions of subsequent component case studies.
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Figure 7.24: Results of component case study 1: measured background
illuminance for centre ceiling sensor.

7.4.2 Component Case Study 2: Diffuse Patch Reflection

7.4.2.1 Description

Two identical light gray molleton patches are placed at equal window distance be-
tween the floor sensor tracks in the absorbing box, and the resulting illuminance
measured at the ceiling (figure 7.25). The patches are placed in an area of direct il-
luminance, while the ceiling only receives indirect illuminance from the patches. The
purpose is to derive an analytical solution based on diffuse reflection for the ceiling
illuminance, which can then serve as a reference for both the measurements and
the simulation. The legitimacy for considering the light transport as diffuse lies in
the fact that the sensor to patch angle does not exceed 45◦, such that the molleton’s
off-specularity does not come to bear, while the off-specular component reflected at
grazing angles towards the back of the box is absorbed by the black molleton and
does not affect the patches or sensors.

The analytical estimate for a ceiling sensor’s illuminance Es is based on simple
form factor calculation [CW93]:

Es = F1sB1 + F2sB2 + Eb (7.17)
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Figure 7.25: Component case study 2: diffuse patch reflection

= ρ(F1sE1 + F2sE2)+ Eb (7.18)

= ρ
A
π

(
E1

cos2 θ1s

|~ω1s|2
+ E2

cos2 θ2s

|~ω2s|2

)
+ Eb, (7.19)

where:

• F1s and F2s are the form factors for sensor-patch light transport

• B1 and B2 are the patch luminosities

• ρ is the diffuse patch reflectance (measured at normal incidence)

• E1 and E2 are the patch illuminances from the light source

• Eb is the background illuminance at the sensor position

• A is the area of each patch

• ~ω1s and ~ω2s are the sensor-patch vectors

• θ1s and θ2s are the angles between the patch normals and ~ω1s and ~ω2s,
respectively.6

The background illuminance Eb is obtained for each ceiling sensor position from
the previous case study. The direct patch illuminances E1 and E2 are measured with
the three floor sensors at the patches’ window distance, then interpolated for each
patch’s centre from the flanking sensor illuminances. The errors inherent in the
background and floor sensor illuminances are taken into account by deriving lower
and upper bounds for the analytical solution.

Obviously, the patch area A plays a crucial role and involves a tradeoff. The
smaller the area, the more accurate the analytical solution, since the patch should
ideally be of infinitesimal area. Conversely, a larger area increases the ceiling illu-
minance, and thus the accuracy of the measurements. A compromise was found
with 9 × 9 cm patches, which yielded a maximum ceiling illuminance of ca. 120 lx.

6Because the sensor and patch normals are antiparallel, the same angles result between the
sensor normals and ~ω1s and ~ω2s, hence the squared cosine terms in equation 7.19.



CHAPTER 7. EXPERIMENTAL VALIDATION 147

A further component case study was planned involving patch interreflection.
This called for an additional pair of patches attached to the ceiling in identical con-
figuration to the floor patches. An analytical solution involving four patches would
have been complex but feasible. Due to the small size of the patches, however,
the interreflection was negligible. An analytical estimate predicted an illuminance
increase below 1 lx at the ceiling sensors compared to simple patch reflection. This
was also confirmed with measurements. Because the illuminance increase cannot
be reliably measured with the sensors (1 lx increase versus ±5 lx absolute error
margin), the patch interreflection case study was aborted.

7.4.2.2 Results

Figure 7.26 compares the measured relative illuminance with the simulated values
obtained with RADIANCE Classic and the photon map, as well as the analytical
solution. The error bars in the measured data indicate the sensor tolerance, while
the error bars in the analytical data indicate the errors inherent in the background
and floor sensor illuminance. The estimated 0.5% underprediction inherent in the
simulation due to spectral shift was negligible and omitted for clarity.

As expected, the patch reflection exhibits a characteristic gaussian curve centr-
ered at the patch position. Both the measured and simulated gaussians are slightly
asymmetric compared to the analytical solution, with a gentler slope towards the
back of the box. This is attributed to the emerging off-specular component of the
molleton patches.

The relative deviations (figure 7.27) lie within the error margin accounting pri-
marily for the illuminance sensor tolerance, which becomes significant at such low
levels. Average deviations for RADIANCE Classic and photon map are 3% and 2%,
respectively.

7.4.3 Component Case Study 3: Light Shelf Caustic

7.4.3.1 Description

The aluminium light shelf is mounted on the outer window ledge of the absorbing
box in order to create a caustic directed towards the ceiling (figure 7.28).

7.4.3.2 Results

The ceiling illuminance due to the caustic drops with increasing window distance,
as expected (figure 7.29). The sandblasted aluminium gives rise to a broad caus-
tic which can still be accurately simulated with RADIANCE Classic, though with a
slightly higher degree of noise compared to the photon map. Both algorithms agree
well with the measurement.

The photon map exhibits an illuminance drop up to 400mm. This is an ob-
vious manifestation of the aluminium BRDF’s reciprocity deviations revealed after
subjecting it to the Helmholtz reciprocity test (section 7.3.5). Window distances of
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Figure 7.26: Results of component case study 2: analytical (top) and simu-
lated (bottom) ceiling sensor illuminance from patch reflection.

200–400mm correspond to exitant angles on the light shelf of ca. 39◦–58◦, which
lie in the region of deviation as shown in figure 7.17.

Results for a second set of simulations using the reciprocal aluminium BRDF
confirm that the illuminance deviations up to 400mm are indeed caused by the
BRDF: in this case, RADIANCE Classic exhibits the deviations, but not the photon
map. On account of this, the original photon map simulation was dropped in favour
of the reciprocal simulation, and used for subsequent error analysis.

Relative deviations for the ceiling sensor are graphed in figure 7.30. RADIANCE
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Figure 7.27: Results of component case study 2: relative error in simulated
illuminance from patch reflection. Error bars are based on sensor tolerance
in the measurement. Bars associated with identical points are separated
for clarity.
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Figure 7.28: Component case study 3: light shelf caustic

Classic’s deviations are mostly noise, which increases towards the back of the box
since the density of ambient rays striking the light shelf drops. The absolute com-
ponent of the illuminance sensor tolerance comes to bear in the error margin as the
caustic fades with increasing window distance. Average deviations for RADIANCE
Classic and photon map are 7% and 2%, respectively.

7.4.4 Compound Case Study 1: Diffuse Interreflection

7.4.4.1 Description

The box interior is clad with light gray molleton (figure 7.31). This is a generalisa-
tion of component case study 2, and no analytical solution is available. The error
incurred by the light transport simulation is expected to weigh in far greater due to
the interreflection. Furthermore, an increase in illuminance is expected towards the
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Figure 7.29: Results of component case study 3: simulated vs. measured
ceiling sensor illuminance from light shelf caustic. Reciprocity deviations
in the aluminium BRDF are evident when comparing simulations using the
reciprocal BRDF (bottom) with those using the original (top).

back of the box due to the molleton’s off-specular component.

7.4.4.2 Results

Initial simulations with RADIANCE Classic and photon map using the same mol-
leton reflectance as in the component case studies (ρ = 0.71 at normal incidence)
resulted in underprediction by some 10%. An investigation eventually revealed that
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Figure 7.30: Results of component case study 3: relative error in simu-
lated illuminance from light shelf caustic. Error bars are based on sensor
tolerance in the measurement.

Figure 7.31: Compound case study 1: diffuse interreflection

the material’s reflectance had actually increased to 0.724 for the side and ceiling
sections, and even 0.754 for the floor. The cause of the increase in the molleton’s
reflectance appears to be due manufacturing tolerances, since the floor section was
obtained from a different consignment than the other sections.

To account for the increase in reflectance the measured BRDF data was uni-
formly scaled by a factor of 0.724/0.71 and 0.754/0.71 for the corresponding sur-
faces during the simulation. While this is merely an increase of 2% and 6%, re-
spectively, the interreflection amplifies this to yield a considerable increase in illumi-
nance, particularly because the floor is directly illuminated and therefore contributes
most. It was, however, assumed that the distribution of the BRDF was unchanged.
The reflectance correction resulted in a substantially more accurate prediction as
shown in figure 7.32. Error bars in the simulation account for the spectral shift ef-
fected by the molleton, which is amplified by interreflection and thus more significant
than in the patch reflection case study. Error bars in the measurement account for
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the sensor deviations, which are dominated by the relative component in contrast to
the component case studies, where the absolute component has a greater impact
due to the low illuminance.

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 300 400 500 600 700 800 900 1000

R
el

at
iv

e 
ill

um
in

an
ce

Distance to window [mm]

Interreflection, Middle Ceiling Sensor

Measured Photon Map Radiosity

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 300 400 500 600 700 800 900 1000

R
el

at
iv

e 
ill

um
in

an
ce

Distance to window [mm]

Interreflection, Middle Ceiling Sensor

Measured RADIANCE Radiosity

Figure 7.32: Results of compound case study 1: ceiling sensor illuminance
from interreflection simulated with photon map (top) and RADIANCE Clas-
sic (bottom). Comparison with the radiosity solution obviates the impact of
the molleton’s off-specular component on the illuminance.

The off-specular component of the molleton BRDF clearly comes to bear here,
and its effect is amplified by interreflection, as seen in the plot. This is evident
by comparing the measurement with a purely diffuse radiosity solution using the
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corrected reflectance. Not only does the off-specular component increase the illu-
minance by up to 14%, it also causes a slight shift of the illuminance peak towards
the back of the box.

Figure 7.33 is a plot of the relative deviations for the ceiling sensor. The re-
flectance correction yields good agreement for both RADIANCE Classic and photon
map, with remarkably low average deviations of 1% and 2%, respectively.
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Figure 7.33: Results of compound case study 1: relative error in simulated
illuminance from interreflection. Error bars are based on sensor tolerance
in the measurement and spectral shift in the simulation.

7.4.5 Compound Case Study 2: Light Shelf Caustic and Diffuse Inter-
reflection

7.4.5.1 Description

Combination of component case study 3 and compound case study 1. The alu-
minium light shelf is mounted on the outer window ledge of the reflecting box (figure
7.34). As in the previous case study, errors in the simulation are expected to be
amplified by interreflection, and the illuminance is expected to rise with increasing
window distance.

7.4.5.2 Results

As can be seen from the illuminance plot (figure 7.35), the region near the window
is mostly under the influence of the caustic, producing a gentler rising slope in the
illuminance compared to interreflection alone. As in the previous case study, the
molleton BRDF data used in the simulations was scaled to match a reflectance at
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Figure 7.34: Compound case study 2: light shelf caustic and
diffuse interreflection

normal incidence of 0.724 for the sides and ceiling, and 0.754 for the floor, thereby
yielding similarly accurate predictions. As before, the error bars indicate estimated
deviations due to spectral shift in the simulation and sensor tolerance in the mea-
surement.

Relative deviations for the ceiling sensor are shown in figure 7.36. Here too, the
reflectance correction yields low average deviations of 1% and 2% for RADIANCE
Classic and photon map, respectively. The minor underprediction of the photon map
near the window region is once again attributed to the aluminium BRDF’s reciprocity
deviations.

7.4.6 Performance Comparison

Table 7.1 lists relative computation times for the middle ceiling sensor. These times
were obtained from simulation runs on a dual AMD Athlon 1.6 GHz system running
Linux. Actual computation times ranged from 3 to 11 minutes for the photon map,
and 47 to 434 minutes for RADIANCE Classic.

In all cases the photon map outperforms RADIANCE Classic by a factor of 16
or more. Calculating the illuminance for all sensors in a case study exacerbates this
ratio even further; while there is no significant additional overhead for the photon
map, RADIANCE Classic’s cumulative computation time tends to increase linearly
for every additional sensor position.

This discrepancy arises from the fact that the photon map is already a complete
solution to the indirect illumination. Thus, the bulk of the photon map computation
time is consumed during the distribution step; the actual gathering step is nearly
instantaneous, since we have chosen to evaluate the photon illuminance directly
for the validation, and therefore no ambient rays are traced. Once the photon map
is built, we can reuse it with minimum penalty for an arbitrary number of sensor
positions. RADIANCE Classic, on the other hand, must trace additional ambient
rays for every sensor position, despite the fact that ambient files were used in order
to reuse the irradiance cache accumulated from previous sensor positions. The
high overhead of RADIANCE Classic for the validation case studies naturally stems
from the parametrisation necessary to achieve accurate results. It is clear, however,
that the photon map is capable of delivering comparable accuracy in a substantial
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Figure 7.35: Results of compound case study 2: ceiling sensor illuminance
from light shelf caustic and interreflection simulated with photon map (top)
and RADIANCE Classic (bottom).

fraction of the time.

7.5 Conclusions

We have presented a physical validation based on measurements of a simple scale
model with an artificial light source. The proposed methodology is characterised by:

• Emphasis on tractability and error minimisation.
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Figure 7.36: Results of compound case study 2: relative error in simulated
illuminance from light shelf caustic and interreflection. Error bars are based
on sensor tolerance in the measurement and spectral shift in the simulation.

Case study Time [Photon map:RADIANCE Classic]

Patch reflection 1:39
Light shelf 1:22
Interreflection 1:16
Light shelf & interreflection 1:16

Table 7.1: Relative computation times for ceiling sensor illuminance.

• Simple component case studies testing individual light transport modes (sin-
gle diffuse and specular reflection). These serve as foundation for the more
complex compound case studies.

• Compound case studies testing interreflection (diffuse only and in conjunction
with a single specular reflection).

• Analytical solutions where possible to assess the accuracy of the measure-
ments themselves, not just the simulation.

Physical accuracy necessitated incorporating the EDF of the light source and
the material BRDFs in the simulation. The EDF was obtained with a novel method
based on extraction from HDR camera images. The BRDFs of the materials were
obtained from goniophotometric measurements. Physical validation requires atten-
tion to detail and scrutiny in order to minimise errors on the physical side. Since the
simulations used measured BRDF data, errors on the physical side will be carried
over into the simulation. Consequently, both data sets were subjected to analysis
and verification prior to simulation, as well as correction in the case of the BRDF
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data due to limitations of the goniophotometer device. The BRDF data also ne-
cessitated the development of a resampling technique based on nearest neighbour
lookups in a bilevel kd-tree in order to efficiently evaluate the BRDF at arbitrary
incident and exitant directions during the simulation.

The uncertainties inherent in a physical validation were discussed, particularly
pertaining to measurement inaccuracies. We have identified primary sources of er-
ror and accounted for them where necessary. These uncertainties are carried over
into the resulting illuminance plots as error bounds. The most problematic factor of
the experimental validation were the material BRDFs. An accurate simulation re-
quired using the measured BRDF data directly in place of a fitted analytical BRDF
model. Instead, the fitted model served a subordinate purpose, providing the PDF
sample ray distribution in the simulation. Furthermore, the molleton’s reflectance
was subject to manufacturing tolerances which contributed significantly to devia-
tions in compound case studies due to interreflection, while the aluminium BRDF
exhibited reciprocity deviations which were noticeable in component case studies.

The validation tested several aspects of both RADIANCE Classic and the pho-
ton map, including:

• Indirect illumination with respect to diffuse-diffuse as well as specular-diffuse
(caustic) transfers.

• Non-trivial BRDFs (specular and off-specular).

• Light source EDF (particularly critical due to the small solid angle subtended
by the scale model).

The results of the compound case studies show that both algorithms deliver
very similar results. The average deviations are similarly low except for the floor
sensors due to inaccuracies in the direct component. However, the stock RADI-
ANCE code responsible for this component is common to both algorithms and thus
only of marginal significance to the validation. Conversely, sensor positions domi-
nated by indirect illumination are of primary interest, and for these both algorithms
exhibit deviations under 10% compared to the measurements. This is well within the
tolerances proposed by the CIE for lighting design software [Fis92] (10% for aver-
aged and 20% for point illuminance), consequently the photon map is fundamentally
suitable for lighting applications.

While both algorithms perform similarly as far as accuracy is concerned, the
computation times differ substantially. In all case studies the photon map outper-
formed RADIANCE Classic by a minimum factor of 16. This disparity is attributed to
the fact that the photon illuminance is evaluated directly rather than via final gather-
ing, but even in the latter case performance is still generally superior to RADIANCE
Classic. The photon map’s primary advantage, namely the construction of a com-
plete, reusable global illumination solution in the forward pass, comes to bear when
sampling multiple sensor positions, while RADIANCE Classic’s performance suffers
under the burden of additional ambient rays for each sensor position.



CHAPTER 7. EXPERIMENTAL VALIDATION 158

It should be re-emphasised as on the outset that the primary intent of the vali-
dation was to test the fundamental algorithm behind the photon map, and that the
validation should be considered exemplary. This implies that the accuracy and per-
formance of the photon map obtained with these case studies is by no means guar-
anteed for all geometries and parametrisations. The forward pass is particularly ef-
ficient with mostly closed environments with high reflectance such as the validation
test box, whereas RADIANCE Classic inevitably performs poorly in such situations
due to the large number of ambient bounces required for accurate interreflection.
Although complex in detail, the scope of the validation was infact too narrow to
provide an assessment of the photon map’s accuracy on a broad scale.

Physical validation methodologies are still in their infancy. This is borne out by
our own experience and the scarcity of available references and measurement data.
Research in physically based rendering is only recently addressing the need to de-
velop a standardised framework for physical validation. The validation described
here was an interdisciplinary undertaking, bringing together computer scientists and
physicists. Its documentation on these pages is intended to contribute to the devel-
opment of a standardised framework and aid in future validation prospects.

In concluding, we have shown that the adequately parametrised photon map al-
gorithm delivers accuracy comparable to that of RADIANCE Classic, only generally
faster. One a more fundamental level, this chapter and the previous have demon-
strated the soundness of both the forward and backward raytracing paradigms in
theory and practice. However, the validation does not single out the “better” algo-
rithm. Both have their strengths and weaknesses, and are consequently suitable
for complementary applications in daylighting. It is clear that forward raytracers ex-
cel at simulating caustics and as such are well suited to efficiently handling light
redirecting systems typically used in daylighting configurations, but are burdened
by distant light sources used by sky models during the forward pass. By contrast,
backward raytracers have difficulty with caustics but can handle distant sources with
ease by sampling them directly. The photon map extension to RADIANCE unifies
these methods and makes the best of both worlds available to lighting consultants
for the evaluation of configurations using both artifical and natural light.

As of this writing, the photon map extension has only seen experimental use
within the RADIANCE community, but raised the interest particularly of those who
have run into RADIANCE Classic’s limitations when the issue of caustics arises.
A gradual migration from RADIANCE Classic to photon map is therefore expected
specifically for tasks involving the analysis of light redirecting systems, thereby es-
tablishing a possible future niche for photon map applications within the RADIANCE
community.



Appendix A

The RADIANCE Rendering
System

RADIANCE is a global illumination rendering system based on a Monte Carlo ray
tracer developed by Greg Ward [War94, LS98] primarily for lighting and architecture.
To the author’s knowledge it is the only open-source physically based renderer that
has seen commercial use and undergone validation [Gry89, MLH93]. It was chosen
as a framework for the modifications that were implemented in the scope of this
thesis since it has a sizeable user base which will (hopefully!) benefit from this
work.

RADIANCE is not a single monolithic renderer but rather a suite of small, por-
table, command-line driven programs which perform specific tasks as part of a sim-
ulation. There are utilities for generating geometry, manipulating and converting
renderings, a semi-interactive previewer, and the ray tracer itself. A fully interactive
OpenGL based previewer is also available separately1.

The set of geometric primitives supported by RADIANCE is indeed primitive,
consisting of spheres, discs, cones, cylinders, and polygons. However, a set of util-
ities comes with RADIANCE which can generate approximations of more complex
geometries based on these primitives. These include solids of revolution, paral-
lelepipeds, and curved surfaces.

RADIANCE employs stratified sampling to determine the diffuse indirect
(termed ambient in the RADIANCE literature) irradiance at a point. An additional su-
persampling pass with finer intervals is performed if this illumination exhibits a high
gradient, from nearby specular objects for example. The specular component is
sampled separately using importance sampling based on the BRDF (see appendix
B.1).

A unique feature of RADIANCE is its irradiance caching scheme [WRC88,
WH92], which reuses the ambient values from nearby points and interpolates be-
tween them. The spacing between the cached values is derived from a user-defined

1Rshow by Peter Apian-Bennewitz, available at http://www.pab-opto.de/progs/rshow/
rshow.html
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error metric. This can dramatically improve performance as the number of ambient
computations (and hence the number of traced rays) is reduced. However, the irra-
diance cache can backfire and propagate inherent noise in the ambient values if the
number of sample rays is too low, producing unsightly splotches on surfaces. The
irradiance cache’s parametrisation requires some experience to achieve acceptable
results in difficult cases.

The direct illumination is sampled from area light sources associated with a
scene object. In order to produce penumbrae their surfaces are partitioned and
shadow rays cast towards each partition to prevent clustering, thereby determining
the fraction of the visible area. The order in which light sources are sampled is
optimized via an adaptive scheme which samples sources in order of decreasing
potential contribution until some cutoff point, after which a statistical estimate is
added for the remaining sources [War91a]. A special source primitive caters to
daylight simulation in the form of a directional light source with a solid angle which
is subtended at every point in the scene. This source is not associated with any
scene geometry and at an infinite distance, thus simulating the sun. Arbitrary EDFs
can be specified via functions or goniometric data files, the latter usually available
from manufacturers of lighting fixtures.

As with all physically based renderers, the images produced by RADIANCE
require adaptation of the dynamic range for proper viewing. A sophisticated tone
mapping utility [LRP97] is included which models limitations of the HVS. In dark
regions it accounts for low acuity, reduced colour saturation and contrast, whereas
in bright regions it accounts for veiling due to internal scattering in the eye lens.
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Analytical BRDF Models

B.1 The Ward Gaussian BRDF Model

The standard BRDF model employed in RADIANCE is Ward’s Gaussian model
[War92], which models specular peaks as Gaussian lobes. It is a general model
capable of approximating most benign materials with simple BRDFs. The isotropic
case is defined as follows (figure B.1):

fr,iso (~x,~ωi,~ωr) =
ρd

π
+

ρse−( tanδ
α )

2

4πα2

√(
~N~x ·~ωi

)(
~N~x ·~ωr

) , (B.1)

where

• ρd is the diffuse reflectance

• ρs is the specular reflectance

• ~N~x is the surface normal

• δ is the angle between ~N~x and the halfway vector ~H which is defined as

~H =
~ωi +~ωr

‖~ωi +~ωr‖
(B.2)

• α is the RMS surface slope and gives a measure of the surface roughness.

The specular reflectance defines the amplitude of the Gaussian lobe while the
roughness term defines its width.

The model is also capable of anisotropic effects by using two independent slope
distributions αu and αv along two perpendicular axes ~u and ~v on the surface. The
anisotropic case then becomes

fr,aniso (~x,~ωi,~ωr) =
ρd

π
+

ρse
− tan2 δ

(
( cosφ

αu )
2
+( sinφ

αv )
2)

4παuαv

√(
~N~x ·~ωi

)(
~N~x ·~ωr

) , (B.3)
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~u

~H

φ

~v

~N~x

~ωi

~ωr δ

Figure B.1: Ward’s Gaussian model. ~ωi and ~ωr are defined in
terms of local coordinates.

where φ is the angle between~u and the projection of ~H onto the surface.
Using Monte Carlo inversion techniques, a direction for a specular sampling ray

is generated as follows:

δ = tan−1

√√√√
− log(ξ1)

(
cosφ
αu

)2
+
(

sinφ
αv

)2 (B.4)

φ = tan−1
(

αu

αv
tan(2πξ2)

)
, (B.5)

ξ1,ξ2 ∈ [0,1] ,

where ξ1 and ξ2 are uniform random variables, and δ and φ are defined as above.

B.2 The Lafortune BRDF Model

This very general model due to Lafortune [LFTG97] sees widespread use. Its pop-
ularity stems from its simplicity and ability to cover a broad range of materials and
reflection behaviour, while still being efficient and easy to implement. The parametri-
sation is however not as intuitive as with the Ward model, and best accomplished
via a fit to measured data.

The model is a generalisation of the simple cosine lobe model [Lew93] based
on a sum of independent exponentiated cosine lobes. Each lobe j is characterised
by a coefficient vector ~C j, and an exponent n j which specify the lobe’s position,
amplitude, and width for the given incident and outgoing directions. The BRDF is
defined as

fr,l (~ωi,~ωr) =
N

∑
j=1

(C j,xωi,xωr,x +C j,yωi,yωr,y +C j,zωi,zωr,z)
n j , (B.6)

where the incident and exitant directions ~ωi and ~ωr are defined in terms of the
surface’s local coordinate system. Negative BRDF values are clipped to 0. For a
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more intuitive interpretation, the model can also be rewritten as

fr,l (~ωi,~ωr) =
N

∑
j=1

fr,l, j (~ωi,~ωr) (B.7)

=
N

∑
j=1

(~ω j ·~ωr)
n j , (B.8)

~ω j = (C j,xωi,x, C j,yωi,y, C j,zωi,z) . (B.9)

This reduces the model to a traditional cosine lobe model with a scaled lobe axis ~ω j

whose magnitude and position is based on the lobe coefficients ~C j and the incident
direction ~ωi. In this way, the model can account for a reflectance which varies with
incident angle.

The choice of lobe coefficients specifies the reflection characteristics the model
accounts for:

lambertian reflection: n j = 0

anisotropy: C j,x 6= C j,y

retro-reflection: C j,x,C j,y > 0

off-specularity: |C j,x|, |C j,y|>C j,z, where the ratios |C j,x|/C j,z and |C j,y|/C j,z de-
fine the degree of off-specularity.

The individual lobe reflectances can be computed efficiently for integer expo-
nents with a method by Arvo [Arv95, Dut03]. This is an approximation for lobes
with floating point exponents, which we will denote ρ̃l, j, thereby also implying the
approximated total reflectance ρ̃l . Similarly, f̃r,l, j denotes the component BRDFs
evaluated for each lobe using integer exponents bn jc, implying the approximated
total BRDF f̃r,l .

To apply Monte Carlo techniques, the BRDF can be importance sampled by
selecting a lobe j according to its reflectance ρ̃l, j, and generating a direction on the
unit hemisphere with a probability proportional to cosbn jcθ:

θ = cos−1
(

ξ
1

bn jc+1

1

)
(B.10)

φ = 2πξ2, (B.11)

ξ1,ξ2 ∈ [0,1] .

The resulting direction is then transformed to the lobe axis~ω j to obtain the sam-
ple direction ~ωr. Sample directions which penetrate the surface are rejected. The
sample’s normalisation factor1 Ĩl, j can be obtained for integer exponents with an-
other method by Arvo similar to that for the lobe’s reflectance ρ̃l, j [Dut03]. Note that

1The normalisation factor is not the same as the reflectance in this case because the PDF does
not account for cosθr after transformation to the lobe axis.



APPENDIX B. ANALYTICAL BRDF MODELS 164

because the reflectance and normalisation factor are based on integer exponents,
the sampled directions must also be generated for integer exponents bn jc.

Working with integer exponents imposes unacceptable constraints on the BRDF
and introduces discontinuity with respect to the exponents, which complicates fits to
measured BRDF data. A workaround is to compensate for the terms derived from
integer exponents by scaling the samples as if they had effectively been based on
a BRDF with floating point exponents. This gives us the bias-free estimator:

L̂(~ωi) =

Lobe compensation︷ ︸︸ ︷
ρ̃l (~ωi)

ρ̃l, j (~ωi)
·

Direction compensation︷ ︸︸ ︷
Ĩl, j (~ωi)

f̃r,l, j (~ωi,~ωr)
fr,l, j (~ωi,~ωr)L(~ωr)cosθr,

~ωr ∈ Ω,
j ∈ [1,N], (B.12)

where the respective compensating factors for nonuniform sampling of the lobe and
direction are indicated in overbraces.



Appendix C

Analytical Sky Models

The diffuse hemispherical sky source used in daylight simulation (see figure 1.4) ac-
counts for sunlight scattered by the atmosphere. However, in reality the directional
distribution of sky luminance is rarely uniform. Furthermore, cloud cover distribu-
tions are required in order to model more varied sky conditions. To account for
such luminance distributions, sky models were developed, which may be consid-
ered analogous to goniometric data for artificial sources. Unlike the latter, however,
sky models describe luminance distributions for a sensor at a fixed location. Like
BRDFs, analytic sky models are generally empirical, i.e. based on comparisons with
measured sky conditions, although it is also possible to integrate the data directly
into the simulation as is the case with the RADIANCE system. The state of the art
for measuring sky luminance distributions is the skyscanner , a luminance sensing
device which scans the sky hemisphere and records both the diffuse (sky without
sun) and directional (sun only) components [PBB+94]. However, skyscanner data is
scarce and site specific, whereas analytical sky models are more flexible and easier
to parametrise for a particular location and sky condition. Mardaljevic [Mar99] has
demonstrated the validity of some of these models based on skyscanner data for
a number of sky conditions. Note that all presently available sky models based on
diffuse and direct luminance generate continuous luminance distributions, and do
not explicitly model clouds, but merely account for the influence of cloud cover in
the diffuse luminance.

C.1 CIE Overcast Sky

The simplest sky model is also the oldest, known as the Moon and Spencer sky
before its standardisation by the CIE in 1955 [CIE94]. It accounts for the overcast
sky’s gradation from a dark horizon to a bright zenith, and is rotationally symmetric
about the zenith. The luminance for an incident direction ~ωi at an angle θi to the
zenith (see figure C.1) is given by:

L(~ωi) = Lz
1 + 2cosθi

3
, (C.1)

165



APPENDIX C. ANALYTICAL SKY MODELS 166

where Lz is the zenith luminance. The horizon luminance is therefore 1/3 of the
zenith luminance. Trivial as it may seem, the model agrees with measured data for
dull sky conditions [KV93]. This model is primarily used in daylight factor evaluation.

θs

α

~ωi θi

Zenith

Figure C.1: Sky model geometry.

Figure C.2 is a 3D plot of this sky model. The plot represents the sky dome pro-
jected onto the ground plane, with luminance proportional to elevation and colour.
The rotational symmetry and luminance maximum at the zenith are obvious in the
plot.

Figure C.2: CIE overcast sky model.
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C.2 CIE Clear Sky

The more complex CIE clear sky was originally proposed by Pokrowski based on
theory and measurements, which was modified by Kittler before being adopted as
a standard by the CIE [CIE94]. The model accounts for a bright circumsolar region,
a point with minimum sky luminance, and brightening towards the horizon.

L(~ωi) = Lz

(
0.91 + 10e−3α + 0.45cos2 α

)(
1− e−0.32/cosθi

)

(0.91 + 10e−3θs + 0.45cos2 θs)(1− e−0.32)
, (C.2)

where θs is the zenith angle to the sun’s position, and α is the angle between the
sun’s position and the incident direction ~ωi under consideration (see figure C.1).

Figure C.3 is an example of a CIE clear sky with the sun located at an angle of
θs = 30◦ to the zenith. Note the peak representing the circumsolar region and the
elevation (luminance increase) towards the horizon.

Figure C.3: CIE clear sky model.

The gensky utility in the RADIANCE suite can generate scene descriptions ac-
cording to the CIE clear and overcast sky models.

C.3 Perez All-Weather Model

The CIE overcast and clear skies are extreme sky conditions and do not account
for more common intermediate skies. The Perez all-weather model [PSM93] ad-
dresses this issue. It is parametrised with five distribution coeffcients c1, . . . ,c5
relating to

• darkening or brightening towards the horizon

• the luminance gradient towards the horizon
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• the relative luminance of the circumsolar region

• the width of the circumsolar region

• the relative backscattered luminance.

These coefficients define a distribution function which scales the zenith luminance
Lz:

d (θi,α) =
(

1 + c1ec2/cosθi
)(

1 + c3ec4α + c5 cos2 α
)

(C.3)

L(~ωi) = Lz
d (θi,α)

d (0,θs)
, (C.4)

with θs and α defined as in the previous section.
Figure C.4 is an example of an intermediate sky obtained with the Perez model,

with the sun located at an angle of θs = 30◦ to the zenith. The moderate cloud cover
causes the circumsolar region to widen.

Figure C.4: Intermediate sky obtained with Perez model.

The Perez model is in widespread use due to its generality and ease of
parametrisation. In a recent study comparing various sky models, the Perez model
exhibited the lowest deviation from measured data [Var00]. This model has been
improved specifically for computer graphics applications to account for the spectral
properties of daylight [PSS99], based on sun position and atmospheric turbidity.

The gendaylit utility [Del95] is an extension to the RADIANCE system which
generates scene descriptions according to the Perez sky model.



Appendix D

Analytical Validation with
Lafortune BRDF

The analytical validation using the Lafortune BRDF model is based on the spherical
furnace paradigm employed in chapter 6. For simplicity, the BRDF model consists
of a constant diffuse term and a single cosine lobe aligned with the surface normal,
i.e. Cx = Cy = 0.

The derivation of the reference value for the validation is based on a series
expansion similar to equation 6.9, but complicated by the directional component of
the BRDF. As a consequence, the irradiance is constant for any point on the inner
sphere surface, but the radiance varies with the incident angle. The derivation can
be simplified by treating directions as polar coordinates. The resultant expression
appears to defy a closed form representation, and is instead distilled into a recursive
schema.

The irradiance E at a point~x1 on the inner sphere surface is defined as

E = El +
Z

θi,1

Z

φi,1

Li (~x1,θi,1,φi,1)cosθi,1dωi,1, (D.1)

where El is the constant point light source irradiance and θi,1,φi,1 are incident an-
gles relative to the surface normal at ~x1. The incident radiance Li is recursively
defined as

Li (~x1,θi,1,φi,1) = Lr (~x2,θr,2,φr,2)

= El fr (θi,l ,φi,l,θr,2,φr,2)+Z

θi,2

Z

φi,2

Li (~x2,θi,2,φi,2) fr (θi,2,φi,2,θr,2,φr,2)cosθi,2dωi,2,

(D.2)

where ~x2 is a point contributing radiance incident at ~x1 along the direction θi,1,φi,1
(see figure D.1). The exitant direction θr,2,φr,2 is defined in terms of the surface
normal at~x2.

Due to the spherical topology, the expression can be simplified substantially:
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~x1

~N1

~N2
~x2

θi,1

θr,2

θi,2

Figure D.1: Spherical validation geometry. The incident angle θi,1 at ~x1 is
equal to the exitant angle θr,2 at~x2.

• since the light source is at the sphere center, θi,l = φi,l = 0,

• the incident angle θi, j at~x j is equal to the exitant angle θr, j+1 at~x j+1,

• the BRDF and radiance are symmetric about the normal and position-
independent, reducing them to fr(θi,θr) and L(θ).

Substituting D.2 into D.1 and simplifying, the expression now becomes

E = El +

2π
Z

θ1

[
El fr (0,θ1)+

2π
Z

θ2

L(θ2) fr (θ2,θ1)cosθ2 sinθ2dθ2

]
cosθ1 sinθ1dθ1.(D.3)

The BRDF is defined as

fr (θi,θr) = fr,d +(Cz cosθi cosθr)
n , (D.4)

where fr,d is the constant diffuse term, and Cz and n are the cosine lobe’s Z-
coefficient and exponent, respectively. Plugging this into D.3 yields

E = El +

2π
Z

θ1

[[
Cn

z cosn θ1 + fr,d
]

El +

2π
[
Cn

z cosn θ1

Z

θ2

L(θ2)cosn+1 θ2 sinθ2dθ2 +

fr,d

Z

θ2

L(θ2)cosθ2 sinθ2dθ2

]]
cosθ1 sinθ1dθ1

= El + 2π
[

Cn
z

n + 2

[
El + 2π

Z

θ2

L(θ2)cosn+1 θ2 sinθ2dθ2

]
+
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fr,d

2

[
El + 2π

Z

θ2

L(θ2)cosθ2 sinθ2dθ2

]]
. (D.5)

We now expand the series:

E = El +

2π

[
Cn

z

n + 2

[
El + 2π

[
Cn

z

2n + 2

[
El + 2π

Z

θ3

L(θ3)cosn+1 θ3 sinθ3dθ3

]
+

fr,d

n + 2

[
El + 2π

Z

θ3

L(θ3)cosθ3 sinθ3dθ3

]]]
+

fr,d

2

[
El + 2π

[
Cn

z

n + 2

[
El + 2π

Z

θ3

L(θ3)cosn+1 θ3 sinθ3dθ3

]
+

fr,d

2

[
El + 2π

Z

θ3

L(θ3)cosθ3 sinθ3dθ3

]]]]

= El

[
1 + 2π
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Cn

z

n + 2
+

fr,d

2

]
+

(2π)2
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+ · · ·

]
. (D.6)

This leads to the recursive expression

E = El [1 + a] (D.7)

a = 2π
[

fr,d

2
[1 + a] +

Cn
z

n + 2
[1 + b]

]
(D.8)

b = 2π
[

fr,d

n + 2
[1 + a] +

Cn
z

2n + 2
[1 + b]

]
. (D.9)



Appendix E

Experimental Validation BRDFs

The BRDF plots of the molleton fabric used for the test box interior and the alu-
minium profile used as light shelf in caustic case studies were obtained with ISE’s
goniophotometer [AB95]. Each plot depicts the hemisphere of outgoing directions
~ωr ∈ Ωr for a fixed incident direction ~ωi. ~ωr is projected onto the plane, with the
BRDF fr(~ωi,~ωr) corresponding to elevation and colour. These 3D plots are more
expressive than the traditional goniometric polar plots often encountered in the lit-
erature, which are usually restricted to the plane of incidence. Note that each plot
is scaled separately and the colour bands denote relative elevation ranging from
minimum (blue) to maximum (red). Consequently the plots are unsuitable for quan-
titative comparison.

Measurements were done for incident angles of 0◦–78◦ in 1◦ intervals, with 78◦

being the maximum angle which can be measured reliably with the goniophotometer
due to optical and mechanical limitations. This precludes obtaining BRDF data for
grazing angles. A further problem incurred by the device are the self-shadowing
artifacts from the goniophotometer’s arm and sensor cable visible in the plots. The
affected points were removed, and the resultant BRDF data was used for the BRDF
model fit and the validation case study simulations.
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Figure E.1: Molleton BRDF for incident angles of 10◦, 20◦, 30◦, 40◦ (left column),
50◦, 60◦, 70◦, and 78◦ (right column). The material is lambertian at normal inci-
dence, but exhibits an off-specular component towards grazing angles as evidenced
by the emerging slope. The rifts and boundary falloff in the plots and are self-
shadowing artifacts from the goniophotometer.
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Figure E.2: Aluminium BRDF for incident angles of 10◦, 20◦, 30◦, 40◦ (left column),
50◦, 60◦, 70◦, and 78◦ (right column). The gaussian peak indicates specular reflec-
tion with elongation and off-specularity towards grazing angles.
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Figure E.3: Molleton BRDF after artifact removal for incident angles of 10◦, 20◦,
30◦, 40◦ (left column), 50◦, 60◦, 70◦, and 78◦ (right column). Samples subject to
self-shadowing artifacts from the goniophotometer have been deleted.
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Figure E.4: Aluminium BRDF after artifact removal for incident angles of 10◦, 20◦,
30◦, 40◦ (left column), 50◦, 60◦, 70◦, and 78◦ (right column). Samples subject to
self-shadowing artifacts from the goniophotometer have been deleted.
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Figure E.5: Ward model fitted to molleton BRDF (left column) and difference to
measured data (right column) for incident angles of 10◦, 30◦, 50◦, and 70◦. The
model gives a poor approximation, mainly because it does not account for the off-
specularity and consequently deviates considerably with increasing incident angle,
giving rise to a slope in the difference plots.
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Figure E.6: Ward model fitted to aluminium BRDF (left column) and difference to
measured data (right column) for incident angles of 10◦, 30◦, 50◦, and 70◦. The
model gives a reasonable approximation, with deviations due mainly to the slight
off-specularity of the measured peak.
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Figure E.7: Lafortune model fitted to molleton BRDF with 3 cosine lobes and Lam-
bertian term (left column) and difference to measured data (right column) for inci-
dent angles of 10◦, 30◦, 50◦, and 70◦. The model gives a better approximation than
the Ward model, accounting for the off-specularity.
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Figure E.8: Lafortune model fitted to aluminium BRDF with 3 cosine lobes and
Lambertian term (left column) and difference to measured data (right column) for
incident angles of 10◦, 30◦, 50◦, and 70◦. The model accounts for the slight off-
specularity, but not for the elongation of the peak, producing two flanking lobes in
the difference plots.
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Figure E.9: Resampling bias test with 5 nearest neighbours: resampled Lafortune
BRDF model fitted to molleton (left column) and difference to analytical evaluation
of model (right column) for incident angles of 10◦, 35◦, 60◦, and 85◦.
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Figure E.10: Resampling bias test with 5 nearest neighbours: resampled Lafortune
BRDF model fitted to aluminium (left column) and difference to analytical evaluation
of model (right column) for incident angles of 10◦, 35◦, 60◦, and 85◦.



Appendix F

Experimental Validation Results

The positions of the illuminance sensors in the validation box interior and their des-
ignations are shown in figure F.1. Simulated and measured illuminance plots for
each sensor are shown in figures F.2 – F.5 for compound case study 1 (interreflec-
tion), and figures F.6 – F.9 for compound case study 2 (light shelf and interreflection).
Errors bars have been omitted.

Upper
left side

Middle
ceiling

Right
ceiling

Left
ceiling

Middle
left side

Lower
left side

Upper
right side

Middle
right side

Lower
right side

Right floorLeft floor Middle floor

Figure F.1: Interior view of validation box with illuminance sensor positions
and designations.

Table F.1 lists a breakdown of the relative errors for each sensor position. Sub-
stantial deviations only arise from the direct component for the lower side and floor
sensors. These are caused by inaccurate penumbrae on behalf of RADIANCE’s
light source sampling which show up as stairstep aliasing artifacts in the simulated
illuminance plots. Finer source subdivision (with the -ds parameter) would reduce
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these deviations but introduces aiming failures resulting from shadow rays which fail
to intersect the light source. This phenomenon arises with complex or very small
and distant light source geometries and can result in considerable underprediction
of the direct component, which must be avoided at all costs. Since we are primarily
interested in validating the indirect illumination (the direct component is calculated
identically for both RADIANCE Classic and photon map), the deviations in the af-
fected plots should not be considered representative.
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Figure F.2: Ceiling illuminance for compound case study 1 (interreflection).
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Figure F.3: Left side illuminance for compound case study 1 (interreflec-
tion).
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Figure F.4: Right side illuminance for compound case study 1 (interreflec-
tion).
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Figure F.5: Floor illuminance for compound case study 1 (interreflection).
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Figure F.6: Ceiling illuminance for compound case study 2 (light shelf and
interreflection).
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Figure F.7: Left side illuminance for compound case study 2 (light shelf and
interreflection).
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Figure F.8: Right side illuminance for compound case study 2 (light shelf
and interreflection).
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Figure F.9: Floor illuminance for compound case study 2 (light shelf and
interreflection).
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Case study deviations [min/max/avg%]
Interreflection Light shelf & Interreflection

Sensor Photon map RADIANCE Classic Photon map RADIANCE Classic

Left ceiling 0.0/5.6/1.9 0.2/8.7/2.2 0.0/8.3/2.9 0.1/4.1/1.6
Middle ceiling 0.0/5.5/1.9 0.0/3.3/1.2 0.1/5.5/2.3 0.0/6.2/1.4
Right ceiling 0.0/6.2/3.1 0.0/6.6/3.2 0.1/12.6/4.6 0.0/6.3/2.4
Upper left side 0.0/10.2/3.1 0.0/5.2/1.7 0.0/12.5/4.0 0.0/7.3/2.1
Middle left side 0.1/8.6/3.2 0.0/4.8/1.4 0.2/8.3/3.5 0.1/6.0/2.5
Lower left side 0.0/22.6/5.9 0.0/19.4/4.7 1.0/23.3/7.9 0.0/19.5/5.8
Upper right side 0.3/11.0/4.4 0.2/6.1/2.1 2.2/9.8/6.1 0.0/6.5/3.1
Middle right side 0.2/4.3/2.1 0.0/6.4/2.4 0.1/6.7/2.1 0.0/3.4/1.4
Lower right side 0.4/19.5/8.3 0.0/19.3/7.0 0.1/23.7/7.7 0.1/19.8/6.9
Left floor 0.4/95.7/12.4 2.5/93.7/13.6 0.4/122.1/11.8 0.6/118.8/13.0
Middle floor 0.0/145.3/13.0 0.0/144.1/13.2 0.4/150.6/15.0 0.4/148.7/15.4
Right floor 0.2/106.1/13.3 0.0/99.6/11.1 0.4/132.9/13.3 0.2/130.4/11.8
Total 0.0/145.3/6.1 0.0/144.1/5.3 0.0/150.6/6.8 0.0/148.7/5.6

Table F.1: Breakdown of relative error for compound case studies. Deviations for each sensor are given as
minimum/maximum/average percentage.
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