
A Uniform Constraint-based Frameworkfor the Veri�ation of In�nite State Systems
DISSERTATIONzur Erlangung des GradesDoktor der Ingenieurwissenshaften (Dr.-Ing.)der Naturwissenshaftlih-Tehnishen Fakult�at Ider Universit�at des Saarlandesvon

Supratik Mukhopadhyay
Saarbr�uken2000

Contents
1 Introdution 11.1 Perspetive . 11.2 A Brief History of Computer-Aided Veri�ation 31.3 Synopsis of this Dissertation . 51.4 Contributions of this Dissertation . 62 Preliminaries 92.1 Transition Systems . 92.1.1 Equivalenes between Transition Systems 102.2 Spei�ation Logis . 112.3 Logi Programs and Datalog . 122.4 OLDT Resolution . 132.4.1 Extension of an OLDT struture . 142.5 Constraint Query Languages . 152.5.1 Finite Automata and Constraint Query Languages 172.5.2 Pushdown Proesses . 182.5.3 Tree Automata . 182.5.4 Alternating Automata . 192.5.5 Automata on In�nite Words: B�uhi Automata 192.6 The Logi CTL . 202.6.1 Model Cheking for CTL: Programs with Orales 202.7 Computing Model-Theoreti Semantis . 212.7.1 Dowling-Gallier Graphs . 222.7.2 Immediate Consequene Operator . 232.7.3 Magi Sets Transformation . 242.8 Constraint Domains . 242.8.1 The Constraint Domain of In�nite Trees 252.8.2 Constraint Simpli�ation . 283 Model Cheking for Timed Logi Proesses 293.1 Introdution . 293.2 Timed Automata . 303.3 Timed Logi Proesses . 333.4 Translation of Timed Automata into TLPs . 343.5 Logi of Safety and Bounded Liveness (Ls) . 36iii

3.6 Produt Program . 373.7 The Trim Operation on Constraints . 393.8 Extension of OLDT Resolution to Constraints . 493.9 Full Disjuntion . 513.10 Unbounded Liveness Properties . 523.11 Implementation . 533.12 Model Cheking for TCTL formulas . 573.13 Transient Behavior of Real Time Systems . 593.13.1 Deteting Transiene . 603.13.2 Constrution of Nonground B�uhi Automata 603.14 Related Work . 624 The Strati�ed �-alulus 654.1 Introdution . 654.2 Strati�ation . 664.3 Bakward Analysis . 684.4 Perfet Models . 694.5 Tabled Resolution . 714.6 Convergene in Timed Automata . 764.7 Cheking Convergene . 775 Beyond Region Graphs:Symboli Forward Analysis of Timed Automata 815.1 Introdution . 815.2 The Constraint Transformer ' 7! [[w℄℄(') . 825.3 Zone Trees and Symboli Forward Analysis . 855.4 RQ Automata . 875.5 Future Work . 946 Aurate Widenings and Boundedness Properties 976.1 Introdution . 976.2 Intuition Behind the Aurate Widening Framework 1006.3 Timed Automata, Constraints and Model Cheking 1026.3.1 Inlusion Abstrations . 1036.4 Widening Rules . 1046.5 Related Work . 1137 Compositional Termination Analysis of Symboli Forward Analysis forIn�nite-State Systems 1177.1 Introdution . 1177.2 In�nite State Systems . 1187.3 Parallel Composition . 1197.4 Constraints Representing Sets of States . 1207.5 Bound Variables and Initialized Strings . 1217.6 Constraint Trees and Symboli Forward Analysis 1227.7 Compositional Reasoning about Termination . 125iv

7.8 Related Work . 1348 Constraint Transformer Monoids:A Uni�ed Algebrai Frameworkfor Abstrat Symboli Forward Analysis of In�nite State Systems 1378.1 Introdution . 1378.2 In�nite State Systems . 1388.3 Constraint Transformer Monoids . 1388.4 Coverings of Constraint Transformer Monoids . 1398.5 Constraint Trees and Symboli Forward Analysis 1418.6 Abstrat Constraint Trees and Abstrat Symboli Forward Analysis 1428.7 Appliations . 1448.7.1 Timed Automata . 1448.7.2 The Two-proess Bakery Algorithm . 1458.8 Summary and Related Work . 1479 Conlusions 1499.1 Summary . 1499.2 Future Work . 149

v

vi

AbstratAutomati veri�ation of in�nite state systems is an important area of researh. Unlike its �nitestate ounterpart, in spite of the existene of a large body of theoretial and pratial results onautomati veri�ation of in�nite state systems, there does not exist a uniform framework that isappliable to a large lass of systems and that failitates desription of proedures that solves theveri�ation problem for in�nite state systems in pratie as well as providing tools for reasoningabout the termination onditions of suh proedures. The purpose of this dissertation is toprovide a uniform framework that (1) allows desription of in�nite state systems at their ownlevel of granularity, (2) allows speifying their properties at a high level, (3) allows desriptionof proedures, that an solve in pratie the veri�ation problems for in�nite state systems, ina delarative fashion, (4) provides tools to reason about the termination onditions for suhproedures, (5) failitates derivation of abstrations for veri�ation as well as easy inorporationof optimization tehniques, (6) allows lear separation of the logial aspets of veri�ation fromthe ombinatorial ones, (7) allows ombination of dedutive (proof-theoreti) methods withmodel-theoreti ones and (8) provides, for free, data strutures for impliit representation ofpossibly in�nite sets of states.

vii

viii

ZusammenfassungAutomatishe Veri�kation von Systemen mit unendlihem Zustandsraum ist ein wihtigesForshungsgebiet. Doh im Gegensatz zum Fall endliher Zustandsr�aume und trotz einer grossenAnzahl an theoretishen und praktishen Resultaten �uber automatishe Veri�kation von Syste-men mit unendlihem Zustandsraum, existiert kein einheitlihes Rahmenwerk, das sih auf einegrosse Klasse von Systemen anwenden liesse und das die Beshreibung von Prozeduren, diedas Veri�kationsproblem von Systemen mit unendlihem Zustandsraum in der Praxis l�osen, un-terst�utzen w�urde, sowie das Werkzeuge zum Beweis der Termination solher Prozeduren zurVerf�ugung stellen w�urde. Das Ziel dieser Dissertation ist es, ein einheitlihes Rahmenwerk zuliefern, das (1) die Beshreibung von Systemen mit unendlihem Zustandsraum erlaubt, (2)die Spezi�kation ihrer Eigenshaften auf einer hohen Ebene erlaubt, (3) die Beshreibung vonProzeduren, die das Veri�kationsproblem fuer Systeme mit unendlihem Zustandsraum l�osen,in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-dingungen solher Prozeduren zur Verf�ugung stellt, (5) die Herleitung von Abstraktionen zurVeri�kation ebenso wie die einfahe Einbindung von Optimierungstehniken unterst�utzt, (6)eine klare Trennung der logishen Seiten der Veri�kation von den kombinatorishen erlaubt, (7)eine Kombination deduktiver (beweistheoretisher) Methoden mit modelltheoretishen erlaubtund (8) umsonst Datenstrukturen f�ur die implizite Darstellung von Systemen mit unendlihemZustandsraum bereitstellt.

ix

x

Extended AbstratAutomati veri�ation of in�nite state systems is an important area of researh. Unlike its �nitestate ounterpart, in spite of the existene of a large body of theoretial and pratial results onautomati veri�ation of in�nite state systems, there does not exist a uniform framework that isappliable to a large lass of systems and that failitates desription of proedures that solves theveri�ation problem for in�nite state systems in pratie as well as providing tools for reasoningabout the termination onditions of suh proedures. The purpose of this dissertation is toprovide a uniform framework that (1) allows desription of in�nite state systems at their ownlevel of granularity, (2) allows speifying their properties at a high level, (3) allows desriptionof proedures, that an solve in pratie the veri�ation problems for in�nite state systems, ina delarative fashion, (4) provides tools to reason about the termination onditions for suhproedures, (5) failitates derivation of abstrations for veri�ation as well as easy inorporationof optimization tehniques, (6) allows lear separation of the logial aspets of veri�ation fromthe ombinatorial ones, (7) allows ombination of dedutive (proof-theoreti) methods withmodel-theoreti ones and (8) provides, for free, data strutures for impliit representation ofpossibly in�nite sets of states.The two main urrents that run through this dissertation are onstraints and logi. Us-ing an intriate and exquisite interplay between onstraints and logi, we provide a uniformonstraint-based framework for the veri�ation of in�nite state systems. The key idea is thatthe veri�ation problems for in�nite state systems an be naturally viewed as onstraint satis-fation problems. This idea leads to the observation that temporal properties of in�nite statesystems an be desribed as model-theoreti semantis of onstraint databases. This onnetionallows desription of the system as well as speifying properties about it at a high level in adelarative fashion.The methods employed for omputing (or heking membership in) model-theoreti seman-tis of onstraint databases are dedutive ones. Thus our methodology replaes the onven-tional graph-theoreti tehniques for automati veri�ation of in�nite state systems by uniformdedutive ones. By employing speialized dedution strategies, optimized loal and symboliproedures for automati veri�ation are obtained in a natural manner. This way we unify,extend and explain in a uniform manner the seemingly di�erent proedures behind the suessof several existing veri�ation tools for in�nite state systems. Due to the losely knit interplaybetween logi and onstraints, it has been possible for us to design pratial proedures thatan verify properties of in�nite state systems spei�ed in riher logis. As onstraints are usedwithin a logial landsape, it is easier to reason about the orretness of these proedures withinour framework. Sine onstraints an represent possibly in�nite sets of states, we obtain, forfree, data strutures for impliit representation of possibly in�nite sets of states. Also sinethe algorithmi aspet of solving onstraints is separated from the logial one, our frameworkxi

provides modular solutions to veri�ation problems.Theoretial investigations of in�nite-state systems have so far onentrated on deidabilityresults; using our framework, we investigate the spei� proedures that are used in pratieto deide veri�ation problems. Our framework presents basi onepts and properties that areuseful for reasoning about suÆient termination riteria for proedures solving the veri�ationproblem for in�nite state systems in pratie, and also for deriving those riteria. These riteriaan be obtained in the form of syntati suÆient onditions on the individual omponentsomposed with asynhronous parallel omposition. The entral notions here are onstrainttransformers assoiated with sequenes of transitions of an in�nite state system and onstrainttrees labeled with suessor onstraints. We show interesting examples of systems for whihthe suÆient termination onditions derived using our framework guarantee the termination ofthe proedures solving the veri�ation problem for suh systems in pratie. We also providea uni�ed algebrai framework for deriving abstrations for the veri�ation of a large lass ofin�nite state systems and for reasoning about their auray. The entral notions involved arethose of onstraint transformer monoids and overings between onstraint transformer monoids.Due to the hoie of onstraints as data strutures representing possibly in�nite sets of states,the abstrations, most of whih are presented as widening rules, are easily implementable usingonstraint-based operations. We show interesting examples in whih the abstrations derivedusing our framework fore the termination of otherwise nonterminating veri�ation proedureswithout losing any auray in the proess.Finally, to demonstrate the appliability of our framework, we show that many veri�ationproblems an be solved by a natural translation to our framework. This fat is orroboratedby the enouraging results obtained by applying an implementation based on our framework topratial veri�ation problems. We have also identi�ed suÆiently expressive fragments of thepropositional � alulus suh that our framework, that uses disjuntive onstraints as the datastruture for representing and manipulating sets of states, is espeially suitable for veri�ationproblems in whih the properties spei�ed are in these fragments.

xii

Ausf�uhrlihe ZusammenfassungAutomatishe Veri�kation von Systemen mit unendlihem Zustandsraum ist ein wihtigesForshungsgebiet. Doh im Gegensatz zum Fall endliher Zustandsr�aume und trotz einer grossenAnzahl an theoretishen und praktishen Resultaten �uber automatishe Veri�kation von Syste-men mit unendlihem Zustandsraum, existiert kein einheitlihes Rahmenwerk, das sih auf einegrosse Klasse von Systemen anwenden liesse und das die Beshreibung von Prozeduren, diedas Veri�kationsproblem von Systemen mit unendlihem Zustandsraum in der Praxis l�osen, un-terst�utzen w�urde, sowie das Werkzeuge zum Beweis der Termination solher Prozeduren zurVerf�ugung stellen w�urde. Das Ziel dieser Dissertation ist es, ein einheitlihes Rahmenwerk zuliefern, das (1) die Beshreibung von Systemen mit unendlihem Zustandsraum erlaubt, (2)die Spezi�kation ihrer Eigenshaften auf einer hohen Ebene erlaubt, (3) die Beshreibung vonProzeduren, die das Veri�kationsproblem fuer Systeme mit unendlihem Zustandsraum l�osen,in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-dingungen solher Prozeduren zur Verf�ugung stellt, (5) die Herleitung von Abstraktionen zurVeri�kation ebenso wie die einfahe Einbindung von Optimierungstehniken unterst�utzt, (6)eine klare Trennung der logishen Seiten der Veri�kation von den kombinatorishen erlaubt, (7)eine Kombination deduktiver (beweistheoretisher) Methoden mit modelltheoretishen erlaubtund (8) umsonst Datenstrukturen f�ur die implizite Darstellung von Systemen mit unendlihemZustandsraum bereitstellt.Die beiden Leitmotive, die sih durh diese Dissertation ziehen, sind Constraints und Logik.Durh eine komplizierte und auserlesene Wehselwirkung zwishen Constraints und Logik liefernwir ein einheitlihes onstraint-basiertes Rahmenwerk zur Veri�kation von Systemen mit un-endlihem Zustandsraum. Dass die Veri�kationsprobleme von Systemen mit unendlihem Zu-standsraum auf nat�urlihe Weise als Erf�ullbarkeitsprobleme von Constraints gesehen werdenk�onnen, ist der Shl�usselgedanke. Dieser Gedanke f�uhrt zu der Beobahtung, dass temporaleEigenshaften von Systemen mit unendlihem Zustandsraum als modelltheoretishe Semantikenvon Constraint-Datenbanken beshrieben werden k�onnen. Dieser Zusammenhang erlaubt dieBeshreibung des Systems ebenso wie die Spezi�kation seiner Eigenshaften auf einer hohenEbene und in einer deklarativen Art und Weise.Die Methoden zur Berehung (oder zum Test der Zugeh�origkeit zu) modelltheoretisherSemantiken von Constraint-Datenbanken sind deduktive. Somit ersetzt unsere Methodik dieherk�ommlihen graphtheoretishen Verfahren zur automatishen Veri�kation von Systemen mitunendlihem Zustandsraum durh einheitlihe deduktive Methoden. Indem wir spezialisierteDeduktionsstrategien einsetzen, erhalten wir auf nat�urlihe Weise optimierte lokale und symbol-ishe Prozeduren zur automatishen Veri�kation. Auf diese Weise vereinheitlihen, erweitern underkl�aren wir in einer einheitlihen Weise die sheinbar vershiedenen Prozeduren, die hinter demErfolg von mehreren existierenden Werkzeugen zur Veri�kation von Systemen mit unendlihemxiii

Zustandsraum stehen. Aufgrund der feinmashigen Wehselwirkung zwishen Constraints undLogik konnten wir brauhbare Prozeduren entwerfen, die in reiheren Logiken spezi�zierte Eigen-shaften von Systemen mit unendlihem Zustandsraum veri�zieren k�onnen. Da Constraints ineiner logishen Landshaft benutzt werden, ist es leihter, die Korrektheit dieser Prozedurenin unserem Rahmenwerk zu beweisen. Weil Constraints potentiell unendlihe Zustandsmengenrepr�asentieren k�onnen, erhalten wir umsonst Datenstrukturen zur impliziten Repr�asentation po-tentiell unendliher Zustandsmengen. Desweiteren bietet unser Rahmenwerk modulare L�osungenf�ur Veri�kationsprobleme, da der algorithmishe Aspekt des L�osens von Constraints abgetrenntist vom logishen. Theoretishe Forshung �uber Systeme mit unendlihem Zustandsraum warbislang auf Entsheidbarkeitsresultate gerihtet; mit unserem Rahmenwerk untersuhen wir nundie spezi�shen Prozeduren, die in der Praxis angewandt werden, um Veri�kationsproblemezu entsheiden. Unser Rahmenwerk stellt grundlegende Konzepte und Eigenshaften vor, dien�utzlih sind zur Herleitung und zum Beweis von hinreihenden Terminationskriterien f�ur Proze-duren, die das Veri�kationsproblem in der Praxis l�osen. Diese Kriterien erh�alt man in Formsyntaktisher hinreihender Bedingungen an die einzelnen Komponenten. Die zentralen Ideenhier sind Constraint-Umformer, die Folgen von �Uberg�angen eines Systems mit unendlihem Zu-standsraum zugeordnet sind, und Constraint-B�aume, deren Knoten mit Nahfolger-Constraintsmarkiert sind. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerk hergeleitetenhinreihenden Terminationsbedingungen die Termination von Prozeduren, die das Veri�kation-sproblem f�ur solhe System in der Praxis l�osen, garantieren. Wir bieten auh ein einheitlihesalgebraishes Rahmenwerk, um Abstraktionen f�ur eine grosse Klasse von Systemen mit un-endlihem Zustandsraum herzuleiten und um Beweise �uber die Exaktheit dieser Abstraktionenzu f�uhren. Hier sind die beteiligten zentralen Ideen Monoide von Constraint-Umformern und�Uberdekungen zwishen Constraint-Umformern. Aufgrund der Wahl von Constraints als Daten-struktur zur Darstellung potentiell unendliher Zustandsmengen, k�onnen die Abstraktionen,die meist als Widening-Regeln dargestellt werden, leiht durh onstraint-basierte Operatio-nen implementiert werden. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerkhergeleiteten Abstraktionen die Termination andernfalls niht-terminierender Veri�kationsproze-duren erzwingen, ohne an Pr�azision zu verlieren.Shliesslih zeigen wir, dass viele Veri�kationsprobleme durh eine nat�urlihe �Ubersetzung inunser Rahmenwerk gel�ost werden k�onnen. Diese Tatsahe wird untermauert durh die ermuti-genden Ergebnisse, die eine auf unserem Rahmenwerk basierende Implementierung an praktis-hen Veri�kationsproblemen lieferte. Auh haben wir hinreihend ausdruksstarke Fragmentedes aussagenlogishen �-Kalk�uls bestimmt, so dass Prozeduren zur Veri�kation von Eigen-shaften, die in diesen Fragmenten spezi�ziert sind, besonders geeignet sind f�ur unser Rahmen-werk, das disjunktive Constraints als Datenstrukturen zur Repr�asentation und Manipulationvon Zustandsmengen benutzt.

xiv

AknowledgementsThe order in whih di�erent people are aknowledged in this aknowledgement does not bearany signi�ane at all. First I start by aknowledging my advisor Andreas, without whom thisdissertation would not have been possible. During the past three years, I have learnt a lot fromhim. He has taught me how to do researh| but wait a minute | the most important thingthat he has taught me is how to maintain a standard in researh whih I think is more importantjust learning to do researh | it is solely my fault that I ould not follow his teahings. He hasalways emphasized the need for good writing and lear presentation | again it is my fault thatI ould not pik it up (if only I ould follow 0:5 perent of his advie and the examples of learpresentation that he had set before me, this dissertation would have been muh better). Thereis only one word in the ditionary that an desribe Andreas | \perfetionist" (whih I hope Iwould beome eventually though I don't know when). Any paper (possibly inluding this thesis)will undergo thirty revisions before getting submitted (the last revision on the table in front ofthe kithen; I wonder how he does not get bored). Anyway, I hope to emulate him in future. Hehas allowed me to work on varied topis while taking are that I don't get drowned in the sea.The most important privilege that I think I enjoyed was that I ould go to his oÆe at any time(even without knoking his door) and ould disuss with him even \half-baked" ideas. Underhis diretion, during the last three years, my progress was so smooth that I ould start writingthis dissertation even before two and half years had passed.Next ome Witold, Jean-Mar and Andreas Nonnengart. If I were to write in this aknowl-edgement how muh I owe to these three people, probably this aknowlewdgement will beomelarger than the rest of this dissertation (the rest of this dissertation is 100+ pages!). All I ansay in one sentene is that this dissertation simply would not have existed in the absene of anyone of these three people. I thank God for bringing these three people together at Saarbr�ukenat the same time as me. All these three people are inredibly smart. I am really surprisedby their problem solving abilities.It is really surprising how quikly they understand any newonept and then go into the heart of the matter. I would advise anybody who has a new ideato get it bouned o� these three people. Any gap, if present in the idea, is guaranteed to getdeteted. You tell them your idea. Then you suddenly hear \Can I ask a stupid question?"; andthis \stupid question" �nds out a bug!I am indebted to Harald, Vioria and the rest of the group members for enouragement.One has to see to believe how Harald has mastery of so many �elds at the same time. I thankPatrik for all the nie translations and for dealing with mahine related problems with a smile.I thank Georg for helping me with implementation related matters. I thank Manfred for helpingme with TeX related matters.I thank Brigitta and Christine for dealing with all my bureaurati problems. I thank theomputer support group for their hard work in keeping the system running.xv

Thanks to C.R. Ramakrishnan for agreeing to be my thesis reviewer. I thank Tom Henzingerfor that exellent ourse in Computer-Aided Veri�ation, arranging for open-problem seminarsand for answering my questions promptly. Thanks to Jean-Franois Raskin for disussions. Ithank Andy Gordon for arranging for my visit to Mirosoft Researh and for ollaborating withme. I thank Lua Cardelli and Silvano Dal-Zilio for disussions, Moshe Vardi and Rajeev Alur forproviding prompt answers to my questions. Also, Moshe's rash ourse on automata-theoretiveri�ation was a beautiful experiene. I thank our librarian Anja Beker for the patiene sheshowed when I used to bring half the library to my oÆe.I thank C.R. Subramanian and Anil Kumar for keeping me sane through the days of writingthis dissertation. Subramanian is, in partiular, a great soure of ideas in disrete mathematis.I thank my undergraduate and graduate teahers for sharing their enthusiasm for researh withme.Finally, I thank my parents for being role models to emulate. And God for making possible forthis dissertation to be written. Lastly, I apologize to anybody that I have failed to aknowledge.

xvi

List of Figures2.1 Illustrating the mapping f . 262.2 Illustrating the mapping g . 273.1 An Example Timed Automaton. 333.2 Example illustrating that the model heking proedure is possibly non-terminating. 383.3 Produt Program orresponding to Figure 3.2. 383.4 Normalization of Constraints. 433.5 Illustrating the trim operation | A. 443.6 Illustrating the trim operation | B. 453.7 Illustrating the trim operation | C. 453.8 Illustrating the trim operation | D. 453.9 Experimental Results. 513.10 Illustrating the Greatest Model Resolution. 543.11 Greatest Model Resolution (GMR) Proedure for programs with one body pred-iate. 563.12 Non-terminating Example for Greatest Model Resolution. 563.13 Illustrating transiene. 604.1 Situating the expressiveness of S� . 674.2 Computation tree for Example 4.2 . 724.3 Tabled Resolution . 784.4 Timed automata . 805.1 Example of a timed automaton for whih the breadth-�rst version of symboliforward analysis terminates but the depth-�rst version does not, if the edge num-bered 4 is followed before the edge numbered 7. 865.2 Gate Automaton . 885.3 Controller Automaton . 885.4 Train Automaton . 885.5 Train k Gate k Controller . 895.6 Example of a timed automaton showing that the property: \Every reahableloation is reahable through a simple path" does not entail termination of depth-�rst symboli forward analysis. 906.1 Illustrating Unboundedness (Boundedness) Property 986.2 Fragment of the pseudo-ode of a program . 100xvii

6.3 Template for Model Cheking for Boundedness Properties 1016.4 Template for Model Cheking for Boundedness Properties with Widening 1016.5 Widen Funtion . 1016.6 Illustrating Aelarating E�et of Widening Rules 1046.7 Loal and Global Inlusion Abstration . 1046.8 Widening Rule I . 1056.9 Widening Rule II . 1066.10 Illustrating widening rule I . 1076.11 Illustrating widening rule II . 1086.12 Widening Rule III . 1096.13 Illustrating the widening rule III . 1096.14 Experimental Results . 1147.1 Example showing omposition of o-minimal hybrid systems. 1257.2 A two-proess timed mutual exlusion protool. 1278.1 The bakery algorithm . 1468.2 Constraints in �0 . 146

xviii

Chapter 1IntrodutionMathematial logi an provide a uniform framework for modeling and formally verifying reativesystems. In this dissertation, we make an attempt to justify the above thesis by trying to use thepower of mathematial logi in providing a uniform onstraint-based framework for modeling,understanding and reasoning about reative systems.1.1 PerspetiveRapid progress in omputer tehnology in the last few deades has e�eted a signi�ant hange inthe perspetives under whih omputing is viewed. Computers have now beome truly \global"in the sense that they make their presene felt in devies ranging from suh miniature ones asmini-ameras to suh monstrous ones as airplanes. This \globalization" of omputer tehnologyhas been aompanied by the development of large software systems and highly integrated hard-ware systems with their inherent logial omplexity and many layers of abstration. This logialomplexity manifests itself, in partiular, in embedded systems | systems that are embeddedinto a natural environment that is governed by physial laws, with agents (or appliations) fromdi�erent problem domains interating with eah other in often unpreditable ways. This logialomplexity and unpreditability renders the use of suh systems in safety-ritial devies likeairplanes or nulear power-plant ontrollers into a high-risk a�air. This risk fator is justi�edby the number of hilling experienes that we have had in the last few deades aused by thefailure of omputer systems operating in life ritial appliations. In order to minimize this riskfator and to avert suh hilling experienes, we need to struture, reason about and developsuh systems more systematially. It is exatly here that methods from mathematial logi ometo our aid.A distint feature of these \new generation" omputer systems mentioned above is theirpower of maintaining an ongoing interation with the environment. While for a lassial se-quential program, non-termination entails the presene of a possible bug in the program, foran embedded system, termination usually indiates presene of a possible \deadlok". Suhembedded systems are usually alled reative systems as their evolution involves \reation" inresponse to \stimulus" or requests from the environment.A long promoted way of using mathematial logi for designing provably orret hardwareand software is the dedutive or the theorem proving approah. Here one develops a formal proofof orretness of the system along with the system itself. The proof is usually based on invariant1

assertions | logial formulae whose truth value never hanges during the possible runs of thesystem. The orretness of the system is expressed as a logial onsequene of an invariant thatis true initially. Suh an approah has the drawbaks that it is not fully automati | it requiressigni�ant assistane from a human expert. Furthermore, it does not support reusability |even if a system has been proved orret for ertain properties, for proving the system orretfor other properties one may need to start from srath.An alternative approah is automati veri�ation. In this approah, ommonly known asmodel heking [CE80℄, one veri�es whether a \model" of the system (usually a Kripke struture)satis�es a spei�ation (given by, say, a temporal logi formula [Pnu77℄) by an exhaustive searhthrough the \state-spae" of the model. More preisely, a �nite state (or an in�nite state)reative system is modeled as a Kripke struture (or as a parallel omposition of several Kripkestrutures) and the property against whih it is veri�ed is spei�ed as a temporal logi formula;given a Kripke struture K and a temporal logi formula ', the model heking problem is todetermine whether K j= ' i.e., whether K is a model of ' (or to ompute the set of states ofK that satisfy '). This problem is solved by an exhaustive searh through the state spae of K(or by a reahability analysis).While the framework of automati veri�ation provides a solution to the veri�ation problem,there is an inherent non-uniformity within it. First, there is no uniform way to model systems attheir own level of granularity (e.g., pushdown systems [Wal96℄, hierarhial systems [AY98℄ aremodeled di�erently in this framework). Seond, the treatment of �nite state and in�nite stateinstanes of the problem within this framework are di�erent. Third, systems over di�erent datadomains (e.g., systems operating over numeri domains like reals or integers and systems overnon-numeri domains suh as queues or staks) are treated di�erently. Fourth, the veri�ationproblem for di�erent spei�ations use seemingly di�erent tehniques (viz, reahability analysisor omputing strongly onneted omponents of a direted graph).Not only this non-uniformity is oneptually disturbing and makes integration diÆult, butthe lak of uniformity prevents immediate extensions to more expressive logis (see Chapter 3for more details) or to more suint (or di�erent) system models (e.g., to hierarhial systems)without hanging the whole set up. Moreover, dealing with \many-sorted" systems (e.g., systemsin whih some variables range over numeri domains while some others range over non-numeridomains) within this framework is diÆult. Further, inorporation of optimization tehniquesfor model heking beomes diÆult within this framework. Also, within the above framework, itis diÆult to identify sublasses of systems that an be model heked e�etively and eÆiently(this also holds true for spei�ations). The inherent non-uniformity also presents problemsin separating the logial part of the framework from its ombinatorial part thereby losing themodularity of the solution provided (e.g., in model heking for systems over numeri data types,the onstraint solving part is not separated from the ore model heking proedure).Mathematial logi provides a uniform framework in whih to simulate (and model) suhreative systems in an essentially oding-free way as well as write down and verify propertiesabout the behaviors of suh systems. The simulation is not supposed to be performed at a lowerabstration level; it should be done on the natural abstration level of the system. The simulationan itself be viewed as a \database" at an appropriate abstration level and the logial formulaenoding properties about the behaviors as a query so that the veri�ation problem boils downto that of evaluating that query on the \simulation" as a database. To give the reader a tasteof the uniform framework that mathematial logi provides for speifying and verifying reativesystems, we provide a few examples below. 2

Reahability Analysis as a Mapping between Di�erent Abstration Levels A (pos-sibly in�nite state) transition system (or program) P with n data variables x1; : : : ; xn rangingover a domain D and loations `1; : : : `k indues a relational struture T over the voabulary� = h`1; : : : ; `ki (n-ary relation symbols) in the following wayT = hD; `1; : : : `kiwhere the relation symbols `1; : : : ; `k are interpreted as follows: v 2 `i if and only if the loation`i is reahable in P, from the initial state, with the data variables taking the value v. We all thisrelational struture T indued by a transition system T as the expliit struture indued by T .Reahability analysis for a transition system then amounts to omputing the expliit struturefrom the \impliit representation" of the transition system. The impliit representation of atransition system as well as the expliit struture indued by it an be viewed as the samedatabase represented at di�erent levels of abstration. Thus reahability analysis an be viewedas a mapping between two di�erent levels of abstration of the same database.Model Cheking as Constraint Satisfation A onstraint satisfation problem [FV98℄ isgiven by a pair I (alled instane) and T (alled template) of relational strutures over thesame voabulary (we onsider here the version with �xed template). The problem is satis�ed ifthere is a homomorphism from I to T . A model heking problem for temporal logi is givenby a transition system P and a temporal logi (say an LTL [Pnu77℄) formula '. This problemhas a 'yes' answer if P j= '. One an redue this problem to a language inlusion problemL(AP) � L(A') [VW86a℄ i.e., heking whether all omputations aepted by the automatonAP orresponding to P are also aepted by the automaton A' orresponding to '. The answerto this latter problem is 'yes' if there is a homomorphism from AP to A' (both viewed asrelational strutures). Thus a 'yes' answer to the 'onstraint satisfation' problem with AP asinstane and A' as template yields a 'yes' answer to the model heking problem.1.2 A Brief History of Computer-Aided Veri�ationThis setion makes a brief review of the researh on omputer-aided-veri�ation over the last 30years as well as the urrent state-of-the-art, thus plaing the researh desribed in this thesisin ontext. Computer-Aided-Veri�ation started with the seminal papers of Floyd [Flo67℄ andHoare [Hoa69℄ (though the �rst researher to advoate the use of omputers for verifying softwarewas Turing himself). Floyd and Hoare provided a framework for strutured, ompositionaldedutive veri�ation of sequential programs. Their method was extended to parallel programsby Owiki and Gries [OG76℄. But as we have mentioned earlier, suh methods need onsiderableamount of intervention from a human expert. Hene, although mathematially appealing, thesemethods were not so suessful in pratie.In 1977, in a seminal paper, Pnueli [Pnu77℄ proposed temporal logi for the spei�ationof onurrent systems. In a temporal logi, we augment a onventional logi with temporalmodalities making it possible to desribe the ordering of events in time. As opposed to theFloyd-Hoare framework, where the spei�ation an only relate the initial state and �nal stateof a system, temporal logi is well suited to desribe the on-going behavior of non-terminatingreative systems. 3

Model heking tehniques for branhing time temporal logi spei�ations were introduedin the early 80's by Clarke and Emerson [CE80℄ and independently by Quielle and Sifakis [QS81℄.The late '80's and the early '90's have seen a blooming period for theoretial and pratialresearh in model heking for �nite state systems. Symboli [BCM+92℄ and loal [SW91℄ modelheking methods were proposed to deal with the state explosion problem, more expressive logislike the propositional mu-alulus [Koz83℄ were being model heked, and systems with 10100states were being handled [BCM+92℄. On another side, automata-theoreti methods [VW86a℄were proposed to unify the various approahes to model heking that had ome up so far.With tehniques like symboli model heking providing ways of representing and manipu-lating (possibly in�nite) sets of states, researhers started onsidering model heking for in�nitestate systems (this area also got a lot of impetus from researh on Petri nets). Brad�eld andStirling [BS90℄ onsidered loal model heking for systems with in�nite state spaes againstmu-alulus spei�ations. While they gave a semi-algorithm for a general lass of in�nite statesystems, several other researhers started looking for sublasses of in�nite state systems thatan be model heked e�etively (if not eÆiently). A breakthrough in this diretion was a-omplished when Alur and Dill in a seminal paper [AD94℄ isolated the lass of timed automata(�nite state systems augmented with loks that range over the non-negative reals) that admit�nite bisimulation. This result led to extensive researh by several other researhers who ex-tended tehniques from �nite state model heking like symboli model heking [HNSY94℄, loalmodel heking [SS95℄ to model heking for timed systems. Buoyed by the suess of modelheking for timed systems, researhers started looking at more expressive models like hybridsystems [ACHH93℄ where semi-algorithms for symboli model heking were obtained. In ad-dition, sublasses of hybrid systems like initialized retangular automata [HKPV95℄, o-minimalhybrid systems [LPY99℄, that admit �nite bisimulation were identi�ed. In another diretion, sev-eral sublasses of in�nite state systems in whih the variables range over non-numeri domainslike the pushdown proesses [Wal96, BEM97℄ et., were identi�ed, for whih the reahabilityproblem turned out to be deidable.The middle and the end of the 1990's saw the emergene of model hekers apable of modelheking for industrial size systems like the Philips audio ontrol protool [BLL+96℄. Manyhardware design ompanies adopted model heking as part of their basi design method. To dealwith the inreasing omplexity in the funtionality of the industrial systems being onsidered,on one hand more suint models like hierarhial �nite state mahines [AY98℄ ame up, whileon the other hand tehniques like model measuring [ATEP99℄ were introdued to deal with more'preise' spei�ations.This period also saw several e�orts to unify the various tehniques available for modelheking under a uniform framework. Automata-theory was proposed as a vehile of uni�-ation [DW99, BVW94℄. However, the solution provided by automata theory, though lose tologi, was not entirely satisfatory | many of the non-uniformities already rept into this frame-work (e.g., the automata-theoreti method does not work very well for model heking timedsystems; in fat entirely new models like timed alternating tree automata [DW99℄ needed to beintrodued to deal with timed systems). 4

1.3 Synopsis of this DissertationThis dissertation makes an attempt to develop a uni�ed framework based on mathematial logifor modeling and verifying (possibly in�nite state) reative systems. The entral idea is to iden-tify a onstraint-based logial formalism that an provide a uniform representation for a largelass of reative systems using logial formulae and to redue the veri�ation problem to om-puting model-theoreti semantis of logial formulae. Computing model-theoreti semantis oflogial formulae is losely related to query evaluation. Hene, developing optimized algorithmsfor query evaluation (or query optimization tehniques) yields, as a by-produt, optimized algo-rithms for veri�ation.The logial formalism, developed in this work, is able to model systems at their naturalabstration level (e.g., the formalism does not need any signi�ant extension to model a su-intly represented system). Moreover, systems represented in onventional formalisms (e.g.,pushdown systems et.) are easily translatable to this formalism (bringing more exibility toour framework).The logial formulae representing a system may be viewed as a database (allowing possi-ble reursion in the database) at an appropriate abstration level. The interpretation of the\extensional database" prediates is provided by the spei�ation. Then model heking (orreahability analysis) amounts to omputing the interpretations of \intensional database" pred-iates from those of the extensional database prediates, i.e., evaluating a query on the databasewhere the interpretations of the intensional prediates are the output relations. Thus the graph-theoreti framework (i.e., reahability analysis or omputing strongly onneted omponents ofa graph) in onventional veri�ation algorithms is replaed by a model-theoreti framework inour approah.We use the framework mentioned in the previous paragraph to treat uniformly the problemsof modeling and veri�ation of (in�nite state) systems with numeri data types (like real timesystems, systems with integer-valued variables). Our framework allows the logial part of theproblem to be learly separated from the ombinatorial (onstraint solving) part. In this way,we explain uniformly and unify the seemingly di�erent algorithms behind the suess of severalexisting model heking tools. Further the uniform framework provides a platform in whihto identify sublasses of veri�ation problems for whih termination guarantees exist for semi-algorithms that are used to solve the model heking problem in pratie as well as to developtehniques for foring onvergene of semi-algorithms (possibly losing auray in the proess)for undeidable veri�ation problems. We use this platform to develop a 'toolbox' onsisting ofbasi onepts and properties that are useful for reasoning about suÆient termination onditionsfor symboli model heking semi-algorithms as well as deriving abstrations to either to foretermination or to aelerate the onvergene of suh (semi) algorithms and reason about theauray of suh abstrations.In stark ontrast with the automata-theoreti framework whih is not easily extendible fordealing with in�nite state systems like timed or hybrid systems our framework an, withoutany extension, uniformly deal with both �nite and in�nite state versions of the model hekingproblem. 5

1.4 Contributions of this DissertationIn this setion, we break up the ontributions of this dissertation aording to hapters1. Thedissertation is so arranged that most of the hapters an be read independently of the rest of thedissertation. Eah hapter starts with an Introdution and ontains omparisons with relatedwork that plaes the researh desribed in that hapter in ontext.In Chapter 2, we argue that the framework of onstraint query languages an provide a uni-form platform for modeling and verifying reative systems. To this end, we show how �nite statesystems and pushdown systems an be uniformly aptured by onstraint query language pro-grams (propositional horn formulae for �nite state systems and Herbrand domain for pushdownsystems) and their veri�ation problem redues to omputing model theoreti semantis of on-straint query language programs (horn formulae). These results are inspired by [CP98a, SIR96℄and an be viewed as extending and unifying their work. We use Dowling-Gallier graphs [DG84℄as advoated by [SIR96℄ for omputing the model theoreti semantis of (propositional) hornformulae. We show how the pebbling algorithm of Dowling and Gallier [DG84℄ an be modi-�ed to deal with the problem of omputing the greatest model semantis of propositional hornformulae.The uniform framework of onstraint query languages mentioned in the previous paragraphenompasses the automata-theoreti framework of Bernholtz, Vardi and Wolper [BVW94℄. Weshow how both word and tree automata (non-deterministi, deterministi or alternating) an beaptured uniformly by our framework and onnet the emptiness problem for these automata toomputing model-theoreti semantis of onstraint query language programs. This onnetionallows us to apture the automata-theoreti model heking methodology of [BVW94℄ uniformlywithin our framework. Sine the automata-theoreti framework already uni�es the variousapproah to �nite-state model heking [BVW94℄ (where the system is spei�ed as a �niteKripke struture), apturing the automata-theoreti framework already provides some evideneof the uniformity of our framework. This part of the work is inspired by [CMN+98℄. Finally,we prove some topologial properties of the onstraint domain of in�nite trees. All these resultsalong with some preliminaries onstitute Chapter 2. This hapter ontains results some of whihbelong to the author while others belong to the existing literature. The results that do not belongto the author are learly distinguished by their itations.In Chapter 3, we show how the uniform framework that we have identi�ed an deal with theproblem of speifying and verifying timed systems2. As a part of our uniform framework, weintrodue a fragment of onstraint query languages over reals and show that programs in thisfragment an model timed systems. We all the programs expressed in this fragment as timedlogi proesses (TLPs). We establish a formal onnetion of TLPs with the standard model oftimed automata. We use this onnetion to show that the Uppaal model heking proedure forsafety and bounded-liveness properties of timed systems is the top-down query evaluation withtabling (in the XSB style) for TLPs. This allows us to obtain an alternative way of implementingUppaal's proedure and for extending it. This extension aommodates properties with `full'disjuntion and unbounded liveness properties. All the results in Chapter 3 were obtained bythe author.1Chapter 2 besides providing some preliminary onepts needed for reading this dissertation, leads the readerloser to the uniform framework to be used in the later hapters2Note that the automata-theoreti framework does not have an easy extension for dealing with real timesystems 6

In Chapter 4, we introdue the strati�ed �-alulus. Some symboli model heking proe-dures use disjuntive onstraints (e.g. disjuntions of onjuntions of arithmeti inequalities) torepresent sets of states. This motivates us to introdue a new lass of temporal properties witha bakward analysis and a forward analysis that are both well-suited for disjuntive onstraintsas the `symboli' data struture. The strati�ed �-alulus S� is a natural generalization of STL(Safe Temporal Logi) and an be used to express e.g. onvergene for timed automata. Ourtehnial ontribution is the novel `symboli forward analysis' method for heking S� formulas.This method is based on our haraterization of S� properties as perfet models of onstraintlogi programs and on our tabled-resolution proedure for onstraint logi programs with theperfet-model semantis.In Chapter 5, we are onerned with the termination of the proedures that solve the modelheking problem for timed systems in pratie. Theoretial investigations of in�nite-state sys-tems have so far onentrated on deidability results; in the ase of timed automata these resultsare based on region graphs. We investigate the spei� proedure that is used pratially in orderto deide veri�ation problems, namely symboli forward analysis. This proedure is possiblynon-terminating. We present basi onepts and properties that are useful for reasoning aboutsuÆient termination onditions, and then derive some onditions. The entral notions here areonstraint transformers assoiated with sequenes of automaton edges and zone trees labeledwith suessor onstraints.In Chapter 6, we propose a symboli model heking proedure for timed systems thatis based on operations on onstraints. To aelerate the termination of the model hekingproedure, we de�ne history-dependent widening operators, again in terms of onstraint-basedoperations. We show that these widenings are aurate, i.e., they don't lose preision even withrespet to the test of boundedness properties.In Chapter 7, we onsider ompositional termination analysis of symboli forward analysisfor in�nite state systems. Existing model heking tools for in�nite state systems, suh asUPPAAL, HYTECH and KRONOS, use symboli forward analysis, a possibly nonterminatingproedure. We show termination for the speial ase of o-minimal hybrid systems. We givetermination riteria for general integer-valued systems and nonlinear hybrid systems. Theseriteria are in the form of syntati suÆient onditions on the individual omponents omposedwith asynhronous parallel omposition.In Chapter 8, we present a onstraint-based framework for deriving abstrat symboli modelheking proedures and also for reasoning about their auray. Symboli forward analysis is asemi-algorithm that in many ases solves the model heking problem for in�nite state systemsin pratie. This semi-algorithm is implemented in many pratial model heking tools likeUPPAAL [BLL+96℄, KRONOS [DT98℄ and HYTECH [HHWT97℄. In most pratial experi-ments, termination of symboli forward analysis is ahieved by employing abstrations resultingin an abstrat symboli forward analysis. This paper presents a uni�ed algebrai framework forderiving abstrat symboli forward analysis proedures for a large lass of in�nite state systemswith variables ranging over a numeri domain. Our framework provides suÆient onditionsunder whih the derived abstrat symboli forward analysis proedure is always terminating oraurate or both. The lass of in�nite state systems that we onsider here are (possibly non-linear) hybrid systems and (possibly non-linear) integer-valued systems. The entral notionsinvolved are those of onstraint transformer monoids and overings between onstraint trans-former monoids. We show onrete appliations of our framework in deriving abstrat symboliforward analysis algorithms for timed automata and the two proess bakery algorithm that are7

both terminating and aurate.Chapter 9 onludes the dissertation. In this hapter, we briey summarize the subjetmatter of the thesis and also present problems left open in the dissertation and diretions forfuture researh.

8

Chapter 2PreliminariesWe �rst present some preliminary notions. We then argue that onstraint query languages anprovide a uniform onstraint-based framework for modeling and verifying (possibly in�nite state)reative systems. This is demonstrated by showing that a large number of seemingly unrelatedformalisms have a natural translation to the framework of onstraint query languages and theirveri�ation problems redue to omputing the model-theoreti semantis of onstraint querylanguage programs.2.1 Transition SystemsWe are interested in the formal veri�ation of reative systems. Labeled transition systems area formalism for desribing suh systems.De�nition 2.1 (Labeled Transition System) A labeled transition system is a six tupleL = hS;�; S0;�!; AP; P i;where S is a set of states, � is a �nite alphabet (or a set of letters), S0 � S is a set of initialstates, �!� S � � � S is a transition relation, AP is a �nite set of atomi propositions andP : S �! 2AP assigns to eah state a set of atomi propositions.We all a labeled transition system in whih j�j = 1 a one-letter transition system [BVW94℄or simply an unlabeled transition system (or a Kripke struture). In ase of an unlabeledtransition system, we an assume the transition relation �! to be a binary relation; �!� S�S.A transition system (labeled or unlabeled) is in�nite if S is in�nite. In this dissertation, weare onerned with possibly in�nite state transition systems that an be �nitely represented(explained below). Most of the transition systems that we onsider in this dissertation areunlabeled. For s 2 S, a path � = s0; s1; : : : starting from s is an in�nite sequene of statessuh that s0 = s and for all i � 0, there exists a 2 � suh that hsi; a; sji 2�!. For a path� = s0; s1; : : : , we will write �[i℄ for si.For a set of atomi propositions AP , let V = h�!; fp j p 2 APg;�; S0i be a two-sortedvoabulary with f1; 2g as the set of sorts, where the �! is a ternary relation symbol with sorth1; 2; 1i and all other relation symbols are monadi with sort h1i with the exeption of � whih isa monadi relation symbol of sort h2i. Let L be a two-sorted �rst order language (with equality)suh that L \ V = ;. A labeled transition system L over L an be viewed as an expansion of9

an L struture A with universe A to V suh that the interpretation of � is a �nite relation.The language L is alled the underlying language of L. A labeled transition system L is �nitelyrepresentable over L if for eah relation R 2 V nf�g there exists a quanti�er-free L formula '(x)suh that L j= 8x(R(x) ! '(x))For example, the transition system LP = hN ; fag;�!; AP; P i with the set of natural num-bers N being the set of states and the relation �! de�ned as �! (i; a; j) i� j is even is not�nitely representable over the language of Presburger arithmeti. The reason is that Presburgerarithmeti does not admit quanti�er elimination [End72℄ (e.g., there is no quanti�er free Pres-burger arithmeti formula equivalent to the formula 9xy = x+x de�ning the set of even naturalnumbers). In the sequel, we write s a�! s0 to denote hs; a; s0i 2�!.2.1.1 Equivalenes between Transition SystemsIn this setion, we briey review some notions for omparing two transitions. The notions ofsimulation and bisimulation [Mil89℄ are the basi ways of omparing the struture of transitionsystems.De�nition 2.2 (Bisimulation [Mil89℄) Given labeled transition systems L = hS;�; S0;�!; AP; P i and L0 = hS0;�; S00;�!0; AP 0; P 0i, a binary relation �� S�S0 is a bisimulation relationif for eah s0 2 S0, there exists s00 2 S00 suh that s0 � s00 and vie versa and for all letters �,s � t implies:{ Whenever s ��! s0 then, for some t0, t ��!0 t0 and s0 � t0.{ Whenever t ��!0 t0 then, for some s0, s ��! s0 and s0 � t0.A bisimilarity relation � is a bisimulation between L and L0, suh that for all states s 2 S, thereis a state t 2 S0 suh that s � t and for all states t 2 S0 there exists s 2 S suh that s � t. Wesay that L and L0 are bisimilar i� a bisimilarity relation � exists between L and L00.De�nition 2.3 (Quotient Transition System) Let L = hS;�; S0;�!; AP; P i be a (labeled)transition system. Let � be an equivalene relation on S that does not distinguish elements ofS0. The quotient transition system L= � is de�ned as follows: For all letters � 2 �L= �= hS= �;�; [S0℄;�!�; AP; P iwhere S= � is the set of equivalene lasses of S indued by the equivalene relation �, [S0℄ isthe equivalene lass ontaining S0. The transition relation is de�ned as follows: E1 ��!� E2,for two equivalene lasses E1 and E2, if there exists s1 2 E1 and s2 2 E2 suh that s1 ��! s2.Note that if the equivalene relation � is a bisimulation then L= � and L are bisimilar. Thenotion of quotient transition systems and bisimilarity will be used in Chapter 3In the remaining part of this setion, we review two types of state spae partitions of atransition system. 10

De�nition 2.4 (Pre-stable and Post-stable Partitions [ACD+92℄) Let L =hS;�; S0;�!; AP; P i be a labeled transition system. Let � be an equivalene relation onS. The partitioning of S indued by � is pre-stable if for all a 2 � and for all states s, s0 andt, if s � t and s a�! a0 then there is a state t0 suh that s0 � t0 and t a�! t0. The partitioningof S indued by � is a post-stable partitioning if for all a 2 � and for all states s, s0 and t, ifs0 a�! s and s � t then there exists a state t0 suh that t0 a�! t and s0 � t0.2.2 Spei�ation LogisTill now we have desribed formalisms for desribing reative systems. In order to reason aboutthe behaviors of reative systems, we need a formalism to speify their properties. In thissetion, we review some of the logis for speifying properties of transition systems. The �alulus [Koz83℄ is a modal logi augmented with least and greatest �xpoint operator. Thesyntax of � alulus formulas are given as follows.� ::= q j �1 ^�2 j :� j3(�) jX j � X:�where q is an atomi proposition and for a formula of the form � X:�, every ourrene of X in� ours under an even number of negations. We will also use the following abbreviations.2(�) � :3(:�)� X:�(X) � :� X::�(:X)A variable X in the formula is guarded i� every ourrene of X in � ours in the sopeof a modality operator 3 (2). A formula � is guarded i� every bound variable in the formulais guarded [Wal93℄. We now desribe the semantis of � alulus with respet to an unlabeledtransition system L = hS; fag;�!; AP; P i. The meaning or denotation of a formula � in an(unlabeled) transition system L under an assignment Val : Var �! 2S , where Var is the setof variables of �, is the set of states of L in whih � is true. It is denoted by L� and is de�nedindutively as follows.{ Lq = fs 2 S : q 2 P (s)g{ L(�1 ^ �2) = L�1 \ L�2{ L:� = S n L�{ L(3(�)) = fs 2 S j 9s0 2 Ss �! s0 ^ s0 2 L�g{ LX = Val(X){ L� X:� = SfS0 � S j S0 � L�g.The �-alulus is a very expressive spei�ation logi. In the literature, di�erent fragmentsof �-alulus have been onsidered for whih eÆient model heking proedures exist. In Chap-ter 4, we onsider a fragment of �-alulus for whih two symboli model heking proeduresexist | one based on bakward analysis and the other based on forward analysis, that are bothsuitable for disjuntive onstraints as the data struture for representing and manipulating setsof states. 11

2.3 Logi Programs and DatalogAs onstraint query languages and onstraints are going to play a entral role in our uniformonstraint-based framework, we review some related onepts about logi programming [Llo87℄and datalog [Ull89℄ in this setion. The usual viewpoint of logi programming is to look atthe synthesis of operational behavior from programs viewed as exeutable spei�ations. Inthis dissertation, we take a di�erent viewpoint; namely, the analysis of operational behaviors ofonstraint query language programs obtained by diret translation of a system (program). Forthe de�nition and semantis of logi programs and datalog we refer the reader to [Llo87, Ull89℄.For an introdution to tabling and OLDT resolution, we refer the reader to [TS86a, CW96℄.We review here only some of the terminology that will be used in the sequel. One of the mostimportant notions in logi programming is that of OLD resolution.De�nition 2.5 (OLD resolution [TS86a℄) Let C be a negative lause � A1^ : : :^An andD be a de�nite lause. Let D0 be of the form A � B1 ^ : : : ^ Bm (m � 0), be D with allvariables renamed so that there is no onit with those in C. The lauses C and D are said tobe OLD resolvable if A1 and A are uni�able, and the negative lause (or null lause when n = 1and m = 0) � (B1 ^ : : : ^Bm ^A2 ^ : : : ^An)� is the OLD resolvent of C and D where � isthe mgu of A1 and A. The restrition of the substitution � to the variables of A1 is alled thesubstitution of the OLD resolution.De�nition 2.6 (OLD Tree [TS86a℄) Let P be a program and C0 be a negative lause. Thenthe OLD tree for the pair hP;C0i is a possibly in�nite tree with its nodes labeled with negativeor null lauses so that the following ondition is satis�ed.{ The root is labeled with C0.{ Assume a node v is labeled with C.{ If C is a null lause, then v is a terminal node.{ Otherwise, let D1; : : : ;Dn (n � 0) be all the lauses in P that are resolvable with C,and C1; : : : ; Cn be the respetive resolvents. Then v has n hild nodes, labeled withC1; : : : ; Cn. The edge from v to the node labeled with Ci is labeled with �i, where �iis the substitution of the OLD resolution of C and Di.Having de�ned OLD trees, we now ome to the de�nition of OLD refutation.De�nition 2.7 (OLD refutation [TS86a℄) Given a program P and a negative lause C, anOLD refutation of C by P is a path in the OLD tree of hP;Ci, from the root to a node labeledwith the null lause. Let �1 : : : �k be the labels of the edges on the path. The substitution of therefutation is the omposition � = �0 Æ : : : Æ �k, and the solution of the refutation is C�.De�nition 2.8 (Unit Sub-refutation [TS86a℄) For a node v in an OLD tree, we denote thenumber of prediates in the goal labeling v by leng(v). Consider a path from a node v1 in anOLD tree to one of its desendants v2 suh that for every node v on the path leng(v) > leng(v2)holds. Let the goal labeling v1 be hP;'i where P is a onjuntion of prediates p1 to pn. Letk = n� leng(v2). Sine this path an be viewed as the refutation of the �rst k prediates, we allit a sub-refutation of the �rst k prediates (from the left). If k = 1 we all it a unit subrefutation.12

Generally, when we speak of a program, we essentially deal with the Clark's ompletion of aprogram. The least model of a program is the same as that of its Clark's ompletion. We nowreall the de�nition of Clark's ompletion of a program.De�nition 2.9 (Clark's Completion [Llo87℄) The onjuntion of all lauses p(t) � body i,de�ning a prediate p in a program P is, in fat, a syntati sugaring for the formula thatexpresses the logial meaning orretly, namely the equivalene (here the existential quanti�er isover all variables but those in t) p(t) !_i 9 : : : body i:The program P 0 that de�nes eah prediate (that is de�ned in P) by suh a (unique) equivaleneis known as the Clark's ompletion. The two forms are equivalent with respet to the least model.The greatest model, however, refers to the Clark's ompletion.In the sequel, we make it a rule that whenever we refer to a program, we will (unlessotherwise stated) refer to the Clark's ompletion of the program. Whenever we talk about thegreatest model of a program we will atually be talking about the greatest model of the Clark'sompletion of the program.Let P be a logi program, letH be the Herbrand universe of P, letM be a Herbrand model ofP and let p be a prediate in P. The denotation of p inM is the set of terms ft 2 Hjp(t) 2Mg.We will use this notion in the sequel in this hapter as well as in Chapter 4.2.4 OLDT ResolutionIn this setion, we briey review OLDT resolution for logi programs [TS86a℄. The presentationbelow is adapted from [TS86a℄. In Chapter 3, we will extend OLDT resolution to onstraintquery language programs. We �rst need a few de�nitions.De�nition 2.10 (Partial OLD Tree [TS86a℄) A partial OLD tree is a �nite top segment ofan OLD tree. That is, any �nite tree obtained by deleting arbitrary number of trees from anOLD tree.We assume that some prediates in a program are designated as table prediates.De�nition 2.11 (OLDT Struture [TS86a℄) An OLDT struture is a forest of partial OLDtrees with two tables, the solution table and the lookup table.A node is alled a table node if the leftmost atom of its label is a table prediate. A tablenode is either a lookup node or a solution node. The solution table assoiates the leftmost atomof the label of eah solution node with a list of instanes of the atom, alled the solution table.The lookup table assoiates with eah lookup node with a pointer pointing to some solution listin the solution table.We now desribe the table node registration proedure.De�nition 2.12 (Table Node Registration [TS86a℄) Given an OLDT struture and a ta-ble node v in it, the table node registration proedure lassi�es it as a solution node or a lookupnode, and does neessary table manipulation, resulting in the OLDT struture.Aording to the leftmost atom A of v's label, we distinguish between the following ases. (Byde�nition, the prediate of A is a table prediate).13

1. Lookup Node The atom A is an instane of some key entry A0 in the solution table. Put vin the lookup table with a pointer to the entire solution list of A0.2. Solution Node Otherwise, put A in the solution table with an empty solution list.De�nition 2.13 (Initial OLDT Struture [TS86a℄) Given a program P and a goal C0, theinitial OLDT struture for the pair hP; C0i is the result of the following operation.1. Let T0 be the OLDT struture onsisting of a forest with a single node v0 labeled with C0,an empty solution table and an empty lookup table.2. Apply the table node registration proedure to the node v0 in T0.2.4.1 Extension of an OLDT strutureWe now desribe how to extend an OLDT struture. The presentation losely follows [TS86a℄.Given a program P and an OLD struture T , the immediate extension of T by P is the resultof either of the following operations.1. OLD extension Selet a terminal node v, that is not a lookup node, suh that its label Cis not a null lause (goal) and at least one lause in P is OLD resolvable with C.(a) Let D1; : : : ;Dn (n � 1) be all the lauses in P that are OLD resolvable with C, andlet C1; : : : ; Cn be the respetive OLD resolvents. Add n hild nodes vi, labeled withC1; : : : ; Cn to v. The edge ei from v to vi is labeled with �i where �i is the mostgeneral uni�er of C and Di.(b) For eah new node, register it if it is a table node.() For eah unit subrefutation (if any) starting from a solution node and ending withsome of the new nodes, assume that the subrefutation is of � A and let � A0 bea solution. Add A0 to the last of the solution list of A, if A0 is not an instane of anyentry in the solution list.2. Lookup Node Extension Selet a lookup node v, suh that the pointer assoiated with itpoints to a nonempty sublist of a solution list. Advane the pointer by one to skip thehead element of the sublist. If C and A � true are OLD resolvable, where C labelsthe node v and A is the entry of the table pointed to by the pointer, then reate a hildnode of v labeled with the resolvent and label the new edge with the orresponding mostgeneral uni�er. Do the same thing as in 1.An OLDT struture T 0 is an extension of another OLDT struture T if T 0 is obtained fromT through suessive appliation of immediate extensions. We now de�ne OLDT refutation.De�nition 2.14 (OLDT refutation [TS86a℄) Given a program P and a goal C, an OLDTrefutation of C by P is a path in some extension of the initial OLDT struture for hP; Ci, fromthe initial root to a node labeled with the null goal. Here, by initial root, we mean the rootinherited from the initial OLDT struture.The soundness of OLDT refutation omes as an immediate onsequene of that of OLDrefutation [Llo87℄. The ompleteness omes from the ompleteness of OLD refutation alongwith the fat that an OLD refutation an be \simulated" by an OLDT refutation [TS86a℄.14

2.5 Constraint Query LanguagesIn this setion, we review some preliminaries of onstraint query languages. For further details,the reader is referred to [KKR95, JM94℄. Constraint query languages [JM94, JMMS, KKR95℄ area natural merger of two delarative paradigms: onstraint solving and dedutive databases. Theparadigm of onstraint query languages has progressed in several and quite di�erent diretions.Before going into the details of onstraint query languages, we make a brief review of the notionsof onstraint domains and solution ompatness.De�nition 2.15 (Constraint Domain) For any signature �, let D be a � struture and Lbe a lass of �-formulas. The pair hD;Li is alled a onstraint domain.Examples of onstraint domains are R, the domain of reals, T1� , the domain of in�nite trees overan alphabet �. In most of this dissertation, we will either deal with the onstraint domain ofreals or that of natural numbers. In the rest of this dissertation, whenever there is no onfusion,we will use the symbol D to denote the onstraint domain hD;Li as well as the struture D.De�nition 2.16 (Solution Compatness [JM94℄) Let hD;Li be a onstraint domain. Let', 'i range over formulas of L and let I be a possibly in�nite index set. A onstraint domainhD;Li is solution ompat if it satis�es the following onditions.{ 8'9f'igi2I s:t:D j= 8x:'(x)() Vi2I 'i(x).We assume that the onstraint domains that we will deal with below are solution ompat [JM94℄.We next ome to the de�nition of o-minimal strutures.O-minimal strutures and their theories play a major role in Chapter 7 in de�ning o-minimalhybrid systems, a deidable sublass of hybrid systems, where the underlying theory is o-minimal.De�nition 2.17 (O-minimal Strutures [vdD98℄) A (�rst order) struture D = hU ;�iover a signature � (where U is the universe of the struture and the voabulary � ontainsthe relation symbol <) is o-minimal if every de�nable subset of U an be expressed as a �niteunion of points and open intervals (a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and(a;1) = fx j x > ag.For example, the struture hR; <;+; :; 0; 1i is an o-minimal struture.We now take a brief look at onstraint query languages. A onstraint query language programover a onstraint domain C is a �nite set of rules. A rule is of the form H � B where H, thehead is an atom and B the body is a �nite set of non-empty set of literals. A literal is eitheran atom or a onstraint. We let . denote the empty sequene of literals. An atom has the formp(t1; t2; : : : ; tn) where p is an user-de�ned prediate symbol and ti are terms from the onstraintdomain. Note that below, we write a program of the form p(t) � B, where t is a tuple of terms,in the form p(x) � B ^ x = t. The operational semantis are given in terms of \derivations"from goals. Below, we review some basi onepts about onstraint query languages.De�nition 2.18 (Non-ground Fat or Generalized Tuple) A non-ground fat or a gen-eralized tuple is a lause of the form p(x) � ' where p 2 Pred (the set of prediate symbols ofthe program) and ' is a onstraint. 15

De�nition 2.19 (Non-ground Goal) A non-ground goal is a tuple of the form hP;'i whereP is a onjuntion of prediates from Pred and ' is a onstraint. We will all ' the onstraintstore of the goal hP;'i.De�nition 2.20 (Non-ground State) A non-ground state is a tuple of the form hp(x); 'iwhere p 2 Pred and ' is a onstraint (store).Note that a nonground state is also a nonground goal.De�nition 2.21 (Non-ground Transition System) Given a onstraint query language pro-gram P, we de�ne the non-ground transition system indued by P as follows. Let hP;'i be anon-ground goal. Let p(x) be a prediate in the onjunt P . Let P 0 = P n fpg be the onjuntionof all prediates in P other than p(x). Let C be a lause in P whose head uni�es with p(x).Let B be the onjuntion of prediates in the body of C. Then the non-ground transition systemindued by P is the transition system whose set of states is the set of non-ground goals and thetransition relation �!ng is de�ned by:hP;'i �!ng hQ;'0iwhere Q = B ^ P 0 and '0 = 9�(Variables(P 0);Variables(B))(' ^ ((9�x') ^ � ^)) where is theonstraint in C, Variables(P 0) (Variables(B)) are the free variables in P 0 (B) and � is the mguof p(x) and the head of C where the existential quanti�er is over all variables but x.De�nition 2.22 (Non-ground Derivation.) A non-ground derivation is a (�nite or in�nite)sequene of non-ground goals of the formG1 �!ng G2 �!ng : : :A �nite derivation from G is �nished if the last goal annot be redued. The last state in a�nished derivation is of the form h.; 'i. If ' is f alse the derivation is said to have �nitely failed.Otherwise the �nite derivation is said to be suessful. A nonground goal is said to have �nitelyfailed if all nonground derivations starting from it �nitely fail.De�nition 2.23 (Ground Instane.) Given a non-ground state s = hp(�x); 'i, a ground in-stane of s is a ground atom of the form p(�(x1); : : : ; �(xn)), where � : Var' �! D suh thatD; � j= ' where D is the onstraint domain under onsideration (here Vr' denotes the set offree variables of '). This de�nition an be easily extended to ground instanes of non-groundgoals.We sometimes use the term ground state for the term ground atom. A ground goal is a on-juntion of ground atoms. A ground transition system and a ground derivation an be viewedas a \grounding" of a non-ground transition system and a non-ground derivation respetively.In this ase, the \states" are ground goals and the transition relation is de�ned in the obviousway.A onstraint query language program is alled monolithi i� for eah lause, the body on-tains only one prediate symbol. For a prediate p and a set of generalized tuples Q, we denoteby Qp the set of generalized tuples de�ning p in Q; i.e., Qp = p(x) � Wki=1 i where fori = 1::k, p(x) � i are all the lauses de�ning p in Q.16

Given a generalized tuple G � p(x) � ' over a onstraint domain D we de�ne the denota-tion of G, denoted by [G℄D, as follows[G℄D = fp(d) j D;d j= 'gGiven a set Tup of generalized tuples over a onstraint domain D, we de�ne the denotation ofTup, denoted by [Tup℄D, as follows. [Tup℄D = [G2Tup[G℄DWe are now going to demonstrate that the various formalisms used for speifying transitionsystems and their properties have a natural translation to the framework of onstraint querylanguages. The veri�ation problem then redues to the problem of omputing model-theoretisemantis of onstraint query language programs. The framework of onstraint query languagesan be viewed as unifying these seemingly di�erent formalisms.2.5.1 Finite Automata and Constraint Query LanguagesThis setion is inspired by [Pod00℄. A �nite automaton A over a �nite non-empty alphabet �is an edge labeled direted graph with a �nite set of verties Q = fq1; : : : ; qng. A subset F ofQ of verties is designated as the set of aepting verties and a vertex q1 is designated as theinitial vertex. We all the pair hq; wi, where q is a vertex of A and w 2 �� is a �nite wordover the alphabet �, as a state of A. Note that aording to this de�nition of state, a �niteautomaton is an in�nite state system. An edge of the automaton A is a triple hqi; a; qji whereqi; qj are verties of A and a 2 �. We denote the set of edges of the automaton by E . Thetransitions of the automaton are desribed as follows. The state hqi; wi an make a transitionto the state hqj ; w0i if there exists an edge hqi; a; qji of the automaton and w = a � w0 where �denotes onatenation. A �nite automaton A an be desribed by a regular system of equations.qi = [hqi;a;qji2E a:qj [Siwhere Si = f"g if qi 2 F and empty otherwise. The denotation of q1 in the least solution ofthe above set of equations gives the language aepted by A in the lassial sense [HU79℄. Sinewe are interested in the least solution of the system of equations, we an rewrite the equationsreplaing equality by supersethood; i.e., we an rewrite the above system of equations as follows.qi � a � qjfor eah edge hqi; a; qji of A and qi � f"gif qi is an aepting vertex. Using some syntati sugar, we an rewrite the above inlusions asfollows. qi � fx 2 �� j 9y 2 ��(y 2 qj ^ x = a � y)g17

We an rewrite the above inlusion logially as a onstraint query language lause over theHerbrand onstraint domain as follows.qi(x) � qj(y) ^ x = a � y:Let us denote the program generated by the above translation of A as P. The orretness ofthe above translation is given by the following theorem.Theorem 2.1 (Corretness of Translation) The language aepted by A is exatly the de-notation of the prediate q1 in the least model of P.Proof. By straightforward indution on length of derivations. [℄Sine model heking for linear safety properties (for �nite state systems) in theautomata-theoreti framework redues to (non)-emptiness problem for �nite automata on �-nite words [VW86a, HKQ98℄, our framework an provide a uniform platform for dealing withsuh problems. Cheking emptiness amounts to heking membership in the model-theoretisemantis of onstraint query language programs. In Setion 2.7, we will look at some methodsof omputing model-theoreti semantis of onstraint query language programs.2.5.2 Pushdown ProessesA pushdown proess AP over a �nite non-empty alphabet � onsists of a �nite set of loationsQ = fq1; : : : ; qng; a state of the system being a pair hq; wi where w 2 �� is viewed as therepresentation of the ontents of a stak. A subset F of Q is designated as the set of aeptingloations; the loation q1 2 Q is designated as the initial loation. In addition to the transitionsdesribed for �nite automata (whih are now alled 'pop' transitions), we also have here a set ofpush edges of the form hqi; !a; qji where a 2 �. A state hqi; wi takes a transition through a pushedge hqi; !a; qji to the state hqj ; w0i if w0 = a:w. The language aepted by a pushdown proessan be de�ned in the same way as that of a �nite automaton. Using transformations similar tothose in the previous setion, a push transition through the edge hqi; !a; qji an be desribed bythe lause qi(x) � qj(y) ^ y = a � xThus, similar to a �nite automaton, a pushdown proess AP an be translated to a onstraintquery language program P suh that the following is preserved.Theorem 2.2 The language aepted by a pushdown proess AP is exatly the denotation ofthe prediate q1 in the least model of P.2.5.3 Tree AutomataThe following de�nitions are taken from [Tho90℄. Given an alphabet �, a k-ary �-labeled treet is a mapping t : dom(t) �! � where the domain of t denoted by dom(t) is a subset off0; : : : ; k � 1g�, losed under pre�xes, whih satis�eswj 2 dom(t); i < j =) wi 2 dom(t):The tree t is �nite i� dom(t) is �nite. The outer frontier of a tree t is given by the set fr+(t) =fwi 62 dom(t) j w 2 dom(t) ^ i < kg. Let dom+(t) = dom(t) [fr+(t).18

De�nition 2.24 (Tree Automaton) A (non-deterministi top-down) tree automaton over �is a quadruple of the form AT = hQ; q0;�; F i, where Q is a �nite set of states, q0 2 Q isdesignated as the initial state, F � Q is the set of aepting states and � � Q� ��Qk is thetransition relation. A run of AT on a �nite k-ary �-labeled tree t is a mapping r : dom+(t) �! Qwhere r(") = q0 and hr(w); t(w); r(w0); : : : ; r(w(k�1))i 2 � for eah w 2 dom(t). It is aeptingif r(w) 2 F for eah w 2 fr+(t). The tree language T (AT) reognized by a tree automaton ATis the set of all (�nite) trees t for whih there is an aepting run of AT on t.A tree automaton AT an be translated to a onstraint query language program P as follows.For eah tuple hq; a; q1; : : : ; qki 2 � we have the following lause.q(y) � q1(x0); : : : ; qk(xk�1) ^ y = a(x0; : : : ; xk�1)In addition , for eah aepting state q 2 F , we add a fat q("). The intuition behind thetranslation is that the tree automaton reads the letter a of the term a(x0; : : : ; xk�1) in state qand splits into k opies and moves to node xi with state qi+1. The following theorem that westate without proof shows the orretness of the above translation.Theorem 2.3 The language aepted by the tree automaton AT is exatly the denotation of theprediate q0 in the least model of P.2.5.4 Alternating AutomataDe�nition 2.25 (Alternating Automaton [MS87℄) An alternating automaton is a tupleA = h�; Q; q0; Æ; F i, where � is a �nite non-empty alphabet, Q is a �nite non-empty set ofstates, q0 2 Q is the initial state, F � Q is a set of aepting states, and Æ : Q�� �! B+(Q)(where B+(Q) is the set of positive boolean formulas over Q) is a transition funtion.A run of A on a �nite word a0; : : : ; an�1 is a �nite Q-labeled tree r suh that r(") = q0 andthe following holds:{ if jxj = i < n, r(x) = q, and Æ(q; ai) = �, then x has k hildren x1; : : : ; xk, for somek � jQj, and the interpretation fr(x1); : : : ; r(xk)g satis�es �.The run tree r is aepting if all nodes in depth n are labeled by states in F .Similar to the previous three ases, it an be shown that the emptiness problem for alternatingautomata an be redued to heking membership in the model-theoreti semantis of onstraintquery language programs. We leave out the formal details whih are easy.2.5.5 Automata on In�nite Words: B�uhi AutomataDe�nition 2.26 (B�uhi Automaton [Tho90℄) A B�uhi automaton over a �nite non-emptyalphabet � is of the form A = h�; Q; q0;�; F i where Q is a �nite set of states, q0 2 Q is the initialstate, � � Q���Q is the transition relation and F � Q is the set of aepting states. A run� of A on an in�nite word a0; a1; : : : is an (in�nite) sequene of states q0; q1; : : : where for eahi � 0 hqi; ai; qi+1i 2 �; the run is aepting i� inf (�) \ F 6= ; where inf (�) is the set of statesourring in�nitely along �. An in�nite word w 2 �! is aepted by A i� it has an aeptingrun on w. The language of A, denoted by L(A), is given as follows; L(A) = fw 2 �! jA aeptswg. 19

Without going into the details, we note as above that the emptiness problem for B�uhi automataan be redued to that of testing membership in the model-theoreti semantis of onstraintquery language programs. Sine the deision problem for linear temporal logi (LTL) formulasan be redued to the emptiness problem for B�uhi automata [VW86a℄, our framework providesa methodology for deiding LTL.We note without going into the details that the emptiness problem for various formalismsof alternating tree automata (e.g., weak alternating automata, hesitant alternating automataet. [BVW94℄) an be uniformly aptured in the framework of onstraint query languages.2.6 The Logi CTLSo far we have talked about how the seemingly di�erent formalisms for speifying reativesystems have a natural translation to the framework of onstraint query languages. In thissetion, we show how model heking an be performed in the framework of onstraint querylanguages. In partiular, we show how the model heking problem for the branhing timetemporal logi CTL an be redued to omputing the model-theoreti semantis of onstraintquery languages over reals. The syntax of the logi CTL [CE80℄, whih is a fragment of the�-alulus, is given as follows.� ::= true j q j :� j �1 _ �2 jEX(�) jE(�1U�2) jE(�1 eU�2)where q is an atomi proposition. We will use the following abbreviations. f alse � :true,EF (�) � E(true U�), AG(�) � :EF (:�), EG(�) � E(f alse eU�). The semantis of CTLwith respet to an (unlabeled) transition system L = hS;�; S0;�!; AP; P i (where � = fag) isdesribed as follows. The satisfation relation is indutively de�ned as follows.{ For all s 2 S, L; s j= true.{ L; s j= q for q 2 AP i� q 2 P (s).{ L; s j= :� i� L; s 6j= �.{ L; s j= �1 _ �2 i� L; s j= �1 or L; s j= �2.{ L; s j= EX(�) i� there exists s0 2 S suh that hs; a; s0i 2�! and L; s0 j= �.{ L; s j= E(�1U�2) i� there exists a path � starting from s and a natural number i suhthat L; �[i℄ j= �2 and for all 0 � j < i, L; �[j℄ j= �1.{ L; s j= E(�1 eU�2) i� there exists a path � starting from s suh that for all i � 0 suh thatL; �[i℄ 6j= �2, there exists 0 � j < i suh that L; �[j℄ j= �1.The denotation of a CTL formula � with respet to an unlabeled transition system L, denotedby [�℄L, is given by [�℄L = fs 2 S j L; s j= �g.2.6.1 Model Cheking for CTL: Programs with OralesThis setion is inspired by [CP98a℄. Based on the tehniques of [CP98a℄, we show that modelheking for CTL an be redued to omputing model-theoreti semantis of onstraint query20

language programs with orales. We show this for a fragment of CTL. The extension to fullCTL is straightforward.We onsider the following fragment of CTL (we all this fragment as FCTL).� ::= p j �1 _ �2 j �1 ^ �2 j EX(�) j EF (�) jEG(�)We �rst note that a �nitely representable unlabeled transition system an be desribed bya (monolithi) onstraint query language program P. Assume that the denotation of an FCTLformula � with respet to P, denoted by [�℄P an be desribed by a �nite set of generalizedtuples. Then the denotation of :� with respet to P an be desribed by a �nite set of gener-alized tuples. If the denotations of �1 and �2 with respet to P an be desribed by �nite setsof generalized tuples then so is the denotation of �1 _ �2 with respet to P.Now, given that the denotation of � an be desribed by a �nite set of generalized tuples Q(i.e., [�℄P = Q), we onstrut the programs P _Q and P ^Q as follows.P _Q � fC j C 2 P _ C 2 QgP ^Q � fp(x) � p0(x0) ^ ' ^ j p(x) � p0(x0) ^ ' 2 P ^Qp = fp(x) � ggwhere Qp denotes the denotation of p in Q. We all the above programs as programs withorales. We have the following theorem.Theorem 2.4 For a �nitely representable unlabeled transition system desribed by a onstraintquery language program P and an FCTL property � whose denotation with respet to P anbe desribed by a �nite set of generalized tuples Q, the denotations of EF (�) and EG(�) withrespet to P are given as follows. [EF (�)℄P = lm(P _Q)[EG(�)℄P = gm(P ^Q)where for a program eP, lm(eP) and gm(eP) denote respetively the least and greatest models ofeP.The proof of the above theorem an be developed diretly along the lines of [CP98a℄.We have thus seen that many veri�ation problems (for both �nite and in�nite state systems)an be uniformly redued to the problem of omputing model-theoreti semantis of onstraintquery language programs. Developing optimized proedures for omputing model-theoreti se-mantis of onstraint query language programs thus provides, for free, proedures for solving alarge lass of veri�ation problems.2.7 Computing Model-Theoreti SemantisIn this setion, we desribe some tehniques for omputing model-theoreti semantis of on-straint query language programs. We �rst start with propositional horn programs. Some oftehniques below are inspired by (and extends) the tehniques developed in [SIR96, Llo87,JM94, Ull89, DG84℄. 21

2.7.1 Dowling-Gallier GraphsGiven a propositional horn program P with n zero-ary prediates, the Dowling-Gallier graph forP is onstruted as follows. The graph G has n+ 2 nodes, n nodes orresponding to n zero-aryprediates and two speial nodes designated true and f alse. If the lause Ci is a fat of theform p, then there is a direted edge labeled i from the node labeled true to the node labeledp. If the lause Ci is of the form p � q1 ^ : : :^ qk, then there are direted edges labeled i fromeah of the nodes orresponding to q1; : : : ; qk to the node orresponding to p.De�nition 2.27 (Pebbling for Least Model [DG84℄) Let G = hV;E;Li be an edge labeleddireted graph. There is a pebbling from a node p 2 V from a set X � V if either p 2 X or forsome label i, there are pebblings from q1; : : : ; qk from X, where q1; : : : ; qk are the soure of allinoming edges labeled i to p.Theorem 2.5 [DG84℄ Given a propositional horn program P and the Dowling-Gallier graphG orresponding to it, the following holds.{ If P is satis�able, the set of all zero-ary prediates p in P, suh that there is a pebbling ofthe node orresponding to p in G from true, is the least model of P.Moreover, the least model of P an be omputed in time linear in the size of P.Before desribing the pebbling for greatest models, we modify the Dowling-Gallier graphas follows. For eah zero-ary prediate p suh that p is not de�ned in P, add a direted edgelabeled n+ 1 (where n is the number of lauses in P) from the node orresponding to f alse tothat orresponding to p. We all this graph the modi�ed Dowling-Gallier graph.De�nition 2.28 (Greatest Model Pebbling) Let G = hV;E;Li be an edge-labeled diretedgraph. There is a pebbling of a node p 2 V from a set X � V if either p 2 X or for eah labeli suh that there exists an inoming edge to p labeled i, there exists a node qj suh there is apebbling of qj and there is an edge labeled i from qj to p.Theorem 2.6 Given a propositional horn program P and the modi�ed Dowling-Gallier graphG orresponding to it, the following holds.{ If P is satis�able, the set of all zero-ary prediates p in P, suh that there is no pebblingof the node orresponding to p from in G from f alse, is the greatest model of P.Moreover, the greatest model of P an be omputed in time linear in the size of P.Proof. Suppose a zero-ary prediate p is in the greatest model of P. Then, in the (SLD)derivation tree of P starting from p, there is a suess leaf or an in�nite branh (derivation).We de�ne the maximum length of pebbling from f alse in G as follows. Suppose that a node p ispebbled from f alse. Then a pebbling route from f alse to p is de�ned as follows. If the prediatep is not de�ned in the program P, then the pebbling route from f alse is [n+ 1℄. Otherwise, ifthere is an edge labeled i from q to p and q has a pebbling from f alse, then L is a pebbling routefrom f alse to p where L = onat([i℄; L0) where onat returns the onatenation of two listsand L0 is a pebbling route from f alse to q and i does not our in L0. The length of a pebblingroute L is the length of the list L. Clearly, the length of eah pebbling route is �nite (sine there22

are only a �nite number of lauses in P). Also, sine the length of eah pebbling route is �nite,there are only a �nite number of pebbling routes from f alse to any node p. The maximumlength of pebbling from f alse to p is the maximum of the length of all pebbling routes fromf alse to p. Suppose p is in the greatest model of P. Also, seeking a ontradition, suppose thatthere is a pebbling from f alse to p. Let the maximum length of pebbling route from f alse to pbe k. We show by indution that if p is in the greatest model of P, then the maximum lengthof pebbling route from f alse to p annot be any positive integer. Indeed, if p is in the greatestmodel of P, then the maximum length of pebbling route annot be 1. Assume that if p is in thegreatest model of P then the maximum length of pebbling route from f alse to p annot be lessthan or equal to k � 1. Suppose that p is pebbled and the maximum length of pebbling routefrom f alse to p is k. Sine p is in the greatest model of P, there must exist either a suessfulderivation or an in�nite derivation starting from p. Let the �rst lause in the derivation be theith lause p � q1 ^ : : :^ qm of the program P. Now eah of q1; : : : ; qm is in the greatest modelof P. Sine p is pebbled, at least one of qj must be pebbled; without loss of generality, let it beql. Sine, the maximum length of pebbling route from f alse to p is k, the maximum length ofpebbling from f alse to ql an be at most k � 1. By indution hypothesis, the maximum lengthof pebbling route from f alse to ql annot be less than or equal to k� 1. This is a ontradition.Hene, there does not exist a pebbling from f alse to p.To prove the other way, it is easy to show that if there is no pebbling from f alse to p, thenthere exists a derivation that either sueeds or is in�nite. Hene, p is in the greatest model ofP. It is also easy to see that the greatest model of P an be omputed in time linear in the sizeof P. [℄2.7.2 Immediate Consequene OperatorWe briey disuss about the immediate onsequene operator. For details, the reader is refereedto [Llo87, JM94℄.De�nition 2.29 (Immediate Consequene Operator) Given a onstraint querylanguage program P over a onstraint domain D, the immediate onsequene op-erator SDP is de�ned on sets of fats, that form a omplete lattie under thesubset ordering. The immediate onsequene operator is de�ned as follows.SDP (I) = fp(x) � ' j p(x) � '0 ^ b1 ^ : : : ^ bn is a rule of Pai � 'i 2 I; i = 1; : : : ; n; the rules and fats are renamed apartD j= '() 9�x'0 ^Vni=1 'i ^ ai = bigwhere the existential quanti�er is over all variables but x.Let PRED(P) be the set of prediate symbols in P. Let BD denote the D-base for a programP; i.e., BD = fp(d) j p 2 PRED(P) ^ d 2 Dkg:Theorem 2.7 The following holds for the immediate onsequene operator.1. SS(P) = [lfp(SDP)℄D = [lm(P)℄D where SS(P) represents the suess set of P.2. [gm(P)℄D = [gfp(SDP)℄D = BD n [FF (P)℄D, where FF (P) is the set of non-ground statesthat are �nitely failed. 23

Proof. We refer the reader to [JM94℄ for the proof of the �rst statement. For the seondstatement, for the proof of the equality [gm(P)℄D = [gfp(SDP)℄D, we again refer the readerto [JM94℄. We prove the equality [gm(P)℄D = BD n [FF (P)℄D . We �rst refer the reader to thenotions of �nitely failed SLD trees in [Llo87, JM94℄. Now suppose that p(x) � ' 2 gm(P)and let ' be satis�able. Also, seeking a ontradition, suppose that p(x) � ' 2 FF (P). Weuse the following equality [JM94℄ [gm(P)℄D = BD nGFF (P)where GFF (P) is the set of all ground atoms that �nitely fail (in P). Suppose that hp(x); 'i�nitely fails. Consider d suh that D;d j= '. Now p(d) �nitely fails (i.e., has a �nitely failingSLD tree). But p(d) 2 [gm(P)℄D . This is a ontradition.The proof for the other diretion is similar. [℄2.7.3 Magi Sets TransformationGiven a program P and a query Q, if we are interested only in the answers to the query Q, thenomputing the least model of P using iterations of the immediate onsequene operator an bewasteful. In this subsetion, we desribe the magi sets transformation, that is used to makequery evaluation goal direted. For details, we refer the reader to [BMSU86℄.De�nition 2.30 (Magi Sets Transformation) Let P be a program and hQ(x); i be aquery. The magi sets transformation of P is a new program P 0 obtained as follows. Initially,P 0 is empty.{ Create a new prediate pin for eah prediate p 2 P. The arity of pin is the same as thatof p.{ For eah rule in P add the modi�ed version of the rule to P 0. If a rule has head p(x), themodi�ed version of the rule is obtained by adding the literal pin(x) in the body of the rule.{ For eah rule r in P with head p(x) and for eah body literal q(y) of r, add a magi rule toP 0. The head is qin(y). The body ontains the onstraint ' of r. In addition, it ontainsthe literal pin(x) as well as all literals to the left of q(y) in the body of r.{ Create a seed fat Qin(x) � from the query Q.Further optimizations to the magi sets transformation an be obtained by apturing lassesof binding patterns. We refer the interested reader to [Ram91℄ for further details.2.8 Constraint DomainsHaving disussed about the di�erent ways of omputing model-theoreti semantis of onstraintquery language programs, we now ome to desribe some relevant properties of onstraint do-mains. In this setion, we disuss briey about the properties of some onstraint domains. Westart with the domain of (possibly) in�nite trees. We assume some familiarity with the basinotions of general topology on the part of the reader.24

2.8.1 The Constraint Domain of In�nite TreesBelow, we prove some fats about the onstraint domain of in�nite trees. Let � be a �niteranked alphabet. As before, we an de�ne (possibly in�nite) trees labeled by �, where if a nodew is labeled by f and the rank of f is k then w has exatly k hildren. We also assume thatj�j > 1. We denote the set of possibly in�nite �-labeled trees by T1� . Before we desribe sometopologial properties of this domain, we need a few de�nitions.A metri spae hX; di is a set X together with a mapping d : X � X �! R+ [f0g thatsatis�es the following onditions.{ 8x; y 2 X; d(x; y) = d(y; x).{ 8x; y 2 X; d(x; y) = 0() x = y.{ 8x; y; z 2 X; d(x; y) � d(x; z) + d(z; y) (triangle inequality).For a metri spae hX; di, a subset A � X is open i� it is an union of "-balls. A metri spae isomplete if every Cauhy-sequene is onverges in it [Kur66℄. A metri spae is totally boundedif for every " > 0 there exists a �nite overing of X by "-balls. A metri spae is ompat i� it isomplete and totally bounded. A metri spae hX; di is disonneted if there exists (nonempty)open sets A 6= X and B 6= X suh that X = A [B and A \B = ;. Otherwise it is onneted.We de�ne a metri d on the set of in�nite trees as follows.d(x; y) = 0 i� x = y= 2��(x;y) otherwisewhere �(x; y) is the least depth at whih x and y di�er. Now hT1� ; di is a metri spae. Itan also be shown that hT1� ; di is a omplete metri spae.Theorem 2.8 The metri spae hT1� ; di is ompat.Proof. Let us take the disrete topology on �. Now � is obviously ompat in the disretetopology. By Tyhono�'s theorem, �! is ompat in the produt topology. The produt topologyis generated by the metri dp(x; y) =Xi2! dt(x(i); y(i))=2iwhere dt is the trivial metri on �.Now we onsider the following spae. We augment our alphabet with an additional symbol2 having arbitrary rank. Now we onsider the spae of possibly in�nite trees over the alphabet� [f2g suh that the following holds.{ The root of eah tree is labeled by 2. The symbol 2 an label only the root of a tree.{ Only the rightmost hild of 2 an be possibly in�nite trees (the rest of the hildren mustbe �nite trees).{ The root an have arbitrary number of hildren. The number of hildren of the othernodes is equal to the rank of the symbol labeling that node.25

We denote the above set of possibly in�nite trees by �1� . Now we de�ne a metri d� on �1�as follows. d� (x; y) = Xeah hild of 2 d(x(i); y(i))=2�iwhere x(i) and y(i) are respetively the ith hildren of 2 in x and y, �i = i +max(Pi�1j=0 depth(x(j));Pi�1j=0 depth(y(j))) where depth(x(j)) (depth(y(j))) is the depth of thejth hild of 2 in x (y), and d is the metri de�ned above. It an be easily heked that d� is ametri and hene h�1� ; d� i is a metri spae.Now we de�ne a mapping f from the metri spae h�!; dpi to h�1� ; d� i as follows. Themapping f builds a tree in �1� from a string w = f0 : : : as follows. First the root is labeled 2with one hild f0. Then the tree with root f0 is built in a breadth-�rst manner. Whenever weannot attah any more symbol to the tree orresponding to f0 (sine all leaves may be labeledwith symbols of rank 0), we bring out a right hild of 2 and insert the next symbol. Thenwe ontinue the same proedure for this hild (thus only the rightmost hild of 2 an be anin�nite tree). Thus for the strings aa : : : and faa : : : where f is of rank 1 and a is of rank 0,the onstruted trees are given in the left-half and right half of Figure 2.1 respetively.
a a... ... f

a

 a
...

a ...

Figure 2.1: Illustrating the mapping fIt an be easily veri�ed that f is a homeomorphism. Hene, h�1� ; d� i is a ompat spae.Now onsider the subset A of �1� in whih the root has only one hild. It an be easily veri�edthat A is a losed set. Hene hA; d� i is ompat.Now we de�ne a mapping g from the the subspae hA; d� i of h�1� ; d� i to the metri spaehT1� ; di as shown in Figure 2.2. It an again be easily veri�ed that g is a homeomorphism fromhA; d� i to hT1� ; di. Hene hT1� ; di is ompat. [℄Let Var = fx1; x2; : : : g be a ountably in�nite set of variables. Let X be the set f� j � :Var �! T1� g. Let us de�ne the metri dX on X as follows.dX(�; �) =Xi2! d(�(xi); �(xi))=2iwhere the metri d is as de�ned above. It an be easily veri�ed that hX; dX i is a metri spae.26

t

tFigure 2.2: Illustrating the mapping gProposition 2.1 The setsSi = f� 2 X j T1� ; � j= x = fi(xi1 ; : : : ; xini)gare losed sets in the metri spae hX; dX i.Proof. Without loss of generality, letA = f� 2 X j T1� ; � j= x = f(x1; : : : ; xn)gLet l be a limit point of A. Let x = xk for some k 2 f1; 2; : : : g. Let m > max(n; k) = p.Therefore, we an get an �m 2 A suh that dX(�m; l) � 2�m. Therefore,8i � p; d(�m(xi); l(xi)) � 2�(m�p):Obviously, the root of l(x) is labeled by f . Let l(x) = f(t1; : : : ; tn). We will prove thatl(xj) = tj , 1 � j � n. Sine d(�m(x); l(x)) � 2�(m�p)therefore d(�m(xi); ti) � 2�(m�p�1):Now, d(l(xi); ti) � 2�(m�p) + 2�(m�p�1) < 2�(m�p�2)(by triangle inequality). Now we an hoose m to be arbitrarily large so that d(l(xi); ti) is lessthan any positive number. Therefore l(xi) = ti and hene l is an element of A. Therefore A islosed. [℄Proposition 2.2 The metri spae hX; dX i is ompat.Proof. The metri dX generates the produt topology on X. Now the spae of in�nite treesT1� is ompat in the topology generated by d. Therefore, by Tyhono�'s theorem, the metrispae hX; dX i is ompat. [℄Proposition 2.3 The metri spae hX; dX i is disonneted.27

Proof. We onsider a partition of the signature � into nonempty subsets �1 and �2 (this ispossible as j�j > 1). Clearly for any fi the set f� 2 X jT1� ; � j= x = fi(xi1 ; : : : ; ximi)g is losed.Consider the two losed sets C1 and C2 (these two sets are losed sine they are �nite union oflosed sets) given by C1 = f� 2 X j T1� ; � j= _fi2�1 x = fi(xi1 ; : : : ; ximi)gC2 = f� 2 X j T1� ; � j= _fj2�2 x = fj(xj1 ; : : : ; xjmj)g:Obviously, there annot exist � 2 X that satis�es both the equations. So C1 \C2 = ;. AlsoC1 [C2 = X. So hX; dXi is disonneted. [℄Proposition 2.4 The metri spae hT1� ; di is disonneted.Proof. Suppose it is onneted. Then hX; dX i is onneted whih is a ontradition. [℄The Constraint Domain of Reals In this paragraph, we state a few fats about R, theonstraint domain of reals [JMSY92℄. Essentially, R is a two-sorted struture where one sortis the real numbers and the other sort is the set of trees over uninterpreted funtors and realnumbers. The onstraint domain R is solution ompat [JMSY92℄. The metri spae hR; deiwhere R is the set of reals and de is the Eulidean metri is non-ompat but is onneted(we denote both the set of reals and the onstraint domain of reals by R; the meaning will belear from the ontext). Below, whenever we speak of the onstraint domain R, we assumethe absene of funtion symbols (other than onstant symbols). With this assumption, thestrutures RLin = hR; <;+;�; 0; 1i, RF = hR; <;+; �; 0; 1i are o-minimal strutures.2.8.2 Constraint Simpli�ationIn this setion, we desribe the Fourier's algorithm [MS98, LM92℄, needed to simplify linearonstraints over reals. Given a onstraint ' involving a set of variables V , and a subset U ofV , the Fourier's algorithm produes a onstraint '0 obtained from ' by eliminating all variablesin U . The desription below assumes non-strit linear inequalities. Extension to strit linearinequalities is straightforward. Given a onstraint ' as a set (onjuntion) of linear inequalities,elimination of a variable y proeeds as follows: First partition ' into three subsets, the subset'0, onsisting of inequalities whih do not involve y, the subset '1, onsisting of inequalities ofthe form y � t, where t does not involve y, and the subset '2 onsisting of inequalities of theform t � y, where again t does not involve y (this is possible sine we are dealing with linearonstraints). Now for eah pair of the form t1 � y in '2, and y � t2 in '1, form an inequalityof the form t1 � t2. This new set of inequalities along with those in '0 form the projetion ofthe original onstraint ' on to the original variables but y. This proess is then repeated toeliminate all the variables in U .
28

Chapter 3Model Cheking for Timed LogiProesses3.1 IntrodutionSome software and hardware omponents meet the tasks for whih they have been designedonly if they relate properly to the passage of time. Behaviors of suh omputing systemsoperating in real time are diÆult to predit by \inspetion". Therefore real-time sys-tems have beome prime targets of formal methods for spei�ation and veri�ation meth-ods [AD94, DT98, LPY95a, SS95℄. In this hapter, we apply tehniques from logi program-ming [TS86a, CW96℄ and onstraint databases [KKR95, Rev90, JM94℄ to speify and verify realtime systems.We single out a fragment of onstraint query languages [JM94, KKR95℄ over reals that allowsus to model real-time systems operating over dense time. We all the programs expressed in thisfragment as timed logi proesses (abbreviated TLPs). We show a formal onnetion of TLPswith the standard model of timed automata [AD94℄. We use this onnetion to design modelheking proedures for the logi Ls [LPY95a℄ (\logi of safety and bounded liveness") and someextensions of it. Using a produt onstrution for TLPs, we redue the model heking problemfor time logi proesses against Ls formulas to the membership problem for the model-theoretisemantis of produt timed logi proesses (see Setion 3.6).To obtain a loal model heker for real time systems, we extend with onstraints the OLDT -resolution for logi programs [TS86a, CW96℄. This way, we explain the model heking proedureof UPPAAL [LPY95a, BLL+96℄ based on a rewrite tree as a speial ase of OLDT resolutionwith onstraints. We have implemented a prototype model heker for timed systems based onOLDT resolution with onstraints using the CLP(R) [JMSY92℄ system of Sistus 3.7. We haveapplied our prototype model heker to some standard benhmark examples and we have gotreasonably good timings for these examples.Thanks to the logial setup, we have been able to use Ls [LPY95a℄ extended with fulldisjuntion (in ontrast with Ls with restrited disjuntion used in [LPY95a℄) as the underlyinglogi for our model heker.Generally, forward analysis (top-down evaluation) for timed systems, inluding the rewrite-tree-based model heking proedure of [LPY95a℄, is possibly non-terminating. To guaranteethe termination of the proedure for heking membership for the least model semantis of timed29

logi proesses, we introdue a (new) operation on onstraints (see Setion 3.7). This operation,alled trimming, allows us to ompletely avoid the omputationally expensive operation of split-ting onstraints (in ontrast with [SS95℄ where the authors onstrut a region produt graph onthe y using methods similar to [ACD+92, BFH91, YL93℄; suh a onstrution, while guarantee-ing termination of the model heking algorithm of [SS95℄, inherently involves the operation ofsplitting onstraints; the operation of splitting onstraints is known to be expensive) while stillguaranteeing the termination of the proedure. Unlike many other onstraint-based operationsin literature (see e.g., [DT98℄), the onstraint-based operation that we have introdued also hasa logial haraterization.We next turn our attention to model heking for unbounded liveness properties (whih arenot expressible in Ls). Using the same produt onstrution as mentioned above, we redue theproblem of model heking for timed logi proesses against unbounded liveness properties (seeSetion 3.10) to the membership problem for the greatest model of a produt TLP. To obtaina loal model heker for unbounded liveness properties, we introdue a new kind of tabledresolution (for TLPs having at most one prediate in the body of any lause) to loally hek ifa ground atom is in the greatest model of a TLP. We all this resolution greatest model resolution.Greatest model resolution allows us to avoid the ostly splitting operation on onstraints thatarises due to negation. To the best of the knowledge of the authors, tabled resolution (withoutusing negation) has not been previously used to solve the membership problem for the greatestmodel of a onstraint query language program. We have also been able to ombine greatestmodel resolution with the tabled resolution mentioned above to verify reeptiveness propertiesof timed logi proesses. The model heker UPPAAL [BLL+96℄ is not able to model hek forreeptiveness properties.Our last ontribution in this hapter is to de�ne (and present an algorithm for deteting) forthe �rst time a notion of transiene (see Setion 3.13) whih haraterizes the transient behavior(response) of a real time system. The notion of transiene is important in ontrol theoretiappliations. In ontrol theory, underdamped (linear time-invariant) systems are known to havea transient and a steady state behavior. We apture this notion of transient (or underdamped)behavior in the ontext of real time systems; intuitively, a behavior is transient if it is observed\initially", but \disappears" with the passage of time. A timed logi proess is transient if ithas a transient behavior. We redue the problem of deiding whether a timed logi proessis transient to the non-emptiness problem for a nonground B�uhi automaton indued by a(transformed) TLP (see Setion 3.13.1). This redution enables us to obtain a EXPSPACEalgorithm for deiding transiene.3.2 Timed AutomataIn this setion, we briey review the standard notion of timed automata. We do not viewtimed automata from the formal language point of view. Instead, we view them from the timedtransition system point of view. A timed automaton is a �nite state (loation) automaton withtiming elements added that take values from R the set of nonnegative reals. More preisely, aset of resetable loks are added that measure progress of real time. A lok x is a variable,taking real values, suh that it inreases with slope 1, and the only operations that an bedone on x are: a) test whether the value of x satis�es a onstraint and b) reset x to zero. LetXn = fx1; x2; : : : ; xng be a set of variables standing for the values of the loks. Let guardn30

be the set of formulae (alled lok onstraints) where V ar(guardn) � Xn (for a formula ', wedenote its set of free variables by Var (')). The n in the suÆx of guardn denotes the number offree variables of guardn. A formula in guardn is given by:� ::= true j xi > j xi < j xi � j xi � j �1 ^ �2where 2 N , the set of natural numbers. We will sometimes all these formulas lok onstraints.Timed automata has been introdued by Alur and Dill [AD94℄. The de�nition below stemsfrom [HK97℄:De�nition 3.1 A Timed Automaton [HK97℄ is a seven-tupleU = hAP;Xn; L;E; P; `0; inviwhere{ AP is a set of atomi propositions.{ Xn is a �nite set of variables where eah variable stands for a Program Clok.{ L is a �nite set of loations.{ E � L � guardn � 2f1;::: ;ng � L is a transition relation.{ P : L �! 2AP assigns to eah loation a set of atomi propositions{ `0 2 L is the initial loation.{ inv : L �! guardn assigns to eah loation an invariant.Invariants, whih are formulae of guardn, an be introdued in the loations of the timedautomaton to ensure that the ontrol moves from one loation to another. An edge e 2 E isa triple onsisting of a soure loation (from L), a guard formula (from guardn), a subset off1; : : : ; ng denoting the set of loks that are reset in e and a target loation (from L). In Figure3.1 an example of a timed automaton is given. There are two loations l0 and l1 and two loksx and y. The invariants of the loations are given at the top of eah loation. The loks thatare reset in eah transition are shown expliitly in the transitions in the form x := 0 where x isa lok.We now desribe the semantis of timed automata. Informally, either the ontrol staysat a loation and let time pass (i.e., inrement the lok variables) provided the invariant ofthat loation is satis�ed. Or the ontrol jumps (instantaneously) from one loation to anotherthrough an edge provided the values of the loks satisfy the guard of that edge. Some of theloks are reset to zero in this jump while others are kept unhanged.A position of U is of the form h`; v1; v2; : : : ; vni where hv1; v2; : : : ; vni 2 Rn and ` 2 L.In the sequel, we will use the notations h`;vi and h`; v1; v2; : : : ; vni interhangeably to denotea position. Given a position h`; v1; v2; : : : ; vni, we say that the position h`; v01; v02; : : : ; v0niis a time suessor of h`; v1; v2; : : : ; vni if for eah i, v0i = vi + Æ, where Æ is a non-negativereal number, and for all 0 � Æ0 � Æ, R; hv1 + Æ0; v2 + Æ0; : : : ; vn + Æ0i j= inv(`). We say that aposition h`0; v01; v02; : : : ; v0ni is an edge suessor of the position h`; v1; v2; : : : ; vni if there exists afour-tuple h`; �;Reset; `0i 2 E suh that the following three onditions hold.31

{ R; hv1; v2; : : : ; vni j= �.{ v0i = 0; if i 2 Resetvi; otherwise:{ R; hv01; v02; : : : ; v0ni j= inv(`0).We all an element of E an edge. The mapping P maps eah loation to the set of atomipropositions that are true for that loation. As the automaton is non-deterministi, it is not arestrition to suppose that the guards are only onjuntions.An h`;vi-path � is de�ned as a partial mapping from N �R to the set of positions of thetimed automaton suh that �(0; 0) = h`;vi and for any (i; ") 2 N �R, �(i; ") (where i denotesthe segment number; see below for a de�nition of segment) an be \reahed" from h`;vi througha sequene of time and edge transitions.A segment of a path is a part of the path between two suessive edge transitions. Initially,at the beginning of the path, the ontrol is in the zeroth segment. If the ontrol is in the ithsegment, and it takes an instantaneous edge transition, it \enters" the (i+1)st segment. A pointin a segment is a \snapshot" in that segment. The delay at a point p in a segment i, denotedby delay(p), is the time di�erene between the urrent time (the time at that point) and thetime the ontrol entered that segment, both the times being measured from the beginning of thepath. The delay of a segment is the di�erene between the time the ontrol leaves that segmentand the time the ontrol enters the segment. The time at a point in a segment of a path isthe sum of the delays of all the previous segments and the delay at that point in the segment.We write time�(j; ") to denote the time at a point in the jth segment of �, having the delay ".Note that time�(0; 0) = 0. A path maps a pair onsisting of a segment number and a delay toa position.De�nition 3.2 A trae of a timed automaton is an in�nite sequene of snapshots of an h`;vi-path � of the automaton of the form given below:h`;vi �! h`1;v1i �! : : :where �(0; 0) = h`;vi and for eah i = 1; 2; : : : , if �(k; Æ) = h`i; v01; v02; : : : ; v0ni and �(j; ") =h`i�1; v001 ; v002 ; : : : ; v00ni, then (j; ") � (k; Æ) (in the lexiographi order) and either j = k and �(k; Æ)is a time suessor of �(j; ") or j + 1 = k and Æ = 0 and �(k; Æ) is an edge suessor of �(j; ").In the above de�nition, we identify `0 with `. We all h`;vi the starting element of the trae.Given a path �, and a trae T of �, we an write T as a sequene of the form �(i0; 0); �(i1; "1); : : : ,where i0 = 0 and for all j either ij = ij�1 or ij = ij�1 + 1 and 0 � "j � delay(ij).De�nition 3.3 Given an h`;vi-path �, and a trae T = �(i0; 0); �(i1; "1); : : : of �, we say thatT is divergent, if the sequene (time�(i0; 0); time�(i1; "1); : : :) diverges.The timed automaton shown in Figure 3.1 has a non-divergent (or onvergent) trae (on-sider the trae h`0; 0; 0i 0:5�! h`0; 0:5; 0:5i 0�! h`1; 0; 0:5i 0�! h`0; 0; 0i 0:25�! h`0; 0:25; 0:25i 0�!h`1; 0; 0:25i : : : sine the sum 0:5 + 0:25 : : : onverges). But for the timed automaton shownin Figure 3.2 , every trae is divergent. 32

l0 l1

x<3 y<5x<3 x:=0

y<5 y:=0Figure 3.1: An Example Timed Automaton.3.3 Timed Logi ProessesWe identify a fragment of onstraint query languages over reals (in the sense of [KKR95, Rev90,BS91℄) that will allows us to model real-time systems. Furthermore, as we will see below, itallows us to express the produt onstrutions that ome up in the ourse of model heking forformulas in the temporal logi Ls [LPY95a℄. We all the programs expressed in this fragment astimed logi proesses (abbreviated TLPs). Before we de�ne TLPs formally, we need the followingnotations and de�nitions. Let the onstraint be de�ned by the grammar ::= true j xi > j xi < j xi � j xi � j ^ (3.1)where 2 N , the set of natural numbers.De�nition 3.4 (t-lause) A t-lause is a lause of one of the following four forms.(1) p(x) � '; p0(x0)(2) p(x) � p1(x); p2(x)(3) p(x) � (4) init � p(x);x = 0where the onstraints ' are of the forms (here n is the length of the tuple x � hx1; : : : ; xni ofvariables)(1:1) ' � 1(x) ^Vni=1 x0i = xi + z ^ z � 0 ^ 2(x0) (\time transitions")(1:2) ' � 1(x) ^Vi2S x0i = 0 ^Vi62S x0i = xi ^ 2(x0) (\edge transitions")where S � f1; : : : ; ng and the onstraints are of the form de�ned in the grammar (3.1).We all the onstraints the guards of the lauses. In the sequel, we all a lause of the form (1)as an evolution lause if the onstraint ' is of the form (1.1) and as system lause if theonstraint ' is of the form (1.2). We will also all lauses of the form (2) as alternating lauses,lause of the form (3) (whih are fats or generalized tuples) as assertions and lauses of theform (4) as initial lauses.De�nition 3.5 (TLP) An (unlabeled) TLP is a (�nite) set of t-lauses in whih at least onelause is an initial lause.We assoiate a logial formula orresponding to a TLP in the same way as in [JM94℄. Notethat the lauses, in whih the onstraint ' in the body is of the form (1:1), ontain the variable33

z in the body. The existentially quanti�ed (in the logial formula assoiated to a TLP) variablesz are alled inrement variables. In Setion 3.13, we will expand TLPs with alphabets (alledlabeled TLPs). We now de�ne the notion of onvergent and divergent ground derivations ofTLPs.De�nition 3.6 (Convergent and Divergent Ground Derivations) Let G be an (in�nite)ground derivation of P through lauses of the form (1) and (4). Let C1; C2; : : : be the lausesinvolved in G. Let z1; z2; : : : be the sequene of values of the inrement variables when lausesC1; C2; : : : are applied respetively (for a system lause or an initial lause, we assume this valueto be zero). We say that an (in�nite) ground derivation G of P is divergent i� the sum Pi zi ofthe inrement variables in the derivation diverges. Otherwise, we say that it is onvergent.A �rst motivation for TLPs is that this model subsumes the timed automata [AD94℄ model;i.e., we an translate timed automata to timed logi proesses. These translations use onlyevolution lauses (lauses obtained by translating time transitions), system lauses (lausesobtained by translating edge transitions) and an initial lause (a lause speifying an initialposition). Of the other types of lauses, lauses of the form (2) (i.e., alternating lauses) areused for expressing alternation (ompare [DW99℄). These lauses are also used to express theprodut onstrutions that ome up in the ourse of model heking. Clauses of the form (3)(i.e., assertions) are used to rewrite an agent to a nil agent (in this respet there is a similaritywith proess algebras; thus p(x) � states that the agent p an rewrite to the nil agent ifthe values of the variables x satisfy the formula). These lauses an also be used to expressassertions about proesses (e.g., by rewriting an agent to the nil agent if the values of thevariables x violate a safety property). We will see later that lauses of the form (3) an also beused for expressing Ls properties. Thus the TLP framework not only allows modeling a system,but also allows writing assertions about the behaviors of the system.3.4 Translation of Timed Automata into TLPsSine the timed automaton model is predominantly used in the literature, we show the onnetionof the timed logi proess model with the timed automaton model. In other words, we show thattimed automata an be translated to TLPs. The onstrution of a TLP from a timed automatonis given below.Constrution 3.1 Let U = hAP;Xn; L;E; P; `0; invibe a timed automaton [AD94℄ with n loks, where AP is a set of atomi propositions, Xn isa set of loks (n loks x1; : : : ; xn), L is a set of loations, E is a set of edges, P is a labelingfuntion that labels eah loation with a set of atomi propositions, `0 2 L is the initial loationand inv is a funtion that assigns to eah loation an invariant onstraint. We translate U toa TLP P as follows. For eah loation ` 2 L, we introdue an n-ary prediate `(x). For eahloation ` 2 L, we have an evolution lause where 1 and 2 are both the invariant of the loation` (i.e., 2(x0) is obtained from 1(x) by renaming all variables in the tuple x by their primedversions in the tuple x0). Thus the evolution lause takes the form`(x) � `(x0) ^ '34

where ' � inv `(x) ^ n̂i=1x0i = xi + z ^ z � 0 ^ inv `(x0)(invell is the invariant of the loation `). For eah edge h`; �;Reset; `0i 2 E from ` to `0, where �is the guard of the edge and Reset is the set of loks reset in that edge, we have a lause of theform (1.2) with head prediate `(x) and body prediate `0(x), where 1 � �^ inv `(x), 2 � inv `0and S = Reset (here inv` and inv`0 are respetively the invariants of loations ` and `0). Thusthe system lause takes the form `(x) � `0(x0) ^ 'where ' � inv `(x) ^ ^i2Resetx0i = 0 ^ ^i62Resetx0i = xi ^ inv `0(x0):We also add an initial lause init � `0(x)^x = 0. The labeling funtion P is extended to theprediates in the anonial way. [℄The semantis of a timed automaton are given in terms of traes. The semantis of a TLPare given in terms of ground derivations. Identifying positions and ground atoms, we get thefollowing.Theorem 3.1 (Meaning of translation) For every timed automaton U there exists a TLPP suh that the set of ground derivations of P orrespond exatly to the set of traes of U . Inother words, for every timed automaton U there exists a TLP P suh that U and P have thesame semantis.Proof. The onstrution of the TLP P from a timed automaton U is given above. Considerany trae T of U . T = h`1;v1i �! h`2;v2i �! : : : :We show by indution that `1(v1) �! `2(v2) �! : : : is a ground derivation of P, i.e., we showby indution on i that for eah i, `i+1(vi+1) is a ground resolvent of `i(vi) through a lausein P. The base ase for i = 0 is trivial. Suppose that the result holds for all i � k. By thede�nition of traes, either h`k+2;vk+2i is an edge suessor of h`k+1;vk+1i or h`k+2;vk+2i is atime suessor of h`k+1;vk+1i. In either ase, by the onstrution of P, there exists a lause inP suh that `k+2(vk+2) is a ground resolvent of `k+1(vk+1) through that lause. By a similarindution, it an be proved that every ground derivation of P orresponds to a trae of U . [℄In our de�nition, the semantis of a timed automaton also ontain onvergent traes. Un-bounded liveness properties, however, refer only to divergent traes.35

3.5 Logi of Safety and Bounded Liveness (Ls)The syntax of formulas � in the logi Ls (Logi of safety and bounded liveness) [LPY95a℄ isgiven as follows: � ::= � j q j q _ � j � _ � j �1 ^ �2 j 2� j 8� j x:� j Zwhere � is an atomi onstraint of the form xi � , where �2 f=; <;>;�;�g, is a naturalnumber, q is an atomi proposition and Z 2 Id is an identi�er (identi�ers are \mu-alulus"variables). We all a variable that does not our on the right hand side of any delaration in anLs formula the root variable for that formula. An Ls formula is a set of delarations having aroot variable. The meaning of the identi�ers (or variables) Z is spei�ed by a unique delarationD(Z) : Z = � for eah identi�er assigning a formula � of Ls to that identi�er Z. It an be easilyshown using the tehniques in [Wal93℄ that an Ls formula an be rewritten in linear time in asimple form in whih eah delaration is of the form X = q _X 0 or X = �_X 0 or X = X 0 ^X 00or X = 2X 0 or X = 8X 0 or X = x:X 0 where X 0;X 00 are either identi�ers or atomi propositionsor atomi onstraints. In the following, we will always assume that Ls formula is given in asimple form.The satisfation relation j= for Ls is the largest relation satisfying the following (where P isa TLP, p(v) is a ground atom in the R-base of P; here R denotes the reals):{ P ; p(v) j= � implies R;v j= �.{ P ; p(v) j= q implies q 2 P (p) (where P is a funtion that assigns to eah prediate in P a set ofatomi propositions).{ P ; p(v) j= q _ � implies P ; p(v) j= q or P ; p(v) j= �.{ P ; p(v) j= � _� implies P ; p(v) j= � or P ; p(v) j= �.{ P ; p(v) j= �1 ^�2 implies P ; p(v) j= �1 and P ; p(v) j= �2.{ P ; p(v) j= 2� implies for all ground resolvents p0(v0) of p(v) through system lauses or initiallauses, P ; p0(v0) j= �.{ P ; p(v) j= 8� implies for all ground resolvents p0(v0) of p(v) through evolution lauses, P ; p0(v0) j=�.{ P ; p(v) j= x:� implies P ; p(v)[0=x℄ j= � (where the ground atom p(v)[0=x℄ is obtained from p(v)by reseting the variable x to zero).{ P ; p(v) j= Z implies P ; p(v) j= D(Z).{ P ; p1(v1)^ : : :^ pm(vm) j= � implies P ; p1(v1) j= �, : : : , P ; pm(vm) j= � (satis�ability for goals).It is to be noted that the logi Ls [LPY95b℄ was originally introdued for timed automataand hene does not take into aount the alternating lauses and assertions of TLPs. Note thatwe take the greatest �xpoint of the set of delarations (viewed as a set of equations). For a TLPP and an Ls formula �, we say that P j= � i� P; init j= �.An example of a bounded liveness spei�ation in Ls is as follows: let C be an atomionstraint. Then the formula X = 2(z:Z) where Z = C _ (z < i ^ 8Z ^ 2Z) asserts that Cshould be satis�ed within i time units of resolving through a system lause (for timed automata,36

this amounts to the statement that C should be satis�ed within i time units of taking an edgetransition). We all the variables x the real variables.In order to speify properties about TLPs and in order to failitate the produt onstrutiondesribed below, it is useful to onsider the dual of the logi Ls. So before introduing the modelheking method, we �rst introdue the syntax of fLs whih expresses the dual of Ls formulas.The syntax of fLs is given as follows:e� ::= � j q j q ^ e� j � ^ e� jf�1 _f�2 j hie� j 9e� j x:e� j eZwhere � is an atomi onstraint and q is an atomi proposition. An fLs formula is a set ofdelarations with a root variable. Note that we take the least �xpoint of the set of delarations(viewed as a set of equations). For every formula � of Ls, we an de�ne a formula e� in fLs suhthat for a TLP P, P j= e� i� P 6j= �. We do not provide the semantis of fLs formulas whih areeasily understood from those of Ls formulas (dual of those of Ls formulas).3.6 Produt ProgramIn this setion, we formulate the basis of our model heking methodology| a produt on-strution of TLPs with logial formulas. Given a TLP P, and an fLs formula e�, we onstrutthe produt TLP P e�, in whih the arity of eah prediate is n (assuming that the arity of eahprediate in P is k and the orresponding Ls formula � has n � k real variables), suh thatP j= e� i� the (new) prediate hinit; eZi (see below) is in the least model of P e�. Here eZ is theroot variable of e� . The onstrution is as follows.Constrution 3.2 For the root variable eZ we reate the (0-ary prediate) hinit; eZi. For eahprediate hp;Xi reated, expand (i.e., reate a rule(s) de�ning that prediate; these rules dependon the delarationX = 	 de�ningX in e�) using the following rules if the prediate is not alreadyexpanded:{ X = q: hp;Xi(x) � true if q 2 P (p) (where P is a funtion assigning to eah prediatesymbol a set of atomi propositions and p is a prediate symbol in P).{ X = �: hp;Xi(x) � �.{ X = q ^X 0: hp;Xi(x) � hp;X 0i(x) if q 2 P (p).{ X = � ^X 0: hp;Xi(x) � hp;X 0i(x) ^ �.{ X = X1 _X2: hp;Xi(x) � hp;X1i(x) and hp;Xi(x) � hp;X2i(x).{ X = hiX 0: For eah system lause C in P suh that the prediate p stands on the headof the lause reate a lause of the form hp;Xi(x) � hp0;X 0i(x0) ^ ' ^ '0 where ' is theonstraint in the body of the lause C and '0 � Vni=k+1 x0i = xi.{ X = 9X 0: For eah evolution lause C suh that the prediate p stands on its head, reatea lause of the form hp;Xi(x) � hp0;X 0i(x0)^'^'0, where ' is the onstraint in C and'0 is given by Vni=k+1 x0i = xi + z.{ X = xi:X 0: hp;Xi(x) � hp;X 0i(x0) ^ xi = 0 ^Vj 6=i x0j = xj.37

Example 3.1 Consider the TLP orresponding to the timed automaton in Figure 3.2 and theLs formula Z = 2X where X = �at l2 ^2X ^ 8X where �at l2 is an atomi proposition satis�edat all loations but l2. The produt program orresponding to (the dual of) this formula (i.e.,the formula eX = at l2 _ hiX _ 8X where at l2 is an atomi proposition satis�ed only at theloation l2) is given in Figure 3.3.
l0 l1

l2

0 < x1<1; x2:=0

0< x2 <1

0<x2<1
x2:=0

0 <=x2<1 0<=x2<1

0<=x2<1Figure 3.2: Example illustrating that the model heking proedure is possibly non-terminating.Theorem 3.2 Given a TLP P and an Ls formula �, P j= � if and only if the atom hinit; eZi isnot in the least model of P e� where e� is the dual of the Ls formula � and eZ is the root variableof e�.Proof. By strutural indution on Ls formulas. We show that for any prediate symbol p anda tuple v 2 Rn, P; p(v) j= � i� hp; eZi(v) is not in the least model of P e�.Base Cases: For atomi propositions and atomi onstraints, the proof is trivial.Indution Step:Most of the ases are easy. We show only a few typial ones.Case: Z = q _ X. Suppose that P; p(v) j= q _ X. If P; p(v) j= q, no lause that de�nesthe prediate hp; eZi is reated and hene hp; eZi is not in the least model of P e�. If P; p(v) j= X,then the result follows from the indution hypothesis.hinit; eZi � hl0;Xi(x) ^ x = 0hl0;Xi(x) � hl0;Xi(x0) ^ x0 = x+ z ^ 0 � x2 < 1 ^ z � 0:hl0;Xi(x) � hl1;Xi(x0) ^ 0 < x1 < 1 ^ x20 = 0 ^ x10 = x1:hl1;Xi(x) � hl1;Xi(x0) ^ x0 = x+ z ^ z � 0 ^ 0 � x2 < 1:hl1;Xi(x) � hl2;Xi(x0) ^ x0 = x ^ 0 < x2 < 1:hl2;Xi(x) � true:hl2;Xi(x) � hl2;Xi(x0) ^ x0 = x+ z ^ z � 0 ^ 0 � x2 < 1:hl2;Xi(x) � hl1;Xi(x0) ^ x20 = 0 ^ x10 = x1 ^ 0 < x2 < 1:Figure 3.3: Produt Program orresponding to Figure 3.2.38

Case: Z = X1 ^X2. The produt program in this ase onsists of the lauses hp; eZi(x) �hp; fX1i(x) and hp; eZi(x) � hp; fX2i(x) along with the produt programs for the formulas de�nedby the delarations de�ning fX1 and fX2. The result then follows from the indution hypothesis.Case: Z = 2X. If P; p(v) j= Z then for all suessors p0(v0) of p(v) through system lauses,P; p0(v0) j= X. The result now follows from the indution hypothesis.The rest of the ases follow diretly from the indution hypothesis.The proof for the other diretion follows by similar indution on Ls formulas. [℄Methodology To prove P j= �, we try to prove P 6j= e� where e� is the fLs formula orre-sponding to � (i.e., the dual of �). This is proved by proving that hinit; eZi is not in the leastmodel of P e� (where Z is the root variable of �). We an either ompute the least model ofP e� using the least �x point of the immediate onsequene operator resulting in a global modelheker. We will prefer top-down evaluation (bakward haining) of TLPs in ontrast with thebottom-up evaluation (forward haining) advoated in [KKR95℄; top-down evaluation has theadvantage that it an be goal direted, i.e., loal; partial order redution tehniques an be easilyinorporated into it; see [HKQ98℄ for a disussion of top-down vs. bottom-up evaluation. Henewe extend XSB-style tabling [CW96, TS86a, Vie87℄ with onstraints to prove that hinit; eZidoes not sueed in the tabled resolution using the non-ground transition system. To be preise,our method extends with onstraints the OLDT resolution of [TS86a℄. Extending standard re-sults from logi programming [TS86a℄ we get, the state hinit; eZi sueeds i� it sueeds in thederivation tree obtained by using tabled resolution. Note that the tabling strategy produes aloal model heker for fLs (Ls). To guarantee termination of the model heking proedure,we an use the trim operation on onstraints, desribed below, along with the tabling strategymentioned above.Providing a Counter Example To provide a ounter example, we follow the followingmethod. With eah non-ground goal we keep the following information: the onstraints en-ountered so far (inluding the mgus, i.e., most general uni�ers, whih are also regarded asonstraints), a list of the numbers of lauses enountered so far (we assume that the lauses arenumbered) and a list of inrement variables enountered so far (assuming that they are suitablyrenamed). Thus a non-ground goal will take the form of a �ve-tuple hQ;'1; '2; L1; L2i where Qis a onjuntion of prediates, '1 is the onstraint store, '2 is the onatenation of all the on-straints of all the lauses (and the mgus) enountered thus far, L1 is a list of the numbers of thelauses enountered so far, L2 is the list of the inrement variables of the lauses enountered sofar. Now the \earliest" (with respet to time) ground ounter example (i.e., a ground derivationating as a witness to the suess) an be provided in the following way. First projet '2 on theset of variables in the list L2. Let the onstraint obtained be '. Now minimize �zi2L2zi withrespet to '. The solutions of zi obtained in this method an be used in providing a groundounter example. The ounter example an now be generated from the sequene of lauses andthe values of the orresponding inrement variables.3.7 The Trim Operation on ConstraintsWe �rst start with the observation the model heking proedure desribed above is possiblynon-terminating. The ounter example is provided by the translation to TLP of the timed39

automaton in Figure 3.2. Before understanding, why the above proedure does not terminatefor the example in Figure 3.2, we need a few de�nitions.De�nition 3.7 (Reahable Nonground and Ground States) A non-ground statehp(x); 'i is said to be reahable in the non-ground transition system indued by P i�there exists a (�nite or in�nite) non-ground derivation using the lauses in P:init �! : : : �! h eQ;'0i �! : : :suh that p(x0) is one of the prediates in eQ and hp(x); 'i and hp(x0); '00i are idential where'00 � 9�x0'0 (the existential quanti�er is over all variables but x0). A ground state p(v) is saidto be reahable in the ground transition system indued by P i� there exists a (�nite or in�nite)ground derivation of the form: init �! : : : �! Q �! : : :where p(v) is one of the onjunts in Q and init is the initial prediate.Note that a non-ground state is reahable in the non-ground transition system indued by P i�all its ground instanes are reahable in the ground transition system indued by P.Proposition 3.1 There exists a timed automaton suh that the non-ground transition systemof the TLP orresponding to that automaton has in�nitely many reahable non-ground states.Proof. Consider the example timed automaton given in Figure 3.2. The timed automaton hasthree loations l0, l1 and l2. There are two loks x1 and x2. The initial position is hl0; 0; 0i.There is a transition from l0 to l1 in whih the lok x2 is reset and the guard is 0 < x1 < 1.There is a transition from l1 to l2 in whih no lok is reset and the guard of the transitionis 0 < x2 < 1. Also there is a transition from l2 to l1 in whih the guard is 0 < x2 < 1and the lok x2 is reset. The invariant for all these three loations is 0 � x2 < 1. We aneasily model this timed automaton by an TLP P2 having lauses as desribed in the previoussetion. It an be easily seen that an in�nitely many reahable nonground states of the formhl2(x); x1 � x2 � 0 ^ x2� x1 � �(i+ 1) ^ x2 > 0 ^ x2 < 1i (where i 2 N) is generated. [℄We next start with a few de�nitions.De�nition 3.8 (Zones) A zone is a onjuntion of onstraints, eah of whih puts a lower orupper bound on a variable or on the di�erene of two variables. A C-zone is a non-ground stateof the form hp; 'i where, p is a prediate symbol and ' is a formula generated by the followinggrammar: ' ::= xi < a j xi > a j xi � a j xi � a j xi � xj > aj xi � xj � a j xi � xj � a j xi � xj < a j '1 ^ '2 (3.2)We all the above onstraints as zone onstraints. The free variables of a zone onstraint areamong fx1; x2; : : : ; xng.De�nition 3.9 A non-ground state s = hp(x); 'i orresponds to a C-zone � = hp; '0i if ' isequivalent to '0 with respet to fx1; : : : ; xng, i.e., the set of ground instanes of s is the the setfp(v) j R;v j= '0g. 40

The following lemma holds:Lemma 3.1 Eah reahable non-ground state orresponds to a C-zone, i.e., for eah reahablenon-ground state hp(x); 'i, there exists a C-zone � = hp; '0i suh that '0 is equivalent to ' withrespet to fx1; x2; : : : ; xng.Proof. By using Fourier's Algorithm [MS98, LM92℄ and indution on the length of non-groundderivation. [℄Our aim is to de�ne an equivalene relation �M on the set of non-ground states of P (i.e.,states of the form hp(x); 'i where p is a prediate symbol and ' is the onstraint store in whihthe free variables are x) suh that the following onditions hold:{ The quotient (in the standard sense) of the non-ground transition system of P , indued by �M ,denoted by P= �M , has a �nite index, i.e., a �nite number of \states" or equivalene lasses.{ The transition system indued by P= �M (in the standard sense) bisimulates [Mil89℄ the non-ground transition system indued by P .The suÆx M denotes the maximal onstant ourring in the guards of the TLP P (this suÆxis kept sine the equivalene relation �M involves M). Before we go into the details of thisequivalene relation, we start with a few de�nitions. Below, we identify two nonground stateshp(x); 'i and hp(x); '0i i� they have the same ground instanes. The justi�ation for this is thatthe suessor relation in nonground transition systems of onstraint query language programsdepends only on the logial ontents of the non-ground states.De�nition 3.10 (Reahable Modulo M States) The set of ground states RM reahablemodulo M , in P is de�ned as the smallest set ontaining the reahable ground states whihis losed under the following:{ if there exists a ground state p(v0) 2 RM and for all i 2 f1; : : : ; ng either vi = v0i or(vi > M ^ v0i > M) then p(v) 2 RM .A non-ground state hp(x); 'i is said to be reahable modulo M i� all its ground instanes arereahable modulo M and it is idential to a state hp(x); '0i, where '0 is given by zone onstraints.Let P be a TLP withM as the maximal onstant ourring in the guards of the lauses. Lets be any non-ground state. Let sol(s) denote the set of ground instanes of s. Now we de�nean equivalene relation �M on the set of non-ground states of P as follows: �M is the smallestequivalene relation satisfying the following:{ hp(x); 'i �M hp(x); '0i if for all p(v) 2 sol(hp(x); 'i) there exists p(w) 2 sol(hp(x); '0i) suh that8i 2 f1; : : : ; ng either (vi = wi) or (vi > M ^ wi > M) and vie versa.From now on, we view the non-ground transition system indued by P as a labeled transitionsystem in whih the lauses at as labels. We say that two nonground goals hQ;'i and hQ;'0i(where Q is a onjuntion of prediates) are �M -equivalent, denoted by hQ;'i �M hQ;'0i, iffor eah prediate p(x) in Q, hp(x);9�x'i �M hp(x);9�x'0i. The equivalene relation �M anbe viewed as a symboli bisimulation relation.Proposition 3.2 The non-ground transition system of P and the quotient of the non-groundtransition system of P indued by �M are bisimilar.41

Proof. All we need to prove is that if hp(x); 'i �M hp(x); '0i and if one of them resolvesthrough a lause C in P, then the other also resolves through the same lause and the tworesolvents lie in the same equivalene lass indued by �M . For this, �rst, given the maximalonstant M ourring in the guards of the lauses of P we de�ne an equivalene relation �M onRn as follows: v �M v0 i� for all i either vi = v0i or both vi > M and v0i > M . Now we observethat if v �M v0 then for any atomi onstraint �, either they both satisfy � or they both do notsatisfy �.Now suppose hp(x); 'i �M hp(x); '0i. Let hp(x); 'i resolve through a lause C of P. If Cis an alternating lause then hp(x); '0i also resolves through it and the resolvents in both asesare equivalent through �M . Similarly, for initial lauses. Now we onsider lauses of the form(1), i.e., system lauses and evolution lauses. Let C be an evolution lause. Let the onstraintin C be . Suppose that hp(x); 'i resolves through C. Let the resolvent be hp0(x); '00i. Now'00 � 9�x0' ^ . Sine '00 is satis�able, there exists v that satis�es '00. So R;v j= 9�x0' ^ .Hene there exists w and a real number Æ (the value of the inrement variable z) suh thatR;w j= ', R;w j= (x) and for all i, vi = wi + Æ. Sine, hp(x); 'i �M hp(x); '0i, there existsu suh that R;u j= '0 and u �M w. Therefore, R;u j= (x). Let v0 = u + Æ. Observe thatv0 �M v. Also observe that R;u;v j= '0 ^ . Hene, hp(x); '0i an resolve through C. Let theresolvent be hp0(x); '000i where '000 � 9�x0'0 ^ . Then R;v0 j= '000. Thus for any R;v j= '00,we an �nd a v0 suh that R;v0 j= '000 and v �M v0. Similarly, it an be proved that forany v0 suh that R;v0 j= '000, we an �nd a v suh that R;v j= '00 and v �M v0. Therefore,hp0(x); '00i �M hp0(x); '000i. The proof for system lauses is similar. Thus we have proved thatif hp(x); 'i resolves through a lause C, then hp(x); '0i also resolves through the same lause Csuh that the two resolvents are �M -equivalent. Similarly, the other diretion an be proved.The proof for non-ground goals an be developed on similar lines. Hene, the result follows. [℄While the lassial region equivalene [AD94℄ is de�ned on the set of positions, the equiva-lene relation �M is de�ned on the set of reahable nonground states. As we show below, giventwo reahable nonground states it is deidable whether they are �M equivalent. In ontrast withthe lassial region equivalene, the onnetion of the equivalene relation �M with the trimoperation established below allows us to design an on-the-y symboli model heking algorithm.Now we show how to deide whether two nonground states are equivalent using the trimoperation desribed below.Normalization of Constraints Given a reahable nonground state hp(x); 'i, we onvert itto a state hp(x); '0i suh that hp(x); 'i = hp(x); '0i, where '0 is in a normalized form, by themethod given in Figure 3.4. We all the resulting onstraint '0 the normalized representationof '. In the normalized form, we allow onstraints of the form xi � or xi � xj relop a where�2 f>;�; <;�g, relop 2 f>;�g, is a natural number and a is an integer.Proposition 3.3 For any reahable nonground state hp(x); 'i, the normalized form of the on-straint ' an be generated by the following grammar:' ::= xi < j xi > j xi � j xi � j xi � xj > a j xi � xj � a j '1 ^ '2 (3.3)where is a natural number and a is an integer.Note that in the normalized representation, we do not allow onstraints of the form xi�xj � .Note that a reahable nonground state has a unique normalized form. Sine linear program-ming is polynomial time solvable, given a reahable nonground state, it an be onverted to the42

{ For eah variable xi, add the onjunt 9�xi' '0. For eah pair of variables xi; xj , let e' be theonstraint (9�z' ^ z = xi � xj)[xi � xj=z℄. Add the onjunt e' to '0. Rewrite '0 in strong formi.e., in a form in whih the bounds on a variable or the di�erene of two variables are as strongas possible. Strengthening of any onjunt will lead to a onstraint whih is not equivalent to theoriginal onstraint. Let the resulting onstraint '0 be of the form 1 ^ 2 ^ : : : ^ n.{ Rewrite eah onjunt i of the form xi+ b � xj +a, where �2 f�; <g, as xj �xi relop b�a whererelop is � or > aording as � is � or <.{ Rewrite eah onjunt of the form xi � xj in the form xi � xj � 0 if �2 f�; >;=g or in the formxj�xi relop 0 where relop is > or � aording as � is < or �. Similarly for the ase of onstraintsof the form xi � xj + a.{ Any onjunt of the form xi � xj � a, where �2 f<;�g will be rewritten as xj � xi relop (�a)where relop is > or � aording as � is < or �.{ Any onjunt of the form xi � xj = a is rewritten in the form xi � xj � a ^ xj � xi � �a.{ Rewrite any onstant of the form xi = a in the form xi � a ^ xi � a.Figure 3.4: Normalization of Constraints.normalized form in polynomial time. In what follows we deal with onstraints in normalizedform.Now we are ready to introdue the trim operation. At a high level, the trim operation anbe viewed as an aurate (with respet to the properties that we are onerned here) wideningoperation, i.e., it does not lose preision with respet to model heking for the properties thatwe are onerned with here. The removal and replaement of onstraints in the de�nition oftrim an be seen as onstraint widening operations. The basi intuition is as follows: one thevalue of a real variable goes above the maximal onstant, it does not matter what the valueis. Hene, if a onstraint has a solution in whih the value of a variable is above the maximalonstant, then the onstraint an be widened to inorporate all \similar tuples". The relation�M , as we show below, provides a logial haraterization of the trim operation on onstraints.Note that the de�nition of trim itself provides with an algorithm for trimming.De�nition 3.11 (Trim) We de�ne an operator trim, whih given a satis�able onstraint ',produes a onstraint '0 = trim('), by the method given below. The onstraint trim(') isobtained from the normalized form of ' by the following operations:{ Remove all onstraints of the form xj � xi > a or xj � xi � a, for eah pair of variables xi; xj ,i 6= j, suh that ' ^ xi > M is satis�able and 9�xj (') is equivalent to 9�xj (' ^ xi > M) and(' ^ xj > M) is not equivalent to ', where a is an integer and the existential quanti�er is over allvariables but xj .{ Remove all onstraints of the form xi < or xi � where is an integer and > M .{ For eah i, suh that (' ^ xi > M) is equivalent to ', replae all the onstraints of the formxi � xj � a or xi � by the onstraint xi > M , where a and are integers and > M and�2 f>;�g. 43

Thus onsider for example that the maximal onstant M = 4. Let ' � x1 � x2 � 1 ^ x2 >1 ^ x2 < 3 ^ x2 � x1 � �3. Observe that for this onstraint, ' ^ x1 > M is satis�able and9�x2(') is equivalent to 9�x2(' ^ x1 > 4) and (' ^ x2 > M) is not equivalent to '. Henetrim(') � x1 � x2 � 1 ^ x2 > 1 ^ x2 < 3. We illustrate the trim operation geometrially. InFigures 3.5, the solution set of a onstraint ' in whih the free variables are fx; yg is shown byABCD in the left-half. The maximal onstant M is indiated in the �gure. None of the rules inthe de�nition of trim apply to this onstraint. Hene trimmed version of this onstraint is theonstraint itself. This is indiated in the right-half of the Figure 3.5. In Figure 3.6, the solutionset of a onstraint ' in whih the free variables are fx; yg is shown by ABCD in the left-half.The maximal onstant M is indiated in the �gure. None of the rules in the de�nition of trimapply to this onstraint. Hene trimmed version of this onstraint is the onstraint itself. Thisis indiated in the right-half of the Figure 3.6. In Figure 3.7, the solution set of a onstraint 'in whih the free variables are fx; yg is shown by ABCD in the left-half. The maximal onstantM is indiated in the �gure. The �rst rule in the de�nition of trim applies to this ase. Henethe onstraint rewrites to a onstraint whose solution set is shown in the right half of Figure 3.7.In Figure 3.8, the solution set of a onstraint ' in whih the free variables are fx; yg is shownby ABCD in the left-half. The seond and third rules in the de�nition of trim apply to thisase. Hene the onstraint is rewritten to one whose solution set is shown in the right half ofFigure 3.8. Note that the trim of a onstraint may not be a union of regions a' la' Alur andDill [AD94℄. Also note that the set of solutions of a onstraint obtained by trimming anotheronstraint is always onvex. It is easy to see that algorithm for the trim operation ompletelyavoids splitting of onstraints.

x

y

A B

CD

M

M

A B

CD

x

y

M

M

Figure 3.5: Illustrating the trim operation | A.For the proof of the next results, the following notation is used. For a tuple v, we de�nev[xi1 := vi1 ; : : : ; xik := vik ℄ as the tuple whih agrees with v on all values of the variables exeptxi1 ; : : : ; xik whih are set to vi1 ; : : : ; vik respetively.Lemma 3.2 The following properties hold for the trim operator:{ The trim operator is idempotent, i.e., for a non-ground state hp(x); 'i reahable moduloM , hp(x); trim(')i = hp(x); trim(trim('))i.{ For a non-ground state hp(x); 'i reahable modulo M , we have hp(x); 'i �Mhp(x); trim(')i. 44

M

M

x

y

x

y

M

M

A B

CD

A B

CDFigure 3.6: Illustrating the trim operation | B.
...

...

y

xM

M

M

M

x

y

A

B C

D A

BFigure 3.7: Illustrating the trim operation | C.

x

y

M

M

A

B

C

D

...

 ...

M

M

x

y

Figure 3.8: Illustrating the trim operation | D.
45

{ For a non-ground state hp(x); 'i reahable modulo M and an atomi onstraint �, ' entails� i� trim(') entails �.{ For a non-ground state hp(x); 'i reahable modulo M and an atomi onstraint �,hp(x); trim(trim(') ^ �)i = hp(x); trim(' ^ �)i.{ For a non-ground state hp(x); 'i reahable modulo M ,hp(x); trim(fxg')i = hp(x); trim(fxgtrim('))i;where for a onstraint ', we de�ne fxg' to be the onstraint suh that R;v[0=x℄ j= fxg'if R;v j= '.Proof. The �rst statement is obvious sine all the onstraints that are to be removed orreplaed by the trim operation get removed or replaed in the �rst operation of trim itself.We next prove the third statement. One way is obvious. The other way is proved by usingthe seond statement (whih we prove below). Suppose ' j= �. Seeking a ontradition supposethat trim(') 6j= �. Then there exists a tuple v suh that R;v j= trim(') and R;v 6j= �. Then,by the seond statement, there exists a R;v0 j= ' suh that for all i 2 1::n either vi = v0i orboth vi > M and v0i > M . Now suppose � is of the form xi > where < M . Then, of ourse,R;v0 6j= �. This is a ontradition. If � is of the form xi > with =M , then we an obtain aontradition in the same way. Similarly, for the other ases of �, we an obtain a ontradition.For the proof of the fourth statement, we use Lemma 3.3. We show that hp(x); ' ^ �i �Mhp(x); trim(') ^ �i. Then by the use of Lemma 3.3, the result follows. Suppose R;v j= ' ^ �.Then R;v j= ' and R;v j= �. Then R;v j= trim(') and R;v j= �. On the other hand, supposethat R;v j= trim(') ^ �. Then R;v j= trim(') and R;v j= �. Then, by seond statement ofthis Lemma, there exists R;v0 suh that R;v0 j= trim(') and for all i 2 1::n, either vi = v0i orboth vi > M and v0i > M . In both the possibilities, R;v0 j= �. Hene R;v0 j= trim(') ^ �. Theother diretion is obvious. Therefore, hp(x); trim(') ^ �i �M hp(x); ' ^ �i. Hene the resultfollows.For the proof of the �fth statement, we reason as follows. We show that hp(x); fxg'i �Mhp(x); fxgtrim(')i. Then the results from Lemma 3.3. Suppose that R;u j= fxg' whereR;u = v[0=x℄ where R;v j= '. Then R;v[0=x℄ j= fxg'. Now, by the seond statement ofthis Lemma, we have that there exists v0 suh that R;v0 j= trim(') and for all i 2 1::n, eithervi = v0i or both vi > M and v0i > M . Now R;v0[0=x℄ j= fxgtrim('). Now, v[0=x℄ �M v0[0=x℄where �M is the equivalene relation de�ned in the proof of Proposition 3.2. Similarly, the otherdiretion an be proved. Hene, hp(x); fxg'i �M hp(x); fxgtrim(')i. Hene the result follows.Finally, we prove the seond statement. One diretion is obvious. For the other diretion,we reason as follows. Suppose that R;v j= trim('). If R;v j= ' then we are done. Otherwise,there exists some onstraint �0 in ' suh that �0 has been removed (or replaed by anotheronstraint) by the trimming operation and R;v 6j= �0. Now, we reason on the nature of �0 andthe nature of its removal. Let �0 be of the form xi � where > M . Sine R;v 6j= xi � ,vi > . Consider the tuple v[xi := ℄. Obviously, this tuple satis�es �0. If this tuple satis�es ',we are done. Otherwise there exists a onstraint �1 in ' that is not satis�ed by this tuple. Wenow reason on the nature of �1. First observe that �1 annot be a onstraint of the form xi � 1.Seond, if �1 is of the form xi � d, then the following two ases arise. The �rst ase is that ofd < M and �1 is not removed by the trimming operation. In this ase the tuple satis�es �1. The46

seond ase is that d > M and �1 is removed during the trimming operation. But, then we anobtain the onstraints � d and < d whih is a ontradition. Now suppose, without loss ofgenerality, that �1 is of the form xi�xi+1 � 1. We onsider the ase when �1 is removed by thetrimming operation. The other ase in whih �1 is not removed by the trimming operation iseasier. Suppose that '^xi > M is equivalent to ' and that �1 is removed. Then, two ases anarise. First see that xi+1 � � 1 (or a stronger onstraint) is a onjunt of '. If this onstraintis not removed by the trimming operation, then, vj � � 1 and hene the tuple satis�es �1. If�1 > M then this onstraint is removed by the trimming operation. In this ase, if vj � �1,then �1 is satis�ed and we are done. Otherwise, onsider the tuple v[xi := ; xi+1 := � 1℄ (ifthere is another onstraint xi+1 � d stronger than xi+1 � � 1 in ', then, either vj � � 1or onsider the tuple v[xi := ; xi+1 := d℄ and follow the reasoning below). Of ourse this tuplesatis�es both �0 and �1. If this tuple satis�es ' we are done. Otherwise, there exists a onstraint�2 that is not satis�ed by this tuple. We now reason on the nature of �2. Observe that �2 annotbe of the form xi+1 � d. Also observe that �2 annot be of the form xi+1 � 2, otherwise ' isunsatis�able. So �2 an only be of the form xi+1 � xi+2 � 2. In this ase, the reasoning startsagain as previously. Sine the number of variables is �nite, we are going to show that this hainof reasoning terminates with a tuple v0 suh that R;v0 j= ' and v �M v0. This is beause, ifthis reasoning ontinues, at some point we must have that the tuple formed at that point doesnot satisfy �k where �k is the onstraint xi+k � xi+k+1 � k+1 suh that the variable xi+k+1 hasalready been enountered in our reasoing; i.e., for some l < k, xi+k+1 = xi+l where xi+l hasbeen assigned to � 1 � : : : � l and xi+k has already been assigned � 1 � : : : � k in ourassignment proess. Let the tuple formed by our reasoning method up to this point (we havebeen developing a tuple all through from v by reassigning values to xi; : : :) be v00. We showthat �l+1 � : : : � k � k+1 from whih it follows that R;v00 j= xi+k � xi+k+1 � k+1. Indeed,if ' is satis�able then there exists a solution w of '. This solution must satisfy the onstraintsxi+l � xi+l+1 � l+1, : : : xi+k�1 � xi+k � k, whene it follows that wi+l �wi+k � l+1 + : : : k.Also, sine R;w j= xi+k � xi+k+1 � k+1 and xi+k+1 = xi+l, we have wi+k � wi+l � k+1.From this we have �l+1 � : : : � k � k+1. Now all we need to show is that v �M v00. Thus,we need to show that for all j suh that the value of xj has been updated from v to v00, bothvj > M and v00j > M . Of ourse, this is true for xi. For the other variables we reason as follows.Suppose for some l, in the reasoning hain above, � 1 � : : : � l � M and for all m < l� 1 � : : :� m > M . Now see that ' ontains a onjunt xi+1 � � 1. Sine ' ontains theonjunt xi+1� xi+2 � 2, it must also have the onjunt xi+2 � � 1 � 2. Going in this way,it must also ontain the onjunt xl � � 1 � : : : � l. Now sine � 1 � : : : � l � M , thisonstraint is not removed by the trimming operation. Hene vi+l � � 1 � : : :� l. Hene thereasoning terminates here without updating xi+l. Thus we show that v00 �M v. The proofs forthe remaining ases follow similar lines. [℄Lemma 3.3 For reahable non-ground states hp(x); 'i and hp(x); '0i, hp(x); 'i �M hp(x); '0ii� hp(x); trim(')i = hp(x); trim('0)i.Proof. (=: Suppose hp(x); trim(')i = hp(x); trim('0)i. Sine by the seond statement ofLemma 3.2, hp(x); 'i �M hp(x); trim(')i and hp(x); '0i �M hp(x); trim('0)i the result follows.=): Seeking a ontradition suppose that hp(x); trim(')i 6= hp(x); trim('0)i. Let R;v j=trim(') but R;v 6j= trim('0). Wlog, suppose that R;v 6j= xi � xj > a whih is a onstraint intrim('0) (wlog suppose that a > 0). Then vi � vj � a.47

We reason as follows. If both vi and vj are less than or equal to M , we an obtain aontradition as follows. By the seond statement of Lemma 3.2 and the assumption of thisLemma, we have hp(x); trim(')i �M hp(x); trim('0)i. Now there does not exist a v0 suh thatR;v0 j= trim('0) and v �M v0 (if v0 �M v, then by our assumption, R;v0 6j= trim(')).Hene, without loss of generality, assume that vi > M and vj �M . Now onsider the tuplev[xi := M ℄. If this tuple satis�es trim(') then we an again reason as previously and obtain aontradition. If this tuple does not satisfy trim(') then there must exist a onstraint of theform xi � xl � , where �2 f>;�g, whih is not satis�ed. Without loss of generality let thisonstraint be xi � xi+1 � i. Consider the tuple v[xi :=M;xi+1 := vi+1 � (vi �M)℄. Note thatthis tuple satis�es both the above onstraints. If this does not satisfy trim('), without loss ofgenerality there must exist a onstraint of the form xi+1 � xi+2 � i+1 whih is not satis�ed bythis valuation. So onsider the tuple v[xi :=M;xi+1 := vi+1�(vi�M); xi+2 := vi+2�(vi�M)℄.Sine the number of variables is �nite, this reasoning must terminate with a tuple v0 satisfyingtrim(') for whih v0i = M and v0j = vj or v0j = vj � (vi �M). Note that we annot get atuple R;v00 j= trim('0) suh that v00i = v0i and v00j = v0j for then R;v00 j= xi � xj � a. This is aontradition. The proof for the remaining ases proeeds by similar arguments. [℄De�nition 3.12 A non-ground state hp(x); 'i subsumes another non-ground state hp(x); '0i,denoted by hp(x); '0i � hp(x); 'i, if every ground instane of hp(x); '0i is also a ground instanefor hp(x); 'i.We all the equivalene lass of a reahable non-ground state in the equivalene relation �M ,a reahable equivalene lass.Lemma 3.4 In eah reahable equivalene lass E of �M , there exists a non-ground state reah-able modulo M , alled the largest non-ground state in E reahable modulo M , whih subsumesall other non-ground states in E that are reahable modulo M .Proof. From lemma 3.2, it follows that for a non-ground state hp(x); 'i reahable moduloM ,hp(x); 'i �M hp(x); trim(')i. Note that for all reahable nonground states hp(x); 'i, trim(') j=' (and also by Lemma 3.2, the trim operation is idempotent). By Lemma 3.3, there exists a '0suh that for all hp(x); 'i 2 E , '0 = trim('). Then hp(x); '0i is the largest reahable (moduloM) state in E . [℄Lemma 3.5 The equivalene relation �M produes a �nite number of reahable equivalenelasses (i.e., equivalene lasses ontaining reahable nonground states).Proof. Eah reahable equivalene lass E an be represented by hp(x); trim(')i, wherehp(x); 'i 2 E . The onstraint store (for a non-ground state s = hp(x); 'i, we all ' the onstraintstore of s) for this state is given by grammar 3.3. Now we show that the onstraint store forthe representative annot ontain onstraints of the form xi � xj � a or xi relop a for alli; j = 1; : : : ; n, where �2 f>;�g, relop 2 f>;<;�;�g, and jaj > M . Seeking a ontradition,suppose there exists a onjunt of the form xi � xj > a where jaj > M . First suppose thata > 0. Then this onjunt is also present in '. Suppose R;v j= '. Then vi � vj > a. Thereforevi > a. Therefore there exists no solution v of ' suh that vi � M . So ' ^ xi > M � '. Sothe onstraint is removed by the trim operation. Similarly for the ase when a < 0. Now wewrite eah onstraint xi � xj = in the form xi � xj � ^ xi � xj � . Similar for the ase48

xi = . So given this representation, syntatially the number of distint onstraints is boundedby (4M +4)n(n�1) � (2M +2)2n whih is 2O(n2) � (2M +2)O(n2). This is beause there are n(n�1)pairs xi; xj. For eah onstraint of the form xi�xj � , � an be > or �, and an take integralvalues from �M to M . Also for eah onstraint xi relop, where relop 2 f>;�g (i.e., onstraintdetermining the lower bound of a variable) an be a non-negative integer in the interval [0;M ℄.Similarly the ase for the onstraints determining the upper bound of a variable. [℄Proposition 3.4 Given two reahable non-ground states hp(x); 'i and hp(x); '0i, where both 'and '0 are in normalized form, it is e�etively deidable whether hp(x); 'i �M hp(x); '0i.Proof. From lemma 3.3, it follows that to hek hp(x); 'i �M hp(x); '0i, we need to hekwhether hp(x); trim(')i = hp(x); trim('0)i. Now for a onstraint ', projetion on a variablean be done in polynomial time. Also heking for equivalene of two onstraints an be donein polynomial time. Now string searhing an also be done in polynomial time. So from thede�nition of trim, it an be seen that it is deidable in polynomial time whether hp(x); 'i �Mhp(x); '0i. [℄The trim operation desribed above an be ombined with the tabling strategy mentionedabove to provide a termination guarantee for the model heking proedure. If hp0(x); '0i is theresolvent ofhp(x); 'i through a lause C, then we add the goal hp0(x); trim('0)i as the tableentry. The detailed algorithm is desribed below. By lemma 3.5, termination of the algorithmis guaranteed. Before presenting the algorithm, we observe the following Lemma.Lemma 3.6 For every Ls formula �, the non-ground state hpred(x); 'i sueeds in P e� i� thenon-ground state hpred(x); trim(')i sueeds in P e�.Proof. By indution on struture of fLs formulas.Base Case The ase in whih pred is of the form hp;Xi where the delaration of X isgiven by X = p, where p is an atomi proposition is obvious for this ase. The seond ase iswhere pred is of the form hp;Xi where the delaration is given by X = � where � is an atomilok onstraint. Suppose hpred(x); 'i sueeds. Then there exists an instane pred(v) suhthat R;v j= �. Sine ' j= trim('), R;v j= trim('). On the other hand if hpred(x); trim(')isueeds then there exists a ground instane pred(v) of hpred(x); trim(')i suh that R;v j= �.Sine from the seond statement of Lemma 3.2, hpred(x); 'i �M hpred(x); trim(')i, there existsv0 suh that for all i, either vi = v0i or vi > M ^ v0i > M and R;v0 j= '. Now, from the proof ofProposition 3.2 R;v0 j= � sine R;v j= �.Indution Step For the boolean onnetives, the reset and the modalities, the result followsfrom the indution hypothesis. [℄3.8 Extension of OLDT Resolution to ConstraintsWe extend the subsumption ordering de�ned in De�nition 3.12 to a partial order <� on the set ofreahable equivalene lasses indued by the equivalene relation �M as follows: For a reahableequivalene lass E , denote its representative as rep(E). Then for two reahable equivalenelasses E and E 0, E <� E 0 i� rep(E) � rep(E 0). 49

We extend the OLDT resolution of [TS86a℄ in the following way. First note that we do nothave any funtion symbols in our program. We assume that a goal is of the form G = hQ;'iwhere Q is a onjuntion of prediates and ' is the onstraint store. We also assume thatthe solution list assoiate with eah entry in the solution table is a list in whih eah entryis a onstraint. The table node registration proedure is extended as follows. First, we markeah prediate as a tabled prediate. Thus every node in an OLDT struture (whih is not asuess leaf) is a table node. Let G be a goal labeling a table node v in the OLDT struture. LetG = hQ;'i and let pred(x) be the leftmost prediate in Q. The following ases are distinguished:{ Lookup Node: Compute '0 = 9�x'. If there exists a entry hpred(x); '00i suh thatrep(E 0) � rep(E 00), where E 0 and E 00 are respetively the equivalene lasses of hpred(x); '0iand hpred(x); '00i indued by �M (for a reahable non-ground state hpred(x); 'i, the rep-resentative of its equivalene lass is hpred(x); trim(')i), then put v in the look up tablewith a pointer to the entire solution list of hpred(x); '00i.{ Solution Node: If the above ase does not hold then put hpred(x); trim('0)i in the solutiontable with an empty solution list.The initial OLDT struture is the same as in [TS86a℄, with a forest with a single node labeledwith hinit; eZi. The immediate extension part losely follows that of [TS86a℄. Given P e� and anOLDT struture T , an immediate extension of T by P e� is the result of either of the followingoperations.1. Selet a terminal node v whih is not a look-up node (the question of this node being asuess node will not arise as we will see later). Let the node be labeled by the non-groundgoal hQ;'i. Let pred(x) be the leftmost prediate of Q and let Q = pred(x)^Q0. Also letVariables(Q0) be the set of variables ourring in Q0. Compute hpred(x); trim(9�x')i. Ifthere exists at least one lause in P e� through whih hpred(x); trim(9�x')i resolves then(a) Let C1; : : : ; Ck (k � 1) be all the lauses in P e� through whih hpred(x); trim(9�x')iresolves. Create k hildren hQi; 'ii where Qi = Bi ^ P and 'i =9�(Variables(P 0);Variables(Bi))(' ^ (trim(9�x') ^ i ^ �i)) where Bi is onjuntion ofprediates the body of Ci and �i is the mgu of the head Ci and pred(x) and i isthe onstraint in lause Ci.(b) For eah new node, register it.() For eah unit subrefutation [TS86a℄, if there are any, starting from a solution nodeand ending with some of the new nodes, let the subrefutation be for the tabled non-ground state hpred(x); 'i. Add the answer onstraint to the last of the solution listof the table entry hpred(x); trim(')i provided the answer is not already present inthat solution list (i.e., does not entail the answers present in the solution list).2. Look-up extension: Selet a look-up node v, suh that the pointer assoiated with it pointsto a non-empty sublist of a solution list. Let pred(x) be the leftmost prediate in the goalG labeling v. Advane the pointer by one to skip the head element of the sublist. Ifpred(x) � and G are resolvable in the sense given above, where is the onstraintpointed to by the pointer, reate a hild node of v labeled with the resolvent. Do the samething as in step 1. 50

Example time (seonds)Example in �gure 3.2 1.5Fisher's Protool (Two Proesses) [LPY95a℄ 4.2Rail-road Crossing 1.8Audio Protool [HWT95℄ 7.2Figure 3.9: Experimental Results.The rest of the details are natural extensions of those in [TS86a℄ whih we do not repeathere. Sine, our aim is to model hek loally, we will terminate as soon as a suess leaf isenountered. Note that trim(hpred(x); 'i) = hpred(x); trim(')i. Also note that we need theonstraints to be in normalized form as our algorithm (for trim) works on the syntax of theonstraints.Theorem 3.3 (Soundness and Completeness) The algorithm for model heking for Lsgiven above is sound and omplete.Proof. The proof of soundness of the algorithm is by a simple extension of the proof of Lemma3.17 in [TS86a℄ ombined with Lemma 3.6. The proof of ompleteness is by a simple extensionof the proof of Theorem 3.18 in [TS86a℄ along with Lemma 3.5. [℄We have implemented a prototype loal model heker based on the method given above.Even without any �ne tuning, the performane of the model heker seems to be enouraging.In fat, even without any �ne tuning, the timings obtained in many ases are omparable tothat of UPPAAL [BLL+96℄ whih is a highly �ne tuned tool with a lot of inbuilt optimizations.We have used our model heker to verify the safety properties of several well known benhmarkexamples taken from literature. The experimental results are summarized in table in Figure6.14. All the results are obtained on PC (200 MHz Pentium Pro). All the timings denote thetotal time needed.3.9 Full DisjuntionIn this setion, we show how to model hek for the logi Ls extended with full disjuntion.Note that the logi Ls [LPY95a℄ desribed above allows only restrited disjuntion. In thissubsetion, we show that in our framework we an allow for full disjuntion. Note that it isstated in [LPY95a℄ that their model heking tehnique based on the rewrite tree annot beextended to a logi with general disjuntion. We all the extension of the logi Ls with fulldisjuntion XLs. Dually, we all the the extension of the logi fLs with full onjuntion as gXLs(i.e., the dual of XLs). The satisfation relation for XLs is the satisfation relation for Lsaugmented with the lause:{ P; p(v) j= �1 _ �2 implies P; p(v) j= �1 or P; p(v) j= �2.For an XLs formula � we an obtain an gXLs formula e� in the similar way as above (gXLs isthe orresponding extension of fLs). Given a TLP P and a gXLs formula e�, we an onstrut aprodut program P e� using an extension of the produt onstrution given above by the following\alternating" lause. 51

{ X = X1 ^X2: hp;Xi(x) � hp;X1i(x) ^ hp;X2i(x).Theorem 3.4 Given a TLP P and an XLs formula �, P j= � if and only if hinit; eZi is not inthe least model of P e� where e� is the gXLs formula orresponding to � and Z is the root variableof �.Proof. Similar to that of Theorem 8.1. [℄Note that we do not have to hange the methodology for the implementation for this extension{ we an reuse the implementation desribed above.Note that the rewrite tree based model heking proedure [LPY95a℄ implemented in themodel heker Uppaal [BLL+96℄ an be viewed as a speial ase of our derivation tree usingtabled resolution with onstraints as desribed above. Use of tabled resolution with onstraintsallows us to inrease the expressiveness of the underlying logi ([LPY95a℄ allows only restriteddisjuntion). Also note that the model heking proedure in [LPY95a℄ may not terminate(onsider the timed automaton given in Figure 3.2 and the formula X = x2 < 2 ^ 2X ^ 8Xwhere x2 refers to the lok x2 of the timed automaton; this asserts that always the value ofthe lok x2 will be less than 2). In ontrast our model heking proedure ombined with thetrim operation is guaranteed to terminate. Like the model heking proedure in [LPY95a℄, ourmodel heking proedure is also loal (only the reahable portion of the state spae is exploredand the state spae is explored in a demand-driven fashion).3.10 Unbounded Liveness PropertiesIn this setion, we extend our methodology to deal with unbounded liveness properties of timedlogi proesses. Throughout this setion, we onsider only divergent ground derivations of TLPs.An unbounded liveness property is a delaration of the form Z = 2X where X = �q_82X (thisis atually the dual of the property Z = hiX where X = q ^ 9hiX, where we take the greatest�xpoint of the delaration) where �q is an atomi proposition (q is an atomi proposition thatis \satis�ed" by all prediate symbol that do not satisfy �q) and we take the least �xpoint ofthe delaration (viewed as an equation). This asserts that \for all (in�nite) ground derivations(starting from init using a resolution through an initial or a system lause), using resolutionsthrough evolution lauses and system lauses in suh a way that every resolution step through aninitial or a system lause is immediately followed by one through an evolution lause and everyresolution step through an evolution lause is immediately followed by one through a systemlause, there exists a ground atom in that satis�es q". For timed automata this is the same asthe assertion that for all (in�nite) traes starting from the initial position using time transitionsfollowed by edge transitions, i.e., every time transition step is immediately followed by an edgetransition step and vie versa, there exists a position that satis�es q. Note that this is the dualof the spei�ation whih asserts that \there exists an (in�nite) ground derivation (starting frominit using a resolution through an initial lause or a system lause), using resolutions throughevolution lauses and system lauses in suh a way that every resolution step through an initial ora system lause is immediately followed by one through an evolution lause and every resolutionstep through an evolution lause is immediately followed by one through a system lause, suhthat every ground atom in the derivation satis�es the atomi proposition q".Given an unbounded liveness spei�ation 	 (let � � e	; i.e., e	 is the dual of 	; i.e., P j= 	i� P 6j= �), and a TLP P, we onstrut a TLP P� suh that P j= � i� the atom hinit;Xi is52

in the greatest model of P�. The onstrution of a produt program is same as that shown inase of fLs.Theorem 3.5 Given a TLP P and an unbounded liveness spei�ation 	, we have P j= 	 ifand only if the atom hinit;Xi is not in the greatest model of P�, where � = e	 (the dual of)and X is the root variable of �.Proof. We �rst prove that if P does not satisfy 	, then hinit;Xi is in the greatest model ofP�. Suppose P; init 6j= 	. Seeking a ontradition, suppose that hinit;Xi is not in the greatestmodel of P�. If hinit;Xi fails then for all derivations starting from it, there exists a groundatom whih whih does not resolve through any lause in P�. Let G be a ground derivationstarting from hinit;Xi and let hp;Xi(v) be a ground atom in it that does not resolve throughany lause in P�. Then, by the onstrution of P�, either q 62 P (p) or there does not exist anyground suessor of p(v). In either ase, P; p(v) 6j= p ^ 9hiX. Sine this holds for eah groundderivation P; init 6j=nls �. Hene P; init j= 	 whih is a ontradition. Therefore hinit;Xi is inthe greatest model of P�.Now we show that if P j= 	, then hinit;Xi is not in the greatest model of P�. Suppose thatP; init j= 	. Then P; init 6j= �. Seeking a ontradition suppose that hinit;Xi is in the greatestmodel of P�. Then there is an in�nite derivation starting from hinit;Xi through the lauses inP�. This is beause, by the onstrution, P� does not ontain any assertion lause. Let thisderivation be G. For every ground atom hp;Xi(v) in G, there exists a lause in P� throughwhih hp;Xi resolves. Hene for every ground atom hp;Xi(v) in G, q 2 P (p). Now it an beshown by indution on the length of derivation that there exists an in�nite ground derivationfrom init in P in whih the �rst derivation step is through an initial lause or a system lause,eah derivation step through an initial lause or a system lause is followed by one through anevolution lause, eah derivation step through an evolution lause is followed by one through asystem lause and for eah ground atom p(v) in the derivation q 2 P (p). Hene P; init j= �.This is a ontradition. [℄3.11 ImplementationSine model heking P for an (unbounded) liveness property 	 redues to heking whetherhinit;Xi is ontained in the greatest model of P� (as onstruted above), it an be done byomputing the greatest �xpoint of the immediate onsequene operator for P�. This results ina global model heker. Alternately, sine the lauses in P� have at most one prediate in thebody (from the onstrution of the program), we introdue a new greatest model resolution withtabling1 prove that hinit;Xi is in the greatest model of P�. To the best of the knowledge of theauthor, this is the �rst time any kind of tabling (without negation) is used for the greatest modelof a onstraint query language program. The greatest model resolution algorithm also allows usto avoid splitting of onstraints. This is beause, otherwise, in order to get a loal algorithm,we had to introdue negation in the lause bodies. This would have resulted in splitting ofonstraints. The greatest model resolution algorithm with tabling is given in Figure 3.11. Instep 3(b) of the algorithm we hek whether there exists a goal hpred0(x); '00i in the table suhthat '00 entails the onstraint store '0 of the newly generated goal hpred0(x); '0i. In this ase, we1Note that the tabling used here is di�erent from that used in Setion 3.6 as well as those in [CW96, TS86a℄.53

do not need to register the solutions into the table. We will terminate at the �rst instane of asuess leaf or the �rst instane when a newly generated goal ontains a goal already in the table(whihever ours earlier). Note that in the above implementation, use of negation along withtabled resolution for least model would have resulted in omputing the negation of a onstraintwhih is prohibitively expensive in pratie. Note the proedure in Figure 3.11 holds only foronstraint query language programs that have only one prediate in the body. The proedurean be easily extended to aount for general programs (without negation). We illustrate thegreatest model resolution with an example. The basi idea behind the proedure is to hek ifthere exists a suessful derivation or an in�nite derivation starting from hinit;Xi.Example 3.2 Consider the programhinit;Xi � p1(x) ^ x1 = x2 ^ x2 � 0p1(x) � p2(x0) ^ ^x01 = 0 ^ x02 = x2p2(x) � p3(x0) ^ x01 = x1 + z ^ x02 = x2 + z ^ z � 0p3(x) � p4(x0) ^ x2 � 2 ^ x02 = 2 ^ x01 = x1p4(x) � p5(x0) ^ x01 = x1 + z ^ x02 = x2 + z ^ z � 0p5(x) � p4(x0) ^ x02 = 0 ^ x01 = x1 ^ x2 � 2hinit;Xihp1(x); x1 = x2; x2 � 0ihp2(x); x1 = 0; x2 � 0ihp3(x); x2 � x1; x1 � 0ihp4(x); 0 � x1 � 2; x2 = 0ihp5(x); x1 � x2 � 0; x2 � x1 � �2; x2 � 0ihp4(x); 0 � x1 � 4; x2 = 0i (yes)Figure 3.10: Illustrating the Greatest Model Resolution.The derivation tree using the greatest model resolution for this example is given in Figure 3.10.The goal hp(x); x1 = x2; x2 � 0i labeling the seond node from the top is the resolvent of thegoal hinit;Xi and the �rst lause. Similarly, the goal labeling the seond node is the resolvent54

of hp(x); x1 = x2; x2 � 0i and the seond lause. Note that the onstraint store of the statelabeling the 5th node entails that of the state labeling the 7th node. Hene the 7th node is a'yes' leaf (in line 4(b)(i) in Figure 3.11 the F lag is made true). This implies that hinit;Xi isin the greatest model of the program. Figure 3.10 shows the ontents of Table for this example(the tree viewed from the bottom). Note that the algorithm in Figure 3.11 is depth-�rst.Theorem 3.6 (Soundness) If proedure in Figure 3.11 terminates then hinit;Xi is ontainedin the greatest model of P� if and only if it returns 'yes'.Proof. Consider algorithm in Figure 3.11. It returns `yes' in the following ases:Case 1: A non-ground desendent of hinit;Xi is a suess leaf. In this ase hinit;Xi is inthe greatest model of P�Case 2: A non-ground desendent ng0 of hinit;Xi is suh that there exists an anestorng00 of ng0 suh that the onstraint store of ng00 entails the onstraint store of ng0. Now letC1; : : : ; Ck be the lause in the derivation from ng00 to ng0. Then ng0 annot fail as it goesthrough C1; : : : ; Ck and produes a non-ground state ng000 suh that the onstraint store of ng0entails that of ng000. Hene hinit;Xi is in the greatest model of P�.To prove the other way, assume that hinit;Xi is in the greatest model of P�. Assume thatthe proedure in Figure 3.11 terminates. Seeking a ontradition, suppose that the proedurereturns 'no'. Then the proedure terminates on �nding the stak Table empty at the end of therepeat�until loop. This means that in the depth-�rst tree generated by the proedure, everyleaf is a failure leaf. But this ontradits the fat that hinit;Xi is in the greatest model of P�.[℄Note that proedure in Figure 3.11 may not terminate. The ounter example is provided bythe TLP orresponding to the timed automaton in Figure 3.12. It has two real variables x andy and one loation m0. Let the prediate �atm0 be an atomi proposition that does not hold atthe loation m0. Consider the unbounded liveness property Z = 2X where X = �atm0 _ 82X(atually onsider its dual Z = hiX where X = atm0 ^9hiX). An in�nite sequene of nongroundstates of the form hhm0;Xi(x); y = x + i ^ x � 0i are generated where i 2 N . To ensure thetermination of the model heking proedure, as in the previous setion, we an ombine thetrim operation desribed above along with the proedure. The details are straightforward. Thegreatest model resolution proedure ombined with the trim operator an also be implemented asa non-deterministi proedure requiring polynomial spae (due to Lemma 3.5). A deterministialgorithm requiring polynomial spae an then be obtained by using Savith's theorem.Using our method, we have been able to verify the unbounded liveness property Z = 2Xwhere X = at 2 _ 82X for the example of timed automaton shown in Figure 3.2 (TLP orre-sponding to that timed automaton), where the atomi proposition at 2 is satis�ed only by theloation 2.The loal model heking algorithm given in Setion 3.6 and the model heking algorithmfor unbounded liveness properties given above an be ombined e�etively to model hek forreeptiveness properties. A reeptiveness property is a formula of the form �1; �2, where �1 is adelaration of the form X = X1_9hiX _9X and �2 is a delaration of the form X1 = q^9hiX1,where we take the least �xpoint for the �rst delaration and the greatest �xpoint for the seonddelaration. This asserts that there exists a reahable ground atom p suh that there existsan in�nite derivation (using resolutions through evolution lauses and system lauses in suha way that the �rst resolution step is through an evolution lause and every resolution step55

Proedure Greatest Model ResolutionInput Program P� and the atom (0-ary prediate) hinit;XiOutput A yes/no answer whether the atom is in the greatest model of P�Data StruturesStak TablebeginPush hinit;Xi in Table.repeat1. Let hpred(x); 'i be the non-ground state at the top of the stak Table.2. If hpred(x); 'i sueeds through a lause, return yes.3. else(a) If there exists a lause C in P� suh that hpred(x); 'i has still not resolved throughC then let the resolvent of C and hpred(x); 'i be hpred0(x); '0i.(b) If there exists hpred0(x); '00i in Table suh that '00 j= '0, return yes.() else push hpred0(x); '0i to Table . (end If)(d) else pop hpred(x); 'i from the stak Table. (end if)4. (end If)until Table is empty (end of repeat until)return no.endFigure 3.11: Greatest Model Resolution (GMR) Proedure for programs with one body predi-ate.
PSfrag replaementsm0 y = 1x := 0

Figure 3.12: Non-terminating Example for Greatest Model Resolution.
56

through a system lause is immediately followed by one through an evolution lause and vieversa) starting from p in whih every ground atom satis�es q (for timed automata, this amountsto the spei�ation that there exists a reahable position ep suh that there exists an (in�nite)trae starting from ep using time transitions followed by edge transitions, i.e., �rst taking a timetransition and then following it up by an edge transition and so on, suh that every positionin that trae satis�es q). Using the ombination mentioned above, we have been able to falsifythe reeptiveness property for the example in Figure 3.2 with q = :at 2. The model hekerUppaal [BLL+96℄ is not able to verify reeptiveness properties.3.12 Model Cheking for TCTL formulasIn this setion, we extend our methodology to deal with the model heking problem for TCTLformulas. The formulas � of Timed Computation Tree Logi (TCTL) are indutively de�ned asfollows. � ::= q j x+ � y + d j :' j �1 _ �2 jE(�1U�2) j A(�1U�2) j z:�where q is an atomi proposition, ; d 2 N , x; y are real variables. Given a TLP P and a TCTLformula �, the satisfation relation j= is de�ned indutively as follows (here p(v) is a groundatom).{ P; p(v) j= q i� q 2 P (p) (where P is a funtion that labels eah prediate in P with a setof atomi propositions).{ P; p(v) j= x+ � y + z i� R;v j= x+ � y + d.{ P; p(v) j= :� i� P; p(v) 6j= �.{ P; p(v) j= �1 _ �2 i� p(v) j= �1 or p(v) j= �2.{ P; p(v) j= E(�1U�2) i� there exists a ground derivation through evolution or systemlauses from p(v) to a ground atom p0(v0) suh that P; p0(v0) j= �2, every other groundatom p00(v00) in the ground derivation satis�es �1_�2 and if p00(v00) and p00(v00+ Æ) (whereÆ 2 R) be two ground atoms in the derivation suh that p00(v00+ Æ) is a resolvent of p00(v00)and a lause, then for all 0 � Æ0 < Æ, P; p00(v00 + Æ0) j= �1 _ �2.{ P; p(v) j= A(�1U�2) i� for eah ground derivation G starting from p(v) through evolutionor system lauses suh that there exists a ground atom p0(v0) in G suh that P; p0(v0) j= �2,every other ground atom p00(v00) in the ground derivation G satis�es �1 _�2 and if p00(v00)and p00(v00+Æ) (where Æ 2 R) be two ground atoms in the derivation G suh that suh thatp00(v00 + Æ) is a resolvent of p00(v00) and a lause then for all 0 � Æ0 < Æ, P; p00(v00 + Æ0) j=�1 _ �2.{ P; p(v) j= z:� i� P; p(v[0=z℄) j= �.Let �1 and �2 be TCTL formulas. As usual, let [�℄ denote the denotation of �, i.e., [�℄ =fp(v) j P; p(v) j= �g. We show that for eah TCTL formula � and a TLP P, the denotation of�, [�℄ over P an be represented by a �nite set of generalized tuples.57

Theorem 3.7 For eah TCTL formula �, and a TLP P, its denotation an be desribed by a�nite set of generalized tuples.Proof. We proeed by strutural indution on TCTL formulas. For atomi propositions q theset of generalized tuples is given by fp(x) � true j q 2 P (p)g. The ases for the disjuntionand onjuntion are easy. We prove the theorem for the ase of exists until. The remainingases are similar.Suppose that the formula � is given by E(�1U�2). We onstrut a TLP P� suh that theleast model of P� is the same as [�℄. Given [�1℄ and [�2℄ as a �nite set of generalized tuples,we �rst ompute for eah prediate p, the set Sp of all ground atoms p(v) suh that there existsa Æ � 0 suh that for all 0 � " � Æ, P; p(v + ") j= �1 _ �2. Let p(x) � 'i be the generalizedtuple de�ning the prediate p in [�i℄ (i 2 f1; 2g). Then Sp is given by p(u) suh thatu 2 [9Æ � 08"(0 � " � Æ =) ('1[x+ "=x℄ _ '2[x+ "=x℄))℄:I.e., u 2 [9Æ � 0:9"(0 � " � Æ ^ :'1[x+ "=x℄ ^ :'2[x+ "=x℄))℄:I.e., u 2 [9Æ � 0:9"�℄:where � � (0 � " � Æ ^ :'1[x + "=x℄ ^ :'2[x + "=x℄. We an now onvert � to a disjuntivenormal form. Now, for eah disjunt of the form �, we an eliminate the existential quanti�er9" using variable elimination algorithms like Fourier's algorithm [MS98℄. Let the quanti�er freeformula obtained be �0. We now negate �0 and onvert it to a disjuntive normal form. Inthis way, we get a onstraint 9Æ � 0Wmi=1 �i suh that Sp = fp(u) j R;u j= 9Æ � 0Wmi=1 �ig.Now, we onstrut the program P� as follows. For eah evolution or system lause in P , wereate m lauses p(x) � p0(x0) ^ ' ^ �i ^ z = Æ (even though system lauses do not have theinrement variable z we an add the onstraint �i^z = Æ). Also, for eah prediate p, we add thegeneralized tuple p(x) � '2 (i.e., the generalized tuple de�ning p in [�2℄). Now, we show thatthe denotation of E(�1U�2) is the same as the least model of P�. Let p(v) 2 lm(P�), wherelm(P�) is the least model of P�. Then there exists a ground derivation G through the lausesC1; : : : ; Cl starting from p(v) that sueeds (i.e., Cl is a generalized tuple). Let p00(v00) be theground atom in that ground derivation that resolves through Cl. Then P; p00(v00) j= �2. Noweah ground atom in the ground derivation satis�es �1 _ �2 (otherwise, it would have failed,sine it would not have satis�ed any �i for 1 � i � m that are in the body of the lauses). Nowonsider two ground atoms p1(u) and p2(u+ �) suh that the latter is a resolvent of the formerthrough a lause in P� that is derived from an evolution lause in P. Sine R;u j= �i for somei (where Sp1 = fp1(u) j R;u j= 9Æ � 0Wmi=1 �ig), therefore, for all � 0 suh that 0 � � 0 � � ,P; p1(u+ � 0) j= �1 _�2. Hene, p(v) 2 [E(�1U�2)℄. Thus lm(P�) � [E(�1U�2)℄. Similarly, itan be shown that [E(�1U�2)℄ � lm(P�).It an be shown that the least model of P� an be omputed by a �nite number of iterationsof the immediate onsequene operator. Hene the denotation of E(�1U�2) an be desribedby a �nite set of generalized tuples. [℄58

Sine eah iteration of the immediate onsequene operator requires only a �nite amount oftime, the omputation of the least model (or the greatest model) of P� terminates. Hene theproof of Theorem 3.7 provides us with an algorithm for model heking for TCTL formulas. Theomputation of the least model an be made goal direted by using either using tabled resolutionombined with the trim operator as done previously, or using magi sets transformation on theprogram P�. Thus for example, if the denotations of �1 and �2 are given, we an hek ifP; init j= E(�1U�2) using a \loal" algorithm.3.13 Transient Behavior of Real Time SystemsIn this setion, we formulate a methodology for deteting transient behavior of timed logiproesses. It is well known in ontrol theory that underdamped linear time-invariant systemshave both a transient and a steady-state response (see any standard textbook on ontrol theorye.g., [Oga96℄). Examples of suh systems inlude from the mehanial mass-spring-dashpotsystems to analog sensors and measuring equipments. Our aim in this setion is to apturethis notion of (under) damping in the ontext of real-time systems (modeled by timed logiproesses). Deteting underdamping (or transient behavior) is useful for system identi�ationwhih is an important problem in ontrol theory. System identi�ation involves automatiallydeteting the order of a given system as well as the nature of its damping. Thus if we anautomatially determine that a linear time invariant system has a transient and a steady-stateresponse, we an dedue that the system is underdamped.We assume that real time systems are modeled as TLPs. We assume TLPs in whih everylause is either an evolution lause or a system lause or an initial lause. Further we expandTLPs with alphabets to de�ne labeled TLPs.De�nition 3.13 (Labeled TLP) A labeled TLP is a TLP equipped with a (�nite) alphabet �suh that eah system lause or initial lause is labeled by a letter (ation)2 from this alphabet(a letter may label several lauses).Let a; b; range over �. In this setion, whenever we speak of a TLP we will atually meana labeled TLP.Let P be a TLP. We say that a ground derivation G = init �! g1 �! : : : �! gm �! : : :of P, where gi is a ground atom, is an advaning derivation if g1 is a ground resolvent of initthrough an initial lause of P and for eah i = 1; 2; : : : g2i is a ground resolvent of g2i�1 throughan evolution lause and for eah i = 1; 2; : : : , g2i+1 is a resolvent of g2i through a system lause.Let G = init �! g1 �! : : : �! gi �! : : : be a (in�nite) advaning ground derivation of Pstarting from init. We say that G is labeled by an omega-word u 2 �!, where u = u0; u1; : : :(ui 2 �), i� g1 is the ground resolvent of init through a lause in P labeled u0 and for eahi = 1; 2; : : : , g2i+1 is the ground resolvent of g2i through a lause P labeled ui.We say that an omega-word u 2 �! is aepted by a TLP P if there exists an in�niteadvaning (ground) derivation G of P, starting from init, that is labeled by u.De�nition 3.14 (Transiene) We say that a timed logi proess P is transient if there existsa word u 2 �! aepted by P suh that all (ground) in�nite advaning derivations of P labeledby u onverge.2We do not onsider any \silent" ation here. 59

l_0 l_1

x=<2

x=<2

a

 bFigure 3.13: Illustrating transiene.Intuitively, a TLP is transient if it has at least one transient behavior where by transientbehavior we mean a omega-word aepted by the TLP that does not label a divergent (ground)advaning derivation. So suh a behavior is observed \initially" but \disappears" with thepassage of time (sine all advaning ground derivations labeled by it onverge). Note that theTLP orresponding to the timed automaton shown in Figure 3.13 is not onvergent (onvergenefor timed automata is de�ned in Chapter 4), but is transient (onsider the word (ab)!).3.13.1 Deteting TransieneBefore we delve into details of the algorithm for deteting transiene, let us introdue the oneptof a nonground B�uhi automaton indued by a TLP. The notion of nonground B�uhi automatais similar to that of onurrent onstraint automata [FP93℄. We assume as in the previoussetion that the TLPs that we onsider onsist only of evolution, system and initial lauses.We also assume that eah TLP is equipped with a �nite alphabet � labeling the system andinitial lauses. Let P be a TLP. A nonground B�uhi automaton indued by P is a �ve-tuplePA = hS; S0;�;�!; F i where{ S = fhp(x); trim(')i j hp(x); 'i is a reahable nonground state of Pg is the set of states.{ S0 = init is the initial state.{ � is the �nite alphabet assoiated with P.{ �!= t�! [f a�! j a 2 �g is the transition relation where a�!� S � S. For s; s0 2 S anda 2 �, we write s a�! s0 if s0 is a resolvent of s through a lause of P labeled a. Fors; s0 2 S, we write s t�! s0 if s0 is a resolvent of s through a evolution lause.{ F � S is a set of aepting statesIn addition, we assoiate with PA B�uhi aeptane onditions (see [Saf88℄). Note that dueto Lemma 3.5, S is �nite.3.13.2 Constrution of Nonground B�uhi AutomataGiven a TLP P, we onstrut a TLP Q suh that the following holds:60

{ There exist two nonground B�uhi automata QA1 and QA2 suh that P is transient if andonly if the produt automata QA1�QA2 is nonempty, where QA2 denotes the omplementof QA2 .Intuitively, (as we will see below) the automaton QA1 aepts all behaviors (in�nite words)that are aepted by P, while the automaton QA2 aepts only those behaviors of P that labela divergent advaning (ground) derivation. So the problem of deteting transiene now reduesto the problem of language ontainment between the two automata (more preisely, whetherthe language of QA1 is not ontained in the language of QA2 ; in fat this an be treated as anon-universality problem).Given a TLP P, we onstrut the TLP Q (as stated above) as follows. The set of prediatesof Q are the same as that of P exept for the fat that eah prediate is now n+ 1-ary (if theorresponding prediate in P was n-ary). The initial prediate is init is the same as that of P.The set of atomi propositions AP is the same as that of P. The funtion � assigning subsetsof AP to prediates is the same as that of P. The lauses of Q are onstruted in the followingway.{ The lauses in Q are the same as that in P exept that the prediate in the body is nown+ 1-ary.{ For eah system lause of P reate two lauses of the form p(x) � p0(x0) ^ ' ^ xn+1 �1 ^ x0n+1 = 0 and p(x) � p0(x0) ^ ' ^ xn+1 < 1 ^ x0n+1 = xn+1 where ' is the onstraintof the lause P (note that the prediates in both the lauses are n+ 1-ary.)Now given Q the two nonground automata QA1 and QA2 indued by Q an be spei�edsimply by speifying the set of aepting states (note that all the other omponents are same inboth the automata). Let F1 and F2 be the set of aepting states for QA1 and QA2 respetively.Then F1 = S and F2 = fhp(x); 'i 2 S j R j= ' ^ xn+1 � 1g where S is the (ommon) set ofstates of QA1 and QA2 .Theorem 3.8 A timed logi proess P is transient (i.e., has a transient behavior) if and onlyif the produt automaton QA1 �QA2 indued by the TLP Q as onstruted above is non-empty.Here QA2 is the omplement of QA2 .Proof. =)-part: Suppose that P is transient. Let u 2 �! represent a transient behavior of P.Let us onsider a non-ground advaning derivation NG of Q starting from init labeled by u (Anon-ground advaning derivation is de�ned in the same way as a ground advaning derivation;the labeling for nonground derivations is in the same way as that for the ground ounterpart).Now it an be seen that after some point, all states in this nonground derivation will be of theform hp(x); 'i for some p 2 Pred where ' is a onstraint suh that R 6j= ' ^ xn+1 � 1. Henesuh a non-ground derivation (a trajetory of QA2) is not aepted by QA2 . But this behavioris aepted by QA1 . Hene the non-emptiness result follows.(=-part: Suppose that P is not transient. Then for eah word u that it aepted by P,there exists an in�nite advaning divergent (ground) derivation of P labeled by u. Now anyword that is aepted by P is also aepted by the nonground automaton QA1 . Sine thereexists an in�nite advaning divergent ground derivation of P labeled by u, there exists a run ofQA2 in whih a states of the form hp(x); 'i where R j= ' ^ xn+1 � 1 are enountered in�nitelyoften. This is beause the value of xn+1 inreases to beome 1 or more after it is reset in�nitely61

many times. Thus u is aepted by the automaton QA2 . Hene the language of the automatonQA1 is inluded in that of QA2 . So the emptiness of QA1 �QA2 follows. [℄Note that both the automata QA1 andQA2 have exponentially (in n, where n is the number ofreal variables of P) many states in the worst ase. Hene QA1�QA2 an have doubly exponential(in n) states in the worst ase (due to the omplementation for B�uhi Automaton [Saf88℄). Hene,using standard tehniques from automata theoreti veri�ation [VW86b℄, the (non) emptinesstest an be done in EXPSPACE.3.14 Related WorkLogi-based methods for spei�ation and veri�ation are slowly gaining popularity. In the pastfew years there has been a lot of work on model heking using dedutive methods [RRR+97a,GGV99℄. While most of these works have been foussed on �nite state systems, there has alsobeen substantial work on veri�ation of integer-valued and parameterized systems using methodsbased on logi [FR96, FP93, RKR+00℄. Bjorner et.al. [BBC+96℄ use the theorem prover STEPto verify real time systems.The works from the logi programming, theorem proving and database ommunity that omelosest to our work are [CDD+98, GP97, Fri98, Urb96℄. In [CDD+98℄, real time systems weretranslated into onstraint logi programs. But no detailed model heking results based on suha translation has been provided. Gupta and Pontelli in [GP97℄ have been able to verify severalinteresting properties of real time systems. In ontrast with automated model heking methods,they rely on the programmer to write a \driver" routine to identify the �nite number of �niterepeating patterns in the in�nite strings aepted by a timed automaton. In a reent paper,Gupta and Pontelli [GP99℄ desribe de�nite lause grammar for the model heker UPPAAL. Inan interesting approah, they use Horn logi denotational semantis framework for speifying,implementing and automatially verifying real time systems. But in their approah, they haveto make sure that the veri�ation of properties leads to �nite omputations. Gupta [Gup99℄extends the methods of [GP97℄ to more general settings.Fribourg in [Fri98℄ veri�es real time systems spei�ed by logi programs with gap onstraints.This work only onsiders reahability problems for real time systems. Termination is alwaysguaranteed here beause a bakward analysis is used (industrial-sale tools like UPPAAL useforward analysis in spite of a missing termination guarantee [LPY95a℄).Du, Ramakrishnan and Smolka [DRS99℄ extend XSB with the POLINE onstraint libraryto verify real time systems. But they follow the same tehniques as [SS95℄ and hene they alsoensure termination using expensive splitting of onstraints.Urbina in [Urb96℄ identi�es a lass of CLP programs as hybrid automata without, however,establishing a formal onnetion with the standard model for timed systems. In fat, the se-mantis results in [Urb96℄ annot be onneted with liveness properties of timed automata, inontrast to our work on TLPs.The works from the veri�ation ommunity that ome losest to our work are [LPY95a,DT98, SS95℄. The model heking method in [LPY95a℄ based on the rewrite tree an be viewedas a speial ase of our model heking proedure based on OLDT resolution extended to on-straints. We have been able to model hek for a logi whih is stritly more expressive thanthat in [LPY95a℄. Also, the model heker UPPAAL [BLL+96℄ does not seem to be able tomodel hek for reeptiveness properties that we have been able to model hek for. The model62

heking proedure in [LPY95b℄ is possibly non-terminating (disussed above) while our modelheking proedure, thanks to the trim operation, is guaranteed to terminate. In [DT98℄ Dawsand Tripakis present a global model heking proedure for real time systems. In ontrast, oursis a loal one. Also, their method an be used only for model heking \reahability" propertieslike safety while we have given methods to deal with unbounded liveness properties. Sokolskyand Smolka [SS95℄ present a loal model heker for real time systems. But, as mentionedin the Introdution of this hapter, their method for ensuring termination is based on an ex-pensive \splitting" of onstraints. We disuss the omputational ost of splitting onstraints inChapter 4 where we onsider negation. The model heking proedure of [SS95℄ is essentiallytableau-based where sideways information passing [Ram91℄ annot be used. On the other hand,utilizing the sideways information passing in the TLP lauses, we an deal with disjuntion(onjuntion) without splitting onstraints. It is also evident from the algorithm in the de�ni-tion of trim that it ompletely avoids splitting of onstraints. We have not reeived any reporton the performane of the model heking proedure in [SS95℄ on any pratial example. Theharaterization of TCTL properties in terms of model-theoreti semantis of onstraint querylanguage programs has not been done before.In [HHWT95℄, the authors desribe HyTeh, a model heker for hybrid systems. HyTeh isbased on two model heking proedures| one top-down and another bottom-up. Both proe-dures are global. While the bottom-up proedure is guaranteed to terminate for timed systems,the top-down proedure is possibly non-terminating even for timed systems. In ontrast, in thishapter, we have provided a loal top-down model heking proedure that is guaranteed toterminate for timed systems spei�ed by TLPs.The notion of transient (underdamped) behavior of real time systems and algorithms fordeteting the same has, to the best of the knowledge of the authors, not been studied before.In summary, we have demonstrated in this hapter how uniform framework an deal with thedi�erent types of problems arising in the proess of modeling and veri�ation of timed systems.

63

64

Chapter 4The Strati�ed �-alulus4.1 IntrodutionSymboli model heking for systems with variables over an in�nite numeri domain, e.g. fortimed or hybrid systems, has beome an important topi of researh (see e.g. [ACD93, ACHH93,AD94, AH97, CDD+98, CJ98, CMN+98, CP98a, DP99b, DT98, Esp97, HNSY94, KMP96,GP97, MP99, MP00b, Tri99℄). In this ontext, `symboli' usually refers to a representationof a set of states (i.e. of tuples of numbers) by a disjuntive onstraint, e.g. a set of onjuntionsof inequalities between arithmeti expressions over variables (a set standing for the disjuntionof its elements). In this hapter, we single out a new lass (\S�") of temporal properties withtwo symboli model heking proedures, one based on bakward analysis and the other basedon forward analysis, that are both suitable for disjuntive onstraints as the data struture forrepresenting and manipulating sets of states.We de�ne the strati�ed �-alulus S� as the subset of all �-alulus formulas (built upwith the Boolean operators, the existential predeessor operator EX and and the least �xpointombinator �) whose subformulas an be `strati�ed'; i.e., the is-subformula relation an made apartial order that is strit for negation. This restrition exludes the expression of alternation, ofthe universal predeessor operator AX and of the greatest �xpoint ombinator �. The fragmentof the alternation-free �-alulus we thus obtain subsumes the so-alled safety logi STL (seee.g. [AH99℄) that again subsumes the EF-logi onsidered in [Esp97℄.The S� properties are omputable in symboli bakward analysis (essentially a least �xpointiteration based on the existential predeessor operator EX) that uses only `good' operations ondisjuntive onstraints. I.e., the appliation of the �xpoint operator requires the disjuntionof two disjuntive onstraints (representing eah a set of states), a onstant-time operation. Inontrast, if it required the onjuntion (as during a greatest �xpoint iteration) or the omplement(e.g. for expressing the universal predeessor operator AX in terms of the existential one, EX),the orresponding implementation ost would grow as a funtion (quadrati resp. exponential)in the number of disjunts in the onstraints representing the state sets.The above observation has been our original inentive to de�ne S� (i.e. as a andidate fora temporal logi with symboli model heking proedures that are well-suited for disjuntiveonstraints). The other motivation of S� is the natural generalization of STL; S� is de�nedby the same general syntati restrition to the �-alulus that, if applied to the fragmentorresponding to CTL, yields exatly STL. 65

Our tehnial ontribution is a novel `symboli forward analysis' method for heking S�formulas. This method is based on our haraterization of S� properties as perfet models ofonstraint query language programs and on our tabled-resolution proedure for onstraint querylanguage programs with the perfet-model semantis.Forward analysis is sometimes preferable to bakward analysis; a thorough disussion anbe found in [HKQ98℄. Our proedure is a symboli forward analysis in a sense di�erent fromthe one formalized in [HKQ98℄ (this is already lear by the result in [HKQ98℄ that the S�property EF(p^EF(q)^EF(r)) is not omputable by `symboli forward analysis'). Both formsof forward analysis are essentially a least-�xpoint iteration of the diret-suessor operator postapplied to a onstraint representation of a set of states. In [HKQ98℄, a onstraint is viewedmonolithially (this orresponds to a setting where a set of states is represented by a onstraintin normal form, implemented e.g. by a BDD). Our proedure operates on the onstraints insideof a disjuntive onstraint, i.e. its disjunts. Note that the disjunts generally represent in�nitesets of states, whih makes our proedure di�erent from an enumerative proedure (and requiresthe management of formulas with free variables).Tabled resolution is originally an exeution strategy for logi programs with negation;see [CW96, SI88, TS86b℄. We have not, however, found a tabled-resolution proedure fornon-ground onstraint queries wrt. the perfet-model semantis in the (yet quite extensive)literature. In the ontext of veri�ation, tabled resolution has been used in [RRR+97b℄ forground programs (and �nite-state systems).The onnetion between S� properties and perfet models of onstraint query languageprograms is perhaps of intrinsi interest; its role in this hapter is a quite pragmati one. Namely,the onnetion helps us to onisely formulate and to formally prove orret our forward analysisproedure.Convergene (a.k.a. zenoness or timelok) [AH97, HNSY94, Tri99℄ for timed automata isan S� property. Therefore, one an apply either of our two general symboli model hekingmethods, the bakward or the forward one. The two existing speialized algorithms for hekingonvergene [HNSY94, Tri99℄ are instanes thereof. Thus, our work helps to situate the twoalgorithms within a general model-theoreti and proof-theoreti ontext.4.2 Strati�ationWe �rst reall the syntax of modal mu alulus. The syntax of (losed) formulas ' of the modal�-alulus is given below.' ::= p j x j :' j ' ^ '0 j ' _ '0 j <>' j �x: 'Here p is an atomi proposition, x is a variable, <> is the next operator (written EX in CTLsyntax), and in �x:', ' is monotone in x (i.e., all ourrenes of the free variable x in ' lie ina sope of an even number of negation).Sometimes we use the formulas �x:'(x) and 2' informally as abbreviations for :�x::'(:x)and :<>:', respetively.The Fisher-Ladner losure l(') of a formula ' is the smallest set of formulas ontaining 'suh that{ if 2 l(') and 0 is a subformula of then 0 2 l('), and66

Alternation-free �-alulus
rrrrrrrrrrr

LLLLLLLLLLCTL
LLLLLLLLLL

S�
rrrrrrrrrr

rrrrrrrrrrSTLEF� logiFigure 4.1: Situating the expressiveness of S�{ if �x: (x) 2 l(') then (�x: (x)) 2 l(').Here, for a formula �x: (x), the formula (�x: (x)) is obtained from (x) by replaing eahfree ourrene of x with �x: (x).De�nition 4.1 (Strati�ed �-alulus S�) An S� formula is a losed formula ' of the modal�-alulus suh that the is-subformula relation over l(') an be made a partial order � that isstrit wrt. to negation, i.e. '0 � :'0.The above de�nition is equivalent to saying that there exists a strati�ation funtion S assigninga natural number to eah formula in the losure l(') suh that{ if '00 2 l('0) then S('00) � S('0), and{ S('0) < S(:'0) for all '0 2 l(').Thus, the strati�ed �-alulus S� onsists of all strati�able formulas of the modal �-alulus(in the syntax given above, i.e. with least �xpoints and Boolean set operators inluding theomplement, but without greatest �xpoints).Figure 4.1 situates the expressiveness of S� relative to the alternation-free �-alulus, CTLand STL. We reall the de�nition of the syntax of STL and of its sublogi, the EF-logi.' ::= p j :' j ' ^ '0 j ' _ '0 j EX(') j EF(') (EF-logi)' ::= p j :' j ' ^ '0 j ' _ '0 j EX(') j 'EU'0 (STL)To see that S� is subsumed by the alternation-free �-alulus, observe that nesting of �xpoints �and � (where � is expressed in terms of � and negation) requires strit dereasing of the value ofthe strati�ation funtion; the value of the strati�ation for a �xpoint formula must, however,be the same for its one-step unfolding.The example of the formula �x:p _ :<>:x (abbreviated �x:p _ 2x, and written AF(p) inCTL syntax) of the alternation-free �-alulus shows that S� is stritly less expressive. To seethat ' is not an S�-formula, suppose that there exists a strati�ation funtion S showing that' is an S�-formula. Let (x) be the formula p _ :<>:x. Then S(�x: (x)) � S((�x: (x))) �S(:<>:�x: (x)) > S(<>:�x: (x)) � S(:�x: (x)) > S(�x: (x)), whih is a ontradition.To see that S� is inomparable with CTL in terms of expressiveness, observe that (1) everysatis�able formula of S� has a model whose paths are all �nite; the CTL formula EG(p), for67

example, does not have suh a model; (2) the S� formula �x:p _ <><>x expresses the property\p is reahable in an even number of steps", whih annot be expressed in CTL.Our motivation for S� stems from in�nite-state systems with generally undeidable modelheking problems. In fat, the following proposition shows that the restrition of thealternation-free �-alulus to S� does not trade with a derease of the theoretial omplex-ity of model heking for �nite-state systems. As in the alternation-free �-alulus; the problemis hard for P even if the formula is �xed. The existing P -hardness proofs for the alternation-free�-alulus, however, redue the alternating graph-reahability problem, using the 2 modality inan essential way, and annot be arried over diretly.Proposition 4.1 (Finite-state systems) The program omplexity of S� model heking isP -omplete.Proof. We redue the monotone iruit value problem (MCVP), well-known P -omplete problem.An instane of MCVP is a sequene variables X1; : : : ;Xn of boolean equations of the formXi = true, Xi = false, Xi = Xj ^ Xk or Xi = Xj _Xk where for all equation of the last twoforms we have i > max(j; k), suh that the value of a varaible does not depend on itself. Thequestion we ask is whether the value of Xn is true.Given suh an instane I of MCVP, we onstrut a Kripke struture K = hS;!; Li asfollows. We de�ne the set of atomi propositions as fp; p1; p2g. The set S of states onsistsof the variables X1; : : : ;Xn and their opies (two for eah variable) X11 ;X21 ; : : : ;X1n;X2n. Thelabeling funtion L : S ! 2fp;p1;p2g is de�ned as follows. L(Xi) = fpg i� Xi = true is in I.For all i = 1; : : : ; n we de�ne L(X1i) = fp1g and L(X2i) = fp2g. The transition relation ! isde�ned as follows. For all equations Xi = Xj _Xk we have Xi ! Xj and Xi ! Xk, and for allequations Xi = Xj ^Xk we have Xi ! X1i , Xi ! X2i X1i ! Xj and X2i ! Xk. Now it is easyto see that the state Xn in the struture K satis�es the formula�x:p _ <>x _ (<>(p1 ^ <>x) ^ (<>(p2 ^ <>x)))if and only if the value of the variable Xn in the iruit is true. [℄4.3 Bakward AnalysisIn this setion, we de�ne a hierarhy of three kinds of proedures based on bakward analysisthat orrespond to the three `safety logis' EF-logi, STL and S�, respetively. These proeduresare essentially least-�xpoint iterations for a �xpoint operator that is derived from the diret-predeessor operator pre in three di�erent ways. We formalize the setting by de�ning diretlythe three families of sets of states that an be omputed.We �x a transition system T = h�;�!i with the set of states � and the transition rela-tion �! (and the orresponding predeessor operator pre over sets of states).Given a set of atomi propositions p, we �x a orresponding set of base sets; i.e., for everyatomi proposition p there exists a base set b � � that is the interpretation of p.The least-�xpoint losure F ?(S) of the set S under a given operator F on sets is the least�xpoint of the funtion �x:(S [F (x)).We write S \F for the operator �x:(S \ F (x)), F ÆF 0 for the funtional omposition of thetwo operators F and F 0, and F [F 0 their pointwise union.68

De�nition 4.2 (\omputable by bakward analysis") A set of states S is lfp-omputableif it is{ one of the given base sets,{ the union, intersetion or omplement of lfp-omputable sets, or{ of the form Pre(S) or of the form Pre?(S)where S is an lfp-omputable set and the operator Pre is formed in the following way(possibly using some other lfp-omputable set S0).Case 1 Pre ::= preCase 2 Pre ::= pre j S0 \ preCase 3 Pre ::= pre j S0 \ Pre j Pre Æ Pre0 j Pre [Pre0 j Pre \ Pre0Proposition 4.2 The sets of states expressed by the temporal properties in EF-logi, STL andS� are exatly the lfp-omputable sets in Case 1, 2 and 3, respetively.Proof (by strutural indution). Base sets orrespond to atomi propositions; union, intersetionand omplement of lfp-omputable-sets orrespond to disjuntion, onjuntion and negation inthe orresponding logi. If a set S orresponds to a formula ' then pre(S) orresponds toEX(') and pre?(S) to EF(') in EF-logi, trueEU' in STL (where true an be de�ned asp _ :p), and �x:' _ <>x in S�. The set (S0 \ pre)?(S) orresponds to '0EU' in STL and to�x:' _ '0 ^ <>x in S�, where '0 is the formula orresponding to S0. In ase of Pre?(S) wherePre is de�ned using omposition, union or intersetion, the set is translated in an obvious wayto a least-�xed-point formula of S� using respetively omposition, disjuntion or onjuntionof respetive subformulas. The only ase requiring more argumentation is the translation fromleast-�xed-point formulas of S� to lfp-omputable sets.Given a formula �x:' in S� we �rst translate it to a guarded formula (where all variablesappear in a sope of the <> modality) by rewriting all unguarded variables to false, and thentranslate the result to the disjuntive normal form. Let us all the obtained formula �x: . Ifthis formula denotes a nonempty set of states, must ontain a disjunt that does not ontainx (otherwise it an be translated to S\ � S for any base set S). Let S be the set orrespondingto the disjuntion of all suh disjunts. Sine is a strati�ed formula, the subformula x mustbelong to the same stratum as and thus x does not our in a sope of negation. Now it iseasy to onstrut an operator Pre suh that �x: de�nes exatly the set Pre?(S). [℄4.4 Perfet ModelsIn this setion, we present a translation of S� properties to the perfet models of strati�edonstraint query language programs. The translation is reminisent of the ones in [CP98b,DP99b, GGV98, RRR+97b, GP97℄. Here, however, the translation is done suh that it yieldsstrati�ed programs. Roughly, a program is strati�ed if the dependeny relation between itsprediates (where p � q means: \the prediate p alls the prediate q", or: \p is de�nedusing q") an be made a partial order that is strit wrt. negation; i.e., p � q if there is a lauseof the form p(x) : : : not(q(x)) : : : . A level mapping of a program is a mapping from its setof prediates to the natural numbers. The level of a prediate p, denoted by level(p), is the69

value of the prediate under the mapping. A onstraint query language program is strati�ed ifit has a level mapping suh that in every lause of the form p(x) � B ^ ', the level of theprediate of any atom ourring positively in B is less than or equal to that of p and the levelof the prediate of any atom ourring negatively in B is less than the level of p.The original de�nition of a perfet model of a strati�ed onstraint query language program Pis model-theoreti [Prz88℄. An equivalent de�nition yields a diret onstrution of this model;the onstrution uses the omplementation of the least-�xpoint losure of the diret-onsequeneoperator TP [ABW88℄. Roughly, the proof of the theorem below as well as that of Theorem 4.2is built around this onstrution. In the sequel, we assume that the onstraint domain D thatwe onsider admits quanti�er elimination. For a program P, let BD denote the D-base of aprogram P. The formal de�nition of perfet model based on diret onstrution, given below,is taken from [ABW88℄. An equivalent de�nition an also be found in [Prz88℄. Before we de�nethe perfet model of a onstraint query language program P, we need the de�nition of the TPoperator. The operator TP is a mapping from 2BD to itself. It is de�ned as follows. The atomp(v) 2 TP(I) (for I � BD) i� for there exists a ground instane p(v) � body of a lause in Psuh that I j= body .De�nition 4.3 (Perfet Model) Let P be a strati�ed onstraint query language program withmaximum prediate level k. Let M�1 = ;. For 0 � j � k do the following. Let Cj be theompleted lattie fMj�1 [S j S � fp(v) 2 BD j level(p) = jgg under set inlusion. Let T jP bethe restrition of the immediate onsequene operator TP to Cj. Let Mj = T jP " !. Then Mk isalled the perfet model of P.We assume that we an represent the transition systems of interest as onstraint querylanguage programs. That is, we are able to de�ne a prediate trans(s; s0), init(s) and pap(s)saying, respetively, that there is a transition from the state s to s0, that s is an initial state,and that the atomi proposition ap holds in the state s. Suh representations (together withdiret syntati translations) are known for �nite systems [CP98b, GGV98, RRR+97b, SIR96℄,push-down systems [CP98b℄, onurrent programs (inluding integer-valued protools) [DP99b℄,and timed and hybrid systems [MP00b℄.Given a onstraint query language program P de�ning the prediate trans, we translate anS� formula to a onstraint query language program P as follows. For eah formula ' in l()we introdue a new prediate p' de�ned as follows.(1) p'1^'2(s) p'1(s); p'2(s)(2) p'1_'2(s) p'1(s)p'1_'2(s) p'2(s)(3) p:'(s) not(p'(s))(4) p<>'(s) trans(s; s0); p'(s0)(5) p�x:'(x)(s) p'(�x:'(x))(s)To simplify the presentation, we abbreviate the translation of S� formulas that are expressed inthe syntax of EF-logi or STL.(6) pEF'(s) p'(s)pEF'(s) trans(s; s0); pEF'(s0)(7) p'1EU'2(s) p'2(s)p'1EU'2(s) p'1(s); trans(s; s0); p'1EU'2(s0)70

Theorem 4.1 An atom p'(s) belongs to the perfet model of the program P' if and only if theS� formula ' is true of the state s; or: the denotation of the prediate p' in the perfet-modelsemantis of the program P' is exatly the denotation of the S� formula ' wrt. the transitionsystem P, [[p'℄℄pm(P') = [['℄℄P :Proof. By strutural indution on strati�ed mu-alulus formulas. [℄4.5 Tabled ResolutionIn this setion, we present the symboli forward analysis for S� formulas. Based on Theorem 4.1,we an formally de�ne it as a proedure for strati�ed onstraint query language programs P.The input is a query onsisting of an atom p(x) and a onstraint '. The output, if it terminates,is a omplete list of answer onstraints ['1; : : : ; 'n℄. This means: for every tuple v of valuesfor the argument tuple x, the atom p(v) lies in the perfet model of P and v is a solution ofthe onstraint ' if and only if v is a solution of one of the answer onstraints 'i. In short: thedenotation of the prediate p in the perfet-model semantis of the program P interseted withthe set of solutions of ' is the set of solutions of all answer onstraints, i.e. of the disjuntion '1_: : : _ 'n, [[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄:If the program P arises from the translation given in the previous setion (i.e., it is of theform P for an S� formula) and the onstraint ' desribes the set of initial states, thentabled resolution starting with the query hp(x); 'i orresponds to forward analysis (depth-�rstor breadth-�rst, depending on the seletion strategy of the resolution proedure; here, we haveformulated a depth-�rst proedure). The answer onstraints then speify whih of the initialstates satisfy the S� formula (possibly all of them, namely if the disjuntion is equivalentto ').The proedure is based on tabled resolution (see e.g. [TS86b, SI88, CW96℄), whih we have ex-tended to handle onstraints and nonground onstrutive negation (i.e. with nonground queries).The entral data struture is a table T of answer onstraints. An index in the extendibletable is a query of the form hp0(x); '0i (onsisting of an atom p0(x) and a onstraint '0); theorresponding �eld ontains a list of answers to that query that have omputed to far. Initially,the table has only one index, namely the original query hp(x); truei, whose �eld ontains theempty list.The basi idea of the proedure is simple. We start with the initial query hp(x); truei.Iteratively, we apply resolution steps, hereby reating (disjuntions of) new queries, eah of theform hp1(x1) ^ : : : ^ pk(xk); i. This goes on until no more steps are appliable (either beausea query is failed or beause an answer onstraint has been derived). We store all answersto any query enountered so far in the table T (proedure tabulate). We reuse the tabledinformation whenever possible (ase (b) in the proedure extend); this is ruial for avoidingin�nite loops. The ases (a) and (b) in the proedure extend give an extension of the originaltabling proedure [TS86b℄ to handle onstraints. The ases () and (d) are an extension tohandle onstrutive negation. Again the idea is simple: to get an answer to a negative query71

:p(x); ' we �rst run the proedure for the positive query (it is important here that we olletall the answers for the positive query) and then negate the answer.If the proedure terminates (whih in general annot be guaranteed, already for deidabilityreasons), then the table ontains all answers to all sub-queries and to the original query p(x).The examples below give an intuition about the proedure. Example 4.1 shows how tablinghelps avoiding in�nite loops. Example 4.2 shows how answers to all subgoals are stored in thetable (for all suessful subderivations). Finally, Example 4.3 shows how the negation is handled.Example 4.1 Consider the query p(x) for the following program.p(x) x = 0:p(x) x = 1:p(x) p(x):We start with the struture onsisting of one ative node p(x), and the table T ontaining oneentry T [p(x)℄ = [℄. After the �rst extension we obtain two answers x = 0 and x = 1 andone new node, again with the query p(x), hene it is lassi�ed as a lookup node. Call thisnode v. The table is updated with T [p(x)℄ = [x = 0; x = 1℄ and the lookup mapping givesL(v) = [x = 0; x = 1℄. The seond resolution step takes the �rst answer from this list, reates anew node x = 0 and moves the lookup pointer to the tail of the list, so now L(v) = [x = 1℄. Sinethe solution x = 0 ours already in the table, it is not added there. After the third resolutionstep the new node x = 1 is reated and the value L(v) is set to the empty list. At this point nomore resolution steps are possible and the proedure terminates.p(x)q1(x) ^ q2(x)r(y) ^ q2(x) ^ x = y � 1q2(x) ^ x = y � 1 ^ y > 1
rrrrrrrrrrr

LLLLLLLLLLLx = y � 1 ^ y > 1 ^ x < 1 x = y � 1 ^ y > 1 ^ x > 2Figure 4.2: Computation tree for Example 4.2
72

Example 4.2 Consider the query p(x) for the following program.p(x) q1(x); q2(x):q1(x) x = y � 1; r(y):r(x) x > 1:q2(x) x < 1:q2(x) x > 2:The derivation tree for this query is shown on Figure 4.2. All nodes (exept answers) in thistree are ative. In the fourth node of this tree we obtain an answer x = y � 1 ^ y > 1 to thesubquery r(y) and this answer is passed to the proedure tabulate. Before storing it, however,the formula 9x: x = y � 1 ^ y > 1 is normalized; in partiular the existentially quanti�ed x iseliminated and the new entry in the table is T [r(y) ^ x = y � 1℄ = [y > 1℄.Note that the onstraint x = y � 1 ^ y > 1 is not only an answer to the subquery r(y), butalso to the subquery q1(x). In order to �nd it out, the proedure tabulate is alled reursivelyto propagate the answer up in the tree. Then it is again normalized (this time the variable y,and not x, is existentially quanti�ed) and stored: T [q1(x)℄ = [x > 0℄.The same happens when we reah leaves of the tree. The two answers that we obtain haveto be stored both in the entry for q2(x) and p(x), thus we obtain [x > 0 ^ x < 1; x > 2℄ as thevalue for T [p(x)℄ and T [q2(x) ^ x = y � 1 ^ y > 1℄.Example 4.3 Consider the program from Example 4.2 together with a lause p0(x) :p(x)and a query p0(x). Sine the tree from Figure 4.2 annot be extended anymore (it is totallysuessful in the terminology of Stukey [Stu91℄), we an negate the answers olleted for thequery p(x) and obtain orret answers for the query :p(x) that (after transforming to thedisjuntive normal form) we store in the table: T [:p(x)℄ = [x � 0; x � 1^x � 2℄. (Note: sinewe always eliminate existential quanti�ers, negating onstraints does not introdue universalquanti�ation; i.e., we do not have to treat queries with universally quanti�ed variables.)We will next desribe the proedure in detail (see Figure 4.3). The urrent omputation stateof the proedure a triple hF; T; Li. Here, F is a set of trees (intuitively, an SLDNF forest; eahall to a negative goal starts a new tree). Eah node of F is a goal of the form Vni=1 li(xi) ^ 'where n � 0. For n = 0 we say that Vni=1 li(xi) is empty and the goal is an answer '. Forn � 1 we write suh goal as l1(x1) ^ R ^ ' to indiate that l1(x1) is the seleted literal andR = Vni=2 li(xi) is the rest of the goal. (A literal l(x) is either an atom p(x) or a negated atom:p(x).) An atual implementation will not keep the whole forest F but only the relevant partsof it; instead of having the proedure tabulate go up a path in F , one would use forward pointersin the table T ; in this presentation, we will not go into suh details.The seond omponent T of the urrent omputation state is the table that we have disussedabove. The third omponent L is a lookup mapping; it maps nodes of F to lists of onstraintsand is used to go through all answer onstraints stored in the table T that are relevant for thegiven node.Every node in the forest F is lassi�ed as an ative or lookup node by proedure lassify .Intuitively, ative nodes are the nodes for whih we have to ompute answers; lookup nodesare the nodes for whih the answers an be found in the table (roughly, the seleted literals inlookup nodes are instanes of the seleted literals in ative nodes). Furthermore, every node73

is positive or negative depending on whether the seleted literal is positive or negative; a nodemay be also marked as failure. The lookup mapping L is de�ned only for lookup nodes.De�nition 4.4 In a given urrent omputation state hF; T; Li, a node v in F is alled a ex-tendible node of type (a),(b), () or (d), respetively, if(a) v is a positive ative node, a leaf in F and not a failure node, or(b) v is a lookup node and L(v) is a nonempty list, or() v is a negative ative node without a ompanion node in F , or(d) v is a negative ative node that is not proessed yet (see below) suh that the omputationfor the ompanion node is done (see below).A negative ative node :p(x) ^ R ^ ' is proessed if it is either marked as failure node or thelist T [:p(x); '℄ is nonempty. A omputation for a positive node is not done if the tree rooted atthis node ontains an extendible node or it ontains a lookup node v0 suh that the omputationfor the ative node orresponding to v0 is not done.De�nition 4.5 (Suessful tabled derivation) A sequene p(x) ^ ';G1 ^ '1; : : : ; Gn ^ 'nis a suessful derivation for the query p(x) ^ ' wrt. the table T if: Gn is the empty goal, 'n isa satis�able onstraint, and for all i = 0; : : : ; n� 1 (where G0 = p(x)){ Gi = q(x) ^R and there exists a lause q(x) body ^ suh that Gi+1 = body ^R and'i+1 = 'i ^ , or{ Gi = q(x) ^R and Gi+1 = R and there exists a onstraint '0 suh that 'ij='0, hq(x); '0iis an index of T and there exists a member of T [hq(x); '0i℄ suh that 'i+1 = 'i ^ .A sequene p(x)^R^';G1 ^R^'1; : : : ; Gn ^R^'n is a suessful subderivation for p(x)^'wrt. T if p(x) ^ ';G1 ^ '1; : : : ; Gn ^ 'n is a suessful derivation for p(x) ^ ' wrt. T .Sine the original query appears as an index of the table T and the return statement refers to itsentry, the theorem below implies that the proedure, if it terminates, returns the orret outputaording to its spei�ation.Theorem 4.2 (Corretness) If the tabling proedure terminates then, for every queryhp(x); 'i or h:p(x); 'i that ours as an index in the table T , the entry of T at that indexis a list of onstraints ['1; : : : ; 'n℄ suh that[[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄;i.e., the denotation of the prediate p in the perfet-model semantis of the program P intersetedwith the set of solutions of ' is the set of solutions of all onstraints '1; : : : ; 'n.That is, the atom p(v) lies in the perfet model of P and v is a solution of the onstraint ' ifand only if v is a solution of one of the onstraints 'i.Proof. The proof of the theorem is (simultaneously) by indution on the level of the query.For this, we �rst de�ne the level of a query hQ;'i, where Q is a onjuntion of literals, as74

follows. For a query hQ;'i, its level is the larger of (a) the maximum level of the prediates inthe positive literals of Q, and, (b) one more than the maximum level of the prediates of thenegative literals of Q.Base Case: The base ase is when the level of query is 0. I.e., Q is a onjuntion of atomssuh that eah prediate in Q has level 0. This ase is proved by a simple extension of Lemma3.17 and Theorem 3.18 in [TS86a℄.Indution Step: Suppose that the theorem holds for queries of level � k. Suppose alsothat the query is hQ;'i where Q is a query of level k + 1.(Soundness): We use indution on the length n of the refutation. Suppose, �rst, thatn = 1. Then Q is a literal. Suppose also that Q is a positive literal Q(x). Suppose that isthe omputed answer in the table entry orresponding to hQ(x); 'i. Now there must exist anonground fat (or a set of nonground fats) Q(x) � '0 through whih the query sueeded.Hene, fQ(v)jD;v j= g is ontained in the perfet model of P. Now suppose that Q(x) = :p(x)is a negative literal. Then the following happens. Sine, the derivation is of length 1, either,the orresponding derivation starting from the positive literal fails or all lauses with p(x) atthe head are nonground fats. In the �rst ase the answer to the query is ' itself. By indutionhypothesis (for the indution on levels), for any tuple v suh that D;v j= ', the atom p(v) isnot ontained in the perfet model of P. Therefore, for eah tuple v suh that D;v j= ', thenegated atom :p(v) is ontained in the perfet model of P. The reasoning for the suess aseis similar.Suppose now that n > 1 and the result holds for refutations of length less than or equal ton� 1. Suppose �rst that the leftmost literal of Q is a positive literal p(x). Let Q = p(x) ^ P 0.Assume that there exists no entry in the table for hp(x); �i suh that 9�x' j= �. The otherase in whih there is suh a table entry an be proved similarly. Suppose that the �rst lausethrough whih the query resolves is p(x) � B ^ '0. Let the free variables in the body B bey. Let the free variables of P 0 be z. Then the resolvent is given by hB ^ P 0;9�(y;z)' ^ '0i. Letthe answers for the table entries orresponding to the literals in B and P 0 be 1; : : : ; k (fora query hl(y0) ^ B0; '00i, whenever a literal l(y0) is alled, then if there exists a table entry ofthe form hl(y0); '000i suh that 9�y0'00 j= '000, then this goal is made to point to the solution listorresponding to that entry in the table; otherwise a table entry for hl(y0);9�y0'00i with an emptylist is reated). By indution hypothesis (for the indution over the length of the refutation),for eah literal li in B ^P 0, for any tuple v, if D;v j= i then li(v) is in the perfet model of P.Now the answer reeived by the entry hp(x);9�x'i is given by � 9�x' ^ '0 ^ 1 ^ : : : ^ k.We show that for any tuple D;v j= , D;v j= ' and p(v) is in the perfet model of P. Supposethat D;v j= . Then, D;v j= '. Also there exists a tuple u suh that D;v;u j= 1 ^ : : : ^ k.For any literal li(yi) in B, let ui be the values of yi in the tuple u. Then D;ui j= i. Therefore,for eah i, li(ui) is in the perfet model of P. Also, we have that, p(v) � l1(u1)^ : : :^ lm(um)is the ground instane of a lause in P. Hene p(v) is in the perfet model of P.Now suppose that the leftmost literal of Q is a negated literal. Assume that it is :p(x).Assume, without loss of generality, that there does not exist an entry in the table of the formh:p(x); '0i suh that 9�x' j= '0. Then a fresh entry for h:p(x);9�x'i has been put in thetable with an empty list at the beginning of evaluation of this query. Assume that the answerobtained for this entry is . Then we have the following. Either, the query Q0 = hp(x); '00i,where 9�x' j= '00, has failed. Or all answers to the query Q0 have been obtained. In the �rstase, the answer � 9�x'. By the indution hypothesis (for the indution on the level of thequery), for any tuple v suh that D;v j= 9�x', the atom p(v) is not in the perfet model of P.75

Hene, for any tuple v suh that D;v j= 9�x', :p(v) is ontained in the perfet model of P.Similarly for the seond ase.(Completeness): Now suppose that for a literal l and a tuple v, l(v) is in the perfet model ofP. Let ' be a onstraint suh that D;v j= '. We show that, if the proedure terminates, thereexists a table entry of the form hl(x); '0i suh that ' j= '0 and the solution list orresponding tothis entry ontains a onstraint suh that D;v j= (from now, we suppose that the proedureterminates). First, suppose that l(x) = p(x) is a positive literal. Then the level of the queryhp(x); 'i is k + 1. Then, p(v) 2 T k+1P " n, for some n � 0. We prove by indution on n that,for for any ground atom v, suh that D;v j= ', if p(v) 2 T k+1P " n, then the solution list of thetable entry orresponding to hp(x); 'i (or of hp(x); '0i where ' j= '0) ontains a onstraint suh that D;v j= .Suppose �rst that n = 1. Then there exists a ground instane p(v) � D of a lause C suhthat the perfet model of P logially impliesD. Let the lause C be of the form p(x) � B^'000.Let the free variables ourring in B be y. Then the resolvent of hp(x); 'i through C is given byhB;9�y' ^ '000i. Let � � 9�y' ^ '000. For a literal li in B, the level of the query hli(yi);9�yi�iis at most k (sine n = 1). Let the answers reeived for eah suh query hli(yi);9�yi�i be i.Also, let li(ui) be a onjunt in D. Then, by the main indution hypothesis, D;ui j= i. Now,the answer to the query hp(x); 'i is given by 0 � 9�x' ^ '000 ^ 1 ^ : : : ^ k. It is now easilyshown that D;v j= 0.Next, suppose that n > 1. Then there exists a ground instane p(v) � D of a lause Csuh that every ground atom in D is in the perfet model of P. Let the lause C be of the formp(x) � B ^ '000. Let the free variables in B be y. Then the resolvent of hp(x); 'i through thelause C is given by hB; i where � 9�y'^'000. We an write B as B0 ^B00 suh that for anyliteral li in B0, the level of the query hli(yi);9�yi i is less than or equal to k and for any literallj in B00, the level of the query hlj(yj);9�yj i is k + 1. For eah i, let the answers obtained forthe query hli(yi);9�yi i be i. Then, by the main indution hypothesis on k, for eah onjuntli(ui) in D suh that the literal li is in B0, D;ui j= i. Again, by the indution hypothesis onn, for eah onjunt li(ui) in D suh that the literal li is in B00, D;ui j= i. Now the answer tothe query hp(x); 'i is given by 0 � 9�x'^'000 ^ 1 ^ : : :^ k. It an now be easily shown thatD;v j= 0.We next ome to the ase when l is a negative literal :p(x). Then the level of the queryhp(x); 'i is k. Let the answer to the query hp(x); 'i be 0. Then, by the indution hypothesison k, D;v 6j= 0. Now the answer to the query hl(x); 'i is 00 � : . Hene D;v j= 00. [℄4.6 Convergene in Timed AutomataThe proedure given in Setion 4.5 is not guaranteed to terminate even when it is applied only tologi programs P that arise from the translation of timed automata. However, tehniques areknown (e.g. extrapolation [DT98℄ or trimming operation desribed in Chapter 3) to enfore ter-mination of forward analysis of timed automata. These tehniques operate on the representationof the onstraints; i.e., they are orthogonal to the ontrol aspets and an be integrated diretlyinto our forward analysis proedure, turning it thus into an always terminating algorithm, i.e. adeision proedure for the model heking problem of S� formulas for timed automata.The strati�ed �-alulus is expressive enough to apture onvergene of timed au-76

tomata [AH97, HNSY94, Tri99℄. It is well-known that, for every timed automaton A, onean onstrut a timed automaton A0 (in linear time) suh that A is onvergent if and only if theS� formula EF:EF(y > 1) is true for the automaton A0.Two speialized algorithms for deteting onvergene in timed automata have been devel-oped, one based on bakward [HNSY94℄ and one on forward analysis [Tri99℄. We an now seethat both algorithms are instanes of two general proedures (bottom-up omputation of theperfet model using the TP operator, and tabled resolution) to hek whether a query is true inthe perfet model of a given strati�ed logi program P .4.7 Cheking ConvergeneTo give some intuition for the general approah, we onsider an example. The timed automatonon the left part of Figure 4.4 is supposed to model a swith with two states 'on' and 'o�', stayingfor at least one and at most two seonds in a state and then swithing to the other one. Thevariable x stands for a lok; the onstraints x < 2 in both states say that the swith an stayin the state only if the value of the lok does not reah 2, the onstraints x > 1 on both edgesmean that the move to the other state an be made only if the value of the lok exeeds 1. Theautomaton starts in the state on with the value of the lok set to 0.This automaton does not model the intended swith; while hanging from one state to theother we do not reset the lok x. However, the automaton still does not deadlok: there stillexist in�nite traes of the automaton, but it has to hange its state in�nitely many times beforethe lok reahes the value 2. Suh a property of an automaton is alled onvergene. Morepreisely, we say that an automaton A is onvergent if there exists a reahable state s of A suhthat in every in�nite omputation of A starting in s the time of the omputation is bounded bya onstant. This is learly a kind of error that one would like to be able to �nd automatially.The automaton on the right part of Figure 4.4 onsists of two opies of the initial automaton,where all states are onneted by edges labeled y := 0 with their opies. The variable y is a newlok that we add here. Intuitively, we simulate the initial automaton with an additional lokwhih we reset only one at some nondeterministially hosen point of time. It is easy to seethat the new automaton satis�es the formula EF:EF(y > 1) if and only if the initial automatonis onvergent.The translation of this S� formula to a onstraint query language program involvesde�ning the prediate trans. For example, the time transition at on gives the lausetrans(on; x; on; x0) � x0 = x + z ^ z � 0 ^ x0 < 2. The edge transitions an be translatedfollowing the same tehnique as in Chapter 3.

77

program tabled resolutioninput: program P and a query hp(x); 'ioutput:['1; : : : ; 'n℄ suh that [[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄set F as the tree onsisting of one node p(x) ^ 'set T as the empty tableset L as the empty mappinglassify(p(x) ^ '; T; L)repeathoose a node v that is extendable wrt. hF; T; Liextend(hF; T; Li; v)until there is no extendable node in Freturn(T [hp(x); 'i℄)proedure lassify(v; T; L)if v is of the form p(x) ^R ^ ' % v is not an answer nodethenif T ontains an entry indexed hp(x); '0i suh that 'j='0thenmark v as a lookup nodeassign L(v) = T [hp(x); '0i℄elsemark v as an ative nodeassign T [hp(x); 'i℄ = [℄endifendifendpro % lassifyproedure tabulate(v; v0;)if (v is a positive ative node of the form l(x) ^R ^ 'and the path from v to v0 in F is a suessful subderivation for l(x) ^ ' wrt. Tand T [hl(x); 'i℄ does not ontain 0 suh that j= 0)or (v is a negative ative node of the form l(x) ^R ^ 'and v0 is a hild of v)thenassign T [hp(x); 'i℄ = append(T [hp(x); 'i℄; [NF ()℄) % NF: elimination of 9'sendifif v is not a root in F then tabulate(parent(v); v0; T) endifendpro % tabulate Figure 4.3: Tabled Resolution78

proedure extend(hF; T; Li; v)ase type of v of % see De�nition 4.4(a): % positive ative nodelet v = p(x) ^R ^ 'let C1; : : : ; Cn be all lauses suh thatCi = p(x) bodyi ^ 'i and ' ^ 'i satis�ableif n = 0 then mark v as failure nodeelsefor all i = 1; : : : ; n doreate new node vi = bodyi ^R ^ ' ^ 'i as a hild of v in Flassify(vi; T; L)if bodyi is empty then tabulate(v; vi; ' ^ 'i) endifendforendif(b): % lookup nodelet v = l(x) ^R ^ 'let '0 = head(L(v)) % (the �rst element of the list)assign L(v) = tail(L(v)) % (the remainder of the list)if ' ^ '0 satis�able thenreate new node v0 = R ^ ' ^ '0lassify(v0; T; L)tabulate(v; v0; ' ^ '0)endif(): % negative ative node, no ompanionlet v = :p(x) ^R ^ 'reate a new node v0 = p(x) ^ ' as the root of a new tree in Flassify(v0; T; L)mark v and v0 as ompanion nodes(d): % negative ative node, ompanion donelet v = :p(x) ^R ^ 'let v0 = p(x) ^ ' be the ompanion of vlet ['1; : : : ; 'n℄ be the list T [hp(x); '0i℄where ' = '0 or 'j='0 depending on whether v0 is an ative or lookup nodeif n = 0 then set n = 1 and ['1; : : : ; 'n℄ = [false℄ endifif ' ^Vni=1 :'i is unsatis�able then mark v as a failure nodeelselet 1 _ : : : _ k = DNF (' ^Vni=1 :'i) % Disjuntive Normal Formassign T [h:p(x); 'i℄ = [1; : : : ; k℄for all i = 1; : : : ; k doreate new node vi = R ^ ' ^ i as a hild of v in Flassify(vi; T; L)tabulate(v; vi; ' ^ 'i)endforendifendaseendpro % extend 79

x:=0 // on x<2?>=<89:;
GF ED

x>1
��o� x<2?>=<89:;

BC@A x>1OO

//x:=0 on x<2?>=<89:;
GF

@A

y:=0
//

GF ED

x>1
��o� x<2?>=<89:;

BC@A x>1OO ED

BC

y:=0
ooon x<2?>=<89:;

GF ED

x>1
��o� x<2?>=<89:;

BC@A x>1OOFigure 4.4: Timed automata

80

Chapter 5Beyond Region Graphs:Symboli Forward Analysis of TimedAutomata5.1 IntrodutionA timed automaton [AD94℄ models a system whose transitions between �nitely many ontrolloations depend on the values of loks. The loks advane ontinuously over time; they anindividually be reset to the value 0. Sine the loks take values over reals, the state spae of atimed automaton is in�nite.The theoretial and the pratial investigations on timed automata are reent but alreadyquite extensive (see e.g. [AD94, HKPV95, LPY95b, Bal96, DT98℄). Many deidability resultsare obtained by designing algorithms on the region graph, whih is a �nite quotient of thein�nite state transition graph [AD94℄. Pratial experiments showing the feasibility of modelheking for timed automata, however, employ symboli forward analysis. We do not knowof any pratial tool that onstruts the region graph. Instead, symboli model heking isextended diretly from the �nite to the in�nite ase; logial formulas over reals are used to`symbolially' represent in�nite sets of tuples of lok values and are manipulated by applyingthe same logial operations that are applied to Boolean formulas in the �nite state ase.If model heking is based on bakward analysis (where one iteratively omputes sets of pre-deessor states), termination is guaranteed [HNSY94℄. In omparison, symboli forward analysisfor timed automata has the theoretial disadvantage of possible non-termination. Pratially,however, it has the advantage that it is amenable to on-the-y loal model heking and topartial-order redution tehniques (see [HKQ98℄ for a disussion of forward vs. bakward anal-ysis).In symboli forward analysis applied to the timed automata arising in prati-al appliations (see e.g. [LPY95b℄), the theoretial possibility of non-terminatingdoes not seem to play a role. Existing versions that exlude this possibil-ity (through built-in runtime heks [DT98℄ or through a stati preproessingstep [HKPV95℄) are not used in pratie.This situation leads us to raising the question whether there exist `interesting' suÆientonditions for the termination of symboli model heking proedures for timed automata based81

on forward analysis. Here, `interesting' means appliable to a large lass of ases in pratialappliations. The existene of a pratially relevant lass of in�nite-state systems for whihthe pratially employed proedure is atually an algorithm would be a theoretially satisfyingexplanation of the suess of the ongoing pratie of using this proedure, and it may guide us indesigning pratially suessful veri�ation proedures for other lasses of in�nite-state systems.As a �rst step towards answering the question that we are raising, we build a kind of `tool-box' onsisting of basi onepts and properties that are useful for reasoning about suÆienttermination onditions. The entral notions here are onstraint transformers assoiated withsequenes of automaton edges and zone trees labeled with suessor onstraints. The onstrainttransformer assoiated with the sequenes of edges e1; : : : ; en of the timed automaton assignsa onstraint ' another onstraint that `symbolially' represents the set of the suessor statesalong the edges e1; : : : ; en of the states in the set represented by '. We prove properties foronstraint transformers assoiated with edge sequenes of a ertain form; these properties areuseful in termination proofs as we then show. The zone tree is a vehile that an be used toinvestigate suÆient onditions for termination without having to go into the algorithmi detailsof symboli forward analysis proedures. It aptures the fat that the onstraints enumeratedin a symboli forward analysis must respet a ertain tree order.We show how the zone tree an haraterize termination of (various versions of) symboliforward analysis. A ombinatorial reasoning is then used to derive suÆient termination on-ditions for symboli forward analysis. The reasoning essentially involves showing that ertainproperties of the ontrol graph of a timed automaton are suÆient for ensuring termination ofsymboli forward analysis. We prove that symboli forward analysis terminates for three lassesof timed automata. We show that the railroad-rossing example analyzed in [LS85, AD94℄ aswell as ertain fragments of the lass of RQ timed automata haraterized in [LB93℄ as a naturalmodel for timed systems fall into these lasses. Our analyses of these three lasses demonstratehow the presented onepts and properties of the suessor onstraint funtion and of the zonetree an be employed to prove termination. Termination proofs an be quite tedious, as the thirdase shows; the proof here distinguishes and analyzes many ases (see the proof of Theorem 5.2).5.2 The Constraint Transformer ' 7! [[w℄℄(')A timed automaton U an, for the purpose of reahability analysis, be de�ned as a set E ofguarded ommmands e (alled edges) of the form below. Here L is a variable ranging over the�nite set of loations, and x = hx1; : : : ; xni are the variables standing for the loks and rangingover nonnegative real numbers. As usual, the primed version of a variable stands for its valueafter the transition. The `time delay' variable z ranges over nonnegative real numbers.e � L = ` ^ e(x) [℄ L0 = `0 ^ �e(x;x0; z):The guard formula e(x) over the variables x is built up from onjunts of the form xi � kwhere xi is a lok variable, � is a omparison operator (i.e., �2 f=; <;�; >;�g) and k is anatural number.The ation formula �e(x;x0; z) of e is de�ned by a subset Resete of f1; : : : ; ng (denoting theloks that are reset); it is of the form�e(x;x0; z) � ^i2Resete x0i = z ^ ^i62Resete x0i = xi + z:82

We write e for the logial formula orresponding to e (with the free variables x and x0; wereplae the guard symbol [℄ with onjuntion). e(x;x0) � L = ` ^ e(x) ^ L0 = `0 ^ 9z �e(x;x0; z)The states of U (alled positions) are tuples of the form h`;vi onsisting of values for the loationand for eah lok. The position h`;vi an make a time transition to any position h`;v + Æiwhere Æ � 0 is a real number.The position h`;vi an make an edge transition (followed by a time transition) to the positionh`0;v0i using the edge e if the values ` for L, v for x, `0 for L0 and v0 for x0 de�ne a solutionfor e. (An edge transition by itself is de�ned if we replae the variable z in the formula for �by the onstant 0.)We use onstraints ' in order to represent ertain sets of positions (alled zones). A on-straint is a onjuntion of the equality L = ` with a onjuntion of formulas of the form xi�xj � or xi � where is an integer (i.e. with a zone onstraint as used in [DT98℄). We identify so-lutions of onstraints with positions h`;vi of the timed automaton.We single out the initial onstraint '0 that denotes the time suessors of the initial posi-tion h`0;0i. '0 � L = `0; x1 � 0; x2 = x1; : : : ; xn = x1De�nition 5.1 (Time-losed Constraints) A onstraint ' is alled time-losed if its set ofsolutions is losed under time transitions. Formally, '(x) is equivalent to (9x9z(' ^ x01 =x1 + z ^ : : : ^ x0n = xn + z))[x0=x℄.For example, the initial onstraint is time-losed. In the following, we will be interested only intime-losed onstraints.In the de�nition below, '0[x0=x℄ denotes the onstraint obtained from '0 by �-renaming(replae eah x0i by xi).We write e1: : : : :em for the word w obtained by onatenating the `letters' e1; : : : ; em; thus,w is a word over the set of edges E , i.e. w 2 E?.De�nition 5.2 (Constraint Transformer [[w℄℄) The onstraint transformer wrt. to an edge eis the `suessor onstraint funtion' [[w℄℄ that assigns a onstraint ' the onstraint[[e℄℄(') � (9x(' ^ e))[x0=x℄where e is the logial formula orresponding to e. The suessor onstraint funtion [[w℄℄ wrt. astring w = e1: : : : :em of length m � 0 is the funtional omposition of the funtions wrt. theedges e1, : : : , em, i.e. [[w℄℄ = [[e1℄℄ Æ : : : Æ [[em℄℄.Thus, [["℄℄(') = ' and [[w:e℄℄(') = [[e℄℄([[w℄℄(')). The solutions of [[w℄℄(') are exatly the (\edgeplus time") suessors of a solution of ' by taking the sequene of transitions via the edges e1,: : : , em (in that order).We will next onsider onstraint transformers [[w℄℄ for strings w of a ertain form. In thenext de�nition, the terminology `a lok xi is queried in the edge e' means that xi is a variableourring in the guard formula of e; `xi is reset in e' means that i 2 Resete.De�nition 5.3 (Strati�ed Strings) A string w = e1: : : : :em of edges is alled strati�ed if83

{ eah lok x1; : : : ; xn is reset at least one in w, and{ if xi is reset in ei then xj is not queried in e1, : : : , ej.Proposition 5.1 The suessor onstraint funtion wrt. a strati�ed string w is a onstant fun-tion over satis�able onstraints (i.e. there exists a unique onstraint 'w suh that [[w℄℄(') = 'wfor all satis�able onstraints ').Proof. We express the suessor onstraint of the onstraint ' wrt. the strati�ed string w =e1 : : : em equivalently by[[w℄℄(') � (9x9x1 : : : 9xm�19z1 : : : 9zm(' ^ 1 ^ : : : ^ m))[x=xm℄where k is the formula that we obtain by applying �-renaming to the (quanti�er-free) onjun-tion of the guard formula ek(x) and the ation formula �ek(x;x0; z) for the edge ek; i.e. k � ek(xk�1) ^ �ek(xk�1;xk; zk):Thus, in the formula for ek, we rename the lok variable xi to xk�1i , its primed version x0i to xki ,and the `time delay' variable z to zk.We identify the variables xi (applying in ') with their \0-th renaming" x0i (appearing in 1);aordingly we an write x0 for the tuple of variables x.We will transform 9x1 : : : 9xm�1(1 ^ : : : ^ m) equivalently to a onstraint ontainingonly onjunts of the form xmi = zl + : : : + zm and of the form zl + : : : + zm � where l > 0;i.e. does not ontain any of the variables xi of '. Thus, we an move the quanti�ers 9xinside; formally, 9x('^) is equivalent to (9x')^ . Sine ' is satis�able, the onjunt 9x' isequivalent to true. Summarizing, [[w℄℄(') is equivalent to a formula that does not depend on ',whih is the statement to be shown.The variable xki (the \k-th renaming of the i-th lok variable") ours in the ation formulaof k, either in the form xki = zk or in the form xki = xk�1i + zk, and it ours in the guardformula of k+1, in the form xki � .If the i-th lok is not reset in the edges e1, : : : , ek�1, then we replae the onjunt xki =xk�1i + zk by xki = xi + z1 + : : : zk.Otherwise, let l be the largest index of an edge el with a reset of the i-th lok. Then wereplae xki = xk�1i + zk by xki = zl + : : :+ zk.If k = m, the �rst ase annot arise due to the �rst ondition on strati�ed strings (the i-thlok must be reset at least one in the edges e1, : : : , em). That is, we replae xmi = xm�1i + zkalways by a onjunt of the form xki = zl + : : : + zk.If the onjunt xki � appears in k+1, then, by assumption on w (the seond ondition forstrati�ed strings), the i-th lok is reset in an edge el where l � k. Therefore, we an replaethe onjunt xki � by zl + : : :+ zk � .Now, eah variable xki (for 0 < k < m) has exatly one ourrene, namely in a onjunt Cof the form xki = xi + z1 + : : : zk or xki = zl + : : : zk. Hene, the quanti�er 9xki an be movedinside, before the onjunt C; the formula 9xki C an be replaed by true.After the above replaements, all onjunts are of the form xmi = zl+ : : :+ zm or of the formzl + : : :+ zm � ; as explained above, this is suÆient to show the statement. [℄We say that an edge e is reset-free if Resete = ;, i.e., its ation is of the form�e � Vi=1;::: ;n x0i = xi. A string w of edges is reset-free if all its edges are.84

Proposition 5.2 If the string w is reset-free, and the suessor onstraint of a time-losedonstraint of the form L = ` ^ ' is of the form L = `0 ^ '0, then '0 entails ', formally '0 j= '.Proof. It is suÆient to show the statement for w onsisting of only one reset-free edge e.Sine ' is time-losed, it is equivalent to (9x9z(' ^ x0 = x+ z))[x=x0℄.Then [[w℄℄(L = `^') is equivalent to (9 : : : (L = `0^'^x0 = x+z0^e(x0)^x00 = x0+z0)[x=x00℄.This onstraint is equivalent to L = `0 ^ '(x) ^ (x). This shows the statement. [℄5.3 Zone Trees and Symboli Forward AnalysisDe�nition 5.4 (Zone Tree) The zone tree of a timed automaton U is an in�nite tree whosedomain is a subset of E? (i.e., the nodes are the strings over E) that labels the node w by theonstraint [[w℄℄('0).That is, the root " is labeled by the initial onstraint '0. For eah node w labeled ', and for eahedge e 2 E of the timed automaton, the suessor node w:e is labeled by the onstraint [[e℄℄(').Clearly, the (in�nite) disjuntion of all onstraints labeling a node of the zone tree representsall reahable positions of U .We are interested in the termination of various versions of symboli forward analysis of atimed automaton U . All versions have in ommon that they traverse (a �nite pre�x of) its zonetree, in a partiular order. The following de�nition of a non-deterministi proedure abstratsaway from that spei� order.De�nition 5.5 (Symboli Forward Analysis) A symboli forward analysis of a timed au-tomaton U is a proedure that enumerates onstraints 'i labeling the nodes wi of the zone treeof U in a tree order suh that the enumerated onstraints together represent all reahable posi-tions. Formally,{ 'i = [[wi℄℄('0) for 0 � i < B where the bound B is a natural number or !,{ if wi is a pre�x of wj then i � j,{ the disjuntion W0�i<B 'i is equivalent to the disjuntion W0�i<! 'i.We assume that the onstraint 'i is omputed by applying any of the known quanti�er elimi-nation algorithms (see e.g. [MS98℄) to a onjuntion of onstraints.The number i is a leaf of a symboli forward analysis if the node wi is a leaf of the treeformed by all the nodes wi where 0 � i � B.We say that a symboli forward analysis terminates if the bound B is �nite (i.e. not !). Wede�ne that symboli forward analysis terminates with loal subsumption if for all its leafs i thereexists j < i suh that the onstraint 'i entails the onstraint 'j . In ontrast, it terminateswith global subsumption if for all its leafs i there the onstraint 'i entails the disjuntion of allonstraints 'j where j < i. Model heking is more eÆient with loal subsumption than withglobal subsumption, both pratially and theoretially [DP99a℄.A depth-�rst symboli forward analysis depends on a hosen order of edges. Symboli forwardanalysis terminates if and only if the depth-�rst symboli forward analysis of U terminates forevery order hosen. 85

If the symboli depth-�rst forward analysis of U terminates for at least one order of edges,then the breadth-�rst version also terminates. The onverse need not be true, as the ounterex-ample of Figure 6.6 shows.
1 2

y=<2

x:=0

y=<2

3

0=<y=<1

 y:=0

4

y=<2

5

6

x>=5
x:=0 7

 8

y:=0 9

10

11y=<2

 5 1 0

 3

 4Figure 5.1: Example of a timed automaton for whih the breadth-�rst version of symboliforward analysis terminates but the depth-�rst version does not, if the edge numbered 4 isfollowed before the edge numbered 7.A path p in a zone tree is an in�nite string over E , i.e., p 2 E!; p ontains a node w if thestring w is a pre�x of p, written w < p. A node v preedes a node w if v is a pre�x of w, writtenv < p.De�nition 5.6 (Loal �niteness) A path p of a zone tree is loally �nite if and only if itontains a node w labeled by a onstraint that entails the onstraint labeling some node v pre-eding w (formally, there exist v and w suh that v < w < p and [[w℄℄('0) j= [[v℄℄('0)). A zonetree is loally �nite if every path is.The relation between the termination of symboli forward analysis and the loal �nitenessof the zone tree for a timed automaton is formalized as follows.Proposition 5.3 Every symboli forward analysis of a timed automaton U terminates with loalsubsumption if and only if the zone tree of U is loally �nite.We will next investigate the speial lass of strings (that we all yles) that orrespond toyles in the ontrol graph of the given timed automaton. Eah yle in the graph-theoretisense orresponds to �nitely many yles in the sense de�ned here (as strings), depending onthe entry loation.We say that an edge e of the form L = ` : : : [℄ L0 = `0 : : : leads from the loation ` to theloation `0. This terminology reets the fat that there exists a direted edge from ` to `0 labeledby the orresponding guarded ommand in the ontrol graph of the given timed automaton (wewill not formally introdue the ontrol graph). Semantially, all transitions using suh an edgego from a position with the loation ` to a position with the loation `0. We anonially extendthe terminology `leads to' from edges e to strings w of edges.86

De�nition 5.7 (Cyle) The string w = e1: : : : :em of length m � 1 is a yle if the sequene ofedges e1, : : : , em lead from a loation ` to the same loation ` suh that there exists a sequeneof edges that leads from the initial loation `0 to ` whose last edge is di�erent from em.The last ondition above expresses that ` is an entry point to the orresponding yle in theontrol graph of the given timed automaton U . The next notion is used in e�etive suÆienttermination onditions.De�nition 5.8 (Simple Cyle) A yle w = e1: : : : :em is alled simple if it does not ontaina proper subyle; formally, no string ei: : : : :ej where 1 � i < j � m is also a yle.Proposition 5.4 A loally in�nite path p 2 E! in the zone tree of the timed automaton Uontains in�nitely many ourrenes of a simple yle w; formally, p is an element of the omega-language (E?:w)!.Proof. Let p be a loally in�nite path. Then there exists a loation ` suh that in�nitelymany nodes on this path are labeled by ` (i.e. a onstraint of the form L = ` ^ : : : . The stringsformed by the edges onneting two nodes labeled by ` must all ontain a simple yle. Sinethe number of simple yles is �nite, some simple yles must be repeated in�nitely often. [℄A string is strati�able if ontains a strati�ed substring (a substring of a string e1: : : : :em is anystring of the form ei: : : : :ej where 1 � i � j � m).Proposition 5.5 If every simple yle of the timed automaton U is either reset-free or strati-�able, the zone tree of U is loally �nite.Proof. Follows from Propositions 5.1, 5.2 and 5.4. [℄We apply the above results to obtain our �rst suÆient termination ondition.Theorem 5.1 Symboli depth-�rst forward analysis of a timed automaton U terminates if allsimple yles of U are either reset-free or strati�able.Proof. Follows from Propositions 5.3 and 5.5. [℄To show the appliability of our result, onsider the train-gate-ontroller example adaptedfrom [AD94, LS85℄. This example onsists of the parallel omposition of three omponents|the gate, the ontroller and the train. The transition systems (timed automata) for the gate,ontroller and train are given in Figures 5.2, 5.3 and 5.4 respetively. The transition systemorresponding to the parallel omposition of the three systems is given in Figure 5.5. It anbe seen that eah simple yle in the omposed system is strati�able. Hene symboli forwardanalysis train-gate-ontroller example terminates.5.4 RQ AutomataA timed automaton U is alled RQ [LB93℄ if for eah lok x, U ontains exatly one edge witha reset of x and exatly one edge with a query of x, and moreover, for every transition sequeneof eU starting from the initial position, the sequene of resets and queries of x is alternating,87

0
lower

 y:=0
down
y<1

y:=0
raise

up
 1<y<2

g

g3 g2

 g1

Figure 5.2: Gate Automaton

approach

z:=0
lower

exit
z:=0

raise
z<1

c0 c1

 c2c3

z=1

Figure 5.3: Controller Automaton
 approach

x:=0
in
x>2

 out

exit
 x<5

 t0 t1

 t2t3Figure 5.4: Train Automaton
88

z:=0
x:=0

z=1
y:=0

x>2

x>2 y<1
z=1

y:=0

y<1
z:=0
x<5

y<1
x<5

 z:=0
y:=0
z<1

1<y<2

t0g0c0 t1g0c1

t2g0c1t1g1c2

t3g0c1t1g2c2

t2g1c2

t3g1c2

y:=0
z=1

t0g1c3

t0g2c3

t0g3c0 t3g2c2

t2g2c2

y<1

x>2

Figure 5.5: Train k Gate k Controller
89

0=<x=<1

y:=0

y=<1

y:=0

true

x>1

 0 1

 2 3Figure 5.6: Example of a timed automaton showing that the property: \Every reahable loationis reahable through a simple path" does not entail termination of depth-�rst symboli forwardanalysis.with a reset before the �rst query; here, eU refers to the timed automatonfrom U obtained byreplaing all onjunts x � in the guard formulas by the onjunt x � 0. We may requirewlog. that no edge e of a timed automaton U ontains both a reset of a lok and a query of alok.RQ automata have the following interesting property: if a loation is reahable then it isreahable through a simple path, i.e. a sequene of edges that form a string not ontaining ayle [LB93℄. So it is possible to derive speialized terminating graph algorithms for reahabilityfor RQ automata. Moreover, a yle is traversable in�nitely often if it is traversable one [LB93℄.We will now investigate how a generi model heker based on symboli forward analysis be-haves on RQ automata. We do not know whether we obtain termination for this speial ase.We know that the distinguished property of RQ automata (that reahability is equivalent toreahability through a simple path) by itself is not suÆient for termination; Figure 5.6 gives aounterexample.We will onsider two speial lasses of RQ automata. The �rst one is haraterized by theut ondition.De�nition 5.9 (Cut ondition) A timed automaton U satis�es the ut ondition if any twosimple yles w and w0 are either idential or their sets of edges are disjoint.Graph-theoretially, every simple yle in the ontrol graph has exatly one entry point (whihis then alled the `ut vertex').Theorem 5.2 Symboli depth-�rst forward analysis of an RQ timed automaton U terminatesif it satis�es the ut ondition and in every simple yle, either all or no lok is reset.Proof. A simple yle ontaining a reset for eah lok in an RQ automaton satisfying the utondition is strati�ed. Hene, Theorem 5.1 yields the statement. [℄The seond lass of RQ automata is obtained by restriting the number of loks to two. Manyinteresting timed lient server protools belong to this lass. See [LB93℄ for examples.Theorem 5.3 Symboli depth-�rst forward analysis of an RQ timed automaton with two loksterminates. 90

Proof. We name the two lok variables of the automaton x and y. We note Rx the uniqueedge of the time automaton where x is reset, and Qy the one where x is queried; similarly wede�ne Ry and Qy. By our non-proper restrition, Rx 6= Qx et..A segment S of a path p in a zone tree is a sequene of nodes n1; : : : ; nm of the zone tree.The string w = e1 : : : em�1 labels the segment S if nm is reahed from n1 by following the edgese1; : : : ; em in the zone tree.For a proof by ontradition, assume that p is an in�nite branh of the zone tree. ByProposition 5.4, there exists a simple yle w (leading, say, from the loation ` to `) that repeatsin�nitely often on p. We write S1, S2, : : : for the segments that are labeled by w (in onseutiveorder). We write Li for the segment between Si and Si+1. We note vi the string labeling thesegment Li; eah string vi is a yle (leading also from the loation ` to `). Below we will usethe terminology `w labels Si' and `vi labels Li'.We �rst distinguish between the ases whether the edge Rx is part of the string w (\Rx 2 w")or not.Case 1 Rx 2 w.The edge Qx must then also be an element of w (if the yle w an be exeuted one then evenin�nitely often [LB93℄; if it ontained Rx but not Qx then the RQ ondition would be violated).Case 1.1 Ry 2 w.Again, we must have that Qy 2 w.We distinguish between the ases that the edge Ry appears stritly before the edge Qy in thestrings w (\Ry < Qy") or after (\Qy < Ry").Case 1.1.1 Ry < Qy.Repeating the above reasoning for x instead of y, we distinguish between the ases \Ry < Qy"and \Qy < Ry".Case 1.1.1.1 Rx < Qx.The two assumptions Rx < Qx and Ry < Qy mean that the string w is strati�ed . Hene, byProposition 5.1, the suessor onstraint funtion wrt. w is onstant. Hene, the onstraintlabeling the last node of S2 entails the onstraint labeling the last node of S1. Thus, the path pis loally �nite, whih ahieves the ontradition.Case 1.1.1.2 Qx < Rx.We distinguish the ases whether the edge Qx appears before the edge Ry or stritly after.Case 1.1.1.2.1 Qx < Ry.Combining the assumptions leading to this ase, namely Rx 2 w (and hene also Qx 2 w)and Ry 2 w (and hene also Qy 2 w) and Ry < Qy and Qx < Rx and Qx < Ry, we knowthat the string w is of the form w = w1:Qx:w2 suh that w2 ontains Rx and Ry. Hene, thesubstring w2 of w strati�ed . By Proposition 5.1, the suessor onstraint funtion wrt. w2 isonstant, and hene also the one wrt. w. As in the ase above, we ahieve a ontradition.Case 1.1.1.2.2 Ry < Qx.Again we ombine the assumptions leading to this ase: namely Rx; Qx; Ry; Qy 2 w andRy < Qy and Qx < Rx and Ry < Qx.Only using that Ry < Rx, we know that the string w is of the form w = w1:Ry:w2:Rx:w3.One of the two ases, namely Rx 62 Li or Rx 2 Li, will hold for in�nitely many segments Li's.Case 1.1.1.2.2.1 Rx 62 Li.Then also Qx 62 Li (beause of the RQ-ondition and sine Li is a yle).We then distinguish between the analogue ases for y instead of x.Case 1.1.1.2.2.1.1 Ry 62 Li. 91

Again, then Qy 62 Li.We are assuming that Rx; Qx; Ry; Qy 62 Li for in�nitely many Li. We take two suh segments,alling them L and L0. Let v and v0 be the string labeling (the edge linking the nodes in) Land L0. Then, the suessor onstraint funtions wrt. v and v0 are the identity.We form the strati�ed strings V = Rx:w3:v:w1:Ry and V 0 = Rx:w3:v0:w1:Ry. Sine the suessoronstraint funtions wrt. v and v0 are the identity, the suessor onstraint funtions wrt. Vand V 0 are the same onstant funtion. The same reasoning as above leads to a ontradition.Case 1.1.1.2.2.1.2 Ry 2 Li.Then also Qy 2 Li. Beause of the RQ-ondition and sine the edge Ry preedes Qy in Si,the �rst ourrene of Ry preedes the �rst ourrene of Qy in Li. Hene, the strings vand v0 (de�ned as above, labeling of some Li's) is of the form v = v1:Ry:v2 or v = v01:Ry:v02where v1, v2, v01 and v02 do not ontain any reset or any query of a lok variable (and hene,yield the identity as the suessor onstraint funtion). We form the strati�ed substringsV = Rx:w3:v1:Ry and V 0 = Rx:w3:v01:Ry, whih yield the same onstant suessor onstraintfuntion for the same reason as above. Again, this leads to a ontradition.Case 1.1.1.2.2.2 Rx 2 Li.Again, then Qx 2 Li. Now we are assuming that Rx; Qx; Ry; Qy 2 Li for in�nitely many Li.As in Case 1.1.1.2.2.1.2, the �rst ourrene of Ry must preede the �rst ourrene of Qy in Li.Assume that there is a reset of x in Li before the �rst reset of y. We form the string Rx:w2:v1; Rxwhere w = w1:Rx:w2 is suh that w2 does not ontain any reset (by the assumptions for theases 1.1.1.2 and 1.1.1.2.2) and vi = v1:Rx:v2 (the string labeling Li) is suh that v1 does notontain any reset. Following the lines of the proof for Proposition 5.2 one an show that forany onstraint ', [[Rx:w2:v1:Rx℄℄(') entails [[Rx℄℄('). This is a ontradition (to the fat thatthe path p is loally in�nite).Assume that there is no reset of x in Li before the �rst reset of y. Then the string formed bythe edges leading from the reset of x in Si to the �rst reset of y in Li is strati�ed. We an thenapply the same reasoning as in Case 1.1.1.2.1 to derive a ontradition.Case 1.1.2 Qy < Ry.Thus now Rx 2 w (and hene Qx 2 w), Ry 2 w (and hene Qy 2 w) and Qy < Ry. Now weonsider the following subases of this ase.Case 1.1.2.1 Rx < QxThis ase is symmetri to Case 1.1.1.2.1 where Rx; Ry 2 w, Qx < Ry and Ry < Qy.Case 1.1.2.2 Qx < Rx.The assumption of the ase is that the reset ours after the query for both loks. Due tothe RQ ondition, there annot be any query between the two resets. Therefore, Rx:w1:Ry(or, symmetrially, Ry:w1:Rx) forms a strati�ed substring of w. As before, we obtain aontradition.Case 1.2 Ry 62 w.We distinguish between the following subases of this ase.Case 1.2.1 Rx < Qx.One of the following subases holds for in�nitely many Li.Case 1.2.1.1Ry 62 Li.As in the proof for Case 1.1.1.2.2.2, we form a substring of the form Rx:w2:v1:Rx where w2and v1 don't ontain any reset, and again obtain a ontradition.92

Case 1.2.1.2 Ry 2 Li.We show that for the ase when x is reset more than one in Li after the last reset of y inLi, we an obtain a ontradition.We form the string Rx:w1:Rx is suh that w1 does not ontain any reset (by the assumptionsfor the ases 1.1.1.2 and 1.1.1.2.2) and vi = v1:Rx:w1:Rx:v2 (the string labelingLi). Following thelines of the proof for Proposition 5.2 one an show that for any onstraint ', [[Rx:w2:v1:Rx℄℄(')entails [[Rx℄℄('). This is a ontradition (to the fat that the path p is loally in�nite).The remain ases are as follows, one of whih repeats in�nitely often.Case 1.2.1.2.1. The last reset of y in Li is followed by a query of y in Li whih is againfollowed by a reset and a query of x in Li in that order.Note that there annot be any reset or query of x between Ry and Qy above as that wouldviolate the RQ ondition. Now onsider the substring Ry:w1:Qy:w2:Rx of vi. This substring isstrati�ed and w1 and w2 do not ontain any reset or query. Hene using the same methods asin the previous ases. we obtain a ontradition.Case 1.2.1.2.2 The last reset of y in Li is followed by a reset and a query of x in Li in thatorder.Note that the substring Ry:w1:Rx of vi is a strati�ed substring and w1 does not ontain any resetor query. Hene using tehniques similar to that of the above subases, we obtain a ontradition.Case 1.2.1.2.3 The last reset of y in Li is followed by a query of y in Li whih is againfollowed by a query, a reset and a query of x in Li in that order (assuming that the last reset ofx before the last reset of y in Li was not followed by a query of x).Note that the substring Rx:w1:Ry of vi is a strati�ed substring and w1 does not ontain any resetor query. Hene using tehniques similar to that of the above subases, we obtain a ontradition.Case 1.2.1.2.4 The last reset of y in Li is followed by a query, a reset and a query of x in Liin that order (assuming that the last reset of x before the last reset of y in Li was not followedby a query of x).Note that the substring Rx:w1:Ry of vi is a strati�ed substring and w1 does not ontain any resetor query. Hene using tehniques similar to that of the above subases, we obtain a ontradition.Case 1.2.1.2.5 The last reset of y in Li is followed only by a query of y in Li.Note that the substring Ry:w1:Qy:w2:Rx, of vi:w is a strati�ed substring and w1 and w2 do notontain any reset or query. Hene using tehniques similar to that of the above subases, weobtain a ontradition.Case 1.2.2 Qx < Rx.We onsider the ase when Rx 2 w, Ry 62 w and Qx < Rx. The following subases of this aseare to be onsidered:Case 1.2.2.1 Ry 62 Li.Then also Qy 62 Li (beause of the RQ-ondition and sine Li is a yle).We then distinguish between the analogue ases for x instead of y.Case 1.2.2.1.1 Rx 62 Li.Again, then Qx 62 Li.We are assuming that Ry; Qy; Rx; Qx 62 Li for in�nitely many Li. We form the substringRx:w1:vi:w2:Rx where w = w2:Rx:w1. Note that there is no reset of any lok in w1:vi:w2.Hene, reasoning as in Case 1.1.1.2.2.2, we obtain a ontradition.Case 1.2.2.1.2 Rx 2 Li.The proof for this ase is the similar to that of the above ase.Case 1.2.2.2 Ry 2 Li. 93

This ase assumes Rx 2 w, Qx < Rx and for in�nitely many i, Ry 2 Li. One of the followingsubases of this ase ours in�nitely often.Case 1.2.2.2.1 Rx 62 Li.First note that there an be at most one reset of y in Li (otherwise, reasoning as in ase 1.2.1.2,we already obtain a ontradition) . Seondly, note that the query of y annot preede its reset inLi (otherwise the RQ ondition is violated). Lastly note that the string Rx:w1:Ry is a strati�edsubstring of w:vi. Also w1 does not involve any reset or query. Hene, reasoning as in the abovesubases, we obtain a ontradition.Case 1.2.2.2.2 Rx 2 Li.In this ase both x and y are reset in Li. Note the following fats. First between the reset of xin Si and the �rst reset of y in Li, there annot be any reset of x (otherwise, reasoning as in ase1.2.1.2, we already obtain a ontradition). Now �rst onsider the ase when the �rst reset of yin Li preedes its �rst query in Li. Notie that the substring Rx:w1:Qx:w2:Ry or the substringRx:v:Ry (if the �rst query of x preedes the �rst reset of y in Li) of w:vi is a strati�ed string.Hene reasoning as in the above ases we an obtain a ontradition. The other ase when the�rst query of y preedes the �rst reset of y in Li is dealt as follows. First note that the lastquery of x in Li must preede the last reset of x in Li. Seond note that the last reset of y in Limust our after the last query of y in Li. Third note that after the last reset of x in Li therean be only one reset of y in Li and no query of y in Li(otherwise, reasoning as in ase 1.2.1.2,we alrteady obtain a ontradition). Hene we an form the strati�ed substring Rx:w1:Ry of viwhere w1 does not ontain any reset or query. Hene, reasoning as in the above ases, we obtaina ontradition.Case 2 Rx 62 w. This implies that Qx 62 w.We distinguish between the following subases of this ase.Case 2.1 Ry 62 w. This implies that Qy 62 w.Thus w is a reset free yle. Hene by Proposition 5.2 we obtain a ontradition.Case 2.2 Ry 2 w.This ase is symmetri to ase 1.2 above. [℄5.5 Future WorkThe presented work targets theoretial investigations of timed automata not at the veri�ationproblem itself but, instead, at the termination behavior of the proedure solving it in pratie,namely symboli forward analysis. This work is a potential starting point for deriving interestingsuÆient termination onditions. There are, however, other open questions along these lines.Our setup may also be used to derive neessary termination onditions. These are usefulobviously in the ases when their test is negative. Another question is whether there existdeidable neessary and suÆient onditions.We may also onsider logial equivalene instead of loal subsumption for a pratially moreeÆient, but theoretially weaker �xpoint test (used in tools suh as Uppaal [LPY95b℄). Weobserve that Proposition 5.1 is still diretly appliable in the new ontext, but Proposition 5.2 isnot. The omparison of the di�erent �xpoint tests (equivalene, loal and global subsumption)is an interesting subjet of researh.We may be able to derive natural and less restritive suÆient termination onditions when94

we onsider the enhanement of symboli forward analysis with tehniques from [Boi98℄ toompute the e�et of loops, i.e. essentially the onstraint transformer [[w!℄℄ for simple yles w.The onstraint transformers [[w℄℄ form a `symboli version' of the syntati monoid [Eil76℄for timed automata. This notion may be of intrinsi interest and deserve further study.

95

96

Chapter 6Aurate Widenings andBoundedness Properties6.1 IntrodutionFor the last ten years, the veri�ation problem for timed systems has reeived a lot of attention(see e.g., [AD94, Bal96, DT98, LPY95b, WT95℄). The problem has been shown to be deidablein [AD94℄. Most of the veri�ation approahes to this problem have been based either on aregion graph, whih is a �nite quotient of the in�nite state graph, or on some variants of it (thatuse onvex/non-onvex polyhedra and avoid expliit onstrution of the full graph). But, as weshow below, region-graph based approahes (or its variants) annot be used for dealing withboundedness (unboundedness) properties. This is due to the fat that the partitioning of thestate spae indued by the region equivalene (or any other tehnique that takes into aountthe maximal onstant in the guards) is guaranteed to be pre-stable but may not be post-stable(de�nitions of pre-stability and post stability are provided in Chapter 2).A boundedness property is of the form 9k � 0 AG(x � k) where x is a lok (read thisspei�ation as: there exists a nonnegative k suh that for all paths starting from the initialposition, the value of the lok x does not exeed k throughout the path). An unboundednessproperty is the dual of a boundedness property: 8k � 0 EF (x > k). These properties are usefulin veri�ation beause if the designer knows that the value of a lok should never exeed aonstant, then satisfation of an unboundedness property by the design immediately informsthe designer of a possible bug in the design. Also, the implementor an use this information tosave some hardware while implementing the design (in hardware).Consider the timed automaton (see [AD94℄ for a de�nition of timed automata) given inFigure 6.1 (it has two loks x and y and four loations 0, 1, 2 and 3; the guards and resetsfor the edges are indiated at the top of or beside the edges; the invariants of the loationsare indiated above or below the loations). Let us try to see whether the system satis�es theproperty 9k � 0 AG(x � k), where the lok x in the formula refers to the lok x in theautomaton. If we use the region graph tehnique, we will see that the regions (the maximalonstant is 2 here) (1 < y < 2; x > 2), (y = 1; x > 2) and (0 < y < 1; x > 2) (we do notenumerate all the reahable regions) are reahable. One may now onlude, on the basis of thisreahability analysis, that the automaton does not satisfy the above boundedness property (notethat all the three regions given above are unbounded). Unfortunately, this is not true; the value97

of the lok x never exeeds 6 (just six)! Region graphs (or its variants) annot be diretly usedfor model heking for boundedness properties!
y=<2 y=<2 y=<2

y=<2

y:=0 y:=0

y=<2
x:=0

y=<2
y:=0

 0 1 2

 3Figure 6.1: Illustrating Unboundedness (Boundedness) PropertyNow onsider a reahability analysis for this timed automaton using the algorithm in Fig-ure 6.3 (this algorithm is a simple symboli forward reahability analysis algorithm). Thealgorithm terminates generating the following set of reahable states: hl 0(x; y); x = 0; y = 0i,hl 0(x; y); x = y; y � 0; y � 2i, hl 1(x; y); 0 � x � 2; y = 0i, hl 1(x; y); x � y � 0; y � x ��2; y � 0; y � 2i, hl 2(x; y); 0 � x � 4; y = 0i, hl 2(x; y); x � y � 0; y � x � �4; y � 0; y � 2i,hl 3(x; y); 0 � y � 2; x = 0i and hl 3(x; y); x � y � 0; y � 2; x � 0i (the states are tuples ofloations and onstraint stores; we write l i for the loation i). It an be easily found out fromthe set of reahable states (by projeting the onstraints on the x-axis) that the value of thelok x never goes beyond 6 and hene the above boundedness property is satis�ed.It an be shown that if the (symboli) model heking algorithm in Figure 6.3 terminates,we an suessfully model hek for boundedness (unboundedness) properties. It is now naturalto ask the question whether the proedure in Figure 6.3 is guaranteed to terminate. The answeris 'no'; onsider the timed automaton in Figure 6.10 | the algorithm in Figure 6.3 will notterminate for this example (an in�nite sequene of \states" whih are not \inluded" in the\previously" generated states are produed). Of ourse, the proedure an be fored to terminateby inluding some maximal onstant manipulation tehniques (as the trim operation introduedin Chapter 3 or the extrapolation operation [DT98℄ or the preproessing step [HKPV95℄). Butthen, like the region graph tehnique, it an be shown that these tehniques annot be diretlyused for model heking for boundedness properties. So the natural thing now would be todevelop tehniques that fore the termination of the proedure in Figure 6.3 (in ases where itis possible) but do not lose any information with respet to boundedness properties. It is in thisontext that history-dependent onstraint widenings ome into play.Before introduing our framework of history-dependent onstraint widenings (auratewidenings), let us try to see whether the already-existing abstrat interpretation frame-work [CC77℄ an provide solutions to the problems desribed above. Abstration interpreta-tion tehniques [CC77℄ are useful tools to fore termination of the symboli model hekingproedures. Here one obtains a semi-test by introduing abstrations that yield a onservativeapproximation of the original property. Suh methods have been suessfully applied to manynontrivial examples [DT98, Bal96, WT95, HPR97℄. While these abstrations fore the termi-nation of the model heking proedure, they sari�e their auray in the proess (note that98

by auray, we mean not only auray with respet to reahability properties, but also withrespet to boundedness properties). One of the most ommonly used abstrations is the onvexhull abstration [WT95, DT98, Bal96℄.The appliation of automated, appliation independent abstrations that enfore termina-tion, as is done in program analysis, to model heking seems diÆult for the reason that theabstrations are often too rough1. To know the auray of an abstration is important bothoneptually and pragmatially. As Wong-Toi observes in [WT95℄,...The approximation algorithm proposed is learly a heuristi. It would be of tremen-dous value to have analytial arguments for when it would perform well, for when itwould not....As we saw above, any symboli model heking proedure that \loses" auray will not be ableto model hek for boundedness (unboundedness) properties. Hene, in this hapter, we proposea framework, to provide a partial answer to the question asked by Wong-Toi, viz., to determineautomatially (using analytial methods) whether an abstration performs well (does not loseauray) in a situation and then apply the abstration.We present methods that arry over the advantages of abstrat interpretation tehniqueswithout losing preision. To be more spei�, we apply history-dependent onstraint wideningtehniques, as already foreseen in [CC77, CH78℄, to provide an appliation-independent ab-strat interpretation framework for model heking for timed systems. Basing our intuitions ontehniques from Constraint Databases [JM94℄, we show that abstrations of the model heking�xpoint operator, through a set of widening rules, an yield an aurate model heking proe-dure. These abstrations are based on syntax of the onstraints rather than their meaning (thesolution spae) in ontrast with previous approahes (e.g., [Bal96, HPR97, WT95, BBR97℄). Aswe demonstrate on examples, they an drastially redue the number of iterations or even, insome ases, fore termination of an otherwise non-terminating test. In ontrast with the ab-strat interpretation tehniques used for program analysis, they do not always fore termination;instead their abstration is aurate. That is, they do not lose information with respet to theoriginal property; when they terminate, they provide information whih is suÆient even formodel heking for boundedness (unboundedness) properties; i.e., in ases where termination isahieved, the abstrations are sound and omplete. Also, being based on the syntax of the on-straints they an be implemented eÆiently (they do not require omputation of the onvex hulllike [WT95, Bal96, HPR97℄;). We �rst show toy examples in whih our abstrations (heneforthalled widening rules) either ahieve termination in an otherwise non-terminating analysis ordrastially aelerate the termination of symboli forward reahability analysis.2 We then showthe performane of a prototype model heker, implemented using the tehniques presented inthis hapter, on some standard benhmark examples taken from literature. In the Conlusion,we disuss the generality of our approah.1Note the statement of Halbwahs in [Hal93℄, that \Any widening operator is hosen under the assumptionthat the program behaves regularly : : : . Now the assumption of regularity is obviously abusive in one ase: whena path in the loop beomes possible at step n, the e�et of this path is obviously out of the sope of extrapolationbefore step n (sine the ations performed on this path have never been taken into aount) : : : "2Note that we onsider forward analysis, instead of bakward analysis, for the obvious advantages mentionedin [HKQ98℄ (Forward analysis is amenable to on-the-y loal model heking and also to partial order redutions.These methods ensure that only the reahable portion of the state spae is explored). Moreover, bakward analysisannot be used for model heking for boundedness properties.99

: : :p: while(x<=100) dox:=x+1; odq: : : :Figure 6.2: Fragment of the pseudo-ode of a program
6.2 Intuition Behind the Aurate Widening FrameworkEven before we delve into the details of timed systems, we try to give the reader a \feeling" ofour aurate widening framework. Consider the fragment of a pseudo-ode of an (integer-valued)program given in Figure 6.2 in whih the only delared variable is x. Let us try to analyze thisprogram fragment using onstraints. More preisely, let us try to derive the onstraints satis�edby the variable x at the program point q. Assume that initially the onstraint on x at programpoint p is given by x � 10. Now let us step through the while loop one. The onstraint on x atprogram point p is now x � 11. Stepping through the while loop again, the onstraint on x atprogram point p beomes x � 12. From this, the abstrat interpretation tehniques desribedabove [WT95, Bal96℄ (if we apply the same \widening" rules to this integer-valued programfragment) would derive true (i.e., onstraint orresponding to the whole set of integers) as theonstraint on x at the program point q. But unfortunately, this is not orret. The onstraint onx at program point q is given by x � 101. The problem with the above tehniques is that theydon't seem to be able to detet that the while-loop in Figure 6.2 does not generate an \in�nitesequene of onstraints".The aurate widening framework tries to \�nd out" from the syntax of a program loop (inases in whih it an) whether it really generates an in�nite behavior (e.g., if the guard for thewhile loop was x � 10 instead of x � 100 it would indeed have generated an in�nite behavior;thus a while loop with a guard x � for an integer and an input onstraint of the form x � dwhere d is an integer and d � will indeed generate an in�nite behavior). If it �nds an in�nitebehavior, it applies widening rules to infer the \limit" (e.g., if the in�nite sequene is x � 1,x � 2 , : : : , then the limit of the in�nite sequene is true) of the in�nite sequene. If it does not�nd an in�nite behavior, it either \tries" to infer the \limit" of the �nite sequene (based onthe syntax) and speed up the omputation proedure (in the program in Figure 6.2 it will inferx � 101) or (if it fails to do so) simply does not apply any widening at all. Note that suh anaurate widening framework will be too restrited for integer-valued programs that are Turingomplete (it may fail to �nd out an in�nite behavior and hene may not use any widening toaelerate the onvergene; it is for this reason that we annot guarantee termination). But, aswe show below, for a large lass of timed systems it an be applied to great e�et. Note also thatif a widening is applied aording to the norms spei�ed by the aurate widening framework,it does not lose any information; it is aurate. It is this auray that we prove in theorem6.1. We also provide suÆient onditions under whih the aurate widenings are guaranteed tofore the termination of the model heking proedure.100

Proedure Symboli-Boundedness(�)Input A set of onstraints �Output A set of onstraints representing sets of states reahable from [�℄�0 := �.repeatbegin�i+1 = �i [post(�i)enduntil �i+1 j= �i.return �i. Figure 6.3: Template for Model Cheking for Boundedness Properties
Proedure Symboli-Boundedness-W(�)Input A set of onstraints �Output A set of onstraints representing sets of states reahable from [�℄�0 := �.repeatbegin�i+1 = �i [WIDEN(�i; post(�i))enduntil �i+1 j= �i.return �i.Figure 6.4: Template for Model Cheking for Boundedness Properties with Widening
Funtion WIDEN(�;�) = fWIDEN(; ') j 2 �; ' 2 �gFuntion WIDEN(; ')'1 :=WIDEN1(; ')If '1 6� ' return '1else f'1 :=WIDEN2(; ')If '1 6� ' return '1else '1 :=WIDEN3(; ')greturn '1 Figure 6.5: Widen Funtion101

6.3 Timed Automata, Constraints and Model ChekingFor the purposes of this hapter, we model timed systems using timed automata. Reall thenotion of timed automata from Chapter 3.We now �x the formal set up of this hapter. We use lower ase Greek letters for a onstraintand upper ase Greek letters for a set of onstraints (whih stands for their disjuntion). Theinterpretation domain for our onstraints is R the set of reals. We write x for the tuple ofvariables x1; : : : ; xn and v for the tuple of values v1; : : : ; vn. As usual, R;v j= ' is the validityof the formula ' under the valuation v of the variables x1; : : : ; xn. We formally de�ne therelation denoted by a onstraint ' as:['℄ = fv j R;v j= 'gNote that x1; : : : ; xn at as the free variables of ' and impliitly all other variables are exis-tentially quanti�ed. We write '[x0℄ for the onstraint obtained by alpha-renaming from '. Wede�ne [�℄, the relation denoted by a set of onstraints � with respet to variables x1; : : : ; xn inthe anonial way. For a onstraint ' and a set of onstraints f 1; : : : ; kg, we write ' j= Wki=1 ii� ['℄ � Ski=1[i℄. For sets of onstraints �1 and �2 (where by a set of onstraints � = f'ig,we mean Wi 'i), we write �1 j= �2 if for all ' 2 �1 there exists '0 2 �2 suh that ['℄ � ['0℄(equivalently, in suh a ase, we say that there exists a loal inlusion abstration from �1 to �2or �1 is loally inluded in �2; see below for a formal de�nition of loal inlusion abstration;it is this loal inlusion that we will use in our symboli model heking proedures; see below).We write an event (an edge transition or a time transition or a omposition of several edge andtime transitions) as ond ation ', where the guard is a onstraint over x1; : : : ; xn andthe ation ' is a onstraint over the variables x1; : : : ; xn and x01; : : : ; x0n. The primed variable x0denotes the value of the variable x in the suessor state. Note that we use interleaving seman-tis for our model. We will use a set of onstraints � to represent a set of states S ifS = [�℄. The suessor of a set of states of suh a set with respet to an event e are representedby the onstraints obtained by onjoining the guard and the ation ' of eah event with eahonstraint ' of �: postje(�) = f9�x0' ^ ^ ' j ' 2 �;R j= ' ^ ^ 'gwhere the existential quanti�er is over all variables but x0. Note that the postje operation anbe easily implemented using well known algorithms for variable elimination from onstraintprogramming (eg. Fourier's algorithm [LM92, MS98℄ or Weispfenning's algorithm [Wei94℄) andpolynomial time algorithms for testing satis�ability of linear onstraints over reals [MS98℄.We next formulate possibly non-terminating symboli model heking proedures for bound-edness properties, in our onstraint-based framework, based on loal inlusion abstration(see the de�nition below). The template for the algorithm is given in Figure 6.3. Herepost(�) = [e2Epostje(�) where E is the set of all events of the timed system (simple andompound ; see below for de�nitions of ompound (omposed) events). The loal inlusionabstration (loal subsumption or onstraint entailment, see below for a formal de�nition ofinlusion abstration) in the algorithm an be implemented using standard polynomial timealgorithms for (loal) onstraint entailment [Sri92, MS98℄. The algorithm is basially a (ina-tionary) �xpoint omputation algorithm. Note that the template Symboli-Boundedness anbe used for model heking for the logi Ls [LPY95b℄. Also note that the algorithm is breadth102

�rst. In the sequel, we all the algorithm Symboli-Boundedness as the breadth �rst (symboliforward) reahability analysis algorithm with (loal) inlusion abstration. Reall the notion ofzones from Chapter 3. It an be easily shown (by using Fourier's Algorithm [MS98, LM92℄ forexample) that for timed automata, the sets of reahable states in a symboli forward reahabilityanalysis an be represented by zones.6.3.1 Inlusion AbstrationsWe �rst note that the loations of a timed automaton an be enoded as �nite domain onstraints(in our algorithms we assume that the loations are enoded as �nite domain onstraints).We denote a position (simply a state) [AD94, HK97℄ of the timed automaton having loationomponent ` as `(v) where v denotes the values of the loks. In general, for a set S of stateshaving the loation omponent `, we write h`; Si, or h`(x); 'i, where ' is a zone onstraint andS = ['℄ = fv j `(v) 2 Sg. Here the free variables of ' are fx1; : : : ; xng. In the sequel, we willrefer to a set of states with loation omponent ` and represented by h`(x); 'i as a symbolistate or simply a state when it is lear from ontext. For a timed automaton U , we denote theset of all reahable symboli states by SUsymb.De�nition 6.1 (Loal Inlusion Abstration.) Given a timed automaton U , we say that�in : SUsymb �! SUsymb is a loal inlusion abstration i�, for any h`(x); 'i 2 SUsymb, h`(x); 'i ��in(h`(x); 'i) where for any two states h`(x); 'i and h`0(x); '0i, h`(�x); 'i � h`0(x); '0i i� ` and`0 are idential and ['℄ � ['0℄ (equivalently ' j= '0). Given S;S 0 � SUsymb, we say that �in is aloal inlusion abstration from S to S 0 i� for all h`(x); 'i 2 S there exists h`(x); '0i 2 S 0 suhthat �in(h`(x); 'i) = h`(x); '0i.De�nition 6.2 (Global Inlusion Abstration [DT98℄.) We say that �gin : SUsymb �!2SUsymb is a global inlusion abstration i�, for any h`(x); 'i 2 SUsymb, �gin(h`(x); 'i) w h`(x); 'i,where for S � SUsymb, h`(x); 'i v S i� ['℄ � Sh`(x);'0i2S ['0℄ (or equivalently ' j= Wh`(x);'0i2S '0).There is a loal inlusion abstration from the onstraint x � 5 to the onstraint x � 4 sine(x � 5) j= (x � 4) (we do not show the loations whih are assumed to be the same). There is aloal inlusion abstration from the set of onstraints f4 � x � 5; 1 � x � 2; 16 � x � 20g (whereby a set of onstraints , we denote their disjuntion) to the set of onstraints f0 � x � 5; x � 16gsine (4 � x � 5) j= (0 � x � 5), (1 � x � 2) j= (0 � x � 5) and (16 � x � 20) j= (x � 16).We write f4 � x � 5; 1 � x � 2; 16 � x � 20g j= f0 � x � 5; x � 16g. On the otherhand, there is a global inlusion abstration from '2 to the set of onstraints f'1; '3g where'1 � x1�x2 � 0^x2�x1 � �2^x2 � 0^x2 � 2, '2 � x1�x2 � 1^x2�x1 � �3^x2 � 0^x2 � 2and '3 � x1 � x2 � 2 ^ x2 � x1 � �4 ^ x2 � 0 ^ x2 � 2 sine '2 j= '1 _ '3. Note that theexistene of a loal inlusion abstration from a set of onstraints �1 to another set of onstraints�2 entails the existene of a global inlusion abstration from �1 to �2. But the onverse is nottrue unless the underlying onstraint domain satis�es the independene property (see below).Note that we have onsidered only loal inlusion abstration for our algorithm (�i+1 j=�i denotes that there is a loal inlusion abstration from �i+1 to �i). It may happen thatthe breadth �rst forward reahability analysis terminates with the weaker ondition of globalinlusion but not with loal inlusion. Consider the example shown in Figure 6.7. The breadth�rst forward reahability analysis proedure terminates for this example with global inlusion103

1 2

y=<2

x:=0

y=<2

3

0=<y=<1

 y:=0

4

y=<2

5

6

x>=5
x:=0 7

 8

y:=0 9

10

11y=<2

 5 1 0

 3

 4Figure 6.6: Illustrating Aelarating E�et of Widening Rules
0=<x1=<1
 x2:=0

true

truex1>=1
x2:=0

0=<x2=<1
 x2:=0

l_0 l_1 l_3

_l_2

PSfrag replaementsm0y = 1x := 0Figure 6.7: Loal and Global Inlusion Abstrationabstration but not with loal inlusion abstration. However, for onstraint domains that donot satisfy the independene property3, deiding global inlusion is usually very expensive (o-NPhard [Sri92℄ for this partiular ase) where as loal inlusion is deidable in polynomial time (forthis partiular ase [Sri92℄). To see that our onstraint domain does not satisfy the independeneproperty, onsider the onstraints '1 � x1 � x2 � 0 ^ x2 � x1 � �2 ^ x2 � 0 ^ x2 � 2, '2 �x1�x2 � 1^x2�x1 � �3^x2 � 0^x2 � 2 and '3 � x1�x2 � 2^x2�x1 � �4^x2 � 0^x2 � 2.It is lear that '2 j= '1 _ '3 but '2 6j= '1 and '2 6j= '3.6.4 Widening RulesIn this setion, we onsider how one an ahieve (or just speed up) termination of the breadth�rst forward reahability analysis algorithms for boundedness (as well as safety) properties. Wede�ne widening rules that are aurate i.e., do not lose information with respet to the originalproperty. We show that these widening rules an be used to ahieve termination in ases wheretermination is not guaranteed in forward analysis with loal inlusion abstration. We also3A onstraint domain is said to satisfy the independene property [MS98℄ if for any onstraint ' and a set ofonstraints f'1; : : : ; 'ng, ' j= '1 _ : : : _ 'n implies ' j= 'i for some i.104

Funtion WIDEN1(; '0)if8>>>><>>>>: � � ^ xi � xj � ij' ^ � � ^ x0j = xj + x0i ^ xi � iij � 0i > 0�[x0℄ j= (9�x0(� ^ ' ^)) ^ (9�x0� ^ xi � xj � ij ^ xi � i)or if8>>>><>>>>: � � ^ xi � xj � ij ^ xi � i' ^ � � ^ x0j = xj + x0iij � 0i > 0�[x0℄ j= (9�x0(� ^ ' ^)) ^ (9�x0� ^ xi � xj � ij ^ xi � i)return �else return '0 Figure 6.8: Widening Rule Ishow that for some examples for whih termination of forward analysis with (loal) inlusionabstration is guaranteed, but widening an drastially aelerate the termination.In general, the events onsidered here may not be an original event but is onstruted asa omposition of events. We write e = event(; ') when appliation of the event e to theonstraint results in the onstraint '.De�nition 6.3 (Compound Events.) Let e1 � ond 1 ation '1; : : : ; ek �ond k ation 'k be k original events of the timed system. Assume that the soureloation for the �rst event and the target loation for the last event are the same. Assume thatthe target loation for the jth event and the soure loation for the (j + 1)st event are same(1 � j � k � 1). Also assume that for eah event ej, eah variable xi and x0i in the guardand ation have been alpha-renamed to xji and xj+1i respetively. Then the ompound event (oromposed event) orresponding to e1; : : : ; ek is given by4 ond true ation ' ^ where ' ^ is given by ' ^ � (9�fx1;xk+1g'1 ^ 1 ^ : : : ^ 'k ^ k)[x;x0℄:See below for examples of ompound events. Given that the theory of reals with additionand order admits quanti�er elimination, ' ^ an be expressed in a onjuntive normal form.For the timed automaton given in Figure 6.1, the event ond true ation x0 = x+z; z � 0; y0 =y + z; y0 � 2 is a simple (time) event orresponding to the time transition in loation 0 whileond lo = 0 ation y0 = 0; x0 = x; lo0 = 1 is a simple or original (edge) event orrespondingto the edge from loation 0 to 1.We onsider only non-strit inequalities here. The strit inequalities an be dealt withsimilarly. The template for symboli boundedness proedure with widening is de�ned in Figure4Note that we an onstrut an event with empty guard as the events ond ation ' andond true ation ' ^ are equivalent with respet to symboli model heking105

Funtion WIDEN2(; '0)if8>>>>>>>><>>>>>>>>:
 � � ^ xi � xj � ij ^ xj � xi � ji' ^ � � ^ x0j � x0i � xj � xi + ajiij � 0aji > 0(9�x0' ^ ^ �) ^ (9�x0� ^ xi � xj � ij ^ xj � xi � ji) = � ^ x0j � x0i � 0ji�[x0℄ j= �0 � 0ji � �ijreturn � ^ xj � xi � jielse if 8>>>><>>>>: � � ^Vi;j;2I xi � xj � ij' ^ � � ^Vi;j;2I xj � xi � xj � xi + ajiij � 0aji > 0�[x0℄ j= (9�x0' ^ ^ �) ^ (9�x0� ^Vi;j;2I xi � xj � ij)return �:else return '0 Figure 6.9: Widening Rule II6.4. Note that the proedure is based on a breadth-�rst searh. The funtion WIDEN isde�ned in Figure 6.5 in the Appendix. In a all to WIDEN(�i; post(�i)) one of the threewidening rules provided the onditions of that rule are satis�ed. If the ondition in theWIDENfuntion applies to several deompositions of , the orresponding widenings are e�etuated inseveral suessive iterations. In the sequel, we refer to the proedure Symboli-Boundedness-Was the breadth �rst forward reahability analysis proedure with widening and (loal) inlusionabstration. Note that the termination ondition �i+1 j= �i means that there is a loal inlustionabstration from �i+1 to �i.We now illustrate the widening rules with examples. The intuition behind the widening rulesis as follows: if we an detet from the syntax of a sequene of events �e and a onstraint ', thatthe sequene '; postj�e('); : : : \grows" in�nitely in a partiular diretion (i.e., atually leads toan in�nite sequene with respet to reahability analysis), we will try to add the union of thesequene to our set of reahable states. Thus for widening rule I (for the if part), the syntax ofthe input onstraint (�^xi�xj � ij) and that of the event (�^x0j = xj+x0i^xi � i whih maybe a omposition of several simple events as desribed above) tells us that this onstraint-eventombination will generate an in�nite behavior (� ^ xi � xj � ij , � ^ xi � xj � ij � i, : : : ; seeexample below) provided the other onditions are satis�ed (ompare the while-loop example inSetion 6.2). Hene we infer the limit of this sequene whih is � (sine ij � 0 and i > 0) andadd it to the set of states. Similar are the intuitions behind the other widening rules.Consider the example timed automaton in Figure 6.10. Note that forward breadth-�rstreahability analysis with loal inlusion abstration does not terminate. Consider the events 4and 3. Event 4 is given by e � ond x2 � 2 ation x02 = 0; x01 = x1 (we do not show the loationexpliitly). Event 3 is the time event at loation 1 and is given by e0 � ond true ation x01 =106

10

 1 3
4x1:=0 x2=<2

x2:=0

2Figure 6.10: Illustrating widening rule Ix1 + z; x02 = x2 + z; z � 0 (time inreases by amount z). We ompose transition (sometimes wewill use the term 'transition' for 'event') 4 and transition 3 using the method given above. Theresulting ompound event is e1 � ond true ation ' ^ where' ^ � x01 = x1 + x02; x2 � 2; x02 � 0:Now onsider the in�nite sequene of states produed by a breadth-�rst reahability analysisfor this automatonhl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x1 � 0i2�! hl 1(x); x1 = 0; x2 � 0i 3�! hl 1(x); x2 � x1 � 0; x1 � 0i4�! hl 1(x); 0 � x1 � 2; x2 = 0i 3�! z }| {hl 1(x); x1 � x2 � 0; x2 � 0; x2 � x1 � �2i4�! hl 1(x); 0 � x1 � 4; x2 = 0i 3�! hl 1(x); x1 � x2 � 0; x2 � 0; x2 � x1 � �4i 4�! : : : :(in the above we denote loation i by l i.) Now see that the state under the overbrae alongwith event e1 satis�es the onditions of the widening rule I (the if part) de�ned in Figure 6.8(i = 2; j = 1, � � ^ x2 � x1 � �2 where � � x1 � x2 � 0; x2 � 0, 21 = �2 and � � x02 � 0).Hene, applying the widening, we obtain the state hl1(x); x1 � x2 � 0; x2 � 0i (the reader aneasily make out that if the sequene of transition 4 and transition 3 is repeated in�nitely manytimes to the state under the overbrae, the onstraint x1 � x2 � 0; x2 � 0 will be obtained).After this any state generated is subsumed (inluded) by this state. Hene the breadth �rstforward reahability analysis with widening and loal inlusion abstration terminates.To see the aelerating e�et of widening rule I on the onvergene of reahability analysisin ase of examples for whih breadth-�rst analysis terminates with loal inlusion abstration,onsider the example in Figure 6.6. If we replae the onstant 5 in transition 7 by 10000 say ,breadth �rst forward analysis with loal inlusion abstration will terminate in approximatelyin 10000 iterations. But, it an be easily seen that omposing transitions 4, 5 and 6 gives riseto a ompound event and by using widening rule I on this ompound event (it is easy to verifythat the onditions in the widening rule will be satis�ed) breadth �rst forward analysis withwidening and loal inlusion abstration terminates in 11 iterations.Before de�ning widening rule II, let us introdue some notation. Let Nn denote f1; : : : ; ng.Let I denote a subset of Nn. The widening rule II is de�ned in �gure 6.9.To show an example in whih appliation of widening rule II fores termination, we lookat the example in �gure 6.11. Note that breadth-�rst forward reahability analysis with loalinlusion abstration does not terminate for this example. The following in�nite sequene of107

l_0 l_1 l_2
x1=<2

x2:=0

 x2:=01
2 3

4

6

 5
3=<x2=<4

Figure 6.11: Illustrating widening rule IIstates is generated in a breadth-�rst forward reahability analysis for this example.hl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x2 � 0i2�! hl 1(x); x1 � 0; x1 � 2; x2 = 0i 3�! hl 1(x); x1 � x2 � 0; x2 � x1 � �2; x2 � 0i4�! hl 2(x); x1 � 3; x1 � 6; x2 = 0i 5�! hl 2(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i6�! z }| {hl 1(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i 3�! hl 1(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i4�! hl 2(x); x1 � 6; x1 � 10; x2 = 0i 5�! hl 2(x); x1 � x2 � 6; x2 � x1 � �10; x2 � 0i6�! hl 1(x); x1 � x2 � 6; x2 � x1 � �10; x2 � 0i : : :Now onsider the ompound event e2 � ond true ation ' ^ obtained by omposing tran-sitions 3, 4, 5 and 6. Here' ^ � x01 � x1 � x2 + x02 + 2 ^ x01 � x02 � x1 � x2 + 3 ^ x01 � x1 + x02 ^ x02 � 0:See that the onditions of widening rule II (the if part) are satis�ed for e2 and the state underthe overbrae in the sequene (i = 2; j = 1, � � x2 � 0, 21 = �6 < 0, 12 = 3 and � � x01 �x1�x2+x02+2; x01 � x1+x02; x02 � 0). The reader an easily onvine herself that the give stateand event e2 do not satisfy the onditions of widening rule I). Applying the widening, we obtainthe state hl 1(x); x1 � x2 � 3; x2 � 0i (viewing the onstraint solving involved geometriallymay provide better intuitions). The states whih are further generated are subsumed by thisstate. So breadth-�rst forward reahability analysis with widening and inlusion abstrationterminates after this. Note that in this ase, appliation of abstrat interpretation with theonvex hull operator as is done in [WT95, Bal96, HPR97℄ would produe the state hl 1(x); x1 �x2 � 0; x2 � 0i. This an lead to 'don't know' answers to ertain reahability questions (e.g.,onsider the reahability question whether the loation l 1 an be reahed with the values ofthe loks satisfying the onstraint x1 � x2 > 2; x2 � x1 > �3; x2 � 0). As for the extrapolationabstration [DT98℄, we have already stated in the Introdution that it is unsuitable for modelheking for boundedness properties.In widening rule III we use periodi sets following Boigelot and Wolper [BW94℄.De�nition 6.4 (Periodi Sets [BW94℄.) A periodi vetor set or simply a periodi set is aset of vetors x 2 Rn suh that9k 2 Nm : x = Ck+ d ^ Pk � qwhere C and P integer matries.The widening rule III is de�ned in Figure 6.12, where the prediate int(x) is true if and onlyif x is a nonnegative integer. Consider the example in Figure 6.13. Note that breadth-�rst108

Funtion WIDEN3(; '0)if8>>>>>><>>>>>>:
 � � ^ xi � xj � ij ^ xj � xi � ji' ^ � � ^ x0i = xi + x0j ^ xj = jij � 0i > 0ji � ij�[x0℄ j= (9�x0(� ^ ' ^)) ^ (9�x0� ^ xi � xj � ij ^ xj � xi � ji ^ xj = j)return � ^ 9k � 0 ^ int(k) ^ xi � xj � ji + k � j ^ xj � xi � ji � k � jelse return '0 Figure 6.12: Widening Rule III

x2=<1

2

l_0 l_1

1 3
4

5

6

x2:=0
l_2

x2=4,x2:=0Figure 6.13: Illustrating the widening rule IIIforward reahability analysis with inlusion abstration does not terminate for this example.The following in�nite sequene of states is generated in ourse of a forward (breadth-�rst)reahability analysis for this example:hl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x2 � 0i2�! hl 1(x); x2 = 0; x1 � 0; x1 � 1i 3�! z }| {hl 1(x); x1 � x2 � 0; x2 � x1 � �1; x2 � 0i4�! hl 2(x); x1 � 4; x1 � 5; x2 = 0i 5�! hl 2(x); x1 � x2 � 4; x2 � x1 � �5; x2 � 0i6�! hl 1(x); x1 � x2 � 4; x2 � x1 � �5; x2 � 0i : : :Now we ompose transitions 4, 5 and 6. The ompound event is e3 � ond true ation '^ where ' ^ � x01 = x1 + x02 ^ x02 � 0 ^ x2 = 4:It is easy to see that the state under the overbrae in the in�nite sequene along with evente3 satis�es the onditions of widening rule III (i = 2; j = 1, � � x2 � 0, 12 = 0, 21 =�1 < 0). Hene, applying widening rule III we get the state hl 1(x);9k � 0; int(k); x1 � x2 �k � 4; x2 � x1 � �1 � k � 4i. The states further generated are subsumed by this state. So(breadth-�rst) forward reahability analysis with loal inlusion abstration terminates afterapplying the widening rule. Note that appliation of abstrat interpretation with the onvexhull operator [HPR97, Bal96, WT95℄ will produe the state hl 1(x); x1 � x2 � 0; x2 � 0i. Henefor ertain reahability questions we an get a 'don't know' answer.Now we show that the widening rules are aurate with respet to boundedness properties.109

Theorem 6.1 (Soundness and Completeness) The proedure Symboli-Boundedness-Wobtained by abstrating the forward breadth �rst reahability analysis proedure with wideningde�ned by the widening rules I,II and III yields (if terminating) a full test of boundedness (un-boundedness) properties for timed systems (modeled by timed automata).Proof. The proof works by showing that [WIDENj(; ')℄ � [Si�0�i℄ for j = 1; 2; 3 and 2 �i and ' 2 post(�i) where �0 = � and for i > 0, �i+1 = �i _ post(�i). Before provingthe theorem, we onsider the following properties. Let e be an event with guard and ation 'from loation ` to itself. Thenposte(S) = f`(v0) j R;v;v0 j= ' ^ [x;x0℄; `(v) 2 Sgwhere S is a set of states `(v) of the timed automaton onsisting of a loation and valuationsto all the loks. Nowpostje(�) = f9�x0' ^ [x;x0℄ ^ ' j ' 2 �;R j= ' ^ [x;x0℄ ^ 'gwhere � is a set of onstraints and S = [�℄. Notie that poste and postje are monotoni withrespet to inlusion and ontinuous with respet to set union.[i�0 postie([�℄) = [i�0[postije(�)℄ = [[i�0 postije(�)℄poste([['2�'℄) = ['2� poste(['℄) = [['2� postje(')℄Also poste([[i�0�i℄) = [[i�0�i℄Now we prove the following ases.Case I. Widening rule I is used. If e � event(; ') and ' and are as de�ned in theonditions of the widening rule, we show that[_q�0 � ^ xi � xj � ij � q � i℄ � [[i�0�i℄The proof is by indution on q. The base ase follows from the assumption. To prove theindution step observe that:[postje(_q�0 � ^ xi � xj � ij � q � i)℄ � poste([_q�0 � ^ xi � xj � ij � q � i℄) � poste([[i�0�i℄) � [[i�0�i℄Indution Step:postje(� ^ xi � xj � ij � q � i)� 9�x0� ^ xi � xj � ij � q � i ^ � ^ x0j = xj + x0i ^ xi � i� 9�x0(� ^ ' ^) ^ (xi � xj � ij � q � j ^ �) ^ xi � xj � ij � q � i ^ x0j = xj + x0i ^ xi � i� (9�x0' ^ ^ �) ^ (9�x0xi � xj � ij � q � i ^ �) ^ x0i � x0j � ij � (q + 1) � i110

Sine �[x0℄ j= (9x0' ^ ^) ^ (9�x0xi � xj � ij � q � i ^ �) therefore [� ^ x0i � x0j �ij � (q + 1) � i℄ � [Si�0 �i℄. Therefore [Wq�0 � ^ xi � xj � ij � q � i℄ � [Si�0�i℄. But_q�0 � ^ xi � xj � ij � q � i = � ^ _q�0xi � xj � ij � q � i = � ^ true = �:So [�℄ � [Si�0�i℄. The ase where the or if ondition holds an be proven similarly.Case II. Widening rule II is used. We now show by indution on q that[_q�0 � ^ xi � xj � ij � q � aji ^ xj � xi � ji℄ � [[i�0�i℄The base ase follows by assumption.Indution Step:Observe thatpostje(� ^ xi � xj � ij � q � aji ^ xj � xi � ji)� 9�x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji ^ x0j � x0i � xj � xi + aji ^ �� (9�x0' ^ ^ �)^ (9�x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji)^ (9�x0xi � xj � ij ^ x0j � x0i � xj � xi + aji ^ xi � xj � ij � q � aji)� (9�x0� ^ ' ^) ^ (9�x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji) ^ x0i � x0j � ji � (q + 1) � ajiNow we show thatR j= (9�x0� ^ xi � xj � ij ^ xj � xi � ji)() (9x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji) ^ (9�x0� ^ xi � xj � ij)IndeedR j= (9�x0� ^ xi � xj � ij ^ xj � xi � ji)() (9�x0� ^ xi � xj � ij � q � aji ^ xi � xj � ij ^ xj � xi � ji) (Sine aji > 0)() (9x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji) ^ (9�x0� ^ xi � xj � ij)Now it is easy to see that we an write (9�x0'^ ^�)^(9�x0�^xi�xj � ji�q�aji^xj�xi � ji)as � 0 ^ x0j � x0i � 00ji where �[x0℄ j= � 0 and 00ji � ji. Now we prove that�[x0℄ ^ x0i � x0j � ij � (q + 1) � aji ^ x0j � x0i � jij= (�[x0℄ ^ x0j � x0i � ji ^ x0i � x0j � ij � q � aji)_ ((9�x0� ^ ' ^) ^ (9�x0xi � xj � ij � q � aji ^ x0j � x0i � ji ^ �)) (6.1)Indeed, suppose R;v j= left-hand-side. Then R;v j= �[x0℄. Also R;v j= x0j � x0i � ji.Suppose v does not satisfy the �rst disjunt on the right hand side. Then v 6j= x0i�x0j � ij�q�aji.Therefore R;v j= x0j � x0i > q � aji � ij . Therefore R;v j= x0j � x0i � q � aji � ij . Now(9�x0' ^ ^ �) ^ (9�x0� ^ xi � xj � ij � q � aji ^ xj � xi � ji) � � 0 ^ x0j � x0i � 00ji:111

Then R;v j= x0j � x0i � 00ji sine 00ji � ji. Sine R;v j= �[x0℄, therefore v j= � 0. AlsoR;v j= x0i � x0j � ij � q � aji. Sine the (solution of) right hand side of (6.1) is inluded in[Si�0 �i℄ hene [�^xj�xi � ji^xi�xj � ij� (q+1)�aji℄ � [Si�0 �i℄. Hene by a reasoningsimilar to that in the previous ase, we get, [� ^ xj � xi � ji℄ � [Si�0 �i℄. The proof for theelse if part is easy.Case III. Widening rule III is used. We show by indution on q that[_q�0 � ^ xi � xj � q � j + ij ^ xj � xi � �q � j + ji℄ � [[i�0�i℄:The base ase follows from the assumption.Indution Step:postje(� ^ xi � xj � q � j + ij ^ xj � xi � �q � j + ji)� 9�x0� ^ xi � xj � q � j + ij ^ xj � xi � �q � j + ji ^ ' ^ � (9�x0� ^ ' ^) ^ (9�x0xi � xj � q � j + ij ^ xj � xi � ji � q � j ^ �)^ (9�x0xi � xj � ij + q � j ^ xj � xi � �q � j + aji ^ x0i = xi + x0j ^ xj = j)� (9�x� ^ ' ^) ^ (9�x0xi � xj � j � q + ij ^ xj � xi � �j � q + ji ^ �)^ x0i � x0j � ij + (q + 1) � j ^ x0j � x0i � �(q + 1) � j + jiHene, by reasons similar to the above ases, [� ^ xi � xj � ij + (q + 1) � j ^ xj � xi �ji � (q + 1) � j ℄ � [Si�0 �i℄. The rest of the proof is similar to that of the previous ases. [℄Note that the above theorem also implies that if the proedure Symboli-Boundedness-Wterminates, then one an get a full test of safety properties as well. Below we provide e�etivesuÆient onditions for termination of Symboli-Boundedness-W. By a simple path in a timedautomaton U , we mean a sequene of events e1 : : : em where eah ei is an original event of U and{ the soure loation of ei+1 is the same as the target loation of ei for 1 � i �m� 1,{ any event ei with same soure and target loations is a time event,{ for any two edge events ei and ej , 1 � i < j < m, the target loations of ei and ej aredi�erent,{ and if ei is an (original) time event, then ei�1 and ei+1 are edge events.With this de�nition, there are only a �nite number of suh simple paths in a timed automaton.The simple path p = e1 : : : em leads from loation `1 to the loation `2 if there is a the soureloation of e1 is `1 and the target loation of em is `2. The simple path e1 : : : em is a simpleyle if the soure loation of e1 is the same as the target loation of em. Note that there areonly a �nite number of suh simple yles in a timed automaton.Theorem 6.2 (SuÆient Conditions for Termination) Let U be a timed automaton andlet ` be a loation in U suh that there is a simple yle C from ` to itself and the following threeonditions are satis�ed.{ There is a simple path in U of the form e � ond ' ation leading from the initialloation `0 to ` suh with the yle C along with the the onstraint (9�x0'0^'^)[x℄ thatsatis�es the onditions of the widening rules I, II or III where '0 is the initial onstraint.112

{ For eah original event e0 � ond '0 ation 0 with target loation ` that lies on a ylein the ontrol graph of U , (9�x0'0 ^ 0)[x℄ j= postjt(�) if widening rule I or II is satis�edin the previous ondition and (9�x0'0 ^ 0)[x℄ j= postjt(� ^ 9k � 0 ^ int(k) ^ xi � xj �ji+k �j ^xj�xi � ji�k �j) if widening rule III is satis�ed in the previous ondition,where �, ji are as in the de�nition of the widening rules and t is the time event at loation`.{ The ontrol graph of U satis�es the temporal formula AG(true =) AF (at `)) where at `is an atomi proposition satis�ed only by loation `.Then the proedure Symboli-Boundedness-W terminates for U .Proof. The proof follows from the observation that along the breadth-�rst tree generated bythe proedure Symboli-Boundedness-W there is a branh that starts from the initial loation`0 follows the simple path e and then follows the yle C. Sine, the onstraint at the end ofthis simple path along with the guard and ation of C satis�es one of the three widening rules(by the �rst ondition), we get the onstraint � (if the widening rules I or II are satis�ed) or�^9k � 0^int(k)^xi�xj � ji+k�j^xj�xi � ji�k�j (if widening rule III is satis�ed). (Here� and the other onstraints are as in the de�nition of the widening rules.) Hene, there exists a�nite i suh that �i ontains � (or �^9k � 0^int(k)^xi�xj � ji+k�j^xj�xi � ji�k�j).Now sine the ontrol graph of U satis�es AG(true =) AF (at `)), therefore along any branh onthe breadth-�rst tree, the loation ` will be reahed in some iteration greater than i through anoriginal event e0 that lies in a yle. Suppose the onstraint generated at this point be h`(x); �i.We show that � j= � (or � j= � ^9k � 0^ int(k)^ xi� xj � ji+ k � j ^xj � xi � ji� k � j ifwidening rule III was satis�ed in the �rst ondition of the theorem. We prove this in the aseof widening rule I; the remaining ases are similar. Suppose that v j= �. Suppose h`(x); �i wasgenerated by the original event e0 � ond '0 ation 0. Then R;v j= (9�x0'0 ^ 0)[x℄. ThenR;v j= �. Hene, eah branh along the breadth-�rst tree is �nite. Therefore the proedureSymboli-Boundedness-W terminates. [℄It an be seen that the example in Figure 6.10 satis�es the suÆient onditions stated above.We have implemented a prototype based on the approah (in the CLP(R) system of SistusProlog 3.7). The performane shown, so far, by our approah has been quite enouraging. Wehave used our implementation to verify the safety and boundedness properties of several well-known benhmark examples taken from literature. The experimental results are summarizedin the table in Figure 6.14. All results are obtained on a PC (200 MHz Pentium Pro). Theexperiments show a marked improvement over the timings obtained without using the auratewidening rules in Chapter 3. The timings obtained for Fisher's protool (two proesses), Rail-Road Crossing, and Audio Protool without using the widening rules are 4:2s, 1:8s and 7:2srespetively. All the timings in Figure 6.14 denote the total time taken for reahability analysis.6.5 Related WorkIn this hapter, we have presented a onstraint based framework for symboli model hekingof timed systems against boundedness properties. We have shown that it is possible to ahieve(or just aelerate) termination of our symboli model heking proedure with abstrationsby widening that are, as we prove, aurate. Our approah allows us to do a full test of thesafety and boundedness (unboundedness) properties without going into the ompliations of113

Example time (seonds)Fisher's Protool (Two Proesses) [LPY95b℄ 2.1Rail-road Crossing 0.8Audio Protool [HWT95℄ 2.3Figure 6.14: Experimental Resultsregion onstrution. Regarding the generality of our approah, we do not laim that the threewidening rules desribed in this hapter enompass (i.e., ahieves termination and/or speed-upof model heking proedure) the full lass of timed automata. We have provided suÆientonditions under whih the proedure Symboli-Unboundedness-W is guaranteed to terminate.However, for several examples the proedure terminates even though the suÆient onditionsdo not apply..Note that there has been a few attempts at veri�ation of timed and hybrid systems basedon onstraint logi programming [GP97, Fri98, CDD+98, DRS99, GP99℄. Our work di�ersfrom these approahes in that we exploit the onstraint-based setting for de�ning aelera-tion tehniques based on abstrat interpretation. Note that the model heking proedure forUppaal [BLL+96℄ is also based on semantis of onstraints but their algorithms are based ongraph-theoreti tehniques rather than tehniques from onstraint programming. We believethat inorporation of aurate widening framework in UPPAAL and the other approahes men-tioned above an signi�antly speed-up model heking proedures based on those approahes.Our widening operator is losely related to Boigelot and Wolper's loop-�rst tehnique[BW94℄ for deriving periodi sets as representations of in�nite sets of integer valued statesfor reahability analysis. As a di�erene, Boigelot and Wolper analyze yles and nested ylesin the ontrol graph to detet meta-transitions before and independently of their forward modelheking proedure, whereas we onstrut new events during our model heking proedure andonsider them only if we detet that they possibly lead to an in�nite loop. Berard' and Fri-bourg [BF99℄ use a onstraint-based framework for reahability analysis for timed Petri nets.They have been able to verify several interesting examples using their approah based on metatransitions. Our approah, rooted in the abstrat interpretation framework, is di�erent fromtheirs in that we aelerate the model heking proedure using widening rules based on syntax.The appliation of widening tehniques to the veri�ation of systems with huge or in�nitestate spaes has proven useful in several examples. Halbwahs et.al. [HPR97℄, using linear re-lational analysis to prove properties for linear hybrid systems, de�nes a widening operator overonvex polyhedra: unions of onvex polyhedra are approximated by their onvex hull before thewidening step. Approximation tehniques for more general lasses of hybrid systems are studiedin [HHWT97, HH95℄. Spei�ally, Henzinger and Ho [HH95℄ apply an extrapolation operatorwhih gives better approximations than Halbwahs et. als' onvex widening operator in their ex-amples. For integer valued systems, abstrat interpretation has been used e�etively in [BGP97℄.In [BGP98℄, it was expliitly mentioned that one main diÆulty with the approximate approahis that the abstration is often too rough. We have shown in Setion 6.4 that our wideningtehniques will give full test of reahability properties for timed systems where the approximatemethods [Bal96, WT95, HPR97℄ would produe a 'don't know' answer. Also, in ontrast withour aurate widenings, the widening tehniques proposed in [Bal96, WT95, HPR97℄ annot beused for model heking for boundedness properties. Note that it is not possible to �nd out114

in most ases, using semantis-based tehniques, whether a program loop really generates anin�nite behavior with respet to reahability analysis. Hene, appliation of widening ombinedwith semantis-based tehniques may result in loss of auray that will render these tehniquesunsuitable for model heking for boundedness properties. It would be interesting to look athow the tehniques desribed in this hapter extend to more general lasses of hybrid systems.The general goal will be a whole library of aurate widening rules for a variety of veri�ationproblems.

115

116

Chapter 7Compositional Termination Analysisof Symboli Forward Analysis forIn�nite-State Systems
7.1 IntrodutionOver the last few years, there has been an inreasing researh e�ort direted towards automativeri�ation of in�nite state systems. Researh on deidability issues (e.g., [ACJT96, ACHH93,Boi98, LPY99, HKPV95, CJ98℄) has resulted in highly nontrivial algorithms for the veri�ationof di�erent sublasses of in�nite state systems. These results do not, of ourse, imply the termi-nation of the semi-algorithms on whih pratial tools are based (for example, the deidabilityof the model heking problem for timed automata does not entail termination for the symboliforward analysis of timed automata whih is possibly non-terminating). This hapter addressesthe termination for suh a proedure, namely symboli forward analysis; we show terminationfor the sublass of o-minimal hybrid systems (for whih bakward analysis is known to be ter-minating [LPY99℄), and we give ompositional syntati suÆient onditions for integer-valuedsystems and for nonlinear hybrid systems; i.e., the syntati suÆient onditions are on theindividual omponents rather than on the omposed system. The onditions roughly expressthat, in eah loop, the variables are initialized before they are used.SuÆient termination onditions for symboli forward analysis seem interesting for severalreasons. First, sine they apply to onrete examples suh as pratial mutual exlusion pro-tools, they may shed a new light on the pratial suess of symboli model heking forin�nite-state systems (see e.g. [BGP97, DP99a, DT98, LPY95b℄). Seond, for a onrete veri�-ation problem in a pratial setting, the model to be heked an possibly be adapted to meetthe suÆient termination onditions (e.g. by adding semantially redundant initializations ofvariables).Moreover, our results suggest a potential optimization of the symboli forward analysis pro-edure. Namely, the termination guarantee ontinues to hold even when the �xpoint test is mademore eÆient by weakening it to loal entailment (explained below; e.g. for linear arithmetionstraints over reals, the omplexity of �xpoint test redues from o-NP hard to polynomial).117

7.2 In�nite State SystemsWe use guarded-ommand programs to speify (possibly in�nite-state) transition systems. Aguarded-ommand program onsists of a set E of guarded ommands e (alled edges) of the forme � L = ` ^ e(x) [℄ L0 = `0 ^ �e(x;x0)where L is a variable ranging over a �nite set of program loations, x = hx1; : : : ; xni is the tupleof program variables (ranging over a possibly in�nite data domain); e(x) is a formula (theguard) whose free variables are among x; �e(x;x0) is a formula (the ation) whose free variablesare among x;x0 of e. Intuitively, the primed version of a variable stands for its value in thesuessor state after taking a transition through a guarded ommand. We translate a guardedommand e to the logial formula e simply by by replaing the guard [℄ with onjuntion. e � L = ` ^ e(x) ^ L0 = `0 ^ �e(x;x0)A state of the system is a pair h`;vi onsisting of the values for the loation variable and foreah program variable. The state h`;vi an make a transition to the state h`0;v0i through theedge e provided that the values of ` for L, `0 for L0, v for x and v0 for x0 de�ne a solution for e.A run of the system is a sequene h`1;v1i �! h`2;v2i �! : : : suh that for eah i = 1; 2; : : :there exists an edge e suh that the state h`i;vii an make a transition to the state h`i+1;vi+1ithrough the edge e.In this hapter, we onsider two basi lasses of in�nite state systems. In the �rst, theprogram variables range over the set of natural numbers N , and the guard and the ation for-mulas are arithmeti onstraints. Examples of suh systems above inlude the bakery algorithm,the bounded bu�er produer-onsumer problem et.. In the seond, we deal with the so-alledhybrid systems in whih the program variables range over the set of reals R.Systems with Integer-valued Variables. We write Arith(N) for the theory of natural num-bers with addition multipliation and order; it is interpreted over the struture hN ; <;+; �; 0; 1i.A possibly nonlinear system with integer-valued variables an be de�ned as a set of guardedommands as above where the variables x;x0 are interpreted over the set of natural numbersN . The guard formula e(x) is an Arith(N) formula with free variables among x. The ationformula �e(x;x0) of e, with free variables among fx;x0g, is also an Arith(N) formula.Hybrid Systems We write OF (R) for the theory of the ordered �eld of reals; it is interpretedover the struture hR; <;+; �; 0; 1i.A (possibly non-linear) hybrid system an be de�ned as a set of guarded ommands as abovewhere the guard e(x) is an OF (R) formula, and the ation �e(x;x0) is an OF (R) formula givenby �e(x;x0) � 9z � 0 9x00 Æe(x;x00) ^ �e(x00;x0; z):Here, Æe is an OF (R) formula de�ning the \update" in e, and �e is the OF (R) formula de�ningthe ontinuous evolution at the target loation `0.A transition aording to a guarded ommand e represents an instantaneous `jump' followedby a ontinuous evolution over time at the target loation `0. Namely, a state h`;vi an make118

a transition through e to the state h`0;v0i if the values ` for the loation variable L and v forthe tuple of data variables x satisfy the guard L = ` ^ e(x) of e and there exists a v00 suhthat v;v00 satis�es the update Æe of e and there exists a real value d of the delay variable z suhthat v0 is obtained from v00 through ontinuous evolution over the delay d at the loation `0.Similarly the time transition (ontinuous evolution over time at a loation) from the state h`;vito the state h`;v0i an be de�ned. For a loation `, let �` be the (OF (R)) formula denoting theontinuous evolution of time at ` where z is the time delay variable. Thus in the above formulade�ning the guard �(x;x0), �e = �`0 .O-minimal hybrid systems In this paragraph, we de�ne o-minimal hybrid systems. Thede�nition below is adapted from [LPY99℄. In o-minimal hybrid systems, the ation formula�e(x;x0) of e with free variables among fx;x0g is de�ned as follows.�e(x;x0) � 9z � 09x00(Æe(x00) ^ x0 = expzA`0x00)where the free variables in the \update" formula Æe are among x00, exp is the base of the naturallogarithms, A`0 is an n � n rational matrix that is either nilpotent or is diagonalizable withrational eigenvalues (x0 = expzA`0x00 represents the ontinuous evolution at the target loation`0). It an be shown [LPY99℄ that in these ases, �e(x;x0) is de�nable in OF (R).7.3 Parallel CompositionWe onsider asynhronous parallel omposition of in�nite state systems. We assume that theomponent programs do not share variables (exept for the synhronizing labels). For thepurpose of parallel omposition, we assign to eah guarded ommand a synhronizing label.Thus with eah guarded ommand program S we assoiate a (�nite) set � of synhronizinglabels and a mapping lab : E �! � that assigns to eah guarded ommand (or edge) asynhronizing label from �.Given two guarded ommand programs S1 and S2 with label sets �1 and �2 and labelingfuntions lab1 and lab2 respetively, their parallel omposition S = S1jjS2 with set of synhro-nizing labels �1 [�2 and labeling funtion lab is de�ned as follows. Intuitively, in an edge inthe omposed program S1jjS2, either only S1 \moves" (i.e., takes a transition through an edge)while S2 undergoes ontinuous evolution at the same loation (if the synhronizing label � isin �1 but not in �2) or S2 \moves" while S1 undergoes ontinuous evolution (in ase of hy-brid systems; stays unhanged in ase of integer-valued systems) at the same loation (providedthe synhronizing label � is in �2 but not in �1) or both \move" (if the synhronizing label� 2 �1 \ �2) with the same label lab(e1) = lab(e2) = �. The omposed program S onsists ofall guarded ommands of the forme � L1 = `1 ^ L2 = `2 ^ e(x;y)[℄L01 = `10 ^ L02 = `20 ^ �e(x;y;x0;y0)with lab(e) = � suh that either{ (First omponent \moves"){ there is an edge e1 � L = `1 ^ e1(x)[℄L0 = `10 ^ �e1(x;x0) in S1 with lab1(e1) = �,where � 2 �1 and � 62 �2, `2 is a loation in S2 and `20 = `2119

{ e(x;y) � e1(x){ �e(x;y;x0;y0) � �e1(x;x0) ^ y0 = y for systems with integer-valued variables and�e(x;y;x0;y0) � 9z � 0 9t � 0 'e1(x;x0; z) ^ �`2(y;y0; t) ^ z = t for hybrid systemswhere �e1(x;x0) � 9z � 0 'e1(x;x0; z).{ Or (Seond omponent \moves") Same as the previous point but with the roles of S1 andS2 reversed.{ Or (Both omponents \move")there is an edge e1 � L = `1 ^ e1(x)[℄L0 = `10 ^�e1(x;x0)in S1 and an edge e2 � L = `2^e2(y)[℄L0 = `20^�e2(y;y0) in S2 suh that � 2 �1\�2,lab1(e1) = � and lab2(e2) = � e(x;y) � e1(x)^e2(y) �e(x;y;x0;y0) � �e1(x;x0)^�e2(y;y0) for systems with integer-valued variables and �e(x;y;x0;y0) � 9z � 0 9t �0 'e1(x;x0; z) ^ 'e2(y;y0; t) ^ z = t for hybrid systems where �e1(x;x0) � 9z �0 'e1(x;x0; z) and �e2(y;y0) � 9t � 0 'e2(y;y0; t).A state of the omposed program is a tuple h`; `0;v;wi onsisting of values of the loationsand eah variable. The semantis of the omposed program is de�ned in the usual way. Theparallel omposition operation de�ned above is ommutative and assoiative. For guarded om-mand programs S1; : : : ;Sk, we write S1jj : : : jjSk to denote (: : : (S1jjS2)jjS3)jj : : :)jjSk). Toolslike UPPAAL [BLL+96℄, HYTECH [HHWT95℄ use the kind of parallel omposition desribedabove (they also use urgent transitions; the framework desribed below an be easily made totake into aount suh urgent transitions).7.4 Constraints Representing Sets of StatesIn this hapter, by onstraints we will mean Arith(N) or OF (R) formulas. We use onstraints' to represent ertain sets of positions. We will onsider only onjuntive onstraints. Aonstraint ' is a onjuntion of atomi onstraints of the form t relop where t is a term, 2 Nand relop 2 f>;<;�;�g. We identify solutions of the onstraints with states of the system. Wewrite D; h`;vi j= ' to denote that the state h`;vi is a solution of the onstraint ' where D is thestruture under onsideration, i.e., either hN ; <;+; �; 0; 1i or hR; <;+; �; 0; 1i. For a onstraint', we de�ne the denotation of ', denoted by ['℄ as['℄ = fh`;vi j D; h`;vi j= 'g:By a set of onstraints we mean their disjuntion; i.e., if � is a set of onstraints then[�℄ = S'2�['℄. For two onstraints ' and '0, we say that ' entails '0, denoted by ' j= '0, i�['℄ � ['0℄. We assume that given two onstraints ' and '0, it is deidable whether ' j= '0 (thoughthis is not true for arbitrary Arith(N) onstraints, still we assume that for the onstraints thatwe will deal with, the problem of heking whether a onstraint entails another is deidable). Fora onstraint ' with free variables x, we denote by '(x0), the onstraint obtained by replaingthe free variables x by x0 (renaming).A onstraint ' is time losed if its set of solutions (i.e., its denotation) is losed under timetransitions, i.e., if the onstraint ' is of the form L = ` ^ and if �`(x00;x0; z) is the OF (R)formula representng ontinuous evolution at the loation ` (for hybrid systems), then ' is time-losed i� R j= ' () (9z � 0 9x (' ^ �`(x;x0; z)))(x). We denote by '0 the formula de�ning120

the time losure of the set of initial states and all it the initial onstraint. In the following,whenever we talk of onstraints in the ontext of hybrid systems, we will refer to time-losedonstraints. In ase of o-minimal hybrid systems we also assume that the initial onstraint '0is de�nable in OF (R).We identify two onstraints ' and '0 i� they have the same denotations; i.e., ['℄ = ['0℄.We reall the de�nition of onstraint transformer from Chapter5. This notion is inspired by thenotion of syntati transformation monoids in lassial automata theory [Eil76℄.7.5 Bound Variables and Initialized StringsWe onsider bindings of variables in in�nite state systems. Roughly, a (data) variable is boundat a loation of an in�nite state system if its value at that loation does not \depend" onits previous values. Let w = e1 : : : em be a string of edges of an in�nite state system withinteger-valued variables.{{{ De�nition 7.1 (Bound Variables) We say that a subset X � fx1; : : : ; xng of variables isbound at the edge ei (1 � i � m) in the string w if there exists S � fx1; : : : ; xng suh that (1)the ation �ei(x;x0) an be written as a quanti�er free formula �1 ^ �2 where the variables in �1are among X 0 [S (where X 0 = fx0 j x 2 Xg) and the variables in X 0 [S do not our in �2, (2)if i = 1 then S = ; and (3) if i > 1 then{ the variables in S are bound in ei�1 (in w) and{ the guard onstraint ei(x) an be written as a quanti�er free formula 1ei ^ 2ei where thevariables in 1ei are bound in ei�1 (in w) and the variables in 2ei are not bound in ei�1 (inw).Thus, onsider the guarded ommands e1, e2 and e3 given bye1 � L = ` ^ x > y [℄ L0 = `0 ^ x0 = x ^ y0 = y ^ z0 � 2;e2 � L = `0 ^ z � 4 ^ x < y [℄ L0 = `00 ^ z0 = z ^ x0 � z + 2 ^ y0 � y + 4and e3 � L = `00 ^ x � 6 [℄ L0 = `000 ^ z0 = z ^ x0 = x ^ y0 = x+ 2:Aording to the above de�nition, in the string w = e1:e2:e3, only z is bound in e1, and fx; zgare bound in e2 and fx; y; zg are bound in e3 in w. This is beause, at e1 the ation �e1 anbe written as �1e1 ^ �2e1 where �2e1 � x0 = x ^ y0 = y (where z0 does not our) and �1e1 � z0 � 2(where the free variables are among z0). Hene z is bound at e1 in w. At the edge e2, the guarde2 an be written as 1e2 ^ 2e2 where 1e2 � z � 4 (where the free variable z is bound at e1 inw) and 2e2 � x < y (where the free variables are not bound at e1 in w). Now the ation �e2 ofe2 an be written in the form �1e2 ^ �2e2 where �1e2 � z0 = z ^ x0 � z + 2 (where z is bound at e1in w) and �2e2 � y0 � y+4 (where fx0; z0; zg do not our free). Hene fx; zg are bound at e2 inw. At the edge e3, the guard e3 an be written in the form 1e3 ^ 2e3 where 1e3 � x � 6 (wherethe free variable x is bound at e2 in w) and 2e3 � true. Also the ation �e3 an be written inthe form �1e3 ^ �2e3 where �1e3 � z0 = z ^ x0 = x ^ y0 = x+ 2 (where fx; zg are bound at e2 in w).Hene fx; y; zg are bound at e3 in w.We next ome to the de�nition of initialized strings.121

De�nition 7.2 (Initialized Strings) A string w = e1 : : : em of edges of an in�nite state sys-tem is initialized if for eah variable xi, there exists a k (1 � k � m) suh that xi is bound (inw) in every edge in ek : : : em.For the ases of non-linear hybrid systems (with the underlying theory being the theoryof real losed �elds) as well as integer valued systems in whih the underlying theory is thePresburger arithmeti extended with all relations x = y(mod k), k > 1, it an be e�etivelydeided using the methods presented in [Lib00℄ whether a string is initialized.7.6 Constraint Trees and Symboli Forward AnalysisGiven an in�nite state system S with set of edges E , we de�ne the onstraint tree for S asfollows.De�nition 7.3 (Constraint Tree) The onstraint tree for S is an in�nite tree with domainE� (i.e., the nodes are strings over E) that labels the node w by the onstraint [[w℄℄('0) where '0is the initial onstraint.Clearly, the (in�nite) disjuntion of all onstraints labeling a node of the onstraint tree repre-sents all reahable states of S. We now de�ne symboli forward analysis formally. A symboliforward analysis is a traversal of (a �nite pre�x of) a onstraint tree in a partiular order. Thefollowing de�nition of a non-deterministi proedure abstrats away from that spei� order.De�nition 7.4 (Symboli Forward Analysis) A symboli forward analysis of an in�nitestate system S is a proedure that enumerates onstraints 'i labeling the nodes wi of the on-straint tree of S in a tree order suh that the disjuntion of the enumerated onstraints representsall reahable states of S. Formally,{ 'i = [[wi℄℄('0) for 0 � i < B where the bound B is either a natural number or !,{ if wi is a pre�x of wj then i � j,{ the disjuntion W0�i<B 'i is equivalent to the disjuntion W0�i<! 'i.The number i is a leaf of a symboli forward analysis if the node wi is a leaf of the tree formedby all the nodes wi where 0 � i � B. We say that a symboli forward analysis terminates if itsbound B is �nite. We de�ne that a symboli forward analysis terminates with loal entailmentif for all its leaves i there exists a j < i suh that the onstraint 'i entails the onstraint 'j(as a passing remark, we note that by hanging the notion of loal entailment, we an get amodel heking proedure for liveness properties; we an hange the notion of loal entailmentby requiring that for all leaves i, there exists a j < i suh that suh that the onstraint 'j entailsthe onstraint 'i). In ontrast, a symboli forward analysis terminates with global entailment iffor all its leaves i, the onstraint 'i entails the disjuntion of the onstraints 'j where j < i. Asdisussed in the Introdution, model heking is more eÆient with loal entailment than withglobal entailment, both theoretially and pratially. Many model heking tools for in�nitestate systems use loal entailment (e.g., UPPAAL [BLL+96℄, whih uses identity; the modelheker for in�nite state systems with integer-valued variables desribed in [DP99a℄ also usesloal entailment). 122

We say that a loation ` is a part of a yle w = e1 : : : em if it is the soure of an edge ei ofthe yle; i.e., an edge ei of the yle is of the form : : : L = `[℄ : : : .A string is initializable if it ontains an initialized substring.Proposition 7.1 If every simple yle of an in�nite state system S is initializable, symboliforward analysis for the system terminates with loal entailment.Proof. We �rst show that the onstraint transformer funtion assoiated with eah initializedstring w is either a onstant funtion or unsatis�able. Let w = e1 : : : em be an initialized string.Now, by de�nition, for eah variable x there exists a j (1 � j � m) suh that x is bound (in w) inevery edge in ej : : : em. Let jx be the least suh j for x. Let l = minfjx j x 2 fx1; : : : ; xngg. Wenow introdue some terminology that will be needed in the rest of the proof. Let bound(ei) �fx1; : : : ; xng be the set of variables that are bound (in the word under onsideration)) at anedge ei. Then, by de�nition, there is a partition of the set fx1; : : : ; xng into two subsets Sei andS0ei suh that for 1 < i � m, the guard ei are an be written as a quanti�er free formula of theform 1ei ^ 2ei where the free variables in 1ei are bound (in w) in ei�1 and the free variables in2ei are not bound (in w) in ei�1, the variables in Sei are bound in ei�1 (in w) and the ation�ei(x;x0) an be written as a quanti�er free formula of the form �1 ^ �2 suh that the variablesourring free in �1 are among bound (ei)0 [Sei (where bound (ei)0 = fx0 j x 2 bound (ei)g) andthe variables in bound (ei)0 [Sei do not our free in �2. We all Sei as the past of ei and writepast(ei) = Sei . Now onsider the edge el. If past(el) = Sel then the variables in Sel are bound(in w) in el�1. If past(el�1) = Sel�1 then the variables in Sel�1 are bound (in w) in el�2. Wean ontinue this reasoning only a �nitely many times after whih we will get an edge ep in wsuh that past(ep) = ;. We will show that the onstraint transformer assoiated with the stringw0 = ep : : : em is either a onstant funtion or unsatis�able. The onstraint transformer funtionassoiated with w0 is given by[[w0℄℄(') � (9x9xp : : : 9xm�1(' ^ p ^ : : : ^ m))(x)where k is the formula obtained by applying �-renaming to the onjuntion of the guard formulaek(x) and the formula 9z � 09x00Æek(x;x00) ^ ^�ek(x00;x0; z). That is k � ek(xk�1) ^ 9zk � 0 9xk00Æek(xk�1;xk00) ^ �ek(xk00;xk; zk)We identify the variable xi with its 0th renaming; aordingly we an write x0 for x.Now by de�nition, we an write p as ep(x) ^ �1p(bound(ep)p) ^�2p((fxp1; : : : ; xpngnbound (ep)p);x) where for any subset X � fx1; : : : ; xng we de-note by Xj the set fxj j x 2 Xg. For eah i (p < i � m), we an write ias 1ei(bound (ei�1)i�1) ^ 2ei(fx1; : : : ; xngnbound (ei�1)i�1) ^ �1i (bound (ei)i; past (ei)i�1) ^�2i ((fx1; : : : ; xngnbound (ei))i; (fx1; : : : ; xngnpast (ei))i�1). Observe that under this rewriting, m rewrites to 1em(bound (em�1m�1)^2em(fx1; : : : ; xngnbound (em�1)m�1^�1m(xm; past (em�1)m�1)^�2m((fx1; : : : ; xngnpast (em))m�1). Now we an transform the onstraint(9x9xp : : : 9xm�1(' ^ p ^ : : : ^ m))to a onstraint of the form (9x9xp : : : 9xm�1(' ^ ^ 0))123

suh that x is not free in 0 and the variables that our free in do not our free in 0;in partiular, the variables xm our free only in 0 (this will hold sine for eah p < i � m,past(ei) � bound (ei�1)). In this ase, we an move the orresponding existential quanti�ersinside; i.e., we an write the above onstraint as(9y(' ^)) ^ 9y0 0where y our free in '^ , and y0nxm our free in 0. If '^ is unsatis�able, then [[w℄℄(') isunsatis�able. Otherwise, if '^ is satis�able (whih we have assumed), therefore the onjunt9y'^ is equivalent to true. Thus, [[w0℄℄(') is equivalent to a formula that does not depend on', and hene a onstant funtion.Let eq be the least q suh that bound (eq) = fx1; : : : ; xng (suh a q exists sine bound(em) =fx1; : : : ; xng). We rewrite the above onstraint as follows.9x9xp : : : 9xm�1(' ^) ^ 0where' ^ � (' ^ ep(x)^ �2p((fxp1; : : : ; xpngnbound (ep)p);x)^ 2p+1(fxp1; : : : ; xpngnbound (ei�1)p)^ �2p+1((fxp+11 ; : : : ; xp+1n gnbound (ep+1)p+1); ((fx1; : : : ; xngnpast (ep+1))p))^ : : :^ �2q((fx1; : : : ; xngnpast (eq))q�1)^ : : :^ �2m((fx1; : : : ; xngnpast (em))m�1))and 0 � �1p(bound (ep)p) ^ 1ep+1((bound (ep))p)^ �1p+1(bound (ep+1)p+1; past(ep+1)p)^ : : :^ 1em(bound (em�1)m�1)^ �1m(xm; past (em�1)m�1)Now let w00 = e1 : : : ep�1. Then w = w00:w0. Hene the onstraint transformer [[w℄℄ assoiatedwith w is given by [[w℄℄ = [[w00℄℄ Æ [[w0℄℄. Sine [[w0℄℄ is either unsatis�able or onstant funtion, [[w℄℄is also either unsatis�able or a onstant funtion.Now seeking a ontradition, assume that symboli forward analysis for S does not termi-nate with loal entailment. Hene, there must be an in�nite path p along the onstraint tree.Following an argument in the proof of Theorem 5.1, p ontains in�nitely many ourrenes ofa simple yle w; i.e., p is an element of the language (E�:w)! . Now onsider any two nodess1 = w1:w and s2 = w2:w of p suh that s1 < s2. Sine the onstraint transformer funtionlabeling w is a onstant funtion, the onstraints labeling s1 and s2 are the same. Sine thishappens for every path p in the onstraint tree, following the argument in Theorem 5.1, we anobtain a ontradition. Hene symboli forward analysis for S terminates with loal entailment.[℄Corollary 7.1 Symboli forward analysis of an o-minimal hybrid system terminates with loalentailment.Proof. It is easy to see that eah simple yle of an o-minimal hybrid system is initializable.Hene the result follows from an appliation of Proposition 7.1. [℄124

7.7 Compositional Reasoning about TerminationIn this setion, we show how to reason ompositionally about suÆient termination onditions inour framework. In order to motivate that just proving termination for individual omponents isnot enough, onsider Figure 7.1. The �gure shows two hybrid systems S1 and S2. Eah system iso-minimal and hene symboli forward analysis for eah terminates. The �rst system S1 onsistsof two loations `0 and `1 and one (program) variable x whih inreases with derivative 1 in eahloation. There is an edge from `0 to `1 labeled a. The seond system S2 onsists of a singleloation m0 and an edge from m0 to itself labeled b. The variable y is the only program variable.It inreases with derivative 1 at the loation m0. The initial states (onstraints) for S1 and S2are respetively L = `0 ^ x = 0 and L = m0 ^ y = 0. The asynhronous parallel omposition ofS1 and S2 is not o-minimal. In fat, symboli forward analysis for their asynhronous parallelomposition does not terminate.
x:=0

 y:=0

PSfrag replaementsm0y = 1x := 0y � 2`0
`1

m0
S1 S2a b

Figure 7.1: Example showing omposition of o-minimal hybrid systems.The above example illustrates the need to develop sophistiated ompositional tehniques toinfer the termination of symboli forward analysis of the omposed system based on ertatainsuÆient riteria in the omponent systems. In the rest of this setion, we provide suÆientonditions under whih symboli forward analysis of the parallel omposition of n in�nite statesystems S1, : : : , Sn is terminating. To this end, we �rst de�ne the notion of an initialized edge.De�nition 7.5 (Initialized Edge) An edge e of an in�nite state system is said to be initializedif the free variables in the ation �e are among x0.Let S1; : : : ;Sk be k in�nite state systems with synhronizing alphabet sets �1; : : : ;�k. Below,for a �nite set I, we write Qi2I Si for the parallel omposition of in�nite state systems Si wherei 2 I.Theorem 7.1 If eah simple yle w = e1 : : : em (m � 1) of eah Si{ ontains an ej (1 � j � m) suh that lab(ej) 2 �1 \ : : : \ �k{ and for eah e 2 w suh that lab(e) 2 �1 \ : : : \ �k, e is an initialized edge125

then symboli forward analysis for S = S1jj : : : jjSk terminates with loal entailment.Proof. We show that the onstraint transformer funtion assoiated with eah simple ylein the omposed is either a onstant funtionor unsatis�able . The proof requires ompliatedombinatorial arguments. Before formally proving this, we state the basi intuition behind ourproof method: sine eah simple yle of eah omponent Sj ontains at least one edge ei suhthat lab(ei) 2 Tkl=1�l, therefore in eah simple yle w of the omposed system, eah omponent\moves"; i.e., for eah omponent there exists at least one edge in w suh that the projetion ofthat edge on that omponent is an edge in that omponent. We now formally state our proof.Formally, we �rst show that for any nonempty subset I � f1; : : : ; kg, in eah simple yle w ofthe omposed systemQi2I Si there exists an edge e suh that eah omponent Si (i 2 I) \moves"on that edge and lab(e) 2 Tki=1 �i. We prove this by indution on the ardinality of I. The basease when I is a singleton is trivial. Let the statement hold for all subsets of f1; : : : ; kg of size lessthan or equal to l. Let I � f1; : : : ; kg be suh that jIj = l+1 and there exists a simple yle win the omposed systemQi2I Si suh that for eah edge in w there exists a omponent Si (i 2 I)suh that Si does not \move" on that edge. Now onsider the simple yle w. There exists aomponent Sj (j 2 I) suh that the projetion of w on Sj is a yle in Sj. Now pik up any � 2 I.Consider the omposed system Qi2Inf�g Si. The projetion of w on this system ontains a ylew0 in it. Let w00 be a simple yle within w0. By indution hypothesis, there exists an edge e00 inw00 suh that every omponent Si (i 2 Inf�g) \moves" on e00 and lab(e00) 2 Tki=1�i. Considerthe edge e in w suh that its projetion on w0 is e00. By our assumption, S� does not \move"on that e. But sine lab(e) 2 Tki=1 �i, therefore, by the de�nition of parallel omposition, theexistene of this edge e in the omposed system Qi2I Si is impossible. Hene, we have shownthat for any nonempty subset I � f1; : : : ; kg, in eah simple yle w of the omposed systemQi2I Si there exists an edge e suh that eah omponent Si (i 2 I) \moves" on that omponentand lab(e) 2 Tki=1�i. Thus, in every simple yle w = e1: : : : :em the omposed system Qki=1 Si,there exists an edge e suh that every omponent Si \moves" on that edge and lab(e) 2 Tki=1 �i.We now show that the onstraint transformer funtion [[w℄℄ assoiated with eah simple yle wof S is either a onstant funtion or unsatis�able. Indeed, let w = e1: : : : :em be any simple yleof S. Then, there exists an edge e suh that every omponent Si \moves" on that edge andlab(e) 2 Tki=1 �i. Let e = ej . Consider the projetion of ej on any omponent Si. The projetionwill be an edge e0 in this omponent and also lab(e0) 2 Tki=1 �i. Hene, by the assumption of thetheorem, only the primed variables are free in �e0 . Hene, in S, only the primed variables arefree in �e. Hene �e is an initialized edge. It an be easily seen that the onstraint transformerfuntion assoiated with an initialized edge is either a a onstant funtion or unsatis�able. Letw0 = e1 : : : ej�1 and w00 = ej+1 : : : ej. Then the onstraint transformer funtion assoiated withw is given by [[w℄℄ = [[w0℄℄ Æ [[ej ℄℄ Æ [[w00℄℄. Hene [[w℄℄ is either a onstant funtion or unsatis�able.Now we an argue as in Proposition 7.1 and prove termination of symboli forward analysis withloal entailment. [℄To see the appliability of our results, onsider the two-proess real time mutual exlusionprotool given in Figure 7.2. The ritial setion is denoted by s. Here, the proesses donot share real variables | the ommuniation is through the synhronization labels. The setof synhronization labels �1 of proess P1 is the set fa; b; g; p; t1g and that for proess P2�2 = fa; b; g; q; t2g. Eah proess Pi has only one lok xi. It an be seen that this protoolsatis�es the onditions of theorem 7.1. Hene, symboli forward analysis for the protool (i.e.,symboli forward analysis of the omposed system) terminates.126

0

1

2

cs

0

1

2

cs

x1:=0
a

b
x1:=0

(x1=<2)

x1=<2
x1:=0

t1

x1:=0 a

x1>2 g

x1:=0
p

x2:=0
g

x2:=0
b

(x2=<2)

x2=<2

x2:=0
t2

x2:=0 g

x2>2

x2:=0

 a

q
b b

x2:=0

P1 P2

x1:=0 x2:=0

 x1:=0

Figure 7.2: A two-proess timed mutual exlusion protool.

127

Our next two theorems are onerned with in�nite state systems with integer-valued vari-ables. Let S1; : : : ;Sk be k in�nite state systems with integer-valued variables with synhronizingalphabet sets �1; : : : ;�k.Theorem 7.2 If eah simple yle w = e1 : : : em (m � 1) of eah Si is{ an initialized string and{ ontains an ei (1 � i � m) suh that lab(ei) 2 �1 \ : : : \ �kthen symboli forward analysis for S1jj : : : jjSk terminates with loal entailment.Proof. By following the same line of reasoning as in the proof of Theorem 7.1, we an showthat in every simple yle w = e1: : : : :em the omposed system Qki=1 Si, there exists an edgesuh that every omponent Si \moves" on that edge. This means that the projetion of w onany omponent Si ontains a yle w0 in Si.We now show that w is an initialized string. We show that for any variable x there exists a jsuh that x is bound (in w) in every edge in ej: : : : :em. Preisely, we show that if w0 = ee1: : : : : eep,then there exists a t (1 � t � p) suh that x is bound (in w0) in every edge in eet: : : : : eep wherethe variable x belongs to Si. We prove this by indution on the nesting depth of the yle w0ontained in the projetion of w on the omponent Si that x belongs to. The base ase is whenthe nesting depth is 0, i.e., when (the ontrol graph of) w0 is a simple yle; i.e., w0 is of the formas below where w0 = ee1: : : : : eep. Without loss of generality, we are assuming that the portion ofthe projetion ew of w on Si from the end of w0 to the end of ew does not ontain any yle of Si.` : : : w0z }| {` ee1�! : : : eep�! ` : : : `In this ase, due to the fat that the omponents do not share variables and the assumption ofthe theorem, we an show that there exists a t suh that x is bound (in w0) in every edge ineet: : : : : eep. From this it follows that there exists a j suh that x is bound (in w) in every edge inej : : : : :em. Now assume that the result holds for all w0 suh that the nesting depth of w0 is lessthan or equal to q. Let w0 be of nesting depth q+ 1. Then w0 must ontain a yle w00 whih isof nesting depth less than or equal to q. We an hose w00 suh that the portion of w0 from theend of w00 to the end of w0 does not ontain any nested yle. This situation is depited below.
` : : : w0z }| {` ee1�! : : : eer�! w00z }| {`0 ê1�! : : : êp�! `0 eet�! : : : feu�! ` : : : `Now there an be two ases. The �rst ase is that there exists an edge e between eet and eeu suhthat x is bound (in w0) in every edge in e: : : : : eeu. In this ase, sine the omponents do not sharevariables, we an easily show that there exists a j suh that x is bound (in w) in every edge inej : : : : :em. For the other ase in whih suh an edge does not exist we appeal to the indutionhypothesis. By the indution hypothesis, there exists a t0 suh that x is bound in every edgein êt0 : : : : :êp in w00. Also, by the indution hypothesis, every variable in Si is bound in êp (inw00). The binding of x in êp an be extended to eet: : : : : eeu (in w0). This is done as follows. First128

observe that the string eet: : : : : eeu is a part of a simple yle v = �e1: : : : : �ep:eet: : : : : eeu of Si. Nowwe show that the following is an invariant. If a variable y is bound in any edge eea between eet andeeu in v, then it is also bound in eea in the string v0 = êt00 : : : : :eet: : : : :eu where t00 is the greatestt suh that êt : : : êp is an initialized string (from the indution hypothesis suh a string exists).Indeed, �rst onsider any variable y that is bound in eet in v. Then there exists a partition offx1; : : : ; xng into two sets S and S0 suh that the guard onstraint eet(x) an be written as aquanti�er free formula of the form 1eet ^ 2eet where the free variables in 1eet are bound (in v) in �epand the free variables in 2eet are not bound in �ep (in v) and the ation �eet(x;x0) an be writtenas a quanti�er free formula of the form �1 ^ �2 where{ the variables ourring free in �1 are among bound(eet)0[S (where we use the same notationas in the proof of Proposition 7.1.{ The variables in bound (eet)0 [S do not our free either in �2 or in �2.{ Eah variable in S is bound in �ep (in v).But eah variable in S is bound in êp (in v0). Hene y is bound in eet in v0. Now suppose thatthis holds for all edges in eet: : : : : eea. Then it an be easily shown that this holds for eet: : : : :gea+1.Now aording to the assumption of the theorem x is bound in every edge eea between eet andeeu in v. Hene it is bound in every edge bound in every edge eea between eet and eeu in êt : : : eeu.Thus x is bound in every edge in the string êt : : : eeu. From this it easily follows that there existsa j suh that x is bound in every edge in ej : : : : :em. Thus we have proved that every simpleyle in the omposed system S1jj : : : jjSk is an initialized string. The result of the theorem thenfollows from Proposition 7.1. [℄Our next theorem also onsiders in�nite state systems with integer-valued variables. ThesuÆient onditions provided are more graph-theoreti. We �rst de�ne an exit point for a simpleyle w = e1 : : : em.De�nition 7.6 (Exit Point) An edge ei of a simple yle w = e1 : : : em is an exit point of wif the soure loation of ei is a part of a yle w0 6= w; i.e., it is also the soure loation of someedge in w0.For a simple yle w = e1 : : : em, we all the edge ei the last exit point of w if ei is an exit pointof w and for all j with i < j � m, ej is not an exit point of w; i.e., the soure loation of ei isthe last loation in w from whih one an leave w. If ei is the last exit point of a simple ylew = e1 : : : em, we all the substring w0 = ei : : : em the remainder setion of w.Theorem 7.3 Assume that eah Si is an in�nite state system with integer-valued variables.Suppose that{ eah simple yle in eah Si is an initialized string and{ the remainder setion of eah simple yle in eah Si ontains an initialized string.Then symboli forward analysis for S1jj : : : jjSk terminates with loal entailment.Proof. Seeking a ontradition, suppose that the onstraint tree for the omposed systemontains an in�nite branh �. Then some simple yle w must repeat in�nitely often along thatbranh. We now reason on the type of this simple yle w.129

Case 1. The �rst ase is that eah omponent Si \moves" on w; i.e., for eah omponent Sithere exists an edge e in w suh that the projetion of e on Si is an edge in Si. In this ase wean reason as in Theorem 7.2 and show that w is an initialized string. Then we an follow thereasoning of Proposition 7.1 and obtain a ontradition.Case 2. This ase is the negation of the �rst one. I.e., there exists at least one omponentthat does not \move" on w = e1 : : : em. Hene w may not be initialized. However for eahomponent Si that \moves" on w, for eah variable x that belongs to Si, there exists a j suhthat x is reset in any edge in ej : : : em. This an be proved by using reasoning similar to thatin Theorem 7.2. Now sine the branh � belongs to the language (E�w)! , it is of the formT0:w:T1:w: : : : . Consider the omponents that do not \move" on w. Without loss of generality,the variables that belong to these omponents be fxq; : : : ; xng. Among these, let fxq; : : : ; xsgbe the variables that belong to omponents that do not \move" after some point in the branh�. So the variables fxs+1; : : : ; xng belong to omponents suh that for every node � on �, foreah of these omponents there exists a desendant � 0 = w0:e of � suh that the omponent\moves" on e. We go down the branh � beyond the point after whih the omponents towhih the variables fxq; : : : ; xsg belong do not \move" any more. Sine the yle w repeatsin�nitely often, we an �nd below this point two nodes labeled w1 and w1:w. From the latternode, we an still go down until we an �nd a streth in whih eah of the omponents to whihfxs+1; : : : ; xng belong \move" at least one along this streth. We an �nd two nodes beyondthis \point" labeled w2 and w2:w. Let the word between w1:w and w2 be denoted by L1; i.e.,w2 = w1:w:L1. Sine w repeats in�nitely often along �, we an �nd nodes w3, w3:w, w4 andw4:w suh that w2:w < w3 and w4 = w3:w:L2 where eah omponent that ontains variablesamong fxs+1; : : : ; xng \moves" at least one in L2. In this way we an get an in�nite sequene ofnodes wi, wi:w, wi+1, wi+1:w where wi+1 = wi:w:Li and eah omponent that ontains variablesin fxs+1; : : : ; xng \moves" at least one in Li. Now notie that the edges in Li on whih theomponents, that ontain variables fxs+1; : : : ; xng, \move" must lie within a yle of S. Thesituation for a omponent Sj that \moves" in Li is shown below.Liz }| {: : : �! Cz }| {` �! : : : �! C0z }| {`0 �! : : : �! `0 �! : : : �! ` �! : : :Note that by \unpumping" (where if w = e1 : : : em is a word and C = ek : : : el (1 � k � l � m)is a yle ontained in w, then the word obtained from w by \unpumping" C is given bye1 : : : ek�1:el+1 : : : em) is all the yles that are inside C we an get a simple yle. We say that aomponent \moves" within a simple yle eC if the omponent \moves" in C and eC is obtainedby unpumping all the yles ontained in C and the omponent \moves" in eC. Now onsider thesimple yles in whih eah omponent that ontains the variables in fxs+1; : : : ; xng \moves" forthe last time in Li. That is, there is no "movement" of a omponent in Li after its orrespondingsimple yle (i.e., the simple yle in whih it \moves" for the last time in Li). Sine there arein�nitely many Lis but �nitely many simple yles, there must exist in�nitely many indies jisuh that in eah Lji , for eah omponent that ontains variables in fxs+1; : : : ; xng, its last\movement" in Lji is ontained in the same simple yle. Consider Lj1 and Lj2 . Consider thefollowing situation. 130

�z }| {: : : `|{z}wj1 : : : `|{z}wj1 :w : : : `|{z}wj1 :w:Lj1 : : : `|{z}wj1 :w:Lj1 :w : : : `|{z}wj2 : : : `|{z}wj2 :w : : : `|{z}wj2 :w:Lj2 : : : `|{z}wj2 :w:Lj2 :w : : :Let the onstraints labeling the nodes wj1 , wj1 :w, wj1 :w:Lj1 , wj1 :w:Lj1 :w, wj2 , wj2 :w,wj2 :w:Lj2 and wj2 :w:Lj2 :w be '1, '2, '3, '4, '5, '6, '7 and '8 respetively. We will showthat '8 j= '4. Then reasoning as in Proposition 7.1, we an obtain a ontradition.Suppose that N ;v j= '8. Then there must be a run from a solution v0 of '1to v. Let usdenote this run by R. Thushv01; : : : ; v0q�1; vq; : : : ; vs; v0s+1; : : : ; v0ni R�!� hv1; : : : vniWe will show that N ;v j= '4. Sine '3 is satis�able, there must exist a solutionhv001 ; : : : ; v00q�1; vq; : : : ; vs; v00s+1; : : : ; v00ni of '3. Hene there must exist a runhv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i �!� hv001 ; : : : ; v00q�1; vq; : : : ; vs; v00s+1; : : : ; v00nifrom the node wj1 to the node wj1 :w:Lj1 and N ; hv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i j='1. Let us all this run R0. Now we will onstrut a run fromhv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i �!� v from the node wj1 to the node wj1 :w:Lj1 :w.This will prove that N ;v j= '4.This run is onstruted as follows. From the node wj1 to the node wj1 :w we follow therun R0. Without loss of generality let S1; : : : ;Sl be the omponents that ontain the variablesfxs+1; : : : ; xng. From the node wj1 :w to the node wj1 :w:Lj1 , we follow the following strategy. Foreah of the edges in this streth other than those in the simple yles in whih some omponentsin fS1; : : : ;Slg \moves" for the last time in Lj1 , we update the variables aording to the runR0. For the simple yles in whih at least one of the omponents in fS1; : : : ;Slg \moves" forthe last time in Lj1 , we reason as follows. We �rst notie the following. Consider a yle Cnested in Lj1 in whih the omponent Si \moves" for the last time in Lj1 . It is of the form: : : Cz }| {` : : : C0z }| {`0 : : : `0 : : : ` : : :| {z }Lj1where C 0 is a yle nested inside C. Now there are two ases.Case 2.1 The omponent Si does not move in the streth from the end of C 0 to the end ofC. Then it must have "moved" in the streth from the beginning of C to the beginning of C 0.In that ase, it annot have "moved" in the yle C 0. Now the projetion w0 of the streth fromthe beginning of C to that of C 0 on Si must ontain a yle w00 of Si. We hoose this w00 in suha way that the streth from the end of w00 to the end of w0 does not ontain any yle of Si.Suppose that w00 = ee1: : : : : eep. Now we prove that for eah variable x that belongs to Si, thereexists a j suh that x is bound (in w00) in every edge in eej : : : eep. We prove this by indutionon the nesting depth of w00. The base ase when the nesting depth of w00 is zero, i.e., w00 is asimple yle, is trivial. Now assume that the result holds for all w00 suh that the nesting depthof w00 is less than or equal to q. Let w00 be of nesting depth q+1. Then w00 must ontain a yle131

w000 whih is of nesting depth less than or equal to q. We an hose w000 suh that the portionof w00 from the end of w000 to the end of w00 does not ontain any nested yle. This situation isdepited below.
` : : : w00z }| {` ee1�! : : : eer�! w000z }| {`0 ê1�! : : : êp�! `0 eet�! : : : feu�! ` : : : `Now there an be two ases. The �rst ase is that there exists an edge e between eet and eeu suhthat x is bound (in w00) in every edge in e: : : : : eeu. In this ase we have nothing to prove. Theseond ase is when there does not exist suh an edge. In this ase we appeal to the indutionhypothesis. By the indution hypothesis, there exists a t0 suh that x is bound in every edgein êt0 : : : : :êp in w00. Also, by the indution hypothesis, every variable in Si is bound in êp. Thebinding of x in ep an be extended to eet: : : : : eeu. This is done as follows.First observe that the string eet: : : : : eeu is a part of a simple yle v = �e1: : : : : �ep:eet: : : : : eeuof Si. Now we show that the following is an invariant. If a variable y is bound in any edge eeabetween eet and eeu in v, then it is also bound in eea in the string v0 = êt00 : : : : :eet: : : : :eu wheret00 is the greatest t suh that for the word eu = êt : : : êp every variable y in Si, there exists a j(t � j � p) suh that y is bound (in eu) in every edge in êj : : : êp (from the indution hypothesis).Indeed, �rst onsider any variable y that is bound in eet in v. Then there exists a partition offx1; : : : ; xng into two sets S and S0 suh that the guard onstraint eet(x) an be written as aquanti�er free formula of the form 1eet ^ 2eet where the free variables in 1eet are bound in �ep (in v)and the free variables in 2eet are not bound in �ep (in v) and the ation �eet(x;x0) an be writtenas a quanti�er free formula of the form �1 ^ �2 where{ the variables ourring free in �1 are among bound(eet)0[S (where we use the same notationas in the proof of Proposition 7.1).{ The variables in bound (eet)0 [S do not our free either in �2 or in �2.{ Eah variable in S is bound in �ep (in v).But eah variable in S is bound in êp (in v0). Hene y is bound in eet in v0. Now suppose thatthis holds for all edges in eet: : : : : eea. Then it an be easily shown that this holds for eet: : : : :gea+1.Now aording to the assumption of the theorem x is bound in every edge eea between eet and eeuin v. Hene it is bound in every edge bound in every edge eea between eet and eeu in êt : : : eeu. Thusx is bound in every edge in the string êt : : : eeu. Hene, we have shown that for every variable xthat belongs to Si, there exists a j suh that x is bound (in w00) in every edge in eej : : : eep.In this ase, for the variables that belong to Si, we update them in the edges that orre-sponding to eej : : : eep in the same way as is done in the run R in Lj2 . Note that sine the simpleyles in whih Si \moves" for the last time are same in Lj1 and Lj2 , we an do this kind ofupdate (ation).Case 2.2. The omponent Si "moves" in the streth from the end of C 0 to the of C. Wenow show that projetion u of the streth from the end of C 0 to the end of C on the omponentSi ontains an initialized string. Indeed, let eC be the simple yle obtained by unpumping allthe yles that are ontained in C. Consider the projetion of eC on the omponent Si. Sine Si"moves" in the streth from the end of C 0 to the end of C, either the projetion of this streth132

on the omponent Si itself ontains a simple yle of Si, or there is a (projetion of a) simpleyle of Si whose starting point orresponds to an edge in the streth from the beginning of Cto the beginning of C 0 and it ends in the streth from the end of C 0 to the end of C, after whihthe projetion does not ontain any yle. In the former ase, onsider the last simple yleontained in the projetion of the streth from the end of C 0 to the end of C. By the assumptionof the theorem, it ontains an initialized string. For the edges in Lj1 that orresponding to thisinitialized string, update the the variables belonging to Si in the same way as in Lj2 .In the latter ase, there an be two subases.Case 2.2.1 The �rst subase is that the omponent Si does not \move" in C 0. In this ase,we reason as follows. If the omponent Si does not \move" in the streth from the end of C 0to the end of C, then the projetion of the streth from the beginning of C to the beginning ofC 0 on Si must ontain a simple yle of Si. Hene on the projetion u of the streth from thebeginning of C to that of C 0, we hoose a simple yle w0 suh that the streth from the end ofw0 to the end of u does not ontain any yle. In this ase, for the variables that belong to Si,we update them in the edges that orrespond to w0 in the same way as is done in the run R inLj2 . If the omponent Si does \move" in the streth from the end of C 0 to the end of C, thenif the projetion of this streth on Si ontains a simple yle of Si, we an reason as in Case2.1. Otherwise, the projetion of C on Si will ontain a simple yle u1:u2 of Si suh that u1belongs to the projetion of the streth from the beginning of C to the beginning of C 0 while u2belongs to the projetion of the streth from the end of C 0 to the end of C. In this ase, for thevariables that belong to Si, we update them in the edges that orrespond to u1:u2 in the sameway as is done in the run R in Lj2 .Case 2.2.2 The seond subase is that the omponent Si \moves" in the yle C 0. Inthis ase, if the omponent Si must \move" in the streth from the end of C 0 to the end ofC (otherwise eC is not the simple yle in whih Si �̀moves" for the last time in Lj1). If theprojetion of the streth from the end of C 0 to the end of C on Si ontains a simple yle of Si,then we an reason as in Case 2.2.1. In the other ase, the projetion of C on Si will ontain asimple yle u1:u2 of Si suh that u1 belongs to the projetion of the streth from the beginningof C to the beginning of C 0 while u2 belongs to the projetion of the streth from the end of C 0 tothe end of C. Now the end of u1 is an exit point of the simple yle u1:u2. Hene from the seondondition of this Theorem, u2 must ontain a initialized string. Let w0 be the last initializedstring ontained in u2 (i.e., if we let u2 = u:w0:u0, then, for any u00 suh that u2 = u00:w00:u000 andu is a pre�x of u00, w00 is not a initialized string). We now show that w0:u0 is an initialized string.Indeed, onsider any variable x tat belongs to Si. Of ourse x is bound in the edge e in w0:u0where w0 = w00:e. Either this binding extends all the way through u0. Or we must get an edgee0 in u0 suh that u0 = u000:e0:w000 and x is bound in w0:u0 in every edge in w000. In this ase, forthe variables that belong to Si, we update them in the same way as is done in the run R in Lj2 .Finally, we note that in all these ases, in the run reated, we get a tuplehv001 ; : : : ; v00q�1; vq; : : : ; vs; vs+1; : : : ; vni. Now we an easily onstrut a run from this tuple tothe tuple v at the node wj1 :w:Lj1 :w. This is done by the following method. In every edgein the streth from tthe node wj1 :w:Lj1 to the node wj1 :w:Lj1 :w, we update the variables infx1; : : : ; xq�1g in the same way as is done in R in the streth from the node wj2 :w:Lj2 to thenode wj2 :w:Lj2 :w. Hene N ;v j= '4. [℄133

7.8 Related WorkReahability analysis for in�nite state systems with integer valued variables has been onsid-ered by Berard and Fribourg [BF99℄ as well as by Fribourg and Olsen [FO97℄. Berard andFribourg [BF99℄ did not identify any (interesting) sublass of suh systems for whih theirreahability analysis proedure terminates. They relaxed the reahability analysis proedureover integers to reals with the observation that over the lass of onstraints that they have on-sidered, elimination of variables over R (the domain of reals) using Fourier-Motzkin proedureis exat, i.e., produes the same result as the elimination of variables over N (the domain ofnatural numbers). However, it an be easily shown that over the lass of onstraints that theyhave onsidered, the real and integer solving algorithms perform exatly in the same way. Hene,the relaxation to reals does not provide any advantage with respet to omputational omplex-ity ontrary to the laim in [BF99℄. Like the work of Berard and Fribourg [BF99℄, Fribourgand Olsen [FO97℄ also do not provide any suÆient onditions for termination of their modelheking proedure.Abdulla, Cerans, Jonsson and Tsay [ACJT96℄ as well as Finkel and Shnoebelen [FS98℄gave a unifying framework for deriving deidability results for model heking for in�nite statesystems. However, their framework requires �nding a well quasi-ordering on the states. In manypratial situations, �nding suh a well quasi-ordering on the states is not feasible. Besides, theirmethod of deriving suÆient termination onditions for reahability analysis is monolithi; onehas to onsider the state-spae of the omposed system to show the termination of reahabilityanalysis.Comon and Jurski [CJ98℄ obtained deidability results for reahability analysis for a fragmentof the lass of multiple ounter automata. They showed that the �xpoint of iterating transitionsfor this sublass of multiple ounter automata is expressible in Presburger arithmeti. Again,their framework does not provide any means of reasoning about suÆient termination onditionsompositionally.Boigelot [Boi98℄ obtained suÆient onditions for termination of reahability analysis forin�nite state systems with integer-valued variables based on graph-theoreti properties of theunderlying ontrol graphs. However, like the works mentioned above, his work does not providea ompositional way of reasoning about suÆient termination onditions.Bultan, Gerber and Pugh [BGP97℄ presented a model heker for in�nite state systemswith integer-valued variables based on the Presburger solver from the Omega library [Pug92℄.While [BGP97℄ provided model heking proedures for both safety and liveness properties, nosuÆient onditions for termination of the proedures were provided.Wong-Toi [WT95℄ has identi�ed a sublass of linear hybrid systems alled skewed lok au-tomata that an be translated to timed safety automata. The sublass of skewed lok automatais losed under parallel omposition. While symboli bakward analysis is guaranteed to termi-nate for skewed lok automata, symboli forward analysis is possibly non-terminating for thissublass. However, as disussed in the previous hapters, symboli forward analysis is widelyused in pratial experiments. It is also not lear how the methods of [WT95℄ an be extendedto nonlinear hybrid systems.Non-linear hybrid systems have been onsidered by La�erriere, Pappas and Yovine [LPY99℄.For the lass of o-minimal hybrid systems, they proved the termination of symboli bakwardanalysis by showing that this lass admits �nite bisimulations. Using our toolbox, we have givena simple proof of the termination of symboli forward analysis for o-minimal hybrid systems. In134

fat this result has been obtained as a orollary of a more general theorem. While the reasoningabout termination of symboli bakward analysis in [LPY99℄ is not ompositional, our toolboxalso allows ompositional reasoning about termination of symboli forward analysis for the lassof hybrid systems onsidered in [LPY99℄.Henzinger, Kopke, Puri and Varaiya [HKPV95℄ onsidered initialized retangular automata,a sublass of linear hybrid systems, for whih symboli bakward analysis is guaranteed toterminate. Henzinger [Hen95℄ onsidered hybrid automata with �nite bisimulations for whihsymboli bakward analysis is guaranteed to terminate. But none of these works addressed theissue of ompositional reasoning about suÆient termination onditions.Lam and Brayton [LB93℄ onsidered alternating RQ timed automata whih were losed underI/O omposition. The lass of alternating RQ automata is restritive in the sense that it allowsexatly one reset and exatly one query for eah lok in an entire automaton. Moreover thenotion of I/O omposition that they used is muh more restritive than the notion of parallelomposition used in this hapter. It is also not known whether symboli forward analysis foralternating RQ timed automata is guaranteed to terminate.Namjoshi [Nam98℄ onsidered model heking for parameterized systems in whih eah pro-ess is �nite state. In ontrast, in this hapter, we onsidered �nite families of possibly in�nitestate systems.In Chapter 5, we provided a framework for reasoning about suÆient termination onditionsfor symboli forward analysis of timed automata. The present hapter is an extension of thatframework to the more general ontext of in�nite state systems with integer-valued variables and(nonlinear) hybrid systems as well as augmenting the framework with ompositional reasoning.

135

136

Chapter 8Constraint Transformer Monoids:A Uni�ed Algebrai Frameworkfor Abstrat Symboli ForwardAnalysis of In�nite State Systems8.1 IntrodutionOver the last few years, there has been an inreasing researh e�ort direted towards automativeri�ation of in�nite state systems. Researh on deidability issues (e.g., [ACJT96, ACHH93,Boi98, LPY99, HKPV95, CJ98℄) has resulted in highly non-trivial algorithms for the veri�ationof di�erent sublasses of in�nite state systems. These results do not, of ourse, imply terminationguarantees for semi-algorithms on whih pratial tools are based (e.g., the deidability of themodel heking problem for timed automata does not entail a termination guarantee for symboliforward analysis of timed automata; symboli forward analysis for timed automata is possiblynon-terminating).Pratial tools generally use abstrations to guarantee (or speed-up) the termination ofthese semi-algorithms. The abstrat semi-algorithms resulting from suh abstrations may bealways terminating but approximate (i.e., they always terminate but an produe don't knowanswers; for example the semi-algorithm with widening used in [HPR97℄), or both terminat-ing and aurate (e.g., the algorithm with the extrapolation operator in [DT98℄ and used inKRONOS) or possibly non-terminating and aurate (suh abstrat semi-algorithms are possi-bly non-terminating; but when they terminate they produe a yes/no answer; examples are thesemi-algorithm with the yle-step abstration in [BBR97℄ and the semi-algorithm with auratewidening in [MP00a℄). Many of these abstrations are inspired by the abstrat interpretationframework of Cousot and Cousot [CC77℄.Symboli forward analysis is a semi-algorithm that in many ases solves the model hekingproblem for in�nite state systems in pratie. This semi-algorithm is implemented in many pra-tial model heking tools like UPPAAL [BLL+96℄, KRONOS [DT98℄ and HYTECH [HHWT97℄.This hapter presents a uniform algebrai framework for deriving abstrat symboli forward anal-ysis proedures for a large lass of in�nite state systems with variables ranging over a numeridomain. We obtain the framework by lifting notions from lassial algebrai theory of automata137

to onstraints representing sets of states. Our framework provides suÆient onditions underwhih the derived abstrat symboli forward analysis proedure is always terminating or aurateor both. The lass of in�nite state systems that we onsider here are (possibly non-linear) hy-brid systems and (possibly non-linear) integer-valued systems. The entral notions involved arethose of onstraint transformer monoids and overings between onstraint transformer monoids.We show onrete appliations of our framework in deriving abstrat symboli forward analysisalgorithms for timed automata and the two proess bakery algorithm that are both terminatingand aurate.Our results suggest a potential optimization of the (abstrat) symboli forward analysisproedures. Namely, the termination guarantees ontinue to hold even when the �xpoint testis made more eÆient by weakening it to loal entailment (explained below; e.g., for lineararithmeti onstraints over reals, the omplexity of �xpoint test redues from o-NP hard topolynomial).8.2 In�nite State SystemsWe reall the notion of in�nite states systems from Chapter 7. We assume that the programvariables range over the set of natural numbers N or the set of reals R, and the guard andthe ation formulas are Arith(N) (the theory of natural numbers with addition, multipliationand order; it is interpreted over the struture hN ; <;+; �; 0; 1i) or OF (R) (the theory of theordered �eld of reals; it is interpreted over the struture hR; <;+; �; 0; 1i) formulas. Below, wewill refer to OF (R) or Arith(N) formulas as onstraints. For a formula ' with free variables x,we denote by '(x0), the formula obtained by replaing the free variables x of ' by x0. Similarto Chapter 7, we will use onstraints ' to represent ertain sets of states of the system.In thesequel, we assume only onjuntive onstraints; i.e., onstraints that are onjuntions of atomionstraints of the form t relop where t is a term, 2 N and relop 2 f>;<;�;�g. Examples ofsystems as desribed above inlude the bakery algorithm, the bounded bu�er produer-onsumerproblem et. as well as the so-alled hybrid systems.8.3 Constraint Transformer MonoidsOur de�nition of onstraint transformer monoids is inspired by the de�nition of (syntati)transformation monoids in [Eil76℄. Let � be a (possibly in�nite) set of satis�able onstraints(i.e., eah onstraint in � is satis�able). We denote the set of all partial funtions � �! � bySF(�). Let 1� denote the identity funtion. The set SF(�) forms a monoid with funtionalomposition as the multipliation and 1� as the identity element. A onstraint transformersemigroup is a pair h�; Si where S is a subsemigroup of SF(�). The onstraint transformersemigroup h�; Si is a onstraint transformer monoid if the identity funtion 1� is in S. Theelements of � are alled symboli states. The elements of S are alled onstraint transformers. Aonstraint transformer monoid X = h�; Si is a onstraint transformer submonoid of a onstrainttransformer Y = h�0; S0i if � � �0 and S is a submonoid of S0.By the denotation of set of onstraints �, we represent the denotation of their disjuntion;i.e., [�℄ = S'2�['℄.We next de�ne a syntati order v' on a onstraint transformer monoid X = h�; Si withrespet to a onstraint ' 2 � as follows. 138

Syntati Order. For w;w0 2 S, w v' w0 i� w(') j= w0('). Given a set of onstraints	 � �, we say that an in�nite sequene w0; w1; : : : , where wi 2 S, is syntatially inreasingwith respet to 	 if for all i � 1, there exists ' 2 	 suh that wi 6v' wj for all j < i.Finitary Constraint Transformer Monoids. We say that a onstraint transformer monoidX is �nitary with respet to a set 	 � � of onstraints if there does not exist any syntatiallyinreasing in�nite sequene with respet to 	. Note that X is �nitary does not mean that � is�nite.Reahability. For a onstraint transformer monoid X = h�; Si, a reahability question is ofthe form: given '1; '2 2 �, does there exist a w 2 S suh that '2 = w('1)?Constraint transformer monoids generated by in�nite state systems: We now showhow an in�nite state system generates a onstraint transformer monoid. We identify two on-straints ' and '0 i� they have the same denotations; i.e., ['℄ = ['0℄. We reall the notion ofonstraint transformers from Chapter 5. The onstraint transformer monoid generated by anin�nite state system S is given by CT (S) = h�; Si where � = f' j 9w 2 E�[[w℄℄('0) = 'g andS = f[[w℄℄ j w 2 E�g with funtional omposition as the multipliation in S and [["℄℄ as the unitelement.8.4 Coverings of Constraint Transformer MonoidsOur de�nition of overing between onstraint transformer monoids is inspired by that of overingbetween (syntati) transformer monoids in [Eil76℄. Let X = h�; Si and Y = h�0; S0i be twoonstraint transformer monoids. Let f be a total (binary) relation from � to �0. For w 2 S andv 2 S0, we onsider the following diagram.�f
��

w // �f
���0 v // �0If the above diagram ommutes, i.e., for all ' 2 �, v(f j f(';)g) = f j f(w(');)g, thenwe say that v overs w with respet to f where for a set e�, v(e�) = fv(') j ' 2 e�g. If for eahw 2 S there exists a v 2 S0 suh that v overs w we say that the relation f is a overing betweenX and Y . We say that the onstraint transformer monoid Y overs the onstraint transformermonoid X if a overing f exists between X and Y and we write X � Y . We are now going tode�ne a quotient of X with respet to f ; we all suh a quotient an f -quotient of X.f quotient. In order to de�ne an f -quotient of X, we �rst de�ne an equivalene relation �fon � as follows. For ';'0 2 �,' �f '0 () f j f(';)g = f 0 j f('0; 0)g:Next we de�ne a representant funtion rep : �= �f�! � as rep(['℄) = ', where ['℄ is theequivalene lass of ' with respet to the equivalene relation�f . Given a overing relation f and139

a representant funtion rep as above, we all the onstraint transformer monoidX 0 = hrep(�= �f); Ŝi an f -quotient of X where Ŝ = f ew j w 2 Sg and for any onstraint 2 rep(�= �f),ew() = rep([0℄) i� w() = 0.Canoniity and Saturation. We say that a onstraint ' 2 � is anonial with respet tof if for all '0 2 � with ' 6= '0, f j f(';)g 6= f 0 j f('0; 0)g. We say that the relation fsaturates a onstraint ' 2 � if there exists a onstraint 2 �0 suh that f(';) and for all'0 2 �0 with f('0;), we have ' = '0. The notions of anoniity and saturation indiate the\loal" distinguishing power of f .De�nition 8.1 (Homeoovering) We say that f is a homeoovering from X to Y with re-spet to onstraints '1 and '2 if f is a overing from X to Y and one of the following onditionshold.{ either f�1 is a overing from Y to a onstraint transformer submonoid X 0 = h�00; S00i ofX (i.e., Y � X 0 and f�1 witnesses the overing) and '1; '2 2 �00,{ or f�1 is a overing from Y to an f -quotient X 0 of X (i.e., Y � X 0 and f�1 is a witnessto this overing) and '1 and '2 are both anonial with respet to fDe�nition 8.2 (Finitary Covering) We say that a overing f is a �nitary overing from Xto Y with respet to a set of onstraints 	 � �, if f is a overing from X to Y and Y is �nitarywith respet to f j f(';); ' 2 	g.Note that even if f is a �nitary overing from X to Y = h�0; S0i, it does not mean that �0 is�nite. We will use the notion of �nitary overings to provide suÆient onditions for terminationof abstrat symboli forward analysis in Theorem 8.1.Proposition 8.1 Let S be an in�nite state system. Let X = h�; Si be the onstraint trans-former monoid generated by S. Let Y = h�0; S0i be a onstraint transformer suh that X � Ywith f being a overing between X and Y . Suppose that a onstraint '2 is reahable from theinitial onstraint '1 in S. Then there exists v 2 S0 suh thatf jf('2;)g = v(f 1 j f('1; 1)g):If, in addition, f saturates '1 and f is homeoovering from X to Y with respet to '1 and '2,then the onverse also holds.Proof. The equality follows diretly from the de�nition of overing between onstraint trans-former monoids. Indeed, if '2 is reahable from '1, then there exists a w 2 E� suh that[[w℄℄('1) = '2. Sine f is a overing between X and Y , there exists v 2 S0 that overs [[w℄℄.Hene, the equality follows from the de�nition.Now assume the equality. If f saturates '1 and one of the two onditions for homeooveringholds, then we show that there exists w 2 E� suh that [[w℄℄('1) = '2. Suppose that the �rstondition holds. Sine f saturates '1, there must exist a onstraint 1 in �0 suh that f('1; 1)and for all '0 suh that f('0; 1), '1 = '0, i.e., '1 = f'0 j f('0; 1)g. Also, by the assumedequality, f('2; v(1). Sine f�1 is a overing between Y and X 0, there exists a w 2 E� suh140

that [[w℄℄ overs v. Therefore f[[w℄℄('1)g = f'0 j f('0; v(1)g. Therefore '2 = [[w℄℄('1). Hene,'2 is reahable from '1.Suppose now that the seond ondition holds. Let X 0 = h�00; S00i be an f -quotient of X withrep as the hosen representant funtion. Sine f saturates '1, there exists 1 suh that f('1; 1)and for all '0 suh that f('0; 1), we have '0 = '1. Sine '1 and '2 are anonial with respetto f , we have rep(['1℄) = '1 and rep(['2℄) = '2. Hene, we have, f(rep(['1℄; 1). By theassumed equality, there exists v 2 S0 suh that f('2; v(1)). Sine, f�1 is a overing betweenX and X 0, there exists g[[w℄℄ 2 S00, suh that fg[[w℄℄(rep(['1℄))g = frep(['℄) j f(rep(['℄); v(psi1))g.Sine, rep(['2℄) is in the right hand side of this equality, therefore, g[[w℄℄(rep(['1℄)) = rep(['2℄).By anoniity of '1 and '2 with respet to f , '2 = [[w℄℄('1). [℄8.5 Constraint Trees and Symboli Forward AnalysisGiven a onstraint transformer monoid X = h�; Si with a �nite set of generators eS (i.e., eSgenerates S), we de�ne the onstraint tree for X as follows. Let Sfree be the free monoidgenerated by eS. For ew 2 Sfree, we say that w 2 S is the ompanion of ew i� w is obtained byreplaing onatenation in ew with multipliation in S. Thus, for example, w 2 S is a ompanionof g1:g2 i� w = g1 Æ g2 where Æ is the multipliation in S.De�nition 8.3 (Constraint Tree) The onstraint tree for X = h�; Si with respet to a on-straint '0 2 � and a �nite set of generators eS of S is an in�nite tree with domain Sfree thatlabels the node ew by the onstraint w('0) where w is the ompanion of ew.That is, the root " is labeled with '0. For a node ew labeled ', for eah g 2 eS, the suessor nodeew:g is labeled by g('). We are now in a position to de�ne symboli forward analysis of a �nitelygenerated onstraint transformer monoid with respet to a onstraint formally. A symboliforward analysis is a traversal of (a �nite pre�x of) a onstraint tree in a partiular order. Thefollowing de�nition of a non-deterministi proedure abstrats away from that spei� order.De�nition 8.4 (Symboli Forward Analysis) A symboli forward analysis of a �nitely gen-erated onstraint transformer monoid X with respet to a onstraint '0 and a �nite set of gen-erators eS is a proedure that enumerates onstraints 'i labeling the nodes ewi of the onstrainttree of X with respet to '0 and eS in a tree order suh that the following holds.{ 'i = wi('0) for 0 � i < B where the bound B is either a natural number or ! and wi isthe ompanion of the word ewi 2 Sfree,{ if ewi is a pre�x of ewj then i � j,{ the disjuntion W0�i<B 'i is equivalent to the disjuntion W0�i<! 'i.The number i is a leaf of a symboli forward analysis if the node ewi is a leaf of the tree formedby all the nodes ewi where 0 � i � B. We say that a symboli forward analysis terminates if itsbound B is �nite. We de�ne that a symboli forward analysis terminates with loal entailmentif for all its leaves i there exists a j < i suh that the onstraint 'i entails the onstraint 'j(remember that eah 'i is a onjuntive onstraint). In ontrast, a symboli forward analysisterminates with global entailment if for all its leaves i, the onstraint 'i entails the disjuntion141

of the onstraints 'j where j < i. For onstraint domains that do not satisfy the indepen-dene property1, heking for global entailment is usually more expensive than heking forloal entailment. Many model hekers use loal entailment for their �xpoint test (e.g., UP-PAAL [LPY95b℄ uses identity; the model heker for in�nite state systems desribed in [DP99a℄uses loal entailment).Remark 8.1 A symboli forward analysis for an in�nite state system S with respet to the initialonstraint '0 is a symboli forward analysis of the onstraint transformer monoid generated byS with respet to '0. If terminating, the onstraint W0�i<B 'i represents the set of all reahablestates in S. For an in�nite state system S, a onstraint '2 is reahable from the onstraint '1if there exists a node ew labeled by '2 in the onstraint tree with respet to '1 of the onstrainttransformer monoid generated by S.8.6 Abstrat Constraint Trees and Abstrat Symboli ForwardAnalysisLet X = h�; Si be a onstraint transformer monoid with a �nite set of generators eS. Let Sfree bethe free monoid generated by eS. Let Y = h�0; S0i be a onstraint transformer monoid overingX and let f be a overing relation witnessing the overing. We de�ne an abstrat onstrainttree of S with respet to Y , f , eS and a onstraint '0 as follows.De�nition 8.5 (Abstrat Constraint Tree) An abstrat onstraint tree for X with respetto the onstraint transformer monoid Y , a onstraint '0, a �nite set of generators eS and aovering relation f is an in�nite tree with domain Sfree that labels the node ew 2 Sfree by theset of onstraints 	 = fv(0) j f('0; 0)g where v 2 S0 overs w (the ompanion of ew).In the above de�nition we assume that there is a �nite representation for eah 	 labelingew 2 Sfree in the abstrat onstraint tree. Note that the onstraint tree for X with respet to '0is an abstrat onstraint tree for X with respet to the onstraint transformer monoid X andthe identity funtion as the overing. Also note that the onstraint transformer monoid Y maybe arbitrary; i.e., it need not be �nitely generated. If for eah w 2 S, we �x a v 2 S0 overingw, we all the resulting abstrat onstraint tree a �xed-over abstrat onstraint tree. Below,whenever we talk about abstrat onstraint tree, we assume a �xed over C � S0, i.e., for eahw 2 S there exists a unique v 2 C suh that v overs w. We denote by TC be the abstratonstraint tree of X with respet to Y , f and C, i.e., a node ew is labeled by fv(0) j f('0; 0)where v is the unique element of C overing w (the ompanion of ew) and f 0 j f('0; 0)g labelsthe root. We are now in a position to de�ne formally abstrat symboli forward analysis. Anabstrat symboli forward analysis of X with respet to a onstraint transformer monoid Y is atraversal of (a �nite pre�x of) the (�xed over) abstrat onstraint tree of X with respet to Yin a partiular order. The following de�nition of a non-deterministi proedure abstrats awayfrom that spei� order.De�nition 8.6 (Abstrat Symboli Forward Analysis) An abstrat symboli forwardanalysis of a onstraint transformer monoid X with respet to a onstraint '0 and a �xed over1A onstraint domain is said to satisfy the independene property if for any onstraint and a set of onstraints�, j= W'2� ' i� there exists ' 2 � suh that j= '142

C is a proedure that enumerates the sets of onstraints 	i labeling the nodes fwi of the abstratonstraint tree TC with respet to '0 (and C) in a tree order suh that the following holds.{ 	i = fvi(0) j f('0; 0)g where vi 2 C overs wi 2 S (the ompanion of fwi) and the boundB is either a natural number or !,{ if fwi is a pre�x of fwj then i � j,{ the disjuntion W0�i<B W	i is equivalent to the disjuntion W0�i<!W	i where W	i �W'2	i '.Similar to symboli forward analysis, we say that an abstrat symboli forward analysisterminates if the bound B is �nite; the onept of a leaf is de�ned similarly. We say that anabstrat symboli forward analysis terminates with loal entailment if for all its leaves i, foreah onstraint ' 2 	i, there exists a j < i, and a onstraint '0 2 	j suh that ' j= '0. Thenotion of termination with global entailment is de�ned in the obvious way.We now present suÆient onditions under whih an abstrat symboli forward analysis ispossibly non-terminating and aurate, terminating and possibly inaurate or both terminatingand aurate with respet to a reahability question.Theorem 8.1 Let X = h�; Si be a onstraint transformer monoid having a �nite set of gener-ators eS. Let '1; '2 2 �. Let Y = h�0; S0i be a onstraint transformer monoid overing X withf witnessing the overing and let C � S0 be a �xed over. Then the following hold.1. Suppose that for all i, 	i 6= f j f('2;)g where 	i is the set of onstraints labeling thenode fwi of the abstrat onstraint tree of X with respet to '1, Y , f , and C. Then theonstraint '2 is not reahable from '1 in X.(a) If, in addition, f is a �nitary overing with respet to f'1g, then eah abstrat sym-boli forward analysis of X with respet to '1, Y , f and C terminates with loalentailment. In this ase, abstrat symboli forward analysis always terminates withloal entailment but may produe a `don't know' answer the reahability question.2. If f saturates '1 and f is a homeoovering from X to Y with respet to onstraints '1 and'2 then '2 is reahable from '1 in X i� there exists an i suh that 	i = f j f('2;)gwhere 	i labels the node fwi in the abstrat onstraint tree of X with respet to Y , f , '1and C. In this ase, abstrat symboli forward analysis is possibly non-terminating; butwhen it terminates, it produes a yes/no answer for the reahability question.(a) In partiular, if f is a funtion then '2 is reahable from '1 in X i� is not reahablefrom 0 in the abstrat symboli forward analysis of X with respet to Y , f , '1 andC where f('1; 0) and f('2;).(b) If, in addition, f is a �nitary overing with respet to f'1g then eah abstrat sym-boli forward analysis of X with respet to '1, Y , f and C terminates with loalentailment. In this ase, abstrat symboli forward analysis always terminates withloal entailment and is aurate.Proof. The �rst statement follows from Proposition 8.1. Suppose that the inequality inthe �rst statement of the theorem holds for all i. Seeking a ontradition, suppose that '2 is143

reahable from '1. Then, there exists wi 2 S suh that '2 = wi('1). Now onsider fwi 2 Sfreesuh that wi is the ompanion of fwi. The node fwi in the abstrat onstraint tree TC is labeledby 	i = fvi(0) j f('1; 0)g where vi 2 C overs wi. By Proposition 8.1, 	i = f j f('2;)g.Hene a ontradition.Suppose, f is a �nitary overing with respet to '1. Consider, �rst, the ase when Y is�nite. Then, along every branh of the abstrat on the abstrat onstraint tree, there existstwo nodesfwi and fwj , where j < i, labeled by the same set of onstraints 	. Hene, any abstratsymboli forward analysis terminates with loal entailment. Suppose now that Y is �nitary withrespet to f 0 j f('1; 0)g. Then, along any branh of the onstraint tree there exists a nodefwi labeled by 	i suh that for eah onstraint 2 	i, there exists a j < i and a onstraint 0 2 	j suh that j= 0. The statement 2 in the theorem follows from a diret appliation ofProposition 8.1. [℄8.7 AppliationsIn this setion, we show onrete appliations of the framework developed above to timed au-tomata and the two-proess bakery algorithm.8.7.1 Timed AutomataWe reall the notion of timed automata from Chapter 5. Symboli forward analysis of timedautomata is possibly non-terminating [MP99℄. In order to de�ne an abstrat symboli forwardanalysis for timed automata, we reall the trim operation on onstraints from Chapter 3.Let T be a timed automaton and let X = h�; Si be the onstraint transformer monoidgenerated by T . We de�ne the onstraint transformer monoid Y obtained by trimming asfollows.De�nition 8.7 (Constraint transformer monoid obtained by trimming) Given atimed automaton T , the onstraint transformer monoid Y obtained by trimming is de�ned asY = h�0; S0i, where �0 = ftrim(') j ' 2 �g and S0 = f ew j w 2 Sg and ew(trim(')) = trim('0)if w(') = '0.It an be easily veri�ed that eah ew is a funtion from �0 to �0 and that S0 is a monoid withthe identity funtion as the unit element.Proposition 8.2 For a timed automaton T with the generated onstraint transformer monoidX = h�; Si, the onstraint transformer monoid Y obtained by trimming overs X with thefuntion f : ' 7! trim(') (note that the trim operation is a funtion) witnessing the overing.Proof. Follows from Proposition 3.2. [℄Intuitively, eah w is overed with respet to f by ew.Proposition 8.3 The onstraint transformer monoid Y obtained by trimming is �nite.Proof. Follows from Lemma 3.5. [℄Proposition 8.4 Any f -quotient of X 0 of X overs the onstraint transformer monoid Y ob-tained by trimming with f�1 witnessing the overing.144

Proof. The proof is similar to that of Proposition 3.2. [℄We all a onstraint ' bounded if ' ^Vni=1 xi � M = '. It an be easily veri�ed that anybounded onstraint ' 2 � is anonial with respet to f . Also for eah bounded onstraint' 2 �, f saturates '.Theorem 8.2 For any onstraint ', abstrat symboli forward analysis of a timed automaton Twith respet to the onstraint transformer monoid Y obtained by trimming, f and ' terminates.Moreover, if ';'0 is are bounded onstraints, then '0 is reahable from ' in T i� f('0) isreahable in the abstrat symboli forward analysis of T with respet Y , f and '.Proof. Follows from Propositions 8.1, 8.2, 8.3, 8.4 and Theorem 8.1. [℄Note that the onstraint transformer monoid Y above is never onstruted expliitly. Rather,it is onstruted on-the-y.8.7.2 The Two-proess Bakery AlgorithmThe bakery algorithm implements a mutual exlusion protool. The guarded ommands forthe two-proess bakery algorithm are given in Figure 8.1. We say that the two proess bakeryalgorithm is safe if no state of the form L = huse; usei ^ is reahable from the initial state.Let X = h�; Si be the onstraint transformer monoid generated by the two-proess bakeryalgorithm. We de�ne the overing monoid, alled the abstrat target monoid, as follows.De�nition 8.8 (Abstrat target monoid) Given the two-proess bakery algorithm, the ab-strat target monoid Y is de�ned as Y = h�0; S0i where �0 = f'1; : : : ; '10g2 and S0 = f ew j [[w℄℄ 2Sg where the onstraints '1; : : : ; '10 are de�ned in Figure 8.2.Here ew('i) = 'j if there exists ; 0 2 � suh that [[w℄℄() = 0 and j= 'i and 0 j= 'j . Itan be easily veri�ed that eah ew 2 S0 is a funtion from �0 to �0. De�ne the relation f from �to �0 as f(';'0) i� ' j= '0. Note that f is a funtion in this ase.Proposition 8.5 The abstrat target monoid Y overs the onstraint transformer monoid X(generated by the two-proess bakery algorithm) with the mapping f witnessing the overing.Proof. Follows from the de�nitions of S0 and f . [℄Eah w is overed with respet to f by ew.Proposition 8.6 Any f -quotient of X overs the abstrat target monoid Y with f�1 witnessingthe overing.Proof. Consider any 'i 2 �0. Let = rep(f' 2 �j' j= 'ig) where rep is a hosen representantfuntion for a quotient. Consider ew 2 S0. We laim that [[w℄℄ 2 S overs ew with respet to f�1.Suppose that ew('i) = 'j . It an be veri�ed that [[w℄℄() j= 'j . Therefore, in the f -quotient withthe representant funtion rep, g[[w℄℄() = rep([[[w℄℄()℄) = 0. Therefore, by de�nition, 0 j= 'j .Therefore f(0; 'j). [℄2These onstraints are obtained by a simple inspetion of the guards and the ations of the omposed transitionsystem. 145

Control variables: p1, p2 varying on fthink; wait; usegData variables: a1, a2 � 0.Initial ondition: p1 = think ^ p2 = think ^ a1 = a2 = 0Transitions for i; j : 1; 2, i 6= j:�ti : : pi = think [℄ p0i = wait ^ a0i = aj + 1�wi : : pi = wait ^ ai < aj [℄ p0i = use�w0i : : pi = wait ^ aj = 0 [℄ p0i = use�ui : : pi = use [℄ p0i = wait ^ a0i = 0Figure 8.1: The bakery algorithmTheorem 8.3 For any onstraint ', any abstrat symboli forward analysis of the two-proessbakery algorithm with respet to ',the abstrat monoid Y and f terminates. Moreover, for anytwo onstraints ' and '0 suh that f saturates both ' and '0, '0 is reahable from ', i� 'j, suhthat f('0; 'j), is reahable from 'i, suh that f(';'i), in an abstrat symboli forward analysiswrt ', the abstrat target monoid Y and f . In partiular, the two-proess bakery algorithm issafe i� the onstraint L = huse; usei ^ a1 � 0 ^ a2 � 0 is reahable in the abstrat symboliforward analysis with respet to L = hthink; thinki ^ a1 = 0 ^ a2 = 0, f and Y .Proof. Follows from Propositions 8.1, 8.5, 8.6 and Theorem 8.1. [℄Symboli forward analysis for the bakery algorithm with respet to the initial onstraintL = hthink; thinki ^ a1 = 0; a2 = 0 is (possibly) nonterminating. To the best of the knowledgeof the authors, this is the �rst time that reahability properties for the two-proess bakery algo-rithm have been shown to be veri�able using a terminating abstrat symboli forward analysis.Previous approahes were based either on symboli bakward analysis [BGP97, DP99a℄ or ondedutive methods [BBM97, KPV99℄. While model heking using symboli bakward analysisis inherently global model heking [HKQ98℄, model heking by symboli forward analysis anbe made loal. '1 � L = hthink; thinki ^ a1 = 0 ^ a2 = 0'2 � L = hwait; thinki ^ a1 � 0 ^ a2 = 0'3 � L = hthink; usei ^ a1 = 0 ^ a2 � 0'4 � L = huse; thinki ^ a1 � 0 ^ a2 = 0'5 � L = hwait; waiti ^ a1 = a2 + 1 ^ a2 � 1'6 � L = hwait; waiti ^ a2 = a1 + 1 ^ a1 � 1'7 � L = huse; waiti ^ a2 = a1 + 1 ^ a2 � 1'8 � L = hthink;waiti ^ a1 = 0 ^ a2 � 0'9 � L = hwait; usei ^ a1 � 1 ^ a1 = a2 + 1'10 � L = huse; usei ^ a1 � 0 ^ a2 � 0Figure 8.2: Constraints in �0146

8.8 Summary and Related WorkWe have presented a new algebrai theory for abstrat symboli forward analysis. Our frame-work is well suited to onstraint based symboli model heking of in�nite state systems. Ourframework provides suÆient onditions under whih the abstrat symboli forward analysisis always terminating or aurate or both. As in the lassial abstrat interpretation frame-work [CC77℄ one has to establish a Galois onnetion from the onrete lattie to the abstratlattie more or less manually, in our framework one has to establish a overing manually. Notethat the overing onstraint transformer monoid an be arbitrary (i.e., may not be �nitely gen-erated). Also note that the suÆient termination onditions in our framework do not requirethe overing onstraint transformer to be �nite. Also the termination guarantees ontinue tohold even when the �xpoint test is weakened to loal entailment.Colon and Uribe [CU98℄ present an algorithm that uses deision proedures to generate�nite state abstrations of possibly in�nite state systems. Our work is di�erent from theirs;the denotation of the overing transformer monoid Y = h�0; S0i (i.e., [�0℄) may be in�nite;moreover �0 may itself be in�nite. In [CC98℄, Cousot and Cousot desribe improvements toabstrat model heking by ombining forwards and bakwards abstrat �xpoint omputations.It would be interesting to see how their tehniques an be adapted to a onstraint-based settingas ours. Cleaveland, Iyer and Yankelevih [CIY95℄ develop a framework in whih they anestablish optimality results by showing that a partiular system abstration is the most preiseone possible among a lass of safe abstrations. It is not lear how to apply their tehniquesin a onstraint-based setting. An automata-theoreti framework for veri�ation by �nitaryabstration has been developed in [KPV99℄. There, the authors redue the veri�ation problemto the infeasibility problem for B�uhi disrete systems. They then provide a general proof methodalled WELL to establish the infeasibility of a B�uhi disrete system. In ontrast, our tehniqueuses abstrat symboli forward analysis for veri�ation after a overing has been established.

147

148

Chapter 9Conlusions9.1 SummaryIn this dissertation, we have desribed a uniform onstraint-based framework for the veri�a-tion of possibly in�nite state reative systems. Constraint query languages provide a frameworkfor representing reative systems as well as for speifying their properties. Many of the seem-ingly di�erent formalisms for representing reative systems have a natural translation into thisframework. The model heking problem redues to omputing (or heking membership in) themodel-theoreti semantis of onstraint query languages. We have provided several optimizedmethods for omputing model theoreti semantis of onstraint query languages. The produtonstrution for timed logi proesses introdued in this dissertation allowed us to extend themethodology to deal with more expressive logis. Several existing model heking proeduresan be obtained as speial ases of the model heking proedures that we obtained in ouronstraint-based framework. A prototype implementation based on the methodology developedin this dissertation has shown enouraging results. We have also been able to identify a logithat an be model heked eÆiently in pratie within our framework. Our framework hasalso been used to solve ontrol-theoreti problems e.g., detetion of transient behavior in lineartime-invariant systems.The two main urrents that have run through this dissertation are logi and onstraints. Theonstraint-based setting has enabled us to reason about the termination of the symboli modelheking proedures that solve the veri�ation problem for in�nite state systems in pratie.We have obtained suÆient termination onditions for these proedures even with a weakerbut more eÆient �xpoint test. We have shown several examples for whih the termination ofsymboli forward analysis an be explained by using our suÆient termination onditions. Muhof this reasoning has also been ompositional. Sine the ombinatorial (onstraint solving) partis learly separated from the logial part, we ould easily extend our methodology to deal withnonlinear systems. Moreover, we have been able to reason about the auray of onstraint-basedabstrations introdued to solve the veri�ation problem in pratie.9.2 Future WorkWe end our disussion by addressing some of the future researh issues. One obvious researhissue is to try to use our framework to verify larger examples. More experimentation is needed149

in this diretion. In this dissertation, the fous was mainly on in�nite state systems in whihthe variables range over a (possibly in�nite) numeri data domain. But our methodology an beeasily adapted to model and verify out-of-order exeution in the design of miroproessors. Inthis ase, the relevant onstraint domain is the Herbrand one. A similar line of work would beto onsider many-sorted systems in whih in whih some variables range a numeri data-domainwhile others range over the domain of possibly in�nite trees. Another line of researh is to useour framework for analysis of programs written in programming languages like C or Java. Itwould also be interesting to see how our framework an be extended to deal with mobility ofproesses.We state below some of the other problems left open in this dissertation.{ Extend the produt onstrution de�ned in Chapter 3 to deide whether two timed logiproeseses are timed bisimilar.{ Is the following problem deidable| given a timed automaton, does symboli forwardanalysis for it terminate?{ Can one design an algorithm for deiding whether a timed logi proess has a transientbehavior that is more eÆient than the one presented in Chapter 3?{ Can one ome up with a tableau based model heking proedure for timed systems in thestyle of Brad�eld and Stirling [BS90℄?

150

Bibliography[ABW88℄ K. Apt, H. A. Blair, and A. Walker. Towards a theory of delarative knowledge. In J. Minker,editor, Foundations of Dedutive Databases and Logi Programming, pages 193{214. MorganKaufmann, 1988.[ACD+92℄ R. Alur, C. Couroubetis, D. Dill, N. Halbwahs, and H. Wong-Toi. Minimization of timedtransition systems. In R. Cleaveland, editor, CONCUR: Conurreny Theory, volume 630of LNCS, pages 340{354. Springer-Verlag, 1992.[ACD93℄ R. Alur, C. Couroubetis, and D. Dill. Model heking in dense real time. Information andComputation, 104(2):2{34, 1993.[ACHH93℄ R. Alur, C. Couroubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an algorith-mi approah to the spei�ation and veri�ation of hybrid systems. In R.L. Grossman,A. Nerode, A.P. Ravn, and H. Rishel, editors, Hybrid Systems I, LNCS 736, pages 209{229.Springer-Verlag, 1993.[ACJT96℄ P. Abdulla, K. Cerans, B. Jonsson, and T. K. Tsay. General deidability theorems for in�nitestate systems. In LICS, pages 313{321, 1996.[AD94℄ R. Alur and D. Dill. A theory of timed automata. Theoretial Computer Siene, 126(2):183{236, 1994.[AH97℄ R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. In A. Mazurkiewizand J. Winkowski, editors, CONCUR'97: Conurreny Theory, volume 1243 of LNCS, pages74{88. Springer-Verlag, 1997.[AH99℄ R. Alur and T. A. Henzinger. Computer-aided veri�ation: An introdution to model build-ing and model heking for onurrent systems, 1999. Book in preparation.[ATEP99℄ R. Alur, S. La Torre, K. Etessami, and D. Peled. Parameteri temporal logi model mea-suring. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP: Automata,Languages and Programming, volume 1644 of LNCS, pages 159{168. Springer, 1999.[AY98℄ R. Alur and M. Yannakakis. Model heking hierarhial state mahines. In ACM Symposiumon the Foundations of Software Engineering, 1998.[Bal96℄ F. Balarin. Approximate reahability analysis of timed automata. In 17th IEEE Real-TimeSystems Symposium, pages 52{61. IEEE Computer Soiety Press, 1996.[BBC+96℄ N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. Sipma, and T. Uribe.Step: Dedutive-algorithmi veri�ation of reative and real-time systems. In R. Alur andT. A. Henzinger, editors, CAV'96: Computer Aided Veri�ation, volume 1102 of LNCS,pages 415{418. Springer-Verlag, 1996.[BBM97℄ N. Bjorner, A. Browne, and Z. Manna. Automati generation of invariants and intermediateassertions. Theoretial Computer Siene, 173(1):49{87, 1997.151

[BBR97℄ B. Boigelot, L. Bronne, and S. Rassart. An improved reahability analysis method forstrongly linear hybrid systems. In O. Grumberg, editor, CAV'97: Computer Aided Veri�a-tion, volume 1254 of LNCS, pages 167{178. Springer-Verlag, 1997.[BCM+92℄ J. R. Burh, E. M. Clarke, K. L. MMillan, D. L. Dill, and L. J. Hwang. Symboli modelheking: 1020 states and beyond. Information and Computation, 98(2):142{170, June 1992.[BEM97℄ A. Bouajjani, J. Esparza, and O. Maler. Reahability Analysis of Pushdown Automata:Appliation to Model Cheking. In CONCUR'97. LNCS 1243, 1997.[BF99℄ B. Berard' and L. Fribourg. Reahability analysis of (timed) petri nets using real arithmeti.In J. C. M. Baeten and S. Mauw, editors, CONCUR: Conurreny Theory, volume 1664 ofLNCS, pages 178{193. Springer-Verlag, 1999.[BFH91℄ A. Bouajjani, J.C. Fernandez, and N. Halbwahs. Minimal model generation. In Computer-Aided Veri�ation `90, volume 3 of DIMACS, 1991.[BGP97℄ T. Bultan, R. Gerber, and W. Pugh. Symboli model heking of in�nite state systemsusing presburger arithmetis. In Orna Grumberg, editor, the 9th International Confereneon Computer Aided Veri�ation (CAV'97), LNCS 1254, pages 400{411. Springer, Haifa,Israel, July 1997.[BGP98℄ T. Bultan, R. Gerber, and W. Pugh. Model Cheking Conurrent Systems with UnboundedInteger Variables: Symboli Representations, Approximations and Experimental Results,february 1998.[BLL+96℄ Johan Bengtsson, Kim. G. Larsen, Fredrik Larsson, Paul Petersson, and Wang Yi. Uppaal in1995. In T. Margaria and B. Ste�en, editors, TACAS, LNCS 1055, pages 431{434. Springer-Verlag, 1996.[BMSU86℄ F. Banilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magi sets and other strange ways toimplement logi programs. In PODS: ACM Symposium on Priniples of Database Systems,pages 1{16. ACM, 1986.[Boi98℄ Bernard Boigelot. Symboli Methods for Exploring In�nite State Spaes. PhD thesis, Uni-versite De Liege, Monte�ore, Belgium, 1998.[BS90℄ J. Brad�eld and C. Stirling. Verifying temporal properties of proesses. In J. C. M. Baetenand J. W. Klop, editors, CONCUR: Conurreny Theory, volume 458 of LNCS, pages 115{125. Springer, 1990.[BS91℄ A. Brodsky and Y. Sagiv. Inferene of inequality onstraints in logi programs. In PODS:Priniples of Database Systems, pages 227{240. ACM Press, 1991.[BVW94℄ Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoreti approah tobranhing-time model heking. In Computer Aided Veri�ation, Pro. 6th Int. Workshop,volume 818 of LNCS, pages 142{155, Stanford, California, June 1994. Springer-Verlag. Fullversion available from authors.[BW94℄ Bernard Boigelot and Pierre Wolper. Symboli veri�ation with periodi sets. In David Dill,editor, 6th International Conferene on Computer-Aided Veri�ation, volume 818 of LNCS,pages 55{67. Springer-Verlag, June 1994.[CC77℄ Patrik Cousot and Radhia Cousot. Abstrat interpretation: A uni�ed lattie model forstati analysis of programs by onstrution or approximation of �xpoints. In the 4th ACMSymposium on Priniples of Programming Languages, 1977.[CC98℄ P. Cousot and R. Cousot. Re�ning model heking by abstrat interpretation. AutomatedSoftware Engineering, 6:69{95, 1998. 152

[CDD+98℄ B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, A. Roy-houdhury, S. A. Smolka, and D. S. Warren. Logi programming and model heking. InPLAP/ALP98, volume 1490 of LNCS, pages 1{20. Springer-Verlag, 1998.[CE80℄ E. M. Clarke and E. A. Emerson. Design and synthesis of synhronization skeletons usingbranhing time temporal logi. In Workshop on Logis of Programs, volume 131 of LNCS,pages 52{71. Springer, 1980.[CH78℄ P. Cousot and N. Halbwahs. Automati disovery of linear restraints among variables of aprogram. In the Fifth Annual ACM Symposium on Priniples of Programming Languages.ACM Press, 1978.[CIY95℄ R. Cleaveland, P. Iyer, and D. Yankelevih. Optimality in abstrations of model heking.In A. Myroft, editor, SAS: Stati Analysis Symposium, volume 983 of LNCS, pages 51{63.Springer, 1995.[CJ98℄ H. Comon and Y. Jurski. Multiple Counters Automata, Safety Analysis, and PresburgerArithmetis. In Alan J. Hu and M. Y. Vardi, editors, CAV'98: Computer Aided Veri�ation,volume 1427 of LNCS, pages 268{279. Springer-Verlag, 1998.[CMN+98℄ W. Charatonik, D. MAllester, D. Niwinski, A.Podelski, and I. Walukiewiz. The Hornmu-alulus. In Vaughan Pratt, editor, The 13th IEEE Annual Symposium on Logi inComputer Siene, 1998.[CP98a℄ W. Charatonik and A. Podelski. Set-based analysis of reative in�nite-state systems. InBernhard Ste�en, editor, the First International Conferene on Tools and Algorithms for theConstrution and Analysis of Systems, pages 358{375. Springer-Verlag, Marh-April 1998.[CP98b℄ Witold Charatonik and Andreas Podelski. Set-based analysis of reative in�nite-state sys-tems. In Bernhard Ste�en, editor, Fourth International Conferene on Tools and Algorithmsfor the Constrution and Analysis of Systems, volume 1384 of LNCS, pages 358{375, Lisbon,Portugal, Marh-April 1998. Springer-Verlag.[CU98℄ M. A. Colon and T. E. Uribe. Generating �nite-state abstrations of reative systems usingdeision proedures. In A. Hu and M. Y. Vardi, editors, CAV: Computer-Aided Veri�ation,volume 1427 of LNCS, pages 293{304. Springer, 1998.[CW96℄ W. Chen and D. S. Warren. Tabled evaluation with delaying for general logi programs.JACM, 43(1):20{74, 1996.[DG84℄ W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satis�ability of hornformulas. The Journal of Logi Programming, 1(3):267{284, 1984.[DP99a℄ G. Delzanno and A. Podelski. Model Cheking in CLP. In R. Cleaveland, editor, Proeedingsof the 5th International Conferene on Tools and Algorithms for Constrution and Analysisof Systems (TACAS'99), volume 1579 of LNCS, pages 223{239. Springer-Verlag, Marh 1999.[DP99b℄ Giorgio Delzanno and Andreas Podelski. Model Cheking in CLP. In Rane Cleaveland,editor, Proeedings of the 5th International Conferene on Tools and Algorithms for Con-strution and Analysis of Systems (TACAS'99), volume 1579 of LNCS, pages 223{239, Am-sterdam, The Netherlands, January 1999. Springer-Verlag.[DRS99℄ X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + onstraints: A reipefor model heking real-time systems, 1999. Submitted.[DT98℄ C. Daws and S. Tripakis. Model heking of real-time reahability properties using abstra-tions. In Bernhard Ste�en, editor, TACAS98: Tools and Algorithms for the Constrution ofSystems, LNCS 1384, pages 313{329. Springer-Verlag, Marh/April 1998.153

[DW99℄ M. Dikh�ofer and T. Wilke. Timed alternating tree automata: The automata-theoretisolution to the ttl model heking problem. In J. Widermann, P. van Emde Boas, andM. Nielsen, editors, ICALP: Automata, Languages and Programming, volume 1644 of LNCS,pages 281{290. Springer-Verlag, 1999.[Eil76℄ S. Eilenberg. Automata, Languages and Mahines, volume B. Aademi Press, 1976.[End72℄ H. B. Enderton. A Mathematial Introdution to Logi. Aademi Press, 1972.[Esp97℄ J. Esparza. Deidability of model heking for in�nite-state onurrent systems. Ata Infor-matia, 34:85{107, 1997.[Flo67℄ R. W. Floyd. Assigning meaning to programs. In Proeedings Symposium on Applied Math-ematis, volume 19, 1967.[FO97℄ L. Fribourg and H. Olsen. A Deompositional Approah for Computing Least Fixed Pointof Datalog Programs with Z-ounters. Journal of Constraints, 2(3-4):305{336, 1997.[FP93℄ Laurent Fribourg and Maros Veloso Peixoto. Conurrent onstraint automata. TehnialReport LIENS 93-10, ENS Paris, 1993.[FR96℄ L. Fribourg and J. Rihardson. Symboli veri�ation with gap-order onstraints. In J. P.Gallagher, editor, LOPSTR'96: Logi Based Program Synthesis and Transformation, volume1207 of LNCS, pages 20{37. Springer-Verlag, 1996.[Fri98℄ Laurent Fribourg. A losed-form evaluation for extended timed automata. Tehnial report,ENS Cahan, 1998.[FS98℄ A. Finkel and P. Shnoebelen. Well-strutured Transition Systems Everywhere! TehnialReport LSV-98-4, Laboratoire Sp�ei�ation et V�eri�ation, Eole Normale Sup�erieure deCahan, 1998.[FV98℄ T. Feder and M. Y. Vardi. The omputational struture of monotone monadi SNP and on-straint satisfation: A study through datalog and group theory. SIAM Journal of Computing,28(1):57{104, 1998.[GGV98℄ Georg Gottlob, Erih Gr�adel, and Helmut Veith. Datalog LITE: Temporal versus dedutivereasoning in veri�ation. Tehnial Report DBAI-TR-98-22, Institut f�ur Informationssys-teme, Tehnishe Universit�at Wien, Deember 1998.[GGV99℄ G. Gottlob, E. Gr�adel, and H. Veith. Datalog lite: A dedutive approah to veri�ation.Tehnial report, Tehnishe Universit�at Wien, 1999.[GP97℄ G. Gupta and E. Pontelli. A onstraint-based approah for the spei�ation and veri�ationof real-time systems. In Kwei-Jay Lin, editor, IEEE Real-Time Systems Symposium, pages230{239. IEEE Press, 1997.[GP99℄ Gopal Gupta and Enrio Pontelli. A horn logi denotational framework for spei�ation,implementation, and veri�ation of domain spei� languages, Marh 1999.[Gup99℄ Gopal Gupta. Horn logi denotations and their appliations. In The Logi ProgrammingParadigm: A 25 year perspetive. Springer-Verlag, 1999.[Hal93℄ N. Halbwahs. Delay analysis in synhronous programs. In C. Couroubetis, editor, theInternational Conferene on Computer-Aided-Veri�ation, volume 697 of LNCS, pages 333{346. Springer-Verlag, 1993.[Hen95℄ T.A. Henzinger. Hybrid automata with �nite bisimulations. In Z. F�ul�op and F. G�eseg,editors, ICALP 95: Automata, Languages, and Programming, LNCS 944, pages 324{335.Springer-Verlag, 1995. 154

[HH95℄ T. A. Henzinger and P.-H. Ho. A note on abstrat-interpretation strategies for hybridautomata. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid SystemsII, LNCS 999, pages 252{264. Springer-Verlag, 1995.[HHWT95℄ T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTeh. In E. Brinksma,W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Ste�en, editors, TACAS 95: Toolsand Algorithms for the Constrution and Analysis of Systems, LNCS 1019, pages 41{71.Springer-Verlag, 1995.[HHWT97℄ T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTeh: a model heker for hybrid systems.In O. Grumberg, editor, CAV97: Computer-aided Veri�ation, LNCS 1254, pages 460{463.Springer-Verlag, 1997.[HK97℄ Thomas. A. Henzinger and Orna Kupferman. From quantity to quality. In Oded Maler,editor, Hybrid and Real-Time Systems International Workshop,Hart '97, volume 1201 ofLNCS, pages 48{62, Grenoble, Frane, Marh 1997. Springer-Verlag.[HKPV95℄ T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's deidable about hybridautomata? In the 27th Annual Symposium on Theory of Computing, pages 373{382. ACMPress, 1995.[HKQ98℄ T. A. Henzinger, O. Kupferman, and S. Qadeer. From pre-histori to post-modern symbolimodel heking. In A. J. Hu and M. Y. Vardi, editors, CAV'98: Computer-aided Veri�ation,LNCS 1427, pages 195{206. Springer-Verlag, 1998.[HNSY94℄ T.A. Henzinger, X. Niollin, J. Sifakis, and S. Yovine. Symboli model heking for real-timesystems. Information and Computation, 111(2):193{244, 1994. Speial issue for LICS 92.[Hoa69℄ C. A. R. Hoare. An axiomati basis for omputer programming. Communiations of theACM, 10:576{580, 1969.[HPR97℄ N. Halbwahs, Y-E. Proy, and P. Romano�. Veri�ation of real-time systems using linearrelation analysis. Formal Methods in System Design, 11(2):157{185, 1997.[HU79℄ J. Hoproft and J. D. Ullman. Introdution to Automata Theory, Languages, and Computa-tion. Addison Wesley, 1979.[HWT95℄ Pei-Hsin Ho and Howard Wong-Toi. Automated analysis of an audio ontrol protool. InP. Wolper, editor, the Seventh Conferene on Computer-Aided Veri�ation, pages 381{394,Liege, Belgium, 1995. Springer-Verlag. LNCS 939.[JM94℄ J. Ja�ar and M. J. Maher. Constraint logi programming: A survey. The Journal of LogiProgramming, 19/20:503{582, May-July 1994.[JMMS℄ J. Ja�ar, M. Maher, K. Marriot, and P. Stukey. The semantis of onstraint logi programs.J. Logi Programming. To appear.[JMSY92℄ J. Ja�ar, S. Mihaylov, P.J. Stukey, and R.H.C. Yap. The lp(r) language and system.ACM Transations on Programming Languages and Systems, 14(3):339{395, 1992.[KKR95℄ P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journalof Computer and System Sienes, 51:26{52, 1995. (Preliminary version in Pro. 9th ACMPODS, 299{313, 1990.).[KMP96℄ Y. Kesten, Z. Manna, and A. Pnueli. Verifying loked transition systems. In R. Alur, T. A.Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066 of LNCS, pages13{40. Springer-Verlag, 1996.[Koz83℄ D. Kozen. Results on the propositional �-alulus. Theoretial Computer Siene, 27(3):333{354, 1983. 155

[KPV99℄ Y. Kesten, A. Pnueli, and M. Y. Vardi. Veri�ation by augmented abstration: Theautomata-theoreti view. In J. Flum and M. R. Artalejo, editors, CSL: Computer SieneLogi, volume 1683 of LNCS, pages 141{156. Springer, 1999.[Kur66℄ K. Kuratowski. Topology. Aademi Press, 1966.[LB93℄ W. K. C. Lam and R. K. Brayton. Alternating RQ timed automata. In Costas Couroubetis,editor, the 5th International Conferene on Computer-Aided Veri�ation, LNCS 697, pages236{252. Springer-Verlag, June/July 1993.[Lib00℄ L. Libkin. Variable independene, quanti�er elimination, and onstraint representations. InICALP: International Colloqium on Automata Languages and Programming, 2000.[Llo87℄ J. W. Lloyd. Foundations of Logi Programming. Symboli Computation. seond, extendededition, 1987.[LM92℄ J-L. Lassez and M. J. Maher. On fourier's algorithm for linear arithmeti onstraints. Journalof Automated Reasoning, 9(3), Deember 1992.[LPY95a℄ K. G. Larsen, P. Peterson, and W. Yi. Model-heking for real-time systems. In HorstReihel, editor, Fundamentals of Computation Theory, volume 965 of LNCS, pages 62{88.Springer-Verlag, 1995.[LPY95b℄ K.G. Larsen, P. Pettersson, and W. Yi. Compositional and symboli model heking ofreal-time systems. In Proeedings of the 16th Annual Real-time Systems Symposium, pages76{87. IEEE Computer Soiety Press, 1995.[LPY99℄ G. La�erriere, G. J. Pappas, and S. Yovine. A new lass of deidable hybrid systems.In F. W. Vaandrager and J. H. van Shuppen, editors, Hybrid Systems, Computation andControl, volume 1569 of LNCS, pages 137{151, 1999.[LS85℄ N. G. Leveson and J. L. Stolzy. Analyzing safety and fault tolerane using time petri nets. InH. Uhrig, C. Floyd, M. Nivat, and J. W. Thather, editors, TAPSOFT: Theory and Pratieof Software, volume 186 of LNCS, pages 339{355. Springer, 1985.[Mil89℄ Robin Milner. Communiation and Conurreny. Prentie Hall, 1989.[MP99℄ S. Mukhopadhyay and A. Podelski. Beyond region graphs: Symboli forward analysis oftimed automata. In C. Pandurangan, V. Raman, and R. Ramanujam, editors, 19th Inter-national Conferene on the Foundations of Software Tehnology and Theoretial ComputerSiene, volume 1738 of LNCS, pages 233{245, Deember 1999.[MP00a℄ S. Mukhopadhyay and A. Podelski. Aurate widenings and boundedness properties, 2000.[MP00b℄ S. Mukhopadhyay and A. Podelski. Model heking for timed logi proesses. In J. Lloyd,V. Dahl, U. Furbah, M. Kerber, K-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J.Stukey, editors, CL: Computational Logi, LNCS, pages 598{612. Springer, 2000. Availableat http://www.mpi-sb.mpg.de/�supratik/.[MS87℄ D.E. Muller and P. E. Shupp. Alternating automata on in�nite trees. Theoretial ComputerSiene, 54:267{276, 1987.[MS98℄ K. Marriott and P. J. Stukey. Programming with Constraints: An Introdution. MIT Press,1998.[Nam98℄ K. S. Namjoshi. Ameliorating the State Explosion Problem. PhD thesis, The GraduateShool of the University of Texas at Austin, 1998.[OG76℄ S. S. Owiki and D. Gries. An axiomati proof tehnique for parallel programs i. AtaInformatia, 6:319{340, 1976. 156

[Oga96℄ Katsuhiko Ogata. Modern Control Engineering. Prentie Hall, 1996.[Pnu77℄ A. Pnueli. The temporal logi of programs. In Proeedings of the 18th Annual Symposiumon Foundations of Computer Siene, pages 46{57. IEEE Computer Soiety Press, 1977.[Pod00℄ Andreas Podelski. Model heking as onstraint solving. In Jens Palsberg, editor, Proeed-ings of SAS'2000: Stati Analysis Symposium, LNCS, pages 22{37, Berlin, Germany, 2000.Springer-Verlag.[Prz88℄ T. Przymusinski. On the semantis of strati�ed dedutive databases. In J. Minker, edi-tor, Foundations of Dedutive Databases and Logi Programming, pages 193{216. MorganKaufmann, 1988.[Pug92℄ W. Pugh. The omega test: a fast and pratial integer programming algorithm for depen-dene analysis. Communiations of the ACM, 8:102{104, 1992.[QS81℄ J. P. Queille and J. Sifakis. Spei�ation and veri�ation of onurrent systems in esar.In Proeedings of the �fth International Symposium on Programming, volume 137 of LNCS,pages 337{351. Springer, 1981.[Ram91℄ R. Ramakrishnan. Magi templates: A spellbinding approah to logi programs. Journal ofLogi Programming, 11(34):189{216, 1991.[Rev90℄ Peter Revesz. A losed form for datalog queries with integer order. In S. Abiteboul andP. C`. Kanellakis, editors, ICDT: the International Conferene on Database Theory, volume470 of LNCS, pages 187{201. Springer-Verlag, 1990.[RKR+00℄ A. Royhoudhury, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka.Veri�ation of parameterized systems using logi program transformations. In TACAS'00:Tools and Algorithms for the Constrution and Analysis of Systems, volume 1785 of LNCS,pages 172{187. Springer, 2000.[RRR+97a℄ Y. S. Ramakrishna, C. R. Ramakrishnan, I. V Ramakrishnan, S. A. Smolka, T. W. Swift,and D. S. Warren. EÆient model heking using tabled resolution. In O. Grumberg, editor,the 9th International Conferene on Computer-Aided-Veri�ation, pages 143{154. Springer-Verlag, July 1997.[RRR+97b℄ Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift, and D.S.Warren. EÆient model heking using tabled resolution. In Computer Aided Veri�ation(CAV'97), volume 1254 of LNCS. Springer-Verlag, June 1997.[Saf88℄ S. Safra. On the omplexity of !-automata. In Proeedings of the 29th Annual Symposiumon Foundations of Computer Siene, pages 319{327. IEEE Computer Soiety Press, 1988.[SI88℄ H. Seki and H. Ito. A query evaluation method for strati�ed programs under the extendedwa. In Proeedings of the �fth International Conferene and Symposium on Logi Program-ming, 1988.[SIR96℄ S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz. Hornsat, model heking, veri�ationand games. In R. Alur and T. A. Henzinger, editors, CAV'96: Computer Aided Veri�ation,LNCS 1102, pages 99{110. Springer-Verlag, 1996.[Sri92℄ D. Srivistava. Subsumption and indexing in onstraint query languages with linear arithmetionstraints. In 2nd International Symposium on Arti�ial Intelligene and Mathematis, FortLauderdale, 1992.[SS95℄ Oleg Sokolsky and Sott. A. Smolka. Loal model heking for real-time systems. In PierreWolper, editor, 7th International Conferene on Computer-Aided Veri�ation, volume 939of LNCS, pages 211{224. Springer-Verlag, July 1995.157

[Stu91℄ Peter J. Stukey. Construtive negation for onstraint logi programming. In Sixth AnnualIEEE Symposium on Logi in Computer Siene, pages 328{339. IEEE Computer SoietyPress, 1991.[SW91℄ C. Stirling and D. Walker. Loal model heking in the modal mu-alulus. TheoretialComputer Siene, 89(1):161{177, 1991.[Tho90℄ W. Thomas. Automata on in�nite objets. In J. van Leeuwen, editor, Handbook of TheoretialComputer Siene, volume B, pages 133{191. Elsevier Siene Publishers (North-Holland),1990.[Tri99℄ S. Tripakis. Verifying progress in timed systems. In J. P. Katoen, editor, Formal Methodsin Real time and Probablisti Systems: 5th International AMAST Workshop (ARTS99),volume 1601 of LNCS, pages 299{314. Springer-Verlag, 1999.[TS86a℄ H. Tamaki and T. Sato. Old resolution with tabulation. In International Conferene onLogi Programming, LNCS, pages 84{98. Springer-Verlag, 1986.[TS86b℄ Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Ehud Shapiro, editor,Proeedings of the Third International Conferene on Logi Programming, volume 225 ofLNCS, pages 84{98, London, 1986. Springer-Verlag.[Ull89℄ J. D. Ullman. Priniples of Database and Knowledge-base Systems, volume II. ComputerSiene Press, 1989.[Urb96℄ L. Urbina. Analysis of hybrid systems in lp(r). In Priniples and Pratie of ConstraintProgramming, CP96, Letures Notes in Computer Siene 1118, pages 451{467. Springer-Verlag, 1996.[vdD98℄ L. van den Dries. Tame Topology and o-minimal strutures. Cambridge University Press,1998.[Vie87℄ L. Vielle. A database-omplete proof proedure based on sld-resolution. In Fourth Interna-tional Conferene on Logi Programming. MIT Press, 1987.[VW86a℄ M. Y. Vardi and P. Wolper. An automata-theoreti approah to automati program veri-�ation. In LICS: Logi in Computer Siene, pages 332{344, Cambridge, Massahusetts,1986. IEEE Computer Soiety.[VW86b℄ Moshe. Y. Vardi and Pierre Wolper. An automata-theoreti approah to automati programveri�ation. In the �rst IEEE Symposium on Logi in Computer Siene, 1986.[Wal93℄ I. Walukiewiz. A Complete Dedutive System for the �-Calulus. PhD thesis, WarsawUniversity, 1993.[Wal96℄ I. Walukiewiz. Pushdown proesses: Games and model heking. In R. Alur and T. A.Henzinger, editors, CAV: Computer Aided Veri�ation, 8th International Conferene, volume1102 of LNCS, pages 62{74. Springer, 1996.[Wei94℄ V. Weispfenning. Parametri linear and quadrati optimization by elimination. Tehnialreport, Universit�at Passau, 1994.[WT95℄ H. Wong-Toi. Symboli Approximations for Verifying Real-Time Systems. PhD thesis, Stan-ford University, 1995.[YL93℄ Mihalis Yannakakis and David Lee. An eÆient algorithm for minimizing real-time transi-tion systems. In Costas Couroubetis, editor, Computer-Aided Veri�ation{ The 5th Inter-national Conferene, LNCS, pages 210{224. Springer, 1993.158

Indext-lause, 33'pop', 18advaning derivation, 60ative, 78all, 72alternating lauses, 33bakward, 81base sets, 68bounded, 145anonial, 140lassify, 73, 78, 79lok onstraints, 31ompat, 25ompanion, 141omplement, 65omplete, 25, 71ompositional, 117onjuntion, 65onjuntive, 138onstant, 92onstraint transformer monoids, 138onstraint transformer semigroup, 138onstraint transformers, 138onstraints, 83Convergene, 66onvergene, 77onvergent, 34, 35overing, 139overings, 138overs, 139ut ondition, 90yles, 86denotation, 13disonneted, 25

disjuntion, 65divergent, 35edge transition, 83Every, 86every, 85evolution lause, 33Example, 52extend, 71, 78, 79extendible, 74�nitary, 139�nitary overing, 140�nite representation, 142�nitely representable, 10�nitely represented, 9Forward analysis, 66global, 85greatest model resolution, 30guards, 33homeoovering, 140inrement variables, 33independene property, 104initial lauses, 33initial onstraint, 83initializable, 123labeled TLP, 60labels, 91last, 130leaf, 85least-�xpoint losure, 68loal entailment, 117, 138loal inlusion abstration, 102loations, 82Logi of safety and bounded liveness, 35lookup, 78159

lookup node, 13metri spae, 25monolithi, 16neessary, 94not, 90o-minimal, 117open, 25part of a yle, 123path, 86perfet model, 70perfet models, 66positions, 83Proof, 69real variables, 36region graph, 81region produt graph, 30remainder setion, 130reset, 82reset-free, 84saturates, 140segment, 91simple path, 90solution node, 13solution table, 13splitting onstraints, 30strati�able, 67, 87strati�ation, 67strati�ed, 65, 69, 91{94strings, 86symboli forward analysis, 81symboli states, 138syntati monoid, 95syntati order, 138syntatially inreasing, 139system lause, 33table node, 13table prediates, 13Tabled resolution, 66tabled-resolution, 66tabulate, 71, 73, 78, 79terminates, 85

The onnetion, 66time (seonds), 52time losed, 120time transition, 83, 119time-losed, 83timed automaton, 81, 82timed logi proesses, 29, 33totally bounded, 25unlabeled, 9with loal subsumption, 85without, 67zone onstraint, 83zone onstraints, 41zone trees, 82zones, 83

160

