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Zusammenfassung

Mit dem zunehmenden FEinsatz von VLSI-Systemen sind die Anforderungen an
thre Zuverlassigkeit immer mehr gestiegen. Die Zuverlassigkeit eines VLSI-Systems
hangt von seinen Komponenten  hochintegrierten Schaltkreisen — ab. Teider ist
der Fertigungsprozefl hochintergrierter Schaltkreise extrem fehleranfallig.  Nach
inoffiziellen Angaben betragt die Defektrate fur grofie Schaltkreise bei einem
neuen Fertigungsproze tiber 60%. Daher ist ein Test der Schaltkreise unbedingt
notwendig. Allerdings betragt der Aufwand fiir solche Tests mehr als 25% der
Gesamtkosten.

Normalerweise enthalt ein VLSI-System sowohl kombinatorische als auch sequentielle
Schaltkreise. Mit Hilfe von Prifbussen kann das Testproblem fiur die sequentiellen
Komponenten auf den kombinatorischen Fall zurtickgetihrt werden. Deshalb spielt
der Test von kombinatorischen Schaltkreisen eine grofile Rolle.  Diese Arbeit
betrachtet das Testproblem kombinatorischer Schaltkreise.

Ein vollstandiger Test eines Schaltkreises durch Anlegen aller Eingaben ist in der
Praxis fast immer unmoglich. Deswegen miissen Annahmen tiber die Art der am
haufigsten vorkommenden Fehler gemacht werden, die dann in einem Fehlermodell
zusammengefalit werden. Das am haufigsten in der Praxis verwendete Fehlermodell
ist das Single-Stuck-at-Fehlermodell. Hier wird angenommen, dafl innerhalb des
ganzen Schaltkreises hochstens eine Leitung standig auf einem festen logischen
Wert (d.h. 0 oder 1) liegt. Dieses populare Fehlermodell kann jedoch nicht alle
auftretenden Fehler iiberdecken. In dieser Arbeit betrachten wir daher zusatzlich
das machtigere Finzel-Zellenfehlermodell.

Die Testkosten werden bestimmt durch die Kosten der Testerzeugung und der
Testdurchfihrung. Wir definieren die Testkomplexitat eines Schaltkreises S als die
minimale Anzahl von Testmustern, die man benotigt, um S nach dem gegebenen
Fehlermodell zu priifen.

Das Schwergewicht der vorliegenden Arbeit liegt auf der Untersuchung der Test-
probleme beziiglich baumartiger Schaltkreise, pseudoerschopfend und pseudozufallig
testbarer Schaltkreise, sowie auf der Entwicklung von Verfahren zur FErzeugung
optimaler Testmustermengen.

Die Arbeit gliedert sich in sieben Kapitel.  Das erste Kapitel enthalt eine
formale Beschreibung von VLSI-Schaltkreisen und des Testproblems mit Hilfe der
X-Kategorie [Hotz65, Hotz74]. Diese Formulierung fithrt zu einer Vereinfachung der
Diskussion und zu einer Verallgemeinerung der Resultate.

Wir bezeichnen im folgenden baumartige Schaltkreise als Baume. FEin Baum ist



uniform, falls alle Knoten des Baums die selbe Funktion realisieren. Baume sind
Basiskomponenten von vielen VLSI-Systemen, insbesondere auch von parallelen
Architekturen. Im folgenden werden nur uniforme Baume betrachtet. Bekannt ist,
dafl bestimmte baumartige Schaltkreise bzgl. ihrer Testbarkeit nach Klassen parti-
tioniert werden konnen [BeSp91]. Dies hat uns motiviert, die Testkomplexitat von
allgemeinen baumartigen Schaltkreisen zu untersuchen. Unsere Untersuchungen
zielen dabei ab auf die Generierung einer minimalen Testmustermenge und eine
eventuelle Modifikation des Schaltkreises.

Vom zweiten bis zum finften Kapitel konzentrieren wir uns auf die Untersuchung
der Testkomplexitat baumartiger Schaltkreise nach dem Einzel-Zellenfehlermodell.

Wir benutzen T;n) als Bezeichnung fiir einen tber der Funktion f definierten,

(n)

balancierten baumartigen Schaltkreis mit n Eingangen. Fine Zelle von T ist
fehlerhaft, falls fur eine bestimmte Belegung dieser Zelle der Ausgangswert nicht
richtig ist. Um solche Fehler zu testen, missen wir an dem Schaltkreis ein n-stelliges
Muster anlegen. Um einen konkreten Fehler zu entdecken, mufl dieses Testmuster
sowohl eine den Fehler produzierende Belegung der Eingange der fehlerhaften Zelle
erzeugen, als auch dafir sorgen, dafl das entsprechende fehlerhafte Signal zum
primaren Ausgang propagiert wird. Fine vollstandige Testmustermenge fur T]gn)
besteht aus Testmustern, die alle Fehler des zugrundeliegenden Fehlermodells testen
(m)

konnen. Die unmittelbaren Fragen sind: Wie groB ist die Testkomplexitat von T}
und wie kann eine optimale Testmustermenge erzeugt werden?

Eine Mustermenge heifit eine vollstandige Belegung fur T]E”), falls sie an jeder Zelle
von T;n) alle Belegungen erzeugen kann. Die IDDQ-Testtechnik testet Fehler

durch Messung von Leckstrom und betrachtet nicht zusatzlich die Propagierung
der fehlerhaften Signale [MaSu82, HSFH8T7]. Fiir diese Testtechnik ist eine Test-
mustermenge vollstandig, falls diese Testmustermenge eine vollstandige Belegung

(n)

ist. Wir definieren die Belegungskomplexitat von T} als die Grofie seiner kleinsten

vollstandigen Belegung.

Im zweiten Kapitel untersuchen wir die Belegungskomplexitat von T]E”). Hier ist
f eine Funktion von {0,1,...,m — 1}* nach {0,1,....m — 1} und 0,1,m — 1 wer-
den als Symbole betrachtet. Dabei ist es uns gelungen, die Belegungskomplexitat
von uniformen Baumen vollstandig zu charakterisieren. Es wird gezeigt, dafl die
Belegungskomplexitit eines balancierten uniformen Baums entweder (1) oder
O((Ign)™) (a € (0,1]) ist. Falls der uniforme Baum iiber einer kommutativen Funk-
tion definiert ist, kann o nur 1 sein.

Ist eine kommutative Funktion f gegeben, so kann man nach der Definition von f
ein Integer Programming 7 P; und einen gerichteten Graph (¢ definieren. ITm zweiten



Kapitel wird bewiesen, dafl die folgenden Behauptungen aquivalent sind:

1. Die Belegungskomplexitat von T]E”) ist O(1).
2. TP; hat eine zulassige Losung.

3. Gy ist stark zusamenhangend.

Auferdem wird auch gezeigt, dafl die Belegungkomplexitat von T]gn) in Zeit ©(m?)

entscheidbar ist. Hierin ist f eine kommutative Funktion von {0,1,...,m — 1}* nach

{0,1,..om—1}.

Fur eine andere tbliche Testtechnik mufl die Propagierung der fehlerhaften
Signale mit grofiter Sorgfalt behandelt werden. Tm dritten Kapitel betrachten
(m)

wir die Testkomplexitat von T}

{0,1,...,m — 1} nach {0,1,...,m — 1} ist. Wir zeigen, dafl} T]E”) entweder O(1)
oder Q((1gn)?)(B > 0) testbar ist. Als Testkomplexitét eines balancierten uniformen
Baums, der iiber einer kommutativen Funktion definiert ist, ist genau einer der fol-

genden drei Falle moglich: ©(1), O(lgn) und Q(n”) (v € (0,1]).

unter der Annahme, dafl f eine Funktion von

Falls die Basisfunktion f von {0,1}* nach {0,1} geht, kann die Testkomplexitat von
T]gn) exakt bestimmt werden. Das vierte Kapitel beinhaltet die folgenden Resultate:

° T]E”') ist entweder O(1) oder Q(Ign) testhar.
()

e Die Testkomplexitat von T} fiir eine kommutative Funktion ist entweder ©(1)

oder O(Ign) oder Q(n™) (0 < v < 1).
. T]gn) tiber monotonen Funktionen ist immer Q(n”) (0 < v < 1) testbar.

Des weiteren geben wir im vierten Kapitel Kriterien fur die Zugehorigkeit zu den
oben genannten Klassen an.

Im finften Kapitel zeigen wir, da jeder Baum durch eine Modifikation seiner
Basiszellen so umgewandelt werden kann, so daf er in Zeit O(Ign) testbar ist. Der
alte Baum wird durch den neuen Baum simuliert. Auflerdem stellen wir ein Ver-
fahren zur Synthese der O(lgn) testbaren Baume vor.

Falls ein Schaltkreis mehrere primare Ausgange hat und jeder Ausgang nur von
einigen der primaren Fingange abhangt, kann der Schaltkreis durch erschopfendes
Testen aller Teilschaltungen getestet werden. FEin solches Verfahren nennt man
pseudoerschopfender Test.  Das sechste Kapitel prasentiert einen effizienten
Algorithmus zur Frzeugung pseudoerschopfender Testmustermengen.  Dieser
Algorithmus findet auch Anwendungen auf den Gebieten des Systementwurfs und



der Fehlertoleranz.

Fur grofle Schaltkreise ist die optimale pseudoerschopfende Testmustermenge sehr
schwierig zu berechnen. Probabilistische Verfahren konnen hier zur Senkung der
Kosten beitragen [Wund87, Hart93]. Im siebten Kapitel stellen wir ein neues
Konzept vor, sogenannte “Monomial Oriented Pseudorandom Tests”. Die Grun-
didee besteht im Entwurf eines Testmustergenerators, mit dem man eine kleine
Testmustermenge erzeugt, die alle kleinen Monome tiberdeckt. Ein solcher pseu-
dozufalliger Testgenerator hangt nicht von einem konkreten Schaltkreis ab, daher
ist seine Anwendung nicht auf konkrete Schaltkreise begrenzt.



Preface
Motivation

The wide use of computers in various fields of society makes it clear  computers must be
more and more reliable. The reliability of a computer depends strongly upon testing its
basic components VILSI systems. Through test one knows whether the VLSI systems
have been manufactured properly and behave correctly.

Generally speaking, A VLSI system is made up of the sequential circuit part and
combinational circuit part. The test generation for sequential circuits is usually much
more difficult than that for combinational ones, since the controllability and observability
of sequential circuits are poor. In order to overcome the difficulty, some design technique
have been developed. By using those techniques a sequential logic can be so designed that
its test can be reduced to that for some combinational logics. Hence the key to the test
of a VLSI system lies in the test of its combinational logic part.

This thesis focuses on the test problem of the combinational part of VLSI systems.

The test of a VLSI system includes mainly the generation of a test set and the applica-
tion of the test set to the system. The test complexity can be classified into the complexity
of the test set generation and the complexity of the test set application. The former can be
estimated by the computing complexity of generating the test set. The latter is measured
by the cardinality of the test set.

The test generation approaches can be divided roughly into structural and functional
methods. A structural method generates test patterns for a circuit with reference to the
concrete logic structure of the circuit, while a functional method produces test patterns
for a circuit without reference to the concrete logic structure of the circuit.

With the rapid development of VISI technology the circuit density is increasing dra-
matically. The test of VLSI systems is becoming increasingly difficult and expensive.
Although some techniques such as design for testability, new fault models and new test
generation approaches have been proposed to moderate these problems, there is a great
need to develop new design methodologies and test approaches.

The complexity of test generation and application of a VI.SI system is related to the
concrete structure of the system. Theory and practical experiences show that it seems
to be impossible to find a universal method for treating various VLSI systems efficiently.
One of the alternatives is to develop a suitable method for a kind of VL.SI systems.

This thesis studies extensively the test problems related to tree systems, pseudoex-
haustive and pseudorandom testable circuit systems. Tt develops several techniques for
generating optimal test sets for different kinds of circuits.

The Structure of the Thesis

This thesis consists mainly of seven chapters. In chapter 1, we give a formal definition
of the VLSI systems hy using X-category for simplifying our discussion and generalizing
the results easily, and make a brief view of the functional and structural test generation
approaches so that we can have an impression on the advantages and disadvantages of the
two approaches.



Tree systems are basic components for many VISI systems, especially for systems
performing parallel and fast computations. Many combinational circuits can be covered
by a number of tree like circuits. Therefore, the study of the test complexity of tree
structure systems is very useful to the design, optimization and test of VL.SI systems.

Let T](fn) denote a balanced uniform tree based on function f and having n primary

input lines. The test complexity of T](fn)

is defined as the cardinality of the minimum
complete test set of it and is measured as a function of the number of the primary input
lines in the tree. The test complexity of uniform tree systems based on functions over
monoids has been intensively studied and divided into ©(1), O(lgn) and O(n) testable
classes [BeSp91]. Tt indicates that the test complexity of a tree system can jump from one
class to another, when the definition of its basic cell is modified. Tt motivates us to analyze
the test complexity of more general tree systems and explore the possibility of modifying
them to change their test complexity from a high class to a low one.

The result in [BeSp91] is obtained under the assumption that the function implemented
by the basic cell satisfies the associative law. After this condition is dropped, the scene
really changes. For example, the boolean function NAND does not fulfill the associative
low. Hayes [Haye71] shows that a tree system based on NAND gates is O(y/n) testable.
We analyze the assignment and test complexity of more general tree systems and develop
a method to synthesize tree systems for the low test complexity.

(n)

A complete assignment set to T} consists of a number of n-component patterns. By

(m) (n)

applying it to the primary input lines of T, every internal f cell in T} can be excited

by all possible input combinations. The assignment complexity of T](fn) is defined as the
cardinal number of the minimum complete assignment set to it. In chapter 2 we deal with
the assignment complexity of tree systems.

A test pattern for a fault in a faulty cell has to fulfill two conditions: 1) applying a right
assignment to the faulty cell for sensitizing the fault, 2) making a channel to propagate
the generated diagnosis signal(effect of the fault) to a primary output line for observing
it. The I'DD( testing method tests faults by measuring the leakage current. In TD D@
testing, the site of fault has to be excited, and the propagation of the effect of the fault
is automatic [MaSu82, HSFH&7]. For I D DQ testing, a complete assignment set to a tree
is just a complete test set to it. It is appropriate to consider the assignment problem in
the first stage since the assignment itself is a basic problem in the VLSI system design
and test, and the construction of a complete assignment set is the first step towards the
generation of a complete test set for other testing methods. We show that a tree system
is either O(1) or Q((Ign)*) (o € (0,1]) assignable. When a uniform tree system is based
on a commutative function, then it is either O(1) or Q(Ign) assignable.

Having explored the assignment complexity, we begin to analyze the test complexity
of tree systems in chapter 3. We show that a balanced uniform tree system is either O(1)
or Q((lgn)”) (a € (0,1]) testable. Furthermore, we prove that the test complexity of
balanced uniform tree systems based on the commutative functions can be exactly divided
into ©(1), O(lgn) and Q(n™) (a € (0,1]) classes.

Every balanced tree system is O(lgn) assignable. In other words, all faults can be
sensitized through O(lgn) patterns simultaneously. Whether a balanced tree system is
O(lgn) testable dependes on the diagnosis signal propagatability.



Chapter 2 and 3 are dedicated to tree systems based on symbolic functions. The
results obtained there are more or less abstract. In the fourth chapter we investigate
the test complexity of uniform tree circuits based on boolean functions, and show that a
balanced uniform tree circuit is either O(1) or (lgn) testable. A balanced uniform tree
cireuit based on a boolean function f: {0,1}* — {0,1} is O(1) testable if and only if for
every pair X, Y € {0,1}* f(X)# f(V) if the Hamming distance between X and Y is 1.
The test complexity of balanced uniform tree circuits based on commutative functions
can be further divided into constant, logarithmic and polynomial classes, and balanced
uniform tree circuits based on unate functions are all Q(n”) (a € (0,1]) testable. The test
complexity of uniform tree circuits based on general functions has more classes. These
results are helpful for us to understand the test complexity structure and give us some
hints for designing or modifying VLSI systems for testahility.

Through the classification of the test complexity, we have found that if a uniform tree
system is O(lgn) testable, there must be a constant s so that one can simultaneously
propagate a diagnosis signal from each of the lines in the same level to the primary output
line by using x patterns. In chapter 5 we propose a method of the function synthesis. Given
a balanced tree T, we can always synthesize an O(lgn) testable tree 7 and embed T in 7
to trade the hardware overhead for the low test complexity. This idea is meaningful, since
the cost of the hardware has been decreasing while the cost of the test has been increasing.
In comparison with other methods of reducing the test complexity, this method requires
more extra gates and less input and output pins. With the development of the VI.SI
technology, the gate density of VLSI system is increasing much more rapidly than the
number of access terminals. Thus this method is attractive.

One of the test approaches independent of the functions implemented by the circuits is
the exhaustive testing. Given a circuit with n primary input lines, the exhaustive testing
generates all the 27 patterns. Such a test set can detect all detectable combinational faults
in the circuit. The advantage of this method is that no information about the circuit
structure is required, and the test generator can be cheaply realized by using hardware.
Its disadvantage is that the test sets for circuits with many primary input lines are so
large that they can not be used in practice.

Assume that the given circuit has a number of primary output lines and n primary
input lines, and none of these primary output lines depends on all the n primary input
lines. We can imagine that the circuit can be covered through a number of subcircuits,
and each of these subcircuits has at most k(k < n) primary input lines. The approach
that tests the circuit by testing these subcircuits exhaustively is called pseudoexhaustive
test. The first method of psendoexhaustive test generation was proposed in [BSMSS&1].
Thereafter, extensive works have been done to develop good mechanisms for generating
practically acceptable pseudoexhaustive test sets.

In the sixth chapter we present an efficient algorithm for constructing psendoexhaustive
test sets. This algorithm has also applications to the design of threshold circuits and fault
tolerant systems. By using this algorithm one can generate an acceptable test set for small
k and practical n (k< 10,n < 1024).

Generally, the pseundoexhaustive test sets constructed by available algorithms are often
too large to be used, and their cardinalities are much larger than the upper bounds of
the corresponding optimal pseudoexhaustive test sets. One of the alternatives is the



pseudorandom test. Tt has been shown that a fairly small psendorandom test set can
reach a high probability of the pseudoexhaustive test.

The main reason for using the pseudorandom test is that one can avoid the long and
complex algorithmic test generation procedure. The pseudorandom techniques have two
important applications. One is to generate a short random test preceding the long and
laborious deterministic test to catch easy detect fault, another is to design built-in self test
circuits. However, the pseudorandom test can not always guarantee the very high fault
coverage. In order to improve the quality of pseudorandom test, a number of techniques
have been proposed. The input signal biased random test and pattern biased random test
are typical examples [Hart91, Hart93, SLC71, Wund87]. Their common idea is to design a
special pseudorandom test generator for a given circuit by using the information about the
given circuit fully. A so designed pseudorandom test generator is related to the structure
of the given circuit, and its application is limited. Furthermore, the desired information
for designing a properly weighted random test generator is not always available.

The seventh chapter proposes a new concept  Monomial Oriented Pseudorandom Test.
Its key idea is to design a monomial oriented pseundorandom test generator that allows a
fairly small test set to cover all small monomials. A monomial oriented pseudorandom test
generator is not related to a concrete circuit structure, then its application is not limited
to a concrete circuit. In chapter seven, we give a theoretical analysis of the soundness
of such kind of pseudorandom test generators, and present some experimental results to
demonstrate their advantages as well.
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Chapter 1

VLSI Systems and Tests

This Chapter consists of four sections. In section 1.1 we give a formal description of the
VI.ST systems by using X -category theory developed in [Hotz65], so that we can simplify
our discussion and generalize the results easily. Section 1.2 is about the fault model and
test. In section 1.3 we discuss the problem of the functional test. Section 1.4 presents a
brief view of the structural test generation for the regular VLSI systems.

1.1 X-Category and VLSI Systems

A semigroup (5,0) is a set S and together with an associative binary operation
0:682 — 5.

A monoid (M,0,u) is a semigroup (M,0) with an element u € M such that
wdx = x0u =2 forall z € M. Such an element is called unit of M.

Given a set F, define

E*=Aay...ap | a; e B, fori=1,..,k k& Ng}.

F*includes all of the finite strings over F. The length of the string s = ay...a; (a; € F)
is k. In case £ =0, sis an empty string denoted by the symbol A.

H is called a free monoid, when there is system of generators F of H such that the
canonical homomorphism ¢ : F* — H is isomorphism [Hotz90].

Tet T = {t1,ts,....,1,,} be the set of the basic types of signals which can be transferred
through a (symbolic) line or (symbolic) bus in VLST systems. A signal type #; € T consists
of a number of signals called individuals(values). For instance, the 1-bit binary signal type
includes logic 0 and logic 1 as its individuals, and a line of such a signal type can transfer
both logic 0 and logic 1.

Tet - be the concatenation operation of elements in T™, and

Bty togt ooy =11 oot
and

oot - A=Xty ...t =1 .. .1



for t; € T*. Then (T*,-) is a free monoid having the empty element A as its unit. In this
Chapter, we use [;; to denote the set of all individuals of the signal type ¢; and regard I,
as I, x I, for u,v € T*.

Tet A be the set of all building blocks of the VLSI systems. Every line in an element
F € A has a signal type. Two functions

Q.7 A—T"

are used to determine the input and output types of building blocks in A. For instance,
the input type and output type of F' € A are Q(F) and Z(F), respectively.

Given two building blocks F, G € A, we can construct a new building block by using
? x 7 and the new building block is illustrated by Fig. 1.1. In case
the output type Z((G) of (G is equal to the input type Q(F) of F, we can construct a new
building block by using the sequential operation ” o 7. Fig. 1.2 shows the new building
block which is constructed by linking the ith output line of (G directly to the ith input

line of F.

the parallel operation

G
F G F
Fig. 1.1: F x @ Fig. 1.2: Fo(d

For F,G e A

QF x @)= Q(FIQ(G),  Z(F x G) = Z(F)Z(G)
Q(FoG)=Q(G).  Z(FoG)=Z(F)

Tet By = {By,By,...}and Dy ={1,,D,, Vi | a,b € T} be two classes of basic build-
ing blocks. Every basic building block B; in Br has only one output line and at least one
line. The input and output types of B; are Q(B;) and Z(B;), and the input and output
values of B; are limited to Igg,) and Iz (pg,, respectively. The elements in D7 can be
illustrated through the following figures.
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Fig. 1.3: I, Fig. 1.4: D, Fig. 1.5: V,,

I, denotes a line, D, a fanout mechanism, and V., two cross lines. For the three

building blocks,

Tet A = By UD7. A. The set of all building blocks of VI.ST systems can be formally
defined as follows.

1. ADA;
2. F,Ge A— FxGe A;
3. F,GeAand Z(G)=Q(F)= FoG e A.

It has been shown that
C=(T",A,Q,7,0)
is a category, and
C=(T",A,Q,7,0,x) (1.1)

is an X -category [Hotz65]. Tn the following we present the formal definitions of category
and X -category.

Definition 1.1 (category) C = (O(C),M(C),Q, 7, 0) consisting of a set O(C) of ob-
jects, a set M(C) of morphisms, two mappings

Q.7 : M(C) — O(C)

and a mapping

o: Po—M(C),  Fo=A{(f,9)|QUf)=7(g9) N [f.g9,€ M(C)}
is called category, provided that

1.Y(f.9) € Po{@Q(feg)=Qg) N Z(fog)=7Z(f)};
2. Forall f,g,h € M(C), fo(goh)= (fog)oh if fo(goh) and (fog)oh are defined;

3. For every u € O(C) there is an identity 1, such that fol, = f and 1,09 =g for
all f,g € M(C) with Q(f) = and 7Z(g) = u.



Definition 1.2 (X-category) C = (O(C),M(C),Q, 7,0, X) is called X -category, pro-
vided that the following five conditions are satisfied.

1. (O(C),M(C),Q. %,0) is a category;

2. (0(C), x) and (M(C), x) are monoids;

3. Q.7 : (M(C), x) — (0(C), x) are two monoid homomorphisms;
4. Yu,v € O(C) {1, =1, x1,};

5. (g1, [1), (92, f2) € Po{(g1 0 fi) x (g20 f2) = (g1 X g2) o (fi X f2)}.

Suppose t is the 1-bit binary signal type, and T = {t}. If Dy = {14, Dy, Vi;} and By
includes NOT, AND and OR gates, then the X-category C defined by (1.1) is corresponding
to the whole combinational circuit system. It is corresponding to the whole tree system if
D+ does not include the fanout mechanism D,.

Assume that a building block F € A implements a function f, and its domain and
codomain are denoted by Q'(f) and Z'(f). (Q'(f) = Iowr), Z'(f) = Iz@ry)- Tet T =
{I.,|Ju € T*}. The set

F=Ar:QN) = 72(NH1Q(f).7Z'(f) e T}

includes all the functions implemented by the elements of A.
We define two operations ¢ and ® over F. Given two functions f and ¢, f ® ¢ is

a function from Q'(f)Q'(g) to Z'(f)7'(g). Tn case Q'(f) = 7'(g), f ® g is defined as a
function from Q’(¢) to Z/(f). Tt can be shown that

K = (T*7f7le Zlv®)
is a category, and
K=(T"7.Q.7",0,9) (1.2)

is an X-category. In the following we investigate the relationship between the two
X -categories C and K by using functor.

Definition 1.3 (functor) Given two categories
C = (0(C),M(C),Q,7,0) and K= (O(K),M(K),Q' 7' ®)
and two mappings
b1 0(C) — O(K) and & : M(C) — M(K),
¢ = (P1,¢2) is called a functor, provided that the following three conditions are satisfied.

1 YF € M(C){Q'(0x(F)) = 61(Q(F)) A Z(6s(F)) = d1(Z(F))};
2. VF,G e M(C){Q(F) = Z(G) = ¢a(F o (1) = 62(F) & ()}



3. Yu € O(C) {@(1“) —1, (“)}.

We define two mappings
o T—=T ()= 1, teT”
and
P2 A—=TF, ¢F)= [ il [rlgr) — Txr), FeA

It is easy to check that:

1LVF € A{Q'(d2(F)) = o1(Q(F)) A Z'(¢2(F)) = d1(Z(F))};
2. VF,G € A{Q(F) = 7(G) = ¢o(F 0 G) = ¢o( F) @ (G}

3. Yu e T {@(1“) =1, (“)}.
Thus ¢ = (¢, ¢2) is a functor from C to K, and a functor from C to K as well since
VE,G € A{po(F X G) = ¢2(F) @ d2(G)}.

Thereafter, we use operators o and X to replace & and &, and substitute mappings ¢
and 7 for Q' and 7', provided that no confusion can be caused. For the sake of simplicity,
we often call a bhasic building block cell and use a lower case letter to represent a function
implemented by a building block represented by the corresponding upper case letter. For
example, b is used to represent the function implemented by B € A. I; is used to denote
a line transferring signals of type t and the function ¢o( I+) as well. Furthermore, we use
u to represent ¢y (u) (u € T™), namely the set of values of type u. For instance, we use
the form f: 1% — ¢ to represent a function from ¢ (1) to & (1).

Every building block F' € A implements a function ¢o(F) : Q(F) — Z(F). For ex-
ample, I, realizes an identical function for a, D, a function from a to a x a, and V,; a
function from a x b to b X a.

Suppose = and y are two individuals of type a and b, respectively, then

do(Lo)(x) =2, Pa(Dy)(x) =2 and da(Vip)(2y) = yo.

1.2 Fault Models and Test

Most of the literature on VLSI system tests uses the concepts defined by R. D. Eldred in
[Eldr59], and formalized by J.P. Roth in [Roth66], in which only stuck-at-1 and stuck-at-0
faults are considered. Although the stuck-at fault model can model a lot of the faults
occurring actually in a system, there still exist many faults that can not be modeled by
it. In this thesis, we consider two fault models. The first is the single line individual fault
model, and the second is the single cell definition fault model.



1.2.1 Single line individual fault model
For two distinet individuals 2,y € 1, I.,_, denotes a cell realizing the following function.

(bg(ﬁm_w) : t—1, teT

Yy 1 z==x

oo Lam)(2) = {'Z ot

In case t consists of 1, 2, 3 and 4, x and y are 1 and 2, then Table 1.1 shows just the
definition of ¢o(1_2).

forz,y,z €t (1.3)

w

|

1
G2(Li—2)(2) | 2

2
2

o
IS

Table 1.1

A single line individual fault in a building block changes a line I; in the building block
into a cell L,_, (z,y € t). The individual 2 € t is a test for this fault since

G Li)(x) = 2 # y = da( Ly ) ().

A line is called fanout-stem if it has fanout branches. Otherwise, it is called input-line.
Under the line individual fault model, we are required to consider only the faults on the
input-lines and fanout-stems.

l l input-line

B

Qa\noutstem
A\
N

Fig. 1.6: Fanout-stem and Input-line

Like the popular stuck-at fault model, the line individual fault model has also some
shortages and can not model all the faults in a cell. ITn some cases, one knows the function
definition of a cell, but he has no further information about the internal structure of the
cell. Tt has been shown that a given function can have different realizations which might
have different minimal complete test sets. The cell definition fault model defined in next
subsection can avoid this problem to some extent.

1.2.2 Single cell definition fault model

Assume F € A. The single cell definition fault model assumes that a basic cell
B in F implements a function (bg(Rl) : Q(BI) — Z(RI) instead of the desired function
$2(B) : Q(B) — Z(B) due to a fault. However, Q(B) = Q(RI) and Z(B) = Z(BI), and
there is an 2 € Q(B) such that ¢o( B)(x) # (bg(Rl)(T) The element 2 € Q(B) is a test



for this cell definition fault. To test cell B completely, every element in Q(B) has to be
applied to it. A complete test set of F' consists of a number of patterns from Q(F), and
by applying them to F' every basic cell in F' can be tested exhaustively.
We say that a fault # dominates another fault », when every test for u is also a test
for v.
Assume that cell B is desired to realize a function b : ¢ X ---x ¢ — t. Then we can
N—_———’

k
consider that B should realize a function Lyobo (Ly X Iy x -+ X T/Q, where [; represents

k
an input or output line linked to the cell B. Suppose there is a line individual fault at
the first input line that changes the line I; into a cell 1,_,. Then it causes the cell B to

implement a function L;obo (L,_, x Ly X ---Xx L). Thus a line individual fault on the
k—1
lines of B can be considered as a cell definition fault in the cell B. A complete test set for
the cell definition faults in B is certainly a complete test set for the line individual faults
on the input and output lines of B. This indicates that every single line individual fault
on the input and output lines of a cell is dominated by a single cell definition faults of the
cell. All fanout-stem faults and input-line faults in ' € A are dominated by cell definition
fanlts in F. This fault model is suitable to the VLSI systems with a regular structure.
The signal type of the input and output lines of NOT, AND and OR gates is {0,1}. Tf
only these gates are considered to be the basic cells of By, the line individual faults are
called stuck-at faults conventionally, and the single stuck-at fault model is often adopted.
It is assumed that every cell definition fault in NOT, OR and AND gates can be dominated
by stuck-at faults.

Given an F € A, we use Fy to denote the set of cells which are induced by a single
fault of any basic cell in F.

Definition 1.4 (complete test set) D(F, Fy) C Q(F) is a complete test set of F' € A
if and only if

VF' € Few € D(F, Fy) {da( F)(x) # da( F')()} (1.4)

Q(F) is the set of all input patterns of F, and it includes always a complete test set
for the irredundant F € A. Q(F) is a complete test set of F. However, it can not be
used when #Q(F) is too large. One has to choose a subset of Q(F) as the test set. The
problem is how to generate an acceptable subset, which is a complete test set of F. We
are also interested in the construction of the minimal complete test set for F.

1.3 Functional Test

Given a fault model and an F' € A, a complete test set of I regarding the given fault model
consists of a number of patterns from Q(F). By applying them to F every concerned fault
can be tested.

Assume that we know nothing about the concrete structure of F but the function
expression of ¢o(F). Then the functional test has to be done. Among the approaches to



functional test are the psendoexhaustive, random, and universal tests. Tn this section we
consider the generation of a universal test set for every irredundant realization of ¢o( F).

If ¢2( F') has a special property, a universal test set which is a complete test set for any
of a variety of different irredundant realizations of ¢2(F) may be found. Akers [Aker73]
examines the problem of finding the universal test set, and shows that, for AND/OR
networks, universal test sets may be found, and the universal test sets detect not only all
signal faults but also all multiple faults.

Assume ¢5( F') to be a more general function belonging to F. In this section we explore
the possibility of and the difficulty in the generation of a universal test set for ¢o( F').

Suppose Fy and Fy are two different realizations of ¢o( F'), and Fy can be transformed
into Fy by obeying some transformation regulations. We derive some fault transformation
rules from the structure transformation regulations. According to these rules we can
transform the faults associated with F; into some faults associated with Fy so that a
complete test set concerning the faults in Fy is also a complete test set for Fj.

Before further discussion we construct two X -categories B and D. Their morphism sets
are Bp and Dy defined bhelow.

1. The definition of Byp:

e Br D Br;
e FxXGeBrifF,GeBr;
oFOGEBTifF7GEBTH,T]dZ(G)ZQ(P).

2. The definition of Dp:

e Dy O Dy;
o FXGeDyrif F,G e Dr;
e FolGeDrif F,G€Drand Z(G) = Q(F).

It is easy to show that both
B=(T"Br.,Q,7%,0,x) and D= (T"Dr,Q,7,0,X)

are X-categories. An element in By is called B-tree, while an element in Dy is called
D-tree.
Assume that G € A, Q(G)=0=ga---a and Z(G) = a. Then both building blocks
N—_—

k
D,oG and (G xG)o D, implement the same function. The former can be transformed into

the latter. We call such a building block transformation a basic transformation. Fig. 1.7
illustrates the basic transformation.

Given a function f € F, there are various realizations of f. The following lemma,
due to G. Hotz, states that every realization of f can be transformed into a standard
realization which is made up of two trees.

Lemma 1.1 For every F' € A there is an F' = B’ o D' with B’ € By and I’ € Dy such
that ¢o(F') = ¢2(F”) holds for every functor ¢ = (1, ¢2) from C to K.



The details of the proof of this lemma can be found in [Hotz74] .

Fig. 1.8 illustrates that for a given function f there are a number of realizations, and
each of them can be transformed into a standard realization Fy made up of a D-tree and
B-tree.

The basic transformation is the replacement of the building block H = D, o (G with
"= (G x G)o D, as illustrated by Fig. 1.7.

2

2
AP
)

block H' block H

Fig. 1.7: Basic-Transformation

Fy

Fig. 1.8: Realization-Transformation

For cell definition fault model, cell faults dominate all line individual faults. Assume
that an F' € A is transformed into F’ through a basic transformation. Some single cell
fanlts in F' are transformed into multiple cell faults in /. Furthermore, some single cell
faults in F” have no equivalent fault in . A complete test set of multiple cell faults for
Iy is a complete test set of single cell faults for each of Fy, ..., F,.

Assume that Fj, ..., F, can be transformed into Fy, which is a standard realization.
Then we can state that a complete test set of multiple cell faults for B-tree in Fy is a
complete test set of single cell faults for each of Fy, ..., F,.



In case the line individual fault model is adopted, we assume that all concerned cell
definition faults can be dominated by line individual faults. As mentioned in section 1.2.1,
we are required to consider only faults on the fanout-stems and input-lines. Suppose F
can be transformed into F” through a basic transformation demonstrated in Fig. 1.7, then
a fanout-stem fault in F is transformed into a multiple input-line fault in F’, and a single
input-line fault in F is transformed into a fanout-stem fault in F’. Furthermore, some
single input-line faults in F’ have no equivalent fault in F. A complete test set of multiple
line faults for Fy is a complete test set of single line faults for each of Fy, ..., F,.

Assume that Fy, ..., F, can be transformed into a standard realization Fy. We can
conclude that a complete test set of multiple line faults in Fy is a complete test set of
single line faults for each of Fy, ..., F,,. However, whether the complete test set of single
line faults for all Fy, ..., F, is a complete test set of multiple line faults for Fy is an open
problem.

Observation 1.1 The complete test set of the multiple variable faults for all of the boolean
expressions of [ is a complete test set of single-stuck-at faults for all of the realizations of
the function f.

Our argument for this ohservation is the following.

Assume that the basic cells used to realize f are NAND and NOR gates. Every real-
ization F; € A implementing the given function f can be transformed into a standard
realization Fy consisting of a D-tree and B-tree. A complete test set for multiple line
faults in Fy is a complete test set for the single-stuck-at faults in F;. Because every fault
on the output line of a cell is dominated by some faults on some input lines, the mul-
tiple line faults in D-tree of Fy dominate the multiple line faults in the B-tree. Then a
complete test set for the multiple line faults in D-tree of Fy is a complete test set for the
single-stuck-at faults in F;. A D-tree corresponds to a boolean expression of the function
f. The complete test set for multiple line faults in D-tree of Fy corresponds to a complete
test set for the multiple variable faults in the boolean expression. Thus, the complete
test set of the multiple variable faults for all of the boolean expressions of the function f
is a complete test set of the single-stuck-at faults for all of the realizations of the function f.

Assume that Fy includes n cells, and k& — 1 possible faults can occur in every cell. The
number of the distinct multiple cell faults in Fy is equal to

Zk:(?)(kl)i—k”L

=1

Suppose a boolean expression of f includes n variables, then the number of the distinct
multiple variable faults for the expression is equal to 3" — 1. The difficulty in generating
a complete test set for multiple faults is very clear. Generally speaking, it is not realistic
to construct the universal test set for a system with many primary input lines.

An interesting theoretical question is as follows: Given a boolean function f(xq,...,2,)
in which both 2; and 77 appear (i = 1, ..., n), for any input combination X = (ay,az,...,0a,),
a; = 0 or 1, does there exist an irredundant circuit realization of f which requires the input
X as a test pattern in order to detect all stuck-type faults. To date this conjecture has



not been proven but no counterexample has been found[BrFr76]. If this conjecture is true,
the universal test set for all the cells realizing such a function f has to include every
combination X = (ay,a9,...,a,), a; = 0 or 1.

1.4 Structural Test

The discussion in section 1.2 gives us an impression that it is quit difficult to generate
a universal test set for a system with many primary input lines. If the system structure
is regular and we know its structure information, the scene changes. In some cases, we
can not only determine the test complexity of the system, but also generate the minimum
complete test set for it. We show this through a brief discussion on the test problem of
uniform trees.

Assume T = {t}, By = {B} and Dy = {,,V,, | a,b € T}. Assume further that
Q(B)=1---tand Z(B)=1t. Then A defined in section 1.1 is the set of all uniform trees

k
based on the unique basic cell B. Before discussing the test problem deeply we study the
assignment problem.

Definition 1.5 (assignment complexity) Given an S C Q(B) and an F € A. A
complete assignment set CA(F') for F regarding S is a subset of Q(F). By applying all of
the elements of C'A(F') to the primary input lines of F, every cell B in F' can be excited
by all of the elements in §. The assignment complexity of F reqarding S is defined as the
cardinal number of the minimum complete assignment set of F.

The assignment complexity of F' depends upon the property of ¢2(B), namely, b. In
the following we will show that F'is O(1) assignable if b has certain property. In order to
describe this property we require a new symbol D? which is defined as follows:

1. D?2=D,, fora € T

2. DIV = (D! x L,)o D,, fora € T*.

The logical structure of DI+ is illustrated by Fig. 1.9.
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Fig. 1.9 Di+1

In the rest of this Chapter we use ¢ to denote the string ¢---¢, and T to stand for ;.
k

Definition 1.6 ( b-stable set) Set S C T* is b-stable if and only if there are bijective
mappings T, ..., 7y : S — 8 such that (bom X ---xX bow)o DF(S) = 5.

Lemma 1.2 If § C T% is a b-stable set, then there are k bijective mappings
Ty ey T 2 0 — 9 such that

(b><---><b)o(7r1><---><7rk)ol7§ (1.5)
k
1s the identical mapping of 5.
Proof: Suppose S C TF* is b-stable, and (bom x --- X bom)o DF is a bijective map-

ping from S to 5. Define a bijective mapping mg : S — S as the inverse mapping of
(bomy X ---xXbom)o D¥. Hence,

(bomy X ---Xbomg)o D(]io7r0|g = id|s,

where id|g is the identical mapping of 5.
Because of

k k
DYomg=(mg X ---Xmg)o DI,
k

then

(bom X---Xbowk)oniom) = (bom X---Xbomp)o(mgX---X 7)o D(]i

k
= (bX---Xb)O(?ﬁO7T0X"'X7TkO7T0)O D(]:



Replacing m; o mg by 7;, we have the lemma.

Q.E.D.

, Dk
/./ P \\
™ T
by by
Fig. 1.10 I

We use f; to denote the mapping defined by (1.5). Fig. 1.10 illustrates the structure of
fr- Tt is made up of two parts. The upper part (my X --- X 7)o D¥ is a fanout mechanism,
and it has one input line and k output lines of type o (k input lines and k2 output lines of
type #) and implements a mapping from #* to #*". The lower part (b x - - - x b) consists of

ype t) p pping part ( )

k b cells connected in parallel. A b cell can be considered as a uniform tree with & input
lines of type t (an input line of type o) and an output line of type t. Then (b x ---x b
ype 1 (an inp ype ) P yp ( )

can be considered as a building block made up of k& uniform trees. It has & inpu]‘; lines
and one output line of type o, and implements a mapping from t*” to t*. The two parts
realize together an identical mapping for t*. The idea here is to construct a building block
which includes uniform trees and realizes an identical mapping for a set 5. By applying
S to the building block, 5 is assigned to every uniform tree inside the building block. In
the following we use this idea to construct a family of identical mappings F"(h € N). F*
includes h-level balanced uniform trees based on b.

We use 7 to denote (my X ---x 7)o D and f, to represent (bx ---xb)or. At

k
first we give a recursive definitions of the balanced uniform tree Fj, and fanout mechanism

h
.
Tet N denote the set of all positive integers. The recursive definition for F}, is the

following.

F() - ,’7‘, (]6)

Frow = BO(P}],X---X Fr), heN (]7)

k



Fig. 1.11 Fh

Fig. 1.11 is the diagram of Fjiq. Tt is easy to see that Fj, (h € N) is a balanced

uniform tree of h-level. The w-family is defined as follows:

7T0 = ,’7‘,
L (7rh>< S X 7rh)o7r7 h=1,2,..
————
k
A\
v T
A\ A\
' ﬂ'h v 7T_h
\d \d

Fig. 1.12 rht

Fig. 1.12 is the diagram of 7"%'. Using F}, and 7" we can define the F-family.

F'=(Fp x---x Fp)ox", heN

Put it differently,

AU (Fho7rh’71 X+ X Fho7rh’71)o7r

Fig. 1.13is the diagram of F".

(1.10)

(1.11)
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Fh, e Fh,
Fig. 1.13 Fh

According to the above definition

bo(F') = éo((Bx---x B)or)
k

= Jp

Let f" = ¢o(F") for h € N . Then f" is a mapping from S to 5, and it is a general-
ization of f;. The following lemma holds.

Lemma 1.3 f"|s = id|s holds for all h € N.

Proof: We prove this lemma by using induction on the parameter h. For h =1, f! = f,
and f'|s = id|s. Suppose f/'|g = id|s holds. According to the above definition

Fooxh ' = Bo(Fy_y ><---><F/7,,1)o7rh71
k
= Bo Pl h e N.
Hence
F' = (Fix---x F)or!
~—————

k

= (Fix---xF)o(x" "x---xaor
k k




Thus

fl|5‘ — (bx...xb)o(]di1 X"‘X]di1)0ﬂ-|5‘
L k
_ (bx...xb)oﬂs

= flls
s (1.12)

Q.E.D.

Theorem 1.1 If S C TF* is b-stable, then #5 is the cardinality of the minimum complete
assignment set for each of the trees in A regarding 5.

Proof: Given a tree I’/ € A, one can always find a balanced tree F' € A so that F”’ can be
embedded into F. The assignment complexity of F' is an upper boundary of that for F”.
Thus trees in A are constant assignable if balanced trees in A are constant assignable.

A balanced tree Fy1q € A has the structure Bo (Fj, X --- X Fj,). We know that
k

Go((Fy x - x ) o) = id|s
k
and

(Fh X X Fp Oﬂ'h(S): S.

k

This indicates that when ﬂh’(S) is applied to the primary input lines of Fj,11, every cell
Bin Fj41 can be excited by all of the elements in 5. Thus 7/(5) is just a complete assign-
ment set for Fjq regarding 5, and the cardinality of the minimum complete assignment
set is #9.

Q.E.D.

Definition 1.7 (sensitive) Assume M C T. Function b : TF — T is sensitive if and
only if

Vie [1,kVy,y' € MVay € M7 "Way € M* {y £y < b(zryzs) # b(a1y' 22)} .

The sensitive property generalizes the group condition in [BeSp91].
Lemma 1.4 Assume M C T. If b is sensitive, then M* is b-stable.

Proof: Tt suffices to prove that for every ¢ € [1,k], there is a bijective mapping
Tt MF — MP* such that bomi(zy,..., 24 ..., ) = 2;. Without loss of generality, we as-
sime i = 1. Given a z € M* ', for every € M there is a unique y € M such
that b(yz) = = since b is sensitive. Tet b~ '(z) denote the set {X | B(X) = x}. Then
#07(2) < #M*1. Because Seenm #b (1) = #MP then #b7(2) = #M*'. Thus



we can construct a bijective mapping ™ : M* — MP* so that bo m(xz) = x for every
z € M* 1. In a similar way we can construct a bijective mapping =, : M¥ — M¥* so that
bomi(yrz) =z forall y € M'~" and 2 € M*", and

(b ---xb)o(m X ---x 1) o DF =ids.
Q.E.D.
Definition 1.8 (stable test set) Assume M C T. M* is called b-stable test set if
1. b is sensitive;
2. The complete test set D(B, By) of B is a subset of M*;
3. VB € ByVu € M* {¢o(B")(u) € M}.

Based on the third condition in the above definition (hx ---x ¥ x ---x b)o T(Mk) is
a subset of M* for all B’ € By, if M¥* is a b-stable test set.

Theorem 1.2 If M* is a b-stable test set, then #MP% is the cardinality of the minimum
complete test set for each of the trees in A.

Proof: According to the same argument for the proof of Theorem 1.1, it is enough to
consider the balanced trees Fjyq € A.

Tet M C T, and M* be a b-stable test set. According to the above definition and
Lemma 1.4, M* is b-stable. Following Theorem 1.1, 7"(M¥*) is a complete assignment set
for Friq.

Assume that there is a cell B in Fj,4q that implements function o’ (B’ € By) instead
of b due to a fault. Then there is a u € M*, and when u is applied to the defected cell, it
outputs b’(u) instead of b(u). In other words, u can sensitize the fault and drive a diagnosis
signal b(u)/b'(u) to the output line of the defected cell. The output line of the defected
cell is either primary output line or a line linked directly to another cell B. According to
the third condition of the definition of the stable test set, both b(u) and b'(u) belong to
M. The diagnosis signal b(u)/b'(u) can be further propagated towards the primary output
line since b is sensitive.

Thus we can state that 7" (M¥) is a complete assignment set as well as a complete test
set for Fj 1. This implies that #£MP¥ is the cardinal number of the minimum complete

test set for Fjiq.
Q.E.D.

Corollary 1.1 If b : T* — T is sensitive, then #T% is the cardinality of the minimum
complete test set for F € A.

The proofs of Theorem 1.1 and 1.2 are constructive. In fact, they correspond to the al-
gorithms for constructing the minimal complete assignment set and the minimal complete
test set for the balanced uniform tree based on function b.

As mentioned, if b is sensitive, then T* is b-stable. However, b may not be sensitive,
even though T% is b-stable. The difference between the stable and sensitive can be shown



by the following example.

Frample 1.1: Tet M = {1,2} and § = M?. Function b : § — M defined below is not
sensitive since b(1,1)=b(2,1)=1.

b|1 2
111 2
211 2

However,
m=A{(1L 1) = (1,1), (1,2) = (2,1), (2,1) = (1,2), (2,2) — (2,2)}
and
mp = {1, 1) = (1,1), (1,2) = (1,2), (2,1) = (2,1), (2,2) = (2,2)}
are two bijective mappings from S to 5, and
(bx b)o (m x my) o Di|s = id|s.
It indicates that 5 is b-stable.

Definition 1.9 (related functions) Functions by, by : T% — T are said to be related to
each other (denoted by by v by ) if and only if there are bijective mappings po : T — T and
w: TR — T% such that by = pg o by o pu.

It is easy to show that o< is an equivalence relation. In other words,

1. Vb e F{brab};
2. Va,be Flavab— braa};
3. Va,b,ee F{avabAboae — ac}.

Lemma 1.5 Assume that by < by and S5 is a by-stable set, then there is also a by-stable

set Sy, and #57 = #95.

Proof: Suppose there are bijective mappings g : T — T and p : TF — T* such that
by = po o by o . Assume 97 to be by-stable and

(by o 7r1(1) XX bo ﬂ]i1)) o D(]i = idls,

st : (1) (M .k k .
for k bijective mappings my ', ...,m,  :T" = T" where g =1---1,

k
Tet 7 = T or!Mo (g -+ x ") (i € [1.K]).and Sy = (o X -+~ X po)($1), then
———
k k
(by o 7r1(2) X =X bgo F](f)) o Di(‘qg)
= (byopu ! o7r1(1) X oo X byop o7r,i”)o D(]io(,ua1 X ---Xuf)(sz)

k

= (b op”! o7r1(1) X X bhyop ! o7r,i”) o Dﬁ(Sﬁ).



Notice that

jd|s1 = (b1o7r1(1)><---><b1o7rl(;))o]7§
= (,u(ﬂobgo,uqo7r1(1)><---><,u610b20,u*1o7r,i”)o]7§
= (,ug1X---Xuf)o(bzouqo7r1(1)><---><bgo,u*1o7r,i”)o]7§.
k
Thus
(bQO,u71O7T1(1)><...XbQO,u71Oﬂ]i1))OD§
= (po X --- X pg) o id|g,
—_——
k
and

(by o 7r1(2) X -+ X byo F](f)) o Dk(‘qg)

= (o X -+ X pg) 0 id|s, (1)
k

= (po X -+ X p1o)(51)
k

= 5.

It indicates that S5 is bg-stable, and #57 = #.55.
Q.E.D.

Definition 1.10 (equivalent functions) Functions by, by : T® — T are considered to
be equivalent to each other (denoted by by = by ) if there is a bijective mapping pp: T — T
such that by = = oby o (pn X -+ X p).

|

k

1

Theorem 1.3 Suppose by = by, by = p=' o by o (ux---x u) for a bijective mapping
| S ———

k
w:T — T. Assume F}, and F}I;, to be uniform trees based on By and By, respectively. Then

o both trees Fj, and F,; have the same assignment complexity;

e assume that Dy, = {r/s|r# sAr,s €T} and Dy, = {u(r)/n(s) | r/s € Dy, } are
the diagnosis signal sets of By and Bq, then both trees F}, and F}I;, have the same test
complexity.

Proof: This theorem includes two propositions. Coming up next is the proof of the first

proposition.

Vobro(pux---x ).
———
k

Suppose there is a bijective mapping p : T — T such that by = u~



Tet f5 and f;} denote ¢o( F}) and (bg(ﬂ?), respectively. Then

¢2(F1) by
G Frsr) fha
bio(fnx -+ x fn)
$2(Fy) b
$2(Fha) = frp
= byo(fy X - X fy):
Define
v = [ ! (1.13)
k
L - (z/(h’1) X +ee X y(’”)) . h=2,3, (1.14)
k
Let
AP = (4 (1.15)
Now we show that
vh e N{fp (457) = o i (A7) ]
For h =1,
A(P) = 5 (af)
- 0 ()
= pobyo(ux-xp) | (XX p 1)(%‘51))
k k
o ()
e (A1)
Suppose
vh <1{f; (A8)) = "o i (A1)}
holds. For h = 1 + 1, AVH) is a set of Et'-component vectors. Assume
AEIH) = A/?Afg Aflll, where Aflz (i € [1,2],5 € [1,k]) is a set of k'-component vec-
tors

A(21+1)

1 (A) = A (

)



= byo (le X X le) (Ag+1))
k
= bpo(fi x - x Jp) (ARh---AL))
k
(5 (4 A (42)
- oot (1 () o1 (1)

Now we show that whenever Agh) is a complete assignment set for F}, A(Qh) defined by
(1.15) is a complete assignment for F}.
For h = 1, it is trivial that Ag” O T* implies that 1/(1)(%\1) S T*. Thus if Ag” is a
(1)

complete assignment set for Fy, then A5’ is a complete assignment set for FJ.

Assume that for h < [, if Agh) is a complete assignment set for Fj, then A(Qh) is a

complete assignment set for FJ.

(1) _ 40 40040

Suppose A 1145 1k is a complete assignment set for Fj1q. Since

Fiow = Byo(Fix - x F)
N—_———
k

and
S (A =00 (7 (AT)) - (A1) (1.16)

then A$])7 is a complete assignment of F; for every j € [1, k] and
I I
f(A0) - (al)

is a complete assignment set for the cell By. This implies that v() (Agl)j) is a complete

assignment set of Fll for every j € [1,k] and

(u ' x-oxp " (fz (qu) i (Agl)k))

k

is a complete assignment set for the cell Bs.



Notice that
I+ + I+
fle (A(z 1)) = fi (”(l UAg 1))

i (10 (42 a1
k

This indicates that A(QH_U = pl+1) (AVH)) is a complete assignment set to Fy ;. Thus

we can state that if Agh) is a complete assignment set to F}, then A(Qh) defined by (1.15)

is certainly a complete assignment set to FJ.

To prove the second proposition, we are required only to show that whenever a pattern
2 € T* can propagate a diagnosis signal r/s € Dy, through a cell By, the corresponding
pattern (g X --- x p)(2) can propagate the associated diagnosis signal p(r)/u(s) € Dy,
through a cell By. This is immediate since

Vo, € T {bi(2) # bi(y) = bayo (p" - p " )(@) # oo (p ' x5 "))}
Q.E.D.

Frample 1.2: The following tabular illustrates the definitions of binary functions A and V.

r oyl ANV
0 010 0
0 110 1
1T 010 1
T 111 1
Let T'=4{0,1} and
to: = {0—1,1— 0},
w: o= {(0,0)—(1,1),(0,1)— (1,0),(1,0) — (0,1),(1,1) — (0,0)}.

It is easy to check that pg is a bijective mapping from 7 to T, and u from T? to T2
Furthermore, = (g ' X pg ') and V = pg o Ao pu.
Assume I to be a uniform tree based on A, and F” is induced by replacing every A cell

in > with a V cell. Then F and F’ have the same assignment and test complexity.

The following corollary is immediate from Theorem 1.3.

Corollary 1.2 Assume G : (M, f) — (M, g) to be a morphism. Fj, and F}I;, based on f
and g, respectively, have the same test complexity if G is an isomorphism.



Chapter 2

Assignment Complexity of
Uniform Trees

This Chapter discusses the assignment complexity of the uniform tree, which is made
up of identical cells realizing a function f. A complete assignment set for a tree with
n primary input lines consists of a number of n-component patterns. When a complete
assignment set is applied to the primary input lines of the tree, every internal f cell in
the tree can be excited by all possible input combinations. The assignment complexity of
a tree is defined as the cardinal number of the minimum complete assignment set of the
tree. The assignment problem is a basic problem in the design, test and optimization of
VLSI systems. We analyze the relationship between the property of f and the assignment
complexity of the uniform tree and show that the assignment complexity of a balanced
uniform tree with n primary input lines is either O(1) or Q((Ign)™) (a € (0,1]). In the
first case, the cardinal number of the minimum complete assignment set for a tree is
constant and independent of the size and structure of the tree. In the second case, the
assignment complexity depends on the number of the primary input lines of the tree. If a
balanced uniform tree is based on a commutative function, then it is either ©(1) or O(lg n)
assignable.

This Chapter consists of six sections. In section 2.1 we give a formal definition of the
assignment complexity of uniform trees and make some conventions. Section 2.2 is on the
sufficient and necessary condition of ©(1) assignable uniform trees. Section 2.3 explores
the jump of the assignment complexity from ©(1) to Q((Ign)”). In section 2.4 we convert
the assignment problem into the algebraic problem. Section 2.5 shows that a balanced
uniform tree based on a commutative function is either O(1) or O(lgn) assignable, and
gives also an upper bound of the cardinality of the minimum complete assignment set for
the O(1) assignable balanced uniform trees. Section 2.6 is on the complexity of deciding
the assignment complexity of balanced uniform trees.

2.1 Assignment Complexity of Uniform Trees

Let M be a set of m symbols, and f: M® — M a surjective function. Without loss of
generality we assume M = {1,2,...,m}. We use the symbol f to represent a function as



well as a cell implementing the function. A uniform f-tree is made up of identical cells
implementing the function f. The set of all f-trees is denoted hy T%. T](fn) is used to
denote a balanced uniform f-tree with n primary input lines. Fig. 2.1 shows a balanced
tree. If every cell (; ; realizes the same function f: M* — M, then it is a uniform tree.

(n)

We assign every line and cell in 77" a unique level. The levels are arranged in ascending

(n)

order from the primary output line to the primary input lines of T The primary output
line is assigned level 0. An f cell and all its input lines are assigned level k41, if its output
line is in level k. A tree is said to be of k-level, if it has k levels.

For the sake of convenience, we make some conventions. Throughout this thesis,
{a,a,a} and {a,a} are recognized as two different multiple sets. The cardinal number
of the former is three, and that of the latter is two. A multiple set can be changed into
a conventional set by using operator T. For example, T{a,a,a} = T{a,a} = {a} and
T{b,c,b} = {b,c}. For a multiple set A, #A represents the elements number of A. For

example, #{a,a,a} = 3.

T.et
= (Rl s 1) JELE], Ty eM
T117T127"'7T1k
o - Io1, 199, ..., Top
(T17T27"'7Tk) = . (2])

Tﬂv T?‘,Qv ] T?‘,k

According to function f we define a vector function f as follows:

f(h‘lv T127"'7 T1k)
= — . f(f21vf227“'7f2k)

f(L‘,‘lv T?‘,Qv ) Ttk)

S O S O S O SN O A O A O DN L SR O

Cooe] | |[ ] [Cap]

Can a9 Ca g

Fig. 2.1: A balanced tree



I he o --- Iy, Iy Iy -e- Iy,

Tm TQQ TQn T21 TQ? TQ”r
L Lo - o Lo Lo - on
f = f
Lo lo
I20 I20
T90 TQO

Fig. 2.2

It is easy to see that applying ¢ k-component patterns to an f cell is equal to assigning k
t-dimension vectors to the k input lines of the f cell. Fig 2.2 gives us a simple illustration.

Tet Dy = {(z1,...,2)T | 2; € M}, namely, the set of all -dimension vectors (1 € N).
Given k vectors in Dy, by using operator V one can construct a set of ¢ k-component
patterns, and (2.3) is the formal definition of this operator.

V(T Ty Ty) = (T Ty ) | € 11,8} (2.3)

Frample 2.1: Function f; is defined as follows.

fi]0 1
0 1 1
1 1 0

Let

fen S e S GG G
o
I

[ SO o U Y



Then

f1(]7]) 0
_ L. f1(]7]) 0 .
fi (Tnfz) = ALO) [=] 1 ]=T
f1(07]) 1
f1(070) 1

and
V(1. 5) = {(1.1),(1,1),(1,0).(0,1),(0,0)}.

Assume that a T](fn) consists of cells C1,C21,Cq9,...,Cky, ..., and cell C; ; is the jth
cell in the ith level of T](fn). TLet A be a set of n-component patterns, and #A4 =¢. When

all of the patterns in A are applied to the primary input lines of T}E”% a t-component
vector is delivered to every line in T](fn). To apply all of the f patterns to the n primary

(n)

input lines of Tf is the same as to apply n t-component vectors to the n primary input

lines, respectively. We use T_]T(A7 i,7)to denote the corresponding vector applied to the [th
input line of an f cell (; ;, and ﬁ)(A, i,7)to denote the vector delivered to the output line
of the cell. Then Io(A,i,7)= f(I(A,i,5), (A, ,5),--, T(A,i,7)).

In order to classify the assignment complexity of uniform trees we give a formal defini-
tion of the complete assignment and the assignment complexity.

Definition 2.1 (assignment of uniform trees) (ﬂ (A 1,7), fg(%h [ DI fk(A, i,7))is
called a complete assignment of cell C; ; if and only if

Mk C V(E(A7777)7 f?(A77:7j)7“'7 fk(A7777))

A is a complete assignment set of T](fn) if and only if

(ﬂ (A 1,7), fg(%h [ DI fk(A, i,7)) is a complete assignment for every cell C; ; in T](fn).

Fig. 2.3 shows a complete assignment set to T(f). By assigning five patterns
(1,1,1,1),(0,1,1,1),(1,1,0,1),(1,0,1,0) and (0,0,0,0) to the four primary input lines of
T](ff), one can guarantee that each of (0,0), (0,1), (1,0) and (1,1) can be applied to every

cell in T](ff). Thus we can state that the five patterns comprise a complete assignment set

(4)
to T,q )

It is obvious that f has to be surjective to M, otherwise, one could not construct a

complete assignment set for a tree system T](fn) (n > 2).

Definition 2.2 (assignment complexity of uniform trees) The assignment complex-

(n)

ity of balanced uniform tree Ty s defined by the mapping

ACy = Ty — N

ACH(T87) = min {#A

A is a complete }
(n)

assignment set for 7'



0110 1 [
1101 0
00111 hi
o 00 1 11
fi
0101 1 [
1110 0
00111 U
(4)

Fig. 2.3: Complete assignment for T

In a tree, all cells at the same level can be assigned simultaneously since their input

lines are independent of each other. Furthermore, all cells at the same level can be excited
completely by using m* patterns. A straightforward conclusion is that all cells in T](fn) can
(m) '

be excited completely by using m*[lg n] patterns since T:" has at the most [lgn] levels.

Thus we have the following observation.

Observation 2.1 For arbitrary surjective function f: M* — M

A0 (1$7) < wg
= 0(lgn) (2.5)

2.2 O(1) Assignable Trees

In this section we discuss the criteria of ©(1) assignable uniform tree systems.

Lemma 2.1 T](fn) is O(1) assignable if there are a1 € N and a set W C Dy so that every

To € W can be generated by using k vectors ﬁ, T;, SR Ty, which belong to W and comprise
a complete assignment to an [ cell. Put it formally,

(2.6)

= - ~ M* [ P
HtENHWCDfVTOEW3T17TQ77T]¢EW{ Cv( 1, 2_7} 7k)}

f( Ty 1) = To

Proof: We prove that for every N-level T](fn) we can construct a complete assignment set

AN) by assigning to every primary input line a vector in W € D,. Then #AWN) ig equal



to the constant ¢. This can be proven by using induction on the number of the level of
the tree.

In case N =1, the tree has only one cell. We choose an arbl‘rrary TO € W, then deter-
mine k vectors 71, TQ, . Tk € W so that M* ¢ V(ﬁ7 TQ, . Tk) and f(ﬁ, TQ, . Tk) = Ip.
It is clear that V(ﬁ, TQ, SN Tk) is a complete assignment for the tree with only one cell.

Assume that for N = i one can construct a complete assignment set A() for an i-level

() (n)

a vectorin W, and the vector assigned

(kn) .

by assigning to every primary input line ofT

‘ro the jth primary input line is _;0 € W. Suppose Ty s of 141 levels and is constructed

(n)

by connecting every primary input line in T to the output line of an f cell.

According to the assumption, there are T7 1, T7,27 SR f;k € W such that

— ~ = — — —

MECN(Tia Ty L) N f(La, Loy D) = Tho

Hence (f?ﬂv f?ﬂv R f;k) is a complete assignment for an f cell. When f?ﬂv f?ﬂv SN T_;k
are applied to the & input lines of the cell linked directly to the jth input line in the
level 7, the vector offered to this input line is just /; 5. Thus we can construct a complete

(kn)

assignment to every cell in level ¢ + 1 by assigning to every primary input line in T, a

vector in W, and all of the vectors delivered to the lines in level 7 comprise A(), Whl(‘h is

(n)

as assumed. All of the vectors assigned to the lines in

(k)

a complete assignment set for T
level 7 + 1 comprise the AU which is a complete assignment set for T Thus we can

conclude that #£A0) = £ A0+ and T](f ") s s O(1) assignable.
Q.E.D.

For f{,f;,---,f;; € Dy, we regard (T_{vf;jfl;) as a t X k matrix, and TeD, asa

1 times k£ matrix.

S
foull
N
faall
=
S

Definition 2.3 (similar matrices) Two matrices (ﬁ, f% . f;;) and (

are said to be similar to each other, denoted by (ﬁ, T;, R f;;) (L1 , Lw f;k), if and

only if the former can be changed to the latter by using row exchanges.

For example,

—_ S D
U e o SO
4
—_ S D
—_ 0 = = D
4
fen S e S GG G
[ SO o U Y

and

—_ S D
fen S e S GG G
4
[ SO o U Y



It is easy to see that for three arbitrary matrices A;, A;, A;, the following three state-
ments hold.

1. Ai ~ Ai;
2. A; ~ A]‘ S A]‘ ~ Ai;
3. AiNA]‘/\A]‘NA]:AiNA].

Hence ~ is an equivalence relation.

Corollary 2.1 T](fn) is O(1) assignable (ACf(T](fn)) = 0O(1)) if there are a t € N and a

set W' C Dy so that for every To € W there are ﬁ, T;, SN T, € W', and they comprise a
complete assignment and can be transferred into a vector similar to Iy. Put it formally

_ . _ MF I, To o, I
e NIW' € DNVIg e WAL, Io,---, T, € W' C V(I By I) (2.7)
.f(f1vf27lllvfk)NT0

Proof: Given a set W/ C D, (t € N), we can always induce a set W so that
e AT eW I~} = Tew} nwiewdlew {I~T1}.

The set W includes every vector which is similar to a vector in W’. Tt is obvious that
W satisfies (2.6) if W’ fulfills (2.7).
Q.E.D
As mentioned, applying ¢ n-component patterns to the n primary input lines of T](fn) is
equal to applying n t-dimension vectors to the n primary input lines respectively.

Apply a complete assignment A to T](fn)

. Let W be the set of the corresponding vectors
applied to the primary input lines and the vectors delivered to other lines in every level
of T](fn). Set W can be partitioned into a number of equivalence classes according to the
equivalence relation ~. Tt is not hard to see that the larger the number of the equivalence
classes in W, the greater the dimension t of the vectors in W. The dimension # is just
the cardinality of A. We explore the relationship between the cardinality of A and the
number of the equivalence classes in W.

Given a complete assignment A to an N-level T](fn)7 we can construct N sets in the
following way.

W,(A):=T {f,(A,m) liel,s],je, k", le [O,k]}, s €1, N] (2.8)

W,(A) includes all vectors delivered to a line in level 7 (i € [1,s]) and the vector
delivered to the primary output line.

We partition Wi(A) into equivalence classes according to the equivalence relation ~,
and use #W (A)/~ to denote the number of equivalence classes in W ( A). Observation 2.2
is obvious.

Observation 2.2 Assume A to be a complete assignment set of an N -level T](fn). Then



1. Vs €2, N[{W,_1(A) C W (A) C Ds};
2. Vs € [2.NT{1 < #W, 1(A)/~ < #IW,(A)/.).

Lemma 2.2 Assume A to be a complete assignment set to an N -level T( ). Then T( ")

O(1) assignable if #W1(A)/~ =1 or #W(A)/~ = #W_1(A)/~ for an s € [2, N].

Proof: Assume A to be a complete assignment set for an N-level T( ")
#Wi(A)/~ = 1, Wi(A) includes only one equivalence class, and two arbl‘rrary vectors
in Wy(A) are similar to each other. Suppose Wi (A) = {TO, I, 1y, ,Tk}, and I, Iy, -,
Iy are the corresponding vectors applied to the k input lines of the f cell in the first level,
and Iy is the vector delivered to the output line. #Wi(A)~ = 1 means that

In case

we LR T~ o b AMECNV(L By ) A J(R Ty, T3) = o,

This implies that
- .o - ME C (T T, T
v%ewummggquewwm{ A Py it ]

Thus T( ") s O(1) assignable according to Corollary 2.1.
QUppme #W(A) v = #Ws_1(A)/~ for an s € [2, N]. As mentioned,

V?E[ ]{Ws‘ 1( )QWQ(A)}

This indicates that W (A) and Ws_1(A) have the same number of equivalence classes. It
is not hard to see that
- - - MF V(I Ty )
Vo € Wo( AV Tn-vo Bh e Wo(A)d M0 & YU Rz D) L
0 € WalA)3h, Ty Ji € Wil ){ SR Ty, i)~ T
Based on Corollary 2.1, T](fn) is ©(1) assignable.
' Q.E.D.

Lemma 2.3 Assume A to be a complete assignment set for an N -level T](fn) (N > 1),
then '

Vs € [2, N[ {W,_1(A) C Ws(A)} (2.9)
holds if T](fn) is not (1) assignable.

Proof: Suppose T](fn) is not O(1) assignable, and A is a complete assignment set for an

N-level T( ) As mentioned, W (A) C Wiy (A) for all s € [2, N]. Tf W (A) = W,_1(A)
for an s € [2 N1, then

#Ws(A)/~ = #Wea(A)/~.

According to Lemma 2.2, T](fn) is O(1) assignable. This contradicts the assumption

directly.
Q.E.D.



(n)

Lemma 2.4 For every complete assignment set A for an N -level T
Vs € [2, NI{#W,(A)/ > s} (2.10)
holds if T](fn) is not O(1) assignable.

(

Proof: Suppose Tfn) is not O(1) assignable. According to Lemma 2.2,

BWI(A) ) > 1 A Vs € [2, N HIWL(A) /0 > #W, 1(A)/}

Therefore, #W(A)/ > s.
Q.E.D.

In order to prove Theorem 2.1 and 2.2, we define a set

P(M,t) = (1,---71,2,---727---7m,---7m)T Z ti—t} (2.11)

Every t-component vector in D; is similar to a vector in P(M,1).

Observation 2.3 For every complete assignment set A (#A =1) to an N -level T](fn)

Ve Wh(AAT € P(M{T ~ Th A #Wn(A)/o < #P(M,1) (2.12)

Theorem 2.1 T](fn) is O(1) assignable if and only if there are at € N and a set W C D,
so that '

Proof: The if part follows Corollary 2.1 directly.

Assume T](fn) to be O(1) assignable. Then there is a constant t € N, and one can con-

(n)

struct a complete assignment set A of ¢ patterns for an arbitrary T

and N > #P(M,t). Since

. Suppose lgn = N

Vs € [1, NI{1 < #W(A)/~ < #P(M,1) < N},

there must be such an s € [2, N] that #W(A)/~ = #Ws_1(A)/~. Thus we can state that
there is an s € [1, N] so that

. - . MF V(I Ty T,
VTOEWQ(A)3T17T277Tk€W9(A){ ]Z(fcf( b 2]—7*) 7]—%) }
y 1902, 5 1k) ™~ 10

Q.E.D



2.3 Jump from O(1) to Q((Ig n)ﬁ)

In this section we show that the assignment complexity of a T](fn) is either O(1) or

Q((lg n)#) In other words, there is a jump from (1) to Q((Ig W)#)
Coming up next we explore the upper boundary of #P(M,1).

Lemma 2.5 For #M — m,

_ t4+m—1
#P(M,1) = ( I ) (2.14)
Proof: Tet p(#M,1) denote #P(M,t). We prove this lemma by using induction on m,
which is the cardinal number of M.

I casem = 1op(11)= | ) for all + € N. Suppose p(m.t) = ( S ) for

0 m — 1

m <7 and all £ € N. For m = ¢+ 1, based on the inductive assumption in the last step.

p(m,t) = p(i+1,1)
= Z p(?ﬂ‘—])
0<i<t
_ Z (f.j—l-i] )
& i— 1
0<5<t

: — 1 —1
1—1<5<t42—1
Y
n ?
_ t4+m—1
n m — 1 ’

Theorem 2.2 T](fn) is either O(1) or Q((Ig n)#) assignable.

Q.E.D.

Proof: Suppose T](fn) is not O(1) assignable. Tt suffices to show that #A4 = Q((Ig n)#)

for every complete assignment set A of T](fn)_
Assume T](f”’) to be of N levels. According to LLemma 2.4 and Observation 2.3,

N < #Wn(A)~ < #P(M,1) (2.15)

for every complete assignment set A. According to Lemma 2.5,



Then ¢t > N== — m for m > 1. We know N = [Ilgn]|. Thus we can conclude that

1

QN7T)
= ((lgn)7T).

4

Q.E.D.

The parameter m in Theorem 2.2 is the cardinality of M. For M = {0,1}, the param-
eter m is 2. The following corollary is immediate from Observation 2.1 and Theorem 2.2.

Corollary 2.2 Assume f to be a surjective function from {0,1Y* to {0,1}. Then T](fn) is

either O(1) or O(lgn) assignable.

2.4 Problem Conversion

Theorem 2.1 gives a criterion of judging ©(1) assignable uniform trees. And Theorem 2.2
explores the structure of assignment complexity. In this section, we give a new criterion
for deciding the assignment complexity and convert the assignment problem of balanced
uniform trees into the algebraic problem for exploring its aspects further.

We use 0 to denote the all-zero vector and 1 the all-one vector. Assume that I is a
matrix, and 7, i_): i, and & are vectors. When notations like

Li=b, §L=¢

are used, we implicitly assume the compatibility of sizes and forms of I, &, i, and é&. If I,
is an m X m-matrix, then ¥ is a column vector with n components, b is a column vector
with m components, 7 is a row vector of dimension m, and ¢is a row vector of dimension

n. We define

(97179727“‘79777,)2(?/17?/27“‘7%,) < V7€[]777]{T72?/7}

(.7,‘17.7,‘27"‘7.7777,) Z (.?/17?/27“‘7%,)
(.7717.7,‘27 7'7777,) > (?/17?/27 7?/77,) = 37 € []7”] {T7 > U7}

.

|(.7717.7727“‘7.77n)| = Z |7;7|

1<i<n

Assume that s = #M* and P; = (p“)?pg?),---?pgk)) denotes the jth element of M*.

J
Let T1; (I € [1,k]) be a projection of the Ith component of P;. For instance, 1[;(P;) = pgl)

Parameters b(;l) (iefl,m],je[l,s],l €[0,k]) are defined as follows:

.

,,(o>_{1 L APy =i ,,(o_{] DO(P) =i

& 0 : otherwise ’ & 0 : otherwise

b(l))mxs (1 €10,k)).

]
It is obvious that every column of these matrices has only one nonzero element. Given

By using the above parameters we construct k+1 matrices B() = (



an i€ M, M* includes m*~" elements P; satisfying I1;( P;) = i. Hence, every row of B
(I € [1,k]) has m*~" nonzero components.

Before giving a new criterion for deciding the assignment complexity of uniform trees,
we define the following terminology.

Two mappings

k s
g NgXx---xXxNg—Dx---xD
s k
are defined as follows:
G(f{vfévvfl;) = (m17m27"'7ms)T7 if
(ﬁvév“'7ﬁf) ~ (P17“'7P17P27“'7P27'“7P97'“7P9)T|Z"° =t (2]6)
N — i=1"""
1 ro Ts
g(m17m27“'7ms) = (P17“'7P17P?v“'vP?v“'vpsv"'vps)T (2]7)
N —
1 ro Ts

Assume To = f(T,Ty,--+, Iy) for (I, Ip---, T) € DF. We call BOG(Ty, Ty, -+, Ty)

—

)
characteristic vector of I; (I € [0,k]), and use C'h(1;) to denote it. Vector I; belongs to Dy,
and its characteristic vector C'h(I;) belongs to N{'. We have the following observation.

Observation 2.4 Given (f{7 o, -, fk) eDr. It

—

Ch/(fl) - B(])G(ﬁvfév7f];)

then

VIE[0, KT~ (11,2, 2+ my---,m) T (2.18)
——— N—— N—_——
o D

Theorem 2.3 T](fn) is O(1) assignable if and only if there is a finite set
X ={X;| X, e N’}
so that
VIie 1,k {S:(X)C So(X)} (2.19)
where

S(X) = {BUX;| X;e X}, 1€]0,k] (2.20)



Proof: We prove the only if part at first. Assume T](fn) to be ©(1) assignable. According
to Theorem 2.1, there are a ¢t € N and a set W C D; so that

—

We construct such a complete assignment set for T](fn) that every Io € Wis the output

(n)

vector of a cell in T, and the input vector of another cell as well. Tet X be the

smallest set of vectors that includes every G(f{7 Io,---, f;;) if (f{7 Io,---, f;;) is the complete
assignment for an f cell in T](fn). Then S;(X) C So(X) for every I € [1,k].

Now we prove the if part. Suppose there is a finite set X C N*® and S;(X) C So(X) for
every [ € [1,k]. Tet W = {f(g(}i)) | X; € X}. It is easy to show that

MkCV(ﬁ7f;7---,f]i)
VTOEWI3T17T277T]<€WI3T117T£77T]; EDf Vil € [],k]{f}N T;}

=

'3

f(f117T27

—

] )~ T
TLet W be the smallest set such that

wien {3Few (I~} = Tew}.
Then

According to Theorem 2.1, T](fn) is O(1) testable.
' Q.E.D.

Corollary 2.3 T](fn) is not O(1) assignable if
BOg=np0g §>1 (2.21)
has no feasible solution for anl € [1,k].

Proof: Assume T](fn) to be O(1) assignable. According to Theorem 2.3 there is such a set
X C N7 that (2.19) and (2.22) hold. We show that if (2.22) holds for an [ € [1,k], then
(2.21) has a feasible solution for the given [.

SI(X) C So(X) (2.22)

In case #X = 1 and X = {g}, ¥ is just a feasible solution of (2.21). Assume that in
case #X = N, (2.21) has a feasible solution if (2.22) holds for the given [ € [1,k]. For
#X = N + 1, there are three cases to be considered.

Case 1, #51(X) = #5(X) = #X.
Case 2, #951(X) = #5(X) < #X.
Case 3, #51(X) < #5(X).



—

For the first case, #51(X) = #90(X) = #X and 5(X) = So(X), then §=3"¢ ¢ X;
is a solution of (2.21). '

For the second case, there must be }?7;7 }57' € X so that }a; + }57' and B©) }a; — po) i}
Thus

SI(X\ X)) C So(X\ X;) = So(X).

X\ X, satisfies (2.22) also, and its cardinal number is N. This implies that (2.21) has a
feasible solution.

For the third case, X must include such an }a; that B(O)}a; ¢ 5;(X). This indicates
that

SX) C So(X\ Xo)
SUX\ X)) C So(X\ X))

X \ X; satisfies (2.22) for the given I, and its cardinal number is N.
Q.E.D

In the rest of this section, we present two basic theorems in linear programming. They
will be used in the next section and Chapter 3.

Theorem 2.4 (Farkas’ Lemma) Assume A to be an s X t matriz.
AT =b, VYje[l,{x; >0} (2.23)
has feasible solutions if and only if
Vie R {gA >0 — b > 0} (2.24)
The proof of Farkas’ Lemma can be found almost in every linear programming book.
Theorem 2.5 [f
AT =0, &>¢ (2.25)

has a feasible solution, then it has a feasible integer solution, provided that the terms of
the constraint matriz A are all integers, and every component of & belongs to Ny.

Proof: Assume that A is an s X ¢ integer matrix and its rank is r. For r < s, we can
determine an r x ¢ matrix A’ including r independent rows. Then (2.25) and

AF=0, T>¢ (2.26)

have the same solution space.
It is obvious that (2.26) has a feasible solution if and only if

Ai= A& F>0 (2.27)

has a feasible solution.



Suppose that B = (b;;).«, is a nonsingular submatrix of A’. Without loss of generality,
assume that B includes the first r columns of A’. Thus

. o 71 1= . .
v = { the 7th component of —B~' A'é ie[l,r] (2.98)

0 i€ r+1,1]

define a basic solution of (2.27). Tt is clear that such a basic solution is a rational solution
since the terms of the constraint matrix A and the constant vector ¢ are all integers.

It has been proven that at least one of its basic solutions is feasible if (2.27) has a
feasible solution [PaSt&2]. Tt implies that (2.27) has a feasible rational solution if and only
if it has a feasible solution. According to the relationship between (2.27) and (2.26), ¥ is
a feasible solution of (2.27) if and only if # + @ is a feasible solution of (2.26).

Given a feasible rational solution of (2.26), we can always construct a feasible integer
solution since (2.26) is a homogeneous linear equation system and no component of & is
negative.

Q.E.D

2.5 Commutative Trees

The k+1 matrices BY (1 € [0,%]) defined in section 2.4 are determined completely by the
function definition of f. For commutative function f we have the following result.
Theorem 2.6 Assume surjective function f: M* — M to be commutative. Then T](fn)
is O(1) assignable if and only if

RO) _ () r(1) _ RO
RB(O) _ p(2) B2 — pO) | .

7= _ 1, 7>0 (2.29)
BO) _ k) B _ B

has a feasible solution.

Proof: We prove the if part at first. Suppose (2.29) has a feasible solution. This means
that

RO) _ p(1)
B _ p(?) . .

j=0, §>1 (2.30)
RO _ pk)

has a feasible solution. Furthermore, it has a feasible integer solution according to
Theorem 2.5. Suppose §j € N® is a feasible integer solution of (2.30). Tet X = {¢}.

Then S;(X) C So(X) for all [ € [1,k]. According to Theorem 2.3, T](fn) is ©(1) assignable.



Now we turn to the proof of the only if part. Based on Farkas’ Lemma, (2.29) has a
feasible solution if and only if

RO) _ () r(1) _ p(o)
RB(O) _ p(2) . B2 _ pO |
Ve R ! 2 _ >0— 7 _ 1>0 (2.31)
BO) _ k) Bk _ RO)
Suppose (2.29) has no feasible solution. This means that
R(O) _ p(1)
RO) _ Rp(2) .
FeRrRM" {7 _ >0 (2.32)
RO) _ Rk

Thus we can choose a Z so that for every § > 1

R(O) _ p(1)
RO) _ Rp(2)

Z . g>k (2.33)
RO) _ Rk
This implies that for an arbitrary complete assignment (f{7 T;, R f) to an [ cell
RO) _ p(1)
B(O) _ B2 Lo ~
Z . G(h,Iy,---,Tx) > k (2.34)
RO) _ plk)
since G(f{7 Io,---, f;;) > 1 for the complete assignment (f{7 Iy, f;;)
According to Observation 2.4
Ch/(ﬁ) B“)G(ﬁvévvﬁ) - B(Q)G(fl;vf{vvﬁf'l) == B(k)G(]gvfr;vvﬂ)
Ch/(f];) = B“)G(f];vﬂv“'vf;ff'l):B(Q)G(f;ff'lvfl;v“'vf;fo):"':B(k)G(ﬁvfévlllvfk)
This indicates that
RB(1)
B2 Lo . Lo . Lo .
2l G B B+ G R ) oo+ G I+ T
R(k)



Assume T = f(f{, Io, -, fk) For commutative function f
f()):f(ﬁvfévvfl;):f(fl;vﬂvvﬁf1)::f(févﬁ%vvﬂ)v
hence

Ch/(ﬁ)) = B(O)G(f{vévvfk) - B(O)G(ﬁvﬁvlllvﬁf'l) == B(O)G(Evﬁ;vvﬁ)

According to (2.34),

B B L B® 1 ...1 pk)
BO) Lo ~ B 4+ p® 4 ...4 gk o ~

71 | kEG(L - ) > 2 _ G(h, Ty, - ) + k2
BO) BO) 4 B® 4 ... 4 B

Thus we can state that if T](fn) is not O(1) assignable, then
e R™BEBOG(, Iy 1) > 2(BO 4 BO oo BO) G, Gy, 1) + k)

holds for every complete assignment (f{7 T;, R f;;) to an f cell. Tn other words, if T](fn)
is not O(1) assignable then there is such a Z € R™ that for every complete assignment
(I, Ig,---, 1) to an f cell

(n)

Suppose T has kN primary input lines. We determine a path, called downhill path,

from the primary output line to a primary input line by using the following procedure.
1. Choose the cell with the primary output line as the first cell on the downhill path,
and let (I14,112,---,111) denote the complete assignment set to this cell. Then

gR(0)G(ﬁ,17ﬁ,27“'7ﬁ,k) Z 5B(O)G(fl,17fl,27"'7ﬁ,k)+] - 1.

2. Let (T_]TJ, ]—;’27 R f;k) denote the complete assignment to the [th cell on the downhill
path, and suppose

FBOVG(T 4, Ty Tg) > EBOG(T, Doy - Tp) +1- 1.
3. According to (2.35) we can always obtain such an ¢ that
5B(O)G(ﬁ,17 ]_;,27 T ]—;,k) Z 53(7)G(E,17 ]_;,27 Tt ]—;,k) + 1.

We choose the cell linked directly to the ith input line of the [th cell as the (I 4+ 1)th
cell on the downhill path. (I141.4, li41.2,-- -, I131.%) is the complete assignment to this cell.
We can state that
5B(O)G(ﬁ,17 ]—;,27 T ﬁ,k) + I—1
5B(i)G(ﬁ,17 ]—;,27 Ty f;,k) + )
53(0)(;(774-1,17 f1+1,27 SR fl+1,k) + 1

gB(O)G(fI,17ﬁ,27"'7ﬁ,k)

AVARNAYS



In this way, we can finally determine the Nth cell on the downhill path. Suppose
(In1,In2, -, Ing) is the complete assignment set to this cell. According to the above
calculation

FBOG(T 0, oy k) > ZBOG(TN g T, -+ Ing) + N = 1.

Tet |y] denote the sum of the absolute values of the components of 7. Then

|G(f;’17 ]?]’27 s f;k)| is the cardinal number of the complete assignment set to T}EN).
o - N
(L, o,---, T >
(Y( 1,15 11,2, 9 1,]{)‘ - |Z_,B(0)|
= Q(N).

We know that N = [lgn], and every T](fn) is O(lg n) assighable. Therefore, T](fn) is O(lgn)
assignable.

Q.E.D.

The following Corollary is immediate from the above theorem.

Corollary 2.4 Assume f : M¥ — M to be commutative, then T](fn) is either ©(1) or
O(lgn) assignable. '

Assume f to be commutative and T](fn) O(1) assignable. The problem of searching for

(n)

the minimum complete assignment set for 7,77 is related to solving the following integer

min Z Yi

programming.

1<i<s
RO) _ p() r(1) _ RO
RO) _ R(2) B _ pO | .
7y = ) 1, y>0 (2.36)
BO) _ k) B _ B

The following theorem gives an upper bound of min >~ ..., v;.

Theorem 2.7 The cardinality of the minimum complete assignment set for a O(1)
assignable  tree system T](fn) can be upper bounded by k2>m* =V (2k)F™ =1 (m — 1)? 4 mF,
provided that f is a commutative function from M* to M, and #M = m.

In order to prove this theorem, we prove the following lemma at first.

Lemma 2.6 Assume integer matriz B = (b;;),x, to be of rank v, &= (c1,...,¢,)T.

max{ > |b| i €[l,r]} = a

1<i<r
max{led i€ [1,7]} = B
By =

3!

The absolute value of every component of § can be upper bounded by ra” ' [3.



Proof of Lemma 2.6: et B;; denote the submatrix of B that is generated by omitting the
1th row and the jth column of B. Then det B;; and (—1)*+7 det B;; are the minor and
cofactor of the element b;; in det B.

We show inductively that the absolute value of the determinant of a matrix B = (b;;)ix1,
denoted by det B, is not greater than o'

Forl =1, B = (b;j)1x1 and |det B| < a.

Assume that for I = N — 1, |det B| < aN7'.

Forl= N, B = (bj;)nxn. By expanding the determinant of B along the first column
of B, we have

|(]Pf B| S Z |b7j1 Bﬂ|
1<i<N
< alV.

(—1)'t7 det B,
det B

det By

W . Th]]s

Tet b;j stand for ,then B™1 = (bl )pxr and [bl] =

Y b

1<5<r

< >

1<5<r

lyil =

13

/
b 5 Cs ‘

For B;;is an (r— 1) x (r— 1) matrix, |det B;;] < a"~'. Furthermore, |det B| > 1, since
b;; (1,7 € [1,7]) are all integers. Hence |b:7| is not greater than a”~'. We have thus

lyil < ra” 1.
O
Proof of Theorem 2.7: let
R(O) _ p(1)
RB(O) _ p(2)
B = (bijj)kmxs =
RO) _ Rk
R(O) _ p(1)
O _ p® |
¢ = ((517(527 '7(jkm,)T - . 1
RO _ gk

It is easy to see that

bij =0 0 i=(t - yml, Le[lm], te 1]

?

ci=—Y bij, €[l km]
7=1



Then the linear programming (2.36) is the same as

min Z Yi

1<<s
Bjy = & §>0 (2.37)

Suppose the rank of the constraint matrix in (2.37) is r. According to the definitions
of B and BW (I € [1,k]) given in section 2.4, 7 < km — k since matrix B(®) — BU) can
contain at the most m — 1 independent row vectors for every I € [1, k]. By exchanging the
rows of B we can make the first r rows independent. Furthermore, assume, without loss
of generality, the » X r submatrix, denoted by B,, in the left top corner to be nonsingular.

We solve
B,y=¢ &= (c1,cq, 7(°T)T.
Vector ¢ defined below is a basic solution of (2.37).
the ith component of B '¢ ie[l,r]
yi_{ 0 coie[r+1,1]

It is well known that at least one of the basic solutions of (2.37) is a feasible solution,
provided that (2.37) has a feasible solution [PaSt82].

Given an i = (t — )m + 1, (¢t € [1,k],I € [1,m]), according to the definition of b;;,
bi; < 0 only if T (P;) = 1 # f(P;). There are at most m* ' indices j € [1,5] so that
b;; < 0. Tnversely, b;; > 0 only if TI(P;) # 1 = f(P;). There are at most m* — m*~!
indices j € [1, 5] so that b;; > 0. Therefore, none of the ahsolute values of ¢; (i € [1,km])
is greater than mF — m*=1. That is, max{e; | i € [1,km]} < mF — m* 1. The sum of the
absolute values of all components in any column of B, is not greater than 2k. Based on
the above lemma, y; < (km — E)(2k)F™F=1(m* — m*=1) since r < km — k,a < 2k and
B < m* — m*1. The sum of all y; is not greater than E2m*=1(2k)F" %=1 (m — 1)3. Thus

the cardinality of the minimum complete assignment set for T](fn) can be upper bounded
by the sum of E2m* =1 (2k)" =51 (m — 1) and m*.

Q.E.D.

2.6 Decidability

We have proven that a balanced uniform tree is either O(1) or Q((Ig n)#) assignable.
In this section we discuss the complexity of deciding the assignment complexity, namely,
the decidability. However, our discussion will be limited to commutative functions of two
variables.

Assume f to be a commutative function from M? to M. Tet t = #M? and
P;:= (pj1,pjr-) be the jth element of M?. We define

U f(P)=1#pi U f(P) =14 pir
lij=4q —1 « f(P)#1i=pi rig=q —1 © f(P)#1i=Dpjr

0o otherwise 0o otherwise



By using the above parameters we construct two matrices Ly = (I;;)mx: and
Ry = (rij)mxe- It is easy to see that Ly = BO — B and Ry = B — B2). Based on

Theorem 2.6 we can state that T](fn) is O(1) assignable if and only if

n; ] S
- = — - > .
[Rf]y [Rf]L 7>0 (2.38)

has a feasible solution.
Let [; and 7 denote the jth column of Ly and Ry, respectively.

Observation 2.5 If [ is a commutative function, then
Lvienjen g{i=7 n m=10}

2. Fvery nonzero column of Ly and Ry has only two nonzero element. One of them is
1, another is —1.

5. ¥Ze R™Yj e [1Li{ = (F+ 1) A 27 = (F+ 1)}

In the following we will give a mothed of deciding whether(2.38) has a feasible solution.
Using the definition of f, we induce a digraph Gy = (V, F) as follows:

V=filie MY, E={(i.j)]3keMnf(ik) =)

where (i, ) represents an arc from i to j.
It is not hard to see that the matrix L; defined above is just the node-arc incident
matrix of GG¢. For commutative function f

Vi,je M 3k e M{f(i.j)= f(j.1) = k}.
This implies that
Vi,j e V Ik € V{(i, k), (j.k) € F}.

That is, two arbitrary vertices 7,7 € V are connected. ('t is a connected graph. We call
Gt a strongly connected digraph, provided that for arbitrary 1,72 € V there is at least
a cyclical path leaving 7y and entering 79, then leaving 75 and entering 27. There exists a
cyclical path traveling all vertexes in V if G is a strongly connected digraph.

Lemma 2.7 Fquation system (2.38) has a feasible solution if Gy is a strongly connected
digraph.

Proof: Suppose (¢ is a strongly connected digraph. We know that

37 e R {5[ ]’?’l:’;

> 6} <= d#,%23 € R” {Z_{ L+ ZRe > 6}

Assume that

.5 e R {51+ 5R; > 0}



According to the first term of Observation 2.5
V5.5 e RV e (L3 € (L {AL+ 57 = 51 + A7 )
Hence
V.5 € R {AL + BBy > 0 = Bl + AR > 0= (5 + 5) [Ly + Ry] > 0}
V.5 e R {AL+ 5By <0 = 51+ AR <0 = (5 +5) L + Ry] < 0}

Let (Z1 4+ 23) = (21, 22y es Zm), and ¢ = min{z; | ¢ € [1,m]}. Without loss of generality,
suppose z; = c.
According to the third term of Observation 2.5

(21, 22y s 2m) [Lf + Rf) >0 = (0,29 — ¢y 2 — ) [L; + Rf] > 0
— Vjell,i1] {(07 29— Cy ey 2y — (*)(l_; + 7)) > 0} .
Since Gy is a strongly connected digraph, there is a cyclical path
1=y —idyg— o= — 1, dy,09,..,0,E M

including all vertices of GGy. And (ig, 1) is an arc from vertex i; to 1. This indicates that
there is an [ € M such that

Jlg 1) = f(lig) = 1 # ig.
This implies that there is a j € [1,#] so that P; = (I,1}) and
hitrg > ly+rig <=1, Vie MA{1 it {lij 4+ rij <0}

—

Then z, — ¢ is equal to zero. Otherwise, 5(1; +75) <0, and Z[Ls + Rs] > 0 could not
hold. We can similarly show that z; —¢ = 0 for all i € [1, m]. In other words, Z = (¢,---, ¢).
——’

This indicates that
(5 +5) Ly + Rl = A Ls+ HRp =515+ 5 Ry = 0.
and
vZe R {Z[L; + Ry > 0 = 7 =0}

Therefore, we can state that

VZe R {5[ Ly

and

> 2m ) = ,’f
VZe R {le

1> 0} (2.39)

hold if G¢(V, F) is a strongly connected digraph. Following Farkas’ LLemma, (2.38) has a
feasible solution.

Q.E.D.



Lemma 2.8 If GG; is not a strongly connected digraph, then there is a Z € N§' so that
ZLy > 0, and (2.38) has no feasible solution

Proof: Suppose (¢ is not a strongly connected digraph. Then there are 7,7 € V so that ¢
can reach 7, but j can not reach 2 since (G is a connected digraph. et V, be the largest
set of vertices which j can reach, and V; = V \ V,. Thus there is no arc from V; to V;
but at least one arc from V; to V;. Let L; be the node-arc incident matrix of GG¢. Fvery
row of I ¢ is related to a vertex of V. We construct an m-component vector Z and make
each of its components correspond to a row of L. Then every component of Z is related
to a vertex in V. We set all the components related to vertices in V; to be 1 and make
others 0. For such a Z, 21 > 0 holds. This implies that

e N, {51, > 0}
and

- m ol L
37 € N2 {Z[R;

— - T/f
>0 AN —2 ’

This means that (2.38) has no feasible solution.
Q.E.D.

Corollary 2.5 The integer linear programming (2.38) has feasible solutions if and only if
VE>0{70; > 0= 71; =0}

Proof: ~Assume that Z = (z,...,2,), and ¢ = min{z | i = 1,...,m}. TLet
2= (2 —¢,..., zm — ¢). Because every column of I, has the same number of 1 and —1,

then Z1y = Z_;f/f. It implies that
vZeR™IF > 0 {7, = 1}

Based on the above discussion, we can state that the integer linear programming (2.38)
has feasible solutions if and only if G ((V, F)is a strongly connected digraph. G'¢(V, F)is
a strongly connected digraph if and only if

VE>0{70; > 0= 71; =0}
Q.E.D.

In fact the two matrices Ly and Ry and digraph (¢ are completely determined by the
definition of function f. On the other hand, they characterize the property of function f.
Therefore, we call them characteristic matrices and characteristic digraph of f.

The following theorem is immediate from Lemma 2.7 and 2.8. and Theorem 2.6.

Theorem 2.8 Given a commutative function f : {1,2,...,m}? — {1,2,...,m}, the fol-
lowing three statements are equivalent



1. Gy is strongly connected.

2. The following integer programming has a feasible solution.

T/f . f/f — o =
: — | "T >0
[R.f]y [R.f] Ve

3. T](fn) is O(1) assignable.

The computation complexity of deciding whether i; is strongly connected is O(m?)
[Meho84]. Tt is independent of the parameter n. Hence we have the following theorem.

Theorem 2.9 The assignment complexity of a tree system T](fn) based on a commutative

function [ from M? to M (m = #M) is O(m?) decidable. Tt is independent of the
parameter n.

When f is not commutative, the scene changes.

Frample 2.2: Function h is defined as follows:

hl1 2 3
112
213 2 1
311 1 3
We can determine that
[0 0 —1 00 1 1 1 07
0 0 1T -1 0 -1 0 00
Ly, B 0 0 0 10 0 1T =1 0
Ry, N 0 1 0 -1 0 1 0 10
0 1 1 00 0 0 -1 0
| 0 0 —1 1 0 —1 0 0 0 |

It is easy to check that

Ry

L | _ | In
Ry v= Ry

has no feasible solution. However, both

I
(1,0,1,1,1,0)[ h ] =(0,0,0,0,0,2,0,0,0).

This indicates that

v
=1}

,/h.?j: 7T’hi}7 ?7

and

)
Y4
=11

Ryi = —Ry1,

have feasible solutions, respectively.
How to decide the assignment complexity of a balanced uniform tree based on a non-
commutative function remains a problem.



Chapter 3

Test Complexity of Trees

The test complexity of tree circuits based on primitive gates of type AND, OR,
NAND, NOR and NOT has been extensively studied [Haye7l, Mark76].  Papers
[AbGa81,BeHa90,BeSp91,BhHa86,SeKo77,Wu92a| discuss the test complexity problem of
uniform trees and analogous circuits consisting of more complex identical nodes computing
an associative or commutative function. In this Chapter we explore the test complexity
structure of trees based on commutative functions. The test complexity of a tree is defined
as the cardinality of the minimum complete test set of it and is measured as a function of
the number of the primary input lines in the tree.

This Chapter shows that the test complexity of balanced trees based on commutative
functions can be divided into ©(1), O(lgn), and Q(n™) (a € (0,1]) classes. This indicates
that the test complexity of a tree can jump from one class to another, when its nodes are
modified. Tt motivates us to analyze the test complexity of trees and study the possibility
of modifying the trees and changing their test complexity from a high class to a low one.

In section 3.1, we give a formal definition of the fault and diagnosis signal, then define
some notations. In section 3.2 we convert the test problem of the tree into the integer
linear programming. In section 3.3, we discuss in detail the jump of the test complexity
from O(1) to (lgn). The jump of the test complexity from O(lgn) to Q(n™) (a € (0,1])
will be studied in section 3.4. Section 3.5 deals with the arrangement problem which is a
generalization of the assignment and test problems related to uniform trees.

3.1 Fault and Diagnosis Signal

J. P. Roth in [Roth66] introduces two symbols D and D to represent two fault diagnosis
signals. The former has the value logic 1 in the normal circuit and logic 1 in the faulty
circuit. Conversely, the latter has the logic 0 in the normal circuit and 1 in the faulty
circuit. For stuck-at fault model there is no difficulty in using the two symbols to describe
the fault sensitization, drive and propagation. In this and the next Chapters we discuss
the test problem of VLSI systems performing symbolic computations, and adopt the cell
definition fault model defined in section 1.2. Some symbols have to be defined to represent
the corresponding faults and fault diagnosis signals for the cell definition fault model.
TLet M ={0,1,....,m—1} and f be a surjective and commutative function from M? to



M. Fig. 3.1 illustrates a T](;).

Fig. 3.1: A balanced tree T](;)

Definition 3.1 (basic fault) Assume f(i,j) = k and I € M \ k. The expression
(i,7): k/I represents a basic fault in an f cell. Because of this fault, the cell outputs
I for the input(assignment) (i, 7) instead of the desired k.

A tree is recognized to be defective if one of its cells is faulty. A cell is considered to
be faulty if it has one or more basic faults. When (7, j) is assigned to the cell and if the
practical output value is [ rather than the desired k&, we say the cell has certainly the basic
fault (i,7): k/I. The existence of such a fault can be judged by observing the response of
the output of the cell to the assignment (7, 7). In other words, (i, 7) can sensitize the basic
fault (4,7) : k/I and deliver a diagnosis signal denoted by the expression &/l to the output
line of the cell. The diagnosis signals total m(m — 1). The set of all basic diagnosis signals
is

dr = {k/l| ke M, 1€ M\ k} (3.1)

In fact, one can exactly determine the function value f(i,7) according to the definition
of f, provided that both parameter 7 and j are known. Hence, we express the basic fault in
form (i,7)/l. Given two parameters 7 and j, the correct function value f(4,7) is uniquely
defined. Tt is one of the m elements in M. Therefore, there are m — 1 possible faults for
a given pair (i,7) € M?. An assignment (4,7) applied to f can sensitize all the m — 1
possible basic faults. FEach of them corresponds to a basic fault. To test a cell completely,
one has to apply all elements in M2 to the cell. For m? distinct assignments, there are
altogether (m — 1)m? basic faults. The set of all basic faults is

Fy = {(.)/1] (ioj) € M, 1€ M\ f(i, )} (3.2)

Frample 3.1: Function f; is defined as follows.

fi]0 1
0 1 1
1 1 0
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1/0 1/0 1/0 1 0/1
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001011

_

fi
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_

0
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i
001101

_

Fig. 3.2: Complete test for T](ff)

The set of all basic faults is

Fy, = {(070)/07 (07])/07 (]70)/07 (]7])/]}'

(n)

A complete test set for a Ty s first of all a complete assignment set. It has to not only

(n)

assign all elements in M? to each of the cells in T} in order to sensitize every basic fault
which possibly occurs in the cell, but also propagate the diagnosis signals to the primary
output line for observing it. This is the difference between a complete assignment set and
a complete test set.

(4).

Fig. 3.2 illustrates a complete test set for uniform tree T;". This test set is made
up of five patterns, and it can completely sensitize every basic fault and propagate the
corresponding diagnosis signal to the primary output line. Its cardinality is larger than
that of the minimal complete assignment set for the same tree T](ff) illustrated by Fig. 2.2.
However, it is one of the minimal complete test sets. In most cases, the cardinality of
the minimum complete test set for a tree is larger than that of the minimum complete
assignment set for the same tree.

An assignment can be used to sensitize several basic faults and generate several diag-
nosis signals simultaneously. Consider S to be a subset of M \ f(i,7), and we use the
expression k/S5 to stand for a diagnosis signal pack which is made up of all diagnosis
signals k/1 (I € §). Tn case § = {I}, we substitute k/I for k/S. When S = (), we regard
k/S as k., a fault-free signal. Similarly, we use the expression (i,7)/5 to represent a fault
pack which is made up of all faults in form (¢,7)/1 (I € 5). For f(i,j) =k, we write k/9

instead of (i,7)/5 when we are interested in the diagnosis signal pack instead of the fault



pack, which can derive the diagnosis signal pack. We consider (i,7)/l € (i,7)/5ifl € §.
The terms fault and diagnosis signal will be used as substitutions for fault pack and
diagnosis signal pack, respectively. The following is the diagnosis signal set.

D :={k/S | ke M, §cCM\k} (3.3)

The basic diagnosis signal set dy is a subset of D. The diagnosis signal set Dy for f;
defined in the Example 3.1 is {0/1, 1/0}.

Fig.3.3 (a) and (b) show that when (0,0) and (1,0) are applied to an f; cell, the
corresponding outputs are all 1. This means that when (0/1,0)is applied to an f; cell the
output is 1/1 as shown in Fig. 3.3 (¢). The diagnosis signal 0/1 applied to the left input
line of the fi cell disappears inside the cell. We say (0/1,0) is an incompatible assignment
to fi. An incompatible assignments should not he applied to a cell.

0 0 10 0/1 0
I I !
fi fi fi
J } J
1 1 1/1

Fig. 3.3

In order to describe the compatibility of the diagnosis signals formally we define several
functions.

E(k/S) =k, Epk/S)=S forall k/S e Dy (3.4)

By using them one can extract the correct value k& and incorrect value pack S from a
diagnosis signal /5.

Let P(M) stand for the power set of M, namely, the set of all subsets of M. Function
P; defined by (3.5)

Prlu,v) = {f(E(u), 1), f(7,E(v))|t € Eg(w), 5 € Ep(u)}, (u,v) € D? (3.5)
is from D?f to P(M) and can be used to determine the set of faulty output values.

Definition 3.2 (D-condition) We say that function f : M? — M satisfies D-condition
if

Vi,je M{i# j = 3k.le M{f(i,k)# f(5.k) A f(L30) # f(15)}}-



If function f does not satisfy D-condition, the f cell is redundant. Some faults in the f
are untestable. The D-condition is a fundamental property of the testable functions. We
will limit our discussion on the test problem to functions satisfying D-condition.

Definition 3.3 (compatible assignment) (u,v) € D? 15 said to be a compatible assign-

ment to f if Ps(u,v) does not include f(Ei(u),E(v)).

When f is not sensitive, there are certainly some incompatible assignments which can
not be assigned to an f cell. For example, assume i # j and f(i,k) = f(j, k), then
flik) € Py(i/j, k), and (i/j, k) is not a compatible assignment to f. When (i/7, k) is
applied to an f cell, the diagnosis signal i/j put to the left input line disappears in the
cell, and one can not find its track at the output line at all. The signal k£ blockades the
propagation of i/j through an f cell. Thus this assignment can not be assigned to an f
cell. As shown in Fig. 3.3(c), (0/1,0) is not a compatible assignment to f;.

According to the definition of f, one can determine the set of all compatible assign-
ments, denoted by

Vi=A{(u, v) | (u,v) € D? is a compatible assignment to f} (3.6)

The set of all compatible assignments for f; defined in the Example 3.1 is

Vi = {(0/]7])7(]70/])7(]/07]/0)7(]7]/0)7(]/07])7(070)7(07])7(]70)7(]7])}

By assigning (u,v) € Vy to an f cell, both diagnosis signals u and v can
be propagated through the cell, and the corresponding diagnosis signal received
from the output line includes f(&(u),&(0))/Ps(u,v). Every fault (&(u),E(v))/S
(Pe(u,v) C S C M\ f(&(u),E(v))) in the cell can also be sensitized concurrently by this
assignment. What S should be depends on the concrete arrangement of the fault sensiti-
zation and diagnosis signal propagation. In order to reflect this aspect, we use an ordered
triple to represent a concrete assignment. The following set includes various assignments.

Uf = { (“’77)7S) | (“’77)) € va P,f(“’?”) cScM \ f(gf(“)vgf(”)) } (3'7)

When a concrete assignment (u,v,.5)is applied to an f cell, the corresponding diagnosis
signal delivered to the output line of the f cell can be determined by using function

b Uy — Dy defined by (3.8).
S i(u,v,8)= (&), EW))/)S,  (u,0,5)€ Uy (3.8)

Because f is commutative, ® ¢(u,v,5) = ®¢(v,u, ) for all (u,v,5) € Uy.
Using Uy as the domain, we define two projections from Uy to Dy.

M(u,v,8)=u, M.(u,v,9)=wv, forall (u,v,5)€ Uy (3.9)

Let A = #F¢, t = #Us and s = #Ds. Order the elements of Fy, Uy and Dy,
respectively. Let F; denote the ith basic fault in F, A, the jth element of Uy and wuy the
kth element of Dy, respectively.



Given a basic fault (i,7)/l and an assignment (u,v,5), we consider that (u,v,9) test

(i,7)/1ifi=&(u), 7 =E(v)and [ € 5. Forie[l,A]and j € [1,t] we define

1 : A; test F;
pij = { g (3.10)

0 : otherwise

If the assignment A; can sensitize the fault F;, then p;; = 1. Otherwise p;; = 0.

Definition 3.4 (complete cell test) A = {A;,---, A; | j € [1,1]} is called a complete
. .

@ —time
cell test, if

Vie[1,AI4 D ajpi > 1 (3.11)
1<5<t

A complete cell test applied to an f cell can sensitize all basic fault in the cell.

When a complete test set is applied to a tree, all assignments to each of the cells in
the tree comprise a complete cell test. If an input line is linked directly to the output line
of another cell, the assignments to this input line must contain the total diagnosis signals
received from that output line in order to propagate them to the primary output line for
the observation.

Definition 3.5 (test complexity) The test complexity ofT](fn) is defined by the mapping
TC; : Ty — N. '

TCf(T](cn)) = min {#A | A is a complete test set for T](fn)} (3.12)

Assume that A = {A;,---,A; | A; € Uy} is an assignment set applied to an f cell,

z;,—time
#Qi(A,u) and #Q, (A, u) represent the number of u assigned to the left and right input
lines of the cell, respectively. #7(A,u) is used to denote the corresponding number of u
obtained from the output line of f. For z; multiple assignments of A; applied to f, ®,(A;)
must appear at least z; times on the output line of f. In order to describe the relations

among #Q (A, u), #Q (A, u)and Z( A, u)formally, we define the following match function

1 : u=w

\Tl(u,w)—{ 0 ¢ wtn (3.13)

Suppose A contains 2:; A; for j € [1,#]. In accordance with the above conventions,

#Qi(A,u) = Z 2, U(T A, u) (3.14)
1<<t

#Q,(Au) = Z 2, UL A u) (3.15)
1<<t

#A(Au) = D a;U(Dp(A7),u) (3.16)

1<5<t



hold for all uw € Dy.

As assumed in section 2.1, we allow a set to include the multiple elements, namely, the
elements and their copies. For example, {a,a,b} and {a,b} are considered as two distinct
sets. The cardinality for the former is three, while the cardinality for the latter is two.

We require two special operators W and T to treat our unconventional sets. The operator
W is used to construct a new set by simply putting two sets together. For instance,
{a,a,b} W {a,b} = {a,a,a,b,b}. The operator T is used to form a conventional set by
extracting all the distinct elements from a multiple set. For example, T{a,a,b} = {a,b}.
By using this operator one can classify a set and press an element and its copies to a single
representative.

3.2 ©O(1) Testable and TLP;

In this section we define an integer linear programming associated with the given function
f and show that T](fn) is O(1) testable if the integer linear programming associated with f
has a feasible solution.

Assume that when (u,,5) € Uy is applied to an f cell, the corresponding output of f
is w. We can say that for this assignment we consume a u and a v on the left and right
input lines of f, respectively, and we produce a w on the output line of f.

Consider concretely the consumption and production of the diagnosis signals u; on
the left input and output lines of an f cell for the assignment A; = (u,v,5). Assume
b ;(A;) = w. There are total three cases.

Case 1) u # u; = w: The production of u; on the output line is surplus to the con-
sumption of u; on the left input line of the cell. For this assignment we win a u;, and
V(P s(Aj),ui) = WA ui) = 1.

Case 2) u = u; # w: The production of u; on the output line can not balance the
consumption of u; on the left input line of the cell. For this assignment we lose a u;, and
U(Ps(Aj),ui) = WA us) = —1.

Case 3) w = u; = w or u # u; A w # u;: The production of u; on the output line
balances the consumption of u; on the left input line of the cell for this assignment, and
V(P s(Aj),ui) = WA, ui) = 0.

Let l;; = W(®(A;),u;) — V(I[;A;, u;). The parameter [;; € {—1,0,1} can reflect the
forenamed three cases exactly.

The consumption of u; on the right input line and the production of u; on the output
line of an f cell for the assignment A; = (u,v,.5) can be divided into three cases similarly.
Let ri; = U(Ds(A;),u;) — V(I A;,u;). The parameter r;; € {—1,0,1} can reflect the
corresponding three cases.

The following are the formal definitions of [;; and r;; for ¢ € [1,s] and j € [1,¢], where
s and 7 are the cardinal numbers of the diagnosis signal set D, and the assignment set U
defined in section 3.1.

1 ]TIA]‘ 7& u; N q}f(A7) =
17;'7‘ = \p(q')f(A]‘),?l,i) — \TJ(]TIA]‘JI,?;) = —1 : ]TIA]‘ = U, A q}f(A7) 7& Uy (3]7)

0 : otherwise



T TLA A u ANPs(A;) =y
rii = W(Pp(A;),u;) — WL Aj ) =< =1 « TLA; =u; ANOg(A;) # (3.18)
0 otherwise

Observation 3.1 For every assignment set A = {A;,---, A; | j € [1,1]} applied to an f
. .

@ —time

cell
S owli = #7(Au) — #Qi(A, uy)
1<5<1

and

Z a1 = #A(A u) — #Q. (A, u;)

1<5<t
for allu; € Dy.

Using these parameters we construct two s x  matrices L = (I;;)sxt and B = (7} )sxt-
Let l_; and 7; denote the jth column vector of I. and R, respectively. We call I. and R
consumption-production matrices related to the assignment set Uy.

If (3.19) has a feasible solution, then it has a rational solution since the terms of its
constraint matrix and constant vector are all integers. Because (3.19) is a homogeneous
linear equation system, one can construct a feasible integer solution for it with its feasible
rational solutions.

[ ;/ ] F=0, Yjell,t{z; >0} (3.19)

Definition 3.6 (symmetrical circulation) Multiple set
A={Aj - Ay | je]) (3.20)
————
@ —lime

is said to be a symmetrical circulation if the multiple of A; is equal to the jth component
x; of & which is a feasible solution of (3.19).

For an arbitrary symmetrical circulation A, #Q;(A,u), #Q,.(A,u) and #7Z(A, u) are
equal to each other for all u € Dy.

Lemma 3.1 If K is a symmetrical circulation, then K = {(u,v,8) | (v,u,9) € K} is a
symmetrical circulation. If Ky and Ko are symmetrical circulations, then Ky W Kq is also
a symmetrical circulation.

Proof : This lemma comprises two parts. At first we prove the first part. As mentioned in

last section, ® ¢(u,v,5) = ®(v,u,S) for all (u,v,5) € Us. Then #7(K,u) = #7Z(K,u)



for all w € Ds. Notice that

Yu € Dy {#Q;(T, u) = #Q,(K,u) = #0Qi(K,u) = #Q,(K, u)}

Thus we can state that for every u € Dy, #Q;(K,u), #Q,(K,u) and #7(K,u) are equal
to each other.
Now we prove the second part. Let K = Ky W Kq. Then

#QUK,u) = #QuKi,u)+ #Qi( Ko, )
#Q,(Ki,u)+ #Q. (Ko, u)
#Qr (K, )
#H#Z(Ky,u)+ #7(Kq,u)
= #7(K,u)

forall we Dy. Q.E.D.

An immediate consequence of the above lemma is:

Corollary 3.1 If K is a symmetrical circulation, then for a given constant k,
K =KW---w K is also a symmetrical circulation.
N— ————
k

Using the parameters p;; defined by(3.10) we construct a matrix P = (p;;)axe. When
a complete test set are applied to a tree, the assignment set applied to each of the cells
in the tree has to be a complete cell test. If there is a vector & satisfying both (3.19) and
(3.11), namely,

[;]5—6 and  P7>1,

then A defined by (3.20) is a symmetrical circulation as well as a complete cell test for
f. We call such a set A circulative complete cell test. To search for an optimal circulative
complete cell test is equal to solve the following integer linear programming.

mineDlici<r i

[; ]f - 0 (3.21)

Py > 1

In order to use the theory of the integer linear programming, we convert the above
general form to the standard form by introducing a surplus variable z;y; for each inequality

Pt + piore + -+ pagre > 1,

so that

P11 + Piate + o+ Py — 2y = |1



for 244, > 0. This yields the integer linear programming

min E x;

1<;<t
{ 1,% g }f - {%} . Wie [+ Az, >0} (3.22)
P T 1

where [ is the identity matrix with r rows.

It is easy to see that (3.22) has a feasible solution if and only if (3.23) has a feasible
solution, and (3.22) has a feasible integer solution if and only if (3.23) has a feasible integer
solution.

min E x;

1<j<t
Lo 0
Rlo |# = |0 (3.23)
PlT 0
Vi e [1,1{x; > 0}, Vielt+ 1,1+ AM{z; > 1}

Based on Theorem 2.5, (3.23) has a feasible integer solution if it has a feasible solution.
This implies that (3.22) has a feasible integer solution if it has a feasible solution. There-
after we consider only its feasible integer solution. We call (3.22) test linear programming
of the f cell (abbreviated to TLP,). The following observation is immediate from the
above discussion.

Observation 3.2 TLP; (3.22) has a feasible solution if and only if the function f has a
circulative complete cell test.

Theorem 3.1 T](fn) is O(1) testable if its TL.P; (3.22) has a feasible solution.

Proof : Suppose the TLP; (3.22) has a feasible solution. We can find a circulative complete
cell test

A=A{A; - A LT ell i)
N ——
z;,—time

for f, so that

Vu € D {#Qi(A,u) = #Q,(A,u)=#7(A,u)}.

When A is assigned to an f cell, a set {®;(A;) | A; € A} can be obtained from its
output line. With two sets of this kind one can reconstruct a new complete cell test A for

(n)

an f cell. Assume that the cardinality of A is k. Given an f tree T}, one can always

(n)

construct kK n-component patterns which comprise a complete test set for the given T
The constant k is independent of the parameter n, namely, the number of the primary

input lines of T](fn). T](fn) is ©(1) testable.

Q.E.D.



Corollary 3.2 T](fn) can be completely tested through (4 M)? n-component patterns if

function f: M? — M is sensitive.

Proof : Assume M = {0,1,...,m — 1}. Tet M, denote the subset M \ i of M. Because f
is sensitive, then (i/M;,j/M;, My i) € Uy. Set

K ={(i/Mi,j/Mj, My ) | (i,5) € M?}
is a complete cell test. Tt is easy to see that
Vie M{#Q(K,i/M;) = #Q,.(K,i/M;) = #7Z(K,i/M;) = m}.

Therefore, K is a circulative complete cell test. We can further state that T](fn) can be

completely tested through (#M)? n-component patterns.
Q.E.D.

Frample 3.2: Function fy is defined below.

fol0 1
0 0 1
1 1 0

It is easy to see that f5 is sensitive. Thus T](f:') is O(1) testable according to the above

corollary.

3.3 Jump from O(1) to Q(lgn)

In this section we concentrate our attention on studying the jump of the test complexity

from O(1) to Q(lgn).

Lemma 3.2 Ifthe TLP (3.22) has no feasible solution, then there is a § € R?* such that

> 2} (3.24)

>0 A Jie[1,AV) € [1,1] {Pm =1 :”7[ v
7

I
Yl R

Proof : Based on Farkas’ Lemma, (see Theorem 2.4), (3.22) has a feasible solution in R
if and only if for all 7 € R***+*

L]o 0
gl R0 |>0=1¢4| 0 |>0.
Pl-T 1

Notice that



and

L|oO
.?7 R 0 Z 6 = 7(?/25—{—1 LIEEEE) .?/2.9+A)I Z 6
PlT

[}

- (,?/234_1 [IEEES ?/2s+A) S -

Assume that the TLP; (3.22) has no feasible solution. Then there is a § € R>** such
that

I, and R are two s X t matrices, and P is a A X f matrix. The entries in P are all
nonnegative. We can conclude that in this 7, y; < 0 for all i € [2s 4+ 1,25 + A], and there
is at least a k € [1,A] such that yosqr < 0. Assume &k = 1 and 8 = yo,11 without loss of
generality. Thus there is a § = (Y1, ... Y25, 3, Y2542+ ---s Y2542) SO that

Lo 0
gl R|lo | >0Ag| 0 | <o0.
Pl-T 1

For such a 4

| T - : |
i >0 AVYjelt]sp=1=¢| 1 |>0,.
R ' i
This implies that given an arbitrary constant a € R, there is a constant ¢ € RT such
that
| T - : | 7
cy >0 AVjelt]sp=1=cy| 2 |>a;.
R ' i
Taking 2 as o, we have this lemma. Q.E.D.

Lemma 3.3 If the TLP; (3.22) has no feasible solution, then there is a vector
(Y1, Y2+ ---, Ys) € R s0 that for every complete cell test A either

STyt Z(A ) > S QU AL ) + 1

=1 =1

or
STuHZ(Au) > gi#Qu (A u) + 1
=1 =1

holds.



Proof : Based on Lemma 3.2, if the TLP; (3.22) has no feasible solution, then there is a
7 € R* such that

5[; >0 A Hie[l,A]v,je[Lt]{pM—]:>g[1.1‘ >2}_
' ' r;

Given a complete cell test A ={A; --- A; | j €[l,#]}, we construct a #-dimension
. .

—~time

3
vector # and take the multiple 2; of A; in A as the jth component of #. According to the
definition of the complete cell test

Vi 6 Z TiPig > 1
1<5<t
There is certainly an ¢ € [1,A] and exists a j € [1,7] so that p;; = 1, 2; > 1, and

|
7|
Ty

x; > 2. It is not hard to see that for such an &

ST

[}

]

According to the definitions of I and R.

il (e

3
!

and

L
v
)

0y

I
-
)%
/\
n
R
?‘
_|_
I
n
T
3
CJ

7=1 =1 =1
s 1 s
= 2727“71 ZZH_?ZT i
=1 7=1 =1
According to Observation 3.1
i
S il = #7(Aui) — #Qi(A, u;)
j=1

and

S ey = #2(A ) — #Q.(A i),
j=1



we can state that for every complete cell test A of f

Do m(#Z(A ) — #QuA )+ Y zepi(#2(A ) — #Q(A ) = 5[ b ] g

1<i<s 1<i<s

v
)

Using the given complete cell test A we construct a set A as follows:

A= {(u;,up, S) | (ug,u;, 8) € A}

Tt is not hard to see that

A= A.iv"'vA,i |j€[]7t]
————

@ —time
3
and (ng,r;)T > 0. The multiples of A; € A(j € [1,1]) are all nonnegative. Thus

Do s #A(A ) — #QUA u)) + Y Zeri(#2(A us) — #Qu (A, ui))

1<i<s 1<i<s
. T, 1 INGA

_Z[R‘|(T1v 2 Ty)

>0

Because ®¢(u,v,5)= ®(v,u,5) for all (u,»,9)¢€ Uy,

Vu;, € Dy {#Z(Avm;) = #7(A, ?1,7;)}.

Furthermore, for all u; € Dy

#Q( A u;) = #Q (A u) A #Q (A ur) = #Qi( A, ;).

Hence
ST z(#Z(A ) — #QUAu)) + D zei(#Z(A ) — #Qo(A,u5)) +
1<i<s 1<i<s
ST oz #2(A ) — #Qu (A ui)) + Dz il(#Z(A i) — #Qu(A i) > 2.
1<i<s 1<i<s

In other words,

23 (2t 2 ) H#Z(A ) > D (24 2 (FQUA ) + #Q (A, u;)) + 2.

1<i<s 1<i<s

Let y; = 2z + zs4; for ¢ € [1,8]. Tt means that there is a vector (y1,y2, ..., ys) € R® and
for every complete cell test A either

ST w#HZ(Au) > > gi#Qi( A u) + 1

1<i<s 1<i<s



or

Yoow#Z(A ) > Y Qe (A ) +

1<i<s 1<i<s

holds, provided that the TLP; (3.22) has no feasible solution.
Q.E.D.

Theorem 3.2 T](fn) is either O(1) or Q(lgn) testable.

Proof : Suppose T](fn) is not (1) testable. Followed Theorem 3.1 the TLP; (3.22) has no
feasible solution. Based on Lemma 3.3 there is a vector (y1, %2, ..., ys) € R and for every
complete cell test A, either

SO pd 2 A ) > S g Qi A ) + 1
=1 =1

or

S U (A ) > S g QAL ) + 1
=1 =1

holds.

Suppose T( ")

fmm the prlmary output line to a primary input line by using the following procedure.

has 2% primary input lines. We determine a path, called downhill path,

. Choose the cell with the primary output line as the first cell on the downhill path,
a,nd let. AU denote the assignment set to this cell. The following inequality holds.

>yt Z(AN u 2%#7 w)+ 11
=1
2. Tet A denote the assignment to the [th cell on the downhill path, and assume that
Sy Z(AD ug) > 3 Ty Z(AD w41 1
=1 =1

holds.

3. In case

SO Z(AD u) > S g Qi AD w41,
=1

=1

we choose the cell linked directly to the left input line of the /th cell as the next cell on
the downhill path. Otherwise

S 2(A0 ) > 3 #0,(A¢
=1 =1



holds, and we choose the cell linked directly to the right input line of the Ith cell as the
next cell on this path. Let AU+Y) denote the assignment to this cell.
In the first case,

STou#Z(AD u) > 3T QA ) + 1
1<i<s 1<i<s
— Z yi#Z(A(H”,u?;)—I—].
1<i<s
In the second case
STow#z(ADw) > ST gi#Q(AD ) + 1
1<i<s 1<i<s
= Z yi#Z(A(H”,u?;)—I—].
1<i<s
We can state that for both cases
STy (A ) > 3T g Z(AD )+ 11
1<i<s 1<i<s
> N g #Z(AUT ) 41

1<i<s

In this way, we can finally determine the kth cell on the downhill path. Tet A%) denote
the assignment set to this cell. Followed the above calculation,

Yo w2 AD u) > 3T B2 (AN w4k

1<i<s 1<i<s

and

#AO = N 7AW uy)

1<i<s
k
max{|y;| | i =1,...,s}
= Qk) (3.25)

T](fn) has at least a downhill path no shorter than [lgn|. Hence T](fn) is Q(Ign) testable.
' ' Q.E.D.

3.4 Jump from O(lgn) to Q(n*)

In this section we discuss the jump of the test complexity from O(lgn) to Q(n®) (a € (0, 1]).

To test an f cell completely, we have to deliver a set of diagnosis signals of type u € d;
to the output line of the cell. If there is a constant x such that these diagnosis signals on
all lines in the same level can be simultaneously propagated to the primary output line
with & patterns, then T](fn) is O(lgn) testable.



Definition 3.7 (successor) For u € Dy, if there is a (u,w,S) € Uy such that
S i(u,w,S) = v, we say that u leads to v directly through w and we use u v to
denote it.

Ifu; % uipq and w; € W for all i € [1,1— 1], then we say that uy leads to u; in W

w .
and we use uy — u; to denote if.

D
An element v is called a successor of u if u oy,
For every (u,v,9) € Us, u — v implies that w — v since ® ;(u,v,9) = ® (v, u,9).

Definition 3.8 (circle) W C Dy is called circle if

Yu,w e W {u w, w}.

D
Let T'(u) := {?) | w L ?)} denote the set of successors of u € Dy. If T'(u) contains a

circle W, then we say that the element u can be driven into the circle W.

Definition 3.9 (embedded set) We say that set W C Dy can be embedded in K C Uy
if

W c{ul (u,0,9) € K}n{v | (u,v,5) € K}.

Lemma 3.4 For every circle W, there exists a symmetrical circulation K such that W
can be embedded in K.

Proof : At first we construct an assignment set A and a digraph (G4 by using the following
procedure.

1. Set A := ().

2. For two arbitrary elements u,v € W, if there is a (u,v,5) € Uy such that
S s(u,v,9) = wand w € W, then set A := AU {(u,»,9)} and we add arcs (u,w) and
(v, w) to the digraph G.

The digraph (¢ is strongly connected since W is a circle.

Assume #A = t'. According to A we construct a submatrix I/ of I defined in
section 3.2. Matrix L' contains the jth column of L if and only if A;, the jth element
of Uy, is included in A. Matrix I/ contains ith row of I if and only if there is an assign-
ment (u,v,5) € A so that ®;(u,v,5)=u;, and u; is the ith element of D;. Matrix R’
is induced from R in a similar way. I/ and R’ are the consumption-production matrices
(defined in section 3.2) related to A. The matrix I/ is just the node-arc incidence matrix
of the digraph G¢. The matrix R’ can be obtained by exchanging the columns of /. Tn
other words,

vie (103 e (L) {ll=rinrl =1}

K 3

Based on Theorem 2.8,

(3.26)

| — |
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has a feasible integer solution if (G is strongly connected.
According to the solution for (3.26) we can construct an assignment set

K = {(?I,7?)7S)7 o '7(“’77)7S) | 7 € []7tl]}

z;,—time

and make

#QI(K,u)=#Q,(K,u)=#7Z(K,u)

true for all u € W. Then K is a symmetrical circulation, and W can be embedded in K.

Q.E.D.

Theorem 3.3 T](fn) is O(lgn) testable, provided that T(u;) includes a circle for every
u; € (]f '

Proof : The input lines of all cells in the same level are independent of each other. The

faults of all cells in the same level can be sensitized simultaneously. T](fn) has at most

[lg n] levels. Therefore, T](fn) is O(lgn) testable, provided that there is a constant s, and
the whole diagnosis signals derived from the complete tests of all cells in the same level
can be propagated to the primary output line with s patterns.

According to the assumption, I'(u;) contains a circle for every u; € dy. According to
Lemma 3.4, every circle can be embedded in a symmetrical circulation. Thus there is a
constant k;, and all diagnosis signals of type u; derived from the complete tests of all cells
in the same level can be simultaneously propagated to the primary output line with x;
patterns.

lLet v = Z1S77S|d,f| ki. Then the whole diagnosis signals derived from the complete tests
of all cells in the same level can be propagated to the primary output line with x patterns.

Q.E.D.
Lemma 3.5 Given a diagnosis signal set W C Dy, if
Vo e Wau,we W {u BN ?)} (3.27)
then W contains a circle.

Proof : Assume that (3.27) holds. We prove this lemma by using induction on the cardi-
nality of W.

For #W =1, W = {u}. Based on the assumption, u — u. Then W = {u} is a circle.

Suppose W contains a circle for #W < k. For W = {uq,uq, ..., ur}, there are two
possible cases. W itself is either a circle or not.

At first we suppose W itself is not a circle. This implies that there are v/, v € W, and
u’ can not lead to v in W. Define a subset W’ of W as follows:

’ ’ ¢ W
w :{w | ' — w}



W' consists of all elements which #’ can lead to, and no element in W’ can lead to an

element in W\ W’. The cardinality of set W \ W’ is less than k, and
Vo e W\ W3u,we W\ W {u BN 1)} .

According to the above assumption, W \ W’ contains a circle. Thus we can state that W
does contain a circle. Q.E.D.

Assume that T](fn) consists of cells O 4, Cyq, Ca, ..oy Cry, ..oy and cell C; 5 is the jth
cell in the ith level of T](fn). When an assignment p (an n-component pattern) is applied to

T](fn)7 a diagnosis signal is delivered to every line in T](fn). We use Q(p, ;) and Z(p,C; ;)
to denote the corresponding set of signals delivered to the input lines and the output line
of cell (; ;, respectively. Let

Qp)= U oy (3.28)
1€[1,k]
Jjef,2—"

Zip)= U 2y (3.29)
1€[1,k]
e[, 1]

Here Q;(p) and Z;(p) are traditional sets containing no duplicated element. According to
(3.28) and (3.29), Z;11(p) = Qi(p) U Zi(p) for all i € [1,k — 1].

Lemma 3.6 Assume that T'(u) contains no circle. When an assignment p is applied to a

k-level T](fn)

’

Qk(p) C T'(u) = Qi(p) ¢ Z(p).

Proof:  Suppose Qi(p) C T'(u) and Qi(p) C 2Zp(p). The former implies that
A(p,C; ;) C I'(u), and the unique element of Z(p,C; ;) is a successor of u. Then
Zr(p) C T'(u). The latter means that

Yo € Zi(p)du, w € Zi(p) {u SN ?)},

and Zp(p) contains a circle. This is a contradiction with the assumption that T'(u) contains
no circle.

Q.E.D.

Lemma 3.7 Assume that T'(w) contains no circle. When an arbitrary assignment p is

applied to a k-level T\,

Qi(p) C T(u) = [Qk(p)U Zi(p)| > k + 1

holds.



Proof: We prove this lemma by using induction on the level £ of T](fn). Assume that T'(u)
contains no circle and Qg(p) C T'(u).

For &k = 1, the lemma is ture.

Assume that for k <]

Qi(p) C T(u) = [Qx(p)U Zi(p)| > k +1
holds. Then |Q; 1(p) U Zi_1(p)| > 1.

For k =1, based on LLemma 3.6

Qu(p) C T(u) = Qu(p) ¢ Zi(p)-

Because Z;(p) = Q;_1(p)U Zi_1(p), we can state that

|Qi(p) U Zi(p)| > |Zi(p)| +1 > 1+ 1.
Then we have the lemma. Q.E.D.

We know that #D; = N, and there are altogether N distinct diagnosis signals in Dy.
A diagnosis signal u € d; has at most N distinct successors. In other words, #1'(u) < N
for every u € dy. Assume #I'(u) = k. A pattern p applied to a k level balanced tree
can simultaneously propagate diagnosis signals in T'(u) from at most 2% — 1 primary input
lines to the primary output line if I'(u#) contains no circle.

Theorem 3.4 Balanced T](fn) is either O(1gn) or Q(n™) (a € (0,1]) testable.

Proof : Assume that T](fn) is not O(lgn) testable. Tt implies that there is at least an element

u € dy such that I'(u) does not contain circles. Consider the propagation of a u diagnosis

signal from each of the primary input lines to the primary output line. According to the

above discussion, there is a constant & € N, and th](j, total number of the diagnosis signals
ok

251

belonging to I'(u) will be multiplied at least by through every k levels. A balanced

g n

tree with n primary input lines has about [lgn] levels. Therefore, at least (2,?:) *

patterns are necessary to propagate a u diagnosis signal from each of the primary input

(n)

lines to the primary output line. Suppose A is a complete test set for T

. The following
formula holds.

1™

g
2k k
A >

k_
where 0 <= 1 — ]ng 1 < 1. Thus we can state that T](fn) is Q(n”) testable.

Q.E.D.



3.5 Arrangement Complexity

An arrangement set to a tree with n primary input lines consists of a number of
n-component patterns, so that by applying them to the primary input lines of the tree,
the input and output sets of every cell insider the tree has a predefined property. An ar-
rangement problem is to apply an arrangement set to a given tree. This is a more general
combinational problem expanded from the assignment and test problems related to tree
VLSI systems.

For distinguishing from the Cartesian product M*, we use M) to denote the set of all
I-dimensional vectors. Given a function b: M* — M, we define a vector function b as
the follows:

b(011, D12y covs V1K)

b(v91, V22, vy V2k)
b(l)(ﬁ17627"'7ﬁk) = . ” 7777 € M(])

b(vr1, V12, vy Vi)

For the arrangement of a uniform tree Tb(n)7 we are concerned about the predefined
property which is expected to be satisfied for every b-cell in the tree. We use predicate
P, to describe this property. The following is the formal definition of the arrangement
problem. An example following the definition gives a further explanation on it.

Definition 3.10 (arrangement complexity)
Given a function b: M* — M and a predefined property P, we define a predicate Py as

follows
. (1), » .
vy = b, (1, -, 0) and
true : .0 bEhh 2 k) -
= = Doy U1y, 0 as propert
Pb(”()v”h"'ﬂ)k) — ( 05 U1, 5 k) property
false : otherwise

where 5; € MY and [ is an arbitrary integer in N. In addition, the predicate satisfies the
following condition
(o 14+ =3 Bg) ~ (i i1, - =+ iig) => Py(iio, T, -+, ) = Py(ifo, iy, - -+ iig), 5 € MU

We call n I-dimensional vectors in M® (I n-component patterns of M") a com-
plete arrangement set to Tb(n) if by applying them to the n primary input lines of Tb(n),

Py (Do, D1, -+, k) is true for every b-cell in Tb(n). Here, 1y is the output vector and oy, - -+, ¥y,
are the input vectors of that b-cell.

The arrangement complexity | of Tb(n) is defined as the minimum of the dimensions of

the complete arrangement sets to Tb(n).

For example, if we define the predicate Py as following

60 = b(])(?—)tl [ rk)
1

true .
M* {(viny--yvi) | 1=

Pb(607ﬁ17' - lvﬁk) =

false otherwise



where 7, € MU, then the above arrangement problem becomes an assignment prob-
lem[Wu93a].

It is easy to show that the arrangement problem becomes a test problem when we give
another interpretation to the function & and the predicate Py.

We can disscus the arrangement problem before discussing the assignment and test
problems. However, people who are interested in the construction of the complete assign-
ment and test sets for a given balanced uniform tree may appreciate the concrete analysis
of the assignment and test problems.

In the following discussion, we reuse the three mapping families Fj,, 7" and F" defined
in section 1.4. A denote the set of all uniform trees based on a cell B.

Theorem 3.5 If S C MF is b-stable and a minimal arrangement set to a cell B, #5 is
an upper boundary of the minimum of the cardinalities of the complete arrangement sets
to each of the trees in A.

Proof: Given a tree 7' € A, one can always find a balanced tree 7 € A so that 7’ can
be embedded into 7. The arrangement complexity of 7 is an upper boundary of that of
7’. One can construct a complete arrangement set of a constant size for every tree in A
if he can construct a complete arrangement set of a constant size for every balanced tree
in A. Tn other words, all trees in A are constant arrangeable if all balanced trees in A are
constant arrangeable.

A balanced tree Fyq € A has the structure Bo (Fj, X --- x Fj). Suppose S C M* is

k
b-stable and an arrangement set to cell B. Then for every h € N

Go(F") = bo((Fp x ---x Fy)ox"|s)

%
= id|s

and
(Fh X -+ X Fh Oﬂh'(‘q) = 5.
k

This indicates that when 7"(.5) is applied to the primary input lines of F}, ¢, the vectors
applied to an arbitrary cell B inside Fj4q comprise an arrangement set. Thus ﬂh’(S) is
just a complete arrangement set to Fjy1, and #.5 is an upper boundary on the minimum
of the cardinalities of the complete arrangement sets to Fj1q.

Q.E.D.

The following corollary is obvious.
Corollary 3.3 If S ¢ M* is b-stable and an optimal arrangement set to cell B, ﬂh’(S) 18

an optimal complete arrangement set to Fpyq.

Theorem 3.6 The arrangement complexity of Tb(n) is O(1) if there are an i € N, a

subset S C M* and k' bijective mappings w1, ..., T * S — S so that S is a complete
arrangement set to F; and

(Fix-x F)o(m x - xm)oDE(S)=5.

k* ki




Proof: Suppose there are an i € N, a subset S C M* and K bijective mappings
Ty ey T -9 — 9 so that S is a complete arrangement set to F; and

(Fix -+ x F)o(m x - x m) 0 DE(§) = 8. (3.30)
k A

Tet K = k' and g = ¢o( F}). Based on (3.30), § is g-stable. Tet I = #£5. We define

770 - (](1)(7717 - .7/ﬁﬁ)

true : oy
(T1,---, ;) is a complete arrangement to F;

P, (¥, 01, -, 0,) =
false : otherwise

where o € M.
According to the assumption, 5 is g-stable. Based on Theorem 3.5, we can state that
#5 is an upper boundary on the minimum of the cardinalities of the arrangement sets to

T;,(n), and The arrangement complexity of Tl;(n) is ©(1).
Q.E.D.

The proofs of Theorem 3.5 and 3.6 are constructive. In fact, from them we can derive
algorithms of constructing the minimal complete arrangement set for the balanced uniform
tree based on function b.

In the rest of this section, we give another criteria of ©(1) arrangeable uniform trees

and show that the arrangement complexity of Tb(n) is either O(1) or Q((Ign)”) (v > 0).
According to the definition of the complete arrangement set, we can define a predicate
P, based on the given function b: M* — M and the predefined property P, so that n
[-dimensional vectors of M) comprise a complete arrangement set to Tb(n if and only if
by applying them to the n primary input lines of Tb(n)7 Py(%o, 1, -, Uk) is true for every

b-cell inside Tb(n). Here, gy is the output vector and 7, - - -, 7 are the input vectors of that

b-cell.

Lemma 3.8 Tb(n) is O(1) arrangeable if there are anl € N and a set W C MO such that
for every vy € W there are k vectors @y, ¥y, - -, 0 in W and Py(5, ¥1, - - -, U1 is true. Put
it formally,

3l e NIW ¢ MG, € WG, ---, 5 € W {Py(To, 71, - -, 53)} (3.31)
Proof: Suppose

3l e NIW ¢ MOV, € Wan,, - - -, 5 € W {Py(5o, 71, -, 5%)} -

We prove that for every N-level Tb(n)7 there are n vectors vy, - - -, ¥, of W, and they comprise
a complete arrangement set to Tb(n). This can be done through induction on the number
of the level of Tb(n).

In the case N = 1, the tree has only one cell. We choose a vector 7y € W arbitrarily,

then determine k vectors @y, g, - -+, 9 € W so that Py(y, 1, -, U) is true. Tt is clear
that (#7,-- -, 7%) is an arrangement to cell B, a tree having only one cell.



Assume that for N = 4, vectors oy, 02,0, "+, Ui g € W comprise a complete arrange-

i i
ment set to Tb(k ), Suppose Tb(k Vs of (i + 1) levels and is constructed by connecting
every primary input line in T,)(H) to the output line of a b-cell.

According to the assumption,
. 19— - - . s
Vi € [LE38 0, Wiay - -5 i € WAPY(Ti0,Ujas -, k) } -
Hence, (¥;0, 7,1, -, ;%) is an arrangement to a b-cell. When @ 1,7, 2, --, ¥, are applied

to the k input lines of the cell B directly linked to the jth input line in the level ¢, the
vector offered to this input line is just @, 5. Thus we can state that the &'T' [-dimensional

S S . . (k1)
vectors ¥y 1, U192, -+, U1, V2,1, " -, Ui p cOmMprise a complete arrangement set to T .
Q.E.D.

Corollary 3.4 Tb(n) is O(1) arrangeable if

e NIW’' ¢ MOy € WATy, Ty, - - -, 7 € W' {Pb(ﬁo,ﬁ1,---,ﬁk) A vl ~ 770} (3.32)

Proof: Given a set W’ ¢ M1 (I € N), we can always induce a set W so that
vie MOL3 e W {0~ i} = Ge W} a vie Wl e w' { ~ i},

The set W includes every vector which is similar to a vector in W’. Tt is obvious that
such a W satisfies (3.31) if W’ fulfills (3.32).
Q.E.D

Assume that Tb(n) consists of b-cells Cy 1,091,022, ..., Ch m, ..., and cell C; ; is the jth
cell in the ith level of Tb(n). Let A denote n vectors in M), and apply A to this tree. Let
W denote the corresponding set including A and all other vectors delivered to other lines
in every level of Tb(n). We use (A, 14,7, m) to represent the corresponding vector applied to

the mth input line of C;;, and (A,i,7,0) to represent the vector delivered to the output
line of C; ;.

Given a complete arrangement set A to an N-level Tb(n)7 we determine N sets in the
following way:

W,(A) = {(A,yz,j,m) lie[l,s],j€ 1,k ", me [071«]}, s €1, N] (3.33)

Ws(A) includes all vectors delivered to a line in level 7 (¢ € [1,s]) and the vector
delivered to the primary output line. We know that ~ is an equivalence relation. W (A)
can be partitioned into equivalence classes according to the equivalence relation ~, and
we use #W(A)/~ to denote the number of equivalence classes in W (A). The following
observation is obvious.



Observation 3.3 Assume A to be a complete arrangement set to an N -level Tb(n). Then
1 ¥s € [2 N {W,_1(A) S W (4) € MO}

2 Vs € [2, N {1 < #W, 1(A)/n < #W,(A)/}.

Lemma 3.9 Assume A to be a complete arrangement set to an N -level Tb(n). Then Tb(n)

is O(1) arrangeable if #W(A)/~ = #Ws_1(A)/~ for an s € [2, N].

Proof: Assume A to be a complete arrangement set to an N-level Tb(n). Suppose
#W(A) v = #Ws_1(A)/~ for an s € [2, N]. This indicates that Wy(A) and W,_41(A)
have the same number of equivalence classes, namely, #W (A)/~ = #Ws_1(A)/~. As
mentioned, W;_1(A) C W,(A) for all s € [2, N]. Tt is not hard to see that

Wig € Wo(A) 350, B+, € Wa(A) {Py (50, B, ) A ol ~ 7}

Based on Corollary 3.4, Tb(n) is O(1) arrangeable.
Q.E.D.

Lemma 3.10 For every complete arrangement set A to an N -level Tb(n),
Vs € [1 N #IWL(A)/o > ) (3.34)

if Tb(n) is not O(1) arrangeable.

Proof: Suppose Tb(n) is not O(1) arrangeable.  According to Observation 3.3 and
Lemma 3.9,

B (Ao > 1 A Vs € [2, N[ {#W,(A)/n > 4V, 1(A)/}.

Therefore, #W(A)/ > s. Q.E.D.

Given an [ € N, we can partition M) into a number of equivalence classes according

l

to the equivalence relation ~. Tet #/\/I(')/N denote the number of equivalence classes of

MO,

Observation 3.4 For every complete arrangement set A, which is made up of vectors in
M(l)(l € N), to an N-level Tb(”’),

1< #Wn(A)/ o < #MO /L (3.35)

Theorem 3.7 Tb(n) is O(1) arrangeable if and only if there are an | € N and a set
W c MO such that

Voo € WGy, By, -+, Bk € W{Pb(ﬁo,a,---,ﬁk) A Vg~ 770} (3.36)



Proof: The if part is immediate from Corollary 3.4. Assume Tb(n) to be ©(1) arrangeable.
There is a constant [ € N, and one can determine a complete arrangement set A, which is

made up of vectors in M) to an arbitrary Tb(n). Suppose [lgn] = N and N > #MD/_.
Since

Vs € [LNH{#WL(A)/« < MO/ < N,
there must be such an s € [2, N] that #W(A)/. = #W,_1(A)/~, and
Wi € Wi(A) 35, B, -+, 5 € Wa(A) {Py (T, 51,0 5) A g ~ T
Q.E.D

Coming up next we show that the arrangement complexity of Tb(n) is either O(1) or
Q((lgn)”)(y > 0). In other words, there is a jump from O(1) to Q((Ign)Y).

Theorem 3.8 The arrangement complexity of Tb(n) is either O(1) or Q((Ign)7).

Proof: Suppose the arrangement complexity of Tb(n) is not ©(1), and A is a complete

arrangement set to Tb(n). Let s = [lgn]. Based on Lemma 3.10,
#MD /> W (A > s> 1gn.

It is not hard to see that #M(l)/N is equal to the number of ways of inserting [ — 1
spaces into the sequence of |M| 1’s. According to Lemma 2.5,

(1)

Notice that for [ > 1,

M| [+ M| -1
[ >( M| — 1 .

This means that

1

[>T > (Ign) T (3.37)

Hence, we have the theorem.

Q.E.D.

Function f is said to be commutative, if for every permutation (q¢1,q2,...,qz) of

(1,2, ..., )

Pb(”_()% (TR 7)_1;) = Pb(ﬁov 7701 ’ 77027 ) ﬁqk)‘



Theorem 3.9 For commutative function b, the arrangement complexity of Tb(n) is O(1)

if and only if there are an + € N, a subset § C M and ki bijective mappings
Ty eeey T 29 — 8 s0 that S is a complete arrangement set to F; and

(Fix % F)o(m x - x )0 DE(S) = 5,

k* ki

where o denotes the type of S'.

Proof: Suppose f is commutative. The if part is immediate from Theorem 3.6. We are
required to treat only the only if part.

In the same way used to analyze the assignment complexity of balanced uniform trees
based on commutative functions [Wu93a], we can show that the arrangement complexity

of Tb(n) is O(1) only if
31 € N3Gy, 5y, 5, -« -, 55 € MO Py (o, By, Fau- - -, T5) AV € [1L,E] T ~ o)}, (3.38)

Let I be the minimum number of all integers satisfying (3.38). Then there are an
i € N and k' vectors &y, Ty, - - -, 5 in M so that they are similar to each other and
comprise a complete arrangement set to an ¢-level balanced uniform tree F;. If we consider
(U1, Tg, -, Vi) as an [ X k' matrix, it contains no duplicate rows.

Tet x = k" and Uy, ; denote the mth component of 4. Define

S =A{(Vm1sVmay s ms) | mE 11}
Suppose the output vector is ¥y when S is applied to F;. According to the assumption
Vi€ [1,k]{#; ~ o}

Put it differently, 7%, can be transformed to every vector #; (j € [1,x]) by exchanging its
component positions. This means that there are s bijective mappings

Ty Tt 9 — 9
so that

(F; x---x R)O(ﬁ X oo X i) o DI(S) =9,

k* ki

where o denotes the type of 5. 5 is a complete arrangement set to F;, and the arrangement
complexity of Fj, is (1) (h € N).

For an arbitrarily given Tb(n)7 we can always find an F},, so that F}, covers Tb(n). Thus

the arrangement complexity of Tb(n) is O(1).
Q.E.D.



Chapter 4

Test Complexity of Uniform Tree
Circuits

This Chapter deals with the test complexity of balanced uniform tree circuits. A uniform
tree circuit is a special uniform tree based on a bhoolean function from {0,1}™ to {0,1}.
In section 4.1 we make some conventions and prove that a balanced uniform tree circuit is
either O(1) or Q(lgn) testable. Tn section 4.2 we show that the test complexity of balanced
uniform tree circuits based on commutative functions can be divided into ©(1), O(lgn)
and Q(n") (r € (0,1]) testable classes. In section 4.3 we prove that uniform tree circuits
based on unate functions are all Q(n”) (r € (0, 1]) testable, and a balanced uniform tree
circuit based on a monotonic function is O(n") (r € (0, 1]) testable. The section 4.4 shows
that the test complexity of uniform tree circuits based on general functions has more
classes.

4.1 Uniform Tree Circuits

Tet B ={0,1} and f be a surjective function from B™ to B. We call a uniform tree based
on f uniform tree circuit.

In this Chapter, the cell definition fault model is assumed. A fault in a cell changes
the function assigned to the cell. Furthermore, we assume that there is only one faulty
cell in the whole tree circuit that causes a discrepancy between the practical output and
the expected one for some inputs.

TetT=0and0=1. A T](fn) is recognized to be defective if one of its cells is faulty. An
f cell is considered to be faulty if for an element X € B™ applied to it, the corresponding
output is W instead of the desired f(X). In order to detect this fault, one has to apply
X to the faulty cell and sensitize that fault, then drive a diagnosis signal to the output
line. When the output line of the faulty cell is not primary, one has to propagate the
diagnosis signal to the primary output line for the observation.

For X € B™, we use H,(X) to denote its Hamming weight which is the number of 1
components in X. For X,V € B™, we use Hy(X,Y) to denote their Hamming distance

which is the number of bits in which X and Y differ.



We partition B™ into m + 1 classes in the following way.
Bi={X|XeB" H,X)=1i} forie[0,m]

B; denotes the 7th class including every X whose Hamming weight is 1.

We use symbols D and D to denote two different diagnosis signals. The diagnosis signal
D has the value 1 in the normal circuit and 0 in the faulty circuit. The other diagnosis
signal D has the value 0 in the normal circuit and 1 in the faulty circuit [BrFr76].

Assume that Hg(X,Y) = 1, f(V) = f(X), and X and V differ only in their ith
component z; and ;. We say that the assignment X can propagate a I signal on the 2th
input line of an f cell if 2; = 1, otherwise a D signal. The assignment X can deliver a D
signal to the output line of the f cell if f(X) =1, otherwise a D signal.

Definition 4.1 (precedent) Assume that u,v € {D, DY} are two diagnosis signals. We
say that u is a precedent of v if u can be transformed into v through an f cell.

We use u ~ v to denote that u is a precedent of v, and u <4 v to denote that u is not a
precedent of ».

Definition 4.2 (C-property) X € B is logic 1 critical if
W oe B > X AHAX,Y)=1= [(V)=[(X)}.
X € B™ is logic 0 critical if
W oe BTY < X AHAX.Y)=1= [(V)=[(X)}.

X € B™ is full eritical if it is logic 1 as well as logic 0 critical.
We say a function f has C-property(cancellation) if every X € B is full critical.

The C-property is a special case of the sensitive property defined in section 1.4. A full
critical assignment X can propagate a diagnosis signal on every input line of an f cell and
can propagate diagnosis signals from m input lines.

Frample 4.1: Function f is defined as follows:

f10 1
010 1
111 0

As shown in Fig. 4.1, when (0, 1) is applied to an f cell the output is 1. By changing
the input pair from (0, 1) to either (1,1) or (0,0), the output will changes from 1 to 0.
This means that by applying the assignment (0,1) to an f cell, one can propagate a D
from the left input line and a D from the right input line to the output line of the f cell.
The assignment (0, 1) is full critical. Tt can be shown easily that f defined in this example
has C-property.

Definition 4.3 (diagnosis information) A diagnosis signal w € {D, DY} on a line has
one unit of diagnosis information for the line. Assign X to an f cell. We say that
the corresponding diagnosis signal received from the output line of the f cell can contain
T;— units of diagnosis information for each of the m input lines, provided that with the
assignment X one can propagate a diagnosis signal from at most 1 input lines.
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Fig. 4.1

By using the concept of the diagnosis information one can measure the propagatability
of the diagnosis signals for an assignment X applied to an f cell.

Lemma 4.1 VXY € B"{H (X)=H,(Y)= f(X)= f(Y)} if f has C-property.

The proof for this lemma, is trivial.

It is obvious that if f has C-property, then

Vie[0,m—1VX € BYY € B {f(X) = f(Y)
Y)

f(Y)}
Vie [0,m—2)¥X € BYY € Bio{f(X) = f(

1.

This states that every assignment X € B; applied to an f cell can propagate © ) as

well as (m — 1) D signals on the input lines of the cell if f has C-property.

Theorem 4.1 If f has C-property, then T](fn) is O(1) testable, else T](fn) is Q(lgn) testable.

Proof : Suppose f has C-property. Then f is sensitive. Based on Corollary 1.1 T](fn) is
O(1) testable. In the following we dispose the only if part.

Assume that f has no C-property. Then there are X € B; and YV € By, so that
f(X) = f(Y). Tt means that either of X and Y applied to an f cell can propagate at most
m — 1 diagnosis signals. Let v denote the minimum number of diagnosis signals received
from the primary output line of an [-level uniform tree circuit. We can inductively prove
that v > 1.

For I = 1, T](fn) is a single cell, and v > 1. Assume that v > ¢ holds for [ = 7. For
[ = 141, each of the m input lines of the cell with the primary output line is linked directly
to the output line of an i-level tree circuit, and at least ¢ diagnosis signals on it has to be
propagated. On the assumption that there are two distinct assignments X,Y € B™, so
that Hy(X,Y) =1 and f(X) = f(Y), either of X and Y can propagate at most m — 1

diagnosis signals. In order to test T](fn) completely, every element of B” has to be applied

to each of the cells of T](fn). Thus v > T”TX’ Put it differently, v > ¢ + 1.



A balanced uniform tree circuit with n primary input lines has at least [log,, n| levels.

Tt is an immediate conclusion that T](fn) is Q(lgn) testable.

Q.E.D.

Assume that a complete test set of an f cell delivers vy D signals and vy D signals
to the output line. If there is a constant 7, so that with ¢ patterns one can propagate

vy D signals and vy D diagnosis signals assigned to every input line of cells at the same
level of T](fn) to the primary output line, then we say that every level of T](fn)
testable. Tt is obvious that a balanced uniform tree circuit is O(lgn) testable if every level

is constant testable.

is constant

Lemma 4.2 T](fn) is Q(n") (r € (0,1]) testable if there is no full critical element in B™.

Proof : Assume that there is no full critical element in B™. Fvery assignment applied to
an f cell can propagate at most m — 1 diagnosis signals. Then through every level the
number of diagnosis signals on lines will be multiplied by at least —=. Tt implies that
to propagate a diagnosis signal assigned to every primary input ]in(e )We have to deliver at
n

least (%)“’gm ™ diagnosis signals to the primary output line of Ty Clearly,

m.

( m

] Yo' — pl=logn(m=1) g1 —log, (m—1)< 1.
m

The lemma follows.

Q.E.D.

4.2 Commutative Tree Circuits

We have proved that a T](fn) is either O(1) or (lgn) testable in the last section. In
(m)

this section we show that a T;" based on a commutative function is either O(lgn) or

Q(n") (r € (0,1]) testable. Tn other words, the test complexity of balanced uniform tree
circuits based on commutative functions can be divided into three classes, namely, O(1),
O(lgn) and Q(n") (r € (0,1]).

Assume ('t to be the set of all critical elements in B™. We define a function Py from
C't to the integer field.

P X)=H,(X)—mf(X), XeCy (4.1)
According to the above definition we have Observation 4.1 and 4.2.

Observation 4.1 For a given boolean function [ : B™ — B, the following statements
are always true.

1. VX € Cf{fm < Pf(X) < m};
29X € Cp{PH(X)= —m= X =04 f(0)=1};

2. ¥X € Cp{-m < PUX) < 0= 0< Hy(X)<mAf(0)=1};



1 YX €CH{PHX)=0= X =0/ f(6) =0V X =TA f(8) =1}
59X € Cp {0 < PHX) < m == 0< Hy(X) < mnf(6) =0}
6. ¥X € Cp{Pr(X)=m= X =T f(0)=0};

Observation 4.2 Suppose boolean function g is defined as follows:

V.T1,...7.73m € B {q(Th 7Tm) = f(ﬁv 7ﬁ)}

1. f and g are equivalent to each other (f = g), and T](fn) and T;n) have the same test
complexity;

2 O 6= Cy 4 6;
5. VX € CH(X){PH(X) < 0} == VX € C,(X) {P,(X) > 0}.

By using set 'y and function Py we can determine that a given commutative hoolean
function is in one of the several cases as shown in Fig. 4.2.

In the following we explore the property of the given boolean function f in each of
these cases.

Case 1) C = ¢;
Case 2) AX,Y € Cp{Ps(X)PyY) < 0};
Case 3) VX € Cy{P,(X)
Case 4) VX € Ce{Ps(X)
Case 4.1) VX € C{Ps(X)
— 0,1€Cy;
Case 4.2) VX € C{P(X)>0}A0€cC;ATEC;AD~D
—0ecC;Af0)=0AD~D;
Case 4.3) VX € Ci{Py(X)>0}A0€C AT ECADAD
— 1¢CADAD;
Case 4.4) VX € C4{Py(X)>0}A0&CAT€eCiAf(I)=1AD~D
— 1eC;Af(I)=1AD~ D;
Case 4.5) VX € Ci{Ps(X)>0IAN0¢CrATeC;Af(I)=1ADAD
—0¢ C;ADA D;
Case 4.6) VX € Ci{Py(X)>0}A0&CA(T&CpV f(1)=0)
—= VX € Cr{f(X)=0} A0 ¢Cy
= VX € Cs {Ps(X) > 0}.

—

>0}
>0}
>0} A0, T ey

If function f belongs to case 1, then T( " s Qn") (r € (1,0]) testable based on
TLemma 4.2. In the following we mveﬁhga‘re The test complexity for other cases.



Ci=0T '—V>Case1

n

3X7V € Cf {Pf(X)Pf(V) < 0} 1]

n

Y, Case 2

| |
VX € CH{PHX)<O0}T e WX €0 {Py(X) >0} —+ Case 3
L _
ln
Case 4
I _L - T T 1
VX € Cp{Ps(X) > 0}
L _
— y = y
0cCy T 1eCy ' —— Case4.1
n n
— y
D~ DT —— Case 4.2
n
Case 4.3
- - y — y
1eCrAf(1)=1T D~ DT —— Case 4.4
n ln
Case 4.6 Case 4.5

Fig. 4.2



Lemma 4.3 T](fn) is O(lgn) testable if there are two full critical elements X, Y € B™ so
that Pf(X)Pf(V) < 0.

Proof : For a commutative function f, if H,(X)= H,(Y), then f(X) = f(V), and X
and Y have the same propagatability of the diagnosis signal.

Without loss of generality, we assume that f(X) =1, f(V) =0, H,(X) = ¢ and
Hy,(Y) =7j. Then Py(X)=1—m, and Pg(Y) = j. Both m — i and j are greater than
7eT0.

With j assignments in B;, one can propagate j x i D signals and j(m — 1) D signals
on input lines of an f cell and deliver j D signals to the output line.

With m—i assignments in B;, one can propagate (m — 7)j D signals and (m —i)(m — j)
D signals on input lines of an f cell and deliver (m — i) D signals to the output line.

With j assignments in B; and m — 1 assignments in B;, one can propagate m X j D
signals and m(m — i) D signals on m input lines of an f cell.

The conclusion is that by applying j assignments in B; and m — 1 assignments in B;
to an f cell, one can propagate j D signals and (m — i) D signals from each of the m

input lines and deliver j D signals and (m — i) D signals to the output line. There is a
constant ¢, and all diagnosis signals derived from testing all cells at the same level in T](fn)
can be propagated to the primary output line with ¢ n-bit patterns. Thus, one can test
every level of T](fn) through ¢ n-bit patterns. T](fn) is O(lgn) testable.

Q.E.D.
Lemma 4.4 T](fn) is O(lgn) testable if 0,1¢ C'y.

Proof: Suppose that both 0 and 1 belong to C's. By using assignment 0 one can propagate
a D from each of the m input lines of an f cell, while by using 1 one can propagate a I

(n)

from each of the m input lines of an f cell. Every level of T

T](fn) is O(lgn) testable.

is constant testable, and

Q.E.D.

Lemma 4.5 T](fn) is O(lgn) testable if 0 € Cy A f((_j) =0, and D is a precedent of D
signal.

Proof : Suppose 0 € Cy A f(6) =0, and D is a precedent of T signal. With 0 one can
propagate a I from each of the m input lines of an f cell, and deliver a D to the output
line of the cell. With a proper assignment one can transform a D signal assigned to an
input line of an f cell into a 1. This indicates that with m proper assignments one can
separately transform m D signals assigned to m input lines of an f cell into m D signals.
Hence m + 1 assignments are enough to propagate a D signal as well as a D from every

(n)

input line of all cells at the same level to the primary output line. Thus every level of T

is constant testable, and T](fn) is O(lgn) testable.
Q.E.D.

Lemma 4.6 T](fn) is QUn") (r € (0,1]) testable if T & C't, and D signal is not a precedent
of D.



(n)

Proof : Without loss of generality, assume Ty to be an [-level tree circuit with m! primary

input lines. On the assumption that D is not a precedent of D, and no D signal on the
primary input lines can be transformed into D signal.

Consider only the propagation of a D signal from each of the primary input lines to
the primary output line. To propagate a ) signal from each of the m input lines of a
cell to its ontput line, at least —"= assignments are necessary and —== 1) signals will be
delivered to the output line. Assume that (%)’ patterns are necessary to propagate a D

signal from each of the primary input lines of an i-level balanced uniform tree circuit to
its primary output line and deliver (%)’ D signals to the primary output line. Thus we

can state that at least (L’1)’7+1 patterns are necessary to propagate a D signal from each

pre
of the primary input lines of an 7 4+ 1 levels balanced uniform tree circuit to its primary

m.

m)ﬂq D to the primary output line. Since

output line and deliver (

log,, n
(L) =p' 1™ and 0 < 1—log, (m—1)<1,
m — 1 ’ -

the lemma follows.

Q.E.D.

Lemma 4.7 T](fn) is O(lgn) testable if 1e Cy A f(f) =1, and D is a precedent of D
signal.

The proof for this lemma is similar to that for Lemma 4.5.
O

Lemma 4.8 T](fn) is Q(n") (r € (0,1]) testable if0 ¢ C'y, and D signal is not a precedent
of D. '

The proof for this lemma is similar to that for Lemma 4.6.
O

Lemma 4.9 T](fn) is Q(n") (r € (0,1]) testable if Py(X) > 0 for every full critical element
X e B™. '

Proof : Suppose P;(X) > 0 for every full critical element X € B™. This implies that
0 ¢ C'y and f(X) = 0 for every full critical element X € B™. An arbitrary full critical
element X can propagate at most m — 1 I signals and can only generate a ).

A nonfull critical assignment can propagate at most m — 1 diagnosis signals.

(n)

Without loss of generality, we assume that Tf has m! primary input lines and [ is

even. We prove hellow that a diagnosis signal on the primary output line can contain at

1
2 1\3 . . . . . . .
most (m’m21) units of diagnosis information for every primary input line.

For [ =0, it is trivial. Assume that for [ = 2i, a diagnosis signal on the primary output

m.

. n . 2_ g . . . . .
line of T](f ) can contain at most ( m21) units of diagnosis information for every primary

input line.



(n)

Suppose [ = 214+ 2, and T](fn) is an [-level uniform tree circuit. In T each input line of

a cell at the second level is linked directly to the output line of a 2i-level balanced uniform
tree circuit based on f.

On the assumption that Py(X) > 0 for every full critical assignment X € B™ then
a ) signal on the output line of an f cell can only be derived from a nonfull critical

1

assignment, and contain at most “— units of diagnosis information for every input line

of the cell. This indicates that a D signal on either the primary output line or lines in
level 1 can contain no more than mm_q units of diagnosis information for every connected
line in level 2.

A D signal on the primary output line can be derived from either a full critical assign-
ment or nonfull critical assignment applied to the cell in level 1. For the latter case, such

m—1

a D signal can contain no more than units of diagnosis information for every line

in level 1. For the former case, the D sigha] is derived from a full critical assignment X

which can propagate H,(X) D signals and m — H,,(X) D signals. Then this I signal

m—1
. —Hm X +T)’I,7H7” X
can contain no more than —=z ) )

units of diagnosis information for every

connected line in level 2. "’
Clearly,
2L W (X)+m — Hy(X) m? — H,(X)
m n m
< m?— 1
< 3

since P(X) > 0and H,(X) > 1forevery X € 'y according to the assumption.

This implies that a diagnosis signal on the primary output line can contain at most

2_ . . - . . .
mm21 units of diagnosis information for every connected input line of a cell at the second

m2 -1 i+1 . . [ . . . .
level, and ( — ) units of diagnosis information for every primary input line at most.

!
2 \3 . . . .
Then (%) patterns are necessary to propagate one unit of diagnosis information for

every primary input line to the primary output line. Notice that

i
2 2 2
m  1-05leg D
> = n )
m* — 1

Theorem 4.2 T](fn) is either O(1gn) or Q(n") (r € (0,1]) testable.

Then we have l.Lemma 4.9.

Q.E.D.

Proof : Given an f function from B”™ to B, only the following four cases can happen.

1. C¢ = ¢, and T](fn) is Q(n”) testable according to Lemma 4.2;
2. 3X,Y € Cy{P(X)Ps(Y) < 0}, and T](fn) is O(lgn) testable followed Temma 4.3;

3. VX € Cy{Ps(X) <0}, and T](fn) has the same test complexity as T;n) based on
Theorem 1.3. For function g, VX € C, {P,(X) > 0}.



4. VX € Ce{Ps(X)> 0}, and T](fn) is either O(lg n) or Q(n") testable followed Lemma
4.4 through 4.9. '

Q.E.D.

The following corollary is an immediate consequence of Theorem 4.1 and 4.2.

Corollary 4.1 . The test complexity of balanced uniform tree circuits based on com-
mutative functions can be divided into three classes, namely, O(1), O(lgn) and Q(n")

(r € (0,1]).

4.3 Unate Tree Circuits

The test complexity of unate circuits based on gates of type AND and OR is discussed in
detail in [Aker73,Redd73]. Tn this section we study the test complexity of uniform tree
circuits based on unate functions.

Let @ denote the boolean operator EXOR and define X &Y = (21 ® 1, ooy X D Ym)
for X,V € B™.

Definition 4.4 (unate function) Function f(X) is unate in x; if there is a b; € B so
that

VX € B"{(1yey @ic1y,bi D @iy ity ooy Bn) < (@1, ey 1,0y B Ui ity ooy T
— f(.7,‘1,...7.7,‘7j,17.737j7.777j+17...,me,) < f(m17“'7'7"77717.?/777'7777—{—17"'7mm,)}-

Function f is considered to be positive unate in z; if b; = 0, and positive unate in =T; if
b; = 1. Function f is considered to be a unate function if it is unate in every x; (1 € [1,m]).

According to the above definition, if f is unate then there is a by € B™ such that
VX,V e B"{by & X <b; &Y = f(X)< f(V)} (4.2)

We call such a by characteristic vector of the function f. The unate function f is considered
to be monotonic if by is either (1,...,1) or (0,...,0).
Given a unate function f, we construct two subsets of B™,
E = IX|AX)= 1AW € B" {byaV <bya X — f(V) < f(X)}} (43)
N (X | f(X)=0AYY € B"{by @Y > by & X = f(V)> f(X)}} (4.4)

Set. £ is an antichain in which no two elements are comparable. Set A/ is also an

antichain. We call them D and D eritical antichain of unate function f, respectively. Tt
is easy to see that a diagnosis signal can only be propagated by using an element in either

Eor N.

Lemma 4.10 lLet by be the characteristic vector of unate function f. If the ith component
b; of by is 0, then a D signal on the ith input line of an [ cell can only be propagated by
using elements in £, and a D signal on the ith input line of an f cell can only be propagated
by using elements in N'; If the ith component b; of by is 1, then a D signal on the ith
input line of an f cell can only be propagated by using elements in N, and a D signal on
the vth input line of an f cell can only be propagated by using elements in &;



Proof: Suppose by = (by,bs,...,b,). Without loss of generality, we consider the first
component by. Assume by = 0. For arbitrary zq,...,2,, € B,

(07b27 7bm) & (]7.7727 7Tm) > (0,!)27 7bm) & (07.7727 7Tm)

According to the definition of unate function

f0 29, am) =1 = f(l,29,...,2,)

1
f(lag, . am) =0= f(0,29,....,2,) =0

This indicates that the I signal on the first input line of an f cell can not bhe propagated
by using an assignment in &£, and the D signal on the first input line of an f cell can not
be propagated by using an assignment in A.

In a similar way we can show that if by = 1, then the D signal on the first input line
of an f cell can not be propagated by using an assignment in A/, and the D signal on the
first input line of an f cell can not be propagated by using an assignment in £.

Q.E.D.
Lemma 4.11 One of £ and N contains no full critical element.

Proof: Assume that X = (21,29,...,2,) is a full critical element in £. Let b; be the
characteristic vector of function f, and by & X = (a1, a9, ..., a,,). We show that a; = 1 for
every i € [1,m].

Suppose by B X = (0, a9, ...,0,). Let Y = (T7, 29, ..., 7). Then by &Y = (1,09, ..., a,,),
and f(Y) = 0since X is full critical. Tt means that

by Y >br® X A f(V)< f(X)

This contradicts (4.2) directly.

Thus by X = (1,...,1)if X € £ is a full critical element. In a similar way we can
show that by @Y = (0,...,0) if Y € A is a full eritical element.

Assume that there is a full critical element X in £. Then

by X =(1,..,1) AYY € B"{b;®Y € B 1 = f(V)=0}.
This indicates that
VY € B {b;®Y € B™\ B,, = f(Y) =0},
particularly
YY,Z e B"{b; Y € By A byd Z e By = f(V)=f(%)=0}.

This implies that there is no full critical element in A.
Similarly, we can show that there is no full critical element in £ if there is a full critical
element in N,

Q.E.D.



Theorem 4.3 T](fn) based on a unate function is Q(n") (r € (0,1]) testable.

Proof: Assume that fis a unate function, then it has a characteristic vector by € B™ such
that

YX,Y e B"{b; 3 X <b; Y = f(X) < f(V)}.

Given a by € B™, only the following three cases can happen.
Case 1) H,,(bs) = 0;
Case 2) 1 < Hyy(by) <m —1;
Case 3) H,,(bs) = m.

For the first case, the corresponding D and D critical antichains are the following.

£ = {X]J(X)=1AWY € B"{Y < X = [(V) < [(X)}} (4.5)
N = (X[ S(X)=0AWY € B {Y > X = [(V) > [(X)}} (4.6)

The D(D) signals on the input lines of an f cell can be propagated only with an element
in £(N) and can only be transformed into D(D) signals. Based on the above lemma, one
of £ and N contains no full critical element.

Without loss of generality, assume that £ contains no full critical element. By using an
element one can propagate a D from at most m — 1 input lines of an f cell. Assume that
the minimum number of D signals on every input line of a cell in level 7 is 1/1(7:)7 then the
minimum number of T signals delivered to an arbitrary line in level ¢ + 1 is not smaller

()

than —=<v;”, and the minimum number of D signals delivered to an arbitrary line in level

5
R )
7 + 2 is not smaller than %lﬁ .

Assume that T](fn) is an [-level uniform tree circuit, and we propagate a D signal from
each of the n primary input lines to the primary output line. Tt is easy to see that the
number of D signals delivered to the primary output line is not smaller than (mli)]7 and

;
the T](fn) is Q(n") (r € (0,1]) testable.

For the third case, the corresponding 1 and D critical antichains are the following.

E = {X|J(X)=1AWY € B"{Y > X = [(V) < [(X)}} (4.7)
N = (X[ S(X)=0AWY € B {Y < X = [(V) > [(X)}} (4.8)

The D( D) signals on the input lines of an f cell can be propagated only with an element
in M(€) and can only be transformed into D(D) signals. Based on Lemma 4.11, one of £
and A contains no full critical element.

Without loss of generality, assume that A/ contains no full critical element. Suppose the

()

minimum numbers of D and D signals on every input line of a cell in level ¢ are vy and

()

vy, respectively. In order to propagate them to the primary output line, the minimum
number of 1 signals delivered to every output line of a cell in level i can not be smaller

than mllﬁ(i). The minimum number of D signals delivered to every input line of a cell in

1
level 7 + 2 is not smaller than 7;”—7'1”1(7’)



Assume that T](fn) is a 2/-level uniform tree circuit, and we propagate a D signal from
each of the n primary input lines to the primary output line. Tt is easy to see that the
number of D signals delivered to the primary output line is not smaller than (mlf)]7 and

-
the T](fn) is Q(n”) (r € (0,1]) testable.

Now we are only required to consider the second case, and the corresponding D and 1
critical antichains are presented in (4.3) and (4.4).

Suppose 1 < H,,(bs) < m — 1. According to Lemma 4.10, if b;, the ith component of
b, is 0, then every D(D) signal on the ith input line of an f cell can be propagated only
with an element in £(A), else every D(D) signal on the ith input line of an f cell can be
propagated only with an element in AV(&).

If neither £ nor A has a full critical element, then every fault signal received from the
output line of an f cell can contain at most mm_q units of diagnosis information for every

input line of the cell. We can easily show that T](fn) is Q(n") (r € (0,1]) testable.
Suppose there is a full critical element in £. As assumed, there are at least a () and a
1 component in by. Without loss of generality, we suppose by = 0 and by = 1. Then D
signals on the first input line and D signals on the second input line of an f cell can be
propagated only with an element in £, and D signals on the first input line and D signal
on the second input line of an f cell can be propagated only with an element in A/.
(4) (4

Let 1, and 1" denote the number of D and D signals on the ouput of an f cell in ith

level. The following formulas hold

1/1(7:+1) > ‘ma,X{lﬁ(i)ﬂ/(()i)}
i1 m . 7 7
1/(() bo> mmln{l/p,l/{(})}.
Assume 1/(()1) = 1/1(1) = 1. Then we can prove that
m — 1
v (G
i - m — 1
AR (—m )
m — 1
. i1
p{F > (—m )
m — 1

hold for i e [0, ‘“gm”].

2
Tet v = 1/1(1) + 1/(()1). Then v = Q(( m1);_) Set r = 1198m(m=1) = PRy, = Q(n")

(r € (0,1]). " ’

Q.E.D.

Theorem 4.3 gives a low boundary of the test complexity of balanced uniform tree
circuits based on unate functions. Monotonic functions are special unate functions. We



call a tree circuit based on monotonic function monotonic circuit. In the following, we
study in more detail the test complexity of the monotonic tree circuit family.

() ()

Assume that T](fn) is an [-level uniform tree circuit. Let v, and v’ denote the minimum
numbers of D and D signals delivered to every input line of an f cell in level [ — i,
respectively. We will show that a rough relationship among these parameters can be
described through the inequality (4.9).

(4) (i=1)
[ l/1(77) ] > [ ZOO Zm ] [ l/1(7:71) ] + [ ? ] (4.9)
v 1o 01 vy "0

lﬁm > 11 (12 i 1/1(0) +§ 11 (12 g 1
1/(()7') - 91 (22 1/(()0) 2o 91 (22 Co

The parameters agg, dg1, G190, 411, ¢ and ¢q are all determined by the definition of the
function f.

When the equality in (4.9) is satisfiable, then (4.9) represents that the number of
diagnosis signals on the output line of a cell is a linear function of the number of diagnosis
signals on input lines of the cell. We call (4.9) recurrence formula of the test complexity
of f. The matrix and constant vector in (4.9) are called rotation matriz and translation
vector of f, respectively.

A monotonic function is monotonic increase, if its characteristic vector is (0, ...,0), else
is monotonic decrease. At first we study the test complexity of uniform tree circuits based

on monotonic increase functions.
Theorem 4.4 T](fn) based on a monotonic increase function is @(n") (r € (0,1]) testable.

Proof: For monotonic increase function f, the characteristic vector by is (0, ...,0) and
VX,V € BT {Y < X = (V) < f(X)}.

The corresponding 1) and D critical antichains are presented in (4.5) and (4.6), respec-
tively.
It is not difficult to see that every element in £ is 0 critical, while every element in A/ is
1 critical. A D signal can only be propagated through assignments in £, while a D signal
can only be propagated through assignments in A/. £ and A have no common element.
For Vi = (Y1, Ui > Ym) € B™ we define TLY; = y;, and Y, = (U1, -, Uis > Y )-
Tet s = #& and + = #N. Define

-1

a~ ' = max { min Z Zjﬂin Z Zj 1€ []777?/] zZj € N, j € [],8]
Xje€ 1<5<s
1
671 = max { min Z 2’7]_[7?7 Z Zj 1€ [1,7)7] Z; € N, j € [],f]
Y, eN 1<5<t

By repeatedly applying an assignment X; € £ z; times to an f cell one can propagate
z;1; X; D signals on the oth input line of the cell. By applying >, <j<s Zj assignments in &



one can propagate ZX7€5 z;1; X; D signals on the ith input line of the cell. The formula

-1

min Z 21X Z z; z; € Nyi € [1,m]
X;e€ 1<5<s

defines the minimum rate between the minimum number of D signals propagated from an
input line and the number of assignments used in £. The parameter a~! represents the
maximum efficiency of propagating a ) signal on an input line of an f cell by using an
assignment in £. Similarly, 37" represents the maximum efficiency of propagating a 1)
signal on an input line of an [ cell by using an assignment in A.

To propagate a D signal on every input line of an f cell one has to use [a] assignments
in & and deliver [a] D diagnosis signals to the output line. Similarly, to propagate a D
signal on every input line of an f cell one has to use [§] assignments in A and deliver
[3] D signals to the output line.

It is easy to see that a, 3> 1 and 1 < a3 < m?2.

No assignment X € B™\ (£UN) can be used to propagate diagnosis signals. However,
every assignment X € B™ has to be applied to an f cell in order to test the cell completely.

Let ey =3 xcpm f(X)—sand ¢g = ZXGBMWft. Then ¢; + ¢ equals the number
of elements which are included in neither £ nor V.

In order to propagate 1/1(7'71) D signals from each of the m input lines of an f cell and

(i=1)

to test the cell itself completely one has to drive v, o+ ¢q D signals to the output line.
(

In order to propagate 1/07:71) D signals from each of the m input lines of an f cell and to

test the cell itself completely one has to deliver 1/(()7:71)6 + ¢ D signals to the output line.
We can determine that the recurrence formula of the test complexity of f is

1/1@ _|a 0 1/1(7E71) 4 e
1/(()7') 0 g 1/(()7'71) co |

(0) (M _

to be an [-level tree circuit, and vy’ = v; ' = 1. Put it differently, only a

(n)

Assume Tf

D signal and a D signal are assigned to every primary input lines. Thus we have

1/1(7) a 0 ‘ 1/1(0) a0 7 cq
b ] - s L s8] ]

; i—1 i
« 10 .
ﬂi] +i;: [Coﬂj] for i € [1,1]

e
Oy : a>1
1/1(1) = O) : a=1Ac¢ >0
O(1) a=1Ac; =0
OB B>
W= ey 1 B=1Ac>0
(1) : B=1Aep=0



We know that [ > log,, n. L.et A =log,, o and u = log,,, 3. We have

O(nt) D a>

1/1(1) = O(log,,n) : a=1Aect >0
o1 ta=1Aec; =0
O(n*) g >1

1/(()1) = O(log,,n) : B=1Aecg>0
o1 D B=1ANecp=0

As mentioned, either a or § is greater than 1 for a monotonic function f. Tet

v = 1/1(1) + 1/(()1) and r = max{A, u}. Then v = 0O(n") (r € (0,1]).
Q.E.D.

In case f is commutative and monotonic increase, then there is a k € [0, m] so that
Vielo,m{{j<k=VX e B, {f(X)=0}} AN{j> k=YY € B;{f(Y)=1}}}.

Such a function is called “threshold &7 function from B™ to B (see page 110 in [Hotz74]).

The following is its formal definition.

0 : otherwise ’

1 ; T > k m
,f(m17' N 7777)’1) = { Z1S1Smr - (.’1717...7.777)7,) € B

The D and D critical antichains are
£ = {(T1 C ) ‘ Zﬂfi:k} and N = {(T1 C ) ‘ Zmi:kf1}.

Fvery assignment in £ can propagate a D signal from k input lines of an f cell, while
every assignment in A" can propagate a D from m — k 4+ 1 input lines of an f cell. The
terms of the rotation matrix and the translation vector can be determined as follows:

m m
ke ﬁimfk—l—]

m m
k+1<i<m, ' 0<i<k—2 '

Assume T](fn) to be an [-level uniform tree circuit based on the “threshold k&7 function f.
Function f is monotonic increase. In the same way used to prove Theorem 4.4 we can

o =

determine the parameters 1/1(1) and 1/(()1) and show that

v = 1/1(1)4—1/(()1)

@(alogm n) T @(ﬁlogm n )
- (“)(77/1 7]0gmk) + (“)(77/1 —log,,, (m—k+1) )

Take r = max {1 —log,, k,1 —log,, (m — k+ 1)}. We have v = O(n").



Frample 4.1: Fstimate the test complexity of T](fn)

flr,y) =2 Ny _
We can determine that the D and D critical antichains are

based on the boolean function

£={(1,1)} and N = {(0,1),(1,0)}.

The recurrence formula of the test complexity of f is
O N I I Lo
l/(()z) 0 2 l/(()7,71) 1 .

1/(()1) = 2l 4 ¢ Z 27

Thus

0<;5<I-1
= 2+
1/1(1) = 1,
v = 1/1(1)4—1/(()1)
= 2n.

It has been shown that T](fn) based on f(x,y) = 2 A y can be tested completely with
n+ 1 patterns [Haye71]. This conclusion is slightly different from our result since the fault
models used here and adopted in [Haye71] are not the same. In [Haye71] only stuck-at-1
and stuck-at-0 faults are considered, i.e., the assignment (0, 0) does not need to be assigned
to an f cell. Here we assume the cell definition fault model, so that every assignments in
B? needs to be assigned to an f cell. For instance, we hold that there can exist a fault

in an f cell, and only the assignment (0,0) can sensitize it. This implies that ¢q = 1.
The value of 1/(()1) is equal to the sum of two terms 2! and ¢q Zo<7‘<171 27, Tf we set ¢o = 0
and omit the second term, then 1/(()1) =2/ and v = n + 1. This new result is completely

consistent with that discovered in [Haye71].

In the same way we can determine that v = 2n for the case f(z,y) =2V y.

Based on Theorem 4.4, v = 1/1(1) + 1/(()1) can be exactly evaluated, provided that f is a
monotonic increase function. In case f is not a monotonic increase function, it may be
possible to find a monotonic increase function ¢ and to embed f into g. The test complex-

(n)

ity of T;n) can be determined. Thus the test complexity of T} can be estimated indirectly.

Frample /.2: Fstimate the test complexity of TISW') based on function h(x,y) =2 Ay.
It is clear that h is not a monotonic increase function. We define a function ¢ as follows.

g(x,y,u,v) = h(h(z,y),h(u,v))
= xAyVuAhw.

Obviously, g(x,y, u,v)is a monotonic increase function, and h can be embedded into g¢.



Fig. 4.2: A uniform 7(16)

Fig. 4.2 illustrates a T(1%). Every dash box represents a ¢ cell. If we regard a dash
box as a basic cell, then T('%) is a two-level uniform tree circuit based on the monotonic
function ¢. Otherwise, TU®) can be recognized as a four-level uniform tree circuit hased
on the function h.

We can determine that the D and D critical antichains and the recurrence formula of
the test complexity of g are the following.
5 = {( 171,0 0) (0 0,1,1)}, N ={(1,0,1,0),(0,1,0,1)}

7 1

1 ) _|_ 5 A

vt (i—1) 7
Assume log,n = I, then
-1 )
v= 2530

— 3.9M7 5

-1
U (NS b

= 27
v = 1/(()1) + 1/1(1)
= (“)(77/15).

T based on his O(n 15) testable since T(") based on g is O(n 15) testable.
Coming up next we study the case in which f is a monotonic decrease function.

Theorem 4.5 T](fn) based on a monotonic decrease function f is O(n") (r € (0,1])
testable. '



Proof : The proof for this theorem is similar to that for Theorem 4.3 in the most ways.
For monotonic decrease function f, the characteristic vector by is (1,...,1) and

YX,Y € B"{X >V = f(X)< f(Y)}.

The corresponding 1) and D critical antichains are presented in (4.7) and (4.8), respec-
tively.

It is obvious that all D signals can only be propagated with assignments in A, while
all D signals can only be propagated with assignments in .

In the same way used to prove Theorem 4.4 we define the parameters a, 3, ¢ and ¢
and the recurrence formula of the test complexity of f. We have

1/1(7) B 0 « 1/1(7:71) 4 e
1/(()7') B g0 1/(()7'71) o

l/(()i) = 1/1(7:71)5 + [#3]
1/1(7) = 1/(()7:71)(1 +
for i e [1,1].
Assume 1/(()0) = 1/1(0) = 1. We can inductively prove that

i = el e Y (0B + B Y (aB)
j=0 =0

. . sl ; — ]

W= el e Y (0B) + oo Y (05
i=0 1=0

. L : ; — ]
l/(()27,+‘|) — aigt! —|—(302(O/ﬁ)'7‘|‘(51ﬂ2(aﬁ)'7

=0 7=0
' ' ' i 4 il ,
G e Y 08 4 con 3 (o)
=0 7=0

hold for 27 € [0,1—1].
Assume that [ = 2k. Then

L l/(()?k)_l_l/1(2k)

We know that [ > log,, n. Thus

op
Tet r = ]°g2’”' , then r € (0,1], and v = O(n").




Q.E.D.

The function h given in Example 4.2 is a monotonic decrease function. We can deter-

mine that the D and D critical antichains and the recurrence formula of the test complexity
of h are following.

&= {(]70)7(07])}7 N {(]7])}
A9 o 2] W0 ne
P I I VI IR % G 0l
Here m = 2, and a8 = 2. According to Theorem 4.4,

]og;’B

v = O(n >z

= @(77/15).

TISW') is @(77/15) testable.

4.4 Summary

In section 4.2 we have proven that the test complexity of balanced uniform tree circuits
based on commutative functions can be divided into ©(1), O(Ign) and Q(n") (r € (0,1])
testable classes. In section 4.3 we have shown that tree circuits based on unate functions
are all Q(n") (r € (0,1]) testable. The test complexity of uniform tree circuits based on
general functions has more classes.

Frample 4.3: Table 4.1 defines a function f. We show below that T](fn) is O((Ign)?)
testable.

Table 4.1 Table 4.2

flzi,mo,23) | 29 29 23 S, 22,9) | 01 w2 @3
g oo D Do oo

0 0 1 0 0 0 0 1

0 0 1 0 oor

i 0 0 P bl 1

0 0 D ben

0 1 1 0 B ! D l

1 1 1 1 D 1 1 D

D D D D

From Table 4.2 we can see that the assignments (0,0, 1) and (0,1,0) can not be used to
propagate diagnosis signals. In order to propagate a diagnosis signal one has to choose one
of the six assignments (0,0,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and (1,1,1), as shown
by Table 4.2.



With the assignment (1,1,1), one can propagate a D signal on each of the three input
lines of an f cell. With the assignment (1,0,0) one can transform D signals on the second
and third input lines of an f cell into D signal. The D signals on the first input line of an
f cell can only be propagated with the assignment (0,1,1) or (0,0,0). The D signals on
the second and third input line can be propagated with the assignment (1,0,0) as well as
with the assignment (1,0,1) and (1,1,0), respectively. We had better use the assignment
(1,0,0) to transform them into D signals since D signals on each of the three input lines
of an f cell can be propagated simultaneously. But the D signal on the first input line of
an f cell can not be transformed into D, no matter how to choose the assignment.

To test a cell completely, all elements in B® have to be applied to the cell. Tt is wise
to use each of the eight assignment at least once to propagate some D and D diagnosis
signals, then use the assignment (1,0,0) to transform the rest of 1) on the second and
third input lines into 1 diagnosis signals. The rest of D diagnosis signals on the first
input line of the cell can be propagated by repeatedly using either the assignment (0,0,0)
or (0,1,1).

(4) (4

Let v and 1/07: denote the minimum numbers of the D and the D signals on the output

line of an f cell in level 7. This indicates that

(#) (i—1)

v, 1 1 v, 0 .

: = . + for ¢ € [1,1].
[vé”l l“Hvé"”] l5 ety

(0 _ (0

Let vy’ = v57 = 1. We can inductively prove that
(i) 512 —3i 42
vy, = —
2
1/(()7') = 5i+1 foriell,l].
In order to test an [-level T](fn) completely, we have to deliver
v = 1/1(1) + 1/(()1)
AP 4TI+ 4
2

diagnosis signals to the primary output line.
As we know, [ = O(lgn), thus we can state that T](fn) is O((Ign)?) testable.



Chapter 5

Synthesis of O(lgn) Testable Trees

We have shown that the test complexity of the balanced uniform trees can be divided
into O(1), O((Ign)*) and Q(n™) (a € (0,1]) classes. Two approaches for minimizing the
test complexity of circuits are proposed in [Haye74] and [SaRe74]. By using them one can
always synthesize a ©(1) testable circuit for every function. Their common idea is to use
extra test points to make every internal gates in the circuit under test directly controllable
and observable. Such modifications change the logic structure of the circuit and necessitate
many extra input and output pins. In practice, the number of access terminals is strongly
limited. At the present time, the test complexity in order of O(lgn) is acceptable. Maybe
it is a realistic attitude to synthesize an O(lgn) testable tree within the restriction on the
quantity of extra gates and the number of additional access terminals without changing
the tree-like logical structure of the system.

This Chapter explores that a balanced uniform 7(") based on a so called kernel sensitive
function(kernel sensitive function will be formally defined in section 5.1) is always O(lgn)
testable.

Tet M be a set of m symbols. We assume M = {0,1,...,m — 1}, without loss of gener-
ality. This Chapter presents a systematic method of synthesizing kernel sensitive functions
from non-kernel sensitive functions from M2 to M, and shows that every balanced T(")
based on surjective functions from M? to M can be embedded in an O(Ign) testable tree
7)) This indicates that one can trade the hardware overhead for the low test complexity
without changing the tree-like structure of the circuit system. This strategy is meaningful
since the cost of the hardware has been decreasing while the cost of the test has been in-
creasing. In comparison with other methods of reducing the test complexity, this method
requires more extra gates and less extra input and output pins. With the development
of VLSI technology the gate density of VLSI is increasing much more rapidly than the
number of access terminals. Thus this method is also promising.

This Chapter is structured in the following way. In section 5.1 we make some conven-
tions and define the kernel sensitive function. Section 5.2 presents a systematic method of
synthesizing kernel sensitive functions from non-kernel sensitive functions. In section 5.3
we will show how to synthesize an O(lgn) testable tree and embed a given balanced tree
in it.



5.1 Kernel Sensitive Function

In this Chapter we use the terminologies defined in Chapter 3. In the following we present
again some conventions.
The set of all basic diagnosis signals is

diy={k/l | ke M, le M\k} (5.1)
The diagnosis signal set is
Dy:=ALk/S | ke M, SCM\k} (5.2)
One of its subsets is
Ap:=Ak/S | ke M, S =M\k} (5.3)

Using D? as the domain, we define a function P; as follows:

Py(if S5,/ 5;) = {F (i k), F(1,§) | k € S;. 1€ S}, (i/5:,7/5)) € D} (5:4)

Ps(i/S5,7/5;) is a subset of M. When the diagnosis signal pair (i/95;,7/5;) is applied to
an [ cell, the set of error outputs must include Pg(i/5;,7/9;).

Definition 5.1 Function f: M? — M is sensitive if
Vi,j. k€ M{f(i,j)= fli.k)<=j=k N f(j.21) = f(k,1) <= j =k} (5.5)

If a cell implements a sensitive function, then any change of one of its input signals will
cause a change of its output signal.

Definition 5.2 (compatible pair) A pair (i/5;,7/5;) € D? is said to be compatible, if
Ps(i/S5,7/5;) does not include f(i,7).

When f is not sensitive, there are certainly some diagnosis signal pairs which are
not compatible and can not be assigned to an f cell. For example, suppose + # j and
Flirk) = FGoK). Then Py(ifd. k) = {f(G. k)}, and f(i. k) € Py(i/j. k). This indicates
that the pair (i/7, k) is not compatible. When (i/j, k) is applied to an f cell, the diagnosis
signal /7 disappears in the cell, and one can not find its track at the output line at all.
The signal k blockades the propagation of the diagnosis signal i/j through an f cell. Thus
this pair can not be assigned to an f cell.

According to the definition of f, one can determine the set of all compatible pairs.

Vi =A{(i/9:,5/5;) | (i/5:,3/5;) € D}, (i/5i,7/5;) is compatible} (5.6)

When (i/55,7/5;) € Vyis applied to a cell, both diagnosis signals i/.9; and j/5; can be
propagated through the cell. The corresponding diagnosis signal received from the output

must contain f(i,7)/Ps(i/9:,7/5;).

Definition 5.3 (stable kernel) A set W is called stable kernel if every pair (i/5;,7/5;)
of W2 is compatible, and the diagnosis signal f(i,7)/Ps(1/S:,7/5;) belongs to W.



In case W is a stable kernel, one can assign every pair (i/5;,7/9;) € W? to an f cell,
and the corresponding diagnosis signal delivered to the output line of the f cell belongs

to W.

Lemma 5.1 Ay :={i/H, |i€ H,H;,= H\ i} is a stable kernel if function
flgz s H? — H

15 sensitive.

Proof: Assume fly> : H> — H to be sensitive. Then
V(i,j)e H? {f(ivj) ¢ Pe(i/H j/Hi) NPe(i/Hi i/ Hy) = Hf(v?,j)}-

Especially for every pair (i/H;, j/H;) € A%, (i/H;,j/H;) is compatible, and the diagnosis
signal f(i,7)/Ps(i/H;,j/H;) belongs to Ajy. Thus Ay is a stable kernel.
Q.E.D.

Observation 5.1 Assume W to be a stable kernel. By using a pattern one can propagate
a diagnosis signal of W from each of the lines in the same level to the primary output line
of T simultaneously.

Definition 5.4 (signal drive) We say that:

e One can transform i/S; directly into k/Sy from the left side by using j/S; at the
right side if (i/55,7/5;) € Vi, f(i,5) =k and Ps(i/9;,5/5;) C Sk.

e One can transform i/S; directly into k/Sy from the right side by using j/S; at the
left side if (]'/S]‘7 i/S;) € Ve, f7,0) =k and Pf(j/‘q]‘7 i/S;) C Sk.

e u € Dy can be driven into a set W C Dy if there are wy,w, € W, and u can be directly
transformed into w; and w, from the left and right side, or there are w;,w, € Dy
such that u can be directly transformed into w; and w, from the left and right side,
and both w; and w, can be driven into W.

In case one can transform u directly into w from both the left and right sides by using v
at the another side, we say that u can be directly transformed into w by using », denoted
by u —= w.

From the above definition we can see that one can transform ¢/5; directly into k/Sg
from the left(right) side by using j € M at the right(left) side if one can transform i/95;
directly into k/Sy from the left(right) side by using j/S; € Dy at the right(left) side.

Definition 5.5 (kernel sensitive) Function f: M? — M is kernel sensitive if there
is a set H C M such that function f|g2 : H? — H is sensitive and every basic diagnosis
signal in dy can be driven into

Ap={i/H; | i€ HAH =H\i} (5.7)



Frample 5.1: Functions f; : {0,132 — {0,1}, ¢1 : {0,1,2}> — {0,1,2}, and
hqy  {1,2}2 — {1,2} are defined as follows:

—

filo 1 gg}? hy |1 2
VI BN 2 |2 1
2 11 2 1

The function fy is not kernel sensitive, and dy, = {0/1, 1/0}. The basic diagnosis
signal set of gy is

d,, =40/1,0/2, 1/0, 1/2, 2/0, 2/1,}

Based on g1 we can induce a sensitive function hy = g¢[(y 93>, And Ay = {1/2,2/1}.
It is not hard to see that every element in d;, can be driven into Ay, . In more detail,

0/1-21/2, 1/0 -2 2/1, 0/2 - 1/2, 2/0 -1 2/1
This indicates that gy is kernel sensitive.

Theorem 5.1 Balanced uniform T based on a function g : M2 — M is O(lgn)
testable if g is kernel sensitive.

Proof: Suppose ¢ is kernel sensitive. Given a constant k, T s O(1) testable. Tt is
sufficient to prove that all cells in the level [ (I > k) of T are O(1) testable. All input
lines linked to cells in the same level of a tree system are independent of each other. Thus
all faults in all cells in the same level of T(") can be sensitized simultaneously. If there is
a constant k so that one can propagate every basic diagnosis signal from each of the lines
in the level I(I > k) to the primary output line of T by using x patterns, then all cells
in the same level are O(1) testable and the balanced uniform 7" is O(lg n) testable.

For a kernel stable function ¢ : M? — M, there is a set H C M so that function
h = gl is sensitive, and Ay, := {i/H; |t € HA H; = H \ i} is a stable kernel. Further-
more, there is a constant k£ and every diagnosis signal in d; can be driven into Ay, through
k transformations since ), contains a finite number of elements.

Consider driving a given diagnosis signal uy € d; from the jth primary input line to
the primary output line of a balanced uniform tree T Without loss of generality,
we assume 7 = 1, and suppose further that by using »; € M at the right side one can
transform u; divectly into u;yq for i € [1,k], and ugpyq € Ap.

We enumerate the primary input lines of T from the left to the right, and assign wuq
and »; to the first and second primary lines. Furthermore, we assign w; € M (i € [3,2"])

to the ¢th primary input line of 7" 50 that

g(wz, wy) = g
G- -glwgior g, Wi gy, g(wai_q,wyi) =) = v, 1 € [3,k]
——’

i—1



These can always be done since function ¢ is surjective.

It is easy to see that by assigning wuq, vy, ws, ..., wyr to the 28 primary input lines of
7" one can propagate the diagnosis signal uy from the first primary input line to the
primary output line of T(Qk)7 and the corresponding diagnosis signal ui1q delivered to the
primary output line of 72" belongs to Ay,

This indicates that one can drive every basic diagnosis signal from each of the lines in the
level [ of T(") (I>k,n> 2]“) into A, with 2% patterns. As mentioned in Observation 5.1,
one can propagate a diagnosis signal in a stable kernel from each of the lines in the same
level to the primary output line simultaneously.

Tet & = 25|dg|. All cells in the level I (I > k) of T(") can be tested by using &

n-component patterns, and T s O(1) testable for the given constant k. Thus T ig
O(lgn) testable.
Q.E.D.

5.2 Synthesis of Functions

In this section we show that every non-kernel sensitive function can be embedded in a
kernel sensitive function.

Definition 5.6 Assume that f : M?> — M and g : M? — M are two surjective
functions. If there is a monomorphism F : (M, f) — (M, g), then we say that f can be
embedded in g, or g can cover [ through F.

Suppose there are two monomorphisms
Fio(Mi, fi) — (M, fo) and  Fp: (My, fo) — (Ms, f3).

Then Fy 0 Fy is a monomorphism from (M, f) to (Ms, f3). This implies that f can be
embedded in h if f can be embedded in ¢, and g can be embedded in Ah.

Assume that f can be embedded in g through a monomorphism F : (M, f) — (M, g),
then we can define an epimorphism G : (M, g) — (M, f) so that

Va € M{G(F(a))=a}
and
Va,b e M{f(a,b)=G(g(F(a),F(b)))}.

Theorem 5.2 If f can be embedded in g through a monomorphism F, then there is an
epimorphism G such that

Va,b,e,de MAf(f(a,b), f(e,d)) = Gg(g(F(a), F(b)),g(F(e), F(d))))} (5.8)

Proof : On the assumption that f can be embedded in ¢ through an monomorphism

F (M, f)— (M,g), then there is an epimorphism G : (M, g) — (M, f), and

Va € M{G(F(a)=a} and Va,be M{F(f(a,b)) = g(F(a), F(b))}



hold always. Thus

FF by, fed)) = G
- g

can hold, and we can conclude that

Va,b,e,d e MA{f(f(a,b), f(e,d)) = G(g(g(F(a), F (b)), g(F(c),F(d))))}
Q.E.D.

This theorem states that a tree based on ¢ can be used as a substitution for a tree

based on f,if f can be embedded in g¢.

Frample 5.2: Consider functions f; and ¢y defined in Example 5.1 and embed the former
in the latter.
Let My ={0,1} and My = {0,1,2}. A monomorphism F can be defined as follows:

Fo(My, fi) — (Mi,g0), F(0)=0, F(1)=1.
Based on F we can define an epimorphism
G:(Mi,1) — (M1, f1), G(0)=0,G(1)=G(2)=1.

This indicates that f; can be embedded in ¢¢, and Téf') can simulate the function of the

(n)

uniform tree T,q }

Since ¢y is kernel sensitive, T;T') is O(lgn) testable followed Theorem 5.1. However,

T](%n) is O(n) testable [HayeT71].
In the rest of this section we show that every function f can be embedded in a kernel

sensitive function.

Lemma 5.2 Fvery function f from {0,1}? to {0, 1} can be embedded in a kernel sensitive
function.

Proof: There are altogether 16 distinct functions from {0, 1} to {0, 1}. Functions fi, ..., fx
are defined as follows:

fi |01 fa |0 1 fz3 0 1 fa 0 1
0 0 1 0 1 1 0 0 1 0 0 1
1 1 1 1 1 0 1 1 0 1 0 0
f5 10 1 fe |0 1 fr 10 1 fs 0 1
0 0 0 0 1 0 0 1 1 0 0 0
1 1 0 1 1 0 1 0 0 1 0 0




We define 0 = 1, 1 =0, and function f;(=,y) = fi_s(x,y) for i € [9,16].
Based on these functions we induce two functions ¢ and ¢’ as follows:

g| 0 1 2 3 g| o 1 2 3
0| f(0,0) f(0,1) 3 2 0 | f/(0,0) f'(0,1) 2 3
T f(L,0) f(1,1) 23 T f(L0) 1) 302
2 3 2 2 3 2 2 3 3 2
3 2 3 3 2 3 3 2 2 3

Tt is easy to check that both g and ¢’ are kernel sensitive, provided that

felfilie,8]y,  felfiliel9.16]}.

This indicates that every function f; : {0,1}? — {0,1} can be embedded in a kernel sensi-
tive function.

Q.E.D.
Theorem 5.3 Fuvery function can be embedded in a kernel sensitive function.

Proof: Due to Lemma 5.2, it is sufficient to consider only functions from M? to M
for #M > 2. Tet H={m,m+1,....2m—1} and M = M U H. Given a function
f:M? — M, we induce a function g : M? — M as follows:

Co (j—0)%m+m : (i,j)e M x H
D= G Dmam o GDeRx M (59
(—j—i—1D)%m+m : (i,7) € H?

Tet h = g|g2. The set of basic diagnosis signals of his d, :={i/j | i, 7€ HANi#j}.
It is not hard to see that h is sensitive, and Ay :={i/H; | i€ [l,m]A H;, = H\ i} is a
stable kernel. We can check that

Vi,je M{i#j = 3k e H{g(i, k) # g(i,k)Ng(i,k)/g(j, k) € dn}} (5.10)
Vi,je M{i#j = 3k e H{g(k,i)# g(k,j)Ng(k,1)/g(k,j) € dpn}} (5.11)

This implies that every basic diagnosis signal i/j € d, can be transformed from the left
side as well as from the right side into an element in d;. We know that every element in
dj, can be driven into Ap. Thus every element in d, can be driven into the stable kernel
Ay, and g is kernel sensitive.

Q.E.D.

Frample 5.3: Assume f to be a function from {0,1,2}2 to {0,1,2}. A function g is defined
as follows:



gl 0 1 2 3 4 5
0 [ (0,0) J(0.1) J(0.2) 3 4 5
UL (L0) FL1) f(1,2) 53 4
2| f(2,0) f(2.1) f(2.2) 4 5 3
3 3 5 4 5 4 3
4 4 3 5 4 3 5
5 5 4 3 3 5 4

Using H = {3,4,5}? as the domain we can induce a function h = g|g». The function h
is sensitive and A, = {3/{4,5},4/{5,3},5/{3,4}}. Tt is easy to see that every diagnosis
signal in d; can be driven into A;. This indicates that the function g is kernel sensitive.

It is obvious that if an f cell has 2k binary input pins and k& binary output pins, then
a so induced g cell has 2k + 2 binary input pins and k£ 4+ 1 binary output pins.

5.3 Synthesis of Trees

In section 5.2 we have shown that every function can be embedded in a kernel sensitive
function and have introduced a method of synthesizing kernel sensitive functions from
non-kernel sensitive functions. In this section we will show that this method can be used
to synthesize an O(lgn) testable tree for every tree comprising a number of different cells.

Tt is well known that any fanout free tree circuit can be realized with NAND and NOR
gates. Therefore, the synthesis of kernel sensitive functions for NAND and NOR functions
is essential. At first we consider the synthesis of a kernel sensitive function for NAND
function.

Assume My = {0,1} and My = {0,1,2,3}. Tet fo : M3 — My denote NAND function.
It can be formally defined as follows:

fol0 1
0 1 1
1 1 0

The set of basic diagnosis signals of f5 is dg, = {0/1, 1/0}. John P. Hayes had shown
that T](f:') is Q(W%) testable [HayeT71].

Based on f, we induce a function g, : M3 — My as follows:

|0 1 2 3
01 1 2 3 hy |2 3
T 11 0 3 2 2 (3 2
2 12 3 3 2 3 12 3
313 2 2 3

The set of basic diagnosis signals of gq is
d,, ={0/1, 0/2, 0/3,1/0, 1/2, 1/3,2/0, 2/1, 2/3, 3/0, 3/1, 3/2}

Based on ¢go we induce a function hy = !]2|{2 312 Function hy is sensitive and



Ay, = {2/3, 3/2}. Every element in dg, can be driven into Ay,. In more detail,
0/1-22/3, 1/0 —2-3/2, 0/2 -2-2/3, 2/0 —23/2, 1/3 2 3/2
3/1-22/3, 0/3-21/3-23/2, 3/0 -2 3/1 —22/3
1/2-20/3 -2 1/3 -2 3/2, 2/1 - 3/0 % 3/1 -2 2/3

Thus g, is kernel sensitive.
Let

F (M, f3) — (Ma,g2), F(0)=0, F(1)=1
and
G: (M27.(72) - (M27f2)7 g(o) =0, g(]) = g(Q) = g(3) =1L

We can check that F and G are monomorphism and epimorphism, respectively. This
indicates that fy can be embedded in ¢».

In a similar way we can show that the NOR function fy can be embedded in function
go defined below.

g |0 1 2 3
fo | O 1 01 0 2 3
0 [1 0 1T 10 0 3 2
T 10 0 2 12 3 3 2
313 2 2 3

According to gg we can induce a function gglrs 512 equivalent to hy. Every basic diag-
nosis signal of gg can be transformed into Aj,. Then gy is also kernel sensitive.

Theorem 5.4 Fvery fanout free circuit T(") can be embedded in an O(lgn) testable tree

ARE

Proof : Assume that T(") is a balanced tree circuit made up of gates of type NAND and
NOR. We can replace every NAND and NOR gate by g5 and gg cell, respectively. In this
way we can obtain a balanced tree 7(") made up of cells of type g5 and go.

Cell gy has 42 distinct input pairs. For each of the 42 input pairs there are three
possible error outputs, namely, three possible faults. There are altogether 3 x 42 possible
faults. The three faults associated to an input pair can be sensitized by the same pattern.
However, the corresponding three diagnosis signals perhaps can not be propagated to the
primary output line by using the same pattern, and we may have to use three patterns to
test the three faults associated to the input pair separately. One pattern can test at least
a fault. This means that cell go can be completely tested by using 3 x 42 assignments,
and each assignment delivers a basic diagnosis signal which can be transformed into an
element in Ay, through three transformations. Function gg has the same property.

Since hsq is a sensitive function, every pair of diagnosis signals in AZQ can be propagated
simultaneously through both g5 and gg cells. This indicates that all cells in the same level
of 7 can be completely tested by using 23 x 3 x 42 patterns. A balanced tree system
T has ©(lgn) levels, then it is O(lgn) testable.

Q.E.D.



Theorem 5.5 Fuvery tree based on surjective functions from M? to M can be embedded
in an O(lgn) testable tree T based on surjective functions from M2 to M.

Proof: Due to Theorem 5.4, it is sufficient to consider only the cases #M > 2. According
to Theorem 5.3, one can induce a kernel sensitive function ¢; : M? — M for every
function f; : M? — M. From every kernel sensitive function g;, one can induce a
sensitive function h = ¢;| .

Given a T hased on f;, we construct a 7( by replacing every f; cell by a g¢; cell.
Since #M = 2m, for a given input pair to g; there are 2m — 1 possible faults. All diag-
nosis signals in dg, can be driven into the stable kernel A, = {i/H; |1 € HA H;, = H \ i}
through one transformation. Every pair of diagnosis signals in A% can be simultaneously
propagated through every g; cell. This indicates that all cells in the same level of 7(") can
be completely tested with 2' x (2m — 1)(2m)? patterns. Thus all cells in the same level
are ©(1) testable, and 7(" is O(Ign) testable.

Q.E.D.



Chapter 6

An Approach to
Pseudoexhaustive Testing

6.1 Introduction

Assume that a multiple-primary-output circuit C' has n primary input lines, and each of
its primary output lines depends on at most k primary input lines. The generation of a
pseudoexhaustive test set for the circuit ' is equal to the construction of an n-column
0, 1 matrix such that every k-column submatrix contains 2% distinct row vectors, put
it differently, every k-column projection is surjective on {0,1}*. Tn order to simplify the
description, we use L(n, k) to denote this problem as well as the row number of the desired
0, 1 matrix for two given integers n and k. The solution of L(n, k) has also applications
to the design of fault tolerant computing systems [Frie84, LSGH87, Wu90, Wu91].

Extensive research has been done on this subject. Tang and Woo[TaWo83] have found
a method with O(ng) upper bound for L(n,k). Although their method could be used
to form an acceptable solution for small n and k, it is unsuitable for large » and k. A
constructive and almost optimal solution for & = 2 has been introduced in [CKMZ783].
In that paper a constructive solution with O((logn)*~") upper bound for L(n, k) is also
described for general cases. Friedman, J. considers a related problem in [Frie84]. By using
his result, one can construct a solution for L(n, k), and the scale of L(n,k) can be upper
bounded by %]og n [BeSi&8]. Tt is clear that this approach will be of advantage
when n is very large. This subject has also been discussed in detail in [BeSi8R]. Several
strategies for L(n, k) have also been introduced and analyzed in [.SGH87].

In this Chapter we present a new approach based on the partition theory. By using
this approach one can derive an acceptable solution for small k and practical n, and the
magnitude of I(n,k) can be upper bounded by O((logn)?1°8*=1). Tts highlight is that
by using this approach one can reduce an L(n,k) problem to a set of identical L(N, k)
problems (N < (% 4+ 1)%). A mnearly optimal solution for L(n,k) can be constructed by
combining optimal solutions for L(N, k). The computational complexity of constructing
the solution for L(n,k) is O(n(logn)?'°8*®). In section 6.2, we introduce the basic idea
of our approach. Section 6.3 presents the Partition Algorithm for constructing a special
partition set with which one can reduce an L(n, k) to r(r = |0.25k%| +1) identical L(q, k),



whereby ¢ is approximately equal to /n. By using this approach recursively, an L(n,k)
can be reduced to a set of identical L(N, k) problems. In section 6.4, L(N, k) problem with
small parameter N will be discussed. The application of our approach to psendoexhaustive
test generation for VI.SI circuits is presented in section 6.5. In that section we analyze
also the computational complexity of our approach.

6.2 Divide and Conquer

Definition 6.1 (P(n, k) Property) Given a set S = {1,2,...,n}, a partition set of r
partitions

P?f - {Pi,hpi,% -“77)17,0,‘}7 1€ []7T]

of S has the P(n,k) property if and only if for two arbitrary disjoint subsets U,V C §
with |U U V| < k, there is at least one partition P; (i € [1,7]), such that for every cell
pii(7 € [1,¢]) of P either p, ; NU orp;; NV is empty, put it formally,

(6.1)

wm/cs{ UNV=¢A |UUVI|<E }

— A1 € []J‘]Vl)i’]‘ e PR {pi’]‘ NU=¢V pi; NV = (b}

The relationship between the P(n,k) property and IL(n,k) has been discussed in
[LSGHS&7]. We reformulate it as follows.

Lemma 6.1 If a partition set of r partitions P; = {pi1,pi2, .-, Pie} (¢ € [1,7]) has the
P(n, k) property, then

I(n,k) < Z I(

=1

Pl k) — 7+ 1 (6.2)

Proof: Suppose a partition set of r partitions P; = {p;1,pi2,--., Pic;} has the P(n, k)

property, and the matrix (b;;))] is a solution for L(e;, k)(7 € [1,r]). Then each I; x k
- bi X ¢4

submatrix of (b;;))] contains all 2% distinct vectors of {0, 11%. With these matrices we
- bi X ¢

can construct a matrix (@m.)r.xn by using the Synthesis Algorithm presented in Fig. 6-1.

In the Synthesis Algorithm there are three nested loops. The outermost loop corre-
sponds to the r partitions. For every partition F;, an [; xn matrix is constructed. The mid-

dle loop controls the rows of the matrix (b;;) . For every row (b;j), bg), e b;;?) the in-

l;Xe;
7
]
assigned to a,,,, when z € [1,n]is in the cell p; ; of the partition P; = {p; 1, ..., Pijy ooy Pises }-

nermost loop generates an n-component row vector (@1, Gm2, .., Gy ). The value of b; ) is

The whole algorithm constructs a > ;<. [; rows and n columns matrix A, of which every
I. x k submatrix contains all 2% distinct row vectors in {0, 1}*. Furthermore, we can make

50

every matrix ( I ) contain a zero row vector (0,0,...,0). Thus A contains altogether
- bi X ¢4



/* Given r partitions {p; 1, ..., p; ., } of n-element set 9
and r matrices (b;;))] , b= 1,71,
Ty '

construct a matrix (a;;)7,xn» by using (b;;))] - */
m = (); o
fori:=1,2,....7

for [ =1,2,...,1;

{

m:=m++ 1;

for j =1,2,...¢;
(4.

vz € Pij Omz 1= b]7 3

};

remove the reduplicate row vectors from (a;;)7,xn;

Fig. 6-1. Synthesis Algorithm

r zero row vectors. We keep one of them and eliminate the others. There may he also
other kind of duplicate row vectors, which can be eliminated. Finally, we can obtain a
matrix (@m2)r,xn, With

I(n,k) < Z I(

=1

Pl k)—r+41.

Q.E.D.

It is clear that the value on the right side of (6.2) depends on the parameter r and

L(| P; |, k). We would like to generate a partition set, which makes the value on the right
side of (6.2) relatively small. There is a tradeoff between r and | P; |. There might exist
many partitions of S. These partitions could be combined to form many partition sets
having the P(n, k) property. But it is very difficult to choose an optimal one from them.

Now we define a special partition set.
Definition 6.2 (simplex partition set) A set of r partitions
P?f = {pijvpi,?v-“vpi,c,j}v @ = ]727"'7T

of the set S is called a simplex partition set of 9, if two arbitrary elements of S can share
a cell in at most one of the v partitions, put it formally,

Lemma 6.2 Partition set { Py, P, ..., P,} has the P(n, k) property, if it is a simplex par-
tition set of S and



r > 0.2557 (6.4)
Proof: Assume I/ and V to be two subsets of .5, and let
| U=k, |Vi=kay ki +k <k |UNV|=0.

Suppose { Py, Py, ..., P,} is a simplex partition set of . Two arbitrary elements of S
can share a cell in at most one of the r partitions. Each of the elements in V' can share
a cell with some elements of U/ in at most ky partitions. Thus the elements of V can
share some cells with the elements of I/ in at most ky X ko partitions. Therefore, when
r > max{ky X ko|lky + k2 < k}, the above partition set can certainly have the P(n,k)
property. We know that in the integer domain

max{ky X ko | k1 + ko < kY = [0.25k7].

From the assumption (6.4) follows the lemma.

Q.E.D.

|0.25k%| + 1 is an important parameter for our approach, and we use r to denote it in
the rest of this paper.

6.3 Simplex Partition Algorithm

There are many approaches to construct a simplex partition set of 5. In this section we
propose an algorithm to generate a special one. Suppose ¢ is an integer not smaller than
V1. We construct ¢ + 1 partitions of S as follows:

n
P = {P0,17P0,27---7P0,m}7 m = [:-‘ ’
z . .
Poj = {Z "_-‘ =7].2€ S} ’ Jj=12...,m (65)
- c
F)i = {pi,17pi,27"'7pi,0}7 L= ‘1727'“7(57
—1
pii = {Z ij{z J:jmod(:,ZES}, J=1,2,..¢ (6.6)
- c

7.

Py splits [1 : n]into [2] integer intervals of sizes ¢, respectively, i.e., Po = {[1 : ¢],[e + 1,2¢], ...}.

The above partitions can be generated by the Simplex Partition Algorithm presented in
Fig. 6-2.

Frample 3.1: Construct a simplex partition set for § = {1,2,...,9} and ¢ = 3.
According to (6.5) the first partition is the following:

Po=1{{1,2,3},{4,5,6},{7,8,9}}.
Based on (6.6) we can construct Py, P, and Ps as follows:
b= {{]7579}7{27677}7{37478}}7
P = {{]7678}7{27479}7{37577}}7
Py = {{1,4,7},{2,5,8},{3,6,9}}.



/* Given an n-element set S and an integer ¢ > \/n,
construct ¢ + 1 partitions of 5. */
ConNsTrRUCT Fy:
for all z ¢ §

if [2] =
put ¢ into cell pg ;;
ConsTrRUCT P;:
for:=1,2,...,¢
for all z ¢ §
if 2 —4x L%J =jmodec
put z into cell pi; € P

Fig. 6-2. Simplex Partition Algorithm

{ Py, P1, Py, P3} is a simplex partition set of .

Lemma 6.3 If integer ¢ > \/n is not a factor of a X b for arbitrary integers a € [1,¢ — 1]

(&

and b € [1, L”’qj], then the partition set generated by the Simplex Partition Algorithm is

a simplex partition set of §.

Proof: Assume F;, and P,, to be two distinct partitions of the above ¢ + 1 partitions,
Piv.n € P, and p;, 5, € P, Tt is obvious that if 4 or 25 is 0, p;, ;, and p;, ;, have at most
one common element. In other cases, an element z in p;, ; has to satisfy

. {Z]J .
zZ— 11 X = 71 mod ¢
c

and an element z in p,, ;, has to satisfy

z—1

Zigx{ JZijod(:

In other words, p;, ;, and p;, ;, have a common element if and only if there is an integer
z € § that satisfies equation

zZ— 11 X VTJ = 71 mod ¢
z € [1,n] (6.7)

Z — 19 X {%J = jo mod ¢

Without loss of generality, assume i1 > iy. Then iy — iy € [1,¢—1]. Substitute 2’
for {%J The solution z for (6.7) is unique if the solution 2’ for (6.8) is unique since

the values of z leading to the same solution 2’ form an integer interval of size c¢. Given
i1, 1,12, J2 € [1,¢], each such interval contains at most one z satisfying (6.7).

(i1 — i) X 2 = (jo— ji)mod e 2 ¢ [0, V — ]H (6.8)

C



Tf there are different solutions 27 > 2} for (6.8), then

. . n—1

(iy —ia) x (27— 25)=0mod ¢ 2z} — 25 € [], { H (6.9)
c

That is to say, (i1 — 42) X (2] — 24) could be divided by ¢. This is in contradiction with

our assumption. For the case 7y < 15, a contradiction can also be derived. Hence there

is at most one solution for equation (6.8), and the partition set generated by the Simplex

Partition Algorithm is a simplex partition set of 5.

Q.E.D.

The following corollary is obvious.

Corollary 6.1 Assume ¢ > r—1 and let {Py, Py, ..., P.} be a simplex partition set. Then
every set of v partitions out of this simplex partition set has the P(n,k) property.

a

It is easy to see that (6.8) has at most one solution 2’ € [0, V’qH if (41 —d2) and ¢

C
have no common factor.

Corollary 6.2 For every integer ¢ > \/n, Py, P, and P;, generated by the Simplex Par-
tition Algorithm comprise a simplex partition set, provided that |iy — is| and ¢ have no
common factor.

Lemma 6.4 If there is a prime ¢ > max{r —1,y/n}, we can construct a simplex partition
set having the P(n, k) property, and the following inequality holds.

Lin,k)<rxLic,k)—r+1.

This is a direct conclusion of Lemma 6.3, Corollary 6.1 and Lemma 6.1.
O

We can use the above method recursively to simplify L(n,k). If we can find primes
n1,na, ..., n;, and these primes satisfy the conditions:

ny > max{r —1,v/n},
nipr > max{r — 1,y/n;}, i€[0,0—1]
then we can conclude that
L(n, k) rx L(ny, k) < r? x L(ng, k)

<
< <l n(ng k) (6.10)



Theorem 6.1 Given two integers n and k(n > k),

Lin k) < rox T, (4 X [nziq ,k)

2 Mog(0.25k24+1)]
9 k*+ 4 ( 2logn ) (6.11)
10.5k] log(0.25k2 4+ 1)

holds for every integer i € [0, [loglogn — loglogr]].

(AN

Proof: Tet i € [0, |loglog n — loglog r|]. Choose i primes ny,na, ..., n; as follows:

ny = min{q|qg>max{r —1,y/n} & ¢ is a prime},
nit1 = min{g|¢>max{r—1,/n;} & ¢ isaprime}, je€[l,i—1].

. . —1 —1 . . .
There is at least one prime in an w ,2 [nz H since there exists at least one prime

q € [n,2n] for arbitrary integer n [HuxI72].

e Wﬂ _ Hﬁnsz Tw (6.12)

i—time

and [a] x [b] > [a x b], if a,b > 1. Therefore

nj < AX[MHHQTWHW

n < 4X [nTW,

j—time

= 4x [nrﬂ , for jell,i]
and

Lin, k) < rox T, (4 X [nziq ,k) .
We know

r = 2]0;3;7“7
Llloglogn—Tloglogr|+1 KQ]O?; W/)logTJ
- logr
log log (nTUog]og noleR o TJ) < 1+loglogr
2 loslogn-toglog ) 5

Using the method proposed in [TaWo83], we can estimate that L(n,k) <2 ( LOZM )

Let i = [loglogn — loglog r|. Then
L(n, k)

(AN

rox T, (4 X [nziq ,k)
o L(4rt k).

A



As assumed above, there is at least one prime ¢ € [2r,4r]. This implies that
L(4r? k) < r x L(4r, k), and

L(n, k) < %' x L4r k)

4r
< 9 [Toglogn—loglogr|+1
= ( 10.5k| )T

k214 2logn [log(0.25k%+1)]
2 1 A orlo L AN -
0.5k (1og(0.25k2 + 1))

(AN

Q.E.D.

We have tested that there is at least one prime in [n%, (n + 1)%] for n € [1,10%],
Considering practical applications, inequality (6.13) is also meaningful.

: i 2
L(n,k)y<r'xT ((W 11 +2) 71{) (6.13)
for i € [0,loglogn — loglogr], n,k € [1,10'7].
Theorem 6.2 I(n,2) < 8logn and L(n,3) < 8(log n)*8> for n > 3.

Proof: For arbitrary integer ¢ > max{2,/n}, partitions Py, P;, P, generated by the Sim-
plex Partition Algorithm comprise a simplex partition set of an n-element set according
to Corollary 6.2. Since r := LO.QBkQJ + 1 is not greater than 3 for k£ < 3, then Py, Py, P,
has the P(n,3) property based on Lemma 6.2. Following Lemma 6.1,

Lin,k) < »'x1I ([nziq ,k)
< rxl ([nrq ,k)

for k < 3 and every i € [0,loglogn — loglog r]. Notice that

ologlog n 2[loglog n] 2loglog n]—1

n =2 SQ — 4

Thus

122" g

2|—log]0g n-| L(QQU"?;]OP; n]—[log log n] 7 2)
2-logn - 1(2,2).

L4 F T g

gMoglogn] =1 (q2loston mI=I=oslon I+t g
3“0glognJ ,/(47 3)

3]0g]0gn ,/(47 3)

L(n,2)

VAN VAN VAN

L(n,3)

(AN

[VANEVANRRVAN

It is easy to see [.(2,2) = 4 and I(4,3) = 8. Then we have the theorem.
Q.E.D.



6.4 Basic Problems

Using the Simplex Partition Algorithm presented in Fig. 6-2, we can reduce an L(n,k)
problem to a set of L(N,k) problems, where N is smaller than r2. We call these small
problems basic problems. Special strategies should be adopted to search for solutions for
them. For tow given integers N and k, we can construct many partition sets having the
P(N,k) property. Through different partition sets we can derive different solutions for
L(N,k). We give an example to demonstrate the importance of choosing the partition set
appropriately.

Frample 4.1: Tet § = {1,2,...,27} and k = 6. Solve L(27,6).
The parameter r := |0.25 x k2| +1 is equal to 10, and we give two solutions for (27, 6).
1) Solve L(27,6) by using the partition set

R - {pi,17pi,27-“7pi,14}7 1€ []7]0]7
pij = Aaj,bila;+b; =imod 27, a;,b; € [1,27]}, 5 €[l,14].

With this partition set, we can reduce a single L(27,6) problem to ten L(14,6) prob-
lems. Using the method of Tang and Woo [TaWo83], we can evaluate that

L(14,6) < 455
L(27,6) < 10 x I(14,6)
< 10 x 455
= 4550.

2) Solve 1(27,6) by using the partition set

Py = {{1,2,..,9},{10,11,...18},{19,20, ..., 27} }:
P?f - {pijvpi,?v-“vpiﬁ}v 1€ []7()]7

— 1
pi = {ofpix |5t =imedazenent, enal

This is a simplex partition set. By using this partition set, we can reduce the same
L(27.6) to an 1(3,6) and nine L(9,6) problems. (9,6) is not greater than 120 according
to the method in [TaWo83]. 1(3,6) is equal to 8. The upper boundary for the solution of
L(27.6) can be established as follows:

1(27,6) I(3,6)+ 9 x 1(9,6)
849 x 120

= 1088.

The above example demonstrates clearly that different partition sets could derive very
different consequences. The approach of Tang and Woo is very suitable to L(N, k) prob-
lem, when N is not larger than 2k. We can adopt their method to construct a solution
for L(N,k), in case N < 2k. The solution scale generated by using their method can be



estimated easily, then the solution scale of L(N,k) can be evaluated. With these addi-
tional heuristic information we can use our method to reduce L(n, k) to some special basic
problems, and use the method of Tang and Woo to generate solutions for them, finally
form a good solution for L(n, k). In some cases, we would like to reduce L(n, k) to a set of
identical basic problems for simplifying the set partition and the solution synthesis. This
strategy may slightly increase the solution scale for L(n, k).

6.5 Application and Computation Complexity

The solution of L(n, k) can be applied to many fields. In this section, an example is given
to show its application to the pseudoexhaustive test generation for VI.SI circuits. Finally
we analyze the computational complexity of this method.

Frample 5.1: Consider a multiple-primary-output circuit C with 9 primary input lines,
of which every primary output line depends on at most three primary input lines. Tt is
required to generate a psendoexhaustive test set for this circuit. Thisis an L(9, 3) problem.
We solve it in three steps:

Step 1: Reduce 1.(9,3) to three identical instances of 1.(3,3);

Step 2: Solve 1.(3,3);

Step 3: Construct a solution for 1(9,3) using the solution for 1(3,3).

Tet S = {1,2,...,9}. The following three partitions constitute a simplex partition set
of 9.

Po = {{1,2,3},{4,5,6},{7,8,9}},
Pro= {{1,5,9},{2,6,7},{3,4,8}},
P, = {{1,6,8},{2,4,9},{3,5,7}}.

For this example, the parameter 7 := [0.25 x 3?| 4+ 1 is equal to 3. According to
LLemma 6.2, the above simplex partition set has the P(9,3) property. An 1(9,3) can be
reduced to three identical (3,3) by using this partition set.

The solution for 1(3,3) is just the following 8 x 3 matrix (b;;)sx3-

00 0 000000000
00 1 0000001 11
01 0 00071 11000
0 1 1 O o0 o0 1 1 1 1 11
(biidsxa=| 1 o o[+ (mdso=14 1 1 g 000 0 0
10 1 1110001 11
110 111111000
REREEE RIREE R R R R A

The remaining task is to construct a 9-column (), 1-matrix based on the above partition
set and the solution for (3,3). This can be done by using the Synthesis Algorithm



000000000 0]
000000 1 1 1
0007111000
0001 1 1 1 11
11T 100000 0
111000111
T 11111000
T 11 1 1 1 111
0011000710
o1t o001 100
(am=d2oxo =1 0 ¢ 1 4 g 1 1 1 0
1000 10001
101 1 10011
1100 1 1 10 1
001010100
01T 010000 1
01 1 11010 1
100001010
10101 1 110
1101010 11

presented in Fig. 6-1.

Based on the partition Py, we can generate an 8 X 9 matrix (a,,.)sxo. In this matrix
the first, second and third columns are equal, since the three elements 1,2,3 of 5 belong
to one cell in Fy. For the same reason, the fourth, fifth and sixth columns are identical
and the seventh, eighth and ninth columns are identical, too.

In the same way we can construct two 8 X 9 matrices for both partitions Py and Ps.
Putting the three 8 x 9 matrices together and omitting the duplicate rows, finally we get
a 20 X 9 matrix (@, )20x9-

In matrix (@, )20x9, the first 8 rows have been constructed according to Py, the fol-
lowing 6 rows based on Py and the last 6 rows corresponding to Py. In (4,2 )20x9, every
3-column projection contains 2% distinct vectors in {0,1}?, therefore, the row vectors of
(@m=)20x9 constitute a pseudoexhaustive test set for the circuit C.

Frample 5.2: Determine an upper bound for 1(1024,9).
For k=9, 7 = [0.25 x k2| +1 = 21. 37 is a prime greater than v/1024. According to
Temma 6.4

1(1024,9) < 21 x 1,(37,9) — 21 + 1.



Using the approach of Tang and Woo[TaWo83], we can determine that

L(37,9) < i i
o< ()L )
37
()
= 132090.

L(1024,9) < 21 x 132090 — 21 4+ 1
= 2773870.

The upper bound of 1(1024,9) strongly depends upon that of 1(37,9). Following

[CKM783], L(n, k) < [k2¥In n] for n > 2. Thus 1(37,9) < [9-2%1n 37], and 2 ( 347 ) is

much larger than the smallest upper boundary for 1(37,9). In case one can generate an
optimal solution for 1.(37,9), he can construct a nearly optimal solution for 7(1024,9).

For k to be 3,5, 7 and 9, the parameter r equals 3, 7, 13 and 21, respectively. The upper
bounds of L(n, k) corresponding to different parameters n and k are listed in Table 6-1.
It shows that the method presented in this paper has considerable advantage for small &
and practical size of n.

In the rest of this section we discuss the computational complexity of our approach.
Let C(n, k) denote the quantum of the computation for generating a solution of L(n,k).
Assume that L(n,k) can be reduced to L(q,k) directly. Then C(n, k) is the sum of the
computation quantities of C(q, k) and those for constructing r partitions of an n-element
set to reduce L(n,k) to L(q,k) and for synthesizing a solution of L(n,k) with that of
L(g,k). Tt is not hard to see that the complexity of the Simplex Partition Algorithm is
O(rn). The Synthesis Algorithm has three loops. The outermost loop is corresponding
to r partitions. For every P, it cycles one time. The middle loop is limited by the row

number of the 0, I-matrix (b;;))] for I(q,k). We know I; < L(q,k). The innermost
15 )1 e

loop checks each of the n elements which cell it belongs to in the partition P;. Then the
complexity of the Synthesis Algorithm is O(r x L(q, k) x n).
We have thus

Theorem 6.3

B 244 2logn [log(0.25k%+1)]
Cln,k) =0 ("( 10.5k| ) (]0g(0.25k2—|— 1)) (6.14)

Proof: Based on Theorem 6.1, an L(n,k) can be reduced to basic problems L(n;, k)
(n; < 4r) through a number of steps.

(k) —— L(na k) —— L(na,k) — oo — L(ni k), n; < 4[n?].
Thus

C(n,k) = O(rn)4+C(ni,k)+ O(rn X L(ny,k))



L(16,3)<3-L(4,3)2<3-2-(?)2—22

L(64,3)<3-L(8,3)2<3.2.(f)2—46

1(256,3) < 3-1(16,3) — 2 < 64

L(1024,3) < 3- 1(32,3) — 2 < 3(3- 1(6,3) —2) —2<9-2. ( ? ) —8=100

1(16,5) < 2- ( ]26 ) = 240

11
L(64,5)<7-L(11,5)6<7-2-( 5 )6—764

1
L(256,5)<7-L(17,5)6<7-2-( 27 ) — 6= 1898
L(1024,5) < 7- L(37,5) — 6 < 7(7- I(7,5) — 6) — 6

<49-2-(;)48—2010

1(16,7) < 2- ( 126 ) = 1120

L(64,7)<13-1(13,7) =12 <13-2- ( ](;3 ) — 12 = 7424

17
3
L(1024,7) < 13- L(37,7) — 12 < 13(13 - L(13,7) — 12) — 12

1(256,7) < 13- L(17,7)— 12 < 13-2. ( ) — 12 = 17668

<169-2- ( ](;3 ) — 168 = 96500

16
L(1679)<2-( ) )—3640
23
L(64,9) < 21-1,(23,9)— 21 < 21-2- ( ) ) — 21 = 371890
23
(256,9) < 21 - 1,(23,9) — 21 < 21 -2 ( ) ) — 21 = 371890

[(1024,9) < 21 - 1,(37,9) — 21 < 21-2. ( 347 ) — 21 = 2773870

Table 6-1. Upper Bounds of I.(n, k) for Different n and &




= O(rnx L(n1,k))+ O(rni) 4+ C(na, k) + O(rny X L(ng, k))

= C(r,k)+ O(rn x L(ny, k) + O ( Z rn; X T/(n/j+1,k))

1<j<i1

= C(r,k)+ O(rn x L(ny, k) + O ( Z T [n?*ﬂ y T/(n/j+1,k)) .

1<5<a—1

Using the method proposed in [TaWo83], we can estimate that

Clar, k) < 4r><2( LOL-ZM )
- et (i)

o kK244
- O(’“ (LO-W ))

It is not hard to see that for n > 2 and i < |logn| + 1

Z [nrﬂ = 0(n).

1<5<i—1
—1
Farthermore, ny < 4n? . Based on Theorem 6.1,

T/(Wq . ]{‘)

(AN

TUoglognf]oglogTJ ,/(4 ’Vn27U°g]°g n—loglogr|—1 —‘ 7 ]{‘)

plloglogn—loglogr] (4, 1y,

(AN

This means that

C(n,k)

O(rn X L(ny, k))

_ Uoglognf]oglogTJ—l—1 4r

- ¢ (W ( 0.5k | ))

oo 5 A ) (e on(@
B “\ 0.5k log(0.25k2 + 1) '

Q.E.D

Table 6-2 shows the upper bounds of L(n, k) and C(n, k) for different approaches. The
bounds for L(n, k) is listed in the second column, and those for C(n, k) in the third column.



L(n, k) C(n, k)
TaWos3 2( Logkj ) 0 (77( Logkj ))
CKM783 | 2%(logn)*F~! O(2%n(log n)*)
Friegd | 22kloghtdhjt . fogn O (n 1)
v o )™ oo ) ™)

Table 6-2. Upper Bounds of I.(n,k) and C(n, k)
where r = 0.25k% + 1




Chapter 7

Monomial Oriented
Pseudorandom Test

7.1 Introduction

Pseudorandom pattern generation techniques have two important applications to VI.SI
test. One is to compute a short random test preceding the long and laborious deter-
ministic test to catch easily detected faults [Breu71], the other is to design built-in self
test circuitries [AbCe83, AgCel&1, BuSi82, KMZ79]. In the first case we pursue its low
test generation cost and the good “practical fault coverage”, namely, the fault coverage
of the first hundreds or thousands patterns. In the second case we seek its potential
test generation capability and the cheap overhead of the hardware implementations. If
the circuit structure is known, one can perhaps construct an appropriate biased random
test generator with the available information to achieve a great improvement. The input
signal biased random test and pattern biased random test [Hart91] are typical examples
[SLCT1, Wund87].

Assume a pseudorandom pattern generator G(n) to be of n bits and n > 30. The
so called three basic properties of G(n) are the maximum-length property, the window
property and the run property [BMS87]. For the application to the test generation of
VLSI, these properties are not essential indeed, because only the first N (N << 27)
patterns generated by (G(n) can be used in practice. Tt would be nice, when the first N
patterns could contain the most important patterns which can either cover the most part
of the concerned faults or detect some faults having big error latencies [ShMc75]. The
weighted random pattern generations are just based on this thought. In order to generate
properly weighted test patterns, the circuit analysis have to be done, and the corresponding
generator requires more hardware overhead. In some cases, the circuit analysis result may
show that both logic 1 and logic 0 input probabilities are quit balanced for every primary
input lines. Conventionally, one adopts the uniform pseudorandom technique for such kind
of circuits. The results with this technique sometimes are disappointing. The practical
fault coverages are often low, when the circuits under test have a large number of primary
input lines.

It occurs often that to test a random test resistant fault one has to apply a certain



combination to some primary input lines, while other primary input lines are free. We can
say that this fault can only be tested by using a certain monomial. There exists certainly
a constant k£ < n such that every fault can be tested by a k-monomial. According to these
hints, we propose some monomial oriented pseundorandom techniques. These techniques
can be used either to generate random test patterns to precede the deterministic test or
to design built-in self test circuits. For the latter application, the hardware overhead is
acceptable and the practical fault coverage is also good. Tt is particularly suitable to pseu-
dorandom test generations for circuits with a large number of primary input and output
lines. The experiments of these techniques on various benchmark circuits have given a
considerable good results in terms of both the fault coverage and hardware overhead.

7.2 k-Monomial and Its Probability
Tet B={0,1},N = {0,1,...,n—1},and § = {(7:1,1:2,...,7:k) | (i1, .yin) C NF iy < u}

Definition 7.1 A k -monomial over B™ is a expression of X;T ...X;}f, where (i1, ...,1;) € 9
are pairwise different indices and (aq, ..., a;) € B*.

A representative of the k-monomial X X;}f is a vector in B™. Tts iyth, ..., ipth

components are aq, ..., ay, respectively, (md fhe other components are free.

—(Z) Tet I, —

1 to L. Given an element (iq,...,7;) of 5 we can construct 2F distinet k -monomials
X ---X”k Let M = {X ---Xf; (i1y.sir) € S,a; € B}. As mentioned, there exists a

(‘(m@‘ran‘r k < n and for every irredundant fault there is at least a k monomla] X - Xf:

such that each of its representative can detect this fault. Then we focus our a‘r‘renﬁon on

5.

We order the elements of S from

Tt is easy to s

the generation of the representative of the k-monomials.

Assume (44,49, ...,1;) to be the ith element of 5 and aq...a; is the binary code of j. We
denote the monomial X ”k by M; ;. There are total . x 2F distinct k-monomials.
Assume p(M; ;,1) to be The pmbablh‘ry that one of the representative of M; ; is included
in the first [ patterns generated by G(n). Then

1 I
p(M; ;1) =1~ (1 - Q_k) (7.1)
Tet N = I x 2. We can determine the following measurement

7, 2%
= %ZZP(M@M) (7.2)

=1 57=1

and call it imaginary fault coverage. F(I) reflects the practical fault coverage.

Formula (7.1) is right if the random sampling is taken with replacement. For the pseu-
dorandom pattern generation, a pattern which has already been generated will not appear
until next period. Then the imaginary fault coverage evaluation based on formula (7.1) is



not precise. The method proposed in [ChMc87] can be used to estimate p(M; ;,[) more
accurately. The corresponding result is displayed by the following formula:

e
p(M; ;1) =1~ H o . (7.3)

s=0

In case p(M; ;,1) is independent of the indices ¢ and j,
F(I) = p(M 1) (7.4)

Theorem 7.1 In case p(M; ;,1) is independent of the indices i and j, F(I) is a monotonic
decrease function of n.

. . n_on—h_, . . . . .
Proof: Tt is obvious that % is a monotonic increase function for given integers s
and k < mn. Thus F(I)is a monotonic decrease function of n.

Q.E.D.

7.3 Expected Test Length

In this section we discuss the expected test length [ for the monomial oriented pseudoran-
dom test generation. We consider the following random game.

Assume that there are u balls in a black Box . Among them are v black balls. We
sample balls from the black Box without replacement. Take j as a random variable. Sup-
pose P(j,z,u,v) represents the probability that we have just sampled = black balls after
7th sampling, and the last sampled ball is black.

Frample 7.1: Assume u,» and z to be 5, 1, and 1, respectively. We can determine that

1
POLTLETD) = .
41 1
P(2,1,5,1) = —.—=—,
5 4 5
43 1 1
P(3,1,5,1) = —-Z.- = -,
5 4 3 5

P(4,1,5,1)

1
P(5.1,5,1) = <.

1

Frample 7.2: Assume u,v and x to be 10, 2, and 1, respectively. We have

2 9
P(1,1,10,2) = = I

8 2 8
P(27]7]072) = ﬁ6:457

8 7 2 7
P(37]7]072) = ﬁ6§:4_57

. 10— .

P(i,1,10,2) = : iel1,9].



By generalizing the above examples, we obtain:

P(j,z,u,w) = 0 for j<z or j>u—v+ux
Ty
Plz,z,u,v) = 1:[ —
and
. r—1 . j—m—1
. 7 —1 v—1 u—v—1t .
P(j.x,u,v)= . - for z < <u—v+ax
(o, 0) (77“) u— 1 H uw—x —1 7= +
2=0 =0
Furthermore
U, u—n+mr
Z P(j,az,u,v) = Z P(j,x,u,v)
J=1 Jj=x
r . u—v+7 . r—1 L j—m—1
_ v —1 7 —1 V=1 u—v—1
n H?lfi—l— Z (jﬂ?)Hwi H u—x—1t
=0 ) 7=m+1 - =0 T 4=0 ' w ’
= 1
and
u—v4x . r—1 L g—x—1 r—1 .
—1 ”—1 u—n—1t =1
Z (‘;’T)H?If H ?177“71‘:]71_[?171'
j=m41 : ~ =0 " 4=0 ’ =0 7

(7.7)

(7.8)

(7.9)

Let F(j,2,u,v)and V(j,2,u,v) denote the mean and variance of random variable j.

From the above formulas we can estimate them as follows:

OO
E(j,m?um) = ij(jvmﬂ’w”)
=1
u—n+mr
= Y PG, )
Jj=x
z—1 . u—v+m . r—1 L j—r—1
v —1 . 7 — 1 v —1 u—v—1
im0 T I Jox ) pu— g u— =
r—1 . u—1tx . r—1 R -
v —1 7 — 1 v — u—v—1
S | BT ( j ) T
L A e = A
u—v+x r—1 . =1
. 7 — 1 ”—1 u—v—1
+ —a :
PIRE >(H?), T
J=z+1 = +=0




Notice that

vrr T N I L P A
B “fmr( j—1 )ml—f?)ij(ﬁ)1 w—(v+1)—
Plawrtt j—(z+1) sou—t 2o uw—(v41)—t
B T71'(7}4i):+m+1( 71 )ﬂ?)-l-]ilumj(ﬁ)1 ?1,7(?)4—1)77‘/.?1,71)
" Pl J—(z+1) =0 U —1 v+ 1 b w—(r+1)—t w—u
B ?L—?)T“'f(”HHmH ( 71 )ﬁ v+1—14 4('7714—_[1)1 w—(v41)—
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Then
E(j,x,u,v)= % (7.10)
The following Corollary is obvious.
Corollary 7.1 In respect of the calculation without regard to the domain of x, we can
state that:
E(j,z,w,v)= F(j, E(j,z,u,v),w,u) (7.11)

for v <u < w.

In the same way, we can calculate the second moment FE(j2% z,u,v), of random

variable j.
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Clearly
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Now we return to the original topic. Tet w = 2" and v = 2"7%. Then u and » denote
the cardinalities of B™ and X;“ ---X:}'f? respectively. We have

w(2F 4 2k

F(j,x,2",2" %) = (7.14)

1 _|_2k7n
and
: - z(27 4+ 1)(2" — 277 k) x
Var(j,z,2", 2"k i 1—
(]T(]? T7 9 ) (2777]< —|— 41)(2777]< —|— 2)( 27,]7]< —|— ])
z(2F 4 28—y (2 — 1) x
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F(4,1,27,277%) is just the expected test length. That is to say, F(j, 1,27, 2" %) pat-
terns generated continuously by G(n) can be expected to include a representative for every
k-monomial. The following theorem is obhvious.

Theorem 7.2 F(j,1,2%,2"7%) and Var(j,1,2",2"7%) are monotonic increase functions
of n for the given integer k < n.

a

According to Theorem 7.1 and 7.2, we can conclude that the long period of the pseu-
dorandom pattern generator (G(n) is negative for the practical fault coverage and the
expected test length.

7.4 Experiments

We have already had an impression that the long period of the psendorandom pattern
generator is not of benefit to the practical fault coverage, while the short period can not
guarantee the high potential fault test capability. Tt is really a contradiction. LFSR is
one of the most popular pseudorandom pattern generation techniques. Some tactics can
be used to comprise the forenamed contradiction in LFSR technique to certain extent to
improve the practical fault coverage.



7.4.1 Multiple LFSRs

Assume that

41 t
?/7(77:_‘— ) = (5771?/7(7,)4_1 —1°
11 ' ' .
?/g ) - U§j1 + pyyq(77)_|_1 1> J]E [ni + ]777/i+1 - ]]

for i € [1,m] define m T.FSRs. Their periods are py, pa, ..., Pm, respectively. If mLFSR is
an n-bit pattern generator constructed by concatenating the m LLFSRs together, then the
period of mLFSR is the smallest common multiple of py, p2, ..., P

It is not hard to see that if all the m ILFSRs are based on primitive polynomials, and
their periods are prime to each other, then the period of mILFSR is not far smaller than
2", Therefore, mILFSR can have a very high potential test generation capability. Table 7.1
shows the practical fault coverages of mILFSRs.

In Table 7.1, we list the experimental results on benchmark circuits. For each circuit,
we adopt three or more generators to generate random test set for single stuck-at faults.
One of them is the traditional ILFSR based on a single primitive polynomial. Tts degree
n is equal to the number of the primary input lines of the circuit under test. Such an
LLFSR has a period of 27 — 1. Others are mILFSRs constructed by concatenating m I.LFSRs
together. The rows marked sLFSR and mLLFSR(m > 2) represent the percents of the fault
coverages for the test sets produced by using a single LFSR and mLFSRs, respectively.
The number of the primary input lines of the circuit under test is listed in the column
labeled TNP. The numbers listed in the brackets following mI.FSR denote the degrees of
m primitive polynomials used to construct an mLFSR. The seeds for all of the generators
are 1010... This table shows that the practical fault coverage of mI.LFSR is quit different
from that of sI.LFSR with such kind of seeds. Such differences are rather distinct with seed
1000... So far as regards the practical fault coverage, the multiple LFSR generators are
obviously better than the single LFSR generators. The hardware overhead of mLFSR is
not much more expensive than that of sLFSR. Hence it is also suitable for built-in self
test circuits.

7.4.2 Multiple Seeds

If we can fit an mLFSR with several seeds, the practical fault coverage can be improved
further. Table 7.2 demonstrates the experimental results on some benchmark circuits. The
columns labeled with #Seeds, #Redundant, and #Untested represent the numbers of used
seeds, redundant faults and untested faults, respectively. The simulations were performed
by a cell oriented fault simulator [HSS92]. From this table we can see that except C7552
and C2670, all combinational benchmark circuits can be completely tested with at most
three seeds. In order to embed the test set in a BIST environment, one can adopt the
technique proposed in [AgCe81] to construct a test generator consisting of a ROM and
mLFSR. Fig. 7.1 demonstrates the main logic structure of such a test generator called
store and generate BIT.

When many seeds are required to reach 100% fanlt coverage, the method proposed
in [AkJaR9] can be used to embed those seeds in a circuit comprising a counter and an



XOR array. Fig. 7.2 illustrates one of the possible embedding formats. The k-bit LFSR
and XOR array can generate total 28 — 1 seeds. For each of these seeds, the [-bit LFSR
controls the mLFSR to produce 2/ — 1 patterns. Table 7.3 shows the experimental results
on benchmark circuits with this technique. The faunlt coverage reaches to 100% for circuit
2670 after 10 test patterns have been embedded in the counter-XOR-array.

— m —
ROM i
’ F cuT
Exn
S

Fig. 7.1 Store and Generate BIT

k-bit LFSR [-bit LFSR
—1 m —1
Tl
XOR
array F cur
S

Fig. 7.2 Embedding Format



Circuits | INP | RTPGs Fault Coverages (%)
32 64 128 | 256 | 1024
C6288 32 sLLFSR, 98.0 1 99.2 |1 99.3 | 99.3 | 99.3
3LFSR(9,11,12) 98.4 1 99.2 |1 99.3 | 99.3 | 99.3
4LFSR(6,7,9,10) 98.5 1 99.3 |1 99.3 ]99.3 | 99.3
C432 36 sI.LFSR 524 | 74.0 | 80.8 | 87.2 | 91.6
3LFSR(11-13) 64.1 | 75.1 | 83.3 | 89.7 | 91.6
4LFSR(7,8,10,11) 64.5 | 7T4.7 | 85.3 | 88.8 | 91.2
1908 33 sLLFSR, 67.5 | 73.1 | 76.5 | 83.7 | 93.3
3LFSR(10,12) 72.1 1 76.6 | 80.0 | 86.0 | 93.1
4LFSR(6,8-10) 60.1 | 64.9 | 73.1 | 81.7 | 94.2
499 41 sI.LFSR 61.2 | 75.1 | 84.4 | 90.7 | 97.0
3LFSR(12,14,15) 72.9 | 81.0 | 87.8 | 90.9 | 96.9
4LFSR(8,10-12) 63.2 | 82.6 | 87.2 1 91.5 | 96.5
3540 50 sLLFSR, 48.1 | h7.3 | 71.8 | 81.3 | 88.7
21.FSR(24-26) 44.9 | 56.8 | 75.1 | 82.7 | 88.9
3LFSR(15,17,18) 61.5 | 71.6 | 81.7 | 85.8 | 89.1
ALFSR(11-14) 67.7 | 7THh.1 | 82.2 | 86.0 | 89.3
5LFSR(8-12) 66.6 | 75.9 | 82.6 | 85.9 | 89.1
€880 60 sLLFSR, 53.6 | 62.8 | 7T1.4 | 76.8 | 83.5
21.FSR(29,31) 59.0 | 67.5 | 73.1 | 86.2 | 96.9
3LFSR(19-21) 75.2 |1 80.2 | 85.5 | 92.1 | 97.9
ALFSR(13,14,16,17) 82.0 | 86.1 | 88.6 | 93.7 | 97.9
S5LFSR(10-14) 77.9 | 86.8 | 91.1 | 95.0 | 98.1
2670 157 | sI.LFSR 38.1 | 42.2 | 52.5 | 60.7 | 69.3
5TL.FSR(29-31,33,34) 4.1 | 64.7 | 7T1.0 | 76.2 | 81.9
TLFSR(19-22,24-26) | 58.8 | 68.5 | 72.8 | 77.6 | 82.0
9LFSR(13-17,19-22) | 66.5 | 71.4 | 75.6 | 79.1 | 82.0
T1LFSR(9-16,18-20) | 65.5 | 72.0 | 77.3 | 79.9 | 81.9
Ch315h 178 | sI.LFSR. 33.4 | 43.4 | 50.5 | 60.1 | 80.4
61.FSR(27-31,33) 68.2 | 79.7 | 88.1 | 96.1 | 98.4
8LFSR(18,19,21-26) 68.6 | 84.5 | 92.6 | 96.0 | 98.5
T0LFSR(13-19,21-23) | 67.7 | 84.2 | 89.1 | 94.4 | 98.4
12LFSR(9-16,18-21) 72.7 1 84.0 | 91.5 | 96.5 | 98.6

Table 7.1: Faults Coverage Comparison

Between s[.LFSRs and mI.LFSRs




Circuits | INP | #Seeds | Periods | #Redundant | #Untested | Fault Coverages(%)
432 36 |1 210 4() 0 100

C499 41 2 210 8 0 100

C880 60 |3 212 0 0 100

C1355 | 41 2 210 8 0 100

C1908 [ 33 |3 212 9 1 100

C2670 | 233 |10 212 117 0 93.01

C3540 |50 |3 212 137 0 100

C5315 [ 178 |3 212 59 0 100

6288 [ 32 |1 210 34 0 100

Table 7.2: Faults Coverages for Multiple-Seed mIL.FF'SRs

Circuits | INP | k& |1 | #Redundant | Fault Coverages(%)
432 36 1 10 | 40 100
499 41 2 10 ] 8 100
C880 60 2 1210 100
C1355 41 2 10 ] 8 100
1908 33 2 1219 100
2670 233 | 1 12 117 100
3540 50 2 121 137 100
Ch315h 178 | 2 121 59 100
6288 32 1 10| 34 100

Table 7.3: Faults Coverages for Multiple-Seed Embedding mI.LFSRs




Concluding Remarks

The object set A of X-category (7, .A,Q, 7,0, x) includes all combinational circuits. Our
discussion on the test complexity concerns only on the irredundant circuits in A and
assumes that we can always find a test pattern for every single fault in the concerned
circuit.

If we want to limit A to the set of all testable circuits, then we have to redefine the
functions @ and 7 so that for two elements B;, B; € A, B; o B; has meaning if and only
if Z( B;) contains a complete test set for B;, and at least one of the complete test sets of
B; can be propagated through B;.

It is NP-complete to decide whether a given single stuck-at fault in a circuit is de-
tectable[ThSa75, FuTo82, Fuji®5]. Thus it seems to be very unlikely that there is an
efficient algorithm for deciding whether B; o B; is testable.

Given a testable circuit ' € A, how to generate a complete test set for it depends on
its structure, size and the available information about . In case (' is a uniform tree based
on a function f, the generation of the optimum complete test set is related to the analysis
of its test complexity. We can state that one can always construct an optimum complete
test set for ' whenever he can determine its test complexity exactly.

The construction of a complete assignment set to a uniform tree is the first step towards
the generation of a complete test set to the tree. Table 8.1 illustrates the classification of
the assignment complexity of balanced uniform trees.

(eneral Commutative

O(1) O(1)

O((lgn)”) | O(lgn)

o c |i7n,1—7‘|7‘lj|

Table 8.1 Classification of the Assignment Complexity
of Balanced Uniform Trees

Tables 8.2 and 8.3 show the classification of the test complexity of balanced uniform
trees. A uniform tree is either @(1) or Q((1gn)?) (8 > 0) testable, and the test complexity
of uniform trees based on commutative functions can be divided into ©(1), O(lgn) and
Q(n®). To decide whether a uniform tree (' is O(1) testable is equal to judge if there is a
finite set X C N’ such that

Vie[1,k|{{A;7 | 7€ X} C{Agd |7 € X}},

where A; (7 € [0, k] are 0, 1 matrices associated with the definition of the function f.



For a balanced uniform tree T](fn) based on a commutative function f, the above problem
is equal to that of deciding whether a linear equation system associated with function f
has a feasible solution. In case T](fn) is ©(1) testable, to generate the optimum test set for

T](fn) one has to solve an integer programming associated with the function.

(eneral Commutative

0(1) o(1)

O((lgn)?) | O(1gn)
86>0

O(n™) O(n™)
a € (0,1]

Table 8.2 Classification of the Test Complexity of Balanced Uniform Trees
Based on Function f: M? — M

(eneral Commutative | Unate
O(1) O(1)

o((lgn)") | Ogn) o(n")

v > 1 a € (0,1]

O(n") O(n™)

a € (0,1] | a€(0,1]
Table 8.3 Classification of the Test Complexity of Balanced Uniform Trees
Based on Function f:{0,1}* — {0,1}

In Chapter 3, we expand the assignment and test problems into a more general com-
binational problem, namely, the so called arrangement problem. The assignment and test
problems can be considered as two instances of the arrangement problem.

Let F; denote the i-level balanced uniform tree based on f. We have shown that a

sufficient condition for the arrangement complexity of T](fn) to be O(1) is the following;:

There are an 1 € N, a subset S C M* and K bijective mappings

Ty ey Tpi 29 —— 9 s0 that S is a complete arrangement of F; and
(Fix X Fj)o(m X+ X mpi)o DX(5) =&,
Lt

where o represents the type of 5.



For symmetrical function f, the above condition is even necessary. However, whether
it is the necessary condition for general functions is still a open problem.

Chapter 5 shows that an arbitrarily given tree can be embedded in an O(lgn) testable
tree. Tt is also an interesing subject to synthesize a hardware optimal O(lgn) testable tree
for a given Q(n”)(r > 0) testable tree.

If €' has a number of primary output lines and n primary input lines, and every primary
output line depends on at most k& primary input lines (k < n), the pseudoexhaustive test
may be a suitable approach for C'. We use L(n,k) to denote the psendoexhaustive test
problem for such a circuit. The algorithm presented in Chapter 6 reduces a big problem
L(n,k)toasmall L(N,k) (N << n). If one can generate an optimal solution for L(N, k),
then he can construct an considerable good solution for L(n,k). The remains problem is
how to generate an optimal solution for L(N, k).

In case psendorandom test is required, it is very worth choosing a suitable random pat-
tern generator. We have shown that monomial oriented pseudorandom pattern generators
are better than the traditional single LFSR, and may be a right alternative. An inter-
esting theoretical and practical problem is how to construct the real monomial oriented
pseudorandom pattern generators.
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