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Abstract

As new displays and cameras offer enhanced color capabilities, there is a need to extend
the precision of digital content. High Dynamic Range (HDR) imaging encodes images
and video with higher than normal bit-depth precision, enabling representation of the
complete color gamut and the full visible range of luminance.

This thesis addresses three problems of HDR imaging: the measurement of visible dis-
tortions in HDR images, lossy compression for HDR video, and artifact-free image
processing. To measure distortions in HDR images, we develop a visual difference pre-
dictor for HDR images that is based on a computational model of the human visual
system. To address the problem of HDR image encoding and compression, we derive
a perceptually motivated color space for HDR pixels that can efficiently encode all
perceivable colors and distinguishable shades of brightness. We use the derived color
space to extend the MPEG-4 video compression standard for encoding HDR movie
sequences. We also propose a backward-compatible HDR MPEG compression algo-
rithm that encodes both a low-dynamic range and an HDR video sequence into a single
MPEG stream. Finally, we propose a framework for image processing in the contrast
domain. The framework transforms an image into multi-resolution physical contrast
images (maps), which are then rescaled in just-noticeable-difference (JND) units. The
application of the framework is demonstrated with a contrast-enhancing tone mapping
and a color to gray conversion that preserves color saliency.

Kurzfassung

Aktuelle Innovationen in der Farbverarbeitung bei Bildschirmen und Kameras erzwin-
gen eine Präzisionserweiterung bei digitalen Medien. High Dynamic Range (HDR) ko-
dieren Bilder und Video mit einer grösseren Bittiefe pro Pixel, und ermöglichen damit
die Darstellung des kompletten Farbraums und aller sichtbaren Helligkeitswerte.

Diese Arbeit konzentriert sich auf drei Probleme in der HDR-Verarbeitung: Messung
von für den Menschen störenden Fehlern in HDR-Bildern, verlustbehaftete Kompres-
sion von HDR-Video, und visuell verlustfreie HDR-Bildverarbeitung. Die Messung
von HDR-Bildfehlern geschieht mittels einer Vorhersage von sichtbaren Unterschieden
zweier HDR-Bilder. Die Vorhersage basiert dabei auf einer Modellierung der menschli-
chen Sehens. Wir addressieren die Kompression und Kodierung von HDR-Bildern mit
der Ableitung eines perzeptuellen Farbraums für HDR-Pixel, der alle wahrnehmba-
ren Farben und deren unterscheidbaren Helligkeitsnuancen effizient abbildet. Danach
verwenden wir diesen Farbraum für die Erweiterung des MPEG-4 Videokompressi-
onsstandards, welcher sich hinfort auch für die Kodierung von HDR-Videosequenzen
eignet. Wir unterbreiten weiters eine rückwärts-kompatible MPEG-Kompression von
HDR-Material, welche die übliche YUV-Bildsequenz zusammen mit dessen HDR-
Version in einen gemeinsamen MPEG-Strom bettet. Abschliessend erklären wir un-
ser Framework zur Bildverarbeitung in der Kontrastdomäne. Das Framework trans-
formiert Bilder in mehrere physikalische Kontrastauflösungen, um sie danach in Ein-
heiten von just-noticeable-difference (JND, noch erkennbarem Unterschied) zu res-
kalieren. Wir demonstrieren den Nutzen dieses Frameworks anhand von einem kon-
trastverstärkenden Tone Mapping-Verfahren und einer Graukonvertierung, die die ur-
sprünglichen Farbkontraste bestmöglich beibehält.
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Summary

As new displays and cameras offer enhanced color capabilities, there is a need to extend
the precision of digital content, specifically images and video. High Dynamic Range
Imaging (HDRI) encodes images and video with higher bit-depth precision, enabling
representation of the complete color gamut and the full visible range of luminance,
which makes this technology a successor to traditional 8-bit-per-color-channel imag-
ing. However, to realize transition from the traditional to HDR imaging, it is necessay
to develop imaging algorithms that work with the high-precision data. To make such
algorithms effective and usable in practice, it is necessary to take advantage of the limi-
tations of the human visual system by reducing the storage and processing precision so
that it matches the performance of the human eye. Therefore, human visual perception
is the key component in the solutions we present in this dissertation. We address three
important problems in this dissertation: the measurement of visible distortions in HDR
images, lossy compression for HDR video, and an HDR image processing framework,
suitable for contrast compression.

To facilitate assessment of the visual quality of HDR content, we develop a visual
difference predictor for HDR images. Given two images, the predictor can detect dif-
ferences that would be noticeable to the human observer. The metric is based on a
computational model of the human visual system, which we extend and adapt for HDR
content. We included several aspects that are important in the perception of high con-
trast images, such as distortions of the eye’s optics, photoreceptor response under a
broad range of luminance adaptation conditions, and contrast sensitivity in the pres-
ence of the local adaptation. The metric is calibrated for natural images in a subjective
experiment.

The key component of an imaging pipeline is standardized and effective image and
video encoding. To address the problem of HDR image encoding and compression, we
derive a color space for HDR pixels from perceptual measurements. The color space
can efficiently encode all perceivable colors and distinguishable shades of brightness
that are visible under all illumination conditions. The proposed color space, which
requires only twelve bits to encode luminance and two eight-bit channels to encode
chrominance, offers a straightforward extension of existing image and video compres-
sion standards.

We use the derived color space for HDR pixels to extend the MPEG-4 video compres-
sion standard for encoding HDR movie sequences. The extended encoder offers a spe-
cial treatment of sharp contrast edges, which can have higher contrast than traditional
video material. The proposed compression method proves to be an effective as well as
novel extension to the existing MPEG standard (ISO/IEC 14496-2 and 14496-10).

To facilitate a smooth transition from traditional to HDR content, we propose a back-
ward-compatible HDR MPEG compression algorithm. Within a single MPEG stream,
the algorithm encodes two video sequences, one low-dynamic range (LDR – traditional
video) and the other HDR, into a single MPEG stream. Naive applications recognize
this stream as an ordinary MPEG video, however advanced software or hardware can
decode HDR video. The algorithm requires only 8-bit software or hardware MPEG
coders. The LDR and HDR video sequences are decorrelated to achieve the best com-
pression performance. To further improve compression, invisible noise is removed
from the HDR data stream using a multi-band perceptual filter. The filter estimates
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visibility thresholds, taking into account luminance masking, the contrast sensitivity
function, phase uncertainty and contrast masking.

The multi-resolution representations of images, such as wavelets, pyramids or band-
pass channels, offer an attractive tool for image processing and editing. However, these
representations often lead to unwanted artifacts and artificial looking resulting images,
especially when each band or resolution is modified separately. To avoid such artifacts
while benefiting from the advantages of the multi-resolution representation, we propose
a contrast-domain image processing framework. The framework transforms an image
into several resolutions of physical contrast. The contrast is then rescaled using a spe-
cially derived transducer function in perceptually plausible just-noticeable-difference
(JND) units. The resulting image is constructed from the modified contrast by solv-
ing an optimization problem. All components of the framework are designed to work
with high contrast HDR images. We demonstrate the application of the framework
on a contrast-enhancing tone mapping and a color to gray conversion that preserves
color saliency. The framework is especially effective for operations that heavily distort
contrast, such as extreme sharpening of images.

The proposed solutions constitute the central part of the HDR pipeline. The predictor
enables the evaluation of HDR image quality and thus was instrumental in developing
a color space for HDR pixels that is free of contouring artifacts, as well as the com-
pression algorithms. Lossy HDR video compression is indispensable for efficient stor-
age and transmission of HDR content. Finally, the contrast-domain image processing
framework enables rendering such content on existing low-dynamic range displays.

In summary, this dissertation contributes primarily to the fields of encoding and com-
pression of HDR image and video, computational models of visual system for HDR
images and multi-resolution image processing. The proposed solutions can help in
standardizing color spaces and compression algorithms for HDR content. The visual
difference metric contributes to a better understanding of the perception of high con-
trast images and is useful as a tool for validating imaging and computer graphics algo-
rithms. The multi-resolution image processing framework facilitates image editing in a
perceptually plausible contrast domain, which, unlike existing methods, does not lead
to unwanted artifacts.
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Zusammenfassung

Aktuelle Innovationen in der Farbverarbeitung bei Bildschirmen und Kameras erzwin-
gen eine Präzisionserweiterung bei digitalen Medien, besonders bei Bild- und Vide-
odaten. High Dynamic Range (HDR) kodiert Bilder und Video mit einer grösseren
Bittiefe pro Pixel, und ermöglicht damit die Darstellung des kompletten Farbraums
und aller sichtbaren Helligkeitswerte. Damit wird es den Nachfolger der traditionellen
8 bit-Verarbeitung in den Farbkanaelen stellen.

Für den reibungslosen Übergang von der traditionellen Bildverarbeitung zu HDR-Ver-
fahren werden Bildverarbeitungsalgorithmen benötigt, die mit hoch auflösenden Daten
umgehen können. Diese Algorithmen sind in der Praxis nur dann effizient und an-
wendbar, wenn sie sich der Beschränkungen des menschlichen Sehens bedienen und
die Datenrepräsentation in ähnlichen Zügen führen, um den Speicherbedarf und die
Verarbeitungsgenauigkeit klein zu halten. Deswegen ist das menschliche Sehen einer
der Schlüsselpunkte für die Problemlösungsansätze in dieser Dissertation. Diese Ar-
beit konzentriert sich auf drei Probleme in der HDR-Verarbeitung: Messung von für
den Menschen störenden Fehlern in HDR-Bildern, verlustbehaftete Kompression von
HDR-Video, und visuell verlustfreie HDR-Bildverarbeitung.

Die Messung von HDR-Bildfehlern geschieht mittels einer Vorhersage von sichtba-
ren Unterschieden zweier HDR-Bilder. Der Vorhersage-Operator kann dabei mit Hilfe
zweier Bilder die Unterschiede erkennnen, die auch einem menschlichen Beobachter
auffallen würden. Diese Metrik basiert auf einem rechnerischen Modell des menschli-
chen Sehens, das wir für HDR-Medien angepasst und erweitert haben. Wir inkludieren
mehrere Aspekte, die beim visuellen Erfassen von Hochkontrast-Aufnahmen eine Rol-
le spielen, darunter optische Verzerrungen im menschlichen Auge, Sehzellenverhalten
in stark verschiedenen Zuständen der Helligkeitsanpassung, und Kontrastempfindlich-
keit unter Rücksichtnahme auf lokale Anpassung. Die Metrik wird in einem subjekti-
ven Experiment auf natürliche Bilder kalibriert.

Der wichtigste Baustein einer Bildverarbeitungspipeline ist die standardisierte und ef-
fiziente Bild- und Videokodierung. Wir addressieren die Kompression und Kodierung
von HDR-Bildern mit der Ableitung eines perzeptuellen Farbraums für HDR-Pixel.
Dieser Farbraum kann alle wahrnehmbaren Farben und deren unterscheidbaren Hellig-
keitsnuancen effizient für alle möglichen Lichtverhältnisse abbilden. Der vorgeschla-
gene Farbraum benötigt weiter nur zwölf Bit zur Abbildung von Helligkeit, und zwei
Achtbit-Kanäle zur Abbildung der Chrominanz, und bietet damit eine logische Erwei-
terung von existierenden Bild- und Videokodierungsverfahren.

Danach verwenden wir diesen Farbraum für die Erweiterung des MPEG-4 Video-
kompressionsstandards, welcher sich hinfort auch für die Kodierung von HDR-Video-
sequenzen eignet. Der neue Kodierer bietet dafür eine Spezialbehandlung von kontrast-
reichen Bilddetails, die in normalem Videomaterial so nicht auftreten würden. Diese
Kodierungsmethode hat sich als effiziente und geradlinige Erweiterung des existieren-
den MPEG-Standards erwiesen (ISO/IEC 14496-2 und 14496-10).

Um den Übergang von traditionellem zu HDR-Material zu erleichtern, bieten wir ei-
ne rückwärts-kompatible MPEG-Kompression von HDR-Material. Der Algorithmus
kodiert dabei zwei Videosequenzen in einen gemeinsamen MPEG-Strom, eine tradi-
tionelle / LDR Sequenz, und eine HDR-Sequenz. Software oder Hardware neueren
Schlages können damit HDR-Video dekodieren, während alte oder einfache Deco-
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der den MPEG-Strom weiterhin als traditionelles MPEG-Video betrachten. Der Al-
gorithmus benötigt dabei weiterhin nur 8-bit-fähige MPEG-Encoder (egal ob Software
oder Hardware). Die LDR und HDR-Videosequenzen werden datenmässig dekorre-
liert, um die bestmögliche Kompression zu erreichen. Weitere Kompressionseffizienz
wird mit Hilfe eines perzeptuellen Multiband-Filters erreicht, welches nicht unsichtba-
res Bildrauschen aus dem HDR-Datenstrom entfernt. Der Filter schätzt Sichtbarkeits-
schwellen, indem er Helligkeitsmaskierung, Kontrastempfindlichkeit, Phasenungenau-
igkeit und Kontrastmaskierung einrechnet.

Bildrepräsentationen in multiplen Auflösungen, z.B. Wavelets, Pyramids oder Band-
passkanal-Repräsentationen, bieten ein nützliches Werkzeug für Bildverarbeitung und
Bildbearbeitung. Leider führen diese Repräsentationen oft zu ungewollten Artefakten
und Bildern mit künstlichem Aussehen, besonders wenn Bänder oder Auflösungsstufen
einzeln modifiziert werden. Unsere Bildverarbeitungs-Framework in der Kontrast-Do-
mäne ermöglicht es, solche Artefakte zu vermeiden. Das Framework transformiert zu-
erst Bilder in mehrere physikalische Kontrastauflösungen. Danach reskaliert es den
Bildkontrast mit Hilfe einer speziellen Übertragungsfunktion in Einheiten von just-
noticeable-difference (JND, noch erkennbarem Unterschied). Das Ausgabebild ent-
steht am Ende aus dem modifizierten Kontrast durch die Lösung eines Optimierungs-
problems. Alle Komponenten des Frameworks können mit Hochkontrast-HDR-Bildern
arbeiten. Wir demonstrieren den Nutzen dieses Frameworks anhand von einem kon-
trastverstärkenden Tone Mapping-Verfahren und einer Graukonvertierung, die die ur-
sprünglichen Farbkontraste bestmöglich beibehält. Das Framework zeigt seine beson-
deren Stärken bei Operationen mit starken Kontrastveränderungen, wie dem extremen
Schärfen von Bilddetails.

Die genannten Lösungsansätze bilden den Kern der HDR-Pipeline. Der Vorhersage-
Operator ermöglicht die Auswertung der HDR-Bildqualität, und spielte eine wichtige
Rolle bei der Suche nach einem HDR-Farbraum ohne Kontur-Artefakte, und bei der
Entwicklung des Videokompressionsverfahrens. Verlustbehaftete HDR-Videokompres-
sion ist für die effiziente Lagerung und Übertragung von HDR-Material unabdingbar.
Danach können mit Hilfe der Bildverarbeitung in der Kontrastdomäne auch traditionel-
le LDR-Displays (Low Dynamic Range) für die Anzeige von HDR-Inhalten verwendet
werden.

Diese Doktorarbeit trägt also vorrangig zu folgenden Bereichen bei: Repräsentation
und Kompression von HDR-Video und HDR-Bildmaterial, Berechnungsmodelle des
menschlichen Sehens für HDR-Bilder und Bildverarbeitung in multiplen Auflösungen.
Die vorgeschlagenen Lösungen können bei der Standardisierung von Farbräumen und
Kompressionsverfahren von HDR-Material behilflich sein. Die Metrik für noch erkenn-
bare Bildunterschiede (JND) erweitert das Verständnis des Sehvorganges für HDR-
Bildmaterial mit hohem Kontrast, und eignet sich zur Validierung von verwandten
Bildverarbeitungs- und Computergraphikalgorithmen. Das Bildverarbeitungs-Frame-
work in multiplen Auflösungen erleichtert die Bildbearbeitung in einer perzeptuell
plausiblen Kontrastdomäne, die, ungleich existierenden Methoden, nicht zu ungewoll-
ten Artefakten führt.
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Chapter 1

Introduction

The majority of existing digital imagery and video material capture only a fraction of
the visual information that is visible to the human eye and are not of sufficient quality
for reproduction by the future generation of display devices. The limiting factor is not
the resolution, since most consumer level digital cameras can take images of higher
number of pixels than most of displays can offer. The problem is the limited color
gamut and even more limited dynamic range (contrast) captured by cameras and stored
by the majority of image and video formats.

10
-6

10
-4

0.01 1 100 10
4

10
6

10
8

10
10

Luminance [cd/m ]
2

Moonless Sky

3 10 cd/m
-5 2

•

Sun

2 10 cd/m
9 2

•

LCD Display [2006] (0.5-500 cd/m
2
)

Full Moon

6 10 cd/m•
3 2

CRT Display (1-100 cd/m
2
)

Figure 1.1: Left: the standard color gamut frequently used in traditional imaging
(CCIR-705), compared to the full visible color gamut. Right: real-world luminance
values compared with the range of luminance that can be displayed on CRT and LDR
monitors. Most digital content is stored in a format that at most preserves the dynamic
range of typical displays.

For instance, each pixel value in the JPEG image encoding is represented using three
8-bit integer numbers (0-255) using the YCrCb color space. This color space is able to
store only a small part of visible color gamut (although containing the colors most of-
ten encountered in the real world), as illustrated in Figure 1.1-left, and an even smaller
part of the luminance range that can be perceived by our eyes, as illustrated in Fig-
ure 1.1-right. The reason for this is that the JPEG format was designed to store as
much information as can be displayed on the majority of displays, which were at that
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time Cathode Ray Tube (CRT) monitors or TV sets. This assumption is no longer
valid, as the new generations of LCD and Plasma displays can depict a much broader
color gamut and dynamic range than their CRT ancestors. Every new generation of
displays offers better color reproduction and requires higher precision of image and
video content. The traditional low-dynamic range and limited color gamut imaging,
which is confined to three 8-bit integer color channels, cannot offer the precision that
is needed for the upcomming developments in image capture, processing, storage and
display technologies.

High Dynamic Range Imaging (HDRI) overcomes the limitation of traditional imaging
by performing operations on color data with much higher precision. Pixel colors are
specified in HDR images as a triple of floating point values (usually 32-bit per color
channel), providing accuracy that exceeds the capabilities of the human visual sys-
tem [Reinhard et al. 2005]. Moreover, while traditional imaging assumes that content
is already profiled for a particular display medium (paper, LDR/CRT display), HDRI
operates on colors of original scenes. By its inherent colorimetric precision, HDRI can
represent all colors found in real world that can be perceived by the human eye.

HDRI has recently gained momentum and is revolutionizing almost all fields of digital
imaging. One of the breakthroughs of the HDR revolution was the development of
an HDR display, which proved that the visualization of color and the luminance range
close to real-world scenes is possible [Seetzen et al. 2004]. One of the first to adopt
HDRI were video game developers together with graphics card vendors. Today most
of the state-of-the art video game engines perform rendering using HDR precision to
deliver more believable and appealing virtual reality imagery. Computer generated im-
agery used in special effect production uses HDR techniques to achieve the best match
between synthetic and realistic objects. High-end cinematographic cameras, both ana-
log and digital, already provide significantly higher dynamic range than most of the
displays today. This dynamic range can be retained after digitalization only if a form of
HDR representation is used. HDRI is also a strong trend in digital photography, mostly
due to the multi-exposure techniques that allow an HDR image to be made using a
consumer level digital camera. HDR cameras that can directly capture higher dynamic
range are available, for example SheroCamHDR from SheronVR, Origin R©from Dalsa
or Viper FilmStreamTM. To catch up with the HDR trend, many software vendors an-
nounce their support of the HDR image formats, taking Adobe R© Photoshop R© CS2
as an example. In general, the products start to appear at both ends of the imaging
pipeline: HDR cameras on the acquisition side, and commercial tone-mapping and
rendering algorithms on the display side. However, the storage and transmission stage
lacks any well defined standards and no products are available. There are almost no
solutions for lossy, and thus efficient, HDR image and video compression. The lack of
standards can result in a multitude of incompatible image and video formats. This sit-
uation is already happening in the case of cameras’ RAW formats, which are different
from vendor to vendor. Moreover, HDR is likely to be misinterpreted by the indus-
try, which can develop and standardize another device dependent format, which offers
nothing more than slightly extended color gamut and dynamic range, but is still insuf-
ficient to cover the entire range of HDR applications. This way, the huge advantage of
HDR, which is device independence, would be lost.

HDRI does not only provide higher precision, but also enables the synthesis, storage
and visualization of a range of perceptual cues that are not achievable with traditional
imaging. Most of the imaging standards and color spaces have been developed to match
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the needs of office or display illumination conditions. When viewing such scenes or
images in such conditions, our visual system operates in a mixture of day-light and
dim-light vision state, so called the mesopic vision. When viewing out-door scenes,
we use day-light perception of colors, so called the photopic vision. This distinction
is important for digital imaging as both types of vision shows different performance
and result in different perception of colors. HDRI can represent images of luminance
range fully covering both the photopic and the mesopic vision, thus making distinction
between them possible. One of the differences between mesopic and photopic vision is
the impression of colorfulness. We tend to regard objects more colorful when they are
brightly illuminated, which is the phenomenon that is called Hunt’s effect. To render
enhanced colorfulness properly, digital images must preserve information about the
actual level of luminance of the original scene, which is not possible in the case of
traditional imaging. Real-world scenes are not only brighter and more colorful than
their digital reproductions, but also contain much higher contrast, both local between
neighboring objects, and global between distant objects. The eye has evolved to cope
with such high contrast and its presence in a scene evokes important perceptual cues.
Traditional imaging, unlike HDRI, is not able to represent such high-contrast scenes.
Similarly, traditional images can hardly represent common visual phenomena, such
as self-luminous surfaces (sun, shining lamps) and bright specular highlights. They
also do not contain enough information to reproduce visual glare (brightening of the
areas surrounding shining objects) and a short-time dazzle due to sudden increase of
the brightness of a scene (e.g. when exposed to the sunlight after staying indoors). To
faithfully represent, store and then reproduce all these effects, the original scene must
be stored and treated using high fidelity HDR techniques.

Besides its significant impact on existing imaging technologies that we can observe
today, HDRI has the potential to radically change the methods by which imaging data
is processed, displayed and stored in several fields of science. Computer vision algo-
rithms can greatly benefit from the increased precision of HDR images, which lack
over- or under-exposed regions, which are often the cause of the algorithms failure.
Medical imaging has already developed image formats (e.g. the DICOM format) that
partly cope with the shortcomings of traditional images, however they are supported
only by specialized hardware and software. HDRI gives the sufficient precision for
medical imaging and therefore its capture, processing and rendering techniques can
be used also in this field. For instance, HDR displays can show even better contrast
than high-end medical displays and therefore facilitate diagnosis based on CT scans.
HDR techniques can also find applications in astronomical imaging, remote sensing,
industrial design and scientific visualization.

1.1 Problem Statement

In our work we strive to realize the concept of an imaging pipeline that would not
be restricted by any particular imaging technology and, if efficiency of storing data is
required, is limited only by the capabilities of the human visual system.

The concept of an imaging pipeline is illustrated in Figure 1.2. At the first stage dig-
ital images are acquired, either with cameras or computer rendering methods. At the
second stage, digital content is efficiently compressed and encoded either for storage
or transmission purposes. Finally, digital video or images are displayed on display de-
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Figure 1.2: Imaging pipeline and available HDR technologies.

vices. Additionally, to verify algorithms at all stages of the pipeline, quality metrics
are employed. The difference between HDRI and traditional imaging is that HDRI op-
erates on device-independent and high-precision data throughout all the stages of the
pipeline, so that the quality of the content is reduced only at the display stage, and only
if a device cannot faithfully reproduce the content. This is contrary to traditional imag-
ing, where the content is usually profiled for particular device and thus stripped from
useful information as early as at the acquisition stage or latest at the storage stage. For
example, most consumer level digital cameras store images in the JPEG format, which
offers sufficient quality for print, but not sufficient quality for wide-gamut and high-
dynamic range displays. Another example is color spaces used in traditional imaging
that are often based on the spectral response of the red, green and blue phosphors in
CRT displays. Since CRT technology is being replaced by LCD and plasma technolo-
gies, the use of CRT primaries can be questioned. HDRI, on the other hand, can offer
an image-independent representation of images and video, so that the content can be
rendered on any display device. The proper rendering of the content is the responsibil-
ity of a device, since only the device has all the information related to its limitation and
sometimes also viewing conditions (e.g. ambient illumination), which is necessary to
render the content properly.

The major focus of this dissertation is the encoding and compression of HDR content.
In order to make HDR compression efficient, we devote much effort to better under-
stand the human visual perception, especially in the context of high contrast images,
where local adaptation and dark-to-daylight vision plays an important role. One of
the outcomes of such perceptual considerations is a visual difference metric that can
be applied to real-world scenes. Besides image and video formats, the dynamic range
reduction, necessary to display HDR content on LDR displays, is another and still not
fully solved problem. We address this problem by proposing a contrast processing
framework, which is a robust tool for producing believable renderings of HDR scenes
on LDR displays.

1.2 Main Contributions

Parts of this dissertation have already been published at several conferences and in vari-
ous journals [Mantiuk et al. 2004a, Mantiuk et al. 2004b, Mantiuk et al. 2005a, Mantiuk
et al. 2005b, Mantiuk et al. 2006c, Mantiuk et al. 2006a, Mantiuk et al. 2006d]. These



1.3. CHAPTER OVERVIEW 17

publications are the foundation of this thesis, which unites them under the concept of
the HDR imaging and presents improvements and updated results.

The main contributions of this dissertation can be summarized as follows:

• A method for perceptual linearization of luminance values. The method can be
used for a range of applications, such as prediction of photoreceptor response in
models of the human visual system (Section 4.2.2), image and video compres-
sion (Section 5.3.1) and prediction of perceived brightness.

• Two algorithms for encoding HDR video content. The first method is an exten-
sion of the MPEG-4 standard (ISO/IEC 14496-2) and the second offers backward
compatibility with any MPEG compression. Both algorithms are viable solutions
for future generation wide color gamut and high dynamic range video encoding.

• An extension of the visual difference metric capable of handling real-world view-
ing conditions. The metric is based on the model of human visual system and can
predict visible differences between a pair of images for the full range of colors
and luminance values visible to the human eye.

• A computational framework for the processing of images in perceptualy plausi-
ble visual contrast space. The framework offers an image representation, that,
unlike the wavelet or the Fourier domains, does not lead to contrast reversal
artifacts when spatial bands are modified separately. The framework is demon-
strated to be effective in the tasks of tone mapping and color salience preserving
color-to-gray conversion.

1.3 Chapter Overview

This dissertation is organized as follows: Chapter 2 gives background information on
the digital representation of images and the photometric and colorimetric description
of light and color. Chapter 3 summarizes the components of the computational models
of the visual system and their applications. In Chapter 4 we describe our extension to
the visual difference predictor that enables the prediction of differences in HDR im-
ages. The most extensive chapter, Chapter 5, introduces the concepts of HDR image
and video compression, starting with a summary of existing solutions (Section 5.2),
followed by the derivation of the novel color space for HDR pixels (Section 5.3), the
HDR extension to MPEG-4 video compression (Section 5.4) and finally the backward-
compatible HDR MPEG video compression (Section 5.6). The framework for image
processing in the contrast domain is described in Chapter 6. We conclude this disser-
tation and give an outlook for future work in Chapter 7. In Appendix A we describe
software packages we developed for processing of HDR images and video that have
been made available as an open source project.
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Chapter 2

Physical, Photometric and
Colorimetric Image
Representation

This chapter explains several physical and perceptual quantities important for digital
imaging, such as radiance, luminance, luminance factor, luma, and color. It does not
give a complete or exhaustive introduction to radiometry, photometry or colorimetry,
since these are described in full extent elsewhere [Hunt 1995, Wyszecki and Stiles
2000, Reinhard et al. 2005]. The focus of this chapter is on the concepts that are
confusing or vary in terminology between disciplines, and also those that are used in
the following chapters.

2.1 Light

θ

dω

dA

Φ(λ )

Figure 2.1: Spectral radiance. Spectral radiance is a differential measure, defined for
infinitely small area dA, infinitely small solid angle dω , radiant flux Φ and an angle
between the rays and the surface θ .

The physical measure of light that is the most appropriate for imaging systems is either
luminance (used in photometry) or spectral radiance (used in radiometry). This is
because both measures stay constant regardless of the distance from a light source to a
sensor (assuming no influence of the medium in which the light travels). The sensor can
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Figure 2.2: CIE spectral luminous efficiency curve for photopic (day light) and scotopic
(night) vision. Data downloaded from http://www.cvrl.org/.

be either camera’s CCD chip or a photoreceptor in the eye. The quantities measured
by photoreceptors or digital sensors are related to either of these measures.

Spectral radiance is a radiometric measure, defined by:

L(λ ) =
d2Φ(λ )

dω ·dA·cosθ
(2.1)

where L(λ ) is spectral radiance for the wavelength λ , Φ is radiant flux flowing through
a surface per unit time, ω is a solid angle, θ is an angle between the rays and the surface,
and A is the area of the surface, as illustrated in Figure 2.1. Although spectral radiance
is commonly used in computer graphics, images are better defined with photometric
units of luminance. Luminance is spectral radiance integrated over the range of visible
wavelengths with the weighting function V (λ ):

Y =
∫ 770nm

380nm
L(λ )V (λ )dλ (2.2)

The function V (λ ), which is called the spectral luminous efficiency curve [CIE 1986],
gives more weight to the wavelengths, to which the human visual system (HVS) is
more sensitive. This way luminance is related (though non-nonlinearly) to our percep-
tion of brightness. The function V for the daylight vision (photopic) and night vision
(scotopic) is plotted in Figure 2.2. Terms scotopic and photopic will be discussed in
more detail in Section 3.2. Luminance, Y , is usually given in cd/m2 or equivalent nit
units.

Since the most common multi-exposure technique for acquiring HDR images [Reinhard
et al. 2005, Chapter 4] can not assess the absolute luminance level but only a relative
luminance values, most HDR images do not contain luminance values but rather the
values of luminance factor. Such luminance factor must be multiplied by a constant
number, which depends on a camera and lens, to get actual luminance. Such constant
number can be easily found if we can measure the luminance of a photographed surface
[Krawczyk et al. 2005a].

http://www.cvrl.org/
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Figure 2.3: Cone photocurrent spectral responsivities. After [Stockman and Sharpe
2000].

2.2 Color

Colors are perceptual rather than physical phonomena. Although we can precisely
describe colors using physical units of spectral radiance, such description does not
give immediate answer whether the described color is green or red. Colorimetry is the
field that numerically characterizes colors and provides a link between the human color
perception and the physical description of the light. This section introduces the most
fundamental aspects of colorimetry and introduces color spaces, which will be used
in later chapters. More detailed introduction to colorimetry can be found in [Fairchild
1997] and [Reinhard et al. 2005], while two handbooks, [Wyszecki and Stiles 2000]
and [Hunt 1995], are more exhaustive source of information.

The human color perception is determined by three types of cones: L, M and S, and
their sensitivity to wavelengths. We will come back to the function of the photore-
ceptors in Section 3.2. The light in the visible spectrum is in fact multi-dimensional
variable, where each dimension is associated with particular wavelength. However, the
visible color is a projection of this multi-dimensional variable to three primaries, cor-
responding to three types of cones. Such projection is mathematically described as a
product of the spectral power distribution, φ(λ ), and the spectral response of the type
of cones, CL(λ ), CM(λ ) and CS(λ ):

R =
∫

λ
φ(λ )CL(λ )dλ (2.3)

G =

∫

λ
φ(λ )CM(λ )dλ (2.4)

B =
∫

λ
φ(λ )CS(λ )dλ (2.5)

The spectral responsivities of cones are shown in Figure 2.3.

As the result of three-dimensional encoding of color in the HVS, the number of distin-
guishable colors is limited. Also, two stimuli of different spectral power distributions
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standard observer. Data downloaded from http://www.cvrl.org/.

can be seen as having the same color if only their R, G, and B projections match. The
latter property of the HVS is called metamerism.

To uniquely describe visible color gamut, CIE standardized in 1931 a set of primaries
for the standard colorimetric observer. Since the cone spectral responsivities were not
known at that time, the primaries were based on color matching experiment, in which
monochromatic stimuli of particular wavelength was matched with a mixture of the
three monochromatic primaries (435.6 nm, 546.1 nm, and 700 nm). The values of
color-maching mixture of primaries for each wavelength gave the R, G and B primaries
shown in Figure 2.4. The drawback of this procedure was that it resulted in negative
value of R primary. The negative part represents out of gamut colors, which are too
saturated to be within visible or physically feasible range. To bring those colors into
the valid gamut, the colors must be desaturated by adding monochromatic light. Since
adding monochromatic light results in increasing the values of all R, G and B com-
ponents, there is a certain amount of the added light that would make all components
positive.

To avoid negative primaries and to connect colorimetric description of the light with
photometric measure of luminance (see previous section), CIE introduced XY Z pri-
maries in 1931. The primaries, shown in Figure 2.5, were designed so that primary
Y represents luminance and its spectral tristimulus values are equal the luminous effi-
ciency function (see Figure 2.2). Although the standard has been established over 70
years ago, it is still commonly used today, especially as a reference in color conversion
formulas.

For a convenient two-dimensional representation of the color, chromacity coordinates
are often used:

x =
X

X +Y +Z
(2.6)

y =
Y

X +Y +Z
(2.7)

http://www.cvrl.org/
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Such coordinates must be accompanied by the corresponding luminance value, Y , to
fully describe the color.

The visible differences between colors are not well described by chromacity coordi-
nates x and y. For better representation of perceptual color differences, CIE defined
uniform chromatcity scales (UCS) in 1976, which are known as CIE 1976 Uniform
Chromacity Scales:

u′ =
4X

X +15Y +3Z
(2.8)

v′ =
9Y

X +15Y +3Z
(2.9)

Note that u′, v′ chromacity space only approximates perceptual uniformity and a unit
Cartesian distance can denote from 1 JND1 to 4 JND units.

The Uniform Chromacity Scales do not incorporate luminance level in their description
of color. This is a significant limitation, as color difference can strongly depend on
actual luminance level. Uniform color spaces have been introduced to address this
problem. The first color space, CIE 1976 L∗a∗b∗, is defined by:

L∗ = 116(Y/Yn)
1/3 −16 (2.10)

a∗ = 500
[

(X/Xn)
1/3 − (Y/Yn)

1/3
]

(2.11)

b∗ = 200
[

(Y/Yn)
1/3 − (Z/Zn)

1/3
]

(2.12)

and the second color space, CIE 1976 L∗u∗v∗, by:

L∗ = 116(Y/Yn)
1/3 −16 (2.13)

1JND – Just Noticeable Difference is usually defined as a measure of contrast at which a subject has 75%
chance of correctly detecting visual difference in a stimulus.

http://www.cvrl.org/
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were measured using pfscalibration3 software.

u∗ = 13L∗(u′−u′n) (2.14)

v∗ = 13L∗(v′− v′n) (2.15)

The coordinates with the n subscript denote the color of the reference white, which is
the color that appears white in the scene. For color print this is usually the color of a
white paper under given illumination. Both color spaces have been standardized as the
studies did not show that the one is definitely better over another and each one has its
advantages.

Both CIE 1976 L∗a∗b∗ and CIE 1976 L∗u∗v∗ color spaces have been designed for low
dynamic range color range, available on print or typical CRT displays and cannot be
used for HDR images. In Section 5.3 we attempt to address this problem by deriving
an (approximately) perceptually uniform color space for HDR pixel values.

The uniform color spaces are the simplest incarnations of color appearance models.
Color appearance models try to predict not only the colorimetric properties of the light,
but also its appearance under given viewing conditions (background color, surround
ambient light, color adaptation, etc.). CIECAM02 [CIE 2002] is an example of such a
model that has been standardized by CIE. The discussion of color appearance models
would go beyond scope of this thesis, therefore reader should refer to [Hunt 1995] and
[Fairchild 1997] for more information.

2.3 Sensor Response

Although radiometric of photometric units give probably the most accurate descrip-
tion of light, the output of most imaging systems, including displays, cameras and also
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Figure 2.7: A response curve for a typical negative film shows higher dynamic range
(up to 12 f-stops) than can be achieved by most film cameras.

photoreceptors, is neither luminance nor spectral radiance. Figure 2.6 illustrates the
response function of several digital cameras and Figure 2.7 the response function of an
analog film. Such response functions describe the relation between input luminance
and output values for several sensors. The response of most imaging systems usually
follows an S-shaped curve, which tends to saturate both the highest and the lowest lu-
minance values. Since the middle segment of those curves has either logarithmic or
power function characteristic, this non-linear compression is sometimes confusingly
called “gamma correction”. The gamma correction is in fact a compression of lumi-
nance applied to account for non-linear characteristic of CRT displays. This character-
istic happens to be a close match to the non-linear characteristic of the eye for a range
of luminance that is achievable on the CRT displays (from 1 to about 100 cd/m2).
However, the sensitivity of the eye is in fact quite different from the power function for
luminance levels above 1000 cd/m2 and below 1 cd/m2. Therefore a gamma correc-
tion should never be used for HDR images.

It is often unclear how sensor’s output values should be called. The usual term used
for digital video is luma, which is a word coined by the NTSC to prevent confusion
between the video signal and the traditional meaning of luminance. Since each sensor
has its own response characteristic, it is impossible to define a single formula for luma.
The relations between luminance and luma used in LDR video compression, which are
sometimes called transfer functions, usually involve a power function similar to the
gamma correction. However, since the gamma correction is a poor match to the char-
acteristic of the eye for the full range of luminance, those formulas are not applicable
to HDR data. To address this problem, in Section 5.3.1 we propose luma encoding of
luminance suitable for the full range of visible luminance, which is based on the char-
acteristic of the HVS. Such encoding defines luma in terms of sensitivity to light, in a
similar way as luminance is defined in terms of spectral radiance. One advantage of
such perceptual representation of luminance is that such a measure of light is percep-
tually linearized, which means that luma values correlate well with our perception of
brightness.

The mistake made by many researchers entering the field of HDR imaging is that they
evaluate distortions in HDR images using the root mean square (RMS) metric on the
values of luminance. But, since luminance badly corresponds to our perception of
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1. Contrast ratio 1 : R = 1 : Ypeak
Ynoise

general, display specifications

2. log-10 units (orders of magnitude) M = log10
Ypeak
Ynoise

general

3. Exposure latitude (f-stops) EL = log2
Ypeak
Ynoise

photography

4. Signal to noise ratio
DRPSNR = 20 ·
log10

Nmax
RMSnoise

[db] camera specifications

5. Density range DR = Dmax −Dmin ≈ M photography, film scanners

Table 2.1: Measures of dynamic range used in different disciplines. Ypeak is the repre-
sentative peak (maximum) luminance value and Ynoise is the level of noise.

brightness, the result of such metric will not tell much about perceptual differences be-
tween the two compared images. Much better approach would be to convert luminance
values to perceptually linearized luma before computing the RMS metric.

What is the range of luminance and luma values that an imaging pipeline should han-
dle? A reasonable range of luminance is within 10−5 cd/m2 and 1010 cd/m2, which
can capture the luminance of both a moonless sky (3 ·10−5 cd/m2) and the surface of
the sun (2 · 109 cd/m2). In Section 5.3.1 we will show that this range of luminance
can be encoded as luma using 4096 discrete steps so that the difference between two
consecutive steps is not perceivable. This shows that even if the absolute range of lu-
minance the eye can see is impressive, the actual limitation of the HVS does not allow
us to see more than about 4000 visually different shades of gray, and those can be seen
only if the slow mechanisms of visual adaptation are involved.

2.4 Dynamic Range

Another important and even more confusing quantity used in digital imaging is the dy-
namic range. The dynamic range is usually understood as a ratio of the highest and
the lowest luminance in an image. However, in most imaging systems the lowest lumi-
nance is limited by the noise of that system, such as flare in camera lens, ambient light
reflected from the screen of a monitor, or noise in a digital photograph. Therefore, the
dynamic range is more precisely defined as a ratio of the representative peak signal to
the level of noise in an image. For example, if we assume that a computer monitor is
almost perfectly black when the pixels are set to zero, which means that luminance of
the screen surface is very close to 0 cd/m2, the dynamic range of such a theoretical
monitor is infinitively high (since the peak luminance is divided by a very small num-
ber). However, in real-world the minimum luminance of a good quality LCD monitor
in a normally lit room is about 1 cd/m2. If the maximum luminance of a bright LCD
display is about 300 cd/m2, its dynamic range is in fact 1:300. Note that a similar
number is often given in the display specifications as the contrast of a display. How-
ever, since there are no strict standards how to measure such contrast, those numbers
are usually significantly higher than in reality (we found that some displays sold as 400
cd/m2 peak luminance monitors, can achieve not more than 250 cd/m2 when they are
new and 200 cd/m2 after two years of operation).
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Camera manufactures usually report the dynamic range of a sensor using the ratio of the
maximum sensor capacity to the noise level. Such ratio is measured in decibels using
formula 4 given in Table 2.1, where Nmax is the maximum capacity of a well (given in
the number of electrons) and RMSnoise is the root mean square of noise. RMSnoise is
sometimes replaced with the capacity (or voltage) at which the Signal to Noise Ratio
(SNR) is equal 1, which indicates that the useful signal has the same amplitude as noise.
The sensor dynamic range measures are usually only a theoretical maximum dynamic
range of a camera, which in practice is limited by other camera’s elements, such as
lens, an A/D converter, and processing performed before an image is stored. Note that
the sensor’s SNR values, also commonly reported in decibels, are quite different to the
dynamic range measures. SNR tells what is the ratio of signal to noise at the given
luminance level and can indicate whether noise is visible at particular illumination
conditions.

A different measure of dynamic range is used in the photography. The amount of
light that passes through lens and reaches a camera’s film or digital sensor is expressed
as the f-number and written as f /#, where # is the ratio of the focal length and the
diameter of the entrance pupil. The sequence of such f-numbers that results in halving
the amount of light (luminance) reaching the sensor is a sequence of f-stops. The f-
stops form a geometric series of powers of

√
2: f/0.7, f/1, f/1.4, f/2, f/2.8, f/4, f/5.6,

f/8, and so on. Therefore, photographers say that a scene has eight f-stops instead of
saying that a scene has a dynamic range or contrast ratio 1:256. The number of f-stops
is called exposure latitude and therefore a high dynamic range image is better known in
photography as an image of large exposure latitude (refer to item 3 in Table 2.1). The
best film stocks offer about 12 f-stops of exposure latitude, which corresponds to about
3.5 log-10 units. This is still lower dynamic range than the one that can be captured
with HDR cameras or multi-exposure techniques, but it shows that high dynamic range
images are not so new to the photography [Reinhard et al. 2002b]. Yet another measure
of dynamic range that can be found in photography is based on the system of print zones
introduced by Ansel Adams [Adams 1981]. The print zones correspond roughly to f-
stop units (they double or halve the amount of captured light), but they are additionally
associated with the shades of gray in the resulting print.

The dynamic range measured for analog films is usually expressed as a density range.
This measure is a difference between the maximum (D-Max) and the minimum (D-
Min) tonal values that a film can register (see Figure 2.7 and item 5 in Table 2.1).
Since D-Min and D-Max values are measured on a base-10 log scale, the density range
is equivalent to “orders of magnitude” or log-10 units (see item 2 in Table 2.1). The
density range of a good quality film is about 3.4D (note the “D” letter indicating density
measure).

All measures of dynamic range discussed in this section and summarized in Table 2.1.
The last remaining aspect is the dynamic range that can be perceived by the human
eye. The light scattering on the optic of the eye can effectively reduce the maximum
luminance contrast that can be projected onto to retina to 2–3 log-10 units. However,
since the eye is in fact a highly active sensor, which can rapidly change the gaze and
locally adapt, people are believed to be able to perceive simultaneously the scenes of 4
or even more log-10 units [Reinhard et al. 2005, Section 6.2] of dynamic range.
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Chapter 3

Modelling the Human Visual
System

The purpose of this chapter is to briefly introduce the reader to the computational mod-
els of the Human Visual System (HVS). Elements of such models are used in the later
chapters, for example to build a filter of invisible noise in Section 5.6.5, to design a vi-
sual difference predictor for HDR images in Chapter 4, and to derive a transducer func-
tion for large contrast magnitudes in Section 6.3.2. The description of the mechanisms
of the human vision given in this chapter is neither detailed nor complete, therefore this
chapter is more a reference than a complete guide to the computational models of the
HVS.

The following sections focus on the quantitative models, rather than the anatomical as-
pects of vision. An in-depth discussion of the psychophysical and anatomical aspects of
vision can be found in several excellent handbooks, such as [Wandell 1995] or [Hood
and Finkelstein 1986]. Each section of this chapter gives only short background in-
formation on the functionality of particular mechanism, followed by the discussion of
models used to predict behavior of that mechanism. Each section gives also several
practical applications in which such perceptual models are used.

Figure 3.1 summarizes the content of this chapter by linking each visual mechanism in
a complete visual pipeline. The figure contains most of the elements practically used
in the computational models of vision. However, the actual models will vary in the
selection of elements and in order in which they form a processing pipeline.

3.1 Optics of the Eye

Every optical system found in real world, including the human eye, is imperfect and
distorts the light that travel through it. As result of this, the light that passes though the
optics of the eye gets scattered and forms a blurred image on the retina. A simulation
of such blurring is shown in Figure 3.2. A computer rendered image that exhibits
no imperfections of the optics is shown on the left, while the same image but with
simulated light scattering in eye’s optics is shown on the right. The right image shows
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Optics of the eye is
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focusing an image
on the retina.
However, imperfec-
tions of the optics
cause scattering of
the light coming into
the eye that results
in attenuating high
spatial frequencies
and glare effects.

The spatial resolu-
tion of the
photoreceptors is
limited and
decreases rapidly
from the fovea to the
periphery. Adjusting
the sampling of the
image according to
the density and thus
sampling rate of the
photoreceptors
improves precessing
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sampling) or accu-
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non-linear and
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non-linearity is
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more complex non-
linear functions.
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cones are transmit-
ted via three path-
ways: light-dark, red-
green and blue-
yellow. The latter two
are called color
opponent pathways.
Such encoding is
realized with an
appropriate color
space conversion.

According to
multiresolution
theory of vision,
image signal is split
and transmitted via
several pathways
(channels), each
tuned for particular
spatial and temporal
frequency band and
a group of orienta-
tions.

Due to neural pro-
cessing, sensitivity to
spatial and temporal
patterns changes
with their frequency
content. The eye is
the most sensitive to
spatial frequencies
about 4-5 cycles per
degree.

Spatial patterns are
more difficult to
notice in the pres-
ence of other pat-
terns of similar
spatial and temporal
frequency. Such
effect, often called
visual masking or
contrast masking, is
responsible for non-
linear response of
the visual system to
contrast.

The visual system
has limited sensitivity
to phase shifts and
therefore sensitivity
to nearly located
stimuli, such as
patterns in the
texture, can be
significantly limited.

Figure 3.1: A generic data flow of computational models of visual system.

not only glaring effect round the light bulb, but also loss of contrast, especially in the
areas near the light.
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Figure 3.2: A computer generated image (left) and the same image with simulated
blurring due to the optics of the eye (right). Original HDR images have been tone
mapped using log-linear mapping. Image courtesy of Jozef Zajac.

Besides the blurring effect, often referred as blooming, other effects can be observed.
Flare is observed as a set of colored, concentric rings (lenticular halo surrounding
the light sources, and as radial streaks emanating from the center of the light source
(ciliary corona) [Spencer et al. 1995]. Other effects include diffraction due to a pupil or
eyelashes [Nakamae et al. 1990, Kakimoto et al. 2005]. These effects, however, appear
when the eye is adapted to dark light conditions and the observed scene includes bright
light sources.
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Figure 3.3: An example of the Point Spread Function (left) and the Optical Transfer
Function (right) of the human eye. Based on the model from [Westheimer 1986].

The glare effect is usually modelled using a Point Spread Function (PSF) [Westheimer
1986, Spencer et al. 1995] in the spatial domain, or Optical Transfer Function (OTF)
in the Fourier domain [Deeley et al. 1991, Marimont and Wandell 1994, Barten 1999].
These are the functions of spatial frequency (OTF) or angular distance (PSF), eccen-
tricity (distance from the foveal region), pupil size, wavelength and defocus of the eye.
Usually only few of these attributes are included in the models. The examples of PFS
and OTF are shown in Figure 3.3.

Another important limitation of the optics of the eye is chromatic aberration. Since the
light of different wavelength refracts differently, the eye cannot place all wavelengths
at focus at the same time. Usually short wavelengths are projected on the retina out of
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focus creating a blurrier image than middle wavelengths. Marimont and Wandell mod-
elled the effect of chromatic aberration in their work on the OTF of the eye [Marimont
and Wandell 1994].

A physically plausible simulation of the eye optics distortions became possible with
the introduction of HDR imaging. LDR images usually have larger luminance values
clipped and are not properly calibrated in luminance units, thus making them unsuitable
as a source for glare simulation. Note that glare effects must be simulated in linear units
of luminance or radiance, and not in gamma corrected color spaces. Therefore, HDR
images, which usually contain linear values of luminance, can be directly used for
simulation of the glare effect.

The effects of the optics are simulated in computer graphics to introduce a believable
impression of bright light sources on LDR displays [Spencer et al. 1995, Kakimoto
et al. 2005]. An HDR display takes advantage of the glare effect to hide the blur of
the display [Seetzen et al. 2004]. In Chapter 4 we will show that the optical part of the
visual system must be also taken into account in order to predict visible differences in
HDR images.

3.2 Sampling

Figure 3.4: The range of luminance in the natural environment and associated visual
parameters. From [Ferwerda et al. 1996].

The light that passes through optics of the eye is sampled by two kinds of photore-
cepetors: rods, responsible for low light vision, and cones responsible for day-light
vision. The range of luminance in which rods operate is called scotopic, the range in
which cones operate is called photopic, and the range in which both rods and cones
are active is the mesopic range. The mapping of physical luminance to the ranges of
photoreceptors’ activity is illustrated in Figure 3.4. The day-light and color vision pho-
toreceptors, cones, are further divided into three types, each one sensitive to different
wavelengths: L-cones (long wavelengths — red), M-cones (medium wavelengths —
green) and S-cones (short wavelengths – blue).

Figure 3.5: A generated pattern of cones, starting from at the foveal center on the left.
From [Deering 2005].
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Photoreceptors form approximately a hexagonal pattern. The region with the strongest
concentration of color-vision receptors (cones) is the fovea. As the distance from the
fovea (eccentricity) increases, the density of cones drops rapidly, and the number of
rods increases. The eye achieves the highest acuity, which is the ability to see fine
details, in the fovea.

Derring [Deering 2005] has shown that an accurate pattern of the photoreceptors can
be synthetized based on a few basic principles (see Figure 3.5). Although such accurate
models of the photoreceptor sampling pattern may provide better estimation of images
registered by the retina, this is rarely done in practice. The reason for this is that
the limitation of the eye’s optics are usually stronger that those of the photoreceptor
sampling pattern. The effect of sampling pattern can be observed only for very fine
patterns of high spatial frequency (≥ 60 cycles per degree) using visual interferometry
technique, which can project sinusoidal patterns directly on the retina, excluding the
effects of optics [Wandell 1995, p. 61]. Sampling is in fact included in some of visual
models (e.g. [Lubin 1995]), however mostly for the purpose of limiting the resolution
of input images and thus speeding up the computations.

3.3 Photoreceptor Non-linearity

Photoreceptors convert light falling on the retina into neural signals that are relayed to
the other parts of the visual system. However, their neural response to light is not linear
and strongly depends on their state of adaptation to luminance levels. As a result, the
eye is more sensitive to relative luminance levels (Y/Ybackground) than absolute lumi-
nance values (Y ), and the sensitivity to relative luminance decreases for low luminance
conditions. Such effects are sometimes called luminance masking (masking by the
level of luminance), which should not be confused with the visual masking described
in Section 3.7.

The response of the photoreceptors is usually modelled as an S-shaped function (on
log-linear plot), known as the Michaelis-Menten or Naka-Rushton equation:

R
Rmax

=
Y n

Y n +σ n (3.1)

where R is the photoreceptor response, Rmax is the maximum response, Y is luminance,
σ is the half-saturation constant, and n is the sensitivity control exponent that has value
between 0.7 and 1.0.

The half-saturation constant, σ is the value of Y that causes the half-maximum re-
sponse and it depends on the state of global, local and temporal adaptation. Curves for
several values of sigma are plotted in Figure 3.6. There are sophisticated models of
visual adaptation that can compute the proper value of σ based on an HDR image or
HDR video sequence [Pattanaik et al. 2000, Irawan et al. 2005]. If high complexity of
those models can not be afforded or lower accuracy of the visual model is acceptable,
Equation 3.1 can be replaced with simpler formulas that do not depend on the adap-
tation state. This is possible by introducing a simplifying assumption that the eye can
perfectly adapt to very small patches, such as single pixels. Assuming that n = 1, Daly
[Daly 1993] proposes a shift invariant model of photoreceptor response:

R
Rmax

=
Y

Y + c1 Y b (3.2)
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Figure 3.6: Photoreceptor response curves for several values of half-saturation constant
sigma.

where b = 0.63 and c1 = 12.6. Note that the above formula does not depend on the
adaptation state. Other authors suggest modelling photoreceptor response as a log-
arithmic function, which is in agreement with the Weber-Fechner law. The relation
between a logarithmic function and the Weber-Fechner law will be discussed in de-
tail in Section 5.3.1. The Weber-Fechner law, however, is a good approximation only
for photopic vision and fails for the mesopic light conditions, which cover the work-
ing range of most LCD and CRT displays. A better approximation of the response
function for luminance range from about 1 cd/m2 to about 400 cd/m2 is given by the
power function. This is why most formulas for lightness (e.g. CIE 1976 lightness) as
well as gamma correction used for LDR color spaces [Poynton 2003, Chapter 23] are
formulated as power functions with the exponent ranging from 1/3 to 1/2. Although
these functions estimate response of the entire visual system and not only photorecep-
tors, their characteristic is mostly affected by the non-linearity of the photoreceptor
response.

The logarithmic function can be used to model photoreceptor response in the photopic
luminance range and the power function in the mesopic range. However, it would
be more convenient to use a single function for the entire range of visible luminance,
including scotopic vision. We derive such a response function from psychophysical
models in Section 4.2.2. The derived response function is appropriate for the luminance
levels that can be found in HDR images.

The non-linearity that comes from photoreceptors’ response is used in most non-linear
(gamma corrected) color spaces, such as sRGB [IEC 61966-2-1:1999 1999] or CIE
L∗u∗v∗. Such color spaces perceptually linearize physical luminance, so that the result-
ing values are proportional to our impression of brightness of lightness. This is why
compressive non-linearity of luminance is mandatory step in any video/image com-
pression system. It is also employed as the first stage of many visual models, such as
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VDP [Daly 1993] or HDR VDP described in Chapter 4.

3.4 Opponent Color Space Coding

There is abundant evidence that the visual system encodes color information as two
opponent color pairs: red–green and blue-yellow, instead of directly transmitting the
responses of three types of cones (sensitive to red, green, blue hues). This is confirmed
by the simple observation that we can perceive mixtures of color coming from both of
the opponent color pairs, such as orange and cyan, but we never perceive mixtures of
red and green, or blue and yellow [Wandell 1995, p. 318].

The reason for such opponent color encoding is efficiency. The red, green and blue
coordinates of colors that can be found in real world are strongly correlated with each
other. A standard technique used to decorrelate multidimensional data (in this case
three-dimensional) is the Principal Component Analysis (PCA). PCA performed on a
large number of natural images results in three principal components: luminance, red–
green and blue-yellow color channels. The visual system has evolved to efficiently
encode color found in real word, and therefore, not surprisingly, it uses the dimensions
close to the principal components to encode color. Such encoding significantly reduces
the amount of information that needs to be send to the brain.

All color spaces used for image and video compression use a variant of an opponent
color space, such as YCRCB. CIE uniform color spaces, CIE 1976 L∗u∗v∗ and CIE 1976
L∗a∗b∗, have color components oriented along red–green and blue–yellow dimensions.
The same opponent encoding is also used in visual models [Jin et al. 1998, Bolin and
Meyer 1998, Pattanaik et al. 1998].

3.5 Bandpass, Oriented and Temporal Responses

The widely accepted multiresolution theory claims that the images registered by the
retina are transmitted to the brain via several visual channels, each one carying in-
formation about different spatial/temporal frequency band, orientation and color. An
example of such multi-resolution representation, excluding temporal and color aspects,
is illustrated in Figure 3.7. The multiresolution theory explains several aspects of visual
system and can also help constructing more accurate models of vision.

There are several computational models of visual channels, which differ from each
other by the conformity with the psychophysical measurements and their computa-
tional cost. The most psychophysically plausible models are based on Gabor func-
tions. These, however, are expensive to compute, non-invertible and suffer from nu-
merous problems discussed in detail in [Daly 1993]. Subband transforms, such as QMF
subband transform [Simoncelli and Adelson 1989] or wavelet transforms, are compu-
tationally more efficient. The shortcoming of these representations is that they usually
represent the oriented responses for 45◦ and 135◦ as a single channel, which may lead
to significant failures if the models are used to predict visual masking effects [Zeng
et al. 2000]. The cortex transform [Watson 1987] is a representation that offers a plau-
sible match with the psychophysical measurements and can be computed efficiently,
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Figure 3.7: Cortex transform decomposition. The diagram in the middle represents and
image in the Fourier domain divided into six spatial and six orientational bands. The
images around show content of particular bands in the spatial domain.

although it is computationally more expensive than the subband transforms. The trans-
form consist of a set of frequency and orientation selective filters in the Fourier do-
main, which decompose an image into several channels, as illustrated in Figure 3.7.
The cortex transform is used in the Visual Difference predictor and its HDR extension
described in Section 4.

Multiresolution representation of images are commonly used in image compression
and processing. Pyramids, such as the Gaussian pyramid or the Laplacian pyramid,
loosely correspond to multiresolution models and are basic tools of image process-
ing [Gonzalez and Woods 2001]. Also the wavelet representation of images shares
many similarities with multiresolution models of vision. In Chapter 6 we explore the
problem of multiresolution representation of images in more detail and propose a novel
representation that is especially effective for image processing (such as tone-mapping)
that is free of artifacts.

3.6 Spatial and Temporal Contrast Sensitivity

The sensitivity of the visual system to contrast varies with its spatial and temporal fre-
quency, orientation, wavelength, adaptation luminance and several other factors. Some
of these effects can be explained by the influence of the eye’s optics and photorecep-
tor response non-linearity, discussed in Sections 3.1 and 3.3, but others come from the
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Figure 3.8: An approximate characteristic of contrast sensitivity function shown on
the Campbell-Robson contrast sensitivity pattern [Campbell and Robson 1968]. When
observed from the proper distance, the sinusoidal pattern reveals the CSF characteristic
of the eye.

neural mechanisms of the retina. The sensitivity of the entire visual system, including
optical and neural parts, is described by the Contrast Sensitivity Function (CSF). An
example of the CSF is shown in Figure 3.8. The sensitivity is defined as an inverse of
the threshold given as Michelson’s contrast (for definition of the Michelson’s contrast,
refer to Section 6.2.1, Table 6.2).

The CSF model is almost obligatory part of any visual model or algorithm that takes
advantage of the limitations of the visual system. The quantization matrix used in DCT-
based image and video compression is largely affected by the CSF. Sub-sampling of
chrominance channels used in compression is dictated by lower sensitivity of the eye
for the high-frequency color patterns, which is described by the CSF. Computational
models of vision usually incorporate the CSF in either of two ways: either they weight
each visual channel (see Section 3.5) by a weighting factor coming from the CSF or
they use the CSF as a filter in the Fourier domain. The first approach offers limited
accuracy in terms of spatial resolution since each visual channels spans a broad range
of luminance in which the CSF sensitivity differs. The second approach assumes that
the CSF is shift-invariant, which may not be true especially if the mechanism of local
adaptation are involved. A method that can compute the influence of the CSF in Fourier
domain, including the effects of local adaptation, is described in Section 4.2.3.

The most often cited CSF is the function proposed by Barten [Barten 1999]. Barten
built his model by carefully designing each source of noise in the HVS and then fit-
ting the data from several phychophysical measurements to the model. The model is
however limited to photopic luminance conditions. We also found that it does not give
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accurate predictions for large luminance of adaptation values, exceeding 1000 cd/m2.
We found that the CSF used in Daly’s Visual Difference Predictor [Daly 1993], which
is based on Meeteren’s CSF model [Van Meeteren and Vos 1972] and improved by
Kodak, gives more reliable prediction for a broad range of lighting conditions. There is
very limited amount of data on the CSF for color data (stimuli different than the modu-
lation of luminance), and most visual models are based on the paper by Mullen [Mullen
1985]. It is important to notice that Mullen measured the color CSF for the corrected
effect of chromatic aberration, therefore using her model requires adding this effect
in earlier stages of the visual model (see Section 3.1). Many models, with the notable
exception of [Bolin and Meyer 1998], ignore this fact and use Mullen’s measurements
improperly, without modelling the chromatic aberration effect.

3.7 Contrast Non-linearity

Figure 3.9: An example of visual masking (contrast masking). The original image
(left) has been distorted with random noise (right). The noise is visible mostly in the
flat regions of the sky, where it is not masked with high frequencies of the grass and
the trees. Image courtesy of Grzegorz Krawczyk.

The effects that are the result of non-linear response of the HVS to contrast are known
as visual masking or contrast masking. Visual masking occurs when the stimuli that is
normally visible becomes invisible in the presence of another stimuli. This is illustrated
in Figure 3.9, where random noise was added to the image on the right. Although the
noise is equally distributed across the entire image, it is only objectionable in the sky,
where it is not masked with high frequency pattern of the grass and the trees.

The visual masking effect is the strongest when the masking signal has similar fre-
quency, orientation and color as the masked signal. This is usually modelled using
multiresolution representations (see Section 3.5) by applying a masking function to
each visual channel separately. Some amount of masking can be also observed be-
tween visual channels of different frequency and orientation, however these effects are
much weaker than the inter-channel masking and are rarely included in the models.

When the contrast of the masker is close to the contrast of the signal, the detection of
the signal can improve. However, this effect, called facilitation, can be rarely observed
in natural images and therefore is usually not included in the models. The facilitation
effect is observed in similar settings as the crispening effect [Whittle 1986].
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Figure 3.11: Contrast transducer func-
tion.

There are two major approaches to modelling of visual masking: the threshold eleva-
tion function and the transducer function. The threshold elevation function, drawn in
Figure 3.10, tells how many times the detection threshold will increase in the presence
of the masking signal of a given contrast. Although the shape of such threshold el-
evation function vary across spatial frequencies, a single function can be used if the
contrast of masking signal is normalized by the sensitivity predicted by the CSF [Daly
1993]. The threshold elevation function is commonly used in visual difference predic-
tors, such as Daly’s VDP [Daly 1993] and HDR VDP described in Chapter 4. Trans-
ducer function [Wilson 1991], on the other hand, applies non-linearity to the masked
contrast in order to convert it to the response of the HVS. Such response can be scaled
in the JND units, so that the difference of one unit in the response corresponds to
one Just Noticeable Difference. Transducer function is employed in visual difference
predictors, such as Sarnoff’s VDP [Lubin 1995], is used for visual optimization of
JPEG2000 [Zeng et al. 2000] compression and in the models of visual masking devel-
oped for the purpose of computer graphics applications [Ferwerda et al. 1996, Bolin
and Meyer 1998]. In Section 6.3.2 we derive a contrast transducer function that is
especially suitable for large contrast magnitudes found in HDR images.

3.8 Phase Uncertainty

Most of the models presented in the previous sections are focused on the transmission
of amplitudes in the HVS, without paying much attention to the transmission of phase.
For example, both OTF and CSF can predict how amplitudes are modulated when pass-
ing through the optics of the eye or the retina, but they do not model changes in phase
of the signal. Figure 3.12 illustrates the importance of phase in image interpretation. If
only amplitude is preserved and phase is discarded, the image contains only noise and
is not recognizable. However the major features of the image can be recognized if only
phase is preserved, even though the amplitude is set to zero (zero-response MTF).

Although image phase plays important role in image recognition, the sensitivity of
the HVS to phase distortions is limited. This is illustrated in Figure 3.13, in which
the phase of selected frequency bands has been shifted by angles ranging from 15◦ to
180◦. As can be seen in this image, it is difficult to notice phase shifts smaller than
90◦. This is because the HVS has limited phase sensitivity (phase uncertainty), which



40 CHAPTER 3. MODELLING THE HUMAN VISUAL SYSTEM

Figure 3.12: The role of phase and amplitude in the perception of images. The original
image (left) has been converted to the Fourier domain and then converted back to the
spatial domain, but using only amplitude (center) or phase (right) data.

can range from 15◦ to 90◦, depending on the bandwidth of affected frequencies, the
power content of the frequency bands and the content of the neighboring frequency
bands [Caelli et al. 1985].

Phase sensitivity (or phase uncertainty) plays important role in the accurate prediction
of visual masking. It facilitates distinction between textured regions, where masking is
high, and regions width edges, where masking is low. This is illustrated in Figure 3.8,
which shows a signal that contains both the texture and the edges on a flat surface.
The signal is band-pass filtered to produce response of a single visual channel. If
such response is directly used to predict visual masking, the masking is the highest
at the edges, where the amplitude is the highest. Also, masking would be limited to
the peaks of the bandpass filtered signal, while zero-crossings would result in lack of
masking. However, because masking due to edges is much lower, and because masking
for textures extends over the whole area of the texture and not only the peaks of the
signal amplitude, some visual models apply a filter that simulates phase uncertainty
of the HVS. To produce the response shown as a green line in Figure 3.8, we used a
non-linear filter, similar to that proposed in JPEG 2000 [Zeng et al. 2000]:

ri =
a

Card(Ωi)
∑

k∈Ωi

|yk|β (3.3)

where r is the channel response with the phase uncertainty effect, y is bandpass im-
age value, indices i and k denote pixel location, Ωi is the neighborhood of the pixel i,
Card(Ωi) is the number of pixels that belong to the neighborhood and a is a normal-
ization factor. Parameter β is usually set to a small value, such as 0.2. Such nonlinear
filter should be applied to a single visual channel. In JPEG 2000 the filter is applied to
wavelet coefficients [Zeng et al. 2000]. In Daly’s VDP [Daly 1993] a similar filter is
applied to band pass and orientation filtered images, which are the result of the cortex
transform and which represent visual channels (refer to Section 3.5). The application of
such filters greatly improves prediction of masking, especially at the edges of smooth
surfaces and in textured regions.
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Figure 3.13: Visibility of the phase shift distortion. A 2-octave frequency band has
been distorted by shifting its phase by 15◦, 45◦, 60◦, 90◦, 135◦ and 180◦. The other
frequencies have not been modified. Although phase plays important role in image
recognition, the sensitivity of the HVS to phase is limited. The phase shift distortions
start to be noticeable for the images above at 90◦ and larger shifts.

3.9 Threshold and Supra-threshold Effects

When considering models of visual system it is important to distinguish between thresh-
old and supra-threshold effects.

Threshold or subthreshold effects are those that can be observed at very small magni-
tude of the stimuli, usually at the contrast at which the stimuli is barely visible. The
CSF, described in Section 3.6, predicts the performance of the visual system only for
small contrast, close to the contrast detection threshold. The detection threshold, illus-
trated in Figure 3.15, is the smallest amplitude of contrast that makes the stimuli just
noticeable.

Suprathreshold effects, on the other hand, are those that consider contrast magnitudes
significantly larger than the detection threshold. The visual masking (contrast masking)
is such a supra-threshold effect. To measure visual masking, the smallest increments
and decrements for supra-threshold stimuli are identified in so called contrast discrim-
ination experiments, as shown in Figure 3.15. Such experiments measure the smallest
difference of amplitude of sinusoidal patterns that is distinguishable for a human ob-
server.
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displayed one after another. The threshold is the smallest visible contrast (detection)
or a difference of contrast (discrimination).



Chapter 4

A Visual Difference Predictor
for HDR Images

When designing an image synthesis or processing application, it is desirable to mea-
sure the visual quality of the resulting images. To avoid tedious subjective tests, where
a group of people has to assess the quality degradation, objective visual quality met-
rics can be used. The most successful objective metrics are based on models of the
Human Visual System (HVS) and can predict such effects as a non-linear response to
luminance, limited sensitivity to spatial and temporal frequencies, and visual masking
[Nadenau 2000].

Most of the objective quality metrics have been designed to operate on video and im-
ages that are to be displayed on CRT or LCD displays. While this assumption seems to
be clearly justified in case of low-dynamic range images, it poses problems as new ap-
plications that operate on HDR data become more common. A perceptual HDR quality
metric could be used for the validation of the aforementioned HDR image and video
encodings. Another application may involve steering the computation in a realistic
image synthesis algorithm, where the amount of computation devoted to a particular
region of the scene would depend on the visibility of potential artifacts.

In this chapter we propose several modifications to the original Visual Difference Pre-
dictor [Daly 1993]. The modifications improve a prediction of perceivable differences
in the full visible range of luminance. This extends the applicability of the original
metric from a comparison of displayed images (compressed luminance) to a compari-
son of real-world scenes of measured luminance (HDR images). The proposed metric
does not rely on the global state of eye adaptation to luminance, but rather assumes
local adaptation to each fragment of a scene. Such local adaptation is essential for a
good reduction of contrast visibility in High-Dynamic Range (HDR) images, as a sin-
gle HDR image can contain both dimly illuminated interior and strong sunlight. For
such situations, the assumption of global adaptation to luminance does not hold.

The following sections give a brief overview of the objective quality metrics (Sec-
tion 4.1), describe the modifications to VDP (Section 4.2) and then calibrate the param-
eters of the proposed metric based on psychophysical data collected in an experiment
on an HDR display (Section 4.3). Finally, the predictions of the HDR VDP and the

43
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original Daly’s VDP are compared. This chapter is an extended revision of the work
published in [Mantiuk et al. 2004b] and [Mantiuk et al. 2005a].

4.1 Previous Work

Several visual difference metrics for digital images have been proposed in the literature
[Barten 1990, Daly 1993, Heeger and Teo 1995, Lubin 1995, Taylor et al. 1997, Wang
and Bovik 2002, Zetzsche and Hauske 1989, Ramasubramanian et al. 1999]. They vary
in complexity and in the visual effects they can predict. However, no metric proposed
so far was intended to predict visible differences in High-Dynamic Range images. If
a single metric can accurately predict differences for either very dim or bright light
conditions, it may fail on images that contain both very dark and very bright areas.

Two of the most popular metrics that are based on models of the HVS are Visual Dif-
ference Predictor (VDP) [Daly 1993] and Sarnoff Visual Discrimination Model [Lubin
1995]. Their predictions were shown to be comparable and the results depended on test
images, therefore, on average, both metrics performed equally well [Li et al. 1998]. We
chose VDP as a base of our HDR quality metric because of its modularity and thus good
extensibility.

4.2 Visual Difference Predictor

In this section we describe our modifications to the original VDP, which enable the
prediction of visible differences in HDR images. In this chapter we give only a brief
overview of the original VDP and focus on the extension to high-dynamic range im-
ages. For detailed description of the VDP, refer to [Daly 1993].

The data flow diagram of the VDP for high-dynamic range images (HDR VDP) is
shown in Figure 4.1. The HDR VDP receives a pair of images as an input (original
and distorted, for example by image compression) and generates a map of probabil-
ity values, which indicates how likely the differences between those two images are
perceived. Both images should be scaled in the units of luminance. In case of low-
dynamic range images, pixel values should be inverse gamma corrected and calibrated
according to the maximum luminance of the display device. In case of HDR images no
such processing is necessary, however luminance should be given in cd/m2.

The first three stages of HDR VDP model behavior of the optics and retina. The orig-
inal image is filtered by Optical Transfer Function (OTF), which simulates light scat-
tering in the cornea, lens, and retina. To account for the nonlinear response of photore-
ceptors to light, the amplitude of the signal is nonlinearly compressed and expressed in
the units of Just Noticeable Differences (JND). Because HVS is less sensitive to low
and high spatial frequencies, the image is then filtered by Contrast Sensitivity Function
(CSF). Those three stages are mostly responsible for contrast reduction in the HVS and
are described in detail in the following Sections 4.2.1, 4.2.2, and 4.2.3. The next two
computational blocks – the cortex transform and visual masking – decompose the im-
age into spatial and orientational channels and predict perceivable differences in each
channel separately. Phase uncertainty further refines the prediction of masking by re-
moving dependence of masking on the phase of the signal. Since the visual masking
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does not depend on luminance of a stimuli, this part of the VDP is left unchanged,
except for a minor modification in the normalization of units (details in Section 4.2.4).
In the final error pooling stage the probabilities of visible differences are summed up
for all channels and a map of detection probabilities is generated. This step is the same
in both versions of the VDP.

Figure 4.1: Data flow diagram of the High Dynamic Range Visible Difference Predictor
(HDR VDP)

4.2.1 Optical Transfer Function

Due to scattering of light in the cornea, lens and retina, the visibility of low contrast
details is significantly reduced in the presence of bright light sources. For example, it
is very difficult to see the license plate number at night if the head lamps of the car
are on. While such dramatic contrast changes are uncommon for typical LCD for CRT
displays, they have significant influence on perception of real life scenes or images seen
on HDR displays. To account for this effect, the first stage of HDR VDP simulates light
scattering in the human eye for given view conditions.

Light scattering in the optics is usually modeled as Optical Transfer Function (OTF)
in the Fourier domain or as Point Spread Function (PSF) in the spatial domain. The
scattering depends on a number of parameters, such as spatial frequency, wavelength,
defocus, pupil size, iris pigmentation, and age of the subject. Because we would like
to limit the number of parameters to what is needed for our application, we choose
the function of Deeley et al. [1991], which models OTF for monochromatic light and
which takes into account a luminance adaptation level. The OTF of this model is given
by:

OT F(ρ,d) = exp[−(
ρ

20.9−2.1d
)1.3−0.07d ] (4.1)

where d is a pupil diameter in mm and ρ is spatial frequency in cycles per degree.
Specifically, the luminance level is taken into account via its effect on the pupil di-
ameter, calculated for particular adaptation luminance using the formula of Moon and
Spencer[Moon and Spencer 1944]:

d = 4.9−3tanh[0.4(logyadapt +1.0)] (4.2)

where Yadapt is a global adaptation level in cd/m2. Figure 4.2 shows OTFs for several
levels of adaptation. The global adaptation level can be calculated as an average lu-
minance of an image in log domain or supplied to the VDP as an external parameter.
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Figure 4.2: Optical MTFs from the model of Deeley et al. [Deeley et al. 1991] for
different levels of adaptation to luminance and pupil diameters (given in parenthesis).

4.2.2 Amplitude Nonlinearity

The original VDP utilizes a model of the photoreceptor to account for non-linear re-
sponse of the HVS to luminance, as illustrated in Figure 4.3. Such non-linear re-
sponse to luminance is responsible for the effect called luminance masking (see Sec-
tion 3.3). Perceivable differences in bright regions of a scene would be overestimated
without taking into account this non-linearity. The drawback of using the model of the
photoreceptor is that it gives arbitrary units of response, which are loosely related to
the threshold values of contrast sensitivity studies. The Contrast Sensitivity Function
(CSF), which is responsible for the normalization of contrast values to JND units in
the original VDP, is scaled in physical units of luminance contrast. Therefore using
a physical threshold contrast to normalize response values of the photoreceptor may
give an inaccurate estimate of the visibility threshold. Note that the response values
are non-linearly related to luminance. Moreover, the model of photoreceptor, which
is a sigmoidal response function (see Figure 4.3), assumes equal loss of sensitivity for
low and high luminance levels, while it is known that the loss of sensitivity is generally
observed only for low luminance levels1 (see Figure 4.4). Even if the above simpli-
fications are acceptable for low-dynamic range images, they may lead to significant
inaccuracies in case of HDR content.

Instead of modeling the photoreceptor response, we propose converting luminance val-
ues to a non-linear space that is scaled in JND units. Such space should guarantee the
property that adding or subtracting a value of 1 in this space results in a just perceivable

1The loss of sensitivity is generally not observed for higher levels of luminance if the eye is adapted
to those levels. However, drop of sensitivity can be expected if the eye is adapted to significantly lower
luminance than the stimuli. For example there is significant loss of sensitivity for specular highlights in
natural images, as the eye is usually adapted to the luminance of an object instead of highlight.



4.2. VISUAL DIFFERENCE PREDICTOR 47

change of brightness. If y = ψ(l) is a function that converts values in JND-scaled space
to luminance, we can rewrite the required property as:

ψ(l +1)−ψ(l) = tvi(yadapt) (4.3)

where tvi is a threshold versus intensity function and yadapt is adaptation luminance.
The function tvi predicts a minimum difference of luminance that is visible to a human
observer. As we show later in Section 5.3.1, the above formulation makes this problem
very similar to the derivation of the luminance encoding for HDR image and video
compression, although the required properties are different. We give a short derivation
for completeness below and more a detailed description in Section 5.3.1.

We use the Taylor series expansion:

ψ(l +1) = ψ(l)+
dψ(l)

dl
+ ... (4.4)

to replace the left side of Equation 4.3 with its first-order approximation:

dψ(l)
dl

= tvi(yadapt) (4.5)

Assuming that the eye can adapt to a single pixel of luminance y as in [Daly 1993] (see
also Section 5.3.1), that is yadapt = y = ψ(l), the equation can be rewritten as:

dψ(l)
dl

= tvi(ψ(l)) (4.6)

Finally, the function ψ(l) can be found by solving the above differential equation. In
the VDP for HDR images we have to find a value of l for each pixel of luminance y,
thus we do not need function ψ , but its inverse ψ−1. This can be easily found since the
function ψ is strictly monotonic.

The inverse function l = ψ−1(y) is plotted in Figure 4.3 together with the original
model of photoreceptor. The function properly simulates the loss of sensitivity for
scotopic levels of luminance (compare with Figure 4.4). For the photopic luminance,
the function has logarithmic response, which corresponds to Weber’s law.

The actual shape of the threshold versus intensity (tvi) function has been extensively
studied and several models have been proposed [Ferwerda et al. 1996, CIE 1981]. To
be consistent with the original VDP, we derive a tvi function from the CSF used there.
We find values of the tvi function for each adaptation luminance yadapt by looking for
the peak sensitivity of the CSF at each yadapt :

tvi(yadapt) = P · yadapt

maxρ CSF(ρ ,yadapt)
(4.7)

where ρ denotes spatial frequency. Similarly as in the the original VDP, parameter P is
used to adjust the absolute peak contrast threshold. The optimal value of the parameter
P for HDR VDP is calibrated to psychophysical data in Section 4.3. A function of
relative contrast – contrast versus intensity (cvi = tvi/yadapt ) – is often used instead of
tvi for a better data presentation. The cvi function for tvi derived by us is plotted in
Figure 4.4.

In our HDR VDP we use a numerical solution of Equation 4.6 and a binary search
on this discrete solution to convert luminance values y to l in JND-scaled space. The
subsequent parts of the HDR VDP operate on l values.
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uous line) and mapping to JND-scaled space used in our HDR extension of the VDP
(dashed line). The sigmoidal response of the original receptor model (adaptation to
a single pixel) overestimates contrast at luminance levels above 10 cd/m2 and com-
presses contrast above 10 000 cd/m2. Psychophysical findings do not confirm such
luminance compression at high levels of luminance. Another drawback of the receptor
model is that the response is not scaled in JND units, so that CSF must be responsible
for proper scaling of luminance contrast.
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Figure 4.4: Contrast versus intensity cvi function predicts the minimum distinguishable
contrast at a particular adaptation level. It is also a conservative estimate of a contrast
that introduces a Just Noticeable Difference (JND). The higher values of the cvi func-
tion at low luminance levels indicate the loss of sensitivity of the human eye for low
light conditions. The cvi curve shown in this figure was used to derive a function that
maps luminance to JND-scaled space.

4.2.3 Contrast Sensitivity Function

The Contrast Sensitivity Function (CSF) describes the loss of sensitivity of the eye
as a function of spatial frequency and adaptation luminance. It was used in the pre-
vious section to derive the tvi function. In the original VDP, the CSF is responsible
for both modeling the loss of sensitivity and normalizing contrast to JND units. In
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our HDR VDP, normalization to units of JND at the CSF filtering stage is no longer
necessary as the non-linearity step has already scaled an image in JND units (refer to
the previous section). Therefore the CSF should predict only the loss of sensitivity
for low and high spatial frequencies. The loss of sensitivity in JND-scaled space can
be modeled by a CSF that is normalized by peak sensitivity for particular adaptation
luminance:

CSFnorm(ρ ,yadapt) =
CSF(ρ ,yadapt)

maxρCSF(ρ ,yadapt)
(4.8)

Unfortunately, in case of HDR images, a single CSF can not be used for filtering an en-
tire image since the shape of the CSF significantly changes with adaptation luminance.
As can be seen in Figure 4.5, the peak sensitivity shifts from about 2 cycles/degree
to 7 cycles/degree as adaptation luminance changes from scotopic to photopic. To
normalize an image by CSF function taking into account different shapes of CSF for
different adaptation levels, a separate convolution kernel should be used for each pixel.
Because the support of such convolution kernel can be rather large, we use a compu-
tationally more effective approach: we filter an image in the Fourier domain several
times, each time using CSF for different adaptation luminance. Then, we convert all
of the filtered images to the spatial domain and use them to linearly interpolate pixel
values. We use luminance values from the original image to determine the adaptation
luminance for each pixel (assuming adaptation to a single pixel) and thus to choose
filtered images that should be used for interpolation. A more accurate approach would
be to compute the adaptation map [Yee and Pattanaik 2003], which would consider
the fact that the eye can not adapt to a single pixel. A similar approach to non-linear
filtering, in case of a bilateral filter, was proposed in [Durand and Dorsey 2002a]. The
process of filtering using multiple CSFs is shown in Figure 4.6.

As can be seen in Figure 4.5, the CSF changes its shape significantly for scotopic and
mesopic adaptation luminance and remains constant above 1 000 cd/m2. Therefore it
is usually enough to filter an image using a CSF for yadapt = {0.0001, 0.01, 1, 100,
1000} cd/m2. The number of filters can be further limited if the image has a lower
dynamic range.

CSF predicts the behavior of the complete visual system, including the optical and
neuronal parts. The optical part is however already simulated in the HDR VDP pipeline
as OTF filtering (see Section 4.2.1). Therefore, only the neural part should play role at
this stage of HDR VDP. To extract neural part from the overall CSF, the CSF used in
HDR VDP is divided by the OTF.

4.2.4 Other Modifications

An important difference between the original VDP and the proposed extension for
HDR images is that the first one operates on CSF normalized values and the latter
one represents channel data in JND-scaled space. Therefore, in case of the VDP for
HDR images, original and distorted images can be compared without any additional
normalization and scaling. This is possible because a difference between the images
that equals one unit in JND-scaled space gives a probability of detection equal to one
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Figure 4.5: Family of normalized Contrast Sensitivity Functions (CSF) for different
adaptation levels. The peak sensitivity shifts towards lower frequencies as the lumi-
nance of adaptation decreases. Shape of the CSF does not change significantly for
adaptation luminance above 1 000 cd/m2.

JND, which is exactly what this step of the VDP assumes. Therefore the local contrast
difference in the original VDP:

∆Ck,l(i, j) =
B1k,l(i, j)

BK
− B2k,l(i, j)

BK
(4.9)

in case of the VDP for HDR images becomes:

∆Ck,l(i, j) = B1k,l(i, j)−B2k,l(i, j) (4.10)

where k, l are channel indices, i, j pixel coordinates and B1,B2 are corresponding local
contrast values of the channel for the target and mask images.

4.2.5 Implementation

The source code of HDR VDP is available under the GPL license and can be down-
loaded from the web page http://hdrvdp.sourceforge.net/. It is integrated with
pfstools package, which can read most of the HDR file formats. The software provides
a ready-to-use metric that can be used in a broad range of digital imaging applications,
ranging from validation of computer graphics algorithms to detection of atrifacts in
compressed images.

http://hdrvdp.sourceforge.net/
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Figure 4.6: To account for a changing shape of the Contrast Sensitivity Function (CSF)
with luminance of adaptation, an image is filtered using several shapes of CSF and
then the filtered images are linearly interpolated. The adaptation map is used to decide
which pair of filtered images should be chosen for the interpolation.

The detailed documentation of the HDR VDP software can be found on the web page.
To give an impression how the software operates, the box below shows a typical usage
scenario:

vdp original.exr distorted.exr prediction.png

Predict differences between an original original.exr and distorted
distorted.exr images and create the visualization of the prediction in
prediction.png.

4.3 Calibration

Both original and HDR VDP contain several adjustable parameters that can signifi-
cantly improve predictions. To optimize HDR VDP predictions for complex images,
its parameters have been optimized to find the best match between VDP predictions
and differences found in a subjective experiment.
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A psychophysical experiment that assessed the detection of differences in complex im-
ages was conducted. Then we used the collected data to find the best set of HDR VDP
parameters that would give its response that is the closest to the result of the subjective
tests.

Eight subjects took part in the experiment, which involved detecting visible differ-
ences in images shown on a projector based HDR display [Seetzen et al. 2004]. The
luminance of the HDR images was reproduced on HDR display without any tone com-
pression and was clamped between 0.05 and 2 700cd/m2 (the minimum and maximum
luminance that could be achieved on the display). The images were observed from
0.5 m and each image spanned about 20 visual degrees. All participants had normal or
corrected to normal vision and were experienced in digital imaging.

For each pair of images (original and distorted image), a subject was to mark areas
where differences between the images were visible. The marking was done using
square blocks, each one of the size of one visual degree along its edge. Figure 4.7
shows the screen capture of the application used for the experiment. The result of each
test was a matrix of 1 and 0 values, where value 1 denoted visible differences in a block
and 0 no visible differences. Each subject was to mark eleven image pairs, which con-
tained natural scenes (HDR photographs), computer graphics rendering, and one sim-
ple stimuli image (luminance ramp). The second image of each pair was distorted with
a simple pattern noise, like a narrow band sinusoidal grating, blur, or random noise.

For the data collected from all subjects and for all images, we try to find the best set of
HDR VDP parameters, that would give the VDP response, which is the closest to the
subjective data. Because the resolution of VDP probability map is one pixel and the
resolution of subjective response is a square block of about 30×30 pixels, we have to
integrate VDP response, so that the data can be compared (see Figure 4.8). The natural
choice of operator for integration is a maximum probability value (a subject marks the
block if any distortion is visible). The VDP probability map however may contain
single stray pixels of high probability value, which would cause the high probability of
detection for the whole surrounding area. Since it is quite unlikely that a subject will
notice the differences in single pixels, we choose percentile, rather than maximum, for
integrating over the square block areas. Because we don’t know which percentile is the
best for integration, we leave it as one of the parameters of the optimization procedure.

The objective function of the optimization procedure has three parameters: a percentile
used for integration k, peak contrast sensitivity P, and slope of the masking threshold
elevation function s. The peak contrast sensitivity P is the minimum contrast that is
visible to a human observer (the inverse of the maximum value of the CSF) and was
discussed in Section 4.2.3. Refer to [Daly 1993] for the discussion on the slope of the
masking function. The objective function is therefore given as:

f (k,P,s) = ∑
images

∑
blocks

(prctile[V DP(p,s),k]−M)2 ·w (4.11)

where the first sum denotes summation over all images, the second over all rectangular
blocks, prctile the k’th percentile of the probability values in a block, V DP is the
probability map produced by VDP, M is an averaged subjective response and w is the
weighting factor for each block. The weighting factor w was introduced to account
for variability of the subjective data. The average subjective response M can be any
value between 0 and 1 because the subject did not mark the distorted regions in the
same way. For the same reason, the importance of each block is weighted by factor
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w, which denotes how much trust we can put in subjective data. If some subjects
reported distortions in a particular block visible and the other subjects not visible, we
can not make solid statement what should be the correct answer. Therefore we use the
weighting factor:

w = exp(− D2

0.04
) (4.12)

where D is a standard deviation of subjective responses across the subjects. This way
the blocks that have standard deviation greater than 0.5 are practically not taken into
account in the optimization procedure.

We numerically minimize the objective function f using the gradient descent method.
To find a global minimum and to avoid stopping at a local minimum, we use several
randomly selected starting points. Several runs of the optimization procedure gave the
lowest value of the objective function for the parameters: k = 82, P = 0.006, s = 1.
The value of 0.6% for the peak contrast sensitivity P is more conservative than 1%
commonly presumed in video and image processing applications, but it also assumes
lower sensitivity than the original VDP (0.25%). The slope of the masking threshold
elevation function s may vary between 0.65 and 1.0 and can be explained by the learn-
ing effect [Daly 1993] (subjects are more likely to notice differences when the mask
is a pattern that is predictable or they are familiar with). Although we let the slope in
the optimization procedure be any value in the range of 0.5–1.5, the best fitting was
found for the value 1.0, which indicated low learning level. This result was according
to our expectations, since complex images form complex masking patterns, which are
difficult to learn.

Figure 4.7: Screen capture of the program used in the experiment. Visible differences
between two simultaneously displayed images (original on the left and distorted on the
right) were marked with semi-transparent blue square blocks.

4.4 Comparison with LDR Visual Difference Predictor

To test how our modifications for HDR images affected a prediction of the visible
differences, we compared the results of Daly’s VDP and our modified HDR VDP.
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(a) Distorted image (b) VDP probability map

(c) integrated prob. map (d) averaged subjective response

Figure 4.8: Given the distorted image (a) and its not distorted version, HDR VDP
produces a probability map (b). The probability map must be integrated in rectangular
blocks (c) before it can be compared with the subjective response (d).

The first pair of images contained a luminance ramp and the same ramp distorted
by a sinusoidal grating (see Figure 4.9). The probability map of Daly’s VDP (Fig-
ure 4.9(c)) shows lack of visible differences for high luminance area (bottom of the
image). This is due to the luminance compression of the photoreceptor model (com-
pare with Figure 4.3). HDR VDP does not predict loss of visibility for high luminance
(Figure 4.9(d)), but it does for lower luminance levels, which is in agreement with the
contrast versus intensity characteristic of the HVS. The visibility threshold for aver-
age and low luminance is also lowered by the CSF, which suppresses the grating of
5 cycles/degree for luminance lower than 1 cd/m2 (see Figure 4.5). Because Daly’s
VDP filters images using the CSF for a single adaptation level, there is no difference
in the grating suppression for both low and high luminance regions of the image.

The next set of experiments was performed on a set of HDR images that are com-
monly used for testing tone mapping operators. The first row of Figure 4.10 shows
a prediction of contouring artifacts in the Memorial Church image. Both VDPs pre-
dicted properly visibility of the artifacts in the non-masked areas (floor and columns).
However, Daly’s VDP failed to predict distortions in the bright highlight on the floor
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(a) Mask (b) Target (c) Daly’s VDP (d) HDR VDP

Figure 4.9: A logarithmic luminance ramp (a) from 10−4 cd/m2 (top of the image) to
106 cd/m2 (bottom of the image) was distorted with a sinusoidal grating of contrast
10% and frequency 5 cycles/degree (b). The original and the distorted image was
compared using both versions of the VDP and the resulting probability map was shown
in subfigures (c) and (d), where brighter gray-levels denote higher probability.

(bottom right of the image), which can be caused by excessive luminance compres-
sion at high luminance levels. Daly’s metric also overestimated visible differences in
dark regions of the scene. Similar results were obtained for the Design Center image
distorted by a sinusoidal grating of different frequencies (the second and third row of
Figure 4.10). High frequency noise (the third row) was suppressed for the low lumi-
nance region of the image (the right bottom corner) only in case of the HDR VDP. Such
noise is mostly visible in the brighter parts of the image (the ceiling lamp and the areas
near the window), for which the CSF predicts higher sensitivity at high frequencies.

This short validation confirmed a better prediction of HDR VDP at high luminance
levels (in accordance with the cvi) and at low luminance levels in the presence of high
frequency patterns (in accordance with the CSF). However, more tests should be per-
formed in the future to test the prediction of contrast masking.

4.5 Conclusions and Future Work

In this chapter we derive several extensions to the original Visual Difference Predictor.
The extensions enable the comparison of High-Dynamic Range images. Local contrast
reduction is modeled in the extended HDR VDP using three-tier processing: linear shift
invariant OTF for light scattering, nonlinear shift invariant conversion to JND-scaled
space for the response of the photoreceptor, and the last linear and shift variant CSF
for lower sensitivity to low and high spatial frequencies. Such model allows separate
processing of high and low contrast information in HDR images. The predictor is then
calibrated to the psychophysical data collected in the detection experiment on the HDR
display.

In future work we would like to further extend the VDP to handle color images in a
similar way as it was done in [Jin et al. 1998], but also take into consideration ex-
tended color gamut and the influence of chromatic aberration on the OTF [Marimont
and Wandell 1994]. A more extensive validation of HDR VDP predictions is necessary
to confirm a good correlation between the predicted distortions and the actual quality
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(a) Mask (b) Target (c) Daly’s VDP (d) HDR VDP

0%−50% 50%−75% 75%−95% 95%−100%

(e) Color-coded scale of
detection probability for
VDP output

Figure 4.10: Several test images (a) were distorted by quantization in log domain (first
row), 5 cycles/degree 10% contrast sinusoidal noise (second row), and 2 cycles/degree
10% contrast sinusoidal noise (third row). The last two columns show results of both
Daly’s VDP (c) and HDR VDP (d) using color-coded probability scale (e).
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degradation as perceived by a human observer.
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Chapter 5

Compression of HDR Images
and Video

The bit-depth precision of majority of image and video formats can soon become in-
sufficient for the new generation of displays. The traditional image and video formats,
such as JPEG, PNG or MPEG, employ color spaces that fail to represent scenes of
dynamic range over 2 or 3 orders of magnitude and extended color gamut. The 8 bits
per color channel were more than sufficient when these formats were designed and the
best CRT displays could achieve contrast ratio of 1:200 and they peak luminance did
not exceed 100 cd/m2. Now, commercially available displays can show contrast of
1:1000. The prototypes of HDR displays are capable of showing contrast 1:50 000 and
have the peak luminance of 3000 cd/m2 [Seetzen et al. 2004]. Moreover, the color
gamut of typical displays also becomes much larger. These new advances in display
technology makes the transition to new image and video encoding formats, capable of
supporting new displays, essential.

One of the weakest points of the existing image and video file formats is that they are
device dependent. The gamma correction non-linearity, still used in most color spaces
used for compression, was originally designed for the first CRT TV sets [Poynton
2003]. When technology changes rapidly, building standards based on the characteris-
tics of the particular devices does not seem to be appropriate. This chapter describes
image and video encoding that is device independent and is solely based on the capa-
bilities of the human visual system. The basic concepts of such device independent
encoding are introduced in Section 5.1.

Higher precision of visual data does not only mean better reproduction of images and
video, but also new possibilities of reproduction. The display that is provided with high
accuracy device independent images, can render them using an optimal tone and gamut
mapping algorithm, and even adjust for the viewing conditions. HDR information is
already exploited in video games to accurately simulate a range of perceptual effects,
such as visual glare, night vision and motion blur, which enhance realism of the dis-
played images. Given HDR video input, the perceptual effects, as shown in Figure 5.1,
could be rendered in real-time by the display [Krawczyk et al. 2005b].

This chapter presents several of algorithms for compression of HDR images and video,

59
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Figure 5.1: A range of perceptual effects that can be simulated based on HDR data. From left to right:
visual glare (see light scattering at the edges of the objects); motion blur can be correctly simulated
in linear luminance domain; given absolute luminance values, color deficiency of night (scotopic)
vision can be simulated.

that can represent all information that is visible to the human eye. In particular, a
color space for efficient encoding of HDR pixels is derived in Section 5.3. Section 5.4
describes extensions required to encode HDR video using MPEG-4 compression. As
HDR formats have just started gaining popularity, it is important to provide a backward
compatibility with the existing LDR formats. The schemes for backward compatible
compression of HDR images and video are described in Sections 5.5 and 5.6.

This chapter consolidates previous work on HDR image and video compression pub-
lished in [Mantiuk et al. 2004a], [Mantiuk et al. 2006c] and [Mantiuk et al. 2006a].

5.1 Device- and Scene-referred Representation

Capturing of HDR video and images has become easier with the development of HDR
cameras. On the other end of the pipeline, display of HDR data has become possible
with the availability of new generation of HDR displays. However, in order to make
those two ends of the pipeline work together, there is a need for a common format of
data. This can be achieved with so called scene-referred representation of images and
video.

Commonly used image formats (JPEG, PNG, TIFF, etc.) contain data that is tailored
to particular display devices: cameras, CRT or LCD monitors. For example, two JPEG
images shown using two different LCD monitors may be significantly different due
to dissimilar image processing, color filters, gamma correction etc. Obviously, such
representation of images vaguely relates to the actual photometric properties of the
scene it depicts, but it is dependent on a display device. Therefore those formats can
be considered as device-referred (also known as output-referred), since they are tightly
coupled with the capabilities and characteristic of a particular imaging device.

ICC color profiles can be used to convert visual data from one device-referred format
to another. Such profiles define the colorimetric properties of a device for which the
image is intended for. Problems arise if the two devices have different color gamuts
or dynamic ranges, in which case a conversion from one format to another usually
involves the loss of some visual information. The algorithms for the best reproduction
of LDR images on the output media of different color gamut have been thoroughly
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studied [Morovic and Luo 2001] and CIE technical committee (CIE Division 8: TC8-
03) have been started to choose the best algorithm. However, as for now, the committee
has not been able to select a single algorithm that would give reliable results in all cases.
The problem is even more difficult when an image captured with an HDR camera is
converted to the color space of a low-dynamic range monitor (see a multitude of tone
mapping algorithms [Reinhard et al. 2005, Chapter 7]). Obviously, the ICC profiles
cannot be easily used to facilitate interchange of data between LDR and HDR devices.

Scene-referred representation of images offers a much simpler solution to this prob-
lem. The scene-referred image encodes the actual photometric characteristic of a scene
it depicts [Reinhard et al. 2005, p.85]. Conversion from such common representation,
which directly corresponds to physical luminance or spectral radiance values, to a for-
mat suitable for a particular device is the responsibility of that device. HDR file formats
are examples of scene-referred encoding, as they usually represent either luminance or
spectral radiance, rather than gamma corrected “pixel values”.

5.2 HDR Image Formats

There are several existing formats that are capable of encoding higher dynamic range
images. They can be classified into three groups:

• Formats originally designed for high dynamic range images. The quantities they
store are usually floating points values of a linear radiance or luminance factor1.
There are several high-precission formats, such as Radiance’s RGBE, logLuv
TIFF and OpenEXR. These formats are lossless up to the precission of their
pixel representation. The backward compatible JPEG HDR format can be also
classified to this group, though it is a lossy format. The high-precission formats
are described in detail in the following sections and the JPEG HDR format is
described in Section 5.5.2.

• Formats designed to store a higher dynamic range because of their application.
This group includes: Digital Picture Exchange DPX format used in the movie
industry to store scanned negatives, DICOM format for medical images, and a
variety of so called RAW formats used in digital cameras. All these formats use
more than 8 bits to store luminance, but they are not capable of storing such an
extended dynamic range as the HDR formats.

• Formats that store larger number of bits but are not necessary intended for HDR
images. Twelve or more bits can be stored in JPEG-2000, MPEG-4 (ISO/IEC
14496-2 or ISO/IEC 14496-10) and TIFF files. All these formats can easily
encode HDR if they take advantage of a color space that can represent full visible
range of luminance and color gamut.

Variety of formats and lack of standards definitely hinders transition from traditional
output-referred LDR formats to scene-referred HDR formats. The HDR formats (Ra-
diance’s RGBE, logLuv TIFF and OpenEXR) have not gained widespread acceptance
mainly because they offer only lossless compression resulting in huge files sizes. The
most successful OpenEXR format has been however integrated with several Open
Source and commercial applications, such as Adobe R© Photoshop R© CS2. The JPEG HDR

1For the explanation of luminance factor, refer to Section 2.1
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format can gain large popularity if it is adapted by a number of image processing ap-
plications. Another reason for small popularity of HDR formats is lack of standards,
which comes from little interest from the image and video format community in en-
coding HDR images. Other specialized formats, such as DPX, DICOM and cameras’
RAW formats, usually do not allow storing as high dynamic range as the HDR formats.
Since they are designed to be used for a specific application, it is unlikely that they will
evolve into general purpose image formats.

The recent video compression standards offer an extended bit-depth of up to 12 bits
for ISO/IEC 14496-2 and ISO/IEC 14496-10 AVC/H.264 with high profiles defined
in the Fidelity Range Extensions (FRExt), and 16 bits for JPEG-2000 format. This
unfortunately does not imply that these extensions were designed to store higher dy-
namic range. Despite the higher bit-depth, the specified transfer functions allow en-
coding only up to 2.5 log-10 units of dynamic range. The obvious step would be to
extend the specifications of these format to allow encoding HDR images and video.
The following sections of this chapter propose several such extensions, including color
space for HDR pixels (Section 5.3), an efficient encoding of sharp contrast edges (Sec-
tion 5.4.2), and finally backward compatible encoding of video (MPEG) and images
(Section 5.6). However, before these extensions are introduced, the following subsec-
tions give and overview of the most popular scene-referred HDR image formats. More
detailed review of the existing HDR image formats can be found in [Reinhard et al.
2005, Section 3].

5.2.1 Radiance’s HDR Format

One of the first HDR image formats, which gained much popularity, was introduced
with the Radiance rendering package2. Therefore it is known as the Radiance picture
format [Ward 1991] and can be recognized by the file extensions .hdr or .pic. The file
consist of a short text header, followed by run-length encoded pixels. The pixels are
encoded using so called RGBE or XYZE representations, which differ only by a color
space that is used. XYZE color format can encode full visible color gamut, while RGBE
is limited to the chromacities that lie within the triangle formed by the red, green and
blue color primaries. Since both representations are very similar, we only describe the
RGBE encoding.

0 8 16 24 31

Red Green Blue Exponent

Figure 5.2: 32-bit per pixel RGBE encoding

RGBE pixel encoding represents colors using four bytes: the first three bytes encode
red, green and blue color channels, and the last byte is a common exponent for all
channels (see Figure 5.2). RGBE is essentially a custom floating point representation
of pixel values. RGBE encoding takes advantage of the fact that all color channels are
strongly correlated in RGB color space and their values are at least of the same order
of magnitude. Therefore there is no need to store a separate exponent for each color
channel.

2Radiance is an open source light simulation and realistic rendering package. Home page:
http://radsite.lbl.gov/radiance/

http://radsite.lbl.gov/radiance/
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5.2.2 logLuv TIFF

The major drawback of floating point representation of pixel values is that floating
point numbers do not compress well. This is mainly because additional bits are re-
quired to encode mantissa and exponent separately, instead of a single integer value.
Such representation, although flexible, is not really required for visual data. Further-
more, precision error of floating point numbers varies across the full range of possible
values and is different than the “precision” of our visual system, as illustrated in Fig-
ure 5.9. Therefore, better compression can be achieved when integer numbers are used
to encode HDR pixels.

0 1 16 24 31

Sign 15-bit logL 8-bit u 8-bit v

Figure 5.3: 32-bit per pixel LogLuv encoding

The LogLuv encoding [Ward Larson 1998] requires only integer numbers to encode full
range of luminance and color gamut that is visible to the human eye. It is an optional
encoding in the TIFF library. This encoding benefits from the fact that the human eye
is not equally sensitive to all luminance ranges. In the dark we can see a luminance
difference of a few hundredths of cd/m2, while in the sunlight we need a difference of
tens of cd/m2 to see a difference. This effect is often called luminance masking and
is discussed in Section 3.3. But if, instead of luminance, a logarithm of luminance is
considered, the detectable threshold values do not vary so much and a constant value
can be a conservative approximation of the visible threshold. Therefore if a logarithm
of luminance is encoded using integer numbers, quantization errors roughly correspond
to the visibility thresholds of the human visual system, which is a desirable property
for pixel encoding. 32-bit LogLuv encoding uses two bytes to encode luminance and
another two bytes to represent chrominance (see Figure 5.3). Chrominance is encoded
using a perceptually uniform chromacity scale u′ v′ (see Section 5.3.2 for details).
There is also 24-bit LogLuv encoding, which needs fewer bits to encode pixels with
the precision that is below the visibility thresholds. However, this format is rather
ineffective to encode, due to discontinuities resulting from encoding two chrominance
channels with a single lookup value.

5.2.3 OpenEXR

An OpenEXR format or (the EXtended Range format), recognized by the file name ex-
tension .exr, was made available with an open source C++ library in 2002 by Industrial
Light and Magic (see http://www.openexr.org/ and [Bogart et al. 2003]). Before
that date the format was used internally by Industrial Light and Magic for the purpose
of a special effect production. The format is currently promoted as a special-effect in-
dustry standard and many software packages already support it. Some features of this
format include:

• Support for 16-bit floating-point, 32-bit floating-point, and 32-bit integer pixels.
The 16-bit floating-point format, called “half”, is compatible with the HALF data
type in NVIDIA’s Cg graphics language and is supported natively on their new
GeForce FX and Quadro FX 3D graphics solutions.

http://www.openexr.org/
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• Multiple lossless image compression algorithms. Some of the included codecs
can achieve 2:1 lossless compression ratios on images with film grain.

• Extensibility. New compression codecs and image types can easily be added
by extending the C++ classes included in the OpenEXR software distribution.
New image attributes (strings, vectors, integers, etc.) can be added to OpenEXR
image headers without affecting backward compatibility with existing OpenEXR
applications.
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Figure 5.4: 48-bit per pixel OpenEXR half-precision floating point encoding

Although OpenEXR file format offers several data types to encode channels, color data
is usually encoded with 16-bit floating point numbers, known as half-precision floating
point. Such two byte floating point number consist of one bit of sign, 5-bit exponent,
and 10-bit mantissa, as shown in Figure 5.4 (thus the format is known also as S5E10).

5.2.4 Formats Used in Cinematography

While the dynamic range employed in digital photography is usually limited to 2–3
orders of magnitude, a much broader dynamic range of 4–5 orders of magnitude can
be achieved with analog film. The problem of digital encoding, which emulates the
dynamic range and S-shaped response curve of film has been addressed in patent liter-
ature [Lucian et al. 2005]. A hardware solution using two 14-bit analog-to-digital con-
verters to separately digitize the log-linear and shoulder/toe portions of the response
curve is proposed to recover more details in dark and bright scene regions. Custom
wavelet encoders, such as layered wavelet encoders, have been designed especially for
the purpose of storing wide dynamic range scans of film negatives used in cinematog-
raphy [Demos 2004]. Such compression method however require substantial bit-rates
and are not suitable for on-DVD storage or real-time playback. The dynamic range
level achieved with analog film and its digital emulation is also too low to meet HDR
standards. Besides, it can be argued that the video encoding format should be designed
for the capabilities of the human eye rather than analog film or camera characteristics.

5.3 Color Space for HDR Pixels

The recent advances in digital camera and display technologies make standard 8-bit per
color channel representation of visual data insufficient. This is mostly due to the ex-
tended dynamic range of new capture and display devices: high dynamic range cameras
can capture dynamic range over 150dB (compared to 65dB for a typical camera) and
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new HDR displays can show contrast ratio of 30 000:1 (compared to 400:1 for a typical
LCD). Furthermore, these devices can cover much wider range of absolute luminance
levels, ranging from 0.1 cd/m2 to 3 000 cd/m2 for a HDR display. Since the typical
color spaces, such as YCrCb, sRGB or CIE L∗u∗v∗ cannot encode the full luminance
range of HDR data, a new representation of the visual data that can accommodate the
extended dynamic range is needed.

High dynamic range (HDR) imaging is a very attractive way of capturing real world
appearance, since it assumes the preservation of complete and accurate luminance (or
spectral radiance) values that can be found in a scene. Each pixel is represented as a
triple of floating point values, which can range from 10−5 to 1010. Such a huge range of
values is dictated by both real world luminance levels and the capabilities of the human
visual system (HVS), which can adapt to a broad range of luminance levels, ranging
from scotopic (10−5 – 10 cd/m2) to photopic (10 – 106 cd/m2) conditions. Obviously,
floating point representation results in huge memory and storage requirements and is
impractical for storage and transmission of images and video. In this section we derive
a color space that can efficiently encode HDR pixel values.

Choice of the color space used for image or video compression has a great impact
on the compression performance and capabilities of the encoding format. To offer
the best trade-off between compression efficiency and visual quality without imposing
any assumptions on the display technology, we propose that the color space used for
compression has the following properties:

1. The color space can encode the full color gamut and the full range of luminance
that is visible to the human eye. This way the human eye, instead of the current
imaging technology, defines the limits of such encoding.

2. A unit distance in the color space correlates with the Just Noticeable Difference
(JND). This offers a more uniform distribution of distortions across an image
and simplifies control over distortions for lossy compression algorithms.

3. Only positive integer values are used to encode luminance and color. Integer
representation simplifies and improves image and video compression.

4. A half-unit distance in the color space is below 1 JND. If this condition is met,
the quantization errors due to rounding to integer numbers are not visible.

5. The correlation between color channels should be minimal. If color channels are
correlated, the same information is encoded twice, which worsens the compres-
sion performance.

6. There is a direct relation between the encoded integer values and the photomet-
rically calibrated XYZ color values.

There are several color spaces that already meet some of the above requirements, but
there is no color space that accommodates them all. For example, the Euclidean dis-
tance in L∗u∗v∗ color space correlates with the JND (Property 2), but this color space
does not generalize to the full range of visible luminance levels, ranging from scotopic
light levels, to very bright photopic conditions. Several perceptually uniform quantiza-
tion strategies have been proposed [Sezan et al. 1987, Lubin and Pica 1991], including
the grayscale standard display function from the DICOM standard [DICOM PS 3-2004
2004]. However, none of these take into account broad dynamic range and diversified
luminance conditions as required by Property 1. Property 3 would suggest that the
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derivation of such color space can be formulated as color quantization problem [Brun
and Tremeau 2003]. However, color quantization techniques focus mostly on cluster-
ing problem in the three-dimensional color space assuming that a perceptually uniform
color space, such as CIE L∗u∗v∗ or CIE L∗a∗b∗, is already given.

5.3.1 Luminance and Luma

We begin the derivation of the color space that incorporates all of the above listed prop-
erties with the luminance channel. Real-world physical luminance, given in cd/m2,
should be converted into integer numbers (Properties 3 and 6), so that the error due
to rounding to the nearest integer is not visible (Property 4). Additionally, it is desir-
able that the integer values representing luminance closely correspond to the sensory
response of the HVS (Property 2). For example, intensity of sound is usually mea-
sured using non-linear decibel (dB) units since such a measure well corresponds to
the perceived loudness of sound. We would like to find a similar measure of lumi-
nance for all possible light conditions. Our derivation is similar to other methods that
model sensory output for a physical signal based on its threshold characteristic, such as
transducer functions [Wilson 1980, Barten 1999], the grayscale standard display func-
tion [DICOM PS 3-2004 2004], or the capacity function in tone mapping [Ashikhmin
2002]. Such luminance conversion is also called a transfer function in image compres-
sion literature.

Figure 5.5: Threshold versus intensity characteristic for fully adapted (filled) and mal-
adapted eye (open), for rods (left) and cones (right). The threshold detection perfor-
mance drops when the eye is not fully adapted. From [Walraven et al. 1990].

Let us assume that the function t(yadapt) gives a conservative estimate of the smallest
difference of luminance that is visible to the human eye (the detection threshold) at
a particular adaptation level, yadapt . We are looking for a function l → y : y(l) that
converts sensory units l (e.g. response of the photoreceptor), which we will call luma
(refer to Section 2.1), into physical luminance y. Because the luma values l will be en-
coded as integer numbers (Property 3), we have to make sure that rounding to integers
does not introduce visible distortions (Property 4). The maximum quantization error
due to rounding of luma values, l, is ±0.5. Since the detection thresholds are given in
luminance, we have to convert this rounding error from luma, l, to luminance, y. This
can be done by the Taylor series expansion of the function y(l):

y(l +0.5)− y(l) ≈ 0.5 · dy
dl

(5.1)
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Figure 5.6: Maximum quantization error in sensory values, l, must be expressed in
luminance, y, before it can be compared with the detection threshold, t(yadapt).

This step is illustrated in Figure 5.6. We then make sure that the maximum rounding
error is below or equal the detection threshold, t(yadapt):

0.5 · dy
dl

< t(yadapt) (5.2)

To simplify our problem, we assume that the eye is adapted to the luminance of a single
pixel, yadapt = y. Although such an assumption is not true in real-world situations,
it gives a conservative estimate of the detection threshold: the detection threshold is
higher when the eye is not fully adapted [Walraven et al. 1990, Irawan et al. 2005].
This is illustrated in the Figure 5.5, which shows how thresholds increase when the eye
is not fully adapted to background illuminance. We can rewrite the above inequality as
the following equality:

dy
dl

= 2 · t(y)
k

(5.3)

where k is a constant greater than 1. The larger the value of k, the more conservative
the encoding (the lower is the quantization error for luminance), but also the more
bits are needed to encode l. An important consequence of rewriting Inequality 5.2 as
Equality 5.3 is that the differencial change in y per differential change in l now directly
relates to the sensory threshold t(y), therefore the equation meets Property 2. The
above equation can be solved in either of two ways:

• by solving a differential equation:

dy
dl

= 2 · t(y(l))
k

(5.4)

• or an integral:
dl
dy

= 0.5 · k
t(y)

⇒ l(y) = 0.5
∫ k

t(y)
dy (5.5)

The solution of Equation 5.5 gives a function y → l : l(y), which converts physical
luminance y into sensory units l, and the solution of Equation 5.4 gives the inverse
function l → y : y(l). Note that y from Equation 5.3 has been replaced in Equation 5.4
with y(l) to make the right side of the equation the function of l.

Finally, we must decide on the boundary conditions and find the value of the constant
k. The boundary conditions will define the range of physical luminance that should
be represented by the sensory units l. A reasonable range of luminance is within
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10−5 cd/m2 and 1010 cd/m2, which can capture the luminance of both a moonless
sky (3 ·10−5 cd/m2) and the surface of the sun (2 ·109 cd/m2). Therefore we can write
the boundary conditions:

y(0) = 10−5 cd/m2

y(lmax) = 1010 cd/m2
(5.6)

where lmax is the maximum value of l we want to encode and is usually equal lmax =
2bits − 1. This gives us two point boundary problem, which can be solved using the
shooting method [Press et al. 2002, Chapter 17]3. The solution will give us the value
of k. If the value of k is greater than 1, the sensory units, l, can represent luminance
with sufficient precision, and that we have chosen an adequate number of bits.

So far we have not made any assumptions about the actual shape of the contrast de-
tection threshold function t(yadapt). We can start with a simplistic case, where this
function equals 1% of the Weber fraction4, that is t(yadapt) = 0.01 yadapt . This is a
very imprecise, but unfortunately still commonly used assumption in computer vision
and image compression, which is also referred as the Weber-Fechner law5. We make
further simplification and consider the case where k = 1, where the maximum quan-
tization error is exactly equal t(yadapt), rather than being greater than the threshold.
From Equation 5.5 and our assumptions, we get:

l(y) = 0.5
∫ 1

0.01y
dy = 50 · ln |y|+ c (5.7)

From the lower boundary condition (Equation 5.6), we have c = −50 · ln |10−5| =
575.65. This way we derive a logarithmic compression function, which is commonly
used for processing HDR images. Additionally, the derived function has the useful
property that the unit difference corresponds to 1% contrast. We insert the upper
boundary condition into Equation 5.7, we get l(1010) = 1726.9, which means that we
need at least 11 bits to represent the full visible range of luminance with a 1% step.
Although such precision is usually regarded sufficient for video displayed on CRT dis-
plays, skilled observers are reported to notice contrast as low as 0.25%. Moreover, the
contrast detection threshold is decreased with increased luminance of adaptation. Since
new LCD and plasma displays are much brighter than their CRT counterparts, they eye
is adapted to higher luminance levels when viewing such displays. Therefore, it is
not certain whether 1% contrast is still a conservative assumption. To accurately pre-
dict visibility of distortions under a broad range of viewing conditions, more accurate
models of detection threshold should be employed.

The detection threshold of the HVS is usually modelled in psychophysics with either
a threshold versus intensity function (t.v.i.) or a more complex Contrast Sensitivity
Function (CSF). The difference between them is that the t.v.i. function is measured
for a fixed pattern, such as a circular patch on a uniform background, and the CSF is
measured for a sinusoidal patterns or Gabor patches of different spatial frequencies. In
our analysis we consider the most popular models of t.v.i. and CSF, which include:

3Briefly, a shooting method is an iterative procedure that performs a binary search for the k value until
the differential equation meets the boundary conditions.

4Weber fraction is usually defined as W = (ymax − ymin)/ymin.
5It was shown over 40 years ago that the Weber-Fechner law does not match the experimental data

for luminance [Stevens and Stevens 1960]. The discrepancy between the Weber-Fechner law and the real
measurements is even higher for high dynamic range images.
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Figure 5.7: Comparison of the detection threshold models based on different CSF and
t.v.i. functions.

• Ferwerda’s t.v.i. [Ferwerda et al. 1996], which is commonly used in computer
graphics;

• The t.v.i. model suggested by Bodmann [1973] based on Blackwell’s data [Blackwell
and Blackwell 1971] for 20–30 year old observers and adopted by the CIE stan-
dard [CIE 1981];

• Barten’s CSF model [Barten 1999] adopted by the DICOM standard [DICOM
PS 3-2004 2004];

• and Meeteren’s CSF model [Van Meeteren and Vos 1972], improved by Kodak
and used in the Visual Difference Predictor (VDP) [Daly 1993].

While t.v.i. functions can be used directly to replace the function t(yadapt), some as-
sumptions must be made before the thresholds can be found from a CSF. Sensitivity
modelled by a CSF can depend on the stimuli size, viewing conditions, spatial and
temporal frequency, eccentricity and orientation. To make a conservative choice, we
assume the worst case scenario and always choose the point on the CSF where sensi-
tivity is the highest. Since sensitivity is modelled as an inverse of Weber’s fraction, we
get:

t(yadapt) =
yadapt

maxρCSF(ρ ,yadapt)
(5.8)

assuming a simplified CSF, which is a function of spatial frequency ρ and luminance
of adaptation yadapt . This is the same approach that we used to derive the t.v.i. function
from the contrast sensitivity function in Section 4.2.2, Equation 4.7.

For comparison, the t(yadapt) functions based on the above listed t.v.i. and CSF models
are plotted in Figure 5.7. Note that all functions follow a similar shape, but they are also
shifted along t-axis between each other. This comes from the difference in measuring
methods and also from the differences in the peak sensitivity between individuals. In
general, the CSF models show lower thresholds than the t.v.i. models.

Using each of the four detection threshold models, we found the coefficient k by solving
the two point boundary problem, as described above, for the visible range of luminance
and for 12-bit encoding. The resulting curves (l(y) functions) are plotted in Figure 5.8.
The constant k was above 1 for all functions (the smallest k = 1.4481 was found for
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Figure 5.8: Luminance to luma mappings, derived from different threshold models. A
logarithmic function and the sRGB color space are included for comparison.

VDP’s CSF), therefore rounding the values of those functions to integer numbers does
not introduce errors above the detection threshold. All four curves based on the t.v.i.
or CSF data have slightly different shapes, resulting in different sensitivity for different
luminance ranges. Additionally, Figure 5.8 contains two additional curves depicting
the nonlinearity (gamma correction) used in the sRGB standard [IEC 61966-2-1:1999
1999] and a logarithmic compression. The sRGB nonlinearity is plotted as a contin-
uous line up to 80 cd/m2, which is the display white luminance level assumed by the
standard. The dashed line illustrates how the sRGB nonlinearity accelerates for high
luminance levels, making it practically unsuitable for HDR data. The sRGB color
space has not been designed to encode luminance levels above a few hundreds cd/m2.
Also, the logarithmic compression curve has been fit into 12-bit luma range. This curve
is significantly different than the other functions, which model the human perception
more accurately. The 12-bit logarithmic encoding resulted in a relative quantization
error about 0.42%.

At this point, we removed both the curve derived from the Ferwerda’s t.v.i. and the
curve based on the Barten’s CSF from further consideration. The Ferwerda’s t.v.i. is
based on data from very few subjects and is measured for cone and rod vision sep-
arately, therefore it is less plausible than the other curves. The curve derived from
Barten’s CSF results in too coarse quantization for luminance below 1 000 cd/m2 and
too conservative quantization for luminance above that point (a steeper curve means
that a luminance range is projected on a larger number of discrete sensory values, l,
thus lowering quantization errors). Since we would like the quantization error to be
at least as conservative as the quantization of the sRGB color space, this curve is not
suitable for our application. The remaining two curves are equally suitable for encod-
ing HDR and the choice between them may depend on the application. VDP’s CSF is
more conservative for low luminance. The curve derived from the CIE data is close to
the gamma correction used in the sRGB color space, which gives better compatibility
with low-dynamic range images, for which sRGB is de facto a standard.

We use a numerical method to derive the functions shown in Figure 5.8. However, for
many applications, it is desirable to have an analytical formula, which could facilitate
conversion between HDR luminance and 12-bit luma. We propose an analytical model
that is both simple and resembles similar formulas used for the same purpose but for
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low dynamic range. We define a conversion from luminance to luma as:

l(y) =







a · y if y < yl
b · yc +d if yl ≤ y < yh
e · log(y)+ f if y ≥ yh

(5.9)

The above model is similar to the sRGB non-linearity, which also consists of linear and
power function segments. The difference is that the above model additionally includes
a logarithmic segment for high luminance.

To fit the model to the numerical solution of l(y) for both the CIE and VDP’s detection
models, we use the Levenberg-Marquardt nonlinear regression. Additionally, we en-
force C1 continuity in yl and yh in order to achieve a smooth function. We get the best
fit to the data for the constants listed in the table below:

Model a b c d e f yl yh

CIE t.v.i. 17.554 826.81 0.10013 -884.17 209.16 -731.28 5.6046 10469
VDP’s CSF 769.18 449.12 0.16999 -232.25 181.7 -90.160 0.061843 164.10

An inverse mapping, from luma to luminance, can be found using the formula:

y(l) =







a′ · l if l < ll
b′(l +d′)c′ if ll ≤ l < lh
e′ · exp( f ′ · l) if l ≥ lh

(5.10)

where the coefficients are given in the table below:

Model a′ b′ c′ d′ e′ f ′ ll lh
CIE t.v.i. 0.056968 7.3014e-30 9.9872 884.17 32.994 0.0047811 98.381 1204.7

VDP’s CSF 0.0013001 2.4969e-16 5.8825 232.25 1.6425 0.0055036 47.568 836.59

It is important to note that the model from Equation 5.9 is only an approximation of
the accurate mapping function, derived by a numerical or analytical solution of Equa-
tions 5.4 or 5.5. The applications that require high accuracy of the predicted quan-
tization errors should use the accurate solution rather than the approximate model.
Although it is possible to design a more accurate model, it would be too complex to
be practical. It is also important to note that a pre-computed lookup table for luma to
luminance mapping can often give much better performance than an analytical formula
that involves computationally expensive power and logarithmic functions. However,
as we recognize that the lack of simple formulas often discourage the application of
a method, we propose this simplified model as a better alternative to the logarithmic
compression,

The problem of perception-based image data quantization that minimizes contouring
artifacts has been extensively studied in the literature [Sezan et al. 1987, Lubin and
Pica 1991] but mostly for LDR imaging. A simpler mapping function for HDR im-
ages than the one derived above is used in the LogLuv format [Ward Larson 1998].
LogLuv uses a logarithmic function to map from luminance values to 15-bit integers.
The quantization error of such mapping against a range of visible luminance is shown
in Figure 5.9. LogLuv mapping function is well aligned to the c.v.i. curve at high
luminance values. However, the logarithmic mapping is too conservative for scotopic
and mesopic conditions. As a result, a significant amount of bits is wasted to encode
small contrast changes at low luminance, which are not visible to the human observer.
We propose a more effective mapping from luminance to discrete values, which is in a
better agreement with human perception.
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5.3.2 Chrominance and Chroma

Having derived the luminance component of the color space for HDR, we now focus
on encoding chrominance as two 8-bit chroma channels. Using eight bits per channel
to encode color is motivated by existing image formats, which often offer twelve or
more bits for luminance channel, but rarely encode chrominance with higher precision
than eight bits per channel.

Although an obvious choice for image and video compression would be a variant of
YCrCb color space, we rejected it because of its limited color gamut. HDR frames
should preserve the full visible color gamut (recall Property 1 from Section 5.3), even
though it cannot be displayed on the existing displays. We have experimented with
several color spaces, including a variant of RGB with an extended gamut (more satu-
rated primaries), but finally we achieved the best results with the CIE 1976 Uniform
Chromacity Scales u′, v′ (refer to Section 2.2). Similarly as in [Ward Larson 1998], we
compute the values for chrominance channels using the equations:

u′ = 4X
X+15Y+3Z

v′ = 9Y
X+15Y+3Z

(5.11)

Then we encode u′ and v′ using 8-bits:

u8bit = u′ ·410

v8bit = v′ ·410
(5.12)

Note that we use u′ and v′ chromatices rather than u∗ and v∗ of the L∗u∗v∗ color space.
Although u∗ and v∗ give better perceptual uniformity and predict loss of color sen-
sitivity at low light (Property 2), they are strongly correlated with luminance. Such
correlation is undesired in image or video compression (Property 5). Besides, u∗ and
v∗ could reach high values for high luminance, which would be difficult to encode
using only eight bits.

The remaining question is whether u8bit and v8bit lead to visible quantization errors and
thus contouring artifacts (Property 4). It has been reported that skilled observers can
see differences in u′, v′ of only about 0.002 (0.82 for u8bit and v8bit ) (see [Hunt 1995],
p. 154), which is still below the maximum quantization error u8bit ±0.5 and v8bit ±0.5.
For validation, we displayed a chromacity diagram for quantized u8bit and v8bit for sev-
eral luminance levels on a calibrated monitor. We could see contouring artifacts for
blue and purple colors for the highest luminance levels, which would suggest that 8-bit
encoding does not give sufficient precision. This is alleviated by either limiting the
color gamut or using perceptually more uniform color space (the u′, v′ chromacity dia-
gram is only approximately uniform and the ratio between the smallest and the largest
color difference can exceed four to one). However, such artifacts are not expected to
be noticeable in complex images.

5.3.3 Application to Image and Video Compression

The proposed color space for HDR pixels has been successfully used in three image and
video compression algorithms: an HDR extension to MPEG compression described in
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Section 5.4; a backward compatible HDR video compression described in Section 5.6,
and HDR image compression outlined below.

The algorithm for encoding static HDR images is mostly based on the JPEG image en-
coding with a few extensions added to accommodate HDR data. Instead of YCrCb we
use the color space derived in Section 5.3. Since luminance in this color space is en-
coded with 12 bits, both DCT transformation and variable-length coding are extended
to support larger values. The results show that our DCT-based image compression for
HDR images is both efficient and fast. The algorithm is specifically developed to be
included in the Open Source OpenEXR library (http://www.openexr.org/) as a
freely available and efficient lossy compression format for HDR images. More infor-
mation on OpenEXR format can be found in Section 5.2.3.

Although the HDR image video encoding has not been well established so far, many
practical applications would benefit greatly by providing more precise, possibly cali-
brated streams of temporally coherent data. The proposed color space for HDR pixels
relies on insensitivities of the HVS in terms of luminance and contrast perception,
and therefore it is appropriate for all those applications whose goal is to reproduce
the appearance of images as perceived by the human observer in the real world. This
assumption matches well to such applications as realistic image synthesis in computer
graphics, digital cinematography, documenting reality, tele-medicine, and some aspects
of surveillance.

Linear HDR data encoding is required by many applications, such as re-lighting us-
ing dynamic HDR environment maps. Linear or logarithmic HDR encoding might be
desirable in remote sensing, space research, and typical computer vision applications
such as monitoring, tracking, recognition, and navigation. For other applications, cus-
tom quantization algorithms can be required, for example to match sensor characteris-
tics used to acquire HDR data in medical applications. In such a case the luminance
quantization approach (Section 5.3.1) can be easily adapted.

5.3.4 Discussion

The luminance encoding proposed in this section can be considered an extension of
typical gamma correction for the full range of luminance values visible to the human
eye. Obviously, “gamma correction” is not the correct term for the proposed nonlin-
earity since we do not correct voltage of cathode ray tubes. Nevertheless, it is worth
pointing out that both the gamma correction and the proposed nonlinearity are consis-
tent in the luminance range from about 1 to 500 cd/m2 (i.e. the luminance range in
which typical CRT and LCD displays operate). In this range both nonlinearities are
modelled as a power function with the exponent being less than one (see Equation 5.9).

Interestingly, there is also an analogy between the derived l(y) function and the re-
sponse of a typical film negative. The film response, as shown in Figure 2.7, consists
of five segments: Dmin (minimum density), the toe, the straight-line segment, the shoul-
der, and Dmax (maximum density). Such a characteristic is also known as the D-logE
curve. If we compare the film response from Figure 2.7 with the l(y) function from Fig-
ure 5.8, we notice that our visual system has a minimum response (below 0.01 cd/m2)
followed by the segment of gradually increasing slope, which corresponds to the toe
in the film response. The visual system shows a logarithmic response above 1,000 –
10,000 cd/m2, similar to the straight-line segment (on log-linear plot) for a film. The

http://www.openexr.org/
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difference is that the visual system, unlike a film, does not saturate for high luminance
when it is adapted to these luminance levels. In addition, the eye can perceive simulta-
neously much larger dynamic range of luminance than a film can capture.

One difficulty that arises from our color encoding is that the source HDR images must
be calibrated in absolute units of cd/m2. The pixel values must be also given using ab-
solute XYZ values, where Y represents an absolute luminance value (traditional XYZ
coordinates are normalized to be within the range 0-100 and Y represent luminance
factor instead of luminance). This is necessary since the performance of the HVS
is significantly affected by the absolute luminance levels. For instance, the detection
thresholds are significantly higher for low light conditions. The major source of this
problem are the existing HDR capture techniques, such as multi-exposure methods,
which give an accurate measurement of relative luminance (luminance factor), but give
no information on absolute luminance levels. The conversion from relative to absolute
luminance units is however very simple and requires multiplication of all XYZ color
coordinates by a single constant. Such a constant needs to be measured only once for
a camera. The measurement can be done by capturing a scene containing a uniform
light source of known illuminance or a surface of measured luminance [Krawczyk et al.
2005a]. If such a measurement is not possible, an approximate calibration of an image
to absolute units, by assuming typical luminance levels of some objects (e.g. the sky
or a daylight illuminated wall), is usually sufficient.

Although we strongly support scene-referred encoding of image and video we also
see some problems related to this approach. A substantial part of the visual material
created today is not an exact replica of the real world, but rather stems from human
or computer-created or enhanced images, which are only intended to look like the real
scenes. For instance, night scenes in movies are often shot at daylight and then post-
processed to give them a nocturnal look. How should such scenes be encoded if they
intend to represent low light conditions but are displayed at much higher luminance
levels? In such cases, scene-referred encoding of images may not be appropriate and
images should represent the intended appearance of a scene. Nevertheless, such images
should be stored in an HDR “appearance-referred” format, which would encode the
optimal luminance levels at which particular scene should be displayed. If a display
device is not capable of displaying such an image, it would apply a tone mapping
algorithm [Reinhard et al. 2005] to deliver the best image for its capabilities.

Figure 5.9 shows comparison of the proposed luminance encoding to other popular
encoding methods. Although 12-bit encoding derived from CIE t.v.i. function results in
quite high relative errors, especially in the low luminance range, these errors are below
perceivable threshold. This suggests that all other encodings are conservative in this
matter and should not lead to perceivable distortions. However, the proposed encoding
can achieve this goal using only 12 bits while other encodings need 16 bits to encode
luminance. Note that although Half floating point numbers (S5E10) used on OpenEXR
format give the highest precision for values between 10−4 – 104.8, they cannot represent
numbers above 65,504, which makes this format less suitable for storing real-world
absolute luminance values.

To enrich visual information stored in image or video files, we postulate scene-referred
encoding in favor of device-referred representation commonly used today. HDR im-
ages are an example of such scene-referred encoding, which unlike plain images can
represent the whole visual information visible to the human eye. We show that HDR
scene-referred images and video can be efficiently encoded. We derive a color space for
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Figure 5.9: Quantization error of popular luminance encoding formats. luma lCIE —
the perceptual encoding derived from CIE t.v.i. (refer to Section 5.3.1); OpenEXR —
16-bit floating point encoding used in OpenEXR format (Section 5.2.3); LogLuv —
16 bit logarithmic encoding used in 32-bit version of LogLuv format (Section 5.2.2);
RGBE — shared mantissa floating point encoding used in Radiance’s RGBE format
(Section 5.2.1). The error is computed as the maximum distortion in luminance due
to rounding error of particular representation and given in relative units (ε/y, where ε
is the absolute error given in luminance values). The edgy shape of both RGBE and
OpenEXR is caused by rounding the mantissa. Note that S5E10 float format used in
OpenEXR cannot store values larger than 65,504 and therefore its plot is cut a this
point.

efficient encoding of HDR data from the detection thresholds of the HVS. To test and
demonstrate efficiency of our approach, we implemented a complete HDR MPEG-4
encoder, discussed in the next section.

5.4 HDR Extension of MPEG-4
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Figure 5.10: Simplified pipeline for the standard MPEG video encoding (black, solid) and proposed
extensions (italic, dashed) for encoding High Dynamic Range video. Note that edge blocks are en-
coded together with DCT data in the HDR flow.
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This section explains how the MPEG encoding standard, both the Advanced Simple
Profile (ISO/IEC 14496-2) [ISO-IEC 14496-2 1999] and the Advanced Video Coding
(ISO/IEC 14496-10) [ISO/IEC 14496-10 2005], can be extended to handle HDR data.
As a framework for HDR video encoding we selected the MPEG-4 standard, which is
state-of-the-art in general video encoding for low dynamic range (LDR) video. Recent
studies demonstrate that wavelet transforms extended into the temporal domain and
coupled with motion prediction can also be successfully applied for LDR video com-
pression (e.g. [Shen and Delp 1999]), but no wavelet-based standard utilizing inter-
frame compression has been established so far.

The scope of required changes to MPEG-4 encoding is surprisingly modest. Fig-
ure 5.10 shows a simplified pipeline of MPEG-4 encoding, together with proposed
extensions. While a standard MPEG-4 encoder takes as an input three 8-bit RGB color
channels, the HDR encoder must be provided with pixel values in the absolute XYZ
color space [CIE 1986]. Such color space can represent the full color gamut and the
complete range of luminance the eye can adapt to. Next pixel values are transformed to
the color space that improves the efficiency of encoding. MPEG-4 converts pixel val-
ues to one of the family of YCBCR color spaces, which exhibit low correlation between
color channels for a natural images. As illustrated in Figure 5.10, the proposed exten-
sion to MPEG stores color information using a perceptually linearized lu′v′ introduced
in Section 5.3. We choose an 11-bit representation of luminance as it turns out to be
both conservative and easy to introduce to the existing MPEG-4 architecture.

The next stage of MPEG-4 encoding involves motion estimation and compensation
(refer to Figure 5.10). Such inter-frame compression results in significant savings in
bit-stream size and can be easily adapted to HDR data. After the motion compensation
stage, inter-frame differences are transformed to a frequency space by the Discrete
Cosine Transform (DCT). The frequency space offers a more compact representation
of video and allows perceptual processing.

A perceptually motivated quantization of DCT frequency coefficients is the lossy part
of the MPEG-4 encoding and the source of the most significant bit-stream size saving.
Although the MPEG-4 standard assumes only the quantization of LDR data of a display
device, in Section 5.4.1 we generalize the quantization method to the full range of
visible luminance in HDR video.

Due to quantization of DCT coefficients, noisy artifacts may appear near edges of high-
contrast objects. While this problem can be neglected for LDR data, it poses a signif-
icant problem for HDR video, especially for synthetic sequences. To alleviate this, in
Section 5.4.2 we propose a hybrid frequency and luminance space encoding, where
sharp edges are encoded separately from smoothed DCT data.

In the following sections we describe our extensions to the MPEG-4 format, which are
required for efficient HDR video encoding. For detailed information on the MPEG-4
encoding refer to the standard specification [ISO-IEC 14496-2 1999].

Additional examples and the demonstration video can be found on the project web
page: http://www.mpi-inf.mpg.de/resources/hdrvideo/index.html.

http://www.mpi-inf.mpg.de/resources/hdrvideo/index.html
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5.4.1 Quantization of Frequency Components

The color space lu′v′ derived in Section 5.3 takes account for a non-linear response of
the visual system to light (luminance masking) at a broad range of luminance adapta-
tion levels. However, the loss of information in the human eye is limited not only by the
thresholds of luminance contrast but also by the spatial configuration of image patterns
(spatial and temporal contrast sensitivity and contrast masking). To take full advantage
of those HVS characteristics, MPEG encoders apply the Discrete Cosine Transform
DCT to each 8× 8 pixel block of an image. Then each DCT frequency coefficient is
quantized separately with the precision that depends on the spatial frequency it repre-
sents. As we are less sensitive to high frequencies (refer to Section 3.6), larger loss of
information for high frequency coefficients is allowed. In this section we show that the
MPEG-4 quantization strategy for frequency coefficients can be applied to HDR data.

In MPEG encoders, the quantization of frequency coefficients is determined by a quan-
tization scale qscale and a weighting matrix W . Frequency coefficients F are changed
into quantized coefficients F̂ using the formula:

F̂i j =

[

Fi, j

Wi, j ·qscale

]

where i, j = 1..8 (5.13)

The brackets denote rounding to the nearest integer and i, j are indices of the DCT
frequency band coefficients. The weighting matrix W usually remains unchanged for
whole video or a group of frames, and only the coefficient qscale is used to control
quality and bit-rate. Note that the above quantization can introduce noise in the signal
that is less than half of the denominator Wi, j ·qscale.

Both the HDR perceptually quantized space lu′v′ and the gamma corrected YCBCR
space of LDR pixel values are approximately perceptually uniform [Nadenau 2000,
Section 7.2.2]. In other words, the same amount of noise results in the same visible
artifacts regardless of the background luminance. If quantization adds noise to the
signal that is less than half of the denominator of equation 5.13, quantizing frequency
coefficients using the same weighting matrix W in both spaces introduces artifacts,
which differ between those spaces by a roughly constant factor. Therefore to achieve
the same visibility of noise in the HDR space as in LDR space, the weighting matrix
W should be multiplied by a constant value. This can be achieved by setting a proper
value of the coefficient qscale.

The default weighting matrices currently used in MPEG-4 for quantization [ISO-IEC
14496-2 1999, Section 6.3.3] are tuned for typical CRT/LCD display conditions and lu-
minance adaptation levels around 30–100 cd/m2. Contrast sensitivity studies [Van Nes
and Bouman 1967] demonstrate that the HVS is the most sensitive when adapted to the
luminance of several hundred cd/m2 and the corresponding threshold values essentially
remain unchanged across all higher luminance adaptation values. On the other hand,
the threshold values significantly increase for the lower luminance adaption levels. This
means that MPEG-4 weighting matrices are conservative for HDR data. More effective
and still conservative quantization can be expected if separate weighting matrices are
used for lower luminance levels. However, this requires additional storage overhead,
as updated matrices have to be encoded within the stream. Moreover, such adaptive
quantization requires multi-pass encoding, which restricts possible applications. An-
other solution is prefiltering of input images to remove imperceptible spatio-temporal
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frequencies [Border and Guillotel 2000]. Pre-filtering of HDR video will be discussed
in detail in Section 5.6.5.

5.4.2 Encoding of Sharp Contrast Edges

 Standard DCT coding Hybrid coding

Figure 5.11: Quality comparison of the standard DCT coding of the block and our
hybrid frequency and luminance space coding. Quantized DCT blocks show artifacts
at sharp edges, which are not visible for the hybrid encoding. The hybrid encoding
increased size of the bit-stream by 7%.

In the previous section we showed that the quantization of DCT coefficients can be
safely applied to the perceptually quantized HDR space thus greatly reducing the size
of the video stream. Unfortunately, the DCT is not always an optimal representation
for HDR data. HDR images can contain sharp transitions from low to extremely high
luminance values, for example at the edges of light sources. Information about sharp
edges is encoded into high frequency DCT coefficients, which are coarsely quantized.
This results in visible noisy artifacts around edges, as can be seen in Figure 5.11. This
is especially pronounced in the case of synthetic images, which often contain sharp
luminance transitions between neighboring pixels. To solve this problem we propose
a hybrid encoding, which stores separately low-frequency data in DCT blocks and
elevation of sharp edges in “edge blocks”.

Figure 5.12 illustrates how, in case of 1D data, input luminance that contains a sharp
edge can be split into two signals: One piece-wise constant that contains the sharp edge
alone and another that holds slowly changing values. The original signal can be recon-
structed from those two signals. Due to the fact that sharp edges occur in sequences
relatively infrequently, the signal that stores them can be effectively encoded. The sec-
ond signal no longer contains large values of high frequency coefficients and can be
transformed into a compact DCT representation.

A process of hybrid encoding of a single 8× 8 block is shown in Figure 5.13. The
original block (5.13a) contains a part of a stained glass from the “Memorial Church”
HDR image. To isolate sharp edges from the rows of this block, we use a simple local
criterion: If two consecutive pixels in a row differ by more than a certain threshold
(discussed in the next paragraph), they are considered to form a sharp edge. In such
case the difference between those pixels is subtracted from all pixels in the row, starting
from the second pixel of that pair up to the right border of the block. The difference
itself is stored in the edge block at the position of the second pixel of that pair. The al-
gorithm is repeated for all 8 rows of the block. This step is shown in Figure 5.13b. After
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Figure 5.12: Decomposition of a signal into sharp edge and smoothed signals.
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Figure 5.13: Steps of a hybrid frequency and luminance space coding of a single 8×8
block. Blue insets on the left show a cross-section of the first row (a and b) and the
first column (c and d) of the block values. Note how the curves are smoothed as edges
are removed from the block, resulting in lower values for the high frequency DCT
coefficients.

the rows have been smoothed, they can be transformed to DCT space (Figure 5.13c).
Due to the fact that the smoothed and transformed rows contain large values only for
the DC frequency coefficients, only the first column containing those coefficients has to
be smoothed in order to eliminate sharp edges along the vertical direction. We process
that column in the same way as the rows and place resulting “edges” in the first column
of the edge block (Figure 5.13d). Finally, we can apply a vertical DCT (Figure 5.13e).

Most of the values of the resulting edge blocks are equal to zero and can be compressed
using run-length encoding. However, because this is still more expensive in terms of
bit-rate than encoding DCT blocks alone, only the edges that are the source of visible
artifacts should be coded separately in edge blocks. The threshold contrast value that
an edge must exceed to cause visible artifacts depends on the maximum error of the
quantization (refer to Section 5.4.1) and can be estimated. Table 5.1 shows such thresh-
olds for MPEG-4 standard quantization matrices and 11-bit encoded luminance in the
l space (refer to Section 5.3). The thresholds were found for an estimated quantization
error greater than 1 Just Noticeable Difference (JND), where 1 JND equals 13.26 units
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qscale 1–5 6 7 8 9–31

Threshold inter n/a 936 794 531 186
Threshold intra n/a n/a 919 531 186

Table 5.1: Threshold contrast values of a sharp edge above which artifacts caused
by DCT quantization can be seen. The values can be used to decide whether a sharp
edge should be coded in a separate edge block. The thresholds are given for differ-
ent compression quality factors qscale and for both intra- and inter-encoded frames
(since MPEG-4 uses different weighting matrices to quantize intra- and inter-encoded
frames). Note that for qscale ≤ 5 noisy artifacts are not visible and no hybrid encoding
is necessary.

of the l space. Note that the lowest threshold equals 186, which corresponds to the
local luminance contrast 1:30 for mesopic and 1:5 for photopic range (see Figure 5.8).
Because such high contrast between neighbouring pixels rarely occurs in low dynamic
range images, hybrid coding shows visible improvement of quality for high contrast
HDR video.

The proposed hybrid block coding improved quality of encoded sequences at the cost
of a larger bit-stream (see Figure 5.11). The artifacts that the hybrid coding can elim-
inate are mostly visible in synthetic and non-photorealistic images, since those often
contain smooth surfaces that do not mask noise. Such artifacts can not be eliminated
in post-processing, like blocky artifacts of the DCT. The hybrid coding gives addition-
ally more localized control over the quality than qscale factor. This way, it is possible
to remove salient high frequency artifacts while the overall quality is kept the same.
Although the hybrid encoding is not strictly necessary to encode HDR video, it solves
the problem of encoding high values of frequency coefficients, which would otherwise
require extended variable-length coding tables. We noticed that using the standard
MPEG-4 variable-length coding of AC coefficients is sufficient for HDR video when
the hybrid block coding is used.

5.4.3 Implementation Details

In this section we outline technical details of our implementation of HDR compression
and playback.

Our HDR encoder / decoder is based on the XviD library6, which is an open source
implementation of the Simple Profile ISO MPEG-4 standard [ISO-IEC 14496-2 1999].
We extended this implementation to support an encoding of DCT coefficients using
more than 8-bits per color channel (NOT 8 BIT). This let us encode perceptually quan-
tized luminance (l, refer to Section 5.3) represented as 11-bit integers. The two color
channels u′v′ are sub-sampled to half of the resolution of the original image and en-
coded with 8-bit precision. The special treatment of sharp contrast edges (refer to
Section 5.4.2) is applied only to the luminance channel. The edge blocks are encoded
in the video stream together with DCT blocks. To reduce impact on the stream size,
only those edge blocks are encoded that are not empty (less than 7% for our test se-
quences). The non-empty blocks are compressed using a run-length encoding. More
effective coding of the edge blocks could further improve compression.

6XviD project home page: http://www.xvid.org

http://www.xvid.org
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To playback an HDR video we created a player capable of decoding, tone mapping,
and applying post-processing effects in real-time. To achieve such performance we
had to overcome the bottleneck problem of CPU-to-GPU memory transfer. A naive
approach would be transferring HDR frames to the GPU as 16- or 32-bit floating point
RGB textures. Instead, we send data in the lu′v′ format (11-,8-,8-bit, refer to the previ-
ous paragraph). The lu′v′ format gives a gain of 20-40% of a texture size without any
visible degradation of quality. Color conversion from the lu′v′ to RGB format is im-
plemented effectively using fragment shaders and thus lowering CPU load on MPEG
decoding.

To apply real-time global tone mapping to the video, we employed a simple lookup
table approach. Because the number of possible values of the quantized luminance
(luma), l, is small (2048 for 11 bits), we use tone mapping function only for the 2048
corresponding real-world luminance values and send the resulting values them to the
graphics card as a 1D texture. We later use dependent texture lookups to find the val-
ues of tone mapped pixels. Tone mapping parameters and computationally expensive
variables, such as logarithmic mean luminance of a frame, are provided within the bit-
stream as an annotation script. This way any global tone mapping operator can be
implemented with a marginal effect on performance. On a Pentium IV 2.4GHz proces-
sor and an ATI Fire GL X1 graphic card we were able to decode and display about 30
frames per second for a sequence of the resolution 640×480.

5.4.4 Results

Computer graphics animations, panoramic images, and video captured using special-
ized HDR cameras were used for testing the proposed HDR extension of MPEG. The
OFFICE sequence is an example of indoor architectural walk-through rendered using
global illumination software with significant changes of illumination levels between
rooms (Figure 5.14). The camera panning was simulated for the CAFETERIA panorama
obtained using the SpheronVR PanoCam camera. The scene contains both a dim cafe-
teria interior and a window view on a sunny day (Figure 5.15). To capture natural
grayscale sequences we used a Silicon Vision Lars III HDR video camera, which re-
turned linear radiance values. The LIGHT sequence shows a direct view of halogen
lamp which illuminates objects with different reflectance characteristics (Figure 5.16).

As we discussed in Section 5.3.4, our perceptual quantization strategy for luminance
values performs the best for HDR video calibrated in terms of luminance values. Such
calibrated data are immediately available for our computer animations resulting from
the global illumination computation. We also performed a calibration procedure for the
Lars III HDR video camera, using a Kodak GrayCard with 80% reflectance. For the
remaining video material we assigned a common sense luminance level for selected
scene regions and then rescaled all pixel intensities accordingly.

To give an overview of the capabilities of the proposed HDR video encoding, we com-
pared its compression ratio with state-of-the art LDR video compression and existing
intra-frame (static image) HDR encoding.

Although LDR and HDR video compression store a different amount of information
and their performance cannot be matched, such comparison can give a general notion
of the additional overhead required to store HDR data. To compare the performance of
LDR and HDR encoding, each test sequence was compressed using our HDR encoder,
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Figure 5.14: OFFICE sequence with simulated low-level lightning, dynamic range
−4.0÷0.2[logcd/m2]. The main frame is tone mapped using the Pattanaik et al.
[Pattanaik et al. 2000] algorithm. Lack of colors and the bluish cast are due to the
night vision post-processing as proposed by Thompson et al. [Thomspon et al. 2002].
The exploration window reveals color and details in the −2.2÷−1.2[logcd/m2] range.
The scene model courtesy of VRA, GmbH.

decompressed, and tone mapped to LDR format. Then the same source HDR sequence
was tone mapped, encoded to MPEG-4 using the FFMPEG7 encoder (LDR MPEG-4
ISO/IEC 14496-2), and decoded. The quality of the resulting frames from both LDR
and HDR encoding was measured using the Universal Quality Index [Wang and Bovik
2002], which gives more reliable quality measure than PSNR and at the same time
is less computationally expensive as VDP. Next, we matched pairs of LDR and HDR
streams that had a similar quality index, and compared their sizes. The results are
shown in Table 5.2.

Only after some time we noticed that the employed method of comparing HDR and
LDR video compression was very disadvantageous for the HDR compression. The tone
mapping that was used to reduce the dynamic range before LDR MPEG-4 compression
was very effective at eliminating noise in the original sequence, which had to be en-
coded in HDR video stream. However, the same tone mapping was not so effective
at eliminating compression artifacts after decoding the HDR content. Therefore, the
compression performance of HDR video was strongly affected by the low-amplitude
noise in the source sequences. More adequate quality / bit-rate comparison, for larger
number of quality settings and with the application of several quality metrics, will be

7FFMPEG project home page: http://ffmpeg.sourceforge.net/

http://ffmpeg.sourceforge.net/
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Figure 5.15: CAFETERIA sequence, dynamic range −1.9÷3.6[logcd/m2]. The back-
ground frame is clamped to a displayable range. Our dynamic range exploration tool,
visible as two windows, shows a luminance range −1.0÷1.0[logcd/m2] (lower right)
and a high luminance range 1.0÷3.0[logcd/m2] (upper left). Details in these windows
are not visible in LDR video. The source panorama courtesy of Spheron, Inc.

presented in Section 5.6.7.

The OpenEXR format, which we described in Section 5.2.3, offers nearly lossless en-
coding (up to quantization precision of 16-bit floating point numbers) and intra-frame
compression, i.e., each frame is compressed separately. The performance of such com-
pression can be expected to be below that of inter-frame DCT based encoding used in
our encoder. However, the OpenEXR format is commonly used for storing animation
frames and we decided to include it in the performance summary in Table 5.2.

5.4.5 Summary

This section presents a technique for encoding high-dynamic range (HDR) video, which
requires only modest extensions of the MPEG-4 compression standard. The first com-
ponent of our technique is a color space for HDR pixels derived from contrast detection
characteristic of the human eye. Such color space requires only 11–12 bits to encode
the full perceivable luminance range (15 orders of magnitude) and ensures that the
quantization error is always below visibility thresholds. The second component is an
efficient scheme for handling the DCT blocks with high contrast information by de-
composing them into two layers of LDR details and HDR edges, which are separately
encoded. The size of a HDR video stream encoded by our technique increases less than
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Figure 5.16: LIGHT sequence captured with the HDR video camera, dynamic range
0.3÷4.9[logcd/m2]. Details of the halogen bulb are well preserved despite high lumi-
nances. The visible range in exploration tool window is 2.9÷4.9[logcd/m2].

two times with respect to its LDR version.

The strengths of the HDR video encoding method can be fully exploited for HDR dis-
plays, but the method can be beneficial for LDR displays as well. HDR information
makes it possible to adjust tone mapping parameters for any display device and sur-
round lighting conditions, which improves the quality of video reproduction.

5.5 Backward Compatible Compression

Since LDR file formats for images and video, such as JPEG or MPEG, have become
widely adapted standards supported by almost all software and hardware equipment
dealing with digital imaging, it cannot be expected that these formats will be imme-
diately replaced with their HDR counterparts. To facilitate transition from output-
referred LDR to scene-referred HDR imaging, there is a need for backward compatible
HDR formats, that would be fully compatible with existing LDR formats and at the
same time would support enhanced dynamic range and color gamut. Moreover, if such
a format is to be successful and adopted by large part of the market, the overhead of
HDR information must be very low, preferably below 30% of the LDR file size. This is
because at the beginning very few consumers will have access to HDR technology, such
as HDR displays, and the rest of the consumers will not accept doubling the size of the
file for the sake of the data they cannot take advantage of. Such backward compatible
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MPEG-4 HDR Enc. OpenEXR
Video Clip ratio bpp ratio bpp ratio bpp

OFFICE hq 0.54 0.27 1.00 0.51 32.17 16.27
OFFICE lq 0.51 0.05 1.00 0.10
LIGHT hq 0.56 0.71 1.00 1.25 22.56 28.25
LIGHT lq 0.57 0.10 1.00 0.18

CAFETERIA hq 0.63 0.12 1.00 0.19 142.58 27.40
CAFETERIA lq 0.54 0.05 1.00 0.09

Table 5.2: Comparison of compression performance of LDR MPEG-4, the proposed
HDR encoding, and the OpenEXR format. ”ratio” is a relative bit-stream size increase
or decrease compared to our encoding. ”bpp” denotes bits per pixel. “hq” and “lq”
next to the video clip name means high quality and low quality respectively. There
are empty entries for low quality OpenEXR because this format does not support lossy
compression. The proposed HDR encoding gives about half of the compression ratio
of MPEG-4 (see also a note in the text). High compression gain of MPEG-4 and
HDR encoding for the CAFETERIA video clip can be explained by efficient motion
compensation in camera panning.

encoding would also require that the original LDR content is not modified. Although
the compression of HDR can be improved if an LDR image can be slightly altered, this
would also be unacceptable for majority of customers who do not want to have their
LDR content modified.

The following subsections present an overview of both existing and possible solutions
for backward compatible image and video encoding. This state of the art summary is a
starting point for Section 5.6, which introduces a novel backward compatible format for
images and video that offers several efficiency improvements over existing solutions.

5.5.1 Bit-depth Expansion Techniques

The problem of dynamic range compression and expansion arises in many imaging
pipelines with constrained bit depth at certain processing stages (only 6 bits per color
channel is often used for DVD movies while displays can handle 8 bits/color channel).
This may result in the loss of low amplitude signals and false contouring. Bit depth ex-
pansion (BDE) techniques are designed specifically to combat those effects and achieve
higher perceived bit depth quality than are physically available. For example impercep-
tible spatio-temporal noise is added to an image prior to the quantization step in dither
techniques [Daly and Feng 2003]. Intensity averaging in the optics of display and hu-
man eye leads to recovering information below the quantization step. Modern BDE
techniques tune a micro-dither amplitude taking into account the interaction of display
nonlinearities to obtain a low-spatial frequency flicker from mutually high-pass spatial
and temporal noise and achieve 10-bit perceived quality on 8 bit-driver LCDs. When
higher bit depth information is not available, low-amplitude details cannot be recon-
structed, and processing is focused on removing false contours using adaptive filtering,
predictive cancellation, spatial frequency channel coring techniques [Daly and Feng
2004]. All existing BDE and de-contouring techniques are optimized for much lower
bit depth expansion than required to accommodate HDR image and video content.
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Furthermore, storing HDR video using 8-bit encoding with additional spatio-temporal
dither is impractical because dither patterns do not compress well. Also, to make BDE
techniques working possible, lossless encoding of the dither pattern into a video stream
is required, which may significantly affect the compression performance.

5.5.2 JPEG HDR

Spaulding et al. [Spaulding et al. 2003] showed that the dynamic range and color
gamut of typical sRGB images can be extended using residual images. Their method
is backward compatible with the JPEG standard, but only considers images of mod-
erate dynamic range. Ward and Simmons [Ward and Simmons 2004] have proposed
a backward-compatible extension of JPEG which enables compression of images of
much higher dynamic range (JPEG HDR). JPEG HDR is an extension to the JPEG
format for storing HDR images that is backward compatible with an ordinary 8-bit
JPEG [Ward and Simmons 2004]. A JPEG HDR file contains a tone mapped version
of an HDR image and additionally a ratio (subband) image, which contains informa-
tion needed to restore HDR image from the tone mapped image. The ratio image is
stored in user-data JPEG markers, which are normally ignored by applications. This
way a naive application will always open a tone mapped version of an image, whereas
an HDR-aware application can retrieve the HDR image.

Tone Map HDR
Image

Compute Ratio
Image

Sub-sample
Ratio Image

JPEG DCT
compression

JPEG DCT
compression

Store Ratio
Image as

JPEG markers

HDR Image

JPEG file

Figure 5.17: Data flow of subband encoding in JPEG HDR format.

A data flow of the subband encoding is shown in Figure 5.17. An HDR image is
first tone mapped and compressed as an ordinary JPEG file. The same image is also
used to compute ratio image, which stores a ratio between HDR and tone mapped
image luminance for each pixel. To improve encoding efficiency, the ratio image is
sub-sampled and encoded at lower resolution using the ordinary JPEG compression.
After the compression, the ratio image is stored in JPEG markers together with the
tone mapped image. To reduce the loss of information due to sub-sampling of the
ratio image, two correction methods have been proposed: enhancing edges in a tone
mapped image (so called pre-correction) and synthesizing high frequencies in the ratio
image during up-sampling (so called post-correction). Further details on the JPEG
HDR compression can be found in [Ward and Simmons 2004] and [Ward and Simmons
2005].

5.5.3 Wavelet Compander

Li et al. [Li et al. 2005] propose that HDR images can be encoded using only 8-bits, if
they are undergo a reversible companing operation. They propose a multiscale wavelet
architecture, which can compress an HDR image to a lower bit-depth and later expand
it to obtain a result that is close to the original HDR image (the so-called compander).
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Figure 5.18: The proposed backward compatible HDR DVD movie processing pipeline. The high
dynamic range content, provided by advanced cameras and CG rendering, is encoded in addition to
the low dynamic range (LDR) content in the video stream. The files compressed with the proposed
HDR MPEG method can play on existing and future HDR displays.

The information loss is reduced by amplifying low amplitudes and high frequencies
at the compression stage, so that they survive the quantization step to the 8-bit LDR
image. Such technique is conceptually similar to pre-correction in JPEG HDR. Since
the expansion is a fully symmetric inverted process, the amplified signals are properly
suppressed to their initial level in the companded HDR image. To further reduce the in-
formation loss, the compressed image is iteratively modified to improve the correlation
of its subbands with respect to the original HDR image. The authors observe a good
visual quality of both the compressed and companded images, but they admit that any
guarantee concerning their fidelity to tone mapped (i.e. undergoing just one compres-
sion iteration) and original HDR images cannot be given. Moreover, they could clearly
see the differences between the corresponding image pairs but they describe them as
“visually not disturbing”. The obtained PNSR for the companded HDR image is even
worse than for ordinary LUT (Look-Up-Table) companding. Given the requirements
for a backward compatible image and video compression, the lack of fidelity of tone
mapped images is not acceptable, since the original material quality cannot be com-
promised. Also, the multiscale wavelet framework as proposed by Li et al. severely
limits the choice of tone mapping operator. The emphasis on high frequencies at the
compression step makes the proposed framework less suitable for standard JPEG and
MPEG techniques, which use the quantization matrices that are perceptually tuned to
discard a great deal of visually non-important high frequencies. This is confirmed by
relatively poor compression rates reported the authors when they attempted to combine
JPEG with their companding. Moreover, many existing quantization schemes, which
incorporate a visual masking model [Watson et al. 1994, Nadenau 2000], assume that
due to a better visibility of the contouring artifacts in smooth image regions than in
textured ones a finer quantization is required in those regions. For such image com-
pression approaches superficially high quality coefficients should be set to preserve the
high frequency details as required by the compander. It is not clear, how the compander
approach can be adopted for lossy HDR video compression, in which apart from just
raised quality concerns the issues of temporal coherence and computation efficiency
arise (the authors recommend oversampling, i.e., handling the subband computation
in the full image resolution to avoid aliasing and do not report any timings for their
compander).
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5.6 Backward Compatible HDR MPEG

Encoding movies in HDR format is very attractive for cinematography, especially that
movies are already shoot with high-end cameras, both analog and digital, that can
capture much higher dynamic range than typical MPEG compression can store. To
encode cinema movies using traditional MPEG compression, the movie must undergo
processing called color grading. Part of this process is the adjustment of tones (tone-
mapping) and colors (gamut-mapping), so that they can be displayed on majority of TV
sets (refer to Figure 5.18). Although such processing can produce high quality content
for typical CRT and LCD displays, the high quality information, from which advanced
HDR displays could benefit, is lost. To address this problem, the proposed HDR-
MPEG encoding can compress both LDR and HDR into the same backward compatible
movie file (see Figure 5.18). Depending on the capabilities of the display and playback
hardware or software, either LDR or HDR content is displayed. This way HDR content
can be added to the video stream at the moderate cost of about 30% of the LDR stream
size. Because of such small overhead, both standard resolution and High-Definition
movies can fit in their original storage medium when encoded with HDR information.

The backward compatibility is achieved by encoding the HDR and LDR video frames
in an LDR stream that is compatible with MPEG decoders, and a residual stream that
enables the restoration of the original HDR stream. To minimize redundancy of infor-
mation, the residual and LDR streams are decorrelated. Such decorrelation requires
perceptually meaningful comparison of the LDR and HDR pixels, which is achieved
by introducing a pair of corresponding color spaces that are scaled in terms of the
human visual system (HVS) response to luminance and chrominance stimuli. These
color spaces are used to build a frame-dependent reconstruction function that approx-
imates values of HDR pixels based on their LDR counterparts. Since the proposed
HDR MPEG encoding does not impose any restrictions on LDR or HDR content, both
videos can be independently tuned and tone/gamut mapped to achieve the best look on
different classes of displays. This tuning flexibility is required for current practices of
the DVD industry. To reduce the production costs of HDR DVD players, the compres-
sion algorithm is designed so that standard 8-bit MPEG decoding chipsets can be used
to decode the HDR stream.

A second major mechanism employed in the outlined compression algorithm is a percep-
tion-based HDR filter that predicts the visibility thresholds for HDR frames. The
wavelet-based filtering approach, presented in Subsection 5.6.5, is fast as required by
video applications, but still models important characteristics of the HVS such as lu-
minance masking, contrast sensitivity, and visual masking for the full visible dynamic
range of luminance. We apply our HDR filter to remove invisible noise in the residual
video stream taking into account the adaptation conditions and visual masking imposed
by the original HDR stream. This leads to even more effective HDR video compres-
sion since details that cannot be seen are removed from the residual stream prior to
encoding.

More information on this project as well as the demonstration video can be found on
the project web page: http://www.mpii.mpg.de/resources/hdr/hdrmpeg/.

http://www.mpii.mpg.de/resources/hdr/hdrmpeg/
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Figure 5.19: A data flow of the backward compatible HDR MPEG encoding. See text
for details.

5.6.1 Overview of the Algorithm

The complete data flow of the proposed backward compatible HDR video compression
algorithm is shown in Figure 5.19. The encoder takes two sequences of HDR and LDR
frames as input. The LDR frames, intended for LDR devices, usually contain a tone
mapped or gamut mapped version of the original HDR sequence. The LDR frames
are compressed using a standard MPEG encoder (MPEG encode in Figure 5.19) to
produce a backward compatible LDR stream. The LDR frames are then decoded to
obtain a distorted (due to lossy compression) LDR sequence, which is later used as
a reference for the HDR frames (see MPEG decode in Figure 5.19). Both the LDR
and HDR frames are then converted to compatible color spaces, which minimize dif-
ferences between LDR and HDR colors. The reconstruction function (see Find re-
construction function in Figure 5.19) reduces the correlation between LDR and HDR
pixels by giving the best prediction of HDR pixels based on the values of LDR pixels.
The residual frame is introduced to store a difference between the original HDR val-
ues and the values predicted by the reconstruction function. To improve compression,
invisible luminance and chrominance variations are removed from the residual frame
(see Filter invisible noise in Figure 5.19). Finally, the pixel values of a residual frame
are quantized (see Quantize residual frame in Figure 5.19) and compressed using a
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standard MPEG encoder into a residual stream. Both the reconstruction function and
the quantization factors are compressed using a lossless arithmetic encoding and stored
in an auxiliary stream. The most important steps of the compression algorithm are de-
scribed in detail in the following subsections while the details, which are sufficient to
reimplement the algorithm, are given in the technical report [Mantiuk et al. 2006b].

5.6.2 Color Space Transformations

Both LDR and HDR frames must be transformed to compatible and perceptually uni-
form color spaces to enable any comparison between LDR and HDR pixel values and to
assess their correlation. The “compatible” color spaces mean here that color channels
of both LDR and HDR pixels represent approximately the same information. Percep-
tual uniformity is needed to estimate color differences according to perceivable, rather
than arithmetic, differences. Furthermore, an HDR color space must represent the full
color gamut visible to the human eye. To achieve all these goals, we have derived two
color spaces: (i) A color space for LDR pixels that encodes chroma using CIE 1976
Uniform Chromacity Scales (u′, v′, similar to logLuv encoding [Ward Larson 1998])
and luma using sRGB nonlinearity, which consist of a linear and power function seg-
ments; (ii) A color space for the HDR pixels uses the same u′, v′ encoding for chroma as
the color space for LDR pixels, and a perceptually uniform luminance encoding. The
sRGB nonlinearity cannot be used for luminance values ranging from 10−5 to 1010

cd/m2, which can be found in real world scenes. Therefore we apply the luminance
encoding that has been derived in Section 5.3 from the contrast detection measurements
for the full visible range of luminance. This encoding was shown to have similar prop-
erties to gamma correction for LDR, but can encode luminance values found in HDR
images using 11–12 bits and ensures that the quantization error is below the threshold
of visibility. A similar encoding was used in the context of HDR extension to MPEG-4,
described in Section 5.4.

5.6.3 Reconstruction Function

Both LDR and HDR frames contain similar information and are therefore strongly
correlated. This is illustrated in Figure 5.20, which shows how the luma values of an
LDR frame relate to the luma values of an HDR frame. The relation is different for each
tone mapping algorithm, but in general it follows an approximately linear function with
more variance at high values. Uncorrelated pixels at the right end of the lldr axis are the
result of luminance clamping that is applied in many tone mapping algorithms. Local
tone mapping usually results in higher variance and therefore a more “noisy” shape
of this relation, while global tone mapping results in a direct one-to-one relationship
unless some pixel values are clamped.

The goal of most compression methods is to decorrelate data, so that the same infor-
mation is not encoded twice. To decorrelate LDR and HDR frames, we find a recon-
struction function, which predicts the value of an HDR pixel based on the value of the
corresponding LDR pixel. Having such a function we need only to encode the differ-
ences between values predicted by the reconstruction function and the actual values
from an HDR frame. Such differences are usually close to zero and therefore can be
efficiently encoded in residual frames. The reconstruction function needs to be defined
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Figure 5.20: The relation between LDR (lldr) and HDR (lhdr) luma values for var-
ious tone mapping algorithms (marked in red) and the corresponding reconstruction
functions (marked in green). Tone mapping algorithms (left to right, top to bottom):
[Pattanaik et al. 2000], [Reinhard et al. 2002b], [Durand and Dorsey 2002b] and [Fattal
et al. 2002]. The relations are plotted for the Memorial Church image.

for only 256 values (bins) for 8-bit per channel LDR encoding. The function does not
need to be continuous since its major role is to make the values of the residual frame
as small as possible. Some examples of reconstruction functions for different tone
mapping algorithms are plotted in Figure 5.20 as continuous green lines.

A mapping from LDR values to HDR values is, in the general case, a one-to-many
relationship – there are many HDR pixels values that fall in one of 256 bins of the
reconstruction function (LDR pixel values). The questions is how to find a value for
each bin that would lead to the best compression performance. We experimented with
an arithmetic mean, a median and a midrange 8. While the midrange gave the worst
compression ratio, the arithmetic mean and the median exhibited similar performance.
We have decided to use an arithmetic mean because of its lower computational cost.

To summarize, we define the reconstruction function as the arithmetic mean of all
pixels falling in a corresponding bin Ωl :

RF(l) =
1

Card(Ωl)
∑

i∈Ωl

lhdr(i) where Ωl = {i = 1..N : lldr(i) = l} (5.14)

l = 0..255 is an index of a bin, N is the number of pixels in a frame, lldr(i) and lhdr(i)
are luma values of the i-th LDR and HDR pixel respectively.

8Midrange is defined as an arithmetic mean of the maximum and minimum value in a set.
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We executed a set of tests on video sequences to decide how often a reconstruction
function should be updated: each frame, only at each intra-encoded frame (I-frame), or
if the update should depend on a difference between consecutive frames. We achieved
the best compression ratio when the reconstruction function was updated each frame,
while updating it for each I-frame resulted in severe artifacts.

The relation between LDR and HDR frames is complex only for luminance, and color
channels can be quite accurately predicted with simple relations uhdr(i) = uldr(i) and
vhdr(i) = vldr(i). Although this may not be true for some sophisticated gamut mapping
cases, we did not find it necessary to compute a reconstruction function for chroma
channels for any of the tone mapping operators we tested.

Since the reconstruction function tends to be slowly changing with an increasing slope,
we apply an adaptive Huffman algorithm on the differences between the values in con-
secutive bins to significantly reduce the size of the stored data. The size of the auxiliary
data stream, which stores a reconstruction function, is below 1% of the total stream
size, therefore its storage overhead is almost insignificant.
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Figure 5.21: A potential reconstruction function for the approach employed in
JPEG HDR [Ward and Simmons 2004] compression (marked in green) and a relation
between LDR and HDR pixel values (marked in red). The ratio used in JPEG HDR is
equivalent to a linear reconstruction function in the logarithmic domain. Such a func-
tion does not decorrelate HDR and LDR luma well and therefore reduces compression
savings.

We briefly compare our approach with the JPEG HDR compression [Ward and Sim-
mons 2004]. A more detailed comparison will be given in Section 5.6.8. The JPEG HDR
compression encodes a ratio between HDR and LDR luminance values, rather than a
difference between HDR values and the reconstruction function. However, it can be
easily shown that such a ratio is meant to achieve the same goal, which is to decor-
relate HDR and LDR pixels. Since a ratio of HDR and LDR luminance corresponds
to a difference in the logarithmic domain, and our luminance to luma mapping from
Equation 5.9 has roughly logarithmic properties, the ratio encoding of JPEG HDR
corresponds to a linear reconstruction function lhdr = a · lldr. As we experimented with
such simple reconstruction functions, we found that they give inferior results compared
to better fitted ones, like those computed from Equation 5.14. In Figure 5.21 we plot
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the reconstruction function used in JPEG HDR. Obviously, it does not follow the data
well and some luma information is therefore encoded twice in an LDR and an HDR
(subband) stream, which leads to worse compression performance.

5.6.4 Residual Frame Quantization

Although the magnitudes of the differences encoded in residual frames are usually
small, they can in fact take values from −4095 to 4095 (for 12-bit HDR luma encod-
ing). Such values cannot be encoded using 8-bit MPEG encoder. Although MPEG
standards provide an extension for encoding luma values on 12 bits, such an extension
is rarely implemented, especially in hardware. Instead, we would like to reduce the
magnitude of residual values so that they can be encoded using a standard 8-bit MPEG
encoder.

We have experimented with a non-linear quantization, where large absolute values of
residuals were heavily quantized, while small values were preserved with maximum
accuracy. Since very few pixels contain a large magnitude of residual, most pixels
are not affected by the strong quantization. Such a solution, although giving the best
SNR, resulted in poor visual quality for some images. This was because the very few
pixels that were heavily quantized attracted attention due to large quantization errors.
Therefore the final judgement of quality was mostly based on those few distorted pixels.

A simple clamping of residual values to 8-bit range produced visually better results,
but at the cost of losing some details in bright or dark regions. Additionally, to reduce
clamping at the cost of a stronger quantization, the residual values can be divided by
a constant quantization factor. Such a factor would decide on the trade-off between
errors due to clamping and errors due to quantization. Furthermore, we observed that
very few bins of a reconstruction function contain residual values that exceed 8-bit
range. Therefore the quantization factor can be set separately for each bin, based on
the maximum magnitude of the residual that belongs to that bin. Therefore, the residual
values after quantization can be computed as:

r̂l(i) = [rl(i)/q(m)]−127÷127, where m = k ⇔ i ⊂ Ωk (5.15)

and quantization factor, q(m), is selected separately for each bin Ωk:

q(m) = max(qmin,
maxi∈Ωl (|rl(i)|)

127
) (5.16)

qmin is a minimum quantization factor, which is usually set to 1 or 2. [·]−127÷127 is an
operator that rounds the values to the closest integer and then clamps them if they are
smaller than −127 or larger than 127. The l subscript in rl denotes a luma channel.

The quantization factors q(m), where m = 0..255, need to be stored in an MPEG stream
to later restore non-quantized residual values on the decoding stage. We store quan-
tization factors together with the reconstruction function in the auxiliary data stream.
Since quantization factors are usually equal to qmin except for a few bins, we found
that a run-length encoding followed by the Huffman encoding can effectively reduce
the size of this data.
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Figure 5.22: Residual frame before (left) and after (center) filtering invisible noise.
Details, such as window frame, are lost when low-pass filtering (or downsampling)
is used (right). Green color denotes negative values. The Memorial Church image
courtesy of Paul Debevec.

5.6.5 Filtering of Invisible Noise

Residual frames do not compress well mainly because they contain a large amount of
high frequencies. These high frequencies come from three sources: noise in the source
HDR images, rounding errors from the tone mapping algorithm, and the DCT quanti-
zation errors due to MPEG encoding of LDR frames (refer to Figure 5.19). However,
much of this high frequency information does not need to be preserved in the resid-
ual stream since it is not visible to the human eye. To remove such invisible noise
and thus improve compression efficiency, we introduce a filtering algorithm based on
a simplified model of the human visual system (HVS). Although models of the HVS
have been used before in CG to control rendering [Ferwerda et al. 1997, Bolin and
Meyer 1998, Ramasubramanian et al. 1999], the proposed filtering algorithm has been
specially designed to handle HDR data and it has been optimized for speed, so that it
can efficiently process video sequences. It is also different from a typical denoising al-
gorithms, e.g. [Bennett and McMillan 2005], since it operates on imperceivable, rather
than perceivable noise. It can be used as a standard tool which guarantees that all the
visual information that cannot be discerned due to imperfections of the human eye and
early vision processing will be filtered out from the image.

The standard MPEG encoding already incorporates many aspects of human vision in
order to improve compression efficiency. The gamma corrected color space (or trans-
fer function) accounts for luminance masking (sometimes wrongly named the Weber-
Fechner law [Mantiuk et al. 2006c]). The limited spatial contrast sensitivity of the
HVS is utilized by the DCT quantization matrix. Two different quantization matri-
ces are used for inter- and intra-frames to take advantage of lower sensitivity to high
temporal frequencies. However, contrast masking (or visual masking) is very poorly
predicted by the mechanism of MPEG encoding. Since contrast masking is primar-
ily responsible for masking invisible high frequency noise, we focus on modeling this
aspect of the HVS to filter residual frames.
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There are several methods that incorporate visual masking in image encoding algo-
rithms, such as optimized DCT quantization matrices [Ahumada and Peterson 1993,
Watson et al. 1994], the prequantization scheme [Safranek 1993], or the point-wise ex-
tended masking in the JPEG-2000 standard [Zeng et al. 2000]. However, since all these
approaches are either not suitable for video or require significant changes in MPEG en-
coder/decoder, we decided to use yet another approach, which involves the prefiltering
of residual frames before they are passed to the MPEG encoder. Prefiltering methods
have been shown to improve video compression [Border and Guillotel 2000]. They do
not depend on a compression algorithm and therefore do not require any changes to
the encoder. The proposed prefiltering algorithm precisely models contrast masking in
the wavelet domain, which is quite difficult and inaccurate in the DCT domain. The
prefiltering is especially well suited for the residual frames, since they contain mostly
low magnitude contrast, while prefiltering involves thresholding of wavelet coefficients
that are below the predicted visibility level. If the wavelet coefficients are low, most of
them are set to zero and therefore compression efficiency is improved. The prefilter-
ing affects only encoding speed while decoding speed is usually improved due to the
reduced stream size.

The input to our residual filtering algorithm consists of two frames: a residual frame
(Figure 5.22 left) and an original HDR frame, which is a masker for the residual. Both
frames should be stored in the perceptually uniform luma / chroma color space. Output
of the filtering is a residual frame with high frequencies attenuated in those regions
where they are not visible (Figure 5.22 center). The data flow of the algorithm is
shown in Figure 5.23. Though we describe processing that is done on a luma channel,
the same processing is performed for two chroma channels, which are subsampled
to half of their original resolution. This approximately accounts for the differences
between Contrast Sensitivity Function (CSF) for luminance and chrominance.

In the first step we apply the Discrete Wavelet Transform to split a residual frame
into several frequency and orientation selective channels. We have experimented with
the cortex decomposition [Watson 1987] performed in the Fourier domain, which can
better approximate visual channels, but we rejected this approach due to prohibitively
long execution times (up to 1 minute per frame). Wavelets, on the other hand, lead to
computationally more efficient algorithms and were shown to be useful for modeling
many aspects of the HVS [Bradley 1999, Zeng et al. 2000]. We employ CDF 9/7
discrete wavelet basis which is also used for the lossy compression of JPEG-2000. This
wavelet basis gives a good trade-off between smoothness and computational efficiency.
We use only the three finest scales of the wavelet decomposition since filtering of lower
spatial frequencies at coarser scales could lead to noticeable artifacts.

In the next step we account for lower sensitivity of the HVS for high frequencies,
which is usually modelled with the Contrast Sensitivity Function (denoted as CSF in
Figure 5.23). CSF models are described in detail in Section 3.6. We weight each band
of wavelet coefficients by a constant value in the same way as is done in JPEG-2000.
The weighting factors for a viewing distance of 1 700 pixels (≈ 1.5 × screen height)
are given in the table below.

Scale LH HL HH
1 0.275783 0.275783 0.090078
2 0.837755 0.837755 0.701837
3 0.999994 0.999994 0.999988



96 CHAPTER 5. COMPRESSION OF HDR IMAGES AND VIDEO

Figure 5.23: A data flow of the residual frame filtering, which removes imperceptible
noise for better compression performance.

The visual channels have limited phase sensitivity, ranging from 45◦ to more than 90◦.
Because of this, the masking signal affects not only regions where the values of wavelet
coefficients are the highest, but may also affect neighboring regions. Phase uncer-
tainty reduces the effect of masking at edges, as opposed to textures which show a high
amount of masking. Refer to Section 3.8 for more details on the models of phase uncer-
tainty. Following the point-wise extended masking in JPEG-2000 [Zeng et al. 2000],
we model phase uncertainty with the L0.2-norm:

L̄CSF =
1

Card(Θ)

(

∑
Θ
|LCSF |0.2

)
1

0.2

(5.17)

where Θ denotes a neighborhood of a wavelet coefficient (we use a box 13×13 kernel
in our implementation).

In the following step we predict how contrast thresholds change in the presence of a
masking signal, which is an original HDR frame in our case. To model contrast mask-
ing (refer to Section 3.7), we employ a threshold elevation function, which we derive
from the model proposed by Daly [Daly 1993] (also used in [Ramasubramanian et al.
1999]). We assume a masking slope of 1.0, which was shown to be appropriate for nat-
ural images (refer to Section 4.3). We modify the original threshold elevation function
to make it applicable to the perceptually uniform luma space, which we introduced in
Section 5.6.2. Threshold elevation for this space can be approximated by the function:

Te(L̄CSF) =

{

1 if L̄CSF ≤ a
c · (L̄CSF))b otherwise

(5.18)
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where L̄CSF is a wavelet coefficient, a = 0.093071, b = 1.0299 and c = 11.535. The
function with original data points is plotted in Figure 5.24.
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Figure 5.24: The threshold elevation function for contrast represented as wavelet coef-
ficients. Data points were found from the model proposed by Daly [Daly 1993] after
conversion to new units of contrast. The solid line is a model from Equation 5.18,
which approximates these data points.

Next, we compare each CSF weighted coefficient of a residual frame, RCSF , with the
corresponding value of the threshold elevation Te. If the residual is smaller than the vis-
ibility threshold predicted by the threshold elevation function from Equation 5.18, we
can safely set this coefficient to zero without introducing visually noticeable changes.
Formally, it can be written as:

R f ilt =

{

0 if Te(L̄CSF) < RCSF
R otherwise (5.19)

Finally, we transform the filtered wavelets coefficients, R f ilt back to the image domain
(DWT−1 block in Figure 5.23).

The effect of invisible noise filtering on a test image is shown in Figure 5.25. The
input image (1) is split into two images, one has luma values of 30% percent of the
original (2) and simulates the residual in the compression scheme, the other is 70% of
the original (3) and simulates the LDR part. The 30% image (residual) is processed
with the invisible noise filter to produce image (4). You can notice that some higher
frequencies, especially for the grating patterns bottom left, were completely removed.
Despite this, the resulting image, which is the result of summation (3) + (4), does not
show any visible artifacts.

The prefiltering method presented above can substantially reduce the size of a residual
stream and is a reasonable trade-off between computational efficiency and accuracy of
the visual model. The encoding time is affected by no more than 80% when filtering is
used and it can only reduce decoding times because of a smaller resulting bit-stream.
We have resolved to simplify some aspects of the visual model in order to bring the
performance to an acceptable level. For example, we do not model the Optical Trans-
fer Function (OTF) since we found that its local effect is negligible (close or below the
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Figure 5.25: Invisible noise filtering applied to a test image. 1 – input image; 2,3 – 30% and 70% of
the original image; 4 – 30% image after invisible noise filtering (luminance rescaled to better show
removed details); 5 – resulting image. Test image courtesy of Scott Daly.

MTF of a monitor) for typical viewing conditions and the low-frequency flare effect
would require much larger kernels or operations in the Fourier domain, which would
slow down filtering significantly. For performance reasons we use wavelets, which do
not model visual channels as accurately as other transformations designed especially
for that purpose. Since we do not have precise information on the optical flow, we
can not model temporal aspects of the CSF. The temporal CSF is partially taken into
account by the MPEG encoder. Nevertheless, the proposed prefiltering method takes
into account more perceptual factors than most state-of-the-art video compression tech-
niques and can additionally handle HDR scenes.

Note that this is not the only possible filtering scheme and some applications may use
different filters. For example, sub-sampling and reducing the resolution of residual
frames, as done in [Ward and Simmons 2004], can improve both compression effi-
ciency and encoding/decoding speed, but at the cost of blurry artifacts, especially in
the regions where LDR pixels have been clamped to minimum or maximum values. If
video is to be displayed on a particular type of display, there is no reason to encode
the information that can not be displayed. Therefore the filter can take into account the
limitations of the display, which are usually more restictive than the full capabilities of
the HVS.

5.6.6 Implementation Details

The implementation of MPEG-4 Advanced Simple Profile ISO/IEC 14496-2, available
from http://www.xvid.org/, was used as a base MPEG encoder/decoder. However,
our method is not restricted to any particular implementation and any other video or
image encoder could be used instead. The backward compatible HDR encoder/decoder
has been implemented as a dynamic library to simplify integration with external soft-
ware. We separately implemented a set of command-line tools for encoding and decod-
ing video streams to and from HDR image files and integrated them with the pfstools
framework (http://pfstools.sourceforge.net/). An LDR stream can be played
back using any video player capable of decoding MPEG-4 video. To play back an HDR
stream, we have developed a custom HDR video player, which can display video on

http://www.xvid.org/
http://pfstools.sourceforge.net/
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both LDR and HDR displays [Seetzen et al. 2004].

Since HDR video playback involves decoding two MPEG-4 streams, an LDR and a
residual stream, achieving an acceptable frame rate is more challenging than in the
case of an ordinary LDR video. To boost playback frame rate, we moved some parts
of the decoding process to graphics hardware. We found that both color space conver-
sion and up-sampling of color channels are computationally expensive when executed
on a CPU while the same operations can be performed in almost no time on a GPU
as fragment programs. The remaining parts of the decoding and encoding algorithm
were implemented using the SSE instruction set whenever possible. Additionally, some
color conversion functions were significantly accelerated with the use of fixed point
arithmetic and lookup tables. All those optimizations let us achieve real-time software
playback of HDR movies (25–50 frames per second for the VGA resolution, depending
on a hardware configuration and quality settings of the compression).

5.6.7 Results

To test the performance of our backward compatible HDR MPEG compression, we
have executed an extensive set of over 1,500 tests on images and video sequences. A
good video compression should produce a video stream of the smallest size (measured
in our tests as the number of bits per pixel) at the highest quality. Although simple
arithmetic metrics, such as Signal to Noise Ratio (SNR), are usually used to measure
the quality of compressed images, we follow a common practice in CG [Ward and
Simmons 2004, Xu et al. 2005] and also use advanced metrics that account for the as-
pects of the HVS. We used the following metrics to evaluate the quality of the decoded
images and video sequences:

HDR VDP — Visual Difference Predictor for High Dynamic Range images [Mantiuk
et al. 2005a]. This is a fidelity metric that can predict the differences between two
images that are likely to be noticed by a human observer. This metric has been espe-
cially designed for HDR images and takes into account such effects as light scattering
in the optics of the eye, luminance masking for the visible range of luminance, spatial
contrast sensitivity, local adaptation and visual masking. The result of the HDR VDP
is a probability of detection map, which assigns for each pixel a probability that the
difference can be noticed. For easier interpretation of the results we have summarized
the prediction of the HDR VDP with a single number, which is a percentage of pixels
in an image that exceed 75% probability of detection. The lower percentage denotes a
better quality, as fewer pixels are noticeably affected by compression distortions. We
used the original implementation of the HDR VDP provided by the authors.

UQI — Universal Image Quality Index [Wang and Bovik 2002]. This quality metric
models any image distortion as a combination of three factors: loss of correlation,
luminance distortion, and contrast distortion. The index, although it does not employ
any model of the HVS, shows consistency with a subjective quality measurement and
performs better than the mean squared error. The quality index can range from −1 (the
worst quality) to 1 (the best quality). We have implemented this metric according to
the original paper [Wang and Bovik 2002]. To adapt this metric to HDR images, we
provide for input luma values computed with Equation 5.9.

SNR — Signal to Noise Ratio. This is the simplest but also the most commonly used
metric, which does not model any aspects of the HVS and may not be consistent with
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a subjective quality measurement. We used the standard formulas to compute the SNR
for the luma values computed with Equation 5.9. The larger value of SNR usually
results in higher quality.

In the following sections we analyze several aspects of our encoding scheme based on
the collected test results.

Influence of Tone Mapping Operator
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Figure 5.26: Comparison of compression performance for different tone mapping op-
erators. See Section 5.6.7 for the description of the quality metrics. “+” denotes mea-
surement points for a selected image.

Although there are no restrictions on tone mapping / gamut mapping or stylizing used
to obtain LDR frames, the choice of such processing will obviously affect the efficiency
of compression. We tested our encoder with five tone mapping operators (TMOs) from
the pfstmo package9 (labels in italics): Pattanaik00 — Time-Dependent Visual Adap-
tation [Pattanaik et al. 2000]; Durand02 — Fast Bilateral Filtering [Durand and Dorsey
2002b]; Reinhard02 — Photographic Tone Reproduction [Reinhard et al. 2002b]; Fat-
tal02 — Gradient Domain [Fattal et al. 2002]; Drago03 — Adaptive Logarithmic Map-
ping [Drago et al. 2003]. We used the default parameters for all TMOs. To prevent tem-
poral flickering in tone-mapped video sequences, we added extensions to the original
TMOs that ensured time-coherence of the TMO parameters. The extension ensured
that the maximum difference of selected parameters (e.g. LWhite for the Reinhard02
TMO) between frames is always below the visibility threshold.

9More details on the pfstmo at: http://www.mpii.mpg.de/resources/tmo/

http://www.mpii.mpg.de/resources/tmo/
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Figure 5.26 shows how the efficiency of compression is affected by a TMO. The re-
sults for most TMOs are in fact similar, with the exception of Fattal02, which results in
significantly larger streams. This is mainly because the operator introduces the largest
changes of local contrast in LDR frames, which results in the high variance of residual
values. The result is consistent with our earlier considerations in Section 5.6.3, which
suggested that global TMOs are better approximated by the reconstruction function
and therefore result in smaller magnitudes of the residual. If Fattal02 is used to gen-
erate LDR video, the size of the LDR stream is also affected since high frequencies,
which are poorly compressed by the MPEG encoding, are enhanced (we expect similar
problems with the tone mapping approach proposed by Li et al. [Li et al. 2005]). Nev-
ertheless, Fattal02 gave the most attractive LDR images. Therefore the selection of a
proper TMO for compression is often a combined aesthetic and economic choice.

The Effect of Invisible Noise Filtering
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Figure 5.27: The size of a residual stream with and without invisible noise filtering
with respect to the quality settings. The largest savings are achieved for the best quality
settings.

We validate the algorithm for filtering invisible noise, described in Section 5.6.5, for
a range of MPEG quality settings. Figure 5.27 illustrates how the size of a residual
stream is reduced when the filtering is used. Note that the largest savings are possible
for the best quality settings. This is because the strength of the filtering is determined
by the visibility thresholds, which do not depend on quality settings. The filtering has
a minimal impact on the stream size for low quality settings since the distortions intro-
duced by the aggressive DCT quantization are far above the visibility thresholds used in
the filtering. Figure 5.31 shows how both the total stream size and quality are affected
when the residual frames are filtered. Although the filtering in fact introduces changes
that are detected by the HDR VDP (probably due to a mismatch in the visual models
used by the filtering and the HDR VDP), the loss of quality is fully compensated by
the bit-rate savings (see Figure 5.31). Moreover, we observe that the subjective quality
of filtered video is better than predicted by the HDR VDP. This is because the blurry
artifacts due to the wavelet based filtering are less objectionable than blocky artifacts
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Figure 5.28: Comparison of lossy HDR compression algorithms. Averaged results for
two video sequences.

of DCT coding (see Figure 5.30). Although HDR VDP can predict the existence of vis-
ible distortions, it can neither estimate their magnitude, nor their impact on perceived
quality.

Comparison with Lossy HDR Compression Methods

The performance of the proposed method (labeled as HDR MPEG) has been compared
with two others lossy HDR compression methods:

HDRV — Perception-motivated HDR Video Encoding [Mantiuk et al. 2004a], de-
scribed in detail in Section 5.4. This is the first lossy HDR video compression method,
which, however, does not offer backward compatibility. The method encodes HDR
pixels using 11 bits for luminance and twice 8 bits for chrominance. Since the result-
ing video stream does not contain any information on LDR frames, it can be expected
that this compression method gives better results than backward compatible methods.
We used the original implementation provided by the authors.

JPEG HDR — Subband encoding of high dynamic range imagery [Ward and Sim-
mons 2004, Ward and Simmons 2005] introduced in Section 5.5.2. This is a backward
compatible HDR image encoding, which is conceptually the closest to our method. A
detailed comparison of both our approach and JPEG HDR is given in Section 5.6.8.
We used the original encoding/decoding library provided by the authors.

To evaluate the performance of intra-frame (image) compression, we ran the tests on
eight representative HDR images. We chose the Reinhard02 TMO to compare our al-
gorithm with other lossy compression methods. This TMO performed similar to the
others and is also used in JPEG HDR. Figure 5.32 shows the averaged results. The
HDRV encoding clearly shows the best performance for all three quality metrics. This
can be explained by the lack of any information on an LDR stream, which reduces the
amount of information that needs to be stored but also makes this encoding incom-
patible with the LDR MPEG format. For the HDR VDP and the UQI, JPEG HDR
performs almost the same as our method for the pre-correction and the post-correction
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approach, but is worse for the full-sampling. Note that our compression method does
not involve sub-sampling and therefore is closer to the full-sampling than the other
two approaches. JPEG HDR performs worse than our method for the SNR metric.
The improved performance of our encoding over JPEG HDR for images is surprising,
since the image encoding algorithms, such as JPEG, are known to perform better than
intra-frame video encoding. This is due to better arithmetic encoding and a quantiza-
tion matrix, which is especially optimized for images. Another difference between two
methods that affects the performance is that HDR MPEG encodes information on all
color channels in the residual stream while the JPEG HDR encodes only luminance in
the additional subband layer (see details in Section 5.6.8)

The performance of inter-frame (video) compression was tested on two video sequences
for both HDR MPEG and HDRV, while JPEG HDR was not included in these tests.
Since both the VDP and the UQI are designed for images and are less suitable for
video (large computational cost, lack of temporal processing), we computed the SNR
over all video frames to measure quality. The averaged results for two video sequences
are shown in Figure 5.28. Similarly as for images, HDRV gave better SNR than
HDR MPEG for the same number of bits. HDR MPEG, however, could achieve a
higher SNR than HDRV for very high bit-rates.

The Cost of Encoding Residual Stream

The proposed HDR encoding method is designed to be an extension to the existing
MPEG formats. Therefore, it is interesting to know how much more data must be stored
to include additional HDR information. We plot the size of the total HDR stream (LDR
+ Residual + Auxiliary stream) against the size of the LDR stream in Figure 5.29. The
size of the auxiliary stream is negligible. The residual stream does not seem to depend
on the quality settings as much as the LDR stream. Therefore its share in the total
stream size is the smallest for high quality settings. This can be expected since the
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Figure 5.30: Quality comparison for an image compressed without filtering (left) and
with invisible noise filtering (right). Both images were compressed to streams of ap-
proximately the same size. The strongly visible blocky artifacts in the image com-
pressed without filtering become barely noticeable in the “filtered” image. Note that
the artifacts may not be visible in print and should be observed on a gamma-2.2 mon-
itor. No filtering: qscale = 6, bpp = 1.37, HDR VDP 75%= 3.12%; With Filtering:
qscale = 2, bpp = 1.23, HDR VDP 75%= 1.11%.

residual stream encodes the difference between LDR and HDR frames, including those
differences that result from lossy compression of the LDR stream (refer to the MPEG
encoding and decoding stages in Figure 5.19). The lower quality LDR stream means
that more information needs to be stored in the residual stream. Overall, the share of
residual stream ranges from a 5% to 70%, depending on the image, quality settings and
a TMO. A well chosen TMO and a decent quality settings result in a residual stream
that is 25–30% of the LDR stream.

5.6.8 Discussion

Although the proposed backward compatible HDR encoding algorithm seems to be
conceptually similar to the JPEG HDR compression [Ward and Simmons 2004], there
are several important differences between the approaches, which not only enable video
compression, but also result in better compression and more flexibility of HDR MPEG.
As discussed in Section 5.6.3, HDR MPEG can adapt the reconstruction function to
the tone/gamut mapping algorithm used to generate LDR frames and therefore reduces
the magnitude of the residual values. This results in better compression ratios as com-
pared to JPEG HDR (refer to Section 5.6.7), although the results would be even more
favorable if we had used the JPEG algorithm instead of MPEG intra-frame compres-
sion to encode images. Further bit-rate savings in MPEG HDR come from perceptually
optimized color spaces for HDR pixels (refer to Section 5.6.2).

HDR MPEG offers perceptually conservative and time coherent encoding of residual
values, while JPEG HDR suggests an ad-hoc approach to encoding subband, which
is not suitable for video. The JPEG HDR encoder transforms subband values to the
logarithmic domain and then linearly scales them so that the minimum and the max-
imum values fit in the 0–255 range. Since the minimum and the maximum subband
value can differ from image to image, the scaling factor can also change from frame
to frame for video sequences, which would result in temporal flickering and lack of
temporal coherence in subband frames. Such a lack of temporal coherence can signifi-
cantly impact the performance of MPEG inter-frame compression. HDR MPEG, on the
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Figure 5.31: Performance of HDR video compression with and without invisible noise
filtering (refer to Section 5.6.5). The bit-rate savings gained on the filtering compensate
for the loss of quality.

other hand, guarantees the temporal coherence of residual frames. Moreover, the linear
scaling of subband values in JPEG HDR makes the quantization of the subband layer
difficult to predict and control. JPEG HDR will quantize subband values with high
accuracy for those images that lead to small magnitude of subband values, perhaps
wasting some bit-rate on invisible contrast details. For another set of images, which
result in large magnitude of subband values, JPEG HDR can quantize too coarsely,
leading to contouring artifacts. To reduce quantization, JPEG HDR skips a small per-
cent of the brightest and the darkest pixels in an image, which however can lead to loss
of some details (see Figure 5.33). HDR MPEG quantizes color values consistently for
consecutive frames and the quantizer is based on the visibility thresholds of the HVS
rather than frame content.

Unlike JPEG HDR, the proposed compression method does not impose any restrictions
on the choice of a TMO and a gamut mapping algorithm. A TMO for HDR MPEG can
saturate both luminance and color, change color values and enhance local contrast.
Such changes may result in a lower compression ratio, but both LDR and HDR frames
will be preserved in the resulting video stream. JPEG HDR will lose most color differ-
ences between HDR and LDR since it does not store color in the subband layer. Such
unrestricted control over the appearance of both LDR and HDR streams is very impor-
tant for our major application - a storage format for digital movies whose appearance
cannot be compromised.

Finally, a sub-sampling of the subband layer in JPEG HDR may lead to the loss of
visible details. Although the pre-correction may be used to avoid loss of high fre-
quency details, this leads to distorted LDR frames, which, similar to the companding
approach [Li et al. 2005], is not acceptable for applications requiring uncompromised
quality of tone mapped images. The post-correction, although it does not modify the
source image, also does not give as good results as the pre-correction. Full-sampling,
on the other hand, does not give as good compression ratio as the other two approaches.



106 CHAPTER 5. COMPRESSION OF HDR IMAGES AND VIDEO

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4

V
D

P
 7

5%

bits per pixel

HDR MPEG
HDRV

JPEG HDR fullsamp
JPEG HDR precorrect

JPEG HDR postcorrect

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9

U
Q

I

bits per pixel

HDR MPEG
HDRV

JPEG HDR fullsamp
JPEG HDR precorrect

JPEG HDR postcorrect

 10

 15

 20

 25

 30

 35

 40

 45

 0  1  2  3  4  5  6  7  8  9

S
N

R
 [d

b]

bits per pixel

HDR MPEG
HDRV

JPEG HDR fullsamp
JPEG HDR precorrect

JPEG HDR postcorrect

Figure 5.32: Comparison of lossy HDR compression algorithms. Averaged results for
a set of images.

Figure 5.33: Very bright pixels in the original image (left) are lost after compression
with JPEG HDR (right) at quality setting 90 and with the precorrection (default set-
tings). This is because a small percentage of the brightest and darkest pixels is skipped
when computing minimum and maximum value of the subband image.

The counterpart of sub-sampling in the proposed HDR MPEG is filtering of invisible
noise (see Section 5.6.5). The filtering has a similar goal as the sub-sampling — to re-
duce high frequency noise and improve compression, but it does it in a more selective
manner. The proposed filtering removes only those high frequency details which are
not visible and therefore can be smoothed out without impairing the visual quality of
the resulting video. Sub-sampling, obviously, cannot give such a guarantee (refer to
Figure 5.22).
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5.6.9 Conclusions and Future Work

This section presents the backward compatible HDR MPEG video compression method
that can facilitate a smooth transition from LDR to HDR content. The storage cost of
a backward compatible HDR stream is modest (about 30% overhead), compared to the
huge storage requirement of High Definition video. The proposed format is especially
suitable for DVD movie distribution, which must ensure the compatibility with exist-
ing DVD players that are not capable of HDR playback. The format design conforms
to standard 8-bit MPEG decoding chips. The method allows for separate tone/gamut
mapping of LDR and HDR video, which is essential for top quality movie production.
We introduced a pair of compatible color spaces that facilitate comparisons between
LDR and HDR pixels. The nonlinear function used to encode HDR luminance can be
regarded as an extended “gamma correction” that can be used for the full range of vis-
ible luminance values. To achieve even better compression performance, we employed
an advanced model of the HVS, which is tuned for the full range of visible luminance
and is suitable for HDR image processing. We introduced an HDR filtering solution
based on this model which selectively and conservatively removes imperceptible high-
frequency details from the video stream prior to its compression. We believe that our
computationally efficient HVS model and HDR filtering solution are general enough
to find other applications in computer graphics and digital imaging.

We implemented and tested a dual video stream encoding for the purpose of a back-
ward compatible HDR encoding, however, we believe that other applications that re-
quire encoding multiple streams can partly or fully benefit from the proposed method.
For example, a movie could contain a separate video stream for color blind people.
Such a stream could be efficiently encoded because of its high correlation with the
original color stream. Movie producers commonly target different audiences with dif-
ferent color appearance (for example Kill Bill 2 was screened with a different color
stylization in Japan). The proposed algorithm could be easily extended so that several
color stylized movies could be stored on a single DVD. This work is also a step towards
an efficient encoding of multiple viewpoint video, required for 3D video [Matusik and
Pfister 2004].
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Chapter 6

Image Processing in the
Contrast Domain

An image stored as a matrix of pixel values is the most common representation for im-
age processing, but unfortunately it does not reflect the way we perceive images. This is
why most image compression algorithms apply a transformation, such as the Discrete
Cosine Transform or the Discrete Wavelet Transform before storing images, so that the
visually important information is separated from visually less important one. Besides
image and video compression, there are many fields that benefit from a representation
of images that is correlated with visual perception, such as tone mapping, visual dif-
ference prediction, color appearance modeling, or seamless image editing. The goal
of such “perceptual” representations is to linearize values that encode images so that
the magnitude of those values correspond to the visibility of features in an image. For
example, large magnitudes of low and medium frequency coefficients of the Fourier
Transform correspond to the fact that the visual system is the most sensitive for those
frequencies. In this chapter we derive a framework for image processing in a percep-
tual domain of image contrast. We base our work on the gradient domain methods,
which we generalize and extend to account for perceptual issues, such as the sensitiv-
ity for superthreshold contrast in HDR images. This chapter extends work published
in [Mantiuk et al. 2005b] and [Mantiuk et al. 2006d]. More information on this project
and a gallery of examples can be found at:
http://www.mpi-inf.mpg.de/~mantiuk/contrast_domain/.

6.1 Previous Work

The research on perceptual representation of images has involved many areas of sci-
ence. We briefly list some of these areas, pointing to the relevant works and describing
major issues of these approaches.

Image Transformations. A need for better image representation, which would partly
reflect the processing of the Human Visual System (HVS), has been noticed in image
processing for a long time. However, practical issues such as whether a transforma-
tion is invertible and computational costs, were often of more concern than an accurate
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modeling of the HVS. This resulted in numerous image transformations based in math-
ematics and signal processing, such as the Fourier transform, the discrete cosine trans-
form (DCT), pyramids (Gaussian, Laplacian) or wavelets, which are now considered
as standard tools of image processing.

Color Appearance Models. Color appearance models, such CIECAM [CIE 2002]
or iCAM [Fairchild and Johnson 2004], convert physical color values to a space of
perceptual correlates, such as lightness, chroma and colorfulness. Such correlates are
useful for the prediction of color appearance under different visual conditions, for find-
ing visible differences in images and for tone mapping. The drawback of those models
is that they usually do not account for aspects of spatial vision such as contrast sensitiv-
ity or contrast masking. The reason for this is that the majority of fundamental studies
on color appearance have been done with a uniform square patterns on a uniform field
without considering spatial or temporal issues, therefore there is not enough data on
which spatial models could be build.

Multi-scale Models of Human Vision. Spatial issues are better modelled with multi-
scale models, such as those described in [Watson 1987, Simoncelli and Adelson 1989,
Watson and Solomon 1997, Pattanaik et al. 1998, Winkler 2005], which separate an
image into several band-pass channels. Such channels correspond to the visual path-
ways that are believed to exist in the HVS. Such models have been successfully applied
for the prediction of visible differences in images [Daly 1993] and the simulation of
color vision under different luminance adaptation conditions [Pattanaik et al. 1998].
However, they also pose many problems when images are modified in such multi-scale
representations. If an image is modified in one of such band-pass limited channels
while the other channels remain unchanged, the image resulting from the inverse trans-
formation often contains severe halo artifacts.

Retinex. A different set of problems has been addressed by the Retinex theory of color
vision, introduced by Land [Land 1964]. The original goal of Retinex was to model the
ability of the HVS to extract reliable information from the world we perceive despite
changes in illumination, which is referred as a color constancy. The latter work on the
Retinex algorithm formalized the theory mathematically and showed that the problem
is equivalent to solving a Poisson equation [Horn 1974, Hurlbert 1986]. Interestingly,
most of the gradient methods also involve a solution of a Poisson equation although
their goal is different.

Gradient Methods. Operations on image gradients have recently attracted much at-
tention in the fields of tone mapping [Fattal et al. 2002], image editing [Perez et al.
2003, Agarwala et al. 2004], image matting [Sun et al. 2004], image stitching [Levin
et al. 2004], and color-to-gray mapping [Gooch et al. 2005]. The gradient methods
can produce excellent results in areas where other methods usually result in severe arti-
facts. For instance, tone mapping and contrast enhancement performed in the gradient
domain gives almost no halo artifacts while such artifacts are usually inevitable in the
case of the multi-scale methods [Fattal et al. 2002]. The gradients methods can also
seamlessly blend stitched images while other methods often result in visible disconti-
nuities [Levin et al. 2004]. Even some advanced painting tools of Adobe Photoshop
are based on the gradient methods [Georgiev 2005]. However, all these works focus
mainly on image processing aspects without considering perceptual issues. In this
work we generalize the gradient domain methods and incorporate perceptual issues by
deriving a framework for processing images in perceptually linearized visual response
space. Unlike the gradient or multi-scale methods, we impose constraints on the entire
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set of contrasts in an image for a full range of spatial frequencies. This way, even a
severe image modification does not lead to reversing a polarity of contrast.
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Figure 6.1: Data flow in the proposed framework of the perceptual contrast processing.

The overview of our framework is shown in Figure 6.1. Pixel luminance values of
an image are first transformed to physical contrast values, which are then transduced
to response values of the HVS. The resulting image is then modified by altering the
response values, which are closely related to a subjective impression of contrast. The
modified response values can later be converted back to luminance values using an
inverse transformation. As an application of our framework we demonstrate two tone
mapping methods which can effectively compress dynamic range without losing low-
contrast information. We show that a complex contrast compression operation, which
preserves textures of small contrast, is reduced to a linear scaling in our visual response
space.

In Section 6.2 we review less well known psychophysical data that was measured for
high-contrast stimuli. Based on this data we derive a model of suprathreshold contrast
discrimination for high contrast images. In Section 6.3 we introduce the components
of our framework, in particular a multi-scale representation of low-pass contrast and
a transducer function designed for HDR data. As an application of our framework,
we propose two tone mapping methods in Sections 6.4 and 6.5, and a saliency pre-
serving color to gray mapping in Section 6.6. Details on how the framework can be
implemented efficiently are given in Section 6.7. We discuss strengths and weaknesses
of the proposed framework in Section 6.9. Finally, we conclude and suggest future
directions in Section 6.10.

6.2 Background

In the following two sections we review some fundamentals of the perception of con-
trast and summarize the results of a study on the HVS performance in contrast discrim-
ination for HDR images. We use this contrast discrimination characteristic to derive
our contrast processing framework.
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W – contrast expressed as a Weber fraction (see Table 6.2)
G – contrast expressed as a logarithmic ratio (see Table 6.2)
∆W (W ), ∆G(G) – function of threshold contrast discrimination for contrast W and
G respectively
∆Gsimpl(G) – simplified function of threshold contrast discrimination for contrast
G
Gk

i, j – contrast between pixels i and j at the k’th level of a Gaussian pyramid (see
Equation 6.6)
Ĝk

i, j – modified contrast values, corresponding to Gk
i, j. Such contrast values usually

do not form a valid image and only control an optimization procedure
Lk

i – luminance of the pixel i at the k’th level of a Gaussian pyramid
xk

i – log10 of luminance Lk
i

Φi – set of neighbors of the pixel i
T (G), T−1(G) – transducer and inverse transducer functions
R – response of the HVS scaled in JND units
R̂ – modified response R

Table 6.1: Used symbols and notation.

6.2.1 Contrast

The human eye shows outstanding performance when comparing two light patches, yet
it almost fails when assessing the absolute level of light. This observation can be con-
firmed in a ganzfeld, an experimental setup where the entire visual field is uniform. In
fact, it is possible to show that the visual system cannot discern mean level variations
unless they fluctuate in time or with spatial signals via eye movements, thus having a
higher temporal frequency component. The Retinex theory postulated that low sensi-
tivity to absolute luminance can be easily explained by the adaptation of the HVS to the
real world conditions. Because the HVS is mostly sensitive to relative luminance ratios
(contrast) rather than absolute luminance, the effect of huge light changes over the day
is reduced and therefore we perceive the world in a similar way regardless of the light
conditions. This and other sources of evidence strongly suggest that the perception of
contrast (difference between two light stimuli) is the fundamental ability of the HVS.

Many years of research on contrast have resulted in several definitions of contrast,
some of them listed in Table 6.2. The variety of contrast definitions comes from the
different stimuli they measure. For example, the Michelson contrast [Michelson 1927]
is commonly used to describe a sinusoidal stimulus, while the Weber fraction is often
used to measure a step increment or decrement stimulus. In the next section we show
that certain contrast definitions are more suitable for describing the performance of the
HVS than others.

6.2.2 Contrast Discrimination

Contrast detection and contrast discrimination are two of the most thoroughly studied
perceptual characteristics of the eye [Barten 1999]. The contrast detection threshold
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Simple Contrast
Cs = Lmax

Lmin

Weber Fraction
W = ∆L

Lmin

Logarithmic Ratio
G = log10(

Lmax
Lmin

)

Michelson Contrast
M = |Lmax−Lmin|

Lmax+Lmin

Signal to Noise Ratio
SNR = 20 · log10(

Lmax
Lmin

)

Decrement

Increment

∆L

Lmax

∆L

Lmin

LmaxLmin

Lmax

Lmean

Lmin

Table 6.2: Definitions of contrast and the stimuli they measure.

is the smallest visible contrast of a stimulus presented on a uniform field, for example
a Gabor patch on a uniform adaptation field. The contrast discrimination threshold is
the smallest visible difference between two nearly identical signals, for example two
sinusoidal patterns that differ only in their amplitudes. Detection can be considered as a
special case of discrimination when the masking signal is uniform (has zero amplitude)
and only elevates luminance. For this reason the effect of luminance on the detection
threshold is sometimes called luminance masking.

A stimulus can be considered suprathreshold when its contrast is significantly above
the detection threshold. When the contrast is lower or very close to the detection thresh-
old, a stimulus is considered subthreshold or threshold. Contrast discrimination is
associated with the suprathreshold characteristics of the HVS and in particular with
contrast masking. Contrast detection, on the other hand, describes the performance
of the HVS for subthreshold and threshold stimulus, which can be modelled by the
Contrast Sensitivity Function (CSF), the threshold versus intensity function (t.v.i.), or
Weber’s law for luminance thresholds. A more detailed discussion on threshold and
suprathreshold effects can be found in Section 3.9 and in [Wandell 1995, Chapter 7].

Since suprathreshold contrast plays a dominant role in the perception of HDR images,
we will consider contrast discrimination data (suprathreshold) in detail and simplify
the character of contrast detection (threshold). Although discrimination thresholds of
the HVS have been thoroughly studied in psychophysics for years, most of the mea-
surements consider only small contrast levels up to M = 50%. Such limited contrast
makes the usefulness of the data especially questionable in the case of HDR images,
for which the contrast can easily exceed 50%. The problem of insufficient scale of
contrast in psychophysical experiments was addressed by Whittle [Whittle 1986]. By
measuring detection thresholds for the full range of visible contrast, Whittle showed
that the discrimination data plotted with the Michelson contrast does not follow in-
creasing slope, as reported in other studies (refer to Figure 6.2). He also argued that
the Michelson contrast does not describe the data well. Figure 6.2 shows that the
data is very scattered and the character of the threshold contrast is not clear, espe-
cially for large contrast values. However, when the same data is plotted as Weber’s
fraction W = ∆L/Lmin, the discrimination thresholds for all but the smallest contrast
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Figure 6.2: Contrast discrimination thresholds plotted using the Michelson contrast,
M. The Michelson contrast does not give a good prediction of the discrimination per-
formance, especially for high contrast.

values follow the same line on a log-log plot, which resembles Weber’s law, but for
suprathreshold contrast: ∆W/W = c (see Figure 6.3). The sensitivity1 to contrast im-
proves for low contrast just above the detection threshold and then deteriorates as the
contrast reaches the threshold (W ≈ 0.025). Whittle calls this effect “crispening” while
contrast discrimination studies usually describe it as a facilitation or “dipper” effect.

Interestingly, typical models of contrast discrimination, such as Barten’s model [Barten
1999, Chapter 7], closely follow Whittle’s data for low contrast2, but wrongly predict
discrimination thresholds for high contrast (see the green solid line in Figure 6.3). The
wrong prediction is a result of missing measurements for high contrast. Obviously,
such models are not adequate for high contrast data, such as HDR images.

To construct a model for contrast discrimination, which would be suitable for High
Dynamic Range images, we fit a continuous function to Whittle’s original data [Whittle
1986, Figure 2]:

∆W (W ) = 0.0928 ·W 1.08 +0.0046 ·W−0.183 (6.1)

The chi-square test proves that the function approximates the data (Q = 0.56) assuming
a relative error ∆W/W ±8%. The shape of the fitted function is shown as a red solid line
in Figure 6.3. In Section 6.3.2 we use the above function rather than Whittle’s original
model ∆W/W = c to properly predict discrimination thresholds for low contrast values.

It is sometimes desirable to operate on contrast measure G rather than Weber fraction W
(for contrast definitions refer to Table 6.2). In Section 6.3.1 we show that the proposed
framework operates on contrast G since such contrast can be represented as a difference
in logarithmic domain, which let us formulate a linear problem. Knowing that the
relation between W and G is:

G = log10(W +1) (6.2)

1Sensitivity is defined as an inverse of the detection or discrimination threshold.
2The parameters for Barten’s model have been chosen to fit the measurements by Foley and Legge [Foley

and Legge 1981]. The detection threshold mt has been chosen so that it compensates for differences between
the stimuli used for Whittle’s and Legge & Foley’s measurements.
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and the relation between ∆W and ∆G is:

∆G ≈ log10(W +∆W +1)− log10(W +1) = log10

(

∆W
W +1

+1
)

, (6.3)

we plot Whittle’s measurement points for contrast G in Figure 6.4. We can now fit the
model from Equation 6.1 to the new data, to get a function of contrast discrimination
for contrast G:

∆G(G) = 0.0405 ·G0.6628 +0.00042435 ·G−0.38072 (6.4)

The chi-square test for the fitted function gave Q = 0.86 assuming a relative error on
∆G/G±7%. If we do not need to model the facilitation effect or the loss of sensitivity
for low contrast, we can approximate the data with a simpler function, which is both
reversible and integrable, but does not consider data for G < 0.03:

∆Gsimpl(G) = 0.038737 ·G0.537756 (6.5)

The chi-square test for the fitted function gave Q = 0.88 assuming a relative error
∆G/G±3%. Both fitted functions are shown in Figure 6.4.
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Figure 6.3: Contrast discrimination thresholds plotted as a function of contrast W . Data
points – Whittle’s measurements; red solid line – a function fit to Whittle’s data; green
solid line – Barten’s model fit to the measurements by Foley and Legge [Foley and
Legge 1981] (k = 3, mt = 0.02); inset – the stimulus used to measure increments for
Whittle’s data.

Before we utilize the above discrimination functions, we have to consider whether
it can be generalized for different stimuli and spatial frequencies. In a later study
Kingdom and Whittle [Kingdom and Whittle 1996] showed that the character of the
suprathreshold discrimination is similar for both a square-wave and sine-wave patterns
of different spatial frequencies. This is consistent with other studies that show little
variations of suprathreshold contrast across spatial frequencies [Georgeson and Sul-
livan 1975, Barten 1999]. Those variations can be eliminated if a contrast detection
function is normalized by the contrast detection threshold for a particular spatial fre-
quency [Legge 1979].
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Figure 6.4: Contrast discrimination thresholds plotted as a function of the contrast G.
The solid line – a full contrast discrimination model (Equation 6.4); the dashed line –
a simplified contrast discrimination model (Equation 6.5).

6.3 A Framework for Perceptual Contrast Processing

In the next two sections we introduce a framework for image processing in a visual
response space. Section 6.3.1 proposes a method for transforming complex images
from luminance to physical contrast domain (blocks Transform to Contrast and Trans-
form to Luminance in Figure 6.1). Section 6.3.2 explains how physical contrast can be
converted into a response of the HVS, which is a perceptually linearized measure of
contrast (blocks Transducer Function and Inverse Transducer Function in Figure 6.1).

6.3.1 Contrast in Complex Images

Before we introduce contrast in complex images, let us consider the performance of
the eye during discrimination of spatially distant patches. We can easily observe that
contrast can be assessed only locally for a particular spatial frequency. We can, for ex-
ample, easily see the difference between fine details if they are close to each other, but
we have difficulty distinguishing the brighter detail from the darker if they are distant
in our field of view. On the other hand, we can easily compare distant light patches if
they are large enough. This observation can be explained by the structure of the retina,
in which the foveal region responsible for the vision of fine details spans only about
1.7 visual degrees, while the parafoveal vision can span over 160 visual degrees, but
has almost no ability to process high frequency information [Wandell 1995]. When
seeing fine details in an image, we fixate on a particular part of that image and em-
ploy the foveal vision. But at the same time the areas further apart from the fixation
point can only be seen by the parafoveal vision, which can not discern high frequency
patterns. The contrast discrimination for spatial patterns with increasing separation
follows Weber’s law when the eye is fixed to one of the patterns and this is the result
of the increasing eccentricity of the other pattern [Wilson 1980]. Therefore, due to the
structure of the retina, the distance at which we can correctly assess contrast is small
for high frequency signals, but grows for low frequency signals.

While several contrast definitions have been proposed in the literature (refer to Ta-
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ble 6.2), they are usually applicable only to a simple stimulus and do not specify how
to measure contrast in complex scenes. This issue was addressed by Peli [Peli 1990]
who noticed that the processing of images is neither periodic nor local and therefore
the representation of contrast in images should be quasi-local as well. Drawing anal-
ogy from the center-surround structures in the retina, he proposed to measure contrast
in complex images as a difference between selected levels of a Gaussian pyramid.
However, the resulting difference of Gaussians leads to a band-pass limited measure
of contrast, which tends to introduce halo artifacts at sharp edges when it is modified.
To avoid this problem, we introduce a low-pass measure of contrast. We use a loga-
rithmic ratio G as the measure of contrast between two pixels, which is convenient in
computations since it can be replaced with the difference of logarithms. Therefore, our
low-pass contrast is defined as a difference between a pixel and one of its neighbors at
a particular level, k, of a Gaussian pyramid, which can be written as:

Gk
i, j = log10(Lk

i /Lk
j) = xk

i − xk
j (6.6)

where Lk
i and Lk

j are luminance values for neighboring pixels i and j. For a single pixel
i there are two or more contrast measures Gk

i, j, depending on how many neighbouring
pixels j are considered (see Figure 6.5). Note that both L and x cover a larger and
larger area of an image when moving to the coarser levels of the pyramid. This way our
contrast definition takes into account the quasi-local perception of contrast, in which
fine details are seen only locally, while variations in low frequencies can be assessed for
the entire image. The choice of how many neighboring pixels, x j, should be taken into
account for each pixel, xi, usually depends on the application and type of images. For
tone mapping operations on complex images, we found that two nearest neighbors are
sufficient. For other applications, such as a color-to-gray mapping, and for images that
contain flat areas (for example vector maps), we consider 20–30 neighboring pixels.

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x13 x14 x15

x16 x17 x18 x19 x20

x21 x22 x23 x24 x25

x12

G
1
12, 8

Figure 6.5: Contrast values for the pixel x12 (blue) at a single level of the Gaussian
pyramid. The neighboring pixels x j are marked with green color. Note that the contrast
value G12,7 (upper index k = 1 omitted for clarity) will not be computed, since G7,12
already contains the same difference. Contrast values G12,8 and G12,18 encode contrast
for diagonal orientations. Unlike wavelets, contrast values, Gk

i, j can represent both
−45◦ and 45◦ orientation.

Equation 6.6 can be used to transform luminance to contrast. Now we would like to
perform the inverse operation that restores an image from the modified contrast values
Ĝ. The problem is that there is probably no image that would match such contrast
values. Therefore, we look instead for an image whose contrast values are close but
not necessarily exactly equal to Ĝ. This can be achieved by the minimization of the
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distance between a set of contrast values Ĝ that specifies the desired contrast, and G,
which is the contrast of the actual image. This can be formally written as the mini-
mization of the objective function:

f (x1
1,x

1
2, . . . ,x

1
N) =

K

∑
k=1

N

∑
i=1

∑
j∈Φi

pk
i, j(G

k
i, j − Ĝk

i, j)
2 (6.7)

with regard to the pixel values x1
i on the finest level of the pyramid. Φi is a set of the

neighbors of the pixel i (e.g. set of green pixels in Figure 6.5), N is the total number of
pixels and K is the number of levels in a Gaussian pyramid. We describe an efficient
solution of the above minimization problem in Section 6.7.

The coefficient pk
i, j in Equation 6.7 is a constant weighting factor, which can be used

to control a mismatch between the desired contrast and the contrast resulting from the
solution of the optimization problem. If the value of this coefficient is high, there is
higher penalty for a mismatch between Gk

i, j and Ĝk
i, j. Although the choice of these

coefficients may depend on the application, in most cases we want to penalize contrast
mismatch relative to the contrast sensitivity of the HVS. A bigger mismatch should
be allowed for the contrast magnitudes to which the eye is less sensitive. This way,
the visibility of errors resulting from such a mismatch would be equal for all contrast
values. We can achieve this by assuming that:

pk
i, j =

{

∆G−1(Ĝk
i, j) if Ĝk

i, j ≥ 0.001
∆G−1(0.001) otherwise,

(6.8)

where ∆G−1 is an inverse of the contrast discrimination function from Equation 6.4
and the second condition avoids division by 0 for very low contrast.

When testing the framework with different image processing operations, we noticed
that the solution of the optimization problem may lead to reversing polarity of contrast
values in an output image, which happens when Gk

i, j is of a different sign than Ĝk
i, j, and

which leads to halo artifacts. This problem concerns all methods that involve a solution
of the optimization problem similar to the one given in Equation 6.7 and is especially
evident for the gradients domain method (based on Poisson solvers). The problem
is illustrated in Figure 6.6. To simplify the notation, the upper index of a Gaussian
pyramid level is assumed to be 1 and is omitted. A set of desired contrast values Ĝ quite
often contains the values that cannot lead to any valid pixel values (6.6a). The solution
of the optimization problem results in modified contrast values G that can be used to
construct an image with pixel values x1,x2,x3 (6.6b). The problem is that this solution
results in a reversed polarity of contrast (G3,1 in 6.6b), which leads to small magnitude,
but noticeable, halo artifacts. More desirable would be solution (6.6c), which gives the
same value of the objective function f and does not result in reverse contrast values.
To increase probability that the optimization procedure results in solution (6.6c) rather
than (6.6b), the objective function should be penalized for mismatches at low contrast.
This can be combined together with penalizing mismatches according to the sensitivity
of the HVS if we replace the contrast discrimination function ∆G in Equation 6.8 with
the simplified model ∆Gsimpl from Equation 6.5:

pk
i, j =

1
∆Gsimpl(Ĝk

i, j)
(6.9)
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The simplified model overestimates sensitivity for low contrast, which is desirable as
it makes the value of pk

i, j large near zero contrast and thus prevents the reversal of
contrast polarity.

a)

b)

c)

Ĝ3,2

Ĝ3,1

Ĝ2,1

x1 x3 x2

G2,1

G3,1

G3,2

x1 x2x3

G2,1

G3,1

G3,2

Figure 6.6: For a set of desired contrast values Ĝi, j that cannot represent a valid image
(a), the optimization procedure may find a solution which contains reversed contrast
values (G3,1 in b). An alternative solution without such reversed contrast values gives
images without halo artifacts (c).

6.3.2 Transducer Function

A transducer function predicts the hypothetical response of the HVS for a given phys-
ical contrast. As can be seen in Figure 6.1, our framework assumes that the image
processing is done on the response rather than on the physical contrast. This is because
the response closely corresponds to the subjective impression of contrast and there-
fore any processing operations can assume the same visual importance of the response
regardless of its actual value. In this section we would like to derive a transducer func-
tion that would predict the response of the HVS for the full range of contrast, which is
essential for HDR images.

Following [Wilson 1980] we derive the transducer function T (G) := R based on the
assumption that the value of the response R should change by one unit for each Just
Noticeable Difference (JND) both for threshold and suprathreshold stimuli. However,
to simplify the case of threshold stimuli, we assume that:

T (0) = 0 and T (Gthreshold) = 1 (6.10)

or
T−1(0) = 0 and T−1(1) = Gthreshold (6.11)

for the inverse transducer function T−1(R) := G. The detection threshold, Gthreshold , is
approximated with 1% contrast (Gthreshold = log10(0.01+1)≈ 0.0043214), commonly
used for digital images [Wyszecki and Stiles 2000, Section 7.10.1]. This simplifica-
tion assumes that the detection threshold is the same for all spatial frequencies and all
luminance adaptation conditions. For a suprathreshold stimulus we approximate the
response function T by its first derivative:

∆T ≈ dT (G)

dG
∆G(G) = 1 (6.12)
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where ∆G(G) is the discrimination threshold given by Equation 6.4. The above equa-
tion states that a unit increase of response R (right hand side of the equation) should
correspond to the increase of G equal to the discrimination threshold ∆G for the contrast
G (left side of the equation). The construction of the function R = T (G) is illustrated
in the inset of Figure 6.7. Although the above equation can be solved by integrating its
differential part, it is more convenient to solve numerically the equivalent differential
equation:

dT−1(R)

dR
= ∆G(T−1(R)) (6.13)

for the inverse response function T−1(R) = G and for the boundary condition from
Equation 6.11. G is a non-negative logarithmic ratio (refer to Table 6.2) and R is the
response of the HVS. Since the function T−1 is strictly monotonic, finding the func-
tion T is straightforward. We numerically solve Equation 6.13 to find the transducer
function T (G) = R shown in Figure 6.7.
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Figure 6.7: Transducer function derived from the contrast discrimination data [Whittle
1986]. The transducer function can predict the response of the HVS for the full range of
contrast. The inset depicts how the transducer function is constructed from the contrast
discrimination thresholds ∆G(G).

For many applications an analytical model of a transducer function is more useful than
a lookup table given by the numerical solution of Equation 6.13. Although the curve
shown in Figure 6.7 closely resembles a logarithmic or exponential function, neither
of these two families of functions give an exact fit to the data. However, if an accurate
model is not necessary, the transducer can be approximated with the function:

T (G) = 54.09288 ·G0.41850 (6.14)

The average and maximum error of this approximation is respectively R ± 1.9 and
R±6. Equation 6.14 leads directly to an inverse transducer function:

T−1(R) = 7.2232 ·10−5 ·R2.3895. (6.15)

The transducer function derived in this section has a similar derivation and purpose
as the Standard Grayscale Function from the DICOM standard [DICOM PS 3-2004
2004] or the capacity function in [Ashikhmin 2002]. The major difference is that the
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transducer function operates in the contrast domain rather than in the luminance do-
main. It is also different from other transducer functions proposed in the literature
(e.g. [Wilson 1980, Watson and Solomon 1997]) since it is based on the discrimination
data for high contrast and operates on contrast measure G. This makes the proposed
formulation of the transducer function especially suitable to HDR data. The derived
function also simplifies the case of the threshold stimuli and assumes a single detection
threshold Gthreshold . Such a simplification is acceptable, since our framework focuses
on suprathreshold rather than threshold stimuli.

6.4 Application: Contrast Mapping

In previous sections we introduce our framework for converting images to perceptually
linearized contrast response and then restoring images from the modified response. In
this section we show that one potential application of this framework is to compress
the dynamic range of HDR images to fit into the contrast reproduction capabilities of
display devices. We call this method contrast mapping instead of tone mapping because
it operates on contrast response rather than luminance.

Tone mapping algorithms try to overcome either the problem of the insufficient dy-
namic range of a display device (e.g. [Tumblin and Turk 1999, Reinhard et al. 2002a,
Durand and Dorsey 2002b, Fattal et al. 2002]) or the proper reproduction of real-world
luminance on a display (e.g. [Pattanaik et al. 1998, Ashikhmin 2002]). Our method
does not address the second issue of trying to make images look realistic and natural.
Instead we try to fit to the dynamic range of the display so that no information is lost
due to saturation of luminance values and at the same time, small contrast details, such
as textures, are preserved. Within our framework such non-trivial contrast compression
operation is reduced to a linear scaling in the visual response space. Since the response
Rk

i, j is perceptually linearized, contrast reduction can be achieved by multiplying the
response values by a constant l:

R̂k
i, j = Rk

i, j · l (6.16)

where l is between 0 and 1. This corresponds to lowering the maximum contrast that
can be achieved by the destination display. Since the contrast response R is perceptually
linearized, scaling effectively enhances low physical contrast W , for which we are the
most sensitive, and compresses large contrast magnitudes, for which the sensitivity is
much lower. The result of such contrast compression for the Memorial Church image
is shown in Figure 6.8.

In many aspects the contrast compression scheme resembles the gradient domain method
proposed by Fattal et al. [2002]. However, unlike the gradient method, which proposes
somewhat ad-hoc choice of the compression function, our method is entirely based
on the perceptual characteristic of the eye. Additionally, our method can avoid low
frequency artifacts as discussed in Section 6.9.

We tested our contrast mapping method on an extensive set of HDR images. The
only visible problem was the magnification of the camera noise on several HDR pho-
tographs. Those pictures were most likely taken in low light conditions and therefore
their noise level was higher than in the case of most HDR photographs. Our tone map-
ping method is likely to magnify camera noise if its amplitude exceeds the threshold
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Figure 6.8: The results of the contrast mapping algorithm. The images from left to right
and top to bottom were processed with the compression factor l = 0.1,0.4,0.7,1.0. Af-
ter the processing images were rescaled in the log10 domain to use the entire available
dynamic range. Memorial Church image courtesy of Paul Debevec.
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contrast Wthreshold of the HVS. Therefore, to obtain good results, the noise should be
removed from images prior to the contrast mapping.

In Figure 6.10 we compare the results of our method with other tone mapping algo-
rithms. Our contrast mapping method produces very sharp images without introducing
halo artifacts. Sharpening is especially pronounced when the generated images are
compared to the result of linear scaling in the logarithmic domain (see Figure 6.11).

6.5 Application: Contrast Equalization

Figure 6.9: Top left – the linear rescaling of luminance in the logarithmic domain; top right – contrast
mapping; bottom left – contrast equalization; bottom right – the result of [Reinhard et al. 2002a].
Image courtesy of Grzegorz Krawczyk.

Histogram equalization is another common method to cope with extended dynamic
range. Even if high contrast occupies only a small portion of an image, it is usually
responsible for large dynamic range. The motivation for equalizing the histogram of
contrast is to allocate dynamic range for each contrast level relative to the space it oc-
cupies in an image. To equalize a histogram of contrast responses, we first find the
Cumulative Probability Distribution Function (CPDF) for all contrast response values
in the image Rk

i, j [Gonzalez and Woods 2001, Section 3]. Then, we calculate the mod-
ified response values:

R̂k
i, j = sign(Rk

i, j) ·CPDF(‖Rk
i ‖) (6.17)

where sign() equals −1 or 1 depending on the sign of the argument and ‖Rk
i ‖ is a
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Figure 6.10: Comparison of the result produced by our contrast mapping (top left) and contrast
equalization (top right) to those of Durand and Dorsey [2002b] (bottom left) and Fattal et al. [2002]
(bottom right). Tahoma image courtesy of Greg Ward.

root-mean-square of the contrast response between a pixel and all its neighbors:

‖Rk
i ‖ =

√

∑
j∈Φi

Rk
i, j

2 (6.18)

The histogram equalization scheme produces very sharp and visually appealing im-
ages, which may however be less natural in appearance than the results of our previous
method (see some examples in Figures 6.9, 6.10, and 6.11). Such a tone mapping
method can be especially useful in those applications, where the visibility of small
details is paramount. For example, it could be used to reveal barely visible details in
forensic photographs or to improve the visibility of small objects in satellite images.

The results of the contrast equalization algorithm may appear like the effect of a sharp-
ening filter. Figure 6.12 shows that the result of the contrast equalization (b) results
in an image of much better contrast than the original image (a) while preserving low
frequency global contrast. Sharpening filters tend to enhance local contrast at the cost
of global contrast, which results in images that have flat appearance (c,d). Sharpening
filters also introduce ringing and halo artifacts, especially in the areas of high local con-
trast, such as the border of the window in Figure 6.12 (c,d). The results of the contrast
equalization algorithm are free of these artifacts.
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Figure 6.11: The linear rescaling of luminance in the logarithmic domain (left) compared with two
proposed contrast compression methods: contrast mapping (middle) and contrast equalization (right).

6.6 Application: Color to Gray

Color images can often lose important information when printed in grayscale. Take
for example Figure 6.14, where the sun disappears from the sky when only lumi-
nance is computed from the color image. The problem of proper mapping from color
to grayscale has been addressed in numerous works, recently in [Gooch et al. 2005,
Rasche et al. 2005]. We implemented the approach of Gooch et al. [2005] since
their solution can be easily formulated within our framework. Their algorithm sep-
arately computes luminance and chrominance differences in a perceptually uniform
CIE L∗a∗b∗ color space for low-dynamic range. Such differences correspond to con-
trast values, G1

i, j, in our framework (the finest level of a Gaussian pyramid). To avoid
artifacts in flat areas (more on this in Section 6.9), their algorithm computes differences
between all pixels in the image, which is equivalent to considering for each pixel, xi,
all remaining pixels in the image as neighbors, x j. Next, each luminance difference
that is smaller than the corresponding chrominance difference is replaced with that
chrominance difference. The algorithm additionally introduces parameters that control
polarity of the chrominance difference, and the amount of chromatic variation applied
to the luminance values. Finally, they formulate an optimization problem that is equiv-
alent to Equation 6.7 restricted to the finest level of a pyramid (k = 1). The result of the
optimization gives a gray-scale image that preserves color saliency. The authors show
that their method produces results without artifacts for a broad range of images.

The algorithm, while giving excellent results, is prohibitively computationally expen-
sive and feasible only for very small images. This is because it computes differences
(contrast values) between all pixels in an image, what gives a minimum complexity of
O(N2) regardless of the optimization method used. The number of considered differ-
ences can be limited, however at the cost of possible artifacts in isoluminant regions.
Our framework involves a more efficient approach, in which the close neighborhood
of a pixel is considered on fine levels of a Gaussian pyramid while far neighborhood
is covered on coarser levels. This let us work with much bigger images and perform
computations much faster.
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Figure 6.12: The contrast equalization algorithm compared with sharpening filters. (a)
the original image; (b) the result of contrast equalization; (c) the result of a ’local
adaptation’ sharpening; (d) the result of a sharpening filter.

Following [Gooch et al. 2005] we transform input images into a CIE L∗a∗b∗ color
space. Then, we transform each color channel into a pyramid of contrast values using
Equation 6.6 (but xk

i denotes now the values in color channels). Next, we compute the
color difference:

‖∆Ck
i, j‖ =

√

(G(a∗)k
i, j)

2 +(G(b∗)k
i, j)

2 (6.19)

and selectively replace G(L∗)k
i, j with a signed ‖∆Ck

i, j‖, like in [Gooch et al. 2005].
We consider difference values for each level of a Gaussian pyramid and for 20–30
neighboring pixels. There is no need to apply the transducer function to the data. The
reconstructed images can be seen in Figures 6.13 and 6.14. We achieve images of
similar quality as [Gooch et al. 2005], but at a significantly lower computational cost.
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Figure 6.13: Examples of a saliency preserving color to gray mapping. Left – original
image; center – luminance image; right – the result of the color to gray algorithm.
Images courtesy of Jay Neitz(top) and Karl Rasche(bottom)

6.7 Image Reconstruction from Contrast

In this section we give an efficient solution to the optimization problem stated in Sec-
tion 6.3.1. By solving the optimization problem, we can reconstruct an output image
from modified contrast values.

The major computational burden of our method lies in minimizing the objective func-
tion given in Equation 6.7. The objective function reaches its minimum when all its
derivatives ∂ f

∂xi
equal 0:

∂ f
∂xi

=
K

∑
k=1

N

∑
i=1

∑
j∈Φi

2pk
i, j(x

k
i − xk

j − Ĝk
i, j) = 0 (6.20)

for i = 1, . . . ,N. The above set of equations can be rewritten using a matrix notation:

A ·X = B (6.21)
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Figure 6.14: An example of a saliency preserving color to gray mapping. Left – original
image; center – luminance image; right – the result of the color to gray algorithm.
Image: Impressionist Sunrise by Claude Monet

where X is a column vector of x1, . . . ,xN , which holds pixel values of the resulting im-
age, A is an N×N square matrix and B is an N-row vector. For a few mega-pixel images
N can equal several million and therefore Equation 6.21 involves the solution of a huge
set of linear equations. For a sparse matrix A a fast solution of such a problem can be
found using multi-grid methods. However, since we consider contrast at all levels of a
Gaussian pyramid, the matrix A in our case is not sparse. From the visualization of the
matrix A (see Figure 6.15), we can conclude that the matrix has a regular structure, but
certainly cannot be considered sparse. Such multi-resolution problem seems to be well
suited for the Fourier methods [Press et al. 2002, Chapter 19.4]. However, the problem
cannot be solved using those methods either, since they require matrix coefficients to
be of the same value while the constant factors pk

i, j introduce variations between ma-
trix coefficients. We found that the biconjugate gradient method [Press et al. 2002,
Chapter 2.7] is appropriate for our problem and gives results in acceptable time. The
biconjugate gradient method is normally considered to be slower than more advanced
multi-grid methods, however we found that it converges equally fast for our problem.
This is because the structure of the A matrix enforces that iterative improvements are
performed for all spatial frequencies of an image, which is also the goal of multi-grid
methods. The biconjugate gradient method is also often used as a part of a multi-grid
algorithm.

Figure 6.15: Visualization of the matrix A, which is involved in the solution of the
optimization problem for a 1-mega-pixel image. White color denotes zero coefficients,
which increase in magnitude with darker colors. Gray corresponds to positive and
green to negative coefficients.
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The biconjugate gradient method involves an iterative procedure, in which an image
stored in the vector X is refined in each iteration. The attractiveness of this method
is that it requires only an efficient computation of the product Ψ = A ·X . For clarity
consider only the nearest neighborhood of each pixel, although the algorithm can be
easily generalized to a larger pixel neighborhood at moderate computational cost. The
contrast is computed between a pixel and its four neighbors within the same level of
a Gaussian pyramid. Let X k be a matrix holding pixel values of an image at the k-
level of a Gaussian pyramid. Then, we can compute the product Ψ using the following
recursive formula:

Ψk(Xk) = Xk ×L +upsample[Ψk+1(downsample[X k])], (6.22)

where Xk is a solution at the k-th level of the pyramid, the operator × denotes convo-
lution, L is the kernel

L =





0 1 0
1 −4 1
0 1 0



 (6.23)

and upsample[] and downsample[] are image upsampling and downsampling opera-
tors. The recursion stops when one of the image dimensions is less than 3 pixels after
several successive downsamplings. The right-hand term B can be computed using an-
other recursive formula:

Bk(Ĝk) = Ĝk
:,x ×Dx+ Ĝk

:,y ×Dy+

+upsample[Bk+1(downsample[Ĝk])] (6.24)

where Ĝk is the modified contrast at the k-th level of the pyramid, Ĝk
:,x and Ĝk

:,y are the
subsets of contrast values Ĝk for horizontal and vertical neighbors, and Dx, Dy are the
convolution kernels:

Dx =
[

1 −1
]

Dy =

[

1
−1

]

(6.25)

For simplicity, we did not include the coefficients pk
i, j in the above equations. Note

that if only the first level of the pyramid is considered, the problem is reduced to the
solution of Poisson’s equation as in [Fattal et al. 2002]. To account for the boundary
conditions, we can pad each edge of an image with a line or column that is a replica of
the image edge.

6.8 Reconstruction of Color

Many applications, including the majority of tone mapping algorithms, focus on the
processing of luminance while chrominance is transferred from an original image. The
goal is to preserve the same perceived hue and color saturation while altering lumi-
nance. Hue can be easily preserved if a color space that decorrelates chrominance from
luminance is used (such as LHS or Yxy). Preserving the perceived color saturation is
much more difficult since it is strongly and non-linearly correlated with luminance.
Additionally, the perceived color saturation may change if luminance contrast is mod-
ified. A transfer of color saturation seems to be a difficult and still unsolved problem.
Therefore, for the proposed tone mapping algorithms, we follow the method employed
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in most tone mapping algorithms, which involves rescaling red, green and blue color
channels proportionally to the luminance and desaturating colors to compensate for
higher local contrast. For each pixel, we compute:

Cout =
X − lmin + s(Cin −Lin)

lmax − lmin
(6.26)

where Cin and Cout are the input and output pixel values for the red, green or blue color
channel, Lin is the input luminance, and X is the result of the optimization (all values
are in the logarithmic domain). The resulting values Cout are within the range from 0 to
1. The parameter s is responsible for the saturation of colors and is usually set between
0.4 and 0.6. If Pk is k-th percentile of X and d = max(P50 −P0.1,P99.9 −P50), then
lmin = P50 − d and lmax = P50 + d. This way, the average gray level is mapped to the
gray level of the display (r = g = b = 0.5) and overall contrast is not lost due to a few
very dark or bright pixels. Note that fine tuning of lmax and lmin values is equivalent to
so called gamma-correction used as a last step of many tone mapping algorithms. This
is because a power function in the linear domain corresponds to a multiplication in the
logarithmic domain: log(xγ) = γ · log(x). Equation 6.26 is similar to formulas proposed
by Tumblin and Turk [1999] but it is given in the logarithmic domain and includes a
linear scaling. The resulting color values, Cout , can be linearly mapped directly to the
pixel values of a gamma corrected (perceptually linearized) display.

6.9 Discussion

The proposed framework is most suitable for those problems where the best solution is
a compromise between conflicting goals. For example, in the case of contrast mapping
(Section 6.4), we try to compress an overall contrast by suppressing low frequencies
(low frequency contrast has large values and thus is heavily compressed), while pre-
serving details. However, when enhancing details we also lessen compression of over-
all contrast since details can span a broad range of spatial frequencies (the lower levels
of low-pass Gaussian pyramid) including low-frequencies, which are primarily respon-
sible for an overall contrast. The strength of our method comes from the fact that the
objective function given in Equation 6.7 leads to a compromise between the conflicting
goals of compressing low-frequency large contrast and preserving small contrast of the
high frequency details.

The minimization problem introduced in Equation 6.7 seems similar to solving Pois-
son’s equation in order to reconstruct an image from gradients, as proposed by Fattal et
al. [Fattal et al. 2002]. The difference is that our objective function takes into account
a broader neighborhood of a pixel (summation over j) and puts additional optimization
constraints on the contrast at coarser levels of the pyramid (summation over l), which
improves a restoration of low frequency information. When an objective function is
limited only to the finest level of the Gaussian pyramid (as it is done in Poisson’s equa-
tion), the low frequency content may be heavily distorted in the resulting image3. This
is illustrated on the examples of a 1-D signal in Figure 6.16 and a tone-mapped image
in Figure 6.17. In general, Poisson solvers may lead to the reduction (or even reversal)

3Loss of low-frequency contrast is also visible in Figure 3 in the paper by Fattal et al. [2002], where low
intensity levels of the left and middle peaks in the original image (a) are strongly magnified in the output
image (f), so that they eventually become higher than the originally brightest image part on the right side.
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Figure 6.16: When an original signal (upper left) is restored from attenuated gradients
(upper right) by solving Poisson’s equation (or integration in 1-D), the flat parts of the
restored signal are shifted relative to each other (lower left). However, if the minimiza-
tion constraints are set for multiple levels of the pyramid as in our proposed method,
the flat parts can be accurately restored although the sharp peaks are slightly blurred
(lower right).

of global low-frequency contrast measured between disconnected image fragments.
Other researchers have also noticed this problem. Gooch at al. [2005] experimented
with Poisson solvers and found that they do not work well for “large disconnected
isoluminant regions because they compute gradients over nearest neighbors, ignoring
difference comparison over distances greater than one pixel”. They overcome this prob-
lem by including a larger number of neighbors for each pixel in the objective function.
The importance of global contrast and the fact that considering only local contrast gives
wrong results was also discussed in [Rasche et al. 2005, Figure 2]. Our framework can
be considered as a generalization of the gradient domain methods based on Poisson
solvers. We consider larger neighborhoods for local contrast and also several levels of
a Gaussian pyramid for global contrast. Such an approach is both perceptually plau-
sible and computationally much more efficient than solving the optimization problem
for contrast values between all pixels in the image [Gooch et al. 2005].

Figure 6.17: The algorithm by Fattal et al. [2002] (left) renders windows panes of
different brightness due to the local nature of the optimization procedure. The con-
trast compression on the multi-scale contrast pyramid used in our method can maintain
proper global contrast proportions (right). Image courtesy of Greg Ward.

The most computationally expensive part of the proposed framework is the contrast-to-
luminance transformation. The solution of the minimization problem for 1–5 Mpixel
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images can take from several seconds to half a minute to compute on a modern PC. This
limits the application of the algorithm to off-line processing. However, our solution is
not much less efficient than multi-grid methods (for example [Fattal et al. 2002]) as
discussed in Section 6.7.

6.10 Conclusions and Future Work

In this chapter we presented a framework for image processing operations that work
in the visual response space. Our framework is in many aspects similar to the gradient
methods based on solving Poisson’s equation, which prove to be very useful for image
and video processing. Our solution can be regarded as a generalization of these meth-
ods which consider contrast on multiple spatial frequencies. We express a gradient-like
representation of images using physical and perceptual terms, such as contrast and vi-
sual response. This gives perceptual basis for the gradient methods and offers several
extensions from which these methods can benefit. For instance, unlike the solution of
Poisson’s equation, our pyramidal contrast representation ensures proper reconstruc-
tion of low frequencies and does not reverse global brightness levels. We also intro-
duce a transducer function that can give the response of the HVS for the full range
of contrast amplitudes, which is especially desired in case of HDR images. Other ap-
plications can also make use of the contrast discrimination thresholds, which describe
suprathreshold performance of the eye from low to high contrast. As a proof of con-
cept, we implemented two tone mapping algorithms and a saliency preserving color to
gray mapping inside our framework. The tone mapping was shown to produce sharper
images than the other contrast reduction methods. We believe that our framework can
also find many applications in image and video processing.

In the future, we would like to improve the performance of reconstructing the im-
age from the contrast representation, which would make the framework suitable for
real-time applications. We would also like to include color information using a repre-
sentation similar to luminance contrast. The framework could be extended to handle
animation and temporal contrast. Furthermore, the accuracy of our model can be im-
proved for the threshold contrast if the Contrast Sensitivity Function were taken into
account in the transducer function. A simple extension is required to adapt our frame-
work to the task of predicting visible differences in HDR images: since the response in
our framework is in fact scaled in JND units, the difference between response values of
two images gives the map of visible differences. One possible application of such HDR
visible difference predictor could be the control of global illumination computation by
estimating visual masking [Ramasubramanian et al. 1999, Dumont et al. 2003]. Finally,
we would like to experiment with performing common image processing operations in
the visual response space.



Chapter 7

Conclusions and Future Work

In the following sections we briefly summarize contributions of this dissertation, draw
conclusions and give an outlook on future work.

7.1 Conlusions

The main motivation of the work presented in this dissertation was to create a complete
HDR pipeline, from acquisition, through storage, to display. Together with the existing
solutions, the proposed algorithms form an end-to-end pipeline: we can acquire HDR
video sequences with HDR cameras, we can compress them using one of the proposed
video compression algorithms, and finally display them directly on an HDR display, or
on LDR display after applying tone mapping.

Our solutions are strongly influenced by aspects of human visual perception. Most of
the digital imaging algorithms are the result of a trade-off between quality (fildelity)
and performance (computational cost). The best compromise between these two con-
flicting goals can be found only if the human visual perception is taken into account.
Considered as an optimization problem, the human visual perception defines both
the boundary conditions (threshold characteristics) and the weighting factors (supra-
threshold characteristics) for this compromise. Many digital imaging problems lack a
well defined and objective goal. Due to the lack of such a goal, their only objective
is producing subjectively pleasing images. Computational models of the human visual
perception can help in defining an objective goal instead, making the objectives of the
results of the proposed solution measurable and therefore possible to evaluate.

The performance of the human visual system at contrast detection defined our objec-
tives for the derivation of the color space for HDR pixels (Section 5.3). The derived
color space gave the best trade-off between the quality (visibility of contouring arti-
facts) and efficiency (number of required bits), which made this color space well suited
for image and video compression. The proposed extension of MPEG-4, as the first of
this kind, demonstrated potentials of HDR video, which includes not only better repro-
duction on HDR displays, but also tone mapping that is selectable at playback and the
simulation of various perceptual and optical effects, such as glare, night vision and mo-
tion blur (Section 5.4). To facilitate a smooth transition from the traditional content to

133



134 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

HDR video material, we proposed the backward-compatible HDR MPEG compression
algorithm, which can efficiently encode HDR content together with its low-dynamic
range counterpart (Section 5.6). The key component of this compression algorithm
was a perceptually motivated filter for removing invisible noise.

Although a common practice is to evaluate video compression algorithms using the
simple mean-square-error or peak-to-signal-ratio metrics, which do not account for
the human perception factors, we took an effort to evaluate the proposed compression
algorithms using a visual difference predictor. The predictor models the early stages
of the human visual system to predict noticeable differences, for example between the
original and compressed image. To make such a predictor suitable for HDR content,
we extended the original implementation with models of eye optics, photoreceptors’
response and local adaptation, which play an important role in the perception of HDR
images (Chapter 4).

An understanding of the processing that is performed in the retina not only helps to
design better compression algorithms, but can also facilitate image editing. The pro-
posed framework for contrast-domain image processing mimics contrast processing in
the retina, including the non-linear response to contrast (Chapter 6). Images modified
within the framework do not suffer from contrast reversal artifacts, which makes this
framework especially suitable for contrast-enhancing tone mapping operators.

The solutions presented in this dissertation provide a set of tools for storage, editing
and quality assessment of HDR content. Many of the presented solutions are provided
together with a software implementation, which is available for download from the web
pages (more information on the software can be found in Appendix A). We believe
that the proposed algorithms together with the accompanying software can not only
facilitate further research on HDRI, but also find many practical applications.

7.2 Future Work

Since HDRI is a new field with much research taking place only recently, it is an
abundance of unsolved problems. Certainly, rendering of HDR images on a variety
of display devices (tone mapping) is still not fully solved and not necessarily a well
defined problem, despite the large number of recently published papers on this topic.
Although effective luminance range reduction algorithms has been proposed, the treat-
ment of color is not adequate. There is also a question how tone mapping should
automatically adjust its results to a display device and the viewing conditions. Another
important topic in the HDRI field is the standarization of common image and video
formats, so that the content could be easily exchanged between the applications. The
lack of standards can delay adoption of HDRI by the digital imaging industry.

There are also several improvements that we would like to introduce to the solutions
presented in this dissertation. The color space for HDR pixels can efficiently encode
luminance, but we are not satisfied with its performance for chrominance data. The
simplistic approach taken for the CIE uniform chromacity scales u′, v′ does not seem
to offer the best solution for our application. Chromatic information should probably
undergo a similar non-linear compression as luminance, which would be determined
by the color difference detection thresholds.
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Also, the performance of the proposed video compression algorithms can be improved.
For example, while testing the backward-compatible HDR MPEG compression, we
noticed that the proper choice of the reconstruction function has a major effect on
the compression performance. Different approaches for estimating the reconstruction
function should be validated on a range of test sequences to choose the best solution.
Also, significant bit-rate savings can be achieved without much loss of quality if an
encoder is allowed to distort video as long as the distortion are smartly concealed so
that they do not appear as artifacts. We observed this effect during sub-sampling of the
residual channel in the backward-compatible HDR MPEG compression.

The visual difference predictor for HDR images (HDR-VDP) requires further valida-
tion in subjective experiments. Especially the detection of differences on high contrast
stimuli, which cause glare and stimulate local adaptation effects, needs to be verified.

We presented only a limited number of applications for the contrast processing frame-
work. We believe that the framework can also be applied to other purposes, such as
image compositing, inpainting and non-photorealistic stylization.
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Appendix A

pfstools

Most of the traditional image processing libraries store each pixel using limited-precision
integer numbers. Moreover, they offer very limited means of colorimetric calibration.
To overcome these problems, we have implemented HDR imaging framework as a
package of several command line programs for reading, writing, manipulating and
viewing high-dynamic range (HDR) images and video frames. The package was in-
tended to solve our current research problems, therefore simplicity and flexibility were
priorities in its design. Since we found the software very useful in numerous projects,
we decided to make it available for the research community as an Open Source project
licensed under the GPL. The software is distributed under the name pfstools and its
home page can be found at http://pfstools.sourceforge.net/.

The major role of the software is the integration of several imaging and image format
libraries, such as ImageMagick, OpenEXR and NetPBM, into a single framework for
processing high precision images. To provide enough flexibility for a broad range of
applications, we have build pfstools on the following concepts:

• Images/frames should hold an arbitrary number of channels (layers), which can
represent not only color, but also depth, alpha, and texture attributes;

• Each channel should be stored with high precision, using floating point num-
bers. If possible, the data should be colorimetrically calibrated and provide the
precision that exceeds the capabilities of the human visual system;

• Luminance should be stored using physical units of cd/m2 to distinguish be-
tween the night- and the day-light vision;

• There should be user data entries for storing additional, application specific in-
formation (e.g. colorimetric coordinates of the white point).

pfstools are built around a generic and simple image format, which requires only a few
lines of code to be read or written from or to a data stream. The format offers arbitrary
number of channels, each represented as a 2-D array of 32-bit floating point numbers.
There is no compression as the files in this format are intended to be transferred in-
ternally between applications without writing them to a disk. A few channels have a
predefined function. For example, channels with the IDs ’X’, ’Y’ and ’Z’ are used to

151

http://pfstools.sourceforge.net/


152 APPENDIX A. PFSTOOLS

store color data in the CIE XYZ (absolute) color space. This is different to most imag-
ing frameworks that operate on RGB channels. The advantage of the CIE XYZ color
space is that it is precisely defined in terms of spectral radiance and the full visible
color gamut can be represented using only positive values of color components. The
file format also offers a way to include in an image any number of user tags (name
and value pairs), which can contain any application dependent data. A sequence of
images is interpreted by all “pfs-compliant” applications as consequtive frames of an
animation, so that video can be processed in the same way as images. The format is
described in detail in a separate specification1.

pfstools are a set of command line tools with almost no graphical user interface. This
greatly facilitates scripting and lessens the amount of work needed to program and
maintain a user interface. The exception is a viewer of HDR images. The main com-
ponents of pfstools are: programs for reading and writing images in all major HDR
and LDR formats (e.g. OpenEXR, Radiance’s RGBE, logLuv TIFF, 16-bit TIFF, PFM,
JPEG, PNG, etc.), programs for basic image manipulation (rotation, scaling, cropping,
etc.), an HDR image viewer, and a library that simplifies file format reading and writing
in C++. The package includes also an interface for GNU Octave, which is a high level
mathematical language similar to matlab. The GNU Octave interface offers an envi-
ronment for researching and prototyping HDR image and video processing algorithms,
similar to the matlab toolkits for the traditional imaging. The pfstools framework does
not impose any restrictions on the programming language. All programs that exchange
data with pfstools must read or write the file format, but there is no need to use any
particular library. The typical usage of pfstools involves executing several programs
joined by UNIX pipes. The first program transmits the current frame or image to the
next one in the chain. The final program should either display an image or write it to
a disk. Such pipeline architecture improves flexibility of the software but also gives
straightforward means for parallel execution of the pipeline components on multipro-
cessor computers. Some examples of command lines are given below:

pfsin input.exr | pfsfilter | pfsout output.exr

Read the image input.exr, apply the filter pfsfilter and write the output to
output.exr.

pfsin input.exr | pfsfilter | pfsview

Read the image input.exr, apply the filter pfsfilter and show the result in an
HDR image viewer.

pfsin in%04d.exr --frames 100:2:200 \

 | pfsfilter | pfsout out%04d.hdr

Read the sequence of OpenEXR frames in0100.exr, in0102.exr, ..,
in0200.exr, apply the filter pfsfilter and write the result in Radiance’s RGBE
format to out0000.hdr, out0001.hdr, . . .

pfstools is only a base set of tools which can be easily extended and integrated with
other software. For example, pfstools is used to read, write and convert images and
video frames for the prototype implementation of our image and video compression
algorithms. HDR images can be rendered on existing displays using one of the several

1Specification of the pfs format can be found at:
http://www.mpi-sb.mpg.de/resources/pfstools/pfs_format_spec.pdf

http://www.mpi-sb.mpg.de/resources/pfstools/pfs_format_spec.pdf
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implemented tone mapping algorithms from the pfstmo package2, which is build on
top of pfstools. Cameras can be calibrated and images rescaled in physical or colori-
metrical units using the software from the pfscalibration package3, which is also based
on pfstools. A computational model of the human visual system – HDR-VDP4 – uses
pfstools to read its input from multitude of image formats.

We created pfstools to fill the gap in the imaging software, which can seldom handle
HDR images. We have found from the e-mails we received and the discussion group
contacts that pfstools is used for high definition HDR video encoding, medical imaging,
variety of tone mapping projects, texture manipulations and quality evaluation of CG
rendering.

2pfstmo home page: http://www.mpii.mpg.de/resources/tmo/
3pfscalibration home page: http://www.mpii.mpg.de/resources/hdr/calibration/pfs.html
4HDR-VDP home page: http://www.mpii.mpg.de/resources/hdr/vdp/index.html

http://www.mpii.mpg.de/resources/tmo/
http://www.mpii.mpg.de/resources/hdr/calibration/pfs.html
http://www.mpii.mpg.de/resources/hdr/vdp/index.html
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