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ZusammenfassungMit dem zunehmenden Einsatz von VLSI-Systemen sind die Anforderungen anihre Zuverl�assigkeit immer mehr gestiegen. Die Zuverl�assigkeit eines VLSI-Systemsh�angt von seinen Komponenten { hochintegrierten Schaltkreisen { ab. Leider istder Fertigungsproze� hochintergrierter Schaltkreise extrem fehleranf�allig. Nachino�ziellen Angaben betr�agt die Defektrate f�ur gro�e Schaltkreise bei einemneuen Fertigungsproze� �uber 60%. Daher ist ein Test der Schaltkreise unbedingtnotwendig. Allerdings betr�agt der Aufwand f�ur solche Tests mehr als 25% derGesamtkosten.Normalerweise enth�alt ein VLSI-System sowohl kombinatorische als auch sequentielleSchaltkreise. Mit Hilfe von Pr�ufbussen kann das Testproblem f�ur die sequentiellenKomponenten auf den kombinatorischen Fall zur�uckgef�uhrt werden. Deshalb spieltder Test von kombinatorischen Schaltkreisen eine gro�e Rolle. Diese Arbeitbetrachtet das Testproblem kombinatorischer Schaltkreise.Ein vollst�andiger Test eines Schaltkreises durch Anlegen aller Eingaben ist in derPraxis fast immer unm�oglich. Deswegen m�ussen Annahmen �uber die Art der amh�au�gsten vorkommenden Fehler gemacht werden, die dann in einem Fehlermodellzusammengefa�t werden. Das am h�au�gsten in der Praxis verwendete Fehlermodellist das Single-Stuck-at-Fehlermodell. Hier wird angenommen, da� innerhalb desganzen Schaltkreises h�ochstens eine Leitung st�andig auf einem festen logischenWert (d.h. 0 oder 1) liegt. Dieses popul�are Fehlermodell kann jedoch nicht alleauftretenden Fehler �uberdecken. In dieser Arbeit betrachten wir daher zus�atzlichdas m�achtigere Einzel-Zellenfehlermodell.Die Testkosten werden bestimmt durch die Kosten der Testerzeugung und derTestdurchf�uhrung. Wir de�nieren die Testkomplexit�at eines Schaltkreises S als dieminimale Anzahl von Testmustern, die man ben�otigt, um S nach dem gegebenenFehlermodell zu pr�ufen.Das Schwergewicht der vorliegenden Arbeit liegt auf der Untersuchung der Test-probleme bez�uglich baumartiger Schaltkreise, pseudoersch�opfend und pseudozuf�alligtestbarer Schaltkreise, sowie auf der Entwicklung von Verfahren zur Erzeugungoptimaler Testmustermengen.Die Arbeit gliedert sich in sieben Kapitel. Das erste Kapitel enth�alt eineformale Beschreibung von VLSI-Schaltkreisen und des Testproblems mit Hilfe derX-Kategorie [Hotz65, Hotz74]. Diese Formulierung f�uhrt zu einer Vereinfachung derDiskussion und zu einer Verallgemeinerung der Resultate.Wir bezeichnen im folgenden baumartige Schaltkreise als B�aume. Ein Baum ist



uniform, falls alle Knoten des Baums die selbe Funktion realisieren. B�aume sindBasiskomponenten von vielen VLSI-Systemen, insbesondere auch von parallelenArchitekturen. Im folgenden werden nur uniforme B�aume betrachtet. Bekannt ist,da� bestimmte baumartige Schaltkreise bzgl. ihrer Testbarkeit nach Klassen parti-tioniert werden k�onnen [BeSp91]. Dies hat uns motiviert, die Testkomplexit�at vonallgemeinen baumartigen Schaltkreisen zu untersuchen. Unsere Untersuchungenzielen dabei ab auf die Generierung einer minimalen Testmustermenge und eineeventuelle Modi�kation des Schaltkreises.Vom zweiten bis zum f�unften Kapitel konzentrieren wir uns auf die Untersuchungder Testkomplexit�at baumartiger Schaltkreise nach dem Einzel-Zellenfehlermodell.Wir benutzen T (n)f als Bezeichnung f�ur einen �uber der Funktion f de�nierten,balancierten baumartigen Schaltkreis mit n Eing�angen. Eine Zelle von T (n)f istfehlerhaft, falls f�ur eine bestimmte Belegung dieser Zelle der Ausgangswert nichtrichtig ist. Um solche Fehler zu testen, m�ussen wir an dem Schaltkreis ein n-stelligesMuster anlegen. Um einen konkreten Fehler zu entdecken, mu� dieses Testmustersowohl eine den Fehler produzierende Belegung der Eing�ange der fehlerhaften Zelleerzeugen, als auch daf�ur sorgen, da� das entsprechende fehlerhafte Signal zumprim�aren Ausgang propagiert wird. Eine vollst�andige Testmustermenge f�ur T (n)fbesteht aus Testmustern, die alle Fehler des zugrundeliegenden Fehlermodells testenk�onnen. Die unmittelbaren Fragen sind: Wie gro� ist die Testkomplexit�at von T (n)fund wie kann eine optimale Testmustermenge erzeugt werden?Eine Mustermenge hei�t eine vollst�andige Belegung f�ur T (n)f , falls sie an jeder Zellevon T (n)f alle Belegungen erzeugen kann. Die IDDQ-Testtechnik testet Fehlerdurch Messung von Leckstrom und betrachtet nicht zus�atzlich die Propagierungder fehlerhaften Signale [MaSu82, HSFH87]. F�ur diese Testtechnik ist eine Test-mustermenge vollst�andig, falls diese Testmustermenge eine vollst�andige Belegungist. Wir de�nieren die Belegungskomplexit�at von T (n)f als die Gr�o�e seiner kleinstenvollst�andigen Belegung.Im zweiten Kapitel untersuchen wir die Belegungskomplexit�at von T (n)f . Hier istf eine Funktion von f0; 1; :::;m � 1gk nach f0; 1; :::;m � 1g und 0; 1;m � 1 wer-den als Symbole betrachtet. Dabei ist es uns gelungen, die Belegungskomplexit�atvon uniformen B�aumen vollst�andig zu charakterisieren. Es wird gezeigt, da� dieBelegungskomplexit�at eines balancierten uniformen Baums entweder �(1) oder�((lg n)�) (� 2 (0; 1]) ist. Falls der uniforme Baum �uber einer kommutativen Funk-tion de�niert ist, kann � nur 1 sein.Ist eine kommutative Funktion f gegeben, so kann man nach der De�nition von fein Integer Programming IPf und einen gerichteten Graph Gf de�nieren. Im zweiten



Kapitel wird bewiesen, da� die folgenden Behauptungen �aquivalent sind:1. Die Belegungskomplexit�at von T (n)f ist �(1).2. IPf hat eine zul�assige L�osung.3. Gf ist stark zusamenh�angend.Au�erdem wird auch gezeigt, da� die Belegungkomplexit�at von T (n)f in Zeit �(m2)entscheidbar ist. Hierin ist f eine kommutative Funktion von f0; 1; :::;m� 1gk nachf0; 1; :::;m� 1g.F�ur eine andere �ubliche Testtechnik mu� die Propagierung der fehlerhaftenSignale mit gr�o�ter Sorgfalt behandelt werden. Im dritten Kapitel betrachtenwir die Testkomplexit�at von T (n)f unter der Annahme, da� f eine Funktion vonf0; 1; :::;m � 1g2 nach f0; 1; :::;m � 1g ist. Wir zeigen, da� T (n)f entweder �(1)oder 
((lg n)�)(� > 0) testbar ist. Als Testkomplexit�at eines balancierten uniformenBaums, der �uber einer kommutativen Funktion de�niert ist, ist genau einer der fol-genden drei F�alle m�oglich: �(1), �(lg n) und 
(n) ( 2 (0; 1]).Falls die Basisfunktion f von f0; 1gk nach f0; 1g geht, kann die Testkomplexit�at vonT (n)f exakt bestimmt werden. Das vierte Kapitel beinhaltet die folgenden Resultate:� T (n)f ist entweder �(1) oder 
(lg n) testbar.� Die Testkomplexit�at von T (n)f f�ur eine kommutative Funktion ist entweder �(1)oder �(lg n) oder 
(n) (0 <  � 1).� T (n)f �uber monotonen Funktionen ist immer 
(n) (0 <  � 1) testbar.Des weiteren geben wir im vierten Kapitel Kriterien f�ur die Zugeh�origkeit zu denoben genannten Klassen an.Im f�unften Kapitel zeigen wir, da� jeder Baum durch eine Modi�kation seinerBasiszellen so umgewandelt werden kann, so da� er in Zeit O(lg n) testbar ist. Deralte Baum wird durch den neuen Baum simuliert. Au�erdem stellen wir ein Ver-fahren zur Synthese der O(lg n) testbaren B�aume vor.Falls ein Schaltkreis mehrere prim�are Ausg�ange hat und jeder Ausgang nur voneinigen der prim�aren Eing�ange abh�angt, kann der Schaltkreis durch ersch�opfendesTesten aller Teilschaltungen getestet werden. Ein solches Verfahren nennt manpseudoersch�opfender Test. Das sechste Kapitel pr�asentiert einen e�zientenAlgorithmus zur Erzeugung pseudoersch�opfender Testmustermengen. DieserAlgorithmus �ndet auch Anwendungen auf den Gebieten des Systementwurfs und



der Fehlertoleranz.F�ur gro�e Schaltkreise ist die optimale pseudoersch�opfende Testmustermenge sehrschwierig zu berechnen. Probabilistische Verfahren k�onnen hier zur Senkung derKosten beitragen [Wund87, Hart93]. Im siebten Kapitel stellen wir ein neuesKonzept vor, sogenannte \Monomial Oriented Pseudorandom Tests". Die Grun-didee besteht im Entwurf eines Testmustergenerators, mit dem man eine kleineTestmustermenge erzeugt, die alle kleinen Monome �uberdeckt. Ein solcher pseu-dozuf�alliger Testgenerator h�angt nicht von einem konkreten Schaltkreis ab, daherist seine Anwendung nicht auf konkrete Schaltkreise begrenzt.



PrefaceMotivationThe wide use of computers in various �elds of society makes it clear | computers must bemore and more reliable. The reliability of a computer depends strongly upon testing itsbasic components | VLSI systems. Through test one knows whether the VLSI systemshave been manufactured properly and behave correctly.Generally speaking, A VLSI system is made up of the sequential circuit part andcombinational circuit part. The test generation for sequential circuits is usually muchmore di�cult than that for combinational ones, since the controllability and observabilityof sequential circuits are poor. In order to overcome the di�culty, some design techniquehave been developed. By using those techniques a sequential logic can be so designed thatits test can be reduced to that for some combinational logics. Hence the key to the testof a VLSI system lies in the test of its combinational logic part.This thesis focuses on the test problem of the combinational part of VLSI systems.The test of a VLSI system includes mainly the generation of a test set and the applica-tion of the test set to the system. The test complexity can be classi�ed into the complexityof the test set generation and the complexity of the test set application. The former can beestimated by the computing complexity of generating the test set. The latter is measuredby the cardinality of the test set.The test generation approaches can be divided roughly into structural and functionalmethods. A structural method generates test patterns for a circuit with reference to theconcrete logic structure of the circuit, while a functional method produces test patternsfor a circuit without reference to the concrete logic structure of the circuit.With the rapid development of VLSI technology the circuit density is increasing dra-matically. The test of VLSI systems is becoming increasingly di�cult and expensive.Although some techniques such as design for testability, new fault models and new testgeneration approaches have been proposed to moderate these problems, there is a greatneed to develop new design methodologies and test approaches.The complexity of test generation and application of a VLSI system is related to theconcrete structure of the system. Theory and practical experiences show that it seemsto be impossible to �nd a universal method for treating various VLSI systems e�ciently.One of the alternatives is to develop a suitable method for a kind of VLSI systems.This thesis studies extensively the test problems related to tree systems, pseudoex-haustive and pseudorandom testable circuit systems. It develops several techniques forgenerating optimal test sets for di�erent kinds of circuits.The Structure of the ThesisThis thesis consists mainly of seven chapters. In chapter 1, we give a formal de�nitionof the VLSI systems by using X-category for simplifying our discussion and generalizingthe results easily, and make a brief view of the functional and structural test generationapproaches so that we can have an impression on the advantages and disadvantages of thetwo approaches.



Tree systems are basic components for many VLSI systems, especially for systemsperforming parallel and fast computations. Many combinational circuits can be coveredby a number of tree like circuits. Therefore, the study of the test complexity of treestructure systems is very useful to the design, optimization and test of VLSI systems.Let T (n)f denote a balanced uniform tree based on function f and having n primaryinput lines. The test complexity of T (n)f is de�ned as the cardinality of the minimumcomplete test set of it and is measured as a function of the number of the primary inputlines in the tree. The test complexity of uniform tree systems based on functions overmonoids has been intensively studied and divided into �(1), �(lg n) and �(n) testableclasses [BeSp91]. It indicates that the test complexity of a tree system can jump from oneclass to another, when the de�nition of its basic cell is modi�ed. It motivates us to analyzethe test complexity of more general tree systems and explore the possibility of modifyingthem to change their test complexity from a high class to a low one.The result in [BeSp91] is obtained under the assumption that the function implementedby the basic cell satis�es the associative law. After this condition is dropped, the scenereally changes. For example, the boolean function NAND does not ful�ll the associativelow. Hayes [Haye71] shows that a tree system based on NAND gates is �(pn) testable.We analyze the assignment and test complexity of more general tree systems and developa method to synthesize tree systems for the low test complexity.A complete assignment set to T (n)f consists of a number of n-component patterns. Byapplying it to the primary input lines of T (n)f , every internal f cell in T (n)f can be excitedby all possible input combinations. The assignment complexity of T (n)f is de�ned as thecardinal number of the minimum complete assignment set to it. In chapter 2 we deal withthe assignment complexity of tree systems.A test pattern for a fault in a faulty cell has to ful�ll two conditions: 1) applying a rightassignment to the faulty cell for sensitizing the fault, 2) making a channel to propagatethe generated diagnosis signal(e�ect of the fault) to a primary output line for observingit. The IDDQ testing method tests faults by measuring the leakage current. In IDDQtesting, the site of fault has to be excited, and the propagation of the e�ect of the faultis automatic [MaSu82, HSFH87]. For IDDQ testing, a complete assignment set to a treeis just a complete test set to it. It is appropriate to consider the assignment problem inthe �rst stage since the assignment itself is a basic problem in the VLSI system designand test, and the construction of a complete assignment set is the �rst step towards thegeneration of a complete test set for other testing methods. We show that a tree systemis either �(1) or 
((lgn)�) (� 2 (0; 1]) assignable. When a uniform tree system is basedon a commutative function, then it is either �(1) or 
(lgn) assignable.Having explored the assignment complexity, we begin to analyze the test complexityof tree systems in chapter 3. We show that a balanced uniform tree system is either O(1)or 
((lgn)�) (� 2 (0; 1]) testable. Furthermore, we prove that the test complexity ofbalanced uniform tree systems based on the commutative functions can be exactly dividedinto �(1), �(lgn) and 
(n�) (� 2 (0; 1]) classes.Every balanced tree system is O(lg n) assignable. In other words, all faults can besensitized through O(lgn) patterns simultaneously. Whether a balanced tree system isO(lgn) testable dependes on the diagnosis signal propagatability.



Chapter 2 and 3 are dedicated to tree systems based on symbolic functions. Theresults obtained there are more or less abstract. In the fourth chapter we investigatethe test complexity of uniform tree circuits based on boolean functions, and show that abalanced uniform tree circuit is either �(1) or 
(lgn) testable. A balanced uniform treecircuit based on a boolean function f : f0; 1gk �! f0; 1g is �(1) testable if and only if forevery pair X; Y 2 f0; 1gk f(X) 6= f(Y ) if the Hamming distance between X and Y is 1.The test complexity of balanced uniform tree circuits based on commutative functionscan be further divided into constant, logarithmic and polynomial classes, and balanceduniform tree circuits based on unate functions are all 
(n�) (� 2 (0; 1]) testable. The testcomplexity of uniform tree circuits based on general functions has more classes. Theseresults are helpful for us to understand the test complexity structure and give us somehints for designing or modifying VLSI systems for testability.Through the classi�cation of the test complexity, we have found that if a uniform treesystem is O(lgn) testable, there must be a constant � so that one can simultaneouslypropagate a diagnosis signal from each of the lines in the same level to the primary outputline by using � patterns. In chapter 5 we propose a method of the function synthesis. Givena balanced tree T , we can always synthesize an O(lgn) testable tree T and embed T in Tto trade the hardware overhead for the low test complexity. This idea is meaningful, sincethe cost of the hardware has been decreasing while the cost of the test has been increasing.In comparison with other methods of reducing the test complexity, this method requiresmore extra gates and less input and output pins. With the development of the VLSItechnology, the gate density of VLSI system is increasing much more rapidly than thenumber of access terminals. Thus this method is attractive.One of the test approaches independent of the functions implemented by the circuits isthe exhaustive testing. Given a circuit with n primary input lines, the exhaustive testinggenerates all the 2n patterns. Such a test set can detect all detectable combinational faultsin the circuit. The advantage of this method is that no information about the circuitstructure is required, and the test generator can be cheaply realized by using hardware.Its disadvantage is that the test sets for circuits with many primary input lines are solarge that they can not be used in practice.Assume that the given circuit has a number of primary output lines and n primaryinput lines, and none of these primary output lines depends on all the n primary inputlines. We can imagine that the circuit can be covered through a number of subcircuits,and each of these subcircuits has at most k(k < n) primary input lines. The approachthat tests the circuit by testing these subcircuits exhaustively is called pseudoexhaustivetest. The �rst method of pseudoexhaustive test generation was proposed in [BSMS81].Thereafter, extensive works have been done to develop good mechanisms for generatingpractically acceptable pseudoexhaustive test sets.In the sixth chapter we present an e�cient algorithm for constructing pseudoexhaustivetest sets. This algorithm has also applications to the design of threshold circuits and faulttolerant systems. By using this algorithm one can generate an acceptable test set for smallk and practical n (k � 10; n � 1024).Generally, the pseudoexhaustive test sets constructed by available algorithms are oftentoo large to be used, and their cardinalities are much larger than the upper bounds ofthe corresponding optimal pseudoexhaustive test sets. One of the alternatives is the



pseudorandom test. It has been shown that a fairly small pseudorandom test set canreach a high probability of the pseudoexhaustive test.The main reason for using the pseudorandom test is that one can avoid the long andcomplex algorithmic test generation procedure. The pseudorandom techniques have twoimportant applications. One is to generate a short random test preceding the long andlaborious deterministic test to catch easy detect fault, another is to design built-in self testcircuits. However, the pseudorandom test can not always guarantee the very high faultcoverage. In order to improve the quality of pseudorandom test, a number of techniqueshave been proposed. The input signal biased random test and pattern biased random testare typical examples [Hart91, Hart93, SLC71, Wund87]. Their common idea is to design aspecial pseudorandom test generator for a given circuit by using the information about thegiven circuit fully. A so designed pseudorandom test generator is related to the structureof the given circuit, and its application is limited. Furthermore, the desired informationfor designing a properly weighted random test generator is not always available.The seventh chapter proposes a new concept { Monomial Oriented Pseudorandom Test.Its key idea is to design a monomial oriented pseudorandom test generator that allows afairly small test set to cover all small monomials. A monomial oriented pseudorandom testgenerator is not related to a concrete circuit structure, then its application is not limitedto a concrete circuit. In chapter seven, we give a theoretical analysis of the soundnessof such kind of pseudorandom test generators, and present some experimental results todemonstrate their advantages as well.AcknowledgmentsI wish to express my heartfelt thanks to my supervisor Prof. G�unter Hotz. He gave me thisinteresting theme and a lot of concrete instructions. Without his patient help, this workwould never have been �nished. He provided me also the opportunity to learn German.My thanks go to Uwe Sparmann who helped me a lot during several year's cooperation.Tanks also go to Armin Reichert and Bj�orn Schie�er who read the manuscript carefullyand gave detailed comments.I am grateful to many German and Chinese colleagues for their advice and encourage-ment. I am indebted to Michael Biwersi, Thomas Busch, Wolfgang Collet, Thomas Fettig,Joachim Hartmann, Mattias Krallmann, Gisela Pitsch, Elmar Sch�omer, and Juergen Sellenfor their help.Here perhaps is an appropriate opportunity to express my deep gratitude toProf. Wei Daozhen and Prof. Zhang Huangou who are the �rst two teachers in my aca-demic kindergarten.



Chapter 1VLSI Systems and TestsThis Chapter consists of four sections. In section 1.1 we give a formal description of theVLSI systems by using X-category theory developed in [Hotz65], so that we can simplifyour discussion and generalize the results easily. Section 1.2 is about the fault model andtest. In section 1.3 we discuss the problem of the functional test. Section 1.4 presents abrief view of the structural test generation for the regular VLSI systems.1.1 X-Category and VLSI SystemsA semigroup (S;2) is a set S and together with an associative binary operation2 : S2 �! S .A monoid (M;2; u) is a semigroup (M;2) with an element u 2 M such thatu2x = x2u = x for all x 2M . Such an element is called unit of M .Given a set E, de�neE� = fa1:::ak j ai 2 E; for i = 1; :::; k; k 2 N0g:E� includes all of the �nite strings over E. The length of the string s = a1:::ak (ai 2 E)is k. In case k = 0, s is an empty string denoted by the symbol �.H is called a free monoid, when there is system of generators E of H such that thecanonical homomorphism � : E� �! H is isomorphism [Hotz90].Let T = ft1; t2; :::; tmg be the set of the basic types of signals which can be transferredthrough a (symbolic) line or (symbolic) bus in VLSI systems. A signal type ti 2 T consistsof a number of signals called individuals(values). For instance, the 1-bit binary signal typeincludes logic 0 and logic 1 as its individuals, and a line of such a signal type can transferboth logic 0 and logic 1.Let � be the concatenation operation of elements in T �, andt1 : : : tk � tk+1 : : : tn = t1 : : : tnand t1 : : : tk � � = � � t1 : : : tk = t1 : : : tk :



for ti 2 T �. Then (T �; �) is a free monoid having the empty element � as its unit. In thisChapter, we use Iti to denote the set of all individuals of the signal type ti and regard Iuvas Iu � Iv for u; v 2 T �.Let A be the set of all building blocks of the VLSI systems. Every line in an elementF 2 A has a signal type. Two functionsQ;Z : A �! T �are used to determine the input and output types of building blocks in A. For instance,the input type and output type of F 2 A are Q(F ) and Z(F ), respectively.Given two building blocks F;G 2 A, we can construct a new building block by usingthe parallel operation "� ", and the new building block is illustrated by Fig. 1.1. In casethe output type Z(G) of G is equal to the input type Q(F ) of F , we can construct a newbuilding block by using the sequential operation " � ". Fig. 1.2 shows the new buildingblock which is constructed by linking the ith output line of G directly to the ith inputline of F .
Fig. 1.1: F �GF G? ?� � �� � � ? ?� � �� � �? ? ? ? Fig. 1.2: F �G� � �F� � �G? ?? ?? ?� � �

For F;G 2 A Q(F � G) = Q(F )Q(G); Z(F �G) = Z(F )Z(G)Q(F �G) = Q(G); Z(F �G) = Z(F )Let BT = fB1; B2; :::g and DT = fLa; Da; Vab j a; b 2 Tg be two classes of basic build-ing blocks. Every basic building block Bi in BT has only one output line and at least oneline. The input and output types of Bi are Q(Bi) and Z(Bi), and the input and outputvalues of Bi are limited to IQ(Bi) and IZ(Bi), respectively. The elements in DT can beillustrated through the following �gures.



a??aFig. 1.3: La a a?�� ?@@?aFig. 1.4: Da b a?�� ?@@a b?@@ ?��Fig. 1.5: VabLa denotes a line, Da a fanout mechanism, and Vab two cross lines. For the threebuilding blocks, Q(La) = a; Z(La) = aQ(Da) = a; Z(Da) = aaQ(Vab) = ab; Z(Vab) = baLet A = BT [DT . A. The set of all building blocks of VLSI systems can be formallyde�ned as follows.1. A � A;2. F , G 2 A =) F �G 2 A;3. F , G 2 A and Z(G) = Q(F ) =) F �G 2 A.It has been shown that C = (T �;A; Q; Z; �)is a category, and C = (T �;A; Q; Z; �;�) (1.1)is an X-category [Hotz65]. In the following we present the formal de�nitions of categoryand X-category.De�nition 1.1 (category) C = (O(C);M(C); Q; Z; �) consisting of a set O(C) of ob-jects, a set M(C) of morphisms, two mappingsQ;Z :M(C)! O(C)and a mapping� : PC !M(C); PC = f(f; g) j Q(f) = Z(g) ^ f; g;2M(C)gis called category, provided that1. 8(f; g) 2 PC fQ(f � g) = Q(g) ^ Z(f � g) = Z(f)g;2. For all f; g; h 2M(C), f � (g �h) = (f �g)�h if f � (g �h) and (f �g)�h are de�ned;3. For every u 2 O(C) there is an identity 1u such that f � 1u = f and 1u � g = g forall f; g 2M(C) with Q(f) = u and Z(g) = u.



De�nition 1.2 (X-category) C = (O(C);M(C); Q; Z; �;�) is called X-category, pro-vided that the following �ve conditions are satis�ed.1. (O(C);M(C); Q; Z; �) is a category;2. (O(C);�) and (M(C);�) are monoids;3. Q;Z : (M(C);�)! (O(C);�) are two monoid homomorphisms;4. 8u; v 2 O(C) f1uv = 1u � 1vg;5. 8(g1; f1); (g2; f2) 2 PC f(g1 � f1)� (g2 � f2) = (g1 � g2) � (f1 � f2)g.Suppose t is the 1-bit binary signal type, and T = ftg. If DT = fLt; Dt; Vttg and BTincludes NOT, AND and OR gates, then the X-category C de�ned by (1.1) is correspondingto the whole combinational circuit system. It is corresponding to the whole tree system ifDT does not include the fanout mechanism Dt.Assume that a building block F 2 A implements a function f , and its domain andcodomain are denoted by Q0(f) and Z 0(f). (Q0(f) = IQ(F ); Z 0(f) = IZ(F )). Let T =fIuju 2 T �g. The setF = ff : Q0(f)! Z 0(f) j Q0(f); Z 0(f) 2 T �gincludes all the functions implemented by the elements of A.We de�ne two operations � and 
 over F . Given two functions f and g, f 
 g isa function from Q0(f)Q0(g) to Z 0(f)Z 0(g). In case Q0(f) = Z 0(g), f � g is de�ned as afunction from Q0(g) to Z 0(f). It can be shown thatK = (T �;F ; Q0; Z 0;�)is a category, and K = (T �;F ; Q0; Z 0;�;
) (1.2)is an X-category. In the following we investigate the relationship between the twoX-categories C and K by using functor.De�nition 1.3 (functor) Given two categoriesC = (O(C);M(C); Q; Z; �) and K = (O(K);M(K); Q0; Z 0;�)and two mappings �1 : O(C)! O(K) and �2 :M(C)!M(K);� = (�1; �2) is called a functor, provided that the following three conditions are satis�ed.1. 8F 2M(C) fQ0(�2(F )) = �1(Q(F )) ^ Z 0(�2(F )) = �1(Z(F ))g;2. 8F;G 2M(C)fQ(F ) = Z(G) =) �2(F �G) = �2(F )� �2(G)g;



3. 8u 2 O(C)n�2(1u) = 1�1(u)o.We de�ne two mappings�1 : T � ! T �; �1(t) = It; t 2 T �and �2 : A ! F ; �2(F ) = f if f : IQ(F ) ! IZ(F ); F 2 A:It is easy to check that:1. 8F 2 AfQ0(�2(F )) = �1(Q(F )) ^ Z 0(�2(F )) = �1(Z(F ))g;2. 8F;G 2 AfQ(F ) = Z(G) =) �2(F �G) = �2(F )� �2(G)g;3. 8u 2 T � n�2(1u) = 1�1(u)o.Thus � = (�1; �2) is a functor from C to K, and a functor from C to K as well since8F;G 2 Af�2(F � G) = �2(F )
 �2(G)g :Thereafter, we use operators � and � to replace � and 
, and substitute mappings Qand Z for Q0 and Z 0, provided that no confusion can be caused. For the sake of simplicity,we often call a basic building block cell and use a lower case letter to represent a functionimplemented by a building block represented by the corresponding upper case letter. Forexample, b is used to represent the function implemented by B 2 A. Lt is used to denotea line transferring signals of type t and the function �2(Lt) as well. Furthermore, we useu to represent �1(u) (u 2 T �), namely the set of values of type u. For instance, we usethe form f : tk �! t to represent a function from �1(tk) to �1(t).Every building block F 2 A implements a function �2(F ) : Q(F )! Z(F ). For ex-ample, La realizes an identical function for a, Da a function from a to a � a, and Vab afunction from a� b to b� a.Suppose x and y are two individuals of type a and b, respectively, then�2(La)(x) = x; �2(Da)(x) = xx and �2(Vab)(xy) = yx:1.2 Fault Models and TestMost of the literature on VLSI system tests uses the concepts de�ned by R. D. Eldred in[Eldr59], and formalized by J.P. Roth in [Roth66], in which only stuck-at-1 and stuck-at-0faults are considered. Although the stuck-at fault model can model a lot of the faultsoccurring actually in a system, there still exist many faults that can not be modeled byit. In this thesis, we consider two fault models. The �rst is the single line individual faultmodel, and the second is the single cell de�nition fault model.



1.2.1 Single line individual fault modelFor two distinct individuals x; y 2 t, Lx!y denotes a cell realizing the following function.�2(Lx!y) : t �! t; t 2 T�2(Lx!y)(z) = ( y : z = xz : z 6= x for x; y; z 2 t (1.3)In case t consists of 1, 2, 3 and 4, x and y are 1 and 2, then Table 1.1 shows just thede�nition of �2(L1!2). z 1 2 3 4�2(L1!2)(z) 2 2 3 4Table 1.1A single line individual fault in a building block changes a line Lt in the building blockinto a cell Lx!y (x; y 2 t). The individual x 2 t is a test for this fault since�2(Lt)(x) = x 6= y = �2(Lx!y)(x):A line is called fanout-stem if it has fanout branches. Otherwise, it is called input-line.Under the line individual fault model, we are required to consider only the faults on theinput-lines and fanout-stems. ��	 @@Rfanout-stemBFig. 1.6: Fanout-stem and Input-line? ?input-lineLike the popular stuck-at fault model, the line individual fault model has also someshortages and can not model all the faults in a cell. In some cases, one knows the functionde�nition of a cell, but he has no further information about the internal structure of thecell. It has been shown that a given function can have di�erent realizations which mighthave di�erent minimal complete test sets. The cell de�nition fault model de�ned in nextsubsection can avoid this problem to some extent.1.2.2 Single cell de�nition fault modelAssume F 2 A. The single cell de�nition fault model assumes that a basic cellB in F implements a function �2(B0) : Q(B0)! Z(B0) instead of the desired function�2(B) : Q(B)! Z(B) due to a fault. However, Q(B) = Q(B0) and Z(B) = Z(B0), andthere is an x 2 Q(B) such that �2(B)(x) 6= �2(B0)(x). The element x 2 Q(B) is a test



for this cell de�nition fault. To test cell B completely, every element in Q(B) has to beapplied to it. A complete test set of F consists of a number of patterns from Q(F ), andby applying them to F every basic cell in F can be tested exhaustively.We say that a fault u dominates another fault v, when every test for u is also a testfor v.Assume that cell B is desired to realize a function b : t � � � � � t| {z }k ! t. Then we canconsider that B should realize a function Lt � b � (Lt � Lt � � � � � Lt| {z }k ), where Lt representsan input or output line linked to the cell B. Suppose there is a line individual fault atthe �rst input line that changes the line Lt into a cell Lx!y. Then it causes the cell B toimplement a function Lt � b � (Lx!y � Lt � � � � � Lt| {z }k�1 ). Thus a line individual fault on thelines of B can be considered as a cell de�nition fault in the cell B. A complete test set forthe cell de�nition faults in B is certainly a complete test set for the line individual faultson the input and output lines of B. This indicates that every single line individual faulton the input and output lines of a cell is dominated by a single cell de�nition faults of thecell. All fanout-stem faults and input-line faults in F 2 A are dominated by cell de�nitionfaults in F . This fault model is suitable to the VLSI systems with a regular structure.The signal type of the input and output lines of NOT, AND and OR gates is f0; 1g. Ifonly these gates are considered to be the basic cells of BT , the line individual faults arecalled stuck-at faults conventionally, and the single stuck-at fault model is often adopted.It is assumed that every cell de�nition fault in NOT, OR and AND gates can be dominatedby stuck-at faults.Given an F 2 A, we use Ff to denote the set of cells which are induced by a singlefault of any basic cell in F .De�nition 1.4 (complete test set) D(F; Ff) � Q(F ) is a complete test set of F 2 Aif and only if 8F 0 2 Ff9x 2 D(F; Ff) ��2(F )(x) 6= �2(F 0)(x)	 (1.4)Q(F ) is the set of all input patterns of F , and it includes always a complete test setfor the irredundant F 2 A. Q(F ) is a complete test set of F . However, it can not beused when #Q(F ) is too large. One has to choose a subset of Q(F ) as the test set. Theproblem is how to generate an acceptable subset, which is a complete test set of F . Weare also interested in the construction of the minimal complete test set for F .1.3 Functional TestGiven a fault model and an F 2 A, a complete test set of F regarding the given fault modelconsists of a number of patterns from Q(F ). By applying them to F every concerned faultcan be tested.Assume that we know nothing about the concrete structure of F but the functionexpression of �2(F ). Then the functional test has to be done. Among the approaches to



functional test are the pseudoexhaustive, random, and universal tests. In this section weconsider the generation of a universal test set for every irredundant realization of �2(F ).If �2(F ) has a special property, a universal test set which is a complete test set for anyof a variety of di�erent irredundant realizations of �2(F ) may be found. Akers [Aker73]examines the problem of �nding the universal test set, and shows that, for AND/ORnetworks, universal test sets may be found, and the universal test sets detect not only allsignal faults but also all multiple faults.Assume �2(F ) to be a more general function belonging to F . In this section we explorethe possibility of and the di�culty in the generation of a universal test set for �2(F ).Suppose F0 and F1 are two di�erent realizations of �2(F ), and F1 can be transformedinto F0 by obeying some transformation regulations. We derive some fault transformationrules from the structure transformation regulations. According to these rules we cantransform the faults associated with F1 into some faults associated with F0 so that acomplete test set concerning the faults in F0 is also a complete test set for F1.Before further discussion we construct twoX-categories B and D. Their morphism setsare BT and DT de�ned below.1. The de�nition of BT :� BT � BT ;� F �G 2 BT if F , G 2 BT ;� F �G 2 BT if F , G 2 BT and Z(G) = Q(F ).2. The de�nition of DT :� DT � DT ;� F �G 2 DT if F , G 2 DT ;� F �G 2 DT if F , G 2 DT and Z(G) = Q(F ).It is easy to show that bothB = (T �;BT ; Q; Z; �;�) and D = (T �;DT ; Q; Z; �;�)are X-categories. An element in BT is called B-tree, while an element in DT is calledD-tree.Assume that G 2 A, Q(G) = � = a � � �a| {z }k and Z(G) = a. Then both building blocksDa�G and (G�G)�D� implement the same function. The former can be transformed intothe latter. We call such a building block transformation a basic transformation. Fig. 1.7illustrates the basic transformation.Given a function f 2 F , there are various realizations of f . The following lemma,due to G. Hotz, states that every realization of f can be transformed into a standardrealization which is made up of two trees.Lemma 1.1 For every F 2 A there is an F 0 = B0 �D0 with B0 2 BT and D0 2 DT suchthat �2(F ) = �2(F 0) holds for every functor � = (�1; �2) from C to K.



The details of the proof of this lemma can be found in [Hotz74] .Fig. 1.8 illustrates that for a given function f there are a number of realizations, andeach of them can be transformed into a standard realization F0 made up of a D-tree andB-tree.The basic transformation is the replacement of the building block H = Da � G withH 0 = (G� G) �D� as illustrated by Fig. 1.7.
��	 a@@R?a ?aG� � � G� � � (= G� � �block HD�? ? ? ? ?a ?a����� PPPPP����� PPPPPa a� � �block H 0Fig. 1.7: Basic-Transformation

@@@��� ��� @@@??D-treeB-tree (= Fn...F1F0 f��������� AAAAAAAAAAAAU@@@@RPPPPPPPPPPPPi ������������)Fig. 1.8: Realization-TransformationFor cell de�nition fault model, cell faults dominate all line individual faults. Assumethat an F 2 A is transformed into F 0 through a basic transformation. Some single cellfaults in F are transformed into multiple cell faults in F 0. Furthermore, some single cellfaults in F 0 have no equivalent fault in F . A complete test set of multiple cell faults forF0 is a complete test set of single cell faults for each of F1, ..., Fn.Assume that F1, ..., Fn can be transformed into F0, which is a standard realization.Then we can state that a complete test set of multiple cell faults for B-tree in F0 is acomplete test set of single cell faults for each of F1, ..., Fn.



In case the line individual fault model is adopted, we assume that all concerned cellde�nition faults can be dominated by line individual faults. As mentioned in section 1.2.1,we are required to consider only faults on the fanout-stems and input-lines. Suppose Fcan be transformed into F 0 through a basic transformation demonstrated in Fig. 1.7, thena fanout-stem fault in F is transformed into a multiple input-line fault in F 0, and a singleinput-line fault in F is transformed into a fanout-stem fault in F 0. Furthermore, somesingle input-line faults in F 0 have no equivalent fault in F . A complete test set of multipleline faults for F0 is a complete test set of single line faults for each of F1, ..., Fn.Assume that F1, ..., Fn can be transformed into a standard realization F0. We canconclude that a complete test set of multiple line faults in F0 is a complete test set ofsingle line faults for each of F1, ..., Fn. However, whether the complete test set of singleline faults for all F1; :::; Fn is a complete test set of multiple line faults for F0 is an openproblem.Observation 1.1 The complete test set of the multiple variable faults for all of the booleanexpressions of f is a complete test set of single-stuck-at faults for all of the realizations ofthe function f .Our argument for this observation is the following.Assume that the basic cells used to realize f are NAND and NOR gates. Every real-ization Fi 2 A implementing the given function f can be transformed into a standardrealization F0 consisting of a D-tree and B-tree. A complete test set for multiple linefaults in F0 is a complete test set for the single-stuck-at faults in Fi. Because every faulton the output line of a cell is dominated by some faults on some input lines, the mul-tiple line faults in D-tree of F0 dominate the multiple line faults in the B-tree. Then acomplete test set for the multiple line faults in D-tree of F0 is a complete test set for thesingle-stuck-at faults in Fi. A D-tree corresponds to a boolean expression of the functionf . The complete test set for multiple line faults in D-tree of F0 corresponds to a completetest set for the multiple variable faults in the boolean expression. Thus, the completetest set of the multiple variable faults for all of the boolean expressions of the function fis a complete test set of the single-stuck-at faults for all of the realizations of the function f .Assume that F0 includes n cells, and k� 1 possible faults can occur in every cell. Thenumber of the distinct multiple cell faults in F0 is equal tokXi=1 ni ! (k � 1)i = kn � 1:Suppose a boolean expression of f includes n variables, then the number of the distinctmultiple variable faults for the expression is equal to 3n � 1. The di�culty in generatinga complete test set for multiple faults is very clear. Generally speaking, it is not realisticto construct the universal test set for a system with many primary input lines.An interesting theoretical question is as follows: Given a boolean function f(x1; :::; xn)in which both xi and xi appear (i = 1; :::; n), for any input combination ~X = (a1; a2; :::; an);ai = 0 or 1, does there exist an irredundant circuit realization of f which requires the input~X as a test pattern in order to detect all stuck-type faults. To date this conjecture has



not been proven but no counterexample has been found[BrFr76]. If this conjecture is true,the universal test set for all the cells realizing such a function f has to include everycombination ~X = (a1; a2; :::; an); ai = 0 or 1.1.4 Structural TestThe discussion in section 1.2 gives us an impression that it is quit di�cult to generatea universal test set for a system with many primary input lines. If the system structureis regular and we know its structure information, the scene changes. In some cases, wecan not only determine the test complexity of the system, but also generate the minimumcomplete test set for it. We show this through a brief discussion on the test problem ofuniform trees.Assume T = ftg, BT = fBg and DT = fLa; Vab j a; b 2 Tg. Assume further thatQ(B) = t � � � t| {z }k and Z(B) = t. Then A de�ned in section 1.1 is the set of all uniform treesbased on the unique basic cell B. Before discussing the test problem deeply we study theassignment problem.De�nition 1.5 (assignment complexity) Given an S � Q(B) and an F 2 A. Acomplete assignment set CA(F ) for F regarding S is a subset of Q(F ). By applying all ofthe elements of CA(F ) to the primary input lines of F , every cell B in F can be excitedby all of the elements in S. The assignment complexity of F regarding S is de�ned as thecardinal number of the minimum complete assignment set of F .The assignment complexity of F depends upon the property of �2(B), namely, b. Inthe following we will show that F is O(1) assignable if b has certain property. In order todescribe this property we require a new symbol Dia which is de�ned as follows:1. D2a = Da, for a 2 T �;2. Di+1a = (Dia � La) �Da, for a 2 T �.The logical structure of Di+1a is illustrated by Fig. 1.9.
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In the rest of this Chapter we use � to denote the string t � � � t| {z }k , and T to stand for It.De�nition 1.6 ( b-stable set) Set S � T k is b-stable if and only if there are bijectivemappings �1; :::; �k : S ! S such that (b � �1 � � � � � b � �k) �Dk�(S) = S.Lemma 1.2 If S � T k is a b-stable set, then there are k bijective mappings�1; :::; �k : S ! S such that(b� � � � � b| {z }k ) � (�1 � � � � � �k) �Dk� (1.5)is the identical mapping of S.Proof: Suppose S � T k is b-stable, and (b � �1 � � � � � b � �k) � Dk� is a bijective map-ping from S to S. De�ne a bijective mapping �0 : S ! S as the inverse mapping of(b � �1 � � � � � b � �k) �Dk�. Hence,(b � �1 � � � � � b � �k) �Dk� � �0jS = idjS ;where idjS is the identical mapping of S.Because of Dk� � �0 = (�0 � � � � � �0| {z }k ) �Dk�;then(b � �1 � � � � � b � �k) �Dk� � �0 = (b � �1 � � � � � b � �k) � (�0 � � � � � �0| {z }k ) �Dk�= (b� � � � � b) � (�1 � �0 � � � � � �k � �0) �Dk�:



Replacing �i � �0 by �i, we have the lemma. Q.E.D.
Fig. 1.10 fbb@@@ ��� b@@@ ����1 �kDk���� @@@� � � � � �� � � � � �� � �� � � � � �� � �� � �� � �� � �? ?? ? ? ?? ?���� ���� HHHjHHHj

We use fb to denote the mapping de�ned by (1.5). Fig. 1.10 illustrates the structure offb. It is made up of two parts. The upper part (�1 � � � � � �k) �Dk� is a fanout mechanism,and it has one input line and k output lines of type � (k input lines and k2 output lines oftype t) and implements a mapping from tk to tk2 . The lower part (b� � � � � b| {z }k ) consists ofk b cells connected in parallel. A b cell can be considered as a uniform tree with k inputlines of type t (an input line of type �) and an output line of type t. Then (b� � � � � b| {z }k )can be considered as a building block made up of k uniform trees. It has k input linesand one output line of type �, and implements a mapping from tk2 to tk . The two partsrealize together an identical mapping for tk . The idea here is to construct a building blockwhich includes uniform trees and realizes an identical mapping for a set S. By applyingS to the building block, S is assigned to every uniform tree inside the building block. Inthe following we use this idea to construct a family of identical mappings F h(h 2 N). F hincludes h-level balanced uniform trees based on b.We use � to denote (�1 � � � � � �k) �Dk�, and fb to represent (b� � � � � b| {z }k ) � �. At�rst we give a recursive de�nitions of the balanced uniform tree Fh and fanout mechanism�h.Let N denote the set of all positive integers. The recursive de�nition for Fh is thefollowing. F0 = Lt (1.6)Fh+1 = B � (Fh � � � � � Fh| {z }k ); h 2 N (1.7)



Fig. 1.11 Fh+1B@@@ ���Fh@@@ ��� Fh@@@ ���� � �� � �� � � � � �?QQQQQs �����+? ? ? ?
Fig. 1.11 is the diagram of Fh+1. It is easy to see that Fh (h 2 N) is a balanceduniform tree of h-level. The �h-family is de�ned as follows:�0 = Lt (1.8)�h+1 = (�h � � � � � �h| {z }k ) � �; h = 1; 2; ::: (1.9)

Fig. 1.12 �h+1�h��� @@@ �h��� @@@���� @@@� � � � � � � � �� � �� � � � � �� � �� � �? ? ? ?? ?������� ������� HHHHHHjHHHHHHjFig. 1.12 is the diagram of �h+1. Using Fh and �h we can de�ne the F h-family.Fh = (Fh � � � � � Fh| {z }k ) � �h; h 2 N (1.10)Put it di�erently, Fh = (Fh � �h�1 � � � � � Fh � �h�1| {z }k ) � � (1.11)Fig. 1.13 is the diagram of F h.



Fig. 1.13 F hFhHHHHHH ������ FhHHHHHH �������h�1��� @@@ �h�1��� @@@���� @@@� � � � � �� � �� � � � � �� � �� � �� � �� � �? ?? ? ? ?? ?������9 ������9 XXXXXXzXXXXXXz
According to the above de�nition�2(F 1) = �2((B � � � � � B| {z }k ) � �)= fb:Let fh = �2(Fh) for h 2 N . Then fh is a mapping from S to S, and it is a general-ization of fb. The following lemma holds.Lemma 1.3 fhjS = idjS holds for all h 2 N.Proof: We prove this lemma by using induction on the parameter h. For h = 1, f1 = fband f1jS = idjS. Suppose f l�1jS = idjS holds. According to the above de�nitionFh � �h�1 = B � (Fh�1 � � � � � Fh�1| {z }k ) � �h�1= B � F h�1; h 2 N:Hence F l = (Fl � � � � � Fl| {z }k ) � �l= (Fl � � � � � Fl| {z }k ) � (�l�1 � � � � � �l�1| {z }k ) � �= (Fl � �l�1 � � � � � Fl � �l�1| {z }k ) � �= (B � F l�1 � � � � �B � F l�1| {z }k ) � �= (B � � � � � B| {z }k ) � (F l�1 � � � � � F l�1| {z }k ) � �:



Thus f ljS = (b� � � � � b| {z }k ) � (f l�1 � � � � � f l�1| {z }k ) � �jS= (b� � � � � b| {z }k ) � �jS= f1jS= idjS (1.12)Q.E.D.Theorem 1.1 If S � T k is b-stable, then #S is the cardinality of the minimum completeassignment set for each of the trees in A regarding S.Proof: Given a tree F 0 2 A, one can always �nd a balanced tree F 2 A so that F 0 can beembedded into F . The assignment complexity of F is an upper boundary of that for F 0.Thus trees in A are constant assignable if balanced trees in A are constant assignable.A balanced tree Fh+1 2 A has the structure B � (Fh � � � � � Fh| {z }k ). We know that�2((Fh � � � � � Fh| {z }k ) � �hjS) = idjSand (Fh � � � � � Fh| {z }k ) � �h(S) = S:This indicates that when �h(S) is applied to the primary input lines of Fh+1, every cellB in Fh+1 can be excited by all of the elements in S. Thus �h(S) is just a complete assign-ment set for Fh+1 regarding S, and the cardinality of the minimum complete assignmentset is #S. Q.E.D.De�nition 1.7 (sensitive) Assume M � T . Function b : T k ! T is sensitive if andonly if8i 2 [1; k]8y; y0 2M8x1 2M i�18x2 2Mk�i �y 6= y0 () b(x1yx2) 6= b(x1y0x2)	 :The sensitive property generalizes the group condition in [BeSp91].Lemma 1.4 Assume M � T . If b is sensitive, then Mk is b-stable.Proof: It su�ces to prove that for every i 2 [1; k], there is a bijective mapping�i :Mk !Mk such that b � �i(x1; :::; xi; :::; xk) = xi. Without loss of generality, we as-sume i = 1. Given a z 2 Mk�1, for every x 2 M there is a unique y 2 M suchthat b(yz) = x since b is sensitive. Let b�1(x) denote the set fX j b(X) = xg. Then#b�1(x) � #Mk�1. Because Px2M #b�1(x) = #Mk , then #b�1(x) = #Mk�1. Thus



we can construct a bijective mapping �1 : Mk ! Mk so that b � �1(xz) = x for everyz 2 Mk�1. In a similar way we can construct a bijective mapping �i :Mk ! Mk so thatb � �i(yxz) = x for all y 2M i�1 and z 2Mk�i, and(b� � � � � b) � (�1 � � � � � �k) �Dk� = idjS : Q.E.D.De�nition 1.8 (stable test set) Assume M � T . Mk is called b-stable test set if1. b is sensitive;2. The complete test set D(B;Bf ) of B is a subset of Mk;3. 8B0 2 Bf8u 2Mk f�2(B0)(u) 2Mg.Based on the third condition in the above de�nition (b� � � � � b0 � � � � � b) � �(Mk) isa subset of Mk for all B0 2 Bf , if Mk is a b-stable test set.Theorem 1.2 If Mk is a b-stable test set, then #Mk is the cardinality of the minimumcomplete test set for each of the trees in A.Proof: According to the same argument for the proof of Theorem 1.1, it is enough toconsider the balanced trees Fh+1 2 A.Let M � T , and Mk be a b-stable test set. According to the above de�nition andLemma 1.4,Mk is b-stable. Following Theorem 1.1, �h(Mk) is a complete assignment setfor Fh+1.Assume that there is a cell B in Fh+1 that implements function b0 (B0 2 Bf ) insteadof b due to a fault. Then there is a u 2Mk, and when u is applied to the defected cell, itoutputs b0(u) instead of b(u). In other words, u can sensitize the fault and drive a diagnosissignal b(u)=b0(u) to the output line of the defected cell. The output line of the defectedcell is either primary output line or a line linked directly to another cell B. According tothe third condition of the de�nition of the stable test set, both b(u) and b0(u) belong toM . The diagnosis signal b(u)=b0(u) can be further propagated towards the primary outputline since b is sensitive.Thus we can state that �h(Mk) is a complete assignment set as well as a complete testset for Fh+1. This implies that #Mk is the cardinal number of the minimum completetest set for Fh+1. Q.E.D.Corollary 1.1 If b : T k ! T is sensitive, then #T k is the cardinality of the minimumcomplete test set for F 2 A.The proofs of Theorem 1.1 and 1.2 are constructive. In fact, they correspond to the al-gorithms for constructing the minimal complete assignment set and the minimal completetest set for the balanced uniform tree based on function b.As mentioned, if b is sensitive, then T k is b-stable. However, b may not be sensitive,even though T k is b-stable. The di�erence between the stable and sensitive can be shown



by the following example.Example 1.1: Let M = f1; 2g and S = M2. Function b : S ! M de�ned below is notsensitive since b(1; 1) = b(2; 1) = 1. b 1 21 1 22 1 2However,�1 := f(1; 1)! (1; 1); (1; 2)! (2; 1); (2; 1)! (1; 2); (2; 2)! (2; 2)gand �2 := f(1; 1)! (1; 1); (1; 2)! (1; 2); (2; 1)! (2; 1); (2; 2)! (2; 2)gare two bijective mappings from S to S, and(b� b) � (�1 � �2) �D2S jS = idjS :It indicates that S is b-stable.De�nition 1.9 (related functions) Functions b1; b2 : T k ! T are said to be related toeach other (denoted by b1 ./ b2) if and only if there are bijective mappings �0 : T ! T and� : T k ! T k such that b2 = �0 � b1 � �.It is easy to show that ./ is an equivalence relation. In other words,1. 8b 2 F fb ./ bg;2. 8a; b 2 F fa ./ b =) b ./ ag;3. 8a; b; c 2 F fa ./ b ^ b ./ c =) a ./ cg.Lemma 1.5 Assume that b1 ./ b2 and S1 is a b1-stable set, then there is also a b2-stableset S2, and #S1 = #S2.Proof: Suppose there are bijective mappings �0 : T ! T and � : T k ! T k, such thatb2 = �0 � b1 � �. Assume S1 to be b1-stable and(b1 � �(1)1 � � � � � b1 � �(1)k ) �Dk� = idjS1for k bijective mappings �(1)1 ; :::; �(1)k : T k ! T k, where � = t � � � t| {z }k .Let �(2)i = ��1 ��(1)i � (��10 � � � � � ��10| {z }k ) (i 2 [1; k]), and S2 = (�0 � � � � � �0| {z }k )(S1), then(b2 � �(2)1 � � � � � b2 � �(2)k ) �Dk�(S2)= (b2 � ��1 � �(1)1 � � � � � b2 � ��1 � �(1)k ) �Dk� � (��10 � � � � � ��10| {z }k )(S2)= (b2 � ��1 � �(1)1 � � � � � b2 � ��1 � �(1)k ) �Dk�(S1):



Notice thatidjS1 = (b1 � �(1)1 � � � � � b1 � �(1)k ) �Dk�= (��10 � b2 � ��1 � �(1)1 � � � � � ��10 � b2 � ��1 � �(1)k ) �Dk�= (��10 � � � � � ��10| {z }k ) � (b2 � ��1 � �(1)1 � � � � � b2 � ��1 � �(1)k ) �Dk�:Thus (b2 � ��1 � �(1)1 � � � � � b2 � ��1 � �(1)k ) �Dk�= (�0 � � � � � �0| {z }k ) � idjS1and (b2 � �(2)1 � � � � � b2 � �(2)k ) �Dk�(S2)= (�0 � � � � � �0| {z }k ) � idjS1(S1)= (�0 � � � � � �0| {z }k )(S1)= S2:It indicates that S2 is b2-stable, and #S1 = #S2. Q.E.D.De�nition 1.10 (equivalent functions) Functions b1; b2 : T k ! T are considered tobe equivalent to each other (denoted by b1 � b2) if there is a bijective mapping � : T ! Tsuch that b2 = ��1 � b1 � (�� � � � � �| {z }k ).Theorem 1.3 Suppose b1 � b2, b2 = ��1 � b1 � (�� � � � � �| {z }k ) for a bijective mapping� : T ! T . Assume Fh and F 0h to be uniform trees based on B1 and B2, respectively. Then� both trees Fh and F 0h have the same assignment complexity;� assume that Db1 = fr=s j r 6= s ^ r; s 2 Tg and Db2 = f�(r)=�(s) j r=s 2 Db1g arethe diagnosis signal sets of B1 and B2, then both trees Fh and F 0h have the same testcomplexity.Proof: This theorem includes two propositions. Coming up next is the proof of the �rstproposition.Suppose there is a bijective mapping � : T ! T such that b2 = ��1 � b1 � (�� � � � � �| {z }k ).



Let fh and f 0h denote �2(Fh) and �2(F 0h), respectively. Then�2(F1) = b1�2(Fh+1) = fh+1= b1 � (fh � � � � � fh)�2(F 01) = b2�2(F 0h+1) = f 0h+1= b2 � (f 0h � � � � � f 0h):De�ne �(1) = 0B@��1 � � � � � ��1| {z }k 1CA (1.13)�(h) = 0@�(h�1) � � � � � �(h�1)| {z }k 1A ; h = 2; 3; ::: (1.14)Let A(h)2 = �(h) �A(h)1 � (1.15)Now we show that 8h 2 Nnf 0h �A(h)2 � = ��1 � fh �A(h)1 �o :For h = 1,f 0h �A(h)2 � = f 01 �A(1)2 �= b2 ��(1) �A(1)1 ��= ��1 � b1 � (� � � � � � �| {z }k )0B@(��1 � � � � � ��1| {z }k ) �A(1)1 �1CA= ��1 � b1 �A(1)1 �= ��1 � fh �A(h)1 � :Suppose 8h � lnf 0h �A(h)2 � = ��1 � fh �A(h)1 �oholds. For h = l + 1, A(l+1)1 is a set of kl+1-component vectors. AssumeA(l+1)i = A(l)i;1A(l)i;2 � � �A(l)i;k, where A(l)i;j (i 2 [1; 2]; j 2 [1; k]) is a set of kl-component vec-tors. f 0h �A(h)2 � = f 0l+1 �A(l+1)2 �



= b2 � (f 0l � � � � � f 0l| {z }k ) �A(l+1)2 �= b2 � (f 0l � � � � � f 0l| {z }k ) �A(l)2;1 � � �A(l)2;k�= b2 �f 0l �A(l)2;1� � � �f 0l �A(l)2;k��= ��1 � b1 � (�� � � � � �| {z }k ) ���1 � fl �A(l)1;1� � � ���1 � fl �A(l)1;k��= ��1 � b1 � �fl �A(l)1;1� � � �fl �Al1;k��= ��1 � b1 � (fl � � � � � fl| {z }k ) �A(l+1)1 �= ��1 � fl+1 �A(l+1)1 �= ��1 � fh �A(h)1 � :Now we show that whenever A(h)1 is a complete assignment set for Fh, A(h)2 de�ned by(1.15) is a complete assignment for F 0h.For h = 1, it is trivial that A(1)1 � T k implies that �(1)(A1) � T k. Thus if A(1)1 is acomplete assignment set for F1, then A(1)2 is a complete assignment set for F 01.Assume that for h � l, if A(h)1 is a complete assignment set for Fh, then A(h)2 is acomplete assignment set for F 0h.Suppose A(l+1)1 = A(l)1;1A(l)1;2 � � �A(l)1;k is a complete assignment set for Fl+1. SinceFl+1 = B1 � (Fl � � � � � Fl| {z }k )and fl+1 �A(l+1)1 � = b1 �fl �A(l)1;1� � � �fl �A(l)1;k�� (1.16)then A(l)1;j is a complete assignment of Fl for every j 2 [1; k] andfl �A(l)1;1� � � �fl �A(l)1;k�is a complete assignment set for the cell B1. This implies that �(l) �A(l)1;j� is a completeassignment set of F 0l for every j 2 [1; k] and(��1 � � � � � ��1| {z }k ) �fl �A(l)1;1� � � �fl �A(l)1;k��is a complete assignment set for the cell B2.



Notice thatf 0l+1 �A(l+1)2 � = f 0l+1 ��(l+1)A(l+1)1 �= f 0l+10@(�(l) � � � � � �(l)| {z }k ) �A(l)1;1 � � �A(l)1;k�1A= b2 �f 0l ��(l) �A(l)1;1�� � � �f 0l ��(l) �A(l)1;k���= b2 ���1 � fl �A(l)1;1� � � ���1 � fl �A(l)1;k��= b20B@(��1 � � � � � ��1| {z }k ) �fl �A(l)1;1� � � �fl �A(l)1;k��1CA :This indicates that A(l+1)2 = �(l+1) �A(l+1)1 � is a complete assignment set to F 0l+1. Thuswe can state that if A(h)1 is a complete assignment set to Fh, then A(h)2 de�ned by (1.15)is certainly a complete assignment set to F 0h.To prove the second proposition, we are required only to show that whenever a patternx 2 T k can propagate a diagnosis signal r=s 2 Db1 through a cell B1, the correspondingpattern (� � � � � � �)(x) can propagate the associated diagnosis signal �(r)=�(s) 2 Db2through a cell B2. This is immediate since8x; y 2 T k nb1(x) 6= b1(y) =) b2 � (��1 � � � � � ��1)(x) 6= b2 � (��1 � � � � � ��1)(y)o :Q.E.D.Example 1.2: The following tabular illustrates the de�nitions of binary functions ^ and _.x y ^ _0 0 0 00 1 0 11 0 0 11 1 1 1Let T = f0; 1g and�0 : = f0! 1; 1! 0g;� : = f(0; 0)! (1; 1); (0; 1)! (1; 0); (1; 0)! (0; 1); (1; 1)! (0; 0)g:It is easy to check that �0 is a bijective mapping from T to T , and � from T 2 to T 2.Furthermore, � = (��10 � ��10 ) and _ = �0 � ^ � �.Assume F to be a uniform tree based on ^, and F 0 is induced by replacing every ^ cellin F with a _ cell. Then F and F 0 have the same assignment and test complexity.The following corollary is immediate from Theorem 1.3.Corollary 1.2 Assume G : (M; f) �! (M; g) to be a morphism. Fh and F 0h based on fand g, respectively, have the same test complexity if G is an isomorphism.



Chapter 2Assignment Complexity ofUniform TreesThis Chapter discusses the assignment complexity of the uniform tree, which is madeup of identical cells realizing a function f . A complete assignment set for a tree withn primary input lines consists of a number of n-component patterns. When a completeassignment set is applied to the primary input lines of the tree, every internal f cell inthe tree can be excited by all possible input combinations. The assignment complexity ofa tree is de�ned as the cardinal number of the minimum complete assignment set of thetree. The assignment problem is a basic problem in the design, test and optimization ofVLSI systems. We analyze the relationship between the property of f and the assignmentcomplexity of the uniform tree and show that the assignment complexity of a balanceduniform tree with n primary input lines is either �(1) or 
((lgn)�) (� 2 (0; 1]). In the�rst case, the cardinal number of the minimum complete assignment set for a tree isconstant and independent of the size and structure of the tree. In the second case, theassignment complexity depends on the number of the primary input lines of the tree. If abalanced uniform tree is based on a commutative function, then it is either �(1) or �(lg n)assignable.This Chapter consists of six sections. In section 2.1 we give a formal de�nition of theassignment complexity of uniform trees and make some conventions. Section 2.2 is on thesu�cient and necessary condition of �(1) assignable uniform trees. Section 2.3 exploresthe jump of the assignment complexity from �(1) to 
((lgn)�). In section 2.4 we convertthe assignment problem into the algebraic problem. Section 2.5 shows that a balanceduniform tree based on a commutative function is either �(1) or �(lgn) assignable, andgives also an upper bound of the cardinality of the minimum complete assignment set forthe �(1) assignable balanced uniform trees. Section 2.6 is on the complexity of decidingthe assignment complexity of balanced uniform trees.2.1 Assignment Complexity of Uniform TreesLet M be a set of m symbols, and f : Mk �! M a surjective function. Without loss ofgenerality we assume M = f1; 2; :::;mg. We use the symbol f to represent a function as



well as a cell implementing the function. A uniform f -tree is made up of identical cellsimplementing the function f . The set of all f -trees is denoted by Tf . T (n)f is used todenote a balanced uniform f -tree with n primary input lines. Fig. 2.1 shows a balancedtree. If every cell Ci;j realizes the same function f :Mk �!M , then it is a uniform tree.We assign every line and cell in T (n)f a unique level. The levels are arranged in ascendingorder from the primary output line to the primary input lines of T (n)f . The primary outputline is assigned level 0. An f cell and all its input lines are assigned level k+1, if its outputline is in level k. A tree is said to be of k-level, if it has k levels.For the sake of convenience, we make some conventions. Throughout this thesis,fa; a; ag and fa; ag are recognized as two di�erent multiple sets. The cardinal numberof the former is three, and that of the latter is two. A multiple set can be changed intoa conventional set by using operator >. For example, >fa; a; ag= >fa; ag = fag and>fb; c; bg = fb; cg. For a multiple set A, #A represents the elements number of A. Forexample, #fa; a; ag= 3.Let ~Ij = (I1j ; I2j; :::; Itj)T ; j 2 [1; k]; Iij 2M(~I1; ~I2; � � � ; ~Ik) := 0BBBB@ I11; I12; :::; I1kI21; I22; :::; I2k...It1; It2; :::; Itk 1CCCCA (2.1)According to function f we de�ne a vector function ~f as follows:~f(~I1; ~I2; � � � ; ~Ik) := 0BBBB@ f(I11; I12; :::; I1k)f(I21; I22; :::; I2k)...f(It1; It2; :::; Itk) 1CCCCA (2.2)
Fig. 2.1: A balanced tree?C1;1? ?C2;1 C2;2? C2;k? ? ? ? ? ?C3;1 C3;2? C3;k ? C3;2k ? C3;k2??? ??? ??? ??? ??? ??? ??? ??? ???



Fig. 2.2Is0...I20I10?f
?Is1...I21I11 ?Is2...I22I12 � � �� � �...� � �� � � ?Isn...I2nI1n

Is0...I20I10?~f() ?Is1...I21I11 ?Is2...I22I12 � � �� � �...� � �� � � ?Isn...I2nI1n
It is easy to see that applying t k-component patterns to an f cell is equal to assigning kt-dimension vectors to the k input lines of the f cell. Fig 2.2 gives us a simple illustration.Let Dt = f(x1; :::; xt)T j xi 2Mg, namely, the set of all t-dimension vectors (t 2 N).Given k vectors in Dt, by using operator r one can construct a set of t k-componentpatterns, and (2.3) is the formal de�nition of this operator.r(~I1; ~I2; � � � ; ~Ik) := f(Ii1; Ii2; :::; Iik) j i 2 [1; t]g (2.3)Example 2.1: Function f1 is de�ned as follows.f1 0 10 1 11 1 0Let ~I0 = 0BBBBB@ 00111 1CCCCCA ; ~I1 = 0BBBBB@ 11100 1CCCCCA ; ~I2 = 0BBBBB@ 11010 1CCCCCA



Then ~f1 �~I1; ~I2� = 0BBBBB@ f1(1; 1)f1(1; 1)f1(1; 0)f1(0; 1)f1(0; 0) 1CCCCCA = 0BBBBB@ 00111 1CCCCCA = ~I0and r �~I1; ~I2� = f(1; 1); (1; 1); (1; 0); (0; 1); (0; 0)g :Assume that a T (n)f consists of cells C1;1; C2;1; C2;2; :::; Ck;l; :::, and cell Ci;j is the jthcell in the ith level of T (n)f . Let A be a set of n-component patterns, and #A = t. Whenall of the patterns in A are applied to the primary input lines of T (n)f , a t-componentvector is delivered to every line in T (n)f . To apply all of the t patterns to the n primaryinput lines of T (n)f is the same as to apply n t-component vectors to the n primary inputlines, respectively. We use ~Il(A; i; j) to denote the corresponding vector applied to the lthinput line of an f cell Ci;j , and ~I0(A; i; j) to denote the vector delivered to the output lineof the cell. Then ~I0(A; i; j) = ~f(~I1(A; i; j); ~I2(A; i; j); � � � ; ~Ik(A; i; j)).In order to classify the assignment complexity of uniform trees we give a formal de�ni-tion of the complete assignment and the assignment complexity.De�nition 2.1 (assignment of uniform trees) (~I1(A; i; j); ~I2(A; i; j); � � � ; ~Ik(A; i; j)) iscalled a complete assignment of cell Ci;j if and only ifMk � r(~I1(A; i; j); ~I2(A; i; j); � � � ; ~Ik(A; i; j)):A is a complete assignment set of T (n)f if and only if(~I1(A; i; j); ~I2(A; i; j); � � � ; ~Ik(A; i; j)) is a complete assignment for every cell Ci;j in T (n)f .Fig. 2.3 shows a complete assignment set to T (4)f1 . By assigning �ve patterns(1; 1; 1; 1),(0; 1; 1; 1),(1; 1; 0; 1),(1; 0; 1; 0) and (0; 0; 0; 0) to the four primary input lines ofT (4)f1 , one can guarantee that each of (0; 0), (0; 1), (1; 0) and (1; 1) can be applied to everycell in T (4)f1 . Thus we can state that the �ve patterns comprise a complete assignment setto T (4)f1 .It is obvious that f has to be surjective to M , otherwise, one could not construct acomplete assignment set for a tree system T (n)f (n > 2).De�nition 2.2 (assignment complexity of uniform trees) The assignment complex-ity of balanced uniform tree T (n)f is de�ned by the mappingACf : Tf �! NACf �T (n)f � = min(#A ����� A is a completeassignment set for T (n)f ) (2.4)



Fig. 2.3: Complete assignment for T (4)f1f1-0 0 1 1 1 1 1 1 0 0-0 1 0 1 1 -- f1 -0 0 1 1 1f1-0 0 1 1 1 1 1 0 1 0-0 1 1 0 1
In a tree, all cells at the same level can be assigned simultaneously since their inputlines are independent of each other. Furthermore, all cells at the same level can be excitedcompletely by using mk patterns. A straightforward conclusion is that all cells in T (n)f canbe excited completely by using mkdlg ne patterns since T (n)f has at the most dlgne levels.Thus we have the following observation.Observation 2.1 For arbitrary surjective function f :Mk �!MACf �T (n)f � � mkdlg ne= O(lgn) (2.5)2.2 �(1) Assignable TreesIn this section we discuss the criteria of �(1) assignable uniform tree systems.Lemma 2.1 T (n)f is �(1) assignable if there are a t 2 N and a set W � Dt so that every~I0 2 W can be generated by using k vectors ~I1; ~I2; � � � ; ~Ik which belong to W and comprisea complete assignment to an f cell. Put it formally,9t 2 N9W � Dt8~I0 2 W9~I1; ~I2; � � � ; ~Ik 2 W ( Mk � r(~I1; ~I2; � � � ; ~Ik)~f(~I1; ~I2; � � � ; ~Ik) = ~I0 ) (2.6)Proof: We prove that for every N -level T (n)f we can construct a complete assignment setA(N) by assigning to every primary input line a vector in W 2 Dt. Then #A(N) is equal



to the constant t. This can be proven by using induction on the number of the level ofthe tree.In case N = 1, the tree has only one cell. We choose an arbitrary ~I0 2 W , then deter-mine k vectors ~I1; ~I2; � � � ; ~Ik 2 W so thatMk � r(~I1; ~I2; � � � ; ~Ik) and ~f(~I1; ~I2; � � � ; ~Ik) = ~I0.It is clear that r(~I1; ~I2; � � � ; ~Ik) is a complete assignment for the tree with only one cell.Assume that for N = i one can construct a complete assignment set A(i) for an i-levelT (n)f by assigning to every primary input line of T (n)f a vector in W , and the vector assignedto the jth primary input line is ~Ij;0 2 W . Suppose T (kn)f is of i+1 levels and is constructedby connecting every primary input line in T (n)f to the output line of an f cell.According to the assumption, there are ~Ij;1; ~Ij;2; � � � ; ~Ij;k 2 W such thatMk � r(~Ij;1; ~Ij;2; � � � ; ~Ij;k) ^ ~f(~Ij;1; ~Ij;2; � � � ; ~Ij;k) = ~Ij;0:Hence (~Ij;1; ~Ij;2; � � � ; ~Ij;k) is a complete assignment for an f cell. When ~Ij;1; ~Ij;2; � � � ; ~Ij;kare applied to the k input lines of the cell linked directly to the jth input line in thelevel i, the vector o�ered to this input line is just ~Ij;0. Thus we can construct a completeassignment to every cell in level i+ 1 by assigning to every primary input line in T (kn)f avector in W , and all of the vectors delivered to the lines in level i comprise A(i), which isa complete assignment set for T (n)f as assumed. All of the vectors assigned to the lines inlevel i+ 1 comprise the A(i+1) which is a complete assignment set for T (kn)f . Thus we canconclude that #A(i) = #A(i+1) and T (n)f is �(1) assignable. Q.E.D.For ~I1; ~I2; � � � ; ~Ik 2 Dt, we regard �~I1; ~I2; � � � ; ~Ik� as a t � k matrix, and ~I 2 Dt as a1 times k matrix.De�nition 2.3 (similar matrices) Two matrices �~I1; ~I2; � � � ; ~Ik� and �~Ii1 ; ~Ii2 ; � � � ; ~Iik�are said to be similar to each other, denoted by �~I1; ~I2; � � � ; ~Ik� � �~Ii1 ; ~Ii2 ; � � � ; ~Iik�, if andonly if the former can be changed to the latter by using row exchanges.For example, 0BBBBB@ 0 00 11 01 11 1 1CCCCCA � 0BBBBB@ 0 00 11 11 01 1 1CCCCCA � 0BBBBB@ 1 11 11 00 10 0 1CCCCCAand 0BBBBB@ 00111 1CCCCCA � 0BBBBB@ 11100 1CCCCCA � 0BBBBB@ 11010 1CCCCCA



It is easy to see that for three arbitrary matrices Ai; Aj; Al, the following three state-ments hold.1. Ai � Ai;2. Ai � Aj =) Aj � Ai;3. Ai � Aj ^Aj � Al =) Ai � Al.Hence � is an equivalence relation.Corollary 2.1 T (n)f is �(1) assignable (ACf(T (n)f ) = �(1)) if there are a t 2 N and aset W 0 � Dt so that for every ~I0 2 W 0 there are ~I1; ~I2; � � � ; ~Ik 2 W 0, and they comprise acomplete assignment and can be transferred into a vector similar to ~I0. Put it formally9t 2 N9W 0 2 Dt8~I0 2 W 09~I1; ~I2; � � � ; ~Ik 2 W 0( Mk � r(~I1; ~I2; � � � ; ~Ik)~f(~I1; ~I2; � � � ; ~Ik) � ~I0 ) (2.7)Proof: Given a set W 0 � Dt (t 2 N), we can always induce a set W so that8~I 2 Dt n9~I 0 2 W 0 n~I 0 � ~Io =) ~I 2 Wo ^ 8~I 2 W9~I 0 2 W 0 n~I 0 � ~Io :The set W includes every vector which is similar to a vector in W 0. It is obvious thatW satis�es (2.6) if W 0 ful�lls (2.7). Q.E.DAs mentioned, applying t n-component patterns to the n primary input lines of T (n)f isequal to applying n t-dimension vectors to the n primary input lines respectively.Apply a complete assignment A to T (n)f . Let W be the set of the corresponding vectorsapplied to the primary input lines and the vectors delivered to other lines in every levelof T (n)f . Set W can be partitioned into a number of equivalence classes according to theequivalence relation �. It is not hard to see that the larger the number of the equivalenceclasses in W , the greater the dimension t of the vectors in W . The dimension t is justthe cardinality of A. We explore the relationship between the cardinality of A and thenumber of the equivalence classes in W .Given a complete assignment A to an N -level T (n)f , we can construct N sets in thefollowing way.Ws(A) := >n~Il(A; i; j) j i 2 [1; s]; j 2 [1; ki�1]; l 2 [0; k]o ; s 2 [1; N ] (2.8)Ws(A) includes all vectors delivered to a line in level i (i 2 [1; s]) and the vectordelivered to the primary output line.We partition Ws(A) into equivalence classes according to the equivalence relation �,and use #Ws(A)=� to denote the number of equivalence classes inWs(A). Observation 2.2is obvious.Observation 2.2 Assume A to be a complete assignment set of an N -level T (n)f . Then



1. 8s 2 [2; N ] fWs�1(A) � Ws(A) � Dtg;2. 8s 2 [2; N ] f1 � #Ws�1(A)=� � #Ws(A)=�g.Lemma 2.2 Assume A to be a complete assignment set to an N -level T (n)f . Then T (n)f is�(1) assignable if #W1(A)=� = 1 or #Ws(A)=� = #Ws�1(A)=� for an s 2 [2; N ].Proof: Assume A to be a complete assignment set for an N -level T (n)f . In case#W1(A)=� = 1, W1(A) includes only one equivalence class, and two arbitrary vectorsin W1(A) are similar to each other. Suppose W1(A) = f~I0; ~I1; ~I2; � � � ; ~Ikg, and ~I1; ~I2; � � � ;~Ik are the corresponding vectors applied to the k input lines of the f cell in the �rst level,and ~I0 is the vector delivered to the output line. #W1(A)� = 1 means that8l 2 [1; k]n~Il � ~I0o ^Mk � r(~I1; ~I2; � � � ; ~Ik)^ ~f(~I1; ~I2; � � � ; ~Ik) = ~I0:This implies that8~I 00 2 W1(A)9~I 01; ~I 02; � � � ; ~I 0k 2 W1(A)( Mk � r(~I 01; ~I 02; � � � ; ~I 0k)~f(~I 01; ~I 02; � � � ; ~I 0k) � ~I 00 ) :Thus T (n)f is �(1) assignable according to Corollary 2.1.Suppose #Ws(A)=� = #Ws�1(A)=� for an s 2 [2; N ]. As mentioned,8s 2 [2; N ] fWs�1(A) � Ws(A)g :This indicates that Ws(A) and Ws�1(A) have the same number of equivalence classes. Itis not hard to see that8~I0 2 Ws(A)9~I1; ~I2; � � � ; ~Ik 2 Ws(A)( Mk � r(~I1; ~I2; � � � ; ~Ik)~f(~I1; ~I2; � � � ; ~Ik) � ~I0 ) :Based on Corollary 2.1, T (n)f is �(1) assignable. Q.E.D.Lemma 2.3 Assume A to be a complete assignment set for an N -level T (n)f (N > 1),then 8s 2 [2; N ] �Ws�1(A) � Ws(A)	 (2.9)holds if T (n)f is not �(1) assignable.Proof: Suppose T (n)f is not �(1) assignable, and A is a complete assignment set for anN -level T (n)f . As mentioned, Ws(A) � Ws+1(A) for all s 2 [2; N ]. If Ws(A) = Ws�1(A)for an s 2 [2; N ], then #Ws(A)=� = #Ws�1(A)=�:According to Lemma 2.2, T (n)f is �(1) assignable. This contradicts the assumptiondirectly. Q.E.D.



Lemma 2.4 For every complete assignment set A for an N -level T (n)f8s 2 [2; N ] f#Ws(A)=� > sg (2.10)holds if T (n)f is not �(1) assignable.Proof: Suppose T (n)f is not �(1) assignable. According to Lemma 2.2,#W1(A)=� > 1 ^ 8s 2 [2; N ] f#Ws(A)=� > #Ws�1(A)=�g :Therefore, #Ws(A)=� > s. Q.E.D.In order to prove Theorem 2.1 and 2.2, we de�ne a setP (M; t) := 8><>:(1; � � � ; 1| {z }t1 ; 2; � � � ; 2| {z }t2 ; � � � ; m; � � � ; m| {z }tm )T ������� X1�i�m ti = t9=; (2.11)Every t-component vector in Dt is similar to a vector in P (M; t).Observation 2.3 For every complete assignment set A (#A = t) to an N -level T (n)f8~I 0 2 WN (A)9~I 2 P (M; t)n~I 0 � ~Io ^ #WN(A)=� � #P (M; t) (2.12)Theorem 2.1 T (n)f is �(1) assignable if and only if there are a t 2 N and a set W � Dtso that8~I0 2 W9~I1; ~I2; � � � ; ~Ik 2 W nMk � r(~I1; ~I2; � � � ; ~Ik) ^ ~f(~I1; ~I2; � � � ; ~Ik) � ~I0o (2.13)Proof: The if part follows Corollary 2.1 directly.Assume T (n)f to be �(1) assignable. Then there is a constant t 2 N, and one can con-struct a complete assignment set A of t patterns for an arbitrary T (n)f . Suppose lgn = Nand N > #P (M; t). Since8s 2 [1; N ] f1 � #Ws(A)=� � #P (M; t) < Ng ;there must be such an s 2 [2; N ] that #Ws(A)=� = #Ws�1(A)=�. Thus we can state thatthere is an s 2 [1; N ] so that8~I0 2 Ws(A)9~I1; ~I2; � � � ; ~Ik 2 Ws(A)( Mk � r(~I1; ~I2; � � � ; ~Ik)~f(~I1; ~I2; � � � ; ~Ik) � ~I0 ) : Q.E.D



2.3 Jump from �(1) to 
((lg n) 1m�1 )In this section we show that the assignment complexity of a T (n)f is either �(1) or
((lgn) 1m�1 ). In other words, there is a jump from �(1) to 
((lgn) 1m�1 ).Coming up next we explore the upper boundary of #P (M; t).Lemma 2.5 For #M = m,#P (M; t) =  t+m� 1m� 1 ! (2.14)Proof: Let p(#M; t) denote #P (M; t). We prove this lemma by using induction on m,which is the cardinal number of M .In case m = 1, p(1; t) =  t0 ! for all t 2 N. Suppose p(m; t) =  t+m� 1m� 1 ! form � i and all t 2 N. For m = i+ 1, based on the inductive assumption in the last step.p(m; t) = p(i+ 1; t)= X0�j�t p(i; t� j)= X0�j�t t� j + i� 1i� 1 != Xi�1�j�t+i�1 ji� 1 !=  t+ ii !=  t+m� 1m� 1 ! : Q.E.D.Theorem 2.2 T (n)f is either �(1) or 
((lgn) 1m�1 ) assignable.Proof: Suppose T (n)f is not �(1) assignable. It su�ces to show that #A = 
((lgn) 1m�1 )for every complete assignment set A of T (n)f .Assume T (n)f to be of N levels. According to Lemma 2.4 and Observation 2.3,N < #WN (A)=� � #P (M; t) (2.15)for every complete assignment set A. According to Lemma 2.5,N <  t +m� 1m� 1 ! :



Then t � N 1m�1 �m for m > 1. We know N = dlg ne. Thus we can conclude thatt = 
(N 1m�1 )= 
((lgn) 1m�1 ): Q.E.D.The parameter m in Theorem 2.2 is the cardinality of M . For M = f0; 1g, the param-eter m is 2. The following corollary is immediate from Observation 2.1 and Theorem 2.2.Corollary 2.2 Assume f to be a surjective function from f0; 1gk to f0; 1g. Then T (n)f iseither �(1) or �(lgn) assignable.2.4 Problem ConversionTheorem 2.1 gives a criterion of judging �(1) assignable uniform trees. And Theorem 2.2explores the structure of assignment complexity. In this section, we give a new criterionfor deciding the assignment complexity and convert the assignment problem of balanceduniform trees into the algebraic problem for exploring its aspects further.We use ~0 to denote the all-zero vector and ~1 the all-one vector. Assume that L is amatrix, and ~x, ~b, ~y, and ~c are vectors. When notations likeL~x = ~b; ~yL = ~care used, we implicitly assume the compatibility of sizes and forms of L, ~x, ~y, and ~c. If Lis an m � n-matrix, then ~x is a column vector with n components, ~b is a column vectorwith m components, ~y is a row vector of dimension m, and ~c is a row vector of dimensionn. We de�ne(x1; x2; � � � ; xn) � (y1; y2; � � � ; yn) () 8i 2 [1; n] fxi � yig(x1; x2; � � � ; xn) > (y1; y2; � � � ; yn) () (x1; x2; � � � ; xn) � (y1; y2; � � � ; yn)9i 2 [1; n] fxi > yigj(x1; x2; � � � ; xn)j = nX1�i�n jxijAssume that s = #Mk and Pj = (p(1)j ; p(2)j ; � � � ; p(k)j ) denotes the jth element of Mk.Let �l (l 2 [1; k]) be a projection of the lth component of Pj . For instance, �l(Pj) = p(l)j .Parameters b(l)ij (i 2 [1; m]; j 2 [1; s]; l 2 [0; k]) are de�ned as follows:b(0)ij = ( 1 : f(Pj) = i0 : otherwise ; b(l)ij = ( 1 : �l(Pj) = i0 : otherwise :By using the above parameters we construct k+1 matrices B(l) = �b(l)ij �m�s (l 2 [0; k]).It is obvious that every column of these matrices has only one nonzero element. Given



an i 2 M , Mk includes mk�1 elements Pj satisfying �l(Pj) = i. Hence, every row of B(l)(l 2 [1; k]) has mk�1 nonzero components.Before giving a new criterion for deciding the assignment complexity of uniform trees,we de�ne the following terminology.Two mappings G : D � � � � � D| {z }k �! N0 � � � � �N0| {z }sG : N0 � � � � �N0| {z }s �! D � � � � � D| {z }kare de�ned as follows:G(~I1; ~I2; � � � ; ~Ik) = (x1; x2; � � � ; xs)T ; if(~I1; ~I2; � � � ; ~Ik) � (P1; � � � ; P1| {z }x1 ; P2; � � � ; P2| {z }x2 ; � � � ; Ps; � � � ; Ps| {z }xs )T jPsi=1 xi=t (2.16)G(x1; x2; � � � ; xs) = (P1; � � � ; P1| {z }x1 ; P2; � � � ; P2| {z }x2 ; � � � ; Ps; � � � ; Ps| {z }xs )T (2.17)Assume ~I0 = ~f(~I1; ~I2; � � � ; ~Ik) for (~I1; ~I2; � � � ; ~Ik) 2 Dkt . We call B(l)G(~I1; ~I2; � � � ; ~Ik)characteristic vector of ~Il (l 2 [0; k]), and use Ch(~Il) to denote it. Vector ~Il belongs to Dt,and its characteristic vector Ch(~Il) belongs to Nm0 . We have the following observation.Observation 2.4 Given (~I1; ~I2; � � � ; ~Ik) 2 Dkt . IfCh(~Il) = B(l)G(~I1; ~I2; � � � ; ~Ik)= �c(l)1 ; c(l)2 ; � � � ; c(l)m �T ; l 2 [0; k];then 8l 2 [0; k]8>><>>:~Il � (1; � � � ; 1| {z }c(l)1 ; 2; � � � ; 2| {z }c(l)2 ; � � � ; m; � � � ; m| {z }c(l)m )T9>>=>>; (2.18)Theorem 2.3 T (n)f is �(1) assignable if and only if there is a �nite setX = f ~Xi j ~Xi 2 Nsgso that 8l 2 [1; k] fSl(X) � S0(X)g (2.19)where Sl(X) := fB(l) ~Xi j ~Xi 2 Xg; l 2 [0; k] (2.20)



Proof: We prove the only if part at �rst. Assume T (n)f to be �(1) assignable. Accordingto Theorem 2.1, there are a t 2 N and a set W � Dt so that8~I0 2 W9~I1; ~I2; � � � ; ~Ik 2 W nMk � r(~I1; ~I2; � � � ; ~Ik)^ ~f(~I1; ~I2; � � � ; ~Ik) � ~I0o :We construct such a complete assignment set for T (n)f that every ~I0 2 W is the outputvector of a cell in T (n)f , and the input vector of another cell as well. Let X be thesmallest set of vectors that includes every G(~I1; ~I2; � � � ; ~Ik) if (~I1; ~I2; � � � ; ~Ik) is the completeassignment for an f cell in T (n)f . Then Sl(X) � S0(X) for every l 2 [1; k].Now we prove the if part. Suppose there is a �nite set X � Ns and Sl(X) � S0(X) forevery l 2 [1; k]. Let W 0 = n ~f(G( ~Xi)) j ~Xi 2 Xo. It is easy to show that8~I0 2 W 09~I1; ~I2; � � � ; ~Ik 2 W 09~I 01; ~I 02; � � � ; ~I 0k 2 Dt8>><>>: Mk � r(~I 01; ~I 02; � � � ; ~I 0k)8l 2 [1; k]f~Il � ~I 0lg~f(~I 01; ~I 02; � � � ; ~I 0k) � ~I0 9>>=>>; :Let W be the smallest set such that8~I 2 Dt n9~I 0 2 W 0 n~I 0 � ~Io =) ~I 2 Wo :Then8~I0 2 W9~I1; ~I2; � � � ; ~Ik 2 W nMk � r(~I1; ~I2; � � � ; ~Ik)^ ~f(~I1; ~I2; � � � ; ~Ik) � ~I0o :According to Theorem 2.1, T (n)f is �(1) testable. Q.E.D.Corollary 2.3 T (n)f is not �(1) assignable ifB(0)~y = B(l)~y; ~y � ~1 (2.21)has no feasible solution for an l 2 [1; k].Proof: Assume T (n)f to be �(1) assignable. According to Theorem 2.3 there is such a setX � Ns that (2.19) and (2.22) hold. We show that if (2.22) holds for an l 2 [1; k], then(2.21) has a feasible solution for the given l.Sl(X) � S0(X) (2.22)In case #X = 1 and X = f~yg, ~y is just a feasible solution of (2.21). Assume that incase #X = N , (2.21) has a feasible solution if (2.22) holds for the given l 2 [1; k]. For#X = N + 1, there are three cases to be considered.Case 1, #Sl(X) = #S0(X) = #X .Case 2, #Sl(X) = #S0(X) < #X .Case 3, #Sl(X) < #S0(X).



For the �rst case, #Sl(X) = #S0(X) = #X and Sl(X) = S0(X), then ~y =P ~Xi2X ~Xiis a solution of (2.21).For the second case, there must be ~Xi; ~Xj 2 X so that ~Xi 6= ~Xj and B(0) ~Xi = B(0) ~Xj .Thus Sl(X n ~Xi) � S0(X n ~Xi) = S0(X):X n ~Xi satis�es (2.22) also, and its cardinal number is N . This implies that (2.21) has afeasible solution.For the third case, X must include such an ~Xi that B(0) ~Xi 62 Sl(X). This indicatesthat Sl(X) � S0(X nX0)Sl(X n ~Xi) � S0(X n ~Xi)X n ~Xi satis�es (2.22) for the given l, and its cardinal number is N . Q.E.DIn the rest of this section, we present two basic theorems in linear programming. Theywill be used in the next section and Chapter 3.Theorem 2.4 (Farkas' Lemma) Assume A to be an s � t matrix.A~x = ~b; 8j 2 [1; t]fxj � 0g (2.23)has feasible solutions if and only if8~y 2 Rs n~yA � ~0 =) ~y~b � 0o (2.24)The proof of Farkas' Lemma can be found almost in every linear programming book.Theorem 2.5 If A~x = ~0; ~x � ~c (2.25)has a feasible solution, then it has a feasible integer solution, provided that the terms ofthe constraint matrix A are all integers, and every component of ~c belongs to N0.Proof: Assume that A is an s � t integer matrix and its rank is r. For r � s, we candetermine an r� t matrix A0 including r independent rows. Then (2.25) andA0~x = ~0; ~x � ~c (2.26)have the same solution space.It is obvious that (2.26) has a feasible solution if and only ifA0~x = �A0~c; ~x � ~0 (2.27)has a feasible solution.



Suppose that B = (bij)r�r is a nonsingular submatrix of A0. Without loss of generality,assume that B includes the �rst r columns of A0. Thusxi = ( the ith component of �B�1A0~c : i 2 [1; r]0 : i 2 [r+ 1; t] (2.28)de�ne a basic solution of (2.27). It is clear that such a basic solution is a rational solutionsince the terms of the constraint matrix A and the constant vector ~c are all integers.It has been proven that at least one of its basic solutions is feasible if (2.27) has afeasible solution [PaSt82]. It implies that (2.27) has a feasible rational solution if and onlyif it has a feasible solution. According to the relationship between (2.27) and (2.26), ~x isa feasible solution of (2.27) if and only if ~x+ ~c is a feasible solution of (2.26).Given a feasible rational solution of (2.26), we can always construct a feasible integersolution since (2.26) is a homogeneous linear equation system and no component of ~c isnegative. Q.E.D2.5 Commutative TreesThe k+1 matrices B(l) (l 2 [0; k]) de�ned in section 2.4 are determined completely by thefunction de�nition of f . For commutative function f we have the following result.Theorem 2.6 Assume surjective function f :Mk �! M to be commutative. Then T (n)fis �(1) assignable if and only if266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775 ~y = 266664 B(1) �B(0)B(2) �B(0)...B(k) � B(0) 377775~1; ~y � ~0 (2.29)has a feasible solution.Proof: We prove the if part at �rst. Suppose (2.29) has a feasible solution. This meansthat 266664 B(0) � B(1)B(0) � B(2)...B(0) �B(k) 377775 ~y = ~0; ~y � ~1 (2.30)has a feasible solution. Furthermore, it has a feasible integer solution according toTheorem 2.5. Suppose ~y 2 Ns is a feasible integer solution of (2.30). Let X = f~yg.Then Sl(X) � S0(X) for all l 2 [1; k]. According to Theorem 2.3, T (n)f is �(1) assignable.



Now we turn to the proof of the only if part. Based on Farkas' Lemma, (2.29) has afeasible solution if and only if8~z 2 Rkm8>>>><>>>>:~z 266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775 � ~0 =) ~z 266664 B(1) � B(0)B(2) � B(0)...B(k) � B(0) 377775~1 � 09>>>>=>>>>; (2.31)Suppose (2.29) has no feasible solution. This means that9~z 2 Rkm8>>>><>>>>:~z 266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775 > ~09>>>>=>>>>; (2.32)Thus we can choose a ~z so that for every ~y � ~1~z 266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775~y > k (2.33)This implies that for an arbitrary complete assignment (~I1; ~I2; � � � ; ~Ik) to an f cell~z 266664 B(0) � B(1)B(0) � B(2)...B(0) � B(k) 377775G(~I1; ~I2; � � � ; ~Ik) > k (2.34)since G(~I1; ~I2; � � � ; ~Ik) � ~1 for the complete assignment (~I1; ~I2; � � � ; ~Ik).According to Observation 2.4Ch(~I1) = B(1)G(~I1; ~I2; � � � ; ~Ik) = B(2)G(~Ik; ~I1; � � � ; ~Ik�1) = � � � = B(k)G(~I2; ~I3; � � � ; ~I1)Ch(~Ik) = B(1)G(~Ik; ~I1; � � � ; ~Ik�1) = B(2)G(~Ik�1; ~Ik; � � � ; ~Ik�2) = � � � = B(k)G(~I1; ~I2; � � � ; ~Ik)...Ch(~I2) = B(1)G(~I2; ~I3; � � � ; ~I1) = B(2)G(~I1; ~I2; � � � ; ~Ik) = � � �= B(k)G(~I3; ~I4; � � � ; ~I2):This indicates that~z 266664 B(1)B(2)...B(k) 377775nG(~I1; ~I2; � � � ; ~Ik) + G(~Ik; ~I1; � � � ; ~Ik�1) + � � �+ G(~I2; ~I3; � � � ; ~I1)o= ~z 266664 B(1) +B(2) + � � �+B(k)B(1) +B(2) + � � �+B(k)...B(1) +B(2) + � � �+B(k) 377775G(~I1; ~I2; � � � ; ~Ik):



Assume ~I0 = ~f(~I1; ~I2; � � � ; ~Ik). For commutative function f~I0 = ~f (~I1; ~I2; � � � ; ~Ik) = ~f (~Ik; ~I1; � � � ; ~Ik�1) = � � � = ~f(~I2; ~I3; � � � ; ~I1);henceCh(~I0) = B(0)G(~I1; ~I2; � � � ; ~Ik) = B(0)G(~Ik; ~I1; � � � ; ~Ik�1) = � � � = B(0)G(~I2; ~I3; � � � ; ~I1):According to (2.34),~z 266664 B(0)B(0)...B(0) 377775kG(~I1; ~I2; � � � ; ~Ik) � ~z 266664 B(1) + B(2) + � � �+ B(k)B(1) + B(2) + � � �+ B(k)...B(1) + B(2) + � � �+ B(k) 377775G(~I1; ~I2; � � � ; ~Ik) + k2:Thus we can state that if T (n)f is not �(1) assignable, then9~z 2 Rm nk~zB(0)G(~I1; ~I2; � � � ; ~Ik) � ~z �B(1) +B(2) + � � �+B(k)�G(~I1; ~I2; � � � ; ~Ik) + koholds for every complete assignment (~I1; ~I2; � � � ; ~Ik) to an f cell. In other words, if T (n)fis not �(1) assignable then there is such a ~z 2 Rm that for every complete assignment(~I1; ~I2; � � � ; ~Ik) to an f cell9i 2 [1; k]n~zB(0)G(~I1; ~I2; � � � ; ~Ik) � ~zB(i)G(~I1; ~I2; � � � ; ~Ik) + 1o (2.35)Suppose T (n)f has kN primary input lines. We determine a path, called downhill path,from the primary output line to a primary input line by using the following procedure.1. Choose the cell with the primary output line as the �rst cell on the downhill path,and let (~I1;1; ~I1;2; � � � ; ~I1;k) denote the complete assignment set to this cell. Then~zB(0)G(~I1;1; ~I1;2; � � � ; ~I1;k) � ~zB(0)G(~I1;1; ~I1;2; � � � ; ~I1;k) + 1� 1:2. Let (~Il;1; ~Il;2; � � � ; ~Il;k) denote the complete assignment to the lth cell on the downhillpath, and suppose~zB(0)G(~I1;1; ~I1;2; � � � ; ~I1;k) � ~zB(0)G(~Il;1; ~Il;2; � � � ; ~Il;k) + l� 1:3. According to (2.35) we can always obtain such an i that~zB(0)G(~Il;1; ~Il;2; � � � ; ~Il;k) � ~zB(i)G(~Il;1; ~Il;2; � � � ; ~Il;k) + 1:We choose the cell linked directly to the ith input line of the lth cell as the (l + 1)thcell on the downhill path. (~Il+1;1; ~Il+1;2; � � � ; ~Il+1;k) is the complete assignment to this cell.We can state that~zB(0)G(~I1;1; ~I1;2; � � � ; ~I1;k) � ~zB(0)G(~Il;1; ~Il;2; � � � ; ~Il;k) + l� 1� ~zB(i)G(~Il;1; ~Il;2; � � � ; ~Il;k) + l= ~zB(0)G(~Il+1;1; ~Il+1;2; � � � ; ~Il+1;k) + l:



In this way, we can �nally determine the Nth cell on the downhill path. Suppose(~IN;1; ~IN;2; � � � ; ~IN;k) is the complete assignment set to this cell. According to the abovecalculation~zB(0)G(~I1;1; ~I1;2; � � � ; ~I1;k) � ~zB(0)G(~IN;1; ~IN;2; � � � ; ~IN;k) +N � 1:Let j~yj denote the sum of the absolute values of the components of ~y. ThenjG(~I1;1; ~I1;2; � � � ; ~I1;k)j is the cardinal number of the complete assignment set to T (N)f .���G(~I1;1; ~I1;2; � � � ; ~I1;k)��� � N��~zB(0)��= 
(N):We know that N = dlgne, and every T (n)f is O(lg n) assigbable. Therefore, T (n)f is �(lg n)assignable. Q.E.D.The following Corollary is immediate from the above theorem.Corollary 2.4 Assume f : Mk �! M to be commutative, then T (n)f is either �(1) or�(lg n) assignable.Assume f to be commutative and T (n)f �(1) assignable. The problem of searching forthe minimum complete assignment set for T (n)f is related to solving the following integerprogramming. min X1�i�s yi266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775 ~y = 266664 B(1) �B(0)B(2) �B(0)...B(k) � B(0) 377775~1; ~y � ~0 (2.36)The following theorem gives an upper bound of minP1�i�s yi.Theorem 2.7 The cardinality of the minimum complete assignment set for a �(1)assignable f tree system T (n)f can be upper bounded by k2mk�1(2k)km�k�1(m� 1)3 +mk,provided that f is a commutative function from Mk to M , and #M = m.In order to prove this theorem, we prove the following lemma at �rst.Lemma 2.6 Assume integer matrix B = (bij)r�r to be of rank r, ~c = (c1; :::; cr)T .maxf X1�i�r jbij j jj 2 [1; r]g = �maxfjcij ji 2 [1; r]g = �B~y = ~c:The absolute value of every component of ~y can be upper bounded by r�r�1�.



Proof of Lemma 2.6: Let Bij denote the submatrix of B that is generated by omitting theith row and the jth column of B. Then det Bij and (�1)i+j det Bij are the minor andcofactor of the element bij in det B.We show inductively that the absolute value of the determinant of a matrix B = (bij)l�l,denoted by det B, is not greater than �l.For l = 1, B = (bij)1�1 and jdet Bj � �.Assume that for l = N � 1, jdet Bj � �N�1.For l = N , B = (bij)N�N . By expanding the determinant of B along the �rst columnof B, we have jdet Bj � X1�i�N jbi1Bi1j� �N :Let b0ij stand for (�1)i+j det Bijdet B , then B�1 = (b0ij)r�r and jb0ij j = ���det Bijdet B ��� : Thusjyij = ������ X1�j�r b0ijcj������� X1�j�r ���b0ijcj���For Bij is an (r� 1)� (r� 1) matrix, jdet Bij j � �r�1. Furthermore, jdet Bj � 1, sincebij (i; j 2 [1; r]) are all integers. Hence jb0ijj is not greater than �r�1. We have thusjyij � r�r�1�: 2Proof of Theorem 2.7: LetB = (bij)km�s = 266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775~c = (c1; c2; :::; ckm)T = �266664 B(0) �B(1)B(0) �B(2)...B(0) �B(k) 377775~1It is easy to see thatbij = b(0)lj � b(t)lj ; i = (t� 1)m+ l; l 2 [1; m]; t 2 [1; k]ci = � sXj=1 bij ; i 2 [1; km]:



Then the linear programming (2.36) is the same asmin X1��s yiB~y = ~c; ~y � ~0 (2.37)Suppose the rank of the constraint matrix in (2.37) is r. According to the de�nitionsof B(0) and B(l) (l 2 [1; k]) given in section 2.4, r � km� k since matrix B(0) � B(l) cancontain at the most m� 1 independent row vectors for every l 2 [1; k]. By exchanging therows of B we can make the �rst r rows independent. Furthermore, assume, without lossof generality, the r� r submatrix, denoted by Br , in the left top corner to be nonsingular.We solve Br~y = ~c; ~c = (c1; c2; :::; cr)T :Vector ~y de�ned below is a basic solution of (2.37).yi = ( the ith component of B�1r ~c : i 2 [1; r]0 : i 2 [r + 1; t]It is well known that at least one of the basic solutions of (2.37) is a feasible solution,provided that (2.37) has a feasible solution [PaSt82].Given an i = (t � 1)m + l; (t 2 [1; k]; l 2 [1; m]), according to the de�nition of bij ,bij < 0 only if �t(Pj) = l 6= f(Pj). There are at most mk�1 indices j 2 [1; s] so thatbij < 0. Inversely, bij > 0 only if �t(Pj) 6= l = f(Pj). There are at most mk � mk�1indices j 2 [1; s] so that bij > 0. Therefore, none of the absolute values of ci (i 2 [1; km])is greater than mk �mk�1. That is, maxfci j i 2 [1; km]g � mk �mk�1. The sum of theabsolute values of all components in any column of Br is not greater than 2k. Based onthe above lemma, yi � (km � k)(2k)km�k�1(mk � mk�1) since r � km� k; � � 2k and� � mk �mk�1. The sum of all yi is not greater than k2mk�1(2k)km�k�1(m� 1)3. Thusthe cardinality of the minimum complete assignment set for T (n)f can be upper boundedby the sum of k2mk�1(2k)km�k�1(m� 1)3 and mk. Q.E.D.2.6 DecidabilityWe have proven that a balanced uniform tree is either O(1) or 
((lgn) 1m�1 ) assignable.In this section we discuss the complexity of deciding the assignment complexity, namely,the decidability. However, our discussion will be limited to commutative functions of twovariables.Assume f to be a commutative function from M2 to M . Let t = #M2 andPj := (pj;l; pj;r) be the jth element of M2. We de�nelij = 8><>: 1 : f(Pj) = i 6= pj;l�1 : f(Pj) 6= i = pj;l0 : otherwise rij = 8><>: 1 : f(Pj) = i 6= pj;r�1 : f(Pj) 6= i = pj;r0 : otherwise



By using the above parameters we construct two matrices Lf = (lij)m�t andRf = (rij)m�t. It is easy to see that Lf = B(0) � B(1), and Rf = B(0) � B(2). Based onTheorem 2.6 we can state that T (n)f is �(1) assignable if and only if" LfRf # ~y = � " LfRf #~1; ~y � ~0 (2.38)has a feasible solution.Let ~lj and ~rj denote the jth column of Lf and Rf , respectively.Observation 2.5 If f is a commutative function, then1. 8i 2 [1; t]9j 2 [1; t]n~li = ~rj ^ ~ri = ~ljo.2. Every nonzero column of Lf and Rf has only two nonzero element. One of them is1, another is �1.3. 8~z 2 Rm8j 2 [1; t]n~z~lj = (~z + ~1)~lj ^ ~z~rj = (~z + ~1)~rjo.In the following we will give a mothed of deciding whether(2.38) has a feasible solution.Using the de�nition of f , we induce a digraph Gf = (V;E) as follows:V = fi j i 2Mg; E = f(i; j) j 9k 2M ^ f(i; k) = jgwhere (i; j) represents an arc from i to j.It is not hard to see that the matrix Lf de�ned above is just the node-arc incidentmatrix of Gf . For commutative function f8i; j 2M 9k 2M ff(i; j) = f(j; i) = kg :This implies that 8i; j 2 V 9k 2 V f(i; k); (j; k) 2 Eg :That is, two arbitrary vertices i; j 2 V are connected. Gf is a connected graph. We callGf a strongly connected digraph, provided that for arbitrary i1; i2 2 V there is at leasta cyclical path leaving i1 and entering i2, then leaving i2 and entering i1. There exists acyclical path traveling all vertexes in V if Gf is a strongly connected digraph.Lemma 2.7 Equation system (2.38) has a feasible solution if Gf is a strongly connecteddigraph.Proof: Suppose Gf is a strongly connected digraph. We know that9~z 2 R2m(~z " LfRf # � ~0) () 9~z1; ~z2 2 Rm n~z1Lf + ~z2Rf � ~0oAssume that 9~z1; ~z2 2 Rm n~z1Lf + ~z2Rf � ~0o :



According to the �rst term of Observation 2.58~z1; ~z2 2 Rm8i 2 [1; t]9j 2 [1; t]n~z1~li + ~z2~ri = ~z2~lj + ~z1~rjo :Hence8~z1; ~z2 2 Rm n~z1Lf + ~z2Rf � ~0() ~z2Lf + ~z1Rf � ~0() (~z1 + ~z2) [Lf +Rf ] � ~0o8~z1; ~z2 2 Rm n~z1Lf + ~z2Rf � ~0() ~z2Lf + ~z1Rf � ~0() (~z1 + ~z2) [Lf + Rf ] � ~0oLet (~z1 + ~z2) = (z1; z2; :::; zm), and c = minfzi j i 2 [1; m]g. Without loss of generality,suppose z1 = c.According to the third term of Observation 2.5(z1; z2; :::; zm) [Lf + Rf ] � ~0 =) (0; z2� c; :::; zm� c) [Lf +Rf ] � ~0=) 8j 2 [1; t]n(0; z2� c; :::; zm� c)(~lj + ~rj) � 0o :Since Gf is a strongly connected digraph, there is a cyclical path1! i1 ! i2 ! � � � ! ik ! 1; i1; i2; :::; ik 2Mincluding all vertices of Gf . And (ik; 1) is an arc from vertex ik to 1. This indicates thatthere is an l 2M such that f(ik; l) = f(l; ik) = 1 6= ik:This implies that there is a j 2 [1; t] so that Pj = (l; ik) andl1j + r1j � 1; likj + rikj � �1; 8i 2M n f1; ikg flij + rij � 0g :Then zik � c is equal to zero. Otherwise, ~z(~lj + ~rj) < 0, and ~z [Lf + Rf ] � ~0 could nothold. We can similarly show that zi�c = 0 for all i 2 [1; m]. In other words, ~z = (c; � � � ; c| {z }m ).This indicates that(~z1 + ~z2) [Lf +Rf ] = ~z1Lf + ~z2Rf = ~z2Lf + ~z1Rf = ~0:and 8~z 2 Rm n~z [Lf +Rf ] � ~0 =) ~z = ~0oTherefore, we can state that8~z 2 R2m(~z " LfRf # � ~0 =) ~z " LfRf # = ~0)and 8~z 2 R2m(~z " LfRf # � ~0 =) �~z " LfRf #~1 � 0) (2.39)hold if Gf(V;E) is a strongly connected digraph. Following Farkas' Lemma, (2.38) has afeasible solution. Q.E.D.



Lemma 2.8 If Gf is not a strongly connected digraph, then there is a ~z 2 Nm0 so that~zLf > ~0, and (2.38) has no feasible solutionProof: Suppose Gf is not a strongly connected digraph. Then there are i; j 2 V so that ican reach j, but j can not reach i since Gf is a connected digraph. Let Vj be the largestset of vertices which j can reach, and Vi = V n Vj. Thus there is no arc from Vj to Vibut at least one arc from Vi to Vj. Let Lf be the node-arc incident matrix of Gf . Everyrow of Lf is related to a vertex of V . We construct an m-component vector ~z and makeeach of its components correspond to a row of Lf . Then every component of ~z is relatedto a vertex in V . We set all the components related to vertices in Vj to be 1 and makeothers 0. For such a ~z, ~zLf > ~0 holds. This implies that9~z 2N0m n~zLf > ~0oand 9~z 2 N0 2m (~z " LfRf # > ~0 ^ �~z " LfRf #~1 < 0)This means that (2.38) has no feasible solution. Q.E.D.Corollary 2.5 The integer linear programming (2.38) has feasible solutions if and only if8~z � ~0n~zLf � ~0 =) ~zLf = ~0o :Proof: Assume that ~z = (z1; :::; zm), and c = minfzi j i = 1; :::; mg. Let~z0 = (z1 � c; :::; zm� c). Because every column of Lf has the same number of 1 and �1,then ~zLf = ~z0Lf . It implies that8~z 2 Rm9~z0 � ~0n~zLf = ~z0Lfo :Based on the above discussion, we can state that the integer linear programming (2.38)has feasible solutions if and only if Gf (V;E) is a strongly connected digraph. Gf (V;E) isa strongly connected digraph if and only if8~z � ~0n~zLf � ~0 =) ~zLf = ~0o : Q.E.D.In fact the two matrices Lf and Rf and digraph Gf are completely determined by thede�nition of function f . On the other hand, they characterize the property of function f .Therefore, we call them characteristic matrices and characteristic digraph of f .The following theorem is immediate from Lemma 2.7 and 2.8. and Theorem 2.6.Theorem 2.8 Given a commutative function f : f1; 2; :::;mg2 �! f1; 2; :::;mg, the fol-lowing three statements are equivalent



1. Gf is strongly connected.2. The following integer programming has a feasible solution." LfRf # ~y = � " LfRf #~1; ~y � ~03. T (n)f is O(1) assignable.The computation complexity of deciding whether Gf is strongly connected is O(m2)[Meho84]. It is independent of the parameter n. Hence we have the following theorem.Theorem 2.9 The assignment complexity of a tree system T (n)f based on a commutativefunction f from M2 to M (m = #M) is O(m2) decidable. It is independent of theparameter n.When f is not commutative, the scene changes.Example 2.2: Function h is de�ned as follows:h 1 2 31 1 1 22 3 2 13 1 1 3We can determine that" LhRh # = 266666664 0 0 �1 0 0 1 1 1 00 0 1 �1 0 �1 0 0 00 0 0 1 0 0 �1 �1 00 1 0 �1 0 1 0 1 00 �1 1 0 0 0 0 �1 00 0 �1 1 0 �1 0 0 0 377777775It is easy to check that(1; 0; 1; 1; 1; 0)" LhRh # = (0; 0; 0; 0; 0; 2; 0; 0; 0):This indicates that " LhRh # ~y = � " LhRh #~1; ~y � ~0has no feasible solution. However, bothLh~y = �Lh~1; ~y � ~0and Rh~x = �Rh~1; ~x � ~0have feasible solutions, respectively.How to decide the assignment complexity of a balanced uniform tree based on a non-commutative function remains a problem.



Chapter 3Test Complexity of TreesThe test complexity of tree circuits based on primitive gates of type AND, OR,NAND, NOR and NOT has been extensively studied [Haye71, Mark76]. Papers[AbGa81,BeHa90,BeSp91,BhHa86,SeKo77,Wu92a] discuss the test complexity problem ofuniform trees and analogous circuits consisting of more complex identical nodes computingan associative or commutative function. In this Chapter we explore the test complexitystructure of trees based on commutative functions. The test complexity of a tree is de�nedas the cardinality of the minimum complete test set of it and is measured as a function ofthe number of the primary input lines in the tree.This Chapter shows that the test complexity of balanced trees based on commutativefunctions can be divided into �(1), �(lg n), and 
(n�) (� 2 (0; 1]) classes. This indicatesthat the test complexity of a tree can jump from one class to another, when its nodes aremodi�ed. It motivates us to analyze the test complexity of trees and study the possibilityof modifying the trees and changing their test complexity from a high class to a low one.In section 3.1, we give a formal de�nition of the fault and diagnosis signal, then de�nesome notations. In section 3.2 we convert the test problem of the tree into the integerlinear programming. In section 3.3, we discuss in detail the jump of the test complexityfrom �(1) to 
(lgn). The jump of the test complexity from O(lgn) to 
(n�) (� 2 (0; 1])will be studied in section 3.4. Section 3.5 deals with the arrangement problem which is ageneralization of the assignment and test problems related to uniform trees.3.1 Fault and Diagnosis SignalJ. P. Roth in [Roth66] introduces two symbols D and D to represent two fault diagnosissignals. The former has the value logic 1 in the normal circuit and logic 1 in the faultycircuit. Conversely, the latter has the logic 0 in the normal circuit and 1 in the faultycircuit. For stuck-at fault model there is no di�culty in using the two symbols to describethe fault sensitization, drive and propagation. In this and the next Chapters we discussthe test problem of VLSI systems performing symbolic computations, and adopt the cellde�nition fault model de�ned in section 1.2. Some symbols have to be de�ned to representthe corresponding faults and fault diagnosis signals for the cell de�nition fault model.Let M = f0; 1; :::;m� 1g and f be a surjective and commutative function fromM2 to



M . Fig. 3.1 illustrates a T (7)f .
Fig. 3.1: A balanced tree T (7)f?f? ?f? ? f? ?f? ? f? ? f? ?

De�nition 3.1 (basic fault) Assume f(i; j) = k and l 2 M n k. The expression(i; j) : k=l represents a basic fault in an f cell. Because of this fault, the cell outputsl for the input(assignment) (i; j) instead of the desired k.A tree is recognized to be defective if one of its cells is faulty. A cell is considered tobe faulty if it has one or more basic faults. When (i; j) is assigned to the cell and if thepractical output value is l rather than the desired k, we say the cell has certainly the basicfault (i; j) : k=l. The existence of such a fault can be judged by observing the response ofthe output of the cell to the assignment (i; j). In other words, (i; j) can sensitize the basicfault (i; j) : k=l and deliver a diagnosis signal denoted by the expression k=l to the outputline of the cell. The diagnosis signals total m(m�1). The set of all basic diagnosis signalsis df := fk=l j k 2M; l 2M n kg (3.1)In fact, one can exactly determine the function value f(i; j) according to the de�nitionof f , provided that both parameter i and j are known. Hence, we express the basic fault inform (i; j)=l. Given two parameters i and j, the correct function value f(i; j) is uniquelyde�ned. It is one of the m elements in M . Therefore, there are m � 1 possible faults fora given pair (i; j) 2 M2. An assignment (i; j) applied to f can sensitize all the m � 1possible basic faults. Each of them corresponds to a basic fault. To test a cell completely,one has to apply all elements in M2 to the cell. For m2 distinct assignments, there arealtogether (m� 1)m2 basic faults. The set of all basic faults isFf := f(i; j)=l j (i; j) 2M2; l 2M n f(i; j)g (3.2)Example 3.1: Function f1 is de�ned as follows.f1 0 10 1 11 1 0



Fig. 3.2: Complete test for T (4)f1f1-0 0 1 1 0 1 1=0 1=0 1=0 0=1 1 0-0 1 0 1 0 1 -- f1 -0=1 0=1 0=1 1=0 1=0 1=0f1-0 0 1 0 1 1 1=0 1=0 1=0 1 0=1 0-0 1 0 0 1 1
The set of all basic faults isFf1 = f(0; 0)=0; (0; 1)=0; (1; 0)=0; (1; 1)=1g:A complete test set for a T (n)f is �rst of all a complete assignment set. It has to not onlyassign all elements in M2 to each of the cells in T (n)f in order to sensitize every basic faultwhich possibly occurs in the cell, but also propagate the diagnosis signals to the primaryoutput line for observing it. This is the di�erence between a complete assignment set anda complete test set.Fig. 3.2 illustrates a complete test set for uniform tree T (4)f1 . This test set is madeup of �ve patterns, and it can completely sensitize every basic fault and propagate thecorresponding diagnosis signal to the primary output line. Its cardinality is larger thanthat of the minimal complete assignment set for the same tree T (4)f1 illustrated by Fig. 2.2.However, it is one of the minimal complete test sets. In most cases, the cardinality ofthe minimum complete test set for a tree is larger than that of the minimum completeassignment set for the same tree.An assignment can be used to sensitize several basic faults and generate several diag-nosis signals simultaneously. Consider S to be a subset of M n f(i; j), and we use theexpression k=S to stand for a diagnosis signal pack which is made up of all diagnosissignals k=l (l 2 S). In case S = flg, we substitute k=l for k=S. When S = ;, we regardk=S as k, a fault-free signal. Similarly, we use the expression (i; j)=S to represent a faultpack which is made up of all faults in form (i; j)=l (l 2 S). For f(i; j) = k, we write k=Sinstead of (i; j)=S when we are interested in the diagnosis signal pack instead of the fault



pack, which can derive the diagnosis signal pack. We consider (i; j)=l 2 (i; j)=S if l 2 S.The terms fault and diagnosis signal will be used as substitutions for fault pack anddiagnosis signal pack, respectively. The following is the diagnosis signal set.Df := fk=S j k 2M; S �M n kg (3.3)The basic diagnosis signal set df is a subset of Df . The diagnosis signal set Df1 for f1de�ned in the Example 3.1 is f0=1; 1=0g.Fig.3.3 (a) and (b) show that when (0; 0) and (1; 0) are applied to an f1 cell, thecorresponding outputs are all 1. This means that when (0=1; 0) is applied to an f1 cell theoutput is 1=1 as shown in Fig. 3.3 (c). The diagnosis signal 0=1 applied to the left inputline of the f1 cell disappears inside the cell. We say (0=1; 0) is an incompatible assignmentto f1. An incompatible assignments should not be applied to a cell.
Fig. 3.3(a) (b) (c)1 1 1=1? ? ?f1 f1 f1? ? ? ? ? ?0 0 1 0 0=1 0

In order to describe the compatibility of the diagnosis signals formally we de�ne severalfunctions. Et(k=S) = k; Ef(k=S) = S for all k=S 2 Df (3.4)By using them one can extract the correct value k and incorrect value pack S from adiagnosis signal k=S.Let P (M) stand for the power set of M , namely, the set of all subsets of M . FunctionPf de�ned by (3.5)Pf(u; v) = ff(Et(u); i); f(j;Et(v))ji 2 Ef (v); j 2 Ef (u)g; (u; v) 2 D2f (3.5)is from D2f to P (M) and can be used to determine the set of faulty output values.De�nition 3.2 (D-condition) We say that function f :M2 �!M satis�es D-conditionif 8i; j 2M fi 6= j =) 9k; l 2M ff(i; k) 6= f(j; k) ^ f(l; i) 6= f(l; j)gg :



If function f does not satisfy D-condition, the f cell is redundant. Some faults in the fare untestable. The D-condition is a fundamental property of the testable functions. Wewill limit our discussion on the test problem to functions satisfying D-condition.De�nition 3.3 (compatible assignment) (u; v) 2 D2f is said to be a compatible assign-ment to f if Pf(u; v) does not include f(Et(u); Et(v)).When f is not sensitive, there are certainly some incompatible assignments which cannot be assigned to an f cell. For example, assume i 6= j and f(i; k) = f(j; k), thenf(i; k) 2 Pf(i=j; k), and (i=j; k) is not a compatible assignment to f . When (i=j; k) isapplied to an f cell, the diagnosis signal i=j put to the left input line disappears in thecell, and one can not �nd its track at the output line at all. The signal k blockades thepropagation of i=j through an f cell. Thus this assignment can not be assigned to an fcell. As shown in Fig. 3.3(c), (0=1; 0) is not a compatible assignment to f1.According to the de�nition of f , one can determine the set of all compatible assign-ments, denoted byVf := f(u; v) j (u; v) 2 D2f is a compatible assignment to fg (3.6)The set of all compatible assignments for f1 de�ned in the Example 3.1 isVf1 = f(0=1; 1); (1; 0=1); (1=0; 1=0); (1; 1=0); (1=0; 1); (0; 0); (0; 1); (1; 0); (1; 1)gBy assigning (u; v) 2 Vf to an f cell, both diagnosis signals u and v canbe propagated through the cell, and the corresponding diagnosis signal receivedfrom the output line includes f(Et(u); Et(v))=Pf(u; v). Every fault (Et(u); Et(v))=S(Pf(u; v) � S �M n f(Et(u); Et(v))) in the cell can also be sensitized concurrently by thisassignment. What S should be depends on the concrete arrangement of the fault sensiti-zation and diagnosis signal propagation. In order to reect this aspect, we use an orderedtriple to represent a concrete assignment. The following set includes various assignments.Uf = f (u; v; S) j (u; v) 2 Vf ; Pf (u; v) � S �M n f(Et(u); Et(v)) g (3.7)When a concrete assignment (u; v; S) is applied to an f cell, the corresponding diagnosissignal delivered to the output line of the f cell can be determined by using function�f : Uf �! Df de�ned by (3.8).�f (u; v; S) = f(Et(u); Et(v))=S; (u; v; S)2 Uf (3.8)Because f is commutative, �f(u; v; S) = �f(v; u; S) for all (u; v; S) 2 Uf .Using Uf as the domain, we de�ne two projections from Uf to Df .�l(u; v; S) = u; �r(u; v; S) = v; for all (u; v; S) 2 Uf (3.9)Let � = #Ff , t = #Uf and s = #Df . Order the elements of Ff , Uf and Df ,respectively. Let Fi denote the ith basic fault in Ff , Aj the jth element of Uf and uk thekth element of Df , respectively.



Given a basic fault (i; j)=l and an assignment (u; v; S), we consider that (u; v; S) test(i; j)=l if i = Et(u), j = Et(v) and l 2 S. For i 2 [1; �] and j 2 [1; t] we de�nepij = ( 1 : Aj test Fi0 : otherwise (3.10)If the assignment Aj can sensitize the fault Fi, then pij = 1. Otherwise pij = 0.De�nition 3.4 (complete cell test) A = fAj ; � � � ; Aj| {z }xj�time j j 2 [1; t]g is called a completecell test, if 8i 2 [1; �]8<: X1�j�t xjpij � 19=; (3.11)A complete cell test applied to an f cell can sensitize all basic fault in the cell.When a complete test set is applied to a tree, all assignments to each of the cells inthe tree comprise a complete cell test. If an input line is linked directly to the output lineof another cell, the assignments to this input line must contain the total diagnosis signalsreceived from that output line in order to propagate them to the primary output line forthe observation.De�nition 3.5 (test complexity) The test complexity of T (n)f is de�ned by the mappingTCf : Tf �! N:TCf(T (n)f ) = min n#A j A is a complete test set for T (n)f o (3.12)Assume that A = fAj ; � � � ; Aj| {z }xj�time j Aj 2 Ufg is an assignment set applied to an f cell,#Ql(A; u) and #Qr(A; u) represent the number of u assigned to the left and right inputlines of the cell, respectively. #Z(A; u) is used to denote the corresponding number of uobtained from the output line of f . For xj multiple assignments of Aj applied to f , �f(Aj)must appear at least xj times on the output line of f . In order to describe the relationsamong #Ql(A; u), #Qr(A; u) and Z(A; u) formally, we de�ne the following match function	(u; v) = ( 1 : u = v0 : u 6= v (3.13)Suppose A contains xj Aj for j 2 [1; t]. In accordance with the above conventions,#Ql(A; u) = X1�j�t xj	(�lAj ; u) (3.14)#Qr(A; u) = X1�j�t xj	(�rAj ; u) (3.15)#Z(A; u) = X1�j�t xj	(�f (Aj); u) (3.16)



hold for all u 2 Df .As assumed in section 2.1, we allow a set to include the multiple elements, namely, theelements and their copies. For example, fa; a; bg and fa; bg are considered as two distinctsets. The cardinality for the former is three, while the cardinality for the latter is two.We require two special operators] and> to treat our unconventional sets. The operator] is used to construct a new set by simply putting two sets together. For instance,fa; a; bg] fa; bg = fa; a; a; b; bg. The operator > is used to form a conventional set byextracting all the distinct elements from a multiple set. For example, >fa; a; bg = fa; bg.By using this operator one can classify a set and press an element and its copies to a singlerepresentative.3.2 �(1) Testable and TLPfIn this section we de�ne an integer linear programming associated with the given functionf and show that T (n)f is �(1) testable if the integer linear programming associated with fhas a feasible solution.Assume that when (u; v; S) 2 Uf is applied to an f cell, the corresponding output of fis w. We can say that for this assignment we consume a u and a v on the left and rightinput lines of f , respectively, and we produce a w on the output line of f .Consider concretely the consumption and production of the diagnosis signals ui onthe left input and output lines of an f cell for the assignment Aj = (u; v; S). Assume�f(Aj) = w. There are total three cases.Case 1) u 6= ui = w: The production of ui on the output line is surplus to the con-sumption of ui on the left input line of the cell. For this assignment we win a ui, and	(�f(Aj); ui)� 	(�lAj ; ui) = 1.Case 2) u = ui 6= w: The production of ui on the output line can not balance theconsumption of ui on the left input line of the cell. For this assignment we lose a ui, and	(�f(Aj); ui)� 	(�lAj ; ui) = �1.Case 3) u = ui = w or u 6= ui ^ w 6= ui: The production of ui on the output linebalances the consumption of ui on the left input line of the cell for this assignment, and	(�f(Aj); ui)� 	(�lAj ; ui) = 0.Let lij = 	(�f(Aj); ui) � 	(�lAj ; ui). The parameter lij 2 f�1; 0; 1g can reect theforenamed three cases exactly.The consumption of ui on the right input line and the production of ui on the outputline of an f cell for the assignment Aj = (u; v; S) can be divided into three cases similarly.Let rij = 	(�f(Aj); ui) � 	(�rAj ; ui). The parameter rij 2 f�1; 0; 1g can reect thecorresponding three cases.The following are the formal de�nitions of lij and rij for i 2 [1; s] and j 2 [1; t], wheres and t are the cardinal numbers of the diagnosis signal set Df and the assignment set Ufde�ned in section 3.1.lij = 	(�f(Aj); ui)� 	(�lAj ; ui) = 8><>: 1 : �lAj 6= ui ^ �f(Aj) = ui�1 : �lAj = ui ^ �f(Aj) 6= ui0 : otherwise (3.17)



rij = 	(�f (Aj); ui)�	(�rAj ; ui) = 8><>: 1 : �rAj 6= ui ^ �f (Aj) = ui�1 : �rAj = ui ^ �f (Aj) 6= ui0 : otherwise (3.18)Observation 3.1 For every assignment set A = fAj ; � � � ; Aj| {z }xj�time j j 2 [1; t]g applied to an fcell X1�j�t xjlij = #Z(A; ui)�#Ql(A; ui)and X1�j�t xjrij = #Z(A; ui)�#Qr(A; ui)for all ui 2 Df .Using these parameters we construct two s� t matrices L = (lij)s�t and R = (rij)s�t.Let ~lj and ~rj denote the jth column vector of L and R, respectively. We call L and Rconsumption-production matrices related to the assignment set Uf .If (3.19) has a feasible solution, then it has a rational solution since the terms of itsconstraint matrix and constant vector are all integers. Because (3.19) is a homogeneouslinear equation system, one can construct a feasible integer solution for it with its feasiblerational solutions. " LR # ~x = ~0; 8j 2 [1; t]fxj � 0g (3.19)De�nition 3.6 (symmetrical circulation) Multiple setA = fAj ; � � � ; Aj| {z }xj�time j j 2 [1; t]g (3.20)is said to be a symmetrical circulation if the multiple of Aj is equal to the jth componentxj of ~x which is a feasible solution of (3.19).For an arbitrary symmetrical circulation A, #Ql(A; u), #Qr(A; u) and #Z(A; u) areequal to each other for all u 2 Df .Lemma 3.1 If K is a symmetrical circulation, then K = f(u; v; S) j (v; u; S) 2 Kg is asymmetrical circulation. If K1 and K2 are symmetrical circulations, then K1 ]K2 is alsoa symmetrical circulation.Proof : This lemma comprises two parts. At �rst we prove the �rst part. As mentioned inlast section, �f(u; v; S) = �f(v; u; S) for all (u; v; S) 2 Uf . Then #Z(K; u) = #Z(K; u)



for all u 2 Df . Notice that8u 2 Df n#Ql(K; u) = #Qr(K; u) = #Ql(K; u) = #Qr(K; u)oThus we can state that for every u 2 Df , #Ql(K; u), #Qr(K; u) and #Z(K; u) are equalto each other.Now we prove the second part. Let K = K1 ]K2. Then#Ql(K; u) = #Ql(K1; u) + #Ql(K2; u)= #Qr(K1; u) + #Qr(K2; u)= #Qr(K; u)= #Z(K1; u) + #Z(K2; u)= #Z(K; u)for all u 2 Df . Q.E.D.An immediate consequence of the above lemma is:Corollary 3.1 If K is a symmetrical circulation, then for a given constant k,K = K ] � � � ]K| {z }k is also a symmetrical circulation.Using the parameters pij de�ned by(3.10) we construct a matrix P = (pij)��t. Whena complete test set are applied to a tree, the assignment set applied to each of the cellsin the tree has to be a complete cell test. If there is a vector ~x satisfying both (3.19) and(3.11), namely, " LR # ~x = ~0 and P~x � ~1;then A de�ned by (3.20) is a symmetrical circulation as well as a complete cell test forf . We call such a set A circulative complete cell test. To search for an optimal circulativecomplete cell test is equal to solve the following integer linear programming.min P1�j�t xj" LR # ~x = ~0 (3.21)P~x � ~1In order to use the theory of the integer linear programming, we convert the abovegeneral form to the standard form by introducing a surplus variable xt+i for each inequalitypi1x1 + pi2x2 + � � �+ pitxt � 1;so that pi1x1 + pi2x2 + � � �+ pitxt � xt+i = 1



for xt+i � 0. This yields the integer linear programmingmin X1�j�t xj264 L 0R 0P -I 375~x = 264 ~0~0~1 375 ; 8j 2 [1; t+ �]fxj � 0g (3.22)where I is the identity matrix with r rows.It is easy to see that (3.22) has a feasible solution if and only if (3.23) has a feasiblesolution, and (3.22) has a feasible integer solution if and only if (3.23) has a feasible integersolution. min X1�j�t xj264 L 0R 0P -I 375~x = 264 ~0~0~0 375 (3.23)8j 2 [1; t]fxj � 0g; 8j 2 [t+ 1; t+ �]fxj � 1gBased on Theorem 2.5, (3.23) has a feasible integer solution if it has a feasible solution.This implies that (3.22) has a feasible integer solution if it has a feasible solution. There-after we consider only its feasible integer solution. We call (3.22) test linear programmingof the f cell (abbreviated to TLPf ). The following observation is immediate from theabove discussion.Observation 3.2 TLPf (3.22) has a feasible solution if and only if the function f has acirculative complete cell test.Theorem 3.1 T (n)f is �(1) testable if its TLPf (3.22) has a feasible solution.Proof : Suppose the TLPf (3.22) has a feasible solution. We can �nd a circulative completecell test A = fAj ; � � � ; Aj| {z }xj�time j j 2 [1; t]gfor f , so that 8u 2 Df f#Ql(A; u) = #Qr(A; u) = #Z(A; u)g :When A is assigned to an f cell, a set f�f(Aj) j Aj 2 Ag can be obtained from itsoutput line. With two sets of this kind one can reconstruct a new complete cell test A foran f cell. Assume that the cardinality of A is �. Given an f tree T (n)f , one can alwaysconstruct � n-component patterns which comprise a complete test set for the given T (n)f .The constant � is independent of the parameter n, namely, the number of the primaryinput lines of T (n)f . T (n)f is �(1) testable. Q.E.D.



Corollary 3.2 T (n)f can be completely tested through (#M)2 n-component patterns iffunction f : M2 �!M is sensitive.Proof : Assume M = f0; 1; :::;m� 1g. Let Mi denote the subset M n i of M . Because fis sensitive, then (i=Mi; j=Mj;Mf(i;j)) 2 Uf . SetK = f(i=Mi; j=Mj;Mf(i;j)) j (i; j) 2M2gis a complete cell test. It is easy to see that8i 2M f#Ql(K; i=Mi) = #Qr(K; i=Mi) = #Z(K; i=Mi) = mg :Therefore, K is a circulative complete cell test. We can further state that T (n)f can becompletely tested through (#M)2 n-component patterns. Q.E.D.Example 3.2: Function f2 is de�ned below.f2 0 10 0 11 1 0It is easy to see that f2 is sensitive. Thus T (n)f2 is �(1) testable according to the abovecorollary.3.3 Jump from �(1) to 
(lg n)In this section we concentrate our attention on studying the jump of the test complexityfrom �(1) to 
(lg n).Lemma 3.2 If the TLPf (3.22) has no feasible solution, then there is a ~y 2 R2s such that~y " LR # > ~0 ^ 9i 2 [1; �]8j 2 [1; t](pij = 1 =) ~y " ljrj # � 2) (3.24)Proof : Based on Farkas' Lemma (see Theorem 2.4), (3.22) has a feasible solution in Rt+�if and only if for all ~y 2 R2s+�~y 264 L 0R 0P -I 375 � ~0 =) ~y 264 ~0~0~1 375 � 0:Notice that ~y 264 L 0R 0P -I 375 = ~0 =) ~y 264 ~0~0~1 375 = 0



and ~y 264 L 0R 0P -I 375 � ~0 =) �(y2s+1; :::; y2s+�)I � ~0=) (y2s+1; :::; y2s+�) � ~0:Assume that the TLPf (3.22) has no feasible solution. Then there is a ~y 2 R2s+� suchthat ~y 264 L 0R 0P -I 375 > ~0 ^ ~y 264 ~0~0~1 375 < 0:L and R are two s � t matrices, and P is a � � t matrix. The entries in P are allnonnegative. We can conclude that in this ~y, yi � 0 for all i 2 [2s+ 1; 2s+ �], and thereis at least a k 2 [1; �] such that y2s+k < 0. Assume k = 1 and � = y2s+1 without loss ofgenerality. Thus there is a ~y = (y1; :::; y2s; �; y2s+2; :::; y2s+�) so that~y 264 L 0R 0P -I 375 > ~0 ^ ~y 264 ~0~0~1 375 < 0:For such a ~y ~y " LR # > ~0 ^ 8j 2 [1; t](p1j = 1 =) ~y " ~lj~rj # > 0) :This implies that given an arbitrary constant � 2 R+, there is a constant c 2 R+ suchthat c~y " LR # > ~0 ^ 8j 2 [1; t](p1j = 1 =) c~y " ~lj~rj # � �) :Taking 2 as �, we have this lemma. Q.E.D.Lemma 3.3 If the TLPf (3.22) has no feasible solution, then there is a vector(y1; y2; :::; ys) 2 Rs so that for every complete cell test A eithersXi=1 yi#Z(A; ui) � sXi=1 yi#Ql(A; ui) + 1or sXi=1 yi#Z(A; ui) � sXi=1 yi#Qr(A; ui) + 1holds.



Proof : Based on Lemma 3.2, if the TLPf (3.22) has no feasible solution, then there is a~z 2 R2s such that~z " LR # > ~0 ^ 9i 2 [1; �] 8j 2 [1; t](pij = 1 =) ~z " ~lj~rj # � 2) :Given a complete cell test A = fAj ; � � � ; Aj| {z }xj�time j j 2 [1; t]g, we construct a t-dimensionvector ~x and take the multiple xj of Aj in A as the jth component of ~x. According to thede�nition of the complete cell test8i 2 [1; �]8<: X1�j�t xjpij � 19=; :There is certainly an i 2 [1; �] and exists a j 2 [1; t] so that pij = 1, xj � 1, and~z " ~lj~rj # xj � 2. It is not hard to see that for such an ~x9i 2 [1; �]8j 2 [1; t](pij = 1 =) ~z " ~lj~rj # � 2)and ~z " LR # ~x � 2:According to the de�nitions of L and R.~z " LR # ~x =  ~z " ~l1~r1 # ; � � � ; ~z " ~lt~rt #! ~x= tXj=1 xj  sXi=1 zilij + sXi=1 zs+irij!= sXi=1 zi tXj=1 xjlij + sXi=1 zs+i tXj=1 xjrij :According to Observation 3.1tXj=1 xjlij = #Z(A; ui)�#Ql(A; ui)and tXj=1xjrij = #Z(A; ui)�#Qr(A; ui);



we can state that for every complete cell test A of fX1�i�s zi(#Z(A; ui)�#Ql(A; ui)) + X1�i�s zs+i(#Z(A; ui)�#Qr(A; ui)) = ~z " LR # ~x� 2:Using the given complete cell test A we construct a set A as follows:A = f(ui; uk; S) j (uk; ui; S) 2 Ag:It is not hard to see that A = 8>>><>>>:Aj ; � � � ; Aj| {z }x0j�time j j 2 [1; t]9>>>=>>>;and (x01; :::; x0t)T > ~0. The multiples of Aj 2 A(j 2 [1; t]) are all nonnegative. ThusX1�i�s zi(#Z(A; ui)�#Ql(A; ui)) + X1�i�s zs+i(#Z(A; ui)�#Qr(A; ui))= ~z " LR # (x01; :::; x0t)T� 0:Because �f (u; v; S) = �f (v; u; S) for all (u; v; S) 2 Uf ,8ui 2 Df n#Z(A; ui) = #Z(A; ui)o :Furthermore, for all ui 2 Df#Ql(A; ui) = #Qr(A; ui) ^ #Qr(A; ui) = #Ql(A; ui):HenceX1�i�s zi(#Z(A; ui)�#Ql(A; ui)) + X1�i�s zs+i(#Z(A; ui)�#Qr(A; ui)) +X1�i�s zi(#Z(A; ui)�#Qr(A; ui)) + X1�i�s zs+i(#Z(A; ui)�#Ql(A; ui)) � 2:In other words,2 X1�i�s(zi + zs+i)#Z(A; ui) � X1�i�s(zi + zs+i)(#Ql(A; ui) + #Qr(A; ui)) + 2:Let yi = zi + zs+i for i 2 [1; s]. It means that there is a vector (y1; y2; :::; ys) 2 Rs andfor every complete cell test A eitherX1�i�s yi#Z(A; ui) � X1�i�s yi#Ql(A; ui) + 1



or X1�i�s yi#Z(A; ui) � X1�i�s yi#Qr(A; ui) + 1holds, provided that the TLPf (3.22) has no feasible solution. Q.E.D.Theorem 3.2 T (n)f is either �(1) or 
(lgn) testable.Proof : Suppose T (n)f is not �(1) testable. Followed Theorem 3.1 the TLPf (3.22) has nofeasible solution. Based on Lemma 3.3 there is a vector (y1; y2; :::; ys) 2 Rs and for everycomplete cell test A, eithersXi=1 yi#Z(A; ui) � sXi=1 yi#Ql(A; ui) + 1or sXi=1 yi#Z(A; ui) � sXi=1 yi#Qr(A; ui) + 1holds.Suppose T (n)f has 2k primary input lines. We determine a path, called downhill path,from the primary output line to a primary input line by using the following procedure.1. Choose the cell with the primary output line as the �rst cell on the downhill path,and let A(1) denote the assignment set to this cell. The following inequality holds.sXi=1 yi#Z(A(1); ui) � sXi=1 yi#Z(A(1); ui) + 1� 1:2. Let A(l) denote the assignment to the lth cell on the downhill path, and assume thatsXi=1 yi#Z(A(1); ui) � sXi=1 yi#Z(A(l); ui) + l� 1holds.3. In case sXi=1 yi#Z(A(l); ui) � sXi=1 yi#Ql(A(l); ui) + 1;we choose the cell linked directly to the left input line of the lth cell as the next cell onthe downhill path. OtherwisesXi=1 yi#Z(A(l); ui) � sXi=1#Qr(A(l); ui) + 1



holds, and we choose the cell linked directly to the right input line of the lth cell as thenext cell on this path. Let A(l+1) denote the assignment to this cell.In the �rst case,X1�i�s yi#Z(A(l); ui) � X1�i�s yi#Ql(A(l); ui) + 1= X1�i�s yi#Z(A(l+1); ui) + 1:In the second caseX1�i�s yi#Z(A(l); ui) � X1�i�s yi#Qr(A(l); ui) + 1= X1�i�s yi#Z(A(l+1); ui) + 1:We can state that for both casesX1�i�s yi#Z(A(1); ui) � X1�i�s yi#Z(A(l); ui) + l � 1� X1�i�s yi#Z(A(l+1); ui) + l:In this way, we can �nally determine the kth cell on the downhill path. Let A(k) denotethe assignment set to this cell. Followed the above calculation,X1�i�s yi#Z(A(1); ui) � X1�i�s yi#Z(A(k); ui) + k � 1and #A(1) = X1�i�s#Z(A(1); ui)� kmaxfjyij j i = 1; :::; sg= 
(k) (3.25)T (n)f has at least a downhill path no shorter than blgnc. Hence T (n)f is 
(lgn) testable.Q.E.D.3.4 Jump from O(lgn) to 
(n�)In this section we discuss the jump of the test complexity fromO(lgn) to 
(n�) (� 2 (0; 1]).To test an f cell completely, we have to deliver a set of diagnosis signals of type u 2 dfto the output line of the cell. If there is a constant � such that these diagnosis signals onall lines in the same level can be simultaneously propagated to the primary output linewith � patterns, then T (n)f is O(lgn) testable.



De�nition 3.7 (successor) For u 2 Df , if there is a (u; w; S) 2 Uf such that�f(u; w; S) = v, we say that u leads to v directly through w and we use u w�! v todenote it.If ui wi�! ui+1 and wi 2 W for all i 2 [1; l� 1], then we say that u1 leads to ul in Wand we use u1 W�! ul to denote it.An element v is called a successor of u if u Df�! v.For every (u; v; S)2 Uf , u w�! v implies that w u�! v since �f (u; v; S) = �f (v; u; S).De�nition 3.8 (circle) W � Df is called circle if8u; w 2 W nu W�! wo :Let �(u) := �v j u Df�! v� denote the set of successors of u 2 Df . If �(u) contains acircle W , then we say that the element u can be driven into the circle W .De�nition 3.9 (embedded set) We say that set W � Df can be embedded in K � Ufif W � fu j (u; v; S)2 Kg \ fv j (u; v; S) 2 Kg :Lemma 3.4 For every circle W , there exists a symmetrical circulation K such that Wcan be embedded in K.Proof : At �rst we construct an assignment set A and a digraph Gf by using the followingprocedure.1. Set A := ;.2. For two arbitrary elements u; v 2 W , if there is a (u; v; S) 2 Uf such that�f(u; v; S) = w and w 2 W , then set A := A [ f(u; v; S)g and we add arcs (u; w) and(v; w) to the digraph Gf .The digraph Gf is strongly connected since W is a circle.Assume #A = t0. According to A we construct a submatrix L0 of L de�ned insection 3.2. Matrix L0 contains the jth column of L if and only if Aj , the jth elementof Uf , is included in A. Matrix L0 contains ith row of L if and only if there is an assign-ment (u; v; S) 2 A so that �f (u; v; S) = ui, and ui is the ith element of Df . Matrix R0is induced from R in a similar way. L0 and R0 are the consumption-production matrices(de�ned in section 3.2) related to A. The matrix L0 is just the node-arc incidence matrixof the digraph Gf . The matrix R0 can be obtained by exchanging the columns of L0. Inother words, 8i 2 [1; t0]9j 2 [1; t0]n~l0i = ~r0j ^ ~r0i = ~l0jo :Based on Theorem 2.8, " L0R0 # ~x = ~0; ~x � ~1 (3.26)



has a feasible integer solution if Gf is strongly connected.According to the solution for (3.26) we can construct an assignment setK = f(u; v; S); � � � ; (u; v; S)| {z }xj�time j j 2 [1; t0]gand make #Ql(K; u) = #Qr(K; u) = #Z(K; u)true for all u 2 W . Then K is a symmetrical circulation, and W can be embedded in K.Q.E.D.Theorem 3.3 T (n)f is O(lgn) testable, provided that �(ui) includes a circle for everyui 2 df .Proof : The input lines of all cells in the same level are independent of each other. Thefaults of all cells in the same level can be sensitized simultaneously. T (n)f has at mostdlg ne levels. Therefore, T (n)f is O(lg n) testable, provided that there is a constant �, andthe whole diagnosis signals derived from the complete tests of all cells in the same levelcan be propagated to the primary output line with � patterns.According to the assumption, �(ui) contains a circle for every ui 2 df . According toLemma 3.4, every circle can be embedded in a symmetrical circulation. Thus there is aconstant �i, and all diagnosis signals of type ui derived from the complete tests of all cellsin the same level can be simultaneously propagated to the primary output line with �ipatterns.Let � =P1�i�jdf j �i. Then the whole diagnosis signals derived from the complete testsof all cells in the same level can be propagated to the primary output line with � patterns.Q.E.D.Lemma 3.5 Given a diagnosis signal set W � Df , if8v 2 W9u; w 2 W nu w�! vo (3.27)then W contains a circle.Proof : Assume that (3.27) holds. We prove this lemma by using induction on the cardi-nality of W .For #W = 1, W = fug. Based on the assumption, u u�! u. Then W = fug is a circle.Suppose W contains a circle for #W < k. For W = fu1; u2; :::; ukg, there are twopossible cases. W itself is either a circle or not.At �rst we suppose W itself is not a circle. This implies that there are u0; v0 2 W , andu0 can not lead to v0 in W . De�ne a subset W 0 of W as follows:W 0 = nw0 j u0 W�! w0o



W 0 consists of all elements which u0 can lead to, and no element in W 0 can lead to anelement in W nW 0. The cardinality of set W nW 0 is less than k, and8v 2 W nW 09u; w 2 W nW 0 nu w�! vo :According to the above assumption, W nW 0 contains a circle. Thus we can state that Wdoes contain a circle. Q.E.D.Assume that T (n)f consists of cells C1;1, C2;1, C2;2, ..., Ck;l, :::, and cell Ci;j is the jthcell in the ith level of T (n)f . When an assignment p (an n-component pattern) is applied toT (n)f , a diagnosis signal is delivered to every line in T (n)f . We use Q(p; Ci;j) and Z(p; Ci;j)to denote the corresponding set of signals delivered to the input lines and the output lineof cell Ci;j , respectively. Let Qi(p) := [i2[1;k]j2[1;2i�1]Q(p; Ci;j) (3.28)Zi(p) := [i2[1;k]j2[1;2i�1]Z(p; Ci;j) (3.29)Here Qi(p) and Zi(p) are traditional sets containing no duplicated element. According to(3.28) and (3.29), Zi+1(p) = Qi(p)[ Zi(p) for all i 2 [1; k� 1].Lemma 3.6 Assume that �(u) contains no circle. When an assignment p is applied to ak-level T (n)f , Qk(p) � �(u) =) Qk(p) 6� Zk(p):Proof: Suppose Qk(p) � �(u) and Qk(p) � Zk(p). The former implies thatQ(p; Ci;j) � �(u), and the unique element of Z(p; Ci;j) is a successor of u. ThenZk(p) � �(u). The latter means that8v 2 Zk(p)9u; w 2 Zk(p)nu w�! vo ;and Zk(p) contains a circle. This is a contradiction with the assumption that �(u) containsno circle. Q.E.D.Lemma 3.7 Assume that �(u) contains no circle. When an arbitrary assignment p isapplied to a k-level T (n)f ,Qk(p) � �(u) =) jQk(p)[ Zk(p)j � k + 1holds.



Proof: We prove this lemma by using induction on the level k of T (n)f . Assume that �(u)contains no circle and Qk(p) � �(u).For k = 1, the lemma is ture.Assume that for k < lQk(p) � �(u) =) jQk(p)[ Zk(p)j � k + 1holds. Then jQl�1(p) [ Zl�1(p)j � l.For k = l, based on Lemma 3.6Ql(p) � �(u) =) Ql(p) 6� Zl(p):Because Zl(p) = Ql�1(p)[ Zl�1(p), we can state thatjQl(p)[ Zl(p)j � jZl(p)j+ 1 � l + 1:Then we have the lemma. Q.E.D.We know that #Df = N , and there are altogether N distinct diagnosis signals in Df .A diagnosis signal u 2 df has at most N distinct successors. In other words, #�(u) � Nfor every u 2 df . Assume #�(u) = k. A pattern p applied to a k level balanced treecan simultaneously propagate diagnosis signals in �(u) from at most 2k� 1 primary inputlines to the primary output line if �(u) contains no circle.Theorem 3.4 Balanced T (n)f is either O(lg n) or 
(n�) (� 2 (0; 1]) testable.Proof : Assume that T (n)f is not O(lgn) testable. It implies that there is at least an elementu 2 df such that �(u) does not contain circles. Consider the propagation of a u diagnosissignal from each of the primary input lines to the primary output line. According to theabove discussion, there is a constant k 2 N, and the total number of the diagnosis signalsbelonging to �(u) will be multiplied at least by 2k2k�1 through every k levels. A balancedtree with n primary input lines has about dlg ne levels. Therefore, at least � 2k2k�1� lg nkpatterns are necessary to propagate a u diagnosis signal from each of the primary inputlines to the primary output line. Suppose A is a complete test set for T (n)f . The followingformula holds. #A �  2k2k � 1! lgnk= 2 lgnk lg 2k2k�1= n1� lg2k�1k= 
(n�);where 0 < � = 1� lg2k�1k � 1. Thus we can state that T (n)f is 
(n�) testable. Q.E.D.



3.5 Arrangement ComplexityAn arrangement set to a tree with n primary input lines consists of a number ofn-component patterns, so that by applying them to the primary input lines of the tree,the input and output sets of every cell insider the tree has a prede�ned property. An ar-rangement problem is to apply an arrangement set to a given tree. This is a more generalcombinational problem expanded from the assignment and test problems related to treeVLSI systems.For distinguishing from the Cartesian product Mk , we use M (l) to denote the set of alll-dimensional vectors. Given a function b :Mk �!M , we de�ne a vector function b(l) asthe follows: b(l)(~v1; ~v2; � � � ; ~vk) := 0BBBB@ b(v11; v12; :::; v1k)b(v21; v22; :::; v2k)...b(vl1; vl2; :::; vlk) 1CCCCA ; ~vi 2M (l)For the arrangement of a uniform tree T (n)b , we are concerned about the prede�nedproperty which is expected to be satis�ed for every b-cell in the tree. We use predicatePb to describe this property. The following is the formal de�nition of the arrangementproblem. An example following the de�nition gives a further explanation on it.De�nition 3.10 (arrangement complexity)Given a function b :Mk �! M and a prede�ned property P , we de�ne a predicate Pb asfollows Pb(~v0; ~v1; � � � ; ~vk) = 8>>><>>>: true : ~v0 = b(l)b (~v1; � � � ; ~vk) and(~v0; ~v1; � � � ; ~vk) has property Pfalse : otherwisewhere ~vi 2M (l) and l is an arbitrary integer in N. In addition, the predicate satis�es thefollowing condition(~v0; ~v1; � � � ; ~vk) � (~u0; ~u1; � � � ; ~uk)) Pb(~v0; ~v1; � � � ; ~vk) = Pb(~u0; ~u1; � � � ; ~uk); ~vi 2M (l)We call n l-dimensional vectors in M (l) (l n-component patterns of Mn) a com-plete arrangement set to T (n)b if by applying them to the n primary input lines of T (n)b ,Pb(~v0; ~v1; � � � ; ~vk) is true for every b-cell in T (n)b . Here, ~v0 is the output vector and ~v1; � � � ; ~vkare the input vectors of that b-cell.The arrangement complexity l of T (n)b is de�ned as the minimum of the dimensions ofthe complete arrangement sets to T (n)b .For example, if we de�ne the predicate Pb as followingPb(~v0; ~v1; � � � ; ~vk) = 8>>><>>>: true : ~v0 = b(l)(~v1; � � � ; ~vk)Mk � f(vi1; � � � ; vik) j i = 1; 2; :::; lgfalse : otherwise



where ~vi 2 M (l), then the above arrangement problem becomes an assignment prob-lem[Wu93a].It is easy to show that the arrangement problem becomes a test problem when we giveanother interpretation to the function b and the predicate Pb.We can disscus the arrangement problem before discussing the assignment and testproblems. However, people who are interested in the construction of the complete assign-ment and test sets for a given balanced uniform tree may appreciate the concrete analysisof the assignment and test problems.In the following discussion, we reuse the three mapping families Fh; �h and Fh de�nedin section 1.4. A denote the set of all uniform trees based on a cell B.Theorem 3.5 If S � Mk is b-stable and a minimal arrangement set to a cell B, #S isan upper boundary of the minimum of the cardinalities of the complete arrangement setsto each of the trees in A.Proof: Given a tree T 0 2 A, one can always �nd a balanced tree T 2 A so that T 0 canbe embedded into T . The arrangement complexity of T is an upper boundary of that ofT 0. One can construct a complete arrangement set of a constant size for every tree in Aif he can construct a complete arrangement set of a constant size for every balanced treein A. In other words, all trees in A are constant arrangeable if all balanced trees in A areconstant arrangeable.A balanced tree Fh+1 2 A has the structure B � (Fh � � � � � Fh| {z }k ). Suppose S � Mk isb-stable and an arrangement set to cell B. Then for every h 2 N�2(Fh) = �2((Fh � � � � � Fh| {z }k ) � �hjS)= idjSand (Fh � � � � � Fh| {z }k ) � �h(S) = S:This indicates that when �h(S) is applied to the primary input lines of Fh+1, the vectorsapplied to an arbitrary cell B inside Fh+1 comprise an arrangement set. Thus �h(S) isjust a complete arrangement set to Fh+1, and #S is an upper boundary on the minimumof the cardinalities of the complete arrangement sets to Fh+1. Q.E.D.The following corollary is obvious.Corollary 3.3 If S �Mk is b-stable and an optimal arrangement set to cell B, �h(S) isan optimal complete arrangement set to Fh+1.Theorem 3.6 The arrangement complexity of T (n)b is �(1) if there are an i 2 N, asubset S � Mki and ki bijective mappings �1; :::; �ki : S �! S so that S is a completearrangement set to Fi and(Fi � � � � � Fi| {z }ki ) � (�1 � � � � � �ki| {z }ki ) �Dki� (S) = S;



Proof: Suppose there are an i 2 N, a subset S � Mki and ki bijective mappings�1; :::; �ki : S �! S so that S is a complete arrangement set to Fi and(Fi � � � � � Fi| {z }ki ) � (�1 � � � � � �ki| {z }ki ) �Dki� (S) = S: (3.30)Let � = ki and g = �2(Fi). Based on (3.30), S is g-stable. Let l = #S. We de�nePg(~v0; ~v1; � � � ; ~v�) = 8>>><>>>: true : ~v0 = g(l)(~v1; � � � ; ~v�)(~v1; � � � ; ~v�) is a complete arrangement to Fifalse : otherwisewhere ~vi 2M (l).According to the assumption, S is g-stable. Based on Theorem 3.5, we can state that#S is an upper boundary on the minimum of the cardinalities of the arrangement sets toT (n)b , and The arrangement complexity of T (n)b is �(1). Q.E.D.The proofs of Theorem 3.5 and 3.6 are constructive. In fact, from them we can derivealgorithms of constructing the minimal complete arrangement set for the balanced uniformtree based on function b.In the rest of this section, we give another criteria of �(1) arrangeable uniform treesand show that the arrangement complexity of T (n)b is either �(1) or 
((lgn)) ( > 0).According to the de�nition of the complete arrangement set, we can de�ne a predicatePb based on the given function b :Mk �!M and the prede�ned property P , so that nl-dimensional vectors of M (l) comprise a complete arrangement set to T (n)b if and only ifby applying them to the n primary input lines of T (n)b , Pb(~v0; ~v1; � � � ; ~vk) is true for everyb-cell inside T (n)b . Here, ~v0 is the output vector and ~v1; � � � ; ~vk are the input vectors of thatb-cell.Lemma 3.8 T (n)b is �(1) arrangeable if there are an l 2 N and a set W �M (l) such thatfor every ~v0 2 W there are k vectors ~v1; ~v2; � � � ; ~vk in W and Pb(~v0; ~v1; � � � ; ~vk) is true. Putit formally,9l 2 N9W �M (l)8~v0 2 W9~v1; � � � ; ~vk 2 W fPb(~v0; ~v1; � � � ; ~vk)g (3.31)Proof: Suppose9l 2 N9W �M (l)8~v0 2 W9~v1; � � � ; ~vk 2 W fPb(~v0; ~v1; � � � ; ~vk)g :We prove that for everyN -level T (n)b , there are n vectors ~v1; � � � ; ~vn ofW , and they comprisea complete arrangement set to T (n)b . This can be done through induction on the numberof the level of T (n)b .In the case N = 1, the tree has only one cell. We choose a vector ~v0 2 W arbitrarily,then determine k vectors ~v1; ~v2; � � � ; ~vk 2 W so that Pb(~v0; ~v1; � � � ; ~vk) is true. It is clearthat (~v1; � � � ; ~vk) is an arrangement to cell B, a tree having only one cell.



Assume that for N = i, vectors ~v1;0; ~v2;0; � � � ; ~vki;0 2 W comprise a complete arrange-ment set to T (ki)b . Suppose T (ki+1)b is of (i + 1) levels and is constructed by connectingevery primary input line in T (ki)b to the output line of a b-cell.According to the assumption,8j 2 [1; ki]9~vj;0; ~vj;1; � � � ; ~vj;k 2 W fPb(~vj;0; ~vj;1; � � � ; ~vj;k)g :Hence, (~vj;0; ~vj;1; � � � ; ~vj;k) is an arrangement to a b-cell. When ~vj;1; ~vj;2; � � � ; ~vj;k are appliedto the k input lines of the cell B directly linked to the jth input line in the level i, thevector o�ered to this input line is just ~vj;0. Thus we can state that the ki+1 l-dimensionalvectors ~v1;1; ~v1;2; � � � ; ~v1;k; ~v2;1; � � � ; ~vki;k comprise a complete arrangement set to T (ki+1)b .Q.E.D.Corollary 3.4 T (n)b is �(1) arrangeable if9l 2 N9W 0 �M (l)8~v00 2 W 09~v0; ~v1; � � � ; ~vk 2 W 0 nPb(~v0; ~v1; � � � ; ~vk)^ ~v00 � ~v0o (3.32)Proof: Given a set W 0 �M (l) (l 2N), we can always induce a set W so that8~v 2M (l) n9~v0 2 W 0 n~v0 � ~vo =) ~v 2 Wo ^ 8~v 2 W9~v0 2 W 0 n~v0 � ~vo :The set W includes every vector which is similar to a vector in W 0. It is obvious thatsuch a W satis�es (3.31) if W 0 ful�lls (3.32). Q.E.DAssume that T (n)b consists of b-cells C1;1; C2;1; C2;2; :::; Ck;m; :::, and cell Ci;j is the jthcell in the ith level of T (n)b . Let A denote n vectors in M (l), and apply A to this tree. LetW denote the corresponding set including A and all other vectors delivered to other linesin every level of T (n)b . We use (A; i; j;m) to represent the corresponding vector applied tothe mth input line of Ci;j, and (A; i; j; 0) to represent the vector delivered to the outputline of Ci;j.Given a complete arrangement set A to an N -level T (n)b , we determine N sets in thefollowing way:Ws(A) := n(A; i; j;m) j i 2 [1; s]; j 2 [1; ki�1]; m 2 [0; k]o ; s 2 [1; N ] (3.33)Ws(A) includes all vectors delivered to a line in level i (i 2 [1; s]) and the vectordelivered to the primary output line. We know that � is an equivalence relation. Ws(A)can be partitioned into equivalence classes according to the equivalence relation �, andwe use #Ws(A)=� to denote the number of equivalence classes in Ws(A). The followingobservation is obvious.



Observation 3.3 Assume A to be a complete arrangement set to an N -level T (n)b . Then1. 8s 2 [2; N ]nWs�1(A) � Ws(A) �M (l)o;2. 8s 2 [2; N ] f1 � #Ws�1(A)=� � #Ws(A)=�g.Lemma 3.9 Assume A to be a complete arrangement set to an N -level T (n)b . Then T (n)bis �(1) arrangeable if #Ws(A)=� = #Ws�1(A)=� for an s 2 [2; N ].Proof: Assume A to be a complete arrangement set to an N -level T (n)b . Suppose#Ws(A)=� = #Ws�1(A)=� for an s 2 [2; N ]. This indicates that Ws(A) and Ws�1(A)have the same number of equivalence classes, namely, #Ws(A)=� = #Ws�1(A)=�. Asmentioned, Ws�1(A) � Ws(A) for all s 2 [2; N ]. It is not hard to see that8~v00 2 Ws(A)9~v0; ~v1; � � � ; ~vk 2 Ws(A)nPb(~v0; ~v1; � � � ; ~vk) ^ ~v00 � ~v0o :Based on Corollary 3.4, T (n)b is �(1) arrangeable. Q.E.D.Lemma 3.10 For every complete arrangement set A to an N -level T (n)b ,8s 2 [1; N ] f#Ws(A)=� � sg (3.34)if T (n)b is not �(1) arrangeable.Proof: Suppose T (n)b is not �(1) arrangeable. According to Observation 3.3 andLemma 3.9,#W1(A)=� � 1 ^ 8s 2 [2; N ] f#Ws(A)=� > #Ws�1(A)=�g :Therefore, #Ws(A)=� � s. Q.E.D.Given an l 2N, we can partition M (l) into a number of equivalence classes accordingto the equivalence relation �. Let #M (l)=� denote the number of equivalence classes ofM (l).Observation 3.4 For every complete arrangement set A, which is made up of vectors inM (l)(l 2 N), to an N -level T (n)b ,1 � #WN(A)=� � #M (l)=� (3.35)Theorem 3.7 T (n)b is �(1) arrangeable if and only if there are an l 2 N and a setW �M (l) such that8~v00 2 W9~v0; ~v1; � � � ; ~vk 2 W nPb(~v0; ~v1; � � � ; ~vk) ^ ~v00 � ~v0o (3.36)



Proof: The if part is immediate from Corollary 3.4. Assume T (n)b to be �(1) arrangeable.There is a constant l 2 N, and one can determine a complete arrangement set A, which ismade up of vectors in M (l), to an arbitrary T (n)b . Suppose dlg ne = N and N > #M (l)=�.Since 8s 2 [1; N ]n#Ws(A)=� � #M (l)=� < No ;there must be such an s 2 [2; N ] that #Ws(A)=� = #Ws�1(A)=�, and8~v00 2 Ws(A)9~v0; ~v1; � � � ; ~vk 2 Ws(A)nPb(~v0; ~v1; � � � ; ~vk) ^ ~v00 � ~v0o : Q.E.DComing up next we show that the arrangement complexity of T (n)b is either �(1) or
((lgn))( > 0). In other words, there is a jump from �(1) to 
((lgn)).Theorem 3.8 The arrangement complexity of T (n)b is either �(1) or 
((lgn)).Proof: Suppose the arrangement complexity of T (n)b is not �(1), and A is a completearrangement set to T (n)b . Let s = dlg ne. Based on Lemma 3.10,#M (l)=� � #Ws(A)=� � s � lgn:It is not hard to see that #M (l)=� is equal to the number of ways of inserting l � 1spaces into the sequence of jM j 1's. According to Lemma 2.5,#M (l)=� =  l + jM j � 1jM j � 1 ! :Notice that for l > 1, ljM j >  l + jM j � 1jM j � 1 ! :This means that l � s 1jM j � (lgn) 1jM j (3.37)Hence, we have the theorem. Q.E.D.Function f is said to be commutative, if for every permutation (q1; q2; :::; qk) of(1; 2; :::; k) Pb(~v0; ~v1; � � � ; ~vk) = Pb(~v0; ~vq1; ~vq2; � � � ; ~vqk):



Theorem 3.9 For commutative function b, the arrangement complexity of T (n)b is �(1)if and only if there are an i 2 N, a subset S � Mki and ki bijective mappings�1; :::; �ki : S �! S so that S is a complete arrangement set to Fi and(Fi � � � � � Fi| {z }ki ) � (�1 � � � � � �ki| {z }ki ) �Dki� (S) = S;where � denotes the type of S.Proof: Suppose f is commutative. The if part is immediate from Theorem 3.6. We arerequired to treat only the only if part.In the same way used to analyze the assignment complexity of balanced uniform treesbased on commutative functions [Wu93a], we can show that the arrangement complexityof T (n)b is �(1) only if9l 2 N9~v0; ~v1; ~v2; � � � ; ~vk 2M (l) fPb(~v0; ~v1; ~v2; � � � ; ~vk) ^ 8j 2 [1; k] f~vj � ~v0gg : (3.38)Let l be the minimum number of all integers satisfying (3.38). Then there are ani 2 N and ki vectors ~v1; ~v2; � � � ; ~vki in M (l) so that they are similar to each other andcomprise a complete arrangement set to an i-level balanced uniform tree Fi. If we consider(~v1; ~v2; � � � ; ~vki) as an l� ki matrix, it contains no duplicate rows.Let � = ki and vm;j denote the mth component of ~vj . De�neS = f(vm;1; vm;2; � � � ; vm;�) j m 2 [1; l]g :Suppose the output vector is ~v0 when S is applied to Fi. According to the assumption8j 2 [1; �] f~vj � ~v0g :Put it di�erently, ~v0 can be transformed to every vector ~vj (j 2 [1; �]) by exchanging itscomponent positions. This means that there are � bijective mappings�1; :::; �� : S �! Sso that (Fi � � � � � Fi| {z }ki ) � (�1 � � � � � �ki| {z }ki ) �D��(S) = S;where � denotes the type of S. S is a complete arrangement set to Fi, and the arrangementcomplexity of Fh is �(1) (h 2 N).For an arbitrarily given T (n)b , we can always �nd an Fh, so that Fh covers T (n)b . Thusthe arrangement complexity of T (n)b is �(1). Q.E.D.



Chapter 4Test Complexity of Uniform TreeCircuitsThis Chapter deals with the test complexity of balanced uniform tree circuits. A uniformtree circuit is a special uniform tree based on a boolean function from f0; 1gm to f0; 1g.In section 4.1 we make some conventions and prove that a balanced uniform tree circuit iseither �(1) or 
(lgn) testable. In section 4.2 we show that the test complexity of balanceduniform tree circuits based on commutative functions can be divided into �(1), �(lg n)and 
(nr) (r 2 (0; 1]) testable classes. In section 4.3 we prove that uniform tree circuitsbased on unate functions are all 
(nr) (r 2 (0; 1]) testable, and a balanced uniform treecircuit based on a monotonic function is �(nr) (r 2 (0; 1]) testable. The section 4.4 showsthat the test complexity of uniform tree circuits based on general functions has moreclasses.4.1 Uniform Tree CircuitsLet B = f0; 1g and f be a surjective function from Bm to B. We call a uniform tree basedon f uniform tree circuit.In this Chapter, the cell de�nition fault model is assumed. A fault in a cell changesthe function assigned to the cell. Furthermore, we assume that there is only one faultycell in the whole tree circuit that causes a discrepancy between the practical output andthe expected one for some inputs.Let 1 = 0 and 0 = 1. A T (n)f is recognized to be defective if one of its cells is faulty. Anf cell is considered to be faulty if for an element X 2 Bm applied to it, the correspondingoutput is f(X) instead of the desired f(X). In order to detect this fault, one has to applyX to the faulty cell and sensitize that fault, then drive a diagnosis signal to the outputline. When the output line of the faulty cell is not primary, one has to propagate thediagnosis signal to the primary output line for the observation.For X 2 Bm, we use Hw(X) to denote its Hamming weight which is the number of 1components in X . For X; Y 2 Bm, we use Hd(X; Y ) to denote their Hamming distancewhich is the number of bits in which X and Y di�er.



We partition Bm into m+ 1 classes in the following way.Bi = fX j X 2 Bm; Hw(X) = ig for i 2 [0; m]:Bi denotes the ith class including every X whose Hamming weight is i.We use symbolsD andD to denote two di�erent diagnosis signals. The diagnosis signalD has the value 1 in the normal circuit and 0 in the faulty circuit. The other diagnosissignal D has the value 0 in the normal circuit and 1 in the faulty circuit [BrFr76].Assume that Hd(X; Y ) = 1, f(Y ) = f(X), and X and Y di�er only in their ithcomponent xi and yi. We say that the assignment X can propagate a D signal on the ithinput line of an f cell if xi = 1, otherwise a D signal. The assignment X can deliver a Dsignal to the output line of the f cell if f(X) = 1, otherwise a D signal.De�nition 4.1 (precedent) Assume that u; v 2 fD; Dg are two diagnosis signals. Wesay that u is a precedent of v if u can be transformed into v through an f cell.We use u ; v to denote that u is a precedent of v, and u 6; v to denote that u is not aprecedent of v.De�nition 4.2 (C-property) X 2 Bm is logic 1 critical if8Y 2 Bm nY > X ^Hd(X; Y ) = 1 =) f(Y ) = f(X)o :X 2 Bm is logic 0 critical if8Y 2 Bm nY < X ^Hd(X; Y ) = 1 =) f(Y ) = f(X)o :X 2 Bm is full critical if it is logic 1 as well as logic 0 critical.We say a function f has C-property(cancellation) if every X 2 Bm is full critical.The C-property is a special case of the sensitive property de�ned in section 1.4. A fullcritical assignment X can propagate a diagnosis signal on every input line of an f cell andcan propagate diagnosis signals from m input lines.Example 4.1: Function f is de�ned as follows:f 0 10 0 11 1 0As shown in Fig. 4.1, when (0; 1) is applied to an f cell the output is 1. By changingthe input pair from (0; 1) to either (1; 1) or (0; 0), the output will changes from 1 to 0.This means that by applying the assignment (0; 1) to an f cell, one can propagate a Dfrom the left input line and a D from the right input line to the output line of the f cell.The assignment (0; 1) is full critical. It can be shown easily that f de�ned in this examplehas C-property.De�nition 4.3 (diagnosis information) A diagnosis signal u 2 fD; Dg on a line hasone unit of diagnosis information for the line. Assign X to an f cell. We say thatthe corresponding diagnosis signal received from the output line of the f cell can containim units of diagnosis information for each of the m input lines, provided that with theassignment X one can propagate a diagnosis signal from at most i input lines.
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By using the concept of the diagnosis information one can measure the propagatabilityof the diagnosis signals for an assignment X applied to an f cell.Lemma 4.1 8X; Y 2 Bm fHw(X) = Hw(Y ) =) f(X) = f(Y )g if f has C-property.The proof for this lemma is trivial. 2It is obvious that if f has C-property, then8i 2 [0; m� 1]8X 2 Bi8Y 2 Bi+1ff(X) = f(Y )g8i 2 [0; m� 2]8X 2 Bi8Y 2 Bi+2ff(X) = f(Y )g:This states that every assignment X 2 Bi applied to an f cell can propagate i D aswell as (m� i) D signals on the input lines of the cell if f has C-property.Theorem 4.1 If f has C-property, then T (n)f is �(1) testable, else T (n)f is 
(lgn) testable.Proof : Suppose f has C-property. Then f is sensitive. Based on Corollary 1.1 T (n)f is�(1) testable. In the following we dispose the only if part.Assume that f has no C-property. Then there are X 2 Bi and Y 2 Bi+1, so thatf(X) = f(Y ). It means that either of X and Y applied to an f cell can propagate at mostm � 1 diagnosis signals. Let � denote the minimum number of diagnosis signals receivedfrom the primary output line of an l-level uniform tree circuit. We can inductively provethat � � l.For l = 1, T (n)f is a single cell, and � � 1. Assume that � � i holds for l = i. Forl = i+1, each of them input lines of the cell with the primary output line is linked directlyto the output line of an i-level tree circuit, and at least i diagnosis signals on it has to bepropagated. On the assumption that there are two distinct assignments X; Y 2 Bm, sothat Hd(X; Y ) = 1 and f(X) = f(Y ), either of X and Y can propagate at most m � 1diagnosis signals. In order to test T (n)f completely, every element of Bm has to be appliedto each of the cells of T (n)f . Thus � > m�im . Put it di�erently, � � i+ 1.



A balanced uniform tree circuit with n primary input lines has at least dlogm ne levels.It is an immediate conclusion that T (n)f is 
(lgn) testable. Q.E.D.Assume that a complete test set of an f cell delivers �0 D signals and �1 D signalsto the output line. If there is a constant t, so that with t patterns one can propagate�0 D signals and �1 D diagnosis signals assigned to every input line of cells at the samelevel of T (n)f to the primary output line, then we say that every level of T (n)f is constanttestable. It is obvious that a balanced uniform tree circuit is O(lgn) testable if every levelis constant testable.Lemma 4.2 T (n)f is 
(nr) (r 2 (0; 1]) testable if there is no full critical element in Bm.Proof : Assume that there is no full critical element in Bm. Every assignment applied toan f cell can propagate at most m � 1 diagnosis signals. Then through every level thenumber of diagnosis signals on lines will be multiplied by at least mm�1 . It implies thatto propagate a diagnosis signal assigned to every primary input line we have to deliver atleast ( mm�1)logm n diagnosis signals to the primary output line of T (n)f . Clearly,( mm� 1)logm n = n1�logm(m�1); 0 < 1� logm(m� 1) � 1:The lemma follows. Q.E.D.4.2 Commutative Tree CircuitsWe have proved that a T (n)f is either �(1) or 
(lgn) testable in the last section. Inthis section we show that a T (n)f based on a commutative function is either O(lgn) or
(nr) (r 2 (0; 1]) testable. In other words, the test complexity of balanced uniform treecircuits based on commutative functions can be divided into three classes, namely, �(1),�(lgn) and 
(nr) (r 2 (0; 1]).Assume Cf to be the set of all critical elements in Bm. We de�ne a function Pf fromCf to the integer �eld. Pf(X) = Hw(X)�mf(X); X 2 Cf (4.1)According to the above de�nition we have Observation 4.1 and 4.2.Observation 4.1 For a given boolean function f : Bm �! B, the following statementsare always true.1. 8X 2 Cf f�m � Pf(X) � mg;2. 8X 2 Cf nPf(X) = �m =) X = ~0 ^ f(~0) = 1o;3. 8X 2 Cf n�m < Pf(X) < 0 =) 0 < Hw(X) < m ^ f(~0) = 1o;



4. 8X 2 Cf nPf (X) = 0 =) X = ~0 ^ f(~0) = 0 _X = ~1 ^ f(~0) = 1o;5. 8X 2 Cf n0 < Pf(X) < m =) 0 < Hw(X) < m ^ f(~0) = 0o;6. 8X 2 Cf nPf (X) = m =) X = ~1 ^ f(~0) = 0o;Observation 4.2 Suppose boolean function g is de�ned as follows:8x1; :::; xm 2 B ng(x1; :::; xm) = f(x1; :::; xm)o1. f and g are equivalent to each other (f � g), and T (n)f and T (n)g have the same testcomplexity;2. Cf 6= �() Cg 6= �;3. 8X 2 Cf(X) fPf(X) � 0g () 8X 2 Cg(X) fPg(X) � 0g.By using set Cf and function Pf we can determine that a given commutative booleanfunction is in one of the several cases as shown in Fig. 4.2.In the following we explore the property of the given boolean function f in each ofthese cases.Case 1) Cf = �;Case 2) 9X; Y 2 Cf fPf(X)Pf(Y ) < 0g ;Case 3) 8X 2 Cg fPg(X) � 0g ;Case 4) 8X 2 Cf fPf(X) � 0g ;Case 4.1) 8X 2 Cf fPf(X) � 0g ^ ~0; ~1 2 Cf=) ~0; ~1 2 Cf ;Case 4.2) 8X 2 Cf fPf(X) � 0g ^ ~0 2 Cf ^ ~1 62 Cf ^D ; D=) ~0 2 Cf ^ f(~0) = 0 ^D ; D;Case 4.3) 8X 2 Cf fPf(X) � 0g ^ ~0 2 Cf ^ ~1 62 Cf ^D 6; D=) ~1 62 Cf ^D 6; D;Case 4.4) 8X 2 Cf fPf(X) � 0g ^ ~0 62 Cf ^ ~1 2 Cf ^ f(~1) = 1 ^D; D=) ~1 2 Cf ^ f(~1) = 1 ^D ; D;Case 4.5) 8X 2 Cf fPf(X) � 0g ^ ~0 62 Cf ^ ~1 2 Cf ^ f(~1) = 1 ^D 6; D=) ~0 62 Cf ^D 6; D;Case 4.6) 8X 2 Cf fPf(X) � 0g ^ ~0 62 Cf ^ (~1 62 Cf _ f(~1) = 0)=) 8X 2 Cf ff(X) = 0g ^ ~0 62 Cf=) 8X 2 Cf fPf(X) > 0g :If function f belongs to case 1, then T (n)f is 
(nr) (r 2 (1; 0]) testable based onLemma 4.2. In the following we investigate the test complexity for other cases.
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Lemma 4.3 T (n)f is O(lgn) testable if there are two full critical elements X; Y 2 Bm sothat Pf(X)Pf(Y ) < 0.Proof : For a commutative function f , if Hw(X) = Hw(Y ), then f(X) = f(Y ), and Xand Y have the same propagatability of the diagnosis signal.Without loss of generality, we assume that f(X) = 1, f(Y ) = 0, Hw(X) = i andHw(Y ) = j. Then Pf(X) = i�m, and Pf (Y ) = j. Both m � i and j are greater thanzero.With j assignments in Bi, one can propagate j � i D signals and j(m� i) D signalson input lines of an f cell and deliver j D signals to the output line.Withm�i assignments in Bj , one can propagate (m� i)j D signals and (m� i)(m� j)D signals on input lines of an f cell and deliver (m� i) D signals to the output line.With j assignments in Bi and m � i assignments in Bj , one can propagate m � j Dsignals and m(m� i) D signals on m input lines of an f cell.The conclusion is that by applying j assignments in Bi and m � i assignments in Bjto an f cell, one can propagate j D signals and (m � i) D signals from each of the minput lines and deliver j D signals and (m � i) D signals to the output line. There is aconstant t, and all diagnosis signals derived from testing all cells at the same level in T (n)fcan be propagated to the primary output line with t n-bit patterns. Thus, one can testevery level of T (n)f through t n-bit patterns. T (n)f is O(lgn) testable. Q.E.D.Lemma 4.4 T (n)f is O(lgn) testable if ~0; ~1 2 Cf .Proof: Suppose that both ~0 and ~1 belong to Cf . By using assignment ~0 one can propagatea D from each of the m input lines of an f cell, while by using ~1 one can propagate a Dfrom each of the m input lines of an f cell. Every level of T (n)f is constant testable, andT (n)f is O(lgn) testable. Q.E.D.Lemma 4.5 T (n)f is O(lg n) testable if ~0 2 Cf ^ f(~0) = 0, and D is a precedent of Dsignal.Proof : Suppose ~0 2 Cf ^ f(~0) = 0, and D is a precedent of D signal. With ~0 one canpropagate a D from each of the m input lines of an f cell, and deliver a D to the outputline of the cell. With a proper assignment one can transform a D signal assigned to aninput line of an f cell into a D. This indicates that with m proper assignments one canseparately transform m D signals assigned to m input lines of an f cell into m D signals.Hence m+ 1 assignments are enough to propagate a D signal as well as a D from everyinput line of all cells at the same level to the primary output line. Thus every level of T (n)fis constant testable, and T (n)f is O(lg n) testable. Q.E.D.Lemma 4.6 T (n)f is 
(nr) (r 2 (0; 1]) testable if ~1 62 Cf , and D signal is not a precedentof D.



Proof : Without loss of generality, assume T (n)f to be an l-level tree circuit withml primaryinput lines. On the assumption that D is not a precedent of D, and no D signal on theprimary input lines can be transformed into D signal.Consider only the propagation of a D signal from each of the primary input lines tothe primary output line. To propagate a D signal from each of the m input lines of acell to its output line, at least mm�1 assignments are necessary and mm�1 D signals will bedelivered to the output line. Assume that ( mm�1)i patterns are necessary to propagate a Dsignal from each of the primary input lines of an i-level balanced uniform tree circuit toits primary output line and deliver ( mm�1)i D signals to the primary output line. Thus wecan state that at least ( mm�1)i+1 patterns are necessary to propagate a D signal from eachof the primary input lines of an i + 1 levels balanced uniform tree circuit to its primaryoutput line and deliver ( mm�1)i+1 D to the primary output line. Since� mm� 1�logm n = n1�logm(m�1) and 0 < 1� logm(m� 1) � 1;the lemma follows. Q.E.D.Lemma 4.7 T (n)f is O(lgn) testable if ~1 2 Cf ^ f(~1) = 1, and D is a precedent of Dsignal.The proof for this lemma is similar to that for Lemma 4.5. 2Lemma 4.8 T (n)f is 
(nr) (r 2 (0; 1]) testable if ~0 62 Cf , and D signal is not a precedentof D.The proof for this lemma is similar to that for Lemma 4.6. 2Lemma 4.9 T (n)f is 
(nr) (r 2 (0; 1]) testable if Pf(X) > 0 for every full critical elementX 2 Bm.Proof : Suppose Pf (X) > 0 for every full critical element X 2 Bm. This implies that~0 62 Cf and f(X) = 0 for every full critical element X 2 Bm. An arbitrary full criticalelement X can propagate at most m� 1 D signals and can only generate a D.A nonfull critical assignment can propagate at most m� 1 diagnosis signals.Without loss of generality, we assume that T (n)f has ml primary input lines and l iseven. We prove bellow that a diagnosis signal on the primary output line can contain atmost �m2�1m2 � l2 units of diagnosis information for every primary input line.For l = 0, it is trivial. Assume that for l = 2i, a diagnosis signal on the primary outputline of T (n)f can contain at most �m2�1m2 �i units of diagnosis information for every primaryinput line.



Suppose l = 2i+2, and T (n)f is an l-level uniform tree circuit. In T (n)f each input line ofa cell at the second level is linked directly to the output line of a 2i-level balanced uniformtree circuit based on f .On the assumption that Pf(X) > 0 for every full critical assignment X 2 Bm, thena D signal on the output line of an f cell can only be derived from a nonfull criticalassignment, and contain at most m�1m units of diagnosis information for every input lineof the cell. This indicates that a D signal on either the primary output line or lines inlevel 1 can contain no more than m�1m units of diagnosis information for every connectedline in level 2.A D signal on the primary output line can be derived from either a full critical assign-ment or nonfull critical assignment applied to the cell in level 1. For the latter case, sucha D signal can contain no more than m�1m units of diagnosis information for every linein level 1. For the former case, the D signal is derived from a full critical assignment Xwhich can propagate Hw(X) D signals and m � Hw(X) D signals. Then this D signalcan contain no more than m�1m Hw(X)+m�Hw(X)m units of diagnosis information for everyconnected line in level 2.Clearly, m�1m Hw(X) +m�Hw(X)m = m2 �Hw(X)m� m2 � 1m2 :since Pf(X) > 0 and Hw(X) � 1 for every X 2 Cf according to the assumption.This implies that a diagnosis signal on the primary output line can contain at mostm2�1m2 units of diagnosis information for every connected input line of a cell at the secondlevel, and �m2�1m2 �i+1 units of diagnosis information for every primary input line at most.Then � m2m2�1� l2 patterns are necessary to propagate one unit of diagnosis information forevery primary input line to the primary output line. Notice that m2m2 � 1! l2 = n1�0:5 log(m2�1)m :Then we have Lemma 4.9. Q.E.D.Theorem 4.2 T (n)f is either O(lgn) or 
(nr) (r 2 (0; 1]) testable.Proof : Given an f function from Bm to B, only the following four cases can happen.1. Cf = �, and T (n)f is 
(nr) testable according to Lemma 4.2;2. 9X; Y 2 Cf fPf(X)Pf(Y ) < 0g, and T (n)f is O(lg n) testable followed Lemma 4.3;3. 8X 2 Cf fPf(X) � 0g, and T (n)f has the same test complexity as T (n)g based onTheorem 1.3. For function g, 8X 2 Cg fPg(X) � 0g.



4. 8X 2 Cf fPf(X) � 0g, and T (n)f is either O(lg n) or 
(nr) testable followed Lemma4.4 through 4.9. Q.E.D.The following corollary is an immediate consequence of Theorem 4.1 and 4.2.Corollary 4.1 . The test complexity of balanced uniform tree circuits based on com-mutative functions can be divided into three classes, namely, �(1), �(lgn) and 
(nr)(r 2 (0; 1]).4.3 Unate Tree CircuitsThe test complexity of unate circuits based on gates of type AND and OR is discussed indetail in [Aker73,Redd73]. In this section we study the test complexity of uniform treecircuits based on unate functions.Let � denote the boolean operator EXOR and de�ne X � Y = (x1 � y1; :::; xm � ym)for X; Y 2 Bm.De�nition 4.4 (unate function) Function f(X) is unate in xi if there is a bi 2 B sothat8X 2 Bmf(x1; :::; xi�1; bi � xi; xi+1; :::; xm) � (x1; :::; xi�1; bi� yi; xi+1; :::; xm)=) f(x1; :::; xi�1; xi; xi+1; :::; xm) � f(x1; :::; xi�1; yi; xi+1; :::; xm)g:Function f is considered to be positive unate in xi if bi = 0, and positive unate in xi ifbi = 1. Function f is considered to be a unate function if it is unate in every xi (i 2 [1; m]).According to the above de�nition, if f is unate then there is a bf 2 Bm such that8X; Y 2 Bm fbf �X � bf � Y =) f(X) � f(Y )g (4.2)We call such a bf characteristic vector of the function f . The unate function f is consideredto be monotonic if bf is either (1; :::; 1) or (0; :::; 0).Given a unate function f , we construct two subsets of Bm,E = fX j f(X) = 1 ^ 8Y 2 Bm fbf � Y < bf �X =) f(Y ) < f(X)gg (4.3)N = fX j f(X) = 0 ^ 8Y 2 Bm fbf � Y > bf �X =) f(Y ) > f(X)gg (4.4)Set E is an antichain in which no two elements are comparable. Set N is also anantichain. We call them D and D critical antichain of unate function f , respectively. Itis easy to see that a diagnosis signal can only be propagated by using an element in eitherE or N .Lemma 4.10 Let bf be the characteristic vector of unate function f . If the ith componentbi of bf is 0, then a D signal on the ith input line of an f cell can only be propagated byusing elements in E, and a D signal on the ith input line of an f cell can only be propagatedby using elements in N ; If the ith component bi of bf is 1, then a D signal on the ithinput line of an f cell can only be propagated by using elements in N , and a D signal onthe ith input line of an f cell can only be propagated by using elements in E;



Proof: Suppose bf = (b1; b2; :::; bm). Without loss of generality, we consider the �rstcomponent b1. Assume b1 = 0. For arbitrary x2; :::; xm 2 B,(0; b2; :::; bm)� (1; x2; :::; xm) > (0; b2; :::; bm)� (0; x2; :::; xm):According to the de�nition of unate functionf(0; x2; :::; xm) = 1 =) f(1; x2; :::; xm) = 1f(1; x2; :::; xm) = 0 =) f(0; x2; :::; xm) = 0This indicates that the D signal on the �rst input line of an f cell can not be propagatedby using an assignment in E , and the D signal on the �rst input line of an f cell can notbe propagated by using an assignment in N .In a similar way we can show that if b1 = 1, then the D signal on the �rst input lineof an f cell can not be propagated by using an assignment in N , and the D signal on the�rst input line of an f cell can not be propagated by using an assignment in E . Q.E.D.Lemma 4.11 One of E and N contains no full critical element.Proof: Assume that X = (x1; x2; :::; xm) is a full critical element in E . Let bf be thecharacteristic vector of function f , and bf �X = (a1; a2; :::; am). We show that ai = 1 forevery i 2 [1; m].Suppose bf�X = (0; a2; :::; am). Let Y = (x1; x2; :::; xm). Then bf � Y = (1; a2; :::; am),and f(Y ) = 0 since X is full critical. It means thatbf � Y > bf �X ^ f(Y ) < f(X)This contradicts (4.2) directly.Thus bf �X = (1; :::; 1) if X 2 E is a full critical element. In a similar way we canshow that bf � Y = (0; :::; 0) if Y 2 N is a full critical element.Assume that there is a full critical element X in E . Thenbf �X = (1; :::; 1) ^ 8Y 2 Bm fbf � Y 2 Bm�1 =) f(Y ) = 0g :This indicates that 8Y 2 Bm fbf � Y 2 Bm nBm =) f(Y ) = 0g ;particularly8Y; Z 2 Bm fbf � Y 2 B0 ^ bf � Z 2 B1 =) f(Y ) = f(Z) = 0g :This implies that there is no full critical element in N .Similarly, we can show that there is no full critical element in E if there is a full criticalelement in N . Q.E.D.



Theorem 4.3 T (n)f based on a unate function is 
(nr) (r 2 (0; 1]) testable.Proof: Assume that f is a unate function, then it has a characteristic vector bf 2 Bm suchthat 8X; Y 2 Bm fbf �X < bf � Y =) f(X) � f(Y )g :Given a bf 2 Bm, only the following three cases can happen.Case 1) Hw(bf) = 0;Case 2) 1 � Hw(bf) � m� 1;Case 3) Hw(bf) = m.For the �rst case, the corresponding D and D critical antichains are the following.E = fX j f(X) = 1 ^ 8Y 2 Bm fY < X =) f(Y ) < f(X)gg (4.5)N = fX j f(X) = 0 ^ 8Y 2 Bm fY > X =) f(Y ) > f(X)gg (4.6)The D(D) signals on the input lines of an f cell can be propagated only with an elementin E(N ) and can only be transformed into D(D) signals. Based on the above lemma, oneof E and N contains no full critical element.Without loss of generality, assume that E contains no full critical element. By using anelement one can propagate a D from at most m� 1 input lines of an f cell. Assume thatthe minimum number of D signals on every input line of a cell in level i is �(i)1 , then theminimum number of D signals delivered to an arbitrary line in level i + 1 is not smallerthan mm�1�(i)1 , and the minimum number of D signals delivered to an arbitrary line in leveli+ 2 is not smaller than mm�1�(i)1 .Assume that T (n)f is an l-level uniform tree circuit, and we propagate a D signal fromeach of the n primary input lines to the primary output line. It is easy to see that thenumber of D signals delivered to the primary output line is not smaller than ( mm�1)l, andthe T (n)f is 
(nr) (r 2 (0; 1]) testable.For the third case, the corresponding D and D critical antichains are the following.E = fX j f(X) = 1 ^ 8Y 2 Bm fY > X =) f(Y ) < f(X)gg (4.7)N = fX j f(X) = 0 ^ 8Y 2 Bm fY < X =) f(Y ) > f(X)gg (4.8)The D(D) signals on the input lines of an f cell can be propagated only with an elementin N (E) and can only be transformed into D(D) signals. Based on Lemma 4.11, one of Eand N contains no full critical element.Without loss of generality, assume thatN contains no full critical element. Suppose theminimum numbers of D and D signals on every input line of a cell in level i are �(i)1 and�(i)0 , respectively. In order to propagate them to the primary output line, the minimumnumber of D signals delivered to every output line of a cell in level i can not be smallerthan mm�1�(i)1 . The minimum number of D signals delivered to every input line of a cell inlevel i+ 2 is not smaller than mm�1�(i)1 .



Assume that T (n)f is a 2l-level uniform tree circuit, and we propagate a D signal fromeach of the n primary input lines to the primary output line. It is easy to see that thenumber of D signals delivered to the primary output line is not smaller than ( mm�1)l, andthe T (n)f is 
(nr) (r 2 (0; 1]) testable.Now we are only required to consider the second case, and the corresponding D and Dcritical antichains are presented in (4.3) and (4.4).Suppose 1 � Hw(bf) � m � 1. According to Lemma 4.10, if bi, the ith component ofbf , is 0, then every D(D) signal on the ith input line of an f cell can be propagated onlywith an element in E(N ), else every D(D) signal on the ith input line of an f cell can bepropagated only with an element in N (E).If neither E nor N has a full critical element, then every fault signal received from theoutput line of an f cell can contain at most m�1m units of diagnosis information for everyinput line of the cell. We can easily show that T (n)f is 
(nr) (r 2 (0; 1]) testable.Suppose there is a full critical element in E . As assumed, there are at least a 0 and a1 component in bf . Without loss of generality, we suppose b1 = 0 and b2 = 1. Then Dsignals on the �rst input line and D signals on the second input line of an f cell can bepropagated only with an element in E , and D signals on the �rst input line and D signalon the second input line of an f cell can be propagated only with an element in N .Let �(i)1 and �(i)0 denote the number of D and D signals on the ouput of an f cell in ithlevel. The following formulas hold�(i+1)1 � maxf�(i)1 ; �(i)0 g�(i+1)0 � mm� 1 minf�(i)1 ; �(i)0 g:Assume �(1)0 = �(1)1 = 1. Then we can prove that�(2i)1 � � mm� 1�i�(2i)0 � � mm� 1�i�(2i+1)1 � � mm� 1�i�(2i+1)0 � � mm� 1�i+1hold for i 2 h0; logm n2 i.Let � = �(l)1 + �(l)0 . Then � = 
(( mm�1) l2 ). Set r = 1�logm(m�1)2 . Thus � = 
(nr)(r 2 (0; 1]). Q.E.D.Theorem 4.3 gives a low boundary of the test complexity of balanced uniform treecircuits based on unate functions. Monotonic functions are special unate functions. We



call a tree circuit based on monotonic function monotonic circuit. In the following, westudy in more detail the test complexity of the monotonic tree circuit family.Assume that T (n)f is an l-level uniform tree circuit. Let �(i)1 and �(i)0 denote the minimumnumbers of D and D signals delivered to every input line of an f cell in level l � i,respectively. We will show that a rough relationship among these parameters can bedescribed through the inequality (4.9)." �(i)1�(i)0 # � " a00 a01a10 a11 # " �(i�1)1�(i�1)0 #+ " c1c0 # (4.9)" �(i)1�(i)0 # � " a11 a12a21 a22 #i " �(0)1�(0)0 # + i�1Xj=0 " a11 a12a21 a22 #j " c1c0 #The parameters a00; a01; a10; a11; c0 and c1 are all determined by the de�nition of thefunction f .When the equality in (4.9) is satis�able, then (4.9) represents that the number ofdiagnosis signals on the output line of a cell is a linear function of the number of diagnosissignals on input lines of the cell. We call (4.9) recurrence formula of the test complexityof f . The matrix and constant vector in (4.9) are called rotation matrix and translationvector of f , respectively.A monotonic function is monotonic increase, if its characteristic vector is (0; :::; 0), elseis monotonic decrease. At �rst we study the test complexity of uniform tree circuits basedon monotonic increase functions.Theorem 4.4 T (n)f based on a monotonic increase function is �(nr) (r 2 (0; 1]) testable.Proof: For monotonic increase function f , the characteristic vector bf is (0; :::; 0) and8X; Y 2 Bm fY < X =) f(Y ) � f(X)g :The corresponding D and D critical antichains are presented in (4.5) and (4.6), respec-tively.It is not di�cult to see that every element in E is 0 critical, while every element in N is1 critical. A D signal can only be propagated through assignments in E , while a D signalcan only be propagated through assignments in N . E and N have no common element.For Yj = (y1; � � � ; yi; � � � ; ym) 2 Bm we de�ne �iYj = yi, and Yj = (y1; � � � ; yi; � � � ; ym).Let s = #E and t = #N . De�ne��1 = max8><>:min8><>: XXj2E zj�iXj 0@ X1�j�s zj1A�1 ������� i 2 [1; m]9>=>; ������� zj 2N; j 2 [1; s]9>=>;��1 = max8><>:min8><>: XYj2N zj�iYj 0@ X1�j�t zj1A�1 ������� i 2 [1; m]9>=>; ������� zj 2 N; j 2 [1; t]9>=>;By repeatedly applying an assignment Xj 2 E zj times to an f cell one can propagatezj�iXj D signals on the ith input line of the cell. By applying P1�j�s zj assignments in E



one can propagate PXj2E zj�iXj D signals on the ith input line of the cell. The formulamin8><>: XXj2E zj�iXj 0@ X1�j�s zj1A�1 ������� zj 2 N; i 2 [1; m]9>=>;de�nes the minimum rate between the minimum number of D signals propagated from aninput line and the number of assignments used in E . The parameter ��1 represents themaximum e�ciency of propagating a D signal on an input line of an f cell by using anassignment in E . Similarly, ��1 represents the maximum e�ciency of propagating a Dsignal on an input line of an f cell by using an assignment in N .To propagate a D signal on every input line of an f cell one has to use d�e assignmentsin E and deliver d�e D diagnosis signals to the output line. Similarly, to propagate a Dsignal on every input line of an f cell one has to use d�e assignments in N and deliverd�e D signals to the output line.It is easy to see that �; � � 1 and 1 < �� �m2.No assignment X 2 Bm n (E [N ) can be used to propagate diagnosis signals. However,every assignmentX 2 Bm has to be applied to an f cell in order to test the cell completely.Let c1 =PX2Bm f(X)� s and c0 =PX2Bm f(X)� t. Then c1+ c0 equals the numberof elements which are included in neither E nor N .In order to propagate �(i�1)1 D signals from each of the m input lines of an f cell andto test the cell itself completely one has to drive �(i�1)1 �+ c1 D signals to the output line.In order to propagate �(i�1)0 D signals from each of the m input lines of an f cell and totest the cell itself completely one has to deliver �(i�1)0 � + c0 D signals to the output line.We can determine that the recurrence formula of the test complexity of f is" �(i)1�(i)0 # = " � 00 � # " �(i�1)1�(i�1)0 #+ " c1c0 # :Assume T (n)f to be an l-level tree circuit, and �(0)0 = �(1)1 = 1. Put it di�erently, only aD signal and a D signal are assigned to every primary input lines. Thus we have" �(i)1�(i)0 # = " � 00 � #i " �(0)1�(0)0 #+ i�1Xj=0 " � 00 � #j " c1c0 #= " �i�i # + i�1Xj=0 " c1�jc0�j # for i 2 [1; l]�(l)1 = 8><>: �(�l) : � > 1�(l) : � = 1 ^ c1 > 0�(1) : � = 1 ^ c1 = 0�(l)0 = 8><>: �(�l) : � > 1�(l) : � = 1 ^ c0 > 0�(1) : � = 1 ^ c0 = 0



We know that l � logm n. Let � = logm � and � = logm �. We have�(l)1 = 8><>: �(n�) : � � 1�(logm n) : � = 1 ^ c1 > 0�(1) : � = 1 ^ c1 = 0�(l)0 = 8><>: �(n�) : � � 1�(logm n) : � = 1 ^ c0 > 0�(1) : � = 1 ^ c0 = 0As mentioned, either � or � is greater than 1 for a monotonic function f . Let� = �(l)1 + �(l)0 and r = maxf�; �g. Then � = �(nr) (r 2 (0; 1]). Q.E.D.In case f is commutative and monotonic increase, then there is a k 2 [0; m] so that8j 2 [0; m] ffj < k =) 8X 2 Bj ff(X) = 0gg ^ fj � k =) 8Y 2 Bj ff(Y ) = 1ggg :Such a function is called \threshold k" function from Bm to B (see page 110 in [Hotz74]).The following is its formal de�nition.f(x1; : : : ; xm) = ( 1 : P1�i�m xi � k0 : otherwise ; (x1; :::; xm) 2 BmThe D and D critical antichains areE = n(x1 � � �xm) ��� Xxi = ko and N = n(x1 � � �xm) ��� Xxi = k � 1o :Every assignment in E can propagate a D signal from k input lines of an f cell, whileevery assignment in N can propagate a D from m � k + 1 input lines of an f cell. Theterms of the rotation matrix and the translation vector can be determined as follows:� = mk ; � = mm� k + 1c1 = Xk+1�i�m mi ! ; c0 = X0�i�k�2 mi ! :Assume T (n)f to be an l-level uniform tree circuit based on the \threshold k" function f .Function f is monotonic increase. In the same way used to prove Theorem 4.4 we candetermine the parameters �(l)1 and �(l)0 and show that� = �(l)1 + �(l)0= �(�logm n) + �(�logm n )= �(n1�logm k) + �(n1�logm(m�k+1) ):Take r = max f1� logm k; 1� logm(m� k + 1)g. We have � = �(nr).



Example 4.1: Estimate the test complexity of T (n)f based on the boolean functionf(x; y) = x ^ y.We can determine that the D and D critical antichains areE = f(1; 1)g and N = f(0; 1); (1; 0)g:The recurrence formula of the test complexity of f is" �(i)1�(i)0 # = " 1 00 2 #" �(i�1)1�(i�1)0 #+ " 01 # :Thus �(l)0 = 2l + c0 X0�j�l�1 2j= 2l+1 � 1�(l)1 = 1;� = �(l)1 + �(l)0= 2n:It has been shown that T (n)f based on f(x; y) = x ^ y can be tested completely withn+1 patterns [Haye71]. This conclusion is slightly di�erent from our result since the faultmodels used here and adopted in [Haye71] are not the same. In [Haye71] only stuck-at-1and stuck-at-0 faults are considered, i.e., the assignment (0; 0) does not need to be assignedto an f cell. Here we assume the cell de�nition fault model, so that every assignments inB2 needs to be assigned to an f cell. For instance, we hold that there can exist a faultin an f cell, and only the assignment (0; 0) can sensitize it. This implies that c0 = 1.The value of �(l)0 is equal to the sum of two terms 2l and c0P0�j�l�1 2j. If we set c0 = 0and omit the second term, then �(l)0 = 2l, and � = n + 1. This new result is completelyconsistent with that discovered in [Haye71].In the same way we can determine that � = 2n for the case f(x; y) = x _ y.Based on Theorem 4.4, � = �(l)1 + �(l)0 can be exactly evaluated, provided that f is amonotonic increase function. In case f is not a monotonic increase function, it may bepossible to �nd a monotonic increase function g and to embed f into g. The test complex-ity of T (n)g can be determined. Thus the test complexity of T (n)f can be estimated indirectly.Example 4.2: Estimate the test complexity of T (n)h based on function h(x; y) = x ^ y.It is clear that h is not a monotonic increase function. We de�ne a function g as follows.g(x; y; u; v) = h(h(x; y); h(u; v))= x ^ y _ u ^ v:Obviously, g(x; y; u; v) is a monotonic increase function, and h can be embedded into g.



Fig. 4.2: A uniform T (16)h???h h?? ??h h h h?? ?? ?? ??h h h h h h h h?? ?? ?? ?? ?? ?? ?? ??
Fig. 4.2 illustrates a T (16). Every dash box represents a g cell. If we regard a dashbox as a basic cell, then T (16) is a two-level uniform tree circuit based on the monotonicfunction g. Otherwise, T (16) can be recognized as a four-level uniform tree circuit basedon the function h.We can determine that the D and D critical antichains and the recurrence formula ofthe test complexity of g are the following.E = f(1; 1; 0; 0); (0; 0; 1; 1)g; N = f(1; 0; 1; 0); (0; 1; 0; 1)g" �(i)1�(i)0 # = " 2 00 2 # " �(i�1)1�(i�1)0 #+ " 57 # :Assume log4 n = l, then �(l)1 = 2l + 5 l�1Xi=0 2i= 3 � 2l+1 � 5:�(l)0 = 2l + 7 l�1Xi=0 2i= 2l+3 � 7:� = �(l)0 + �(l)1= �(n 12 ):T (n) based on h is �(n 12 ) testable since T (n) based on g is �(n 12 ) testable.Coming up next we study the case in which f is a monotonic decrease function.Theorem 4.5 T (n)f based on a monotonic decrease function f is �(nr) (r 2 (0; 1])testable.



Proof : The proof for this theorem is similar to that for Theorem 4.3 in the most ways.For monotonic decrease function f , the characteristic vector bf is (1; :::; 1) and8X; Y 2 Bm fX > Y =) f(X) � f(Y )g :The corresponding D and D critical antichains are presented in (4.7) and (4.8), respec-tively.It is obvious that all D signals can only be propagated with assignments in N , whileall D signals can only be propagated with assignments in E .In the same way used to prove Theorem 4.4 we de�ne the parameters �, �, c0 and c1and the recurrence formula of the test complexity of f . We have" �(i)1�(i)0 # = " 0 �� 0 # " �(i�1)1�(i�1)0 # + " c1c0 #�(i)0 = �(i�1)1 � + c0�(i)1 = �(i�1)0 � + c1for i 2 [1; l].Assume �(0)0 = �(0)1 = 1. We can inductively prove that�(2i)0 = �i�i + c0 i�1Xj=0(��)j + c1� i�1Xj=0(��)j�(2i)1 = �i�i + c1 i�1Xj=0(��)j + c0� i�1Xj=0(��)j�(2i+1)0 = �i�i+1 + c0 iXj=0(��)j + c1� i�1Xj=0(��)j�(2i+1)1 = �i+1�i + c1 iXj=0(��)j + c0� i�1Xj=0(��)jhold for 2i 2 [0; l� 1].Assume that l = 2k. Then � = �(2k)0 + �(2k)1= �((��) l2 ):We know that l � logm n. Thus� = ��(��) lognm2 �= � n log��m2 ! :Let r = log��m2 , then r 2 (0; 1], and � = �(nr).



Q.E.D.The function h given in Example 4.2 is a monotonic decrease function. We can deter-mine that theD andD critical antichains and the recurrence formula of the test complexityof h are following.E = f(1; 0); (0; 1)g; N = f(1; 1)g" �(i)1�(i)0 # = " 0 21 0 # " �(i�1)1�(i�1)0 #+ " 10 # :Here m = 2, and �� = 2. According to Theorem 4.4,� = �(n log��22 )= �(n 12 ):T (n)h is �(n 12 ) testable.4.4 SummaryIn section 4.2 we have proven that the test complexity of balanced uniform tree circuitsbased on commutative functions can be divided into �(1), �(lg n) and 
(nr) (r 2 (0; 1])testable classes. In section 4.3 we have shown that tree circuits based on unate functionsare all 
(nr) (r 2 (0; 1]) testable. The test complexity of uniform tree circuits based ongeneral functions has more classes.Example 4.3: Table 4.1 de�nes a function f . We show below that T (n)f is �((lgn)2)testable. Table 4.1f(x1; x2; x3) x1 x2 x30 0 0 00 0 0 10 0 1 00 0 1 11 1 0 00 1 0 10 1 1 01 1 1 1
Table 4.2f(x1; x2; x3) x1 x2 x3D D 0 00 0 0 10 0 1 0D D 1 1D 1 D DD 1 D 1D 1 1 DD D D DFrom Table 4.2 we can see that the assignments (0; 0; 1) and (0; 1; 0) can not be used topropagate diagnosis signals. In order to propagate a diagnosis signal one has to choose oneof the six assignments (0; 0; 0); (0; 1; 1); (1; 0; 0); (1; 0; 1); (1; 1; 0) and (1; 1; 1), as shownby Table 4.2.



With the assignment (1; 1; 1), one can propagate a D signal on each of the three inputlines of an f cell. With the assignment (1; 0; 0) one can transform D signals on the secondand third input lines of an f cell into D signal. The D signals on the �rst input line of anf cell can only be propagated with the assignment (0; 1; 1) or (0; 0; 0). The D signals onthe second and third input line can be propagated with the assignment (1; 0; 0) as well aswith the assignment (1; 0; 1) and (1; 1; 0), respectively. We had better use the assignment(1; 0; 0) to transform them into D signals since D signals on each of the three input linesof an f cell can be propagated simultaneously. But the D signal on the �rst input line ofan f cell can not be transformed into D, no matter how to choose the assignment.To test a cell completely, all elements in B3 have to be applied to the cell. It is wiseto use each of the eight assignment at least once to propagate some D and D diagnosissignals, then use the assignment (1; 0; 0) to transform the rest of D on the second andthird input lines into D diagnosis signals. The rest of D diagnosis signals on the �rstinput line of the cell can be propagated by repeatedly using either the assignment (0; 0; 0)or (0; 1; 1).Let �(i)1 and �(i)0 denote the minimum numbers of the D and the D signals on the outputline of an f cell in level i. This indicates that" �(i)1�(i)0 # = " 1 10 1 # " �(i�1)1�(i�1)0 # + " 05 # for i 2 [1; l]:Let �(0)1 = �(0)0 = 1. We can inductively prove that�(i)1 = 5i2 � 3i+ 22�(i)0 = 5i+ 1 for i 2 [1; l]:In order to test an l-level T (n)f completely, we have to deliver� = �(l)1 + �(l)0= 5l2 + 7l + 42diagnosis signals to the primary output line.As we know, l = �(lgn), thus we can state that T (n)f is �((lgn)2) testable.



Chapter 5Synthesis of O(lg n) Testable TreesWe have shown that the test complexity of the balanced uniform trees can be dividedinto �(1), �((lgn)�) and 
(n�) (� 2 (0; 1]) classes. Two approaches for minimizing thetest complexity of circuits are proposed in [Haye74] and [SaRe74]. By using them one canalways synthesize a �(1) testable circuit for every function. Their common idea is to useextra test points to make every internal gates in the circuit under test directly controllableand observable. Such modi�cations change the logic structure of the circuit and necessitatemany extra input and output pins. In practice, the number of access terminals is stronglylimited. At the present time, the test complexity in order of O(lgn) is acceptable. Maybeit is a realistic attitude to synthesize an O(lgn) testable tree within the restriction on thequantity of extra gates and the number of additional access terminals without changingthe tree-like logical structure of the system.This Chapter explores that a balanced uniform T (n) based on a so called kernel sensitivefunction(kernel sensitive function will be formally de�ned in section 5.1) is always O(lg n)testable.Let M be a set of m symbols. We assume M = f0; 1; :::;m� 1g, without loss of gener-ality. This Chapter presents a systematic method of synthesizing kernel sensitive functionsfrom non-kernel sensitive functions from M2 to M , and shows that every balanced T (n)based on surjective functions from M2 to M can be embedded in an O(lgn) testable treeT (n). This indicates that one can trade the hardware overhead for the low test complexitywithout changing the tree-like structure of the circuit system. This strategy is meaningfulsince the cost of the hardware has been decreasing while the cost of the test has been in-creasing. In comparison with other methods of reducing the test complexity, this methodrequires more extra gates and less extra input and output pins. With the developmentof VLSI technology the gate density of VLSI is increasing much more rapidly than thenumber of access terminals. Thus this method is also promising.This Chapter is structured in the following way. In section 5.1 we make some conven-tions and de�ne the kernel sensitive function. Section 5.2 presents a systematic method ofsynthesizing kernel sensitive functions from non-kernel sensitive functions. In section 5.3we will show how to synthesize an O(lgn) testable tree and embed a given balanced treein it.



5.1 Kernel Sensitive FunctionIn this Chapter we use the terminologies de�ned in Chapter 3. In the following we presentagain some conventions.The set of all basic diagnosis signals isdf := fk=l j k 2M; l 2M n kg (5.1)The diagnosis signal set isDf := fk=S j k 2M; S �M n kg (5.2)One of its subsets is �f := fk=S j k 2M; S =M n kg (5.3)Using D2f as the domain, we de�ne a function Pf as follows:Pf(i=Si; j=Sj) = ff(i; k); f(l; j) j k 2 Sj ; l 2 Sig; (i=Si; j=Sj) 2 D2f (5.4)Pf (i=Si; j=Sj) is a subset of M . When the diagnosis signal pair (i=Si; j=Sj) is applied toan f cell, the set of error outputs must include Pf(i=Si; j=Sj).De�nition 5.1 Function f : M2 �! M is sensitive if8i; j; k 2M ff(i; j) = f(i; k)() j = k ^ f(j; i) = f(k; i)() j = kg (5.5)If a cell implements a sensitive function, then any change of one of its input signals willcause a change of its output signal.De�nition 5.2 (compatible pair) A pair (i=Si; j=Sj) 2 D2f is said to be compatible, ifPf (i=Si; j=Sj) does not include f(i; j).When f is not sensitive, there are certainly some diagnosis signal pairs which arenot compatible and can not be assigned to an f cell. For example, suppose i 6= j andf(i; k) = f(j; k). Then Pf(i=j; k) = ff(j; k)g, and f(i; k) 2 Pf(i=j; k). This indicatesthat the pair (i=j; k) is not compatible. When (i=j; k) is applied to an f cell, the diagnosissignal i=j disappears in the cell, and one can not �nd its track at the output line at all.The signal k blockades the propagation of the diagnosis signal i=j through an f cell. Thusthis pair can not be assigned to an f cell.According to the de�nition of f , one can determine the set of all compatible pairs.Vf = f(i=Si; j=Sj) j (i=Si; j=Sj) 2 D2f ; (i=Si; j=Sj) is compatibleg (5.6)When (i=Si; j=Sj) 2 Vf is applied to a cell, both diagnosis signals i=Si and j=Sj can bepropagated through the cell. The corresponding diagnosis signal received from the outputmust contain f(i; j)=Pf(i=Si; j=Sj).De�nition 5.3 (stable kernel) A set W is called stable kernel if every pair (i=Si; j=Sj)of W 2 is compatible, and the diagnosis signal f(i; j)=Pf(i=Si; j=Sj) belongs to W .



In case W is a stable kernel, one can assign every pair (i=Si; j=Sj) 2 W 2 to an f cell,and the corresponding diagnosis signal delivered to the output line of the f cell belongsto W .Lemma 5.1 �h := fi=Hi j i 2 H;Hi = H n ig is a stable kernel if functionf jH2 : H2 �! His sensitive.Proof: Assume f jH2 : H2 �! H to be sensitive. Then8(i; j) 2 H2 nf(i; j) 62 Pf(i=Hi; j=Hj)^ Pf(i=Hi; j=Hj) = Hf(i;j)o :Especially for every pair (i=Hi; j=Hj) 2 �2h, (i=Hi; j=Hj) is compatible, and the diagnosissignal f(i; j)=Pf(i=Hi; j=Hj) belongs to �h. Thus �h is a stable kernel. Q.E.D.Observation 5.1 Assume W to be a stable kernel. By using a pattern one can propagatea diagnosis signal of W from each of the lines in the same level to the primary output lineof T (n) simultaneously.De�nition 5.4 (signal drive) We say that:� One can transform i=Si directly into k=Sk from the left side by using j=Sj at theright side if (i=Si; j=Sj) 2 Vf , f(i; j) = k and Pf(i=Si; j=Sj) � Sk.� One can transform i=Si directly into k=Sk from the right side by using j=Sj at theleft side if (j=Sj; i=Si) 2 Vf , f(j; i) = k and Pf(j=Sj; i=Si) � Sk.� u 2 Df can be driven into a setW � Df if there are wl; wr 2 W , and u can be directlytransformed into wl and wr from the left and right side, or there are wl; wr 2 Dfsuch that u can be directly transformed into wl and wr from the left and right side,and both wl and wr can be driven into W .In case one can transform u directly into w from both the left and right sides by using vat the another side, we say that u can be directly transformed into w by using v, denotedby u v�! w.From the above de�nition we can see that one can transform i=Si directly into k=Skfrom the left(right) side by using j 2 M at the right(left) side if one can transform i=Sidirectly into k=Sk from the left(right) side by using j=Sj 2 Df at the right(left) side.De�nition 5.5 (kernel sensitive) Function f : M2 �! M is kernel sensitive if thereis a set H �M such that function f jH2 : H2 �! H is sensitive and every basic diagnosissignal in df can be driven into�h := fi=Hi j i 2 H ^Hi = H n ig (5.7)



Example 5.1: Functions f1 : f0; 1g2 �! f0; 1g, g1 : f0; 1; 2g2 �! f0; 1; 2g, andh1 : f1; 2g2 �! f1; 2g are de�ned as follows:f1 0 10 0 11 1 1 g1 0 1 20 0 1 11 1 1 22 1 2 1 h1 1 21 1 22 2 1The function f1 is not kernel sensitive, and df1 = f0=1; 1=0g. The basic diagnosissignal set of g1 is dg1 = f0=1; 0=2; 1=0; 1=2; 2=0; 2=1; gBased on g1 we can induce a sensitive function h1 = g1jf1;2g2. And �h1 = f1=2; 2=1g.It is not hard to see that every element in dg1 can be driven into �h1 . In more detail,0=1 2�! 1=2; 1=0 2�! 2=1; 0=2 1�! 1=2; 2=0 1�! 2=1This indicates that g1 is kernel sensitive.Theorem 5.1 Balanced uniform T (n) based on a function g : M2 �! M is O(lgn)testable if g is kernel sensitive.Proof: Suppose g is kernel sensitive. Given a constant k, T (2k) is O(1) testable. It issu�cient to prove that all cells in the level l (l � k) of T (n) are O(1) testable. All inputlines linked to cells in the same level of a tree system are independent of each other. Thusall faults in all cells in the same level of T (n) can be sensitized simultaneously. If there isa constant � so that one can propagate every basic diagnosis signal from each of the linesin the level l(l � k) to the primary output line of T (n) by using � patterns, then all cellsin the same level are O(1) testable and the balanced uniform T (n) is O(lgn) testable.For a kernel stable function g :M2 �!M, there is a set H � M so that functionh = gjH2 is sensitive, and �h := fi=Hi ji 2 H ^Hi = H n ig is a stable kernel. Further-more, there is a constant k and every diagnosis signal in dg can be driven into �h throughk transformations since Dg contains a �nite number of elements.Consider driving a given diagnosis signal u1 2 dg from the jth primary input line tothe primary output line of a balanced uniform tree T (2k). Without loss of generality,we assume j = 1, and suppose further that by using vi 2 M at the right side one cantransform ui directly into ui+1 for i 2 [1; k], and uk+1 2 �h.We enumerate the primary input lines of T (2k) from the left to the right, and assign u1and v1 to the �rst and second primary lines. Furthermore, we assign wi 2 M (i 2 [3; 2k])to the ith primary input line of T (2k) so thatg(w3; w4) = v2g (� � �g(| {z }i�1 w2i�1+1; w2i�1+2); � � � ; g(w2i�1; w2i) � � �) = vi; i 2 [3; k]



These can always be done since function g is surjective.It is easy to see that by assigning u1; v1; w3; :::; w2k to the 2k primary input lines ofT (2k) one can propagate the diagnosis signal u1 from the �rst primary input line to theprimary output line of T (2k), and the corresponding diagnosis signal uk+1 delivered to theprimary output line of T (2k) belongs to �h.This indicates that one can drive every basic diagnosis signal from each of the lines in thelevel l of T (n) (l � k; n � 2k) into �h with 2k patterns. As mentioned in Observation 5.1,one can propagate a diagnosis signal in a stable kernel from each of the lines in the samelevel to the primary output line simultaneously.Let � = 2kjdf j. All cells in the level l (l � k) of T (n) can be tested by using �n-component patterns, and T (2k) is O(1) testable for the given constant k. Thus T (n) isO(lgn) testable. Q.E.D.5.2 Synthesis of FunctionsIn this section we show that every non-kernel sensitive function can be embedded in akernel sensitive function.De�nition 5.6 Assume that f : M2 �! M and g : M2 �! M are two surjectivefunctions. If there is a monomorphism F : (M; f) �! (M; g), then we say that f can beembedded in g, or g can cover f through F .Suppose there are two monomorphismsF1 : (M1; f1) �! (M2; f2) and F2 : (M2; f2) �! (M3; f3):Then F2 � F1 is a monomorphism from (M1; f1) to (M3; f3). This implies that f can beembedded in h if f can be embedded in g, and g can be embedded in h.Assume that f can be embedded in g through a monomorphism F : (M; f) �! (M; g),then we can de�ne an epimorphism G : (M; g)�! (M; f) so that8a 2M fG(F(a)) = agand 8a; b 2M ff(a; b) = G(g(F(a);F(b)))g :Theorem 5.2 If f can be embedded in g through a monomorphism F , then there is anepimorphism G such that8a; b; c; d2M ff(f(a; b); f(c; d)) = G(g(g(F(a);F(b)); g(F(c);F(d))))g (5.8)Proof : On the assumption that f can be embedded in g through an monomorphismF : (M; f) �! (M; g), then there is an epimorphism G : (M; g)�! (M; f), and8a 2M fG(F(a)) = ag and 8a; b 2M fF(f(a; b)) = g(F(a);F(b))g



hold always. Thus f(a; b) = G(g(F(a);F(b)))F(f(a; b)) = F(G(g(F(a);F(b))))= g(F(a);F(b))f(f(a; b); f(c; d)) = G(g(F(f(a; b));F(f(c; d))))= G(g(g(F(a);F(b)); g(F(c);F(d))))can hold, and we can conclude that8a; b; c; d2M ff(f(a; b); f(c; d)) = G(g(g(F(a);F(b)); g(F(c);F(d))))g : Q.E.D.This theorem states that a tree based on g can be used as a substitution for a treebased on f , if f can be embedded in g.Example 5.2: Consider functions f1 and g1 de�ned in Example 5.1 and embed the formerin the latter.Let M1 = f0; 1g and M1 = f0; 1; 2g. A monomorphism F can be de�ned as follows:F : (M1; f1) �! (M1; g1); F(0) = 0; F(1) = 1:Based on F we can de�ne an epimorphismG : (M1; g1) �! (M1; f1); G(0) = 0; G(1) = G(2) = 1:This indicates that f1 can be embedded in g1, and T (n)g1 can simulate the function of theuniform tree T (n)f1 .Since g1 is kernel sensitive, T (n)g1 is O(lg n) testable followed Theorem 5.1. However,T (n)f1 is �(n) testable [Haye71].In the rest of this section we show that every function f can be embedded in a kernelsensitive function.Lemma 5.2 Every function f from f0; 1g2 to f0; 1g can be embedded in a kernel sensitivefunction.Proof: There are altogether 16 distinct functions from f0; 1g2 to f0; 1g. Functions f1; :::; f8are de�ned as follows:f1 0 10 0 11 1 1 f2 0 10 1 11 1 0 f3 0 10 0 11 1 0 f4 0 10 0 11 0 0f5 0 10 0 01 1 0 f6 0 10 1 01 1 0 f7 0 10 1 11 0 0 f8 0 10 0 01 0 0



We de�ne 0 = 1, 1 = 0, and function fi(x; y) = fi�8(x; y) for i 2 [9; 16].Based on these functions we induce two functions g and g0 as follows:g 0 1 2 30 f(0; 0) f(0; 1) 3 21 f(1; 0) f(1; 1) 2 32 3 2 2 33 2 3 3 2 g0 0 1 2 30 f 0(0; 0) f 0(0; 1) 2 31 f 0(1; 0) f 0(1; 1) 3 22 2 3 3 23 3 2 2 3It is easy to check that both g and g0 are kernel sensitive, provided thatf 2 ffi j i 2 [1; 8]g; f 0 2 ffi j i 2 [9; 16]g:This indicates that every function fi : f0; 1g2 ! f0; 1g can be embedded in a kernel sensi-tive function. Q.E.D.Theorem 5.3 Every function can be embedded in a kernel sensitive function.Proof: Due to Lemma 5.2, it is su�cient to consider only functions from M2 to Mfor #M > 2. Let H = fm;m+ 1; :::; 2m� 1g and M = M [ H . Given a functionf :M2 �!M , we induce a function g :M2 �!M as follows:g(i; j) = 8>>><>>>: f(i; j) : (i; j) 2M2(j � i)%m+m : (i; j) 2M �H(i� j)%m+m : (i; j) 2 H �M(�j � i� 1)%m+m : (i; j) 2 H2 (5.9)Let h = gjH2. The set of basic diagnosis signals of h is dh := fi=j j i; j 2 H ^ i 6= jg.It is not hard to see that h is sensitive, and �h := fi=Hi j i 2 [1; m]^Hi = H n ig is astable kernel. We can check that8i; j 2 Mfi 6= j =) 9k 2 H fg(i; k) 6= g(j; k)^ g(i; k)=g(j; k) 2 dhgg (5.10)8i; j 2 Mfi 6= j =) 9k 2 H fg(k; i) 6= g(k; j)^ g(k; i)=g(k; j) 2 dhgg (5.11)This implies that every basic diagnosis signal i=j 2 dg can be transformed from the leftside as well as from the right side into an element in dh. We know that every element indh can be driven into �h. Thus every element in dg can be driven into the stable kernel�h, and g is kernel sensitive. Q.E.D.Example 5.3: Assume f to be a function from f0; 1; 2g2 to f0; 1; 2g. A function g is de�nedas follows:



g 0 1 2 3 4 50 f(0; 0) f(0; 1) f(0; 2) 3 4 51 f(1; 0) f(1; 1) f(1; 2) 5 3 42 f(2; 0) f(2; 1) f(2; 2) 4 5 33 3 5 4 5 4 34 4 3 5 4 3 55 5 4 3 3 5 4Using H = f3; 4; 5g2 as the domain we can induce a function h = gjH2. The function his sensitive and �h = f3=f4; 5g; 4=f5; 3g; 5=f3; 4gg. It is easy to see that every diagnosissignal in dg can be driven into �h. This indicates that the function g is kernel sensitive.It is obvious that if an f cell has 2k binary input pins and k binary output pins, thena so induced g cell has 2k + 2 binary input pins and k + 1 binary output pins.5.3 Synthesis of TreesIn section 5.2 we have shown that every function can be embedded in a kernel sensitivefunction and have introduced a method of synthesizing kernel sensitive functions fromnon-kernel sensitive functions. In this section we will show that this method can be usedto synthesize an O(lg n) testable tree for every tree comprising a number of di�erent cells.It is well known that any fanout free tree circuit can be realized with NAND and NORgates. Therefore, the synthesis of kernel sensitive functions for NAND and NOR functionsis essential. At �rst we consider the synthesis of a kernel sensitive function for NANDfunction.AssumeM2 = f0; 1g andM2 = f0; 1; 2; 3g. Let f2 :M22 �!M2 denote NAND function.It can be formally de�ned as follows:f2 0 10 1 11 1 0The set of basic diagnosis signals of f2 is df2 = f0=1; 1=0g. John P. Hayes had shownthat T (n)f2 is 
(n 12 ) testable [Haye71].Based on f2 we induce a function g2 :M22 �!M2 as follows:g2 0 1 2 30 1 1 2 31 1 0 3 22 2 3 3 23 3 2 2 3 h2 2 32 3 23 2 3The set of basic diagnosis signals of g2 isdg2 = f0=1; 0=2; 0=3; 1=0; 1=2; 1=3; 2=0; 2=1; 2=3; 3=0; 3=1; 3=2gBased on g2 we induce a function h2 = g2jf2;3g2. Function h2 is sensitive and



�h2 = f2=3; 3=2g. Every element in dg2 can be driven into �h2 . In more detail,0=1 2�! 2=3; 1=0 2�! 3=2; 0=2 2�! 2=3; 2=0 2�! 3=2; 1=3 2�! 3=23=1 2�! 2=3; 0=3 0�! 1=3 2�! 3=2; 3=0 0�! 3=1 2�! 2=31=2 1�! 0=3 0�! 1=3 2�! 3=2; 2=1 1�! 3=0 0�! 3=1 2�! 2=3Thus g2 is kernel sensitive.Let F : (M2; f2) �! (M2; g2); F(0) = 0; F(1) = 1and G : (M2; g2) �! (M2; f2); G(0) = 0; G(1) = G(2) = G(3) = 1:We can check that F and G are monomorphism and epimorphism, respectively. Thisindicates that f2 can be embedded in g2.In a similar way we can show that the NOR function f9 can be embedded in functiong9 de�ned below. f9 0 10 1 01 0 0 g9 0 1 2 30 1 0 2 31 0 0 3 22 2 3 3 23 3 2 2 3According to g9 we can induce a function g9jf2;3g2 equivalent to h2. Every basic diag-nosis signal of g9 can be transformed into �h2 . Then g9 is also kernel sensitive.Theorem 5.4 Every fanout free circuit T (n) can be embedded in an O(lgn) testable treeT (n).Proof : Assume that T (n) is a balanced tree circuit made up of gates of type NAND andNOR. We can replace every NAND and NOR gate by g2 and g9 cell, respectively. In thisway we can obtain a balanced tree T (n) made up of cells of type g2 and g9.Cell g2 has 42 distinct input pairs. For each of the 42 input pairs there are threepossible error outputs, namely, three possible faults. There are altogether 3� 42 possiblefaults. The three faults associated to an input pair can be sensitized by the same pattern.However, the corresponding three diagnosis signals perhaps can not be propagated to theprimary output line by using the same pattern, and we may have to use three patterns totest the three faults associated to the input pair separately. One pattern can test at leasta fault. This means that cell g2 can be completely tested by using 3 � 42 assignments,and each assignment delivers a basic diagnosis signal which can be transformed into anelement in �h2 through three transformations. Function g9 has the same property.Since h2 is a sensitive function, every pair of diagnosis signals in �2h2 can be propagatedsimultaneously through both g2 and g9 cells. This indicates that all cells in the same levelof T (n) can be completely tested by using 23 � 3 � 42 patterns. A balanced tree systemT (n) has �(lg n) levels, then it is O(lgn) testable. Q.E.D.



Theorem 5.5 Every tree based on surjective functions from M2 to M can be embeddedin an O(lgn) testable tree T (n) based on surjective functions from M2 to M.Proof: Due to Theorem 5.4, it is su�cient to consider only the cases #M > 2. Accordingto Theorem 5.3, one can induce a kernel sensitive function gi : M2 �! M for everyfunction fi : M2 �! M . From every kernel sensitive function gi, one can induce asensitive function h = gijH2 .Given a T (n) based on fi, we construct a T (n) by replacing every fi cell by a gi cell.Since #M = 2m, for a given input pair to gi there are 2m� 1 possible faults. All diag-nosis signals in dgi can be driven into the stable kernel �h = fi=Hi j i 2 H ^Hi = H n igthrough one transformation. Every pair of diagnosis signals in �2h can be simultaneouslypropagated through every gi cell. This indicates that all cells in the same level of T (n) canbe completely tested with 21 � (2m � 1)(2m)2 patterns. Thus all cells in the same levelare �(1) testable, and T (n) is O(lgn) testable. Q.E.D.



Chapter 6An Approach toPseudoexhaustive Testing6.1 IntroductionAssume that a multiple-primary-output circuit C has n primary input lines, and each ofits primary output lines depends on at most k primary input lines. The generation of apseudoexhaustive test set for the circuit C is equal to the construction of an n-column0, 1 matrix such that every k-column submatrix contains 2k distinct row vectors, putit di�erently, every k-column projection is surjective on f0; 1gk. In order to simplify thedescription, we use L(n; k) to denote this problem as well as the row number of the desired0, 1 matrix for two given integers n and k. The solution of L(n; k) has also applicationsto the design of fault tolerant computing systems [Frie84, LSGH87, Wu90, Wu91].Extensive research has been done on this subject. Tang and Woo[TaWo83] have founda method with O(n k2 ) upper bound for L(n; k). Although their method could be usedto form an acceptable solution for small n and k, it is unsuitable for large n and k. Aconstructive and almost optimal solution for k = 2 has been introduced in [CKMZ83].In that paper a constructive solution with O((logn)k�1) upper bound for L(n; k) is alsodescribed for general cases. Friedman, J. considers a related problem in [Frie84]. By usinghis result, one can construct a solution for L(n; k), and the scale of L(n; k) can be upperbounded by 22k log k+3kk4logk logn [BeSi88]. It is clear that this approach will be of advantagewhen n is very large. This subject has also been discussed in detail in [BeSi88]. Severalstrategies for L(n; k) have also been introduced and analyzed in [LSGH87].In this Chapter we present a new approach based on the partition theory. By usingthis approach one can derive an acceptable solution for small k and practical n, and themagnitude of L(n; k) can be upper bounded by O((logn)2 log k�1). Its highlight is thatby using this approach one can reduce an L(n; k) problem to a set of identical L(N; k)problems (N < (k24 + 1)2). A nearly optimal solution for L(n; k) can be constructed bycombining optimal solutions for L(N; k). The computational complexity of constructingthe solution for L(n; k) is O(n(logn)2 log k). In section 6.2, we introduce the basic ideaof our approach. Section 6.3 presents the Partition Algorithm for constructing a specialpartition set with which one can reduce an L(n; k) to r(r = b0:25k2c+1) identical L(q; k),



whereby q is approximately equal to pn. By using this approach recursively, an L(n; k)can be reduced to a set of identical L(N; k) problems. In section 6.4, L(N; k) problem withsmall parameterN will be discussed. The application of our approach to pseudoexhaustivetest generation for VLSI circuits is presented in section 6.5. In that section we analyzealso the computational complexity of our approach.6.2 Divide and ConquerDe�nition 6.1 (P (n; k) Property) Given a set S = f1; 2; :::; ng, a partition set of rpartitions Pi = fpi;1; pi;2; :::; pi;cig; i 2 [1; r]of S has the P (n; k) property if and only if for two arbitrary disjoint subsets U; V � Swith jU [ V j � k, there is at least one partition Pi (i 2 [1; r]), such that for every cellpi;j(j 2 [1; ci]) of Pi either pi;j \ U or pi;j \ V is empty, put it formally,8U; V � S ( U \ V = � ^ j U [ V j� k=) 9i 2 [1; r]8pi;j 2 Pi fpi;j \ U = � _ pi;j \ V = �g ) (6.1)The relationship between the P (n; k) property and L(n; k) has been discussed in[LSGH87]. We reformulate it as follows.Lemma 6.1 If a partition set of r partitions Pi = fpi;1; pi;2; :::; pi;cig (i 2 [1; r]) has theP (n; k) property, then L(n; k) � rXi=1 L(j Pi j; k)� r + 1 (6.2)Proof: Suppose a partition set of r partitions Pi = fpi;1; pi;2; :::; pi;cig has the P (n; k)property, and the matrix �b(i)lj �li�ci is a solution for L(ci; k)(i 2 [1; r]). Then each li � ksubmatrix of �b(i)lj �li�ci contains all 2k distinct vectors of f0; 1gk. With these matrices wecan construct a matrix (amz)L�n by using the Synthesis Algorithm presented in Fig. 6-1.In the Synthesis Algorithm there are three nested loops. The outermost loop corre-sponds to the r partitions. For every partition Pi, an li�n matrix is constructed. The mid-dle loop controls the rows of the matrix �b(i)lj �li�ci . For every row �b(i)l1 ; b(i)l2 ; :::; b(i)lci� the in-nermost loop generates an n-component row vector (am1; am2; :::; amn). The value of b(i)lj isassigned to amz , when z 2 [1; n] is in the cell pi;j of the partition Pi = fpi;1; :::; pi;j; :::; pi;cig.The whole algorithm constructs a P1�i�r li rows and n columns matrix A, of which everyL�k submatrix contains all 2k distinct row vectors in f0; 1gk. Furthermore, we can makeevery matrix �b(i)lj �li�ci contain a zero row vector (0; 0; :::; 0). Thus A contains altogether



=� Given r partitions fpi;1; :::; pi;cig of n-element set Sand r matrices �b(i)lj �li�ci ; i = 1; :::; r,construct a matrix (aij)L�n by using �b(i)lj �li�ci . �=m := 0;for i = 1; 2; :::; rfor l = 1; 2; :::; lif m := m+ 1;for j = 1; 2; :::; ci8z 2 pi;j amz := b(i)lj ;g;remove the reduplicate row vectors from (aij)L�n;Fig. 6-1. Synthesis Algorithmr zero row vectors. We keep one of them and eliminate the others. There may be alsoother kind of duplicate row vectors, which can be eliminated. Finally, we can obtain amatrix (amz)L�n, with L(n; k) � rXi=1L(j Pi j; k)� r + 1: Q.E.D.It is clear that the value on the right side of (6.2) depends on the parameter r andL(j Pi j; k). We would like to generate a partition set, which makes the value on the rightside of (6.2) relatively small. There is a tradeo� between r and j Pi j. There might existmany partitions of S. These partitions could be combined to form many partition setshaving the P (n; k) property. But it is very di�cult to choose an optimal one from them.Now we de�ne a special partition set.De�nition 6.2 (simplex partition set) A set of r partitionsPi = fpi;1; pi;2; :::; pi;cig; i = 1; 2; :::; rof the set S is called a simplex partition set of S, if two arbitrary elements of S can sharea cell in at most one of the r partitions, put it formally,8i; l 2 [1; r]8pi;j 2 Pi8pl;m 2 Plfi 6= l =)j pi;j \ pl;m j� 1g (6.3)Lemma 6.2 Partition set fP1; P2; :::; Prg has the P (n; k) property, if it is a simplex par-tition set of S and



r > b0:25k2c (6.4)Proof: Assume U and V to be two subsets of S, and letj U j= k1; j V j= k2; k1 + k2 � k; j U \ V j= 0:Suppose fP1; P2; :::; Prg is a simplex partition set of S. Two arbitrary elements of Scan share a cell in at most one of the r partitions. Each of the elements in V can sharea cell with some elements of U in at most k1 partitions. Thus the elements of V canshare some cells with the elements of U in at most k1 � k2 partitions. Therefore, whenr > maxfk1 � k2jk1 + k2 � kg, the above partition set can certainly have the P (n; k)property. We know that in the integer domainmaxfk1 � k2 j k1 + k2 � kg = b0:25k2c:From the assumption (6.4) follows the lemma. Q.E.D.b0:25k2c+1 is an important parameter for our approach, and we use r to denote it inthe rest of this paper.6.3 Simplex Partition AlgorithmThere are many approaches to construct a simplex partition set of S. In this section wepropose an algorithm to generate a special one. Suppose c is an integer not smaller thanpn. We construct c+ 1 partitions of S as follows:P0 = fp0;1; p0;2; :::; p0;mg; m = �nc � ;p0;j = �z �����zc� = j; z 2 S� ; j = 1; 2; :::; m (6.5)Pi = fpi;1; pi;2; :::; pi;cg; i = 1; 2; :::; c;pi;j = �z ����z � i� �z � 1c � � j mod c; z 2 S� ; j = 1; 2; :::; c (6.6)P0 splits [1 : n] into �nc � integer intervals of sizes c, respectively, i.e., P0 = f[1 : c]; [c+ 1; 2c]; :::g.The above partitions can be generated by the Simplex Partition Algorithm presented inFig. 6-2.Example 3.1: Construct a simplex partition set for S = f1; 2; :::; 9g and c = 3.According to (6.5) the �rst partition is the following:P0 = ff1; 2; 3g; f4; 5; 6g; f7; 8; 9gg:Based on (6.6) we can construct P1; P2 and P3 as follows:P1 = ff1; 5; 9g; f2; 6; 7g; f3; 4; 8gg;P2 = ff1; 6; 8g; f2; 4; 9g; f3; 5; 7gg;P3 = ff1; 4; 7g; f2; 5; 8g; f3; 6; 9gg:



=� Given an n-element set S and an integer c � pn,construct c+ 1 partitions of S. �=Construct P0:for all z 2 Sif d zce = jput i into cell p0;j;Construct Pi:for i = 1; 2; :::; cfor all z 2 Sif z � i� b z�1c c � j mod cput z into cell pi;j 2 Pi;Fig. 6-2. Simplex Partition AlgorithmfP0; P1; P2; P3g is a simplex partition set of S.Lemma 6.3 If integer c � pn is not a factor of a� b for arbitrary integers a 2 [1; c� 1]and b 2 h1; bn�1c ci, then the partition set generated by the Simplex Partition Algorithm isa simplex partition set of S.Proof: Assume Pi1 and Pi2 to be two distinct partitions of the above c + 1 partitions,pi1;j1 2 Pi1 and pi1;j2 2 Pi2 . It is obvious that if i1 or i2 is 0, pi1;j1 and pi2;j2 have at mostone common element. In other cases, an element z in pi1;j1 has to satisfyz � i1 � �z � 1c � � j1 mod cand an element z in pi2;j2 has to satisfyz � i2 � �z � 1c � � j2 mod cIn other words, pi1;j1 and pi2;j2 have a common element if and only if there is an integerz 2 S that satis�es equation8>><>>: z � i1 � j z�1c k � j1 mod cz � i2 � j z�1c k � j2 mod c z 2 [1; n] (6.7)Without loss of generality, assume i1 > i2. Then i1 � i2 2 [1; c� 1]. Substitute z0for j z�1c k. The solution z for (6.7) is unique if the solution z0 for (6.8) is unique sincethe values of z leading to the same solution z0 form an integer interval of size c. Giveni1; j1; i2; j2 2 [1; c], each such interval contains at most one z satisfying (6.7).(i1 � i2)� z0 � (j2 � j1) mod c z0 2 �0; �n � 1c �� (6.8)



If there are di�erent solutions z01 > z02 for (6.8), then(i1 � i2)� (z01 � z02) � 0 mod c z01 � z02 2 �1; �n � 1c �� (6.9)That is to say, (i1 � i2) � (z01 � z02) could be divided by c. This is in contradiction withour assumption. For the case i1 < i2, a contradiction can also be derived. Hence thereis at most one solution for equation (6.8), and the partition set generated by the SimplexPartition Algorithm is a simplex partition set of S. Q.E.D.The following corollary is obvious.Corollary 6.1 Assume c � r� 1 and let fP0; P1; :::; Pcg be a simplex partition set. Thenevery set of r partitions out of this simplex partition set has the P (n; k) property. 2It is easy to see that (6.8) has at most one solution z0 2 h0; jn�1c ki if (i1 � i2) and chave no common factor.Corollary 6.2 For every integer c � pn, P0; Pi1 and Pi2 generated by the Simplex Par-tition Algorithm comprise a simplex partition set, provided that ji1 � i2j and c have nocommon factor. 2Lemma 6.4 If there is a prime c � maxfr�1;png, we can construct a simplex partitionset having the P (n; k) property, and the following inequality holds.L(n; k) � r � L(c; k)� r + 1:This is a direct conclusion of Lemma 6.3, Corollary 6.1 and Lemma 6.1. 2We can use the above method recursively to simplify L(n; k). If we can �nd primesn1; n2; :::; nl, and these primes satisfy the conditions:n1 � maxfr � 1;png;ni+1 � maxfr � 1;pnig; i 2 [0; l� 1]then we can conclude thatL(n; k) � r� L(n1; k) � r2 � L(n2; k)� � � � � rl � L(nl; k) (6.10)



Theorem 6.1 Given two integers n and k(n � k),L(n; k) � ri � L �4� ln2�im ; k�� 2 k2 + 4b0:5kc !� 2 lognlog(0:25k2 + 1)�dlog(0:25k2+1)e (6.11)holds for every integer i 2 [0; blog logn� log log rc].Proof: Let i 2 [0; blog log n� log log rc]. Choose i primes n1; n2; :::; ni as follows:n1 = minfq j q � maxfr � 1;png & q is a primeg;nj+1 = minfq j q � maxfr � 1;pnjg & q is a primeg; j 2 [1; i� 1]:There is at least one prime in hln2�1m ; 2 ln2�1mi since there exists at least one primeq 2 [n; 2n] for arbitrary integer n [Huxl72].Notice that ln2�im = &�� � ��ln2�1m2�1� � � ��2�1'| {z }i�time (6.12)and dae � dbe � da� be, if a; b � 1. Thereforen1 � 4� ln2�1m ;nj � 4� �� � ��ln2�1m2�1� � � ��| {z }j�time= 4� ln2�jm ; for j 2 [1; i]and L(n; k) � ri � L �4� ln2�im ; k� :We know r = 2log r;rblog logn�log log rc+1 � $�2 lognlog r �log r%log log �n2�blog log n�log log rc� � 1 + log log rn2�blog log n�log log rc � r2:Using the method proposed in [TaWo83], we can estimate that L(n; k) � 2 nb0:5kc !.Let i = blog logn � log log rc. ThenL(n; k) � ri � L �4� ln2�im ; k�� ri � L(4r2; k):



As assumed above, there is at least one prime q 2 [2r; 4r]. This implies thatL(4r2; k) � r � L(4r; k), andL(n; k) � ri+1 � L(4r; k)� 2 4rb0:5kc ! rblog logn�log log rc+1� 2 k2 + 4b0:5kc !� 2 lognlog(0:25k2 + 1)�dlog(0:25k2+1)e : Q.E.D.We have tested that there is at least one prime in [n2; (n + 1)2] for n 2 [1; 105],Considering practical applications, inequality (6.13) is also meaningful.L(n; k) � ri � L��ln2�i�1m+ 2�2 ; k� (6.13)for i 2 [0; log logn � log log r], n; k 2 [1; 1010].Theorem 6.2 L(n; 2) � 8 logn and L(n; 3) � 8(logn)log3 for n � 3.Proof: For arbitrary integer c � maxf2;png, partitions P0; P1; P2 generated by the Sim-plex Partition Algorithm comprise a simplex partition set of an n-element set accordingto Corollary 6.2. Since r := b0:25k2c + 1 is not greater than 3 for k � 3, then P0; P1; P2has the P (n; 3) property based on Lemma 6.2. Following Lemma 6.1,L(n; k) � r1 � L �ln2�1m ; k�� ri � L �ln2�im ; k�for k � 3 and every i 2 [0; log logn � log log r]. Notice thatn = 22log log n � 22dlog log ne = 42dlog log ne�1 :Thus L(n; 2) � L(22dlog log ne ; 2)� 2dlog logneL(22dlog log ne�dlog log ne ; 2)� 2 � logn �L(2; 2):L(n; 3) � L(42dlog log ne�1 ; 3)� 3dlog logne�1L(42dlog log ne�1�dlog log ne+1 ; 3)� 3blog logncL(4; 3):� 3log lognL(4; 3):It is easy to see L(2; 2) = 4 and L(4; 3) = 8. Then we have the theorem. Q.E.D.



6.4 Basic ProblemsUsing the Simplex Partition Algorithm presented in Fig. 6-2, we can reduce an L(n; k)problem to a set of L(N; k) problems, where N is smaller than r2. We call these smallproblems basic problems. Special strategies should be adopted to search for solutions forthem. For tow given integers N and k, we can construct many partition sets having theP (N; k) property. Through di�erent partition sets we can derive di�erent solutions forL(N; k). We give an example to demonstrate the importance of choosing the partition setappropriately.Example 4.1: Let S = f1; 2; :::; 27g and k = 6. Solve L(27; 6).The parameter r := b0:25�k2c+1 is equal to 10, and we give two solutions for L(27; 6).1) Solve L(27; 6) by using the partition setPi = fpi;1; pi;2; :::; pi;14g; i 2 [1; 10];pi;j = faj ; bjjaj + bj � i mod 27; aj; bj 2 [1; 27]g; j 2 [1; 14]:With this partition set, we can reduce a single L(27; 6) problem to ten L(14; 6) prob-lems. Using the method of Tang and Woo [TaWo83], we can evaluate thatL(14; 6) � 455L(27; 6) � 10� L(14; 6)� 10� 455= 4550:2) Solve L(27; 6) by using the partition setP0 = ff1; 2; :::; 9g; f10; 11; :::; 18g; f19; 20; :::; 27gg;Pi = fpi;1; pi;2; :::; pi;9g; i 2 [1; 9];pi;j = �z ����z � i� �z � 19 � � j mod 9; z 2 [1; 27]� ; j 2 [1; 9]:This is a simplex partition set. By using this partition set, we can reduce the sameL(27; 6) to an L(3; 6) and nine L(9; 6) problems. L(9; 6) is not greater than 120 accordingto the method in [TaWo83]. L(3; 6) is equal to 8. The upper boundary for the solution ofL(27; 6) can be established as follows:L(27; 6) � L(3; 6)+ 9� L(9; 6)� 8 + 9� 120= 1088:The above example demonstrates clearly that di�erent partition sets could derive verydi�erent consequences. The approach of Tang and Woo is very suitable to L(N; k) prob-lem, when N is not larger than 2k. We can adopt their method to construct a solutionfor L(N; k), in case N � 2k. The solution scale generated by using their method can be



estimated easily, then the solution scale of L(N; k) can be evaluated. With these addi-tional heuristic information we can use our method to reduce L(n; k) to some special basicproblems, and use the method of Tang and Woo to generate solutions for them, �nallyform a good solution for L(n; k). In some cases, we would like to reduce L(n; k) to a set ofidentical basic problems for simplifying the set partition and the solution synthesis. Thisstrategy may slightly increase the solution scale for L(n; k).6.5 Application and Computation ComplexityThe solution of L(n; k) can be applied to many �elds. In this section, an example is givento show its application to the pseudoexhaustive test generation for VLSI circuits. Finallywe analyze the computational complexity of this method.Example 5.1: Consider a multiple-primary-output circuit C with 9 primary input lines,of which every primary output line depends on at most three primary input lines. It isrequired to generate a pseudoexhaustive test set for this circuit. This is an L(9; 3) problem.We solve it in three steps:Step 1: Reduce L(9; 3) to three identical instances of L(3; 3);Step 2: Solve L(3; 3);Step 3: Construct a solution for L(9; 3) using the solution for L(3; 3).Let S = f1; 2; :::; 9g. The following three partitions constitute a simplex partition setof S. P0 = ff1; 2; 3g; f4; 5; 6g; f7; 8; 9gg;P1 = ff1; 5; 9g; f2; 6; 7g; f3; 4; 8gg;P2 = ff1; 6; 8g; f2; 4; 9g; f3; 5; 7gg:For this example, the parameter r := b0:25 � 32c + 1 is equal to 3. According toLemma 6.2, the above simplex partition set has the P (9; 3) property. An L(9; 3) can bereduced to three identical L(3; 3) by using this partition set.The solution for L(3; 3) is just the following 8� 3 matrix (bij)8�3.(bij)8�3 = 26666666666664 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 37777777777775 ; (amz)8�9 = 26666666666664 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 10 0 0 1 1 1 0 0 00 0 0 1 1 1 1 1 11 1 1 0 0 0 0 0 01 1 1 0 0 0 1 1 11 1 1 1 1 1 0 0 01 1 1 1 1 1 1 1 1 37777777777775The remaining task is to construct a 9-column 0, 1-matrix based on the above partitionset and the solution for L(3; 3). This can be done by using the Synthesis Algorithm



(amz)20�9 =
2666666666666666666666666666666666666666666664
0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 10 0 0 1 1 1 0 0 00 0 0 1 1 1 1 1 11 1 1 0 0 0 0 0 01 1 1 0 0 0 1 1 11 1 1 1 1 1 0 0 01 1 1 1 1 1 1 1 10 0 1 1 0 0 0 1 00 1 0 0 0 1 1 0 00 1 1 1 0 1 1 1 01 0 0 0 1 0 0 0 11 0 1 1 1 0 0 1 11 1 0 0 1 1 1 0 10 0 1 0 1 0 1 0 00 1 0 1 0 0 0 0 10 1 1 1 1 0 1 0 11 0 0 0 0 1 0 1 01 0 1 0 1 1 1 1 01 1 0 1 0 1 0 1 1

3777777777777777777777777777777777777777777775presented in Fig. 6-1.Based on the partition P0, we can generate an 8 � 9 matrix (amz)8�9. In this matrixthe �rst, second and third columns are equal, since the three elements 1; 2; 3 of S belongto one cell in P0. For the same reason, the fourth, �fth and sixth columns are identicaland the seventh, eighth and ninth columns are identical, too.In the same way we can construct two 8 � 9 matrices for both partitions P1 and P2.Putting the three 8� 9 matrices together and omitting the duplicate rows, �nally we geta 20� 9 matrix (amz)20�9.In matrix (amz)20�9, the �rst 8 rows have been constructed according to P0, the fol-lowing 6 rows based on P1 and the last 6 rows corresponding to P2. In (amz)20�9, every3-column projection contains 23 distinct vectors in f0; 1g3, therefore, the row vectors of(amz)20�9 constitute a pseudoexhaustive test set for the circuit C.Example 5.2: Determine an upper bound for L(1024; 9).For k = 9, r = b0:25� k2c + 1 = 21: 37 is a prime greater than p1024. According toLemma 6.4 L(1024; 9)� 21� L(37; 9)� 21 + 1:



Using the approach of Tang and Woo[TaWo83], we can determine thatL(37; 9) �  37j92k !+  379� j92k� 1 != 2 374 != 132090:L(1024; 9) � 21� 132090� 21 + 1= 2773870:The upper bound of L(1024; 9) strongly depends upon that of L(37; 9). Following[CKMZ83], L(n; k) � dk2k ln ne for n � 2. Thus L(37; 9)� d9 � 29 ln 37e, and 2 374 ! ismuch larger than the smallest upper boundary for L(37; 9). In case one can generate anoptimal solution for L(37; 9), he can construct a nearly optimal solution for L(1024; 9).For k to be 3, 5, 7 and 9, the parameter r equals 3, 7, 13 and 21, respectively. The upperbounds of L(n; k) corresponding to di�erent parameters n and k are listed in Table 6-1.It shows that the method presented in this paper has considerable advantage for small kand practical size of n.In the rest of this section we discuss the computational complexity of our approach.Let C(n; k) denote the quantum of the computation for generating a solution of L(n; k).Assume that L(n; k) can be reduced to L(q; k) directly. Then C(n; k) is the sum of thecomputation quantities of C(q; k) and those for constructing r partitions of an n-elementset to reduce L(n; k) to L(q; k) and for synthesizing a solution of L(n; k) with that ofL(q; k). It is not hard to see that the complexity of the Simplex Partition Algorithm isO(rn). The Synthesis Algorithm has three loops. The outermost loop is correspondingto r partitions. For every Pi, it cycles one time. The middle loop is limited by the rownumber of the 0, 1-matrix �b(i)lj �li�ci for L(q; k). We know li � L(q; k). The innermostloop checks each of the n elements which cell it belongs to in the partition Pi. Then thecomplexity of the Synthesis Algorithm is O(r� L(q; k)� n).We have thusTheorem 6.3C(n; k) = O n k2 + 4b0:5kc !� 2 lognlog(0:25k2+ 1)�dlog(0:25k2+1)e! (6.14)Proof: Based on Theorem 6.1, an L(n; k) can be reduced to basic problems L(ni; k)(ni � 4r) through a number of steps.L(n; k) �! L(n1; k) �! L(n2; k) �! � � � �! L(ni; k); nj � 4 ln2�jm :Thus C(n; k) = O(rn) + C(n1; k) + O(rn� L(n1; k))



L(16; 3) � 3 � L(4; 3)� 2 � 3 � 2 �  41 !� 2 = 22L(64; 3) � 3 � L(8; 3)� 2 � 3 � 2 �  81 !� 2 = 46L(256; 3)� 3 � L(16; 3)� 2 � 64L(1024; 3)� 3 � L(32; 3)� 2 � 3(3 � L(6; 3)� 2)� 2 � 9 � 2 �  61 !� 8 = 100L(16; 5) � 2 �  162 ! = 240L(64; 5) � 7 � L(11; 5)� 6 � 7 � 2 �  112 !� 6 = 764L(256; 5)� 7 � L(17; 5)� 6 � 7 � 2 �  172 !� 6 = 1898L(1024; 5)� 7 � L(37; 5)� 6 � 7(7 � L(7; 5)� 6)� 6� 49 � 2 � 72 !� 48 = 2010L(16; 7) � 2 �  163 ! = 1120L(64; 7) � 13 � L(13; 7)� 12 � 13 � 2 �  133 !� 12 = 7424L(256; 7)� 13 � L(17; 7)� 12 � 13 � 2 �  173 !� 12 = 17668L(1024; 7)� 13 �L(37; 7)� 12 � 13(13 � L(13; 7)� 12)� 12� 169 � 2 �  133 !� 168 = 96500L(16; 9) � 2 �  164 ! = 3640L(64; 9) � 21 � L(23; 9)� 21 � 21 � 2 �  234 !� 21 = 371890L(256; 9)� 21 � L(23; 9)� 21 � 21 � 2 �  234 !� 21 = 371890L(1024; 9)� 21 �L(37; 9)� 21 � 21 � 2 � 374 !� 21 = 2773870Table 6-1. Upper Bounds of L(n; k) for Di�erent n and k



= O(rn� L(n1; k)) +O(rn1) + C(n2; k) + O(rn1 � L(n2; k))= C(4r; k)+ O(rn� L(n1; k)) +O0@ X1�j�i�1 rnj � L(nj+1; k)1A= C(4r; k)+ O(rn� L(n1; k)) +O0@ X1�j�i�1 r ln2�jm� L(nj+1; k)1A :Using the method proposed in [TaWo83], we can estimate thatC(4r; k) � 4r � 2 4rb0:5kc != (2k2 + 8) k2 + 4b0:5kc != O k2 k2 + 4b0:5kc !! :It is not hard to see that for n > 2 and i � blognc + 1X1�j�i�1 ln2�jm = O(n):Furthermore, n1 � 4n2�1 . Based on Theorem 6.1,L(n1; k) � rblog logn�log log rcL(4 ln2�blog log n�log log rc�1m ; k)� rblog logn�log log rcL(4r; k):This means thatC(n; k) = O(rn� L(n1; k))= O nrblog logn�log log rc+1 4rb0:5kc !!= O n k2 + 4b0:5kc !� 2 lognlog(0:25k2 + 1)�dlog(0:25k2+1)e! : Q.E.DTable 6-2 shows the upper bounds of L(n; k) and C(n; k) for di�erent approaches. Thebounds for L(n; k) is listed in the second column, and those for C(n; k) in the third column.



L(n; k) C(n; k)TaWo83 2 nb0:5kc ! O n nb0:5kc !!CKMZ83 2k(logn)k�1 O(2kn(logn)k)Frie84 22k log k+3kk4 � lognlog k O �nk(k�1)�H. Wu 2 4rb0:5kc !�2 lognlog r �dlog re O n 4rb0:5kc !�2 lognlog r �dlog re!Table 6-2. Upper Bounds of L(n; k) and C(n; k)where r = 0:25k2+ 1



Chapter 7Monomial OrientedPseudorandom Test7.1 IntroductionPseudorandom pattern generation techniques have two important applications to VLSItest. One is to compute a short random test preceding the long and laborious deter-ministic test to catch easily detected faults [Breu71], the other is to design built-in selftest circuitries [AbCe83, AgCe81, BuSi82, KMZ79]. In the �rst case we pursue its lowtest generation cost and the good \practical fault coverage", namely, the fault coverageof the �rst hundreds or thousands patterns. In the second case we seek its potentialtest generation capability and the cheap overhead of the hardware implementations. Ifthe circuit structure is known, one can perhaps construct an appropriate biased randomtest generator with the available information to achieve a great improvement. The inputsignal biased random test and pattern biased random test [Hart91] are typical examples[SLC71, Wund87].Assume a pseudorandom pattern generator G(n) to be of n bits and n � 30. Theso called three basic properties of G(n) are the maximum-length property, the windowproperty and the run property [BMS87]. For the application to the test generation ofVLSI, these properties are not essential indeed, because only the �rst N (N << 2n)patterns generated by G(n) can be used in practice. It would be nice, when the �rst Npatterns could contain the most important patterns which can either cover the most partof the concerned faults or detect some faults having big error latencies [ShMc75]. Theweighted random pattern generations are just based on this thought. In order to generateproperly weighted test patterns, the circuit analysis have to be done, and the correspondinggenerator requires more hardware overhead. In some cases, the circuit analysis result mayshow that both logic 1 and logic 0 input probabilities are quit balanced for every primaryinput lines. Conventionally, one adopts the uniform pseudorandom technique for such kindof circuits. The results with this technique sometimes are disappointing. The practicalfault coverages are often low, when the circuits under test have a large number of primaryinput lines.It occurs often that to test a random test resistant fault one has to apply a certain



combination to some primary input lines, while other primary input lines are free. We cansay that this fault can only be tested by using a certain monomial. There exists certainlya constant k � n such that every fault can be tested by a k-monomial. According to thesehints, we propose some monomial oriented pseudorandom techniques. These techniquescan be used either to generate random test patterns to precede the deterministic test orto design built-in self test circuits. For the latter application, the hardware overhead isacceptable and the practical fault coverage is also good. It is particularly suitable to pseu-dorandom test generations for circuits with a large number of primary input and outputlines. The experiments of these techniques on various benchmark circuits have given aconsiderable good results in terms of both the fault coverage and hardware overhead.7.2 k-Monomial and Its ProbabilityLetB = f0; 1g,N = f0; 1; :::; n�1g, and S = n(i1; i2; :::; ik) j (i1; :::; ik) � N k; i1 < � � � iko :De�nition 7.1 A k -monomial over Bn is a expression of Xa1i1 :::Xakik , where (i1; :::; ik) 2 Sare pairwise di�erent indices and (a1; :::; ak) 2 Bk .A representative of the k-monomial Xa1i1 :::Xakik is a vector in Bn. Its i1th, ..., ikthcomponents are a1; :::; ak, respectively, and the other components are free.It is easy to see that jSj =  nk !. Let L = jSj. We order the elements of S from1 to L. Given an element (i1; :::; ik) of S we can construct 2k distinct k -monomialsXa1i1 � � �Xakik . LetM = fXa1i1 � � �Xakik j (i1; :::; ik) 2 S; ai 2 Bg. As mentioned, there exists aconstant k � n and for every irredundant fault there is at least a k -monomial Xa1i1 � � �Xakiksuch that each of its representative can detect this fault. Then we focus our attention onthe generation of the representative of the k-monomials.Assume (i1; i2; :::; ik) to be the ith element of S and a1:::ak is the binary code of j. Wedenote the monomial Xa1i1 � � �Xakik by Mi;j . There are total L � 2k distinct k-monomials.Assume p(Mi;j ; l) to be the probability that one of the representative of Mi;j is includedin the �rst l patterns generated by G(n). Thenp(Mi;j ; l) = 1� �1� 12k�l (7.1)Let N = L� 2k. We can determine the following measurementF (l) = 1N LXi=1 2kXj=1 p(Mi;j ; l) (7.2)and call it imaginary fault coverage. F (l) reects the practical fault coverage.Formula (7.1) is right if the random sampling is taken with replacement. For the pseu-dorandom pattern generation, a pattern which has already been generated will not appearuntil next period. Then the imaginary fault coverage evaluation based on formula (7.1) is



not precise. The method proposed in [ChMc87] can be used to estimate p(Mi;j; l) moreaccurately. The corresponding result is displayed by the following formula:p(Mi;j ; l) = 1� l�1Ys=0 2n � 2n�k � s2n � s (7.3)In case p(Mi;j ; l) is independent of the indices i and j,F (l) = p(Mi;j ; l) (7.4)Theorem 7.1 In case p(Mi;j ; l) is independent of the indices i and j, F (l) is a monotonicdecrease function of n.Proof: It is obvious that 2n�2n�k�s2n�s is a monotonic increase function for given integers sand k � n. Thus F (l) is a monotonic decrease function of n. Q.E.D.7.3 Expected Test LengthIn this section we discuss the expected test length l for the monomial oriented pseudoran-dom test generation. We consider the following random game.Assume that there are u balls in a black Box . Among them are v black balls. Wesample balls from the black Box without replacement. Take j as a random variable. Sup-pose P (j; x; u; v) represents the probability that we have just sampled x black balls afterjth sampling, and the last sampled ball is black.Example 7.1: Assume u; v and x to be 5, 1, and 1, respectively. We can determine thatP (1; 1; 5; 1) = 15 ;P (2; 1; 5; 1) = 45 � 14 = 15 ;P (3; 1; 5; 1) = 45 � 34 � 13 = 15 ;P (4; 1; 5; 1) = P (5; 1; 5; 1) = 15 :Example 7.2: Assume u; v and x to be 10, 2, and 1, respectively. We haveP (1; 1; 10; 2) = 210 = 945 ;P (2; 1; 10; 2) = 810 � 29 = 845 ;P (3; 1; 10; 2) = 810 � 79 � 28 = 745 ;P (i; 1; 10; 2) = 10� i45 ; i 2 [1; 9]:



By generalizing the above examples, we obtain:P (j; x; u; v) = 0 for j < x or j > u� v + x (7.5)P (x; x; u; v) = x�1Yi=0 v � 1u� 1 (7.6)and P (j; x; u; v) =  j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t for x < j � u� v + x (7.7)FurthermoreuXj=1P (j; x; u; v) = u�v+xXj=x P (j; x; u; v)= x�1Yi=0 v � iu� i + u�v+xXj=x+1  j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u � v � tu� x� t= 1 (7.8)and u�v+xXj=x+1  j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u � v � tu� x� t = 1� x�1Yi=0 v � iu� i (7.9)Let E(j; x; u; v) and V (j; x; u; v) denote the mean and variance of random variable j.From the above formulas we can estimate them as follows:E(j; x; u; v) = 1Xj=1 jP (j; x; u; v)= u�v+xXj=x jP (j; x; u; v)= x x�1Yi=0 v � iu� i + u�v+xXj=x+1 j  j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t= x x�1Yi=0 v � iu� i + u�v+xXj=x+1 x j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t+ u�v+xXj=x+1(j � x) j � 1j � x ! x�1Yi=0 v � iu� i j�1Yt=0 u � v � tu� x� t= x+ u�v+xXj=x+1(j � x) j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t :



Notice thatu�v+xXj=x+1(j � x) j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t= u�v+xXj=x+1 x j � 1j � (x+ 1) ! x�1Yi=0 v � iu� i j�(x+1)�1Yt=�1 u� (v + 1)� tu � (x+ 1)� t= x u�(v+1)+x+1Xj=x+1  j � 1j � (x+ 1) ! xYi=0 v + 1� iu� i � u� xv + 1 j�(x+1)�1Yt=0 u� (v + 1)� tu� (x+ 1)� t � u� vu � x= u� vv + 1x u�(v+1)+x+1Xj=x+1  j � 1j � (x+ 1) ! xYi=0 v + 1� iu� i j�(x+1)�1Yt=0 u� (v + 1)� tu� (x+ 1)� t= x(u� v)v + 1 :Then E(j; x; u; v) = x(u+ 1)v + 1 (7.10)The following Corollary is obvious.Corollary 7.1 In respect of the calculation without regard to the domain of x, we canstate that: E(j; x; w; v) = E(j; E(j; x; u; v); w; u) (7.11)for v � u � w.In the same way, we can calculate the second moment E(j2; x; u; v), of randomvariable j.E(j2; x; u; v) = uXj=1 j2P (j; x; u; v)= x2 x�1Yi=0 v � iu� i + u�v+xXj=x+1 j2 j � 1j � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t= x2 x�1Yi=0 v � iu� i + u�v+xXj=x+1 xj  jj � x ! x�1Yi=0 v � iu� i j�x�1Yt=0 u� v � tu� x� t= x2(u+ 1)v + 1 xYi=0 v + 1� iu+ 1� i+ u�v+x+1Xj=x+2 x(j � 1) j � 1j � (x+ 1) ! xYi=0 v + 1� iu+ 1� i � u + 1v + 1 j�x�2Yt=0 u� v � tu � x� t= x(u+ 1)v + 1 u+1�(v+1)+x+1Xj=x+1 (j � 1)P (j; x+ 1; u+ 1; v + 1)



= x(u+ 1)v + 1 � (x+ 1)(u+ 2)� v � 2v + 2= x(u+ 1)(x(u+ 2) + u� v)(v + 1)(v + 2) (7.12)Clearly V ar(j; x; u; v) = E(j2; x; u; v)� E2(j; x; u; v)= x(u+ 1)(x(u+ 2) + u� v)(v + 1)(v+ 2) � x2(u+ 1)2(v + 1)2= x(u+ 1)(u� v)(v + 1)(v + 2) (1� xv + 1) (7.13)Now we return to the original topic. Let u = 2n and v = 2n�k . Then u and v denotethe cardinalities of Bn and Xa1i1 � � �Xakik , respectively. We haveE(j; x; 2n; 2n�k) = x(2k + 2k�n)1 + 2k�n (7.14)and V ar(j; x; 2n; 2n�k) = x(2n + 1)(2n � 2n�k)(2n�k + 1)(2n�k + 2)(1� x2n�k + 1)= x(2k + 2k�n)(2k � 1)(1 + 2k�n)(1 + 2k�n+1)(1� x2n�k + 1) (7.15)E(j; 1; 2n; 2n�k) is just the expected test length. That is to say, E(j; 1; 2n; 2n�k) pat-terns generated continuously by G(n) can be expected to include a representative for everyk-monomial. The following theorem is obvious.Theorem 7.2 E(j; 1; 2n; 2n�k) and V ar(j; 1; 2n; 2n�k) are monotonic increase functionsof n for the given integer k < n. 2According to Theorem 7.1 and 7.2, we can conclude that the long period of the pseu-dorandom pattern generator G(n) is negative for the practical fault coverage and theexpected test length.7.4 ExperimentsWe have already had an impression that the long period of the pseudorandom patterngenerator is not of bene�t to the practical fault coverage, while the short period can notguarantee the high potential fault test capability. It is really a contradiction. LFSR isone of the most popular pseudorandom pattern generation techniques. Some tactics canbe used to comprise the forenamed contradiction in LFSR technique to certain extent toimprove the practical fault coverage.



7.4.1 Multiple LFSRsAssume that y(t+1)ni = cniy(t)ni+1�1;y(t+1)j = y(t)j�1 + cjy(t)ni+1�1; j 2 [ni + 1; ni+1 � 1]for i 2 [1; m] de�ne m LFSRs. Their periods are p1; p2; :::; pm, respectively. If mLFSR isan n-bit pattern generator constructed by concatenating the m LFSRs together, then theperiod of mLFSR is the smallest common multiple of p1; p2; :::; pm.It is not hard to see that if all the m LFSRs are based on primitive polynomials, andtheir periods are prime to each other, then the period of mLFSR is not far smaller than2n. Therefore,mLFSR can have a very high potential test generation capability. Table 7.1shows the practical fault coverages of mLFSRs.In Table 7.1, we list the experimental results on benchmark circuits. For each circuit,we adopt three or more generators to generate random test set for single stuck-at faults.One of them is the traditional LFSR based on a single primitive polynomial. Its degreen is equal to the number of the primary input lines of the circuit under test. Such anLFSR has a period of 2n�1. Others are mLFSRs constructed by concatenating m LFSRstogether. The rows marked sLFSR andmLFSR(m � 2) represent the percents of the faultcoverages for the test sets produced by using a single LFSR and mLFSRs, respectively.The number of the primary input lines of the circuit under test is listed in the columnlabeled INP. The numbers listed in the brackets following mLFSR denote the degrees ofm primitive polynomials used to construct an mLFSR. The seeds for all of the generatorsare 1010::: This table shows that the practical fault coverage of mLFSR is quit di�erentfrom that of sLFSR with such kind of seeds. Such di�erences are rather distinct with seed1000::: So far as regards the practical fault coverage, the multiple LFSR generators areobviously better than the single LFSR generators. The hardware overhead of mLFSR isnot much more expensive than that of sLFSR. Hence it is also suitable for built-in selftest circuits.7.4.2 Multiple SeedsIf we can �t anmLFSR with several seeds, the practical fault coverage can be improvedfurther. Table 7.2 demonstrates the experimental results on some benchmark circuits. Thecolumns labeled with #Seeds, #Redundant, and #Untested represent the numbers of usedseeds, redundant faults and untested faults, respectively. The simulations were performedby a cell oriented fault simulator [HSS92]. From this table we can see that except C7552and C2670, all combinational benchmark circuits can be completely tested with at mostthree seeds. In order to embed the test set in a BIST environment, one can adopt thetechnique proposed in [AgCe81] to construct a test generator consisting of a ROM andmLFSR. Fig. 7.1 demonstrates the main logic structure of such a test generator calledstore and generate BIT.When many seeds are required to reach 100% fault coverage, the method proposedin [AkJa89] can be used to embed those seeds in a circuit comprising a counter and an



XOR array. Fig. 7.2 illustrates one of the possible embedding formats. The k-bit LFSRand XOR array can generate total 2k � 1 seeds. For each of these seeds, the l-bit LFSRcontrols the mLFSR to produce 2l � 1 patterns. Table 7.3 shows the experimental resultson benchmark circuits with this technique. The fault coverage reaches to 100% for circuitC2670 after 10 test patterns have been embedded in the counter-XOR-array.
Fig. 7.1 Store and Generate BITROMk � n RSFLm CUT- -- -- -

Fig. 7.2 Embedding FormatXORarray RSFLm CUT- -- -- -k-bit LFSR l-bit LFSR? ? ? ?�



Circuits INP RTPGs Fault Coverages (%)32 64 128 256 1024C6288 32 sLFSR 98.0 99.2 99.3 99.3 99.33LFSR(9,11,12) 98.4 99.2 99.3 99.3 99.34LFSR(6,7,9,10) 98.5 99.3 99.3 99.3 99.3C432 36 sLFSR 52.4 74.0 80.8 87.2 91.63LFSR(11-13) 64.1 75.1 83.3 89.7 91.64LFSR(7,8,10,11) 64.5 74.7 85.3 88.8 91.2C1908 33 sLFSR 67.5 73.1 76.5 83.7 93.33LFSR(10,12) 72.1 76.6 80.0 86.0 93.14LFSR(6,8-10) 60.1 64.9 73.1 81.7 94.2C499 41 sLFSR 61.2 75.1 84.4 90.7 97.03LFSR(12,14,15) 72.9 81.0 87.8 90.9 96.94LFSR(8,10-12) 63.2 82.6 87.2 91.5 96.5C3540 50 sLFSR 48.1 57.3 71.8 81.3 88.72LFSR(24-26) 44.9 56.8 75.1 82.7 88.93LFSR(15,17,18) 61.5 71.6 81.7 85.8 89.14LFSR(11-14) 67.7 75.1 82.2 86.0 89.35LFSR(8-12) 66.6 75.9 82.6 85.9 89.1C880 60 sLFSR 53.6 62.8 71.4 76.8 83.52LFSR(29,31) 59.0 67.5 73.1 86.2 96.93LFSR(19-21) 75.2 80.2 85.5 92.1 97.94LFSR(13,14,16,17) 82.0 86.1 88.6 93.7 97.95LFSR(10-14) 77.9 86.8 91.1 95.0 98.1C2670 157 sLFSR 38.1 42.2 52.5 60.7 69.35LFSR(29-31,33,34) 54.1 64.7 71.0 76.2 81.97LFSR(19-22,24-26) 58.8 68.5 72.8 77.6 82.09LFSR(13-17,19-22) 66.5 71.4 75.6 79.1 82.011LFSR(9-16,18-20) 65.5 72.0 77.3 79.9 81.9C5315 178 sLFSR 33.4 43.4 50.5 60.1 80.46LFSR(27-31,33) 68.2 79.7 88.1 96.1 98.48LFSR(18,19,21-26) 68.6 84.5 92.6 96.0 98.510LFSR(13-19,21-23) 67.7 84.2 89.1 94.4 98.412LFSR(9-16,18-21) 72.7 84.0 91.5 96.5 98.6Table 7.1: Faults Coverage Comparison Between sLFSRs and mLFSRs



Circuits INP #Seeds Periods #Redundant #Untested Fault Coverages(%)C432 36 1 210 40 0 100C499 41 2 210 8 0 100C880 60 3 212 0 0 100C1355 41 2 210 8 0 100C1908 33 3 212 9 1 100C2670 233 10 212 117 0 93.01C3540 50 3 212 137 0 100C5315 178 3 212 59 0 100C6288 32 1 210 34 0 100Table 7.2: Faults Coverages for Multiple-Seed mLFSRs
Circuits INP k l #Redundant Fault Coverages(%)C432 36 1 10 40 100C499 41 2 10 8 100C880 60 2 12 0 100C1355 41 2 10 8 100C1908 33 2 12 9 100C2670 233 10 12 117 100C3540 50 2 12 137 100C5315 178 2 12 59 100C6288 32 1 10 34 100Table 7.3: Faults Coverages for Multiple-Seed Embedding mLFSRs



Concluding RemarksThe object set A of X-category (T ;A; Q; Z; �;�) includes all combinational circuits. Ourdiscussion on the test complexity concerns only on the irredundant circuits in A andassumes that we can always �nd a test pattern for every single fault in the concernedcircuit.If we want to limit A to the set of all testable circuits, then we have to rede�ne thefunctions Q and Z so that for two elements Bi; Bj 2 A, Bj �Bi has meaning if and onlyif Z(Bi) contains a complete test set for Bj , and at least one of the complete test sets ofBi can be propagated through Bj .It is NP-complete to decide whether a given single stuck-at fault in a circuit is de-tectable[IbSa75, FuTo82, Fuji85]. Thus it seems to be very unlikely that there is ane�cient algorithm for deciding whether Bj �Bi is testable.Given a testable circuit C 2 A, how to generate a complete test set for it depends onits structure, size and the available information about C. In case C is a uniform tree basedon a function f , the generation of the optimum complete test set is related to the analysisof its test complexity. We can state that one can always construct an optimum completetest set for C whenever he can determine its test complexity exactly.The construction of a complete assignment set to a uniform tree is the �rst step towardsthe generation of a complete test set to the tree. Table 8.1 illustrates the classi�cation ofthe assignment complexity of balanced uniform trees.General Commutative�(1) �(1)�((lgn)�) �(lg n)� 2 h 1m�1 ; 1iTable 8.1 Classi�cation of the Assignment Complexityof Balanced Uniform TreesTables 8.2 and 8.3 show the classi�cation of the test complexity of balanced uniformtrees. A uniform tree is either �(1) or 
((lgn)�) (� > 0) testable, and the test complexityof uniform trees based on commutative functions can be divided into �(1), �(lg n) and
(n�). To decide whether a uniform tree C is �(1) testable is equal to judge if there is a�nite set X � Nt such that8i 2 [1; k] ffAi~x j ~x 2 Xg � fA0~x j ~x 2 Xgg ;where Ai (i 2 [0; k] are 0, 1 matrices associated with the de�nition of the function f .



For a balanced uniform tree T (n)f based on a commutative function f , the above problemis equal to that of deciding whether a linear equation system associated with function fhas a feasible solution. In case T (n)f is �(1) testable, to generate the optimum test set forT (n)f one has to solve an integer programming associated with the function.General Commutative�(1) �(1)�((lgn)�) �(lg n)� > 0�(n�) �(n�)� 2 (0; 1]Table 8.2 Classi�cation of the Test Complexity of Balanced Uniform TreesBased on Function f :M2 �!MGeneral Commutative Unate�(1) �(1)�((lg n)) �(lg n) �(n�) � 1 � 2 (0; 1]�(n�) �(n�)� 2 (0; 1] � 2 (0; 1]Table 8.3 Classi�cation of the Test Complexity of Balanced Uniform TreesBased on Function f : f0; 1gk �! f0; 1gIn Chapter 3, we expand the assignment and test problems into a more general com-binational problem, namely, the so called arrangement problem. The assignment and testproblems can be considered as two instances of the arrangement problem.Let Fi denote the i-level balanced uniform tree based on f . We have shown that asu�cient condition for the arrangement complexity of T (n)f to be �(1) is the following:There are an i 2 N, a subset S � Mki and ki bijective mappings�1; :::; �ki : S �! S so that S is a complete arrangement of Fi and(Fi � � � � � Fi| {z }ki ) � (�1 � � � � � �ki| {z }) �DK� (S) = S;where � represents the type of S.



For symmetrical function f , the above condition is even necessary. However, whetherit is the necessary condition for general functions is still a open problem.Chapter 5 shows that an arbitrarily given tree can be embedded in an O(lgn) testabletree. It is also an interesing subject to synthesize a hardware optimal O(lgn) testable treefor a given 
(nr)(r > 0) testable tree.If C has a number of primary output lines and n primary input lines, and every primaryoutput line depends on at most k primary input lines (k < n), the pseudoexhaustive testmay be a suitable approach for C. We use L(n; k) to denote the pseudoexhaustive testproblem for such a circuit. The algorithm presented in Chapter 6 reduces a big problemL(n; k) to a small L(N; k) (N << n). If one can generate an optimal solution for L(N; k),then he can construct an considerable good solution for L(n; k). The remains problem ishow to generate an optimal solution for L(N; k).In case pseudorandom test is required, it is very worth choosing a suitable random pat-tern generator. We have shown that monomial oriented pseudorandom pattern generatorsare better than the traditional single LFSR, and may be a right alternative. An inter-esting theoretical and practical problem is how to construct the real monomial orientedpseudorandom pattern generators.
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