
Typed Open Programming

A higher-order, typed approach to
dynamic modularity and distribution

Preliminary Version

Andreas Rossberg

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Saarbrücken, 5. Januar 2007

Dekan: Prof. Dr. Andreas Schütze

Erstgutachter: Prof. Dr. Gert Smolka

Zweitgutachter: Prof. Dr. Andreas Zeller

ii

Abstract

In this dissertation we develop an approach for reconciling open programming – the development
of programs that support dynamic exchange of higher-order values with other processes – with
strong static typing in programming languages.

We present the design of a concrete programming language, Alice ML, that consists of a
conventional functional language extended with a set of orthogonal features like higher-order
modules, dynamic type checking, higher-order serialisation, and concurrency. On top of these
a flexible system of dynamic components and a simple but expressive notion of distribution is
realised. The central concept in this design is the package, a first-class value embedding a module
along with its interface type, which is dynamically checked whenever the module is extracted.

Furthermore, we develop a formal model for abstract types that is not invalidated by the
presence of primitives for dynamic type inspection, as is the case for the standard model based
on existential quantification. For that purpose, we present an idealised language in form of
an extended λ-calculus, which can express dynamic generation of types. This calculus is the
first to combine and explore the interference of sealing and type inspection with higher-order
singleton kinds, a feature for expressing sharing constraints on abstract types. A novel notion
of abstracton kinds classifies abstract types. Higher-order type and kind coercions allow for
modular translucent encapsulation of values at arbitrary type.

Kurzdarstellung

In dieser Dissertation entwickeln wir einen programmiersprachlichen Ansatz zur Verbindung
offener Programmierung – der Entwicklung von Programmen, die das dynamische Laden und
Austauschen höherstufiger Werte mit anderen Prozessen erlauben – mit starker statischer Typ-
isierung.

Wir stellen das Design einer konkreten Programmiersprache namens Alice ML vor. Sie
besteht aus einer konventionellen funktionalen Sprache, die um einen Satz orthogonaler Konzepte
wie höherstufige Modularisierung, dynamische Typüberprüfung, höherstufige Serialisierung und
Nebenläufigkeit erweitert wurde. Darauf aufbauend ist ein flexibles System dynamischer Kom-
ponenten sowie ein einfacher aber expressiver Ansatz für Verteilung verwirklicht. Zentral ist
dabei das Konzept eines Pakets (package), welches ein Modul in Kombination mit seinem
Schnittstellentyp in einen Wert einbettet, und bei der Extraktion des Moduls eine dynamis-
che Typüberprüfung vornimmt.

Weiterhin entwickeln wir einen theoretischen Ansatz zur Modellierung von abstrakten Typen,
welcher im Gegensatz zum herkömmlichen formalen Modell existentieller Quantifizierung auch
in Gegenwart dynamischer Typinspektion gültig ist. Zu diesem Zweck definieren wir eine
idealisierte Sprache in Form eines erweiterten λ-Kalküls, der dynamische Typgenerierung
ausdrücken kann. Der Kalkül kombiniert diese erstmals mit höherstufigen ”Singleton Kinds,
einem Sprachkonstrukt, welches Gleichheit von Typen ausdrücken kann. Zur Klassifizierung
abstrakter Typen werden Abstraktions-Kinds als verwandtes Konzept entwickelt. Höherstufige
Konversionen auf Term- und Typebene erlauben zudem die nachträgliche modulare Enkap-
sulierung von Werten beliebigen Typs.

iii

Zusammenfassung

Die zunehmende Verbreitung des Internets hat begonnen, die Struktur von Software nachhaltig
zu verändern. An die Stelle von in sich geschlossenen Programmen, die nur lokal operieren,
treten mehr und mehr offene Applikationen, die dynamisch Daten mit anderen Prozessen im
Netzwerk austauschen, oder von dort sogar neue Funktionalität beziehen. Das offensichtlichste
Beispiel für ein Programm dieser Kategorie ist ein Web-Browser.

Auf programmiersprachlicher Ebene erfordert dieser Paradigmenwechsel eine verbesserte Un-
terstützung offener Programmierung, zu der wir Konzepte wie Modularität, Dynamik, Porta-
bilität, Sicherheit, Verteilung und Nebenläufigkeit zählen. Nur wenige existierende Sprachen
sind bisher darauf ausgelegt. Zu ihnen gehören vor allem die zu diesem Zweck entwickelte
objektorientierte Sprache Java, die mittlerweile weite industrielle Verbreitung gefunden hat,
und die im akademischen Umfeld entwickelte nebenläufige Constraint-Sprache Oz. Diese setzt
entsprechende Konzepte noch weitaus konsequenter um, insbesondere durch die einheitliche
Repräsentation von Programmkomponenten und externen Daten, so dass beide beliebig gemis-
cht werden können.

Diese Dissertation widmet sich einem spezifischen Aspekt offener Programmierung, der bis-
lang von keinem der Vertreter auf befriedigende Weise gelöst wurde: der Kombination offener
Programmierung mit einem expressiven, starken Typsystem. Ein Typsystem ist ein in die Pro-
grammiersprache integriertes formales Werkzeug zur automatischen Verifikation bestimmter Pro-
grammeigenschaften. Es weist jedem Programmkonstrukt einen Typ zu, eine logische Formel,
die das bei Ausführung des Konstrukts zu erwartende Resultat klassifiziert. Die damit möglichen
Konsistenzprüfungen können die Zuverlässigkeit von Software verbessern. Moderne Program-
miersprachen bieten zudem die Möglichkeit, die Typstruktur um benutzerdefinierte, sogenannte
abstrakte Typen zu erweitern, welche die Festlegung gewisser Zugriffsbeschränkungen erlauben.
Wenn die Semantik der Programmiersprache verhindert, dass diese Zugriffsbeschränkungen um-
gangen werden können, so spricht man von Abstraktionssicherheit. Diese garantiert Modu-
laritätseigenschaften und steigert damit vor allem die Wartbarkeit von Programmen.

Typüberprüfungen erfolgen naturgemäss vor der Ausführung eines Programmes, üblicherweise
durch den Übersetzer der verwendeten Programmiersprache. Dadurch entsteht ein inhärenter
Konflikt mit offener Programmierung, da in einem offenen Ansatz im Allgemeinen nicht alle
Programmteile vorweg bekannt sind und analysiert werden können. Es ist deshalb unausweich-
lich, bestimmte Typüberprüfungen in die Laufzeit des Programms zu verlagern. Ein seit langem
bekannter Ansatz dafür ist die Einbringung eines speziellen universellen Typs Dynamic, der
Werte der Sprache gepaart mit ihrem jeweiligen Typ beinhaltet. Die Extraktion eines Wertes er-
folgt explizit und erfordert die Angabe eines oder mehrerer erwarteter Zieltypen, die dynamisch
abgeglichen werden. Leider haben sich Dynamics jedoch in der Praxis als zu unhandlich er-
wiesen. Zudem ergeben sich durch die Möglichkeit des dynamischen Typabgleichs semantische
Implikationen, die unter anderem die Abstraktionssicherheit abstrakter Typen beeinträchtigen.

Wir nähern uns diesen Problemen von zwei Seiten an. Zum einen beschreiben wir das Design
einer konkreten Sprache names Alice ML, welche typisierte offene Programmierung ermöglicht.
Dabei handelt es sich um einen Dialekt der funktionalen Sprache Standard ML, die durch einen
relativ kleinen Satz orthogonaler und hinreichen einfacher Sprachkonstrukte erweitert wurde.
Dabei handelt es sich zunächst um Pickling zum serialisierten Import und Export höherstufiger

iv

Werte, verschiedene Formen von Futures für die Synchronisation nebenläufiger Berechnungen,
sowie Module höherer Ordnung, welche die Sprache um wichtige Abstraktionsmöglichkeiten
ergänzen. Die meisten dieser Konstrukte sind bekannt und für sich gut verstanden, aber bisher
nicht in dieser Form und zu diesem Zweck in einem kohärenten Design integriert worden. Neu
ist ausserdem das zentrale Konzept von Paketen (packages), welches das Kernproblem der dy-
namischen Typisierung löst. Es ähnelt der Idee von Dynamics, jedoch werden nicht einzelne
Werte, sondern komplette Module eingebettet. Die feinkörnige Typunterscheidung weicht so
einem strukturellen Inklusionstest auf Modulschnittstellen, der robust gegenüber Erweiterun-
gen ist und eine Handhabung auf hohem Abstraktionsgrad erlaubt. Auf Grundlage dieser Ba-
siskonzepte definiert die Sprache einen flexiblen, typsicheren Begriff von Komponenten, der nicht
nur bedarfsgetriebenes dynamisches Laden ermöglicht, sondern Komponenten als Werte erster
Klasse verfügbar macht, die dynamisch berechnet und aus einem Prozess exportiert werden
können. Mit Hilfe dieser Idee wiederum ist ein vergleichsweise einfacher aber expressiver Ansatz
für verteilte Programmierung möglich, bei dem Verbindungen zwischen Prozessen durch den
initialen Austausch einer dynamisch berechneten Komponente aufgebaut werden. Das Konzept
von programmierbaren Komponentenmanagern erlaubt es dem Empfängerprozess dabei, gezielte
Sicherheitsstrategien durch Einschränkung der Importrechte für die empfangene Komponente zu
realisieren. Eine nahezu vollständige Implementation von Alice ML wurde realisiert und steht
als offene Software zur Verfügung.

Zum anderen entwickeln wir einen theoretischen Ansatz zur Modellierung von Typabstrak-
tion, der Abstraktionssicherheit auch in Gegenwart dynamischer Typinspektion sicherstellt. Zu
diesem Zweck führen wir eine idealisierte Formalisierung der Sprache Alice ML ein, die auf
dem polymorphen λ-Kalkül basiert. Sie modelliert zentrale Konzepte des Typ- und Modulsys-
tems: höherstufige Typen spiegeln Polymorphismus und parametrisierte Module wider, Singleton
Kinds können Gleichheit von abstrakten Typen ausdrücken (type sharing), ein Konditional über
Typen erlaubt Typinspektion und das Kodieren von Paketen, Subtyping und Subkinding erfassen
Schnittstelleninklusion. Zudem wird Pickling als spezielles Konstrukt eingeführt, welches das
Hantieren mit potentiell nicht-wohlgeformten Werten ermöglicht. Das wichtigste Merkmal ist
jedoch dynamische Typgenerierung, welche abstrakte Typen realisiert. Der Kalkül modelliert
damit erstmals die Interaktion von höherstufiger dynamischer Typabstraktion mit dynamis-
chem Typ-Sharing, welche zentral ist für die Typisierung von Alice ML. Typgenerierung geht
einher mit der neu entwickelten Idee von Abstraktions-Kinds, welche zur feinkörnigen Klassi-
fikation abstrakter Typen höherer Ordnung benutzt werden. Auf Termebene erlauben explizite,
höherstufige Konversionen (coercions) die nachträgliche Enkapsulation beliebig komplexer Ob-
jekte in punktuell abstrahierte Typen. Wir beweisen die Entscheidbarkeit des Typsystems, seine
Korrektheit in Bezug auf die operationale Semantik des Kalküls, sowie eine einfache Eigenschaft
von Abstraktionssicherheit.

v

vi

Contents

1. Introduction 1

1.1. Type Systems . 2

1.1.1. Type Abstraction . 3

1.2. Open Programming . 4

1.2.1. Java . 5

1.2.2. Oz . 6

1.3. Typed Open Programming . 6

1.3.1. Java . 7

1.3.2. Dynamics . 8

1.4. Contribution . 9

1.5. Structure . 11

I. Introducing Alice ML 13

2. Overview 15

2.1. Standard ML Heritage . 15

2.2. Extensions and Oz Heritage . 16

2.3. The Alice Programming System . 17

2.4. Summary . 17

3. Higher-Order Modules 19

3.1. Higher-Order Functors . 20

3.2. Local Modules . 23

3.3. Local and Abstract Signatures . 24

3.3.1. Local Signatures . 24

3.3.2. Abstract Signatures . 25

3.4. Related Work . 26

3.5. Summary . 27

4. Packages 29

4.1. Basics . 30

4.2. Persistence . 31

4.3. Dynamic Type Matching . 32

4.4. Dynamic Type Sharing . 33

4.4.1. Package Signature Refinement . 34

4.5. Parametricity . 35

4.5.1. Working Around Parametricity . 36

4.6. Abstract Types . 37

4.6.1. Internal and External View of Abstraction 38

4.7. Typeful Dynamic Programming . 39

4.8. Related Work . 41

vii

Contents

4.9. Summary . 41

5. Pickling 43

5.1. Pickles . 43

5.2. Type checking and verification . 44

5.3. Resources and Security . 47

5.3.1. State . 47

5.4. Abstraction Safety . 48

5.5. Transformations . 49

5.6. Modules . 50

5.7. Related Work . 51

5.8. Summary . 52

6. Futures 53

6.1. Concurrency . 54

6.1.1. Synchronisation . 54

6.1.2. Asynchronicity . 55

6.2. Laziness . 56

6.3. Failure . 57

6.4. Promises . 58

6.5. Locking . 60

6.5.1. Promises Revisited . 60

6.6. Modules . 61

6.7. Types . 62

6.8. Related Work . 63

6.9. Summary . 64

7. Components 65

7.1. Compilation Units . 66

7.1.1. Implicit import signatures . 67

7.1.2. Example: A simple stand-alone application 67

7.2. Computed Components . 67

7.2.1. Pickling Components . 71

7.3. Dynamic Linking . 72

7.4. Component Managers . 73

7.5. Resources and Sandboxing . 74

7.6. Decomposition of the Component System . 75

7.6.1. Components . 75

7.6.2. Examples . 76

7.6.3. Component Managers . 77

7.6.4. Program Execution . 79

7.7. Type Propagation . 80

7.8. Static Linking . 81

7.9. Related Work . 82

7.10. Summary . 86

viii

Contents

8. Distribution 87

8.1. Proxies . 88
8.1.1. Example: Remote References . 91

8.1.2. Proxy Failure . 92
8.2. Tickets . 92

8.2.1. Bi- and multi-directional Connections 93
8.2.2. Example: Chat Room . 94

8.3. Remote Execution . 95
8.3.1. Example: Distributed Search . 95

8.4. Safety . 97

8.4.1. Type Safety and Verification . 97
8.4.2. Resources . 98
8.4.3. Other Security Concerns . 99

8.5. Related Work . 99
8.6. Summary . 101

9. Implementation and Outlook 103

9.1. Architecture of the Alice System . 103
9.2. Other Language Extensions in Alice ML . 103
9.3. Limitations . 104
9.4. Future Work . 105

9.4.1. Possible Extensions . 105
9.4.2. Language Specification . 105
9.4.3. Implementation . 107

II. Theory 109

10.A Calculus for Components 111

10.1. Core Language: Higher-order Polymorphic λ-calculus 112
10.2. Modules: Existential Types and Higher-order Quantification 114
10.3. Type Sharing and Translucency: Singleton Kinds and Subtyping 117
10.4. Dynamic Typing: Type Analysis . 118

10.5. Loss of Parametricity and Abstraction Safety . 120
10.6. Abstraction Safety: Dynamic Generativity . 123
10.7. Sealing: Higher-order Coercions and Generativity 124
10.8. Pickling . 126
10.9. Summary . 127

11.The Type Language 129

11.1. Basic System . 129
11.1.1. Environments . 130
11.1.2. Kinds . 130
11.1.3. Types . 132
11.1.4. Terms . 136

11.2. Singletons . 136

11.2.1. Ground Singletons . 136
11.2.2. Higher-Order Singletons . 138
11.2.3. βη-Equivalences . 139

11.3. Abstraction Kinds . 140

ix

Contents

11.3.1. Singletons over Abstraction Kinds . 140

11.4. Algorithmic Formulations . 141

11.4.1. Type and Kind Equivalence . 141

11.4.2. Subkinding . 144

11.4.3. Kind Synthesis . 145

11.4.4. Subtyping . 146

11.5. Related Work . 148

11.5.1. Typed Lambda Calculi . 148

11.5.2. Singletons . 148

11.5.3. Type Names, Environment and Abstraction Kinds 149

11.6. Summary . 149

12.The Term Language 151

12.1. Typing . 151

12.1.1. Principality . 151

12.2. Reduction . 153

12.3. Type Analysis . 154

12.3.1. Semantics . 154

12.3.2. Packages . 155

12.3.3. Recursion . 156

12.4. Type Generation . 156

12.4.1. Type Heap . 156

12.4.2. Analysing Generated Types . 157

12.5. Coercions . 158

12.6. Pickling . 158

12.7. Algorithmic Type Checking . 159

12.8. Soundness . 160

12.9. Opacity . 161

12.10.Related Work . 162

12.10.1.Type Analysis and Dynamics . 162

12.10.2.Term Name Generation . 163

12.10.3.Abstraction Safety and Type Generation 164

12.10.4.Opacity and Proof Techniques . 165

12.11. Summary . 166

13.Higher-Order Abstraction 167

13.1. Higher-Order Generativity . 167

13.1.1. Type Generation . 168

13.1.2. Abstraction Kinds . 168

13.1.3. Type Coercions . 170

13.2. Higher-Order Type Coercions . 171

13.2.1. Semantics . 172

13.2.2. Monomorphic Coercions . 173

13.2.3. Polymorphic Coercions . 174

13.2.4. Abstract Coercions . 175

13.3. Kind Coercions . 176

13.3.1. Definition and Semantics . 177

13.3.2. Abstraction Kinds Revisited . 179

13.3.3. Type Coercions Revisited . 179

x

Contents

13.3.4. The Concrete Kind Restriction . 180

13.4. Properties . 181

13.4.1. Algorithmic Type Synthesis . 181
13.4.2. Soundness . 182

13.4.3. Opacity . 183

13.5. Sealing . 183
13.6. Discussion and Related Work . 185

13.6.1. Design Space . 185

13.6.2. Related Work . 186
13.7. Summary . 188

14.Conclusion and Future Work 189

14.1. Conclusion . 189

14.2. Future Work . 189

A. Calculus Summary 193

A.1. Basic System . 193
A.1.1. Syntax . 193

A.1.2. Derived Forms . 193

A.1.3. Static Semantics . 194

A.1.4. Derived Rules . 198
A.1.5. Dynamic Semantics . 199

A.2. Higher-Order Extensions . 199

A.2.1. Syntax . 199
A.2.2. Derived Forms . 200

A.2.3. Static Semantics . 200

A.2.4. Derived Rules . 201
A.2.5. Dynamic Semantics . 202

B. Encoding Modules 203

C. Proofs of Type Level Properties 207

C.1. Declarative Properties . 207

C.1.1. Preliminaries . 207

C.1.2. Validity and Functionality . 210
C.2. Derivable Rules . 218

C.2.1. Higher-Order Singletons . 218

C.2.2. βη-Equivalence . 222

C.3. Algorithmic Formulations . 223
C.3.1. Type Equivalence . 223

C.3.2. Subkinding . 229

C.3.3. Kind Synthesis . 230
C.3.4. Subtyping . 235

D. Proofs of Term Level Properties 243

D.1. Declarative Properties . 243

D.2. Algorithmic Type Checking . 245

D.3. Soundness . 247
D.3.1. Preservation . 247

D.3.2. Progress . 250

xi

Contents

D.4. Opacity . 252

E. Proofs for Higher-Order Abstraction 255

E.1. Kind Coercions . 255
E.2. Abstraction Kinds . 264
E.3. Higher-Order Generativity and Type Coercions 267

E.3.1. Declarative Properties . 267
E.3.2. Algorithmic Type Synthesis . 268
E.3.3. Preservation . 270
E.3.4. Progress . 275
E.3.5. Opacity . 277

E.4. Sealing . 277

F. Index of Propositions 279

xii

1. Introduction

Computing used to be a simple affair. A user sat down in front of a dedicated machine and fed
it a program whose task was to solve a well-defined problem. The computer executed the steps
dictated by the program, one after the other. It was not long, and programs became interactive,
had to react to the user’s input while running. But still, the user worked with a single machine,
and usually a single program at a time, and interaction largely followed linear paths.

And then came the Internet. . .

There no longer is such a thing as “a program”, running on “a computer”. Computers form
a world-wide network of communicating processes. Activities like surfing the Web consist of
concurrent interaction with countless processes, running simultaneously, on a large number of
distant and diverse machines. These processes have to exchange all kinds of functionality and
data to please anonymous users and handle their increasingly demanding requests. Sometimes
they may fail to do so, for a variety of challenging reasons. And a few of these processes even
turn out to be evil, trying to disturb the work of others on purpose!

The world of computing sure has become complicated.

Of course, we are vastly simplifying matters here, for sheer effect. But the point is: program-
ming in today’s world tends to be fundamentally different from what it used to be. Complex
issues like concurrency, distribution, failure, and security could largely be ignored in traditional
programming. They no longer can be today – programs now have to be open to communicate,
be extended, move around, adapt.

The primary tool for constructing programs is – and probably will be for a long time to come
– a programming language. So how have programming languages, and underlying concepts, been
adapted to these fundamental changes? The sad truth is, most of them have not. Or have only
in patched-up ways, which hardly appear adequate under scrutiny. And those languages that
do offer serious support for open programming usually pay with substantial compromises in
language design and semantics.

In this dissertation, we are trying to address some of the issues raised by an open approach to
programming. We present a language design that features a novel combination of programming
language concepts to support open programming in a coherent manner. We especially focus on
one central but critical feature of programming languages: their type system. A type system
helps to improve correctness and safety by performing automated consistency checks when a
program is translated. Our main objective is to explore ways to encompass the incomplete
type information available during translation of open programs, and ideally, to extend the type
system’s utility to the run-time of a program. Our thesis is as simple as the following:

Type systems can be reconciled with open programming without sacrificing their de-
sirable properties.

The remainder of this chapter is dedicated to explaining, in a little more depth, the purpose of
type systems and what their desirable properties are, our understanding of open programming,
and the difficulties in combining both. In due course, we will have a brief look at the current
state of the art in the programming language mainstream. Finally, we present our take on
attempting to improving this state.

1

1. Introduction

1.1. Type Systems

Most modern, high-level programming languages incorporate a type system. By that, we under-
stand a formal discipline according to Pierce’s definition [Pie02]:

A type system is a tractable syntactic method for proving the absence of certain pro-
gram behaviours by classifying phrases according to the kinds of values they compute.

This definition implies that a type system is inherently static. Nevertheless, we will sometimes
explicitly talk about static typing, to differentiate clearly from dynamically checked languages
like Lisp or Oz that are often characterised as “dynamically typed”, by slight abuse of terminology.
In accordance with standard literature [Car97b] we will classify the latter languages as untyped
(but safe).

The essence of static typing is to classify the objects used and computed in a program with
descriptive entities called types. Typing thus provides a method for statically stating and as-
serting certain invariants about program objects. It can also be used to express domain-specific
concepts and invariants on a more abstract level. If understood as a tool, the advantages of
static typing are hence many-fold:

• Specification. A program design largely consists of the specification of data structures
and operations. Types provide a precise language to express and communicate essential
information about such designs on varying levels of abstraction.

• Verified Documentation. Non-trivial programs are not understandable without a cer-
tain amount of inline documentation. Type annotations allow expressing a vital part of
this documentation within the programming language itself. That documentation can
never get “out of sync”, because it is checked by the compiler.

• Error Detection. A type system identifies and locates a large class of problems before
a program is run. The strong invariants thus provided also increase the locality of other
errors, reducing the search space for finding them. That becomes the more important the
more complex data structures and operators grow.

• Encapsulation. Large programs have to be decomposed into smaller entities of restricted
responsibility, usually called modules. In order to keep module interference manageable, all
interaction between modules should be explicitly restricted, so that individual modules can
establish internal invariants. Abstract types can enforce modular separation and interface
compliance.

• Maintenance. Modifying existing programs is a difficult task, because local changes
might require unanticipated adaption of remote program parts. A type checker often can
point out inconsistencies after program changes and extensions.

• Safety. A sound type system ensures that a program accesses the machine’s resources
in valid ways only. For instance, memory safety is a property which precludes access to
memory in uncontrolled ways that may lead to – potentially fatal – internal inconsistencies
or interference with other programs.

• Security. A rich enough type system can even ensure absence of certain security vi-
olations, like attempting access to delicate resources or restricted parts of the system.
Innovative type theories for purposes like this are an active research topic.

2

1.1. Type Systems

• Efficiency. A type-correct program is guaranteed not to encounter certain conditions
during execution. Some aspects of a runtime system can be simplified and made more
efficient by being able to ignore these conditions. Moreover, a compiler can make use of
the typing invariants derived for individual programs to generate specialised code.

It should be mentioned that a type system also is a useful tool for the language designer and
researcher: it provides a well-founded organisation principle for designing new language features,
as well as a formal framework for proving certain properties about language constructs.

Of course, nothing comes without a price, so there are well-known disadvantages to static
typing, which have caused even some recently developed languages to stay untyped:

• Restrictiveness. Every type system will rule out some useful programs.

• Inflexibility. A static type system usually prevents from testing and experimenting with
partially correct programs.

• Verbosity. Most type systems require some additional declarations on part of the pro-
grammer. This is particularly true for all type systems that do not support type inference
(which, unfortunately, still is common in the mainstream).

• Language Complexity. The requirement to have proper types associated with all lan-
guage constructs can complicate language design.

• Lack of Dynamicity. Some language features are inherently hard to type. In particular,
many dynamic concepts cannot be typed by purely static means.

The last item deserves particular attention. A type system crucially depends on enough informa-
tion being available statically (at compile time) to assert that program execution is well-behaved.
If a program may operate on structures about which no information is available in advance, then
no exhaustive checking can be performed. Unfortunately, this is precisely the crux of the open
programming scenario, as we will see in Section 1.2.

1.1.1. Type Abstraction

Type systems are particularly useful when it comes to organising larger programs. A program
that grows beyond trivial size has to be decomposed into modules. Proper modularisation
demands for the identification of suitable abstractions [Par72]. Types play an important role in
this game, which Reynolds [Rey83] defines as follows:

Type structure is a syntactic discipline for enforcing levels of abstraction.

Most prominently, the definition of abstract (data) types (ADTs) allows a user to explicitly
create her own abstractions within a program. Type abstraction defines a ‘new’ type, along
with a set of functions operating on values of that type. The type is considered different from
any other previously available type, and the defined operations are the only means to process it.
An abstract type is implemented by providing a representation type that determines how values
are actually represented, but this representation is hidden inside the implementation. Only the
operations that are part of the ADT implementation, can exploit that information.

The step of taking an implementation, and hiding the representation type via type abstraction,
is also called sealing in literature [Mor73b, HP05, DCH03].

Cardelli [Car91] coined the catch phrase typeful programming for programming with the help
of the type system, particularly through conscious use of type abstraction. Type abstraction
establishes two important properties [Mor73b]:

3

1. Introduction

• Authentication. Only the implementation can construct values of the abstract types.
This allows the implementation to maintain representational invariants that would oth-
erwise be difficult to enforce and had to be substituted by dynamic consistency checks.
Depending on the problem, such dynamic checks might be very costly, or even impossible
(for example, a time stamp generator can only be guaranteed to deliver fresh stamps by
authentication, not by dynamic checks on stamp values).

• Secrecy. Only the implementation can inspect values of the abstract types. The advan-
tage is that it enforces loose coupling between the abstraction and potential client code.
Clients cannot rely on internals of the implementation, which allows the implementation
to be changed or improved later, independently, with the guarantee not to break anything.

Together, these properties provide for a strong form of encapsulation. While encapsulation
can also be enforced by other means (e.g. by tagging with unforgeable names), type abstraction
is a particularly elegant approach, which, as an additional plus, has no operational overhead.

If the programming language semantics and the type system guarantee that the encapsulation
provided by type abstraction can never be breached, then the language is called abstraction safe.
Note that abstraction safety is a stronger property than mere type safety (but generally cannot
exist without the latter).

As a running example that we will discuss more concretely in later chapters, consider comput-
ing with complex numbers. For modularity, it is desirable to introduce a type complex of complex
numbers, plus a number of arithmetic operations to compute with them. However, there are at
least two ways to represent a complex number: either as a cartesian pair of real and imaginary
coordinates, or in polar representation, by a pair of magnitude and angle (or argument). The
particular choice of representation is a local implementation detail, client code should abstract
from it and not make any assumptions. Moreover, polar representation will usually work with
the invariant that the argument stays within the interval of [0, 2π[, so that equality is most
efficient to check. If the complex type is made abstract (and the language is abstraction safe),
both of these properties are trivial to enforce.

1.2. Open Programming

About ten years ago, most computer applications were still developed as closed programs. Such
a program is basically defined by a set of source files and probably accesses some local libraries.
The source files to compile and the libraries to link are all fixed when the application is built,
that is, before it is executed the first time. When running, such a program interacts with its
environment only in severely limited ways, accessing the operating system interfaces more or
less directly. Its primary means of communication is then by reading and writing raw sequences
of bytes from or to files and sockets.

Although today’s operating systems offer mechanisms for dynamic linking as well as more
structured means for exchanging information between applications, these mechanisms tend to
be low-level, system-oriented, and heavy-weight. They do not integrate well with programming
languages, and few languages do provide suitable abstractions that enable their seamless use.

But software is less and less often delivered as a closed, monolithic whole. As complexity and
integration of software grows, it becomes more and more important to allow flexible dynamic
acquisition of additional functionality. Also, program execution is no longer restricted to one
local machine only. With the Internet having gone mainstream and net-oriented applications
being omnipresent, programs become increasingly distributed across local or global networks.
As a result, programs need to exchange larger amounts of data, and the exchanged data is of

4

1.2. Open Programming

Closed programming Open programming

components fixed at development time added at runtime
interfaces known at compile time may change between runs
locations accessed at link time, local resolved at runtime, remote

origin trusted untrusted
import/export trivially structured arbitrary, higher-order

architecture homogeneous heterogeneous
failure potential small large

Figure 1.1.: Closed vs. open Programming

growing complexity. In particular, programs need to exchange behaviour, that is, data may
include code.

We refer to development for the described scenario as open programming. Our understanding
of open programming includes the following main characteristics:

• Modularity, to flexibly combine software blocks that were created separately.

• Dynamicity, to import and export software blocks in running programs.

• Portability, to run programs independent from platform issues.

• Security, to safely deal with unknown or untrusted software blocks.

• Distribution, to communicate data and software components over networks.

• Concurrency, to deal with asynchronous events and non-sequential tasks.

The table in figure 1.1 summarises a few characteristic differences between traditional closed
programming and the situation faced with open programming.

Today, open programming, specifically in the Internet context, is usually dealt with on a low
level, by mixing a plethora of ad-hoc languages and technologies that are only loosely integrated.
For example, average web pages are steamed by a code conglomerate of HTML, XML, PHP,
Perl, Python, Ruby, ECMAScript, SQL, Flash’s ActionScript, to name but a few. Significant
impedance mismatch, lots of boilerplate code and overhead, and communication based on the
lowest common denominator (usually text strings) are the consequences.

1.2.1. Java

Notwithstanding important precursors like CLU [LAB+79] and Modula-3 [CDG+91], whose
contributions we will value later, the programming language Java [GJS96] was the first general-
purpose language taking a consistent open-world perspective. It propagates the idea of loading
components (classes) dynamically, and from arbitrary Internet locations. Modularity is based
on the object-oriented paradigm, there is language support for safe communication with the en-
vironment and other applications through language-level objects. Java also has built-in support
for concurrency, which is essential for decentralised applications. Above all, these mechanisms
are platform-independent and hence allow the programmer to escape the lower realms of system
programming.

5

1. Introduction

As far as the programming language mainstream is concerned, Java heralded a shift of
paradigm: an application is no longer seen as a monolithic entity built from statically an-
ticipated components, but as a dynamic service process that acquires additional components as
the need arises.

On the other hand, many of the open programming concepts found in Java are quite conser-
vative and ad-hoc. In particular, its support for object exchange (serialisation) is comparably
primitive and does not directly encompass higher-order use cases that would require transmission
of code. The Remote Method Invocation protocol, RMI [WRW96], and other such frameworks
later added to Java to address inter-process communication, work around this by transmitting
class files separately if not available at destination site. But since classes are identified only by
name this is a rather fragile approach.

The most significant weakness of Java, however, and our main concern in the context of this
dissertation, is that its static type system is almost meaningless in the face of open programs,
as we will discuss in Section 1.3.1.

1.2.2. Oz

While Java certainly has pioneered the open programming idea in the mainstream, more
research-oriented languages have carried it further, seeking for more expressive and more prin-
cipled incarnations of the respective mechanisms. In particular, the concurrent constraint pro-
gramming language Oz [Smo95, VH04, Moz04] has become an important platform for investi-
gating and implementing related concepts in a practical context [DKSS98, Kor06].

Open programming in Oz is centered around generic support for pickling, which allows almost
arbitrary values (including procedures and their code) to be imported and exported by processes.
Based on pickling, Oz features a flexible component system with lazy dynamic linking, and rich
support for distributed programming. In particular, Oz pioneered the idea of representing
components as pickles.

The main omission of Oz is the lack of a static typing discipline. Oz has been designed as a
safe but untyped language to enable free experimentation with new ideas. As the language has
stabilized, an obvious question is how to reconcile the evolved concepts with a type system. In
brief, the practical part of our work is trying to give an answer to part of that question: in a
nutshell, it takes the essence of the open programming facilities found in Oz and developes a
typeful counterpart. Alice ML also improves on Oz by increasing simplicity and regularity of
the underlying concepts.

1.3. Typed Open Programming

The characteristics of open programming prevent full static type checking – at least some checks
have to be performed at runtime. For example, if a program loads an object from a file, the
compiler has no way of knowing in advance what actual type this object will have, since it
usually will have been constructed outside the respective program.

In this light it is not surprising that the most advanced support for open programming can be
found in “dynamically typed” languages, like Oz or Lisp/Scheme. These languages simply make
no assumptions about the type of anything, but instead perform dynamic checks every time an
operation is about to be performed that requires a value to have a certain shape. Consequently,
the aforementioned problem does not arise.

It should be noted however, that this approach is no Silver Bullet for open programming. Some
of the problems we will discuss exist in untyped languages as well. For example, unpickling is
unsafe in the current implementation of Oz, despite its dynamic checks – the run-time system

6

1.3. Typed Open Programming

// Database.java, version 1
class Database
{

Database(String path) { ... }
public void lock() { ... }
public void release() { ... }
...

}

// Database.java, version 2
class Database
{

Database(String path) { ... }
public void lock() { ... }
public void unlock() { ... }
...

}

// App.java
class App
{

public static void main(String[] args)
{

Database db = new Database(”/serve/my.db”);
db.lock();
// access data base...
db.release();

}
}

Figure 1.2.: Dynamic typing in Java

cannot guarantee that loaded code is well-formed, for example, because that would again require
some verification akin to type checking on the internal code format.

1.3.1. Java

When it comes to typed languages with support for open programming, the reference point
surely is Java, which we already introduced in the previous section.

With respect to typing, Java is interesting because it uses a hybrid approach: it has a static
type system, but also performs run-time checks like “dynamically typed” languages. The reason
is that the type system actually is too weak to really encompass open programming: class
types are essentially identified by their syntactic name only (more precisely, by name and class
loader [LB98]), and no assumptions are checked about a class signature when it is loaded.
Instead, checks are performed on individual method calls. That means that a class loaded at
run-time under the name C needs to bear no resemblance to the class found under the same
name at compile time. In an open program, invocation of a method of C may thus potentially
result in a NoSuchMethodError or a related exception, i.e. a dynamic type error [LY96].

The effect can be demonstrated with a simple example, shown in Figure 1.2. Assume there
are two classes, Database and App. The former implements an abstraction over database access,
which allows global locking of the database file. The latter is an application using that class.
There are two versions of the Database class: the first names the method to release a locked
database release, while in the latter version the name has been changed to unlock. Now assume
that the application has been compiled against version 1, but is run in the presence of version 2.
At run-time, it will happily load the updated Database class, open the database file ”/serve/my.db”,
and lock it. All these operations succeed, because the respective methods have not changed.
But when the application tries to release the database, it will encounter a NoSuchMethodError

exception, because the expected release method is not part of the class – leaving the database
file in locked state with no way to recover!

7

1. Introduction

The problem is that Java does not perform any structural check ensuring that App’s assump-
tions about the Database class are still valid before allowing access to it. The checks are done
only incrementally, but at that point it may already be too late. This is precisely the situation
a type system should prevent.

Technically, Java’s type system may hence be considered unsound in the presence of open pro-
gramming (although it is not unsafe – besides other dynamic checks, safety of dynamic loading
is ensured by a process called byte code verification). This lack of proper type soundness par-
ticularly has ramifications on inter-process communication through serialisation (via persistence
or RMI): classes are identified by name, but there is no guarantee that different sites (or one
site at different times) actual use the same classes. Unexpected deserialisation failures may be a
result, or worse, values may successfully deserialise, but fail to meet semantic invariants of the
local class implementation. In other words, Java cannot prevent accidental breach of abstraction
safety across process boundaries.

A simple but overly restrictive solution to this problem might be to hash class files with
a cryptographic checksum. This would rule out incompatible changes to a class, but also all
compatible changes, i.e. simple interface extensions. In an open programming scenario such
inflexibility is not desirable.

1.3.2. Dynamics

A more promising approach for integrating dynamic typing into a statically typed language has
been known for a long time: dynamics add the bits of dynamic typing necessary to embrace
operations like dynamic loading without compromising soundness of the type system. They have
first been suggested by Mycroft in an unpublished draft [Myc83] and later worked out in detail
by Abadi, Cardelli et al. [ACPP91].

The latter work proposes a single universal type called dynamic that is basically an infinite
sum of all (monomorphic) types. Values of this type are constructed by injection:

dynamic exp : τ

Projection then requires a case distinction over all types:

typecase exp of

x : int ⇒ expint

x : bool ⇒ expbool

x : α× β ⇒ exp×

x : α→ β ⇒ exp→

else exp′

Dynamics can be used to define interfaces for type-safe input/output of language-level values,
simply by restricting these I/O operations to values of type dynamic. For example,

write : string × dynamic → unit
read : string → dynamic

would be enough as a generic interface for persistence: because dynamic is a universal type, values
of any type can, in principle, be communicated under its hood. After retrieving a dynamic value
with read, it has to be inspected with typecase to check it against type expected by the application,
or take appropriate failure measures otherwise.

The significant advantage of dynamics, as opposed to the hybrid approach taken by Java, is
that they do not undermine the basic soundness properties of the type system. Dynamic typing
– and the potential for dynamic type failure – is completely isolated in the explicit typecase

construct. All other code is statically type-safe. The static type system does clearly indicate

8

1.4. Contribution

where knowledge about the type of values is limited, by assigning type dynamic. The boundaries
of static typing are thereby evident in a program.

There has been a range of follow-up work improving on dynamics, particularly by allowing
polymorphic content [LM93, ACPR95]. Later work has decoupled dynamic case switching on
types by introducing type analysis as a stand-alone construct [HM95, CWM98, TSS00, Wei02],
thereby allowing to reduce dynamics to values of existential type ∃α.α.

So, if everything is roses, why have dynamics not been widely adopted in typed programming
languages? Our view is that there are two main problems with dynamics that have prevented
their wide-spread adoption so far:

• Pragmatically, dynamics as proposed are too inconvenient for many applications. A gen-
eral type case with the ability to handle polymorphism is complex and sometimes not
straightforward to use. More seriously, it is too fine-grained for the purpose of open pro-
gramming, because it works on the granularity of single values. If one wants to transfer
a program component it is highly undesirable to require encoding its content in, say, a
single tuple value. Moreover, components may contain other entities than plain values,
that cannot be directly stored in a value. Furthermore, type case is too inflexible to be
used in evolving software systems, because the content type must be known very precisely
in order to unpack a dynamic. Subtyping would be very desirable, but raises coherence
issues in conjunction with a rich type case [ACPR95].

• Technically, the presence of dynamics (as well as general type analysis) destroys para-
metricity [Rey83, BFSS89, ACC93], a valuable property of polymorphically typed lan-
guages. Intuitively, parametricity means that an expression will always evaluate uniformly,
no matter how any of its free types is instantiated, i.e. evaluation does not depend on types.
That is a desirable abstraction property of polymorphism, for which Wadler coined the
slogan “theorems for free” [Wad89]. For example, in plain polymorphic lambda calculus,
a function of type ∀α.α → α is known to be the identity function. This is no longer true
with dynamics or more general forms of type analysis.

The loss of parametricity particularly affects the semantics of abstract types: in the
standard model of type abstraction, which is based on scoping of existential quantifi-
cation [MP88], abstraction safety is lost because the representation of an abstract type
can be rediscovered dynamically, effectively allowing the definition of casts between ab-
stract types and their representations. Lack of parametricity also has significant impact
on the implementation and efficiency of a language: because types become part of the
operational semantics, they can no longer be erased, as it is done in almost all practical
implementations of programming languages today. Instead, polymorphism requires a type
passing implementation.

Consequently, no practical programming language implements dynamics in their full beauty,
nor does any seriously use it for open programming. Some languages, namely Clean [Pv00],
Mercury [HCS+01], and the GHC implementation of Haskell [MPO02] incorporate simple vari-
ants of dynamics, but except for Clean they make no use of it in their libraries. The GHC
implementation of dynamics even is unsafe, as it is not primitive but uses user-defined strings
to identify types.

1.4. Contribution

In this dissertation we develop a concrete and realistic language design for typed open pro-
gramming. We focus on how typing interacts with open programming, primarily considering

9

1. Introduction

modularity and dynamicity. We also cover other aspects of open programming, like concurrency
and distribution, to a limited extent.

Our approach is based on the idea underlying dynamics, but does not suffer from the problems
described above. In particular, it is easier for the programmer to understand and more convenient
to use than dynamics. Furthermore, to reconcile it with type abstraction, we develop a semantics
for type abstraction that is not compromised by the lack of parametricity.

In detail, our contributions are the following:

• We describe the design of a concrete, non-toy language, Alice ML, which is based on
Standard ML [MTHM97], and incorporates a range of open programming features in a
coherent way. It thus combines a particularly strong type system with flexible support
for typed open programming. The presentation we give extends on previously published
work [RLT+06, Ros06].

• In particular, we introduce packages as a variation of dynamics that differ in that they
carry (potentially higher-order) modules instead of plain values. This allows to exchange
arbitrary bundles of objects in convenient ways. When unpacked, a package is matched
against an expected interface in an intuitive manner already known from the module
system. Moreover, it implies a natural notion of interface inclusion that makes these
checks robust against evolutionary changes.

• While we cannot avoid the loss of parametricity in principle, our language design confines
it to the module level – leaving parametricity intact for all uses of polymorphism occur-
ring in the underlying core language. That maintains “theorems” where they are usually
exploited, and allows for an efficient type erasing implementation.

• On top of packages and pickling we are able to define, as a layer of straightforward syntactic
sugar, a powerful system of first-class components similar to what is found in Oz. It
supports type-safe lazy dynamic linking, dynamic creation, and user-programmed linking
policies for security.

• We address the problem of abstraction safety (which still persists if parametricity is given
up for modules) by formulating a non-standard theory of abstract types in a calculus with
dynamic generation of fresh type names instead of existential quantification. Unlike previ-
ously published work [Ros03, Ros06], the calculus incorporates both type generation and
translucency, expressed by singleton kinds, and hence captures the essentials of advanced
module systems.

• The calculus employs coercions as a means of giving a reduction semantics for ADTs. By
generalising to higher-order coercions, we are able to recover the semantics of generative
sealing for creating abstractions a posteriori, as it is common in module systems. The
calculus seems to be the first that combines higher-order coercions with dependent and
singleton kinds, a combination that raises a number of technical difficulties.

• Our calculus also includes a simple but informative abstract semantics of pickling. That
allows us to identify two independent forms of dynamic checking that have to be performed
when unpickling.

• Our language design has been implemented in the Alice Programming System [Ali03],
which is a full-scale programming environment available as open source software. The
system is being used in research and teaching.

10

1.5. Structure

Altogether, these contributions show that typed open programming is indeed possible, thus
substantiating our thesis. Because our approach even maintains abstraction safety across pro-
cesses, we claim that it in fact enables typeful open programming (see Section 1.1.1). Moreover,
we believe that the design of Alice ML is elegant and convenient enough to also make it suitable
as a practical language for typed open programming, although a thorough evaluation of that
stronger claim lies beyond the scope of the thesis.

1.5. Structure

The rest of this dissertation will be split in two parts, developing our approach from two sides.
In Part 1 we address the practical side and present and motivate the design of the concrete

programming language, Alice ML. We incrementally introduce the relevant language concepts,
explaining their semantics informally, and demonstrating their use with concrete program ex-
amples. The notion of component is introduced as derived syntax on the language level.

• Chapter 2 gives a brief overview of the features of Alice ML and its relation to the under-
lying Standard ML (SML) programming language.

• Chapter 3 motivates and explains extensions to the SML module system.

• Chapter 4 introduces packages as the central means for dynamic typing.

• Chapter 5 describes pickling, the mechanism for importing and exporting higher-order
language values.

• Chapter 6 introduces futures, enabling light-weight concurrency and lazy evaluation.

• Chapter 7 presents the dynamic component system, and describes its decomposition into
a combination of the concepts from the preceding chapters.

• Chapter 8 explains the language’s approach to distributed programming, which again is
based on the concepts previously introduced.

• Chapter 9 gives a brief overview of the implementation and discuss possible future work
with respect to language design and implementation.

In Part 2 we will cover the theoretical side by developing a formal calculus and type system
modelling the essentials of this language. We distill the relevant concepts and put them into the
context of a standard higher-order typed λ-calculus, for which we prove soundness properties as
well as a moderate abstraction result. In this calculus, we can define sealing as derived syntax.

• Chapter 10 introduces the λω
SAΨ-calculus and motivates each of its features by relating it

to examples from Alice ML.

• Chapter 11 discusses the type language of the calculus, particularly the semantics of single-
ton kinds and the novel notion of abstraction kinds, and gives various properties, including
decidability.

• Chapter 12 discusses the term language and its operational semantics, with focus on dy-
namic typing and type generation, and gives a soundness result and an abstraction property
we call opacity.

• Chapter 13 extends the calculus with higher-order constructs to encompass higher-order
abstraction and shows how these constructs allow the encoding of higher-order sealing,
which is proved correct.

• Chapter 14 concludes and discusses possible directions for future work.

At the end of each chapter we discuss prior work related to the topic of the respective chapter.

11

1. Introduction

12

Part I.

Introducing Alice ML

13

2. Overview

The following chapters provide an overview of the functional programming language Alice ML.
Alice ML has been specifically designed to support typed open programming. It extends the
conventional feature set of functional languages with a novel combination of concepts supporting
concurrency, distribution, and particularly, type-safe import and export of program components
– that is, typed open programming. We present the central concepts of Alice ML, motivate
them with examples, and show how they play together as a coherent whole.

This presentation is not intended to be a language specification. We keep the description
informal and concentrate on the essentials of the semantics. Theoretic considerations are left to
the second and third part of this thesis, where we look at a more idealised language that lends
itself better to theoretic study. A formal specification of a significant subset of Alice ML is given
in a technical report [Ros05].

The material in this part of the thesis extends on previously published work describing aspects
of the design of Alice ML [RLT+06, Ros06]. We will discuss it along with other related work at
the end of each chapter.

To warm up, we start off in this chapter by giving a brief recap of Standard ML, on which
Alice ML is based, and summarise the extensions that Alice ML provides. We also introduce the
Alice Programming System [Ali03], that implements the Alice ML language. In the following
chapters we then present the key concepts of Alice ML in more detail: higher-order modules
(Chapter 3), dynamic typing with packages (Chapter 4), high-level import/export with pickling
(Chapter 5), concurrency with futures (Chapter 6), the component system (Chapter 7), and
distributed programming (Chapter 8). On the way, we introduce many of the open programming
facilities provided by the Alice library, which make use of all the aforementioned concepts.

2.1. Standard ML Heritage

Alice ML is a functional programming language in the tradition of ML, a family of typed
functional languages with pragmatic support for imperative programming. Alice ML has been
designed as a mostly conservative extension of the ML incarnation known as Standard ML
[MTHM97], or simply SML.

ML was originally developed in the late 1970s by Milner as a Meta Language for the LCF
proof-checking system [GMW79]. Over the years, its development brought three major innova-
tions to the field of programming languages: the introduction of polymorphic typing with type
inference [Mil78, DM82] (the same idea already had been discovered earlier in the context of com-
binatory logic [Hin69]), a parametric module system based on dependent types [Mac86, Mac84],
and rigorous formal specification of a complete language, the Definition of Standard ML
[MTH90, MTHM97].

Today, there are several implementations of Standard ML, plus a major dialect called Ob-
jective Caml [Ler03], which particularly adds a rich object-oriented sublanguage. ML enjoys a
prominent position in language research and teaching, thanks to its clean design and specifica-
tion, and the expressive yet robust higher-order semantics. The main features of the ML family
of languages as of today can be summarized as follows:

15

2. Overview

• Functional core. A higher-order functional language with a strict evaluation regime
constitutes the core language.

• Imperative features. Besides a pure functional subset, imperative constructs like ex-
ception handling and mutable references are available.

• Algebraic data types. User-defined data types come with a concise notation for pattern
matching.

• Polymorphic type system. A strong static type system provides parametric polymor-
phism and supports type inference.

• Parametric module system. The module system is a functional language on its own,
with strong support for encapsulation and parameterisation.

• Safe semantics. No program can ever “go wrong”, i.e. access computational resources
in an invalid or unsafe way.

Due to its clean formal specification, SML is a particularly well suited vehicle for programming
language research. Its comparatively expressive and well-studied type and module system is a
good match for exploring typed open programming. Consequently, Alice ML has been designed
as a conservative extension to the revised version of Standard ML, with some ideas borrowed
from Objective Caml.

Giving an introduction to Standard ML, or to functional programming in general, is out of
the scope of this work. We refer the interested reader to the available literature [Har06, Pau96,
Ull97, HR99]. In the following, we assume a working knowledge of SML, or some other dialect
of the ML family of languages. Where important, we will briefly summarize central concepts of
SML alongside our presentation of Alice ML.

2.2. Extensions and Oz Heritage

Alice ML has been designed as a conservative extension of SML. Most SML programs can be
readily interpreted as Alice ML programs. However, while Alice ML is backward compatible
with SML, it also features significant extensions:

• Futures. A future is a place-holder for a yet undetermined value, usually computed by a
concurrent thread. Different flavours of futures provide laziness, light-weight concurrency,
and promises, a restricted form of logic variable.

• Higher-order modules. Structures, functors, and signatures can be defined locally and
composed arbitrarily. In particular, signatures can contain signature members, and like
types, these may be abstract or concrete.

• Packages. Modules may be passed as dynamically typed first-class values by injecting
them into a special type known as package. A package value carries information about the
contained module’s signature. When accessing the package, the signature is verified by
a dynamic type check. Packages are the basis for type-safe persistence and distribution.
Thanks to higher-order modules, packages can contain arbitrary language entities.

• Pickling. A generic mechanism for import and export of language-level data structures,
including code. A pickle is a self-contained, platform-independent external representation
of an Alice ML value. The library interface to pickling is type-safe because it operates on
packages.

16

2.3. The Alice Programming System

• Components. Programs are decomposed into separate components that are connected
via import relations. Linking of imported components is performed dynamically and on
a by-need basis, and involves dynamic verification of signature assumptions. Components
are expressed in terms of packages, pickling and lazy futures.

• Distribution. Alice processes on different sites can connect to each other and safely
exchange almost arbitrary Alice data structures. Processes may create proxies to local
functions that, when applied, transparently perform a remote procedure call to the orig-
inal process. Futures play an important role to deal with asynchronicity and latency in
distributed programming.

Each of these concepts is realised by augmenting the basic language with only a few simple and
orthogonal, yet general and powerful constructs. These constructs extend the semantics of the
original language in considerable ways, while maintaining most of its valuable properties.

Most of the features specifically targeting open programming – i.e. pickling, components and
distribution – are inherited in one form or another from the concurrent constraint programming
language Oz [Smo95, VH04, DKSS98, Moz04]. We will discuss the relation where appropriate.

Packages and a strongly typed model of components are the primary features that are novel
to Alice ML and the main concern of this thesis. In the following chapters, we will introduce and
motivate all of the above features, because they all play together to enable open programming.
But because the design of packages and components is the main contribution of this thesis, we
will particularly focus on packages and components and the issues with dynamic typing that
they address.

2.3. The Alice Programming System

Alice ML has been implemented in a fully-featured programming system [Ali03]. Having at
hand not only a toy implementation, but a fully-featured prototype that allows playing with the
language under realistic conditions, proved immensely helpful during the design of Alice ML. The
Alice System provides a compiler for the full language, an efficient platform-independent virtual
machine with support for distributed programming, several interactive development tools, and
extensive libraries.

Another central feature of the Alice Programming System is its rich support for constraint
programming [Apt03, Sch02], based on the Gecode constraint programming library [Gec05,
ST05]. Since constraint programming in Alice ML is purely a library issue and does not require
special language support we will not discuss that aspect of Alice further in this thesis. We refer
the reader to the Alice documentation [Ali03] for details.

The first pre-version of Alice (still based on the Mozart Programming System [Moz04]) was
released in December 2002. The official 1.0 release of Alice followed in 2004, and there have
been regular updates since. The Alice Programming System is freely available as open source
software, and runs on all major platforms.

2.4. Summary

• Alice ML is a language designed for typed open programming.

• It is a mostly conservative extension of Standard ML.

17

2. Overview

• Notable extensions are future-based concurrency and laziness, higher-order modules, dy-
namically typed modules (packages), pickling, components, and distributed programming
features.

• Alice ML has been fully implemented in the Alice Programming System, which is available
as open source software.

18

3. Higher-Order Modules

Large-scale programming requires the ability to break down the complexity of programs, and
to avoid duplicating work for different programs or different parts of a single program. Hence,
modules allow the decomposition of programs into units that implement dedicated aspects of its
logic and functionality. They particularly support the definition of abstractions, which reduces
coupling and increases the potential for re-use in different contexts.

Modules thus play a central role in structuring ML programs. The ML module system still
defines the state-of-the-art in language design for typed modular programming. The following
is a brief summary of the main features of the SML module system:

• Structures are the basic form of module. They are containers that can carry arbitrary core
language entities, like values and types, as well as nested structures. Structure members
are named and can be accessed by dot notation.

• Signatures are the types of structures. They describe the members of a structure. Signa-
tures are translucent, that is, types can be described either concretely (transparent, mani-
fest) or abstractly (opaque). In the former case, the type equivalence is revealed, while in
the latter it is not. Every structure has a principal signature that is fully concrete.1

• Matching is subtyping on signatures. The subtyping relation consists of two dimensions:
enrichment allows a subsignature to extend a supersignature with additional members;
instantiation allows a subsignature to concretise types that are abstract in the supersig-
nature. The signature language contains syntax for refining a given signature along both
dimensions.

• Sealing is an operation that ascribes a signature to a structure, using the syntax strexp
:> sigexp. The identity of any type described abstractly in the signature is thereby hidden
outside the sealed structure. Sealing is said to be generative, because it effectively generates
new abstract types that are distinct from all others.

• Functors are (first-order) functions over structures. By applying a functor to a structure
a new structure is computed whose content and signature can depend on the supplied
argument. Functors are also said to be generative, because applying the same functor
twice to the same argument produces distinct abstract types, if the functor returns a
sealed structure.

• Stratification describes the fact that the module language is completely separated from
the core language. Core language expressions cannot contain module expressions and
declarations. Modules are solely a means for structuring large programs and describing
program architectures.

When it comes to open programming, good language support for modularity is essential. The
SML module system is quite advanced in comparison to most other languages, but still limited
by its restriction to first-order parameterisation and its stratified setup. Since the design of

1Although not all principal signatures are expressible in the surface syntax.

19

3. Higher-Order Modules

the original SML module system there has been a long line of work on extending its expressive
power (Section 3.4). Alice ML integrates some of that work by extending the module system of
SML in three ways:

• Higher-order functors. Functors can be arbitrarily nested and parameterised over other
functors.

• Nested and abstract signatures. Signatures can be wrapped in structures and be
specified abstractly.

• Local modules. Modules can be defined within core let expressions.

These extensions allow new and more flexible forms of abstraction. Modular techniques are
applicable at more fine-grained levels, which is particularly important for dealing with pack-
ages (Chapter 4). Simultaneously, the extensions generalise the module language such that it
is rendered more regular and compositional than in plain SML. Most importantly, structures
become a general container that can carry all sorts of language entities (values, types, modules,
signatures, even fixity directives). Again, this is crucial to the expressive power of packages, and
it is essential to the design of the Alice component system (Chapter 7).

Higher-order modules are neither new nor exclusive to Alice ML. Consequently, this chapter
only gives some motivation for adding them and an overview of their specific design in Al-
ice ML. Their semantics and theoretical underpinnings have been investigated extensively in
literature [HMM90, MT94, HL94, Ler95, DCH03, Rus98].

3.1. Higher-Order Functors

The module language of Standard ML is first-order: functors can take structures as arguments
and return structures as results, but they cannot accept or return other functors. Neither can
functors be put into structures. The first-order restriction on functors can sometimes hamper
modular design, even without the particular requirements of open programming.

Consider a conventional example: a compiler that consists of several phases (stages). Each
phase translates one intermediate program representation into another one, using some contex-
tual information. A suitable signature for describing a compiler phase might be the following:

signature PHASE =
sig

type in rep
type out rep
type context
val translate : context → in rep → out rep

end

A compiler is essentially a pipe of different phases. To construct it, we need a way to plug phases
together. We can achieve this by repeatedly applying a functor for composing two consecutive
phases:2

functor ComposePhases
(structure Phase1 : PHASE
structure Phase2 : PHASE where type in rep = Phase1.out rep) =

struct

type in rep = Phase1.in rep

2The Alice ML compiler itself is constructed this way.

20

3.1. Higher-Order Functors

type out rep = Phase2.out rep
type context = Phase1.context × Phase2.context
fun translate (c1, c2) = Phase2.translate c2 ◦ Phase1.translate c1

end

But what if each phase was additionally parameterised over some configuration structure? That
is, each phase was not a structure, but a functor of the type

CONFIG → PHASE

for some given signature CONFIG describing the configuration structure. In that case, the com-
position functor had to take such functors as arguments, plus the actual configuration structure
for passing it forth to its operands. In a first-order module system, we cannot express such a
composition functor.

Building on a long line of previous work that is briefly discussed in Section 3.4, Alice ML
extends SML’s module system to a full higher-order language. Structure expressions are gener-
alised to module expressions, that may consist of functor abstractions. A functor is a module
expression of the form

fct strid : sigexp ⇒ strexp

The new keyword fct denotes a module-level lambda, analogous to fn denoting a core-level lambda
in SML. A functor is applied using straightforward functional notation:

strexp1 strexp2

Figure 3.1 shows the basic syntax of Alice ML module expressions. Besides functor expressions,
it contains unpacking, which belongs to Alice ML’s package mechanism and will be discussed
in Chapter 4, and expression forms related to futures, explained in Section 6.6. The syntax
subsumes SML, but while SML separates the name spaces of structure identifiers and functor
identifiers, Alice ML gives up this distinction in order to have a natural treatment of higher-order
modules.3

Since structure expressions may consist of functors, a structure declaration may introduce
a functor in Alice ML.4 Functor declarations as known from SML have been degraded to a
derived form, very much like the core provides function declarations with fun as sugar for plain val

declarations. For convenience, they have been extended to support curried functors (Figure 3.2).

Along with modules themselves, the signature language has been extended to cover functor
signatures, as is appearent from Figure 3.1. Functor signatures are dependent types [Mac86], so
there needs to be a binder for the argument. We reuse the keyword fct for it:

fct strid : sigexp1 → sigexp2

If the binder is not needed, i.e. sigexp2 is not dependent on strid , a functor signature may be
abbreviated as

sigexp1 → sigexp2

3The merging of structure and functor name spaces introduces an incompatibility with SML. However, it rarely
seems to matter in practice. The alternative route taken by Moscow ML [RRS00], which makes syntactic
distinctions to keep the name spaces apart, was considered but regarded too subtle.

4Nevertheless, the keyword structure and the syntactic classes strid , strexp, etc. have been inherited unchanged
from SML, although module would have been more appropriate – a new declaration phrase either had intro-
duced unnecessary syntactic redundancy, or sacrificed compatibility with SML.

21

3. Higher-Order Modules

strexp := longstrid module identifier
struct dec end structure
fct strid : sigexp ⇒ strexp functor
strexp strexp functor application
let dec in strexp end local declaration
strexp : sigexp ascription
strexp :> sigexp sealing
unpack exp : sigexp unpacking
lazy strexp lazy evaluation
spawn strexp concurrent evaluation

sigexp := longsigid signature identifier
sig spec end structure
fct strid : sigexp → sigexp functor
sigexp where type tyvarseq longtycon = ty specialisation

Figure 3.1.: Module and signature expressions in Alice ML

Figure 3.2 defines the meaning of this and other derived forms. In particular, we allow abbre-
viating structures and signatures by just enclosing them in parentheses instead of a keyword
pair, a generalisation of SML’s derived forms for functor arguments that comes naturally with
higher-order modules and currying and is convenient in conjunction with packages (Chapter 4).

With functor expressions and signatures, the module language represents a higher-order func-
tional language. We can now formulate the desired higher-order version of the phase composition
functor. For convenience, we make it a curried definition:

functor ComposePhases
(type in rep; type inter rep; type out rep)
(MkPhase1 : CONFIG → PHASE where type in rep = in rep and out rep = inter rep)
(MkPhase2 : CONFIG → PHASE where type in rep = inter rep and out rep = out rep)
(Config : CONFIG) : PHASE =

let

structure Phase1 = MkPhase1 Config
structure Phase2 = MkPhase2 Config

in

struct

type in rep = Phase1.in rep
type out rep = Phase2.out rep
type context = Phase1.context × Phase2.context
fun translate (c1, c2) = Phase2.translate c2 ◦ Phase1.translate c1

end

end

A remaining nuisance is the need to add the auxiliary type parameters in rep, out rep and
inter rep to denote the resulting input/output representations as well as the intermediate repre-
sentation shared between both phases. Without making inter rep explicit, type sharing between
the two phase parameters could not be expressed. Without making in rep and out rep explicit,
type sharing between the parameters and the functor’s result signature could not be expressed
(the result signature is implicit in this example, but it is clear that without the constraints
on the MkPhase functors, the resulting types Phase1.in rep and Phase2.out rep would be fresh and

22

3.2. Local Modules

Derived form Equivalent form

(dec) struct dec end

(spec) sig spec end

fct (spec) ⇒ strexp fct strid : (spec) ⇒ strexp ′ (∗)
fct (spec) → sigexp fct strid : (spec) → sigexp′ (∗)
sigexp1 → sigexp2 fct strid : sigexp1 → sigexp2 (∗)
functor strid (arg1) . . . (argn) structure strid = fct arg1 ⇒ . . . fct argn ⇒

〈:〈>〉 sigexp〉 = strexp strexp 〈:〈>〉 sigexp〉
functor strid (arg1) . . . (argn) structure strid : fct arg1 → . . . fct argn →

: sigexp sigexp

(∗) The module identifier strid is fresh. Any identifier id bound in spec is replaced by strid .id

in strexp (respectively, sigexp), yielding strexp ′ (respectively, sigexp′).

Figure 3.2.: Syntactic sugar for Alice ML modules

fully abstract). Both of these limitations are a consequence of Alice ML not supporting ap-
plicative functors. Were the latter available, the composition functor could be formulated more
succinctly:

functor ComposePhases
(Config : CONFIG)
(MkPhase1 : CONFIG → PHASE)
(MkPhase2 : CONFIG → PHASE where type in rep = MkPhase1(Config).out rep)
: PHASE =

let ... (* as before *)

Here, the language has been extended to allow type identifiers that contain functor applications,
like MkPhase1(Config).out rep above. Obviously, such notation only makes sense if the functor is
applicative, i.e. each application delivers the same abstract type identities – in contrast to SML’s
generative functors, where each application generates new type names. Although the example
demonstrates the usefulness of applicative functors, the need for them does not appear to be
very pressing in practice. We hence left the addition of applicative functors for future work.

3.2. Local Modules

Standard ML consists of two sublanguages: the core language that contains all the usual elements
of a functional programming language, and the module language, which sits on top of it. Both
sublanguages are strictly separated. In particular, core expressions cannot contain any module
expression – they may only refer to structure names in scope.

Alice ML relaxes the strict stratification and allows modules to be declared in local let expres-
sions. This change renders the language significantly more uniform.

The main purpose of local modules is to make working with packages (Section 4) feasible.
Packages are values that carry modules. The need to be able to define modules locally follows
immediately. We will see examples of this in Chapter 4.

Local modules can also be useful on their own. To see why, consider a function for ordering
and removing duplicates from string lists, where the ordering is given as a parameter. Such a
function can be easily implemented given an appropriate library functor for representing ordered
sets and the ability to define modules locally:

23

3. Higher-Order Modules

fun sortWithoutDups compare =
let

structure Set = MkRedBlackSet (type t = string; val compare = compare)
in

Set.toList ◦ foldr Set.insert Set.empty
end

Note that due to the higher-order nature of the module language, even functors can be defined
locally.

Another argument for local modules is catching exceptions. Module expressions may raise
exceptions stemming from contained core expressions, failed module futures (Section 6.6), or
dynamic type mismatches of packages (Chapter 4). Especially packages can cause module-level
exceptions regularly, and they have to be handled programmatically. In SML, there is no way
to handle such exceptions, they will always propagate to the toplevel and cause the program
to terminate abnormally. With local modules on the other hand, it is often possible to wrap
exception handlers around module declarations.5 In the following example, suppose the Init

functor may fail with an exception.

structure Helper = Init ()
fun f (x, y) = Helper.f (x, 2*y)

It is not possible to catch the potential exception – the program will just terminate, probably
with printing a cryptic message about an uncaught exception. Such behaviour is only slightly
better than the sort of uncontrolled crashes more low-level languages are infamous for. With
local modules, the program can be rewritten to provide more user-friendly behaviour:

val f =
let

structure Helper = Init ()
in

fn (x, y) ⇒ Helper.f (x, 2*y)
end

handle e ⇒ (print ”initialisation failed, please try again later\n”;
OS.Process.exit OS.Process.failure)

A refined design might even perform several retries for applying the functor.

3.3. Local and Abstract Signatures

Signatures are the types of modules. Like for core types, SML allows declaring named signatures
for convenience. Unlike types, signatures may only be declared at the toplevel, and not, for
example, as structure members.

3.3.1. Local Signatures

Alice ML removes any such restrictions on signature declarations. In the same way modules may
be declared anywhere, it is legal to put a signature declaration into local scope. A particular
consequence is that signatures may appear as structure members. And indeed, signatures may
be projected from structures, using long signature identifiers.

Consider a factory module that provides an interface for creating certain structures:

5A more expressive alternative might be to extend the module language with exception handlers. However,
we have not yet encountered practical examples that make the involved duplication in the language design
worthwhile.

24

3.3. Local and Abstract Signatures

structure Factory =
struct

signature SHAPE = sig type dim; ... end

functor New (type dim) : SHAPE = struct type dim = dim; ... end

end

The signature and functor might be accessed as follows:

structure Shape : Factory.SHAPE = Factory.New (type dim = int)

But what is the signature of the structure Factory containing SHAPE? In order to enable ex-
pressing it, the Alice ML signature language supports nested signatures, by providing signature
specifications. The signature of structure Factory might be specified as

signature FACTORY =
sig

signature SHAPE = sig type dim; ... end

functor New (type dim) : SHAPE where type dim = dim
end

Such a signature specification corresponds to a concrete type specification. That is, a structure
matches the signature FACTORY if and only if it defines an equivalent signature member SHAPE.

3.3.2. Abstract Signatures

So far, local signatures contribute mere convenience – for example, the ability to put signatures
into structures accounts for better name space management. Semantically, they could as well
be lifted to the toplevel, or inlined. However, Alice ML goes one step further by introducing
abstract signatures specifications that describe a nested signature abstractly:

signature sigid

An abstract signature specification can be matched by any signature definition, including functor
signatures.

Nested, and especially abstract signatures, are less standard than the previous higher-order
features we presented for modules. They increase the expressiveness of the module language
significantly, particularly by enabling us to define polymorphic functors, i.e. functors that can
operate on modules of arbitrary signature. The polymorphic Apply functor is an exemplification:

functor Apply (signature S; signature T) (F : S → T) (X : S) = F X

When the functor is applied, the desired signature instantiations have to be given explicitly,
determining the actual functor signature:

structure Set = Apply (signature S = ORDERED; signature T = SET) MkRedBlackSet Int

The Alice ML library contains several polymorphic functors to provide certain generic module-
level functionality. Most prominently, they are used in conjunction with packages (Chapter 4)
and components (Chapter 7). We will see an example of this in Section 8.1.

The addition of abstract signatures is not a trivial extension. The module language becomes
impredicative, as the following example demonstrates:

signature E = (signature S)
structure M = (signature S = E) : E

25

3. Higher-Order Modules

Essentially, we have introduced something close to Type : Type [ML71] into the system, which is
well-known to cause problems like non-termination, undecidable type checking, or even logical
inconsistency [MR86, Tv88]. In the presence of abstract signatures, type checking of an ML-like
module system becomes undecidable [Lil97]. For example, the following snippet will send the
type checking algorithm of the current Alice ML compiler into an infinite loop:

signature S =
sig

signature A
functor F (X : A) : sig end

end

signature T =
sig

signature A
functor F (X : S where signature A = A) : sig end

end

signature U = S where signature A = T

(* Try to check U ≤ T *)
functor Loop (X : U) = X : T

Our experience is that in practice the undecidable type checking of Alice ML is not a problem.
Examples like the above are contrived enough to not arise in practice. So far, we have not
encountered a single instance of an undecidable example in the wild. It should also be noted
that Objective Caml [Ler03] exhibits the same undecidability (for the same reasons), and its
compiler exhibits the same non-terminating behaviour when confronted with the respective
example. Nevertheless, experience seems to be similarly positive: no complaints from users
about the compiler not terminating on such programs have ever been reported. However, this
may be due to abstract signatures being extremely rare (probably non-existent) in Objective
Caml programs, so it may not be safe to draw strong conclusions from this observation.

3.4. Related Work

Since the ML module system has been proposed by MacQueen [Mac84], there always has been
the desire to lift its first-order restriction. However, at the time SML was defined, it was not
clear how to cope with type abstraction and sharing in the presence of higher-order functors.
Much effort has since gone into generalising functors to higher-order. First theoretical work
was done by Harper, Mitchell & Moggi [HMM90]. Tofte & MacQueen formalised the stamp-
based mechanism for higher-order functors that is implemented in SML of New Jersey [Tof94,
MT94]. A simpler and more satisfactory explanation was the translucent sum calculus by
Harper & Lillibridge [HL94, Lil97], which moved modules into a type-theoretic context. The
mostly equivalent concept of manifest types simultaneously developed by Leroy [Ler94, Ler95]
is the basis for the higher-order module system of Objective Caml.

Russo developed a theory for ML modules that is not based on dependent types [Rus99],
and was able to develop a practical design for modules as first-class values [Rus00]. Based on
Aspinall’s more general idea of singleton kinds for capturing type sharing [Asp97], the unified,
type-theoretic framework given by Dreyer, Crary & Harper [DCH03] subsumes most previous
work on modules and provides a satisfactory answer to most theoretic questions.

Harper & Lillibridge’s work unifies core and module language and hence subsumes abstract
signatures. They showed undecidability of type checking in such a system [HL94]. Moscow

26

3.5. Summary

MLton SML/NJ Moscow ML O’Caml Alice ML

higher-order functors – + + + +
applicative functors – – + + –
local modules – – + + +
local signatures – – + + +
abstract signatures – – – + +
first-class modules – – + – (+)

Figure 3.3.: Higher-order modules in different ML systems

ML [RRS00] also allows local signatures, but does not treat them as structure members, thus
avoiding undecidability, for the price of being less expressive: it can neither express the FACTORY

signature from Section 3.3, nor polymorphic functors.
The knowledgeable reader will realise that the higher-order module extensions of Alice ML

turn its module system into a higher-order functional language that closely mirrors the module
language of Objective Caml [Ler03, Ler94], except that functors are not applicative [Ler95].
Even abstract signatures are available in Objective Caml [Ler03], but are not formalised. As
already noted, their presence renders type checking for Objective Caml undecidable as well.

Regarding scenarios for the use of higher-order functors, Ramsey describes the design of an
extensible interpreter for the embedded language Lua, making intensive use of higher-order
modules [Ram05].

Several existing ML implementations provide higher-order extensions to the ML module sys-
tem. Figure 3.3 presents a quick overview for the major systems.

3.5. Summary

• The Standard ML module system is a first-order functional language layered on top of
core ML.

• Its main features are strong type abstraction and large-scale parameterisation.

• Module types are called signatures and provide structural subtyping and a simple form of
dependent typing.

• Based on previous work on higher-order modules, Alice ML generalises the module lan-
guage and removes the strict core/module stratification.

• It also extends the module type system with nested and abstract signatures, which enables
a form of module-level polymorphism.

27

3. Higher-Order Modules

28

4. Packages

ML style modules are an indispensable aid for large-scale programming, thanks to their ability
to express complex modular abstractions. They provide namespacing, encapsulation, genericity,
and architectural configuration in form of a small higher-order language with an expressive,
strong type system. Higher-order modules even provide a semantic and linguistic foundation for
non-trivial architectural programming, or programming-in-the-large.

However, all this expressive power is purely static: a program has to be a closed module
expression. That is, the program must be determined and provided in its entirety at compile
time, prior to running it (compile time may include static linking steps). The program’s module
expressions could actually be evaluated at compile time1, and some implementations of Standard
ML in fact do that [Els99]. Once built, configuration, functionality, and extent of a conventional
ML program is fixed – in other words, programs are closed. This situation is at odds with the
open programming scenario discussed in Section 1.2, where we identified the need to acquire
program components dynamically, without them necessarily being available, or even anticipated,
in advance. The ML module language provides nothing to address that need. Obviously, some
additional amount of dynamism is required, including the ability to defer some type checking to
runtime – in other words, we need some form of dynamic typing.

Alice ML employs the novel notion of package to resolve this tension. Packages complement
the static module and type system of SML with the necessary amount of dynamic typing to gain
the desired dynamic flexibility, while not compromising any of the advantages of static typing.
More precisely, they add two important capabilities to the language:

• Dynamic typing. The static type system is complemented with a flexible, controlled
form of dynamic typing.

• Modules as first-class values. Modules can be encapsulated as first-class values, en-
abling computations over modules.

Although this represents quite a dramatic change to the expressivity of the language, packages
come with the following properties:

• Type safety. Soundness and abstraction properties of the static type system are not
compromised.

• Economic design. Minimal conceptual overhead through maximal conceptual re-use.

• Idiomatic use. Well-understood idioms for module programming apply unchanged.

The package concept is a variation of the well-known idea of dynamics [ACPP91, LM93,
ACPR95, Dug99]. The main difference is that they carry modules instead of plain values.
As a consequence, they can reuse the module system’s flexible subtyping relation for dynamic
type checking, instead of necessitating a complicated typecase construct for matching types.

The presence of packages has severe implications on other aspects of the language. A closely
related but more technical contribution of our work on Alice ML hence is a refined semantics

1Local modules as available in Alice ML (Section 3.2) generally cannot be evaluated statically, though.

29

4. Packages

module package

pack

unpack

Figure 4.1.: Forming packages

for type abstraction through sealing. It is indispensable to make sealing coexist properly with
dynamic typing: abstraction safety should not be compromised. The issue has been largely
ignored in the various proposals for dynamics and related mechanisms in the literature. We will
discuss the problem in Section 4.6. A formalisation of the refined semantics is discussed in Part II
of this thesis. A formal semantics of packages and abstraction-safe sealing in the framework of
the Definition of Standard ML [MTHM97] can be found in a technical report [Ros05].

We note at this point however that due to other features, Alice ML cannot fully guarantee
abstraction safety either. More precisely, if and only if a value of abstract type is imported
from outside the process, then the type system can ensure its type safety but not integrity with
respect to the abstraction – the value may have been forged by extra-linguistic means. Such
forging is impossible within the language, however. Section 5.4 will discuss this problem.

4.1. Basics

Packages are the exclusive means for integrating dynamic typing into the statically typed uni-
verse of Alice ML. A package is a first-class value of the primitive type package. Intuitively, it
contains a module, along with a dynamic description of the module’s signature, which we call
the package signature. Package signatures exist only in the dynamic semantics, they are not
tracked by the static type system. That property sets packages apart from other proposals for
first-class modules [Rus00, DCH03], where the signature is always fixed statically.

There are only two basic operations on packages, depicted in Figure 4.2. A package is created
by injecting a module, expressed by a structure expression strexp (which may denote a functor,
Section 3.1) into the type package:

pack strexp : sigexp

This expression creates a package from the module expressed by strexp. The signature expression
sigexp defines the package signature. Of course, the module expression must statically match
this signature.

The inverse operation is projection, eliminating a package. The module expression

unpack exp : sigexp

takes a package computed by exp (which needs to have type package) and extracts the contained
module – provided that the package signature matches the target signature denoted by sigexp.
That is, unpacking performs a dynamic type check. If the dynamic check fails, the pre-defined
exception Unpack is raised.2 Statically, the whole expression has the signature sigexp.

For example, we can wrap the library structure Array into a package,

2In the current version of the Alice System that exception is named Mismatch.

30

4.2. Persistence

exp := . . .
pack strexp : sigexp packing

strexp := . . .
unpack exp : sigexp unpacking

Figure 4.2.: Syntax of packages

val p = pack Array : ARRAY

and unpack it successfully using the same signature:

structure Array’ = unpack p : ARRAY

Any attempt to unpack p with an incompatible signature will fail (but any supersignature will
be admissible, see Section 4.3). On the other hand, all subsequent accesses to Array’ or members
of it are statically type-safe, no further checks are required.

4.2. Persistence

Before we discuss the semantics of packages and dynamic typing in more detail, let us first take
a short detour to describe one of their main applications. Doing so allows us to continue the
presentation along more interesting and intuitive examples.

Our main motivation for dynamic typing is type-safe import and export. For example, with
packages, we can provide a type-safe interface to high-level persistence, i.e. I/O of language-level
data structures to an external medium [ACPP89, OK93]. In Alice ML, this interface consists of
two functions in the library structure Pickle:

val save : string × package → unit
val load : string → package

The save operation writes a package to a file of a given name. The inverse operation load

retrieves a package from a file. The file will contain a so-called pickle (Chapter 5), a self-
contained, platform-independent representation of the saved package. All pickle files contain
a single value of the type package – reducing the problem of dynamically checking the type of
imported values to the type checking performed by unpack. Since packages contain modules,
and modules can embed arbitrary language entities (values, types, higher-order modules, even
signatures), allowing only packages to be saved is not a restriction.

For example, instead of just wrapping the library module Array into a package as before, we
can write it to disk, using the following idiomatic code:

save (”array.alc”, pack Array : ARRAY)

As we will explicate in Chapter 5, the pickle contains the whole module, including its code! It
can be loaded – by the same process or a different one – by composing the inverse operations,
in reverse order:

structure Array’ = unpack load ”array.alc” : ARRAY

The obtained structure Array’ can now be used as a substitute for Array – it is an identical copy
(however, see Section 4.4 for the issue of type sharing). Again, all uses of Array’ are statically
type-safe. The only possible point of type failure is the unpack operation.

31

4. Packages

value module package file

struct pack save

loadunpackstrid .it

Figure 4.3.: Pickling values

The syntactic sugar for structures that was defined in Figure 3.2 is convenient for saving
single values. As a convention borrowed from SML’s top-level, we use the identifier it to name
the single value in the auxiliary structure:

save (”five.alc”, pack (val it = 5) : (val it : int))

Note how the inner pairs of parentheses abbreviate heavier occurrences of struct . . . end and
sig . . . end keywords. To load it, we have to name the auxiliary structure, though:

val five = let structure Five = unpack load ”five.alc” : (val it : int) in Five.it end

Figure 4.3 shows a diagram of the steps involved in making a value persistent and retrieving it,
as realised by the above program snippets.

We delay presentation of the gory details of pickling and its semantics until Chapter 5. For
now, the naive explanations given so far are sufficient preparation for more interesting examples
of packages in the remainder of the current chapter. Moreover, as it will turn out in Section 7.2,
save and load are not primitives, but are definable in terms of two more general functions that
support dynamic import and export of entire components.

4.3. Dynamic Type Matching

Packages are a fully conservative extension to SML. They complement the static type system
with dynamic typing. They do so without breaking the type system: all typing rules are still
sound, because unpack completely isolates dynamic typing. The type of an unpack expression is
statically determined by the explicit annotation. All subsequent uses of the resulting module
are statically safe, because unpacking will only succeed if the package signature meets the static
requirements. No further runtime type checks are necessary, nor can execution fail later due
to inconsistent type assumptions. This is in contrast to languages with dynamic typing in the
more conventional sense, where potentially every operation can fail due to type errors and hence
requires checking.

Dynamic type checking for packages is performed on signatures. Signatures describe inter-
faces, and support a rich notion of subtyping, often called matching in ML nomenclature. The
Definition of Standard ML [MTHM97] formalises it quite intuitively as a relation between envi-
ronments that consists of two dimensions:

• Enrichment. The more specific signature may contain more fields than the less specific
one.

• Instantiation. Abstract types in the less specific signature can be realised by concrete
types in the more specific signature.

32

4.4. Dynamic Type Sharing

Subtyping hence allows a great amount of flexibility with respect to composing modules. In
particular, it is robust against extension or specialisation of a module interface. That is essential
for adequately describing program architectures in a modular manner.

Obviously, robustness against future extensions is even more desirable in – potentially ever-
changing – dynamic applications. Packages provide it to a wide extent, by having the dynamic
type check verify the package signature up to the subtype relation. When a client process
retrieves a module from some external location, only minimum assumptions about its signature
need to be made. The provider of the module is free to replace it with a richer version, as long
as the new interface just extends or refines the previous one. All client code will continue to
work. In fact, even incompatible changes of the interface will work with clients that did not
make assumptions about that part of the module because they did not access it.

For example, consider a provider offering a package implementing efficient functional dictio-
naries over strings:

type α dict
val empty : α dict
val insert : α dict × string × α → α dict
val lookup : α dict × string → α option
val filter : (α → bool) × α dict → α dict

A client retrieves and unpacks the module as follows:

structure Rat = unpack load ”Dict” :
sig

type α dict
val empty : α dict
val insert : α dict × string × α → α dict
val lookup : α dict × string → α option

end

Note that the signature does not mention the filter function, since the client does not use it.
Consequently, the client will not break if the module one day is changed and extended to
support the following signature:

type α dict
val empty : α dict
val insert : α dict × string × α → α dict
val lookup : α dict × string → α option
val filter : (string × α → bool) × α dict → α dict
val adjoin : α dict × α dict → α dict

Neither the added function adjoin nor the modified type of the filter function will affect the client,
the signature still matches the one it assumed.

4.4. Dynamic Type Sharing

In Section 4.2 we claimed that the module Array’ obtained by pickling and unpickling the original
library module Array is an identical copy. Although that is true, there is a caveat: the ARRAY

signature contains the abstract type array. The way we unpacked it, the type Array’.array will
be statically incompatible with the original type Array.array. Since there generally is no way to
determine statically what type identities are found in a package, all abstract types in the target
signature must indeed be considered fully abstract – and hence different from any other – by the
(static) type system. The copy can hence only substitute the original as far as type compatibility
is not required.

33

4. Packages

However, type compatibility can be obtained easily – we just need to enforce it in the usual
ML way, namely by putting type sharing constraints on the target signature:

structure Array’ = unpack Pickle.load ”array.alc” : ARRAY where type array = Array.array

With this formulation, the type Array’.array is statically known to be equal to Array.array. Of
course, unpacking will only succeed if the package actually meets this requirement at runtime.

The constraint effectively expresses dynamic type sharing. By restricting the target signature
we ensure static compatibility, for the price of precluding successful use of non-standard imple-
mentations of arrays. Much like for programming with functors, it depends on the application
how much sharing is required. Section 4.7 will demonstrate more intricate uses of dynamic type
sharing.

4.4.1. Package Signature Refinement

There is a subtlety involved in the previous example: dynamic type sharing works as demon-
strated only because the package signature supplied with a pack expression is interpreted trans-
parently. That is, writing

val p = pack Array : ARRAY

actually is equivalent to

val p = pack Array : ARRAY where type α array = α Array.array

This behaviour mirrors the semantics of SML’s transparent ascription operator (:), but dy-
namically: the actual package signature is obtained by refining the ascribed signature with the
concrete types found in the respective module. Technically, dynamic selfification [HL94], or
strengthening [Ler94], is performed.

As we pointed out in [Ros06], it is worth noting that without the transparent interpretation,
the fragment

val p = pack Array : ARRAY
structure Array’ = unpack p

: ARRAY where type α array = α Array.array

would fail with an Unpack exception (as one would expect), but the contorted, yet seemingly
equivalent example

val p = pack Array : ARRAY
structure Aux = unpack p : ARRAY
val p’ = pack Aux : ARRAY where type α array = α Aux.array
structure Array’ = unpack p’

: ARRAY where type α array = α Array.array

would still succeed. Obviously, such pathological behaviour is neither desirable nor useful, thus
we chose the transparent interpretation.

In summary, the transparent interpretation maintains consistency between a package signature
and the contained module. That allows a package to be unpacked with the most specific type of
the contained module and saves the programmer from cluttering pack expressions with redundant
where constraints to achieve type propagation.

Note that, due to the presence of abstract signatures (Section 3.3.2), the necessary refinement
of the package signature cannot be determined statically in all cases. For example, consider a
functor that corresponds to an η-expansion of the pack operator:

34

4.5. Parametricity

functor Pack (signature S) (X : S) = (val it = pack X : S)

Applying that functor to Array,

val p = let structure P = Pack (signature S = ARRAY) Array in P.it end

should have the same effect as the previous definition of p. Obviously, this requires the signature S

to be dynamically refined inside the functor. Thus, package signatures are generally constructed
at runtime.

4.5. Parametricity

The integration of dynamic typing has a severe impact on the semantics of the language: by
utilising dynamic type sharing it is possible to dynamically test for type equivalences and have a
program behave differently depending on the outcome of such a test. Consequently, evaluation is
no longer parametric [Rey83, BFSS89, ACC93]. Intuitively, a polymorphically typed expression
is parametric if its evaluation is independent of the concrete type instantiation. A language is
said to be parametric if all polymorphism is parametric.

Parametricity is a valuable property for polymorphic languages, offering important advan-
tages:

• Type erasure. Programs can be compiled and executed without maintaining costly type
information at runtime.

• Theorems [Wad89]. Polymorphic types state strong invariants about terms, which allow
deriving a variety of useful laws.

• Abstraction [Rey83, MP88]. It is possible to achieve encapsulation solely by abstracting
or quantifying over types.

Looking closer, it is obvious that evaluation of modules cannot be parametric in the presence
of packages – the behaviour of unpack must depend on dynamic type information. However,
for Alice ML the semantics of dynamic types has been crafted such that the core language,
where polymorphism is ubiquitous, is not affected. In particular, unlike functors, polymorphic
functions are still fully parametric: the usual laws still hold, and they can be compiled using
standard type erasure techniques.

This nicely fits the syntactic setup of ML: on the module level, passing types is always made
explicit in the syntax. Core polymorphism, on the other hand, is completely implicit. Thus the
syntax provides a clear model to the programmer: only types explicitly supplied in a program, by
means of named type declarations, can potentially affect its operational behaviour, and induce
a cost.

In order to maintain parametricity for core polymorphism we need strict separation between
implicit and explicit types. More precisely, it is required that no operation consuming dynamic
types – i.e. unpack and sealing (Section 4.1) – may ever depend on the instantiation of a poly-
morphic type variable. Fortunately, this comes for free, thanks to ML’s syntactic treatment of
type variables: both these operations require a signature to be written explicitly. Signature ex-
pressions can only refer to other type and signature declarations (possibly nested in structures),
and there are only two places in type or signature declarations where type variables can occur:

1. in type declarations and specifications, where type variables on the right side always have
to refer to variables bound on the left side,3

3Actually, that very restriction is missing from the 1997 revision of the SML Definition [MTHM97], but its
absence has been confirmed as a mistake on part of the Definition, because it leads to unsoundness [Ros01].

35

4. Packages

2. in value specifications, where all type variables occurring in the type are interpreted as
universally quantified (except for exception specifications, where they are explicitly disal-
lowed).

Together, the closedness restriction on type declarations and the implicit local quantification in
value specifications ensure that no dynamic type can depend on a polymorphic type variable,
even with local modules (Section 3.2). That is a sufficient condition to maintain parametricity
in the extended language Alice ML. For instance,

fun α mypack (x : α) = pack (val it = x) : (val it : α) (* illegal! *)

will not type check, because the local α in the signature is considered locally quantified (and
hence different from the one bound at the surrounding declaration), and x does not have the
universal type ∀α.α. Neither is it possible to type the package by using an auxiliary type
declaration,

fun α mypack (x : α) =
let

type t = α (* illegal! *)
in

pack (val it = x) : (val it : t)
end

because the local type declaration for t, containing a free occurrence of α, is not allowed by the
SML Definition. There is no way to make the package signature refer directly or indirectly to
the polymorphic type variable α, therefore the package signature cannot depend on it.

4.5.1. Working Around Parametricity

Maintaining parametricity in the core language is not without drawback – there is a tension
between desirable properties and expressiveness. The fact that ordinary core-level evaluation
cannot directly depend on types may appear to be a severe restriction in some dynamic scenarios.
The expressive power of dynamic typing remains relatively limited, maybe too limited.

However, that objection can be diluted by the existence of work-arounds that allow emulating
most of the missing expressiveness:

• Local modules and higher-order functors (Chapter 3) often enable lifting polymorphic
function definitions to the module level, by turning them into functors. For example, the
function mypack from above can be reformulated straightforwardly as a functor:

functor MyPack (type t; val x : t) = (val p = pack (val it = x) : (val it : t))

Thanks to local modules, a functor formulation is possible even for local functions. How-
ever, this technique potentially requires turning all polymorphic functions up the call chain
into functors, which might quickly become unwieldy. Moreover, the module language is not
Turing-complete, so not all desired functions may be expressible (still, it contains System
Fω).

• A more general work-around is to abuse packages as means for communicating types and
modules as first-class values. By wrapping types into packages, they can be passed to core
functions, which may unpack them locally in order to perform consecutive dynamic type
operations. Of course, that approach could be deemed somewhat questionable, because
it essentially means evading the static type system and relying on dynamic typing more
than necessary.

36

4.6. Abstract Types

• If this should prove to be insufficient, adding conventional first-class modules [Rus00] to
the language would be a general solution.

So far, we have only encountered few interesting examples – in the context of what dynamic
typing in Alice ML is intended for – which needed to employ any work-around, and the former
two were adequate enough in those cases.

If the availability of non-parametric core functions should be deemed necessary, the advan-
tages of parametricity could still be generally maintained. Instead of abolishing parametricity
altogether, two kinds of type variables could be distinguished, namely conventional ones, which
stay parametric and can be erased, and dynamic ones, that can be used to represent dynamic
types. Parametric variables could be instantiated with types containing dynamic ones, but not
vice versa. Something similar has been proposed by Dubois, Rouaix & Weis to support generic
functions [DRW95]. It is relatively straightforward to extend ML type inference accordingly.

4.6. Abstract Types

An important purpose of a type and module system is erecting and statically verifying abstrac-
tion boundaries [Mor73b]. Type abstraction is the respective tool given to the programmer by
the type system. It also is the central feature of the ML module system, where it is supported
through sealing (Chapter 3). The ML type system guarantees abstraction safety : values of ab-
stract type can only be constructed and deconstructed by the implementation of the abstraction
itself. There is no means within the language that allows client code to break an abstraction.

As we saw in the previous section, Alice ML lacks full parametricity. In that situation,
type abstraction cannot be guaranteed by means of static scoping of type variables, as in the
standard models of abstract types that are based on existential quantification [MP88, Ros03].
The addition of dynamic typing thus raises an important question: Should dynamic typing be
required to respect abstraction? Or can we allow to explicitly overcome abstraction barriers by
means of dynamic typing?

Alice ML takes a clear stance: type abstraction is a central feature of the ML type system,
and no code should be able to sneak across an abstraction barrier. Abstraction safety shall be
maintained at all times. For example, consider an abstract type for generating time stamps:

signature STAMP = (eqtype stamp; val stamp : unit → stamp)
structure Stamp :> STAMP =
struct

type t = int
val state = ref 0
fun stamp () = (state := !state+1; !state)

end

The abstraction guarantees that every call to stamp actually delivers a fresh, distinct stamp.
Hence it is crucial that the following code cannot be executed successfully:

val p = pack (val x = 13) : (val x : int)
structure Fake = unpack p : (val x : Stamp.t)

If the unpack operation succeeded, we would have forged a bogus stamp value – the stamp proce-
dure would no longer be guaranteed to deliver distinct values. Hence we need unpack to fail in this
example. Apparently, this means that Stamp.t must be a type different from int – dynamically!

Alice ML achieves the desired semantics by employing dynamic generativity. That is, every
abstract type is represented by a dynamic type name, and this name is generated at runtime,
when the respective declaration is evaluated. In particular, sealing, i.e. evaluating a structure
expression of the form

37

4. Packages

strexp :> sigexp

generates a new name for every type specified abstractly in the signature sigexp. This happens
each time the expression is evaluated, hence the functor

functor MkStamp () :> STAMP =
struct

type t = int
val state = ref 0
fun stamp () = (state := !state+1; !state)

end

generates multiple distinct stamp types when applied multiple times – exactly as suggested by
the static semantics of SML.

Dynamic type names are globally unique. In general, this is necessary to avoid forging of
abstract values by other processes. Pickling (Section 4.2) allows arbitrary values to be made
persistent or be exchanged between different processes, and this includes values of abstract type.
In order to maintain abstraction safety, the type names generated in one process must hence be
different from any type name generated in any other process, at any time.

4.6.1. Internal and External View of Abstraction

Though the dynamic semantics of sealing and type generativity are relatively straightforward,
they can have subtle effects. In particular, sealing is performed after evaluating the sealed mod-
ule itself. Consequently, the module’s internals know nothing about the type names generated.
As statically, a dynamic type abstracted via sealing is fully transparent inside the abstraction.
Dynamic types crossing abstraction boundaries may hence not satisfy equivalences one might
naively expect. For example, after evaluating

structure M :> (type t; val f : t → string) =
struct

type t = int
fun f x = Int.toString x
val = Pickle.save (”m.alc”, pack (val it = 37) : (val it : t))

end

the type M.t, being opaque, is different from the type occurring in the signature of the package
written to the file, which is just int. Hence

structure It = unpack Pickle.load ”m.alc” : (val it : M.t)

will fail. On the other hand,

structure It = unpack Pickle.load ”m.alc” : (val it : int)

actually succeeds! Probably not what is desired. The problem is that there are two incompatible
views of an abstract type, the internal and the external one. The type system ensures that
the views are properly switched whenever a value of the abstract type crosses the abstraction
boundary. If we, like in the example above, sidestep the static type system by passing such a
value dynamically typed, then the type system cannot know about that. Abstractions need to
be implemented such that this does not happen.

Fortunately, occasions where the abstraction has to construct a dynamic value of abstract type
internally – like above – are rare. The desired effect can always be achieved by a two-staged
construction:

38

4.7. Typeful Dynamic Programming

structure M : (type t; val f : t → string) =
struct

structure Abs :> (type t; val it : t; val f : t → string) =
struct

type t = int
fun f x = Int.toString x

end

open Abs
val = Pickle.save (”m.alc”, pack (val it = Abs.it) : (val it : Abs.t))

end

In general, the main implementation of an abstraction would go into a sealed, inner auxiliary
structure like Abs. Only operations requiring access to the abstract type name are defined
outside. Note that the outer signature ascription is transparent, in order not to generate a
second level of abstraction that would defeat the whole purpose of the construction.

4.7. Typeful Dynamic Programming

No abstraction can be breached by means of dynamic typing. But is that behaviour useful? Can
we really work with rock-solid abstract types in the context of open programming? For example,
when a process pickles a value of abstract type, and the type was created by the process, how can
the value ever be unpacked after that process has terminated? Due to the generative semantics
of sealing, even a subsequent process running the same program will not be able to unpack it.

The answer is quite simple: one has to export and share the abstraction as well. Recall that
all import/export is based on packages, and packages contain modules. Hence it is perfectly
valid to pickle the module implementing an abstraction. In fact, dynamic type sharing can
be employed for typeful programming [Car91] with dynamic types, when packages themselves
contain the implementation of abstract types.

Consider a strategy game. It allows initiating a new campaign, and during a campaign arbi-
trary snapshots (saved games) can be stored that allow reverting to that point of the campaign
later on. When the program is exited, the current campaign is pickled and can be continued
next time the game is started. At any point, a stored snapshot can be loaded.

Different campaigns may use different configurations (e.g. map sizes). A snapshot only is
valid in conjunction with the campaign that it belongs to. To prevent mixing up snapshots of
incompatible campaigns, a snapshot can be modelled as an abstract type that is created along
with a particular campaign. More precisely, a campaign is a structure with the signature

signature CAMPAIGN =
sig

type world
val getWorld : unit → world
val setWorld : world → unit
...

end

where the abstract type world encapsulates the state of the campaign. A new campaign might
be created by means of a functor:

functor MkCampaign (Config : CONFIG) :> CAMPAIGN = ...
structure Campaign = MkCampaign MyConfig

A fresh world type is generated along with an initial world state. A snapshot of a campaign can
now be created by retrieving its current world and pickling it to a file:

39

4. Packages

Pickle.save (”snapshot”, pack (val world = Campaign.getWorld ()) : (val world : Campaign.world))

As long as the application has not terminated, it is easy to reload previous snapshots of the
running campaign:

structure W = unpack Pickle.load ”snapshot” : (val world : Campaign.world)
Campaign.setWorld W.world

When the application exits, it pickles the campaign itself:

Pickle.save (”campaign”, pack Campaign : CAMPAIGN)

When the game is run the next time the user can choose to continue an existing campaign, at
a given snapshot. This is implemented by unpickling the previous campaign instead of creating
a new one, along with the selected snapshot:

structure Campaign = unpack load ”campaign” : CAMPAIGN
structure W = unpack Pickle.load ”snapshot” : (val world : Campaign.world)
Campaign.setWorld W.world

Unpacking the snapshot will only succeed if it actually belongs to the given campaign. What we
see in the example is an interesting instance of dynamic type sharing (Section 4.4): the signature
used to unpack one module refers to a type dynamically obtained from another package. The
generative semantics of sealing (Section 4.6) makes it possible to detect type sharing dynamically,
while still not being able to discover the underlying implementation types.

In simple examples like the above, type sharing is straightforward to express, because the
ascribed signature can easily be given inline. In order to deal with more complex examples,
SML’s module system already provides features for expressing more involved type sharing: type
constraints on signatures, i.e. type specialisation using where as well as sharing specifications,
both useful in the static type system, will come in handy for dynamic typing as well.

Assume that a campaign snapshot should not only contain the state of the game world, but
also some meta information like when the snapshot was created, on what system, etc. In that
case, it is more convenient to define a signature:

signature SNAPSHOT =
sig

type world
val world : world
val date : date
val system : string
...

end

The world type has to be abstract in the signature, because it will differ between uses. In order
to concretise it when we ascribe the respective unpack operation, we simply put a respective
constraint on the signature:

structure Campaign = unpack Pickle.load ”campaign” : CAMPAIGN
structure World =

unpack Pickle.load ”snapshot” : SNAPSHOT where type world = Campaign.world

In general, the same language mechanisms are applicable for expressing dynamic sharing with
packages as for expressing static sharing between functor parameters. No additional structure
in the type language is necessary. The introduction of dynamic typing stays economic from a
semantic point of view and, to a large extent, enables the programmer to reuse her knowledge
about expressing type relations with modules.

40

4.8. Related Work

4.8. Related Work

In previous work we have presented the basic design of packages in Alice ML [RLT+06], and
we have formalised packages and pickling as part of a calculus of higher-order modules [Ros06]
that we proved sound. The latter work gives a relatively direct type-theoretic account for the
semantics of packages. We also have integrated a formalisation of packages directly into the
formal language specification of Standard ML [Ros05].

The concept of dynamics has long been folklore. Dynamics were already proposed for the very
purpose of open programming in an unpublished article by Mycroft [Myc83], and later made
precise by Abadi, Cardelli, Pierce & Plotkin [ACPP91, ACPR95]. Their proposal involved a
complex typecase construct for projection, in order to dispatch on the type of the dynamic. Our
unpack operator is less expressive, although type dispatch can be simulated to a certain extend
by a sequence of unpack operations with different signatures. On the other hand, unpack supports
subtyping, hence making the use of packages more flexible and robust against changes. In our
experience, this dimension actually is much more important for the applications dynamics are
intended for.

Some typed languages offer slightly different variations of dynamic typing. Alanko [Ala04]
gives an overview of the use of dynamic typing and reflection in typed languages.

The syntax for package injection and projection has been borrowed from Russo’s work on first-
class modules [Rus00, Rus98], and indeed there is a close relation. The fundamental difference
between packages and first-class modules is that the latter are statically typed (i.e. the type
of a module value describes its full signature), while packages are dynamically typed (the type
package is abstract).

A package can be understood as a first-class module wrapped into a conventional dynamic.
However, coupling both mechanisms enables unpack to exploit subtype polymorphism, which is
not possible otherwise, due to the lack of subtyping in the ML core language. For example,
assume two signatures S ≤ S′. Given a package with signature S we can unpack it under
signature S′, without actually knowing S. With dynamics and first-class modules however,
given a dynamic carrying a first-class module of signature S, i.e. a value of type 〈S〉, we first
would have to unwrap the dynamic under type 〈S〉 – since there is no subtyping in the core
language, we would have to know S exactly at this point. We could only go to S′ after having
projected the module. Clearly, this would severely weaken modularity and robustness.

4.9. Summary

• We introduce packages as a novel variant of dynamics; they carry a module along with its
dynamic signature.

• Accessing a package requires a dynamic type-check against a static target signature.

• The type-check employs structural subtyping to make clients robust against interface
changes.

• Based on packages, Alice ML provides type-safe persistence.

• Dynamic type sharing can be expressed with idioms known from ML modules, and enables
typeful dynamic programming.

• Unlike with previous work on dynamics, dynamic typing is confined to the module lan-
guage, the core language is still parametric.

• Abstraction safety is maintained within the language – type abstraction dynamically gen-
erates fresh, globally unique type names.

41

4. Packages

42

5. Pickling

The most important characteristic of an open program is the need to communicate with the
outside world. More precisely, an open program has to exchange information with its environ-
ment, other programs, or other instances of the same program. In a high-level language, we
want to be able to represent such information as language-level values wherever possible. That
is, the language should enable us to import and export potentially arbitrary language-level data
structures. In a higher-order language with first-class functions, that naturally includes func-
tions, and hence code – opening up a whole range of applications for exchanging functionality
and behaviour. Furthermore, in a language with strong emphasis on types and modules for
structuring data and functionality, we want to be able to exchange entire program fragments in
the form of modules.

The task of exporting a value from a process is often known as serialisation or marshalling.
For reasons discussed in the next section, we prefer the somewhat less common term pick-
ling [BJW87].

Unlike the features discussed in the previous chapters, pickling is not a language construct
per se, but rather a generic mechanism underlying a number of other language constructs.
Nevertheless, its central role and recurring semantic implications justify treatment in a separate
chapter.

Pickling or related mechanisms have been employed in many previous languages to sup-
port persistence and inter-process communication, e.g. CLU [HL82], Modula-3 [BNOW95], or
Java [RWWB96]. The Mozart System for Oz was the first to systematically and uniformly
base its compilation and distribution model on pickles, in particular by supporting pickling of
code [DKSS98]. Alice ML adopts the Oz approach and puts it into a typed context.

5.1. Pickles

In order to export a value from a process, it must be transformed into an external representation.
To support open programming in a most general and safe way, we require several properties of
such a representation:

• Transparency. The composition of pickling and unpickling a value should yield a copy
that is observationally equivalent to the original value.

• Universality. The representation should support all possible types of values found in the
language. In particular, it should readily support higher-order and user-defined types, as
well as cyclic structures. The only exceptions are primitive types whose meaning is bound
to the current process, so-called resources (e.g. file handles, thread names, etc.).

• Closedness. An external representation should always be self-contained. That is, it
should contain the transitive closure of all values reachable by the one meant to be ex-
ported. For functions, it has to include their code.

• Portability. The representation should be independent from and portable between dif-
ferent computer architectures, operating systems, and implementations of the language.

43

5. Pickling

• Verifiability. It should be possible to test the integrity of an external representation, i.e.
the format must be self-describing enough to support checking that a given instance really
represents a well-formed value of the language.

• Security. An external value should not be allowed to contain references to critical re-
sources that might enable contained functions to silently perform unapproved, security-
relevant actions when applied on an importing site.

• Efficiency. The space required for the representation of a value should be at most linear
in the size it takes in memory. That particularly implies that sharing between values in a
closure must be maintained.

We call an external representation meeting these requirements a pickle. This terminology em-
phasises the fact that it is really a self-contained representation, which is not the case for most
existing serialisation or marshalling mechanisms, especially with respect to code.

Obviously, the requirement for universality demands pickling to be made available as a generic
mechanism. A library or user-defined infrastructure, like often found in other languages, is not
enough, because it could not deal with functions, abstract types, or modules, etc. In Alice ML,
pickling, and its inverse, unpickling, thus need to be built-in services of the runtime system.
Pickling takes a value and produces a copy that can be transferred to other processes. On a
more technical level, pickling transforms the internal graph-like representation of an object in
memory into a linear, platform-independent external representation [TKS06, Tac03]. From a
pickle an equivalent copy of the original object can be reconstructed. A pickle includes the
transitive closure of the respective object, i.e. the reachable subgraph. This graph can be cyclic.

For a rich language like ML, designing and specifying a pickle format that meets all of the
above requirements is a complex endeavour. In particular, it implies giving a full specification
of the external code format of the language. Furthermore, it involves specifying a low-level
type system to support verification of code and data. This in turn has potential impact on the
implementation of a runtime system for the language, because it must be able to produce this
type information upon pickling.

Clearly, such questions are beyond the scope of this thesis. Here, we are only concerned with
the design and semantics of the mere language, not its implementation. We hence stay in orbit
of these issues and take the desired properties for granted, as far as they are transparent in the
semantics.1 We refer the interested reader to the works of Kornstaedt and Tack [TKS06, Kor06,
Tac03] for an in-depth discussion of the design and implementation of a pickling mechanism.

Another aspect we generally remain naive about in this thesis is security. We consider security
issues only as far as not making the language semantics violate obvious security concerns in
irreparable manners, and by providing some hooks to implement more elaborate strategies.

5.2. Type checking and verification

In Alice ML, almost arbitrary language-level data structures can be pickled. How do we achieve
type-safety if we allow values of arbitrary type to be retrieved from files at runtime? How can
a load operation be typed, when it is impossible for the compiler to know what files will be
accessed dynamically, and what types of values they contain?

Obviously, loading pickles generally requires dynamic checks to establish type-safety. We can
distinguish two kinds of check:

1The current version of the Alice System does not yet meet all of the requirements. In particular, the pickle
format does only support a rudimentary amount of verification, and no attempt has been made to actually
make the system a secure platform.

44

5.2. Type checking and verification

• Verification. Checks internal consistence of a pickle, i.e. whether it represents a well-
formed value (of a fixed type).

• Dynamic Typing. Checks external consistence, i.e. compares the type of the pickle with
the one expected by the consuming code.

Both these checks are orthogonal: if the producer of a pickle is trusted, verification may be
omitted; if the type of the value represented by the pickle is known statically, dynamic typing is
not needed. In the latter case, the pickle need not include a description of its own type, because
it can be determined from context. All combinations are possible – consider the following
scenarios:

• Persistence: the content type of a file cannot be known statically, hence dynamic typing
is required; however, if the environment is trusted, we may omit verification of the file.

• Typed communication channel: the channel type determines the type of values received
over the channel, hence it need not be transmitted nor checked for each value (it is checked
once when the connection is established). However, if the sender is untrusted, the individ-
ual values must still be verified to be well-formed with respect to that type.

Moreover, although both checks can be understood as a form of dynamic type checking, their
nature is quite different: verification has to look at the structure of a pickle, while dynamic typing
can be realised simply by comparing a type description that is part of the pickle (and might
itself require verification). Both checks operate on different levels of abstraction. For example,
verification must be able to see the representation of abstract types, while dynamic typing
should not (Section 4.6). Verification might involve more (and lower-level) type information
than visible in the type system of the language, because it has to encompass internal invariants
of the low-level representation, especially of code.2

Thanks to packages, we can separate concerns: we uncouple dynamic typing from (un)pickling
instead of building it into the pickling mechanism. We rely on packages as an independent
mechanism, while unpickling itself only performs verification (if necessary).

Section 4.2 briefly introduced the primitives for persistence provided in Alice ML:

val save : string × package → unit
val load : string → package

All pickle files thus created contain values of one and the same type, package, thus supporting
dynamic typing. The idiomatic usage of the primitives then is as follows:

save (”file.alc”, pack Module : SIG)
structure Module’ = unpack load ”file.alc” : SIG’

The code clearly separates the two kinds of checks discussed above:

• The load operation has to perform verification, i.e. checks that the file contains a well-
formed pickle, representing a package. Failure at this point is considered I/O failure.3

• The unpack operator has to check that the package signature matches the static assump-
tions, i.e. the target signature. Failure at this point is a dynamic type error.

2Alternatively, verification can also be substituted by authentication. In that approach, pickles are signed
using cryptographic methods, and only pickles stemming from trusted authorities are accepted as well-formed.
Obviously, this is less flexible, but might be sufficient for certain scenarios. We will not explore that possibility
here.

3As mentioned, this check is not properly implemented in the current version of Alice.

45

5. Pickling

(a) obtain once/check many

file package

value1

value2

value3

load

un
pa

ck

τ1
?

unpack
τ2?

unpack

τ
3 ?

unpickle

type-check

(b) check once/obtain many

process channel

value1

value2

value3

connect
τ?

re
ce

ive

receive

receive

Figure 5.1.: Scenarios for type-checking pickles

The design choice of uncoupling dynamic typing from pickling has several advantages:

1. Dynamic typing can be employed independent from pickling.

2. A pickle can easily be checked against multiple different types.

3. Either check can be omitted (independently) under circumstances where it is redundant.

The component system we are going to present in Chapter 7 will explore the first two points
to realise link-time type checking. Components will be defined in terms of packages, but ad
(1), they are first-class, so they are not necessarily obtained only from pickles; ad (2), a single
component may be imported by several others, and hence has to be checked against multiple,
potentially different signatures.

The third point is explored in the context of distributed programming, to enable efficient
inter-process communication as described earlier. In Alice ML, proxies (Section 8.1) are an
example of a typed communication mechanism, where we want to avoid transmitting repetitive
type descriptions with every single value – a dynamic type check is only necessary for establishing
a connection (when receiving a proxy), not for every transmission.

Two typical scenarios are shown in Figure 5.1. On one extreme there is the obtain-once/check-
many scenario of persistence, where a pickle is loaded and then can be used under different types
(and hence type-checked) multiple times. On the other end we have a check-once/obtain-many
scenario of inter-process communication, where a type check is performed a priori, and then
multiple pickles of this type are received. Thanks to the availability of packages as a separate
mechanism, both scenarios can be supported efficiently. If packages and pickling were coupled
into a single mechanism, both scenarios would require redundant work: in (a) we would have to
unpickle the file multiple times, in (b) we would have to check the channel type multiple times.

Note that in this model pickles as such are not self-describing, in the sense that they have to
be interpreted under a type known from context. However, the context is always unambiguous.
Most operations will interpret a pickle as a package, in which case the pickle in fact contains a
complete type description. But some primitives employing pickling can make other assumptions,
as long as their use of pickling is encapsulated.

46

5.3. Resources and Security

5.3. Resources and Security

Not all values that can be created by a process have a universal meaning outside this process.
For example, a file handle will typically be local to a process. What should the interpretation
of such a value be outside a process?

The ability to pickle and transmit higher-order values raises delicate security issues. If a
process receives a function, how can it be sure that it is safe to apply it?

We collectively call values and operations with local meaning or security-relevant semantics
resources. Alice ML takes the simplest possible path to deal with resources and the problems
sketched above: resources are disallowed in pickles. We say that resources are sited, and any
attempt to pickle a resource will be dynamically detected and yield the exception Sited.

Under this regime, pickles are always meaningful and secure4 – code loaded from a pickle
cannot perform any critical action without the receiving site explicitly giving it the capability to
do so.5 In particular, there deliberately is no implicit rebinding of resources [BHS+03] in Alice
ML. If rebinding is desired, it must be programmed explicitly.

This restriction may seem to severely limit the utility of pickling. In a certain sense, pickles
need to be ‘pure’ – they may not contain any objects whose behaviour is observable or undefined)
outside a process. How can we still exchange behaviour that is ‘effectful’? The answer is
abstraction. When two sites want to communicate a function that makes use of resources then
the source site has to abstract over the required resources, and the target site can then supply
them (or choose not to do so). This abstraction can happen on the function level, or on the
module level.

However, such functional (or functorial) abstraction can get cumbersome and inflexible in
practice. In Alice ML, a more comfortable approach is to employ the component system (Sec-
tion 7) to abstract over resources and other functionality en-mass by means of dynamically
computed components (Section 7.2). On the target site, those components will then import all
resources needed implicitly, without the target process needing to perform any explicit plugging.
It can still control supplement of resources through the security mechanism of the component
system if desired (Section 7.5).

5.3.1. State

There are three possible ways to reconcile state (i.e. mutable references, arrays, etc.) with
pickling:

• Sited State. Stateful values are considered resources. Any attempt to pickle them results
in failure.

• Cloning. Stateful values are copied. That is, each unpickling operation yields a fresh
copy that is equivalent to the original, up to external references (i.e. aliasing).

• Distributed State. Stateful values are pickled as remote references. This implies that
Alice ML processes implement distributed state.

Both cloning and distributed state compromise one of the requirements for pickles:

• Cloning violates the transparency property, because a copy is only equivalent up to aliasing.

4Strictly speaking, it is still possible for hostile code to perform denial-of-service attacks, e.g. by continuously
allocating memory or spawning threads. This possibility has to be addresses by other means, which lie beyond
the scope of the mechanism described here.

5A caveat regards proxies, which represent a capability to communicate with other processes but are not con-
sidered resources. See Section 8.4.3 for further discussion.

47

5. Pickling

• Distributed state violates the closedness property, because the potential for dead references
is high.

Note in particular that the aliasing problem implies that cloning can (silently) break stateful
abstractions, i.e. it violates abstraction safety. To pick an arbitrary example, cloning a lock can
cause critical but hard to debug concurrency errors.

Moreover, both choices come with significant complications and costs in semantics and imple-
mentation. For instance, for cloning in combination with concurrency and futures (Chapter 6)
it is difficult to ensure that pickling always reflects an atomic snapshot of the program state,
as one might desire. Achieving this not only requires a fixed point iteration – in general, a
stable snapshot may even fail to exist, or may fail to respect critical sections of individual
threads [Kor06, TKS06].

On the other hand, both cloning and distributed state can easily be programmed as (ap-
proximate) abstractions in Alice ML: cloning in terms of the transformation mechanism (see
Section 5.5), and distributed state on top of the proxy mechanism (see Section 8.1). Hence, in
this thesis, we take the simplest and cleanest choice and consider state as sited.6

5.4. Abstraction Safety

Type safety is guaranteed even when unpickling values from unreliable or untrusted sources.
But what about abstraction safety? Is encapsulation maintained across abstraction boundaries?

The answer is: only partially. There is no possibility of breaching abstraction barriers within
the language. The generative semantics of type abstraction ensures that an abstract types
representation remains sealed for any language construct.

The situation is not as simple when we step outside the language, though. In general, an
attacker cannot be prevented from forging a pickle containing a value of abstract type that is
type-correct but does not adhere to the invariants of the abstraction. Verification can check the
former, but has no way of validating the latter. Generally, not even the implementation of the
abstraction itself can perform that check after the fact, e.g. when global invariants are involved.

In principle, abstraction safety in this scenario could be improved by forms of encryption:
generative type abstraction can be seen as the generation of cryptographic keys, and sealing is
analogous to encryption with the key. This relation has been investigated by Sumii & Pierce in
their cryptographic λ-calculus [SP03, SP04]. However, such an approach would be operationally
expensive, and basically require implementing the full machinery of higher-order coercions, that
we develop in Chapter 13 of the theory part of this thesis, in the actual runtime system.

More seriously though, even encryption could not guarantee full extra-linguistic abstraction
safety. The problem is that higher-order pickling is so expressive that it actually enables exter-
nalising the principal owning an abstraction, and thus the cryptographic key itself!

For example, given a structure defining an abstract type t, abstraction safety can be enforced
by encryption as long as only values of type t are exported and imported. However, as soon
as the implementation is exported – by pickling the respective structure –, an attacker may be
able to intercept it, extract the key from its representation, and is then able to forge values of
type t.

Consequently, we doubt that it is possible – in principle – to actually realise full abstrac-
tion safety in an open language. Alice ML achieves intra-linguistic, but not extra-linguistic
abstraction safety.

6The current Alice System implements a cloning semantics for state, because it turned out to be useful in the
low-level implementation of the system itself, where transformations were not available. This may change in
future versions.

48

5.5. Transformations

However, the programmer can protect her abstractions against pickling by making them inten-
tionally sited. The Alice ML library simplifies this by providing a type sited with the following
siganture:

eqtype α sited
val sited : α → α sited
val value : α sited → α

Any value of type τ sited is precluded from appearing in pickles. Internally, this is realised by
simply pairing the wrapped value with some random resource. By wrapping the representation
of an abstract type into sited an abstraction prevents any client from directly or indirectly using
its values for import or export. That way abstraction safety is guaranteed even in the face of
malice.

5.5. Transformations

Often the representation of data structures contains redundant information, usually to speed
up certain operations on them. For example, a graph with N nodes might be represented as a
sparse matrix of size N2, or its representation might internally cache certain information, like
pre-computed shortest path information. In cases like that it might be desirable to omit the
redundant information from the pickle to reduce size, e.g. represent the graph by a simple but
compact adjacency list.

To achieve this, the pickling mechanism can be extended with support for user-defined trans-
formations. In the language, this can be enabled by providing a primitive functor as follows:

functor MkTransformed (type α internal; type α external
val externalize : α internal → α external
val internalize : α external → α internal) :

sig

type α trans
type to : α internal → α trans
type from : α trans → α internal

end

The types are kept polymorphic to enable transformation of polymorphic types.
To create a data structure with customised external representation one has to apply the functor

and then define the data structure in terms of the wrapper type delivered by the functor:

structure G = MkTransformed (type α internal = bool matrix
type α external = int × (int × int) list
fun externalize m =

(Matrix.size m,
Matrix.foldi (fn (i,j,b,l) ⇒ if b then (i,j)::l else l) [] m)

fun internalize (s,l) =
Matrix.tabulate (s, fn p ⇒ List.exists (fn q ⇒ p = q) l))

type graph = unit G.trans
fun graph n = G.to (Matrix.tabulate (n, const false))
fun addEdge (g, n, m) = G.to (Matrix.update (G.from g, n, m, true))

Here, the type graph implements a directed graph. Its internal representation is a boolean matrix
that contains true on all coordinates (i, j) where there is an edge from node i to node j (we assume
that matrix is an immutable 2D array type, with a functional update operator). The external
representation is an adjacency list. We need to use the constructor and destructor functions to

and from to construct and access values of this transformable type.

49

5. Pickling

When a value of the type graph is pickled, the pickler will implicitly apply the provided
externalize function to transform it to the lighter external representation. Furthermore, the
pickle will include the internalize function (which hence is required to be unsited) to enable the
target site to convert back the representation at unpickling time.

For a polymorphic example, consider an implementation of cloneable references:

structure CRef =
struct

structure R = MkTransformed (type α internal = α ref
type α external = α
val externalize = !
val internalize = ref)

type α ref = α R.trans
fun new x = R.to (ref x)
fun !r = !(R.from r)
fun r:=x = (R.from r) := x

end

As this demonstrates, transformations can be a substitute for stateful pickling, because they are
sufficient to program picklable references (albeit without atomic semantics).

There are two limitations to this approach:

1. The type α internal cannot be recursive in a way that requires the transformation wrapper
to cross-cut the recursion – the functor argument would depend on its result.

2. The internalize function cannot be sited.

Should these limitations turn out to be too tight, the former restriction would be remedied
by adding recursive modules [Rus01, DHC01, Dre04], which already exist in some dialects of
ML [RRS00, Ler03]. The latter could be addressed by a registration mechanism, where the
transformed type is explicitly introduced on the target site prior to unpickling. We leave working
out the details of such a mechanism for future work.

5.6. Modules

Pickles can contain modules. These can occur either in packages, or in the closure of functions
that reference them or define them locally. The pickle of a module contains all values and
functions it provides, plus the runtime representation of all types it defines.

In order to keep pickles compact in the presence of modules, the semantics of closures has to
be defined carefully. Consider the following example:

val listToString = String.concatWith ”,” ◦ List.map Int.toString
save (”list-to-string.alc”, pack (val it = listToString) : (val it : int list → string))

Does the closure of the function listToString include the entire modules String, List and Int, and
transitively, all modules reachable in the dependency graph of their implementations? Clearly,
a closure thus computed can get quite large in general, and would make pickling impractical.
Besides the size of a pickle, it also potentially makes a lot of functional values sited, just because
some module in the closure contains a sited value.

Hence, there is a slight twist in the semantics of Alice ML, which ensures that a pickle like the
one above will only contain the individual values projected from structures, instead of the entire
module. Technically, this is achieved by hoisting all structure projections to the largest possible
scope, hence performing projections outside the closure [Kor06]. That is, the above function is
equivalent to the following definition:

50

5.7. Related Work

val Int toString = Int.toString
val String concatWith = String.concatWith
val List map = List.map
val listToString = String concatWith ”,” ◦ List map Int toString

In order to give a sense for the relevance of this transformation, consider the pickle created
above. Thanks to the hoisting semantics, it will produce a file of 1181 bytes in the current version
of the Alice System. This pickle contains the code of 8 functions appearing in the transitive
closure. In a naive semantics, the pickle would contain 9 modules with a total of 210 functions
instead! Pickling this set of modules takes 18966 bytes with the current library, a more than
16-fold increase. Keep in mind that this is a very simple example, only referencing the most
primitive library modules – for more high-level modules the ratio is likely to get significantly
worse.

It is worth noting that this optimisation crucially relies on the fact that ML is a module-
centric language and not an object-oriented one. With modules, a value is free-standing, and
does not carry any functionality of its own (unless it is of higher-order type). In contrast, in an
object-oriented model every value carries all its methods – either directly, or indirectly through
its class, which will always be part of an object’s closure. No comparable transformation can be
applied, because all methods remain reachable through the original object.

5.7. Related Work

The term pickling was originally coined in the context of databases and operating systems, by
Birrell, Jones & Wobber [BJW87]. However, the first programming language that was equipped
with a comparable mechanism already was CLU [HL82], which had a particular focus on type
abstraction, and required the programmer to provide transformation functions to pickle values
of abstract type. CLU later inspired a similar mechanism for the object-oriented languages Mod-
ula 3 [BNOW95] and Java [RWWB96]. Neither of these languages meets all of the requirements
stated in Section 5.1. In particular, they remain limited with respect to universality, closedness,
and portability. Only Java ensures the latter and performs verification on class files.

Oz [Smo95, DKSS98, VH04] and the Mozart Programming System directly inspired the pick-
ling mechanism found in Alice ML. Like Alice ML, pickling in Oz meets all of the listed require-
ments except Verifiability. Since Oz is a dynamically checked language, dynamic typing is not
employed.

Acute [SLW+05] is an ML-based language for distributed programming that is closest to Alice
ML and also provides a generic pickling mechanism. Unlike in Alice ML, pickling is not separated
from dynamic typing (Section 5.2). Also, Acute is not intended to “protect against fraud”,
so there is no concept of security: pickles are type-checked but not verified,7 and unpickling
performs uncontrolled implicit rebinding of resources.

Several other functional languages also provide pickling functionality, for instance SML of
New Jersey [Luc00] and Objective Caml [Ler03]. In most of them pickling is not even a type-
safe operation. The only notable exception is Clean, which features high-level I/O based on
dynamics [Pil96].

Kornstaedt [Kor06] discusses the design space of many aspects of pickling in detail, and also
provides a more in-depth comparison of the mechanisms available in the forementioned lan-
guages. The low-level semantics and implementation of pickling in the Alice System is described
by Tack & Kornstaedt [TKS06, Tac03]. They also describe a generic minimisation mechanism

7As mentioned, Alice ML does not implement this yet either.

51

5. Pickling

(implemented in the Alice System) that reduces the size of pickles by applying automaton min-
imization algorithms to the data graph.

We have given a high-level formal semantics of pickling in Alice ML in previous work [Ros06].
It closely mirrors the formal development in Chapter 12 of this thesis, but was in the framework
of a module calculus modelling ML modules. Some of the aspects regarding the role of pickling
in Alice ML we present here are also discussed in that and other earlier work [RLT+06].

Kennedy implements a limited form of pickling in form of a combinator library written in
ML [Ken04]. This is attractive for more lightweight applications like simple data persistence,
but as already mentioned, a library approach fails to meet most of the requirements imposed
by an open programming scenario (Section 5.1): although surprsingly flexible, Kennedy’s com-
binators are neither universal (especially, they cannot deal with function values), nor can they
guarantee properties like transparency, closedness, portability, or security. Efficiency also is a
major concern: maintaining sharing requires extra effort and can only be achieved for a statically
bounded number of types, because it needs per-type environments.

5.8. Summary

• Pickling is a generic mechanism for exporting and importing language-level values; it is
the basis for services like persistence and inter-process communication.

• Following Oz, pickles in Alice ML are self-contained, portable and higher-order (i.e. can
contain code).

• Furthermore, Alice ML pickles are type-safe.

• Pickles are generally not abstraction-safe, because abstractions can be forged by extra-
linguistic means. However, abstractions can be protected against pickling explicitly.

• Pickles cannot contain resources and are hence secure with respect to critical operations.

• We identify two orthogonal dynamic checks required when importing a pickle: internal
verification and external type checking.

• We propose a type-based, language-level mechanism for customising pickling by employing
user-defined transformations.

• Pickling is practical even in the presence of deep module dependencies.

52

6. Futures

Programs communicating with the outside world often have to deal with a multitude of inputs
and events that can occur at arbitrary points in time. For example, with a graphical user inter-
face a user can usually trigger actions in ways that are not necessarily sequential. The program
might have to display and handle several interactive windows at the same time. Conventional
sequential programming techniques cannot adequately handle such scenarios, particularly when
the process has to stay active while waiting for input. Under such scenarios it is vital to employ
concurrency to establish several simultaneous flows of control.

Concurrency – parallel or interleaved execution of multiple interacting sequential computations
– has become an omni-present phenomenon in today’s computing, with natural applications in
many areas: interactive systems, servers, databases, operating systems, or distributed systems
usually have to perform tasks in an inherently concurrent manner. Yet, few programming
languages offer adequate language-level support for concurrent programming. For the purpose
of open programming in Alice ML, it was deemed crucial.

Concurrency in Alice ML is based uniformly on the concept of futures, an expressive mecha-
nism for implicit synchronisation between threads that was first proposed by Halstead [Hal85]
to make automatic parallelisation of functional programs in his Multilisp language effective. A
future is a transparent place-holder for a yet undetermined value that allows for implicit syn-
chronisation based on data flow. The particular design of concurrency and futures in Alice ML
is due to Smolka [Smo99]. It offers four different kinds of future:

• Concurrent future. Holds place for the result of an expression computed in its own
thread. All threads evaluate an expression and possess a result, hence we speak of func-
tional threads.

• Lazy future. Also stands for the result of a concurrently evaluated expression. However,
the computation is delayed until another thread actually requires its result. With lazy
futures, techniques from lazy functional programming can be employed directly.

• Promised future. Is created through an explicit handle called a promise. A promised
future is eliminated by fulfilling the associated promise through an explicit operation.
Promises are reminiscent of single-assignment variables or logic variables and allow the
construction of data structures with ‘holes’.

• Failed future. Replaces a future that could not be eliminated because the associated
computation terminated with an exception. Whenever a failed future is accessed, the
respective exception will be re-raised in the thread accessing it.

We will describe the different flavours of futures informally in the following sections. A formal
semantics of futures has been given by Niehren, Schwinghammer & Smolka [NSS05].

Futures are a convenient generic mechanism for implicit communication and synchronisation
between threads. As such they are comparatively simple, but expressive enough to enable
formulation of a broad range of concurrency abstractions. Note that threads also have shared
state, which allows them to communicate through conventional stateful data structures. Futures
enable the implementation of the necessary locking mechanisms for controlling access to them.

53

6. Futures

Since the focus of this thesis lies elsewhere, we will only briefly discuss concurrent program-
ming. We refer the interested reader to related literature on the subject for a more thorough
discussion of the issues involved in designing and using concurrent programming languages. A
good starting point presenting a different approach for integrating concurrency into SML is the
book by Reppy [Rep99]. More specific examples demonstrating the use of futures can be found
in [Smo99].

6.1. Concurrency

Future-based concurrency is very light-weight – any expression can be evaluated in its own
thread. Thread creation is straightforward: a concurrent computation is forked off be prefixing
an expression with the spawn keyword:

spawn exp

This phrase immediately evaluates to a fresh concurrent future, standing for the yet unknown
result of exp. Simultanously, evaluation of exp is initiated in a new thread. As soon as the
thread terminates, its result value globally replaces the future.

A thread is said to touch a future [FF95] when it performs an operation that requires the
actual value the future stands for. A thread that touches a future is suspended automatically
until the actual value is determined. That is, synchronisation on futures is implicit, there are
no explicit operations to access a future. This is known as data flow synchronisation.

Thanks to futures, threads give results, and concurrency can be orthogonally introduced for
arbitrary parts of an expression. For example, to evaluate all constituents of the application
e1(e2, e3) concurrently, it is sufficient to annotate the application as follows:

(spawn e1) (spawn e2, spawn e3)

Hence, threads with futures blend perfectly into the “everything is an expression” philosophy of
functional programming languages. For that reason, we call them functional threads.

6.1.1. Synchronisation

A thread blocks when it touches a future. Only few operations touch futures:

• Procedure application touches the procedure value.

• Pattern matching touches the examined value (unless the pattern is a variable or wild-
card).1

• Exception raising touches the exception value.

• Unpacking (Chapter 4) touches the package.

• Primitive operations (e.g. op+, op:=) touch some or all of their arguments.

• Structural primitive operations (e.g. op=, or pickling (Section 4.2)) may perform deep
touches; that is, they traverse structured values (usually depth-first, left-to-right) and
potentially touch all of the contained futures.2

1This implies that projection from a record or tuple, and access to a reference touch their respective argument,
because they are all defined by pattern matching.

2The precise behaviour depends on the operation. For example, polymorphic equality will terminate traversal
as soon as equality is discovered to be disentailed. Moreover, operations might abort with an exception –
particularly when encountering a failed future (Section 6.3).

54

6.1. Concurrency

In particular, note that procedure application, by itself, does evaluate but not touch its argument.
For instance, the expression

(fn x ⇒ 5) (spawn forever ())

where forever is a function that never terminates, does not block.
Futures provide for complex one-to-many communication and synchronisation. Consider the

following example:

val offset = spawn (sleep (Time.fromSeconds 120); 20)
val table = Vector.tabulate (40, fn i ⇒ spawn fib (i + offset))

The first declaration starts a thread that takes two minutes to deliver the value 20. Given an
appropriate definition of the Fibonacci function fib, the second expression will construct a vector
of the 20th to 60th Fibonacci numbers. The computation of the individual table entries depends
on offset, but since the entries are computed concurrently, construction of the table itself can
proceed without delay. However, the respective threads computing the entries will all block until
offset is determined. Consecutive code can access the vector without caring about the progress
of the threads. If evaluation depends on a value that is not yet determined, it will automatically
block as long as required.

Besides implicit synchronisation, Alice ML offers primitives for explicit synchronisation on
futures:3

val await : α → α
val awaitEither : α × β → (α, β) alt

The function await is a variant of the identity function that touches its argument: if applied to a
future, it blocks until the future has been replaced by a proper value. A straightforward abstrac-
tion using this function is a higher-order barrier, which applies a list of functions concurrently
and then waits for all computations to terminate:

fun barrier fs = map await (map (fn f ⇒ spawn f ()) fs)

The function awaitEither implements non-deterministic choice: given two futures it blocks until
at least one has been determined. It is sufficient as a primitive to encode complex synchronisation
with multiple events. As a simple example, consider an abstraction for waiting with time-out:

fun awaitTimeout time x =
case awaitEither (x, spawn sleep time) of

FST x ⇒ x
| SND ⇒ raise Timeout

6.1.2. Asynchronicity

Functional threads allow turning a synchronous call to a procedure – say, f – into an asynchronous
one by simply prefixing the application with spawn:

val result = spawn f(x, y, z)

The ease of making asynchronous calls even where a result is required is important in combination
with distributed programming (Section 8), because it allows for lag tolerance: the caller can
continue its computation while waiting for the result to be delivered. Data flow synchronisation
ensures that it will wait if necessary, but at the latest possible time, thus maximising concurrency.
In a distributed setting this is particularly useful as it helps hiding network latency for remote
procedure calls (Section 8.1).

An interesting degenerate case arises where the thread’s result is ignored, e.g.

3The type alt is defined in the Alice library as: datatype (α, β) alt = FST of α | SND of β

55

6. Futures

(spawn f (x, y, z) ; g (v, w))

Such usage emulates the behaviour of asynchronous calls like they are found in many other con-
current languages, where asynchronous calls can never return anything. It can be implemented
as efficiently.

Sometimes it is desirable to define certain functions as asynchronous per se. Alice ML sup-
ports asynchronous function definitions with straightforward syntactic sugar for the function
declaration syntax: if a function post is defined like

fun spawn post (x, y, z) = ...

then it is not necessary for the caller to spawn a thread at application point. The callee takes
care of that, and the call returns immediately.

6.2. Laziness

ML employs an eager (or call-by-value) evaluation strategy: any arguments are evaluated be-
fore a function is applied. Eager evaluation has certain advantages. In particular, it makes
algorithmic complexity (in space and time) fairly predictable, and coexists more peacefully with
side-effects. However, certain algorithms and data structures are expressed more elegantly or
more efficiently with a lazy (or call-by-need) evaluation strategy [Oka98]. It hence has become
a common desire to marry eager and lazy evaluation.

The future mechanism provides an elegant way for supporting laziness: a lazy future is a form
of future that is introduced analogously to a concurrent future, by prefixing an expression with
the keyword lazy:

lazy exp

This phrase will not evaluate exp, but instead it returns a fresh lazy future, standing for the
yet unknown result of exp. Evaluation is triggered when some thread first touches the future.
At that moment the lazy future becomes a concurrent future, associated with a fresh thread
performing the computation. Evaluation proceeds as for concurrent futures (Section 6.1).

In other words, lazy evaluation can be selected for individual expressions by prefixing them
with the lazy keyword. For example, the expression

(fn x ⇒ 5) (lazy f ())

will not call f. A fully lazy evaluation regime can be emulated by prefixing every subexpression
with the lazy keyword, but usually only few strategic annotations are necessary.

A simple example of the use of laziness is a generator for the (infinite) lazy stream of natural
numbers:

fun enum n = lazy n :: enum (n+1)

Applying this function,

val nats = enum 0

just delivers a lazy future. Only when an element of the list is requested, the necessary prefix
will be computed. For example, first evaluating List.nth (nats, 5) will trigger computation of the
first five elements of nats. After that, nats is no longer a future, but has the following shape:

0 :: 1 :: 2 :: 3 :: 4 :: 5 :: lazy

56

6.3. Failure

where lazy stands for another lazy future representing the uncomputed tail of the list.4 A
consecutive evaluation of List.nth (nats, 3) does not require any recomputation. Note that only
the spine of the list is lazy in this example, the elements are not constructed as futures.

In order to support the definition of lazy functions using equational clauses, Alice ML extends
the definition of SML’s sugared function declaration syntax with support for the lazy keyword
(analogous to the use of spawn for defining asynchronous functions, Section 6.1). For example,
consider a lazy variant of the standard map function, which can be applied to streams without
blocking or unnecessarily triggering lazy suspensions:

fun lazy map f nil = nil
| map f (x::xs) = f x :: map f xs

which desugars into

val rec map = fn f ⇒ fn l ⇒
lazy case (f, l) of

(f, nil) ⇒ nil
| (f, x::xs) ⇒ f x :: map f xs

Note how the rewriting makes the pattern matching properly happening inside the lazy suspen-
sion.

Literature describes many uses of laziness, which are all applicable in Alice ML. However, the
primary, but implicit source of laziness in Alice ML is the component system: every reference to
an imported entity is in fact lazy, so that components are loaded only when needed. Components
and the lazy linking involved will be described in Section 7.

It should be noted that Alice does in no way restrict the combination of laziness with effects.
As with concurrency, it is good advice to keep side effects, and particularly the non-local use of
mutable state, to a minimum in lazy computations.

6.3. Failure

ML is an impure language, in which evaluation can terminate with two possible outcomes:
ordinary termination with a result value, or exceptional termination with an uncaught exception.
What happens to a future when the associated thread terminates with an exception? Clearly,
threads suspending on the future need to be notified of the exceptional condition, so that they
do not dead-lock on a result that will never arrive.

This situation is dealt with by failed futures. Failed futures allow controlled propagation of
exceptions between threads. Every failed future carries an exception. When a thread terminates
exceptionally, the associated future becomes failed with the uncaught exception. Any attempt to
touch the failed future re-raises this exception in the respective thread. For example, evaluating

val x = spawn raise Empty

does not raise an exception (in the current thread). However, a consecutive attempt to evaluate
the expression x+1 will propagate the exception and re-raise Empty in the current thread.

A special error condition with respect to futures is the attempt to determine and replace a
future with itself (it is perfectly valid to replace it with a different future). For example, a
thread may return its own future, by exploiting recursion or side effects. Consider:

4This is precisely how the interactive Alice System would print nats at that point.

57

6. Futures

let

val r = ref 5
in

r := lazy !r;
!r + 1

end

There is no way to eliminate the future in cases like this, an erroneous configuration that is
called a black hole and cannot generally be detected statically. The error is flagged by failing
the respective future with the special exception Cyclic. Consequently, the above code will raise
this exception during evaluation of the addition.

Failed futures can be employed in different ways. One strategy is to ignore the possibility
of exceptions due to failed futures in all places except some supervising control threads that
have the responsibility for handling them and probably restarting certain computations. This
is basically the philosophy of “letting it crash” that is favoured and successfully used in the
concurrent language Erlang [Arm03]. Alternatively, default handlers can be installed within
critical thread expressions, so that exceptions are ensured not to escape. No commitment is
made by the language semantics, futures are the primitive that enables programming different
strategies as higher-level abstractions.

6.4. Promises

Functional threads and lazy evaluation offer convenient means to introduce and eliminate futures.
However, the direct coupling between a future and the computation delivering its value often is
too inflexible, because it demands an initial commitment to the way the information is obtained.
A thread might want to create a future without making such a commitment early on. It might
even want to allow some other actor to deliver it. For such cases, promises are a more fine-grained
mechanism that allows for creation and elimination of futures in separate operations.

Promises are available through a library structure named Promise, with the following signature:

type α promise
exception Promise
val promise : unit → α promise
val future : α promise → α
val fulfill : α promise × α → unit
val fail : α promise × exn → unit

A promise is an explicit handle for a future. It virtually states the assurance that a suitable
value determining the future will be made available at some later point in time, fulfilling the
promise. When a new promise is created with the procedure promise, a promised future is created
along with it that can be obtained with the future function. A promised future largely behaves
like a concurrent future, in particular by allowing data flow synchronisation. The difference is
that it is not replaced automatically, but has to be eliminated by explicitly applying the fulfill

function to its promise. A promise can also be ‘broken’ by means of the fail function, yielding a
failed future carrying the corresponding exception.

A promise may only be fulfilled or failed once – after one of these operations was successfully
performed any further attempt will raise the exception Promise. This yields a view of promises
as single-assignment references, that differ from conventional references in that they are created
uninitialised, but may only be assigned once. Dereferencing them prior to assignment delivers a
future standing for the later (immutable) content. Figure 6.4 shows how the different operations
on promises and references correspond.

58

6.4. Promises

type α promise type α ref

val promise : unit → α promise val ref : α → α ref

val future : α promise → α val ! : α ref → α

val fulfill : α promise × α → unit val := : α ref × α → unit

Figure 6.1.: Promises vs. references

fun append (l1, l2) =
let

fun iter (p, nil) = fulfill (p, l2)
| iter (p, x::xs) = let val p’ = promise () in fulfill (p, x::future p’); iter (p’, xs) end

val p = promise ()
in

iter (p, l1); future p
end

Figure 6.2.: Tail-recursive append with promises

Promises allow the partial and top-down construction of data structures with holes, as exem-
plified by the tail-recursive formulation of the append function shown in Figure 6.2. They can
also be used to create cyclic data structures:

val p = promise ()
val ones = 1 :: future p
val = fulfill (p, ones)

The variable ones is now bound to an infinite list of 1s.5 More generally, promises can be utilised
to tie arbitrary recursive knots:6

val p = promise ()
val even = future p
fun odd n = n6=0 andalso even (n-1)
(* no syntactic recursion between odd and even *)
fun even n = n=0 orelse odd (n-1)
val = fulfill (p, even)

In conjunction with packages, promises can even be used to construct simple recursive modules
(Section 6.6).

Despite these uses, the main purpose of promises is to support concurrent programming: for
example, they can be used to implement streams and channels as lists with a promised tail, and
they provide an important primitive for programming synchronisation, as we will see in the next
section.

5An obvious consequence of the presence of futures is that datatypes definitions in Alice ML are no longer
inductive, as in SML, but rather coinductive, as in Haskell or Objective Caml.

6Note that the same is possible with lazy futures and references:
val r = ref (fn ⇒ raise Domain)
val even = lazy !r
fun odd n = n6=0 andalso even (n-1)
fun even n = n=0 orelse odd (n-1)
val = r := even

59

6. Futures

6.5. Locking

An important property of procedures or abstractions in concurrent programming is thread safety:
a program fragment is thread-safe if no amount of concurrency can leave it in an inconsistent
state. In Alice ML, all primitive operations that access or modify state are atomic. That is,
when such an operation is performed, no other thread can interfere. For example, the effect of
assigning a reference in one thread will not depend on other threads running concurrently.7

Of course, that alone is not sufficient for thread-safe programming: when multiple threads
share mutable state, interference between the concurrent threads can quickly cause not physical,
but logical state inconsistencies. It is thus imperative to synchronise access, usually by forms of
locking on critical sections. Alice ML requires no primitive locking mechanisms to achieve that,
such mechanisms can be fully bootstrapped from promises and references.

To that end, the only primitive we require is an atomic exchange operation for references.
Atomic exchange is a variant of the fundamental test-and-set operation [Hal85]:

val exchange : α ref × α → α

The exchange operation alone is sufficient to express basic synchronisation mechanisms. How-
ever, without further primitives, their implementation would often require forms of polling.
Along with futures and promises such polling can be circumvented.

As a simple example demonstrating this, Figure 6.3 presents a higher-order function imple-
menting (non re-entrant) mutex locks for synchronising an arbitrary number of functions.8 The
following snippet illustrates its use to synchronise concurrent communication to standard out-
put, by preventing execution of f and g to be interleaved (without making a commitment with
respect to the order of execution of the calls):

val mutex = mkMutex ()
val f = mutex (fn x ⇒ (print ”x = ”; print x; print ”\n”))
val g = mutex (fn y ⇒ (print y; print ”\n”))
spawn f ”A”; spawn g ”B”; spawn f ”C”

A lock itself is represented by a reference. When it contains () the lock is free, whenever it
contains a future the lock is taken. To take the lock, a fresh future is created and stored in the
reference while simultaneously retrieving its previous content (via exchange). As soon as that
content is determined to be () the pending function call can be executed; upon its return the
lock is released by eliminating the new future. Care must be taken to also release the lock when
the function terminates with an exception.9

As an aside, we would like to point out that this locking abstraction profits from the fact
that SML prefers Cartesian formulations of n-ary functions – with curried functions, the mutex
cannot be used as simple, but requires a careful η-expansion, which makes its use much more
error-prone. The same observation will reoccur with other higher-order abstractions of similar
shape, e.g. the proxy primitive (Section 8.1).

6.5.1. Promises Revisited

It should be noted that promises are derivable in a language with concurrent futures and an
atomic exchange like we just introduced. Figure 6.4 shows a non-primitive implementation of

7While this may sound like a matter of course, it is not the case in Java, for instance, where assignment of
scalars larger than 32 bit (e.g. double values) can in fact leave the variable in an inconsistent state and hence
requires explicit locking [LY96].

8Similar functionality is part of the Alice library.
9Alice defines exp1 finally exp2 as syntactic sugar for executing a finaliser exp2 after evaluation of exp1 regardless

of any exceptional termination, similar to the try. . .finally. . . expression or statement in other languages.

60

6.6. Modules

(* mkMutex : unit → (α → β) → (α → β) *)
fun mkMutex () =
let

val r = ref () (* create lock *)
in

fn f ⇒ fn x ⇒
let

val p = promise ()
in

await (exchange (r, future p)); (* take lock *)
f x
finally fulfill (p, ()) (* release lock *)

end

end

Figure 6.3.: Mutexes for synchronised functions

datatype α state = FREE | LOCKED | FULFILLED of α
type α promise = α state ref
exception Promise

fun promise () = ref FREE

fun poll p = case !p of FULFILLED x ⇒ x | ⇒ poll p
fun future p = spawn poll p

fun fulfill (p, x) =
case Ref.exchange (p, LOCKED) of

FREE ⇒ p := FULFILLED x
| LOCKED ⇒ raise Promise
| FULFILLED y ⇒ (p := FULFILLED y; raise Promise)

Figure 6.4.: A non-primitive implementation of promises

promises. It relies on one polling thread for each created promise, whose task is to replace the
corresponding future. The decomposition hence is not practical as an implementation strategy,
but justifies the conceptual integration of promises as a library instead of language primitives.

Note that the implementation of the fulfill has to use locking (by employing Ref.exchange and
the auxiliary state LOCKED) to avoid race conditions from threads that attempt to fulfill the
same future concurrently.

6.6. Modules

Futures are not limited to the core language, entire modules can be represented by futures, too.
In particular, module expressions can be evaluated lazily or concurrently. For instance, lazy
evaluation can be imposed on a module computation by prefixing the respective expression with
the lazy keyword (see the syntax of modules in Figure 3.1):

lazy strexp

61

6. Futures

Concurrent evaluation of modules using spawn is available analogously. Lazy modules are some-
times useful to perform functor applications lazily. However, the main importance of futures
with respect to modules lies in the central role they play for the Alice ML component system
(Chapter 7): lazy module futures are ubiquitous as a consequence of the lazy linking mechanism
for components.

Like in the core language, a module future is touched by particular operations:

• Functor application touches the functor.

• Some primitive library functors touch some or all of their arguments.

• Applying certain primitive functions on packages (in particular pickling), touches the con-
tained module.

It has to be stressed that projection from a structure (via a long identifier M.a) does not touch
the respective structure. That is, structure selection is implicitly lazy, and a structure is only
touched if one if its fields is touched itself. Hence, evaluating a structure lazily defers evaluation
of its body until one of its fields is needed. Consider:

structure M = lazy struct fun id x = x; val = print ”Now” end

val id = M.id
val = print ”Not”
val x = id 7

Merely evaluating M.id does not touch M, but applying it to an argument does – executing the
above program fragment prints ”NotNow”. The lazy semantics for structure projection naturally
extends to open declarations. It is motivated by the observation that structures are primarily
used to define local scopes and organise name spaces. It is not desirable that mere grouping
and qualified naming changes strictness – otherwise modular programming would become an
obstacle for laziness (and particularly lazy linking of components – Chapter 7).

Also note that creating and accessing packages (Chapter 4) does not per se touch the respective
module.

Module futures can be failed, e.g. if the module evaluation terminates with an exception.
Exceptions from failed module futures can be caught because Alice ML allows modules to be
declared in local scope (Section 3.2), which can be surrounded by a handler.

There are no promised module futures, but a module can be projected from a package (Chap-
ter 4) that is a promised future, giving a similar effect. For example, we can create simple
mutual recursion between modules:

val p = promise ()
structure E = lazy unpack future p : sig val even : int → bool end

structure O = struct fun odd n = n6=0 andalso E.even (n-1) end

structure E = struct fun even n = n=0 orelse O.odd (n-1) end

val = fulfill (p, pack E : sig val even : int → bool end)

Note however, that any attempt to actually make type members mutually recursive will most
likely result in a deadlock, because of the behaviour of type futures described below. More-
over, the module’s signatures cannot be made mutually recursive. Hence, this approach is no
substitute for a proper recursive module mechanism [Rus01, DHC01, Dre04].

6.7. Types

Types (which includes signatures) may reside in structures. The existence of module futures
hence implies the existence of type futures. The notion of a type future is a novel concept that,

62

6.8. Related Work

to the best of our knowledge, has not been considered before. Most of the times, however, the
presence of type futures is not observable. The reason is that there are only very few operations
that touch types:10

• Sealing touches the ascribed signature.

• Unpacking (Section 4) touches both, the package signature and the target signatures.

• Performing certain primitive operations on packages (in particular pickling), touches the
contained signature.

Touching a type generally can trigger arbitrary computations, e.g. loading a component (Chap-
ter 7). For instance:

structure T = lazy struct type t = int; val = print ”Now” end

val p = pack (val n = 5) : (val n : int)
structure S = unpack p : (val n : T.t)

Evaluating the declaration for structure S will request the structure T, because its type member
t is needed to decide the dynamic type check upon unpacking p.

Note that type declarations themselves never touch a type. In particular, type application is
best thought of as being performed lazily. Constructing a package does not touch the package
signature either. For example, evaluating

structure S = lazy struct val n = 5 end

structure T = lazy struct type α t = α end

val p = pack S : sig val n : int T.t end

will request neither S nor T. However, unpacking p later will request T (only).

6.8. Related Work

Futures were first introduced in Multilisp [Hal85], as a means to perform concurrent or delayed
(lazy) computations. They were an attempt to make automatic parallelisation of functional
programs effective. Flanagan & Felleisen later gave a formal semantics for futures [FF95]. The
future mechanism found in Alice ML refines and extends that work. It has been proposed by
Smolka [Smo99] and was formalised by Niehren, Schwinghammer & Smolka [NSS06]. Lazy type
futures have been investigated formally in a recent thesis by Neis [Nei06].

Futures have already been available in more recent versions of Oz [Smo95, Moz04], but have
never been formalised in the context of a relational language. However, futures are closely related
to logic variables in relational languages like Oz or Prolog [Den85, SS94]. Concurrent logic pro-
gramming introduced the idea of employing logic variables for synchronisation [Sha89, Smo95].
Unlike futures however, logic variables are bound via bi-directional unification. Consequently,
they provide no distinction between read and write access and hence are relatively fragile with
respect to concurrency abstractions. Promises like found in Alice ML have been introduced to
avoid this problem [Smo99]. Basics of the concrete design of futures and promises in Alice ML
are also described in previous work [RLT+06], on which this chapter extends.

The notion of promise has first been proposed by Liskov & Shrira [LS88] as a mechanism
to hide network latency for remote procedure calls. For the same purpose, promises have been
integrated into the untyped language E [Mil06], where they are directly coupled with the method

10All these operations potentially need to look at the whole structure of a type or signature, and hence perform
deep touches. However, the specifics are left undefined and tend to depend on the internal representation of
runtime types as well as the implementation of the respective algorithms, e.g. for checking subtyping.

63

6. Futures

invocation mechanism. Closely related are I-structures, as found in the Id language [ANP89]:
instead of a single slot like a promise, they provide an array of slots. All these features differ
from the notion of promise in Alice ML by not returning a future upon early read access, but
blocking instead.

Lazy evaluation was first proposed by Friedman & Wise [FW76]. The SASL [Tur76] and
Miranda [Tur85] languages by Turner pioneered its use as the fundamental evaluation strategy
of a programming language. Today, the prime example of a language usually implemented based
on lazy evaluation is the non-strict language Haskell [PH99].

Several concurrent extensions to ML and other functional languages have been proposed in
the past. Reppy’s Concurrent ML [Rep99] extends Standard ML with threads, channels, and
first-class synchronisation events. Unlike with futures, synchronisation is explicit. Events can
be composed, but no user defined events are possible. Channels are the primary means of
communication. Concurrent ML is available as part of the SML of New Jersey distribution.

Facile [TLK96] is another extension of SML with concurrent and distributed programming
features. Its concurrency model is based on CCS and the π-calculus [Mil89]. It provides channels
and composable guards as its central communication and synchronisation construct.

More ambitious is the JoCaml language [CL99, FMS01], which extends Objective Caml with
concurrency and distribution, based on the Join calculus [FGL+96], an extension of the π-
calculus. The primary means of communication and synchronisation are join patterns, which
atomically match a combination of values in a soup of messages. Join patterns enable formulation
of concurrent systems in a comparably declarative style, which resembles finite state automata.

Erlang [Arm03] is an untyped functional language for concurrent and distributed program-
ming. It uses an Actor-style approach [HBS73], where processes are represented by pure func-
tions. They communicate over message channels that are implicitly associated with every pro-
cess. Erlang has been developed in an industrial context and is probably the most successful
and most widely used concurrent functional language so far.

Lately, transactional memory has been proposed as an alternative, lock-free paradigm for con-
current programming that is supposed to scale better than locking-based approaches [HMPH05],
and has been implemented for Haskell [PH99]. Communication is through shared state, but in-
stead of locking and synchronisation, critical state accesses are grouped into transactions which
are executed quasi-atomically. If concurrent transactions cause a conflict, one of them is auto-
matically rolled back and retried. The approach benefits greatly from Haskell’s expressive type
system, which allows to statically enforce purity of transactions.

6.9. Summary

• Alice ML adopts concurrency based on futures.

• Futures are transparent place-holders for yet undetermined values.

• Spawning a thread delivers a future of its result.

• Implicit data flow synchronisation automatically blocks and restarts threads that touch a
future.

• Laziness is a simple extension where a thread does not start evaluation before its future
is touched.

• Failure in a thread is captured by failed futures, which propagate exceptions in a syn-
chronous manner when the future is touched.

• Promises decouple futures from threads and enable programming a wide range of concur-
rency abstractions.

• Novel in Alice ML is that modules and specifically types can be futures, too.

64

7. Components

Software of non-trivial complexity can neither be developed nor deployed as a monolithic block.
To keep the development process manageable, and to allow flexible installation and configu-
ration, software has to be split into functional building blocks that can be created separately,
configured dynamically, and even be exchanged between processes. Such building blocks are
called components.

We distinguish components from modules: while modules provide logical separation, name
spacing, genericity, and encapsulation, components provide physical separation and dynamic
composition. Modules are referred to by identifiers and static scoping rules, where components
are identified by extra-linguistic means that are resolved dynamically. Both mechanisms com-
plement each other. More precisely, components contain modules. It is the component system
that enables closing over free references in a module implementation and hence turning it into
a self-contained entity.

Alice ML incorporates a powerful notion of component that is a refinement and extension of
the component system found in the Oz language1 [DKSS98], which in turn was partially inspired
by Modula-3 [BNOW95] and Java [GJS96]. It provides all of the following:

• Separate compilation. Components can be translated independently.

• Lazy dynamic linking. Loading can be performed automatically when needed.

• Type safety. Components carry strong type information and linking checks it.

• Subtyping. Type checking is tolerant against interface changes.

• Static linking. Components can be bundled into larger components off-line.

• Dynamic creation. Components can be computed and exported dynamically.

• Sandboxing. Custom component managers enable selective import policies.

The component system of Alice ML is based on a combination of different mechanisms pre-
sented in the previous chapters:

• Higher-order modules (Chapter 3), for encapsulating all possible language entities,

• Packages (Chapter 4), for dynamic type checking of imports,

• Pickling (Chapter 5), for representing components externally,

• Futures (Chapter 6), for performing linking lazily.

Packages already allow dynamic loading and exchanging of modules. However, these modules
have to be fully evaluated and closed. If we wanted to delay evaluation, or to have it depend
on other modules, then we would have to resort to functional (or functorial) abstraction. Com-
ponents provide a much more comfortable and flexible means for achieving the same effect.
Nevertheless, in Section 7.6 we will see that they can actually be expressed as a – relatively
simple – functional abstraction. We will first present components as an independent feature
before we show how precisely they relate to the mechanisms listed above.

1In Oz, components are called functors by slight abuse of terminology.

65

7. Components

imp := import spec from scon import
empty

imp 〈;〉 imp sequential

component := imp 〈;〉 dec

Figure 7.1.: Syntax of components

7.1. Compilation Units

Components are the unit of compilation as well as the unit of deployment in Alice ML. A
program consists of a – potentially open – set of components that are created separately and
loaded dynamically. Static linking (Section 7.8) allows both to be performed on a different level
of granularity if desired, by bundling given components to form larger ones.

Every component provides a module – its export – and accesses an arbitrary number of modules
retrieved from other components – its imports. Imported components are identified by URLs.
Both, import and export interfaces, are strongly typed by ML signatures.

Each Alice ML source file defines, and is compiled into, a component:2 the contained sequence
of SML declarations is interpreted as a structure body, forming the export module. The respec-
tive export signature is inferred by the compiler. A component can access other components
through a prologue of import declarations:

import spec from string

The SML signature specification spec in an import declaration describes the entities used from
the imported structure, along with their type. All identifiers bound in the specification are in
scope in the rest of the component. Because of Alice’s higher-order module system (Chapter 3),
these entities can include functors and even signatures. For instance, the following are valid
imports:

import structure Pickle : PICKLE from ”x-alice:/lib/system/Pickle”
import structure Server : sig val run : (α→β) → (α→β) end from ”http://my.org/server”
import functor MkRedBlackMap (Key : ORDERED) : MAP where type key = Key.t

from ”x-alice:/lib/data/MkRedBlackMap”

The string in an import declaration contains the URL under which the component is to be
acquired at runtime. Although the URL is hardwired into the code, its interpretation is com-
pletely up to the responsible component manager (Section 7.4), and hence configurable. Usually
it is either a local file, an HTTP address, or a virtual URL denoting system library components
(Alice ML uses the x-alice: scheme for this purpose).

To execute a program, a designated root component is evaluated, meaning that its defining
declarations are evaluated in sequence, according to the dynamic semantics of the language.
Loading of imported components is performed lazily, and every component is loaded at most
once. Loading implies evaluation of the respective component. This process is referred to as
dynamic linking. We defer discussion of the details of linking until Section 7.3.

Figure 7.1 summarises the basic syntax of components.

2Every single input into the interactive toplevel of the Alice System is also treated as a component.

66

7.2. Computed Components

7.1.1. Implicit import signatures

Compilation units are always syntactically closed. There are no free identifiers in a component,
not even for most primitive operators like + (which are ordinary function names in SML) – they
are all bound by some import. That enables separate compilation.

However, writing down the signatures for all imported modules would be tedious in practice.
As syntactic sugar, Alice ML hence allows the type annotations in import specifications to be
dropped. It suffices that the imported component are accessible (in compiled form) during
compilation, so that the compiler can insert the respective types from their export signatures.
For example, the previous import declarations could be abbreviated to

import structure Pickle from ”x-alice:/lib/system/Pickle”
import structure Server from ”http://my.org/server”
import functor MkRedBlackMap from ”x-alice:/lib/data/MkRedBlackMap”

As an additional service, the compiler automatically thins implicit signatures by removing all
entities that are not directly or indirectly referred in the remainder of the component. Doing
so makes the compiled component maximally robust against eventual changes in parts of an
interface that are not accessed.

The library of the Alice System is uniformly accessed as a set of components denoted by x-alice:

URLs, like the Pickle and MkRedBlackMap modules above. For convenience and for compatibility
with Standard ML, Alice ML allows to omit imports for modules from the Standard ML Basis
library [GR04] by default. The respective import declarations are implicitly prepended to every
compiled component source. Again, the compiler thins signatures as far as possible, and removes
redundant imports introduced implicitly.

7.1.2. Example: A simple stand-alone application

Figure 7.2 shows a simple sample application consisting of two components, fib and main, which
we will use as a running example in this chapter. The program expects an integer on the com-
mand line and outputs the corresponding Fibonacci number, with the help of the fib procedure
supplied by the respective component. Note how the main component imports the fib function
without explicitly giving its type. Also note that it uses several library structures without
importing them explicitly. Even fib uses library functions, namely addition and subtraction.

Figure 7.3 shows how the same example will actually be rewritten by the compiler. It inserts
the necessary imports for library entities and the type annotation for the explicit import. Note
how the signatures of imported structures are recursively thinned down to the content actually
required. The rewritten components are completely self-contained – they do not contain any
free identifiers, not even for the most basic primitives.

Export signatures are not explicit in the code, but straightforward in this case: the export
signature of the fib component only contains the function fib (as imported by main). The export
signature of main is empty, thanks to the use of local.

7.2. Computed Components

Compilation is the most obvious, but not the only way to create components. Nor do components
necessarily live in files. In fact, components are first-class entities in Alice ML, and can be
constructed dynamically by an ML process. We call such components computed components, as
opposed to compiled components (strictly speaking, a compiled component is just the special
case of a component computed by the compiler, though).

67

7. Components

(* fib.aml *)
local

fun fib’(i, j, 0|1) = j
| fib’(i, j, n) = fib’(j, i+j, n−1)

in

fun fib n = fib’(1, 1, n)
end

(* main.aml *)
import val fib from ”fib”
local

val s = hd (CommandLine.arguments ())
val t = Int.toString (fib (valOf (Int.fromString s)))

in

val = TextIO.print (t ˆ ”\n”)
end

Figure 7.2.: A simple component example

(* fib.aml *)
import

type int
val + : int × int → int
val − : int × int → int

from ”x-alice:/lib/fundamental/Core”
local

fun fib’(i, j, 0|1) = j
| fib’(i, j, n) = fib’(j, i+j, n−1)

in

fun fib n = fib’(1, 1, n)
end

(* main.aml *)
import

type int
type string
type unit = {}
datatype α option = NONE | SOME of α
datatype α list = nil | :: of α × α list
val ˆ : string × string → string
val valOf : α option → α
val hd : α list → α
structure Int : sig val toString : int → string; val fromString : string → int option end

from ”x-alice:/lib/fundamental/Core”
import

structure CommandLine : sig val arguments : unit → string list end

from ”x-alice:/lib/system/CommandLine”
import

structure TextIO : sig val print : string → unit end

from ”x-alice:/lib/system/CommandLine”
import val fib : int → int from ”fib”
local

val s = hd (CommandLine.arguments ())
val t = Int.toString (fib (valOf (Int.fromString s)))

in

val = TextIO.print (t ˆ ”\n”)
end

Figure 7.3.: The component example, rewritten by the compiler

68

7.2. Computed Components

structure Component :
sig

type component

exception Failure of url × exn
exception Eval of exn
exception NotFound
exception Corrupt
exception Sited

val fromPackage : package → component
val save : string × component → unit
val load : string → component
...

end

Figure 7.4.: The Component structure

Within the language, a component is a first-class value of the abstract type component, which is
defined in the library structure Component. Figure 7.4 shows an excerpt of its signature. Values
of this type can either be constructed with the fromPackage function from that structure, or with
a new syntactic form:3

comp imp in spec with dec end

Such a component expression has a syntactic structure not too different from a compilation unit.
The main difference is that its export signature must be given explicitly, in form of a sequence
of signature specifications spec between the keywords in and with. The environment obtained
from the declarations dec must match this signature. Naturally, imports and declarations are
not evaluated when the component is constructed, but when it is linked. Thus, a computed
component can not only import other components, it can also perform sited operations and
generate arbitrary side effects through functionality obtained from imported library components.
This sets components apart from plain packages.

Note also that the imports scope over the signature – an export signature may depend on
types defined in other components. In Section 7.6 the semantics of this feature will become
clear.

The less visible but more important difference between compiled and computed components
is that the latter need not be closed. Hence computed components can embody information that
is obtained dynamically. That is useful for at least two purposes:

• Pre-computation. Through a staged building process, components can be created that
readily provide data structures that are expensive to compute, or should be “statically
generated”.

• Mobility. Dynamic behaviour that depends on resources can be wrapped into a component
and be passed to other processes.

3This syntax is not available in the current Alice System; the following higher-order polymorphic functor from
the Component structure has to be used as a substitute:

functor Create (signature S) (F : COMPONENT MANAGER → S) : (val it : component)

69

7. Components

Pre-computation already is enabled to a certain degree by packages and persistence (Sec-
tion 4.2). However, packages are relatively limited: as pickles, they have to be closed, i.e. they
cannot make use of any library functionality local to the site where they are loaded. In partic-
ular, they cannot easily provide behaviour that requires access to resources – e.g. input/output
– because such resources and operations on them cannot be stored in pickles (Section 5.3).
Components come to the rescue.

To demonstrate the utility of computed components, consider the example of a simple Hello
World application. The following program computes a component that exports a function that
prints a message containing the component’s date of creation when invoked later:

val date = Date.toString (Date.fromTimeLocal (Time.now ()))
val component =

comp

import structure TextIO from ”x-alice:/lib/system/TextIO”
in

val hello : unit → unit
with

fun hello () = TextIO.print (”Hello world! Created at ” ˆ date ˆ ”\n”)
end

val = Component.save (”hello”, component)

Note that date is computed outside the component, and hence included as a value. Component.save

pickles a computed component to a file. Component files created this way behave exactly like
components created by the compiler, they can be loaded or imported. For example, the simplest
possible program utilising the component created above is the following:

import val hello : unit → unit from ”hello”
val = hello ()

Alternatively, we can use Component.load to load it as a first-class value, but it then requires an
explicit component manager (Section 7.4) to evaluate it.

Packages can be directly converted to components with the Component.fromPackage function,
which is sometimes convenient – we speak of evaluated components in this case, because they
just export a constant module value. However, the key difference between a component and a
simple package is that a component enables import of resources and other functionality local to
the target site. As the example shows, computed components can thus have arbitrary, ‘impure’
behaviour, but are yet mobile, i.e. exportable through pickling. For instance, the example would
not work if we omitted the import declaration for TextIO – then the local instance of TextIO.print

would be in the closure of component, and pickling would fail with a Sited exception because print

is a resourceful operation (Section 5.3). With the import, we effectively enforce rebinding of all
scoped references to TextIO on the target site. However, the target site may choose to prevent
the import if it wishes to restrict the capabilities of an untrusted component (Section 7.5).

Rebinding is particularly important for distributed programming. Exchanging dynamic be-
haviour between processes can be achieved by creating a mobile component serving two purposes:

• it closes over all entities obtained at creation site, thus containing the necessary dynamic
information (like date above),

• it abstracts over all entities to be obtained at the target site, thus enabling pickling and
(re)binding (like TextIO above).

The former is handled automatically by closure and the semantics of pickling. The latter can
be controlled by the use of import declarations in the definition of the mobile component. The

70

7.2. Computed Components

dynamic
data

dynamic
data

dynamic
data

computed
component

evaluated
component

local
resource

local
resource

local
resource

refer

refer

ref
er

transmit

pickle

im
po

rt

import

import

Process 1 Process 2

Figure 7.5.: Mobile components

rebinding itself is automatic, by the process of dynamic linking. Figure 7.5 illustrates this tech-
nique. We will show applications of this technique in the chapter on distributed programming
(Chapter 8).

Note that, unlike procedural abstraction over resources, components are much more flexible.
In particular, they reduce coupling: the client (the target site) does not need to know every
detail about what resources are required by the component. The component can readily utilise
every service that the client grants it access to, without the latter having to explicitly supply
handles to every such service. This makes clients robust against changes in the implementation
of components they dependent on (while subtyping already makes them robust against changes
in interfaces). Effectively, this is achieved by employing an indirection (through the component
manager responsible for linking, Section 7.4) to keep implementation details out of interfaces.

7.2.1. Pickling Components

The functions save and load from the Component structure allow storing components to disk
and retrieving them. These are the basic primitives implementing persistence in Alice ML. In
particular, load is the function ultimately used (by a component manager, Section 7.4) to load
imported components from the file system.

The functions Pickle.save and Pickle.load that we had seen in Section 4.2 are in fact just simple
wrappers defined as follows:

fun save (s, p) = Component.save (s, Component.fromPackage p)
fun load s = SingularComponentManager.eval (Component.load s)

In other words, there is only one uniform file format: all pickle files are actually (evaluated)
components and can be used as such. Pickle.load can load even unevaluated components, and
will evaluate them. In general however, components have imports, which requires cooperation
from a component manager (Section 7.4). To keep unpickling secure (Section 5.3) and prevent
accidental security breaches by untrusted components naively loaded as pickles and silently
grabbing resources, Pickle.load employs a special degenerate component manager that rejects
any further imports attempted by the loaded component – this basically is a simple form of
sandboxing (Section 7.5). All evaluated components, especially those created with Pickle.save,
will successfully load. For other components, a suitable explicit component manager is required
to evaluate the component without failure.

71

7. Components

7.3. Dynamic Linking

The components making up an application form a directed graph with respect to their import
dependencies. A designated root is the main component of a program. Primitive library com-
ponents providing system services and the most basic functionality make up the leaves of the
graph.

To execute a program, its root component is evaluated. For compiled components, this means
that the respective declarations are evaluated in sequence. As already explained, loading of
imported components is performed lazily, and every component is loaded and evaluated only
once. This is achieved by treating every cross-component reference as a lazy future (Section 6.2).
Conceptually, the lazy thread suspended by the future is responsible for loading the component
when it is touched.

The process of loading and evaluating a component requested as import (by another compo-
nent) is referred to as dynamic linking. Linking a component involves several steps:

1. Resolution. The import URL is normalised relative to the URL of the current component.

2. Acquisition. If that URL is being requested for the first time, it is loaded.

3. Evaluation. If the component has been loaded afresh, its body is evaluated and its
dynamic export signature computed.

4. Type Checking. The component’s export signature is matched against the respective
import signature.

Each of the steps can fail: for instance, the component might be inaccessible or malformed,
evaluation may terminate with an exception, or type checking may discover a mismatch. Under
each of these circumstances, all futures representing references to the component are failed
(Section 6.3) with the standard exception Component.Failure (Figure 7.4):

exception Failure of url × exn

The URL denotes the requested component and the nested exception describes the precise cause
of the failure. In particular, it can be an I/O exception, the exception Unpack (Section 4.1),
or any of the following exceptions, which are also defined in the library structure Component

(Figure 7.4):

exception NotFound (* component was not found *)
exception Corrupt (* component is malformed *)
exception Eval of exn (* component evaluation terminated with an exception *)

In the case of Eval, the uncaught exception is in turn nested.

Note that the import graph of a program may contain cycles. In the extreme, a component
may even import itself, although this is hardly useful. Thanks to lazy linking, cycles pose no
problem as long as at least one of the components on the cycle does not need its respective
import immediately. Otherwise a deadlock may occur. In practice, cyclic imports are very rare.
Programs typically rely on implicit import signatures inserted by the compiler (Section 7.1). By
construction, such imports can never be cyclic, unless some of the components are changed and
recompiled during the build process.4

4A trick that also works in Java.

72

7.4. Component Managers

signature COMPONENT MANAGER =
sig

exception Conflict

val acquire : url → component
val eval : component → package
val enter : url × component → unit
val lookup : url → package option
val link : url → package

end

Figure 7.6.: The signature of a component manager

7.4. Component Managers

To enable control over the process of linking imports, it is always performed with the help of
a component manager. The main responsibility of a component manager is to locate and load
requested components, and to maintain a table of components that have been loaded already.
The default component manager is a module of the runtime library that is initialised on startup
of an Alice ML process. It starts with an empty table and incrementally fills it as required by
evaluation of the root component or any of its imports.

Concretely, a component manager appears as a structure with the signature shown in Fig-
ure 7.6. To a program, the responsible component manager is accessible not only implicitly for
imports, but also explicitly as the library structure ComponentManager of that signature. Using
it, a program can operate on first-class components and influence the manager in more direct
ways. As apparent from its signature, a component manager provides several basic services on
component values, most of which implement one of the linking steps enumerated in the previous
section:5

• acquire retrieves a component, without actually evaluating or entering it,

• eval evaluates a component into a package containing its export,

• enter enters an export package into the table, raising Conflict if the URL is already taken,

• lookup retrieves a component from the table,

• link loads and enters a component from a specified URL.

Ultimately, eval is the only operation that actually consumes a value of type component – no other
ways exist to access it. It will typically be used in distributed programming scenarios (Chap-
ter 8), where components are exchanged between processes to achieve rebinding of resources via
computed components (Section 7.2).

The function link combines the sequence of operations usually required to acquire and link a
component given its URL. Its semantics is roughly equivalent to the following definition, except
that it performs the necessary steps atomically:

fun link url = case lookup url of

SOME p ⇒ p
| NONE ⇒ let val p = eval (acquire url) in enter (url, p); p end)

5Some types currently differ slightly from Figure 7.6 in the actual Alice System, but the essence is the same.

73

7. Components

Note that there is no operation to remove a component from the table. While this is not a
pre-requisite for achieving soundness – thanks to typing being based on generative type names
– it is a desirable property of a component manager to grow monotonically, in order to maintain
the property that every component is evaluated only once. If required, unloading of components
can be simulated by creating a child component manager (Section 7.5), link a component with
it, and then drop all references to it [Kor06].

7.5. Resources and Sandboxing

The relevance of component managers lies in their ability to control imports. That ability can
be utilised to realise security measures. In an open setting it is important to handle untrusted
components, and to restrict their capabilities. For example, not all components should be given
unrestricted access to the local file system.

To deal with this, component managers can be employed to adopt the approach taken by
Java: they can form a sandbox to execute untrusted components in. Sandboxing relies on three
factors:

• Sited Resources. All critical operations and other objects that provide access to effectful
services (e.g. input/output, system calls, various runtime services) are considered resources
(Section 5.3). Resources cannot be pickled, hence there is no way to export them from
a process. Consequently, no component imported into a process can contain any direct
reference to resources.

• Resource Acquisition through Component Managers. The only way a component
can gain access to resources is by importing them from so-called primitive components on
the local site. Because all imports are controlled by a component manager, and primitive
components are identified by a stable naming scheme, the responsible manager can thus
decide what access to grant a given component.

• Custom Managers. It is possible to create custom managers that restrict the access to
certain components and explicitly link untrusted components through them. A component
manager is inherited, i.e. all imports directly or indirectly requested by a component will
be linked using the same manager (or another custom manager that can only be defined
in terms of that manager).

In other words, every component initially receives an (implicit) reference to exactly one resource:
its component manager. It is then the responsibility of this manager to decide what further
resources, and hence capabilities, are given to the component or its descendants.

The initial manager starting up an Alice process usually provides access to all resources. The
resourceful primitive components made available by this manager are an integral part of the
runtime system and do not exist independently from it.

On the language level, a custom manager simply is a user-defined implementation of the
COMPONENT MANAGER signature. For example, the Alice ML library provides a functor to
create new managers with specialised behaviour. When a custom manager is created, then it
can only use capabilities provided by its own ‘parent’ manager. In particular, the only way to
provide access to primitive components is by forwarding the respective requests to the parent
manager. Hence a custom manager can never grant more access than it has itself. Thus there is
no way to bypass the restrictions of a manager – a custom manager represents a proper sandbox.

There are several possible ways in which a custom manager can restrict access:

74

7.6. Decomposition of the Component System

• It can simply reject loading from specific system URLs altogether, and only forward re-
quests it deems save.

• It can restrict the signature under which specific components are made available, by for-
warding the request to its parent manager, but repackaging the result with a thinner
signature (e.g. removing the operations for opening output files from TextIO).

• It can substitute critical components by security-sensitive wrappers, that dynamically
check access per operation, using fine-grained policies (this corresponds to Java’s Security
Manager).

For Alice ML, either of these approaches is feasible and programmable. So far, the Alice ML
library provides only minimal infrastructure for setting up custom managers. A thorough anal-
ysis of the design space is independent of language design issues as discussed here, and thus left
for future work. However, the language semantics provide all necessary prerequisites.

Scharfstein describes one possible design and implementation of a sandboxing library for Alice
ML [Sch06], which uses secure wrapper components performing dynamic checks with respect to
user-configurable policies, but also enables the user of the sandbox to plug in her own behaviour.
Noteworthily, sandboxing is realised fully within the language itself and does not require any
direct support from the core system.

We should stress again that security is not the focus of this thesis, and that the above descrip-
tion is only meant to show that Alice ML is potentially secure. We do not claim to describe an
end-to-end security concept. Nor does the current implementation of the language provide it.

7.6. Decomposition of the Component System

At first, components may look like a complex mechanism. In this section we will refute this
presumption, by giving a simple reduction of components to functions and packages. The merit
of this reduction is three-fold:

• It keeps the language conceptually simple.

• It defines component semantics without need for additional technical machinery.

• Soundness and related properties follow for free.

The close relation between components and the concepts presented in previous chapters –
like modules, packages and futures – is obvious, so one might hope that there exists a simple
reduction. And indeed, components can be understood as mere syntactic sugar.

7.6.1. Components

A component can be seen as a function that evaluates to a package (Chapter 4). The package
encapsulates the export module and its signature.

More precisely, the abstract type component can be implemented as a higher-order function
type:

type component = (url → package) → package

Its argument encapsulates the component manager, needed to acquire imports. Supplying the
function evaluates the component.

Accordingly, a component expression

75

7. Components

Component syntax Reduced syntax

imp 〈;〉 dec comp imp in spec ′ with dec end

comp imp in spec with dec end fn import ⇒
let imp in

pack struct dec end : sig spec ′ end

end

import spec from s local

structure strid = lazy unpack import s : sig spec end

in

open strid
end

Notes: (1) spec ′ describes the principal signature of dec.
(2) import is a unique identifier.
(3) strid is an arbitrary identifier.

Figure 7.7.: Reduction of components to packages

comp imp in spec with dec end

can be viewed as syntactic sugar for the function

fn import ⇒ let imp′ in pack (dec) : (spec) end

where import is a reserved identifier and imp ′ is obtained from imp by rewriting every import
declaration

import spec from s

to

local

structure strid = lazy unpack import s : (spec)
in

open strid
end

where strid is a fresh identifier. Likewise, a compilation unit can be rewritten, except that the
package signature is derived and inserted by the compiler.

This simple transformation fully determines the semantics of components. In particular, it
makes obvious where laziness applies, how dynamic type checking is performed for imports,
and how acquisition of imported component is delegated to the component manager: every
component receives the function import for acquiring its imports, as packages of their export.6

Evaluation of a component produces a package that contains its export.
Figure 7.6 summarises the definition of components as syntactic sugar.

7.6.2. Examples

Reconsider the (rewritten) Fibonacci application from Section 7.1 (Figure 7.3). Figure 7.8
exhibits how the same example is decomposed according to the rules just described. For brevity,
we write

6For presentational purposes, we treat the type url as synonym for string here, although it is actually an abstract
type demanding explicit conversion.

76

7.6. Decomposition of the Component System

(* fib *)
fn import ⇒
pack struct

open lazy unpack import ”x-alice:/lib/fundamental/Core” : sig

... (* import specs as in Figure 7.3 *)
end

local

fun fib’(i, j, 0|1) = j
| fib’(i, j, n) = fib’(j, i+j, n−1)

in

fun fib n = fib’(1, 1, n)
end

end : sig val fib : int → int end

(* main *)
fn import ⇒
pack struct

open lazy unpack import ”x-alice:/lib/fundamental/Core” : sig ... end

open lazy unpack import ”x-alice:/lib/system/CommandLine” : sig ... end

open lazy unpack import ”x-alice:/lib/system/TextIO” : sig ... end

open lazy unpack import ”file:fib” : sig val fib : int → int end

local

val s = hd (CommandLine.arguments ())
val t = Int.toString (fib (valOf (Int.fromString s)))

in

val = TextIO.print (t ˆ ”\n”)
end

end : sig end

Figure 7.8.: The component example decomposed

local structure strid = strexp in open strid end

as

open strexp

which is not valid Alice ML syntax, but should be intuitive enough as a hypothetical extension.

Note that the results are closed expressions. Moreover, the decomposition finally makes the
inferred export signature explicit.

7.6.3. Component Managers

The import function used in the component decomposition encapsulates a component manager.
As explained in Section 7.4, its job is locating components and keeping a table of loaded compo-
nents. When a component is requested for the first time, it is loaded, evaluated and entered into
the table. It remains to be shown how component managers themselves can be implemented.

Figure 7.9 contains a simple model implementation of such a function. It locally de-
fines a set of auxiliary functions that almost directly mirror the functionality seen in the
COMPONENT MANAGER signature (Figure 7.6). Apparently, most of these functions are straight-
forward. However, we show a quite limited version of acquire, which simply delegates to

77

7. Components

exception Conflict
val table = ref [] : (url × package) list ref
val mutex = mkMutex ()

fun import’ parent =
let

fun acquire url =
Component.load url handle exn ⇒ raise Failure (url, exn)

fun lookup ”x-alice:/lib/system/ComponentManager” =
pack (

structure ComponentManager =
struct

exception Conflict = Conflict
val acquire = acquire
val lookup = mutex lookup
val enter = mutex enter
val eval = eval’ ”.”
val link = import’ ”.”

end

) : (structure ComponentManager : COMPONENT MANAGER)
| lookup url =
List.find (fn (x,) ⇒ x = url) (!table)

and enter (url, package) =
if isSome (lookup url) then raise Conflict
else table := (url, package) :: !table

and eval’ url component =
component (import’ url) handle exn ⇒ raise Failure (url, exn)

fun link url =
let val url’ = resolve (parent, url) in

case lookup url’ of

SOME package ⇒ package
| NONE ⇒
let val package = lazy eval’ url’ (acquire url’) in

enter (url’, package); package
end

end

in

await ◦ mutex link
end

Figure 7.9.: A canonical component manager

78

7.6. Decomposition of the Component System

Component.load (Section 7.2) and thus can only handle file URLs. For other URL schemes (par-
ticularly http:) additional services may be accessed, which we will not describe here. We also
ignore primitive components.

The main complication is URL resolution: all URLs in an import declaration have to be
interpreted relative to the domain (authority) and path of the URL under which the importing
component was acquired. This is necessary to make groups of components relocatable across
directory structures and network domains. Consequently, the import function passed to a com-
ponent must know about the component’s associated URL, so that URL has to be passed as an
additional parent argument – import’ is the abstraction of import over this additional argument.
Assuming existence of an auxiliary function resolve : url × url → url that syntactically resolves
a URL relative to another one, the internal link function can then perform the necessary reso-
lution. When evaluating a component C, link passes along C’s URL to the evaluation function
eval’, which constructs an import function from it that is suitable for loading C’s own imports.

Explicit access to the component manager is enabled in this implementation by special-casing
the internal lookup function on the system URL of the component manager. If applied to that
URL, lookup just returns an appropriate package containing the required functionality. Note that
these functions do not interpret URLs relative to a parent – no unambiguous notion of parent
exists in their case, because the functions can be passed around first-class. Instead, URLs are
pragmatically resolved relative to the local host and current working directory, which we indicate
with ”.” here.

The component table is stateful. To achieve thread safety, the manager must perform locking.
We reuse the mutex abstraction from Section 6.5 for this purpose, which synchronises functions
via mutual exclusion. All functions that access the table and are passed outside the closure –
namely lookup, enter and link – are synchronised by applying the mutex.

Note that the link function enters the component into the table immediately, but actually
suspends loading and evaluation through laziness. This is necessary to achieve re-entrancy of
the manager, which is required because evaluating the component might spawn new threads
and request new components before returning. By returning from the synchronised link function
before actually initiating evaluation, the mutex lock is released first and a deadlock is avoided.
To compensate, we must ensure that the lazy future is touched after the lock is released. We do
that by wrapping the synchronised link function with an explicit call to await to touch it.

7.6.4. Program Execution

Given the described reduction of components and component managers, execution of an Alice
ML program can be thought of as evaluation of the simple application

import’ ”.” root

where import’ refers to the initial component manager, and root is the URL of the program’s root
component, resolved relative to the current host and working directory, which we again indicate
by a dot URL.

In summary, all observable properties of program execution and dynamic linking follow from
the decomposition we gave:

• Lazy Linking: Import is fully lazy. The first access to an imported component triggers its
actual loading, evaluation, and type checking.

• Type Propagation: Export signatures are dynamic types. Type checking fully takes dy-
namic type equivalences into account. Through lazy types, a type check may trigger
loading of other components.

79

7. Components

• Failure: When a component could not be linked, all references will eventually become failed
futures (with exception Failure), automatically propagating failure notices when necessary.

• Concurrency: Components can be linked concurrently. A component manager has to be
thread-safe and properly re-entrant.

We elaborate the second point in the following section.

7.7. Type Propagation

The most subtle point implied by our interpretation of components is that export signatures
are actually determined dynamically, due to the transparent interpretation of pack (Section 4.1).
This enables complex type sharing: an export signature may mention a type that has been
imported abstractly, still other components further down the dependency graph may match this
type concretely. Consider three components:

(* A *)
type t = int
val x = 5

(* B *)
import type t; val x : t from ”A”
type u = t
val y : u × bool = (x, true)

(* C *)
import val y : int × bool from ”B”
val z = #1 y

Here, B imports type t from A, but makes no assumptions about it – it just reexports it under
the name u. The export signature of B thus contains no static information about the identity of
u. Still, component C can successfully import it under the assumption u = int, because the actual
export signature of B is determined dynamically, and reflects the respective type equivalence.

A related subtlety is the effect of dynamic type checking on lazy linking. Type checking an
import may sometimes require loading a component that is imported only transitively, i.e. is
not yet accessed directly, but whose dynamic export signature needs to be known to decide type
checking further down the import chain. Consider the above example again. In order to evaluate
z in component C, the pair y must be accessed from B, i.e. linking of B is triggered. To construct
y, the value of x imported from A is not actually needed, it can be kept as a future, linking of A
is not required for evaluation. However, in order to type-check the import of B in C, we must
check u = int. Therefore, we have to inspect type u, which initially is a lazy reference to type
t from A (Section 6.7). The type check can only proceed by touching this type future, thereby
loading A after all.

Dynamic type information does not necessarily propagate from other components only, it can
also be the result of an actual computation:

(* A *)
val p = if isFullMoon () then pack (type t = int; val x = 5)

else pack (type t = bool; val x = true)
structure M = unpack p : (type t; val x : t)
val y = M.x

(* B *)

80

7.8. Static Linking

import val y : int from ”A”
val z = y + 1

In this example, linking A and B will only succeed during full moon.

In summary, the presented semantics guarantees that link-time type checking accounts for all
available dynamic type information. Of course, practical programs are unlikely to be tempted
to exploit this flexibility to the extreme. Examples like the last one are rarely useful as is, but
the underlying semantics may be relevant for computed components.

7.8. Static Linking

When developing an application, it usually is good advice to split it into small enough com-
ponents, so that they can be modified and compiled independently, probably by multiple de-
velopers. When the final application is deployed, however, it is preferable to have it consist of
as few parts as possible, to ease installation, minimise potential for failure, and prohibit unli-
censed reuse of private components. It is thus important to decrease the level of granularity of
components when moving from individual programming tasks to the final product.

The Alice System supports this with a simple notion of static linking, or bundling : it provides a
linker tool that takes a set of components, including one designated root component, and bundles
them to form a single large component. In practice, the set can be computed automatically from
the root component and its dependency graph, plus URL-based cut-off rules given by the user.7

From the set of components a new component is computed and pickled that incorporates
all of them. The resulting component has the same export as the root component, and the
collective imports of all components that were not included, but are imported by an included
one. The linker checks that all pairs of import/export signatures of internalised import edges
match, otherwise the whole operation is rejected with a type error message. Note also that it is
not possible to link primitive components (Section 7.5), because they are resourceful and cannot
be pickled. They are always cut off implicitly.

Interestingly, the semantics of static linking can be defined in terms of custom component
managers. We give a brief sketch by means of a simple example.

Consider the Fibonacci application from Figure 7.2, in its decomposed version shown in Fig-
ure 7.8. We take the main component as root and exclude any library components. Slightly
simplifying, main is statically linked with fib by computing and pickling a wrapper component
whose desugared appearance is roughly equivalent to the expression shown in Figure 7.10. We
assume that the original component values are bound to mainComponent and fibComponent in the
context, and will hence be in the closure when the wrapper is pickled.

Basically, the new component creates a trivial custom component manager that treats requests
for the URL ”fib” of the bundled component specially. All other component requests are just
forwarded to the parent manager. This specialised manager is then passed on to the root
component main, ensuring that it will see the internalized version of fib when requesting it. Note
that the relative evaluation order of the linked components is not changed: fib is still evaluated
lazily.

It should be sufficiently clear how this approach scales to more complex examples. The main
complication is that not only the root component has to receive the specialised manager, but
all bundled components that import other bundled components. To deal with cyclic linking
correctly, this requires the import’ procedure to be defined in mutual recursion with the lazy

7If the linker were to be implemented in Alice ML itself, this would require limited reflective functionality on
the representation of components, to allow the inspection of the import URLs and signatures of components.

81

7. Components

fn import ⇒
let

val fibPackage = lazy unpack fibComponent import : sig val fib : int → int end

fun import’ ”fib” = await fibPackage
| import’ url = import url

in

mainComponent import’
end

Figure 7.10.: The component example after static linking

package definitions – promises (Section 6.4) provide an easy way to realise this. We omit the
details.

Another complication we refrain from discussing further is URL resolution: since URLs can
be relative, the custom import function defined actually has to consider the URL of the importing
component to correctly identify references to bundled components, similar to the way the parent

URL is employed in the idealised component manager of Figure 7.9. This is tedious but not
hard.

The linker of the actual Alice System also performs an additional optimization: since im-
port/export signatures are checked at bundling time, it is statically known that the inserted
unpack operations will not fail. Consequently, the linker can safely remove the corresponding
dynamic type checks, saving space and time with respect to component representation and eval-
uation. However, this transformation cannot be expressed on the language level, due to the lack
of static first-class modules in Alice ML.

7.9. Related Work

We have already described central aspects of the component system presented here in previously
published work [Ros06, RLT+06], where we also gave a formal semantics of packages and pickling
as part of a module calculus. That work omits many of the details given here, particularly
regarding type propagation and compilation.

The languages most relevant with respect to our component design are Java [GJS96] and
Oz [Smo95, DKSS98], in which many of the ideas originated, and Acute [SLW+05], which is a
different ML-like language that incorporates a component system with comparable flexibility.
We discuss them in detail below.

Kornsteadt [Kor06] describes and discusses many additional aspects in the design of a com-
ponent system like the one found in Oz and Alice ML. In particular, he is concerned with
component namespacing via URLs, URL resolution, the external representation of components
via pickles, and static linking (bundling) in much more detail. Moreover, he describes an alter-
native decomposition of components that aligns with the model used in Oz, discussed below.

The problem of software configuration and dynamic linking has been approached from a more
general direction by many authors. For example, in early work on the functional language
Pebble, Burstall already describes the idea of regarding modules as functions and linking as ap-
plication [Bur84]. Cardelli [Car97a] was the first to investigate linking formally, but he was only
concerned with separate compilation and static linking. Glew and Morrisett [GM99] consider
type-safe static linking on the level of assembly language. Flatt & Felleisen [FF98] proposed
a calculus of first-class units, which are very similar to our components, though defined as
monolithic primitives. They support dynamic and static linking (the latter through a special

82

7.9. Related Work

compound construct), but no lazy linking or sandboxing. Unlike in our system, a client that
links (invokes) a component must supply all its imports, which decreases modularity. Ancona
& Zucca [AZ02, AFZ04] have developed a series of formal calculi that abstractly model com-
ponents and type-safe and lazy linking, but they maintain components as a complex primitive
concept. Duggan [Dug02] also gives a formal semantics for a language with dynamic linking,
but is mainly concerned with the issue of recursive linking.

Dean [Dea97] investigates issues of type safety in a language with dynamic linking in the style
of Java. None of these issues arise in Alice ML, because the semantics of components is defined
purely by decomposition into (safe) language features like modules and packages.

There is relatively little work that investigates concrete language design in the context of
ML or similar higher-order typed languages. There have been different proposals for defining
separate compilation for ML [BA99, SMCH06], but they do not provide dynamic linking or any
of the other advanced features provided by our approach.

Modula-3 and Oberon

Some languages in the Modula tradition, noticeably implementations of Oberon [RW92] and
Modula-3 [BNOW95], already were centered around a module system with dynamic linking.
The Oberon System even went a step further: it constitutes a whole operating system that
consists of a library of dynamically loaded components [WG92]. However, the module and type
systems of these languages are comparably simple, and neither performs dynamic type checks
at link time. Hence they are inherently unsafe.

Java

Java [GJS96] has been the first major language with a serious focus on open programming,
and as such quite successful and influential. Our approach to dynamic linking and sandboxing
through component managers has clearly been inspired by Java’s concept of class loader [LB98].
Java is object-oriented, so instead of modules, Java components (class files) carry classes. Full
verification of the well-formedness of class files is carried out upon loading. However, Java
performs no structural type checking when a class is loaded, subsequent method calls may cause
a NoSuchMethodError exception any time, undermining the type system to the point that Java
has to be considered a dynamically checked language as soon as it is actually used for open
programming.

In contrast, the dynamic type check performed by Alice ML ensures that all invariants of
the static type system are maintained – execution cannot fail later due to a type error. More
precisely, the use of laziness may delay type errors in Alice ML, but the package semantics
prevents evaluating a call into a component successfully before all assumptions on a given import
edge have been checked. In Java, any number of inter-class calls may execute successfully (and
potentially initiate side effects) before a subsequent call uncovers an actual inconsistency in the
interface assumptions. See our introductory example in Section 1.3.1.

Runtime checks are performed at individual method calls. Java uses a simple form of nominal
typing for that: every class is identified by a pair of its syntactic name and the responsible
class loader. Clearly, this approach is more vulnerable to soundness problems, and indeed,
early versions of the Java Virtual Machine were unsound in this regard [DFW96]. The issue
is namespace consistency between runtime classes introduced by multiple class loaders, and
the classes seen by the compiler [LB98]. Ensuring type safety and integrity of the runtime
relies on a one-to-one mapping between classes as types and classes as components, and thus
requires certain properties from loaders. These cannot be enforced for user-defined class loaders.

83

7. Components

Consequently, the Java runtime not only has to ensure that no class loader is ever invoked twice
for the same class, it also has to double-check the name of classes delivered by a loader.

None of these problems exist in Alice ML, where type identity is established by generativity,
and type safety thus is completely independent from the identity of components. Consequently,
component managers are safe by construction, since they can be expressed solely in terms of
proper language constructs, which are known to be type-safe. Even nonsensical managers, e.g.
ones that deliver a different component each time the same URL is requested, cannot compromise
soundness.

Java has a built-in mechanism for serialization that even supports versioning. However, it is
not interchangeable with class files and not generic. In particular, code cannot be serialised, only
class names can be used to represent code in serialised objects, which is a comparatively inflexible
and fragile abstraction. Consequently, there is no equivalent to computed components. Instead,
if required, classes have to be exchanged manually as class files, separate from objects. In the
case of distributed programming, the Java RMI (remote method invocation) framework [WRW96]
encapsulates transmission of class files in the library. Classes can be loaded as first-class entities,
but as such they can only be accessed indirectly per Java’s reflection mechanism, which precludes
any form of static type checking.

Java was originally intended for writing applets running in Web browsers. For that purpose,
Java provides sandboxing as an integral part of its runtime infrastructure. Custom class loaders
allow to control access to certain classes. Every class loader is accompanied by a security manager
that checks access on a per-operation basis. In more recent versions, the sandbox model has
been refined with a system of cryptographically verified trust and more fine-grained, user-defined
permissions and policies. The sandboxing infrastructure needs to be built into the core system
in Java, in contrast to our approach, where it can be realised fully within the language.

Java Archives (JARs) are bundled collections of Java class files. Unlike static linking in Alice
ML, creation of Java archives does not perform type checks, and intra-archive linking can still
fail at runtime.

Scala

Scala [Ode05] is a hybrid object-oriented/functional language on top of the Java infrastructure.
It has a very powerful static type and class system [OCRZ03] that subsumes Java as well as
much of ML modules, and additionally provides features like multiple inheritance, mixins, and
views.

Still, open programming in Scala suffers from the same shortcomings as in Java, due to its
approach of reusing most of Java’s runtime and library. It hence inherits most of Java’s problems
regarding open programming. In particular, the expressiveness of the static type system does not
carry over to dynamic typing, because Scala types are erased to Java types during compilation.

“.NET”

The Microsoft “.NET” Common Language Runtime [Mic03] is a framework that is very similar
to the Java Virtual Machine and library in most aspects related to open programming, but
is meant to support multiple languages. Unlike Java it allows components (assemblies) to be
created dynamically via its reflection mechanism, but like Java class files, assemblies can only
contain static data of very limited form.

84

7.9. Related Work

Oz

The overall design of the component system for Alice ML was directly inspired by Oz [Smo95,
VH04], which also has a first-class component system with lazy linking, computed components,
managers, and a definition by decomposition [DKSS98, Kor06]. Dynamic linking in Oz in turn
was partially inspired by Java’s class loading mechanism.

Oz components are called functors. Like our components, they depend on a number of imports
identified by URLs, and provide a record of values as export. Linking is performed by a module
manager, which directly corresponds to our component manager. Functors are represented as
pickles externally, although these are not interchangeable with plain pickles like in our design
(all functor files are pickles, but not vice versa). As an extension to the system presented here,
Oz provides syntactic sugar for creating computed components directly during compilation.

With Oz being an untyped language, no dynamic type-checking is performed for imports.
The decomposition of Oz components thus differs from the one in our approach (Section 7.6):
instead of being abstracted over an indirect linking function, Oz functors are directly represented
as functions over the tuple of import modules. This approach is inapplicable in a typed setting,
because there would be no fixed representation type for components: import signatures are
dependently typed, which precludes passing imports as homogeneous variable-length vectors
– thus component functions would actually have to vary in arity. Linking in the Oz model
requires reflective capabilities that cannot be typed either. Moreover, the model cannot capture
the actual type-checking semantics, especially the fact that export signatures are dynamically
computed by evaluating the component. Consequently, the interplay between dynamic type-
checking and lazy types could not be reflected properly either.

Another difference between the two approaches is that Oz makes the linking policy [Kor06]
(e.g. use of laziness) the responsibility of the manager, while our approach could allow every
component to select it on a per-import basis. This has the arguable advantage that it renders
the semantics of imports more transparent and the manager itself becomes somewhat simpler.
Another advantage we see in our approach is that imports are clearly modelled as implementation
details of a component, which mirrors the language-level situation more accurately.8

Acute

Acute [SLW+05] is an experimental, ML-like language for typed open programming, probably
closest in spirit to Alice ML. It addresses many issues of open programming, including type-
safe pickling (marshalling), abstraction safety, dynamic linking, and even versioning [Sew01,
BHS+03].

Although Acute has no explicit notion of component, modules can be lazily imported from
files or URLs very much like in Alice ML. The module system itself is simple: only structures
are supported, functors are not available.

Instead of providing first-class or computed components, pickling in Acute incorporates a
different mechanism for controlling rebinding: individual modules can be declared as “imported”,
which means that they are potentially rebound on the target site when the pickle is loaded. The
precise extent of rebinding is controlled by decorating a program with symbolic marks. A pickling
operation can then initiate rebinding up to a particular mark. This approach crucially requires
programs to be viewed as linear sequences of module definitions. To control rebinding properly,
a programmer might have to construct a program such that a suitable global ordering on all
its modules and marks is imposed. Hence the approach appears to be inherently unmodular;

8Only static linking requires knowledge about the import list, at least if computation of the dependency graph
should be automatic.

85

7. Components

it is not clear how the ordering could be maintained in the presence independently developed
libraries, which might even have conflicting requirements on imports shared in a diamond-graph
manner.

In contrast, Alice ML’s computed components allow rebinding to be controlled locally and
much more fine-grained. On the other hand, they do not enable rebinding in pre-computed
parts of the component – i.e. abstraction after the fact. That is possible with Acute’s mark
mechanism, although even marks cover only a limited class of cases. For example, there seems
to be no way to control rebinding of modules that do not appear in the static program text, but
were implicitly received by a preceding unmarshalling operation.

Acute takes a more monolithic approach to language design: its mechanisms are all built-in
as comparatively complex language constructs, with no obvious reduction into simpler concepts
like in our approach. For example, there is no equivalent to component managers, the complete
linking process is primitive in the language semantics.

A severe consequence is that linking strategies cannot be customised by the programmer. Due
to that – and Acute’s uncontrolled implicit rebinding – it is not clear how sandboxing or other
security mechanism could be programmed. Static linking can be simulated to a limited extend
using Acute’s inclusion mechanism for compiled code.

Acute provides a number of interesting features not available in Alice ML. Most notably,
module definitions and imports can be decorated with versioning constraints, which are checked
during linking. Moreover, Acute gives means to redefine the implementation of existing modules,
by explicitly breaking type abstractions in a type-safe manner (i.e. without changing the actual
representation of abstract types). The latter violates abstraction safety, but Sewell et al. argue
that it is necessary to support software evolution in practice [SLW+05].

7.10. Summary

• Alice ML recasts the component system from Oz in a typed context.

• Components complement ML’s static module system with type-safe, lazy dynamic linking.

• Alice ML is unique in that components are strongly typed by dynamic higher-order module
signatures.

• Through structural signature subtyping, link-time type checking is robust against interface
changes.

• Every source file is interpreted as a component definition with an implicit signature.

• Components can also be computed dynamically, and thus allow processes to exchange
behaviour that encapsulates dynamic information and depends on local resources.

• Customisable component managers give control over imports and enable security policies
for resources.

• Static bundling allows formation of large components from smaller ones.

• The component system can be explained solely in terms of modules, packages and futures.
The model differs from previous work in that export signatures are computed from concrete
dynamic type information.

86

8. Distribution

Networks are ubiquitous in today’s computing world. Fast local networks connect individual
machines and enable them to share resources, either in hardware or software. Slower global
networks – particularly the Internet – connect computers and local networks all over the world
and enable them to communicate and exchange various kinds of data.

Many applications today are distributed over multiple communicating and cooperating ma-
chines:

• Classical client/server applications, where multiple client programs benefit from services
provided by a (single) server program. The most dominant example of this architecture
today is the World Wide Web.

• Peer-to-peer applications, where many programs connect to each other and form a dynamic
network for storing, locating and exchanging information. File sharing software is a popular
example.

• Cluster and grid computing, where a large number of machines shares computational re-
sources to solve costly tasks in parallel. For example, this concept is found in render
farms creating computer-generated imagery (CGI), or search engines indexing large sets
of data [DG04].

• Mobile agents, where autonomous programs migrate between different sites to gather in-
formation, manage a network, deploy software, or perform other tasks. Ironically, the most
wide-spread incarnation of this principle today are computer viruses.

A lot can be said about distributed programming, its applications, techniques, and the problems
involved. However, within the scope of this thesis, we are mainly concerned with the problem
of establishing type safety across process boundaries. We deliberately stay ignorant about
other delicate aspects of distributed programming – like network latency, failure recovery, etc.
Excellent work exists in literature that covers these issues, one good starting point is the thesis
of Armstrong [Arm03]. The rest of this chapter restricts itself to describing the basic language
primitives that exist in Alice ML to support distributed programming, along with a few simple
examples that illuminate questions of typing.

A distributed system consists of a number of interacting processes. Every process executes a
program. The processes run on potentially different sites in a network. We will use the terms
process and site almost interchangeably, to emphasise that processes are usually located on
physically different locations in a network.

The goal of having language support for distribution is to allow processes to be expressed as
high-level Alice ML programs. The design we present offers the following desirable properties:

• Network transparency. A process can obtain references to values in another process
(remote values), which are handled in (almost) the same way as local values. Hence the
same abstraction mechanisms and idioms can be applied for local and remote operations
and communication.

87

8. Distribution

• Network awareness. Although use of remote values is transparent, creation is not. A
program has explicit control over the introduction of – potentially expensive or insecure –
inter-process references to local entities.

• Synchronicity and Asynchronicity. All communication is synchronous by default.
However, by employing futures synchronous communication can easily be turned asyn-
chronous.

• Type safety. Use of remote values is statically type-safe. Only when establishing a
connection to another process dynamic type checks need to be employed. All properties
of the static type system are maintained.

• Resource security. A connection to another process cannot leak security-relevant local
resources to another site. Code imported on a site can only gain access to resources if
explicitly granted.

The principal characteristic of distributed programming is that processes cooperate via inter-
process communication over logical connections. We roughly distinguish two phases of activity
for connections:

1. Establishing a connection.

2. Communicating over that connection.

A particular goal of language support for distribution is that we want to be able to express
inter-process communication without having to drop below the language level – which still is
the predominant approach in practice, where inter-process communication is often performed in
terms of HTTP protocols, or even directly on the socket level.

It turns out that distributed programming can be based on only a few high-level primitives
that suffice to hide all the embarrassing details of low-level connections:

1. Proxies, mobile wrappers for stationary functions that transparently perform remote
procedure calls when applied.

2. Tickets, dynamically generated URLs that enable a process to retrieve a module from
another process.

3. Remote execution, which allows a process to spawn new processes on remote machines.

Proxies are the abstraction for a connection in Alice ML, while the other two mechanisms provide
convenient ways to establish such connections, addressing two different scenarios of distributed
programming.

8.1. Proxies

A variety of different primitives has been proposed in literature to realise communication between
processes. In a functional language like ML, function invocation is the fundamental way for
communicating within a process. It is natural to use the same mechanism for communication
between processes. Alice ML hence adopts remote procedure calls (RPCs) [BN84] – or rather
remote function application – as the most obvious and minimal choice for generalising ML
to a distributed language. That is, a thread in an Alice ML process can call a function that
actually resides in another process. Alternative communication mechanisms can be programmed
as abstractions on top of RPCs.

88

8.1. Proxies

argument

result

proxy targetpickle

Local process Remote process

Figure 8.1.: Inter-process communication with proxies

Being expressed by function calls – in a higher-order language – inter-process communication
naturally inherits a number of useful properties:

• Connections are first-class.

• Communication is statically typed.

• Communication is two-way and synchronous.

• Multiple communications between two processes can be performed concurrently.

To perform RPCs, Alice ML employs the notion of a proxy function. A proxy is a mobile
wrapper for a stationary function: it can be pickled and transferred to other processes indepen-
dent of the wrapped function. When applied, the call to the proxy is automatically forwarded
to the site where the wrapped function resides – we speak of the latter as target site and target
function. Both argument and result of the call are transferred between proxy and target by
means of pickling (Chapter 5). Figure 8.1 illustrates the communication underlying a remote
procedure call over a proxy.

Only one primitive function is needed to make proxies available in the language:

val proxy : (α → β) → (α → β)

Applied to a target function, it creates a respective proxy. For instance, the declaration

val f = proxy (fn s ⇒ print (s ˆ ”\n”))

defines a simple proxy function that can be called to print a message on the target site. (Note
that the proxy primitive takes advantage of SML’s preference for Cartesian functions, cf. the
respective discussion about the mutex abstraction in Section 6.5.)

Proxies are transparent, in the sense that invocation behaves almost identical to a direct
invocation of the target function where both are accessible. That is, an RPC is invoked using
ordinary application syntax (as the type of the proxy function suggests):

f ”Hello world!”

The only immediate difference between a proxy call and a direct call is the use of pickling,
implying that a deep touch (Section 6.1.1) is performed on its argument and result, and that
no resources can be passed to and from a proxy (to maximise network transparency, pickling is
used even if the target resides in the same process as the caller). Naturally, pickling and network
communication also introduce additional potential for failure, as we will discuss below.

A proxy is mobile: it can be pickled and transferred to other processes, where it can still
be transparently applied without the local process being required to have explicit knowledge

89

8. Distribution

of the originating site – this knowledge is encapsulated in the proxy. The important feature
here is that, when pickling a proxy, the target function is not pickled along with it – contrast
this to pickling of ordinary functions that have other functions in their closure (Section 5.1).
In particular, the target function can be sited (Section 5.3) without compromising mobility of
the proxy. This is the only deviation that Alice ML makes from the closedness principle for
pickles (Section 5.1) – it is crucial however to allow capturing connections to processes in pickles
(because obviously, processes cannot be included in a pickle).

A connection to another process now simply consists of a proxy that has been created in that
process. Receiving a proxy can be understood as establishing a connection. Communication is
engaged by calling a proxy. For instance, if we pickle the above proxy function to a file,

Pickle.save (”/home/rossberg/hello”, pack (val it = f) : (val it : string → unit))

and load the pickle in a second process (that has access to the same file system) then we can
send a greeting to the first process:

structure H = unpack Pickle.load ”/home/rossberg/hello” : (val it : string → unit)
H.it ”Hello world!”

Note that we could not have pickled the target function itself, because print is a sited operation!
Proxies are typed connections. A proxy invocation is statically type-safe because proxies can

only be received through pickles, where type consistency is always ensured. In other words,
once the connection is established – by successfully receiving the proxy – no further type checks
are required. However, the runtime system may need to perform verification (Section 5.2) of
arguments or results received for proxy calls, if it does not trust the other process (Section 8.4).

All invocations of a proxy are synchronous: the call to H.it in the above example does not
return before the message has been printed in the remote process. However, asynchronous calls
can easily be achieved by employing futures (Section 6.1.2):

spawn H.it ”Hello world!”

Now we have turned the application into an asynchronous remote call – it immediately evaluates
to a future. In other words, futures give us the ability to use just one uniform RPC semantics
while still providing synchronous and asynchronous calls, orthogonally. More interestingly, un-
like asynchronous calls in most other languages, futures in Alice ML enable even asynchronous
calls to return results. This feature allows to conveniently formulate bi-directional query/reply
communication while still hiding network latency as much as possible.

The function proxy is provided in the structure Remote of the Alice library, whose signature is
shown in Figure 8.2. Besides other functions explained in the following sections, it also contains
a higher-order polymorphic functor Proxy, which conveniently allows wrapping all functions in a
given structure (or functor) into proxies in one go. For example, we can give another Alice ML
process access to local I/O by wrapping the whole TextIO structure and pickling the result:

Pickle.save (”myio”, pack Proxy (signature S=TEXT IO; structure X=TextIO) : TEXT IO)

The Proxy functor uses the dynamic signature information to operate in a type-directed manner.
Consequently, it is able to handle even curried functions correctly, by recursively wrapping each
partial application in its own proxy. For example,

Proxy (signature S = sig val f : string → string → string end

structure X = struct fun f s1 = (print s1; fn s2 ⇒ (print s2; s1ˆs2)) end)

returns a structure containing a wrapper for f as follows:

proxy (fn s1 ⇒ proxy (f s1))

90

8.1. Proxies

structure Remote :
sig

exception Proxy of exn
exception SitedArgument
exception SitedResult
exception Protocol of string

val proxy : (α → β) → (α → β)
val offer : package → url
val take : url → package
val run : string × component → package
functor Proxy (signature S; structure X : S) : S

end

Figure 8.2.: The Remote structure

This function behaves equivalently to the following direct formulation:

proxy (fn s1 ⇒ (print s1; proxy (fn s2 ⇒ (print s2; s1ˆs2))))

As this example demonstrates, repeated wrapping generally is the only correct behaviour for
curried functions, because every partial application might produce a sited closure. Curried
functors are treated in a similar manner.

8.1.1. Example: Remote References

As a simple demonstration of an abstraction that can be expressed in terms of proxies, consider
the problem of distributed state. If references are sited – which we assumed in Section 5.3.1 –
then they cannot be shared among processes. There is no direct way to communicate a local
reference to or access it from another processes. However, proxies make it possible to implement
remote references as a simple abstract type with the following signature:

signature REMOTE REF =
sig

type α rref
val rref : α → α rref
val ! : α rref → α
val := : α rref × α → unit

end

Since this signature is practically identical to that of ordinary references, remote references can
be used as a substitute where desired. Unlike ordinary references however, they can be passed to
other processes in a first-class manner (without copying them). The implementation is simple:

structure RRef :> REMOTE REF =
struct

type α rref = {put : α → unit, get : unit → α}

fun rref x =
let

val r = ref x
in

{put = proxy (fn x ⇒ r := x),

91

8. Distribution

get = proxy (fn () ⇒ !r)}
end

fun !{put,get} = get ()
fun {put,get}:=x = put x

end

A remote reference is represented by a pair of two proxies for read and write access. The target
functions of these proxies share an ordinary reference in their closure. When a remote reference
is pickled and passed to another process only the proxies are included, the state itself is kept in
the original process. Similar abstraction can be built for all kinds of sited entities.

8.1.2. Proxy Failure

A proxy call can fail for a number reasons:

• The argument value is sited and cannot be transferred.

• The result value (or exception) is sited and cannot be transferred.

• Verification fails on either end.

• The target process is dead or otherwise unreachable.

• Lower-level communication errors or network failures occur.

In all these cases, the call raises the exception Proxy(e), to distinguish the failure from exceptions
raised by the target function. In the first three cases, the nested exception e will be SitedArgument,
SitedResult, Protocol to indicate the cause, respectively. The latter cases may be indicated with e

being another exception from the SML library, for example IO.Io upon errors in the underlying
I/O layer.

Consider the following simple examples:

val g = proxy (fn () ⇒ print)
val h = proxy (fn f ⇒ f)
g () ”Hello” (* raises Proxy(SitedResult) *)
h print ”Hello” (* raises Proxy(SitedArgument) *)
h (proxy print) ”Hello”

The first two calls will fail, because print is sited. The third call is OK, however, because a proxy
is never sited. It will print Hello.

It is not considered a failure if the target function itself terminates with an exception. Instead,
the exception will simply be tunnelled back to the caller. For instance,

val k = proxy (fn () ⇒ raise Domain)
k ()

will simply raise Domain. If the exception is sited however (because it carries a sited argument),
the caller will see the exception Proxy(SitedResult) instead.

8.2. Tickets

We saw that in order to establish a connection, a proxy has to be transferred between two
processes. The only way this can be achieved is by means of pickling (Chapter 5). In the
example from the previous section we relied on persistence (Section 4.2) and shared access to

92

8.2. Tickets

package package
offer

pickle

take

ticketServer Client

Figure 8.3.: Package exchange via ticket

a single file system to exchange the pickle. Obviously, this is a crude and inflexible mechanism
that is inapplicable across network domains.

To address this, Alice ML provides a simple transfer mechanism for initiating connections,
which has been adopted from Mozart [Moz04]: a process – let us call it the server – can make
available a package (Chapter 4) for download in the network, using the library primitive

val offer : package → url

Offering a package employs pickling in a way similar to persistence. Given a package, the offer

function returns a globally unique, dynamically generated URL, known as a ticket. The ticket
identifies the server and the individual package in the network. Of course, a process can offer
arbitrarily many packages, generating multiple different tickets.

A ticket can be communicated to the outside world by conventional means, such as web
pages, email, phone, or pigeons. Another process – the client – can use a ticket to retrieve the
corresponding package from the server, using the complementary primitive:

val take : url → package

After receiving the package, it can then be opened using unpack, which dynamically checks that
the package signature matches the client’s expectations. As a result, the downloaded module is
available to the client program. Figure 8.3 illustrates the procedure graphically. Note that an
offered package can be taken multiple times.

In order to establish a permanent connection, the package must contain proxies. Once the
connection is thus established, these proxies serve as permanent communication channels. No-
ticeably, this is the only point where a dynamic type check is necessary. From now on, static
type checking suffices to ensure that all communication is well-typed.

8.2.1. Bi- and multi-directional Connections

Obviously, the proxy mechanism directly supports a client/server architecture. However, so
far, only the client can call the server side, over the proxies it received. To get a symmetrical
connection, it suffices to send client-side proxies back to the server as arguments to higher-order
proxies that the server provided for this purpose.

More complex communication patterns can be established by passing proxies back and forth
to other connected processes, for instance, to enable different clients to communicate directly
with each other. In a similar vein, more general peer-to-peer applications could be implemented.

Note again that, once the initial connection has been made, all calls through proxies are
statically typed. In particular, extending the connection to bi-directional or multi-directional
communication does not require any further dynamic type checks.

93

8. Distribution

8.2.2. Example: Chat Room

As a simple example for a client/server architecture with bi-directional communication, consider
a chat program. The following is a minimalist, yet complete, implementation of such an appli-
cation. It consists of a chat server, that prints a ticket when started. Using this ticket, clients
can connect to the server.

Both sides need to agree on a signature for the exchanged package. Basically, it describes the
server interface:

signature SERVER =
sig

val register : {send : string → unit} → unit
val broadcast : {name : string, message : string} → unit

end

Clients can register with the server, after which they will receive all messages sent by other
clients, and they can broadcast messages themselves.

Here is the full code for the server component:

val clients = ref nil
fun register client = clients := client :: !clients
fun broadcast {name, message} =

List.app (fn {send} ⇒ spawn send (name ˆ ”: ” ˆ message)) (!clients)

structure Server = (val register = proxy (mkMutex () register)
val broadcast = proxy broadcast)

val ticket = offer (pack Server : SERVER)
val = TextIO.print (ticket ˆ ”\n”)

The server simply keeps a list of registered clients (represented by their send functions), and
broadcasting iterates over this list and forwards the message to each. In order to avoid having
to wait for each client in turn to receive the message, sending happens asynchronously, using
spawn (Section 6.1.2). Moreover, since the client list is stateful, we have to avoid race conditions
when several clients try to register at the same time. The exported register function is hence
synchronised on a mutex lock (Section 6.5).

The code for a client is even simpler:

val [ticket, name] = CommandLine.arguments ()

structure Server = unpack take ticket : SERVER
val = Server.register {send = proxy TextIO.print}

fun loop () = case TextIO.inputLine TextIO.stdIn of

NONE ⇒ OS.Process.exit OS.Process.success
| SOME message ⇒ (Server.broadcast {name, message}; loop())

val = loop ()

It expects a valid server ticket and a user name on the command line, registers with the server,
and simply forwards everything typed by the user to the server (if registered, the user will see
her own messages as an echo). Note that the call to register is a proxy call, passing another proxy
as argument, thereby establishing the bi-directional connection.

Obviously, this implementation is very spartan: there is no notification of other clients con-
necting or disconnecting, nor is there any error handling. However, the basic principles are
there, and enriching the implementation accordingly is largely straightforward.

94

8.3. Remote Execution

With respect to multi-directional connections, the client/server interface could be extended
such that the server can hand send functions from one client to another. The latter client could
then send private messages to the former itself, directly, without further assistance from the
server.

8.3. Remote Execution

In the client/server setting, client processes choose independently to connect to a known server
process. A different scenario of distributed programming arises in applications like cluster com-
puting. There, we usually find a master process (sometimes known as the manager) that shifts
computational tasks to a number of slaves (or workers). In this scenario, it is the central master
who initiates connections, by actually spawning new processes on remote machines.

To support this scenario, the Remote module of the Alice ML library features a further function:

val run : string × component → package

This function performs most of the required procedure: it connects to a remote machine by
using a low-level service (such as ssh), the host name is given by the string argument. On that
machine it starts a fresh Alice ML process as slave. The slave immediately connects to the
master to receive the component argument, and evaluates the component. It sends back the
resulting module as a package.

The transmitted component will typically be computed (Section 7.2) in the master process.
By capturing proxies defined outside of the component, and by creating proxies inside it and
exporting them, a two-way communication is immediately established.

8.3.1. Example: Distributed Search

Let us illustrate remote execution – and other features of Alice ML – by showing the imple-
mentation of a distributed application, namely a distributed solver for constraint program-
ming [Apt03, Sch02]. This example is taken from [RLT+06].

In the context of constraint programming, a solver is a program that explores a search tree
in order to find the solutions of a given constraint problem. Nodes of the tree represent choice
points, leaves represent either solutions or failures (where previous choices are inconsistent).
From a logical point of view, searching amounts to traversing a tree and asking the status of
each leaf node.

In a distributed setting, a number of workers perform the search, such that each worker ex-
plores a different subtree. The interesting information, that is the solutions, are transmitted
back to a manager. The manager also organises the search. In the following, we focus on the
distribution aspect. Details about the search itself can be found in [TL04], which contains a
formalisation of the underlying abstractions, performing efficient backtracking and vital optimi-
sations such as branch and bound.

The interface between the workers and the manager can be represented as shown in Fig-
ure 8.4 [Sch02]:

• find is sent by an idle worker to request a new job, that is, the path of a subtree that
remains to be explored.

• collect is send by a worker when it finds a solution. The message will contain the respective
solution.

95

8. Distribution

manager worker

share

explore

stop

find

collect

Figure 8.4.: Distributed search interface

• share is used by the manager to ask a worker whether it can give away a subtree that
remains to be explored. The worker is required to answer either negatively, or positively
by providing the path associated with the corresponding unexplored subtree.

• explore commands a worker to explore the subtree at a given path.

• stop is used to interrupt a worker when the search is finished.

The implementation of the distributed search engine consists of two components: the manager
and the worker. The manager creates workers by using the Remote.run primitive. Each worker
has the same interface:

signature WORKER =
sig

val share : unit → path option
val explore : path → unit
val stop : unit → unit

end

Workers are components dynamically computed by the manager (Section 7.2). They capture
proxies to the two functions find and collect of the manager interface in their closure. The manager
hence defines these functions as follows:

val find = proxy (fn () ⇒ (* request new subtree from a worker and return its path *))
val collect = proxy (fn sol ⇒ (* store sol; request new subtree and explore *))

Since a worker is a computed component, the definition of a worker also takes place in the
manager. Basically, we create a computed component that exports the three operations share,
explore, and stop from the WORKER signature. Naturally, they are also defined as proxies. But
since the component is evaluated on the remote site, the proxies are created there and thus
represent an inverse connection:

val worker =
comp

import structure Gecode from ”x-alice:/lib/Gecode”
with

include WORKER
in

val share = proxy (fn () ⇒ (* find some unexplored subtree *))
val explore = proxy (fn path ⇒ (* explore the given subtree *))
val stop = proxy (fn () ⇒ OS.Process.exit OS.Process.success)

end

96

8.4. Safety

The library used for constraint solving, named Gecode [Gec05, ST05], is a native library that
is sited (Section 5.3). Thus, each worker needs to acquire this library by importing it locally on
the remote site.

In the implementation of explore, two special cases are interesting. If the exploration is finished,
the worker asks for some more work by calling find. If a solution sol is found, it is transmitted
to the manager by performing an asynchronous call:

spawn collect sol

In both cases, a remote procedure call is performed, since the corresponding functions find and
collect are proxies.

In order to create multiple workers, the manager applies the run function repeatedly:

val hosts = (* list of host names *)
val workers = List.map (fn host ⇒ Remote.run (host, worker)) hosts

The workers are remembered simply as a list of packages, encapsulating the respective connec-
tions.

Now, the search starts by sending the root path of the search tree to the first worker of the
list, then asking it for some work to give to other workers:

structure W1 = unpack List.hd workers : WORKER
W1.explore root
List.map (fn w ⇒ let structure W = unpack w : WORKER in W.explore (W1.share ()) end)

(List.tl workers)

From now on, the manager handles concurrent requests from workers. For example, the collect

message stores the given solution in a list, which must be protected using a locking mechanism
(Section 6.5).

Noticeably, the list of collected solutions can be returned immediately when the search engine
starts, in the form of a future. The list will then be built concurrently while solutions are sent
to the manager.

As the last code snippet demonstrates, we have to perform a dynamic type check each time
a worker is selected from the list. This is an unfortunate consequence of the lack of statically
typed first-class modules in Alice ML – we have to abuse packages to store the modules as
first-class values in a list (Section 4.5). While it would not increase expressiveness, type safety
in this example obviously could profit from the addition of first-class modules to the language.

8.4. Safety

To round up our presentation of distribution in Alice ML, let us have a look on how safety and
security are maintained for programs that participate in distributed programming.

8.4.1. Type Safety and Verification

We already discussed type safety in the previous sections:

• Proxies are typed communication channels. Hence communication itself cannot violate
type safety within the language. Communication with untrusted partners may require
verification of received data on the implementation level, though (Section 5.2).

• Modules retrieved via the ticket mechanism are wrapped in packages, thus enforcing an
explicit dynamic type check before being accessed. The packages are received as pickles,
and unpickling can perform verification if necessary.

97

8. Distribution

• Remote execution will verify and dynamically type-check the mobile component on the
remote site, and the result package transmitted back will likewise be checked on the original
site.

There are no other ways of communication (except for low-level string-based communication
on sockets), so we conjecture that this setup leaves no hole that could allow communication to
compromise type safety. Short of a formalisation of inter-process communication, we cannot
provide a formal proof for this, of course.

One important limitation is verification of pickles containing proxies. Since proxies are not
closed values, verification cannot fully check their consistency. Doing so would require cooper-
ation from the originating process – which in turn cannot necessarily be trusted. Hence veri-
fication can generally check only consistency of the local end of a proxy connection. However,
whenever there is an inconsistency with the other end of that connection, it will be captured
by verification of the communicated values. Unlike the dynamic type check, this check can fail
late, on a connection that has already been used successfully. Unfortunately, this situation is
principally unavoidable in an open setting.

The sceptical reader may ask whether the separation of dynamic type checking and verification
(Section 5.2) is worthwhile in the face of this limitation. We believe that it makes a significant
difference, because both kinds of check address different classes of errors:

• Verification is meant to protect against malice, violations should be extremely rare in
practice – ideally, non-existent.

• Dynamic type checks protect against accident and occasional incompatibilities – they are
expected to arise much more frequently, and often have to be handled programmatically.

Considering these observations, it seems desirable to detect dynamic type mismatches as early
as possible – that is, earlier than malice can be detected. The presented approach achieves this.

If communication through proxies was not conducted in a typed manner (but instead through
a port-like generalisation of the ticket mechanism, for instance), then each transmitted piece of
data would have to be dynamically type-checked. According to the above argument that makes
for weaker static invariants.

There also is a cost issue: for proxies in particular, verification often can be significantly
cheaper than a dynamic type check. For instance, verifying that something is a valid integer has
almost no cost. On the other hand, dynamic type checking would not only cost more in terms of
an additional check per communicated value, it also increases the cost of pickling, transmission
and verification themselves, because the dynamic type information has to be transmitted and
verified as well – and it tends to be larger than the actual data in those cases.

8.4.2. Resources

Having ensured type safety (which implies memory safety), another major safety concern is
unauthorised access to critical resources (Section 5.3). A malicious process could try to transfer
resources to or from another process it communicates with.

Fortunately, this is prevented by two simple design choices that apply to all data received by
a process:

• Pickling. All communication is performed in terms of pickles, hence no resources can be
transmitted (Section 5.3).

• No hidden linking. Proxies do communicate values, not components. Hence no implicit
linking is performed that could provide access to local resources behind the local program’s
back. Likewise, transmission using the ticket mechanism is restricted to plain packages.

98

8.5. Related Work

This should explain why the ticket mechanism transfers plain packages instead of first-class com-
ponents (Section 7.2), although the latter are in fact more general: we want take to be realisable
as a secure operation (Section 5.3). Like with the load operation for persistence (Section 7.2),
the restriction to packages prevents any implicit rebinding from happening (Section 7.4), and
thus calling functions received over the network is always secure with respect to local resources,
unless they are explicitly supplied.

Only remote execution in fact does transmit a component to a remote site and evaluates
it there unasked, implicitly linking possible imports. However, network and operating system
permissions should be sufficient to guarantee that no untrusted site is able to spawn a process on
a given site in the first place.1 Assuming proper security measures on this level, the remote site
can implicitly trust the originating site and proceed linking the component. Several refinements
are conceivable: for example, a site could be configured for restricted remote execution only, by
running all processes invoked from remote sites in pre-defined sandboxes (Section 7.5). However,
such considerations lie outside the language itself, hence we will not explore them here.

Of course, components are by no means precluded from communication. On the contrary:
since they are first class, they can easily be transmitted. However, transmitted components will
be explicit, and require the receiver to explicitly evaluate them under a component manager of
his choice. Hence security cannot be breached by accident. The receiver can employ a sandbox
component manager (Section 7.5) if he does not trust the producer of the component.

8.4.3. Other Security Concerns

It should be noted that the security model we sketched is only concerned with resources. Other
considerations are beyond the scope of this work.

In particular, the proxy mechanism as described in this chapter does not meet strong secu-
rity requirements: the semantics of pickling does not prevent proxies from unknowingly being
imported and called by a process. It is thus possible to foist “phone home” functionality on a
process. Such unwarranted communication may be deemed unacceptable under many circum-
stances. More seriously, proxies are the single form of remote reference in Alice ML, and as
such face the risk of being forged. An attacker may use a forged proxy to perform a call into a
process.

Currently, Alice ML does not address such concerns. At least, leakage of local information is
only possible if a process explicitly makes it available for external communication in some way:
an imported proxy can only communicate back information explicitly passed to it in a local call,
and a remote call to a local function can only be forged if the local process ever created a proxy
for it.

We leave it as future work to develop a tighter and more comprehensive security regime that
enables controlling the use of proxy communication and other possible issues. With regard to
proxies, one possible approach might be to make proxies themselves resources and rely on an
extended transformation mechanism (Section 5.5) that allows target sites to customise internal-
isation of proxies.

8.5. Related Work

This chapter extends on previous work on the design of Alice ML [RLT+06]. The proxy mech-
anism is also described in more detail by Kornstaedt [Kor06], who focusses on the lower-level
implementation underlying it. In particular, he shows that proxy creation can be reduced to pick-
ling and two further primitives for creating and addressing call targets, the rest can be realised

1In practice, many security holes can occur in this setup, but they are outside the reach of the language.

99

8. Distribution

within the source language. We conjecture that even those two primitives could be implemented
by means of the language-level transformation mechanism for pickling abstract values that we
described in Section 5.5, on top of a conventional socket library. Similar ideas have already been
explored by Ohori, who developes a typed translation of high-level inter-process communication
operations into low-level primitives in an ML-like language [OK93].

Oz and Mozart inspired the ticket mechanism of Alice ML for dynamic connectivity that
avoids the need for a centralised server for establishing connections [HRBS98]. Unlike Alice
ML however, Mozart provides true distributed state: reference cells as well as futures and
logic variables can be accessed remotely, and are in fact mobile, making for a significantly
more expressive semantics than most of the previously mentioned languages. Consequently,
no explicit facility for remote communication is needed, channels or proxies can in fact be
programmed as abstractions. The price is a significantly more complex semantics and language
implementation [HRB+99]. Although Alice ML inherits most of Mozart’s open programming
facilities, it was a conscious design decision to forgo its rich distribution features and avoid the
ensuing semantic complexity. Distribution in Alice ML can uniformly be based on its standard
pickling mechanism, which is not the case for Mozart, where multiple modes of pickling with
differing semantics regarding state and synchronisation are required.

Many programming languages feature some form of support for distributed programming,
but mostly in the form of comparatively low-level libraries. There are much fewer languages
that have been designed with distribution in mind. Even among those there is a wide spectrum
of support, ranging from simple mechanisms for higher-level inter-process communication, over
distributed state, to fully-fledged thread mobility.

The first language with language-level support for inter-process communication probably was
CLU [LAB+79, HL82]. It had a built-in mechanism for remote procedure calls that allowed
values of transmissible types to be passed to other processes, using a simple form of pickling.
However, no runtime checks were performed, communication hence was unsafe.

Modula-3 Network Objects [BNOW95] use a similar approach, but based on objects. Since
pickling is not higher-order, only objects of transmissible types, for which stub modules have
been statically created at the client site, can be called remotely. Connections are established
with the help of a separate agent server, where objects can be registered for remote access. The
ticket mechanism we presented allows for relatively easy implementation of such a server within
the language, but also enables less centralised approaches.

Java’s remote method invocation (RMI) [WRW96] inherits most of the ideas from Modula-3,
but can generate and transfer stubs automatically at runtime. Because Java is dynamically
checked, RMI also is safe, albeit not type-safe in the conventional sense: because local instances
of classes might differ, the underlying class loading may yield classes with incompatible signatures
(Section 7.9).

Early examples of languages specifically designed for distributed programming include the
untyped imperative language Linda [ACG86], which allowed processes to synchronise and com-
municate through a shared memory pool called the tuple space, where vectors of values could
be stored and retrieved by a form of pattern matching. Unlike later approaches, including ours,
inter-process communication is thereby based on a paradigm completely different from local
means of data transfer, which makes it much less transparent.

Obliq [Car95] is an experimental untyped object-oriented language that allows objects to
migrate over the network and performs remote method invocations transparently. Mutable
objects stay stationary, but mobile proxies are created implicitly. An explicit copy operation
allows stateful objects to be cloned on remote sites. Obliq probably was the first language
featuring mobile code, but the implementation used a source language representation for transfer.

Erlang [Arm03] is an untyped distributed language for embedded telecommunications systems.

100

8.6. Summary

Processes can be spawned on different nodes in a network and communicate through channels.
Although Erlang is a higher-order language, functions cannot directly be communicated. Since
Erlang is used in industrial-strength, massively distributed systems, it has a particular focus on
dealing with robustness and failure recovery, where it provides some unique mechanisms such as
process linking, which allows failure to be detected for whole groups of processes. Erlang primar-
ily targets embedded systems, consequently it is not concerned with security or inhomogeneous
networks.

In the world of typed functional programming, Facile [TLK96] extends Standard ML with
facilities for concurrency and distributed programming inspired by the π-calculus [Mil89]. It
allows new processes to be initiated on remote sites, similar to our Remote.run primitive, but
not from something as rich as components. Instead of remote procedure calls, remote commu-
nication takes place through typed channels. There is no direct equivalent to Alice ML’s ticket
mechanism. Instead, to achieve dynamic connectivity, Facile also requires taking an indirection
through a cetnral structure server, which allows making persistent ML structures. A structure
is retrieved from the server by requesting a module with a suitable signature, which naturally
implies a form of dynamic signature check. If several structures match a given signature, the
last one stored is returned.

JoCaml [CL99] takes a similar stake as Facile, but extending Objective Caml [Ler03] and
with concurrency being based on the richer Join Calculus [FGL+96]. Inspired by Obliq, it
allows processes to migrate over the network. Similar to most of the previous approaches, a
central name server storing channel names is needed to establish connections, which is less
flexible than Alice ML’s ticket concept. Communication is type-safe but not secure, because
resources are implicitly rebound during transfer.

Distributed Caml [WAM99] is another distributed extension of Objective Caml. It does not
provide for dynamic connectivity, all processes have to be spawned from a single site, and
execute the same program. More distributed dialects of ML have been proposed, including
ParaML [BNSS94] and Distributed ML [CK92].

Acute [SLW+05] is another experimental ML-like language with support for open program-
ming. It provides only simplistic support for inter-process communication. Every process has
one implicit communication channel. Like in Alice ML, communication is based on pickling,
but all communication is dynamically typed per transmission instead of initiating typed com-
munication by a single type check. Acute has a primitive for thunkifying running threads into
first-class values that can be pickled, which provides a limited form of thread mobility. However,
due to the lack of distributed state, this form of mobility is rather fragile, because it can silently
capture and duplicate stateful entities, especially locks, undermining the safety of concurrent
abstractions. Implicit rebinding of resources increases expressiveness compared to Alice ML,
but makes communication inherently insecure.

8.6. Summary

• Remote procedure calls are the main means of inter-process communication in Alice ML.

• All data transfer is reduced to pickling.

• Proxies transparently perform remote procedure calls; they are type-safe first-class func-
tions that represent live connections for communication.

• Connections can be provided by offering a module containing proxies on the network.

• Connections are established by retrieving such a module.

101

8. Distribution

• Connections can be opened by offering a module that is then referred to by a URL called
a ticket.

• Alternatively, a process can itself spawn new processes remotely.

• Only establishing connections requires flexible type checking; communication itself only
needs verification, which may be cheaper.

• Distribution is secure with respect to resources.

102

9. Implementation and Outlook

Alice ML, as presented in the preceding chapters, has been implemented as part of the Alice
Programming System [Ali03] to allow evaluation of and experimentation with its concepts under
realistic conditions. The Alice System is freely available as open source software. Pre-built
packages are available for major platforms.

9.1. Architecture of the Alice System

The Alice implementation consists of five major parts:

• SEAM. The Simple Extensible Abstract Machine [BK02, BK03, Sea04] is a portable in-
frastructure for building virtual machines. It implements generic services like memory
management, thread management, pickling [TKS06], etc.

• Alice VM. A virtual machine is needed to execute Alice ML programs. The VM is con-
structed on top of the SEAM infrastructure. It defines the Alice abstract code format
and implements several interpreters for it that execute this code inside the VM. Notice-
ably, two of these interpreters employ just-in-time compilation of the abstract code into
more efficient formats to speed up execution (either native machine code, or efficient byte
code [Mül06]).

• Compiler. The compiler is bootstrapped within Alice ML itself and supports the full
language as described in this thesis. The compiler can be accessed as a batch tool, but
also online from within Alice ML programs, as part of the Alice library, to compile source
code dynamically.

• Library. The library consists of the obligatory parts of the Standard ML Basis li-
brary [GR04], as well as modules that support specific features of Alice ML, e.g. component
managers and distribution [Kor06]. The runtime representation of types is also part of
the library. Moreover, the library contains rich bindings for programming graphical user
interfaces, database access, and other services.

• Tools. The Alice System comes with several software development tools, including com-
piler, static linker (Section 7.8), an interactive top-level with graphical user interface, and
graphical tools.

SEAM and the Alice VM have been implemented in C++, while the rest of the system is almost
entirely bootstrapped in Alice ML.

9.2. Other Language Extensions in Alice ML

Besides the fundamental features presented in the preceeding chapters, Alice ML incorporates
a number of other minor extensions to Standard ML:

103

9. Implementation and Outlook

• Structural Datatypes. Unlike SML, Alice ML does not treat datatype declarations gen-
eratively. That is, given two datatypes with identical definitions, they will be compatible.
This eases distributed use of datatypes, because communicating processes are not forced
to share a common definition a priori.

• Extensible Types. Alice ML generalises the extensible type concept underlying the
exception type in SML: in Alice ML, the user can define her own extensible types, plus
constructors thereof [Mac93]. Unlike exceptions, such types can be parameterised and
hence have polymorphic constructors. Constructor declarations for extensible types are
generative. They hence provide an elegant and high-level means to dynamically generate
globally unique names in Alice ML, including the ability to have name-dependent types
(via constructor arguments).

• Syntactic Sugar. Alice ML also provides a variety of minor syntactic enhancements
over SML, including an extended pattern matching language, additional record features,
finalisation, assertions, and wildcards in type annotations.

Detailed descriptions of these features can be found in the Alice manual [Ali03].

9.3. Limitations

The Alice System implements most of the Alice ML language as described in this thesis. How-
ever, the current version still has limitations in a number of areas:

• SML Support. Not the full extent of SML is yet supported. The main missing features
are include specifications and overloaded literals. Moreover, equality type attributes are
not checked by the compiler.

• Component Syntax. The built-in syntax for computed components as presented in
Section 7.2 is not yet available. The Component structure from the library provides the
polymorphic functor Create as a less convenient substitute.

• Pickle Verification. The most severe omission of the current Alice implementation is
the lack of verification for pickles, as described in Section 5.2. Verification for higher-order
pickles is an interesting and non-trivial problem. It requires a typed code format as well as
the ability to check the type of heap data structures at runtime (because a pickle basically
is an extract from the heap). Addressing these issues has been consciously left for future
work.

• Security. The implementation has not been tailored to security. For example, the Alice
System is equipped with a foreign function interface (FFI) that allows linking of so-called
native components implemented in C++. Native components are employed for bindings
to external libraries as well as most primitive libraries (e.g. TextIO), which ultimately
implement resourceful operations. Currently, the runtime system does not restrict the
import of native components, such that they represent a potential hole in the security
structure. Other holes may exist in the architecture, parituclarly with respect to proxies.

• Distributed Garbage Collection. Since distribution in Alice ML mainly relies on
pickling (i.e. copying) and does not support distributed state, there is no need for full-
scale distributed garbage collection. However, proxies (Section 8.1) represent a form of
inter-process reference in Alice ML. Currently, a function for which a proxy has been
constructed can never be collected, thus potentially creating a space leak. A form of
distributed garbage collection would be necessary to address this shortcoming.

104

9.4. Future Work

• Native Threading. SEAM implements threads purely in software, using its own schedul-
ing mechanism. It does not yet enable employment of system threads. Consequently, an
Alice ML program cannot yet take advantage of multi-processor machines and multi-core
processors.

We hope to be able to address some of these limitations in the future.

9.4. Future Work

9.4.1. Possible Extensions

Alice ML already is a comparably rich language. However, practice occasionally raises the desire
for extending it with further features that would integrate naturally:

• Dynamic Import URLs. The language as presented requires all URLs given with
import declarations to be constant strings. It is natural to ask – especially in the presence
of computed component (Section 7.2) – whether it should be possible to compute these
URLs dynamically.

• First-class modules. The parametricity restriction on the core language (Section 4.5)
and the distributed search example from Section 8.3.1 showed that, besides packages, it is
desirable to also have statically typed first-class modules in the language.

• Applicative Functors and Components. The higher-order functor example in Sec-
tion 3.1 exhibited that higher-order modules are of limited use without applicative functor
signatures. More seriously, fully generative type abstraction can be a hurdle for distributed
programming and persistence, because it always forces pickling the abstractions themselves
(Section 4.6). Compile-time generative types would be more flexible here. However, care
has to be taken to prevent unsoundness from mixing runtime and compile-time generative
types in invalid ways (in particular, a compile-time type may not refer to imported types
that are not known to be fully compile-time themselves).

• Reflection. The dynamic typing facility provided by packages could be driven further
towards richer reflection primitives, which, for example, would allow selecting a structure
member whose label is computed at runtime. Such operations are supported by many
dynamically checked languages, including Java. Even constructing structures at runtime
is a possibility. For example, component frameworks like JavaBeans [Sun97] heavily rely
on reflection. It is unclear however, to what extent such features would be desirable in a
language like Alice ML.

Most of these features are reasonably well-understood in literature and we believe that they
could be integrated into Alice ML without fundamental problems.

9.4.2. Language Specification

So far, we have not produced a formal specification of the full Alice ML language, as described
in the previous chapters. The remaining parts of this thesis develop a formal semantics for an
idealised subset of the language. However, formalising the full language probably is a daunting
task. In particular, it is not possible to simply extend the SML language definition [MTHM97]
with a specification of the new language features we added. There are a number of difficulties:

• Concurrency. The SML definition defines the operational semantics in a big-step style.
The concurrent nature of Alice ML would require replacing this by a small-step semantics.

105

9. Implementation and Outlook

• Futures. Making precise the synchronisation behaviour of non-trivial operations – e.g.
nested pattern matching, deep strict operations like polymorphic equality, and particularly
the details of touching type futures during dynamic type checks – are tedious to describe
precisely. In the case of dynamic types a complete specification might in fact unwantedly
over-constrain implementations and their choice of algorithm for testing subtyping and
type equivalence (Section 6.6).

• Closures. An operation like pickling traverses the whole transitive closure of a value. In
the presence of futures or resources it is observable what is included in this closure. The
extent of closures – particularly of functions or modules – must hence be fully defined. In
particular, such a definition may enforce – or prohibit – certain program transformations
and optimisations by the compiler (consider hoisting of structure projections as described
in Section 6.6).

• Principal signatures. Since the compiler is required to derive the export signature of
compilation units (Section 7.1), the language definition must fix the details of this process.
In other words, it must require derivation of principal types and signatures for compilation
units.

• Undecidability. Type checking of Alice ML’s higher-order modules is undecidable (Sec-
tion 3.3.2). In order to guarantee portability, it may be necessary to fix details of the
type checking algorithm in the language definition, to ensure that non-termination (or,
equivalently, abortion of compilation) is encountered for the same set of programs with
every implementation. Dynamic type checking is affected by this problem too, so fixed
behaviour is in fact a prerequisite for a fully specified operational semantics.

• Library. Much of the functionality of Alice ML is available not as syntax, but in the form of
library primitives (e.g. the operations on first-class components and component managers).
A realistic language specification hence would have to include significant portions of the
library. For the existing library, details about sitedness and strictness with respect to
futures would have to be added for all operations.

The above aspects only cover the internal semantics of the language. If the specification is
meant to be truly open, i.e. make different implementations interoperable dynamically, then it
must also cover the external semantics, where even harder problems arise (this certainly is not
an exhaustive list):

• Pickling. An open definition must specify a typed pickle format. This would in fact include
a complete specification of the external code representation, plus a verification algorithm.

• Distribution. Likewise, the specification would have to fix a protocol for inter-process
communication and distributed collection of proxies.

• Generativity. To avoid name clashes on global scope, the language specification must
determine the format and generation algorithm for type and constructor names.

Despite these problems, we believe that it would be highly interesting – and doable! – to
embark on such an endeavour and work out a language specification for Alice ML in future
work. At least an internal semantics covering most of the above issues seems a realistic goal for
scientific work. A comprehensive external semantics appears to be beyond a scientific project,
and would only be practical as an industrial standardisation effort. Still, certain aspects might
prove to be interesting from a scientific point of view, and investigating an idealised sublanguage
certainly would be manageable goal.

106

9.4. Future Work

9.4.3. Implementation

• Pickle verification. Our language design, and the theory we develop in the second
part, assume that pickles are verified upon unpickling. As mentioned above, this has
not been implemented yet, and is not a trivial problem. It has to be investigated how
much dynamic type annotations are required to enable this (e.g. for closures, generative
constructors, abstract data types).

• Security. Although the design of Alice ML does consider security to some extend, no
end-to-end security regime has been put in place. Some aspects of the design, particularly
proxies, may be too lax regarding serious security requirements. Numerous approaches
to security are described in literature, and it remains open which are best-suited for the
language and implementation, and how they can be integrated.

• Efficient type representation. The implementation of packages requires runtime opera-
tions on complex type structures (ML module signatures). The current implementation of
Alice ML uses a comparatively naive representation. It might be interesting to investigate
techniques like incremental minimal construction to improve space and time behaviour of
runtime types. This will be complicated by the requirement to make runtime types thread-
safe. Some preliminary work has been done by Paltzer in his Bachelor’s Thesis [Pal05].

• Case studies. The Alice ML design has been evaluated on a handful of relatively simple
applications, e.g. a distributed search engine, a distributed multi-user game, and a small
chat program. More complex case studies would be necessary to get confident that the
language and its implementation really scale.

107

9. Implementation and Outlook

108

Part II.

Theory

109

10. A Calculus for Components

In the first part of this work we presented Alice ML, a programming language designed for
typed open programming. We motivated its design and discussed examples of its use in practice,
backing up our thesis (Chapter 1) from the practical perspective. However, we described the
Alice ML semantics only informally.

In order to approach and substantiate our thesis from the theoretical side, the second part of
this work will develop a formal semantics. Clearly, a semantics for the full language is far out of
scope for a work like this, so we will restrict ourselves to core elements of the Alice ML semantics
that we isolate and model in a formal calculus, λω

SAΨ, for which we prove relevant properties.
Since our main interest is in typing issues, this calculus will largely focus on the semantics of
types.

The type system of Alice ML is quite intricate, statically and dynamically. While the static
aspects are well-known from ML and investigated extensively in literature on polymorphic type
systems [Pie02] and modules [HMM90, MT94, HL94, Ler95, Rus98, DCH03], Alice ML also
exhibits a number of dynamic aspects not present in conventional languages:

• Dynamic type matching. Packages require arbitrarily complex types (signatures) to be
compared at runtime.

• Dynamic type checking. Pickling requires arbitrary pieces of code to be type-checked
at runtime.

• Dynamic type sharing. Type matching has to check equivalences between statically
undetermined types at runtime.

• Dynamic type generativity. Maintaining abstraction safety in the presence of dynamic
type sharing requires a notion of runtime type generation.

• Dynamic sealing. Types may not just be generated individually, but in fact by sealing
of entire (higher-order) modules.

• Lazy types. Module-level laziness, particularly with linking, induces the notion of lazy
type variables that are triggered by runtime operations on types.

Our calculus will be an idealised functional language that provides all these features, except for
the last (see below). We believe that λω

SAΨ provides a uniform and simplest possible account for
the mechanisms that form the essence of Alice ML’s dynamic type system.

On the other hand, although it is intended to model the essentials of Alice ML, we will
not provide a formal translation from the language into λω

SAΨ– we restrict ourselves to giving an
intuitive understanding of the relation between the two, based on examples. As clarified already,
a formalisation of the full Alice ML language – either directly or by translation – is beyond the
scope of this work.

In the remainder of this chapter we will introduce the main concepts of λω
SAΨ. We will do

so incrementally, starting with a standard polymorphic λ-calculus and enriching it step by step
with constructs modelling individual aspects of the language. These are the following:

111

10. A Calculus for Components

• Higher-order polymorphic λ-calculus to represent the core language.

• Existential types and product kinds to express modules.

• Singleton kinds and subtyping to express translucent signatures.

• Dynamic type analysis to model dynamic type matching.

• Type generativity with coercions for recovering abstraction safety.

• Higher-order coercions and generativity to explain sealing.

• Pickling operations to capture the semantics of pickles.

We will motivate each feature in turn, relating it to simple examples from Alice ML. More
detailed explanations of the calculus and a precise semantics will be given in later chapters,
where we deal with its individual features and the meta-theory in depth.

The main technical contribution of our work is a semantics for sealing as higher-order dynamic
type generativity, in the presence of singleton kinds. As it turns out, the combination of these
two features is surprisingly complicated, mainly due to the presence of dependent kinds that is
enforced by singletons (Section 10.3). The dependency of kinds on types requires not only the
introduction of (higher-order) coercions on the term level for mitigating between generated types
and their representations, but also demands for similar coercions on the type level. The work
presented in this thesis thus significantly extends on our earlier work on generativity [Ros03],
which only considered plain polymorphic λ-calculus, and it gives an alternative view on packages
and pickling, which we first formally described in the context of a module calculus [Ros06], but
without considering type abstraction.

The complete calculus we devise is not simple. However, it is relatively canonical, and we
believe that it cannot be simplified further without depriving it of essential expressiveness.
The interesting aspects of the type system of Alice ML are in the interaction and interference
of different features, particularly type abstraction, dynamic typing, and type sharing. They
cannot be modelled without modelling all these features. However, we split the development in
two parts: first we develop a basic calculus with a straightforward but inflexible notion of type
abstraction, which is sufficient to study most of the interesting properties. Then we extend it
with more realistic higher-order abstraction and show that it maintains these properties.

One interesting aspect of Alice ML’s dynamic typing semantics not covered by the above list
is laziness: the combination of dynamic type analysis induces a notion of lazy types, because
type analysis may need to trigger a lazy suspension binding type variables. Neis has given
an account of lazy types in a higher-order polymorphic λ-calculus [Nei06], but unfortunately,
the type equivalence we consider in our system is significantly more complex due to singleton
kinds (Section 10.3) and relies on the environment, so that his approach cannot readily be
transplanted. We thus leave the integration of lazy types into our calculus as future work.

10.1. Core Language: Higher-order Polymorphic λ-calculus

ML is a mostly functional programming language, and in this thesis, we only consider its
functional subset. The canonical choice for a formal model of such a language is the λ-
calculus [Bar92, Pie02]. Specifically, because ML is polymorphically typed, it naturally maps to
the polymorphic λ-calculus [Gir71, Rey74, Bar92, Pie02], also known as System F [Gir71]. Since
the λ-calculus and its use for modelling basic programming language features are completely
standard [Pie02], we are only going to recap it briefly, by means of a few representative exam-
ples. Specifically, we refer to Harper & Mitchell’s work on the type structure of ML [HM93] for a

112

10.1. Core Language: Higher-order Polymorphic λ-calculus

kinds κ ::= Ω | κ→ κ | κ× κ
types τ ::= α | τ → τ | τ × τ | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | ττ | 〈τ, τ〉 | τ ·1 | τ ·2
terms e ::= x | λx:τ.e | e e | 〈e, e〉 | let〈x, x〉 = e in e

| λα:κ.e | e τ | 〈τ, e〉τ | let〈α, x〉 = e in e
environments Γ ::= · | Γ, α:κ | Γ, x:τ

Figure 10.1.: Syntax of λω

thorough discussion on the relation between ML and typed λ-calculus. In particular, they study
in detail the relationship between implicitly Hindley/Milner style [Hin69, DM82] and explicitly
typed systems modelling ML.

Figure 10.1 shows the syntax of a standard variant of the (impredicative) higher-order poly-
morphic λ-calculus (System Fω). Like Girard’s original formulation [Gir71] it includes existential
types. It has been further enriched with straightforward binary Cartesian products on term and
type level. On the term level, we use a pattern matching let construct instead of projections to
deconstruct pairs, for notational symmetry with existential types. From now on, we will refer
to this basic calculus as λω.

Many of our examples will assume, without further notice, that the bare calculus has been
extended with built-in integers, Booleans or other standard types, plus corresponding constants.

This calculus captures the essentials of ML. For instance, consider the following ML definitions:

fun area (x : int, y : int) = x × y
fun α twice (x : α) = (x,x)
fun (α,β,γ) compose (f : α → β) (g : γ → α) (x : γ) = f (g x)
val h = compose area twice

These declarations consist of little more than lambda abstraction and application and can be
translated into λ-calculus almost literally, mapping polymorphic type variables in the ML code
to type lambdas. We only have to insert type applications:

area = λp : int×int . let〈x, y〉 = p in x× y
twice = λα : Ω. λx : α. 〈x, x〉
compose = λα : Ω. λβ : Ω. λγ : Ω. λf : α→ β. λg : γ → α. λx : γ. f (g x)
h = compose (int×int) int int area (twice int)

Higher-order type expressions in λω generalise parameterised type definitions. For instance,
the ML declarations

type α pair = α × α
type (α,β) func = α pair → β

can be transliterated into λω-types as follows:

pair = λα : Ω. α× α
func = λα : Ω. λβ : Ω. pair α→ β

Parameterised type definitions map to functions on the type level. For that reason, we have
employed Fω, although ML only represents a limited subset of the full higher-order system.
Incidentally, all kind annotations in our examples are ground (i.e. kind Ω). That is no accident:
the ML core language cannot express higher-order types, only first-order type functions are
possible. However, the full higher-order power of the calculus unfolds as soon as we consider
modules.

113

10. A Calculus for Components

One noteworthy omission of the calculus when compared to the ML core language is the
absence of a fixed point operator. Unlike ML, bare Fω cannot express general recursion, so that
it in fact is terminating [Gir71, Bar92]. We do not add a primitive for recursion because the
dynamic typing construct we will introduce in Section 10.4 actually allows expressing a fixed
point operator for any inhabited type. It hence is unnecessary to make recursion primitive.

10.2. Modules: Existential Types and Higher-order Quantification

Modules play an important role in ML. Moreover, Alice ML’s dynamic typing facilities and
component system are centred around modules.

The ML module system has originally been proposed as a language based on dependent
types [Mac86, Mac84]. That approach induces quite a heavyweight meta-theory, which had to be
tamed in a long line of work [HMM90, MT94, HL94, DCH03]. It has repeatedly been suggested
that dependent types are overkill for representing modules, and that most of its features can be
sufficiently approximated in a simpler language based on a second-order calculus [Rus99]. We
hence follow more recent work [HMM90, Rus99, Dre05] and express modular structure in terms
of λω with only moderate extensions.

The plain λω-calculus already is expressive enough to cover most of ML’s module language. In
particular, the existential types of λω have a close correspondence to signatures: the signature

signature COMPLEX =
sig

type complex
val i : complex
val mk : real → real → complex
val re : complex → real
val im : complex → real
val mul : complex → complex → complex

end

can be interpreted as a λω-type as follows (reading × as a right-associative operator):

COMPLEX =
∃complex : Ω. complex × (real → real → complex) × (complex → real)

× (complex → real) × (complex → complex → complex)

Signatures with more than one type can be expressed either by nested quantifiers, or in a more
regular manner, by quantification over product kinds [HS00]. For example,

signature GENERIC COMPLEX =
sig

type base
type complex
val i : complex
val mk : base → base → complex
val re : complex → base
val im : complex → base
val mul : complex → complex → complex

end

can be mapped to the type

GENERICCOMPLEX =
∃〈base, complex 〉 : (Ω × Ω). (complex × (base → base → complex)

× (complex → base) × (complex → base)
× (complex → complex → complex))

114

10.2. Modules: Existential Types and Higher-order Quantification

Literature on ML modules often refers to the type component in such an existential type as the
static (or compile-time) part of a structure, and to the term component as its dynamic (or run-
time) part [HMM90, Sto05, Dre05]. As a meta-syntactic abbreviation, we will use the notation
Stat(τ) and Dyn(τ) to refer to both these parts of a given existential type τ , i.e. if τ = ∃α:κ1.τ2,
then Stat(τ) = κ1 and Dyn(τ) = τ2. This notion can be generalised to other types, but we will
not need it for our examples.

We note in passing that parameterised type specifications, as in

sig type α set ... end

would materialise as quantifiers with higher kind in λω, i.e. ∃set : Ω→Ω.τ for this particular
example.

In correspondence with the type level, a value of existential type (called an existential pair, or
simply an existential throughout this thesis) mirrors the concept of a structure. It is not hard
to see that a sealed structure definition like

structure C :> COMPLEX =
struct

type complex = real × real (* polar; invariant: for all (a,th), 0 ≤ th < 2×pi *)
val i = (1.0, pi/2.0)
fun mk x y = (sqrt (x×x + y×y), atan2 y x + pi)
fun re (a,th) = a × cos th
fun im (a,th) = a × sin th
fun mul (a1,th1) (a2,th2) = (a1×a2, rem (th1 + th2, 2×pi))

end

can be reflected by the following λω-term (we use pattern matching λ-notation to abbreviate local
let expressions in obvious ways, and n-ary tuple syntax 〈t1, . . . , tn〉 as a syntactic abbreviation
for the nested tuple 〈t1, 〈t2, . . . 〈tn−1, tn〉 . . .〉〉):

C = 〈real × real ,
〈〈1, pi/2〉,
λx : real . λy : real . 〈sqrt(x× x+ y × y), arctan2 y x+ pi〉,
λ〈a, th〉 : real × real . a× cos th,
λ〈a, th〉 : real × real . a× sin th,
λ〈a1, th1〉 : real × real . λ〈a2, th2〉 : real × real .

〈a1 × a2, rem(th1 + th2, 2 × pi)〉〉
〉COMPLEX

In particular, existential quantification hides the identity of the representation type, mirroring
the type-abstracting effect of sealing in the ML version, thus protecting the representational
invariant of the implementation. We will elaborate on this observation – and its shortcomings
– in Section 10.5.

Existentials have to be opened with a respective elimination form to access their components.
As Cardelli & Leroy showed [CL90], the dot notation M.x used for modules can be translated
systematically into open expressions: roughly, every module has to be opened at the outermost
scope – that is, immediately at its binding point. All dot accesses can then be substituted
by suitable (sequences of) projections from the two variables bound by the open expression.
Putting everything together, the ML code

structure C : COMPLEX = struct ... end

val it = (fn c : C.complex ⇒ C.re (C.mul c c)) (C.mk 4.0 3.0)

can be represented by a λω-expression of the following form (we use nested pattern matching
notation to hide additional let expressions):

115

10. A Calculus for Components

let〈complex , 〈i,mk , re , im ,mul〉〉 = 〈real×real , 〈. . .〉〉COMPLEX

in (λc:complex .re (mul c c)) (mk 4 3)

Where structures translate to existential types and pairs, functors translate to universal types
and functions. Consider a functor

functor F (C : COMPLEX) =
struct

type t = C.complex
val z = C.mk 0.0 0.0

end

A naive attempt of a translation might be into a term of type

COMPLEX → ∃t : Ω. t

Unfortunately, this is not faithful, because it cannot properly propagate the type information
from the argument to the result type of the functor, due to the lack of dependent types – the
returned type t would be fully abstract. In fact, if we had not re-exported C.complex as t, the
expression could not be typed at all, because the type variable α bound in COMPLEX would
have to escape its scope in order to express the type of z.

A proper translation thus requires splitting the COMPLEX signature into its static and
dynamic parts, such that the types in the static part can scope not only over the dynamic part,
but over the whole codomain of the function, by means of universal quantification:

λcomplex : Stat(COMPLEX). λ〈 ,mk , , , 〉 : Dyn(COMPLEX). 〈complex ,mk 0 0〉

This expression is typed as

∀complex : Stat(COMPLEX). Dyn(COMPLEX) → ∃α : Ω. complex

At call site the translation analogously requires passing types and terms separately.
In a similar vein, the λω formulation is not compositional when it comes to nesting of struc-

tures. Consider the following signature:

signature S =
sig

structure C : COMPLEX
type t
val f : C.complex → t

end

To translate this signature and capture the dependency of the type of f on the nested structure
C, we again need to split the COMPLEX signature and then lift the static part to the outer
quantifier:

∃〈complex , t〉 : (Stat(COMPLEX) × Ω). (Dyn(COMPLEX) × (complex → t))

Examples like this demonstrate why modules are usually interpreted using dependent types:
existential types do not allow projection but require opening instead – which limits scope and
is only possible on the term level. Fortunately, the non-dependent approach we sketched can
be applied systematically, yielding a whole-program translation scheme known as phase split-
ting [HMM90, Sto05, Dre05], where every module is split into its static and its dynamic part.
The former can be represented as a type of potentially higher kind, the latter as a term of
potentially higher-order polymorphic type. We will not repeat the details of this translation

116

10.3. Type Sharing and Translucency: Singleton Kinds and Subtyping

here but be content with having given an intuitive understanding of the underlying idea. The
interested reader is referred to the aforementioned works for deeper enlightenment.

As it turns out, we will not be able to forgo dependent typing entirely: with the introduction
of singleton kinds in Section 10.3 we will have to move to dependent kinds. However, these
are less critical than dependent types. In particular, their addition does not affect the phase
distinction between type checking and evaluation, since they are purely a static matter.

10.3. Type Sharing and Translucency: Singleton Kinds and

Subtyping

While λω can already encode most of ML modules in a relatively direct manner, one important
feature cannot be expressed as easily. The ML signature language allows specifications of types
in two ways: abstractly or concretely. As we saw in the previous section, an existential type
corresponds to a signature with an abstract type specification. But there is no counterpart in
λω to a signature with a concrete (or manifest) type specification, like in

signature REAL COMPLEX =
sig

type base = real
type complex
val i : complex
val mk : base → base → complex
val re : complex → base
val im : complex → base
val mul : complex → complex → complex

end

which in ML, given the signature GENERIC COMPLEX from the previous section, can be abbre-
viated by a short-hand:

signature REAL COMPLEX = GENERIC COMPLEX where type base = real

To address this shortcoming, we follow the route of recent literature on ML modules [Sto00,
DCH03, Dre05], and employ the concept of singleton kinds [Asp95, SH06] as uniform means
to express transparent type information, and thus so-called translucent signatures with mixed
concrete/abstract type information.1

A singleton is a new form of kind, written S(τ), which classifies all types that are provably
equivalent to τ . Such a kind is inhabited only by (the equivalence class) of a single type, hence
the name. Any type τ can be assigned its own most specific singleton kind S(τ).

Figure 10.2 summarises the syntactic changes to the kind language of λω necessary to encom-
pass singletons. We will refer to the resulting calculus as λω

S . Besides the addition of singleton
kinds themselves, the plain arrow and pair kinds of λω have to be generalised to dependent
products and sums [ML71, Bar92], to accommodate the appearance of types within kinds. For
example, the kind Σα:Ω.S(α) can be assigned to all pairs of two equivalent types and is thus
more specific than Σα:Ω.Ω.

Our kind language thereby is an almost unmodified instance of the type system with singletons
that was investigated by Stone & Harper [SH06]. This allows us to directly re-use most of their
techniques and results. In particular, we will follow their approach of conveniently defining
singletons at higher kind, written S(τ : κ), as mere syntactic sugar over the basic language
specified in Figure 10.2.

Given singleton kinds, the REAL COMPLEX signature can be expressed as

1Singletons were first introduced as types instead of kinds, but obviously they can be used one level up as well.

117

10. A Calculus for Components

kinds κ ::= Ω | S(τ) | Πα:κ.κ | Σα:κ.κ

κ1 → κ2 := Π :κ1.κ2

κ1 × κ2 := Σ :κ1.κ2

Figure 10.2.: Syntax extensions for λω
S (λω with singleton kinds)

REALCOMPLEX =
∃〈base, complex 〉 : (S(real) × Ω). (complex × (base → base → complex)

× (complex → base) × (complex → base)
× (complex → complex → complex))

That is, an abstract type specification amounts to quantification over base kind Ω (or some higher
kind in the case of parameterised types), while a concrete specification is likewise represented
by quantification, but with a singleton kind. Since τ : S(τ) is always derivable, a type will
successfully match a compatible singleton kind annotation. The whole type actually is equivalent
to

∃〈base, complex 〉 : (S(real) × Ω). (complex × (real → real → complex)
× (complex → real) × (complex → real)
× (complex → complex → complex))

In ML, a signature with a concrete type specification matches a signature of similar form, but
with an abstract specification in place for the respective type. For example,

sig type t = int × int end matches sig type t end

To capture this form of subsumption, λω
S incorporates a notion of subkinding, induced by a basic

rule deriving S(τ) ≤ Ω for any well-formed singleton S(τ). Thus, a concrete type (of singleton
kind) can be passed wherever a type is specified abstractly (with kind Ω).

The subkinding relation is extended to subtyping by inducing inclusion of quantified types.
That is, we have ∃α:κ.τ ≤ ∃α:κ′.τ ′ whenever κ ≤ κ′ (and τ ≤ τ ′). Universal quantifiers act
similarly, but are contravariant. As we will see later (Section 10.4), subtyping is necessary
to express dynamic signature matching, as it occurs in Alice ML when unpacking a package
(Section 4.1).

10.4. Dynamic Typing: Type Analysis

The λω
S -calculus encompasses the essential expressiveness of the ML language and its static type

and module system with reasonable accuracy. As such, it is relatively standard, and described
in the literature in minor variations [Sto05, Dre05]. However, our main interest lies in extending
the language with dynamic typing, which is what we turn to now.

Alice ML offers packages as its central means for dynamic typing (Chapter 4). Packages
are basically a variant of dynamics [Myc83, ACPP91, LM93, ACPR95], but carrying modules.
Since we can already express modules in our calculus, it is sufficient to integrate a simple form
of dynamics.

Looking closer, dynamics are actually two features in one: (1) they provide a way to store
type information in a value, and (2) they allow dispatching on such dynamic type information.
Existential types already provide the first, so it is a worthwhile simplification to provide dynamic

118

10.4. Dynamic Typing: Type Analysis

type switching as a separate feature, and express dynamics in terms of these two, more primitive
mechanisms.

Like dynamics, dynamic type analysis has been investigated extensively in literature [HM95,
DRW95, Gle99, CW99, TSS00, Wei02, CWM02, VWW05]. Most of these works introduce a
typecase construct of varying complexity for dispatching on the structure of a type, sometimes
along with a similar construct typerec on the type level, to encompass higher-order types.

We restrict ourselves to a much simpler construct, which just provides a way to compare two
types, and branch according to the result:

case e1:τ1 of x:τ2.e2 else e3

Evaluating this expression compares the dynamic instantiations of the type τ1 of value e1 with
τ2. If they match, the e2 branch is taken, with x bound to the value of e1, otherwise e3 is
evaluated. However, the comparison is not for type equivalence, but for subtyping ! That is, if
τ1 ≤ τ2 then e2 is chosen. In other words, our type case is reminiscent of a checked downcast.
More formally, it is a variant of Girard’s J operator [Gir71], or rather Harper & Mitchell’s
TypeCond operator [HM99], enriched with subtyping (Section 12.3.3).

Given a primitive for dynamic type analysis, an equivalent to the Alice ML package type can
be defined in our system as ∃α:Ω.α, which we will abbreviate to package in the following. The
intuition is obvious: a package is a value of some type named α, paired with the actual type. The
equivalent to injecting some value into type package hence is nothing more than plain existential
construction.

Consider the following Alice ML example:

val p = pack (val it = 5) : (val it : int)

The straightforward translation is

p = 〈int , 5〉package

This scales to more complex modules in the obvious way. For instance, here is a module including
a type:

val q = pack (type t = int; fun f (n : int) = n) : (type t = int; val f : t → t)

It could be expressed as follows:

q = 〈∃t : S(int). t→ t, 〈int , λn : int . n〉∃t:S(int)〉package

Note the twofold use of existential types in this example: the inner existential expresses the
structure, the outer the package.

Since constructing a package obviously is straightforward, unpacking is the more interesting
direction: given a value of package type and a target signature (cf. Section 4.1) it should yield
the contained module, if and only if the dynamic signature is a subtype of the target signature.
Consider the following piece of Alice ML code:

unpack p : (val it : int)

It is not difficult to express this operation in terms of existential opening and type case:

let〈α, x′〉 = p in casex′ : α of x : int . x else ⊥int

Because we do not have exceptions in the calculus, we use ⊥ to indicate the exceptional case
(we will see in Section 12.3.3 that we can find a diverging computation for all interesting types).

The second of the above packages, q, can be unpacked successfully in at least two different
ways:

119

10. A Calculus for Components

structure M1 = unpack q : (type t = int; val f : t → t)
structure M2 = unpack q : (type t; val f : t → t)

M1 unpacks it under its original, most precise signature. M2 however uses a supersignature where
t is left abstract. Both can be translated directly:

M1 = let〈α,M ′〉 = q in caseM ′ : α of M : (∃t : S(int). t→ t). M else ⊥
M2 = let〈α,M ′〉 = q in caseM ′ : α of M : (∃t : Ω. t→ t). M else ⊥

The latter example demonstrates why we needed to built in subtyping (Section 10.3) into our
calculus: the case expression in M2 does only evaluate successfully because ∃t : S(int). t → t ≤
∃t : Ω. t→ t. Unlike static uses of subsumption [Sto05, Dre05], we cannot express the conversion
between these types by η-expansion, because the package type is not statically known.

10.5. Loss of Parametricity and Abstraction Safety

Although the type case construct may look rather innocent at first, it has serious implica-
tions on the properties of the calculus. As said above, it represents a variant of Girard’s J
combinator [Gir71, HM99], and Girard showed that such an operator inherently destroys the
parametricity property of the polymorphic λ-calculus.

Intuitively, parametricity means that a well-formed term always reduces in the same way,
regardless of potential substitution of free type variables [Rey83, BFSS89, ACC93]. Obviously,
a type case enables inspection of the dynamic instantiation of a type variable, and it can evaluate
to different branches, accordingly.

As already explained in Section 4.5, a number of useful properties are consequences of para-
metricity, and they get lost along the way. For example, unlike λω, the extended calculus is
not terminating (Section 12.3.3). More seriously, though, type abstraction can no longer be
expressed by conventional means.

Type abstraction is one of the most important tools of modular programming [Mor73a,
Mor73b, MP88, HP05]. In the ML module system type abstraction is achieved through sealing
(Chapter 3): the representation of a type defined by a structure is hidden to clients by ascribing
a signature containing an abstract type specification. For example, recall our structure defining
complex numbers:

signature COMPLEX =
sig

type complex
val i : complex
val mk : real → real → complex
val re : complex → real
val im : complex → real
val mul : complex → complex → complex

end

structure C :> COMPLEX =
struct

type complex = real × real (* polar; invariant: for all (a,th), ≤ th < 2×pi *)
val i = (1.0, pi/2.0)
fun mk x y = (sqrt (x×x + y×y), atan2 y x + pi)
fun re (a,th) = a × cos th
fun im (a,th) = a × sin th
fun mul (a1,th1) (a2,th2) = (a1×a2, rem (th1 + th2, 2×pi))

end

120

10.5. Loss of Parametricity and Abstraction Safety

This declaration defines an abstract type C.complex, whose representation is hidden from clients
– they can only use the operations from the COMPLEX signature to construct, consume, and
inspect values of this type.

If the language provides no way to breach an abstraction barrier erected through the use of
abstract types it is called abstraction safe. Standard ML and most similar languages have this
property.

In their classic paper, Mitchell & Plotkin observed that type abstraction is closely related
to existential quantification [MP88]. In Section 10.2, we already saw how the complex number
ADT can be expressed in λω as an existential:

C = 〈real × real ,
〈〈1, pi/2〉,
λx : real . λy : real . 〈sqrt(x× x+ y × y), arctan2 y x+ pi〉,
λ〈a, th〉 : real × real . a× cos th,
λ〈a, th〉 : real × real . a× sin th,
λ〈a1, th1〉 : real × real . λ〈a2, th2〉 : real × real .

〈a1 × a2, rem(th1 + th2, 2 × pi)〉〉
〉COMPLEX

Abstraction safety in this approach crucially relies on parametricity. To be accessed, the
existential has to be opened, as in

let〈γ, ops〉 = C in e

But only because the body e – which represents the client code of the structure – is parametric
in the bound type variable γ representing the abstract type complex , it is guaranteed not to be
able to break the abstraction: it simply cannot perform any computations that depend on the
representation of γ, i.e. the concrete type that will be substituted during reduction.

Unfortunately, the loss of parametricity caused by the addition of dynamic type analysis inval-
idates this solely static model of type abstraction. Specifically, we can construct an expression
that breaks the abstraction of the complex number ADT by dynamically inspecting the abstract
type and consecutively constructing a value of the abstract type without using the mk operator
from its signature:

let〈γ, ops〉 = C in . . . case 〈0,−3 × pi〉 : real × real of x : γ. x else i . . .

The type case in this expression is perfectly well-typed. Dynamically, it checks whether real×real
and the abstract type γ are equivalent, and in case they are, interprets the pair 〈0,−3 × pi〉
as a complex value. And the check will indeed succeed, because the reduction rule for the let

expression opening the existential will substitute γ by real × real , implying γ ≡ real × real . By
evaluating this expression, we have forged a value of the abstract type for complex numbers.
Note that indeed, 〈0,−3× pi〉 does not adhere to the intended invariant of the implementation,
which would require −3π ∈ [0; 2π[.

There seem to be two principal ways to restore abstraction safety in the presence of dynamic
type analysis:

1. Disallow dynamic analysis of certain types. This approach has been suggested by Harper
& Morrisett [HM95], who propose statically distinguishing between analysable and non-
analysable types, supposedly via the kind system.

2. Prevent substitution of (existentially) quantified types. Abadi, Cardelli, Pierce & Rémy
[ACPR95] propose to simply replacing the type variable bound by open with a “fresh”
type constant during evaluation.

121

10. A Calculus for Components

The first solution is overly restrictive for our purposes, because it would preclude values
of certain types – specifically, all abstract types – to be put in packages. Clearly, such a
limitation would render packages insufficient as a basis for a component system. We need a full
reflexivity type analysis mechanism, i.e. all types have to be analysable – or rather, comparable
– dynamically.2

The idea put forth by Abadi et al. is more promising. It amounts to changing the reduction
rule for opening existientials to:

let〈α, x〉 = 〈τ, v〉 in e → e[t/α][v/x]

where t is a fresh type constant. Obviously, the representation type could no longer be analysed
transparently.

Unfortunately, this modification has two fundamental problems:

• The notion of “fresh type constant” is not formally defined. It needs to be made precise
what dynamic freshness means.

• Worse, the rule destroys type preservation.

To see how type preservation is lost, consider the following example:

let〈complex , 〈i,mk , re , im ,mul〉〉 = C in (λc : complex . re c) i

It is easy to verify that this term is well-typed in λω . Nevertheless, after applying the above
reduction rule (and the implicit deconstructions of the nested operator tuple) the term becomes:

(λc : t. (λ〈a, th〉 : real × real . a× cos th) c) 〈1, pi/2〉

which is no longer typable! In two places there is a clash between the abstract type t – which
now stands for complex – and its representation type real ×real : the tuple 〈1, pi/2〉 representing
the complex number i simply has type real × real where the outer λ-expression expects t, and
vice versa, c has type t where the implementation of the re function expects a pair.

The approach we are going to present in the following takes up the idea of generating fresh
types to maintain abstraction safety, but avoiding the above problems:

• Instead of “fresh type constants” it introduces an explicit construct for dynamically gen-
erating type names, independent from existential types.

• Type inconsistencies between abstract types and their representations are addressed by
introducing coercions for mitigating between the types.

The basic approach has been described previously in a paper of ours [Ros03]. However, in the
paper we did not consider the interaction with singleton kinds and the resulting dependency
of kinds on types, which turns out to be a severe complication. Moreover, the current work
features a more modular approach to recording the isomorphism between generated types and
their representations, by using the kind system. It also simplifies higher-order coercions by
treating them as syntactic sugar.

2We borrow the term full reflexivity from Trifonov, Saha & Shao [TSS00], who introduced it in a slightly different
context to express the absence of any restriction on the syntactic form of types that are available for analysis
(no such restriction is necessary for the simple form of type case used in this thesis).

122

10.6. Abstraction Safety: Dynamic Generativity

10.6. Abstraction Safety: Dynamic Generativity

Formalisms for describing dynamic generation of fresh value names are well developed. For
example, the name restriction form νn.P is a central feature of the π-calculus [SW01] and can
be viewed as an expression that generates a new name n with local scope. Pitts’ λν-calculus
[PS93] transfers that idea to the λ-calculus, although with a different formulation.

However, we are not concerned with value names but with type names. Consequently, although
we adopt a similar construct, it has a different form:

newα ≈ τ in e

This expression generates a new type denoted by the type variable α, bound within e (and thus
subject to standard α-conversion rules). To track generated type names, we will employ a type
heap that is maintained by the reduction relation and maps type variables to kinds.

Because uninhabited types are rarely interesting, every new type has to be associated with a
representation type τ . The new type differs from τ , i.e. the static type system as well as dynamic
type analysis will distinguish between both types. However, they are known to be isomorphic
within the scope of the new construct. The isomorphism can be exploited by means of coercions
that mitigate between the two types.

We take the most conservative approach and require these coercions to be performed as explicit
operations. That is, we introduce two symmetric expression forms:

{e}+
τ and {e}−τ

Given an abstract type τ with representation τ ′, the upward coercion {e}+
τ converts e of type

τ ′ into τ , while the downward coercion {e}−τ does the inverse. Reduction then allows nested
inverse coercions to cancel each other:

{{v}+
τ }

−
τ → v

Note that the representation type τ ′ is known from context and hence does not need to be
annotated. We will discuss the design space surrounding coercions in Section 12.5. As a simple
example, the expression

newα ≈ int in (λx : α. {x}−α) {666}+
α

is well-formed having type int and results in the integer 666.
A coercion requires the annotated type τ to be an abstract type, as generated by the new

operator. Moreover, it must be associated with a suitable representation type. How do we keep
track of this information?

While our previous work [Ros03] used special environment entries, we take a more uniform
approach in this thesis, which is inspired by singleton kinds: analogous to the latter, we intro-
duce a new form of abstraction kinds, written A(τ), which are assigned to abstract types with
representation type τ . Like singleton kinds, abstraction kinds record the fact that a type is
isomorphic to another type. But unlike singletons, where this isomorphism can be exploited
implicitly by the type system (through type equivalence and subsumption), abstraction kinds
can only be utilised explicitly, by means of coercions.

Note that the type language presented here is higher-order, hence a type of abstraction kind
is not necessarily a type variable bound by new – that is the reason why coercions are actually
annotated with a type, not a simple type variable.

Figure 10.3 summarises all changes to the syntax of λω
S for extending it with dynamic type

analysis, generativity, and corresponding coercions and abstraction kinds. We will refer to the
calculus incorporating all these extensions as λω

SA.

123

10. A Calculus for Components

base kinds κ̂ ::= Ω | A(τ)
kinds κ ::= κ̂ | Sκ̂(τ) | Πα:κ.κ | Σα:κ.κ
terms e ::= . . . | case e:τ of x:τ.e else e | newα ≈ τ in e | {e}+

τ | {e}−τ

Figure 10.3.: Syntax extension of λω
SA (λω with dynamic type analysis and generativity)

In this calculus, we can express the ADT of complex numbers in such a way that it is dynami-
cally abstraction safe by generating a fresh type, and strategically inserting adequate coercions:

C ′ = new c ≈ real × real in
〈c,
〈{〈1, pi/2〉}+

c ,
λx : real . λy : real . {〈sqrt(x× x+ y × y), arctan2 y x+ pi〉}+

c ,
λz : c. let〈a, th〉 = {z}−c in a× cos th,
λz : c. let〈a, th〉 = {z}−c in a× sin th,
λz1 : c. λz2 : c. let〈a1, th1〉 = {z1}

−
c in

let〈a2, th2〉 = {z2}
−
c in

{〈a1 × a2, rem(th1 + th2, 2 × pi)〉}+
c 〉

〉COMPLEX

The previous attempt to break the abstraction using type analysis will no longer succeed:

let〈complex , 〈i,mk , re , im ,mul〉〉 = C ′

in . . . case 〈0,−3 × pi〉 : real × real of x : complex . x else i . . .

The use of type case in this expression is still well-typed. However, reduction now yields

new c ≈ real × real in . . . case 〈0,−3 × pi〉 : real × real of x : c. x else i . . .

That is, complex gets substituted by the fresh type name c. Since real × real ≤ c does not hold
in our system, the type analysis will fail, evaluating to i instead of a forged value.

In Section 12.9 we will formally prove that abstraction safety holds for all types introduced
by new.

10.7. Sealing: Higher-order Coercions and Generativity

So far, to build an abstraction, its implementation has to use coercions internally, in order to
meet the intended signature type. We speak of a priori abstraction: an implementation must
be tailored to a particular signature. On the other hand, abstraction based on existential types
or sealing happens a posteriori : arbitrary parts of a given implementation’s type are just hidden
away without affecting the implementation itself. Can we recover that flexibility?

The answer is yes: we will show that we are able to define a sealing notation e :> τ as pure
syntactic sugar in our calculus. Given an abstract “signature” type τ and a suitable implemen-
tation e, it systematically constructs an expression e′ that coerces the whole implementation
e into the desired type, in an abstraction-safe manner. Here, τ typically will be existentially
quantified. The expansion is defined such that e′ will generate fresh types for all quantifiers that
are abstract, i.e. do not have singleton kind.

We will proceed in two steps. First, we generalise the calculus to support higher-order gener-
ativity. The new expression presented so far can only generate types of kind Ω. We can define
a higher-order extension, written

newα:κ ≈ τ in e

124

10.7. Sealing: Higher-order Coercions and Generativity

that allows arbitrary kind.
Along with higher-order generativity come higher-order abstraction kinds, A(τ : κ), which are

assigned to type variables in higher-order generators. They will be defined as a derived form in
a manner very analogous to higher-order singletons (Section 10.3).

After having tackled higher-order generativity, the more difficult step towards the definition
of a sealing operator is the introduction of higher-order coercions. To that end, we introduce
the following notation:

{e : α:κ.τ}+
τ
+
≈τ−

This expression is meant to coerce e : τ [τ−/α] to the abstract signature type τ [τ
+
/α], provided

τ
+

: A(τ− : κ). The type variable α is used as a placeholder that marks all the positions in τ
where a concrete change of types has to occur. The former, basic coercions arise as the special
case where the residual type τ is simply α. For example, given γ : A(int : Ω), the notation

f = {(λ〈x, y〉 : int × int .x+ y) : α:Ω. (α× int → α)}+
γ≈int

ought to describe an expression of type γ × int → γ. Note that the first component of the
function’s argument type is made abstract, but not the second.

For simple types, the reduction of these higher-order coercions is relatively straightforward.
The most interesting case are function types:

{v : α:κ.τ1 → τ2}
+
τ
+
≈τ−

→ λx1:τ1[τ+/α].{(v {x1 : α:κ.τ1}
−
τ
+
≈τ−

) : α:κ.τ2}
+
τ
+
≈τ−

The definition introduces an η-expansion inserting the necessary coercions on the result and,
inversely, the argument of potential applications. For the term f above, reduction will yield the
moral equivalent of the following term, using pattern matching notation:

λ〈x′, y′〉 : γ × int .{f 〈{x′}−γ , y
′〉}+

γ

The function takes a pair of arguments (one abstract, one concrete), coerces the former back
to its representation, applies the original function, and coerces back the result to the abstract
type.

As it turns out, defining higher-order coercions is far from trivial in the case of quantified
types, i.e. where the residual type τ is either ∀α:κ.τ ′ or ∃α:κ.τ ′. In earlier work [Ros03], we
had given a straightforward definition for universal types. However, the type system considered
was roughly equivalent to that of λω, and did not have singleton kinds. Due to the presence of
dependent kinds that is implied by singletons (Section 10.3), the same definition is no longer
valid in a system like λω

S , as we will discuss in Section 13.2.3. A correct definition is surprisingly
intricate, and requires resorting to a similar notion of coercions on the type level, where we
introduce the analogous notation

{τ : α:κ′.κ}τ
+

/τ−

to coerce a type τ of kind κ[τ−/α] to kind κ[τ
+
/α].

With higher-order generativity and coercions in place we have the necessary ingredients to
define sealing as follows:

e :> ∃α:κ.τ := let〈α, x〉 = e in newα′:κ ≈ α in 〈α′, {x : α:κ.τ}+
α′≈α〉∃α:κ.τ

Effectively, this definition takes the types from the “structure” e and replaces them by freshly
generated names. Moreover, to keep the structure well-formed under the original signature type,
its term part has to be coerced from the “old” representation types (bound to α) to the new
abstract types (denoted by α′). The types thus are fully opaque, statically as well as dynamically,
as is required to achieve abstraction safety.

For example, given the encoding of structure implementation C from Section 10.2, the ex-
pression

125

10. A Calculus for Components

types τ ::= · · · | Ψ
terms e ::= · · · | pickle e | ψ(e) | unpicklex⇐ e in e else e

Figure 10.4.: Syntax of λω
SAΨ (extension of λω

SA with pickling)

C :> COMPLEX

will translate to an expression that is basically an η-expansion of C ′ as given in Section 10.6.

For all syntactic definitions presented we will derive and prove correct suitable well-formedness
and equivalence rules that show the consistency of the definitions. These proofs, which are
mostly by induction on the structure of types and kinds, represent the most elaborate technical
contribution of this thesis. While, for the most part, they are not difficult in principle, the
complexity of the syntactic definitions (in particular for higher-order coercions over quantified
types and kinds) makes them surprisingly subtle and long-winded.

After having defined sealing in terms of generativity and coercions, these constructs can be
regarded as internal. The programmer does not have to be concerned with them directly. We
have thus recreated the situation in ML. Moreover, the encoding of sealing we have given mirrors
the actual compilation strategy for sealing used in the Alice ML compiler.

10.8. Pickling

Our main motivation for going through all the hassle of adding dynamic typing to a statically
typed language is the desire to enable high-level dynamic import and export of language-level
values. Dynamic typing is one key primitive for type-safe exchange of values with the outside
world. However, in order to export a value, it has to be transformed into a self-contained
external representation, a pickle. Furthermore, when such a pickle is loaded, its integrity has to
be checked, because the static type system cannot make any guarantees about entities such as
files that are beyond the control of the language’s run-time system.

To achieve full safety, two kinds of checks have to be performed:

1. Dynamic type matching to ensure external consistency of unpickling, i.e. whether the pickle
and the code loading it agree about its type.

2. Dynamic type checking to check internal consistency of the pickle, i.e. whether it actually
is a well-formed value of the type it pretends to have.

The first check is what is provided by packages – or type case expressions in our calculus,
respectively. But we have not yet coped with the second check.

To address this, we add a final extension to our calculus, which provides a high-level account
for the semantics of pickling. Terms are enriched with three new constructs:

• pickle e creates a pickle of the value computed by e.

• unpicklex⇐e in e1 else e2 takes a pickle e and extracts its value, binding it to x in e1; if
the pickle is malformed, e2 is evaluated instead.

• ψ(v) represents a pickle itself, i.e. a value that is a serialised representation of the value v.
Pickles are assigned the new type Ψ.

126

10.9. Summary

Figure 10.4 summarises the extensions. We refer to the resulting calculus as λω
SAΨ.

The key characteristic of the pickling formalism is that there is no requirement for the term v
in a pickle ψ(v) to actually be well-formed! This models the fact that in practice, pickles can be
created outside the runtime, by extra-linguistic means, and the language has no way to enforce
that they are well-formed. Indeed, a pickle may be deliberately forged by an attacker (in a real
language, a pickle might not even be syntactically valid, but we abstract from that possibility
in our calculus, since it does not change the principle problem). This liberty is visible in the
typing rule for pickles, which will have the following form:

Γ ⊢ �

Γ ⊢ ψ(v) : Ψ
(FV(v) ⊆ Dom(Γ))

This rule does not have any premise regarding v, except that it has to be closed with respect to
the environment (this side condition is needed for technical ease only, namely to maintain the
calculus’ usual Type Variable Containment lemma, which says that a well-formed term contains
no unbound variables).

If pickles may be malformed, how can we establish soundness? This requires verification when
a pickle is loaded. In our model, verification simply amounts to a well-formedness side condition
in the reduction rules for unpickle:

unpicklex⇐ ψ(v) in e1 else e2 → e1[v/x] if Γ ⊢ v : package

unpicklex⇐ ψ(v) in e1 else e2 → e2 otherwise

Upon deconstruction, it is checked that a pickle actually contains a well-formed representation
of a value of package type package (Section 10.4). As we will explain in Section 12.4.2, the
environment Γ is needed to capture previously generated types, as these may occur within a
pickle. Except for those, Γ is empty, reflecting the requirement that a pickle be a closed value.

Despite the robustness achieved by run-time verification, we want to preclude that malformed
pickles can be created from within the language. A programmer has to invoke pickle e to create
pickles – the form ψ(v) should be considered inaccessible in the surface language. A pickle
expression first evaluates its operand e and then creates a pickle from the result. Unlike the
values in a pickle, the type system requires the operand e to be a well-formed term.

Note that we do not actually model processes: neither does our calculus have concurrency
(which is orthogonal to the issues discussed here), nor does it encompass local state. The only
bit of state existent in our calculus is the heap of generated types, which simply acts as being
global to all computation. This is a simplifying assumption that does not reflect the practical
language, but abstracts from distracting detail that does not seem to add much technical insight
to the problem at hand.

Also for simplicity, our calculus does not model resources either. An account for resources in
the spirit of Alice ML would be relatively straightforward to add: it amounts to extending the
pickle operator to conditional form and adding a side condition to its primary reduction rule that
ensures that no resource names occur in v. Resources themselves could simply be represented
as names drawn from a specific set.

10.9. Summary

• The λω
SAΨ-calculus models the essentials of the Alice ML type system.

• This includes dynamic type matching, type generativity, type sharing, and pickling.

• It is based on the higher-order polymorphic λ-calculus (System Fω).

127

10. A Calculus for Components

• Singletons express type sharing.

• Type analysis expresses dynamic typing.

• Type generativity is an explicit construct.

• Coercions are used to switch between abstract types and their representation.

• Pickling delays well-formedness checks for terms until reduction.

128

11. The Type Language

The λω
SAΨ-calculus incorporates an expressive static type system as well as non-trivial means of

dynamic typing. In this chapter we discuss the language of types and its properties.

We will first give an overview of the type system. Most of it is standard, except for singleton
and abstraction kinds. We will hence concentrate on those, first giving a recap of singletons and
their implications and then discussing design issues surrounding abstraction kinds, which are
closely related to singletons in most ways.

We state a number of relevant properties of the system. In the last section, we give algorithmic
formulations of all judgements of the system, which are correct and decidable. We will need
this result when we turn to the semantics of type case in Chapter 12. We only state the main
theorems and propositions in this chapter. Auxiliary propositions and lemmata and all proofs
can be found in Appendix C.

Most of what we discuss in this chapter is covered in literature, such that we can keep the
discussion brief and concentrate on the most interesting issues. As far as the type language is
concerned, abstraction kinds are the primary innovation over previous work.

11.1. Basic System

The abstract syntax of λω
SAΨ is shown in Figure 11.1. As usual, we identify phrases (terms,

types, and kinds) up to renaming of bound variables. Except where noted otherwise, we also
use the distinct variable convention, whereby all bound variables in a phrase are assumed to be
distinct from each other, and from any occurring free variable.

We write FV(t) for the set of free variables (including term and type variables) in the phrase t,
defined as usual. We use the notation t[t′/z] for the capture-avoiding substitution of the phrase
t′ for the variable z in the phrase t. Moreover, we use γ to range over finite substitutions and
write γ(t) for the capture-free application of such a substitution to a phrase t.

The static semantics of the calculus consists of eight judgements:

(environment validity) Γ ⊢ �
(kind validity) Γ ⊢ κ : �
(kind equivalence) Γ ⊢ κ ≡ κ′ : �
(kind inclusion) Γ ⊢ κ ≤ κ′ : �
(type validity) Γ ⊢ τ : κ
(type equivalence) Γ ⊢ τ ≡ τ ′ : κ
(type inclusion) Γ ⊢ τ ≤ τ ′ : κ
(term validity) Γ ⊢ e : τ

Figures 11.2 to 11.6 show the inference rules defining the these judgements, except for term
validity, which we delay until Chapter 12.

129

11. The Type Language

base kinds κ̂ ::= Ω | A(τ)
kinds κ ::= κ̂ | Sκ̂(τ) | Πα:κ.κ | Σα:κ.κ
types τ ::= α | Ψ | τ → τ | τ × τ | ∀α:κ.τ | ∃α:κ.τ

| λα:κ.τ | ττ | 〈τ, τ〉 | τ ·1 | τ ·2
terms e ::= x | λx:τ.e | e e | 〈e, e〉 | let〈x, x〉 = e in e

| λα:κ.e | e τ | 〈τ, e〉 | let〈α, x〉 = e inτ e
| newα ≈ τ inτ e | {e}

+
τ | {e}−τ | case e:τ of x:τ.e elseτ e

| pickle e | ψ(e) | unpicklex⇐ e in e elseτ e
environments Γ ::= · | Γ, x:τ | Γ, α:κ

Figure 11.1.: Syntax of λω
SAΨ

Environment Validity Γ ⊢ �

(Nempty)
· ⊢ �

(Ntype)
Γ ⊢ κ : �

Γ, α:κ ⊢ �
(α /∈ Dom(Γ)) (Nterm)

Γ ⊢ τ : Ω

Γ, x:τ ⊢ �
(x /∈ Dom(Γ))

Figure 11.2.: λω
SAΨ environment validity

11.1.1. Environments

A typing environment Γ is a finite ordered sequence of variables associated with classifiers.1 It
collects assumptions about the kinds of free type variables, and the types of free term variables.
We usually omit the initial empty environment when writing out such a sequence, and we write
Γ1,Γ2 for appending two environments, with the obvious meaning.

The environment validity judgement Γ ⊢ � (Figure 11.2) defines well-formedness of a typing
environment Γ. It holds when every type and kind appearing in it is well-formed with respect
to the preceding subenvironment, and all variables bound in it are distinct. Because of the
latter property, well-formed environments can be interpreted as partial functions, and we use
functional notation Γ(z) to denote the classifier associated with the (term or type) variable z,
respectively. Dom(Γ) denotes the set of variables bound by Γ.

The type system is set up such that derivability of a judgement implies validity of the envi-
ronment involved:

Proposition 1 (Environment Validity). Every derivation Γ ⊢ J , where J stands for any of
the judgements of the system, contains a subderivation Γ ⊢ �.

11.1.2. Kinds

The kind language consists of ground kind Ω, higher-order kinds formed from standard de-
pendent products and sums, and singleton and abstraction kinds. We distinguish ground and
abstraction kinds as base kinds, because singletons may only be formed over these base kinds.

1We use the term environment instead of the more common context to avoid confusion with evaluation contexts.

130

11.1. Basic System

Kind Validity Γ ⊢ κ : �

(Komega)
Γ ⊢ �

Γ ⊢ Ω : �
(Kabs)

Γ ⊢ τ : Ω

Γ ⊢ A(τ) : �
(Ksing)

Γ ⊢ τ : κ̂

Γ ⊢ Sκ̂(τ) : �

(Kpi)
Γ, α:κ1 ⊢ κ2 : �

Γ ⊢ Πα:κ1.κ2 : �
(Ksigma)

Γ, α:κ1 ⊢ κ2 : �

Γ ⊢ Σα:κ1.κ2 : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQomega)
Γ ⊢ �

Γ ⊢ Ω ≡ Ω : �

(KQabs)
Γ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ A(τ) ≡ A(τ ′) : �
(KQsing)

Γ ⊢ τ ≡ τ ′ : κ̂ Γ ⊢ κ̂ ≡ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≡ Sκ̂′(τ ′) : �

(KQpi)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

Γ ⊢ Πα:κ1.κ2 ≡ Πα:κ′1.κ
′
2 : �

(KQsigma)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

Γ ⊢ Σα:κ1.κ2 ≡ Σα:κ′1.κ
′
2 : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSomega)
Γ ⊢ �

Γ ⊢ Ω ≤ Ω : �

(KSabs)
Γ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ A(τ) ≤ A(τ ′) : �
(KSsing)

Γ ⊢ τ ≡ τ ′ : κ̂ Γ ⊢ κ̂ ≤ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≤ Sκ̂′(τ ′) : �

(KSabs-left)
Γ ⊢ τ : Ω

Γ ⊢ A(τ) ≤ Ω : �
(KSsing-left)

Γ ⊢ τ : κ̂ Γ ⊢ κ̂ ≤ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≤ κ̂′ : �

(KSpi)
Γ ⊢ κ′1 ≤ κ1 : � Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : � Γ ⊢ Πα:κ1.κ2 : �

Γ ⊢ Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2 : �

(KSsigma)
Γ ⊢ κ1 ≤ κ′1 : � Γ, α:κ1 ⊢ κ2 ≤ κ′2 : � Γ ⊢ Σα:κ′1.κ

′
2 : �

Γ ⊢ Σα:κ1.κ2 ≤ Σα:κ′1.κ
′
2 : �

Figure 11.3.: λω
SAΨ kind validity, equivalence and inclusion

131

11. The Type Language

However, higher-order singletons over arbitrary kind are definable (Section 11.2.2). Likewise,
higher-order abstraction kinds can be defined (Section 13.1.2).

Since singleton and abstraction kinds contain types, well-formedness and equivalence of kinds
is not purely syntactic. The kind validity judgement Γ ⊢ κ : � (Figure 11.3) specifies when
a kind κ is well-formed under a given environment Γ. It is mostly standard [SH06], with the
exception of abstraction kinds, which follow exactly the same rules as singletons, however.

The kind equivalence judgement Γ ⊢ κ ≡ κ′ : � (Figure 11.3) defines an equivalence relation
on kinds. It is defined in a straightforward inductive manner, modulo equivalence of constituent
types (rules Ksing and Kabs).

The kind inclusion judgement Γ ⊢ κ ≤ κ′ : � (Figure 11.3) on the other hand defines a
preorder on kinds, regulating when a type of the more specific subkind κ may be used in contexts
requiring kind κ′. Subkinding is induced by singletons, hence we will discuss it in Section 11.2.

Kind equivalence and subkinding imply well-formedness of the involved kinds (therefore the
suggestive pseudo classifier “: �”):

Proposition 2 (Validity of Kind Judgements).

1. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊢ κ : � and Γ ⊢ κ′ : �.

2. If Γ ⊢ κ ≤ κ′ : �, then Γ ⊢ κ : � and Γ ⊢ κ′ : �.

For some rules (namely KSpi and KSsigma) maintaining this property requires explicit
premises.

Other basic structural properties are the following:

Proposition 3 (Reflexivity of Kind Judgements).

1. If Γ ⊢ κ : �, then Γ ⊢ κ ≡ κ : �.

2. If Γ ⊢ κ : �, then Γ ⊢ κ ≤ κ : �.

Proposition 4 (Transitivity of Kind Judgements).

1. If Γ ⊢ κ ≡ κ′ : � and Γ ⊢ κ′ ≡ κ′′ : �, then Γ ⊢ κ ≡ κ′′ : �.

2. If Γ ⊢ κ ≤ κ′ : � and Γ ⊢ κ′ ≤ κ′′ : �, then Γ ⊢ κ ≤ κ′′ : �.

Proposition 5 (Symmetry of Kind Equivalence).
If Γ ⊢ κ ≡ κ′ : �, then Γ ⊢ κ′ ≡ κ : �.

Proposition 6 (Antisymmetry of Kind Inclusion).
If and only if Γ ⊢ κ ≤ κ′ : � and Γ ⊢ κ′ ≤ κ : �, then Γ ⊢ κ ≡ κ′ : �.

Note that transitivity and symmetry have to be proved, as they are not enforced by explicit
rules, as one might expect.

11.1.3. Types

The type language is a mostly standard version of System Fω. Besides the usual Fω types,
λω

SAΨ provides type products 〈τ1, τ2〉 and respective projections, τ ·1 and τ ·2. Moreover, the
ground type constant Ψ is used to classify pickles. Note that the calculus is impredicative,
which is crucial to be able to express dynamics (Section 10.4).

To ease representation, we sometimes use auxiliary syntactic classes of paths and constructors,
which both are subclasses of types. They are defined in Figure 11.7.

132

11.1. Basic System

Type Validity Γ ⊢ τ : κ

(Tvar)
Γ ⊢ �

Γ ⊢ α : Γ(α)
(Tpsi)

Γ ⊢ �

Γ ⊢ Ψ : Ω

(Tarrow)
Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 → τ2 : Ω
(Ttimes)

Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 × τ2 : Ω

(Tuniv)
Γ, α:κ1 ⊢ τ2 : Ω

Γ ⊢ ∀α:κ1.τ2 : Ω
(Texist)

Γ, α:κ1 ⊢ τ2 : Ω

Γ ⊢ ∃α:κ1.τ2 : Ω

(Tlambda)
Γ, α:κ1 ⊢ τ2 : κ2

Γ ⊢ λα:κ1.τ2 : Πα:κ1.κ2
(Tapp)

Γ ⊢ τ1 : Πα:κ1.κ2 Γ ⊢ τ2 : κ1

Γ ⊢ τ1 τ2 : κ2[τ2/α]

(Tpair)
Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2[τ1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ 〈τ1, τ2〉 : Σα:κ1.κ2

(Tfst)
Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ τ ·1 : κ1
(Tsnd)

Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ τ ·2 : κ2[τ ·1/α]

(Text-sing)
Γ ⊢ τ : κ̂

Γ ⊢ τ : Sκ̂(τ)

(Text-pi)
Γ ⊢ τ : Πα:κ1.κ

′
2 Γ, α:κ1 ⊢ τ α : κ2 Γ ⊢ Πα:κ1.κ

′
2 : �

Γ ⊢ τ : Πα:κ1.κ2

(Text-sigma)
Γ ⊢ τ ·1 : κ1 Γ ⊢ τ ·2 : κ2[τ ·1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ τ : Σα:κ1.κ2

(Tsub)
Γ ⊢ τ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ τ : κ′

Figure 11.4.: λω
SAΨ type validity

Well-formedness of types is specified by the type validity judgement Γ ⊢ τ : κ (Figure 11.4),
which classifies type τ with kind κ under environment Γ. Most of the rules are standard, with
the provision that type functions and type products are dependently kinded by Π and Σ-kinds
(rules Tlambda and Tpair). Also, due to the presence of subkinding, there is a subsumption
rule (rule Tsub). Less familiar are the extensional rules Text-sing, Text-pi and Text-sigma,
which allow deriving more precise singleton kinds and will be discussed in Section 11.2.

Type equivalence is defined by a judgement Γ ⊢ τ ≡ τ ′ : κ (Figure 11.4). Due to singletons,
equivalence depends on the environment as well as the kind at which the types are considered
(Section 11.2). Most are straightforward syntax-directed rules, plus the standard symmetry and
transitivity rule (reflexivity can be derived, see below), and a subsumption rule (rule TQsub).
Again there are extensional rules (TQext-sing, TQext-pi and TQext-sigma), which are the
core of the singleton mechanism, in that they allow deriving additional type equivalences from
singleton kinds. They will be explained in Section 11.2.

Note that the type equivalence rules do not include any βη-equivalences on higher-order types

133

11. The Type Language

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQvar)
Γ ⊢ �

Γ ⊢ α ≡ α : Γ(α)
(TQpsi)

Γ ⊢ �

Γ ⊢ Ψ ≡ Ψ : Ω

(TQarrow)
Γ ⊢ τ1 ≡ τ ′1 : Ω Γ ⊢ τ2 ≡ τ ′2 : Ω

Γ ⊢ τ1 → τ2 ≡ τ ′1 → τ ′2 : Ω

(TQtimes)
Γ ⊢ τ1 ≡ τ ′1 : Ω Γ ⊢ τ2 ≡ τ ′2 : Ω

Γ ⊢ τ1 × τ2 ≡ τ ′1 × τ ′2 : Ω

(TQuniv)
Γ ⊢ κ ≡ κ′ : � Γ, α:κ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ ∀α:κ.τ ≡ ∀α:κ′.τ ′ : Ω

(TQexist)
Γ ⊢ κ ≡ κ′ : � Γ, α:κ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ ∃α:κ.τ ≡ ∃α:κ′.τ ′ : Ω

(TQlambda)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ τ ≡ τ ′ : κ2

Γ ⊢ λα:κ1.τ ≡ λα:κ′1.τ
′ : Πα:κ1.κ2

(TQapp)
Γ ⊢ τ1 ≡ τ ′1 : Πα:κ1.κ2 Γ ⊢ τ2 ≡ τ ′2 : κ1

Γ ⊢ τ1 τ2 ≡ τ ′1 τ
′
2 : κ2[τ2/α]

(TQpair)
Γ ⊢ τ1 ≡ τ ′1 : κ1 Γ ⊢ τ2 ≡ τ ′2 : κ2[τ1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ 〈τ1, τ2〉 ≡ 〈τ ′1, τ
′
2〉 : Σα:κ1.κ2

(TQfst)
Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

Γ ⊢ τ ·1 ≡ τ ′·1 : κ1
(TQsnd)

Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α]

(TQext-sing)
Γ ⊢ τ : Sκ̂(τ

′′) Γ ⊢ τ ′ : Sκ̂(τ
′′)

Γ ⊢ τ ≡ τ ′ : Sκ̂(τ
′′)

(TQext-pi)
Γ, α:κ1 ⊢ τ α ≡ τ ′ α : κ2 Γ ⊢ τ : Πα:κ1.κ

′
2 Γ ⊢ τ ′ : Πα:κ1.κ

′′
2

Γ ⊢ τ ≡ τ ′ : Πα:κ1.κ2

(TQext-sigma)
Γ ⊢ τ ·1 ≡ τ ′·1 : κ1 Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

(TQsymm)
Γ ⊢ τ ≡ τ ′ : κ

Γ ⊢ τ ′ ≡ τ : κ
(TQtrans)

Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ τ ′ ≡ τ ′′ : κ

Γ ⊢ τ ≡ τ ′′ : κ

(TQsub)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ τ ≡ τ ′ : κ′

Figure 11.5.: λω
SAΨ type equivalence

134

11.1. Basic System

Type Inclusion Γ ⊢ τ ≤ τ ′ : κ

(TSequiv)
Γ ⊢ τ ≡ τ ′ : κ

Γ ⊢ τ ≤ τ ′ : κ

(TSarrow)
Γ ⊢ τ ′1 ≤ τ1 : Ω Γ ⊢ τ2 ≤ τ ′2 : Ω

Γ ⊢ τ1 → τ2 ≤ τ ′1 → τ ′2 : Ω

(TStimes)
Γ ⊢ τ1 ≤ τ ′1 : Ω Γ ⊢ τ2 ≤ τ ′2 : Ω

Γ ⊢ τ1 × τ2 ≤ τ ′1 × τ ′2 : Ω

(TSuniv)
Γ ⊢ κ′ ≤ κ : � Γ, α:κ′ ⊢ τ ≤ τ ′ : Ω Γ ⊢ ∀α:κ.τ : Ω

Γ ⊢ ∀α:κ.τ ≤ ∀α:κ′.τ ′ : Ω

(TSexist)
Γ ⊢ κ ≤ κ′ : � Γ, α:κ ⊢ τ ≤ τ ′ : Ω Γ ⊢ ∃α:κ′.τ ′ : Ω

Γ ⊢ ∃α:κ.τ ≤ ∃α:κ′.τ ′ : Ω

(TStrans)
Γ ⊢ τ ≤ τ ′ : κ Γ ⊢ τ ′ ≤ τ ′′ : κ

Γ ⊢ τ ≤ τ ′′ : κ

Figure 11.6.: λω
SAΨ type inclusion

paths π ::= α | π τ | π·1 | π·2 | Ψ | τ → τ | τ × τ | ∀α:κ.τ | ∃α:κ.τ
constructors χ ::= α | Ψ | λα:κ.τ | χτ | 〈τ, τ〉 | χ·1 | χ·2

Figure 11.7.: Paths and constructors

– they can be derived in the presence of singleton kinds [SH06] (Section 11.2.3).
The type inclusion judgement Γ ⊢ τ ≤ τ ′ : κ (Figure 11.6) defines the subtyping relation.

Subtyping is induced solely by subkinding on the kind annotations of quantified type variables
(rules TSuniv and TSexist). The remaining rules are largely standard again. At higher kinds,
subtyping coincides with equivalence (via rule TSequiv). We leave out higher-order subtyping,
because (1) it is not required to express ML modules: in terms of modules it would correspond
to subtyping on parameterised signatures – but those do not even exist in ML, and (2) to the
best of our knowledge, there is no known algorithm for higher-order subtyping in the presence
of singleton kinds.

Like with kinds, type equivalence and subtyping judgements imply well-formedness of the
involved types. Similarly, the kind derived is always valid under the given environment:

Proposition 7 (Validity of Type Judgements).

1. If Γ ⊢ τ : κ, then Γ ⊢ κ : �.

2. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ and Γ ⊢ κ : �.

3. If Γ ⊢ τ ≤ τ ′ : κ, then Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ and Γ ⊢ κ : �.

Again, some rules have explicit premises to maintain these properties (rules TQpair,
TQext-pi, TQext-sigma, TSuniv, TSexist).

135

11. The Type Language

We have similar structural properties as for kinds:

Proposition 8 (Reflexivity of Type Judgements).

1. If Γ ⊢ τ : κ, then Γ ⊢ τ ≡ τ : κ.

2. If Γ ⊢ τ : κ, then Γ ⊢ τ ≤ τ : κ.

Proposition 9 (Antisymmetry of Type Inclusion).
If and only if Γ ⊢ τ ≤ τ ′ : κ and Γ ⊢ τ ′ ≤ τ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

Proving the latter property has to be done by inversion on the subtyping algorithm presented
in Section 11.4.4 and depends on its completeness.

Transitivity and symmetry hold trivially, because they are stated by explicit rules (rules
TQtrans, TStrans, and TQsymm).

11.1.4. Terms

The term level consists of the usual Fω terms, plus the extensions for type analysis, type gen-
eration, coercions, and pickling that we introduced in the previous chapter. The term language
will be described in Chapter 12, along with the last judgement of the type system, term validity
Γ ⊢ e : τ , which specifies well-formedness of terms e (Section 12.1).

11.2. Singletons

Singleton kinds are the most intricate feature of the λω
SAΨ type system. Since they are also less

standard than the rest of the basic system, and because our notion of abstraction kinds was
inspired by them, we will give a brief presentation of their semantics.

Singleton kinds have substantial ramifications on the type system and its meta theory, e.g.
by inducing dependent kinds and subkinding, and making type equivalence dependent on both
the environment and the classifying kind. Finding an algorithmic formulation and proving it
decidable becomes non-trivial. Fortunately, Stone & Harper have already done all the hard work
of sorting out these issues [SH06]. To harvest their hard work, we have set up our system as close
as possible to theirs. Our language is almost identical to theirs, with mostly straightforward
extensions relative to their term language that can mostly be treated as sugar for constants of
base types. We also adopt the well-formedness and equivalence rules of their system with only
cosmetic modifications. This allows us to re-use their results almost directly.

In the following, we illustrate the main ideas of their system, recast in our calculus. For
discussion of the finer points we encourage the reader to refer to their article, and Stone’s
thesis [Sto00].

11.2.1. Ground Singletons

Singletons come with three central rules:

(Text-sing)
Γ ⊢ τ : κ̂

Γ ⊢ τ : Sκ̂(τ)
(KSsing-left)

Γ ⊢ τ : κ̂

Γ ⊢ Sκ̂(τ) ≤ κ̂ : �

(TQext-sing)
Γ ⊢ τ : Sκ̂(τ

′′) Γ ⊢ τ ′ : Sκ̂(τ
′′)

Γ ⊢ τ ≡ τ ′ : Sκ̂(τ
′′)

The first rule is the introduction rule for singletons: it allows the kind of any base type to
be strengthened to singleton kind. Application of this rule is a step also known as selfifica-
tion [HL94]. Intuitively – and referring back to the ML context – it is motivated by the obvious
desire to make programs like the following type check:

136

11.2. Singletons

structure M :> (sig type t end) = (struct type t = int end)
functor F (X : sig type t = M.t end) = ...
structure N = F M

A possible λω
SAΨ translation is:

let〈tM , 〉 = 〈int , ⋄〉∃t:Ω.1 in
letF = λX : SΩ(tM). · · · in
F tM

Here, the type tM has the natural kind Ω, but should of course match the kind SΩ(tM) required by
the functor parameter signature – otherwise the functor application would be ill-typed. Thanks
to selfification, the kind of tM can be strengthened accordingly.

Conversely, the second of the above rules, KSsing-left, enables forgetting a singleton kind
via subsumption. It corresponds to the basic subtyping rule of the ML signature language: a
signature with an abstract type specification “type t” can always be matched by a signature “type

t = τ” with a concrete specification. For example, the following program should be valid:

functor F (X : sig type t end) = ...
structure M :> (sig type t = int end) = (struct type t = int end)
structure N = F M

A λω
SAΨ interpretation is:

letF = λtX :Ω. · · · in
let〈tM , 〉 = 〈int , ⋄〉∃t:SΩ(int).1 in
F tM

The subtyping rule allows the kind SΩ(int) of tM to be weakened to Ω, such that the functor
application is well-typed.

The most important rule is the third, TQext-sing: given two arbitrary types with the same
singleton kind, they can be derived to be equivalent.2 Thanks to this rule, terms corresponding
to code like the following become well-typed:

structure M :> (sig type t = int; val f : t → int end) = ...
fun g (n : int) = M.f n

Consider a λω
SAΨ encoding:

let〈tM , fM 〉 = 〈· · ·〉∃t:SΩ(int). t→int in
λn:int .fM n

In this example, the function fM requires an argument of type tM , which is different from the
type int assigned to n. However, since both types have kind SΩ(int) (the latter by selfification),
they are equivalent according to the above rule and n can also be assigned the former type by
the usual subsumption rule for equivalent types.

Note how the rule TQext-sing makes type equivalence dependent on the kind: without the
singleton kind information we would generally be unable to derive the equivalence. Stone &
Harper give the following example of two types that actually exhibit different behaviour with
respect to equivalence, dependent on the observing kind:

2Stone & Harper use an asymmetric equivalence rule of the form
Γ ⊢ τ : S(τ ′)

Γ ⊢ τ ≡ τ
′ : S(τ ′)

instead. The symmetric

formulation is slightly more convenient for our purposes.

137

11. The Type Language

S(τ : Ω) := SΩ(τ)
S(τ : A(τ ′)) := SA(τ ′)(τ)

S(τ : Sκ̂(τ
′)) := Sκ̂(τ

′)
S(τ : Πα:κ1.κ2) := Πα:κ1.S(τ α : κ2)
S(τ : Σα:κ1.κ2) := S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

Figure 11.8.: Higher-order singletons

τ1 = λα:Ω.α
τ2 = λα:Ω.int

Both these types can be assigned kind Πα:Ω.Ω, under which they clearly differ. However, by
subsumption both also can be given the contravariant superkind Πα:SΩ(int).Ω, under which
they are equivalent, because the only valid argument is type int , for which they both deliver the
same result!

11.2.2. Higher-Order Singletons

Singleton kinds are only defined on types of base kind. What about higher-order types? For
example, how can the following ML signature be expressed?

sig type α pair = α × α end

The specification for type pair would correspond to a singleton S(λα:Ω.α×α). The kind of the
contained type function is Ω → Ω, however (i.e. Πα:Ω.Ω). Thus we need singletons at higher-
order kind to express it.

Fortunately, it is not necessary to introduce higher-order singletons as primitive – they can be
defined inductively as syntactic sugar. Figure 11.8 gives a respective definition following Stone
& Harper [SH06]. The only exception are abstraction kinds, which require primitive support
(Section 11.3.1).

Higher-order singletons are defined such that generalised versions of the singleton rules pre-
sented previously can be shown as propositions. These rules are given in Figure 11.9. Here and
elsewhere, we will use the convention to name derived rules by appending an asterisk *.

Theorem 10 (Admissibility of Higher-Order Singleton Rules).
The rules Ksing*, Text-sing, KQsing*, KSsing*, KSsing-left* and TQext-sing* are deriv-
able.

Establishing the admissibility proofs crucially relies on extensional validity and equiva-
lence rules for higher-order kinds that we have not discussed yet. Namely, the kinding rules
Text-pi and Text-sigma (Figure 11.4) allow singleton kind selfification to be pushed through
η-expansions. For example, given Γ = α:(Σα1:Ω.Ω), rule Text-sigma enables deriving the most
precise kind Γ ⊢ α : SΩ(α·1)× SΩ(α·2). Analogously, with the extensional rule Text-pi, we can
derive β:(Πα1:Ω.Ω) ⊢ β : Πα1:Ω.SΩ(t α1), which indicates the kind of a type function that always
deliver the same result as β – hence this is exactly the definition of a higher-order singleton at
Π-kind, i.e. we have derived Γ ⊢ β : S(β : Ω → Ω).

Similar extensionality rules are necessary for the type equivalence relation (Figure 11.5): rule
TQext-pi says that two type functions can be considered equivalent (under a given kind) when
they deliver the same result for every argument (of the given argument kind). Likewise, rule
TQext-sigma says that pairs are equivalent whenever both their projections are.

138

11.2. Singletons

Kind Validity Γ ⊢ κ : �

(Ksing*)
Γ ⊢ τ : κ

Γ ⊢ S(τ : κ) : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQsing*)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≡ κ′ : �

Γ ⊢ S(τ : κ) ≡ S(τ ′ : κ′) : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSsing*)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ S(τ : κ) ≤ S(τ ′ : κ′) : �
(KSsing-left*)

Γ ⊢ τ : κ

Γ ⊢ S(τ : κ) ≤ κ : �

Type Validity Γ ⊢ τ : κ

(Text-sing*)
Γ ⊢ τ : κ

Γ ⊢ τ : S(τ : κ)

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQext-sing*)
Γ ⊢ τ : S(τ ′′ : κ) Γ ⊢ τ ′ : S(τ ′′ : κ)

Γ ⊢ τ ≡ τ ′ : S(τ ′′ : κ)

Figure 11.9.: Derived rules for higher-order singletons

11.2.3. βη-Equivalences

An interesting side-effect of extensionality is that all βη-rules for higher-order types (Fig-
ure 11.10) become derivable as well:

Theorem 11. The equivalence rules TQapp-beta*, TQlambda-eta*, TQfst-beta*, TQsnd-beta*

and TQpair-eta* are derivable.

For example, for typing τ = (λα:Ω.τ1) τ2, we can use extensionality (rule Text-pi) and selfifi-
cation (rule Text-sing) to derive Πα:Ω.SΩ(τ1) as the kind of the λ-expression. The application
rule (Tapp) then yields SΩ(τ1)[τ2/α] as the kind of τ . By rule TQext-sing we can finally derive
that τ ≡ τ1[τ2/α].

139

11. The Type Language

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQapp-beta*)
Γ, α:κ1 ⊢ τ2 : κ2 Γ ⊢ τ1 : κ1

Γ ⊢ (λα:κ1.τ2) τ1 ≡ τ2[τ1/α] : κ2[τ1/α]

(TQlambda-eta*)
Γ ⊢ τ2 : Πα:κ1.κ2

Γ ⊢ λα:κ1.τ2 α ≡ τ2 : Πα:κ1.κ2

(TQfst-beta*)
Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉·1 ≡ τ1 : κ1
(TQsnd-beta*)

Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉·2 ≡ τ2 : κ2

(TQpair-eta*)
Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ : Σα:κ1.κ2

Figure 11.10.: Derived rules for βη-equivalences

11.3. Abstraction Kinds

Using new, we can generate new types that are “isomorphic” to given representation types.
But what precisely do we mean by “isomorphic” to their representation? The simplest answer
would be: they are equivalent. In other words, given newα ≈ τ in e, we could assign α the
singleton kind SΩ(τ). However, in that case, new would be nothing more than a type-let, and
α indistinguishable from τ , statically and dynamically. But we want to distinguish them – at
least dynamically.

We do so by introducing a new form of kind, which we call abstraction kind, written A(τ) and
employ the typing rule

(Enew)
Γ, α:A(τ) ⊢ e : τ2 Γ ⊢ τ2 : Ω

Γ ⊢ newα ≈ τ in e : τ2

Similar to a singleton kind Sκ̂(τ), an abstraction kind A(τ) expresses that all types that inhabit
it are isomorphic to τ . But while singleton types allow the isomorphism to be utilised implicitly
by the type system, its usage has to be made explicit in the case of abstraction kinds. That
is, given τ : A(τ ′), the type τ is not equivalent to τ ′, but values of either type can always be
coerced into the other (Section 12.5).

An abstraction kind A(τ) is a subkind of Ω, thereby enabling type names generated by new
to be used not only for coercions, but at the same time denote the generated abstract type. For
instance, given

newα ≈ int in . . . λx:α.x . . .

α has kind A(int). By subsumption however we can also assign α : Ω, which is required to make
its use as argument type for the λ-expression well-formed.

11.3.1. Singletons over Abstraction Kinds

Since we extend the Stone/Harper system with abstraction kinds, we have to make sure that the
higher-order singleton rules hold for our definition of singletons at abstraction kind. Because
abstraction types are opaque there is no extensionality principle that can be employed. Neither

140

11.4. Algorithmic Formulations

Ω

SΩ(τ) A(τ ′)

SA(τ ′)(τ)

Figure 11.11.: Lattice of base kinds

is it sufficient to rely on the subkinding A(τ) ≤ Ω and define

S(τ : A(τ ′)) := SΩ(τ)

With this definition, it would be impossible to prove rule KSsing-left* correct, because it would
not hold for the case κ = A(τ ′). Consequently, we have to make singletons over abstraction kind
primitive, using labelled singleton notation Sκ̂(τ), where κ̂ ranges over base kinds Ω and A(τ).

Moreover, in order for KSsing* to hold, and to maintain principal kinds, we need to lift
subkinding A(τ) ≤ Ω to singletons, i.e. establish SA(τ)(τ

′) ≤ SΩ(τ ′) for all suitable τ, τ ′ (rule
KSsing). Figure 11.11 gives an overview of the subkinding relations between the different base
kinds.

11.4. Algorithmic Formulations

The specification of the type system presented in the previous sections is declarative. It does not
give a ready description of algorithms for checking well-formedness, equivalence and inclusion of
types or kinds. However, we need a syntax-directed algorithmic formulation for several purposes:

• to establish a shape invariance property on type equivalence and subtyping, which is needed
for parts of the soundness proof in Chapter 12;

• to prove decidability of the subtyping judgement, without which the operational semantics
of type case would not be well-defined;

• to give a constructive formulation for actually implementing the type system.

11.4.1. Type and Kind Equivalence

The main complication in giving algorithmic formulations of our type system is the type equiva-
lence judgement, on which all other judgements depend. We would like to employ the standard
normalise-and-compare approach, but a normalisation strategy for types is not directly obvious,
due to singleton kinds, which may introduce additional equivalences based on kind information,
and hence yield additional reduction possibilities dependent on kinds. Fortunately, Stone &
Harper [SH06] have already given a suitable normalization algorithm, and it is not difficult to
extend it to our system.

Figure 11.13 shows the recast algorithm. To distinguish from the declarative formulations, we
use the notation Γ ⊲ J instead of Γ ⊢ J for all algorithmic judgements.

The algorithmic type equivalence judgement, type comparison Γ ⊲ τ ≡ τ ′ ⇇ κ, takes, as an
additional input, the required kind κ. It uses the usual normalize-and-compare strategy to check
equivalence. However, the type normalization algorithm is more intricate than usual. It is a
kind-driven algorithm: for ground types, it first computes the weak-head normal form of the

141

11. The Type Language

paths π̂ ::= α | π τ | π·1 | π·2 | Ψ | τ → τ | τ × τ | ∀α:κ.τ | ∃α:κ.τ
path contexts P ::= | P τ | P ·1 | P ·2

Figure 11.12.: Paths

type, also called a path (Figure 11.12). It then proceeds normalising remaining constituent types
by path normalization. For higher-order types, i.e. a function or pair, the judgement looks at
the η-expansions. To η-expand a lambda into a normal form it also has to normalize its kind
annotation, because it may contain types.

Weak-head normalization is performed by the judgement Γ⊲τ ⇛ π. It implements a straight-
forward algorithm performing small step β-reductions. Since the types were first η-expanded,
and are hence in long-η-normal form, no η-reduction is needed. The only interesting bit is
that the reduction also performs singleton reduction, whenever a path’s natural kind is single-
ton, as discovered by another auxiliary judgement. Thus normalization is dependent on the
environment.

Algorithmic kind equivalence is checked by the kind comparison judgement, Γ ⊲ κ ≡ κ′ (Fig-
ure 11.14). It is based on kind normalization, which implements a straightforward syntax-
directed algorithm for normalizing all constituent types.

While soundness of the algorithm is easy to show, given a handful of suitable lemmata,
completeness is more involved. Stone & Harper show completeness using ternary Kripke-style
logical relations [MM91] over set-valued domains that collect all equivalent phrases. We do not
have to repeat the complete proofs, but can harvest the fact that our kind language is very similar
to their type language. It is only extended with abstraction types (which act like singletons with
respect to kind equivalence and like base kinds otherwise) and with a simple labelled variant
of singletons (which does not produce much complication). Our type normalization algorithm
differs from the paper in a minor detail, namely that for ground types, path normalization may
return an arbitrary kind. The reason is that there is no unique base kind in our system, but
Ω has non-singleton subkind A(τ) that may be recorded in the environment. This change does
not affect the proofs, however.

Our type language is significantly richer than Stone & Harper’s term language, but can be
easily encoded by treating the different ground types as (families of) higher-order constants in
standard ways.

Theorem 12 (Soundness of Algorithmic Kind and Type Comparison).

1. If Γ ⊲ τ ⇛ π and Γ ⊢ τ : κ, then Γ ⊢ τ ≡ π : κ.

2. If Γ ⊲ π ⇛⇛ π′ ⇉ κ′ and Γ ⊢ π : κ, then Γ ⊢ π ≡ π′ : κ.

3. If Γ ⊲ τ ⇛⇛ τ ′ ⇇ κ and Γ ⊢ τ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

4. If Γ ⊲ τ ≡ τ ′ ⇇ κ and Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

5. If Γ ⊲ κ⇛⇛ κ′ and Γ ⊢ κ : �, then Γ ⊢ κ ≡ κ′ : �.

6. If Γ ⊲ κ ≡ κ′ and Γ ⊢ κ : � and Γ ⊢ κ′ : �, then Γ ⊢ κ ≡ κ′ : �.

Theorem 13 (Completeness of Algorithmic Kind and Type Comparison).

1. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊲ τ ⇛⇛ τ ′′ ⇇ κ and Γ ⊲ τ ′ ⇛⇛ τ ′′ ⇇ κ for some τ ′′.

2. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊲ τ ≡ τ ′ ⇇ κ.

142

11.4. Algorithmic Formulations

Type Comparison

Γ ⊲ τ ≡ τ ′ ⇇ κ if Γ ⊲ τ ⇛⇛ τ ′′ ⇇ κ and Γ ⊲ τ ′ ⇛⇛ τ ′′ ⇇ κ

Type Normalization

Γ ⊲ τ ⇛⇛ π′ ⇇ κ̂ if Γ ⊲ τ ⇛ π and Γ ⊲ π ⇛⇛ π′ ⇉ κ̂′

Γ ⊲ τ ⇛⇛ π′ ⇇ Sκ̂(τ) if Γ ⊲ τ ⇛ π and Γ ⊲ π ⇛⇛ π′ ⇉ κ̂′

Γ ⊲ τ ⇛⇛ λα:κ′1.τ
′ ⇇ Πα:κ1.κ2 if Γ ⊲ κ1 ⇛⇛ κ′1 and Γ, α:κ1 ⊲ τ α⇛⇛ τ ′ ⇇ κ2

Γ ⊲ τ ⇛⇛ 〈τ1, τ2〉⇇ Σα:κ1.κ2 if Γ ⊲ τ ·1⇛⇛ τ1 ⇇ κ1 and Γ ⊲ τ ·2⇛⇛ τ2 ⇇ κ2[τ ·1/α]

Path Normalization

Γ ⊲ α⇛⇛ α⇉ Γ(α)
Γ ⊲Ψ⇛⇛ Ψ⇉ Ω
Γ ⊲ τ1 → τ2 ⇛⇛ π1 → π2 ⇉ Ω if Γ ⊲ τ1 ⇛⇛ π1 ⇇ Ω and Γ ⊲ τ2 ⇛⇛ π2 ⇇ Ω
Γ ⊲ τ1 × τ2 ⇛⇛ π1 × π2 ⇉ Ω if Γ ⊲ τ1 ⇛⇛ π1 ⇇ Ω and Γ ⊲ τ2 ⇛⇛ π2 ⇇ Ω
Γ ⊲ ∀α:κ1.τ2 ⇛⇛ ∀α:κ′1.π2 ⇉ Ω if Γ ⊲ κ1 ⇛⇛ κ′1 and Γ, α:κ1 ⊲ τ2 ⇛⇛ π2 ⇇ Ω
Γ ⊲ ∃α:κ1.τ2 ⇛⇛ ∃α:κ′1.π2 ⇉ Ω if Γ ⊲ κ1 ⇛⇛ κ′1 and Γ, α:κ1 ⊲ τ2 ⇛⇛ π2 ⇇ Ω
Γ ⊲ π τ ⇛⇛ π′ τ ′ ⇉ κ2[τ/α] if Γ ⊲ π ⇛⇛ π′ ⇉ Πα:κ1.κ2 and Γ ⊲ τ ⇛⇛ τ ′ ⇇ κ1

Γ ⊲ π·1⇛⇛ π′·1⇉ κ1 if Γ ⊲ π → π′ ⇉ Σα:κ1.κ2

Γ ⊲ π·2⇛⇛ π′·2⇉ κ2[π·1/α] if Γ ⊲ π → π′ ⇉ Σα:κ1.κ2

Head Normalization

Γ ⊲ τ ⇛ π if Γ ⊲ τ ⇛1 τ
′ and Γ ⊲ τ ′ ⇛ π

Γ ⊲ τ ⇛ τ

Head Reduction

Γ ⊲ P [(λα:κ.τ1) τ2]⇛1 P [τ1[τ2/α]]
Γ ⊲ P [〈τ1, τ2〉·1]⇛1 P [τ1]
Γ ⊲ P [〈τ1, τ2〉·2]⇛1 P [τ2]
Γ ⊲ P [π]⇛1 P [τ] if Γ ⊲ π : Sκ̂(τ)

Natural Kinds

Γ ⊲ α : Γ(α)
Γ ⊲Ψ : Ω
Γ ⊲ τ1 → τ2 : Ω
Γ ⊲ τ1 × τ2 : Ω
Γ ⊲ ∀α:κ1.τ2 : Ω
Γ ⊲ ∃α:κ1.τ2 : Ω
Γ ⊲ π τ : κ2[τ/α] if Γ ⊲ π : Πα:κ1.κ2

Γ ⊲ π·1 : κ1 if Γ ⊲ π : Σα:κ1.κ2

Γ ⊲ π·2 : κ2[π·1/α] if Γ ⊲ π : Σα:κ1.κ2

Figure 11.13.: Algorithmic type comparison

143

11. The Type Language

Kind Comparison

Γ ⊲ κ ≡ κ′ if Γ ⊲ κ⇛⇛ κ′′ and Γ ⊲ κ′ ⇛⇛ κ′′

Kind Normalization

Γ ⊲ Ω⇛⇛ Ω
Γ ⊲ A(τ)⇛⇛ A(τ ′) if Γ ⊲ τ ⇛⇛ τ ′ ⇇ Ω
Γ ⊲ Sκ̂(τ)⇛⇛ Sκ̂(τ

′) if Γ ⊲ τ ⇛⇛ τ ′ ⇇ κ̂
Γ ⊲ Πα:κ1.κ2 ⇛⇛ Πα:κ′1.κ

′
2 if Γ ⊲ κ1 ⇛⇛ κ′1 and Γ, α:κ1 ⊲ κ2 ⇛⇛ κ′2

Γ ⊲ Σα:κ1.κ2 ⇛⇛ Σα:κ′1.κ
′
2 if Γ ⊲ κ1 ⇛⇛ κ′1 and Γ, α:κ1 ⊲ κ2 ⇛⇛ κ′2

Figure 11.14.: Algorithmic kind comparison

Kind Matching

Γ ⊲ Ω ≤ Ω
Γ ⊲ A(τ) ≤ Ω
Γ ⊲ A(τ) ≤ A(τ ′) if Γ ⊲ τ ≡ τ ′ ⇇ Ω
Γ ⊲ Sκ̂(τ) ≤ κ̂′ if Γ ⊲ κ̂ ≤ κ̂′

Γ ⊲ Sκ̂(τ) ≤ Sκ̂′(τ ′) if Γ ⊲ τ ≡ τ ′ ⇇ κ̂ and Γ ⊲ κ̂ ≤ κ̂′

Γ ⊲ Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2 if Γ ⊲ κ′1 ≤ κ′1 and Γ, α:κ′1 ⊲ κ2 ≤ κ′2

Γ ⊲ Σα:κ1.κ2 ≤ Σα:κ′1.κ
′
2 if Γ ⊲ κ1 ≤ κ′1 and Γ, α:κ1 ⊲ κ2 ≤ κ′2

Figure 11.15.: Algorithmic kind matching

3. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊲ κ⇛⇛ κ′′ and Γ ⊲ κ′ ⇛⇛ κ′′ for some κ′′.

4. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊲ κ ≡ κ′.

From soundness and completeness of the algorithmic equivalence judgements it follows imme-
diately that the equivalence relations on kinds and types are decidable:

Corollary 14 (Decidability of Equivalence).

1. Given Γ ⊢ κ : � and Γ ⊢ κ′ : �, it is decidable whether Γ ⊢ κ ≡ κ : � holds.

2. Given Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, it is decidable whether Γ ⊢ τ ≡ τ ′ : κ holds.

11.4.2. Subkinding

Given an algorithm for type equivalence, it is easy to define an algorithm to check subkinding.
It is shown in Figure 11.15: kind checking, Γ ⊲ κ : �, verifies that kind κ is well-formed under
environment Γ, using straightforward structural recursion. The cases directly mirror the declar-
ative rules. To check singletons and abstraction kinds, the algorithmic type equivalence check
is employed on the constituent types.

Theorem 15 (Soundness of Algorithmic Kind Matching).
If Γ ⊲ κ ≤ κ′ and Γ ⊢ κ : � and Γ ⊢ κ′ : �, then Γ ⊢ κ ≤ κ′ : �.

144

11.4. Algorithmic Formulations

Kind Checking

Γ ⊲Ω : �
Γ ⊲A(τ) : � if Γ ⊲ τ ⇇ Ω
Γ ⊲ Sκ̂(τ) : � if Γ ⊲ κ̂ : � and Γ ⊲ τ ⇇ κ̂
Γ ⊲Πα:κ1.κ2 : � if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ κ2 : �
Γ ⊲Σα:κ1.κ2 : � if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ κ2 : �

Kind Synthesis

Γ ⊲ α⇉ S(α : Γ(α)) if α ∈ Dom(Γ)
Γ ⊲Ψ⇉ SΩ(Ψ)
Γ ⊲ τ1 → τ2 ⇉ SΩ(τ1 → τ2) if Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ2 ⇇ Ω
Γ ⊲ τ1 × τ2 ⇉ SΩ(τ1 × τ2) if Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ2 ⇇ Ω
Γ ⊲ ∀α:κ1.τ2 ⇉ SΩ(∀α:κ1.τ2) if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ τ2 ⇇ Ω
Γ ⊲ ∃α:κ1.τ2 ⇉ SΩ(∃α:κ1.τ2) if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ τ2 ⇇ Ω
Γ ⊲ λα:κ1.τ2 ⇉ Πα:κ1.κ2 if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ τ2 ⇉ κ2

Γ ⊲ τ1 τ2 ⇉ κ2[τ2/α] if Γ ⊲ τ1 ⇉ Πα:κ1.κ2 and Γ ⊲ τ2 ⇇ κ1

Γ ⊲ 〈τ1, τ2〉⇉ κ1 × κ2 if Γ ⊲ τ1 ⇉ κ1 and Γ ⊲ τ2 ⇉ κ2

Γ ⊲ τ ·1⇉ κ1 if Γ ⊲ τ ⇉ Σα:κ1.κ2

Γ ⊲ τ ·2⇉ κ2[τ ·1/α] if Γ ⊲ τ ⇉ Σα:κ1.κ2

Kind Analysis

Γ ⊲ τ ⇇ κ if Γ ⊲ τ ⇉ κ′ and Γ ⊲ κ′ ≤ κ

Figure 11.16.: Algorithmic kind synthesis

Theorem 16 (Completeness of Algorithmic Kind Matching).
If Γ ⊢ κ ≤ κ′ : �, then Γ ⊲ κ ≤ κ′.

Again, decidability follows immediately:

Corollary 17 (Decidability of Kind Inclusion).
Given Γ ⊢ κ : � and Γ ⊢ κ′ : �, it is decidable whether Γ ⊢ κ ≤ κ′ : � holds.

11.4.3. Kind Synthesis

We now give an algorithm for checking well-formedness of types and synthesising suitable kinds.
Figure 11.16 shows the respective algorithm, including two auxiliary ones. Kind checking, Γ⊲κ :
�, verifies that kind κ is well-formed under environment Γ, using straightforward structural
recursion. Kind synthesis, Γ ⊲ τ ⇉ κ computes the principal kind κ for a given τ . It also uses
straightforward structural recursion, returning singleton kinds for ground types. The auxiliary
type analysis judgement Γ ⊲ τ ⇇ κ checks whether a type has a given input kind κ by first
inferring the principal kind and then testing whether they are in subkinding relation.

Theorem 18 (Soundness of Algorithmic Kind Synthesis).

1. If Γ ⊲ κ : � and Γ ⊢ �, then Γ ⊢ κ : �.

2. If Γ ⊲ τ ⇉ κ and Γ ⊢ �, then Γ ⊢ τ : κ.

145

11. The Type Language

Type Matching

Γ ⊲ τ ≤ τ ′ ⇇ Ω if Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′and Γ ⊲ π ⊑ π′

Γ ⊲ τ ≤ τ ′ ⇇ κ if κ 6= Ω and Γ ⊲ τ ≡ τ ′ ⇇ κ

Path Matching

Γ ⊲ χ ⊑ χ′ if Γ ⊲ χ ≡ χ′ ⇇ Ω
Γ ⊲ τ1 → τ2 ⊑ τ ′1 → τ ′2 if Γ ⊲ τ ′1 ≤ τ1 ⇇ Ω and Γ ⊲ τ2 ≤ τ ′2 ⇇ Ω
Γ ⊲ τ1 × τ2 ⊑ τ ′1 × τ ′2 if Γ ⊲ τ ′1 ≤ τ1 ⇇ Ω and Γ ⊲ τ2 ≤ τ ′2 ⇇ Ω
Γ ⊲ ∀α:κ.τ ⊑ ∀α:κ′.τ ′ if Γ ⊲ κ′ ≤ κ and Γ, α:κ′ ⊲ τ ≤ τ ′ ⇇ Ω
Γ ⊲ ∃α:κ.τ ⊑ ∃α:κ′.τ ′ if Γ ⊲ κ ≤ κ′ and Γ, α:κ ⊲ τ ≤ τ ′ ⇇ Ω

Figure 11.17.: Algorithmic type matching

3. If Γ ⊲ τ ⇇ κ and Γ ⊢ κ : �, then Γ ⊢ τ : κ.

Theorem 19 (Completeness of Algorithmic Kind Synthesis).

1. If Γ ⊢ κ : �, then Γ ⊲ κ : �.

2. If Γ ⊢ τ : κ, then Γ ⊲ τ ⇉ κ′ and Γ ⊢ κ′ ≤ S(τ : κ) : �.

3. If Γ ⊢ τ : κ, then Γ ⊲ τ ⇇ κ.

Once more, this gives us decidability:

Corollary 20 (Decidability of Type Validity).

1. Given τ and Γ ⊢ �, it is decidable whether there is a κ such that Γ ⊢ τ : κ holds.

2. Given τ and Γ ⊢ � and Γ ⊢ κ : �, it is decidable whether Γ ⊢ τ : κ holds.

From completeness of kind analysis it also follows immediately that kind synthesis in fact
computes principal kinds, and hence that our system enjoys principal (least) kinding:

Corollary 21 (Principality of Kinding). If Γ ⊢ τ : κ, then there is a κ′ such that for all κ′′

with Γ ⊢ τ : κ′′ it holds that Γ ⊢ κ′ ≤ κ′′ : �.

11.4.4. Subtyping

Finally, we can give an algorithm for deciding subtyping, which we adapt from Stone [Sto00].
Figure 11.17 shows the respective type matching algorithm.

Subtyping coincides with equivalence at higher kinds, thus type matching just resorts to
checking equivalence for higher kinds. For kind Ω, the types are put into weak-head normal
form and matched by the syntax-directed path matching judgement.

Soundness of the algorithm is straightforward:

Theorem 22 (Soundness of Algorithmic Type Matching).

1. If Γ ⊲ τ ≤ τ ′ ⇇ κ and Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, then Γ ⊢ τ ≤ τ ′ : κ.

2. If Γ ⊲ π ⊑ π′ and Γ ⊢ π : Ω and Γ ⊢ π′ : Ω, then Γ ⊢ π ≤ π′ : Ω.

146

11.4. Algorithmic Formulations

Transitive Type Inclusion Γ ⊢ τ ≤∗ τ ′ : Ω

(TSequiv*)
Γ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ τ ≤∗ τ ′ : Ω

(TSarrow*)

Γ ⊢ τ ≡ τ1 → τ2 : Ω Γ ⊢ τ ′ ≡ τ ′1 → τ ′2 : Ω
Γ ⊢ τ ′1 ≤∗ τ1 : Ω Γ ⊢ τ2 ≤∗ τ ′2 : Ω

Γ ⊢ τ ≤∗ τ ′ : Ω

(TStimes*)

Γ ⊢ τ ≡ τ1 × τ2 : Ω Γ ⊢ τ ′ ≡ τ ′1 × τ ′2 : Ω
Γ ⊢ τ1 ≤∗ τ ′1 : Ω Γ ⊢ τ2 ≤∗ τ ′2 : Ω

Γ ⊢ τ ≤∗ τ ′ : Ω

(TSuniv*)

Γ ⊢ τ ≡ ∀α:κ1.τ2 : Ω Γ ⊢ τ ′ ≡ ∀α:κ′1.τ
′
2 : Ω

Γ ⊢ κ′1 ≤ κ1 : � Γ, α:κ′1 ⊢ τ2 ≤∗ τ ′2 : Ω

Γ ⊢ τ ≤∗ τ ′ : Ω

(TSexist*)

Γ ⊢ τ ≡ ∃α:κ1.τ2 : Ω Γ ⊢ τ ′ ≡ ∃α:κ′1.τ
′
2 : Ω

Γ ⊢ κ1 ≤ κ′1 : � Γ, α:κ1 ⊢ τ2 ≤∗ τ ′2 : Ω

Γ ⊢ τ ≤∗ τ ′ : Ω

Figure 11.18.: Transitive type inclusion

Completeness is more involved: due to quantified types, proving transitivity of the algorithm
would depend on a weakening property for the matching algorithm, where kinds in the environ-
ment can be replaced by subkinds. Unfortunately, normalisation is not stable under weakening
to a singleton kind. In his thesis [Sto00], Stone proves it directly on the algorithmic formulation,
proceeding in two steps: first he proves completeness only for the sublanguage of constructors,
then for the full language. However, these proofs rely on the predicativity of his system, which
ours does not enjoy (Section 11.1).

We hence have to use an indirect proof. We first formulate an alternative subtyping judgement,
which has transitivity built in, and prove it sound and complete with respect to the original
judgement. We then show that the algorithmic formulation is complete with respect to the
transitive form, and consequently, also for the original judgement.

Figure 11.18 gives a transitive formulation of the subtyping judgement. It is easy to show
sound:

Proposition 23 (Soundness of Transitive Type Inclusion).
If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊢ τ ≤ τ ′ : Ω.

It is not hard to show that the judgement is in fact transitive:

Proposition 24 (Transitivity of Transitive Type Inclusion).
If Γ ⊢ τ ≤∗ τ ′ : Ω and Γ ⊢ τ ′ ≤∗ τ ′′ : Ω, then Γ ⊢ τ ≤∗ τ ′′ : Ω.

From transitivity we can then conclude completeness:

Proposition 25 (Completeness of Transitive Type Inclusion).
If Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊢ τ ≤∗ τ ′ : Ω.

147

11. The Type Language

Finally, we show completeness of the type matching algorithm by relating it to the transitive
judgement:

Theorem 26 (Completeness of Algorithmic Type Matching).

1. If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊲ τ ≤ τ ′ ⇇ Ω.

2. If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′ and Γ ⊲ π ⊑ π′.

3. If Γ ⊢ τ ≤ τ ′ : κ, then Γ ⊲ τ ≤ τ ′ ⇇ κ.

From completeness of kind and type matching follows decidability:

Proposition 27 (Decidability of Type Inclusion).
Given Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, it is decidable whether Γ ⊢ τ ≤ τ ′ : κ holds.

11.5. Related Work

11.5.1. Typed Lambda Calculi

There exists countless works on λ-calculi, type systems, and their use as models for programming
languages. We refer the reader to two standard references, namely Barendregt’s handbook
chapter on Lambda Calculi with Types [Bar92], which presents the basic theory from untyped
calculus to dependent types and the lambda cube, and Pierce’ book on Types and Programming
Languages [Pie02], which gives an introduction to, and extensive overview of, the use of lambda
calculus as an idealised programming language, particularly exploring different dimensions of
type systems.

11.5.2. Singletons

Singleton types were first proposed as a means for expressing modular specifications by As-
pinall [Asp95, Asp97]. He introduces higher-order singletons S(M : A) as primitive,3 which
produces the minor technical complication that there is an infinite sequence of subtypes
S(M : A) ≥ S(M : S(M : A)) ≥ . . . that has to be tamed by making all its elements equivalent
with an additional rule. Interestingly, his system does not have a separate equivalence judge-
ment, but encodes it as validity of the form Γ ⊢ M : S(M ′ : A). The system does not have
η-equivalence.

As already mentioned, our system is closely based on the work of Stone & Harper [SH06].
They introduce a simple lambda calculus with singleton types. The kind language of our system
is almost identical to their type language, except for the addition of abstraction kinds (and
singletons thereof). We adopted our type and kind equivalence algorithm directly from their
article, with only minor modifications to encompass the extensions. Our type language is richer
than their term language. However, with respect to equivalence and subkinding, the built-in type
constructors of our type language can simply be treated as additional higher-order constants
that do not affect the meta theory and algorithms. A variant of their system with a slightly
richer type language practically identical to ours (except for the lack of existential types) appears
in Stone’s chapter on Type Definitions [Sto05].

One substantial extension that our system adds to the picture is subtyping, which would
correspond to a notion of “subterming”, or value subsumption, that does not exist in Stone
& Harper’s system. However, in his thesis [Sto00] Stone studies a more complicated system

3He uses the syntax {M}A for this purpose.

148

11.6. Summary

featuring singleton kinds and singleton types, and subkinding as well as subtyping. He even
discusses an extension with intensional type analysis. In a first approximation, our system
can be seen as a subsystem of that one, except for the addition of abstraction kinds and type
generativity. However, his system is predicative, while ours allows fully impredicative type
formation. That is crucial for our purposes, because we could not express dynamics (and hence
packages) with a predicative restriction – a package is represented by the polymorphic type
∃α:Ω.α, and must be able to embed other polymorphic values. Thanks to predicativity, Stone
can prove completeness of the subtyping algorithm directly on the algorithmic formulation, while
we were forced to take the detour through an auxiliary transitive subtyping judgement to show
transitivity of the algorithm.

Singletons have also been employed by Dreyer, Crary & Harper in their work on type sys-
tems for higher-order modules [DCH03]. The language they describe consists of two layered
languages: terms and modules. Type equivalence depends on module equivalence, due to projec-
tion of types from modules. Singletons appear in the module language, which induces dependent
module types. Earlier work on higher-order module systems used translucent sums [HS00, Lil97]
or, equivalently, manifest types [Ler94, Ler95] instead of singletons. They can basically be in-
terpreted as a restricted form of singletons that can only be introduced in syntactically explicit
positions, and thus are somewhat more tractable.

11.5.3. Type Names, Environment and Abstraction Kinds

Many systems deal with type names for which an isomorphism must be recorded in the en-
vironment. For example, Stone describes a simple system that deals with type definitions by
recording them as special entries in the environment [Sto05], but the types are just synonyms
for existing types.

In previous work [Ros03], we also used special environment entries of the form α ≈ τ to record
generated type names and their representations. Vytiniotis, Washburn & Weirich use a separate
type isomorphism environment for the same purpose [VWW05]. In both works, type names can
only be used for coercing between the type and its representation.

Dreyer also expresses type abstraction with explicit type generation to cope with recursive
modules [Dre07]. For that purpose, he separates generation from definition of abstract type
names, and hence requires multiple different environment entries that realise a simple effect
system to ensure linearity of the bindings. See Section 12.10.3 for a more detailed comparison.

Where type names merely act as synonyms, singleton kinds represent a more uniform alterna-
tive to specialised environment entries. We are not aware of any previous work that has applied
the same generalisation to non-synonym type names, thus arriving at a notion equivalent to our
abstraction kinds.

11.6. Summary

• The type language of λω
SAΨ is impredicative and higher-order with the usual built-in con-

structors, and including type pairs.

• The kind level has singleton kinds and abstraction kinds and is dependently kinded.

• Singletons induce subkinding and subtyping.

• Higher-order singletons are definable as a derived concept.

• Abstraction kinds classify explicit type isomorphisms.

149

11. The Type Language

• Standard βη-rules for type functions and pairs are derivable thanks to singletons.

• The judgements of the system are Environment, Kind and Type Validity, Type and Kind
Equivalence, Type and Kind Inclusion.

• We give algorithms for deciding all judgements of the type system.

150

12. The Term Language

In this chapter we present the term level of our calculus, its typing rules, and the operational
semantics. Again, most of the system is fairly standard, and we concentrate the discussion on
our additions: type analysis, type generation, coercions, and pickling.

We then state standard soundness properties for the operational semantics, which are essen-
tially straightforward given the type system meta theory developed in the last chapter. However,
we first have to know that the type system is decidable, since unpickling has to perform type
checking for verification.1 Hence, we develop an algorithmic formulation of the typing rules.

Finally, we give a moderate abstraction result that establishes that type generation and co-
ercions are indeed sufficient to ensure abstraction safety. Similar to the last chapter, auxiliary
propositions and all proofs can be found in Appendix D.

12.1. Typing

Figure 12.1 shows the syntax of our term language. It consists of the standard constructions from
System Fω – functions, pairs, polymorphic abstractions, existential packages – enriched with type
analysis, type generation, coercions, and pickles with respective operations. For symmetry with
existential types, pairs are eliminated by a pattern matching let construct instead of projection.
We discuss the other extensions individually in the following sections.

Well-formedness and typing of terms is specified by the rules of the term validity judgement,
Γ ⊢ e : τ (Figure 12.2). Besides the non-standard extensions, whose semantics we will describe
in the following sections, the rules bear little surprises. The only exception is rule Eclose

for forming existentials, which takes advantage of the presence of singleton kinds to assign a
unique (principal) type without requiring the usual annotation. This corresponds closely to the
situation in ML, where a structure expression always is assigned a fully transparent signature.

In several places it will become convenient to have a unit type available. Also, a conventional
let-expression will come in handy. We assume the following encodings:

1 := ∀α:Ω. α→ α

⋄ := λα:Ω. λx:α. x

letx = e1 in e2 := let〈x, 〉 = 〈e1, ⋄〉 in e2

Similar to the other judgements of the system (Chapter 11), the structure of the typing rules
implies that the classifying type τ derived by the judgement is valid under the environment Γ:

Proposition 28 (Validity of Term Validity Rules).
If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

12.1.1. Principality

A technical problem with the rich type language in our calculus is that it does not automatically
lead to principal (or least) types. There are two problems.

1As noted in Chapter 3, the type system of Alice ML is in fact undecidable. For the calculus, we prefer a
“cleaner” approach, especially since abstract signatures, which make Alice ML undecidable, are rather of
cursory utility.

151

12. The Term Language

terms e ::= x | λx:τ.e | e e | 〈e, e〉 | let〈x, x〉 = e in e
| λα:κ.e | e τ | 〈τ, e〉 | let〈α, x〉 = e inτ e
| newα ≈ τ inτ e | {e}

+
τ | {e}−τ | case e:τ of x:τ.e elseτ e

| pickle e | ψ(e) | unpicklex⇐ e in e elseτ e

Figure 12.1.: Syntax of λω
SAΨ

Term Validity Γ ⊢ e : τ

(Evar)
Γ ⊢ �

Γ ⊢ x : Γ(x)

(Elambda)
Γ, x:τ1 ⊢ e : τ2

Γ ⊢ λx:τ1.e : τ1 → τ2
(Eapp)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

(Epair)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

(Eproj)
Γ ⊢ e1 : τ1 × τ2 Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

Γ ⊢ let〈x1, x2〉 = e1 in e2 : τ

(Egen)
Γ, α:κ ⊢ e : τ

Γ ⊢ λα:κ.e : ∀α:κ.τ
(Einst)

Γ ⊢ e : ∀α:κ.τ Γ ⊢ τ2 : κ

Γ ⊢ e τ2 : τ [τ2/α]

(Eclose)
Γ ⊢ τ : κ Γ ⊢ e : τ2

Γ ⊢ 〈τ, e〉 : ∃α:S(τ : κ).τ2

(Eopen)
Γ ⊢ e1 : ∃α:κ.τ2 Γ, α:κ, x:τ2 ⊢ e2 : τ Γ ⊢ τ : Ω

Γ ⊢ let〈α, x〉 = e1 inτ e2 : τ

(Enew)
Γ, α:A(τ1) ⊢ e : τ2 Γ ⊢ τ2 : Ω

Γ ⊢ newα ≈ τ1 inτ2 e : τ2

(Eup)
Γ ⊢ e : τ2 Γ ⊢ τ1 : A(τ2)

Γ ⊢ {e}+
τ1 : τ1

(Edn)
Γ ⊢ e : τ1 Γ ⊢ τ1 : A(τ2)

Γ ⊢ {e}−τ1 : τ2

(Ecase)
Γ ⊢ e1 : τ1 Γ, x:τ2 ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ case e1:τ1 of x:τ2.e2 elseτ e3 : τ

(Epickle)
Γ ⊢ e : ∃α:Ω.α

Γ ⊢ pickle e : Ψ
(Epsi)

Γ ⊢ �

Γ ⊢ ψ(v) : Ψ
(FV(v) ⊆ Dom(Γ))

(Eunpickle)
Γ ⊢ e1 : Ψ Γ, x:(∃α:Ω.α) ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ unpicklex⇐ e1 in e2 elseτ e3 : τ

(Esub)
Γ ⊢ e : τ Γ ⊢ τ ≤ τ ′ : Ω

Γ ⊢ e : τ ′

Figure 12.2.: λω
SAΨ term validity

152

12.2. Reduction

The Join Problem. The rules for branching constructs, Ecase and Eunpickle, demand that
the type of both branches are the same. That would require finding the least upper bound (lub)
of the respective principal types. However, a lub does not generally exist in the higher-order
system we face. To see why, first note that contravariance makes lubs interdependent with
greatest lower bounds (glbs). Moreover, finding the lub or glb of a quantified type involves
finding the lub or glb of kinds. Now consider the following two kinds:

Σα : Ω → Ω.S(α 1) and Σα : Ω → Ω.S(1)

These kinds have at least two common subkinds, namely Σα : Ω→S(1).S(1) (which is equivalent
to Σα : Ω→S(1).S(α 1)) and Σα : (Πβ:Ω.S(β)).S(1) (equivalent to Σα : (Πβ:Ω.S(β)).S(α 1)),
neither of which is more general than the other.

The Avoidance Problem. In rules Eopen and Enew the bound type variable α may not appear
free in the resulting type τ , in order to avoid it escaping its scope. This requires finding the
least supertype of the body’s principal type that does not mention α. Unfortunately, in general
such a type does not uniquely exist [DCH03, GP98]. For example, consider a type containing
the kind

(Ω → S(α)) × S(α)

The obvious choice for a superkind avoiding α would be (Ω → Ω) × Ω, but that completely
forgets the type sharing between the second component and the result of the first. There is a
more precise choice that still records it, namely Σβ : (Ω → Ω).S(β τ), for some arbitrary τ .
However, since τ is arbitrary, there are actually infinitely many choices, and all of them are
incomparable with β being abstract.

In order to side-step these issues, we equip the critical expression forms with type annota-
tions that restore principality. These annotations are necessary solely for the sake of decidable
type checking (Section 12.7), they are not otherwise required for soundness. We will omit the
annotations most of the time, to avoid clutter.

12.2. Reduction

Figure 12.3 defines an operational semantics for λω
SAΨ. Following the established Wright &

Felleisen approach [WF94], we employ a small step formulation using evaluation contexts E. An
evaluation context is a expression with exactly one occurrence of a hole marker . We write E[e]
for the result of replacing the hole in E with the expression e, possibly capturing free variables
of E, provided the result is well-formed.

Reduction is defined on configurations C, which are expressions paired with a heap. Heaps
capture the type names generated with new (Section 12.4).

The one-step reduction relation is denoted by →. It is the least binary relation on contexts
satisfying the rules in Figure 12.3. We write C → C ′ if C reduces to C ′ in one step according
to this relation, and C →∗ C ′ if it does so in zero or more steps.

Values are defined as a subset of expressions as usual and consist of λ-abstractions, and tuples
or existentials with nested values. Furthermore, they include values coerced to abstract type,
and pickles.

The reduction relation given defines a standard call-by-value, left-to-right evaluation order.
It consists of the usual β-rules for the standard constructs, plus appropriate rules for dealing
with the special features of λω

SAΨ. These will be explained in detail in the following sections.

153

12. The Term Language

Values and Contexts

values v ::= λx:τ.e | 〈v, v〉 | λα:κ.e | 〈τ, v〉 | {v}+
τ | ψ(v)

contexts E ::= | E e | v E | 〈E, e〉 | 〈v,E〉 | let〈x, x〉 = E in e
| E τ | 〈τ,E〉 | let〈α, x〉 = E in e
| {E}+

τ | {E}−τ | caseE:τ of x:τ.e else e
| pickleE | unpicklex⇐ E in e else e

heaps ∆ ::= · | ∆, α:A(τ)
configurations C ::= ∆; e

Reduction rules

(Rapp) ∆;E[(λx:τ.e) v] → ∆;E[e[v/x]]
(Rproj) ∆;E[let〈x1, x2〉=〈v1, v2〉 in e] → ∆;E[e[v1/x1][v2/x2]]
(Rinst) ∆;E[(λα:κ.e) τ] → ∆;E[e[τ/α]]
(Ropen) ∆;E[let〈α, x〉=〈τ, v〉 inτ ′ e] → ∆;E[e[τ/α][v/x]]
(Rnew) ∆;E[new α≈τ inτ ′ e] → ∆, α:A(τ);E[e]
(Rcancel) ∆;E[{{v}+

τ1}
−
τ2] → ∆;E[v]

(Rcase1) ∆;E[case v:τ1 of x:τ2.e1 elseτ e2] → ∆;E[e1[v/x]] if ∆ ⊢ τ1 ≤ τ2 : Ω
(Rcase2) ∆;E[case v:τ1 of x:τ2.e1 elseτ e2] → ∆;E[e2] if ∆ 6⊢ τ1 ≤ τ2 : Ω
(Rpickle) ∆;E[pickle v] → ∆;E[ψ(v)]
(Runpickle1) ∆;E[unpickle x⇐ψ(v) in e1 else e2] → ∆;E[e1[v/x]] if ∆ ⊢ v : ∃α:Ω.α
(Runpickle2) ∆;E[unpickle x⇐ψ(v) in e1 else e2] → ∆;E[e2] if ∆ 6⊢ v : ∃α:Ω.α

Figure 12.3.: Reduction

12.3. Type Analysis

Of our extensions to bare λ-calculus terms, type analysis probably is the most standard, covered
extensively in literature [HM95, DRW95, Gle99, CW99, TSS00, Wei02, CWM02, VWW05].
However, most type analysis constructs described in literature are of considerable complexity,
where we strive for something as simple as possible, just about rich enough to support a package-
like mechanism.

12.3.1. Semantics

Our type case simply takes two types and checks whether they are in subtyping relation. Hence,
there are two reduction rules, one for each possible branch (Figure 12.3). In those rules, the
subtyping check is expressed by a suitable side condition containing a subtyping judgement. We
use the notation Γ 6⊢ J to express that the judgement Γ ⊢ J does not hold.

The environment ∆ under which the check is performed reflects the current type heap, as we
will discuss in Section 12.4.2. Apart from generated type names the considered environment is
always empty, because reduction is never performed under binders, and the involved types are
hence necessarily closed up to the type heap.

The typing rule Ecase for case is straightforward (Figure 12.2). Obviously, the types to be
compared need to be of ground kind Ω. But note that this and the need to give a witness term e1
for τ1 is not an actual restriction: types at arbitrary kind can still be compared freely, courtesy

154

12.3. Type Analysis

of the following abbreviation:

case τ1 ≤ τ2 : κ then e1 else e2 :=

case f : (∀α : κ→ Ω. α τ2 → 1) of x : (∀α : κ→ Ω. α τ1 → 1). e1 else e2

where f = λα : κ → Ω. λx : α τ2. ⋄. The compared types τ1 and τ2 appear in inverted order
in the expansion, because they are in contravariant position. Using this sugar it is possible to
express simple generic functions, although we will not exploit that here.2

12.3.2. Packages

Thanks to type case, we can define packages as follows:

package := ∃α:Ω.α

pack e : τ := (λx: package .x) 〈τ, e〉

unpackx⇐ e1 : τ in e2 elseτ e3 := let〈α, x′〉 = e1 in case x′:α of x:τ.e2 elseτ e3

The identity function used in the expansion of pack acts as a type constraint, forcing the exis-
tential to actually have type package. In order to be able to deal with failure programatically,
unpack has to be modelled as a branching construct, similar to unpickle.

It is not difficult to see that we can derive the following evaluation rules:

∆;E[unpackx⇐(pack v : τ) : τ ′ in e2 elseτ e3] →∗ ∆;E[e2[v/x]] if ΓH ⊢ τ ≤ τ ′ : Ω
∆;E[unpackx⇐(pack v : τ) : τ ′ in e2 elseτ e3] →∗ ∆;E[e3] if ΓH 6⊢ τ ≤ τ ′ : Ω

The package notation enables us to translate the dynamic type sharing example from Sec-
tion 4.7, in a relatively direct way, from Alice ML into λω

SAΨ (omitting the else branches from
unpickle and unpack expressions):

unpickle p1 ⇐ campaignfile in
unpack campaign ⇐ p1 : (∃world : Ω. (1 → world) × (world → 1) × · · ·) in

let〈world , getWorld , setWorld , . . .〉 = campaign in
unpickle p2 ⇐ snapshotfile in

unpack snapshot ⇐ p1 : (∃world : S(world).world × date × · · ·) in
let〈world ,w , d , . . .〉 = snapshot in
. . .

The sharing is expressed by a singleton kind in the target signature for snapshot that refers to
the type variable world taken from the campaign structure.

One aspect we omit here for simplicity is the automatic signature refinement discussed in
Section 4.4.1. According to the discussion, the expression

pack〈int , 1〉 : ∃α:Ω.α

should yield the existential

〈∃α:SΩ(int).1, 〈int , ⋄〉〉

whereas the definition given above only produces

〈∃α:Ω.1, 〈int , ⋄〉〉

2For full genericity it would be necessary to be able to inspect type terms inductively. But we are not concerned
with generic programming here.

155

12. The Term Language

Implementing such refinement generically would require to extract and separate the kind in-
formation Stat(τ) embedded in an arbitrary type τ – which basically means defining a proper
module language by an appropriate inductive phase splitting translation. We give a sketch of
such a definition in Appendix B. Short of that, a properly refined package type can always be
given directly.

12.3.3. Recursion

Our type case operator is a variant of Girard’s J operator [Gir71, HM99] (Section 12.10.1).
Girard showed that a profound implication of the J operator (and the corresponding loss of
parametericity, Section 10.5) is that – unlike plain Fω– a calculus providing it is no longer
terminating. In particular, it is easy to construct a fixed point operator, say on type int →
int [ACPP89]. In our system the following is one possible definition (for better readability, we
use the package notation defined in the previous section):

fixint→int = λf : (int→int) → (int→int).
let f ′ =λp : package . λx : int .

unpack f ′ ⇐ p : package → (int→int) in f (f ′ p)x else 0
in f ′ (pack f ′ : package → (int→int))

It is easy to check that this term is well-typed, and that its application to a suitable function
meets the standard fixed point equation. The basic trick of the encoding is that the recursive
type usually needed to construct fix is avoided by hiding the recursive occurrence inside the
package type – thanks to type case, we can still recover it dynamically.

Analogously, we can define a fixed point operator fixτ1→τ2 for any types τ1, τ2 where τ2 is in-
habited. We will write ⊥τ for a diverging computation of type τ , which can easily be constructed
from fix1→τ as follows:

⊥τ = fix1→τ (λf : 1 → τ. λx : 1. f x) ⋄

With this encoding, recursion and divergence are restricted to inhabited types, for which
a witness value is available (as a default value for the else branch of the unpack inside fix,
although it will never be reached). It is easy to see that a general fixed point operator cannot be
expressed, because the type case does not allow the construction of terms that would otherwise
be uninhabited – the constituent term e3 needs to be a witness of the whole expression’s result
type [HM99]. For our purposes, this limited form of recursion is good enough. It would be
straightforward to add a primitive fixed point operator to the calculus if needed.

12.4. Type Generation

The next feature we turn to is type generation. It is supported in our calculus through a single
syntactic construct, namely new expressions.

12.4.1. Type Heap

Evaluating new is supposed to generate a fresh type. We employ an additional heap in which
generated types are allocated. The heap is simply a list of type variables classified by abstraction
kinds. A configuration ∆; e then represents a snapshot of a computation. We consider the heap
∆ in a configuration as a (multiple) binder, and hence configurations are equivalent modulo
α-renaming.

156

12.4. Type Generation

Typing can be extended to configurations by the following straightforward rule, which takes
advantage of the fact that heaps are a syntactic subclass of environments:

(Cvalid)
Γ,∆ ⊢ e : τ

Γ ⊢ ∆; e : τ

Thanks to Environment Validity (Section 11.1.1), the premise enforces that ∆ is well-formed.
As an example of a computation involving the heap, consider the following reduction sequence:

·; (λf :int→int .f (newα ≈ int in f 4)) (λx:int . new β ≈ bool in x)
→ (Rapp) ·; (λx:int . new β ≈ bool in x) (new α ≈ int in (λx:int . new β′ ≈ bool in x) 4)
→ (Rnew) α:A(int); (λx:int . new β ≈ bool in x) ((λx:int . new β′ ≈ bool in x) 4)
→ (Rapp) α:A(int); (λx:int . new β ≈ bool in x) (new β′ ≈ bool in 4)
→ (Rnew) α:A(int), β′:A(bool); (λx:int . new β ≈ bool in x) 4
→ (Rapp) α:A(int), β′:A(bool), β:A(bool); 4

It terminates with a configuration of the form ∆; v, where v = 4 is the resulting value, and
∆ = α:A(int), β′:A(bool), β:A(bool) represents the created type heap containing the three new
types named α, β and β′. Note that, thanks to the variable convention and appropriate α-
conversion, the generated types are all different, although β and β′ both stem from the same
expression and have the same representation bool .

It should be noted that type generation is fully dynamic, i.e. the number of type names gen-
erated is neither determined statically nor bounded. The following non-terminating expression
will actually generate an infinite number of types:

(fix1→1 λf :1→1.λx:1. new α ≈ τ in f x) ⋄

12.4.2. Analysing Generated Types

The whole point about introducing dynamically generated types is to make them available in
the subtyping check performed by type case. Thus we must allow the types in a case expression
to refer to names from the heap. Consequently, the reduction rules for type case must embrace
the heap. More precisely, the side conditions expressing the subtyping check must be using a
suitable heap environment reflecting the bindings in the heap. Fortunately, since heaps have
been defined such that they form a syntactic subclass of environments, we can use a heap ∆ as
an environment directly in the rules.

Let us return to our previous example, which resulted in

∆; v = α:A(int), β′:A(bool), β:A(bool); 4

Obviously, a dynamic type test comparing the generated types, for instance,

∆; caseβ ≤ β′ : Ω then 1 else 0

(using the abbreviation defined in Section 12.3.1) will evaluate to 0 as desired, because ∆ ⊢ β ≤
β′ : � cannot be derived – the two types are incompatible. Note how this behaviour corresponds
to the static semantics of generative functors in ML, where

functor F () = struct type t = bool end :> sig type t end

structure M1 = F ()
structure M2 = F ()

yields incompatible types M1.t and M2.t.
In Section 12.9 we will state formally that generated types maintain abstraction safety.

157

12. The Term Language

12.5. Coercions

To construct values of abstract type, values of the corresponding representation type have to be
coerced into the new type. Our calculus demands such coercions to be explicit. An extensive
discussion of this design choice is only possible when considering higher-order abstraction, and
hence appears in Section 13.6.1.

There are two symmetric expression forms, with dual typing rules:

(Eup)
Γ ⊢ e : τ ′ Γ ⊢ τ : A(τ ′)

Γ ⊢ {e}+
τ : τ

(Edn)
Γ ⊢ e : τ Γ ⊢ τ : A(τ ′)

Γ ⊢ {e}−τ : τ ′

Upward and downward coercions can be seen as the introduction and elimination forms of
abstract types. An upward coercion {v}+

τ , where v is a value, is considered a value. Such a
value can be eliminated by the respective downward coercion, thanks to the Rcancel reduction
rule.

Due to the side conditions in the rules, coercions are only available within the lexical scope
of the corresponding type generator, thus the transition across abstraction boundaries can only
be triggered within the lexical scope of the generator, which is the crucial property ensuring
abstraction. Moreover, the type system guarantees that only coercions belonging to the same
type can cancel each other out.

Note that the type τ used for coercion is not necessarily a type variable, although ultimately
only new can create types of abstraction kind, which have to be referred to as variables. However,
due to the higher-order nature of our type system, τ may still be an arbitrary type expression,
as in

λα : Ω → A(int). λx : α bool . {13}+
α bool

12.6. Pickling

The last feature of our calculus is pickling. Pickles are values of type Ψ, as the corresponding
typing rules reveal (Figure 12.2). The content of a pickle, however, always has to be an expression
of type ∃α:Ω.α – that is, a package.

The rule Epsi does not require the embedded value v to be well-formed, hence modelling
potentially malformed pickles. To simplify manners however, the rule syntactically restricts
pickle values to be closed with respect to the environment Γ. This is to maintain the usual
Variable Containment property, which states that all free variables of a well-formed term are
bound by the environment (Appendix C.1).

Reduction rules for pickling implement the expected semantics (Figure 12.3): pickle just
reduces to a pickle value (rule Rpickle), and unpickle branches dependent on whether the pickle
contains a well-formed package (rules Runpickle1 and Runpickle2). Similar to the subtyping
check performed by type case (Section 12.3), this is expressed by a side condition consisting of
a suitable typing judgement for the pickled value. And like for type case, the side condition has
to embrace the type heap, because pickles may refer to abstract types (in the value as well as
the type of the embedded package).

To clarify the interplay between dynamic type checking and dynamic type matching when
accessing a pickled package, consider the following four examples (for brevity we omit branches
and variable binding of the unpack and unpickle operations):

1. unpack (unpickle pickle(packλx:1.⋄ : 1→1)) : 1→1

2. unpack (unpickle pickle(packλx:1.⋄ : 1→1)) : 1→1→1

3. unpack (unpickle ψ(packλx:1.x ⋄ : 1→1)) : 1→1

158

12.7. Algorithmic Type Checking

4. unpack (unpickle pickle(packλx:1.x ⋄ : 1→1)) : 1→1

The first three expressions are all (statically) well-typed, but only the first will evaluate success-
fully. The second will fail due to a dynamic type error in unpack, the third due to a verification
error during unpickling. The last example is rejected by the (static) type system, because the
pickled value is not denoted by a well-formed expression. Contrast this to the third example,
which represents a (statically valid) malformed pickle.

12.7. Algorithmic Type Checking

One of the most unusual aspects of pickling is that the operational semantics of λω
SAΨ may involve

type-checking arbitrary expressions. We saw that this is simply expressed as a side condition in
the reduction rules Runpickle1 and Runpickle2 (Figure 12.3). To make the rules well-defined
however (and thus for soundness), we have to show that this side condition is in fact decidable.
That is, we have to give an algorithm for type checking λω

SAΨ-terms.

Figure 12.4 shows the type checking algorithm. It consists of three judgements: the syntax-
directed type synthesis judgement Γ ⊲ e ⇉ τ computes a (principal) type τ for a given term e.
The auxiliary type analysis judgement Γ ⊲ e⇇ τ checks a term against a required type τ , up to
subtyping. Finally, another auxiliary judgement derives a principal type in weak-head normal
form. It is used where a premise requires a type of a particular shape. The main structural
difference to the declarative formulation is the usual removal of the subsumption rule, which has
been built-in into the rules where it is actually needed.

Correctness of the algorithm is relatively straightforward to show.

Theorem 29 (Soundness of Algorithmic Type Synthesis).
Let Γ ⊢ �.

1. If Γ ⊲ e⇉ τ , then Γ ⊢ e : τ .

2. If Γ ⊲ e⇉⇉ π, then Γ ⊢ e : π.

3. If Γ ⊲ e⇇ τ with Γ ⊢ τ : Ω, then Γ ⊢ e : τ .

Theorem 30 (Completeness of Algorithmic Type Synthesis).

1. If Γ ⊢ e : τ , then Γ ⊲ e⇉ τ ′ with Γ ⊢ τ ′ ≤ τ : Ω.

2. If Γ ⊢ e : τ , then Γ ⊲ e⇉⇉ π with Γ ⊢ π ≤ τ : Ω.

3. If Γ ⊢ e : τ and Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊲ e⇇ τ ′.

Because the algorithm is syntax-directed, it terminates, and hence implies decidability:

Corollary 31 (Decidability of Term Validity).

1. Given e and Γ ⊢ �, it is decidable whether there is a τ such that Γ ⊢ e : τ holds.

2. Given e and Γ ⊢ � and Γ ⊢ τ : Ω, it is decidable whether Γ ⊢ e : τ holds.

159

12. The Term Language

Type Synthesis

Γ ⊲ x⇉ τ if Γ(x) = τ
Γ ⊲ λx:τ1.e2 ⇉ τ1 → τ2 if Γ ⊲ τ1 ⇇ Ω and Γ, x:τ1 ⊲ e2 ⇉ τ2
Γ ⊲ e1 e2 ⇉ τ1 if Γ ⊲ e1 ⇉⇉ τ2 → τ1 and Γ ⊲ e2 ⇇ τ2
Γ ⊲ 〈e1, e2〉⇉ τ1 × τ2 if Γ ⊲ e1 ⇉ τ1 and Γ ⊲ e2 ⇉ τ2
Γ ⊲ let〈x1, x2〉 = e1 in e2 ⇉ τ if Γ ⊲ e1 ⇉⇉ τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊲ e2 ⇉ τ
Γ ⊲ λα:κ1.e2 ⇉ ∀α:κ1.τ2 if Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ e⇉ τ2
Γ ⊲ e1 τ2 ⇉ τ1 if Γ ⊲ e1 ⇉⇉ ∀α:κ2.τ1 and Γ ⊲ τ2 ⇇ κ2

Γ ⊲ 〈τ1, e2〉⇉ ∃α:SΩ(τ1 : κ1).τ2 if Γ ⊲ τ1 ⇉ κ1 and Γ ⊲ e2 ⇉ τ2
Γ ⊲ let〈α1, x2〉 = e1 inτ e2 ⇉ τ if Γ ⊲ e1 ⇉⇉ ∃α:κ1.τ2 and Γ ⊲ τ ⇇ Ω

and Γ, α1:κ1, x2:τ2 ⊲ e2 ⇇ τ
Γ ⊲ newα ≈ τ1 inτ e2 ⇉ τ if Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ ⇇ Ω

and Γ, α:A(τ1) ⊲ e2 ⇇ τ
Γ ⊲ {e}+

τ1 ⇉ τ1 if Γ ⊲ τ1 ⇉ SA(τ2)(τ3) and Γ ⊲ e⇇ τ2
Γ ⊲ {e}−τ1 ⇉ τ2 if Γ ⊲ τ1 ⇉ SA(τ2)(τ3) and Γ ⊲ e⇇ τ1
Γ ⊲ case e1:τ1 of x2:τ2.e2 elseτ e3 ⇉ τ if Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ2 ⇇ Ω and Γ ⊲ τ ⇇ Ω

and Γ ⊲ e1 ⇇ τ1
and Γ, x:τ2 ⊲ e2 ⇇ τ and Γ ⊲ e3 ⇇ τ

Γ ⊲ pickle e⇉ Ψ if Γ ⊲ e⇇ ∃α:Ω.α
Γ ⊲ ψ(v)⇉ Ψ
Γ ⊲ unpicklex⇐e1 in e2 elseτ e3 ⇉ τ if Γ ⊲ e1 ⇇ Ψ and Γ ⊲ τ ⇇ Ω

and Γ, x:∃α:Ω.α ⊲ e2 ⇇ τ and Γ ⊲ e3 ⇇ τ

Normal Type Synthesis

Γ ⊲ e⇉⇉ π if Γ ⊲ e⇉ τ and Γ ⊲ τ ⇛ π

Type Analysis

Γ ⊲ e⇇ τ if Γ ⊲ e⇉ τ ′ and Γ ⊲ τ ′ ≤ τ ⇇ Ω

Figure 12.4.: Algorithmic type synthesis

12.8. Soundness

We are now prepared to state soundness of the type system with respect to the operational
semantics. We use the standard approach of proving preservation (reduction preserves typing)
and progress (well-typed terms can always be reduced) [WF94]. With the formal development
of the previous chapter, the proofs are almost straightforward.

For showing preservation of cancelled coercions, it is important to know that two abstract
types that are known to be equal at kind Ω are actually the same abstract type, with the same
representation:

Proposition 32 (Representation Equivalence).
Let Γ ⊢ τ1 : A(τ ′1) and Γ ⊢ τ2 : A(τ ′2).

1. If Γ ⊢ τ1 ≡ τ2 : Ω, then Γ ⊢ τ1 ≡ τ2 : A(τ ′1) and Γ ⊢ τ ′1 ≡ τ ′2 : Ω.

2. If Γ ⊢ τ1 ≤ τ2 : Ω, then Γ ⊢ τ1 ≡ τ2 : A(τ ′1) and Γ ⊢ τ ′1 ≡ τ ′2 : Ω.

Preservation then is mostly standard:

160

12.9. Opacity

Theorem 33 (Preservation).

1. If ∆ ⊢ e : τ and ∆; e→ ∆′; e′ with E = , then ∆′ ⊢ e′ : τ .

2. If · ⊢ C : τ and C → C ′, then · ⊢ C ′ : τ .

The progress proof requires the usual “canonical forms” lemma, but here respecting the heap:

Proposition 34 (Canonical Values).
Let Γ ⊢ v : τ .

1. If Γ ⊢ τ ≤ τ ′ : Ω and Γ ⊢ τ ′ : A(τ1), then v = {v1}
+
τ2 .

2. If Γ ⊢ τ ≤ Ψ : Ω, then v = ψ(v1).

3. If Γ ⊢ τ ≤ τ1 → τ2 : Ω, then v = λx:τ ′1.e2.

4. If Γ ⊢ τ ≤ τ1 × τ2 : Ω, then v = 〈v1, v2〉.

5. If Γ ⊢ τ ≤ ∀α:κ1.τ2 : Ω, then v = λα:κ′1.e2.

6. If Γ ⊢ τ ≤ ∃α:κ1.τ2 : Ω, then v = 〈τ1, v2〉.

The formulation of the progress theorem also has to embrace the type heap:

Theorem 35 (Progress).
If ∆ ⊢ e : τ , then either e = v, or (∆; e) = (∆;E[e1]) → (∆′;E[e′1]) = (∆′; e′).

The proof is mostly standard.

12.9. Opacity

By having proved soundness, we have shown that our calculus actually models a type safe
language. But we have not yet shown that it also is abstraction safe (Section 1.1.1). We do
so by formalising suitable notions of secrecy and authentication and proving them for values of
abstract type.

More precisely, we show a simple parametricity property that we call opacity. We consider a
term e that has free occurrences of a type variable α : Ω and a term variable x : α. The term
e can be viewed as a client of some abstraction. If we now substitute the free variables by a
concrete implementation, then reduction of e will proceed disregardless of what implementation
we chose – as long as the type τ we substitute for α has abstraction kind (note that α is not
assigned abstraction kind, otherwise e would logically be part of the implementation of the
abstraction, and of course not opaque). Consequently, the client cannot have been able to look
at the representation type of α or access the value behind x.

However, this only gives secrecy. For authentication, we need to show that e can even use
a function from the abstraction that expects a value of type α, without changing the outcome
of the evaluation either. We model this by allowing e to refer to a second variable f : α → 1.
A function of this type can have two possible outcomes: termination (with ⋄) or divergence.
By assuming that the substituted function terminates on the value substituted for x, but not
making any assumptions for other possible values, we can prove authentication by observing
that reduction still proceeds uniformly – because if f was applied to a value different from x
reduction would be unpredictable. Hence e can not have forged a value of type α.

161

12. The Term Language

Opacity, as stated below, combines these characterisations of secrecy and authentication into
a single formulation. It is a rather technical formulation, but the proof is essentially a straight-
forward induction on derivations. Interestingly, the proof is completely independent from the
use of coercions. This indicates that (explicit) coercions are inessential to the system.

The core of the authentication half of the proof actually is a straightforward lemma showing
that we cannot construct a value of variable type α if α : Ω (note that the kind assumption is
crucial, as for a type of kind Sκ̂(τ) or A(τ) we often could write down a value).

Proposition 36 (Abstractness). If Γ = Γ1, α:Ω, x:α,Γ2 and Γ ⊢ e : τ with Γ ⊢ τ ≤ α, then e is
not a value.

For opacity itself, we only consider two different substitutions (i.e. implementations), since the
result obviously generalises to an arbitrary number of different substitutions. Because of type
case and unpickling, we must first show that type inclusion and term validity stay independent
of the substitution as well.

Theorem 37 (Opacity).
Let Γ = α:Ω, x:α, f :α→1, and γi = [αi/α] ∪ [vi/x] ∪ [v′i/f] ∪ [α′ | α′ ∈ Dom(∆′)/α′] with
∆, γi(∆

′) ⊢ γi : Γ,∆′ and ∆; v′i vi →
∗ ∆; ⋄ for i ∈ {1, 2}.

1. Let Γ,∆′ ⊢ τ : κ.
If and only if ∆, γ1(∆

′) ⊢ γ1(τ) : γ1(κ), then ∆, γ2(∆
′) ⊢ γ2(τ) : γ2(κ).

2. Let Γ,∆′ ⊢ τ : Ω and Γ,∆′ ⊢ τ ′ : Ω.
If and only if ∆, γ1(∆

′) ⊢ γ1(τ) ≤ γ1(τ
′) : Ω, then ∆, γ2(∆

′) ⊢ γ2(τ) ≤ γ2(τ
′) : Ω.

3. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′) ⊢ γ1(e) : γ1(τ), then ∆, γ2(∆
′) ⊢ γ2(e) : γ2(τ).

4. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′); γ1(e) →
∗ ∆, γ1(∆

′),∆1; v
′, then ∆1 = γ1(∆

′′) and v′ = γ1(v) with
∆, γ2(∆

′); γ2(e) →
∗ ∆, γ2(∆

′), γ2(∆
′′); γ2(v).

Note that the opacity theorem assumes that the client – the expression e – has no access
to the type heap containing the abstract type substituted. This is an optimistic assumption.
As we explained in Section 5.4, in practice an open scenario may, under certain circumstances,
enable a malicious client to access parts of the type heap “out of scope”, and thus circumvent
opacity. The λω

SAΨ-calculus cannot directly express such a situation, though. We leave the
development of an adequate refinement that may address this particular problem to future work
(Section 14.2).

12.10. Related Work

12.10.1. Type Analysis and Dynamics

The type case construct in our calculus is a (weaker) variant of Girard’s J operator [Gir71,
HM99]. Girard defines it as a constant of type ∀α:Ω.∀β:Ω.α → β with the following reduction
rule:

J τ1 τ2 v → v if τ1 ≡ τ2
J τ1 τ2 v → 0 τ2 if τ1 6≡ τ2

Here, 0 is an auxiliary universal constant of type ∀α:Ω.α, used as a default value instead of a
failure branch.

162

12.10. Related Work

Even closer to our construct is a variant of J discussed by Mitchell & Harper [HM99]. Their
operator TypeCond : ∀α:Ω.∀β:Ω.α→ β → β has the following reduction rules:

TypeCond τ1 τ2 v1 v2 → v1 if τ1 ≡ τ2
TypeCond τ1 τ2 v1 v2 → v2 if τ1 6≡ τ2

This operator does not require a 0 constant, and modulo syntax is almost identical to our
type case, except that we extend it with subtyping (and have higher-order types). Mitchell &
Harper demonstrate that even the weaker TypeCond is sufficient to destroy normalization. They
point out that a type Dynamic implicitly introduces a form of impredicativity (since it can be
expressed as ∃α.α), and that impredicativity is essential for expressing diverging computations.

Richer forms of type analysis have been extensively discussed in programming language liter-
ature, either as stand-alone constructs, or in conjunction with dynamics.

Dynamics were first formalised by Abadi, Cardelli Pierce & Plotkin [ACPP91]. In their system,
dynamics were eliminated directly by a type case construct that allowed pattern matching on
the dynamic type. In the original system, only monomorphic types were possible, but they could
contain pattern variables that captured constituent types. Later work by the same and other
authors [ACPR95, LM93] extended this idea to polymorphic types, which raises a number of
issues about scoping of type and pattern variables. Abadi et al. also discuss the interaction with
subtyping, pointing out that subtyping interferes badly with pattern variables, because there
no longer always is a unique type to bind them to. Our type case supports subtyping, but no
pattern variables, so no such problems arise.

Other works investigate type-based dispatch as a stand-alone feature. In particular, Harper &
Morrisett introduce intensional type analysis as a more general construct for analysing types or
type variables [HM95]. Their main motivation is a typed intermediate language that can cope
with heterogeneous representations in a compiler. Their system has a typerec construct that is
not simply a pattern matching construct, but a primitive recursion operator on higher-order
types. Moreover, they also introduce an analogous Typerec on the type level and show that many
interesting applications (in particular representation optimisations) could not be typed without
it. The underlying type system is predicative, ensuring termination. Later work extended this
approach to polymorphic types [CW99, TSS00, Wei02], and discusses how to reify types on the
term level in order to allow type erasure despite type analysis [CW99, CWM02].

In previous work [Ros06], we modelled packages directly as part of an expressive module
calculus and proved it sound. The calculus correctly models the package signature refinement
discussed in Sections 4.4.1 and 12.3.2. However, it does not support type abstraction. Besides
packages, it also features pickling, very much like shown here. We are not aware of any other
work that formalises pickling on this level of abstraction.

We also have previously given a semantics of packages directly within the framework of the
formal language specification of Standard ML [Ros05]. However, that framework is too complex
to make proving of interesting formal properties tractable.

12.10.2. Term Name Generation

Dynamic generation of term names is a common need in programming languages and related
systems. Most prominently, the π-calculus [Mil99, SW01] provides the name restriction expres-
sion νn.P as one of its central feature, which can be considered as a name generator. However,
unlike in our system, generated names are not recorded on a heap, but maintained by floating
outwards through a set of reduction rules for scope extrusion. A globally accumulated sequence
of ν-binders could be interpreted as a heap.

Pitts’ λν -calculus [PS93] transfers explicit name generation to the typed λ-calculus. It extends
plain λ-calculus by introducing a special type ν and the expression form νn.e for generating

163

12. The Term Language

values of that type. The only operation available on such names is comparison, if e1 = e2 then
e3 else e4, where e1 and e2 must evaluate to names. Like our system, the operational semantics
uses an explicit type heap.

The λω
SAΨ-calculus subsumes λν , because using existential types, it can express generation of

term names as a derived form: term names n can be represented as existential packages 〈α, ⋄〉
carrying a type name α to identify the name. Term name generation then maps to type name
generation and name comparison to a use of type case (making use of the abbreviation from
Section 12.3.1):

ν := ∃α:Ω.1
νn.e := newαn≈1 in letn=〈αn, ⋄〉 in e

if e1=e2 then e3 else e4 := let〈α1, 〉=e1 in let〈α2, 〉=e2 in caseα1≤α2:Ω then e3 else e4

It is easy to verify that λν reduction can be simulated under this encoding, and that its typing
rules are admissible.

12.10.3. Abstraction Safety and Type Generation

Literature on type abstraction goes back at least as far as Morris’ paper from 1973, where he
suggests that types should not primarily be seen as extensional classifications of values, but
rather as abstract, intensional descriptions of their properties, enforcing authentication and
secrecy [Mor73b]. Reynolds later put this view in a nutshell by observing that “type structure
is a syntactic discipline for enforcing levels of abstraction” [Rey83].

The first formal treatment of the notion of abstract type in the framework of type theory is
due to Mitchell & Plotkin, who give existential quantification types as a natural explanation for
type abstraction [MP88]. In their model, abstract types are actually first-class and have to be
opened explicitly for use. However, the type can only be used locally. MacQueen criticised this
closed scope restriction as too inflexible for modular purposes, and proposed dependent types
as an alternative [Mac86], which then let to the development of the ML module system

The existential model for type abstraction breaks in the presence of dynamic type analysis.
Weirich in fact demonstrated that in a non-parametric setting arbitrary values of existential
type can be cast back and forth to and from their actual representation type [Wei00]. Although
this problem has long been folklore, it has not received much attention in literature.

As already discussed in Section 10.5, Abadi et al. address this matter in their paper on
polymorphic dynamics [ACPR95] by proposing a modified reduction rule for opening existentials,
where the type variable is substituted by a fresh type instead of the witness. However, as we
demonstrated, this proposal destroys type preservation, so that soundness cannot be established
by standard means.

Harper & Morrisett also mention the issue in their discussion of intensional type analy-
sis [HM95]. They briefly suggest to distinguish analysable from non-analysable types, supposedly
by instrumenting the kind system. As we already pointed out, any such approach is not appli-
cable for our purposes, because expressing packages requires a fully reflexive solution, where all
types can be analysed.

In earlier work [Ros03] we already addressed the abstraction problem by introducing an explicit
type generation construct for generating fresh abstract type names. Unlike the system in this
thesis, the type system considered in the paper did not feature singleton kinds, and hence could
only express abstract types but not translucency. Both are essential ingredients of ML-style
module systems. Also, we only proved secrecy, but not authentication in that work.

Although being simple in spirit, to our knowledge there was no previous work that isolated
the dynamic aspect of type generativity for abstraction and formalises it in a calculus. One

164

12.10. Related Work

notable exception is Sewell, who uses sealing for modelling certain aspects of type abstraction
in the presence of dynamic typing and gives a dynamic semantics [Sew01]. However, in his
system generated abstract types are recorded with singleton kinds in a global environment, so
that opacity is not maintained dynamically. Followup work [LPSW03] uses type generativity to
maintain abstraction safety, similar to our approach. However, type name generation is static
in that system, i.e. performed at compile-time, not at run-time. The names are generated as
cryptographic hashes over the implementation of the module defining the type, such that they
are even stable across compiles. This property allows for easier and more flexible sharing between
processes, but is not safe for stateful abstractions. Their system does not have polymorphism.
Consequently, even though it can express type sharing through a variant of singleton kinds,
dynamic type sharing cannot be expressed. No opacity result is given for their system. It would
not hold unconditionally, due to another feature of the system, which allows to intentionally
breach an abstraction barrier and access the representation from outside its implementation.
The authors argue that such a feature is needed to support software evolution, though it destroys
abstraction safety.

Glew presented a calculus for generating new tagged types at runtime and dispatching on
them [Gle99]. His system is more complex than ours in order to allow for hierarchical types, but
it is not fully reflexive since untagged types cannot be analysed.

Vytiniotis, Washburn & Weirich combine type analysis with type generation, very much like
our system [VWW05]. They have a richer type case with first-class, composable case arms. On
the other hand, they do not have singleton kinds. They give a proof of soundness, but do not
state any Opacity result. We will discuss their system in more detail in Section 13.6, once we
have introduced higher-order coercions.

Dreyer employs explicit generativity to model type abstraction of recursive modules [Dre07].
For that purpose, he sets up a system somewhat similar to ours, but separates generation
(new α ↑ κ in e) and definition (set α :≈ τ in e) of type names. The type heap in his system
hence distinguishes multiple states for the type names it records, and the type system contains
a simple effect system to ensure linearity of the definitions. He interprets all abstract types
as iso-recursive, such that they are not equivalent to their (unfolded) representation and the
respective fold and unfold operations take the role of basic coercions. Because the isomorphism
is only applicable in the scope of the respective set construct, we conjecture that his system
would enjoy a similar Opacity property as ours in the presence of dynamic type analysis.

The λω
SAΨ-calculus also reveals close similarities to the cryptographic lambda calculus by

Sumii and Pierce [SP03, SP04]: new correspond to key generation and sealing/unsealing to
encryption/decryption operations in that calculus. However, their calculus is untyped, and
decryption may fail dynamically. As pointed out in Section 5.4, this work may point out a
direction for improving extra-linguistic abstraction safety in Alice ML.

While module theories usually account for generativity as well, they do so solely on the static
level of typing rules. In fact, all of the influential theories for ML modules [Ler95, Lil97, DCH03]
are not full calculi, but merely type systems, that side-step the issue of reduction. The presence
of ad-hoc typing rules encompassing type abstraction precludes a type-preserving reduction
semantics.

12.10.4. Opacity and Proof Techniques

A topic we have only scratched in this thesis is the proof-theoretic side of (type) abstraction.
There is a rich body of literature on proof techniques for studying properties such as represen-
tation independence or observational equivalence, which formulate when two implementations
of an abstraction are equivalent, e.g. in the sense of behaving equivalently in all possible con-

165

12. The Term Language

texts. This is a notoriously hard problem that classically has been addressed with semantic
methods such as logical relations [Mit91, PA93, Pit00, SP03]. However, for polymorphic types,
these techniques crucially rely on parametricity [Rey83, BFSS89, ACC93]. It is not clear if and
how they can be adapted to a non-parametric setting like the one fundamental to the issues we
address with the λω

SAΨ-calculus.
Our opacity result can be interpreted as a form of representation independence or observational

equivalence over a fixed and very limited signature (the entities bound in Γ).
More recently, there has been a trend towards more syntactic methods that tend to be less

powerful but also less heavyweight [Pit98, Pit05]. In non-deterministic settings – especially
when concurrency is involved – co-inductive methods like bisimulations [Mil99, SW01] are usu-
ally preferred. Sumii and Pierce adopt bisimulation to reason about abstraction properties in
untyped and typed λ-calculi [SP04, SP05].

Grossman, Morrisett & Zdancewic propose a syntactic proof method that traces abstraction
boundaries with explicit brackets to show simple abstraction properties [GMZ00]. One such
property they call value abstraction, which is mostly equivalent to the secrecy half of our opacity
property, but without considering type analysis. Their abstraction brackets are basically a static
variant of our higher-order coercions, as we will discuss later on in Section 13.6.

A step further into the direction of security go methods for enforcing non-interference of
information flow. Sabelfeld & Myers give a nice survey of language-related techniques proposed
in literature [SM03].

12.11. Summary

• The operational semantics of λω
SAΨ uses a type heap for recording generated types.

• Recursion is derivable for inhabited types by using type analysis.

• The semantics of pickling includes a dynamic term validity check.

• Coercions inhabit abstract types, otherwise, typing is largely standard.

• We give an algorithm for deciding well-typedness.

• The type system is sound with respect to the operational semantics.

• Soundness depends on decidable subtyping (for type analysis) and decidable type checking
(for unpickling).

• Reduction preserves opacity (secrecy and authentication) for abstract types.

166

13. Higher-Order Abstraction

In the last two chapters we have developed the basic λω
SAΨ-calculus and its meta-theory. We

have shown that it can express abstractions that are safe despite the presence of dynamic type
analysis. However, there are some limitations to the system so far:

• It can only generate type names of kind Ω. Thus, higher-order abstract types cannot be
expressed. For example, a parametric type like stack (α) cannot be made abstract, because
it has kind Ω → Ω.

• Abstraction can only be expressed a priori, because the implementation has to be scattered
with suitable coercions. In contrast, module systems typically allow abstraction to be
performed a posteriori through a convenient sealing construct applied to an “untreated”
implementation.

• Sealing also is more expressive because it enables abstraction without access to individual
values. For example, a value of type stack(int) can be abstracted to stack(t) (if t is defined
as int) without having to decompose it and abstract each of its elements individually, like
necessary in our calculus. For stateful abstractions, this would actually be crucial, because
decomposition implies copying.

As the last part of our technical development, we hence extend the λω
SAΨ-calculus with facilities

for higher-order abstraction:

• Higher-order generativity, to express abstract types of higher kind.

• Higher-order type coercions, to express abstraction after the fact.

These extensions are orthogonal to a certain extent, but both are more intricate than one
might be lead to believe: because of the interference with dependent kinds (Section 11.2), both
extensions require the introduction of another auxiliary concept, namely kind coercions. Kind
coercions are the type-level analogon to higher-order type coercions. Unlike type coercions, kind
coercions can be defined as a derived concept, independent of anything else. However, we feel
that the definition will be much easier to understand once we have introduced type coercions.
Thus, we chose to first discuss higher-order generativity and type coercions, and come to kind
coercions last, even though the former concepts both depend on them.

13.1. Higher-Order Generativity

Superficially, generalising the λω
SAΨ-calculus to support higher-order generativity seems straight-

forward: we just have to extend new to allow arbitrary kinds:

newα:κ ≈ τ in e

But this raises at least two questions: What is the kind assigned to α? And how does a coercion
over α work when it is not ground? As we will see, both these questions can elegantly be
answered by a definition of higher-order abstraction kinds A(τ : κ) as a derived concept that
closely mirrors the definition of higher-order singletons (Section 11.2.2).

167

13. Higher-Order Abstraction

expressions e ::= · · · | newα:κ̃ ≈ τ inτ e

Figure 13.1.: Extension with higher-order generativity

(Enew’)
Γ ⊢ τ1 : κ̃ Γ, α:A(τ1 : κ̃) ⊢ e : τ2 Γ ⊢ τ2 : Ω

Γ ⊢ newα:κ̃ ≈ τ1 inτ2 e : τ2

Figure 13.2.: Typing of higher-order type generation

heaps ∆ ::= · | ∆, α:A(τ : κ̃)

(Rnew’) ∆;E[new α:κ̃≈τ in e] → (∆, α:A(τ : κ̃));E[e]

Figure 13.3.: Reduction of higher-order type generation

13.1.1. Type Generation

Let us first look at the new construct itself. Like suggested, we simply extend the syntax to
include a kind annotation; the new syntax is given in Figure 13.1. However, the annotation
is restricted to the syntactic subclass κ̃ of concrete kinds, defined in Figure 13.11, that ex-
cludes abstraction kinds. That restriction avoids the need for “nested” abstraction kinds and
accompanying complications, as we will discuss in Section 13.3.4.

The typing rule generalises in mostly obvious ways, shown in Figure 13.2. The novelty in
this rule is the appearance of a higher-order abstraction kind, which we explain in a minute.
Furthermore, we have a separate premise ensuring well-formedness of the representation type
τ1. That is needed because it is not implied by well-formedness of the higher-order abstraction
kind A(τ1 : κ̃), due to its definition as a derived form (see next section).

The operational semantics of new does not change much in the higher-order version either.
However, we have to be more permissive about the syntactic structure of the type heap and
allow it to contain higher-order abstraction kinds, accordingly. The updated definitions can be
seen in Figure 13.3.

13.1.2. Abstraction Kinds

The new-construct generates types of higher-order kind, so the bound variable has to be assigned
respective higher-order abstraction kind. Like higher-order singleton kinds (Section 11.2.2),
these do not have to be defined as primitive, but can be derived as sugar. Figure 13.4 gives a
definition. Unlike singletons, higher-order abstraction kinds are only defined at concrete kind
(Figure 13.11), i.e. there are no kinds A(τ : A(τ ′)). Section 13.3.4 will explain the reasoning
behind that restriction.

Before we explain the definition further, let us consider the properties required from it. Like
with higher-order singletons, higher-order abstraction kinds have to be defined such that we can
give appropriate derived judgement rules that generalise the respective built-in rules for ground
abstraction kinds, in order to make their treatment consistent. Figure 13.5 shows the desired
validity, equivalence and inclusion rules, which closely mirror those for singletons, except that
rule KSabs* is slightly weaker than the corresponding KSsing*, because it does not allow the
annotated kind to vary. We will understand why soon.

168

13.1. Higher-Order Generativity

A(τ : Ω) := A(τ)
A(τ : SΩ(τ ′)) := SΩ(τ ′)

A(τ : Πα:κ̃1.κ̃2) := Πα:κ̃1.A(τ α : κ̃2)
A(τ : Σα:κ̃1.κ̃2) := Σα:A(τ ·1 : κ̃1).A({τ ·2 : α:κ̃1.κ̃2}α/τ ·1 : κ̃2)

Figure 13.4.: Higher-order abstraction kinds

Kind Validity Γ ⊢ κ : �

(Kabs*)
Γ ⊢ τ : κ̃

Γ ⊢ A(τ : κ̃) : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQabs*)
Γ ⊢ τ ≡ τ ′ : κ̃ Γ ⊢ κ̃ ≡ κ̃′ : �

Γ ⊢ A(τ : κ̃) ≡ A(τ ′ : κ̃′) : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSabs*)
Γ ⊢ τ ≡ τ ′ : κ̃ Γ ⊢ κ̃ ≡ κ̃′ : �

Γ ⊢ A(τ : κ̃) ≤ A(τ ′ : κ̃′) : �

(KSabs-left*)
Γ ⊢ τ : κ̃

Γ ⊢ A(τ : κ̃) ≤ κ̃ : �

Figure 13.5.: Rules for higher-order abstraction kinds

The most critical invariant is stated by rule KSabs-left*. Like with ground abstract types,
we want a generated type name to be used as the “key” for a coercion – thus having kind A(τ : κ̃)
– and at the same time take the role of the abstract type itself, hence also having kind κ̃. The
subkinding rule expresses this requirement.

Now turning back to the definition of higher-order abstraction kinds in Figure 13.4, first note
the similarity with the definition of higher-order singletons (Section 11.2.2). They only differ
for Σ-kinds: where singletons over pairs can be formed as a simple non-dependent sum by
substituting away the dependency (because the variable is equivalent to the first component by
the singleton rules), this substitution is not possible with abstraction kinds. Worse, since the
first component changes its kind from κ1 to A(τ ·1 : κ1) when forming the abstraction kind over
Σ, the dependency of κ2 is on the “wrong” type. To see the problem, assume we would simply
define

A(τ : Σα:κ̃1.κ̃2) := Σα:A(τ ·1 : κ̃1).A(τ ·2 : κ̃2) (wrong-1)

The constituent kind A(τ ·2 : κ̃2) would be ill-formed in general, because τ ·2 has kind κ̃2[τ ·1/α]
(according to rule Tsnd) and not κ̃2. As a concrete example, consider the following higher-order
abstraction kind:

169

13. Higher-Order Abstraction

κ = A(τ : Σα:Ω.SΩ(α) → Ω) with τ = 〈int , λβ:SΩ(int).β〉

It roughly corresponds to the following use of sealing in ML:

struct type t = int; functor F (type u = int) = (type v = u) end

:> sig type t; functor F (type u = t) : (type v) end

Assuming definition (wrong-1), κ would expand to

Σα:A(τ ·1).A(τ ·2 : SΩ(α) → Ω)

which further expands to

Σα:A(τ ·1).Πβ:SΩ(α).A(τ ·2β)

where the type application τ ·2β is ill-formed, because τ ·2 has argument kind SΩ(int), but β is
of kind SΩ(α), and α 6≡ int .

On the other hand, defining

A(τ : Σα:κ̃1.κ̃2) := Σα:A(τ ·1 : κ̃1).A(τ ·2 : κ̃2[τ ·1/α]) (wrong-2)

would produce a well-formed expansion, but would also prevent A(τ : Σα:κ̃1.κ̃2) from being a
subkind of the underlying kind Σα:κ̃1.κ̃2 – obviously, it would specialise only Σα:κ̃1.κ̃2[τ ·1/α].
For our previous example, κ would become

Σα:A(τ ·1).A(τ ·2 : SΩ(int) → Ω)

Clearly, this cannot be a subkind of Σα:Ω.SΩ(α) → Ω, again because α 6≡ int . Consequently,
definition (wrong-2) would break the essential rule KSabs-left*.

The expansion we actually need for κ is a kind that is equivalent to the following:

Σα:A(int).A(λβ:SΩ(α).β : SΩ(α) → Ω)

Here, instead of adapting the kind annotation in the second component, the critical occurrence
of int in τ ·2 has been “reverse-substituted” by α in the constitutent type, in order to match
the original kind annotation. The expansion is well-formed and obeys the desired subkinding
relation. The kind coercion in Figure 13.4 achieves precisely this transformation and thus bridges
the critical kind discrepancy.

We hence are left with developing kind coercions. However, kind coercions are somewhat
intricate and likely to be more understandable once we have introduced the more earthly notion
of type coercions. We thus delay the definition of kind coercions until Section 13.3.

Finally, note that well-formedness of a kind A(τ : κ̃) does not necessarily imply that τ : κ̃. In
particular, in the case of κ̃ = SΩ(τ ′) the expansion does not contain τ , so any judgement about
A(τ : κ̃) is vacuous on τ . In contexts where a well-formed τ is needed that requirement has to
be stated separately. This is the same situation as with higher-order singletons [SH06].

13.1.3. Type Coercions

One interesting and nifty consequence of the fine-grained notion of abstraction kinds is that the
move to higher-order generativity itself does not require any change to the concept of basic type
coercions: because we already allow the abstract type τ in a coercion {e}±τ to be represented
by an arbitrary type expression, and because higher-order abstraction kinds simply decompose
into ground ones, coercions already can express values of higher-order abstract type.

Consider an abstract type of stacks:

170

13.2. Higher-Order Type Coercions

expressions e ::= · · · | {e : α:κ̃.τ̃}+
τ̃≈τ̃ | {e : α:κ̃.τ̃}−τ̃≈τ̃

Figure 13.6.: Extension with higher-order type coercions

new stack ≈ λα:Ω.list α in . . .

Or, by η-equivalence, simply stack ≈ list . According to rule Enew’, stack will receive higher-
order abstraction kind A(list : Ω → Ω), which decomposes into Πα:Ω.A(list α). Consequently,
a value of a stack of integers can be formed with a straightforward coercion:

s = {[5, 2, 7]}+
stack int

What we can not express, however, is taking this value and abstracting it further at a type
such as date ≈ int , e.g.:

{s}+
stack date

The outer coercion in this expression is ill-formed, because the type stack date has kind
A(list date), which does not suite the type stack int of s which would necessitate A(stack int)
instead. The required method to perform the coercion would be the other way round, forming
the value

{[{5}+
date

, {2}+
date

, {7}+
date

]}+
stack date

In general, this obviously requires the ability to decompose and reconstruct s. That is relatively
easy for stacks, but an analogous ability may not be given for other kinds of abstract types.

Because such forms of coercion arise frequently when towering abstractions, and because we
intend to model the situation in ML, where such abstractions can be formed arbitrarily, we
move to a generalised notion of higher-order type coercions in the next section. They enable us
to express abstractions of this kind succinctly and without requiring a suitable signature from
another abstract type.

13.2. Higher-Order Type Coercions

Higher-order type coercions generalise the notion of basic coercion already introduced with the
basic calculus. That is, we replace the basic coercions of the form {e}+

τ
+

with the more general

{e : α:κ̃.τ̃}+
τ
+
≈τ−

and its inverse (Figure 13.6). Here, κ̃ again ranges over the subclass of concrete kinds, while τ̃
ranges over the syntactic subclass of concrete types that likewise excludes abstraction kinds to
appear in any quantifier (Figure 13.11). We will explain the restriction in Section 13.3.4.

While the basic form of coercion simply coerced e from type τ− to type τ
+
, the higher-order

form allows e to take any type τ̃ [τ−/α] and results in type τ̃ [τ
+
/α]. That is, α acts as a placeholder

marking those positions in the residual type τ̃ where abstraction ought to be performed. The
type τ

+
has to be a (higher-order) abstract type of kind A(τ− : κ̃), accordingly.

The negative case is analogous, as is apparent from the typing rules in Figure 13.7. We refer
to the type τ̃ [τ−/α] of e as the inward type of the coercion, and call the result type τ̃ [τ

+
/α]

its outward type – in the negative case they change roles, respectively. Note that we require

171

13. Higher-Order Abstraction

Term Validity Γ ⊢ e : τ

(Eup’)
Γ ⊢ e : τ̃ [τ−/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ

+
: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ {e : α:κ̃.τ̃}+
τ
+
≈τ−

: τ̃ [τ
+
/α]

(Edn’)
Γ ⊢ e : τ̃ [τ

+
/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ

+
: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ {e : α:κ̃.τ̃}−τ
+
≈τ−

: τ̃ [τ−/α]

Figure 13.7.: Typing rules for higher-order type coercions

the representation type τ− to be annotated as well, in order to be able to give simple syntax-
directed reduction rules. Also, we need a separate premise to ensure its well-formedness, because
well-formedness of A(τ− : κ̃) does not imply it (Section 13.1.2).

To fix an economic parlance, we say that a coercion {e : α:κ̃.τ̃}+
τ
+
≈τ−

coerces the expression

e over type τ
+

under kind κ̃ at type τ̃ . The former coercions {e}±τ
+

arise as the special cases

{e : α:Ω.α}±τ
+
≈τ−

. The positive variant defines the normal form of higher-order coercions, i.e.

values of abstract type.

Using higher-order coercions, we can perform a posteriori abstraction. To take the stack
example from the previous section, it is now possible to express the desired latter coercion as
follows:

{s : α:Ω.stack α}+
date≈int

Note that it coerces over type date , not stack date as in the earlier attempt. The reduction rules
we are about to present will ultimately reduce this to the ‘correct’ form of coercion given earlier,
where the list elements are coerced individually.

In a similar manner, the abstraction-safe complex number implementation C ′ from Sec-
tion 10.6 can be expressed in terms of the transparent implementation C as follows:

C ′ = new c : Ω ≈ real × real in {C : complex :Ω. Dyn(COMPLEX)}+
c≈real×real

This expression roughly corresponds to sealing in ML, where we can express C’ similarly, though
without the explicit type generation:

structure C’ = C :> COMPLEX

13.2.1. Semantics

Figure 13.8 defines the reduction of higher-order coercions. For the sake of readability, we omit
the surrounding context E and the type heap ∆ from the rules. Moreover, since upward and
downward coercions are dual, we capture both directions in a single set of rules by writing ± as
a placeholder for either + or −. The convention is that all occurrences of ± in a single definition
must consistently be subsituted by the same sign. At the same time, occurrences of ∓ must be
replaced by the respective inverse sign.

Note that some of the reducts reuse the same variable α multiple times, to avoid explicit
renaming. That is, the variable convention does not automatically apply, and in some of the
later proofs we have to be careful to rename manually.

172

13.2. Higher-Order Type Coercions

values v ::= · · · | {v : α:Ω.α}+
τ
+
≈τ−

contexts E ::= · · · | {E : α:κ̃.τ̃}+
τ
+
≈τ−

| {E : α:κ̃.τ̃}−τ
+
≈τ−

(Rcoerce-norm) {v : α:κ̃.τ̃}±τ
+
≈τ

−
→ {v : α:κ̃.π}±τ

+
≈τ

−

where π 6= τ and ∆, α:κ̃ ⊲ τ̃ ⇛ π

(Rcoerce-psi) {v : α:κ̃.Ψ}±τ
+
≈τ

−
→ v

(Rcoerce-arrow) {v : α:κ̃.τ̃1 → τ̃2}±τ
+
≈τ−

→ λx1:τ̃1[τ±/α].{v {x1 : α:κ̃.τ̃1}∓τ
+
≈τ−

: α:κ̃.τ̃2}±τ
+
≈τ−

(Rcoerce-times) {v : α:κ̃.τ̃1 × τ̃2}±τ
+
≈τ−

→ let〈x1, x2〉 = v in 〈{x1 : α:κ̃.τ̃1}±τ
+
≈τ−

, {x2 : α:κ̃.τ̃2}±τ
+
≈τ−

〉

(Rcoerce-univ) {v : α:κ̃.∀α1:κ̃1.τ̃2}±τ
+
≈τ−

→ λα1:κ̃1[τ±/α].{v {α1 : α:κ̃.κ̃1}τ∓/τ±
: α:κ̃.τ̃ ′2}

±
τ
+
≈τ−

where τ̃ ′2 = τ̃2[{{α1 : α:κ̃.κ̃1}τ
∓

/τ
±

: α:κ̃.κ̃1}α/τ
∓
/α1]

(Rcoerce-exist) {v : α:κ̃.∃α1:κ̃1.τ̃2}±τ
+
≈τ−

→ let〈α1, x2〉 = v in 〈{α1 : α:κ̃.κ̃1}τ
±

/τ
∓
, {x2 : α:κ̃.τ̃ ′2}

±
τ
+
≈τ−

〉

where τ̃ ′2 = τ̃2[{α1 : α:κ̃.κ̃1}α/τ
∓
/α1]

(Rcoerce-split) {v : α:κ̃.P ′[α]}±τ
+
≈τ

−
→ {{v : α:κ̃.P ′[τ∓]}±τ

+
≈τ

−
: α′:κ̃.P ′[α′][τ

+
/α]}±τ

+
≈τ

−

(Rcoerce-swap) {v : α:κ̃.P ′[α′′]}±τ
+
≈τ

−
→ {{v′ : α:κ̃.P ′[τ ′′

−
]}±τ

+
≈τ

−
: α:Ω.α}+

P ′[α′′][τ
+

/α]≈P ′[τ ′′
−

][τ
+

/α]

where v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−
and ∆(α′′) = A(τ ′′

−
: κ̃′′)

(Rcoerce-ground) {v : α:κ̃.P [α]}±τ
+
≈τ

−
→ {v : α:Ω.α}+

P [τ
+
]≈P [τ

−
]

where P 6=
(Rcoerce-cancel) {v : α:Ω.α}−τ

+
≈τ−

→ v′

where v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−

Notes: 1. Omitted surrounding ∆;E[] in reduction rules.
2. All variables fresh and pairwise distinct, and α /∈ FV(P) and α′ /∈ FV(P ′).

Figure 13.8.: Reduction of higher-order coercions

To understand the rules, first note that they all depend on the structure of the residual type,
and most of them expect it to be in path form (Section 11.4.1). To separate concerns we use a
separate rule Rcoerce-norm for normalising the residual type appropriately. For all other rules,
we implicitly assume a side condition demanding the residual type actually to be in weak-head
normal form. That excludes cases where τ̃ is syntactically a path, but kind κ̃ is singleton and
enables further reduction.

The remaining rules can be categorised in three groups: monomorphic rules (Rcoerce-psi,
Rcoerce-arrow and Rcoerce-times), polymorphic rules (Rcoerce-univ and Rcoerce-exist),
and abstract rules (Rcoerce-split to Rcoerce-cancel). We will discuss the respective groups
in turn.

13.2.2. Monomorphic Coercions

The rules for simple monomorphic types are straightforward and similar to other canonical uses
of higher-order conversions that can be found in literature (Section 13.6).

For constant types like Ψ the coercion is redundant and can be dropped. The same would
apply to other primitive monomorphic types in the language. For example, some of our examples
silently assume an extension of the calculus with an integer type which is trivially treated like
this.

For other types reduction basically works by constructing an η-expansion of the constituent

173

13. Higher-Order Abstraction

term, and perform the necessary coercions in the expansion. For example, the reduct of coercing
a function f : τ̃1 → τ̃2 is the following:

λx:τ̃1[τ+/α].{f {x : α:κ̃.τ̃1}
−
τ
+
≈τ−

: α:κ̃.τ̃2}
+
τ
+
≈τ−

This is a function that takes an argument of the desired outward type τ̃1[τ±/α]), coerces it back,
applies the original function, and then coerces the result. Since the argument is input, it acts
in a contravariant fashion, which means that the coercion must go the other way, indicated by
the switch of polarity in the coercion.

13.2.3. Polymorphic Coercions

How does the definition of coercions extend to polymorphic types, i.e. residual types containing
quantifiers? In plain λω, reduction could actually happen in a straightforward manner analogous
to monomorphic functions and pairs [Ros03]:

{v : α:κ̃.∀α1:κ̃1.τ̃2}
±
τ
+
≈τ−

→ λα1:κ̃1.{v α1 : α:κ̃.τ̃2}
±
τ
+
≈τ−

(wrong-univ-1)

{v : α:κ̃.∃α1:κ̃1.τ̃2}
±
τ
+
≈τ−

→ let〈α1, x2〉 = v in 〈α1, {x2 : α:κ̃.τ̃2}
±
τ
+
≈τ−

〉 (wrong-exist-1)

Unfortunately, these definitions are no longer valid in the presence of dependent kinds, because
the placeholder α may occur in the quantifier’s classifier κ̃1, rendering the reduct ill-formed!
Consider the following example:

{v : α:Ω.∀α1:SΩ(α).α1}
+
τ
+
≈τ−

The above definition (wrong-univ-1) would produce

λα1:SΩ(α). v α1

which is bogus due to the unbound occurrence of the former placeholder α.
We might be tempted to repair this be simply substituting α with τ

+
, that is:

{v : α:κ̃.∀α1:κ̃1.τ̃2}
±
τ
+
≈τ−

→ λα1:κ̃1[τ+/α].{v α1 : α:κ̃.τ̃2}
±
τ
+
≈τ−

(wrong-univ-2)

Now we get

λα1:SΩ(τ
+
). v α1

which still is ill-typed, but now for slightly more subtle reasons: v is an expression of type
∀α1:SΩ(τ−).α1. Since the λ-bound α1 has kind SΩ(τ

+
), and τ

+
and τ− are incompatible types,

both singleton kinds clash at the polymorphic instantiation v α1 – the only type we can legally
apply to v is τ−.

Fortunately, the annotation gives us enough information to make a suitable replacement:
wherever the type variable α appears in the kind κ1 of the argument, we have to “substitute”
it by τ− itself (or by τ

+
in the downward case, respectively). In other words, we need to perform

a kind coercion:
{τ : α:κ.κ̃}±τ

+
/τ−

Given a type τ with inward kind κ̃[τ∓/α], it constructs a type τ ′ with outward kind κ̃[τ±/α].
We defer the definition of kind coercions to Section 13.3. For now, we simply assume it given

and use it to refine the coercion rule for universal types as follows:

{v : α:κ̃.∀α1:κ̃1.τ̃2}
±
τ
+
≈τ−

→ λα1:κ̃1[τ+/α].{v {α1 : α:κ̃.κ̃1}
−
τ
+
≈τ−

: α:κ̃.τ̃2}
±
τ
+
≈τ−

(wrong-univ-3)

The expansion of our running example will now be

174

13.2. Higher-Order Type Coercions

λα1:SΩ(τ
+
).v {α1 : α:Ω.SΩ(α)}−τ

+
≈τ−

This is better: the kind coercion produces a type of kind SΩ(τ−). That is, it will in fact produce
a type equivalent to τ−, so that we can rewrite this equivalently to

λα1:SΩ(τ
+
).v τ−

The instantiation is now well-formed.

Are we done? Unfortunately, no. Having successfully adapted the argument to the domain
of v, there now is a problem with its codomain: the type of v τ− is α1[τ−/α1] = τ−, according to
typing rule Einst. What we want to have, though, is a result of type τ

+
. More precisely, if we look

at the latest version of our coercion rule, we notice that the instantiation v {α1 : α:κ̃.κ̃1}
∓
τ
+
≈τ−

has type τ̃2[τ∓/α][{α1 : α:κ̃.κ̃1}
∓
τ
+
≈τ−

/α1] by rule Einst. However, the coercion on the result

requires inward type τ̃2[τ∓/α].

So the last fix to the rule requires finding a suitable residual type τ̃ ′2 in place of τ̃2 in the outer
coercion. Looking at the Eup’ typing rule, we can observe that it needs to fulfil both of the
following equations to match the inward and the outward typing requirements:

τ̃ ′2[τ∓/α] = τ̃2[τ∓/α][{α1 : α:κ̃.κ̃1}
∓
τ
+
≈τ−

/α1]

τ̃ ′2[τ±/α] = τ̃2[τ±/α]

Does such a type even exist?

Yes, a suitable solution is given in Figure 13.8. It again involves the use of kind coercions.
Hence, we explain the idea behind this solution in Section 13.3.

A similar rule is necessary to coerce at existential types. We will prove soundness of these
rules after having developed a suitable definition for kind coercions.

13.2.4. Abstract Coercions

Monomorphic and polymorphic coercions cover the cases where the residual type can be reduced
to a primitive ground type. There remain the cases where the residual type is abstract, i.e. a
constructor path of the form P [α] (recall the definition of path contexts P from Section 11.4.1).
Because reduction happens only for terms that are closed up to the type heap, α must be either
the placeholder variable of the coercion, or a type from the heap.

These cases are covered by the last group of reduction rules. Of this group, the rule
Rcoerce-cancel is the obvious generalisation of the original Rcancel rule and replaces it.
It eliminates two inverse abstract coercions that are in ground form, i.e. where the residual type
simply consists of the placeholder variable.

But how do we arrive at ground form? This is achieved by the other three rules. Intuitively,
they implement three steps of simplification:

1. Split the coercion into separate ones until each residual type contains at most one occur-
rence of the placeholder variable (rule Rcoerce-split).

2. Swap each coercion with nested coercions until the placeholder becomes the head of the
path (Rcoerce-swap).

3. Ground the coercions by lifting their residual type τ̃ to the abstract type annotation τ
+
≈τ−

(Rcoerce-ground).

175

13. Higher-Order Abstraction

In practice, these steps do not necessarily happen in that order, because splitting and swapping
may produce new nested coercions that again have to be normalised first.

The rule Rcoerce-split simplifies coercions such that the placeholder variable appears only
in the head of the residual path (note that α may appear in P ′ in this rule). It operates by
splitting the coercion into two, first coercing the type arguments, then the head of the residual
type. For instance, given an abstract type stack : A(list : Ω → Ω), the coercion expression

{nil : α:(Ω → Ω). α (α int)}+
stack≈list

of type stack (stack int) is split into

{{nil : α:(Ω → Ω). list (α int)}+
stack≈list

: α:(Ω → Ω). α (stack int)}+
stack≈list

Rule Rcoerce-swap is the most important one. It implements the actual reduction of coercions
over higher-order abstract types. For example, recall the expression

{s : α:Ω.stack α}+
date≈int

This is not a value, since the residual type is not plain α. But how can the coercion be pushed
inward? Fortunately, the canonical values lemma for the calculus implies that if s is a value, then
it is of the form {v : α:Ω.α}+

τ
+
≈τ−

, with well-typedness implying τ
+
≡ stack int . The operational

semantics can hence look up the representation type list of stack in the type heap, swap the
coercions and reduce the expression to

{{[5, 2, 7] : α:Ω.list α}+
date≈int

: α:Ω.α}+
stack date≈list date

which can then be reduced further. Rcoerce-swap generalises this idea to arbitrary type paths.
Effectively, it uses its unrestricted access to the type heap to “see through” the abstraction
barrier of another abstract type. This cannot be expressed by the programmer, because she
cannot access the heap.

We noted above that reduction only occurs for terms that are closed up to the type heap.
That in fact is crucial to make reduction of coercions complete. As a counter example, consider
the following:

λβ : Ω → Ω. {e : α:Ω. β α}+
τ
+
≈τ−

It is not possible to simplify the coercion before β has been instantiated with a primitive type
– reduction of higher-order coercions relies on η-expansion, and no such expansion is possible
for a term typed with a parametric type variable (for abstract types, as we saw, the operational
semantics knows their representation). That is the fundamental reason why we have to inte-
grate higher-order coercions as an extension to the system, and could not define them merely
as syntactic sugar. The latter would only be possible in a system without higher-order type
constructors.

13.3. Kind Coercions

In the previous sections we introduced higher-order abstraction kinds and higher-order type
coercions, and discovered that both require a notion of coercion on the type level, which we call
a kind coercion.

176

13.3. Kind Coercions

{τ : α:κ.Ω}τ
+

/τ−
:= τ

{τ : α:κ.SΩ(τ ′)}τ
+

/τ−
:= τ ′[τ

+
/α]

{τ : α:κ.Πα1:κ̃1.κ̃2}τ
+

/τ−
:= λα1:κ̃1[τ+/α].{τ {α1 : α:κ.κ̃1}τ−/τ

+
: α:κ.κ̃′2}τ

+
/τ−

where κ̃′2 = κ̃2[{{α1 : α:κ.κ̃1}τ−/τ
+

: α:κ.κ̃1}α/τ−
/α1]

{τ : α:κ.Σα1:κ̃1.κ̃2}τ
+

/τ−
:= 〈{τ ·1 : α:κ.κ̃1}τ

+
/τ−
, {τ ·2 : α:κ.κ̃′2}τ

+
/τ−

〉

where κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ−
/α1]

Figure 13.9.: Kind coercions

13.3.1. Definition and Semantics

As already touched on, a kind coercion is a type expression of the following form:

{τ : α:κ.κ̃}τ
+

/τ−

The expression takes type τ of the kind κ̃[τ−/α] and produces a type of kind κ̃[τ
+
/α], where both

the source type τ− and the target type τ
+

have kind κ. That is, we have a kinding rule as follows:

(Tcoerce*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
: κ Γ ⊢ τ− : κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
: κ̃[τ

+
/α]

We refer to the kind κ̃[τ−/α] of τ as the inward kind of the coercion, and call the result kind
κ̃[τ

+
/α] its outward kind.

In contrast to type coercions, where source and target types τ− and τ
+

have to be related by
a higher-order abstraction kind τ

+
: A(τ− : κ′), these types need not bear any relation beyond

both having kind κ in a kind coercion. Consequently, no polarity is needed for kind coercions,
because the inverse of {τ : α:κ.κ̃}τ

+
/τ−

is simply {τ : α:κ.κ̃}τ−/τ
+

. The reason is that kind

coercions need do not reduce to a basic form of coercion over an abstract type, but basically
express a sophisticated form of substitution between two arbitrary types.

Figure 13.10 gives three equivalence rules for kind coercions. The first one, TQcoerce*, is the
usual congruence rule. Note that it does not require the residual kinds κ̃ and κ̃′ to be equivalent
– they merely need to be equivalent after substituting the relevant types, which is a weaker
requirement. The other two rules express two important observations. Rule TQcoerce-drop*

says that a coercion between two equivalent kinds is redundant, i.e. an identity coercion that can
be dropped. Rule TQcoerce-cancel* is the type-level analogue to the cancellation reduction
rule (Rcoerce-cancel) for type coercions: it describes that nesting two inverse coercions also is
an identity transformation. All three equivalence rules are crucial to proving the basic validity
rule Tcoerce*, because they are exploited in the definition of quantified coercions.

A definition of kind coercions is given in Figure 13.9. Unlike type coercions, they can be
defined as mere syntactic sugar: on the kind level there are no abstract constructors that have
to be instantiated before simplification, so the shape of the residual kind is fixed. As we discussed
in Section 13.2.4, the potential of free higher-order forming the shape of a type preclude this for
type coercions. The definition is otherwise analogous to type coercions. Like the reduction of
the latter, it produces η-expansions. Particularly, it uses the same mystic substitution on the
codomain residual in the rules for quantifiers (here Π and Σ) that we have not explained yet.

177

13. Higher-Order Abstraction

Type Validity Γ ⊢ τ : κ

(Tcoerce*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
: κ Γ ⊢ τ− : κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
: κ̃[τ

+
/α]

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQcoerce*)

Γ ⊢ τ ≡ τ ′ : κ̃[τ−/α] Γ ⊢ κ ≡ κ′ : �
Γ, α:κ ⊢ κ̃ : � Γ, α:κ′ ⊢ κ̃′ : �

Γ ⊢ κ̃[τ
+
/α] ≡ κ̃′[τ ′

+
/α] : � Γ ⊢ κ̃[τ−/α] ≡ κ̃′[τ ′

−
/α] : �

Γ ⊢ τ
+
≡ τ ′

+
: κ Γ ⊢ τ− ≡ τ ′

−
: κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
≡ {τ ′ : α:κ′.κ̃′}τ ′

+
/τ ′

−

: κ̃[τ
+
/α]

(TQcoerce-drop*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
≡ τ− : κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
≡ τ : κ̃[τ−/α]

(TQcoerce-cancel*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
: κ Γ ⊢ τ− : κ

Γ ⊢ {{τ : α:κ.κ̃}τ
+

/τ−
: α:κ.κ̃}τ−/τ

+

≡ τ : κ̃[τ−/α]

Figure 13.10.: Rules for kind coercions

Take universal quantification. Analogous to coercions at ∀-types on the term level (Sec-
tion 13.2.3), the expansion of coercions at Π-kinds requires finding a residual kind κ̃′2 that fulfils
the following equations:

κ̃′2[τ−/α] = κ̃2[τ−/α][{α1 : α:κ.κ̃1}
−
τ
+
≈τ−

/α1]

κ̃′2[τ+/α] = κ̃2[τ+/α]

The first arises from the inward typing requirements of the surrounding coercion, the second
from the outward ones.

Why is the kind
κ̃′2 = κ̃2[{{α1 : α:κ.κ̃1}τ−/τ

+
: α:κ.κ̃1}α/τ−

/α1]

used in Figure 13.9 a solution to these equations? Its trick is that it employs two nested coercions,
and the outer one is using α as its target type. This is the placeholder of the surrounding
coercion. Consequently, when typing the surrounding coercion, α will either be substituted
by τ− when looking inward, or by τ

+
when looking outward. In the former case, the outer

of the two coercions will become an identity coercion that can be dropped according to rule
TQcoerce-drop*, leaving the first of the above equations. In the latter case on the other hand,
the outer coercion will become exactly the inverse of the inner one, causing both of them to
cancel out each other according to rule TQcoerce-cancel*, resulting in the right-hand side of
the second equation, as required.

Consider an example analogous to the one from Section 13.2.3 to demonstrate this:

{τ : α:κ.Πα1:SΩ(α).α1}β/τβ

178

13.3. Kind Coercions

According to Figure 13.9, this coercion expands to

λα1:SΩ(β).{τ {α1 : α:κ.SΩ(α)}τ/β : α:κ.{{α1 : α:κ.SΩ(α)}τ/β : α:κ.SΩ(α)}α/τ}β/τβ

By further expanding the coercions in the residual kind we arrive at

λα1:SΩ(β). {τ τβ : α:κ.α}β/τβ

which has the correct kind, because Πα1:SΩ(β).α1 ≡ Πα1:SΩ(β).β. In contrast, the same example
with a non-singleton quantifier,

{τ : α:κ.Πα1:Ω.α1}β/τβ

yields

λα1:Ω. {τ α1 : α:κ.α1}β/τβ

as required – here, τ is applied to α1, not τβ.
For Σ-kinds a similar trick is used, but this time we need only one coercion. The case is not

directly analogous to universals because our type pairs are not actually dependent: the first
component is not named (only their kinds are dependent). Consequently, we do not substitute
α1 in the second component’s residual kind, but simply τ ·1. If we had defined type pairs with
the syntax 〈α1=τ1, τ2〉 instead, then the expansions would be fully analogous.

We state correctness of our definitions of higher-order coercions as derivability of the well-
formedness and equivalence rules given in Figure 13.10:

Theorem 38 (Admissibility of Kind Coercion Rules).
The rules Tcoerce*, TQcoerce*, TQcoerce-drop* and TQcoerce-cancel* are derivable.

The proofs are by obvious induction and not techically difficult, but require a substantial
amount of tedious ‘computation’, due to the size of the rules, as well as some of the expansions
(particularly those involving dependencies), which multiply in complexity. See Appendix E.1.

13.3.2. Abstraction Kinds Revisited

After showing correctness of kind coercions we can prove admissibility of the rules from Fig-
ure 13.5:

Theorem 39 (Admissibility of Higher-Order Abstraction Kind Rules).
The rules Kabs*, KQabs*, KSabs* and KSabs-left* are derivable.

Interestingly, unlike singletons, the subkinding rule KSabs* does not allow the annotated kind
to vary. If we look at the expansions then we see that in the case of Σ-kinds a coercion is required
at the constituent kind κ̃2. However, two coerced types are generally not equivalent when going
to a subkind in the residual kind, e.g. consider {τ : α:Ω.Ω}τ

+
/τ−

, which expands directly to τ ,

versus {τ : α:Ω.SΩ(τ ′)}τ
+

/τ−
, expanding to the incompatible τ ′[τ

+
/α]. Consequently, rule KSabs*

would not hold if we allowed κ̃ to vary.

13.3.3. Type Coercions Revisited

We can also go back to the reduction of type coercions at polymorphic types now. They employ
the very same substitution that is used in the definition of kind coercions at dependent kind.

Recall the example from Section 13.2.3:

179

13. Higher-Order Abstraction

concrete kinds κ̃ ::= Ω | SΩ(τ) | Πα:κ̃.κ̃ | Σα:κ̃.κ̃
concrete types τ̃ ::= α | Ψ | τ̃ → τ̃ | τ̃ × τ̃ | ∀α:κ̃.τ̃ | ∃α:κ̃.τ̃

| λα:κ̃.τ̃ | τ̃ τ̃ | 〈τ̃ , τ̃〉 | τ̃ ·1 | τ̃ ·2

Figure 13.11.: Concrete kinds and types

{v : α:Ω.∀α1:SΩ(α).α1}
+
τ
+
≈τ−

According to the rules in Figure 13.8, this coercion reduces to

λα1:SΩ(β).{v {α1 : α:Ω.SΩ(α)}τ−/τ
+

: α:Ω.{{α1 : α:Ω.SΩ(α)}τ−/τ
+

: α:Ω.SΩ(α)}α/τ−
}τ

+
≈τ−

Inserting the definitions from Figure 13.9 yields

λα1:SΩ(β). {v τ− : α:Ω.α}+
τ
+
≈τ−

which again is correct because ∀α1:SΩ(α).α1 ≡ ∀α1:SΩ(α).α. Again, contrast this to a similar
example with an non-singleton quantifier:

{e : α:κ̃.∀α1:Ω.α1}
+
τ
+
≈τ−

which reduces to

λα1:Ω. {v α1 : α:Ω.α}+
τ
+
≈τ−

The kind coercions ensure that the polymorphic function v is instantiated with a proper type
in both cases.

13.3.4. The Concrete Kind Restriction

We have limited higher-order generativity and coercions to concrete kinds and types. They are
defined in Figure 13.11 and form a syntactic subclass of kinds and types free of occurrences of
abstraction kinds.

The fundamental reason for those restrictions is that we could not express kind coercions with
a non-concrete residual kind as derived. A coercion like

{τ : α:κ.A(τ ′)}τ
+

/τ−

cannot be expanded, because there is no extensionality principle for abstraction kinds and hence
no η-expansion possible – the same reason for that we had to make singletons over abstraction
kind primitive (Section 11.3.1). More specifically, there is no way to define such a coercion
by expansion, such that it obeys the rules from Figure 13.10 and allows deriving the following
judgement, for instance:

β:A(1), γ:A(β × β) ⊢ {γ : α:Ω.A(β × α)}1/β : A(β × 1)

We cannot construct any type expression from γ that would have the desired kind A(β × 1).
The restriction to concrete kinds propagates to the other extensions discussed in this chapter

when combining them:

• Abstraction kinds cannot be formed over non-concrete kinds (even if we made nested ab-
stract kinds primitive like the respective singletons), because the expansion for abstraction
kinds over Σ-kinds requires a coercion that uses it as its residual kind.

180

13.4. Properties

• Consequently, types cannot be generated at non-concrete kind with new, because their
abstraction kind could not be expressed. Neither can type coercions operate under non-
concrete kind.

• Type coercions cannot be performed at non-concrete types, because that may produce
kind coercions at non-concrete kind in the polymorphic cases (rules Rcoerce-univ and
Rcoerce-exist).

• Finally, type generation may not use non-concrete representation types, because the re-
duction rules Rcoerce-split and Rcoerce-swap substitute arbitrary representation types
from the heap into a residual type.

All these restrictions essentially boil down to the fact that the system simply does not sup-
port “nested” abstraction kinds of the form A(τ : A(τ ′)). The only possiblity to avoid these
restrictions would be to introduce kind coercions, like term-level coercions, as a primitive notion
– including the rules Tcoerce*, TQcoerce*, TQcoerce-cancel*, and TQcoerce-drop* as
integral parts of the type validity and equivalence judgements. The latter however would vastly
complicate the meta-theory of the system, especially with respect to the already complicated
type and kind equivalences.

On the other hand, it is not obvious what purpose nested abstraction kinds should serve –
they do not appear in the encoding of examples from ML, since abstraction kinds do not exist
in the source language. For that reason, the complication did not seem warranted in the context
of the current work, and we chose to restrict higher-order abstraction to the concrete types and
kinds defined in Figure 13.11. Essentially, this is a simple form of predicativity with respect to
abstraction kinds.

To maintain the restriction during reduction, type expressions also have to be restricted to
conrete types in other places of the calculus, namely for instantiation and existential formation.
All changes to the syntax of the combined system are collected in Appendix A.2.1. To avoid
notational clutter, we employ the convention that types named τ− or τ

+
are always concrete type

expressions.

13.4. Properties

After solving all the higher-orderness puzzles, what remains to be done now is to show that
soundness and opacity are maintained for the calculus with extensions. For the former, we first
need to adapt our type synthesis algorithm to the extended forms of coercions and generativity.

13.4.1. Algorithmic Type Synthesis

The extended expression forms for higher-order type generation and higher-order coercions are
richly decorated with explicit type annotations, so adaption of the algorithm for type synthesis
is easy. Figure 13.12 shows the changed rules. Showing Correctness is likewise easy:

Theorem 40 (Soundness of Algorithmic Type Synthesis with Higher-Order Abstraction).
Let Γ ⊢ �.

1. If Γ ⊲ e⇉ τ , then Γ ⊢ e : τ .

2. If Γ ⊲ e⇉⇉ π, then Γ ⊢ e : π.

3. If Γ ⊲ e⇇ τ with Γ ⊢ τ : Ω, then Γ ⊢ e : τ .

181

13. Higher-Order Abstraction

Type Synthesis

Γ ⊲ newα:κ̃ ≈ τ̃1 inτ e2 ⇉ τ if Γ ⊲ κ̃ : � and Γ ⊲ τ̃1 ⇇ κ̃ and Γ ⊲ τ ⇇ Ω
and Γ, α:A(τ1) ⊲ e2 ⇇ τ

Γ ⊲ {e : α:κ̃.τ̃}+
τ
+
≈τ−
⇉ τ̃ [τ

+
/α] if Γ ⊲ κ̃ : � and Γ ⊲ τ−⇇ κ̃ and Γ ⊲ τ

+
⇇ A(τ− : κ̃)

and Γ, α:κ̃ ⊲ τ̃ ⇇ Ω and Γ ⊲ e⇇ τ̃ [τ−/α]
Γ ⊲ {e : α:κ̃.τ̃}−τ

+
≈τ−
⇉ τ̃ [τ−/α] if Γ ⊲ κ̃ : � and Γ ⊲ τ−⇇ κ̃ and Γ ⊲ τ

+
⇇ A(τ− : κ̃)

and Γ, α:κ̃ ⊲ τ̃ ⇇ Ω and Γ ⊲ e⇇ τ̃ [τ
+
/α]

Figure 13.12.: Algorithmic type synthesis for higher-order abstraction

Theorem 41 (Completeness of Algorithmic Type Synthesis with Higher-Order Abstraction).

1. If Γ ⊢ e : τ , then Γ ⊲ e⇉ τ ′ with Γ ⊢ τ ′ ≤ τ : Ω.

2. If Γ ⊢ e : τ , then Γ ⊲ e⇉⇉ π with Γ ⊢ π ≤ τ : Ω.

3. If Γ ⊢ e : τ and Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊲ e⇇ τ ′.

The decidability result thus extends trivially.
Note that we do not need to adapt any other algorithm, because we did not change the type

language – we merely defined higher-order abstraction kinds and kind coercions as derived forms.

13.4.2. Soundness

As a preliminary, we state the obvious fact that the extensions do not compromise the Validity
property:

Proposition 42 (Validity with Higher-Order Abstraction).
If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

Preservation can be formulated unchanged:

Theorem 43 (Preservation with Higher-Order Abstraction).

1. If ∆ ⊢ e : τ and ∆; e→ ∆′; e′ with E = , then ∆′ ⊢ e′ : τ .

2. If · ⊢ C : τ and C → C ′, then · ⊢ C ′ : τ .

The new cases of the proof are quite involved, due to the complexity of the rules for quantified
types, and due to a non-trivial replacement property on type paths that is needed to proof
preservation for the abstract coercion rules. Note however, that the Representation Equivalence
property holds unchanged, thanks to higher-order abstraction kinds being derived.

For Progress, the canonical forms lemma has to be adapted to the generalised coercion syntax.
Higher-order coercions do not change the form of values otherwise:

Proposition 44 (Canonical Values with Higher-Order Abstraction).
Let Γ ⊢ v : τ .

1. If Γ ⊢ τ ≤ τ
+

: Ω and Γ ⊢ τ
+

: A(τ−), then v = {v1 : α:Ω.α}+
τ ′
+
≈τ ′

−

.

2. If Γ ⊢ τ ≤ Ψ : Ω, then v = ψ(v1).

182

13.5. Sealing

3. If Γ ⊢ τ ≤ τ1 → τ2 : Ω, then v = λx:τ ′1.e2.

4. If Γ ⊢ τ ≤ τ1 × τ2 : Ω, then v = 〈v1, v2〉.

5. If Γ ⊢ τ ≤ ∀α:κ1.τ2 : Ω, then v = λα:κ′1.e2.

6. If Γ ⊢ τ ≤ ∃α:κ1.τ2 : Ω, then v = 〈τ1, v2〉.

We can then state Progress as before:

Theorem 45 (Progress with Higher-Order Abstraction).
If ∆ ⊢ e : τ , then either e = v, or (∆; e) = (∆;E[e1]) → (∆′;E[e′1]) = (∆′; e′).

The proofs can be found in Appendix E.

13.4.3. Opacity

For the Opacity theorem, we only need to restate those parts that involve the term language:

Theorem 46 (Opacity with Higher-Order Abstraction).
Let Γ = α:Ω, x:α, f :α→1, and γi = [αi/α] ∪ [vi/x] ∪ [v′i/f] ∪ [α′ | α′ ∈ Dom(∆′)/α′] with
∆, γi(∆

′) ⊢ γi : Γ,∆′ and ∆; v′i vi →
∗ ∆; ⋄ for i ∈ {1, 2}.

1. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′) ⊢ γ1(e) : γ1(τ), then ∆, γ2(∆
′) ⊢ γ2(e) : γ2(τ).

2. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′); γ1(e) →
∗ ∆, γ1(∆

′),∆1; v
′, then ∆1 = γ1(∆

′′) and v′ = γ1(v) with
∆, γ2(∆

′); γ2(e) →
∗ ∆, γ2(∆

′), γ2(∆
′′); γ2(v).

13.5. Sealing

We now have all the necessary ingredients to define a sealing operator e :> τ in our calculus
that mirrors the respective operation in the ML module system and thus enables a posteriori
abstraction over arbitrary ‘signature’ types τ .

The definition can be seen in Figure 13.13. The only relevant case is for existential types: the
type in the existential is replaced by a newly generated abstract type of the same kind, and the
value is wrapped in a suitable coercion to adapt it to the abstract type, such that the overall
type is the same as the signature type. The correctness of the derived typing rule Eseal* in
Figure 13.14 proves this fact:

Theorem 47 (Admissibility of Sealing Rule).
The rule Eseal* is derivable.

For a concrete example of sealing at work, consider the expression

C :> COMPLEX

from Section 10.7. It expands to

let〈α, x〉 = C ′ in new c:Ω ≈ α in 〈c, {x : α:Ω.Dyn(COMPLEX)}+
c≈α〉

which then reduces to

new c:Ω ≈ real × real in 〈c, {〈. . .〉 : α:Ω.Dyn(COMPLEX)}+
c≈real×real

〉

183

13. Higher-Order Abstraction

e :> χ := e
e :> Ψ := e
e :> τ̃1 → τ̃2 := e
e :> τ̃1 × τ̃2 := e
e :> ∀α:κ̃1.τ̃2 := e
e :> ∃α:κ̃1.τ̃2 := let〈α, x〉 = e in∃α:κ̃1.τ̃2 newα′:κ̃1 ≈ α in∃α:κ̃1.τ̃2 〈α′, {x : α:κ̃1.τ̃2}

+
α′≈α〉

Figure 13.13.: Sealing

Term Validity Γ ⊢ e : τ

(Eseal*)
Γ ⊢ e : τ̃

Γ ⊢ e :> τ̃ : τ̃

Figure 13.14.: Derived rule for sealing

yielding a result equivalent (up to η-expansion) to the abstraction-safe definition of C ′ in Sec-
tion 10.6.

But the definition of sealing can cope with more complex examples. Consider the following
functor in ML that creates abstract collection types for sets and maps over a given element type:

functor Coll (type elem; . . .) :>
sig

type elem = elem
type set
type α map
. . .

end =
struct

type elem = elem
type set = elem tree
type α map = (elem × α) tree
. . .

end

A possible transliteration to λω
SAΨ is the following:

λelem : Ω. λx : τ. 〈〈elem , tree elem, λα : Ω. tree (elem × α)〉, 〈. . .〉〉
:> ∃α : (SΩ(elem) × Ω × (Ω → Ω)). τ ′

Note the quantification over a triple of types, one of which is singleton, and another is higher-
order. Expanding the definition of sealing produces a new-expression of the following form:

newα : (SΩ(elem) × Ω × (Ω → Ω)) ≈ 〈elem, tree elem, λα : Ω. tree (elem × α)〉
in 〈α, {x′ : α:(SΩ(elem) × Ω × (Ω → Ω)).τ ′}+

α 〉

The type name α, which apears free in τ ′, captures all types defined in the signature: α·1 is elem

and transparent, the abstract set is defined as α·2·1 while map is given by α·2·2.
According to our definition, sealing has no effect on functions and universal types. In ML this

would mean that sealing at functor signatures,

184

13.6. Discussion and Related Work

F :> fct X : S1 → S2

does not have any effect. Less trivial semantics are possible, but would require giving a more
elaborate translation scheme for modules. In Appendix B we sketch such a scheme, but a more
in-depth treatment is beyond the scope of this thesis.

Also note that for constructor types sealing has no effect either. This corresponds to the fact
that in ML, signatures are not higher-order. In Alice ML, abstract signatures (Section 3.3.2) in
fact enable limited abstract sealing:

functor F (signature S) (X : S) = X :> S

Such an example would roughly correspond to sealing with a type variable in the calculus. If we
wanted to have a semantics corresponding to Alice ML, it would be straightforward to realise
by making sealing primitive and turning the syntactic definition into reduction rules. However,
since this feature is of little practical utility and does not provide any new insight, we omit the
details.

13.6. Discussion and Related Work

13.6.1. Design Space

No question: the higher-order extensions we presented in this chapter are complex. Higher-order
coercions have surprisingly complicated reduction rules, and even higher-order abstraction kinds
are much less obvious than one might expect or like. It took us the better part of a year to
solve the puzzle, come up with the definitions and rules as presented in this chapter, and wade
through the lengthy proofs – including backtracking on several occasions.

A simpler system clearly would have been more desirable. Unfortunately, we see no way of
avoiding the complexity, short of depriving the system of essential expressiveness. There does
not appear to be much of a design space regarding coercions, most of the rules were forced upon
us by consistency and soundness requirements. We thus believe that the calculus we presented
is relatively canonical, despite its complexity.

Higher-order type coercions essentially describe the type transformation happening with seal-
ing. The main reason for their complexity is the presence of dependent kinds, which are due
to singletons and abstraction kinds. In particular, dependent kinds necessitate kind coercions,
the primary complication of the system. If we eliminated singletons then the calculus could
no longer express dynamic type sharing, which is one of the core aspects of the Alice ML type
system we wanted to model. If we eliminated abstraction kinds on the other hand, then gen-
erativity had to be accompanied by a more ad-hoc mechanism that might not have the desired
properties (see the discussion on related work below).

One might consider getting away without coercions altogether. The distinction between ab-
stract types and their representation is needed for the dynamic semantics, in order to ensure
abstraction safety in the presence of type analysis. In the static semantics, scoping and quantifi-
cation are sufficient. As the Opacity proof shows, coercions themselves are actually inessential
for abstraction safety. We could hence contemplate getting rid of coercions by making a distinc-
tion between the static and the dynamic semantics, e.g. by simply assigning new-bound type
variables singleton kind in the static typing rules, but opaque kind in the heap. This approach
does in fact work in a sufficiently conservative type system, as has been shown by Berg [Ber04]
(relying on special environment entries instead of singleton kinds). In the presence of dependent
kinds it is problematic, however. To see why, consider the following example:

newα:Ω ≈ int in case 666 : α of x : ((λβ : S(int). β)α). 0 else 1

185

13. Higher-Order Abstraction

Assuming that α is assigned kind S(int) by the static typing rules (i.e. considered equivalent to
int), this example – especially the contained type application – would be well-formed. However,
if the heap recorded the generated type opaquely as α:Ω like suggested, then the dynamic
condition to be checked for the reduction of the type case would become

α : Ω ⊢ α ≤ (λβ : S(int). β)α : Ω

Obviously, the application on the right-hand side of this judgement is not well-formed, because
the argument α does not have the kind S(int) required by the type function.

For a slightly more conservative solution, we might think about making coercions implicit.
Two subsumption-like typing rules aware of abstraction kinds would replace the explicit coercion
rules:

Γ ⊢ e : τ̃ [τ−/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ
+

: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ e : τ̃ [τ
+
/α]

Γ ⊢ e : τ̃ [τ
+
/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ

+
: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ e : τ̃ [τ−/α]

The problem with these rules is that, for obvious reasons, the unique or least typing property of
the type system would be lost, unless it is reformulated up to isomorphic types. Consequently,
it is not clear at all if and how to define a type checking algorithm that can cope with such
rules. It seems that the Type Analsis judgement (cf. Section 12.7) would not merely have to
check subtyping, but actually guess an arbitrarily long sequence of suitable tuples (κ̃, τ̃ , τ

+
, τ−),

possibly interleaved with subtyping, to solve the type constraint. Hence, it is not clear whether
such a system would enjoy decidable type checking.

In addition to these considerations, it has to be stressed that, even if we were able to get rid
of type coercions, we could still not get rid of kind coercions, because they already appear in
the definition of higher-order abstraction kinds. There is no obvious way to avoid them, and as
we said, they actually induce most of the complication.

As for their operational cost, coercions are required solely for the purpose of type check-
ing. Operationally, they can be considered identity functions. A type erasing translation of
type analysis [CWM98] could reasonably erase all abstractions and their corresponding coer-
cions and collapse the redundant η-expansions. Consequently, coercions do not impose the
potential operational overhead that was observed for the similar concept of boxing/unboxing
operations [MG98].

13.6.2. Related Work

Notions similar to coercions are a recurring scheme in literature. For example, Leroy uses an anal-
ogous tranformation technique to express higher-order boxing/unboxing optimizations [Ler92].
However, we are not aware of any work that uses something like coercions in the context of a
type system as expressive as ours, especially with respect to higher-order polymorphism and
dependent kinds.

Grossman, Morrisett and Zdancewic proposed abstraction brackets as a proof technique for
abstraction [GMZ00]. They present a calculus that uses annotated brackets as special syntax
for marking abstraction boundaries during reduction. These brackets are very similar to our
higher-order coercions over ground types. However, in their system abstraction brackets are
not polarised, i.e. it does not distinguish between upward and downward coercions. Instead, all
directly nested brackets are collapsed on reduction and annotated with the sequence of principals
that own the corresponding abstractions. This approach would become very complex in a rich

186

13.6. Discussion and Related Work

type system like the one we are considering, due to all the annotations involved. Their calculus
does not incorporate higher-order abstraction. More importantly, it cannot express dynamic
abstraction, but requires identifying a fixed set of principals statically, since technically, the
reduction relation has to be extended for each occurring abstraction. In the paper, they prove
a simple abstraction property they call Value Abstraction, which roughly is equivalent to the
secrecy half of our Opacity property, but without considering type analysis.

Crary [Cra00] presents a coercion calculus for eliminating subtyping and bounded quantifi-
cation. His language is equipped with intersection types, but does not feature higher-order
types or dependent kinds. Unlike our work, his calculus expresses higher-order coercions by a
separate coercion language, distinguished from terms. A canonicalization step then collapses
these coercion expressions into ordinary terms that are roughly equivalent to the reducts for our
higher-order coercions. The advantage of this separation is that Crary can immediately prove
an erasure result implying that coercions have no impact on the operational behaviour of terms.
However, it is not obvious whether his approach carries over to higher-order types. Interestingly,
Crary’s development requires defining a function map that applies a pair of positive and negative
coercions to all occurrences of a type variable in a type. This function thus is roughly equivalent
to our notion of kind coercion, but thanks to the absence of higher-order types and dependent
kinds its definition is much more straightforward than what is found in our system.

In earlier work [Ros03], we already presented a calculus for type generativity that also features
higher-order coercions. The system did not have abstraction kinds, so that the normal form of
values of abstract type was more ad-hoc, because the abstract type could not be normalised to
ground kind – basically, abstract values had the form {v : P [α]}+

α≈τ−
. Coercions in that calculus

also differed by not using a placeholder variable. Instead, they always coerced all occurrences
of the abstract type name. That resulted in much more complex reduction rules for abstract
coercions and the need for a simple built-in notion of kind coercions, which we were able to
avoid in λω

SAΨ.

Like us, Leifer et al. are concerned with abstraction-safe marshalling and employ type gen-
erativity to achieve it [LPSW03], although in a much more limited type system without poly-
morphism. As already described in Section 12.10.3, generativity is static in their system. Thus,
Grossman et al’s abstraction brackets are enough for dealing with type conversions over a stat-
ically fixed number of types.

Another system very close to ours was devised by Vytiniotis, Washburn & Weirich [VWW05].
They also combine a (richer) type analysis construct with type generativity and higher-order
coercions for achieving type abstraction. Their system distinguishes between primitive and
higher-order coercions: once its residual type is simplified to path form, a higher-order coercion
is reduced to primitive form. Primitive coercions look like the simple coercions from our basic
calculus, and ‘forget’ the residual type annotation: {v : α:(Ω → Ω).α τ}+

τ
+
≈τ−

reduces to {v}+
τ
+
≈τ−

.

In our system in contrast, all type information is kept, because it reduces to the equivalent of
{v}+

τ
+

τ≈τ−τ instead. The loss of type information results in a lack of a unique typing property. For

example, {3}+
α≈λβ.int

could be assigned infinitely many incompatible types in their system, among
them α bool and α (int→int). This probably does not compromise abstraction safety, but it is not
obvious that type checking is still decidable, considering higher-order cases like {3}+

α≈λβ:Ω→Ω.int

that may ask for higher-order unification to infer a suitable higher-order argument to α.

None of the aforementioned works incorporates singleton kinds or subtyping, and we are not
aware of any other work that combines dynamic type abstraction with full-fledged singletons
and thus is able to express Alice ML’s dynamic type sharing as explained in Section 4.4. Even
higher-order type generation is only considered by our own prior work and by Vytiniotis et al.,
as discussed above. Both these works do not describe systems with pair kinds and thus cannot

187

13. Higher-Order Abstraction

express module sealing in the uniform way we have shown here.

13.7. Summary

• Higher-order abstract types require higher-order generativity as primitive.

• Higher-order abstraction kinds are derivable, analogous to singletons.

• Higher-order type coercions express a posteriori abstraction.

• Dependent abstraction kinds and type coercions at quantified types necessitate kind coer-
cions.

• Kind coercions can be defined as non-trivial derived forms.

• Sealing is expressible with higher-order generativity and coercions.

188

14. Conclusion and Future Work

14.1. Conclusion

Over the course of the last decade, open programming has become increasingly important as
a paradigm for software development: net-oriented applications no longer run in isolation and
rarely consist of closed, statically composed programs. Nevertheless, open programming has
yet received relatively little attention in programming language design. In particular, there has
been little work on satisfactorily reconciling it with strong static typing.

In this dissertation, we have made an attempt at addressing that issue.

• We have designed Alice ML, a language that combines a strong type and module system
in the tradition of ML with advanced open programming concepts, which are realised by
a coherent and relatively minimal set of extensions. The language features higher-order
modules, light-weight concurrency, a first-class component system with dynamic linking,
and type-safe persistence and distribution. All these features have a comparably simple yet
flexible semantics and are arranged for practical use. The language guarantees type safety
for intra- and extra-linguistically created objects, and abstraction safety for intra-linguistic
ones.

• We have developed a formal semantics that captures the essentials of Alice ML’s type and
module system in the context of a polymorphic λ-calculus. In particular, we have given an
abstraction-safe operational semantics for sealing based on dynamic type generativity. It
incorporates the novel notion of abstraction kinds and includes a definition of higher-order
coercions that encompasses dependent kinds. We proved decidability, soundness and a
moderate abstraction property for this calculus.

• As part of a larger project, we have implemented the full-fledged language with the afore-
mentioned features and semantics in the Alice Programming System, which is available as
open source software.

We believe that our design is solid and represents a significant improvement over the main-
stream’s state of the art exemplified by Java and related languages. It also improves on previous
more research-oriented languages like Oz by reconciling open programming concepts with strong
typing.

We hope that future language designers will find some of the ideas in Alice ML inspiring.
There is no doubt that they will also find plenty of potential for improving on and extending
the presented design.

May types make the Net a better type of place!

14.2. Future Work

Our work has touched many areas of programming language design, theory, and implementation.
Naturally, this leaves many paths for future exploration.

189

14. Conclusion and Future Work

Possible future directions in the language design and implementation of Alice ML have already
been enumerated in Section 9.4. Here, we only consider the theoretical side represented by the
λω

SAΨ-calculus.

Theory-wise, the following questions look particularly interesting:

• Lazy types. One interesting aspect of Alice ML that we left out of our formal treatment is
laziness on the level of types. This seems to be a novel notion that has not been investigated
before. Neis recently has formalised lazy types in a higher-order λ-calculus [Nei06], but it
remains an open problem how to combine his approach elegantly with singleton kinds and
type generation, as present in the λω

SAΨ-calculus.

• Processes and local store. Our notion of type heap and pickles is simplistic because
it does not account for separate processes with distinct local stores. In a more realisitc
model, we could not assume the type heap to be global, and had to include parts of it into
pickles to transfer it to other processes. This raises interesting questions about consistency
of abstract type names and their representations across processes, which had to be checked
during unpickling.

A proper notion of process and local store also would uncover the problem of lack of
extra-linguistic abstraction safety (Sections 5.4 and 12.9), which is present in Alice ML
but not directly visible in the calculus. A formal model might point out ways to reduce
the problem.

• Strong abstraction property. We have proven Opacity as a moderate abstraction
property guaranteeing secrecy and authentication for abstract types at ground kind. A
challenging problem is to find appropriate techniques for proving stronger properties like
representation independence for the λω

SAΨ-calculus and higher-order abstractions created
with the derived sealing operator.

• Applicative sealing. The λω
SAΨ-calculus can express the equivalent of applicative func-

tors [Ler95, DCH03] only when they do not perform sealing. Applicative functors with
weak sealing [DCH03] have no counterpart in the calculus [DCH03]. It is not difficult to
add a form of “applicative generativity” by introducing a special form of the new-construct
that gets lifted out of functions prior to β-reduction using kind raising to abstract over
local type bindings – we devised such a system in earlier work [Ros03]. Unfortunately,
it would give an accurate account only for the dynamic semantics of weak sealing, but
does not adequately capture its static semantics. In order to target it in a phase splitting
encoding of modules like sketched in Appendix B, the static semantics would have to treat
it by a form of skolemisation.

Weak sealing would be interesting in the context of the component system we defined
for Alice ML. Currently, generativity can become an obstacle when exchanging values
of abstract type between different processes. Sharing requires exchanging the definining
structure of the abstract type as well, which can become tedious or even impractical
on larger scale, particularly if the implementation is not free of resources. Applicative
generativity would be a formal basis for supporting different levels of generativity in the
language, as available in Acute [SLW+05].

• Module calculi. Appendix B sketches an encoding of modules into our system. But
ultimately, we would like to be able to model ML modules more directly and apply our
approach to a module system like defined by Dreyer, Crary & Harper [DCH03]. In previ-
ous work, we already have extended their system with packages and pickling, but without

190

14.2. Future Work

considering type generation [Ros06]. The main complication with integrating type gen-
eration into a module calculus is that instead of dependent kinds we would have to deal
with a richer system of dependent module types. Higher-order cercions would appear on
all four language levels: terms, types, modules and signatures.

Obviously, addressing some of these issues would be a prerequisite for a complete formal
language specification of Alice ML, like we discussed in Section 9.4.2. Beyond that, they address
more universal questions of type system design for open programming that might be interesting
to investigate independent from Alice ML.

Achknowledgements

Many thanks go to my colleagues and students for coming up with valuable comments and
criticism on draft versions of this thesis, for long discussions about language design and theory,
and for countless hours of work on the project that once used to be known as ‘Stockhausen’: Leif
Kornstädt, Thorsten Brunklaus, Guido Tack, Didier Le Botlan, Jan Schwinghammer, Cătălin
Hriţcu, Marco Kuhlmann, Christian Lindig, Georg Neis, Andi Scharfstein. And of course, I
thank my advisor Gert Smolka for giving me the opportunity to do this work in the first place.

191

14. Conclusion and Future Work

192

A. Calculus Summary

A.1. Basic System

A.1.1. Syntax

base kinds κ̂ ::= Ω | A(τ)
kinds κ ::= κ̂ | Sκ̂(τ) | Πα:κ.κ | Σα:κ.κ
types τ ::= α | Ψ | τ → τ | τ × τ | ∀α:κ.τ | ∃α:κ.τ

| λα:κ.τ | ττ | 〈τ, τ〉 | τ ·1 | τ ·2
terms e ::= x | λx:τ.e | e e | 〈e, e〉 | let〈x, x〉 = e in e

| λα:κ.e | e τ | 〈τ, e〉 | let〈α, x〉 = e inτ e
| newα ≈ τ inτ e | {e}

+
τ | {e}−τ | case e:τ of x:τ.e elseτ e

| pickle e | ψ(e) | unpicklex⇐ e in e elseτ e
environments Γ ::= · | Γ, x:τ | Γ, α:κ

A.1.2. Derived Forms

Simple Sugar

kinds 1 := Πα:Ω.S(α)

types ⋄ := λα:Ω.α
1 := ∀α:Ω. α→ α

terms ⋄ := λα:Ω. λx:α. x
letx = e1 in e2 := let〈x, 〉 = 〈e1, ⋄〉 in e2

Higher-Order Singletons S(τ : κ)

S(τ : Ω) := SΩ(τ)
S(τ : A(τ ′)) := SA(τ ′)(τ)

S(τ : Sκ̂(τ
′)) := Sκ̂(τ

′)
S(τ : Πα:κ1.κ2) := Πα:κ1.S(τ α : κ2)
S(τ : Σα:κ1.κ2) := S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

193

A. Calculus Summary

A.1.3. Static Semantics

Environment Validity Γ ⊢ �

(Nempty)
· ⊢ �

(Ntype)
Γ ⊢ κ : �

Γ, α:κ ⊢ �
(α /∈ Dom(Γ)) (Nterm)

Γ ⊢ τ : Ω

Γ, x:τ ⊢ �
(x /∈ Dom(Γ))

Kind Validity Γ ⊢ κ : �

(Komega)
Γ ⊢ �

Γ ⊢ Ω : �
(Kabs)

Γ ⊢ τ : Ω

Γ ⊢ A(τ) : �
(Ksing)

Γ ⊢ τ : κ̂

Γ ⊢ Sκ̂(τ) : �

(Kpi)
Γ, α:κ1 ⊢ κ2 : �

Γ ⊢ Πα:κ1.κ2 : �
(Ksigma)

Γ, α:κ1 ⊢ κ2 : �

Γ ⊢ Σα:κ1.κ2 : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQomega)
Γ ⊢ �

Γ ⊢ Ω ≡ Ω : �

(KQabs)
Γ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ A(τ) ≡ A(τ ′) : �
(KQsing)

Γ ⊢ τ ≡ τ ′ : κ̂ Γ ⊢ κ̂ ≡ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≡ Sκ̂′(τ ′) : �

(KQpi)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

Γ ⊢ Πα:κ1.κ2 ≡ Πα:κ′1.κ
′
2 : �

(KQsigma)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

Γ ⊢ Σα:κ1.κ2 ≡ Σα:κ′1.κ
′
2 : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSomega)
Γ ⊢ �

Γ ⊢ Ω ≤ Ω : �

(KSabs)
Γ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ A(τ) ≤ A(τ ′) : �
(KSsing)

Γ ⊢ τ ≡ τ ′ : κ̂ Γ ⊢ κ̂ ≤ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≤ Sκ̂′(τ ′) : �

(KSabs-left)
Γ ⊢ τ : Ω

Γ ⊢ A(τ) ≤ Ω : �
(KSsing-left)

Γ ⊢ τ : κ̂ Γ ⊢ κ̂ ≤ κ̂′ : �

Γ ⊢ Sκ̂(τ) ≤ κ̂′ : �

(KSpi)
Γ ⊢ κ′1 ≤ κ1 : � Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : � Γ ⊢ Πα:κ1.κ2 : �

Γ ⊢ Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2 : �

(KSsigma)
Γ ⊢ κ1 ≤ κ′1 : � Γ, α:κ1 ⊢ κ2 ≤ κ′2 : � Γ ⊢ Σα:κ′1.κ

′
2 : �

Γ ⊢ Σα:κ1.κ2 ≤ Σα:κ′1.κ
′
2 : �

194

A.1. Basic System

Type Validity Γ ⊢ τ : κ

(Tvar)
Γ ⊢ �

Γ ⊢ α : Γ(α)
(Tpsi)

Γ ⊢ �

Γ ⊢ Ψ : Ω

(Tarrow)
Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 → τ2 : Ω
(Ttimes)

Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 × τ2 : Ω

(Tuniv)
Γ, α:κ1 ⊢ τ2 : Ω

Γ ⊢ ∀α:κ1.τ2 : Ω
(Texist)

Γ, α:κ1 ⊢ τ2 : Ω

Γ ⊢ ∃α:κ1.τ2 : Ω

(Tlambda)
Γ, α:κ1 ⊢ τ2 : κ2

Γ ⊢ λα:κ1.τ2 : Πα:κ1.κ2
(Tapp)

Γ ⊢ τ1 : Πα:κ1.κ2 Γ ⊢ τ2 : κ1

Γ ⊢ τ1 τ2 : κ2[τ2/α]

(Tpair)
Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2[τ1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ 〈τ1, τ2〉 : Σα:κ1.κ2

(Tfst)
Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ τ ·1 : κ1
(Tsnd)

Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ τ ·2 : κ2[τ ·1/α]

(Text-sing)
Γ ⊢ τ : κ̂

Γ ⊢ τ : Sκ̂(τ)

(Text-pi)
Γ ⊢ τ : Πα:κ1.κ

′
2 Γ, α:κ1 ⊢ τ α : κ2 Γ ⊢ Πα:κ1.κ

′
2 : �

Γ ⊢ τ : Πα:κ1.κ2

(Text-sigma)
Γ ⊢ τ ·1 : κ1 Γ ⊢ τ ·2 : κ2[τ ·1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ τ : Σα:κ1.κ2

(Tsub)
Γ ⊢ τ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ τ : κ′

Type Inclusion Γ ⊢ τ ≤ τ ′ : κ

(TSequiv)
Γ ⊢ τ ≡ τ ′ : κ

Γ ⊢ τ ≤ τ ′ : κ

(TSarrow)
Γ ⊢ τ ′1 ≤ τ1 : Ω Γ ⊢ τ2 ≤ τ ′2 : Ω

Γ ⊢ τ1 → τ2 ≤ τ ′1 → τ ′2 : Ω

(TStimes)
Γ ⊢ τ1 ≤ τ ′1 : Ω Γ ⊢ τ2 ≤ τ ′2 : Ω

Γ ⊢ τ1 × τ2 ≤ τ ′1 × τ ′2 : Ω

(TSuniv)
Γ ⊢ κ′ ≤ κ : � Γ, α:κ′ ⊢ τ ≤ τ ′ : Ω Γ ⊢ ∀α:κ.τ : Ω

Γ ⊢ ∀α:κ.τ ≤ ∀α:κ′.τ ′ : Ω

(TSexist)
Γ ⊢ κ ≤ κ′ : � Γ, α:κ ⊢ τ ≤ τ ′ : Ω Γ ⊢ ∃α:κ′.τ ′ : Ω

Γ ⊢ ∃α:κ.τ ≤ ∃α:κ′.τ ′ : Ω

(TStrans)
Γ ⊢ τ ≤ τ ′ : κ Γ ⊢ τ ′ ≤ τ ′′ : κ

Γ ⊢ τ ≤ τ ′′ : κ

195

A. Calculus Summary

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQvar)
Γ ⊢ �

Γ ⊢ α ≡ α : Γ(α)
(TQpsi)

Γ ⊢ �

Γ ⊢ Ψ ≡ Ψ : Ω

(TQarrow)
Γ ⊢ τ1 ≡ τ ′1 : Ω Γ ⊢ τ2 ≡ τ ′2 : Ω

Γ ⊢ τ1 → τ2 ≡ τ ′1 → τ ′2 : Ω

(TQtimes)
Γ ⊢ τ1 ≡ τ ′1 : Ω Γ ⊢ τ2 ≡ τ ′2 : Ω

Γ ⊢ τ1 × τ2 ≡ τ ′1 × τ ′2 : Ω

(TQuniv)
Γ ⊢ κ ≡ κ′ : � Γ, α:κ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ ∀α:κ.τ ≡ ∀α:κ′.τ ′ : Ω

(TQexist)
Γ ⊢ κ ≡ κ′ : � Γ, α:κ ⊢ τ ≡ τ ′ : Ω

Γ ⊢ ∃α:κ.τ ≡ ∃α:κ′.τ ′ : Ω

(TQlambda)
Γ ⊢ κ1 ≡ κ′1 : � Γ, α:κ1 ⊢ τ ≡ τ ′ : κ2

Γ ⊢ λα:κ1.τ ≡ λα:κ′1.τ
′ : Πα:κ1.κ2

(TQapp)
Γ ⊢ τ1 ≡ τ ′1 : Πα:κ1.κ2 Γ ⊢ τ2 ≡ τ ′2 : κ1

Γ ⊢ τ1 τ2 ≡ τ ′1 τ
′
2 : κ2[τ2/α]

(TQpair)
Γ ⊢ τ1 ≡ τ ′1 : κ1 Γ ⊢ τ2 ≡ τ ′2 : κ2[τ1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ 〈τ1, τ2〉 ≡ 〈τ ′1, τ
′
2〉 : Σα:κ1.κ2

(TQfst)
Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

Γ ⊢ τ ·1 ≡ τ ′·1 : κ1
(TQsnd)

Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α]

(TQext-sing)
Γ ⊢ τ : Sκ̂(τ

′′) Γ ⊢ τ ′ : Sκ̂(τ
′′)

Γ ⊢ τ ≡ τ ′ : Sκ̂(τ
′′)

(TQext-pi)
Γ, α:κ1 ⊢ τ α ≡ τ ′ α : κ2 Γ ⊢ τ : Πα:κ1.κ

′
2 Γ ⊢ τ ′ : Πα:κ1.κ

′′
2

Γ ⊢ τ ≡ τ ′ : Πα:κ1.κ2

(TQext-sigma)
Γ ⊢ τ ·1 ≡ τ ′·1 : κ1 Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α] Γ ⊢ Σα:κ1.κ2 : �

Γ ⊢ τ ≡ τ ′ : Σα:κ1.κ2

(TQsymm)
Γ ⊢ τ ≡ τ ′ : κ

Γ ⊢ τ ′ ≡ τ : κ
(TQtrans)

Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ τ ′ ≡ τ ′′ : κ

Γ ⊢ τ ≡ τ ′′ : κ

(TQsub)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ τ ≡ τ ′ : κ′

196

A.1. Basic System

Term Validity Γ ⊢ e : τ

(Evar)
Γ ⊢ �

Γ ⊢ x : Γ(x)

(Elambda)
Γ, x:τ1 ⊢ e : τ2

Γ ⊢ λx:τ1.e : τ1 → τ2
(Eapp)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

(Epair)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

(Eproj)
Γ ⊢ e1 : τ1 × τ2 Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

Γ ⊢ let〈x1, x2〉 = e1 in e2 : τ

(Egen)
Γ, α:κ ⊢ e : τ

Γ ⊢ λα:κ.e : ∀α:κ.τ
(Einst)

Γ ⊢ e : ∀α:κ.τ Γ ⊢ τ2 : κ

Γ ⊢ e τ2 : τ [τ2/α]

(Eclose)
Γ ⊢ τ : κ Γ ⊢ e : τ2

Γ ⊢ 〈τ, e〉 : ∃α:S(τ : κ).τ2

(Eopen)
Γ ⊢ e1 : ∃α:κ.τ2 Γ, α:κ, x:τ2 ⊢ e2 : τ Γ ⊢ τ : Ω

Γ ⊢ let〈α, x〉 = e1 inτ e2 : τ

(Enew)
Γ, α:A(τ1) ⊢ e : τ2 Γ ⊢ τ2 : Ω

Γ ⊢ newα ≈ τ1 inτ2 e : τ2

(Eup)
Γ ⊢ e : τ2 Γ ⊢ τ1 : A(τ2)

Γ ⊢ {e}+
τ1 : τ1

(Edn)
Γ ⊢ e : τ1 Γ ⊢ τ1 : A(τ2)

Γ ⊢ {e}−τ1 : τ2

(Ecase)
Γ ⊢ e1 : τ1 Γ, x:τ2 ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ case e1:τ1 of x:τ2.e2 elseτ e3 : τ

(Epickle)
Γ ⊢ e : ∃α:Ω.α

Γ ⊢ pickle e : Ψ
(Epsi)

Γ ⊢ �

Γ ⊢ ψ(v) : Ψ
(FV(v) ⊆ Dom(Γ))

(Eunpickle)
Γ ⊢ e1 : Ψ Γ, x:(∃α:Ω.α) ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ unpicklex⇐ e1 in e2 elseτ e3 : τ

(Esub)
Γ ⊢ e : τ Γ ⊢ τ ≤ τ ′ : Ω

Γ ⊢ e : τ ′

Configuration Validity Γ ⊢ C : τ

(Cvalid)
Γ,∆ ⊢ e : τ

Γ ⊢ ∆; e : τ

197

A. Calculus Summary

A.1.4. Derived Rules

Kind Validity Γ ⊢ κ : �

(Ksing*)
Γ ⊢ τ : κ

Γ ⊢ S(τ : κ) : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQsing*)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≡ κ′ : �

Γ ⊢ S(τ : κ) ≡ S(τ ′ : κ′) : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSsing*)
Γ ⊢ τ ≡ τ ′ : κ Γ ⊢ κ ≤ κ′ : �

Γ ⊢ S(τ : κ) ≤ S(τ ′ : κ′) : �
(KSsing-left*)

Γ ⊢ τ : κ

Γ ⊢ S(τ : κ) ≤ κ : �

Type Validity Γ ⊢ τ : κ

(Text-sing*)
Γ ⊢ τ : κ

Γ ⊢ τ : S(τ : κ)

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQext-sing*)
Γ ⊢ τ : S(τ ′′ : κ) Γ ⊢ τ ′ : S(τ ′′ : κ)

Γ ⊢ τ ≡ τ ′ : S(τ ′′ : κ)

(TQapp-beta*)
Γ, α:κ1 ⊢ τ2 : κ2 Γ ⊢ τ1 : κ1

Γ ⊢ (λα:κ1.τ2) τ1 ≡ τ2[τ1/α] : κ2[τ1/α]

(TQlambda-eta*)
Γ ⊢ τ2 : Πα:κ1.κ2

Γ ⊢ λα:κ1.τ2 α ≡ τ2 : Πα:κ1.κ2

(TQfst-beta*)
Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉·1 ≡ τ1 : κ1
(TQsnd-beta*)

Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉·2 ≡ τ2 : κ2

(TQpair-eta*)
Γ ⊢ τ : Σα:κ1.κ2

Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ : Σα:κ1.κ2

198

A.2. Higher-Order Extensions

A.1.5. Dynamic Semantics

Values and Contexts

values v ::= λx:τ.e | 〈v, v〉 | λα:κ.e | 〈τ, v〉 | {v}+
τ | ψ(v)

contexts E ::= | E e | v E | 〈E, e〉 | 〈v,E〉 | let〈x, x〉 = E in e
| E τ | 〈τ,E〉 | let〈α, x〉 = E in e
| {E}+

τ | {E}−τ | caseE:τ of x:τ.e else e
| pickleE | unpicklex⇐ E in e else e

path contexts P ::= | P τ | P ·1 | P ·2
heaps ∆ ::= · | ∆, α:A(τ)
configurations C ::= ∆; e

Reduction rules

(Rapp) ∆;E[(λx:τ.e) v] → ∆;E[e[v/x]]
(Rproj) ∆;E[let〈x1, x2〉=〈v1, v2〉 in e] → ∆;E[e[v1/x1][v2/x2]]
(Rinst) ∆;E[(λα:κ.e) τ] → ∆;E[e[τ/α]]
(Ropen) ∆;E[let〈α, x〉=〈τ, v〉 inτ ′ e] → ∆;E[e[τ/α][v/x]]
(Rnew) ∆;E[new α≈τ inτ ′ e] → ∆, α:A(τ);E[e]
(Rcancel) ∆;E[{{v}+

τ1}
−
τ2] → ∆;E[v]

(Rcase1) ∆;E[case v:τ1 of x:τ2.e1 elseτ e2] → ∆;E[e1[v/x]] if ∆ ⊢ τ1 ≤ τ2 : Ω
(Rcase2) ∆;E[case v:τ1 of x:τ2.e1 elseτ e2] → ∆;E[e2] if ∆ 6⊢ τ1 ≤ τ2 : Ω
(Rpickle) ∆;E[pickle v] → ∆;E[ψ(v)]
(Runpickle1) ∆;E[unpicklex⇐ψ(v) in e1 else e2] → ∆;E[e1[v/x]] if ∆ ⊢ v : ∃α:Ω.α
(Runpickle2) ∆;E[unpicklex⇐ψ(v) in e1 else e2] → ∆;E[e2] if ∆ 6⊢ v : ∃α:Ω.α

A.2. Higher-Order Extensions

A.2.1. Syntax

expressions e ::= · · · | e τ̃ | 〈τ̃ , e〉 | newα:κ̃ ≈ τ̃ inτ e | {e : α:κ̃.τ̃}+
τ̃≈τ̃ | {e : α:κ̃.τ̃}−τ̃≈τ̃

concrete kinds κ̃ ::= Ω | SΩ(τ) | Πα:κ̃.κ̃ | Σα:κ̃.κ̃
concrete types τ̃ ::= α | Ψ | τ̃ → τ̃ | τ̃ × τ̃ | ∀α:κ̃.τ̃ | ∃α:κ̃.τ̃

| λα:κ̃.τ̃ | τ̃ τ̃ | 〈τ̃ , τ̃ 〉 | τ̃ ·1 | τ̃ ·2

199

A. Calculus Summary

A.2.2. Derived Forms

Kind Coercions {τ : α:κ.κ̃}τ/τ

{τ : α:κ.Ω}τ
+

/τ−
:= τ

{τ : α:κ.SΩ(τ ′)}τ
+

/τ−
:= τ ′[τ

+
/α]

{τ : α:κ.Πα1:κ̃1.κ̃2}τ
+

/τ−
:= λα1:κ̃1[τ+/α].{τ {α1 : α:κ.κ̃1}τ−/τ

+
: α:κ.κ̃′2}τ

+
/τ−

where κ̃′2 = κ̃2[{{α1 : α:κ.κ̃1}τ−/τ
+

: α:κ.κ̃1}α/τ−
/α1]

{τ : α:κ.Σα1:κ̃1.κ̃2}τ
+

/τ−
:= 〈{τ ·1 : α:κ.κ̃1}τ

+
/τ−
, {τ ·2 : α:κ.κ̃′2}τ

+
/τ−

〉

where κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ−
/α1]

Higher-Order Abstraction Kinds A(τ : κ̃)

A(τ : Ω) := A(τ)
A(τ : SΩ(τ ′)) := SΩ(τ ′)

A(τ : Πα:κ̃1.κ̃2) := Πα:κ̃1.A(τ α : κ̃2)
A(τ : Σα:κ̃1.κ̃2) := Σα:A(τ ·1 : κ̃1).A({τ ·2 : α:κ̃1.κ̃2}α/τ ·1 : κ̃2)

Sealing e :> τ̃

e :> χ := e
e :> Ψ := e
e :> τ̃1 → τ̃2 := e
e :> τ̃1 × τ̃2 := e
e :> ∀α:κ̃1.τ̃2 := e
e :> ∃α:κ̃1.τ̃2 := let〈α, x〉 = e in∃α:κ̃1.τ̃2 newα′:κ̃1 ≈ α in∃α:κ̃1.τ̃2 〈α′, {x : α:κ̃1.τ̃2}

+
α′≈α〉

A.2.3. Static Semantics

Term Validity Γ ⊢ e : τ

(Enew’)
Γ ⊢ τ1 : κ̃ Γ, α:A(τ1 : κ̃) ⊢ e : τ2 Γ ⊢ τ2 : Ω

Γ ⊢ newα:κ̃ ≈ τ1 inτ2 e : τ2

(Eup’)
Γ ⊢ e : τ̃ [τ−/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ

+
: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ {e : α:κ̃.τ̃}+
τ
+
≈τ−

: τ̃ [τ
+
/α]

(Edn’)
Γ ⊢ e : τ̃ [τ

+
/α] Γ, α:κ̃ ⊢ τ̃ : Ω Γ ⊢ τ

+
: A(τ−:κ̃) Γ ⊢ τ− : κ̃

Γ ⊢ {e : α:κ̃.τ̃}−τ
+
≈τ−

: τ̃ [τ−/α]

200

A.2. Higher-Order Extensions

A.2.4. Derived Rules

Kind Validity Γ ⊢ κ : �

(Kabs*)
Γ ⊢ τ : κ̃

Γ ⊢ A(τ : κ̃) : �

Kind Equivalence Γ ⊢ κ ≡ κ′ : �

(KQabs*)
Γ ⊢ τ ≡ τ ′ : κ̃ Γ ⊢ κ̃ ≡ κ̃′ : �

Γ ⊢ A(τ : κ̃) ≡ A(τ ′ : κ̃′) : �

Kind Inclusion Γ ⊢ κ ≤ κ′ : �

(KSabs*)
Γ ⊢ τ ≡ τ ′ : κ̃ Γ ⊢ κ̃ ≡ κ̃′ : �

Γ ⊢ A(τ : κ̃) ≤ A(τ ′ : κ̃′) : �

(KSabs-left*)
Γ ⊢ τ : κ̃

Γ ⊢ A(τ : κ̃) ≤ κ̃ : �

Type Validity Γ ⊢ τ : κ

(Tcoerce*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
: κ Γ ⊢ τ− : κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
: κ̃[τ

+
/α]

Type Equivalence Γ ⊢ τ ≡ τ ′ : κ

(TQcoerce*)

Γ ⊢ τ ≡ τ ′ : κ̃[τ−/α] Γ ⊢ κ ≡ κ′ : �
Γ, α:κ ⊢ κ̃ : � Γ, α:κ′ ⊢ κ̃′ : �

Γ ⊢ κ̃[τ
+
/α] ≡ κ̃′[τ ′

+
/α] : � Γ ⊢ κ̃[τ−/α] ≡ κ̃′[τ ′

−
/α] : �

Γ ⊢ τ
+
≡ τ ′

+
: κ Γ ⊢ τ− ≡ τ ′

−
: κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
≡ {τ ′ : α:κ′.κ̃′}τ ′

+
/τ ′

−

: κ̃[τ
+
/α]

(TQcoerce-drop*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
≡ τ− : κ

Γ ⊢ {τ : α:κ.κ̃}τ
+

/τ−
≡ τ : κ̃[τ−/α]

(TQcoerce-cancel*)
Γ ⊢ τ : κ̃[τ−/α] Γ, α:κ ⊢ κ̃ : � Γ ⊢ τ

+
: κ Γ ⊢ τ− : κ

Γ ⊢ {{τ : α:κ.κ̃}τ
+

/τ−
: α:κ.κ̃}τ−/τ

+

≡ τ : κ̃[τ−/α]

Term Validity Γ ⊢ e : τ

(Eseal*)
Γ ⊢ e : τ̃

Γ ⊢ e :> τ̃ : τ̃

201

A. Calculus Summary

A.2.5. Dynamic Semantics

Values and Contexts

(values) v ::= · · · | 〈τ̃ , v〉 | {v : α:Ω.α}+
τ̃≈τ̃

(contexts) E ::= · · · | {E : α:κ̃.τ̃}+
τ̃≈τ̃ | {E : α:κ̃.τ̃}−τ̃≈τ̃

(heaps) ∆ ::= · | ∆, α:A(τ̃ : κ̃)

Reduction rules

(Rnew’) ∆;E[newα:κ̃≈τ̃ in e] → (∆, α:A(τ̃ : κ̃));E[e]

(Rcoerce-norm) {v : α:κ̃.τ̃}±τ
+
≈τ

−
→ {v : α:κ̃.π}±τ

+
≈τ

−

where π 6= τ and ∆, α:κ̃ ⊲ τ̃ ⇛ π

(Rcoerce-psi) {v : α:κ̃.Ψ}±τ
+
≈τ−

→ v

(Rcoerce-arrow) {v : α:κ̃.τ̃1 → τ̃2}±τ
+
≈τ−

→ λx1:τ̃1[τ±/α].{v {x1 : α:κ̃.τ̃1}∓τ
+
≈τ−

: α:κ̃.τ̃2}±τ
+
≈τ−

(Rcoerce-times) {v : α:κ̃.τ̃1 × τ̃2}±τ
+
≈τ−

→ let〈x1, x2〉 = v in 〈{x1 : α:κ̃.τ̃1}±τ
+
≈τ−

, {x2 : α:κ̃.τ̃2}±τ
+
≈τ−

〉

(Rcoerce-univ) {v : α:κ̃.∀α1:κ̃1.τ̃2}±τ
+
≈τ

−
→ λα1:κ̃1[τ±/α].{v {α1 : α:κ̃.κ̃1}τ∓/τ±

: α:κ̃.τ̃ ′2}
±
τ
+
≈τ

−

where τ̃ ′2 = τ̃2[{{α1 : α:κ̃.κ̃1}τ∓/τ±
: α:κ̃.κ̃1}α/τ∓

/α1]

(Rcoerce-exist) {v : α:κ̃.∃α1:κ̃1.τ̃2}±τ
+
≈τ−

→ let〈α1, x2〉 = v in 〈{α1 : α:κ̃.κ̃1}τ±/τ∓
, {x2 : α:κ̃.τ̃ ′2}

±
τ
+
≈τ−

〉

where τ̃ ′2 = τ̃2[{α1 : α:κ̃.κ̃1}α/τ∓
/α1]

(Rcoerce-split) {v : α:κ̃.P ′[α]}±τ
+
≈τ

−
→ {{v : α:κ̃.P ′[τ∓]}±τ

+
≈τ

−
: α′:κ̃.P ′[α′][τ+/α]}±τ

+
≈τ

−

(Rcoerce-swap) {v : α:κ̃.P ′[α′′]}±τ
+
≈τ

−
→ {{v′ : α:κ̃.P ′[τ ′′

−
]}±τ

+
≈τ

−
: α:Ω.α}+

P ′[α′′][τ
+

/α]≈P ′[τ ′′
−

][τ
+

/α]

where v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−
and ∆(α′′) = A(τ ′′

−
: κ̃′′)

(Rcoerce-ground) {v : α:κ̃.P [α]}±τ
+
≈τ

−
→ {v : α:Ω.α}+

P [τ
+
]≈P [τ

−
]

where P 6=
(Rcoerce-cancel) {v : α:Ω.α}−τ

+
≈τ−

→ v′

where v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−

Notes: 1. Omitted surrounding ∆;E[] in reduction rules for coercions.
2. All variables fresh and pairwise distinct, and α /∈ FV(P) and α′ /∈ FV(P ′).

202

B. Encoding Modules

In this section we give a brief sketch of a definition of an ML-like module language with packages
based on our calculus. Figure B.1 shows the syntax of that language. It closely follows the
idealised higher-order module system by Dreyer, Crary & Harper [DCH03], having dependent
products and sums to model functors and structures, and basic modules carrying a single term
or type. For functors, we distinguish between applicative and generative functors – the latter
are marked by a star. For simplicity, the syntax is linearised, i.e. subexpressions have to be let-
bound. We omit weak sealing, which does not exist in Alice ML and is not directly expressible
in our calculus.

As an example, the module

functor F (X : sig type t; val f : t → t; val x : t end) =
struct

type u = int
type v = int × t
structure M = struct type w = int; val g = fn x : int ⇒ x end

val h = fn y : int ⇒ (3, X.f(X.x))
end

can be expressed almost direclty as

λ∗X : (Σt : [[Ω]].Σf : t! → t!. t!).
〈[int],
[int ×X·1!],
〈[int], [λx : int . x]〉,
[λy : int . 〈3,X·2·1!(X·2·2!)〉]〉

where we omit brackets for nested pairs. One possible signature for this module expression is

Π∗X : (Σt : [[Ω]].Σf : t! → t!. t!).
Σu : [[Ω]].
Σv : [[SΩ(u! ×X·1!)]].
ΣM : (Σw : [[Ω]]. u! → w!).
[[u! → v!]]〉

which corresponds to the following Alice ML code:

fct (X : sig type t; val f : t → t; val x : t end) →
sig

type u
type v = u × t
structure M : sig type w; val g : u → w end

val h : u → v
end

Figure B.2 defines the complete module syntax as syntactic sugar on top of our calculus.
The definition is inspired by the phase splitting transformation for modules given in litera-
ture [HMM90, Sto05, Dre05], which separates every module in its static part of type definitions
and its dynamic part of value definitions.

203

B. Encoding Modules

(signatures) σ ::= [[κ]] | [[τ]] | ΠX:σ.σ | Π∗X:σ.σ | ΣX:σ.σ
(modules) m ::= X | [τ] | [e] | λX:σ.m | λ∗X:σ.m:σ | X1X2 | 〈X1,X2〉 | X·1 | X·2 |

letX = m in m | X :> σ | unpack e : σ
(types) τ ::= · · · | m! | package
(terms) e ::= · · · | X! | letX = m in e | packX : σ

Figure B.1.: Syntax of modules

In our definition, the static part σS of a signature σ extracts the kind of its type component,
while the dynamic part σD reflects the type of its value component, parameterised over the
extracted static part.

For modules, the static part mS accumulates all type definitions, whereas the dynamic part
mD contains the type and value definitions. The latter allows pure and impure modules to be
treated uniformly. Impure modules are those containing occurrences of sealing or unpacking,
and thus not allowing type projections. We employ a simple notion of unit kind, analogous to
the unit type (Section 12.1), to encode modules that carry no type information:

1 := Πα:Ω.S(α)

⋄ := λα:Ω.α

Note that generative functors carry no type inforamtion, because they are impure and thus
cannot appear in a projection.

We take the liberty to ignore type annotations at let and new in the translation. To cope with
them, the simple syntax-directed definition had to be refined to be performed by induction on
typing derviations. Since annotations merely guide type checking, but are otherwise irrelevant,
this is a minor issue.

The translation of modules also contains a third type components, which accumulates all
types occurring in the module or its signature. This is necessary to deal with local types
that are subject to the avoidance problem [DCH03]. In other words, our translation already
incorporates the additional elaboration phase proposed by Dreyer, Crary & Harper for addressing
the avoidance problem by inserting additional quantifiers. In combination, the translation mD

yields an existential triple 〈τH , τS, eD〉, with τS and eD representing the dynamic and static parts
of the module, and τH capturing all (potentially hidden) type names in them. The invariant is
that any type names or variables bound locally in mD are free in τH , such that their scope can
extend. The translation lifts and accumulates all local τH types until a term-level let-construct
binds a module, where the body’s type has to be annotated with a type not mentioning X, such
that the local types cannot escape their scope further. For example, the module expression

letX = 〈[int], [3]〉 :> Σt:Ω.t! in [letX2 = X·2 in X2!]

is – with a few simplifications through partial reduction – represented as

let〈β1, 〈αX , x〉〉 = new t:(Ω × 1) ≈ int in 〈〈t, ⋄〉, 〈⋄, {3}+
t≈int

〉〉
in 〈〈β1, ⋄〉, 〈⋄, 〈⋄, let〈β2, 〈α2, x2〉〉 = 〈αX ·2, x·2〉 in x2〉〉〉

Thanks to β1 being included in the final existential, this expression can be assigned quantified
type

∃β:(Ω × Ω).∃α:1.β·1

204

Without the outer quantifier no closed type could be assigned.
The novel aspects of the translation are with respect to the sealing operator, which dynamically

generates fresh type names as investigated in Section 13.5, and the addition of packages, which
follows the definitions of packages given in Section 12.3.2. Note however how the pack construct
refines the package signature such that its static part becomes transparent with singleton kind.
This implements the behaviour discussed in Section 4.4.1.

We conjecture that the translation is correct relative to a module type system as the one given
by Dreyer, Crary & Harper and extended with packages by ourselves [Ros06], but leave a proof
for future work.

205

B. Encoding Modules

Signatures

[[κ]]S := κ
[[τ]]S := 1
(Πx:σ1.σ2)

S := ΠαX :σS
1 .σ

S
2

(Π∗x:σ1.σ2)
S := 1

(Σx:σ1.σ2)
S := ΣαX :σS

1 .σ
S
2

[[κ]]D(τS) := 1
[[τ]]D(τS) := τ
(Πx:σ1.σ2)

D(τS) := ∀αX :σS
1 .σ

D
1 (αX) → ∃α2:S(ααX : σS

2).σD
2 (α2)

(Π∗x:σ1.σ2)
D(τS) := ∀αX :σS

1 .σ
D
1 (αX) → ∃α2:σ

S
2 .σ

D
2 (α2)

(Σx:σ1.σ2)
D(τS) := σD

1 (τS ·1) × σD
2 (τS ·2)[τS ·1/αX]

Modules

XS := αX

[τ]S := τ
[e]S := ⋄
(λX :σ.m)S := λαX :σS .mS

(λ∗X :σ1.m:σ2)
S := ⋄

(X1X2)
S := αX1 αX2

〈X1, X2〉S := 〈αX1 , αX2〉
(X ·1)S := αX ·1
(X ·2)S := αX ·2
(letX=m1 in m2)

S := mS
1 [mS

2 /αX]

XD := 〈⋄, 〈αX , x〉〉
[τ]D := 〈⋄, 〈τ, ⋄〉〉
[e]D := 〈⋄, 〈⋄, e〉〉
(λX :σ.m)D := 〈⋄, 〈(λαX :σS .mS), λαX :σS .λx:σD(αX). let〈β, 〈α′, x′〉〉 = mD in 〈α′, x′〉〉〉
(λ∗X :σ1.m:σ2)

D := 〈⋄, 〈⋄, λαX :σS
1 .λx:σ

D
1 (αX). let〈β, 〈α′, x′〉〉 = mD in∃α:σS

2 .σD

2 (α) 〈α
′, x′〉〉〉

(X1X2)
D := let〈α′, x′〉 = x1 αX2 x2 in 〈α′, 〈α′, x′〉〉

〈X1, X2〉D := 〈⋄, 〈〈αX1 , αX2〉, 〈x1, x2〉〉〉
(X ·1)D := 〈⋄, 〈αX ·1, x·1〉〉
(X ·2)D := 〈⋄, 〈αX ·2, x·2〉〉
(letX=m1 in m2)

D := let〈β1, 〈αX , x〉〉 = mD
1 in let〈β2, 〈α

′, x′〉〉 = mD
2 in 〈〈β1, β2〉, 〈α

′, x′〉〉
(X :> σ)D := newα′:σS ≈ αX in 〈α′, 〈α′, {x : α:σS .σD(α)}+

α′〉〉
(unpack e : σ)D := let〈α, x〉 = e in

casex:α of x′:(∃α′:σS .σD(α′)). let〈α′′, x′′〉 = x′ in 〈α′′, 〈α′′, x′′〉〉 else ⊥
Types

m! := mS

package := ∃α:Ω.α

Terms

X ! := x
letX = m inτ e := let〈β, 〈αX , x〉〉 = mD inτ e
packX : σ := 〈∃α:S(αX : σS).σD(α), 〈αX , x〉〉

Figure B.2.: Translation of modules

206

C. Proofs of Type Level Properties

This and the following two appendices contain complete proofs for all theorems and propositions
stated in the main body of this thesis. Some of them are reformulated or ordered in slightly
different ways, though, in order to resolve certain inter-dependencies. An alphabetic list of all
propositions can be found in Appendix F for easy reference.

C.1. Declarative Properties

We start with a number of basic properties of the calculus. The presentation closely follows
Stone & Harper [SH06]. We discuss deviations where they occur.

C.1.1. Preliminaries

First we present several generic properties that hold for all judgements in the system, including
the term validity judgement presented in Section 12.1 (Figure 12.2). To ease formulation, we
use J to range over all judgement forms by defining it as follows:

J ::= � | κ : � | κ ≡ κ : � | κ ≤ κ : � | τ : κ | τ ≡ τ : κ | τ ≤ τ : κ | e : τ

The definitions of substitution J [t/z] and free variables FV(J) are lifted in the obvious way.
Many proofs will proceed by induction over kinds. Since these proofs often involve substitu-

tions of type variables, we have to induct over the size of kinds, which is defined in a manner
that is invariant under such substitution:

Definition 1 (Kind Size).
The size of a kind is defined inductively as follows:

Size(κ̂) = 1

Size(A(τ)) = 2

Size(Sκ̂(τ)) = 2 + Size(κ̂)

Size(Πα:κ1.κ2) = Size(κ1) + Size(κ2) + 1

Size(Σα:κ1.κ2) = Size(κ1) + Size(κ2) + 1

Proposition 2 (Environment Validity).

1. Every proof of Γ ⊢ J contains a subderivation Γ ⊢ �.

2. Every proof of Γ1, α:κ,Γ2 ⊢ J contains a strict subderivation of Γ1 ⊢ κ : �.

3. Every proof of Γ1, x:τ,Γ2 ⊢ J contains a strict subderivation of Γ1 ⊢ τ : Ω.

Proof. Each by straightforward induction on the derivation.

Lemma 3 (Variable Containment).
If Γ ⊢ J , then FV(J) ⊆ Dom(Γ).

207

C. Proofs of Type Level Properties

Proof. By straightforward induction on the derivation, using Environment Validity in case of
binders and variables.

Proposition 4 (Reflexivity).

1. If Γ ⊢ κ : �, then Γ ⊢ κ ≡ κ′ : �.

2. If Γ ⊢ κ : �, then Γ ⊢ κ ≤ κ′ : �.

3. If Γ ⊢ τ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

4. If Γ ⊢ τ : κ, then Γ ⊢ τ ≤ τ ′ : κ.

Proof. (1)–(3) by straightforward simultaneous induction on the derivation, using Environment
Validity in case of binders; (4) trivially by rule TSequiv, using (3).

Lemma 5 (Renaming).

1. If Γ1, α:κ,Γ2 ⊢ J , then there is a derivation of equal structure of Γ1, α
′:κ,Γ[α′/α] ⊢

J [α′/α] for every α′ /∈ Dom(Γ1) ∪ Dom(Γ2).

2. If Γ1, x:τ,Γ2 ⊢ J , then there is a derivation of equal structure of Γ1, x
′:τ,Γ[x′/x] ⊢ J [x′/x]

for every x′ /∈ Dom(Γ1) ∪ Dom(Γ2).

Proof. Each by straightforward induction on the derivation.

Lemma 6 (Weakening).

1. If Γ ⊢ J and Γ′ ⊢ � such that Γ ⊆ Γ′, then Γ′ ⊢ J .

2. If Γ1, α:κ,Γ2 ⊢ J and Γ1 ⊢ κ′ : � such that Γ1 ⊢ κ′ ≤ κ : �, then Γ1, α:κ′,Γ2 ⊢ J .

3. If Γ1, x:τ,Γ2 ⊢ J and Γ1 ⊢ τ ′ : � such that Γ1 ⊢ τ ′ ≤ τ : �, then Γ1, x:τ
′,Γ2 ⊢ J .

Proof. Each by straightforward induction on the derivation, using Renaming.

Lemma 7 (Environment Modification).

1. If Γ, α:κ ⊢ � and Γ ⊢ κ′ : �, then Γ, α:κ′ ⊢ �.

2. If Γ, α:κ ⊢ J and Γ ⊢ κ′ : � and α′ /∈ Dom(Γ, α:κ), then Γ, α:κ′, α′:κ ⊢ J [α′/α].

Proof. Straightforward, using Weakening and Renaming.

We define two auxiliary judgements on substitutions as follows:

Definition 2 (Substitution Validity).
The judgement Γ′ ⊢ γ : Γ holds if and only if all of the following conditions hold:

1. Γ′ ⊢ �

2. ∀α ∈ Dom(Γ),Γ′ ⊢ γ(α) : γ(Γ(α)) and γ(α) = τ

3. ∀x ∈ Dom(Γ),Γ′ ⊢ γ(x) : γ(Γ(x))

Definition 3 (Substitution Equivalence).
The judgement Γ′ ⊢ γ ≡ γ′ : Γ holds if and only if all of the following conditions hold:

1. Γ′ ⊢ γ : Γ

208

C.1. Declarative Properties

2. Γ′ ⊢ γ′ : Γ

3. ∀α ∈ Dom(Γ),Γ′ ⊢ γ(α) ≡ γ′(α) : γ(Γ(α))

4. ∀x ∈ Dom(Γ),Γ′ ⊢ γ(x) ≡ γ′(x) : γ(Γ(x))

We can now state the following simple facts about substitutions:

Proposition 8 (Substitutability).

1. If Γ ⊢ J and Γ′ ⊢ γ : Γ, then Γ′ ⊢ γ(J).

2. If Γ1, α:κ,Γ2 ⊢ � and Γ1 ⊢ τ : κ, then Γ1,Γ2[τ/α] ⊢ �.

Proof. Both by straightforward induction on the derivation. For rule Epsi note that applying
a substitution to a value always produces a value.

Lemma 9 (Substitution Extensibility). If Γ′ ⊢ γ ≡ γ′ : Γ and α /∈ Dom(Γ′) and Γ′ ⊢ γ(κ) ≡
γ′(κ) : � with Γ′ ⊢ γ(κ) : � and Γ′ ⊢ γ′(κ) : �, then:

1. Γ′, α:γ(κ) ⊢ γ ∪ [α/α] ≡ γ′ ∪ [α/α] : Γ, α:κ

2. Γ′, α:γ′(κ) ⊢ γ ∪ [α/α] ≡ γ′ ∪ [α/α] : Γ, α:κ.

Proof. Straightforward, using Ntype and Weakening.

For some proofs we need inversion principles on subkinding and on the type validity judgement.
The proof of the latter relies on the following simple lemma:

Lemma 10 (Subderivations).

1. Every proof of Γ ⊢ τ1 τ2 : κ contains a strict subderivation Γ ⊢ τ1 : κ1.

2. Every proof of Γ ⊢ τ ·1 : κ contains a strict subderivation Γ ⊢ τ : κ1.

3. Every proof of Γ ⊢ τ ·2 : κ contains a strict subderivation Γ ⊢ τ : κ1.

Proof. By straightforward simultaneous induction on the derivation.

Proposition 11 (Kind Inclusion Inversion). Let Γ ⊢ κ′ ≤ κ : �.

1. If κ = Ω, then κ′ = Ω or κ′ = Sκ̂(τ
′).

2. If κ = A(τ), then κ′ = A(τ ′) with Γ ⊢ τ ′ ≡ τ : Ω, or κ′ = SA(τ ′)(τ
′′) with Γ ⊢ A(τ ′) ≤ κ : Ω

and Γ ⊢ τ ′′ : A(τ ′).

3. If κ = Sκ̂(τ), then κ′ = Sκ̂′(τ ′) with Γ ⊢ κ̂′ ≤ κ̂ : Ω and Γ ⊢ τ ′ ≡ τ : κ̂′.

4. If κ = Πα:κ1.κ2, then κ′ = Πα:κ′1.κ
′
2 with Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : �.

5. If κ = Σα:κ1.κ2, then κ′ = Σα:κ′1.κ
′
2 with Γ ⊢ κ1 ≤ κ′1 : � and Γ, α:κ1 ⊢ κ2 ≤ κ′2 : �.

Proof. By simultaneous induction on the derivation.

Proposition 12 (Type Validity Inversion). Let Γ ⊢ τ : κ.

1. If τ = α, then Γ ⊢ � and α ∈ Dom(Γ).

2. If τ = Ψ, then Γ ⊢ �.

209

C. Proofs of Type Level Properties

3. If τ = τ1 → τ2, then Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω.

4. If τ = τ1 × τ2, then Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω.

5. If τ = ∀α:κ1.τ2, then Γ, α:κ1 ⊢ τ2 : Ω.

6. If τ = ∃α:κ1.τ2, then Γ, α:κ1 ⊢ τ2 : Ω.

7. If τ = λα:κ1.τ2, then Γ, α:κ1 ⊢ τ2 : κ2.

8. If τ = τ1 τ2, then Γ ⊢ τ1 : Πα:κ2.κ1 and Γ ⊢ τ2 : κ2.

9. If τ = 〈τ1, τ2〉, then Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2[τ1/α].

10. If τ = τ1·1, then Γ ⊢ τ1 : Σα:κ1.κ2.

11. If τ = τ1·2, then Γ ⊢ τ1 : Σα:κ1.κ2.

Proof. Each by straightforward induction on the derivation, using Subderivations in the case of
rule Text-sigma.

C.1.2. Validity and Functionality

We next show two central invariants of the type system. Validity states that any phrase ap-
pearing in a derivable judgement is well-formed. Functionality says that applying equivalent
substitutions to equivalent phrases yields equivalent phrases. Likewise, any inclusion relation
on phrases is maintained by equivalent substitutions.

As in Stone & Harper, the proof has to be broken up by first showing a restricted version of
Functionality:

Proposition 13 (Simple Functionality). Let Γ′ ⊢ γ ≡ γ′ : Γ.

1. If Γ ⊢ �, then Γ′ ⊢ γ′ ≡ γ : Γ.

2. If Γ ⊢ κ : �, then Γ′ ⊢ γ(κ) ≡ γ′(κ) : �.

3. If Γ ⊢ κ : �, then Γ′ ⊢ γ(κ) ≤ γ′(κ) : �.

4. If Γ ⊢ τ : κ, then Γ′ ⊢ γ(τ) ≡ γ′(τ) : γ(κ).

5. If Γ ⊢ τ : κ, then Γ′ ⊢ γ(τ) ≤ γ′(τ) : γ(κ).

Proof. By simultaneous induction on the derivations.

1. case Nempty: Γ = ·

– by definition of Substitution Equivalence, Γ′ ⊢ γ : Γ and Γ′ ⊢ γ′ : Γ

– since Dom(Γ) =, trivially ∀α ∈ Dom(Γ),Γ′ ⊢ γ′(α) ≡ γ(α) : �
and ∀x ∈ Dom(Γ),Γ′ ⊢ γ′(x) ≡ γ(x) : γ′(Γ(x))

– hence Γ′ ⊢ γ′ ≡ γ : Γ

case Ntype: Γ = Γ1, α:κ

– by inversion, Γ1 ⊢ κ : �

– by Environment Validity, Γ1 ⊢ �

– by definition of Substitution Equivalence, Γ′ ⊢ γ ≡ γ′ : Γ1

– by induction, Γ′ ⊢ γ′ ≡ γ : Γ1

– by definition of Substitution Equivalence, Γ′ ⊢ γ(α) ≡ γ′(α) : �

210

C.1. Declarative Properties

– by Symmetry, Γ′ ⊢ γ′(α) ≡ γ(α) : �

– hence Γ′ ⊢ γ′ ≡ γ : Γ

case Nterm: Γ = Γ1, x:τ

– by inversion, Γ1 ⊢ τ : Ω

– by Environment Validity, Γ1 ⊢ �

– by definition of Substitution Equivalence, Γ′ ⊢ γ ≡ γ′ : Γ1

– by induction, Γ′ ⊢ γ′ ≡ γ : Γ1

– by definition of Substitution Equivalence, Γ′ ⊢ γ(x) ≡ γ′(x) : γ(τ)

– by Symmetry, Γ′ ⊢ γ′(x) ≡ γ(x) : γ(τ)

– by (a) and induction (3), Γ′ ⊢ γ(τ) ≤ γ′(τ) : Ω

– by Tsub, Γ′ ⊢ γ′(x) ≡ γ(x) : γ′(τ)

– hence Γ′ ⊢ γ′ ≡ γ : Γ

2. case Komega: κ = Ω

– by inversion, Γ ⊢ �

– by KQomega, Γ ⊢ Ω ≡ Ω : �

case Kabs: κ = A(τ)

– by inversion, Γ ⊢ τ : Ω

– by induction, Γ ⊢ γ(τ) ≡ γ′(τ) : Ω

– by KQabs, Γ ⊢ A(γ(τ)) ≡ A(γ′(τ)) : �

case Ksing: κ = Sκ̂(τ)

– by inversion, Γ ⊢ τ : κ̂

– by induction, Γ ⊢ γ(τ) ≡ γ′(τ) : γ(κ̂) and Γ ⊢ γ(κ̂) ≡ γ′(κ̂) : �

– by KQsing, Γ ⊢ Sγ(κ̂)(γ(τ)) ≡ Sγ′(κ̂)(γ
′(τ)) : �

case Kpi: κ = Πα:κ1.κ2

– by inversion, Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by induction, Γ′ ⊢ γ(κ1) ≡ γ′(κ1) : �

– by Substitutability, Γ′ ⊢ γ(κ1) : �

– let Γ1 = Γ, α:κ1 and Γ′
1 = Γ′, α:γ(κ1)

– by Ntype, Γ′
1 ⊢ �

– let γ1 = γ ∪ [α/α] and γ′1 = γ′ ∪ [α/α]

– by Substitution Extensibility, Γ′
1 ⊢ γ1 ≡ γ′1 : Γ1

– by induction, Γ′, α:γ(κ1) ⊢ γ1(κ2) ≡ γ′1(κ2) : �

– by KQpi, Γ′ ⊢ Πα:γ(κ1).γ1(κ2) ≡ Πα:γ′(κ1).γ
′
1(κ2) : �

– hence Γ′ ⊢ γ(Πα:κ1.κ2) ≡ γ′(Πα:κ1.κ2) : �

case Ksigma: analogous

3. Similarly, using (1) in the contravariant case.

4. case Tvar: τ = α and κ = Γ(α)

– by inversion, Γ ⊢ �

– by definition of Substitution Equivalence, Γ′ ⊢ γ(α) ≡ γ′(α) : γ(Γ(α))

case Tpsi: τ = Ψ and κ = Ω

– by inversion, Γ ⊢ �

– by definition of Substitution Equivalence, Γ′ ⊢ �

– by TQpsi, Γ′ ⊢ Ψ ≡ Ψ : Ω

case Tarrow: τ = τ1 → τ2 and κ = Ω

211

C. Proofs of Type Level Properties

– by inversion, Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

– by induction, Γ′ ⊢ γ(τ1) ≡ γ′(τ1) : Ω and Γ′ ⊢ γ(τ2) ≡ γ′(τ2) : Ω

– by TQarrow, Γ′ ⊢ γ(τ1) → γ(τ2) ≡ γ′(τ1) → γ′(τ2) : Ω

case Ttimes: analogous

case Tuniv: τ = ∀α:κ1.τ2 and κ = Ω

– by inversion, Γ, α:κ1 ⊢ τ2 : Ω

– by Environment Validity, Γ ⊢ κ1 : �

– by induction, Γ′ ⊢ γ(κ1) ≡ γ′(κ1) : �

– by Substitutability, Γ′ ⊢ γ(κ1) : �

– let Γ1 = Γ, α:κ1 and Γ′
1 = Γ′, α:γ(κ1)

– by Ntype, Γ′
1 ⊢ �

– let γ1 = γ ∪ [α/α] and γ′1 = γ′ ∪ [α/α]

– by Substitution Extensibility, Γ′
1 ⊢ γ1 ≡ γ′1 : Γ1

– by induction, Γ′, α:γ(κ1) ⊢ γ1(τ2) ≡ γ′1(τ2) : Ω

– by TQuniv, Γ′ ⊢ ∀α:γ(κ1).γ1(τ2) ≡ ∀α:γ′(κ1).γ
′
1(τ2) : Ω

– hence Γ′ ⊢ γ(∀α:κ1.τ2) ≡ γ′(∀α:κ1.τ2) : Ω

case Texist: analogous

case Tlambda: analogous

case Tapp: τ = τ1 τ2 and κ = κ2[τ2/α]

– by inversion, Γ ⊢ τ1 : Πα:κ1.κ2 and Γ ⊢ τ2 : κ1

– by induction, Γ′ ⊢ γ(τ1) ≡ γ′(τ1) : γ(Πα:κ1.κ2) and Γ′ ⊢ γ(τ2) ≡ γ′(τ2) : γ(κ1)

– let γ1 = γ ∪ [α/α]

– hence γ(Πα:κ1.κ2) = Πα:γ(κ1).γ1(κ2)

– by TQapp, Γ′ ⊢ γ(τ1 τ2) ≡ γ′(τ1 τ2) : γ1(κ2)[γ(τ2)/α]

– γ1(κ2)[γ(τ2)/α] = γ(κ2[τ2/α])

case Tpair: τ = 〈τ1, τ2〉 and κ = Σα:κ1.κ2

– by inversion, Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2[τ1/α] and Γ ⊢ Σα:κ1.κ2 : �

– by induction, Γ′ ⊢ γ(τ1) ≡ γ′(τ1) : γ(κ1) and Γ′ ⊢ γ(τ2) ≡ γ′(τ2) : γ(κ2[τ1/α])

– by Substitutability, Γ′ ⊢ γ(Σα:κ1.κ2) : �

– let γ1 = γ ∪ [α/α]

– hence γ(Σα:κ1.κ2) = Σα:γ(κ1).γ1(κ2) and γ(κ2[τ1/α]) = γ1(κ2)[γ(τ1)/α]

– by TQpair, Γ′ ⊢ γ〈τ1, τ2〉 ≡ γ′〈τ1, τ2〉 : γ(Σα:κ1.κ2)

case Tfst: τ = τ1·1 and κ = κ1

– by inversion, Γ ⊢ τ1 : Σα:κ1.κ2

– by induction, Γ′ ⊢ γ(τ1) ≡ γ′(τ1) : γ(Σα:κ1.κ2)

– let γ1 = γ ∪ [α/α]

– hence γ(Σα:κ1.κ2) = Σα:γ(κ1).γ1(κ2)

– by TQfst, Γ;⊢ γ(τ1)·1 ≡ γ′(τ1)·1 : γ(κ1)

case Tsnd: similarly

case Text-sing: κ = Sκ̂(τ)

– by inversion, Γ ⊢ τ : κ̂

– by Substitutability, Γ′ ⊢ γ(τ) : γ(κ̂) and Γ′ ⊢ γ′(τ) : γ′(κ̂)

– by Text-sing, Γ′ ⊢ γ(τ) : Sγ(κ̂)(γ(τ)) and Γ′ ⊢ γ′(τ) : Sγ′(κ̂)(γ
′(τ))

– by Environment Validity, Γ ⊢ �

– by induction, Γ′ ⊢ γ′ ≡ γ : Γ

– by induction, Γ′ ⊢ γ′(τ) ≡ γ(τ) : γ′(κ̂) and Γ′ ⊢ γ′(κ̂) ≤ γ(κ̂) : �

212

C.1. Declarative Properties

– by KSsing, Γ′ ⊢ Sγ′(κ̂)(γ
′(τ)) ≤ Sγ(κ̂)(γ(τ)) : �

– by Tsub, Γ′ ⊢ γ′(τ) : Sγ(κ̂)(γ(τ))

– by TQext-sing, Γ′ ⊢ γ(τ) ≡ γ′(τ) : Sγ(κ̂)(γ(τ))

case Text-pi: κ = Πα:κ1.κ2

– by inversion, Γ ⊢ τ : Πα:κ1.κ
′
2 and Γ, α:κ1 ⊢ τ α : κ2 and Γ ⊢ Πα:κ1.κ

′
2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by Substitutability, Γ′ ⊢ γ(κ1) : �

– let Γ1 = Γ, α:κ1 and Γ′
1 = Γ′, α:γ(κ1)

– by Ntype, Γ′
1 ⊢ �

– let γ1 = γ ∪ [α/α] and γ′1 = γ′ ∪ [α/α]

– by Substitution Extensibility, Γ′
1 ⊢ γ1 ≡ γ′1 : Γ1

– by induction, Γ′, α:γ(κ1) ⊢ γ1(τ)α ≡ γ′1(τ)α : γ1(κ2)

– by Substitutability,
Γ′ ⊢ γ(τ) : Πα:γ(κ1).γ1(κ2) and Γ′ ⊢ γ′(τ) : Πα:γ′(κ1).γ

′
1(κ2)

– by induction, Γ′ ⊢ γ(κ1) ≤ γ′(κ1) : �

– by inverting Kpi, Γ, α:κ1 ⊢ κ′2 : �

– by Substitutability, Γ′, α:γ′(κ1) ⊢ γ′1(κ
′
2) : �

– by Reflexivity, Γ′, α:γ′(κ1) ⊢ γ′1(κ
′
2) ≤ γ′1(κ

′
2) : �

– by Weakening, Γ′, α:γ(κ1) ⊢ γ′1(κ
′
2) ≤ γ′1(κ

′
2) : �

– by Substitutability, Γ′ ⊢ Πα:γ′(κ1).γ1(κ
′
2) : �

– by KSpi, Γ′ ⊢ Πα:γ′(κ1).γ
′
1(κ

′
2) ≤ Πα:γ(κ1).γ

′
1(κ

′
2) : �

– by TQsub, Γ′ ⊢ γ′(τ) : Πα:γ(κ1).γ
′
1(κ

′
2)

– by TQext-pi, Γ′ ⊢ γ(τ) ≡ γ′(τ) : Πα:γ(κ1).γ1(κ2)

– Πα:γ(κ1).γ1(κ2) = γ(Πα:κ1.κ2)

case Text-sigma: κ = Σα:κ1.κ2

– by inversion, Γ ⊢ τ ·1 : κ1 and Γ, α:κ1 ⊢ τ ·2 : κ2[τ ·1/α] and Γ ⊢ Σα:κ1.κ2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by Substitutability, Γ′ ⊢ γ(κ1) : �

– let Γ1 = Γ, α:κ1 and Γ′
1 = Γ′, α:γ(κ1)

– by Ntype, Γ′
1 ⊢ �

– let γ1 = γ ∪ [α/α] and γ′1 = γ′ ∪ [α/α]

– by Substitution Extensibility, Γ′
1 ⊢ γ1 ≡ γ′1 : Γ1

– by induction,
Γ′ ⊢ γ(τ)·1 ≡ γ′(τ)·1 : γ(κ1) and Γ′, α:γ(κ1) ⊢ γ1(τ)·2 ≡ γ′1(τ)·2 : γ1(κ2[τ ·1/α])

– γ1(κ2[τ ·1/α]) = γ1(κ2)[γ1(τ)·1/α]

– by Substitutability, Γ′ ⊢ Σα:γ(κ1).γ1(κ2) : �

– by TQext-sigma, Γ′ ⊢ Σα:γ(κ1).γ1(κ2) ≤ Σα:γ′(κ1).γ
′
1(κ2) : �

case Tsub:

– by inversion, Γ ⊢ τ : κ′ and Γ ⊢ κ′ ≤ κ : �

– by induction, Γ′ ⊢ γ(τ) ≡ γ′(τ) : γ(κ′)

– by Substitutability, Γ′ ⊢ γ(κ′) ≤ γ(κ) : �

– by TQsub, Γ′ ⊢ γ(τ) ≡ γ′(τ) : γ(κ)

5. Similarly, using (1) in the contravariant cases.

The proof of Validity itself mutually depends on Reflexivity of subkinding. We hence state
the latter together with Validity (item (3)).1

1The proofs in Stone & Harper contain a minor bug with respect to this.

213

C. Proofs of Type Level Properties

Proposition 14 (Validity).

1. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊢ κ : � and Γ ⊢ κ′ : �.

2. If Γ ⊢ κ ≤ κ′ : �, then Γ ⊢ κ : � and Γ ⊢ κ′ : �.

3. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊢ κ ≤ κ′ : � and Γ ⊢ κ′ ≤ κ : �.

4. If Γ ⊢ τ : κ, then Γ ⊢ κ : �.

5. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ and Γ ⊢ κ : �.

6. If Γ ⊢ τ ≤ τ ′ : κ, then Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ and Γ ⊢ κ : �.

Proof. By simultaneous induction on the derivation. We show only the non-trivial cases:

1. case KQsing: κ = Sκ̂(τ) and κ′ = Sκ̂′(τ ′)

– by inversion, Γ ⊢ τ ≡ τ ′ : κ̂ and Γ ⊢ κ̂ ≡ κ̂′ : �

– by induction, Γ ⊢ τ : κ̂ and Γ ⊢ τ ′ : κ̂ and Γ ⊢ κ̂ : � and Γ ⊢ κ̂′ : � and Γ ⊢ κ̂ ≤ κ̂′ : �

– by Tsub, Γ ⊢ τ ′ : κ̂′

– by Ksing, Γ ⊢ Sκ̂(τ) : � and Γ ⊢ Sκ̂′(τ ′) : �

case KQpi: κ = Πα:κ1.κ2 and κ′ = Πα:κ′1.κ
′
2

– by inversion, Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

– by induction, Γ ⊢ κ1 : � and Γ ⊢ κ′1 : � and Γ, α:κ1 ⊢ κ2 : � and Γ, α:κ1 ⊢ κ′2 : � and
Γ ⊢ κ′1 ≤ κ1 : �

– by Weakening, Γ, α:κ′1 ⊢ κ′2 : �

– by Kpi, Γ ⊢ Πα:κ1.κ2 : � and Γ ⊢ Πα:κ′1.κ
′
2 : �

case KQsigma: similarly

2. case KSsing: analogous to KQsing

case KSsing-left: analogous to KQsing

case KSpi: κ = Πα:κ1.κ2 and κ′ = Πα:κ′1.κ
′
2

– by inversion, Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : � and Γ ⊢ Πα:κ1.κ2 : �

– by induction, Γ, α:κ′1 ⊢ κ′2 : �

– by Kpi, Γ ⊢ Πα:κ′1.κ
′
2 : �

case KSsigma: similarly

3. case KQsing: κ = Sκ̂(τ) and κ′ = Sκ̂′(τ ′)

– by inversion, Γ ⊢ τ ≡ τ ′ : κ̂ and Γ ⊢ κ̂ ≡ κ̂′ : �

– by induction (3), Γ ⊢ κ̂ ≤ κ̂′ : � and Γ ⊢ κ̂′ ≤ κ̂ : �

– by TQsymm, Γ ⊢ τ ′ ≡ τ : κ̂

– bz TQsub, Γ ⊢ τ ′ ≡ τ : κ̂′

– by KSsing, Γ ⊢ Sκ̂(τ) ≤ Sκ̂′(τ ′) : � and Γ ⊢ Sκ̂′(τ ′) ≤ Sκ̂(τ) : �

case KQpi: κ = Πα:κ1.κ2 and κ′ = Πα:κ′1.κ
′
2

– by inversion, Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

– by induction, Γ ⊢ κ1 ≤ κ′1 : � and Γ ⊢ κ′1 ≤ κ1 : � and Γ ⊢ κ1 : � and Γ ⊢ κ′1 : � and
Γ, α:κ1 ⊢ κ2 ≤ κ′2 : � and Γ, α:κ1 ⊢ κ′2 ≤ κ2 : � and Γ, α:κ1 ⊢ κ2 : � and Γ, α:κ1 ⊢ κ′2 : �

– by Weakening, Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : �

– by Kpi, Γ ⊢ Πα:κ1.κ2 : � and Γ ⊢ Πα:κ′1.κ
′
2 : �

– by KSpi, Γ ⊢ Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2 : � and Γ ⊢ Πα:κ′1.κ

′
2 ≤ Πα:κ1.κ2 : �

case KQsigma: analogous

214

C.1. Declarative Properties

4. case Tapp: τ = τ1 τ2 and κ = κ2[τ2/α]

– by inversion, Γ ⊢ τ1 : Πα:κ1.κ2 and Γ ⊢ τ2 : κ1

– by induction, Γ ⊢ Πα:κ1.κ2 : �

– by inverting Kpi, Γ, α:κ1 ⊢ κ2 : �

– by Substitutability, Γ ⊢ κ2[τ2/α] : �

case Tfst: τ = τ1·1 and κ = κ1

– by inversion, Γ ⊢ τ1 : Σα:κ1.κ2

– by induction, Γ ⊢ Σα:κ1.κ2 : �

– by inverting Ksigma, Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ ⊢ κ1 : �

case Tsnd: τ = τ1·2 and κ = κ2[τ1·1/α]

– by inversion, Γ ⊢ τ1 : Σα:κ1.κ2

– by induction, Γ ⊢ Σα:κ1.κ2 : �

– by inverting Ksigma, Γ, α:κ1 ⊢ κ2 : �

– by Tfst, Γ ⊢ τ1·1 : κ1

– by Substitutability, Γ ⊢ κ2[τ1·1/α] : �

5. case TQuniv: τ = ∀α:κ1.τ2 and τ ′ = ∀α:κ′1.τ
′
2 and κ = Ω

– by inversion, Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≡ τ ′2 : Ω

– by induction, Γ, α:κ1 ⊢ τ2 : Ω and Γ, α:κ1 ⊢ τ ′2 : Ω and Γ ⊢ κ′1 ≤ κ1 : �

– by Weakening, Γ, α:κ′1 ⊢ τ ′2 : Ω

– by Tuniv, Γ ⊢ ∀α:κ1.τ2 : Ω and Γ ⊢ ∀α:κ′1.τ
′
2 : Ω

– by Environment Validity and Komega, Γ ⊢ Ω : �

case TQexist: analogous

case TQlambda: τ = λα:κ1.τ2 and τ ′ = λα:κ′1.τ
′
2 and κ = Πα:κ1.κ2

– by inversion, Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≡ τ ′2 : κ2

– by induction, Γ, α:κ1 ⊢ τ2 : κ2 and Γ, α:κ1 ⊢ τ ′2 : κ2 and Γ, α:κ1 ⊢ κ2 : � and Γ ⊢ κ′1 ≤
κ1 : � and Γ ⊢ κ1 ≤ κ′1 : �

– by Tlambda, Γ ⊢ λα:κ1.τ2 : Πα:κ1.κ2 and Γ ⊢ λα:κ′1.τ
′
2 : Πα:κ′1.κ2

– by Kpi, Γ ⊢ Πα:κ1.κ2 : � and Γ ⊢ Πα:κ′1.κ2 : �

– by Environment Validity, Γ ⊢ κ1 : � and Γ ⊢ κ′1 : �

– by Weakening, Γ, α:κ′1 ⊢ τ ′2 : κ2 and Γ, α:κ′1 ⊢ κ2 : �

– by Reflexivity, Γ, α:κ1 ⊢ κ2 ≤ κ2 : �

– by KSpi, Γ ⊢ Πα:κ′1.κ2 ≤ Πα:κ1.κ2 : �

– by Tsub, Γ ⊢ λα:κ′1.τ
′
2 : Πα:κ1.κ2

case TQapp: τ = τ1 τ2 and τ ′ = τ ′1 τ
′
2 and κ = κ2[τ2/α]

– by inversion, Γ ⊢ τ1 ≡ τ ′1 : Πα:κ1.κ2 and Γ ⊢ τ2 ≡ τ ′2 : κ1

– by induction, Γ ⊢ τ1 : Πα:κ1.κ2 and Γ ⊢ τ ′1 : Πα:κ1.κ2 and Γ ⊢ τ2 : κ1 and Γ ⊢ τ ′2 : κ1

and Γ ⊢ Πα:κ1.κ2 : � and Γ ⊢ κ1 : �

– by Tapp, Γ ⊢ τ1 τ2 : κ2[τ2/α] and Γ ⊢ τ ′1 τ
′
2 : κ2[τ

′
2/α]

– by inverting Kpi, Γ, α:κ1 ⊢ κ2 : �

– by Substitutability, Γ ⊢ κ2[τ2/α] : �

– Γ ⊢ [τ2/α] ≡ [τ ′2/α] : Γ, α:κ1

– by Simple Functionality, Γ ⊢ κ2[τ
′
2/α] ≤ κ2[τ2/α] : �

– by Tsub, Γ ⊢ τ ′1 τ
′
2 : κ2[τ2/α]

case TQsnd: τ = τ1·2 and τ ′ = τ ′1·2 and κ = κ2[τ1·1/α]

– by inversion, Γ ⊢ τ1 ≡ τ ′1 : Σα:κ1.κ2

215

C. Proofs of Type Level Properties

– by induction, Γ ⊢ τ1 : Σα:κ1.κ2 and Γ ⊢ τ ′1 : Σα:κ1.κ2 and Γ ⊢ Σα:κ1.κ2 : �

– by Tsnd, Γ ⊢ τ1·2 : κ2[τ1·1/α] and Γ ⊢ τ ′1·2 : κ2[τ
′
1·1/α]

– by inverting Ksigma, Γ, α:κ1 ⊢ κ2 : �

– by Tfst, Γ ⊢ τ1·1 : κ1 and Γ ⊢ τ ′1·1 : κ1

– by Substitutability, Γ ⊢ κ2[τ1·1/α] : �

– by TQfst, Γ ⊢ τ1·1 ≡ τ ′1·1 : κ1

– hence Γ ⊢ [τ1·1/α] ≡ [τ ′1·1/α] : Γ, α:κ1

– by Simple Functionality, Γ ⊢ κ2[τ
′
1/α] ≤ κ2[τ1/α] : �

– by Tsub, Γ ⊢ τ ′1·2 : κ2[τ1·1/α]

case TQext-pi: κ = Πα:κ1.κ2

– by inversion, Γ, α:κ1 ⊢ τ α ≡ τ ′ α : κ2 and Γ ⊢ τ : Πα:κ1.κ
′
2 and Γ ⊢ τ ′ : Πα:κ1.κ

′′
2

– by induction, Γ, α:κ1 ⊢ τ α : κ2 and Γ, α:κ1 ⊢ τ ′ α : κ2 and Γ, α:κ1 ⊢ κ2 : � and
Γ ⊢ Πα:κ1.κ

′
2 : � and Γ ⊢ Πα:κ1.κ

′′
2 : �

– by Text-pi, Γ ⊢ τ : Πα:κ1.κ2 and Γ ⊢ τ ′ : Πα:κ1.κ2

– by Kpi, Γ ⊢ Πα:κ1.κ2 : �

case TQext-sigma:

– by inversion, Γ ⊢ τ ·1 ≡ τ ′·1 : κ1 and Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α] and Γ ⊢ Σα:κ1.κ2 : �

– by induction, Γ ⊢ τ ′·1 : κ1 and Γ ⊢ τ ′·2 : κ2[τ ·1/α]

– by Text-sigma, Γ ⊢ τ ′ : Σα:κ1.κ2

6. case TSuniv: τ = ∀α:κ1.τ2 and τ ′ = ∀α:κ′1.τ
′
2 and κ = Ω

– by inversion, Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ τ2 ≤ τ ′2 : Ω and Γ ⊢ ∀α:κ1.τ2 : Ω

– by induction, Γ, α:κ′1 ⊢ τ ′2 : Ω

– by Tuniv, Γ ⊢ ∀α:κ′1.τ
′
2 : Ω

– by Environment Validity and Komega, Γ ⊢ Ω : �

case TSexist: similarly.

Given Validity, we can easily prove symmetry and transitivity properties:

Proposition 15 (Antisymmetry of Kind Inclusion). If and only if Γ ⊢ κ ≤ κ′ : � and
Γ ⊢ κ′ ≤ κ : �, then Γ ⊢ κ ≡ κ′ : �.

Proof. The inverse direction has already been shown as Validity (3). The other is shown by
induction on the added size of both derivations. The only cases possible are those where both
derivations used the same rule:

case KSomega: κ = κ′ = Ω

– by inversion, Γ ⊢ �

– by KQomega, Γ ⊢ Ω ≡ Ω : �

case KSabs: κ = A(τ) and κ′ = A(τ ′)

– by inversion, Γ ⊢ τ ≡ τ ′ : Ω

– by KQabs, Γ ⊢ A(τ) ≡ A(τ ′) : �

case KSsing: κ = Sκ̂(τ) and κ′ = Sκ̂′(τ ′)

– by inversion, Γ ⊢ τ ≡ τ ′ : κ̂ and Γ ⊢ κ̂ ≤ κ̂′ : � and Γ ⊢ κ̂′ ≤ κ̂ : �

– by induction, Γ ⊢ κ̂ ≡ κ̂′ : �

216

C.1. Declarative Properties

– by KQsing, Γ ⊢ Sκ̂(τ) ≡ Sκ̂′(τ ′) : �

case KSpi: κ = Πα:κ1.κ2 and κ′ = Πα:κ′1.κ
′
2

– by inversion, Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : � and Γ ⊢ κ′1 ≤ κ1 : � and
Γ, α:κ1 ⊢ κ′2 ≤ κ2 : �

– by induction, Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ′1 ⊢ κ2 ≡ κ′2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by Weakening, Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

– by KQpi, Γ ⊢ Πα:κ1.κ2 ≡ Πα:κ′1.κ
′
2 : �

case KSsigma: analogous

Proposition 16 (Symmetry).

1. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊢ κ′ ≡ κ : �.

2. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊢ τ ′ ≡ τ : κ.

Proof.

1. By easy induction on the derivation.

2. Trivial, by Rule TQsymm.

Proposition 17 (Transitivity).

1. If Γ ⊢ κ ≡ κ′ : � and Γ ⊢ κ′ ≡ κ′′ : �, then Γ ⊢ κ ≡ κ′′ : �.

2. If Γ ⊢ κ ≤ κ′ : � and Γ ⊢ κ′ ≤ κ′′ : �, then Γ ⊢ κ ≤ κ′′ : �.

3. If Γ ⊢ τ ≡ τ ′ : κ and Γ ⊢ τ ′ ≡ τ ′′ : κ, then Γ ⊢ τ ≡ τ ′′ : κ.

4. If Γ ⊢ τ ≤ τ ′ : κ and Γ ⊢ τ ′ ≤ τ ′′ : κ, then Γ ⊢ τ ≤ τ ′′ : κ.

Proof.

1. By straightforward induction on Size(κ)+Size(κ′)+Size(κ′′), using (3) in case of singletons
and abstraction types, and Antisymmetry and Weakening in case of binders.

2. Similarly.

3. Trivially by rule TQtrans.

4. Trivially by rule TStrans.

This gives us the necessary prerequisites for proving Functionality in its final formulation:

Proposition 18 (Full Functionality). Let Γ′ ⊢ γ ≡ γ′ : Γ.

1. If Γ ⊢ κ ≡ κ′ : �, then Γ′ ⊢ γ(κ) ≡ γ′(κ′) : �.

2. If Γ ⊢ κ ≤ κ′ : �, then Γ′ ⊢ γ(κ) ≤ γ′(κ′) : �.

217

C. Proofs of Type Level Properties

3. If Γ ⊢ τ ≡ τ ′ : κ, then Γ′ ⊢ γ(τ) ≡ γ′(τ ′) : γ(κ).

4. If Γ ⊢ τ ≤ τ ′ : κ, then Γ′ ⊢ γ(τ) ≤ γ′(τ ′) : γ(κ).

Proof. Each by induction on the derivation:

1. • by Substitutability, Γ′ ⊢ γ(κ) ≡ γ(κ′) : �

• by Validity, Γ ⊢ κ′ : �

• by Simple Functionality, Γ′ ⊢ γ(κ′) ≡ γ′(κ′) : �

• by Transitivity, Γ′ ⊢ γ(κ) ≡ γ′(κ′) : �

2–4. Likewise.

C.2. Derivable Rules

C.2.1. Higher-Order Singletons

With Validity and Functionality proven in the previous section, we are now prepared to show
the admissibility of the derived rules for higher-order singletons (Figure 11.9) and for βη-
equivalences. We just need another trivial lemma:

Lemma 19 (Kind Subsumption).

1. If Γ ⊢ τ : A(τ1), then Γ ⊢ τ : Ω.

2. If Γ ⊢ τ : Sκ̂(τ1), then Γ ⊢ τ : κ̂.

3. If Γ ⊢ τ ≡ τ ′ : A(τ1), then Γ ⊢ τ ≡ τ ′ : Ω.

4. If Γ ⊢ τ ≡ τ ′ : Sκ̂(τ1), then Γ ⊢ τ ≡ τ ′ : κ̂.

5. If Γ ⊢ τ ≤ τ ′ : A(τ1), then Γ ⊢ τ ≤ τ ′ : Ω.

6. If Γ ⊢ τ ≤ τ ′ : Sκ̂(τ1), then Γ ⊢ τ ≤ τ ′ : κ̂.

Proof. Straightforward, using Validity.

Theorem 20 (Admissibility of Higher-Order Singleton Rules).
The rules Ksing*, Text-sing, KQsing*, KSsing*, KSsing-left* and TQext-sing* are deriv-

able.

Proof.

1. KQsing*: By induction on the size of κ.

case κ = Ω:

– by inverting KQomega, κ′ = Ω

– by KQsing, Γ ⊢ SΩ(τ) ≡ SΩ(τ ′) : �

case κ = A(τ1):

– by inverting KQabs, κ′ = A(τ ′1)

– by KQsing, Γ ⊢ SA(τ1)(τ) ≡ SA(τ ′
1)
(τ ′) : �

case κ = Sκ̂(τ1):

218

C.2. Derivable Rules

– by inverting KQsing, κ′ = Sκ̂′(τ ′1)

– by premise, Γ ⊢ Sκ̂(τ1) ≡ Sκ̂′(τ ′1) : �

case κ = Πα:κ1.κ2:

– by inverting KQpi,
κ′ = Πα:κ′1.κ

′
2 and Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Weakening, Γ, α:κ1 ⊢ τ ≡ τ ′ : Πα:κ1.κ2

– by TQvar, Γ, α:κ1 ⊢ α ≡ α : κ1

– by TQapp, Γ, α:κ1 ⊢ τ α ≡ τ ′ α : κ2

– by induction, Γ, α:κ1 ⊢ S(τ α : κ2) ≡ S(τ ′ α : κ′2) : �

– by KQpi, Γ ⊢ Πα:κ1.S(τ α : κ2) ≡ Πα:κ1.S(τ α : κ′2) : �

case κ = Σα:κ1.κ2:

– by Validity, Γ ⊢ Σα:κ1.κ2 : �

– by inverting KQsigma,
κ′ = Σα:κ′1.κ

′
2 and Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ κ2 ≡ κ′2 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by TQfst, Γ ⊢ τ ·1 ≡ τ ′·1 : κ1

– by TQsnd, Γ ⊢ τ ·2 ≡ τ ′·2 : κ2[τ ·1/α]

– obviously, Γ ⊢ [τ ·1/α] ≡ [τ ′·1/α] : Γ, α:κ1

– by Full Functionality, Γ ⊢ κ2[τ ·1/α] ≡ κ′2[τ
′·1/α] : �

– by induction, Γ ⊢ S(τ ·1 : κ1) ≡ S(τ ′·1 : κ′1) : �
and Γ ⊢ S(τ ·2 : κ2[τ ·1/α]) ≡ S(τ ′·2 : κ′2[τ

′·1/α]) : �

– by Weakening, Γ, α:κ1 ⊢ S(τ ·2 : κ2[τ ·1/α]) ≡ S(τ ′·2 : κ′2[τ
′·1/α]) : �

– by KQsigma,
Γ ⊢ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) ≡ S(τ ′·1 : κ′1) × S(τ ′·2 : κ′2[τ

′·1/α]) : �

2. KSsing*: similarly, but with a case distinction for abstraction kinds and singletons:

case κ = A(τ1): case distinction for κ′:

subcase κ′ = Ω (by KSabs-left):

∗ by KSsing, Γ ⊢ SA(τ1)(τ) ≤ SΩ(τ ′) : �

subcase κ′ = A(τ ′1) (by KSabs):

∗ by KSsing, Γ ⊢ SA(τ1)(τ) ≤ SA(τ ′
1)
(τ ′) : �

case κ = Sκ̂(τ1): case distinction for κ′:

subcase κ′ = κ̂′ (by KSsing-left):

∗ by inverting KSsing-left, Γ ⊢ κ̂ ≤ κ̂′ : �

∗ by inverting Ksing, Γ ⊢ τ1 : κ̂

∗ by Text-sing, Γ ⊢ τ1 : Sκ̂(τ1)

∗ by Validity, Γ ⊢ τ1 : Sκ̂(τ1)

∗ by TQext-sing, Γ ⊢ τ1 ≡ τ ′ : Sκ̂(τ1)

∗ by Kind Subsumption, Γ ⊢ τ1 ≡ τ ′ : κ̂

∗ by KSsing, Γ ⊢ Sκ̂(τ1) ≤ Sκ̂′(τ ′) : �

subcase κ′ = Sκ̂′(τ ′1) (by KSsing):

∗ by premise, Γ ⊢ Sκ̂(τ1) ≤ Sκ̂′(τ ′1) : �

3. KSsing-left*: by induction on the size of κ:

case κ = κ̂:

– by KSsing-left, Γ ⊢ Sκ̂(τ) ≤ κ̂ : �

219

C. Proofs of Type Level Properties

case κ = Sκ̂(τ1):

– by Validity, Γ ⊢ Sκ̂(τ1) : �

– by Reflexivity, Γ ⊢ Sκ̂(τ1) ≤ Sκ̂(τ1) : �

case κ = Πα:κ1.κ2:

– by Validity, Γ ⊢ Πα:κ1.κ2 : �

– by inverting Kpi, Γ ⊢ κ1 : � and Γ, α:κ1 ⊢ κ2 : �

– by Reflexivity, Γ ⊢ κ1 ≤ κ1 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Weakening, Γ, α:κ1 ⊢ τ : Πα:κ1.κ2

– by Tvar, Γ, α:κ1 ⊢ α : κ1

– by Tapp, Γ, α:κ1 ⊢ τ α : κ2

– by induction, Γ, α:κ1 ⊢ S(τ α : κ2) ≤ κ2 : �

– by KSpi, Γ ⊢ Πα:κ1.S(τ α : κ2) ≤ Πα:κ1.κ2 : �

case κ = Σα:κ1.κ2:

– by Validity, Γ ⊢ Σα:κ1.κ2 : �

– by inverting Ksigma, Γ ⊢ κ1 : � and Γ, α:κ1 ⊢ κ2 : �

– by Reflexivity, Γ ⊢ κ1 ≤ κ1 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Tfst, Γ ⊢ τ ·1 : κ1

– by Tsnd, Γ ⊢ τ ·2 : κ2[τ ·1/α]

– by induction, Γ ⊢ S(τ ·1 : κ1) ≤ κ1 : � and Γ ⊢ S(τ ·2 : κ2[τ ·1/α]) ≤ κ2[τ ·1/α] : �

– by Weakening, Γ, α:κ1 ⊢ S(τ ·2 : κ2[τ ·1/α]) ≤ κ2[τ ·1/α] : �

– by KSsigma, Γ ⊢ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) ≤ κ1 × κ2[τ ·1/α] : �

4. Text-sing*: by induction on the size of κ:

case κ = κ̂:

– by Text-sing, Γ ⊢ τ : Sκ̂(τ)

case κ = Sκ̂(τ1):

– by premise, Γ ⊢ τ : Sκ̂(τ1)

case κ = Πα:κ1.κ2:

– by Validity, Γ ⊢ Πα:κ1.κ2 : �

– by inverting Kpi, Γ ⊢ κ1 : � and Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Weakening, Γ, α:κ1 ⊢ τ : Πα:κ1.κ2

– by Tvar, Γ, α:κ1 ⊢ α : κ1

– by Tapp, Γ, α:κ1 ⊢ τ α : κ2

– by induction, Γ, α:κ1 ⊢ τ α : S(τ α : κ2)

– by Text-pi, Γ ⊢ τ : Πα:κ1.S(τ α : κ2)

case κ = Σα:κ1.κ2:

– by Validity, Γ ⊢ Σα:κ1.κ2 : �

– by inverting Ksigma, Γ ⊢ κ1 : � and Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Tfst, Γ ⊢ τ ·1 : κ1

– by Tsnd, Γ ⊢ τ ·2 : κ2[τ ·1/α]

– by induction, Γ ⊢ τ ·1 : S(τ ·1 : κ1) and Γ ⊢ τ ·2 : S(τ ·2 : κ2[τ ·1/α])

– by Validity, Γ ⊢ S(τ ·1 : κ1) : � and Γ ⊢ S(τ ·2 : κ2[τ ·1/α]) : �

220

C.2. Derivable Rules

– by Weakening, Γ, α:κ1 ⊢ τ ·2 : S(τ ·2 : κ2[τ ·1/α])
and Γ, α:κ1 ⊢ S(τ ·2 : κ2[τ ·1/α]) : �

– by Ksigma, Γ ⊢ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) : �

– by Text-sigma, Γ ⊢ τ : S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

5. Ksing*:

• by Text-sing*, Γ ⊢ τ : S(τ : κ)

• by Validity, Γ ⊢ S(τ : κ) : �

6. TQext-sing*: by induction on the size of κ:

case κ = κ̂:

– by TQext-sing, Γ ⊢ τ ≡ τ ′ : Sκ̂(τ
′′)

case κ = Sκ̂(τ1): likewise

case κ = Πα:κ1.κ2:

– by Validity, Γ ⊢ Πα:κ1.S(τ ′′ α : κ2) : �

– by inverting Kpi, Γ ⊢ κ1 : �

– by Environment Validity, Γ, α:κ1 ⊢ �

– by Weakening, Γ, α:κ1 ⊢ τ : Πα:κ1.S(τ ′′ α : κ2)

– by Tvar, Γ, α:κ1 ⊢ α : κ1

– by Tapp, Γ, α:κ1 ⊢ τ α : S(τ ′′ α : κ2) and Γ, α:κ1 ⊢ τ ′ α : S(τ ′′ α : κ2)

– by induction, Γ, α:κ1 ⊢ τ α ≡ τ ′ α : S(τ ′′ α : κ2)

– by TQext-pi, Γ ⊢ τ ≡ τ ′ : Πα:κ1.S(τ ′′ α : κ2)

case κ = Σα:κ1.κ2:

– w.l.o.g., α /∈ FV(τ ′′)

– by Validity, Γ ⊢ S(τ ′′·1 : κ1) × S(τ ′′·2 : κ2[τ
′′·1/α]) : �

– by Tfst, Γ ⊢ τ ·1 : S(τ ′′·1 : κ1) and Γ ⊢ τ ′·1 : S(τ ′′·1 : κ1)

– by Tsnd, Γ ⊢ τ ·2 : S(τ ′′·2 : κ2[τ
′′·1/α]) and Γ ⊢ τ ′·2 : S(τ ′′·2 : κ2[τ

′′·1/α])

– by induction, Γ ⊢ τ ·1 ≡ τ ′·1 : S(τ ′′·1 : κ1) and Γ ⊢ τ ·2 ≡ τ ′·2 : S(τ ′′·2 : κ2[τ
′′·1/α])

– by TQext-sigma, Γ ⊢ τ : S(τ ′′·1 : κ1) × S(τ ′′·2 : κ2[τ
′′·1/α])

Using the singleton rules, we can show that a variable with singleton kind can always be
replaced by the equivalent type:

Lemma 21 (Singleton Substitutability). Let Γ ⊢ τ : κ

1. If Γ, α:S(τ : κ) ⊢ κ′ : �, then Γ, α:S(τ : κ) ⊢ κ′ ≡ κ′[τ/α] : �.

2. If Γ, α:S(τ : κ) ⊢ τ ′ : κ′, then Γ, α:S(τ : κ) ⊢ τ ′ ≡ τ ′[τ/α] : κ′.

3. If Γ, α:S(τ : κ) ⊢ τ ′ : κ′, then Γ, α:S(τ : κ) ⊢ τ ′ : κ′[τ/α].

4. If Γ, α:S(τ : κ) ⊢ e : τ ′, then Γ, α:S(τ : κ) ⊢ e : τ ′[τ/α].

5. If Γ, α:S(τ : κ) ⊢ τ ′ : κ′[τ/α] and Γ, α:S(τ : κ) ⊢ κ′ : �, then Γ, α:S(τ : κ) ⊢ τ ′ : κ′.

6. If Γ, α:S(τ : κ) ⊢ e : τ ′[τ/α] and Γ, α:S(τ : κ) ⊢ τ ′ : κ′, then Γ, α:S(τ : κ) ⊢ e : τ ′.

Proof.

1. • by Environment Validity, Γ, α:S(τ : κ) ⊢ �

221

C. Proofs of Type Level Properties

• by Weakening, Γ, α:S(τ : κ) ⊢ τ : κ

• by Text-sing*, Γ, α:S(τ : κ) ⊢ τ : S(τ : κ)

• by Tvar, Γ, α:S(τ : κ) ⊢ α : S(τ : κ)

• by TQext-sing*, Γ, α:S(τ : κ) ⊢ α ≡ τ : S(τ : κ)

• obviously, Γ, α:S(τ : κ) ⊢ [α/α] ≡ [τ/α] : Γ, α:S(τ : κ)

• by Simple Functionality, Γ, α:S(τ : κ) ⊢ κ′ ≡ κ′[τ/α] : �

2. Analogous.

3. • by Validity, Γ, α:S(τ : κ) ⊢ κ′ : �

• by (1), Γ, α:S(τ : κ) ⊢ κ′ ≡ κ′[τ/α] : �

• by Antisymmetry, Γ, α:S(τ : κ) ⊢ κ′ ≤ κ′[τ/α] : �

• by Tsub, Γ, α:S(τ : κ) ⊢ τ ′ : κ′[τ/α]

4. Analogous.

5. • by (1), Γ, α:S(τ : κ) ⊢ κ′ ≡ κ′[τ/α] : �

• by Antisymmetry, Γ, α:S(τ : κ) ⊢ κ′[τ/α] ≤ κ′ : �

• by Tsub, Γ, α:S(τ : κ) ⊢ τ ′ : κ′

6. Analogous.

C.2.2. βη-Equivalence

Proving βη-equivalences is now straightforward:

Theorem 22 (Admissibility of Beta/Eta Rules). The equivalence rules TQapp-beta*, TQlambda-eta*,
TQfst-beta*, TQsnd-beta* and TQpair-eta* are derivable.

Proof.

1. TQapp-beta*:

• by Text-sing*, Γ, α:κ1 ⊢ τ2 : S(τ2 : κ2)

• by Tlambda, Γ ⊢ λα:κ1.τ2 : Πα:κ1.S(τ2 : κ2)

• by Tapp, Γ ⊢ (λα:κ1.τ2) τ1 : S(τ2 : κ2)[τ1/α]

• obviously, Γ ⊢ [τ1/α] : Γ, α:κ1

• by Substitutability, Γ ⊢ τ2[τ1/α] : S(τ2 : κ2)[τ1/α]

• by TQext-sing*, Γ ⊢ (λα:κ1.τ2) τ1 ≡ τ2[τ1/α] : S(τ2 : κ2)[τ1/α]

• by Substitutability, Γ ⊢ τ2[τ1/α] : κ2[τ1/α]

• by KSsing-left*, Γ ⊢ S(τ2 : κ2)[τ1/α] ≤ κ2[τ1/α] : �

• by TQsub, Γ ⊢ (λα:κ1.τ2) τ1 ≡ τ2[τ1/α] : κ2[τ1/α]

2. TQlambda-eta*:

• by Validity, Γ ⊢ Πα:κ1.κ2

• by inverting Kpi, Γ ⊢ κ1 : �

• by Environment Validity, Γ, α:κ1 ⊢ �

222

C.3. Algorithmic Formulations

• by Tvar, Γ, α:κ1 ⊢ α : κ1

• by Weakening, Γ, α:κ1 ⊢ τ2 : Πα:κ1.κ2

• by Tapp, Γ, α:κ1 ⊢ τ2 α : κ2

• by Text-sing*, Γ, α:κ1 ⊢ τ2 α : S(τ1 α : κ2)

• by Tlambda, Γ ⊢ λα:κ1.τ2 α : Πα:κ1.S(τ1 α : κ2)

• by Text-sing*, Γ ⊢ τ2 : S(τ2 : Πα:κ1.κ2)

• by TQext-sing*, Γ ⊢ λα:κ1.τ2 α ≡ τ2 : Πα:κ1.S(τ1 α : κ2)

3. TQfst-beta*:

• w.l.o.g., α /∈ FV(κ2)

• by Text-sing*, Γ ⊢ τ1 : S(τ1 : κ1) and Γ ⊢ τ2 : S(τ2 : κ2)

• by Tpair, Γ ⊢ 〈τ1, τ2〉 : S(τ1 : κ1) × S(τ2 : κ2)

• by Tfst, Γ ⊢ 〈τ1, τ2〉·1 : S(τ1 : κ1)

• by TQext-sing*, Γ ⊢ 〈τ1, τ2〉·1 ≡ τ1 : S(τ1 : κ1)

4. TQsnd-beta*: analogous.

5. TQpair-eta*:

• w.l.o.g., α /∈ FV(τ)

• by Validity, Γ ⊢ Σα:κ1.κ2 : �

• by Text-sing*, Γ ⊢ τ : S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

• by Tfst, Γ ⊢ τ ·1 : S(τ ·1 : κ1)

• by Tsnd, Γ ⊢ τ ·2 : S(τ ·2 : κ2[τ ·1/α])

• by Tpair, Γ ⊢ 〈τ ·1, τ ·2〉 : S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

• by TQext-sing*, Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ : S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α])

C.3. Algorithmic Formulations

C.3.1. Type Equivalence

Theorem 23 (Soundness of Algorithmic Kind and Type Comparison).

1. If Γ ⊲ τ ⇛ π and Γ ⊢ τ : κ, then Γ ⊢ τ ≡ π : κ.

2. If Γ ⊲ π ⇛⇛ π′ ⇉ κ′ and Γ ⊢ π : κ, then Γ ⊢ π ≡ π′ : κ.

3. If Γ ⊲ τ ⇛⇛ τ ′ ⇇ κ and Γ ⊢ τ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

4. If Γ ⊲ τ ≡ τ ′ ⇇ κ and Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

5. If Γ ⊲ κ⇛⇛ κ′ and Γ ⊢ κ : �, then Γ ⊢ κ ≡ κ′ : �.

6. If Γ ⊲ κ ≡ κ′ and Γ ⊢ κ : � and Γ ⊢ κ′ : �, then Γ ⊢ κ ≡ κ′ : �.

223

C. Proofs of Type Level Properties

Proof. See Stone & Harper [SH06], Corollary 4.7, Proposition 4.8, and Corollary 4.9. The type
syntax of their language is extended as follows:

A,σ ::= · · · | A(M) | SA(N)(M)

where our SΩ(τ) maps to the existing S(M). Our type language can be encoded pragmatically
by variables prebound in an initial environment Γ0 that is contained in every environment we
consider:

Ψ : Ω

(→) : Ω → Ω → Ω

(×) : Ω → Ω → Ω

∀κ : (κ→ Ω) → Ω

∃κ : (κ→ Ω) → Ω

All relevant lemmata and propositions are easily adapted to cover the additional cases in the
algorithms. In particular, abstraction kinds act like base kinds with respect to normalization.

Theorem 24 (Completeness of Algorithmic Kind and Type Comparison).

1. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊲ τ ⇛⇛ τ ′′ ⇇ κ and Γ ⊲ τ ′ ⇛⇛ τ ′′ ⇇ κ for some τ ′′.

2. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊲ τ ≡ τ ′ ⇇ κ.

3. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊲ κ⇛⇛ κ′′ and Γ ⊲ κ′ ⇛⇛ κ′′ for some κ′′.

4. If Γ ⊢ κ ≡ κ′ : �, then Γ ⊲ κ ≡ κ′.

Proof. See Stone & Harper [SH06], Corollary 4.18. The proof builds upon most of the preceding
definitions and lemmata in the paper, which are adapted as for the previous proof. The key to
the completeness proof are the logical relations in Figure 10 of the paper, to which we have to
add cases as follows:

• A ok [∆] if

– . . .

– Or, A = A(N), and N in {b} [∆]

– Or, A = SA(L)(N), and N in A(L) [∆]

• M in A [∆] if

(2) – . . .

– Or, A = A(N), and M in {b} [∆]

– Or, A = SA(L)(N), and (M∪N) in A(L) [∆]

Here, A = SA(L)(N) is pattern matching notation defined as for quantifiers in the paper, i.e.
meaning L = {Li | i ∈ I} and N = {Ni | i ∈ I} if A = {SA(Li)(Ni) | i ∈ I}.

All respective lemmata and theorems proved by induction over the size of a type or a derivation
have to be extended with new cases as follows.

Lemma 4.12

(1) – Case: A2 = A(N2) and A1 = A(N1) with N1 ⊆ N2.

224

C.3. Algorithmic Formulations

– by definition, N2 in {b} [∆]

– by induction (2), N1 in {b} [∆]

– by definition, A1 ok [∆]

– Case: A2 = SA(L2)(N2) and A1 = SA(L1)(N1) with L1 ⊆ L2 and N1 ⊆ N2.

– by definition, N2 in A(L2) [∆]

– by induction (2), N1 in A(L1) [∆]

– by definition, A1 ok [∆]

(2) – Case: A2 = A(N2) and A1 = A(N1) with N1 ⊆ N2.

– by definition, A2 ok [∆] and M2 in {b} [∆]

– by definition, N2 in {b} [∆]

– by induction, M1 in {b} [∆] and N1 in {b} [∆]

– by definition, A1 ok [∆]

– by definition, M1 in A1 [∆]

– Case: A2 = SA(L2)(N2) and A1 = SA(L1)(N1) with L1 ⊆ L2 and N1 ⊆ N2.

– by definition, (M2 ∪ N2) in A(L2) [∆]

– by induction, (M1 ∪ N1) in A(L1) [∆]

– by definition, M1 in A1 [∆]

(3) – Case: A1 = A(N1) and A2 = A(N2) with N1 ∪ N2 6= ∅.

– by definition, N1 in {b} [∆] and N2 in {b} [∆]

– by induction (5), (N1 ∪ N2) in {b} [∆]

– by definition, (A1 ∪ A2) ok [∆]

– Case: A1 = SA(L1)(N1) and A2 = SA(L2)(N2) with L1 ∩ L2 6= ∅ and N1 ∩ N2 6= ∅.

– by definition, N1 in A(L1) [∆] and N2 in A(L2) [∆]

– by definition, A(L1) ok [∆] and A(L2) ok [∆]

– by induction, A(L1 ∪ L2) ok [∆]

– by induction (4), N1 in A(L1 ∪ L2) [∆] and N2 in A(L1 ∪ L2) [∆]

– by induction (5), (N1 ∪ N1) in A(L1 ∪ L2) [∆]

– by definition, (A1 ∪ A2) ok [∆]

(4) – Case: A1 = A(N1) and A2 = A(N2) with N1 ∪ N2 6= ∅.

– by definition, A1 ok [∆] and M in {b} [∆]

– by definition, N1 in {b} [∆] and N2 in {b} [∆]

– by induction, (N1 ∪ N2) in {b} [∆]

– by induction (3), (A1 ∪ A2) ok [∆]

– by definition, M in (A1 ∪ A2) [∆]

– Case: A1 = SA(L1)(N1) and A2 = SA(L2)(N2) with L1 ∩ L2 6= ∅ and N1 ∩ N2 6= ∅.

– by definition, A1 ok [∆] and (M∪N1) in A(L1) [∆]

– by induction (3), (A1 ∪ A2) ok [∆]

– by definition, (N1 ∪ N2) in A(L1 ∪ L2) [∆]

– by definition, (M∪N1) in {b} [∆] and (N1 ∪ N2) in {b} [∆]

– by definition, all M ∈ M∪N1 ∪ N2 have the same normal form

– by definition, (M∪N1 ∪ N2) in {b} [∆]

– by definition, (M∪N1 ∪ N2) in A(L1 ∪ L2) [∆]

– by definition, M in (A1 ∪ A2) [∆]

(5) – Case: A = A(N).

225

C. Proofs of Type Level Properties

– by definition, A ok [∆] and M1 in {b} [∆] and M2 in {b} [∆] and N in {b} [∆]

– by induction, M1 ∪M2 in {b} [∆]

– by definition, M1 ∪M2 in A [∆]

– Case: A = SA(L)(N).

– by definition, A ok [∆] and (M1 ∪N) in A(L) [∆] and (M2 ∪ N) in A(L) [∆]

– by definition, (M1 ∪ N) in {b} [∆] and (M2 ∪ N) in {b} [∆]

– by definition, all M ∈ M1 ∪M2 ∪ N have the same normal form

– by definition, (M1 ∪M2 ∪ N) in {b} [∆]

– by definition, (M1 ∪M2 ∪ N) in A(L) [∆]

– by definition, (M1 ∪M2) in SA(N)(L) [∆]

Lemma 4.13 (Head Expansion)

(2) – Case: A = A(N).

– by definition, A ok [∆] and M2 in {b} [∆]

– by induction, (M1 ∪M2) in {b} [∆]

– by definition, (M1 ∪M2) in A [∆]

– Case: A = SA(L)(N).

– by definition, (M2 ∪ N) in A(L) [∆]

– obviously, ∀θ ∈ ∆,M1 ∈ M1. ∃M2 ∈ M2. θ ⊲ M1 M2

– by induction, (M1 ∪M2 ∪ N) in A(L) [∆]

– by definition, (M1 ∪M2) in SA(L)(N) [∆]

Lemma 4.14

(1) – Case: A = A(N).

– by definition, A ok [∆]

– by definition, N in {b} [∆]

– by induction (2), there exists unique normal form N of all terms in N

– put B := A(N)

– Case: A = SA(L)(N).

– by definition, (M∪N) in A(L) [∆]

– by induction (2), there exists unique normal form M of all terms in M∪N

– by definition, A(L) ok [∆]

– by induction, there exists unique normal form A(L) of all terms in A(L)

– put B := SA(L)(N)

(2) – Case: A = A(N).

– by definition, M in {b} [∆]

– by induction, there exists unique normal form M of all terms in M

– by definition of normalization, normalization at abstraction type is the same as normal-
ization at base type

– Case: A = SA(L)(N).

– by definition, (M∪N) in A(L) [∆]

– by induction, there exists unique normal form M of all terms in M∪N

– by definition of normalization, normalization at singleton type is the same as normaliza-
tion at abstraction type

(3) – Case: A = A(N). Analogous to the case A = {b}.

– Case: A = SA(L)(N). Analogous to the case A = S(N).

226

C.3. Algorithmic Formulations

Theorem 4.16 (Fundamental Theorem)

• Type Well-Formedness Rules: Γ ⊢ A

– Case: Γ⊢M :b
Γ⊢A(M) (cf. rule Kabs)

∗ by induction (4), G(M) in {b} [∆]

∗ by definition, G(S(M)) ok [∆]

– Case: Γ⊢M :A(N)
Γ⊢SA(N)(M) (cf. rule Ksing)

∗ by induction (4), G(M) in A(N) [∆]

∗ by definition, G(A(M)) ok [∆]

• Subtyping Rules: Γ ⊢ A1 ≤ A2

– Case: Γ⊢M :b
Γ⊢A(M)≤b (cf. rule KSabs-left)

∗ by induction (4), G(M) in {b} [∆]

– Case: Γ⊢M1≡M2:b
Γ⊢A(M1)≤A(M2) (cf. rule KSabs)

∗ by definition, M in {b} [∆]

∗ by induction (5), (G(M1) ∪ G(M2)) in {b} [∆]

∗ by Lemma 4.12 (2), G(M2) in {b} [∆]

∗ by definition, A(G(M2)) ok [∆]

∗ by definition, M in A(G(M2)) [∆]

– Case: Γ⊢M :A(N)
Γ⊢SA(N)(M)≤A(N) (cf. rule KSsing-left)

∗ by induction (4), G(M) in A(N) [∆]

– Case: Γ⊢M1≡M2:A(N1) Γ⊢A(N1)≡A(N2)
Γ⊢SA(N1)(M1)≤SA(N2)(M2)

(cf. rule KSsing)

∗ by definition, (M∪G(M1)) in A(G(N1)) [∆]

∗ by definition, (M∪G(M1)) in {b} [∆] and A(G(N1)) ok [∆]

∗ by inversion, Γ ⊢ N1 ≡ N2 : b

∗ by induction (5), (G(M1) ∪ G(M2)) in A(G(N1)) [∆]
and (G(N1) ∪ G(N2)) in {b} [∆]

∗ by Lemma 4.12 (5), (M∪G(M1) ∪ G(M2)) in A(G(N1)) [∆]

∗ by definition, A(G(N1) ∪ G(N2)) ok [∆]

∗ by Lemma 4.12 (4), (M∪G(M1) ∪ G(M2)) in A(G(N1) ∪ G(N2)) [∆]

∗ by Lemma 4.12 (2), (M∪∪G(M2)) in A(G(N2)) [∆]

∗ by definition, M in SA(G(N2))(G(M2)) [∆]

• Type Equivalence Rules: Γ ⊢ A1 ≡ A2

– Case: Γ⊢M1≡M2:b
Γ⊢A(M1)≡A(M2) (cf. rule KQabs)

∗ by induction (5), (G(M1) ∪ G(M2)) in {b} [∆]

∗ by definition, A(G(M1) ∪ G(M2)) ok [∆]

– Case: Γ⊢M1≡M2:A(N1) Γ⊢A(N1)≡A(N2)
Γ⊢SA(N1)(M1)≡SA(N2)(M2)

(cf. rule KQsing)

∗ by inversion, Γ ⊢ N1 ≡ N2 : b

∗ by induction (5), (G(M1) ∪ G(M2)) in A(G(N1)) [∆]
and (G(N1) ∪ G(N2)) in {b} [∆]

∗ by definition, A(G(N1) ∪ G(N2)) ok [∆]

∗ by Lemma 4.12 (4), (G(M1) ∪ G(M2)) in A(G(N1) ∪ G(N2)) [∆]

∗ by definition, SA(G(N1)∪G(N2))(G(M1) ∪ G(M2)) ok [∆]

227

C. Proofs of Type Level Properties

• Term Validity Rules: Γ ⊢M : A

– Case: Γ⊢M :A(N)
Γ⊢M :SA(N)(M) (cf. rule Text-sing)

∗ by induction, G(M) in A(G(N)) [∆]

∗ by definition, A(G(N)) ok [∆]

∗ by definition, G(M) in SA(G(N))(G(M)) [∆]

• Term Equivalence Rules: Γ ⊢M1 ≡M2 : A

– Case:
Γ⊢M1:SA(L)(N) Γ⊢M2:SA(L)(N)

Γ⊢M1≡M2:SA(L)(N) (cf. rule TQext-sing)

∗ by induction (4), G(M1) in SA(G(L))(G(N)) [∆]
and G(M2) in SA(G(L))(G(N)) [∆]

∗ by definition, G(M1) ∪ G(N) in A(G(L)) [∆] and G(M2) ∪ G(N) in A(G(L)) [∆]

∗ by Lemma 4.12 (5), G(M1) ∪ G(M2) ∪ G(N) in A(G(L)) [∆]

∗ by definition, G(M1) ∪ G(M2) in SA(G(L))(G(N)) [∆]

With soundness and completeness, we can establish important inversion principles and state-
ments about the shape of types, which are needed for later proofs:

Proposition 25 (Type Equivalence Inversion).

1. If Γ ⊢ α ≡ α : κ, then Γ ⊢ α : Γ(α).

2. If Γ ⊢ τ1 → τ2 ≡ τ ′1 → τ ′2 : κ, then Γ ⊢ τ1 ≡ τ ′1 : Ω and Γ ⊢ τ2 ≡ τ ′2 : Ω.

3. If Γ ⊢ τ1 × τ2 ≡ τ ′1 × τ ′2 : κ, then Γ ⊢ τ1 ≡ τ ′1 : Ω and Γ ⊢ τ2 ≡ τ ′2 : Ω.

4. If Γ ⊢ ∀α:κ1.τ2 ≡ ∀α:κ′1.τ
′
2 : κ, then Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≡ τ ′2 : Ω.

5. If Γ ⊢ ∃α:κ1.τ2 ≡ ∃α:κ′1.τ
′
2 : κ, then Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≡ τ ′2 : Ω.

6. If Γ ⊢ λα:κ1.τ2 ≡ λα:κ′1.τ
′
2 : κ, then Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≡ τ ′2 : κ2.

7. If Γ ⊢ τ1 τ2 ≡ τ ′1 τ
′
2 : κ, then Γ ⊢ τ1 ≡ τ ′1 : κ1 and Γ ⊢ τ2 ≡ τ ′2 : κ2.

8. If Γ ⊢ 〈τ1, τ2〉 ≡ 〈τ ′1, τ
′
2〉 : κ, then Γ ⊢ τ1 ≡ τ ′1 : κ1 and Γ ⊢ τ2 ≡ τ ′2 : κ2.

9. If Γ ⊢ τ ·1 ≡ τ ′·1 : κ, then Γ ⊢ τ ≡ τ ′ : κ′.

10. If Γ ⊢ τ ·2 ≡ τ ′·2 : κ, then Γ ⊢ τ ≡ τ ′ : κ′.

Proof. By Completeness of Type Comparison and induction of the Normalization algorithm.

Proposition 26 (Shape Consistency of Type Equivalence).
Let Γ ⊢ π ≡ π′ : Ω and Γ ⊲ π ⇛ π and Γ ⊲ π′ ⇛ π′.

1. If π = α, then π′ = α.

2. If π = Ψ, then π′ = Ψ.

3. If π = τ1 → τ2, then π′ = τ ′1 → τ ′2.

4. If π = τ1 × τ2, then π′ = τ ′1 × τ ′2.

5. If π = ∀α:κ1.τ2, then π′ = ∀α:κ′1.τ
′
2.

228

C.3. Algorithmic Formulations

6. If π = ∃α:κ1.τ2, then π′ = ∃α:κ′1.τ
′
2.

Proof. By Completeness of Type Comparison and induction on the Normalization algorithm.

Proposition 27 (Canonical Types). Let Γ ⊲ τ ⇛⇛ τ and Γ ⊢ τ : κ′ and Γ ⊢ κ′ ≤ κ : �.

1. If κ = Ω, then τ = π.

2. If κ = A(τ ′), then τ = π and τ = χ.

3. If κ = SΩ(τ ′), then τ = π.

4. If κ = SA(τ ′)(τ
′′), then τ = π and τ = χ.

5. If κ = Πα:κ1.κ2, then τ = χ.

6. If κ = Σα:κ1.κ2, then τ = χ.

Proof. By simultaneous induction on the derivation.

C.3.2. Subkinding

Theorem 28 (Soundness of Algorithmic Kind Matching).
If Γ ⊲ κ ≤ κ′ and Γ ⊢ κ : � and Γ ⊢ κ′ : �, then Γ ⊢ κ ≤ κ′ : �.

Proof. By easy induction on the derivation of the first premise, using Soundness of Type Com-
parison.

The inverse direction of correctness proceeds similarly:

Theorem 29 (Completeness of Algorithmic Kind Matching).
If Γ ⊢ κ ≤ κ′ : �, then Γ ⊲ κ ≤ κ′.

Proof. By easy induction on the derivation, using Completeness of Type Comparison.

case KSomega:

– by rule, Γ ⊲ Ω ≤ Ω

case KSabs-left:

– by rule, Γ ⊲A(τ) ≤ Ω

case KSsing-left:

– by inversion, Γ ⊢ κ̂ ≤ κ̂′ : �

– by induction, Γ ⊲ κ̂ ≤ κ̂′

– by rule, Γ ⊲ Sκ̂(τ) ≤ κ̂′

case KSabs:

– by inversion, Γ ⊢ τ ≡ τ ′ : Ω

– by Validity, Γ ⊢ Ω : �

– by Completeness of Type Comparison, Γ ⊲ τ ≡ τ ′ ⇇ Ω

– by rule, Γ ⊲A(τ) ≤ A(τ ′)

case KSsing:

– by inversion, Γ ⊢ τ ≡ τ ′ : κ̂′ and Γ ⊢ κ̂ ≤ κ̂′ : �

229

C. Proofs of Type Level Properties

– by Validity, Γ ⊢ κ̂ : �

– by Completeness of Type Comparison, Γ ⊲ τ ≡ τ ′ ⇇ κ̂

– by induction, Γ ⊲ κ̂ ≤ κ̂′

– by rule, Γ ⊲ Sκ̂(τ) ≤ Sκ̂′(τ ′)

case KSpi:

– by inversion, Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ κ2 ≤ κ′2 : �

– by induction, Γ ⊲ κ′1 ≤ κ1 and Γ, α:κ′1 ⊲ κ2 ≤ κ′2

– by rule, Γ ⊲Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2

case KSsigma: analogous

A simple consequence is the following:

Proposition 30 (Shape Consistency of Kind Inclusion). Let Γ ⊢ κ ≤ κ′ : �.

1. If κ′ = Ω, then κ = Ω or κ = A(τ) or κ = Sκ̂(τ).

2. If κ′ = A(τ ′), then κ = A(τ) or κ = SA(τ ′′)(τ).

3. If κ′ = Sκ̂′(τ ′), then κ = Sκ̂(τ).

4. If κ′ = Πα:κ′1.κ
′
2, then κ′ = Πα:κ1.κ2.

5. If κ′ = Σα:κ′1.κ
′
2, then κ′ = Σα:κ1.κ2.

Proof. By Completeness of Kind Matching and induction on the matching algorithm.

C.3.3. Kind Synthesis

Theorem 31 (Soundness of Algorithmic Kind Synthesis).

1. If Γ ⊲ κ : � and Γ ⊢ �, then Γ ⊢ κ : �.

2. If Γ ⊲ τ ⇉ κ and Γ ⊢ �, then Γ ⊢ τ : κ.

3. If Γ ⊲ τ ⇇ κ and Γ ⊢ κ : �, then Γ ⊢ τ : κ.

Proof. By simultaneous induction on the derivation of the first premise:

1. case κ = Ω:

– by Komega, Γ ⊢ Ω : �

case κ = A(τ):

– by inversion, Γ ⊲ τ ⇇ Ω

– by induction (3), Γ ⊢ τ : Ω

– by Kabs, Γ ⊢ A(τ) : �

case κ = Sκ̂(τ):

– by inversion, Γ ⊲ κ̂ : � and Γ ⊲ τ ⇇ κ̂

– by induction, Γ ⊢ κ̂ : �

– by induction (3), Γ ⊢ τ : κ̂

– by Ksing, Γ ⊢ Sκ̂(τ) : �

case κ = Πα:κ1.κ2:

230

C.3. Algorithmic Formulations

– by inversion, Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ κ2 : �

– by induction, Γ ⊢ κ1 : �

– by Ntype, Γ, α:κ1 ⊢ �

– by induction, Γ, α:κ1 ⊢ κ2 : �

– by Kpi, Γ ⊢ Πα:κ1.κ2 : �

case κ = Σα:κ1.κ2: analogous

2. case τ = α:

– by inversion, α ∈ Dom(Γ)

– by Tvar, Γ ⊢ α : Γ(α)

– by Text-sing*, Γ ⊢ α : S(α : Γ(α))

case τ = Ψ:

– by Tpsi, Γ ⊢ Ψ : Ω

– by Text-sing, Γ ⊢ Ψ : SΩ(Ψ)

case τ = τ1 → τ2:

– by inversion, Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ2 ⇇ Ω

– by Komega, Γ ⊢ Ω : �

– by induction (3), Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

– by Tarrow, Γ ⊢ τ1 → τ2 : Ω

– by Text-sing, Γ ⊢ τ1 → τ2 : SΩ(τ1 → τ2)

case τ = τ1 × τ2: analogous

case τ = ∀α:κ1.τ2:

– by inversion, Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ τ2 ⇇ Ω

– by induction (1), Γ ⊢ κ1 : �

– by Ntype, Γ, α:κ1 ⊢ �

– by Komega, Γ, α:κ1 ⊢ Ω : �

– by induction (3), Γ, α:κ1 ⊢ τ2 : Ω

– by Tuniv, Γ ⊢ ∀α:κ1.τ2 : Ω

– by Text-sing, Γ ⊢ ∀α:κ1.τ2 : SΩ(∀α:κ1.τ2)

case τ = ∃α:κ1.τ2: analogous

case τ = λα:κ1.τ2:

– by inversion, Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ τ2 ⇉ κ2

– by induction (1), Γ ⊢ κ1 : �

– by Ntype, Γ, α:κ1 ⊢ �

– by induction, Γ, α:κ1 ⊢ τ2 : κ2

– by Tlambda, Γ ⊢ λα:κ1.τ2 : Πα:κ1.κ2

case τ = τ1 τ2:

– by inversion, Γ ⊲ τ1 ⇉ Πα:κ1.κ2 and Γ ⊲ τ2 ⇇ κ1

– by induction, Γ ⊢ τ1 : Πα:κ1.κ2

– by Validity, Γ ⊢ Πα:κ1.κ2 : �

– by inverting Kpi, Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by induction (3), Γ ⊢ τ2 : κ1

– by Tapp, Γ ⊢ τ1 τ2 : κ2[τ2/α]

case τ = 〈τ1, τ2〉:

– by inversion, Γ ⊲ τ1 ⇉ κ1 and Γ ⊲ τ2 ⇉ κ2

231

C. Proofs of Type Level Properties

– by induction, Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

– by Validity, Γ ⊢ κ1 : � and Γ ⊢ κ2 : �

– w.l.o.g., α /∈ Dom(Γ)

– by Ntype, Γ, α:κ1 ⊢ �

– by Weakening, Γ, α:κ1 ⊢ κ2 : �

– by Ksigma, Γ ⊢ Σα:κ1.κ2 : �

– by Tpair, Γ ⊢ 〈τ1, τ2〉 : Σα:κ1.κ2

case τ = τ ·1:

– by inversion, Γ ⊲ τ ⇉ Σα:κ1.κ2

– by induction, Γ ⊢ τ : Σα:κ1.κ2

– by Tfst, Γ ⊢ τ ·1 : κ1

case τ = τ ·2: analogous

3. case Γ ⊲ τ ⇇ κ:

– by inversion, Γ ⊲ τ ⇉ κ′ and Γ ⊲ κ′ ≤ κ

– by Environment Validity, Γ ⊢ �

– by induction (2), Γ ⊢ τ : κ′

– by Validity, Γ ⊢ κ′ : �

– by Soundness of Kind Matching, Γ ⊢ κ′ ≤ κ : �

– by Tsub, Γ ⊢ τ : κ

Theorem 32 (Completeness of Algorithmic Kind Synthesis).

1. If Γ ⊢ κ : �, then Γ ⊲ κ : �.

2. If Γ ⊢ τ : κ, then Γ ⊲ τ ⇉ κ′ and Γ ⊢ κ′ ≤ S(τ : κ) : �.

3. If Γ ⊢ τ : κ, then Γ ⊲ τ ⇇ κ.

Proof. By simultaneous induction on the derivation:

1. case Komega: directly

case Kabs:

– by inversion, Γ ⊢ τ : Ω

– by induction (3), Γ ⊲ τ ⇇ Ω

– by rule, Γ ⊲A(τ) : �

case Ksing:

– by inversion, Γ ⊢ τ : κ̂

– by Validity, Γ ⊢ κ̂ : �

– by induction, Γ ⊲ κ̂ : �

– by induction (3), Γ ⊲ τ ⇇ κ̂

– by rule, Γ ⊲ Sκ̂(τ) : �

case Kpi:

– by inversion, Γ, α:κ1 ⊢ κ2 : �

– by Environment Validity, Γ ⊢ κ1 : �

– by induction, Γ ⊲ κ1 : � and Γ, α:κ1 ⊲ κ2 : �

– by rule, Γ ⊲Πα:κ1.κ2 : �

case Ksigma: analogous

232

C.3. Algorithmic Formulations

2. case Tvar:

– by inversion, κ = Γ(α)

– by rule, Γ ⊲ α⇉ S(α : Γ(α))

– by Reflexivity, Γ ⊢ α ≡ α : Γ(α)

– by Validity, Γ ⊢ Γ(α) : �

– by Reflexivity, Γ ⊢ Γ(α) ≤ Γ(α) : �

– by KSsing*, Γ ⊢ S(α : Γ(α)) ≤ S(α : Γ(α)) : �

case Tpsi:

– by rule, Γ ⊲Ψ⇉ SΩ(Ψ)

– by Text-sing, Γ ⊢ SΩ(Ψ) : �

– by Reflexivity, Γ ⊢ SΩ(Ψ) ≤ SΩ(Ψ) : �

case Tarrow:

– by inversion, Γ ⊢ τ1 : Ω and Γ ⊢ τ1 : Ω

– by induction (3), Γ ⊲ τ1 ⇇ Ω and Γ ⊲ τ1 ⇇ Ω

– by rule, Γ ⊲ τ1 → τ2 ⇉ SΩ(τ1 → τ2)

– by Text-sing, Γ ⊢ SΩ(τ1 → τ2) : �

– by Reflexivity, Γ ⊢ SΩ(τ1 → τ2) ≤ SΩ(τ1 → τ2) : �

case Ttimes: analogous

case Tuniv:

– by inversion, Γ, α:κ1 ⊢ τ2 : Ω

– by Environment Validity, Γ ⊢ κ1 : �

– by induction (1), Γ ⊲ κ1 : �

– by induction (3), Γ, α:κ1 ⊲ τ2 ⇇ Ω

– by rule, Γ ⊲ ∀α:κ1.τ2 ⇉ SΩ(∀α:κ1.τ2)

– by Text-sing, Γ ⊢ SΩ(∀α:κ1.τ2) : �

– by Reflexivity, Γ ⊢ SΩ(∀α:κ1.τ2) ≤ SΩ(∀α:κ1.τ2) : �

case Texist: analogous

case Tlambda:

– by inversion, Γ, α:κ1 ⊢ τ2 : κ2

– by Environment Validity, Γ ⊢ κ1 : �

– by induction (1), Γ ⊲ κ1 : �

– by induction, Γ, α:κ1 ⊲ τ2 ⇉ κ′2 and Γ, α:κ1 ⊢ κ′2 ≤ S(τ2 : κ2) : �

– by rule, Γ ⊲ λα:κ1.τ2 ⇉ Πα:κ1.κ
′
2

– by Reflexivity, Γ ⊢ κ1 ≤ κ1 : �

– by Validity, Γ, α:κ1 ⊢ κ′2 : �

– by Kpi, Γ ⊢ Πα:κ1.κ
′
2 : �

– by KSpi, Γ ⊢ Πα:κ1.κ
′
2 ≤ Πα:κ1.S(τ2 : κ2) : �

case Tapp:

– by inversion, Γ ⊢ τ1 : Πα:κ1.κ2 and Γ ⊢ τ2 : κ1 and κ = κ2[τ2/α]

– by induction, Γ ⊲ τ1 ⇉ κ′ and Γ ⊢ κ′ ≤ Πα:κ1.S(τ1 α : κ2) : �

– by Kind Inclusion Inversion, κ′ = Πα:κ′1.κ
′
2 and Γ ⊢ κ1 ≤ κ′1 : �

and Γ, α:κ1 ⊢ κ′2 ≤ S(τ1 α : κ2) : �

– by Tsub, Γ ⊢ τ2 : κ′1
– by induction (3), Γ ⊲ τ2 ⇇ κ′1
– by rule, Γ ⊲ τ1 τ2 ⇉ κ′2[τ2/α]

– by Environment Validity, Γ, α:κ1 ⊢ �

233

C. Proofs of Type Level Properties

– obviously, Γ ⊢ [τ2/α] : Γ, α:κ1

– by Substitutability, Γ ⊢ κ′2[τ2/α] ≤ S(τ1 α : κ2)[τ2/α] : �

– by Tvar, Γ, α:κ1 ⊢ α : κ1

– by Weakening, Γ, α:κ1 ⊢ τ1 : Πα:κ1.κ2

– by Tapp, Γ, α:κ1 ⊢ τ1 α : κ2

– by KSsing-left*, Γ, α:κ1 ⊢ S(τ1 α : κ2) ≤ κ2 : �

– by Substitutability, Γ ⊢ S(τ1 α : κ2)[τ2/α] ≤ κ2[τ2/α] : �

– by Transitivity, Γ ⊢ κ′2[τ2/α] ≤ κ2[τ2/α] : �

case Tpair:

– by inversion, Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2[τ1/α]

– by induction, Γ ⊲ τ1 ⇉ κ′1 and Γ ⊢ κ′1 ≤ S(τ1 : κ1) : �
and Γ ⊲ τ2 ⇉ κ′2 and Γ ⊢ κ′2 ≤ S(τ2 : κ2[τ1/α]) : �

– by rule, Γ ⊲ 〈τ1, τ2〉⇉ κ′1 × κ′2
– by Validity, Γ ⊢ κ′1 : �

– w.l.o.g., α /∈ Dom(Γ) ∪ FV(τ)

– by Ntype, Γ, α:κ′1 ⊢ �

– by Weakening, Γ, α:κ′1 ⊢ κ′2 ≤ S(τ2 : κ2[τ1/α]) : �

– by Validity and Ksigma, Γ ⊢ S(τ1 : κ1) × S(τ2 : κ2[τ1/α]) : �

– by KSsigma, Γ ⊢ κ′1 × κ′2 ≤ S(τ1 : κ1) × S(τ2 : κ2[τ1/α]) : �

case Tfst:

– by inversion, Γ ⊢ τ : Σα:κ1.κ2

– by induction, Γ ⊲ τ ⇉ κ and Γ ⊢ κ ≤ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) : �

– by Kind Inclusion Inversion, κ = Σα:κ′1.κ
′
2 and Γ ⊢ κ′1 ≤ S(τ ·1 : κ1) : �

– by rule, Γ ⊲ τ ·1⇉ κ′1

case Tsnd: similarly

case Text-sing:

– by inversion, Γ ⊢ τ : κ̂

– by induction, Γ ⊲ τ ⇉ κ and Γ ⊢ κ ≤ Sκ̂(τ) : �

case Text-pi:

– by inversion, Γ ⊢ τ : Πα:κ1.κ
′
2 and Γ, α:κ1 ⊢ τ α : κ2

– by induction, Γ ⊲ τ ⇉ κ and Γ ⊢ κ ≤ Πα:κ1.S(τ α : κ′2) : �
and Γ, α:κ1 ⊲ τ α⇉ κ′′2 and Γ, α:κ1 ⊢ κ′′2 ≤ S(τ α : κ2) : �

– by inverting Γ, α:κ1 ⊲ τ α⇉ κ′′2 , we know that κ = Πα:κ′1.κ
′′
2

– by inverting KSpi, Γ ⊢ κ1 ≤ κ′1 : �

– by KSpi, Γ ⊢ κ ≤ Πα:κ1.S(τ α : κ2) : �

case Text-sigma:

– by inversion, Γ ⊢ τ ·1 : κ1 and Γ ⊢ τ ·2 : κ2[τ ·1/α]

– by induction, Γ ⊲ τ ·1⇉ κ′1 and Γ ⊢ κ′1 ≤ S(τ ·1 : κ1) : �
and Γ ⊲ τ ·2⇉ κ′2 and Γ ⊢ κ′2 ≤ S(τ ·2 : κ2)[τ ·1/α] : �

– by inverting Γ ⊲ τ ·1⇉ κ′1, we know that Γ ⊲ τ ⇉ Σα:κ′1.κ
′′
2

– by inverting Γ ⊲ τ ·2⇉ κ′2, we further know that κ′2 = κ′′2 [τ ·1/α]

– by Validity, Γ ⊢ κ′1 : �

– w.l.o.g., α /∈ Dom(Γ) ∪ FV(τ)

– by Ntype, Γ, α:κ′1 ⊢ �

– by Weakening, Γ, α:κ′1 ⊢ κ′2 ≤ S(τ ·2 : κ2)[τ ·1/α] : �

– by Validity and Ksigma, Γ ⊢ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) : �

– by KSsigma, Γ ⊢ Σα:κ′1.κ
′′
2 ≤ S(τ ·1 : κ1) × S(τ ·2 : κ2[τ ·1/α]) : �

234

C.3. Algorithmic Formulations

case Tsub:

– by inversion, Γ ⊢ τ : κ′ and Γ ⊢ κ′ ≤ κ : �

– by induction, Γ ⊲ τ ⇉ κ′′ and Γ ⊢ κ′′ ≤ S(τ : κ′) : �

– by Reflexivity, Γ ⊢ τ ≡ τ : κ′

– by KSsing*, Γ ⊢ S(τ : κ′) ≤ S(τ : κ) : �

– by Transitivity, Γ ⊢ κ′′ ≤ S(τ : κ) : �

3. • by induction (2), Γ ⊲ τ ⇉ κ′ and Γ ⊢ κ′ ≤ S(τ : κ) : �

• by KSsing-left, Γ ⊢ S(τ : κ) ≤ κ : �

• by Transitivity, Γ ⊢ κ′ ≤ κ : �

• by Completeness of Kind Matching, Γ ⊲ κ′ ≤ κ

• by rule, Γ ⊲ τ ⇇ κ

C.3.4. Subtyping

Theorem 33 (Soundness of Algorithmic Type Matching).

1. If Γ ⊲ τ ≤ τ ′ ⇇ κ and Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, then Γ ⊢ τ ≤ τ ′ : κ.

2. If Γ ⊲ π ⊑ π′ and Γ ⊢ π : Ω and Γ ⊢ π′ : Ω, then Γ ⊢ π ≤ π′ : Ω.

Proof. By simultaneous induction on the derivation:

1. case κ = Ω:

– bz inversion, Γ ⊲ τ ⇛ π ⇇ Ω and Γ ⊲ τ ′ ⇛ π′ ⇇ Ω and Γ ⊲ π ⊑ π′

– by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω and Γ ⊢ τ ′ ≡ π′ : Ω

– by Validity, Γ ⊢ π : Ω and Γ ⊢ π′ : Ω

– by induction (2), Γ ⊢ π ≤ π′ : Ω

– by Symmetry, TSequiv, and Transitivity, Γ ⊢ τ ≤ τ ′ : Ω

case κ 6= Ω:

– by inversion, Γ ⊲ τ ≡ τ ′ ⇇ κ

– by Soundness of Type Comparison, Γ ⊢ τ ≡ τ ′ : κ

2. case π = χ and π′ = χ′:

– bz inversion, Γ ⊲ χ ≡ χ′ ⇇ Ω

– by Soundness of Type Comparison, Γ ⊢ χ ≡ χ′ : Ω

case π = τ1 → τ2 and π′ = τ ′1 → τ ′2:

– by inversion, Γ ⊲ τ ′1 ≤ τ1 ⇇ Ω and Γ ⊲ τ2 ≤ τ ′2 ⇇ Ω

– by Type Validity Inversion, Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω and Γ ⊢ τ ′1 : Ω and Γ ⊢ τ ′2 : Ω

– by induction (1), Γ ⊢ τ ′1 ≤ τ1 : Ω and Γ ⊢ τ2 ≤ τ ′2 : Ω

– by TSarrow, Γ ⊢ τ1 → τ2 ≤ τ ′1 → τ ′2 : Ω

case π = τ1 × τ2 and π′ = τ ′1 × τ ′2: analogous

case π = ∀α:κ.τ and π′ = ∀α:κ′.τ ′:

– by inversion, Γ ⊲ κ′ ≤ κ and Γ, α:κ′ ⊲ τ ≤ τ ′ ⇇ Ω

– by Type Validity Inversion, Γ, α:κ ⊢ τ : Ω and Γ, α:κ′ ⊢ τ ′ : Ω

– by Environment Validity, Γ ⊢ κ : � and Γ ⊢ κ′ : �

– by Soundness of Kind Matching, Γ ⊢ κ′ ≤ κ : �

– by Weakening, Γ, α:κ′ ⊢ τ : Ω

235

C. Proofs of Type Level Properties

– by induction (1), Γ, α:κ′ ⊢ τ ≤ τ ′ : Ω

– by TSuniv, Γ ⊢ ∀α:κ.τ ≤ ∀α:κ′.τ ′ : Ω

case π = ∃α:κ.τ and π′ = ∃α:κ′.τ ′: analogous

For completeness, we first show that Type Matching is complete for equivalent types, which
can be proved directly:

Theorem 34 (Completeness of Algorithmic Type Matching with respect to Equivalence).

1. If Γ ⊲ τ ⇛⇛ τ ′′ ⇇ κ and Γ ⊲ τ ′ ⇛⇛ τ ′′ ⇇ κ with Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ,
then Γ ⊲ τ ≤ τ ′ ⇇ κ.

2. If Γ ⊲ π ⇛⇛ π′′ ⇉ κ and Γ ⊲ π′ ⇛⇛ π′′ ⇉ κ′ with Γ ⊢ π : Ω and Γ ⊢ π′ : Ω,
then Γ ⊲ π ⊑ π′.

3. If Γ ⊢ τ ≡ τ ′ : κ, then Γ ⊲ τ ≤ τ ′ ⇇ κ.

4. If Γ ⊢ π ≡ π′ : Ω where π, π′ in weak-head normal form with respect to Γ, then Γ ⊲ π ⊑ π′.

Proof.

1. By induction on the combined length of the reduction sequences, simultaneously with (2):

case κ = Ω:

– by inverting Normalization, Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′ and Γ ⊲ π ⇛⇛ τ ′′ ⇉ κ and
Γ ⊲ π ⇛⇛ τ ′′ ⇉ κ′ and τ ′′ = π′′

– by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω and Γ ⊢ τ ′ ≡ π′ : Ω

– by Validity, Γ ⊢ π : Ω and Γ ⊢ π′ : Ω

– by induction (2), Γ ⊲ π ⊑ π′

– by rule, Γ ⊲ τ ≤ τ ′ ⇇ Ω

case κ 6= Ω:

– by definition of Type Comparison, Γ ⊲ τ ≡ τ ′ ⇇ κ

– by rule, Γ ⊲ τ ≤ τ ′ ⇇ κ

2. by Completeness of Type Comparison, π, π′ have the same shape

case π = χ and π′ = χ′

– by definition of Type Comparison, Γ ⊲ χ ≡ χ′ ⇇ Ω

– by rule, Γ ⊲ χ ⊑ χ′

case π = τ1 → τ2 and π′ = τ ′1 → τ ′2:

– by inversion, Γ ⊲ τ1 ⇛⇛ π1 ⇇ Ω and Γ ⊲ τ2 ⇛⇛ π2 ⇇ Ω and Γ ⊲ τ ′1 ⇛⇛ π′
1 ⇇ Ω and

Γ ⊲ τ ′2 ⇛⇛ π′
2 ⇇ Ω

– by Completeness of Type Comparison, π1 = π′
1 and π2 = π′

2

– by inverting Tarrow, Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω and Γ ⊢ τ ′1 : Ω and Γ ⊢ τ ′2 : Ω

– by induction (1), Γ ⊲ τ ′1 ≤ τ1 ⇇ Ω and Γ ⊲ τ2 ≤ τ ′2 ⇇ Ω

– by rule, Γ ⊲ τ1 → τ2 ⊑ τ ′1 → τ ′2

case π = τ1 × τ2 and π′ = τ ′1 × τ ′2: analogous

case π = ∀α:κ1.τ2 and π′ = ∀α:κ′1.τ
′
2:

– by inversion, Γ⊲κ1 ⇛⇛ κ′′1 and Γ, α:κ1 ⊲τ2 ⇛⇛ π2 ⇇ Ω and Γ⊲κ′1 ⇛⇛ κ′′1 and Γ, α:κ′1 ⊲τ
′
2 ⇛⇛

π2 ⇇ Ω

– by inverting Tuniv, Γ, α:κ1 ⊢ τ2 : Ω and Γ, α:κ′1 ⊢ τ ′2 : Ω

236

C.3. Algorithmic Formulations

– by Environment Validity, Γ ⊢ κ1 : � and Γ ⊢ κ′1 : �

– by Soundness of Type Comparison, Γ ⊢ κ1 ≡ κ′1 : �

– by Antisymmetry, Γ ⊢ κ′1 ≤ κ1 : �

– by Completeness of Kind Matching, Γ ⊲ κ′1 ≤ κ1

– by Weakening, Γ, α:κ′1 ⊢ τ2 : Ω

– by induction (1), Γ, α:κ′1 ⊲ τ2 ≤ τ ′2 ⇇ Ω

– by rule, Γ ⊲ ∀α:κ1.τ2 ⊑ ∀α:κ′1.τ
′
2

case π = ∃α:κ.τ and π′ = ∃α:κ′.τ ′: analogous

3. • by Validity, Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ

• by Completeness of Type Comparison, Γ ⊲ τ ⇛⇛ τ ′′ ⇇ κ and Γ ⊲ τ ′ ⇛⇛ τ ′′ ⇇ κ

• by (1), Γ ⊲ τ ≤ τ ′ ⇇ κ and Γ ⊲ τ ′ ≤ τ ⇇ κ

4. • by Validity, Γ ⊢ π : κ and Γ ⊢ π′ : κ

• by Completeness of Type Comparison, Γ ⊲ π ⇛⇛ π′′ ⇇ Ω and Γ ⊲ π′ ⇛⇛ π′′ ⇇ Ω

• by inverting these, Γ ⊲ π ⇛⇛ π′′ ⇉ κ and Γ ⊲ π′ ⇛⇛ π′′ ⇉ κ′

• by (2), Γ ⊲ π ⊑ π′ and Γ ⊲ π′ ⊑ π

Figure 11.18 gave a transitive formulation of the subtyping judgement, whose soundness is
easy to show:

Proposition 35 (Soundness of Transitive Type Inclusion).
If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊢ τ ≤ τ ′ : Ω.

Proof. By straightforward induction on the derivation, using Symmetry, Transitivity, and Va-
lidity.

To show that the new formulation is actually transitive, we need a Weakening lemma:

Lemma 36 (Weakening of Transitive Type Inclusion).
If Γ = Γ1, α:κ,Γ2 and Γ′ = Γ1, α:κ′,Γ2 with Γ ⊢ � and Γ′ ⊢ � and Γ1 ⊢ κ′ ≤ κ : �, and

Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊢ τ ≤∗ τ ′ : Ω.

Proof. By straightforward induction on the derivation of Γ ⊢ τ ≤∗ τ ′ : Ω, using Weakening.

Let the effective size of a Transitive Type Inclusion derivation be the number of respective
type inclusion rules used. To perform induction in the following proofs, it is important to know
that a derivation for Transitive Type Inclusion of the same effective size can be performed for
any equivalent pair of types:

Lemma 37 (Size Invariance of Transitive Type Inclusion Derivation).
If Γ ⊢ τ ≤∗ τ ′ : Ω and Γ ⊢ τ ′′ ≡ τ : Ω and Γ ⊢ τ ′ ≡ τ ′′′ : Ω, then there is a derivation for

Γ ⊢ τ ′′ ≤∗ τ ′′′ : Ω with the same effective size.

Proof. By straightforward induction on the derivation, using Transitivity of Type Equivalence.

Using this lemma, transitivity and completeness are easy:

Proposition 38 (Transitivity of Transitive Type Inclusion).
If Γ ⊢ τ ≤∗ τ ′ : Ω and Γ ⊢ τ ′ ≤∗ τ ′′ : Ω, then Γ ⊢ τ ≤∗ τ ′′ : Ω.

237

C. Proofs of Type Level Properties

Proof. By induction on the combined effective size of the derivations. Arrow types are paths,
so by Transitivity and Shape Consistency of Equivalence, only the following cases apply:

case at least one rule uses TSequiv*:

– by Reflexivity and Size Invariance of Transitive Type Inclusion Derivation, Γ ⊢ τ ≤∗ τ ′′ : Ω

case TSarrow* / TSarrow*:

– by inversion, Γ ⊢ τ ≡ τ1 → τ2 : Ω and Γ ⊢ τ ′ ≡ τ ′1 → τ ′2 : Ω and Γ ⊢ τ ′ ≡ τ ′′′1 → τ ′′′2 : Ω and
Γ ⊢ τ ′′ ≡ τ ′′1 → τ ′′2 : Ω and Γ ⊢ τ ′1 ≤∗ τ1 : Ω and Γ ⊢ τ2 ≤∗ τ ′2 : Ω and Γ ⊢ τ ′′1 ≤∗ τ ′′′1 : Ω and
Γ ⊢ τ ′′′2 ≤∗ τ ′′2 : Ω

– by Transitivity, Γ ⊢ τ ′1 → τ ′2 ≡ τ ′′′1 → τ ′′′2 : Ω

– by Type Equivalence Inversion, Γ ⊢ τ ′1 ≡ τ ′′′1 : Ω and Γ ⊢ τ ′2 ≡ τ ′′′2 : Ω

– by Symmetry and Size Invariance of Transitive Type Inclusion Derivation, Γ ⊢ τ ′′′1 ≤∗ τ1 : Ω
and Γ ⊢ τ ′2 ≤∗ τ ′′2 : Ω

– by induction, Γ ⊢ τ ′′1 ≤∗ τ1 : Ω and Γ ⊢ τ2 ≤∗ τ ′′2 : Ω

– by TSarrow*, Γ ⊢ τ ≤∗ τ ′′ : Ω

case TStimes* / TStimes*: analogous

case TSuniv* / TSuniv*:

– by inversion, Γ ⊢ τ ≡ ∀α:κ1.τ2 : Ω and Γ ⊢ τ ′ ≡ ∀α:κ′1.τ
′
2 : Ω and Γ ⊢ τ ′ ≡ ∀α:κ′′′1 .τ

′′′
2 : Ω and

Γ ⊢ τ ′′ ≡ ∀α:κ′′1 .τ
′′
2 : Ω and Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ′1 ⊢ τ2 ≤∗ τ ′2 : Ω and Γ ⊢ κ′′1 ≤ κ′′′1 : �

and Γ, α:κ′′1 ⊢ τ ′′′2 ≤∗ τ ′′2 : Ω

– by Transitivity, Γ ⊢ ∀α:κ′1.τ
′
2 ≡ ∀α:κ′′′1 .τ

′′′
2 : Ω

– by Type Equivalence Inversion, Γ ⊢ κ′1 ≡ κ′′′1 : � and Γ, α:κ′1 ⊢ τ ′2 ≡ τ ′′′2 : Ω

– by Transitivity and KSequiv, Γ ⊢ κ′′1 ≤ κ′1 : � and Γ ⊢ κ′′1 ≤ κ1 : �

– by Weakening, Γ, α:κ′′1 ⊢ τ ′2 ≡ τ ′′′2 : Ω

– by Weakening for Transitive Type Inclusion, Γ, α:κ′′1 ⊢ τ2 ≤∗ τ ′2 : Ω

– by Size Invariance of Transitive Type Inclusion Derivation, Γ, α:κ′′1 ⊢ τ2 ≤∗ τ ′′′2 : Ω

– by induction, Γ, α:κ′′1 ⊢ τ2 ≤∗ τ ′′2 : Ω

– by TSuniv*, Γ ⊢ τ ≤∗ τ ′′ : Ω

case TSexist* / TSexist*: analogous

Proposition 39 (Completeness of Transitive Type Inclusion).
If Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊢ τ ≤∗ τ ′ : Ω.

Proof. By straightforward induction on the derivation, using Reflexivity and applying Transi-
tivity of Transitive Type Inclusion in the case of rule TStrans.

Finally, we show completeness of the type matching algorithm by relating it to the transitive
judgement:

Theorem 40 (Completeness of Algorithmic Type Matching).

1. If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊲ τ ≤ τ ′ ⇇ Ω.

2. If Γ ⊢ τ ≤∗ τ ′ : Ω, then Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′ and Γ ⊲ π ⊑ π′.

238

C.3. Algorithmic Formulations

3. If Γ ⊢ τ ≤ τ ′ : κ, then Γ ⊲ τ ≤ τ ′ ⇇ κ.

Proof.

1. By simultaneous induction on the effective size of the derivation, simultaneously with (2):

case TSequiv*:

– by inversion, Γ ⊢ τ ≡ τ ′ : Ω

– by Completeness of Type Matching wrt. Equivalence, Γ ⊲ τ ≤ τ ′ ⇇ Ω

case TSarrow*:

– by (2), Γ ⊲ π ⊑ π′ with Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′

– by rule, Γ ⊲ τ ≤ τ ′ ⇇ Ω

case TStimes*: analogous

case TSuniv*: analogous

case TSexist*: analogous

2. case TSequiv*:

– by inversion, Γ ⊢ τ ≡ τ ′ : Ω

– by Validity, Γ ⊢ τ : Ω and Γ ⊢ τ ′ : Ω

– by Completeness of Type Comparison, Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′

– by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω and Γ ⊢ τ ′ ≡ π′ : Ω

– by Symmetry and Transitivity, Γ ⊢ π ≡ π′ : Ω

– by Completeness of Type Matching wrt. Equivalence, Γ ⊲ π ⊑ π′

case TSarrow*:

– by inversion, Γ ⊢ τ ≡ τ1 → τ2 : Ω and Γ ⊢ τ ′ ≡ τ ′1 → τ ′2 : Ω and Γ ⊢ τ ′1 ≤∗ τ1 : Ω and
Γ ⊢ τ2 ≤∗ τ ′2 : Ω

– by Completeness of Type Comparison, Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′ and Γ ⊲ π ⇛⇛ π′′ ⇉ κ
and Γ ⊲ π′ ⇛⇛ π′′ ⇉ κ′ and Γ ⊲ τ1 → τ2 ⇛⇛ π′′ ⇉ κ′′ and Γ ⊲ τ ′1 → τ ′2 ⇛⇛ π′′ ⇉ κ′′′

– by definition of Path Normalization, π′′ = τ ′′1 → τ ′′2
– by inversion of Path Normalization, π = τ3 → τ4 and π′ = τ ′3 → τ ′4
– by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω and Γ ⊢ τ ′ ≡ π′ : Ω

– by Symmetry and Transitivity, Γ ⊢ τ1 → τ2 ≡ τ3 → τ4 : Ω and Γ ⊢ τ ′1 → τ ′2 ≡ τ ′3 → τ ′4 : Ω

– by Type Equivalence Inversion, Γ ⊢ τ1 ≡ τ3 : Ω and Γ ⊢ τ2 ≡ τ4 : Ω and Γ ⊢ τ ′1 ≡ τ ′3 : Ω
and Γ ⊢ τ ′2 ≡ τ ′4 : Ω

– by Symmetry and Size Invariance of Transitive Type Inclusion Derivation, Γ ⊢ τ ′3 ≤∗ τ3 :
Ω and Γ ⊢ τ4 ≤∗ τ ′4 : Ω

– by induction (1), Γ ⊲ τ ′3 ≤ τ3 ⇇ Ω and Γ ⊲ τ4 ≤ τ ′4 ⇇ Ω

– by rule, Γ ⊲ τ3 → τ4 ⊑ τ ′3 → τ ′4

case TStimes*: analogous

case TSuniv*:

– by inversion, Γ ⊢ τ ≡ ∀α:κ1.τ2 : Ω and Γ ⊢ τ ′ ≡ ∀α:κ′1.τ
′
2 : Ω and Γ ⊢ κ′1 ≤ κ1 : � and

Γ, α:κ′1 ⊢ τ2 ≤∗ τ ′2 : Ω

– by Completeness of Type Comparison, Γ ⊲ τ ⇛ π and Γ ⊲ τ ′ ⇛ π′ and Γ ⊲ π ⇛⇛ π′′ ⇉ κ
and Γ ⊲ π′ ⇛⇛ π′′ ⇉ κ′ and Γ ⊲ ∀α:κ1.τ2 ⇛⇛ π′′ ⇉ κ′ and Γ ⊲ ∀α:κ′1.τ

′
2 ⇛⇛ π′′ ⇉ κ′

– by definition of Path Normalization, π′′ = ∀α:κ′′1 .τ
′′
2

– by inversion of Path Normalization, π = ∀α:κ3.τ4 and π′ = ∀α:κ′3.τ
′
4

– by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω and Γ ⊢ τ ′ ≡ π′ : Ω

– by Symmetry and Transitivity, Γ ⊢ ∀α:κ1.τ2 ≡ ∀α:κ3.τ4 : Ω and Γ ⊢ ∀α:κ′1.τ
′
2 ≡

∀α:κ′3.τ
′
4 : Ω

239

C. Proofs of Type Level Properties

– by Type Equivalence Inversion, Γ ⊢ κ1 ≡ κ3 : � and Γ, α:κ1 ⊢ τ2 ≡ τ4 : Ω and
Γ ⊢ κ′1 ≡ κ′3 : � and Γ, α:κ′1 ⊢ τ ′2 ≡ τ ′4 : Ω

– by Symmetry, KSequiv, and Transitivity, Γ ⊢ κ′3 ≤ κ1 : � and Γ ⊢ κ′3 ≤ κ′1 : � and
Γ ⊢ κ′3 ≤ κ3 : �

– by Weakening, Γ, α:κ′3 ⊢ τ2 ≤∗ τ ′2 : Ω and Γ, α:κ′3 ⊢ τ2 ≡ τ4 : Ω and Γ, α:κ′3 ⊢ τ ′2 ≡ τ ′4 : Ω

– by Symmetry and Size Invariance of Transitive Type Inclusion Derivation, Γ, α:κ′3 ⊢
τ4 ≤∗ τ ′4 : Ω

– by induction (1), Γ, κ′3 ⊲ τ4 ≤ τ ′4 ⇇ Ω

– by rule, Γ ⊲ ∀α:κ3.τ4 ⊑ ∀α:κ′3.τ
′
4

case TSexist*: analogous

3. case κ = Ω:

– by Completeness of Transitive Type Inclusion, Γ ⊢ τ ≤∗ τ ′ : Ω

– by (1), Γ ⊲ τ ≤ τ ′ ⇇ Ω

case κ 6= Ω:

– by straightforward induction on the derivation, Γ ⊢ τ ≡ τ ′ : κ

– by Completeness of Type Matching wrt. Equivalence, Γ ⊲ τ ≤ τ ′ ⇇ κ

Theorem 41 (Decidability of Type Inclusion).
Given Γ ⊢ τ : κ and Γ ⊢ τ ′ : κ, it is decidable whether Γ ⊢ τ ≤ τ ′ : κ holds.

Proof. By Completeness of Kind Matching and Type Matching.

The transitive formulation of subtyping can also be used to show some non-trivial properties
about the subtyping relation:

Proposition 42 (Antisymmetry of Type Inclusion). If and only if Γ ⊢ τ ≤ τ ′ : κ and
Γ ⊢ τ ′ ≤ τ : κ, then Γ ⊢ τ ≡ τ ′ : κ.

Proof. The inverse direction is trivial by rule TSequiv. The other follows by straightfor-
ward induction on the effective size of the respective Transitive Type Inclusion Derivation, its
Soundness and Completeness, and Antisymmetry of Kind Inclusion.

As for equivalence, we can derive handy inversion principles:

Proposition 43 (Type Inclusion Inversion).

1. If Γ ⊢ α ≤ α : κ, then Γ ⊢ α : Γ(α) and Γ ⊢ Γ(α) ≤ κ : �.

2. If Γ ⊢ Ψ ≤ Ψ : κ, then Γ ⊢ �.

3. If Γ ⊢ τ1 → τ2 ≤ τ ′1 → τ ′2 : κ, then Γ ⊢ τ ′1 ≤ τ1 : Ω and Γ ⊢ τ2 ≤ τ ′2 : Ω.

4. If Γ ⊢ τ1 × τ2 ≤ τ ′1 × τ ′2 : κ, then Γ ⊢ τ1 ≤ τ ′1 : Ω and Γ ⊢ τ2 ≤ τ ′2 : Ω.

5. If Γ ⊢ ∀α:κ1.τ2 ≤ ∀α:κ′1.τ
′
2 : κ, then Γ ⊢ κ′1 ≤ κ1 : � and Γ, α:κ1 ⊢ τ2 ≤ τ ′2 : Ω.

6. If Γ ⊢ ∃α:κ1.τ2 ≤ ∃α:κ′1.τ
′
2 : κ, then Γ ⊢ κ1 ≤ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≤ τ ′2 : Ω.

7. If Γ ⊢ λα:κ1.τ2 ≤ λα:κ′1.τ
′
2 : κ, then Γ ⊢ κ1 ≡ κ′1 : � and Γ, α:κ1 ⊢ τ2 ≤ τ ′2 : κ2.

8. If Γ ⊢ 〈τ1, τ2〉 ≤ 〈τ ′1, τ
′
2〉 : κ, then Γ ⊢ τ1 ≡ τ ′1 : κ1 and Γ ⊢ τ2 ≡ τ ′2 : κ2.

240

C.3. Algorithmic Formulations

9. If Γ ⊢ χ ≤ τ : κ or Γ ⊢ τ ≤ χ : κ, and χ = π, then Γ ⊢ χ ≡ τ : κ.

Proof. By Completeness of Type Matching and induction on the Matching algorithm, using
Type Equivalence Inversion.

Proposition 44 (Shape Consistency of Type Inclusion).
Let Γ ⊢ π′ ≤ π : Ω and Γ ⊲ π ⇛ π and Γ ⊲ π′ ⇛ π′.

1. If π = α, then π′ = α.

2. If π = Ψ, then π′ = Ψ.

3. If π = τ1 → τ2, then π′ = τ ′1 → τ ′2.

4. If π = τ1 × τ2, then π′ = τ ′1 × τ ′2.

5. If π = ∀α:κ1.τ2, then π′ = ∀α:κ′1.τ
′
2.

6. If π = ∃α:κ1.τ2, then π′ = ∃α:κ′1.τ
′
2.

Proof. By Completeness of Type Matching and induction on the Matching algorithm, using
Shape Consistency of Type Equivalence.

241

C. Proofs of Type Level Properties

242

D. Proofs of Term Level Properties

D.1. Declarative Properties

Proposition 45 (Validity of Term Validity Rules).
If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

Proof. By induction on the derivation. We show only the non-trivial cases:

case Eapp:

– by inversion, τ = τ2 and Γ ⊢ e1 : τ1 → τ2

– by induction, Γ ⊢ τ1 → τ2 : Ω

– by Type Validity Inversion, Γ ⊢ τ2 : Ω

case Einst:

– by inversion, τ = τ1[τ2/α] and Γ ⊢ e1 : ∀α:κ2.τ1 and Γ ⊢ τ2 : κ2

– by induction, Γ ⊢ ∀α:κ2.τ1 : Ω

– by Type Validity Inversion, Γ, α:κ2 ⊢ τ1 : Ω

– by Substitutability, Γ ⊢ τ1[τ2/α] : Ω

case Eclose:

– by inversion, τ = ∃α:S(τ : κ).τ2 and Γ ⊢ τ : κ and Γ ⊢ e : τ2

– by induction, Γ ⊢ τ2 : Ω

– by Ksing*, Γ ⊢ S(τ : κ) : �

– w.l.o.g., α /∈ Dom(Γ) ∪ FV(τ2)

– by Ntype, Γ, α:S(τ : κ) ⊢ �

– by Weakening, Γ, α:S(τ : κ) ⊢ τ2 : Ω

– by Texist, Γ ⊢ ∃α:S(τ : κ).τ2 : Ω

For later proofs we need an inversion principle on term validity, which is stated up to subtyping:

Proposition 46 (Inversion). Let Γ ⊢ e : τ .

1. If e = x, then Γ ⊢ Γ(x) ≤ τ : Ω.

2. If e = λx:τ1.e2, then Γ, x:τ1 ⊢ e2 : τ2 with Γ ⊢ τ1 → τ2 ≤ τ : Ω

3. If e = e1 e2, then Γ ⊢ e1 : τ2 → τ with Γ ⊢ e2 : τ2.

4. If e = 〈e1, e2〉, then Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 with Γ ⊢ τ1 × τ2 ≤ τ : Ω.

5. If e = let〈x1, x2〉 = e1 in e2, then Γ ⊢ e1 : τ1 × τ2 with Γ, x1:τ1, x2:τ2 ⊢ e2 : τ .

6. If e = λα:κ1.e2, then Γ, α:κ1 ⊢ e2 : τ2 with Γ ⊢ ∀α:κ1.τ2 ≤ τ : Ω.

243

D. Proofs of Term Level Properties

7. If e = e1 τ2, then Γ ⊢ e1 : ∀α:κ2.τ1 with Γ ⊢ τ2 : κ2 and Γ ⊢ τ1[τ2/α] ≤ τ : Ω.

8. If e = 〈τ1, e2〉, then Γ ⊢ τ1 : κ1 and Γ ⊢ e2 : τ2 and Γ ⊢ ∃α:S(τ1 : κ1).τ2 ≤ τ : Ω.

9. If e = let〈α, x〉 = e1 inτ2 e2, then Γ ⊢ e1 : ∃α:κ1.τ2 and Γ, α:κ1, x:τ2 ⊢ e2 : τ2 and
Γ ⊢ τ2 ≤ τ : Ω.

10. If e = newα ≈ τ1 inτ2 e2, then Γ, α:A(τ1) ⊢ e2 : τ2 and Γ ⊢ τ2 ≤ τ : Ω.

11. If e = {e1}
+
τ2 , then Γ ⊢ e1 : τ1 with Γ ⊢ τ2 : A(τ1) and Γ ⊢ τ2 ≤ τ : Ω.

12. If e = {e1}
−
τ1 , then Γ ⊢ e1 : τ1 with Γ ⊢ τ1 : A(τ2) and Γ ⊢ τ2 ≤ τ : Ω.

13. If e = case e1:τ1 of x:τ2.e2 elseτ2 e3, then Γ ⊢ e1 : τ1 and Γ, x:τ2 ⊢ e2 : τ2 and Γ ⊢ e3 : τ2
and Γ ⊢ τ2 ≤ τ : Ω.

14. If e = pickle e1, then Γ ⊢ e1 : ∃α:Ω.α and Γ ⊢ Ψ ≤ τ : Ω.

15. If e = ψ(v), then FV(v) ⊆ Dom(Γ) and Γ ⊢ Ψ ≤ τ : Ω.

16. If e = unpicklex ⇐ e1 in e2 elseτ2 e3, then Γ ⊢ e1 : Ψ and Γ, x:∃α:Ω.α ⊢ e2 : τ2 and
Γ ⊢ e3 : τ2 and Γ ⊢ τ2 ≤ τ : Ω.

Proof. Each by easy induction on the derivation. We show only a few representative cases:

1. e = x

case Evar: τ = Γ(x):

– by inversion, Γ ⊢ �

– by Environment Validity, Γ1 ⊢ Γ(x) : Ω with Γ = Γ1, x:Γ(x),Γ2

– by Weakening, Γ ⊢ Γ(x) : Ω

– by Reflexivity, Γ ⊢ Γ(x) ≤ τ : Ω

case Esub:

– by inversion, Γ ⊢ e : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by induction, Γ ⊢ Γ(x) ≤ τ ′ : Ω

– by Transitivity, Γ ⊢ Γ(x) ≤ τ : Ω

3. e = e1 e2

case Eapp:

– by inversion, Γ ⊢ e1 : τ2 → τ and Γ ⊢ e2 : τ2 directly

case Esub:

– by inversion, Γ ⊢ e : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by induction, Γ ⊢ e1 : τ2 → τ ′ and Γ ⊢ e2 : τ2

– by Validity and Reflexivity, Γ ⊢ τ2 ≤ τ2 : Ω

– by TSarrow, Γ ⊢ τ2 → τ ′ ≤ τ2 → τ : Ω

– by Esub, Γ ⊢ e1 : τ2 → τ

11. e = {e1}+
τ

case Eup: τ = τ2

– by inversion, Γ ⊢ e1 : τ1 and Γ ⊢ τ2 : A(τ1)

– by Validity, Γ ⊢ τ1 : Ω

– by KSabs, Γ ⊢ A(τ1) ≤ Ω : �

244

D.2. Algorithmic Type Checking

– by Tsub, Γ ⊢ τ2 : Ω

– by Validity and Reflexivity, Γ ⊢ τ2 ≤ τ : Ω

case Esub:

– by inversion, Γ ⊢ e : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by induction, Γ ⊢ e1 : τ1 and Γ ⊢ τ2 : A(τ1) and Γ ⊢ τ2 ≤ τ ′ : Ω

– by Transitivity, Γ ⊢ τ2 ≤ τ : Ω

16. e = unpicklex⇐ e1 in e2 elseτ2 e3

case Eunpickle: τ = τ2

– by inversion, Γ ⊢ e1 : Ψ and Γ, x:∃α:Ω.α ⊢ e2 : τ2 and Γ ⊢ e3 : τ2

– by Reflexivity, Γ ⊢ τ2 ≤ τ2 : Ω

case Esub:

– by inversion, Γ ⊢ e : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by induction, Γ ⊢ e1 : Ψ and Γ, x:∃α:Ω.α ⊢ e2 : τ2 and Γ ⊢ e3 : τ2 and Γ ⊢ τ2 ≤ τ ′ : Ω

– by Transitivity, Γ ⊢ τ2 ≤ τ : Ω

D.2. Algorithmic Type Checking

Theorem 47 (Soundness of Algorithmic Type Synthesis).
Let Γ ⊢ �.

1. If Γ ⊲ e⇉ τ , then Γ ⊢ e : τ .

2. If Γ ⊲ e⇉⇉ π, then Γ ⊢ e : π.

3. If Γ ⊲ e⇇ τ with Γ ⊢ τ : Ω, then Γ ⊢ e : τ .

Proof. By easy simultaneous induction on the derivation, using Soundness of Algorithmic Kind
Synthesis. We show only a few representative cases:

1. case e = λx:τ1.e2

– by inversion, Γ ⊲ τ1 ⇇ Ω and Γ, x:τ1 ⊲ e2 ⇉ τ2

– by Soundness of Kind Synthesis, Γ ⊢ τ1 : Ω

– w.l.o.g., x /∈ Dom(Γ)

– by Nterm, Γ, x:τ1 ⊢ �

– by induction, Γ, x:τ1 ⊢ e2 : τ2

– by Elambda, Γ ⊢ λx:τ1.e2 : τ1 → τ2

case e = e1 e2

– by inversion, Γ ⊲ e1 ⇉⇉ τ2 → τ1 and Γ ⊲ e2 ⇇ τ2

– by induction (2), Γ ⊢ e1 : τ2 → τ1

– by Validity, Γ ⊢ τ2 → τ1 : Ω

– by Type Validity Inversion, Γ ⊢ τ2 : Ω

– by induction (3), Γ ⊢ e2 : τ2

– by Eapp, Γ ⊢ e1 e2 : τ1

case e = {e}+
τ1

– by inversion, Γ ⊲ τ1 ⇉ SA(τ2)(τ3) and Γ ⊲ e2 ⇇ τ2

– by Soundness of Kind Synthesis, Γ ⊢ τ1 : SA(τ2)(τ3)

245

D. Proofs of Term Level Properties

– by Kind Subsumption, Γ ⊢ τ1 : A(τ2)

– by Validity, Γ ⊢ A(τ2) : �

– by inverting Kabs, Γ ⊢ τ2 : Ω

– by induction (3), Γ ⊢ e : τ2

– by Eup, Γ ⊢ {e}+
τ1

: τ1

2. • by inversion, Γ ⊲ e⇉ τ and Γ ⊲ τ ⇛ π

• by induction (1), Γ ⊢ e : τ

• by Soundness of Type Comparison, Γ ⊢ τ ≡ π : Ω

• by TSequiv, Γ ⊢ τ ≤ π : Ω

• by Esub, Γ ⊢ e : π

3. • by inversion, Γ ⊲ e⇉ τ ′ and Γ ⊲ τ ′ ≤ τ ⇇ Ω

• by induction (1), Γ ⊢ e : τ ′

• by Validity, Γ ⊢ τ ′ : Ω and Γ ⊢ Ω : �

• by Soundness of Type Matching, Γ ⊢ τ ′ ≤ τ : Ω

• by Esub, Γ ⊢ e : τ

Theorem 48 (Completeness of Algorithmic Type Synthesis).

1. If Γ ⊢ e : τ , then Γ ⊲ e⇉ τ ′ with Γ ⊢ τ ′ ≤ τ : Ω.

2. If Γ ⊢ e : τ , then Γ ⊲ e⇉⇉ π with Γ ⊢ π ≤ τ : Ω.

3. If Γ ⊢ e : τ and Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊲ e⇇ τ ′.

Proof. By simultaneous induction on the derivation, using Completeness of Algorithmic Kind
Synthesis. We show only a few representative cases:

1. case Elambda:

– by inversion, Γ, x:τ1 ⊢ e2 : τ2

– by Environment Validity, Γ, x:τ1 ⊢ � and Γ ⊢ τ1 : Ω

– by Completeness of Kind Synthesis, Γ ⊲ τ1 ⇇ Ω

– by induction, Γ, x:τ1 ⊲ e2 ⇉ τ ′2 with Γ ⊢ τ ′2 ≤ τ2 : Ω

– by rule, Γ ⊲ λx:τ1.e2 : τ1 → τ ′2
– by Reflexivity, Γ ⊢ τ1 ≤ τ1 : Ω

– by TSarrow, Γ ⊢ τ1 → τ ′2 ≤ τ1 → τ2 : Ω

case Eapp:

– by inversion, Γ ⊢ e1 : τ2 → τ and Γ ⊢ e2 : τ2

– by induction (2), Γ ⊲ e1 ⇉⇉ π with Γ ⊢ π ≤ τ2 → τ : Ω

– by Shape Consistency of Type Inclusion, π = τ ′2 → τ ′

– by Type Inclusion Inversion, Γ ⊢ τ2 ≤ τ ′2 : Ω and Γ ⊢ τ ′ ≤ τ : Ω

– by induction (3), Γ ⊲ e2 ⇇ τ ′2
– by rule, Γ ⊲ e1 e2 ⇉ τ ′

case Eup:

– by inversion, Γ ⊢ τ1 : A(τ2) and Γ ⊢ e : τ2

– by inspection of Kind Inclusion, the only proper subkinds of A(τ2) are of the form
SA(τ ′

2)
(τ3)

246

D.3. Soundness

– by Completeness of Kind Synthesis, Γ ⊲ τ1 ⇉ SA(τ ′
2)
(τ3) and Γ ⊢ SA(τ ′

2)
(τ3) ≤ A(τ2) : �

– by inverting KSsing-left, Γ ⊢ A(τ ′2) ≤ A(τ2) : �

– by inverting KSabs, Γ ⊢ τ ′2 ≡ τ2 : �

– by Antisymmetry, Γ ⊢ τ2 ≤ τ ′2 : Ω

– by induction (3), Γ ⊲ e⇇ τ ′2
– by rule, Γ ⊲ {e}+

τ1
⇉ τ1

– by Reflexivity, Γ ⊢ τ1 ≤ τ1 : Ω

2. • by induction (1), Γ ⊲ e⇉ τ ′ with Γ ⊢ τ ′ ≤ τ : Ω

• by Validity, Γ ⊢ τ ′ : Ω and Γ ⊢ τ : Ω

• by Completeness of Type Comparison, Γ ⊲ τ ′ ⇛ π

• by rule, Γ ⊲ e⇉⇉ π

• by Soundness of Type Comparison, Γ ⊢ τ ′ ≡ π : Ω

• by Antisymmetry and Transitivity, Γ ⊢ π ≤ τ : Ω

3. • by induction (1), Γ ⊲ e⇉ τ ′′ with Γ ⊢ τ ′′ ≤ τ : Ω

• by Transitivity, Γ ⊢ τ ′′ ≤ τ ′ : Ω

• by Validity, Γ ⊢ τ ′′ : Ω and Γ ⊢ τ ′ : Ω

• by Completeness of Type Matching, Γ ⊲ τ ′′ ≤ τ ′ ⇇ Ω

• by rule, Γ ⊲ e⇇ τ ′

D.3. Soundness

D.3.1. Preservation

For showing preservation of cancelled coercions, it is important to know that two abstract types
that are known to be equal at kind Ω are actually the same abstract type, with the same
representation:

Proposition 49 (Representation Equivalence).
Let Γ ⊢ τ1 : A(τ ′1) and Γ ⊢ τ2 : A(τ ′2).

1. If Γ ⊢ τ1 ≡ τ2 : Ω, then Γ ⊢ τ1 ≡ τ2 : A(τ ′1) and Γ ⊢ τ ′1 ≡ τ ′2 : Ω.

2. If Γ ⊢ τ1 ≤ τ2 : Ω, then Γ ⊢ τ1 ≡ τ2 : A(τ ′1) and Γ ⊢ τ ′1 ≡ τ ′2 : Ω.

Proof.

1. • by Completeness of Type Comparison, Γ ⊢ τ1 ⇛⇛ τ and Γ ⊢ τ2 ⇛⇛ τ

• by Soundness of Type Comparison, Γ ⊢ τ1 ≡ τ : A(τ ′1) and Γ ⊢ τ2 ≡ τ : A(τ ′2)

• by Validity, Γ ⊢ τ : A(τ ′1) and Γ ⊢ τ : A(τ ′2)

• by Completeness of Kind Synthesis, Γ ⊢ τ : A(τ ′) with Γ ⊢ A(τ ′) ≤ A(τ ′1) : � and Γ ⊢
A(τ ′) ≤ A(τ ′2) : �

• by inverting KSabs, Γ ⊢ τ ′ ≡ τ ′1 : Ω and Γ ⊢ τ ′ ≡ τ ′2 : Ω

• by Symmetry and Transitivity, Γ ⊢ τ ′2 ≡ τ ′1 : Ω

• by KSabs, Γ ⊢ A(τ ′2) ≤ A(τ ′1) : �

• by Tsub, Γ ⊢ τ2 : A(τ ′1)

• by definition of Type Comparison, Γ ⊲ τ1 ≡ τ2 ⇇ A(τ1)

247

D. Proofs of Term Level Properties

• by Soundness of Type Comparison, Γ ⊢ τ1 ≡ τ2 : A(τ1)

2. • by Completeness of Type Comparison, Γ ⊲ τ1 ⇛ π1 and Γ ⊲ τ2 ⇛ π2

• by Soundness of Type Comparison, Γ ⊢ τ1 ≡ π1 : A(τ ′1) and Γ ⊢ τ2 ≡ π2 : A(τ ′2)

• by Validity, Γ ⊢ π1 : A(τ ′1) and Γ ⊢ π2 : A(τ ′2)

• by Canonical Types, π1 = χ1 and π2 = χ2

• by Kind Subsumption, Γ ⊢ τ1 ≡ π1 : Ω and Γ ⊢ τ2 ≡ π2 : Ω

• by Symmetry, TSequiv, and Transitivity, Γ ⊢ π1 ≤ π2 : Ω

• by Type Inclusion Inversion, Γ ⊢ π1 ≡ π2 : Ω

• by Transitivity, Γ ⊢ τ1 ≡ τ2 : Ω

• by (1), Γ ⊢ τ1 ≡ τ2 : A(τ ′1) and Γ ⊢ τ ′1 ≡ τ ′2 : Ω

Lemma 50 (Decomposition and Replacement). If Γ ⊢ E[e] : τ , then Γ ⊢ e : τ ′, and if
Γ′ ⊢ e′ : τ ′ with Γ′ ⊇ Γ then Γ′ ⊢ E[e′] : τ .

Proof. By straightforward induction on the structure of the context, using Inversion.

Theorem 51 (Preservation).

1. If ∆ ⊢ e : τ and ∆; e→ ∆′; e′ with E = , then ∆′ ⊢ e′ : τ .

2. If · ⊢ C : τ and C → C ′, then · ⊢ C ′ : τ .

Proof. 1. Case analysis:

case Rapp: e = (λx:τ1.e2) v and e′ = e2[v/x]

– by Inversion (3), ∆ ⊢ λx:τ1.e2 : τ ′1 → τ ′′ and ∆ ⊢ v : τ ′1
– by Inversion (2), ∆, x:τ1 ⊢ e2 : τ2 and ∆ ⊢ τ1 → τ2 ≤ τ ′1 → τ : Ω

– by Type Inclusion Inversion, ∆ ⊢ τ ′1 ≤ τ1 : Ω and ∆ ⊢ τ2 ≤ τ : Ω

– by Weakening, ∆, x:τ1 ⊢ τ2 ≤ τ : Ω

– by Esub, ∆ ⊢ v : τ1 and ∆, x:τ1 ⊢ e2 : τ

– by Substitutability, ∆ ⊢ e2[v/x] : τ

case Rproj: e = let〈x1, x2〉=〈v1, v2〉 in e2 and e′ = e2[v1/x1][v2/x2]

– by Inversion (5), ∆ ⊢ 〈v1, v2〉 : τ1 × τ2 and ∆, x1:τ1, x2:τ2 ⊢ e2 : τ

– by Inversion (4), ∆ ⊢ v1 : τ ′1 and ∆ ⊢ v2 : τ ′2 and ∆ ⊢ τ ′1 × τ ′2 ≤ τ1 × τ2 : Ω

– by Type Inclusion Inversion, ∆ ⊢ τ ′1 ≤ τ1 : Ω and ∆ ⊢ τ ′2 ≤ τ2 : Ω

– by Esub, ∆ ⊢ v1 : τ1 and ∆ ⊢ v2 : τ2
– by Substitutability, ∆ ⊢ e2[v1/x1][v2/x2] : τ

case Rinst: e = (λα:κ1.e2) τ3 and e′ = e2[τ3/α]

– by Inversion (7), ∆ ⊢ λα:κ1.e2 : ∀α:κ′1.τ
′
2 and ∆ ⊢ τ3 : κ′1 and ∆ ⊢ τ ′2[τ3/α] ≤ τ : Ω

– by Inversion (6), ∆, α:κ1 ⊢ e2 : τ2 and ∆ ⊢ ∀α:κ1.τ2 ≤ ∀α:κ′1.τ
′
2 : Ω

– by Type Inclusion Inversion, ∆ ⊢ κ′1 ≤ κ1 : Ω and ∆, α:κ′1 ⊢ τ2 ≤ τ ′2 : Ω

– by Substitutability, ∆ ⊢ τ2[τ3/α] ≤ τ ′2[τ3/α] : Ω

– by Tsub, ∆ ⊢ τ3 : κ1

– by Substitutability, ∆ ⊢ e2[τ3/α] : τ2[τ3/α]

– by Esub, ∆ ⊢ e2[τ3/α] : τ ′2[τ3/α]

– by Esub, ∆ ⊢ e2[τ3/α] : τ

248

D.3. Soundness

case Ropen: e = let〈α, x〉=〈τ1, v2〉 inτ ′ e2 and e′ = e2[τ1/α][v2/x]

– w.l.o.g., α /∈ Dom(∆)

– by Inversion (9), ∆ ⊢ 〈τ1, v2〉 : ∃α:κ1.τ2 and ∆, α:κ1, x:τ2 ⊢ e2 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Inversion (8), ∆ ⊢ τ1 : κ′1 and ∆ ⊢ v2 : τ ′2 and ∆ ⊢ ∃α:S(τ1 : κ′1).τ
′
2 ≤ ∃α:κ1.τ2 : Ω

– by Type Inclusion Inversion, ∆ ⊢ S(τ1 : κ′1) ≤ κ1 : Ω and ∆, α:S(τ1 : κ′1) ⊢ τ
′
2 ≤ τ2 : Ω

– by Text-sing*, ∆ ⊢ τ1 : S(τ1 : κ′1)

– by Substitutability, ∆ ⊢ τ ′2[τ1/α] ≤ τ2[τ1/α] : Ω

– by Esub, ∆ ⊢ v2 : τ2[τ1/α]

– by Tsub, ∆ ⊢ τ1 : κ1

– by Substitutability, ∆ ⊢ e2[τ1/α][v2/x] : τ ′[τ1/α]

– by Validity, ∆ ⊢ τ ′ : Ω

– by Variable Containment, τ ′[τ1/α] = τ ′

– by Esub, ∆ ⊢ e2[τ1/α][v2/x] : τ

case Rnew: e = newα ≈ τ1 inτ ′ e2 and e′ = e2 and ∆′ = ∆, α:A(τ1)

– by Inversion (10), ∆, α:A(τ1) ⊢ e2 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Esub, ∆, α:A(τ1) ⊢ e2 : τ

case Rcancel: e = {{v}+
τ2}

−
τ1 and e′ = v

– by Inversion (12), ∆ ⊢ {v}+
τ2

: τ1 and ∆ ⊢ τ1 : A(τ ′1) and ∆ ⊢ τ ′1 ≤ τ : Ω

– by Inversion (11), ∆ ⊢ v : τ ′2 and ∆ ⊢ τ2 : A(τ ′2) and ∆ ⊢ τ2 ≤ τ1 : Ω

– by Representation Equivalence, ∆ ⊢ τ ′2 ≡ τ ′1 : Ω

– by Antisymmetry, ∆ ⊢ τ ′2 ≤ τ ′1 : Ω

– by Transitivity, ∆ ⊢ τ ′2 ≤ τ : Ω

– by Esub, ∆ ⊢ v : τ

case Rcase1: e = case v:τ1 of x:τ2.e3 elseτ ′ e4 and e′ = e3[v/x] and ∆ ⊢ τ1 ≡ τ2 : Ω

– by Inversion (13), ∆ ⊢ v : τ1 and ∆, x:τ2 ⊢ e3 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Weakening, ∆ ⊢ τ1 ≡ τ2 : Ω

– by TSequiv and Esub, ∆ ⊢ v : τ2

– by Substitutability, ∆ ⊢ e3[v/x] : τ ′

– by Esub, ∆ ⊢ e3[v/x] : τ

case Rcase2: e = case v:τ1 of x:τ2.e3 elseτ ′ e4 and e′ = e4

– by Inversion (13), ∆ ⊢ e4 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Esub, ∆ ⊢ e4 : τ

case Rpickle: e = pickle v and e′ = ψ(v)

– by Inversion (15), ∆ ⊢ v : ∃α:Ω.α and ∆ ⊢ Ψ ≤ τ : Ω

– by Variable Containment, FV(v) ⊆ Dom(∆)

– by Epsi, ∆ ⊢ ψ(v) : Ψ

– by Esub, ∆ ⊢ ψ(v) : τ

case Runpickle1: e = unpicklex ⇐ ψ(v) in e1 elseτ ′ e2 and e′ = e1[v/x] and ∆ ⊢ v :
∃α:Ω.α

– by Inversion (16), ∆, x:∃α:Ω.α ⊢ e1 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Weakening, ∆ ⊢ v : ∃α:Ω.α

– by Substitutability, ∆ ⊢ e1[v/x] : τ ′

– by Esub, ∆ ⊢ e1[v/x] : τ

case Runpickle2: e = unpicklex⇐ ψ(v) in e1 elseτ ′ e2 and e′ = e2

– by Inversion (16), ∆ ⊢ e2 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

249

D. Proofs of Term Level Properties

– by Esub, ∆ ⊢ e2 : τ

2. • let C = ∆;E[e] such that E maximal

• by inverting Cvalid, ∆ ⊢ E[e] : τ

• by Decomposition, ∆ ⊢ e : τ ′

• by (1), ∆′ ⊢ e′ : τ ′

• by Replacement, ∆′ ⊢ E[e′] : τ

• by Cvalid, · ⊢ ∆′;E[e′] : τ

D.3.2. Progress

The progress proof requires the usual canonical forms lemma, but here respecting the heap:

Lemma 52 (Canonical Values).
Let Γ ⊢ v : τ .

1. If Γ ⊢ τ ≤ τ ′ : Ω and Γ ⊢ τ ′ : A(τ1), then v = {v1}
+
τ2 .

2. If Γ ⊢ τ ≤ Ψ : Ω, then v = ψ(v1).

3. If Γ ⊢ τ ≤ τ1 → τ2 : Ω, then v = λx:τ ′1.e2.

4. If Γ ⊢ τ ≤ τ1 × τ2 : Ω, then v = 〈v1, v2〉.

5. If Γ ⊢ τ ≤ ∀α:κ1.τ2 : Ω, then v = λα:κ′1.e2.

6. If Γ ⊢ τ ≤ ∃α:κ1.τ2 : Ω, then v = 〈τ1, v2〉.

Proof. Each by induction on the derivation of Γ ⊢ v : τ , using normalisation and Shape Consis-
tency to exclude impossible cases.

1. case Eup: v = {v1}
+
τ2

case Esub:

– by inversion, Γ ⊢ v : τ ′′ and Γ ⊢ τ ′′ ≤ τ : Ω

– by Transitivity, Γ ⊢ τ ′′ ≤ τ ′ : Ω

– by induction, v = {v1}
+
τ2

2. case Epsi: v = ψ(v1)

case Esub:

– by inversion, Γ ⊢ v : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by Transitivity, Γ ⊢ τ ′ ≤ Ψ : Ω

– by induction, v = ψ(v1)

3–6. Analogous.

Lemma 53 (Embedding).
If ∆;E[e] → ∆,∆′;E[e′], then ∆1,∆,∆2;E1EE2[e] → ∆1,∆,∆2,∆

′;E1EE2[e
′] for any contexts

E1, E2 and heaps ∆1,∆2.

250

D.3. Soundness

Proof. By induction on the structure of the additional contexts and case analysis for the reduc-
tion rule applied. Note that E1[E[E2]] is itself a context.

Theorem 54 (Progress).
If ∆ ⊢ e : τ , then either e = v, or (∆; e) = (∆;E[e1]) → (∆′;E[e′1]) = (∆′; e′).

Proof. By induction on the structure of e. We show a few representative cases:

case e = x: impossible, due to Variable Containment

case e = e1 e2 with e1 6= v1:

– by Inversion, ∆ ⊢ e1 : τ2 → τ

– by induction, ∆; e1 = ∆;E′[e3] → ∆′;E′[e′3]

– let E = E′ e2

– by Embedding, ∆;E[e3] → ∆′;E[e′3]

case e = v1 e2 with e2 6= v2: Analogous.

case e = v1 v2:

– by Inversion, ∆ ⊢ v1 : τ2 → τ

– by Validity and Reflexivity, ∆ ⊢ τ2 → τ ≤ τ2 → τ : Ω

– by Canonical Values, v1 = λx:τ ′2.e1

– let E =

– by Rapp, ∆; e = ∆;E[v1 v2] → ∆;E[e1[v2/x]]

case e = (newα ≈ τ1 inτ2 e2):

– let ∆′ = ∆, α:A(τ1)

– by Rnew, ∆; e = ∆; e→ ∆′; e2

case e = {v}−τ1
:

– by Inversion, ∆ ⊢ v : τ1 and ∆ ⊢ τ1 : A(τ2)

– by Canonical Values, v = {v1}
+
τ ′
1

– let E =

– by Rcancel, ∆; e = ∆;E[{v}−τ1
] → ∆;E[v1]

case e = (case v:τ1 of x:τ2.e2 elseτ2 e3):

– let E =

– by Decidability of Type Inclusion, it is decidable whether ∆ ⊢ τ1 ≤ τ2 : Ω

– if ∆ ⊢ τ1 ≤ τ2 : Ω, then by Rcase1, ∆; e = ∆;E[e] → ∆;E[e2[v/x]]

– otherwise, by Rcase2, ∆; e = ∆;E[e] → ∆;E[e3]

case e = (unpicklex⇐ v in e1 elseτ2 e2):

– by Inversion, ∆ ⊢ v : Ψ

– by Validity and Reflexivity, ∆ ⊢ Ψ ≤ Ψ : Ω

– by Canonical Values, v = ψ(v1)

– let E =

– by Decidability of Term Validity, it is decidable whether ∆ ⊢ v1 : ∃α:Ω.α

– if ∆ ⊢ v1 : ∃α:Ω.α, then by Runpickle1, ∆; e = ∆;E[e] → ∆;E[e1[v1/x]]

– otherwise, by Runpickle2, ∆; e = ∆;E[e] → ∆;E[e2]

251

D. Proofs of Term Level Properties

D.4. Opacity

The core of the authentication half of the proof actually is a straightforward lemma showing
that we cannot construct a value of variable type α, where α : Ω (note that the kind assumption
is crucial, as for a type of kind Sκ̂(τ) or A(τ) we often could write down a value).

Proposition 55 (Abstractness). If Γ = Γ1, α:Ω, x:α,Γ2 and Γ ⊢ e : τ with Γ ⊢ τ ≤ α, then e is
not a value.

Proof. By easy induction on the derivation. All rules that apply to values can be excluded using
Type Shape Consistency, except for Esub, which is trivial by Transitivity and induction.

Theorem 56 (Opacity).
Let Γ = α:Ω, x:α, f :α→1, and γi = [αi/α] ∪ [vi/x] ∪ [v′i/f] ∪ [α′ | α′ ∈ Dom(∆′)/α′] with

∆, γi(∆
′) ⊢ γi : Γ,∆′ and ∆; v′i vi →

∗ ∆; ⋄ for i ∈ {1, 2}.

1. Let Γ,∆′ ⊢ τ : κ.
If and only if ∆, γ1(∆

′) ⊢ γ1(τ) : γ1(κ), then ∆, γ2(∆
′) ⊢ γ2(τ) : γ2(κ).

2. Let Γ,∆′ ⊢ τ : Ω and Γ,∆′ ⊢ τ ′ : Ω.
If and only if ∆, γ1(∆

′) ⊢ γ1(τ) ≤ γ1(τ
′) : Ω, then ∆, γ2(∆

′) ⊢ γ2(τ) ≤ γ2(τ
′) : Ω.

3. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′) ⊢ γ1(e) : γ1(τ), then ∆, γ2(∆
′) ⊢ γ2(e) : γ2(τ).

4. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′); γ1(e) →
∗ ∆, γ1(∆

′),∆1; v
′, then ∆1 = γ1(∆

′′) and v′ = γ1(v) with
∆, γ2(∆

′); γ2(e) →
∗ ∆, γ2(∆

′), γ2(∆
′′); γ2(v).

Proof. For all parts it suffices to show only one direction, since the other is symmetric.

1. By induction on the derivation of ∆, γ1(∆
′) ⊢ γ1(τ) : γ1(κ). The only interesting case is the

following:

case Tvar: there are two subcases:

subcase γ1(τ) = α1:

∗ by Substitution Validity, α1 /∈ Dom(∆′)

∗ by Variable Containment, α1 /∈ FV(τ)

∗ hence, τ = α

∗ by Type Validity Inversion, Γ,∆′ ⊢ (Γ,∆′)(α) ≤ κ : �

∗ since Γ(α) = Ω, by inverting Komega, κ = Ω

∗ by Substitutability, ∆, γ2(∆
′) ⊢ γ2(τ) : Ω

subcase γ1(τ) = β 6= α1:

∗ by Type Validity Inversion, Γ,∆′ ⊢ (Γ,∆′)(β) ≤ κ : �

∗ by Substitutability, ∆, γ2(∆
′) ⊢ γ2((Γ,∆

′)(β)) ≤ γ2(κ) : �

∗ by Substitutability, ∆, γ2(∆
′) ⊢ γ2(β) : γ2((Γ,∆

′)(β))

∗ by Tsub, ∆, γ2(∆
′) ⊢ γ2(β) : γ2(κ)

2. By induction on the derivation of ∆, γ1(∆
′) ⊢ γ1(τ) ≤ γ1(τ

′) : Ω, using (1). The only interesting
cases are the following:

case TQvar: there are two subcases:

subcase γ1(τ) = α1:

∗ by Substitution Validity, α1 /∈ Dom(∆′).

252

D.4. Opacity

∗ by Variable Containment, α1 /∈ FV(τ) and α1 /∈ FV(τ ′)

∗ hence, τ = τ ′ = α

∗ by Reflexivity, Γ,∆′ ⊢ α ≤ α : Ω

∗ by Substitutability, ∆, γ2(∆
′) ⊢ γ2(τ) ≤ γ2(τ

′) : Ω

subcase γ1(τ) = β 6= α1:

∗ obviously, γ1(τ) = γ1(τ
′) = β = γ2(τ) = γ2(τ

′)

case TQext-sing:

– by inversion, κ = γ1(Sκ̂(τ
′′)) and ∆, γ1(∆

′) ⊢ γ1(τ) : γ1(Sκ̂(τ
′′)) and ∆, γ1(∆

′) ⊢ γ1(τ
′) :

γ1(Sκ̂(τ
′′))

– by (1), ∆, γ2(∆
′) ⊢ γ2(τ) : γ2(Sκ̂(τ

′′)) and ∆, γ2(∆
′) ⊢ γ2(τ

′) : γ2(Sκ̂(τ
′′))

– by TQext-sing, ∆, γ2(∆
′) ⊢ γ2(τ) ≡ γ2(τ

′) : γ2(Sκ̂(τ
′′))

3. By induction on the derivation of ∆, γ1(∆
′) ⊢ γ1(e) : γ1(τ), using (1) and (2). The only interesting

case is Evar, which is analogous to Tvar in (1).

4. By induction on the reduction sequence. Note that by Substitutability, ∆, γi(∆
′) ⊢ γi(e) : γi(τ).

Moreover, if γ1(e
′) is a value for some e′, then γ2(e

′) obviously is a value as well.

case γ1(e) = v′ and ∆1 = ·:

– obviously, ∆1 = γ1(·) = γ2(·)

– obviously, γ2(e) is also a value

case Rapp: ∆1 = ·

subcase e = E[(λx′:τ2.e3) e4] with γ1(e4) value:

∗ by rule, ∆, γ1(∆
′); γ1(e) → ∆, γ1(∆

′); e′ with e′ = γ1(E)[γ1(e3)[γ1(e4)/x
′]]

∗ by Variable Convention, e′ = γ1(E[e3[e4/x
′]])

∗ obviously, γ2(e4) is also a value

∗ obviously, ∆1 = γ1(·) = γ2(·)

∗ hence likewise, ∆, γ2(∆
′); γ2(e) → ∆, γ2(∆

′); γ2(E[e3[e4/x
′]])

∗ the claim follows by induction

subcase e = E[f e4] with γ1(e4) value:

∗ by Decomposition, Γ ⊢ f e4 : τ ′

∗ by Inversion, Γ ⊢ f : τ4 → τ ′ and Γ ⊢ e4 : τ4
∗ by Inversion, Γ ⊢ Γ(f) ≤ τ4 → τ ′ : Ω

∗ by Type Inclusion Inversion, Γ ⊢ τ4 ≤ α : Ω

∗ by Abstractness, e4 not a value

∗ since, γ1(e4) value, e4 = x or e4 = f

∗ by Inversion, Γ ⊢ Γ(e4) ≤ α : Ω

∗ by Type Inclusion Inversion, Γ ⊢ Γ(e4) ≡ α : Ω

∗ hence, e4 6= f and e4 = x

∗ hence, γ1(f e4) = v′1 v1

∗ by assumption, ∆; v′1 v1 →∗ ∆; ⋄

∗ by Embedding, ∆, γ1(∆
′); γ1(E)[v′1 v1] →

∗ ∆, γ1(∆
′); γ1(E)[⋄]

∗ likewise, ∆, γ2(∆
′); γ2(e) →∗ ∆, γ2(∆

′); γ2(E[⋄])

∗ the claim follows by induction

case Rnew: e = E[newα′ ≈ τ1 inτ e2]:

– by rule, ∆, γ1(∆
′); γ1(e) → ∆, γ1(∆

′), α′:γ1(τ1); e
′ with e′ = γ1(E)[γ1(e2)]

– by Variable Convention, e′ = γ1(E[e2])

– hence likewise, ∆, γ2(∆
′); γ2(e) → ∆, γ2(∆

′), α′:γ2(τ1); γ2(E[e2])

– the claim follows by induction

253

D. Proofs of Term Level Properties

case Rcase1: e = E[case e1:τ1 of x′:τ2.e2 elseτ e3] with γ1(e1) value:

– by rule, ∆, γ1(∆
′); γ1(e) → ∆, γ1(∆

′); e′ with e′ = γ1(E)[γ1(e2)[γ(e1)/x
′]]

– hence, ∆1 = ·

– by Variable Convention, e′ = γ1(E[e2[e1/x
′]])

– by side condition, ∆, γ1(∆
′) ⊢ γ1(τ) ≤ γ1(τ

′) : Ω

– by (2), ∆, γ2(∆
′) ⊢ γ2(τ) ≤ γ2(τ

′) : Ω

– obviously, γ2(e1) is also a value

– hence likewise, ∆, γ2(∆
′); γ2(e) → ∆, γ2(∆

′); γ2(E[e2[e1/x
′]])

– the claim follows by induction

case Rcase2: similarly

case Runpickle1: e = E[unpicklex′ ⇐ ψ(e1) in e2 elseτ e3] with γ1(e1) value:

– by rule, ∆, γ1(∆
′); γ1(e) → ∆, γ1(∆

′); e′ with e′ = γ1(E)[γ1(e2)[γ(e1)/x
′]]

– hence, ∆1 = ·

– by Variable Convention, e′ = γ1(E[e2[e1/x
′]])

– by side condition, ∆, γ1(∆
′) ⊢ γ1(e1) : ∃α:Ω.α

– by (3), ∆, γ2(∆
′) ⊢ γ2(τ) : ∃α:Ω.α

– obviously, γ2(e1) is also a value

– hence likewise, ∆, γ2(∆
′); γ2(e) → ∆, γ2(∆

′); γ2(E[e2[e1/x
′]])

– the claim follows by induction

case Runpickle2: similarly

The remaining cases are straightforward.

254

E. Proofs for Higher-Order Abstraction

E.1. Kind Coercions

We start with kind coercions, because all other extensions depend on them. To ease some of
the proofs, we factor out the following technical lemmata, which state that the substitutions in
the residual kind of a dependent coercions do ‘the right thing’, i.e. yield the right equivalence
inward and outward. They depend on the actual correctness of the judgement rules for kind
coercions for the types involved, so we have to take that as an assumption. Since we invoke the
lemma only on subterms during induction of the actual proofs, this approach is well-founded.

Lemma 57 (Kind Adaptive Substitutions). Provided the rules Tcoerce*, TQcoerce*,
TQcoerce-drop* and TQcoerce-cancel* hold for kinds of size Size(κ̃), and Γ, α:κ ⊢ κ̃ : �
and Γ ⊢ τ

+
: κ and Γ ⊢ τ− : κ and α′ /∈ Dom(Γ, α:κ), then:

1. If Γ ⊢ τ : κ̃[τ−/α], then Γ, α:κ ⊢ [{τ : α:κ.κ̃}α/τ−
/α′] : Γ, α:κ, α′:κ̃.

2. If Γ ⊢ τ : κ̃[τ−/α], then Γ ⊢ [{τ : α:κ.κ̃}τ−/τ−
/α′] ≡ [τ/α′] : Γ, α′:κ̃[τ−/α].

3. If Γ ⊢ τ ≡ τ ′ : κ̃[τ−/α] and Γ, α:κ ⊢ κ̃ ≡ κ̃′ : � and Γ ⊢ τ− ≡ τ ′
−

: κ,
then Γ, α:κ ⊢ [{τ : α:κ.κ̃}α/τ−

/α′] ≡ [{τ ′ : α:κ.κ̃′}α/τ ′
−

/α′] : Γ, α:κ, α′:κ̃.

4. Γ, α′:κ̃[τ
+
/α], α:κ ⊢ [{{α′ : α:κ.κ̃}τ−/τ

+

: α:κ.κ̃}α/τ−
/α′] : Γ, α:κ, α′:κ̃.

5. Γ, α′:κ̃[τ
+
/α] ⊢ [{{α′ : α:κ.κ̃}τ−/τ

+

: α:κ.κ̃}τ
+

/τ−
/α′] ≡ [α′/α′] : Γ, α′:κ̃[τ

+
/α].

6. Γ, α′:κ̃[τ
+
/α] ⊢ [{{α′ : α:κ.κ̃}τ−/τ

+

: α:κ.κ̃}τ−/τ−
/α′] ≡ [{α′ : α:κ.κ̃}τ−/τ

+

/α′] : Γ, α′:κ̃[τ−/α].

7. If Γ, α:κ ⊢ κ̃ ≡ κ̃′ : � and Γ ⊢ τ
+
≡ τ ′

+
: κ and Γ ⊢ τ− ≡ τ ′

−
: κ, then Γ, α′:κ̃[τ

+
/α], α:κ ⊢

[{{α′ : α:κ.κ̃}τ−/τ
+

: α:κ.κ̃}α/τ−
/α′] ≡ [{{α′ : α:κ.κ̃′}τ ′

−
/τ ′

+

: α:κ.κ̃′}α/τ ′
−

/α′] : Γ, α:κ, α′:κ̃.

Proof.

1. • let τ ′ = {τ : α:κ.κ̃}α/τ
−

• by Environment Validity, Γ, α:κ ⊢ �

• by Weakening, Γ, α:κ ⊢ τ : κ̃[τ−/α] and Γ, α:κ ⊢ τ− : κ

• by Tvar, Γ, α:κ ⊢ α : κ

• by Tcoerce*, Γ, α:κ ⊢ τ ′ : κ̃

• by definition of Substitution Validity, Γ, α:κ ⊢ [τ ′/α′] : Γ, α:κ, α′:κ̃

2. • let τ ′ = {τ : α:κ.κ̃}τ
−

/τ
−

• by Reflexivity, Γ ⊢ τ− ≡ τ− : κ

• by TQcoerce-drop*, Γ ⊢ τ ′ ≡ τ : κ̃[τ−/α]

• by Validity, Γ ⊢ κ̃[τ−/α] : � and Γ ⊢ τ ′ : κ̃[τ−/α]

• by Ntype, Γ, α′:κ̃[τ−/α] ⊢ �

255

E. Proofs for Higher-Order Abstraction

• by Tvar, Γ, α′:κ̃[τ−/α] ⊢ α′ : κ̃[τ−/α]

• by definition of Substitution Equivalence, Γ ⊢ [τ ′/α′] ≡ [τ/α′] : Γ, α′:κ̃[τ−/α]

3. • let τ1 = {τ : α:κ.κ̃}α/τ−
and τ ′1 = {τ ′ : α:κ′.κ̃′}α/τ ′

−

• by Environment Validity, Γ, α:κ ⊢ �

• by Weakening, Γ, α:κ ⊢ τ ≡ τ ′ : κ̃[τ−/α] and Γ, α:κ ⊢ τ− ≡ τ ′
−

: κ

• by TQvar, Γ, α:κ ⊢ α ≡ α : κ

• obviously, Γ ⊢ [τ
+
/α] ≡ [τ ′

+
/α] : Γ, α:κ and Γ ⊢ [τ−/α] ≡ [τ ′

−
/α] : Γ, α:κ

• by Full Functionality, Γ ⊢ κ̃[τ
+
/α] ≡ κ̃′[τ ′

+
/α] : � and Γ ⊢ κ̃[τ−/α] ≡ κ̃′[τ ′

−
/α] : �

• by TQcoerce*, Γ, α:κ ⊢ τ1 ≡ τ ′1 : κ̃

• by definition of Substitution Equivalence, Γ, α:κ ⊢ [τ1/α
′] ≡ [τ ′1/α

′] : Γ, α:κ, α′:κ̃

4. • by inverting Ntype, α /∈ Dom(Γ)

• obviously, Γ ⊢ [τ
+
/α] : Γ, α:κ

• by Substitutability, Γ ⊢ κ̃[τ
+
/α] : �

• by Ntype, Γ, α′:κ̃[τ
+
/α] ⊢ �

• by Kbase, Γ, α′:κ̃[τ
+
/α] ⊢ κ : �

• let Γ′ = Γ, α′:κ̃[τ
+
/α], α:κ

• by Ntype, Γ′ ⊢ �

• by Weakening, Γ′ ⊢ τ
+

: κ and Γ′ ⊢ τ− : κ

• w.l.o.g., α′′ /∈ Dom(Γ′)

• by Renaming, Γ, α′′:κ ⊢ κ̃[α′′/α] : �

• by Kbase, Γ′ ⊢ κ : �

• by Ntype, Γ′, α′′:κ ⊢ �

• by Weakening, Γ′, α′′:κ ⊢ κ̃[α′′/α] : �

• by Tvar, Γ′ ⊢ α′ : κ̃[τ+/α]

• let τ = {α′ : α′′:κ.κ̃[α′′/α]}τ−/τ
+

• by Tcoerce*, Γ′ ⊢ τ : κ̃[τ−/α]

• by Tvar, Γ′ ⊢ α : κ

• let τ ′ = {τ : α′′:κ.κ̃[α′′/α]}α/τ
−

• by Tcoerce*, Γ′ ⊢ τ ′ : κ̃

• by definition of Substitution Validity, Γ′ ⊢ [τ ′/α′] : Γ, α:κ, α′:κ̃

5. • by inverting Ntype, α /∈ Dom(Γ)

• obviously, Γ ⊢ [τ+/α] : Γ, α:κ

• by Substitutability, Γ ⊢ κ̃[τ+/α] : �

• let Γ′ = Γ, α′:κ̃[τ
+
/α]

• by Ntype, Γ′ ⊢ �

• by Weakening, Γ′ ⊢ τ
+

: κ and Γ′ ⊢ τ− : κ

• by Kbase, Γ′ ⊢ κ : �

• by Ntype, Γ′, α:κ ⊢ �

• by Weakening, Γ′, α:κ ⊢ κ̃ : �

• by Tvar, Γ′ ⊢ α′ : κ̃[τ
+
/α]

• let τ ′ = {{α′ : α:κ.κ̃}τ
−

/τ
+

: α:κ.κ̃}τ
+

/τ
−

256

E.1. Kind Coercions

• by TQcoerce-cancel*, Γ ⊢ τ ′ ≡ α′ : κ̃[τ
+
/α]

• by Validity, Γ ⊢ τ ′ : κ̃[τ
+
/α]

• by definition of Substitution Equivalence, Γ′ ⊢ [τ/α′] ≡ [α′/α′] : Γ′

6. • by inverting Ntype, α /∈ Dom(Γ)

• obviously, Γ ⊢ [τ
+
/α] : Γ, α:κ

• by Substitutability, Γ ⊢ κ̃[τ+/α] : �

• let Γ′ = Γ, α′:κ̃[τ
+
/α]

• by Ntype, Γ′ ⊢ �

• by Weakening, Γ′ ⊢ τ
+

: κ and Γ′ ⊢ τ− : κ

• by Kbase, Γ′ ⊢ κ : �

• by Ntype, Γ′, α:κ ⊢ �

• by Weakening, Γ′, α:κ ⊢ κ̃ : �

• by Tvar, Γ′ ⊢ α′ : κ̃[τ
+
/α]

• let τ = {α′ : α:κ.κ̃}τ−/τ
+

• by Tcoerce*, Γ′ ⊢ τ : κ̃[τ−/α]

• by Reflexivity, Γ′ ⊢ τ− ≡ τ− : κ

• let τ ′ = {τ : α:κ.κ̃}τ
−

/τ
−

• by TQcoerce-drop*, Γ′ ⊢ τ ′ ≡ τ : κ̃[τ−/α]

• by Validity, Γ′ ⊢ τ ′ : κ̃[τ−/α]

• by definition of Substitution Equivalence, Γ′ ⊢ [τ ′/α′] ≡ [τ/α′] : Γ, α′:κ̃[τ−/α]

7. • by inverting Ntype, α /∈ Dom(Γ)

• obviously, Γ ⊢ [τ
+
/α] ≡ [τ ′

+
/α] : Γ, α:κ

• by Full Functionality, Γ ⊢ κ̃[τ
+
/α] ≡ κ̃′[τ ′

+
/α] : �

• by Validity, Γ ⊢ κ̃[τ
+
/α] : �

• by Ntype, Γ, α′:κ̃[τ
+
/α] ⊢ �

• by Kbase, Γ, α′:κ̃[τ+/α] ⊢ κ : �

• let Γ′ = Γ, α′:κ̃[τ
+
/α], α:κ

• by Ntype, Γ′ ⊢ �

• by Weakening, Γ′ ⊢ τ
+
≡ τ ′

+
: κ and Γ′ ⊢ τ− ≡ τ ′

−
: κ

• w.l.o.g., α′′ /∈ Dom(Γ′)

• by Renaming, Γ, α′′:κ ⊢ κ̃[α′′/α] ≡ κ̃′[α′′/α] : �

• by Kbase, Γ′ ⊢ κ : �

• by Ntype, Γ′, α′′:κ ⊢ �

• by Weakening, Γ′, α′′:κ ⊢ κ̃[α′′/α] ≡ κ̃′[α′′/α] : �

• by TQvar, Γ′ ⊢ α′ ≡ α′ : κ̃[τ+/α]

• let τ = {α′ : α′′:κ.κ̃[α′′/α]}τ
−

/τ
+

and τ ′ = {α′ : α′′:κ.κ̃′[α′′/α]}τ ′
−

/τ ′
+

• obviously, Γ′ ⊢ [τ
+
/α] ≡ [τ ′

+
/α] : Γ′, α:κ and Γ′ ⊢ [τ−/α] ≡ [τ ′

−
/α] : Γ′, α:κ

• by Full Functionality, Γ′ ⊢ κ̃[τ+/α] ≡ κ̃′[τ ′
+
/α] : � and Γ′ ⊢ κ̃[τ−/α] ≡ κ̃′[τ ′

−
/α] : �

• by TQcoerce*, Γ′ ⊢ τ ≡ τ ′ : κ̃[τ−/α]

• by TQvar, Γ′ ⊢ α ≡ α : κ

• let τ1 = {τ : α′′:κ.κ̃[α′′/α]}α/τ−
and τ ′1 = {τ ′ : α′′:κ.κ̃′[α′′/α]}α/τ ′

−

257

E. Proofs for Higher-Order Abstraction

• by TQcoerce*, Γ′ ⊢ τ1 ≡ τ ′1 : κ̃

• by definition of Substitution Equivalence, Γ′ ⊢ [τ1/α
′] ≡ [τ ′1/α

′] : Γ, α:κ, α′:κ̃

Lemma 58 (Kind Adaption). Provided the rules Tcoerce*, TQcoerce*, TQcoerce-drop*

and TQcoerce-cancel* hold for kinds of size Size(κ̃1) and Size(κ̃2), and Γ, α:κ ⊢ κ̃1 : � and
Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : � and Γ ⊢ τ

+
: κ and Γ ⊢ τ− : κ, then:

1. Let τ1 = {α1 : α:κ.κ̃1}τ−/τ
+

and κ̃′2 = κ̃2[{τ1 : α:κ.κ̃1}α/τ−
/α1] and Γ1 = Γ, α1:κ̃1[τ+/α].

Then:

a) Γ1 ⊢ � and Γ1, α:κ ⊢ �

b) Γ1, α:κ ⊢ κ̃′2 : �

c) Γ1 ⊢ κ̃2[τ−/α][τ1/α1] ≡ κ̃′2[τ−/α] : �

d) Γ1 ⊢ κ̃′2[τ+/α] ≡ κ̃2[τ+/α] : �

2. Let κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ−
/α]. If Γ ⊢ τ ·1 : κ̃1[τ−/α], then:

a) Γ1, α:κ ⊢ κ̃′2 : �

b) Γ1 ⊢ κ̃2[τ−/α][τ ·1/α1] ≤ κ̃′2[τ−/α] : �

Proof.

1. • by Environment Validity, Γ, α:κ ⊢ �

• by inverting Ntype, α /∈ Dom(Γ)

• obviously, Γ ⊢ [τ
+
/α] : Γ, α:κ

• by Substitutability, Γ ⊢ κ̃1[τ+/α] : � and Γ, α1:κ̃1[τ+/α] ⊢ κ̃2[τ+/α] : �

• by Ntype, Γ1 ⊢ �

• by Weakening, Γ1 ⊢ τ
+

: κ

• by Validity, Γ1 ⊢ κ : �

• by Ntype, Γ1, α:κ ⊢ �

• by Weakening, Γ1, α:κ ⊢ κ̃1 : �

• by Tvar, Γ1 ⊢ α1 : κ̃1[τ+/α]

• let τ ′1 = {τ1 : α:κ.κ̃1}α/τ
−

• by Kind Adaptive Substitution (4), Γ1, α:κ ⊢ [τ ′1/α1] : Γ, α:κ, α1:κ̃1

• by Substitutability, Γ1, α:κ ⊢ κ̃′2 : �

• obviously, Γ, α1:κ̃1[τ−/α] ⊢ [τ−/α] : Γ, α:κ, α1:κ̃1

• by Substitutability, Γ, α1:κ̃1[τ−/α] ⊢ κ̃2[τ−/α] : �

• by Kind Adaptive Substitution (6), Γ1 ⊢ [τ ′1[τ−/α]/α1] ≡ [τ1/α1] : Γ, α1:κ̃1[τ−/α]

• by Simple Functionality,
Γ1 ⊢ κ̃2[τ−/α][τ1/α1] ≡ κ̃2[τ−/α][{τ1 : α:κ.κ̃1}τ

−
/τ

−
/α1] : �

• by Variable Containment, α /∈ FV(τ, τ
+
, τ−)

• obviously, κ̃2[τ−/α][{τ1 : α:κ.κ̃1}τ−/τ−
/α1] = κ̃′2[τ−/α]

• obviously, κ̃′2[τ+/α] = κ̃2[τ+/α][{τ1 : α:κ.κ̃1}τ
+

/τ
−
/α1]

• by Kind Adaptive Substitution (5), Γ1 ⊢ [{τ1 : α:κ.κ̃1}τ
+

/τ
−
/α1] ≡ [α1/α1] : Γ1

258

E.1. Kind Coercions

• by Simple Functionality, Γ1 ⊢ κ̃2[τ+/α][{τ1 : α:κ.κ̃1}τ
+

/τ
−
/α1] ≡ κ̃2[τ+/α] : �

2. • by Tcoerce*, Γ ⊢ τ1 : κ̃1[τ+/α]

• let τ ′1 = {τ ·1 : α:κ.κ̃1}α/τ
−

• by Kind Adaptive Substitution (1), Γ, α:κ ⊢ [τ ′1/α1] : Γ, α:κ, α1:κ̃1

• by Substitutability, Γ, α:κ ⊢ κ̃′2 : �

• obviously, Γ, α1:κ̃1[τ−/α] ⊢ [τ−/α] : Γ, α:κ, α1:κ̃1

• by Substitutability, Γ, α1:κ̃1[τ−/α] ⊢ κ̃2[τ−/α] : �

• by Kind Adaptive Substitution (2),
Γ ⊢ [{τ ·1 : α:κ.κ̃1}τ−/τ−

/α1] ≡ [τ ·1/α1] : Γ, α1:κ̃1[τ−/α]

• by Simple Functionality,
Γ ⊢ κ̃2[τ−/α][τ ·1/α1] ≡ κ̃2[τ−/α][{τ ·1 : α:κ.κ̃1}τ

−
/τ

−
/α1] : �

• obviously, κ̃′2[τ−/α] = κ̃2[τ−/α][{τ ·1 : α:κ.κ̃1}τ
−

/τ
−
/α1]

With these lemmas we can prove actual correctness of the kind coercion rules, and thus the
definition of kind coercions themselves:

Theorem 59 (Admissibility of Kind Coercion Rules).
The rules Tcoerce*, TQcoerce*, TQcoerce-drop* and TQcoerce-cancel* are derivable.

Proof. By simultaneous induction on Size(κ̃):

1. Tcoerce*:

case α /∈ FV(κ̃): trivial

case κ̃ = SΩ(τ ′):

– by inverting Ksing, Γ, α:κ ⊢ τ ′ : Ω

– obviously, Γ ⊢ [τ+/α] : Γ, α:κ

– by Substitutability, Γ ⊢ τ ′[τ
+
/α] : Ω

– by Text-sing, Γ ⊢ τ ′[τ
+
/α] : SΩ(τ ′[τ

+
/α])

case κ̃ = Πα1:κ̃1.κ̃2

– by inverting Kpi, Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α:κ ⊢ κ̃1 : �

– let Γ1 = Γ, α1:κ̃1[τ+/α]

– by Kind Adaption (1a) with induction, Γ1 ⊢ � and Γ1, α:κ ⊢ �

– by Weakening, Γ1 ⊢ τ+ : κ and Γ1 ⊢ τ− : κ and Γ1, α:κ ⊢ κ̃1 : �

– let τ1 = {α1 : α:κ.κ̃1}τ
−

/τ
+

– by Tvar, Γ1 ⊢ α1 : κ̃1[τ+/α]

– by induction, Γ1 ⊢ τ1 : κ̃1[τ−/α]

– by Weakening, Γ1 ⊢ τ : (Πα1:κ̃1.κ̃2)[τ−/α]

– by Tapp, Γ1 ⊢ τ τ1 : κ̃2[τ−/α][τ1/α1]

– let κ̃′2 = κ̃2[{τ1 : α:κ.κ̃1}α/τ−
/α1]

– by Kind Adaption (1c) with induction, Γ1 ⊢ κ̃2[τ−/α][τ1/α1] ≡ κ̃′2[τ−/α] : �

– by Antisymmetry and Tsub, Γ1 ⊢ τ τ1 : κ̃′2[τ−/α]

– let τ2 = {τ τ1 : α:κ.κ̃′2}τ
+

/τ
−

– by Kind Adaption (1b) with induction, Γ1, α:κ ⊢ κ̃′2 : �

259

E. Proofs for Higher-Order Abstraction

– by induction, Γ1 ⊢ τ2 : κ̃′2[τ+/α]

– by Kind Adaption (1d) with induction, Γ1 ⊢ κ̃′2[τ+/α] ≡ κ̃2[τ+/α] : �

– by Antisymmetry and Tsub, Γ1 ⊢ τ2 : κ̃2[τ+/α]

– by Tlambda, Γ ⊢ λα:κ̃1[τ+/α].τ2 : (Πα:κ̃1.κ̃2)[τ+/α]

case κ̃ = Σα1:κ̃1.κ̃2

– by Tfst, Γ ⊢ τ ·1 : κ̃1[τ−/α]

– by inverting Ksigma, Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α:κ ⊢ κ̃1 : �

– let τ1 = {τ ·1 : α:κ.κ̃1}τ
+

/τ
−

– by induction, Γ ⊢ τ1 : κ̃1[τ+/α]

– by Tsnd, Γ ⊢ τ ·2 : κ̃2[τ−/α][τ ·1/α1]

– let κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ
−
/α1]

– by Kind Adaption (2b) with induction, Γ ⊢ κ̃2[τ−/α][τ ·1/α1] ≡ κ̃′2[τ−/α] : �

– by Antisymmetry and Tsub, Γ ⊢ τ ·2 : κ̃′2[τ−/α]

– let τ2 = {τ ·2 : κ̃′2}τ
+

/τ
−

– by Kind Adaption (2a) with induction, Γ, α:κ ⊢ κ̃′2 : �

– by induction, Γ ⊢ τ2 : κ̃′2[τ+/α]

– obviously, κ̃′2[τ+/α] = κ̃2[τ+/α][{τ ·1 : α:κ.κ̃1}τ
+

/τ−
/α1] = κ̃2[τ+/α][τ1/α1]

– by Tpair, Γ ⊢ 〈τ1, τ2〉 : (Σα1:κ̃1.κ̃2)[τ+/α]

2. TQcoerce*:

case α /∈ FV(κ̃): trivial

case κ̃ = SΩ(τ ′′):

– by inverting KQsing, κ̃′ = SΩ(τ ′′′) and Γ ⊢ τ ′′[τ
+
/α] ≡ τ ′′′[τ

+
/α] : Ω

– by Validity, Γ ⊢ τ ′′[τ
+
/α] : Ω and Γ ⊢ τ ′′′[τ

+
/α] : Ω

– by Text-sing, Γ ⊢ τ ′′[τ
+
/α] : SΩ(τ ′′[τ

+
/α]) and Γ ⊢ τ ′′′[τ

+
/α] : SΩ(τ ′′′[τ

+
/α])

– by Symmetry and KSsing, Γ ⊢ SΩ(τ ′′′[τ
+
/α]) ≤ SΩ(τ ′′[τ

+
/α]) : �

– by Tsub, Γ ⊢ τ ′′′[τ
+
/α] : S(τ ′′[τ

+
/α])

– by TQext-sing, Γ ⊢ τ ′′[τ
+
/α] ≡ τ ′′′[τ

+
/α] : SΩ(τ ′′[τ

+
/α])

case κ̃ = Πα1:κ̃1.κ̃2

– by inverting KQpi, κ̃′ = Πα1:κ̃
′
1.κ̃

′
2 and Γ ⊢ κ̃1[τ+/α] ≡ κ̃′1[τ

′
+
/α] : � and Γ ⊢ κ̃1[τ−/α] ≡

κ̃′1[τ
′
−
/α] : �

– by inverting Kpi, Γ, α:κ ⊢ κ̃1 : � and Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– let Γ1 = Γ, α1:κ̃1[τ+/α]

– by Kind Adaption (1a) with induction, Γ1 ⊢ � and Γ1, α:κ ⊢ �

– by Weakening, Γ1 ⊢ τ
+

: κ and Γ1 ⊢ τ− : κ and Γ1, α:κ ⊢ κ̃1 : �

– let τ1 = {α1 : α:κ.κ̃1}τ
−

/τ
+

and τ ′1 = {α1 : α:κ.κ̃′1}τ ′
−

/τ ′
+

– by TQvar, Γ1 ⊢ α1 ≡ α1 : κ̃1[τ+/α]

– by induction, Γ1 ⊢ τ1 ≡ τ ′1 : κ̃1[τ−/α]

– by Weakening, Γ1 ⊢ τ ≡ τ ′ : (Πα1:κ̃1.κ̃2)[τ−/α]

– by TQapp, Γ1 ⊢ τ τ1 ≡ τ ′ τ ′1 : κ̃2[τ−/α][τ1/α1]

– let κ̃3 = κ̃2[{τ1 : α:κ.κ̃1}α/τ−
/α1] and κ̃′3 = κ̃′2[{τ

′
1 : α:κ′.κ̃′1}α/τ ′

−

/α1]

– by Kind Adaptive Substitution (7) with induction,
Γ1 ⊢ [{τ1 : α:κ.κ̃1}α/τ

−
/α1] ≡ [{τ ′1 : α:κ.κ̃′1}α/τ ′

−

/α1] : Γ1

– by Full Functionality, Γ1, α:κ ⊢ κ̃3 ≡ κ̃′3 : �

– by Validity, Γ1, α:κ ⊢ κ̃3 : � and Γ1, α:κ ⊢ κ̃′3 : �

260

E.1. Kind Coercions

– obviously, Γ1 ⊢ [τ
+
/α] ≡ [τ ′

+
/α] : Γ1, α:κ and Γ1 ⊢ [τ−/α] ≡ [τ ′

−
/α] : Γ1, α:κ

– by Full Functionality, Γ1 ⊢ κ̃3[τ+/α] ≡ κ̃′3[τ
′
+
/α] : � and Γ1 ⊢ κ̃3[τ−/α] ≡ κ̃′3[τ

′
−
/α] : �

– by Kind Adaption (1c) with induction, Γ1 ⊢ κ̃2[τ−/α][τ1/α1] ≡ κ̃3[τ−/α] : �

– by Antisymmetry and TQsub, Γ1 ⊢ τ τ1 ≡ τ ′ τ ′1 : κ̃3[τ−/α]

– let τ2 = {τ τ1 : α:κ.κ̃3}τ
+

/τ
−

and τ ′2 = {τ ′ τ ′1 : α:κ′.κ̃′3}τ
+

/τ
−

– by Kind Adaption (1b) with induction, Γ1, α:κ ⊢ κ̃3 : � and Γ1, α:κ ⊢ κ̃′3 : �

– by induction, Γ1 ⊢ τ2 ≡ τ ′2 : κ̃3[τ+/α]

– by Kind Adaption (1d) with induction, Γ1 ⊢ κ̃3[τ+/α] ≡ κ̃2[τ+/α] : �

– by Antisymmetry and TQsub, Γ1 ⊢ τ2 ≡ τ ′2 : κ̃2[τ+/α]

– by TQlambda, Γ ⊢ λα:κ̃1[τ+/α].τ2 ≡ λα:κ̃′1[τ
′
+
/α].τ ′2 : (Πα:κ̃1.κ̃2)[τ+/α]

case κ̃ = Σα1:κ̃1.κ̃2

– by inverting KQsigma, κ̃′ = Σα1:κ̃
′
1.κ̃

′
2 and Γ ⊢ κ̃1[τ+/α] ≡ κ̃′1[τ

′
+
/α] : � and Γ ⊢

κ̃1[τ−/α] ≡ κ̃′1[τ
′
−
/α] : �

– by TQfst, Γ ⊢ τ ·1 ≡ τ ′·1 : κ̃1[τ−/α]

– by inverting Ksigma, Γ, α:κ ⊢ κ̃1 : � and Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– let τ1 = {τ ·1 : α:κ.κ̃1}τ
+

/τ−
and τ ′1 = {τ ′·1 : α:κ′.κ̃′1}τ ′

+
/τ ′

−

– by induction, Γ ⊢ τ1 ≡ τ ′1 : κ̃1[τ+/α]

– by TQsnd, Γ ⊢ τ ·2 ≡ τ ′·2 : κ̃2[τ−/α][τ ·1/α1]

– let κ̃3 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ−
/α1] and κ̃′3 = κ̃′2[{τ

′·1 : α:κ′.κ̃′1}α/τ ′
−

/α1]

– by Kind Adaptive Substitution (3) with induction,
Γ1 ⊢ [{τ ·1 : α:κ.κ̃1}α/τ−

/α1] ≡ [{τ ′·1 : α:κ′.κ̃′1}α/τ ′
−

/α1] : Γ1

– by Full Functionality, Γ1 ⊢ κ̃3 ≡ κ̃′3 : �

– by Validity, Γ, α:κ ⊢ κ̃3 : � and Γ, α:κ ⊢ κ̃′3 : �

– obviously, Γ ⊢ [τ
+
/α] ≡ [τ ′

+
/α] : Γ, α:κ and Γ ⊢ [τ−/α] ≡ [τ ′

−
/α] : Γ, α:κ

– by Full Functionality, Γ ⊢ κ̃3[τ+/α] ≡ κ̃′3[τ
′
+
/α] : � and Γ ⊢ κ̃3[τ−/α] ≡ κ̃′3[τ

′
−
/α] : �

– by Kind Adaption (2b) with induction, Γ ⊢ κ̃2[τ−/α][τ ·1/α1] ≡ κ̃3[τ−/α] : �

– by Antisymmetry and TQsub, Γ ⊢ τ ·2 ≡ τ ′·2 : κ̃′2[τ−/α]

– let τ2 = {τ ·2 : α:κ.κ̃3}τ
+

/τ−
and τ ′2 = {τ ′·2 : α:κ′.κ̃′3}τ ′

+
/τ ′

−

– by induction, Γ ⊢ τ2 ≡ τ ′2 : κ̃3[τ+/α]

– obviously, κ̃3[τ+/α] = κ̃2[τ+/α][{τ ·1 : α:κ.κ̃1}τ
+

/τ
−
/α1] = κ̃2[τ+/α][τ1/α1]

– by TQpair, Γ ⊢ 〈τ1, τ2〉 ≡ 〈τ ′1, τ
′
2〉 : (Σα1:κ̃1.κ̃2)[τ+/α]

3. TQcoerce-drop*:

case α /∈ FV(κ̃):

– by Reflexivity, Γ ⊢ τ ≡ τ : κ̃

case κ̃ = SΩ(τ ′):

– by Validity, Γ ⊢ τ
+

: κ and Γ ⊢ τ− : κ

– by Tcoerce*, Γ ⊢ {τ : α:κ.SΩ(τ ′)}τ
+

/τ
−

: SΩ(τ ′)[τ
+
/α]

– by Environment Validity, Γ ⊢ �

– obviously, Γ ⊢ [τ
+
/α] ≡ [τ−/α] : Γ, α:κ

– by Simple Functionality, Γ ⊢ SΩ(τ ′)[τ
+
/α] ≤ SΩ(τ ′)[τ−/α] : �

– by Tsub, Γ ⊢ {τ : α:κ.SΩ(τ ′)}τ
+

/τ−
: SΩ(τ ′)[τ−/α]

– by TQext-sing, Γ ⊢ {τ : α:κ.SΩ(τ ′)}τ
+

/τ
−
≡ τ : SΩ(τ ′)[τ−/α]

case κ̃ = Πα1:κ̃1.κ̃2

– by Validity, Γ ⊢ τ
+

: κ and Γ ⊢ τ− : κ

261

E. Proofs for Higher-Order Abstraction

– by inverting Kpi, Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α:κ ⊢ κ̃1 : �

– let Γ1 = Γ, α1:κ̃1[τ+/α]

– by Kind Adaption (1a) with induction, Γ1 ⊢ � and Γ1, α:κ ⊢ �

– by Weakening, Γ1 ⊢ τ
+
≡ τ− : κ and Γ1, α:κ ⊢ κ̃1 : �

– by Symmetry, Γ1 ⊢ τ− ≡ τ
+

: κ

– let τ1 = {α1 : α:κ.κ̃1}τ
−

/τ
+

– by Tvar, Γ1 ⊢ α1 : κ̃1[τ+/α]

– by induction, Γ1 ⊢ τ1 ≡ α1 : κ̃1[τ+/α]

– obviously, Γ1 ⊢ [τ
+
/α] ≡ [τ−/α] : Γ1, α:κ

– by Simple Functionality, Γ1 ⊢ κ̃1[τ+/α] ≤ κ̃1[τ−/α] : �

– by TQsub, Γ1 ⊢ τ1 ≡ α1 : κ̃1[τ−/α]

– by Weakening, Γ1 ⊢ τ : (Πα1:κ̃1.κ̃2)[τ−/α]

– by Reflexivity, Γ1 ⊢ τ ≡ τ : Πα1:κ̃1[τ−/α].κ̃2[τ−/α]

– by TQapp, Γ1 ⊢ τ τ1 ≡ τ α1 : κ̃2[τ−/α][τ1/α1]

– let κ̃′2 = κ̃2[{τ1 : α:κ.κ̃1}α/τ
−
/α1]

– by Kind Adaption (1c) with induction, Γ1 ⊢ κ̃2[τ−/α][τ1/α1] ≡ κ̃′2[τ−/α] : �

– by Antisymmetry and TQsub, Γ1 ⊢ τ τ1 ≡ τ α1 : κ̃′2[τ−/α]

– let τ2 = {τ τ1 : α:κ.κ̃′2}τ
+
≈τ

−
and τ ′2 = {τ α1 : α:κ.κ̃′2}τ

+
≈τ

−

– by Validity, Γ1 ⊢ τ τ1 : κ̃′2[τ−/α] and Γ1 ⊢ τ α1 : κ̃′2[τ−/α]

– by Kind Adaption (1b) with induction, Γ1, α:κ ⊢ κ̃′2 : �

– by induction, Γ1 ⊢ τ2 ≡ τ τ1 : κ̃′2[τ−/α] and Γ1 ⊢ τ ′2 ≡ τ α1 : κ̃′2[τ−/α]

– by Symmetry and Transitivity, Γ1 ⊢ τ2 ≡ τ α1 : κ̃′2[τ−/α]

– by Simple Functionality, Γ1 ⊢ κ̃′2[τ−/α] ≤ κ̃′2[τ+/α] : �

– by TQsub, Γ1 ⊢ τ2 ≡ τ α1 : κ̃′2[τ+/α]

– by Kind Adaption (1d) with induction, Γ1 ⊢ κ̃′2[τ+/α] ≡ κ̃2[τ+/α] : �

– by Antisymmetry and TQsub, Γ1 ⊢ τ2 ≡ τ α1 : κ̃2[τ+/α]

– by TQlambda, Γ ⊢ λα:κ̃1[τ+/α].τ2 ≡ λα:κ̃1[τ+/α].τ α1 : (Πα:κ̃1.κ̃2)[τ+/α]

– by Simple Functionality, Γ ⊢ (Πα:κ̃1.κ̃2)[τ+/α] ≤ (Πα:κ̃1.κ̃2)[τ−/α] : �

– by TQsub, Γ ⊢ λα:κ̃1[τ+/α].τ2 ≡ λα:κ̃1[τ+/α].τ α1 : (Πα:κ̃1.κ̃2)[τ−/α]

– by TQlambda-eta*, Γ ⊢ λα:κ̃1[τ+/α].τ α1 ≡ τ : (Πα:κ̃1.κ̃2)[τ−/α]

– by Transitivity, Γ ⊢ λα:κ̃1[τ+/α].τ2 ≡ τ : (Πα:κ̃1.κ̃2)[τ−/α]

case κ̃ = Σα1:κ̃1.κ̃2

– by Validity, Γ ⊢ τ
+

: κ and Γ ⊢ τ− : κ

– obviously, Γ ⊢ [τ
+
/α] ≡ [τ−/α] : Γ, α:κ

– by Tfst, Γ ⊢ τ ·1 : κ̃1[τ−/α]

– by inverting Ksigma, Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α:κ ⊢ κ̃1 : �

– let τ1 = {τ ·1 : α:κ.κ̃1}τ
+

/τ−

– by induction, Γ ⊢ τ1 ≡ τ ·1 : κ̃1[τ−/α]

– by Validity, Γ ⊢ τ1 : κ̃1[τ−/α]

– by Tsnd, Γ ⊢ τ ·2 : κ̃2[τ−/α][τ ·1/α1]

– let κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ
−
/α1]

– by Kind Adaption (2b) with induction, Γ ⊢ κ̃2[τ−/α][τ ·1/α1] ≡ κ̃′2[τ−/α] : �

– by Antisymmetry and Tsub, Γ ⊢ τ ·2 : κ̃′2[τ−/α]

– let τ2 = {τ ·2 : κ̃′2}τ
+

/τ
−

262

E.1. Kind Coercions

– by Kind Adaption (2a) with induction, Γ, α:κ ⊢ κ̃′2 : �

– by induction, Γ ⊢ τ2 ≡ τ ·2 : κ̃′2[τ−/α]

– by Substitutability, Γ ⊢ κ̃′2[τ−/α] ≤ κ̃′2[τ+/α] : �

– obviously, κ̃′2[τ+/α] = κ̃2[τ+/α][{τ ·1 : α:κ.κ̃1}τ
+

/τ
−
/α1] = κ̃2[τ+/α][τ1/α1]

– obviously, Γ, α1:κ̃1[τ−/α] ⊢ [τ−/α] ≡ κ̃2[τ+/α] : Γ, α:κ, α:κ̃1

– by Simple Functionality, Γ, α1:κ̃1[τ−/α] ⊢ κ̃2[τ+/α] ≤ κ̃2[τ−/α] : �

– obviously, Γ ⊢ [τ1/α1] : Γ, α1:κ̃1[τ−/α]

– by Substitutability, Γ ⊢ κ̃2[τ+/α][τ1/α1] ≤ κ̃2[τ−/α][τ1/α1] : �

– by Transitivity, Γ ⊢ κ̃′2[τ−/α] ≤ κ̃2[τ−/α][τ1/α1] : �

– TQsub, Γ ⊢ τ2 ≡ τ ·2 : κ̃2[τ−/α][τ1/α1]

– by TQpair, Γ ⊢ 〈τ1, τ2〉 ≡ 〈τ ·1, τ ·2〉 : (Σα1:κ̃1.κ̃2)[τ−/α]

– by TQpair-eta*, Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ : (Σα1:κ̃1.κ̃2)[τ−/α]

– by Transitivity, Γ ⊢ 〈τ1, τ2〉 ≡ τ : (Σα1:κ̃1.κ̃2)[τ−/α]

4. TQcoerce-cancel*:

case α /∈ FV(κ̃):

– by Reflexivity, Γ ⊢ τ ≡ τ : κ̃

case κ̃ = SΩ(τ ′):

– by Validity, Γ ⊢ SΩ(τ ′)[τ−/α] : �

– by inverting Ksing, Γ ⊢ τ ′[τ−/α] : Ω

– by Text-sing, Γ ⊢ τ ′[τ−/α] : SΩ(τ ′)[τ−/α]

– by TQext-sing, Γ ⊢ τ ′[τ−/α] ≡ τ : SΩ(τ ′)[τ−/α]

case κ̃ = Σα1:κ̃1.κ̃2

– let τ1 = {τ ·1 : α:κ.κ̃1}τ
+

/τ
−

and τ2 = {τ ·2 : κ̃′2}τ
+

/τ
−

and τ ′ = 〈τ1, τ2〉

with κ̃′2 = κ̃2[{τ ·1 : α:κ.κ̃1}α/τ
−
/α1] and

– let τ ′1 = {τ ′·1 : α:κ.κ̃1}τ
−

/τ
+

and τ ′2 = {τ ′·2 : κ̃′′2}τ
−

/τ
+

and τ ′′ = 〈τ ′1, τ
′
2〉

with κ̃′′2 = κ̃2[{τ ′·1 : α:κ.κ̃1}α/τ
+
/α1]

– by Tcoerce*, Γ ⊢ τ ′ : (Σα1:κ̃1.κ̃2)[τ+/α]

– by TQfst-beta*, Γ ⊢ τ ′·1 ≡ τ1 : κ̃1[τ+/α]

– by TQsnd-beta*, Γ ⊢ τ ′·2 ≡ τ2 : κ̃2[τ+/α][τ ′·1/α1]

– by inverting Ksigma, Γ, α:κ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α:κ ⊢ κ̃1 : �

– obviously, Γ ⊢ [τ
+
/α] : Γ, α:κ and Γ ⊢ [τ−/α] : Γ, α:κ

– by Substitutability, Γ ⊢ κ̃1[τ+/α] : � and Γ ⊢ κ̃1[τ−/α] : �

– by Reflexivity, Γ ⊢ κ̃1[τ+/α] ≡ κ̃1[τ+/α] : � and Γ ⊢ κ̃1[τ−/α] ≡ κ̃1[τ−/α] : � and
Γ ⊢ τ

+
≡ τ

+
: κ and Γ ⊢ τ− ≡ τ− : κ

– by TQcoerce*, Γ ⊢ τ ′1 ≡ {τ1 : α:κ.κ̃1}τ
−

/τ
+

: κ̃1[τ−/α]

– by Tfst, Γ ⊢ τ ·1 : κ̃1[τ−/α]

– by induction, Γ ⊢ {τ1 : α:κ.κ̃1}τ−/τ
+
≡ τ ·1 : κ̃1[τ−/α]

– by Transitivity, Γ ⊢ τ ′1 ≡ τ ·1 : κ̃1[τ−/α]

– by Validity, Γ ⊢ τ ′·1 : κ̃1[τ+/α]

– by Kind Adaption (2b) with induction (inverted signs),
Γ ⊢ κ̃2[τ+/α][τ ′·1/α1] ≡ κ̃′′2 [τ

+
/α] : �

– by Antisymmetry and TQsub, Γ ⊢ τ ′·2 ≡ τ2 : κ̃′′2 [τ
+
/α]

– by Kind Adaption (2a) with induction (inverted signs), Γ, α:κ ⊢ κ̃′′2 : �

– by Substitutability, Γ ⊢ κ̃′′2 [τ
+
/α] : � and Γ ⊢ κ̃′′2 [τ−/α] : �

263

E. Proofs for Higher-Order Abstraction

– by Reflexivity, Γ ⊢ κ̃′′2 [τ
+
/α] ≡ κ̃′′2 [τ

+
/α] : � and Γ ⊢ κ̃′′2 [τ−/α] ≡ κ̃′′2 [τ−/α] : �

– by TQcoerce*, Γ ⊢ τ ′2 ≡ {τ2 : α:κ.κ̃′′2}τ
−

/τ
+

: κ̃′′2 [τ−/α]

– obviously, κ̃′2[τ+/α] = κ̃2[τ+/α][τ1/α1]
and κ̃′′2 [τ

+
/α] = κ̃2[τ+/α][{τ ′·1 : α:κ.κ̃1}τ

+
/τ

+
/α1]

– obviously, Γ, α1:κ̃1[τ+/α] ⊢ [τ
+
/α] : Γ, α:κ, α1:κ̃1

– by Substitutability, Γ, α1:κ̃1[τ+/α] ⊢ κ̃2[τ+/α] : �

– by TQcoerce-drop*, Γ ⊢ {τ ′·1 : α:κ.κ̃1}τ
+

/τ
+
≡ τ ′·1 : κ̃1[τ+/α] : �

– by Transitivity, Γ ⊢ {τ ′·1 : α:κ.κ̃1}τ
+

/τ
+
≡ τ1 : κ̃1[τ+/α] : �

– obviously, Γ ⊢ [{τ ′·1 : α:κ.κ̃1}τ
+

/τ
+
/α1] ≡ [τ1/α1] : Γ, α1:κ̃1[τ+/α]

– by Simple Functionality, Γ ⊢ κ̃′2[τ+/α] ≡ κ̃′′2 [τ+/α] : �

– obviously, κ̃′2[τ−/α] = κ̃2[τ−/α][{τ ·1 : α:κ.κ̃1}τ−/τ−
/α1]

and κ̃′′2 [τ−/α] = κ̃2[τ−/α][{τ ′·1 : α:κ.κ̃1}τ−/τ
+
/α1]

– by TQcoerce-drop*, Γ ⊢ {τ ·1 : α:κ.κ̃1}τ
−

/τ
−
≡ τ ·1 : κ̃1[τ−/α] : �

– by TQcoerce*, Γ ⊢ {τ ′·1 : α:κ.κ̃1}τ
−

/τ
+
≡ {τ1 : α:κ.κ̃1}τ

−
/τ

+
: κ̃1[τ−/α] : �

– by induction, Γ ⊢ {τ1 : α:κ.κ̃1}τ−/τ
+
≡ τ ·1 : κ̃1[τ−/α] : �

– by Symmetry and Transitivity,
Γ ⊢ {τ ·1 : α:κ.κ̃1}τ

−
/τ

−
≡ {τ ′·1 : α:κ.κ̃1}τ

−
/τ

+
: κ̃1[τ−/α] : �

– obviously, Γ ⊢ [{τ ·1 : α:κ.κ̃1}τ
−

/τ
−

+/α1] ≡ [{τ ′·1 : α:κ.κ̃1}τ
−

/τ
+
/α1] : Γ, α1:κ̃1[τ+/α]

– by Simple Functionality, Γ ⊢ κ̃′2[τ−/α] ≡ κ̃′′2 [τ−/α] : �

– by Tsnd, Γ ⊢ τ ·2 : κ̃2[τ−/α][τ ·1/α1]

– by Kind Adaption (2b) with induction, Γ ⊢ κ̃2[τ−/α][τ ·1/α1] ≡ κ̃′2[τ−/α] : �

– by Antisymmetry and Tsub, Γ ⊢ τ ·2 : κ̃′2[τ−/α]

– by induction, Γ ⊢ {τ2 : κ̃′2}τ
−

/τ
+
≡ τ ·2 : κ̃′2[τ−/α]

– by Tcoerce*, Γ ⊢ τ2 : κ̃′2[τ+/α]

– by Reflexivity, Γ ⊢ τ2 ≡ τ2 : κ̃′2[τ+/α]

– by TQcoerce*, Γ ⊢ {τ2 : α:κ.κ̃′2}τ−/τ
+
≡ τ ′2 : κ̃′2[τ−/α]

– by Symmetry and Transitivity, Γ ⊢ τ ′2 ≡ τ ·2 : κ̃′2[τ−/α]

– by Antisymmetry and TQsub, Γ ⊢ τ ′2 ≡ τ ·2 : κ̃2[τ−/α][τ ·1/α1]

– by Symmetry, Γ ⊢ τ ·1 ≡ τ ′1 : κ̃1[τ−/α] and Γ ⊢ τ ·2 ≡ τ ′2 : κ̃2[τ−/α][τ ·1/α1]

– by TQpair, Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ ′′ : (Σα1:κ̃1.κ̃2)[τ−/α]

– by TQpair-eta*, Γ ⊢ 〈τ ·1, τ ·2〉 ≡ τ : (Σα1:κ̃1.κ̃2)[τ−/α]

– by Symmetry and Transitivity, Γ ⊢ τ ′′ ≡ τ : (Σα1:κ̃1.κ̃2)[τ−/α]

E.2. Abstraction Kinds

The definition of higher-order abstraction kinds mostly follows higher-order singleton kinds, so
the proofs of admissibility are similar as well. However, to deal with the coercion in the Σ-case
we state a technical lemma:

Lemma 60 (Second Component Conversion).

1. If Γ ⊢ τ : Σα1:κ̃1.κ̃2, then Γ, α1:κ̃1 ⊢ {τ ·2 : α1:κ̃1.κ̃2}α1/τ ·1 : κ̃2.

264

E.2. Abstraction Kinds

2. If Γ ⊢ τ ≡ τ ′ : Σα1:κ̃1.κ̃2 and Γ ⊢ Σα1:κ̃1.κ̃2 ≡ Σα1:κ̃
′
1.κ̃

′
2 : �,

then Γ, α1:κ̃1 ⊢ {τ ·2 : α1:κ̃1.κ̃2}α1/τ ·1 ≡ {τ ′·2 : α1:κ̃
′
1.κ̃

′
2}α1/τ ′·1 : κ̃2.

Proof.

1. • by Validity, Γ ⊢ Σα1:κ̃1.κ̃2 : �

• by inverting Ksigma, Γ, α1:κ̃1 ⊢ κ̃2 : �

• let Γ1 = Γ, α1:κ̃1

• by Environment Validity, Γ1 ⊢ � and Γ ⊢ κ̃1 ⊢ � and Γ ⊢ �

• by Tfst, Γ ⊢ τ ·1 : κ̃1

• by Tsnd, Γ ⊢ τ ·2 : κ̃2[τ ·1/α1]

• by Validity, Γ ⊢ κ̃1 : �

• by Weakening, Γ1 ⊢ κ̃1 : � and Γ1 ⊢ τ ·1 : κ̃1 and Γ1 ⊢ τ ·2 : κ̃2[τ ·1/α1]

• w.l.o.g., α′
1 /∈ Dom(Γ1)

• by Renaming, Γ, α′
1:κ̃1 ⊢ κ̃2[α

′
1/α1] : �

• by Environment Validity, Γ1, α
′
1:κ̃1 ⊢ �

• by Weakening, Γ1, α
′
1:κ̃1 ⊢ κ̃2[α

′
1/α1] : �

• obviously, κ̃2[τ ·1/α1] = κ̃2[α
′
1/α1][τ ·1/α′

1]

• by Tvar, Γ1 ⊢ α1 : κ̃1

• by Tcoerce*, Γ1 ⊢ {τ ·2 : α′
1:κ̃1.κ̃2[α

′
1/α1]}α1/τ ·1 : κ̃2[α

′
1/α1][α1/α

′
1]

2. • by inverting KQsigma, Γ ⊢ κ̃1 ≡ κ̃′1 ⊢ � and Γ, α1:κ̃1 ⊢ κ̃2 ≡ κ̃′2 : �

• let Γ1 = Γ, α1:K(τ ·1 : κ̃1)

• by Environment Validity, Γ ⊢ � and Γ1 ⊢ �

• by TQfst, Γ ⊢ τ ·1 ≡ τ ′·1 : κ̃1

• by TQsnd, Γ ⊢ τ ·2 ≡ τ ′·2 : κ̃2[τ ·1/α1]

• by Validity, Γ ⊢ τ ·1 : κ̃1 and Γ, α1:κ̃1 ⊢ κ̃2 : � and Γ, α1:κ̃1 ⊢ κ̃′2 : �

• by Weakening, Γ1 ⊢ κ̃1 ≡ κ̃′1 : � and Γ1 ⊢ τ ·1 ≡ τ ′·1 : κ̃1 and Γ1 ⊢ τ ·2 ≡ τ ′·2 : κ̃2[τ ·1/α1]

• w.l.o.g., α′
1 /∈ Dom(Γ1)

• by Renaming,
Γ, α′

1:κ̃1 ⊢ κ̃2[α
′
1/α1] : � and Γ, α′

1:κ̃
′
1 ⊢ κ̃′2[α

′
1/α1] : �

• by Environment Validity, Γ1, α
′
1:κ̃1 ⊢ � and Γ1, α

′
1:κ̃

′
1 ⊢ �

• by Weakening, Γ1, α
′
1:κ̃1 ⊢ κ̃2[α

′
1/α1] : � and Γ1, α

′
1:κ̃

′
1 ⊢ κ̃′2[α

′
1/α1] : �

• obviously, κ̃2[τ ·1/α1] = κ̃2[α
′
1/α1][τ ·1/α′

1] and κ̃′2[τ
′·1/α1] = κ̃′2[α

′
1/α1][τ

′·1/α′
1]

• obviously, Γ ⊢ [τ ·1/α1] ≡ [τ ′·1/α1] : Γ, α1:κ̃1

• by Full Functionality, Γ ⊢ κ̃2[τ ·1/α1] ≡ κ̃′2[τ
′·1/α1] : �

• by Weakening, Γ1 ⊢ κ̃2[τ ·1/α1] ≡ κ̃′2[τ
′·1/α1] : �

• by TQvar, Γ1 ⊢ α1 ≡ α1 : κ̃1

• by TQcoerce*,
Γ1 ⊢ {τ ·2 : α′

1:κ̃1.κ̃2[α
′
1/α1]}α1/τ ·1 ≡ {τ ′·2 : α′

1:κ̃
′
1.κ̃

′
2[α

′
1/α1]}α1/τ ′·1 : κ̃2[α

′
1/α1][α1/α

′
1]

Theorem 61 (Admissibility of Higher-Order Abstraction Kind Rules).
The rules Kabs*, KQabs*, KSabs* and KSabs-left* are derivable.

Proof. By simultaneous induction on Size(κ̃).

265

E. Proofs for Higher-Order Abstraction

1. KQabs*:

case κ̃ = Ω:

– by inverting KQomega, κ̃′ = Ω

– by KQabs, Γ ⊢ A(τ) ≡ A(τ ′) : �

case κ̃ = SΩ(τ1):

– by inverting KQsing, κ̃′ = SΩ(τ ′1)

case κ̃ = Πα1:κ̃1.κ̃2:

– by Validity, Γ ⊢ Πα1:κ̃1.κ̃2 : �

– by inverting KQpi, κ̃′ = Πα1:κ̃
′
1.κ̃

′
2 and Γ ⊢ κ̃1 ≡ κ̃′1 : � and Γ, α1:κ̃1 ⊢ κ̃2 ≡ κ̃′2 : �

– by Environment Validity, Γ ⊢ � and Γ, α1:κ̃1 ⊢ �

– by Weakening, Γ, α1:κ̃1 ⊢ τ ≡ τ ′ : Πα1:κ̃1.κ̃2

– by TQvar, Γ, α1:κ̃1 ⊢ α1 ≡ α1 : κ̃1

– by TQapp, Γ, α1:κ̃1 ⊢ τ α1 ≡ τ ′ α1 : κ̃2

– by induction, Γ, α1:κ̃1 ⊢ A(τ α1 : κ̃2) ≡ A(τ ′ α1 : κ̃′2) : �

– by KQpi, Γ ⊢ Πα1:κ̃1.A(τ α1 : κ̃2) ≡ Πα1:κ̃
′
1.A(τ ′ α1 : κ̃′2) : �

case κ̃ = Σα1:κ̃1.κ̃2:

– by Validity, Γ ⊢ Σα1:κ̃1.κ̃2 : �

– by inverting KQsigma,
κ̃′ = Σα1:κ̃

′
1.κ̃

′
2 and Γ ⊢ κ̃1 ≡ κ̃′1 : � and Γ, α1:κ̃1 ⊢ κ̃2 ≡ κ̃′2 : �

– by TQfst, Γ ⊢ τ ·1 ≡ τ ′·1 : κ̃1

– by induction, Γ ⊢ A(τ ·1 : κ̃1) ≡ A(τ ′·1 : κ̃′1) : �

– let τ2 = {τ ·2 : α1:κ̃1.κ̃2}α1/τ ·1 and τ ′2 = {τ ′·2 : α1:κ̃
′
1.κ̃

′
2}α1/τ ′·1

– by Second Component Conversion, Γ, α1:κ̃1 ⊢ τ2 ≡ τ ′2 : κ̃2

– by Validity, Γ ⊢ τ ·1 : κ̃1 and Γ ⊢ A(τ ·1 : κ̃1) : �

– by induction (KSabs-left*), Γ ⊢ A(τ ·1 : κ̃1) ≤ κ̃1 : �

– let Γ1 = Γ, α1:A(τ ·1 : κ̃1)

– by Ntype, Γ1 ⊢ �

– by Weakening, Γ1 ⊢ τ2 ≡ τ ′2 : κ̃2 and Γ1 ⊢ κ̃2 ≡ κ̃′2 : �

– by induction, Γ1 ⊢ A(τ2 : κ̃2) ≡ A(τ ′2 : κ̃′2) : �

– by KQsigma, Γ ⊢ Σα1:A(τ ·1 : κ̃1).A(τ2 : κ̃2) ≡ Σα1:A(τ ′·1 : κ̃′1).A(τ ′2 : κ̃′2) : �

2. Kabs*:

• by Reflexivity, Γ ⊢ τ ≡ τ : κ̃ and Γ ⊢ κ̃ ≡ κ̃ : �

• by KQabs*, Γ ⊢ A(τ : κ̃) ≡ A(τ : κ̃) : �

• by Validity, Γ ⊢ A(τ : κ̃) : �

3. KSabs*:

• by KQabs*, Γ ⊢ A(τ : κ̃) ≡ A(τ ′ : κ̃′) : �

• by Antisymmetry, Γ ⊢ A(τ : κ̃) ≤ A(τ ′ : κ̃′) : �

4. KSabs-left*:

case κ̃ = Ω:

– by KSabs-left, Γ ⊢ A(τ) ≤ Ω : �

case κ̃ = SΩ(τ1):

– by Validity, Γ ⊢ SΩ(τ1) : �

– by Reflexivity, Γ ⊢ SΩ(τ1) ≤ SΩ(τ1) : �

266

E.3. Higher-Order Generativity and Type Coercions

case κ̃ = Πα1:κ̃1.κ̃2:

– by Validity, Γ ⊢ Πα1:κ̃1.κ̃2 : �

– by inverting Kpi, Γ, α1:κ̃1 ⊢ κ̃2 : �

– by Environment Validity, Γ, α1:κ̃1 ⊢ � and Γ ⊢ κ̃1 : �

– by Weakening, Γ, α1:κ̃1 ⊢ τ : Πα1:κ̃1.κ̃2

– by Tvar, Γ, α1:κ̃1 ⊢ α1 : κ̃1

– by Tapp, Γ, α1:κ̃1 ⊢ τ α1 : κ̃2

– by induction, Γ, α1:κ̃1 ⊢ A(τ α1 : κ̃2) ≤ κ̃2 : �

– by Reflexivity, Γ ⊢ κ̃1 ≤ κ̃1 : �

– by KSpi, Γ ⊢ Πα1:κ̃1.A(τ α1 : κ̃2) ≤ Πα1:κ̃1.κ̃2 : �

case κ̃ = Σα1:κ̃1.κ̃2:

– by Tfst, Γ ⊢ τ ·1 : κ̃1

– by induction, Γ ⊢ A(τ ·1 : κ̃1) ≤ κ̃1 : �

– let τ2 = {τ ·2 : α1:κ̃1.κ̃2}α1/τ ·1

– by Second Component Conversion, Γ, α1:κ̃1 ⊢ τ2 : κ̃2

– let Γ1 = Γ, α1:A(τ ·1 : κ̃1)

– by Ntype, Γ1 ⊢ �

– by Weakening, Γ1 ⊢ τ2 : κ̃2

– by induction, Γ1 ⊢ A(τ2 : κ̃2) ≤ κ̃2 : �

– by KSsigma, Γ ⊢ Σα1:A(τ ·1 : κ̃1).A(τ2 : κ̃2) ≤ Σα1:κ̃1.κ̃2 : �

E.3. Higher-Order Generativity and Type Coercions

E.3.1. Declarative Properties

Unsurprisingly, all interesting properties still hold for the extended calculus:

Proposition 62 (Declarative Properties with Higher-Order Abstraction).
All declarative properties from Section C.1.1 still hold in the presence of rules Enew’, Eup’ and
Edn’.

Proof. Straightforward extensions of the respective proofs with the new cases.

Proposition 63 (Validity with Higher-Order Abstraction).
If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

Proof. By straightforward extension of the original proof. The new cases are easy. For example:

case Edn’:

– by inversion, Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ τ− : κ̃

– obviously, Γ ⊢ [τ−/α] : Γ, α:κ̃

– by Substitutability, Γ ⊢ τ̃ [τ−/α] : Ω

The inversion principle on Term Validity has to be adapted to the changed rules:

Proposition 64 (Inversion for Higher-Order Abstraction). Let Γ ⊢ e : τ .

267

E. Proofs for Higher-Order Abstraction

10. If e = newα:κ̃1 ≈ τ̃1 inτ2 e2, then Γ ⊢ τ̃1 : κ̃1 and Γ, α:A(τ1 : κ̃1) ⊢ e2 : τ2 and Γ ⊢ τ2 ≤ τ :
Ω.

11. If e = {e1 : α:κ̃.τ̃}+
τ
+
≈τ−

, then Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ e1 : τ̃ [τ−/α] with Γ ⊢ τ− : κ̃ and

Γ ⊢ τ
+

: A(τ− : κ̃) and Γ ⊢ τ2[τ+/α] ≤ τ : Ω.

12. If e = {e1 : α:κ̃.τ̃}−τ
+
≈τ−

, then Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ e1 : τ̃ [τ
+
/α] with Γ ⊢ τ− : κ̃ and

Γ ⊢ τ
+

: A(τ− : κ̃) and Γ ⊢ τ2[τ−/α] ≤ τ : Ω.

Proof. Each by easy induction on the derivation. For example:

11. e = {e1 : α:κ̃.τ̃}+
τ
+
≈τ

−

case Eup’: τ = τ̃ [τ
+
/α]

– by inversion, Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ e1 : τ̃ [τ−/α] with Γ ⊢ τ
+

: A(τ− : κ̃) and Γ ⊢ τ− : κ̃

– by KSabs-left*, Γ ⊢ A(τ− : κ̃) ≤ κ̃ : �

– by Tsub, Γ ⊢ τ
+

: κ̃

– obviously, Γ ⊢ [τ
+
/α] : Γ, α:κ̃

– by Substitutability, Γ ⊢ τ̃ [τ
+
/α] : Ω

– by Reflexivity, Γ ⊢ τ̃ [τ
+
/α] ≤ τ̃ [τ

+
/α] : Ω

case Esub:

– by inversion, Γ ⊢ e : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by induction, Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ e1 : τ̃ [τ−/α] with Γ ⊢ τ
+

: A(τ− : κ̃) and Γ ⊢ τ− : κ̃
and Γ ⊢ τ̃ [τ

+
/α] ≤ τ ′ : Ω

– by Transititvity, Γ ⊢ τ̃ [τ+/α] ≤ τ : Ω

E.3.2. Algorithmic Type Synthesis

Treatment of the algorithm for type synthesis is straightforward.

Theorem 65 (Soundness of Algorithmic Type Synthesis with Higher-Order Abstraction).
Let Γ ⊢ �.

1. If Γ ⊲ e⇉ τ , then Γ ⊢ e : τ .

2. If Γ ⊲ e⇉⇉ π, then Γ ⊢ e : π.

3. If Γ ⊲ e⇇ τ with Γ ⊢ τ : Ω, then Γ ⊢ e : τ .

Proof. As before. The modified cases are:

1. case e = newα:κ̃1 ≈ τ̃1 inτ2 e2

– by inversion, Γ⊲κ̃1 : � and Γ⊲τ̃1 ⇇ κ̃1 and Γ⊲τ2 ⇇ Ω and Γ, α:A(τ̃1 : κ̃1)⊲e⇇ τ2

– by Soundness of Kind Checking, Γ ⊢ κ̃1 : �

– by Soundness of Kind Analysis, Γ ⊢ τ̃1 : κ̃1 and Γ ⊢ τ2 : Ω

– by Kabs*, Γ ⊢ A(τ1 : κ̃1) : �

– w.l.o.g., α /∈ Dom(Γ)

– by Ntype, Γ, α:A(τ1 : κ̃1) ⊢ �

– by Weakening, Γ, α:A(τ1 : κ̃1) ⊢ τ2 : Ω

– by induction (3), Γ, α:A(τ̃1 : κ̃1) ⊢ e : τ2

268

E.3. Higher-Order Generativity and Type Coercions

– by Enew’, Γ ⊢ (newα:κ̃1 ≈ τ̃1 inτ2 e2) : τ2

case e = {e : α:κ̃.τ̃}+
τ
+
≈τ−

– by inversion, Γ ⊲ κ̃ : � and Γ ⊲ τ−⇇ κ̃ and Γ ⊲ τ
+
⇇ A(τ− : κ̃) and Γ, α:κ̃ ⊲ τ̃ ⇇ Ω

and Γ ⊲ e⇇ τ̃ [τ−/α]

– by Soundness of Kind Checking, Γ ⊢ κ̃ : �

– by Soundness of Kind Analysis, Γ ⊢ τ− : κ̃

– by Kabs*, Γ ⊢ A(τ− : κ̃) : �

– by Soundness of Kind Analysis, Γ ⊢ τ
+

: A(τ− : κ̃)

– w.l.o.g., α /∈ Dom(Γ)

– by Ntype, Γ, α:κ̃ ⊢ �

– by Komega, Γ, α:κ̃ ⊢ Ω : �

– by Soundness of Kind Analysis, Γ, α:κ̃ ⊢ τ̃ : Ω

– obviously, Γ ⊢ [τ−/α] : Γ, α:κ̃

– by Substitutability, Γ ⊢ τ̃ [τ−/α] : Ω

– by induction (3), Γ ⊢ e : τ̃ [τ−/α]

– by Eup’, Γ ⊢ {e : α:κ̃.τ̃}+
τ
+
≈τ−

: τ̃ [τ
+
/α]

case e = {e : α:κ̃.τ̃}−τ
+
≈τ−

: analogous

Theorem 66 (Completeness of Algorithmic Type Synthesis with Higher-Order Abstraction).

1. If Γ ⊢ e : τ , then Γ ⊲ e⇉ τ ′ with Γ ⊢ τ ′ ≤ τ : Ω.

2. If Γ ⊢ e : τ , then Γ ⊲ e⇉⇉ π with Γ ⊢ π ≤ τ : Ω.

3. If Γ ⊢ e : τ and Γ ⊢ τ ≤ τ ′ : Ω, then Γ ⊲ e⇇ τ ′.

Proof. As before. The modified cases are:

1. case Enew’:

– by inversion, Γ ⊢ τ̃1 : κ̃1 and Γ, α:A(τ1 : κ̃1) ⊢ e : τ2 and Γ ⊢ τ2 : Ω

– by Environment Validity, Γ ⊢ � and Γ, α:A(τ1 : κ̃1) ⊢ �

– by Validity, Γ ⊢ κ̃1 : � and Γ ⊢ Ω : �

– by Completeness of Kind Checking, Γ ⊲ κ̃1 : �

– by Completeness of Kind Analysis, Γ ⊲ τ̃1 ⇇ κ̃1 and Γ ⊲ τ2 ⇇ Ω

– by Weakening, Γ, α:A(τ1 : κ̃1) ⊢ τ2 : Ω

– by induction (3), Γ, α:A(τ̃1 : κ̃1) ⊲ e⇇ τ2

– by rule, Γ ⊲ (newα:κ̃1 ≈ τ̃1 inτ2 e2)⇉ τ2

case Eup’:

– by inversion, Γ ⊢ e : τ̃ [τ−/α] and Γ, α:κ̃ ⊢ τ̃ : Ω and Γ ⊢ τ− : κ̃ and Γ ⊢ τ
+

: A(τ− :
κ̃)

– by Environment Validity, Γ ⊢ � and Γ, α:κ̃ ⊢ �

– by Validity, Γ ⊢ τ̃ [τ−/α] : � and Γ, α:κ̃ ⊢ Ω : � and Γ ⊢ κ̃ : � and Γ ⊢ A(τ− : κ̃) :
�

– by Completeness of Kind Checking, Γ ⊲ κ̃ : �

269

E. Proofs for Higher-Order Abstraction

– by Completeness of Kind Analysis, Γ ⊲ τ− ⇇ κ̃ and Γ ⊲ τ
+
⇇ A(τ− : κ̃) and

Γ, α:κ̃ ⊲ τ̃ ⇇ Ω

– by induction (3), Γ ⊲ e⇇ τ̃ [τ−/α]

– by rule, Γ ⊲ {e : α:κ̃.τ̃}+
τ
+
≈τ−
⇉ τ̃ [τ

+
/α]

case Edn’: analogous

E.3.3. Preservation

For term-level coercions we use a technical lemma similar to the one employed for type-level
coercions, that treats the substitution in the residual type of coercions at quantified types:

Lemma 67 (Type Adaption).
If Γ, α:κ ⊢ κ̃1 : � and Γ, α:κ, α1:κ̃1 ⊢ τ2 : Ω and Γ ⊢ τ

+
: κ and Γ ⊢ τ− : κ, then:

1. Let τ1 = {α1 : α:κ.κ̃1}τ−/τ
+

and τ ′2 = τ2[{τ1 : α:κ.κ̃1}α/τ−
/α] and Γ1 = Γ, α1:κ̃1[τ+/α].

Then:

a) Γ1 ⊢ � and Γ1, α:κ ⊢ �

b) Γ1, α:κ ⊢ τ ′2 : Ω

c) Γ1 ⊢ τ2[τ−/α][τ1/α1] ≡ τ ′2[τ−/α] : Ω

d) Γ1 ⊢ τ ′2[τ+/α] ≡ τ2[τ+/α] : Ω

2. Let τ ′2 = τ2[{α1 : α:κ.κ̃1}α/τ−
/α]. If Γ ⊢ α1 : κ̃1[τ−/α], then:

a) Γ1, α:κ ⊢ τ ′2 : Ω

b) Γ1 ⊢ τ2[τ−/α] ≤ τ ′2[τ−/α] : Ω

Proof. Analogous to Kind Adaption.

Decomposition has to be adapted to the change in syntax:

Lemma 68 (Decomposition and Replacement with Higher-Order Abstraction).
If Γ ⊢ E[e] : τ , then Γ ⊢ e : τ ′, and if Γ′ ⊢ e′ : τ ′ with Γ′ ⊇ Γ then Γ′ ⊢ E[e′] : τ .

Proof. By straightforward extension of the original induction, using Inversion for Higher-Order
Abstraction.

For dealing with abstract coercions, we also need a simple decomposition property for type
paths:

Lemma 69 (Path Decomposition and Replacement).
If Γ ⊢ P [τ] : κ, then Γ ⊢ τ : κ′, and if Γ ⊢ τ ′ : κ′ then Γ ⊢ P [τ ′] : κ.

Proof. By straightforward induction on the structure of P .

Note that the kind κ′ in this lemma will be a singleton in general, so that only equivalent
types may be inserted. Since the reduction rules for abstract coercions nevertheless use a more
liberal form of replacement in the residual types, we have to come up with a more specific
property, which basically says that given an appropriate ground path P and an abstract type
τ
+

: A(τ− : κ̃), then P [τ] : A(P [τ−]).

270

E.3. Higher-Order Generativity and Type Coercions

Lemma 70 (Abstraction Grounding).
Let Γ ⊢ τ

+
: A(τ− : κ̃) such that κ̃ is not a singleton.

1. If Γ ⊢ P [τ
+
] : Ω, then Γ ⊢ P [τ

+
] : A(P [τ−]).

2. If Γ ⊢ P [π] : Ω for all paths Γ ⊢ π : κ̃, then Γ ⊢ P [τ
+
] : A(P [τ−]).

Proof. By induction on the size of κ̃ and case analysis on the innermost part of P .

Theorem 71 (Preservation with Higher-Order Abstraction).

1. If ∆ ⊢ e : τ and ∆; e→ ∆′; e′ with E = , then ∆′ ⊢ e′ : τ .

2. If · ⊢ C : τ and C → C ′, then · ⊢ C ′ : τ .

Proof. The new cases are as follows. For coercions, we only show the positive case, the negative
always is analogous.

1. Case analysis:

case Rnew’: e = newα:κ̃1 ≈ τ̃1 inτ ′ e2 and e′ = e2 and ∆′ = ∆, α:A(τ̃1 : κ̃1)

– by Inversion (10), ∆, α:A(τ̃1 : κ̃1) ⊢ e2 : τ ′ and ∆ ⊢ τ ′ ≤ τ : Ω

– by Esub, ∆, α:A(τ̃1 : κ̃1) ⊢ e2 : τ

case Rcoerce-norm: e = {v : α:κ̃.τ̃}+
τ
+
≈τ

−
and e′ = {v : α:κ̃.π̃}+

τ
+
≈τ

−
and ∆, α:κ̃ ⊲ τ̃ ⇛ π̃

– by Inversion (11), ∆ ⊢ τ̃ [τ
+
/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ τ̃ : Ω and ∆ ⊢ v : τ̃ [τ−/α] and

∆ ⊢ τ+ : A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Soundness of Type Comparison, ∆, α:κ̃ ⊢ τ̃ ≡ π̃ : Ω

– by Validity, ∆, α:κ̃ ⊢ π̃ : Ω

– by KSabs-left*, ∆ ⊢ A(τ− : κ) ≤ κ : �

– by Tsub, ∆ ⊢ τ
+

: κ

– obviously, ∆ ⊢ [τ
+
/α] : ∆, α:κ̃ and ∆ ⊢ [τ−/α] : ∆, α:κ̃

– by Substitutability, ∆ ⊢ τ̃ [τ−/α] ≡ π̃[τ−/α] : Ω and ∆ ⊢ τ̃ [τ
+
/α] ≡ π̃[τ

+
/α] : Ω

– by Antisymmetry, ∆ ⊢ τ̃ [τ−/α] ≤ π̃[τ−/α] : Ω and ∆ ⊢ π̃[τ
+
/α] ≤ τ̃ [τ

+
/α] : Ω

– by Tsub, ∆ ⊢ v : π̃[τ−/α]

– by Eup’, ∆ ⊢ {v : α:κ̃.π̃}+
τ
+
≈τ−

: π̃[τ
+
/α]

– by Tsub, ∆ ⊢ {v : α:κ̃.π̃}+
τ
+
≈τ−

: τ̃ [τ
+
/α]

– by Tsub, ∆ ⊢ {v : α:κ̃.π̃}+
τ
+
≈τ

−
: τ

case Rcoerce-psi: e = {v : α:κ̃.Ψ}+
τ
+
≈τ−

and e′ = v

– by Inversion (11), ∆ ⊢ Ψ ≤ τ : Ω and ∆ ⊢ v : Ψ

– by Tsub, ∆ ⊢ v : τ

case Rcoerce-arrow: e = {v : α:κ̃.τ̃1 → τ̃2}+
τ
+
≈τ

−

and e′ = λx1:τ̃1[τ±/α].{v {x1 : α:κ̃.τ̃1}∓τ
+
≈τ−

: α:κ̃.τ̃2}±τ
+
≈τ−

– by Inversion (11), ∆ ⊢ (τ̃1 → τ̃2)[τ+/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ τ̃1 → τ̃2 : Ω and ∆ ⊢ v :
(τ̃1 → τ̃2)[τ−/α] and ∆ ⊢ τ

+
: A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Type Validity Inversion, ∆, α:κ̃ ⊢ τ̃1 : Ω and ∆, α:κ̃ ⊢ τ̃2 : Ω

– by KSabs-left*, ∆ ⊢ A(τ− : κ̃) ≤ κ̃ : �

– by Tsub, ∆ ⊢ τ
+

: κ̃

– obviously, ∆ ⊢ [τ
+
/α] : ∆, α:κ̃

– by Substitutability, ∆ ⊢ τ̃1[τ+/α] : Ω

271

E. Proofs for Higher-Order Abstraction

– let Γ1 = ∆, x1:τ̃1[τ+/α]

– by Nterm, Γ1 ⊢ �

– by Evar, Γ1 ⊢ x1 : τ̃1[τ+/α]

– let e1 = {x1 : α:κ̃.τ̃1}−τ
+
≈τ−

– by Edn’, Γ1 ⊢ e1 : τ̃1[τ−/α]

– by Weakening, Γ1 ⊢ v : (τ̃1 → τ̃2)[τ−/α]

– by Eapp, Γ1 ⊢ v e1 : τ̃2[τ−/α]

– let e2 = {v e1 : α:κ̃.τ̃2}+
τ
+
≈τ

−

– by Eup’, Γ1 ⊢ e2 : τ̃2[τ+/α]

– by Elambda, ∆ ⊢ λx1:τ̃1[τ+/α].e2 : (τ̃1 → τ̃2)[τ+/α]

– by Tsub, ∆ ⊢ λx1:τ̃1[τ+/α].e2 : τ

case Rcoerce-times: e = {v : α:κ̃.τ̃1 × τ̃2}
+
τ
+
≈τ

−

and e′ = let〈x1, x2〉 = v in 〈{x1 : α:κ̃.τ̃1}±τ
+
≈τ−

, {x2 : α:κ̃.τ̃2}±τ
+
≈τ−

〉

– by Inversion (11), ∆ ⊢ (τ̃1 × τ̃2)[τ+/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ τ̃1 × τ̃2 : Ω and ∆ ⊢ v :
(τ̃1 × τ̃2)[τ−/α] and ∆ ⊢ τ

+
: A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Type Validity Inversion, ∆, α:κ̃ ⊢ τ̃1 : Ω and ∆, α:κ̃ ⊢ τ̃2 : Ω

– obviously, ∆ ⊢ [τ−/α] : ∆, α:κ̃

– by Substitutability, ∆ ⊢ τ̃1[τ−/α] : Ω and ∆ ⊢ τ̃2[τ−/α] : Ω

– let Γ1 = ∆, x1:τ̃1[τ−/α], x2:τ̃2[τ−/α]

– by Nterm, Γ1 ⊢ �

– by Evar, Γ1 ⊢ x1 : τ̃1[τ−/α] and Γ1 ⊢ x2 : τ̃2[τ−/α]

– let e1 = {x1 : α:κ̃.τ̃1}+
τ
+
≈τ−

and e2 = {x2 : α:κ̃.τ̃2}+
τ
+
≈τ−

– by Eup’, Γ1 ⊢ e1 : τ̃1[τ+/α] and Γ1 ⊢ e2 : τ̃2[τ+/α]

– by Eproj, ∆ ⊢ let〈x1, x2〉 = v in 〈e1, e2〉 : (τ̃1 × τ̃2)[τ+/α]

– by Tsub, ∆ ⊢ let〈x1, x2〉 = v in 〈e1, e2〉 : τ

case Rcoerce-univ: e = {v : α:κ̃.∀α1:κ̃1.τ̃2}+
τ
+
≈τ

−

and e′ = λα1:κ̃1[τ±/α].{v {α1 : α:κ̃.κ̃1}τ
∓

/τ
±

: α:κ̃.τ̃ ′2}
±
τ
+
≈τ−

with τ̃ ′2 = τ̃2[{{α1 : α:κ̃.κ̃1}τ
∓

/τ
±

: α:κ̃.κ̃1}α/τ
∓
/α1]

– by Inversion (11), ∆ ⊢ (∀α1:κ̃1.τ̃2)[τ+/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ ∀α1:κ̃1.τ̃2 : Ω and
∆ ⊢ v : (∀α1:κ̃1.τ̃2)[τ−/α] and ∆ ⊢ τ

+
: A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Type Validity Inversion, ∆, α:κ̃, α1:κ̃1 ⊢ τ̃2 : �

– by Environment Validity, ∆, α:κ̃ ⊢ κ̃1 : �

– by KSabs-left*, ∆ ⊢ A(τ− : κ̃) ≤ κ̃ : �

– by Tsub, ∆ ⊢ τ+ : κ̃

– let Γ1 = ∆, α1:κ̃1[τ+/α]

– by Type Adaption (1a), Γ1 ⊢ � and Γ1, α:κ̃ ⊢ �

– by Weakening, Γ1, α:κ̃ ⊢ κ̃1 : � and Γ1 ⊢ τ+ : A(τ− : κ̃) and Γ1 ⊢ τ+ : κ̃

– let τ1 = {α1 : α:κ̃.κ̃1}τ
−

/τ
+

– by Tvar, Γ1 ⊢ α1 : κ̃1[τ+/α]

– by Tcoerce*, Γ1 ⊢ τ̃1 : κ̃1[τ−/α]

– by Weakening, Γ1 ⊢ v : (∀α1:κ̃1.τ̃2)[τ−/α]

– by Einst, Γ1 ⊢ v τ̃1 : τ̃2[τ−/α][τ̃1/α1]

– by Type Adaption (1c), Γ1 ⊢ τ̃2[τ−/α][τ̃1/α1] ≡ τ̃ ′2[τ−/α] : Ω

– by Antisymmetry and Esub, Γ1 ⊢ v τ̃1 : τ̃ ′2[τ−/α]

– let e2 = {v τ̃1 : α:κ̃.κ̃′2}
+
τ
+
≈τ−

– by Type Adaption (1b), Γ1, α:κ̃ ⊢ τ̃ ′2 : Ω

272

E.3. Higher-Order Generativity and Type Coercions

– by induction, Γ1 ⊢ e2 : τ̃ ′2[τ+/α]

– by Type Adaption (1d), Γ1 ⊢ τ̃ ′2[τ+/α] ≡ τ̃2[τ+/α] : Ω

– by Antisymmetry and Esub, Γ1 ⊢ e2 : τ̃2[τ+/α]

– by Egen, ∆ ⊢ λα:κ̃1[τ+/α].e2 : (∀α:κ̃1.τ̃2)[τ+/α]

– by Tsub, ∆ ⊢ λα:κ̃1[τ+/α].e2 : τ

case Rcoerce-exist: e = {v : α:κ̃.∃α1:κ̃1.τ̃2}+
τ
+
≈τ

−

and e′ = let〈α1, x2〉 = v in 〈{α1 : α:κ̃.κ̃1}τ
±

/τ
∓
, {x2 : α:κ̃.τ̃ ′2}

±
τ
+
≈τ−

〉

with τ̃ ′2 = τ̃2[{α1 : α:κ̃.κ̃1}α/τ
∓
/α1]

– by Inversion (11), ∆ ⊢ (∃α1:κ̃1.τ̃2)[τ+/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ ∃α1:κ̃1.τ̃2 : Ω and
∆ ⊢ v : (∃α1:κ̃1.τ̃2)[τ−/α] and ∆ ⊢ τ+ : A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Type Validity Inversion, ∆, α:κ̃, α1:κ̃1 ⊢ τ̃2 : �

– by Environment Validity, ∆, α:κ̃ ⊢ κ̃1 : �

– obviously, ∆, α1:κ̃1[τ−/α] ⊢ [τ−/α] : ∆, α:κ̃, α1:κ̃1

– by Substitutability, ∆, α1:κ̃1[τ−/α] ⊢ τ̃2[τ−/α] : Ω

– by Environment Validity and inverting Nterm, α /∈ Dom(∆)

– w.l.o.g., x2 /∈ Dom(∆)

– let Γ1 = ∆, α1:κ̃1[τ−/α], x2:τ̃2

– by Nterm, Γ1 ⊢ �

– by Weakening, Γ1, α:κ̃ ⊢ κ̃1 : � and Γ1 ⊢ τ
+

: A(τ−)

– by KSabs-left*, Γ1 ⊢ A(τ− : κ̃) ≤ κ̃ : �

– by Tsub, Γ1 ⊢ τ
+

: κ̃

– let τ̃1 = {α1 : α:κ̃.κ̃1}τ
+
!/τ−

– by Tvar, Γ1 ⊢ α1 : κ̃1[τ−/α]

– by Tcoerce*, Γ1 ⊢ τ̃1 : κ̃1[τ+/α]

– by Evar, Γ1 ⊢ x2 : τ̃2[τ−/α]

– let τ̃ ′2 = τ̃2[{α1 : α:κ̃.κ̃1}α/τ
−
/α1]

– by Type Adaption (2b), Γ1 ⊢ τ̃2[τ−/α] ≡ τ̃ ′2[τ−/α] : Ω

– by Antisymmetry of Type Inclusion and Esub, Γ1 ⊢ x2 : τ̃ ′2[τ−/α]

– let e2 = {x2 : α:κ̃.τ̃ ′2}
+
τ
+
≈τ−

– by Type Adaption (2a), Γ1, α:κ̃ ⊢ τ̃ ′2 : Ω

– by Eup’, Γ1 ⊢ e2 : τ̃ ′2[τ+/α]

– obviously, τ̃ ′2[τ+/α] = τ̃2[τ+/α][{α1 : α:κ̃.κ̃1}τ
+
!/τ−

/α1] = τ̃2[τ+/α][τ̃1/α1]

– by Eclose, Γ1 ⊢ 〈τ̃1, e2〉 : (∃α1:κ̃1.τ̃2)[τ+/α]

– by Eopen, ∆ ⊢ let〈α1, x2〉 = v in 〈τ̃1, e2〉 : (∃α1:κ̃1.τ̃2)[τ+/α]

– by Tsub, ∆ ⊢ let〈α1, x2〉 = v in 〈τ̃1, e2〉 : τ

case Rcoerce-split: e = {v : α:κ̃.P ′[α]}+
τ
+
≈τ

−
and e′ = {{v : α:κ̃.P ′[τ−]}+

τ
+
≈τ

−
: α′:κ̃.P ′[α′][τ

+
/α]}+

τ
+
≈τ

−

– by Inversion (11), ∆ ⊢ P ′[α][τ
+
/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ P ′[α] : Ω and ∆ ⊢ v : P ′[α][τ−/α]

and ∆ ⊢ τ+ : A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– let e1 = {v : α:κ̃.P ′[τ−]}+
τ
+
≈τ−

– obviously, P ′[α][τ−/α] = P ′[τ−][τ−/α]

– by Eup’, ∆ ⊢ e1 : P ′[τ−][τ
+
/α]

– w.l.o.g., α /∈ FV(τ−) and α′ /∈ FV(τ
+
)

– by assumption, α′ /∈ FV(P ′)

– obviously, P ′[τ−][τ
+
/α] = P ′[α′][τ

+
/α][τ−/α

′]

– by Environment Validity, Weakening and Ntype, ∆, α′:κ̃ ⊢ � and ∆, α:κ̃, α′:κ̃ ⊢ �

– by Weakening, ∆, α:κ̃, α′:κ̃ ⊢ P ′[α] : Ω

273

E. Proofs for Higher-Order Abstraction

– by Tvar, ∆, α:κ̃, α′:κ̃ ⊢ α′ : κ̃

– by Path Decomposition and Replacement, ∆, α:κ̃, α′:κ̃ ⊢ P ′[α′] : Ω

– by KSabs-left*, ∆ ⊢ A(τ− : κ̃) ≤ κ̃ : �

– by Tsub, ∆ ⊢ τ+ : κ̃

– by Weakening, ∆, α′:κ̃ ⊢ τ
+

: κ̃

– obviously, ∆, α′:κ̃ ⊢ [τ
+
/α] : ∆, α:κ̃, α′:κ̃

– by Substitutability, ∆, α′:κ̃ ⊢ P ′[α′][τ
+
/α] : Ω

– by Eup’, ∆ ⊢ e′ : P ′[α′][τ
+
/α][τ

+
/α′]

– obviously, P ′[α′][τ+/α][τ+/α
′] = P ′[τ+][τ+/α] = P ′[α][τ+/α]

– by Tsub, ∆ ⊢ e′ : τ

case Rcoerce-swap: e = {v : α:κ̃.P ′[α′′]}+
τ
+
≈τ

−
with v = {v′ : α:Ω.α}+

τ ′
+
≈τ ′

−
,

and e′ = {{v′ : α:κ̃.P ′[τ ′′
−

]}+
τ
+
≈τ

−
: α:Ω.α}+

P [α′′][τ
+

/α]≈P [τ ′′
−

][τ
+

/α] and ∆(α′′) = A(τ ′′
−

: κ̃′′)

– by Inversion (11), ∆ ⊢ P ′[α′′][τ+/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ P ′[α′′] : Ω and ∆ ⊢ v :
P ′[α′′][τ−/α] and ∆ ⊢ τ

+
: A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by Inversion (11), ∆ ⊢ τ ′
+
≤ P ′[α′′][τ−/α] : Ω and ∆, α:Ω ⊢ α : Ω and ∆ ⊢ v′ : τ ′

−
and

∆ ⊢ τ ′
+

: A(τ ′
−
) and ∆ ⊢ τ ′

−
: Ω

– by assumption, ∆, α:κ̃ ⊲ P ′[α′′]⇛ P ′[α′′]

– hence, κ̃ not singleton

– by Abstraction Grounding, ∆, α:κ̃ ⊢ P ′[α′′] : A(P ′[τ ′′
−

])

– obviously, ∆ ⊢ [τ−/α] : ∆, α:κ̃

– by Substitutability, ∆ ⊢ P ′[α′′][τ−/α] : A(P ′[τ ′′
−

][τ−/α])

– by Representation Equivalence, ∆ ⊢ τ ′
−
≡ P ′[τ ′′

−
][τ−/α] : Ω

– by Antisymmetry of Type Inclusion and Tsub, ∆ ⊢ v′ : P ′[τ ′′
−

][τ−/α]

– by inverting Kabs, ∆, α:κ̃ ⊢ P ′[τ ′′
−

] : Ω

– by Eup’, ∆ ⊢ {v′ : α:κ̃.P ′[τ ′′
−

]}+
τ
+
≈τ

−
: P ′[τ ′′

−
][τ

+
/α]

– by Eup’, ∆ ⊢ e′ : P ′[α′′][τ
+
/α]

– by Esub, ∆ ⊢ v′ : τ

case Rcoerce-ground: e = {v : α:κ̃.P [α]}+
τ
+
≈τ

−
and e′ = {v : α:Ω.α}+

P [τ
+
]≈P [τ

−
]

– by Inversion (11), ∆ ⊢ P [α][τ
+
/α] ≤ τ : Ω and ∆, α:κ̃ ⊢ P [α] : Ω and ∆ ⊢ v : P [α][τ

+
/α]

and ∆ ⊢ τ
+

: A(τ− : κ̃) and ∆ ⊢ τ− : κ̃

– by assumption, α /∈ FV(P)

– by Substitutability, ∆ ⊢ [π] : Ω for all ∆ ⊢ π : κ̃

– by Weakening, ∆, α:κ̃ ⊢ [π] : Ω for all ∆ ⊢ π : κ̃

– by assumption, ∆, α:κ̃ ⊲ P [α]⇛ P [α]

– hence, κ̃ not singleton

– by Abstraction Grounding, ∆, α:κ̃ ⊢ P [τ
+
] : A(P [τ−])

– obviously, ∆ ⊢ [τ−/α] : Γ, α:κ̃

– by Substitutability, ∆ ⊢ P [τ+][τ−/α] : A(P [τ−])[τ−/α]

– by assumption, α /∈ FV(P)

– hence, ∆ ⊢ P [τ
+
] : A(P [τ−])

– obviously, P [α][τ
+
/α] = P [τ

+
] and P [α][τ−/α] = P [τ−]

– by Eup’, ∆ ⊢ e′ : P [τ
+
]

– by Esub, ∆ ⊢ v′ : τ

case Rcoerce-cancel: e = {v : α:Ω.α}−τ
+
≈τ

−
with v = {v′ : α:Ω.α}+

τ ′
+
≈τ ′

−
, and e′ = v′

– by Inversion (12), ∆ ⊢ τ− ≤ τ : Ω and ∆, α:Ω ⊢ α : Ω and ∆ ⊢ v : τ
+

and ∆ ⊢ τ
+

: A(τ−)
and ∆ ⊢ τ− : Ω

274

E.3. Higher-Order Generativity and Type Coercions

– by Inversion (11), ∆ ⊢ τ ′
+
≤ τ

+
: Ω and ∆ ⊢ v′ : τ ′

−
and ∆ ⊢ τ ′

+
: A(τ ′

−
) and ∆ ⊢ τ ′

−
: Ω

– by Representation Equivalence, ∆ ⊢ τ ′
−
≡ τ− : Ω

– by Antisymmetry of Type Inclusion, ∆ ⊢ τ ′
−
≤ τ− : Ω

– by Transitivity, ∆ ⊢ τ ′
−
≤ τ : Ω

– by Esub, ∆ ⊢ v′ : τ

E.3.4. Progress

Lemma 72 (Canonical Values with Higher-Order Abstraction).
Let Γ ⊢ v : τ . If Γ ⊢ τ ≤ τ

+
: Ω and Γ ⊢ τ

+
: A(τ−), then v = {v1 : α:Ω.α}+

τ ′
−
≈τ ′

+

.

Proof. As before by induction on the derivation of Γ ⊢ v : τ , using normalisation and Shape
Consistency to exclude impossible cases:

case Eup: v = {v1 : α:Ω.α}+
τ
+
≈τ−

case Esub:

– by inversion, Γ ⊢ v : τ ′ and Γ ⊢ τ ′ ≤ τ : Ω

– by Transitivity, Γ ⊢ τ ′ ≤ τ
+

: Ω

– by induction, v = {v1 : α:Ω.α}+
τ ′
+
≈τ ′

−

The formulation of the Embedding property does not change, but its proof has to consider
the change in syntax:

Lemma 73 (Embedding with Higher-Order Abstraction).
If ∆;E[e] → ∆,∆′;E[e′], then ∆1,∆,∆2;E1EE2[e] → ∆1,∆,∆2,∆

′;E1EE2[e
′] for any contexts

E1, E2 and heaps ∆1,∆2.

Proof. As before; the changes are trivial.

Theorem 74 (Progress with Higher-Order Abstraction).
If ∆ ⊢ e : τ , then either e = v, or (∆; e) = (∆;E[e1]) → (∆′;E[e′1]) = (∆′; e′).

Proof. By induction on the structure of e. The new cases are:

case e = (newα:κ̃1 ≈ τ̃1 in e2):

– let ∆′ = ∆, α:A(τ̃1 : κ̃1)

– by Rnew’, ∆; e = ∆; e→ ∆′; e2

case e = {e1 : α:κ̃.τ̃}±τ
+
≈τ−

with e 6= v:

– by Inversion, ∆ ⊢ e1 : τ̃ [τ∓/α]

– by induction, ∆; e1 = ∆;E′[e2] → ∆;E′[e′2]

– let E = {E′ : α:κ̃.τ̃}±τ
+
≈τ−

– by Embedding, ∆;E[e2] → ∆;E[e′2]

case e = {v : α:κ̃.τ̃}±τ
+
≈τ

−
:

275

E. Proofs for Higher-Order Abstraction

subcase τ̃ 6= π̃:

∗ by Inversion, ∆, α:κ̃ ⊢ τ̃ : Ω

∗ by Completeness of Type Comparison, ∆, α:κ̃ ⊲ τ̃ ⇛ π̃

∗ let E =

∗ by Rcoerce-norm, ∆; e = ∆;E[{v : α:κ̃.τ̃}±τ
+
≈τ

−
] → ∆;E[{v : α:κ̃.π̃}±τ

+
≈τ

−
]

subcase τ̃ = Ψ:

∗ let E =

∗ by Rcoerce-psi, ∆; e = ∆;E[{v : α:κ̃.τ̃}±τ
+
≈τ−

] → ∆;E[v]

subcase τ̃ = τ̃1 → τ̃2: analogous, by Rcoerce-arrow

subcase τ̃ = τ̃1 × τ̃2: analogous, by Rcoerce-times

subcase τ̃ = ∀α1:κ̃1.τ̃2: analogous, by Rcoerce-univ

subcase τ̃ = ∃α1:κ̃1.τ̃2: analogous, by Rcoerce-exist

subcase τ̃ = P [α′′] with α′′ 6= α:

∗ by Variable Containment, α′′ ∈ Dom(∆)

∗ by definition of ∆, ∆(α′′) = A(τ ′′
−

: κ′′)

∗ by assumption, P [α′′] in weak-head normal form

∗ hence, κ̃′′ not singleton

∗ by Inversion, ∆ ⊢ v : P [α′′][τ∓/α]

∗ by Validity, ∆ ⊢ P [α′′][τ∓/α] : Ω

∗ by Abstraction Grounding, ∆ ⊢ P [α′′][τ∓/α] : A(P [τ ′′
−

][τ∓/α])

∗ by Canoncial Values, v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−

∗ let E =

∗ by Rcoerce-swap,
∆;E[{v : α:κ̃.τ̃}±τ

+
≈τ−

] → ∆;E[{{v′ : α:κ̃.P [τ ′′
−

]}±τ
+
≈τ−

: α′:Ω.α′}+
P [α′′][τ

+
/α]≈P [τ ′′

−
][τ

+
/α]]

subcase τ̃ = P [α] and ∆ ⊲ P [α]⇛ π̃ with P [α] 6= π̃:

∗ let E =

∗ by Rcoerce-norm, ∆;E[{v : α:κ̃.τ̃}±τ
+
≈τ

−
] → ∆;E[{v : α:κ̃.π̃}±τ

+
≈τ

−
]

subcase τ̃ = P [α] and ∆ ⊲ P [α]⇛ P [α]:

subsubcase P = :

· by Type Synthesis, ∆, α:κ̃ ⊲ α⇉ S(α : κ̃)

· by Principality of Type Synthesis, ∆, α:Ω ⊢ S(α : κ̃) ≤ Ω : �

· by Shape Consistency for Kind Inclusion, κ̃ = Ω or κ̃ = SΩ(tau)

· by assumption, ∆ ⊲ P [α]⇛ P [α]

· hence, κ̃ 6= SΩ(tau)

· since e not a value, ± = −

· by Inversion, ∆ ⊢ v : τ
+

· by Canonical Values, v = {v′ : α:Ω.α}+
τ ′
+
≈τ ′

−

· let E =

· by Rcoerce-cancel, ∆;E[{v : α:Ω.α}−τ
+
≈τ

−
] → ∆;E[v′]

subsubcase P 6= with α /∈ FV(P):

· let E =

· by Rcoerce-ground, ∆;E[{v : α:κ̃.P [α]}±τ
+
≈τ−

] → ∆;E[{v : α:Ω.α}+
P [τ

+
]≈P [τ

−
]]

subsubcase P 6= with α ∈ FV(P):

· let E =

· by Rcoerce-split,
∆;E[{v : α:κ̃.P [α]}±τ

+
≈τ

−
] → ∆;E[{{v : α:κ̃.P [τ∓]}±τ

+
≈τ

−
: α′:κ̃.P [α′][τ

+
/α]}±τ

+
≈τ

−
]

276

E.4. Sealing

E.3.5. Opacity

Proposition 75 (Abstractness with Higher-Order Abstraction). If Γ = Γ1, α:Ω, x:α,Γ2 and
Γ ⊢ e : τ with Γ ⊢ τ ≤ α, then e is not a value.

Proof. As before.

Theorem 76 (Opacity with Higher-Order Abstraction).
Let Γ = α:Ω, x:α, f :α→1, and γi = [αi/α] ∪ [vi/x] ∪ [v′i/f] ∪ [α′ | α′ ∈ Dom(∆′)/α′] with

∆, γi(∆
′) ⊢ γi : Γ,∆′ and ∆; v′i vi →

∗ ∆; ⋄ for i ∈ {1, 2}.

1. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′) ⊢ γ1(e) : γ1(τ), then ∆, γ2(∆
′) ⊢ γ2(e) : γ2(τ).

2. Let Γ,∆′ ⊢ e : τ .
If and only if ∆, γ1(∆

′); γ1(e) →
∗ ∆, γ1(∆

′),∆1; v
′, then ∆1 = γ1(∆

′′) and v′ = γ1(v) with
∆, γ2(∆

′); γ2(e) →
∗ ∆, γ2(∆

′), γ2(∆
′′); γ2(v).

Proof. As before. Note again that coercions actually are inessential to the proof.

E.4. Sealing

Theorem 77 (Admissibility of Sealing Rule).
The rule Eseal* is derivable.

Proof. By induction on τ̃ . The only non-trivial case is the following:

case τ̃ = ∃α:κ̃1.τ̃2:

– by Validity, Γ ⊢ ∃α:κ̃1.τ̃2 : Ω

– by Type Validity Inversion, Γ, α:κ̃1 ⊢ τ̃2 : Ω

– by Environment Validity, Γ, α:κ̃1 ⊢ � and Γ ⊢ κ̃1 : �

– w.l.o.g., x /∈ Dom(Γ, α:κ̃1)

– let Γ′ = Γ, α:κ̃1, x:τ̃2

– by Nterm, Γ′ ⊢ �

– by Tvar, Γ′ ⊢ α : κ̃1

– by Kabs*, Γ′ ⊢ A(α : κ̃1) : �

– w.l.o.g., α′ /∈ Dom(Γ′)

– let Γ′′ = Γ′, α′:A(α : κ̃1)

– by Ntype, Γ′′ ⊢ �

– by Evar, Γ′′ ⊢ x : τ̃2

– by Tvar, Γ′′ ⊢ α : κ̃1 and Γ′′ ⊢ α′ : A(α : κ̃1)

– w.l.o.g., α1 /∈ Dom(Γ′′)

– by Weakening, Γ′′ ⊢ ∃α1:κ̃1.τ̃2[α1/α] : Ω

– by Type Validity Inversion, Γ′′, α1:κ̃1 ⊢ τ̃2 : Ω

– let e1 = {x : α1:κ̃1.τ̃2[α1/α]}+
α′≈α

– by Eup’, Γ′′ ⊢ e1 : τ̃2[α
′/α]

– by Eclose, Γ′′ ⊢ 〈α′, e1〉 : ∃α1:S(α′ : κ̃1).τ̃2[α
′/α]

– by Validity, Γ′′ ⊢ ∃α1:S(α′ : κ̃1).τ̃2[α
′/α] : Ω

277

E. Proofs for Higher-Order Abstraction

– by Type Validity Inversion, Γ′′, α1:S(α′ : κ̃1) ⊢ τ̃2[α′/α] : Ω

– by KSsing-left*, Γ′′ ⊢ S(α′ : κ̃1) ≤ κ̃1 : �

– by TSexist and some renaming, Γ′′ ⊢ ∃α1:S(α′ : κ̃1).τ̃2[α
′/α] ≤ ∃α:κ̃1.τ̃2 : �

– by Esub, Γ′′ ⊢ 〈α′, e1〉 : ∃α:κ̃1.τ̃2

– let e2 = newα′:κ̃1 ≈ α in∃α:κ̃1.τ̃2 〈α′, e1〉

– by Enew’, Γ′ ⊢ e2 : ∃α:κ̃1.τ̃2

– by Eopen, Γ ⊢ let〈α, x〉 = e in∃α:κ̃1.τ̃2 e2 : ∃α:κ1.τ2

278

F. Index of Propositions

Page

Abstraction Grounding (70) 271
Abstractness (55) 252
Abstractness with Higher-Order Abstraction (75) 277
Admissibility of Beta/Eta Rules (22) 222
Admissibility of Higher-Order Abstraction Kind Rules (61) 265
Admissibility of Higher-Order Singleton Rules (20) 218
Admissibility of Kind Coercion Rules (59) 259
Admissibility of Sealing Rule (77) 277
Antisymmetry of Kind Inclusion (15) 216
Antisymmetry of Type Inclusion (42) 240
Canonical Types (27) 229
Canonical Values (52) 250
Canonical Values with Higher-Order Abstraction (72) 275
Completeness of Algorithmic Kind and Type Comparison (24) 224
Completeness of Algorithmic Kind Matching (29) 229
Completeness of Algorithmic Kind Synthesis (32) 232
Completeness of Algorithmic Type Matching (40) 238
Completeness of Algorithmic Type Matching with respect to Equivalence (34) 236
Completeness of Algorithmic Type Synthesis (48) 246
Completeness of Algorithmic Type Synthesis with Higher-Order Abstraction (66) 269
Completeness of Transitive Type Inclusion (39) 238
Decidability of Type Inclusion (41) 240
Declarative Properties with Higher-Order Abstraction (62) 267
Decomposition and Replacement (50) 248
Decomposition and Replacement with Higher-Order Abstraction (68) 270
Embedding (53) 250
Embedding with Higher-Order Abstraction (73) 275
Environment Modification (7) 208
Environment Validity (2) 207
Full Functionality (18) 217
Inversion (46) 243
Inversion for Higher-Order Abstraction (64) 267
Kind Adaption (58) 258
Kind Adaptive Substitutions (57) 255
Kind Inclusion Inversion (11) 209
Kind Subsumption (19) 218

279

F. Index of Propositions

Page

Opacity (56) 252
Opacity with Higher-Order Abstraction (76) 277
Path Decomposition and Replacement (69) 270
Preservation (51) 248
Preservation with Higher-Order Abstraction (71) 271
Progress (54) 251
Progress with Higher-Order Abstraction (74) 275
Reflexivity (4) 208
Renaming (5) 208
Representation Equivalence (49) 247
Second Component Conversion (60) 264
Shape Consistency of Kind Inclusion (30) 230
Shape Consistency of Type Equivalence (26) 228
Shape Consistency of Type Inclusion (44) 241
Simple Functionality (13) 210
Singleton Substitutability (21) 221
Size Invariance of Transitive Type Inclusion Derivation (37) 237
Soundness of Algorithmic Kind and Type Comparison (23) 223
Soundness of Algorithmic Kind Matching (28) 229
Soundness of Algorithmic Kind Synthesis (31) 230
Soundness of Algorithmic Type Matching (33) 235
Soundness of Algorithmic Type Synthesis (47) 245
Soundness of Algorithmic Type Synthesis with Higher-Order Abstraction (65) 268
Soundness of Transitive Type Inclusion (35) 237
Subderivations (10) 209
Substitutability (8) 209
Substitution Extensibility (9) 209
Symmetry (16) 217
Transitivity (17) 217
Transitivity of Transitive Type Inclusion (38) 237
Type Adaption (67) 270
Type Equivalence Inversion (25) 228
Type Inclusion Inversion (43) 240
Type Validity Inversion (12) 209
Validity (14) 214
Validity of Term Validity Rules (45) 243
Validity with Higher-Order Abstraction (63) 267
Variable Containment (3) 207
Weakening (6) 208
Weakening of Transitive Type Inclusion (36) 237

280

Bibliography

[ACC93] Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric poly-
morphism. Theoretical Computer Science, 121:9–58, 1993.

[ACG86] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. IEEE
Computer, 19(8):26–34, August 1986.

[ACPP89] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typ-
ing in a statically-typed language. In 16th Symposium on Principles of Programming
Languages, pages 213–227, Austin, USA, January 1989.

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically-typed language. Transactions on Programming Languages
and Systems, 13(2):237–268, April 1991.

[ACPR95] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. Dynamic typing in
polymorphic languages. Journal of Functional Programming, 5(1):111–130, January
1995.

[AFZ04] Davide Ancona, Sonia Fagorzi, and Elena Zucca. A calculus with lazy module
operators. In Jean-Jacques Levy, Ernst Mayr, and John Mitchell, editors, 3rd
International Conference on Theoretical Computer Science, pages 423–436. Kluwer
Academic Publishers, 2004.

[Ala04] Lauri Alanko. Types and reflection. Master’s thesis, Helsingin Yliopisto, Helsinki,
Finland, November 2004.

[Ali03] Alice Team. The Alice System. Programming Systems Lab, Universität des Saar-
landes, http://www.ps.un-sb.de/alice/, 2003.

[ANP89] Arvind, Rishiyur Nikhil, and Keshav Pingali. I-structures: data structures for par-
allel computing. Transactions on Programming Languages and Systems, 11(4):598–
632, 1989.

[Apt03] Krysztof Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[Arm03] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software
Errors. Doctoral dissertation, Royal Institute of Technology, Stockholm, Sweden,
December 2003.

[Asp95] David Aspinall. Subtyping with singleton types. In Computer Science Logic, volume
933 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[Asp97] David Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
Edinburgh University, Edinburgh, UK, December 1997.

281

Bibliography

[AZ02] Davide Ancona and Elena Zucca. A calculus of module systems. Journal of Func-
tional Programming, 12(2), 2002.

[BA99] Matthias Blume and Andrew Appel. Hierarchical modularity. Transactions on
Programming Languages and Systems, 21(4):813–847, July 1999.

[Bar92] Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
chapter 2, pages 117–309. Oxford University Press, 1992.

[Ber04] Matthias Berg. Polymorphic lambda calculus with dynamic types. Fopra thesis,
Universität des Saarlandes, Saarbrücken, Germany, October 2004.

[BFSS89] E.S. Bainbridge, Peter Freyd, Andre Scedrov, and Philip Scott. Functorial polymor-
phism. Theoretical Computer Science, 70(1):35–64, 1989. Corrigendum in 71(3):431,
1990.

[BHS+03] Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith Wansbrough.
Dynamic rebinding for marshalling and update, with destruct-time lambda. In 8th
International Conference on Functional Programming, Uppsala, Sweden, September
2003.

[BJW87] Andrew Birrell, Michael Jones, and Edwar Wobber. A simple and efficient im-
plementation for small databases. In 11th ACM Symposium on Operating System
Principles, volume 21(5) of Operating Systems Review, pages 149–154. ACM Press,
November 1987.

[BK02] Thorsten Brunklaus and Leif Kornstaedt. A virtual machine for multi-language
execution. Technical report, Programming Systems Lab, Universität des Saarlandes,
Saarbrücken, Germany, November 2002.

[BK03] Thorsten Brunklaus and Leif Kornstaedt. Open programming services for virtual
machines: The design of Mozart and SEAM. Technical report, Programming Sys-
tems Lab, Universität des Saarlandes, Saarbrücken, Germany, March 2003.

[BN84] Andrew Birrell and Bruce Nelson. Implementing remote procedure calls. Transac-
tions on Computer Systems, 2(1):39–59, 1984.

[BNOW95] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobbler. Network objects.
Software – Practice and Experience, 25(S4), December 1995.

[BNSS94] Peter Bailey, Malcolm Newey, David Sitsky, and Robin Stanton. Supporting coarse
and fine grain parallelism in an extension of ML. In Conference on Algorithms
and Hardware for Parallel Processing, volume 854 of Lecture Notes in Computer
Science, pages 693–704. Springer-Verlag, 1994.

[Bur84] Rod Burstall. Programming with modules as typed functional programming. In
International Conference on 5th Generation Computing Systems, Tokyo, Japan,
1984.

[Car91] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, For-
mal Description of Programming Concepts, pages 431–507. Springer-Verlag, Berlin,
Germany, 1991.

282

Bibliography

[Car95] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59,
January 1995.

[Car97a] Luca Cardelli. Program fragments, linking, and modularization. In 24th Symposium
on Principles of Programming Languages, pages 266–277, Paris, France, January
1997.

[Car97b] Luca Cardelli. Type systems. In Allen Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208–2236. CRC Press, 1997.

[CDG+91] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 language definition. In Greg Nelson, editor, System Pro-
gramming with Modula-3, chapter 2, pages 11–66. Prentice Hall, 1991.

[CK92] Robert Cooper and Clifford Krumvieda. Distributed programming with asyn-
chronous ordered channels in distributed ML. In Peter Lee, editor, Workshop on
ML and its Applications, pages 134–148, June 1992.

[CL90] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. In IFIP
TC2 working conference on programming concepts and methods, pages 479–504.
North-Holland, March 1990.

[CL99] Sylvain Conchon and Fabrice Le Fessant. Jocaml: mobile agents for objective-
caml. In First International Symposium on Agent Systems and Applications and
Third International Symposium on Mobile Agents, pages 22–29, Palm Springs, USA,
October 1999.

[Cra00] Karl Crary. Typed compilation of inclusive subtyping. In 5th International Con-
ference on Functional Programming, Montreal, Canada, September 2000.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In 5th International
Conference on Functional Programming, pages 233–248, Paris, France, October
1999.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morisett. Intensional polymorphism in
type-erasure semantics. In 3rd International Conference on Functional Program-
ming, Baltimore, USA, September 1998.

[CWM02] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in
type erasure semantics. Journal of Functional Programming, 12(6):567–600, Novem-
ber 2002.

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order mod-
ules. In 30th Symposium on Principles of Programming Languages, New Orleans,
USA, January 2003.

[Dea97] Drew Dean. The security of static typing with dynamic linking. In 4th Conference
on Computer and Communications Security, pages 18–27, 1997.

[Den85] Peter Denning, editor. Special Issue on Prolog, volume 28(12) of Communications
of the ACM. ACM Press, December 1985.

[DFW96] Drew Dean, Edward Felten, and Dan Wallach. Java security: from HotJava to
Netscape and beyond. In Symposium on Security and Privacy, pages 190–200,
Oakland, USA, May 1996. IEEE Computer Society Press.

283

Bibliography

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Operating Systems Design and Implementation, San Francisco,
USA, 2004.

[DHC01] Derek Dreyer, Robert Harper, and Karl Crary. Toward a practical type theory for
recursive modules. Technical Report CMU-CS-01-112, School of Computer Science,
Carnegie Mellon University, Pittsburgh, USA, March 2001.

[DKSS98] Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka. A higher-
order module discipline with separate compilation, dynamic linking, and pick-
ling. Technical report, Programming Systems Lab, Universität des Saarlandes,
Saarbrücken, Germany, 1998. Draft, http://www.ps.uni-sb.de/papers.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Richard DeMillo, editor, 7th Symposium on Principles of Programming Languages,
pages 207–212, Albuquerque, USA, January 1982. ACM Press.

[Dre04] Derek Dreyer. A type system for well-founded recursion. In 31st Symposium on
Principles of Programming Languages, Venice, Italy, January 2004.

[Dre05] Derek Dreyer. Understanding and Evolving the ML Module System. Phd thesis,
Carnegie Mellon University, 2005.

[Dre07] Derek Dreyer. Recursive type generativity. Journal of Functional Programming,
Forthcoming 2007.

[DRW95] Catherine Dubois, François Rouaix, and Pierre Weis. Extensional polymorphism.
In 22nd Symposium on Principles of Programming Languages, San Francisco, USA,
January 1995.

[Dug99] Dominic Duggan. Dynamic typing for distributed programming in polymorphic
languages. Transactions on Programming Languages and Systems, 21(1):11–45,
1999.

[Dug02] Dominic Duggan. Type-safe linking with recursive DLLs and shared libraries. Trans-
action on Programming Languages and Systems, 24(6):711–804, November 2002.

[Els99] Martin Elsman. Static interpretation of modules. In Fourth International Confer-
ence on Functional Programming, pages 208–219, Paris, France, September 1999.
ACM Press.

[FF95] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in pro-
gram optimizations. In 22nd Symposium on Principles of Programming Languages,
pages 209–220, San Francisco, USA, January 1995.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages.
In Programming Language Design and Implementation, pages 236–248, Montreal,
Canada, June 1998.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. On distributed programming: A calculus of mobile agents. In 7th Interna-
tional Conference on Concurrency Theory, volume 1119 of Lecture Notes in Com-
puter Science, pages 278–298. Springer-Verlag, 1996.

284

Bibliography

[FMS01] Cédric Fournet, Luc Maranget, and Alan Schmitt. The JoCaml Language beta
release. INRIA, http://pauillac.inria.fr/jocaml/htmlman/, January 2001.

[FW76] Daniel Friedman and David Wise. CONS should not evaluate its arguments. In
S. Michaelson and Robin Milner, editors, Third International Colloquium on Au-
tomata, Languages, and Programming, pages 257–284. Edinburgh University Press,
July 1976.

[Gec05] Gecode Team. Generic constraint development environment, 2005. http://www.

gecode.org/.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analysis, et son ap-
plication à l’élimination des coupures dans l’analysis et la théorie des types. In J. E.
Fenstad, editor, Proceedings 2nd Scandinavian Logic Symposium. North-Holland,
1971.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Programming Language Speci-
fication. Addison–Wesley, 1996.

[Gle99] Neal Glew. Type dispatch for named hierarchical types. In 5th International Con-
ference on Functional Programming, Paris, France, October 1999.

[GM99] Neal Glew and Greg Morrisett. Type-safe linking and modular assembly language.
In 26th Symposium on Principles of Programming Languages, pages 250–261, Jan-
uary 1999.

[GMW79] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[GMZ00] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstraction.
Transactions on Programming Languages and Systems, 22(6):1037–1080, November
2000.

[GP98] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing.
Theoretical Computer Science, 193(1–2):75–96, February 1998.

[GR04] Emden Gansner and John Reppy. The Standard ML Basis Library. Cambridge
University Press, 2004.

[Hal85] Robert Halstead. Multilisp: A language for concurrent symbolic computation.
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[Har06] Robert Harper. Programming in Standard ML. Draft, 2006.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal, modular actor for-
malism for artificial intelligence. In 3rd International Joint Conference on Artificial
Intelligence, pages 235–245, 1973.

[HCS+01] Fergus Henderson, Thomas Conway, Zoltan Somogyi, David Jefferey, Peter
Schachte, Simon Taylor, and Chris Speirs. The Mercury Language Ref-
erence Manual. http://www.cs.mu.oz.au/research/mercury/information/

documentation.html, 2001.

285

Bibliography

[Hin69] J.R. Hindley. The principal type-scheme of an object in combinatory logic. In
Transactions of AMS, pages 146:29–60, 1969.

[HL82] Maurice Herlihy and Barbara Liskov. A value transmission method for abstract
data types. Transactions on Programming Languages and Systems, 4(4):527–551,
October 1982.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In 21st Symposium on Principles of Programming Languages,
pages 123–137, Portland, USA, January 1994.

[HM93] Robert Harper and John Mitchell. On the type structure of Standard ML. Theory
of Programming Languages and Systems, 15(2):211–252, April 1993.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In 22nd Symposium on Principles of Programming Languages, pages
130–141, San Francisco, USA, January 1995.

[HM99] Robert Harper and John Mitchell. Parametricity and variants of Girard’s J operator.
Information Processing Letters, 70(1):1–5, 1999.

[HMM90] Robert Harper, John Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In 17th Symposium on Principles of Programming Languages,
pages 341–354, San Francisco, USA, January 1990.

[HMPH05] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 48–60. ACM Press, 2005.

[HP05] Robert Harper and Benjamin Pierce. Design Considerations for ML-Style Module
Systems, chapter 8, pages 293–345. The MIT Press, 2005.

[HR99] Michael Hansen and Hans Rischel. Introduction to Programming using SML.
Addison-Wesley, 1999.

[HRB+99] Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert
Smolka. Efficient logic variables for distributed computing. Transactions on Pro-
gramming Languages and Systems, 21(3):569–626, May 1999.

[HRBS98] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Programming lan-
guages for distributed applications. New Generation Computing, 16(3):223–261,
1998.

[HS00] Robert Harper and Christopher Stone. A type-theoretic interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction: Essays in Honor of Robin Milner. MIT Press, 2000.

[Ken04] Andrew Kennedy. Pickler combinators. Journal of Functional Programming,
14(6):727–739, November 2004.

[Kor06] Leif Kornstaedt. Design and Implementation of a Programmable Middleware. Doc-
toral dissertation, Universität des Saarlandes, Saarbrücken, Germany, December
2006.

286

Bibliography

[LAB+79] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert,
Robert Scheifler, and Alan Snyder. CLU reference manual. Technical Report
MIT/LCS/TR-225, Massachusetts Institute of Technology, 1979.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java Virtual Machine.
In Object-Oriented Programming, Systems, Languages and Applications, October
1998.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In 19th Symposium on
Principles of Programming Languages, pages 177–188, New York, USA, January
1992. ACM Press.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st Sym-
posium on Principles of Programming Languages, pages 109–122, Portland, USA,
January 1994. ACM.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
22nd Symposium on Principles of Programming Languages, pages 142–153, San
Francisco, USA, January 1995. ACM.

[Ler03] Xavier Leroy. The Objective Caml System. INRIA, 2003. http://pauillac.inria.
fr/ocaml/htmlman/.

[Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-
tems. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, USA, May 1997.

[LM93] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional Program-
ming, 3(4):431–463, 1993.

[LPSW03] James Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global
abstraction-safe marshalling with hash types. In 8th International Conference on
Functional Programming, Uppsala, Sweden, September 2003.

[LS88] Barbara Liskov and Liuba Shrira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Programming Language Design
and Implementation, pages 260–267. ACM Press, 1988.

[Luc00] Lucent Technologies. Standard ML of New Jersey User’s Guide. http://cm.

bell-labs.com/cm/cs/what/smlnj/doc/, 2000.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison–
Wesley, 1996.

[Mac84] David MacQueen. Modules for Standard ML. In Symposium on LISP and Func-
tional Programming, pages 198–207, Austin, USA, 1984.

[Mac86] David MacQueen. Using dependent types to express modular structure. In 13th
Symposium on Principles of Programming Languages, pages 277–286, St. Peters-
burg, USA, January 1986.

[Mac93] David MacQueen. Reflections on standard ML. In Functional Programming, Con-
currency, Simulation and Automated Reasoning, pages 32–46, 1993.

287

Bibliography

[MG98] Yasuhiko Minamide and Jacque Garrigue. On the runtime complexity of type-
directed unboxing. In 3rd International Conference on Functional Programming,
Baltimore, USA, September 1998.

[Mic03] Microsoft Corporation. Microsoft .NET. http://www.microsoft.com/net/, 2003.

[Mil78] Robin Milner. A theory of type polymorphism. Journal of Computer and Systems
Sciences, 17:348–375, 1978.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, 1999.

[Mil06] Mark Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. Doctoral dissertation, Johns Hopkins University,
Baltimore, USA, May 2006.

[Mit91] John Mitchell. On the equivalence of data representations. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 305–330. Academic Press, 1991.

[ML71] Per Martin-Löf. A theory of types, 1971. Unpublished manuscript.

[MM91] John Mitchell and Eugenion Moggi. Kripke-style models for typed lambda calculus.
Annals of Pure and Applied Logic, 51:99–124, 1991.

[Mor73a] James Morris. Protection in programming language. Communications of the ACM,
16(1), January 1973.

[Mor73b] James Morris. Types are not sets. In 1st Symposium on Principles of Programming
Languages, pages 120–124, Boston, USA, October 1973.

[Moz04] Mozart Consortium. The Mozart programming system, 2004. http://www.

mozart-oz.org.

[MP88] John Mitchell and Gordon Plotkin. Abstract types have existential type. Trans-
actions on Programming Languages and Systems, 10(3):470–502, 1988. Prelimi-
nary version appeared in 12th Symposium on Principles of Programming Languages,
1985.

[MPO02] Simon Marlow, Simon Peyton Jones, and Others. The Glasgow Haskell Compiler.
University of Glasgow, http://www.haskell.org/ghc/, 2002.

[MR86] Albert Meyer and Mark Reinhold. ‘Type’ is not a type. In 13th Symposium on Prin-
ciples of Programming Languages, pages 287–295, St. Petersburg Beach, Florida,
USA, 1986.

[MT94] David MacQueen and Mads Tofte. A semantics for higher-order functors. In Donald
Sannella, editor, 5th European Symposium on Programming, volume 788 of Lecture
Notes in Computer Science, pages 409–423, Edinburgh, UK, April 1994. Springer-
Verlag.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, 1990.

288

Bibliography

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, 1997.

[Mül06] Christian Müller. Run-time byte code compilation, optimization, and interpretation
for Alice. Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany, March
2006.

[Myc83] Alan Mycroft. Dynamic types in ML, 1983.

[Nei06] Georg Neis. A semantics for lazy types. Bachelor’s thesis, Universität des Saarlan-
des, Saarbrücken, Germany, September 2006.

[NSS05] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. In 5th International Workshop on Frontiers of Combining
Systems, Vienna, Austria, September 2005.

[NSS06] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. Theoretical Computer Science, 364(3):338–356, November
2006.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nom-
inal theory of objects with dependent types. In Luca Cardelli, editor, European
Conference on Object-oriented Programming, Darmstadt, Germany, July 2003.

[Ode05] Martin Odersky. Programming in Scala. École Polytechnique Fédérale de Lausanne,
2005.

[OK93] Atsushi Ohori and Kazuhiko Kato. Semantics for communication primitives in a
polymorphic language. In 20th Symposium on Principles of Programming Lan-
guages, pages 99–112. ACM Press, 1993.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[PA93] Gordon Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In Marc
Beeze and Jan Friso Groote, editors, Typed Lambda Calculus and Applications,
volume 664 of Lecture Notes in Computer Science, pages 361–375. Springer-Verlag,
Berlin, 1993.

[Pal05] Niko Paltzer. Efficient representation of dynamic types. Bachelor’s thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany, September 2005.

[Par72] David Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), December 1972.

[Pau96] Larry Paulson. ML for the Working Programmer. Cambridge University Press, 2nd
edition, 1996.

[PH99] Simon Peyton Jones and John Hughes. Haskell 98: A Non-strict, Purely Functional
Language. http://www.haskell.org/onlinereport, 1999.

[Pie02] Benjamin Pierce. Types and Programming Languages. The MIT Press, February
2002.

289

Bibliography

[Pil96] Marco Pil. First class file I/O. In Werner Kluge, editor, 8th International Work-
shop on Implementation of Functional Languages, volume 1268 of Lecture Notes in
Computer Science, pages 233–246. Springer-Verlag, 1996.

[Pit98] Andrew Pitts. Existential types: Logical relations and operational equivalence. In
25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 309–326. Springer-Verlag, Berlin,
1998.

[Pit00] Andrew Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321–359, 2000.

[Pit05] Andrew Pitts. Typed Operational Reasoning, chapter 7, pages 245–289. The MIT
Press, 2005.

[PS93] Andrew Pitts and Ian Stark. On the observable properties of higher order functions
that dynamically create local names. In Paul Hudak, editor, Workshop on State in
Programming Languages, pages 31–45, Copenhagen, Denmark, 1993.

[Pv00] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean Language Report.
http://www.cs.kun.nl/~clean/Manuals/manuals.html, 2000.

[Ram05] Norman Ramsey. ML module mania: A type-safe, separately compiled, extensible
interpreter. In Nick Benton and Xavier Leroy, editors, Workshop on ML, Tallinn,
Estonia, September 2005.

[Rep99] John Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[Rey74] John Reynolds. Towards a theory of type structure. In Proceedings Colloque sur la
Programmation, volume 19 of Lecture Notes in Computer Science, pages 408–423.
Springer-Verlag, 1974.

[Rey83] John Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Ma-
son, editor, Information Processing, pages 513–523, Amsterdam, 1983. North Hol-
land.

[RLT+06] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Alice ML through the looking glass. In Hans-Wolfgang Loidl, editor, Trends
in Functional Programming, volume 5, Munich, Germany, 2006. Intellect.

[Ros01] Andreas Rossberg. Defects in the Revised Definition of Standard ML. Technical
report, Universität des Saarlandes, Saarbrücken, Germany, October 2001. http:

//www.ps.uni-sb.de/Papers/.

[Ros03] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In Prin-
ciples and Practice of Declarative Programming, Uppsala, Sweden, August 2003.

[Ros05] Andreas Rossberg. The definition of Standard ML with packages. Technical report,
Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany,
2005. http://www.ps.uni-sb.de/Papers/.

[Ros06] Andreas Rossberg. The missing link – dynamic components for ML. In 11th Interna-
tional Conference on Functional Programming, Portland, Oregon, USA, September
2006. ACM Press.

290

Bibliography

[RRS00] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Language
Overview. ftp://ftp.dina.kvl.dk/pub/mosml/doc/mosmlref.pdf, 2000.

[Rus98] Claudio Russo. Types for Modules. Dissertation, University of Edinburgh, 1998.

[Rus99] Claudio Russo. Non-dependent types for Standard ML modules. In International
Conference on Principles and Practice of Declarative Programming, Paris, France,
September 1999.

[Rus00] Claudio Russo. First-class structures for Standard ML. In Gert Smolka, editor, 9th
European Symposium on Programming, volume 1782 of Lecture Notes in Computer
Science, Berlin, Germany, March 2000. Springer-Verlag.

[Rus01] Claudio Russo. Recursive structures for Standard ML. In Sixth International Con-
ference on Functional Programming, pages 50–61, Florence, Italy, September 2001.
ACM Press.

[RW92] Martin Reiser and Niklaus Wirth. Programming in Oberon – Steps beyond Pascal
and Modula. ACM Press, 1992.

[RWWB96] Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat. Pickling state in the
java system. Computing Systems, 9(4):291–312, 1996.

[Sch02] Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2002.

[Sch06] Andi Scharfstein. A sandboxing infrastructure for Alice ML. Bachelor’s thesis,
Universität des Saarlandes, Saarbrücken, Germany, October 2006.

[Sea04] Seam Team. Simple extensible abstract machine, 2004. http://www.ps.uni-sb.

de/seam/.

[Sew01] Peter Sewell. Modules, abstract types, and distributed versioning. In 28th Sympo-
sium on Principles of Programming Languages, London, UK, January 2001.

[SH06] Christopher Stone and Robert Harper. Extensional equivalence and singleton types.
Transactions on Computational Logic, 7(4), October 2006.

[Sha89] Ehud Shapiro. The family of concurrent logic programming languages. ACM Com-
puting Survey, 21(3):413–511, 1989.

[SLW+05] Peter Sewell, James Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: high-level program-
ming language design for distributed computation. In 10th International Conference
on Functional Programming, pages 15–26, Tallinn, Estonia, September 2005.

[SM03] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

[SMCH06] David Swasey, Tom Murphy, Karl Crary, and Robert Harper. A separate com-
pilation extension to Standard ML. Technical Report CMU-CS-06-104, Carnegie
Mellon University School of Computer Science, January 2006.

[Smo95] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, Germany, 1995.

291

Bibliography

[Smo99] Gert Smolka. From concurrent constraint programming to concurrent functional
programming with transients, 1999. http://www.ps.uni-sb.de/~smolka/ccl99.

ps.

[SP03] Eijiro Sumii and Benjamin Pierce. Logical relations for encryption. Journal of
Computer Security, 11(4):521–554, 2003.

[SP04] Eijiro Sumii and Benjamin Pierce. A bisimulation for dynamic sealing. In 31st
Symposium on Principles of Programming Languages, Venice, Italy, January 2004.

[SP05] Eijiro Sumii and Benjamin Pierce. A bisimulation for type abstraction and recur-
sion. In 32nd Symposium on Principles of Programming Languages, pages 63–74,
Long Beach, USA, January 2005. ACM Press.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 2nd edition, 1994.

[ST05] Christian Schulte and Guido Tack. Views and iterators for generic constraint imple-
mentations. In Mats Carlsson, Francois Fages, Brahim Hnich, and Francesca Rossi,
editors, Recent Advances in Constraints, volume 3978 of Lecture Notes in Computer
Science, pages 118–132. Springer-Verlag, 2005.

[Sto00] Christopher Stone. Singleton Types and Singleton Kinds. Dissertation, Carnegie
Mellon University, August 2000.

[Sto05] Christopher Stone. Type Definitions, chapter 9, pages 347–385. The MIT Press,
2005.

[Sun97] Sun Microsystems. JavaBeans Specifications 1.01, August 1997.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, December 2001.

[Tac03] Guido Tack. Linearisation, minimisation and transformation of data graphs with
transients. Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany, May
2003.

[TKS06] Guido Tack, Leif Kornstaedt, and Gert Smolka. Generic pickling and minimization.
In Workshop on ML, volume 148(2) of Electronic Notes in Theoretical Computer
Science, pages 79–103. Elsevier, March 2006.

[TL04] Guido Tack and Didier Le Botlan. Compositional abstractions for search factories.
In Peter Van Roy, editor, Second International Mozart/Oz Conference, volume 3389
of Lecture Notes in Computer Science, Charleroi, Belgium, October 2004. Springer-
Verlag.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A facile tutorial. In 7th In-
ternational Conference on Concurrency Theory, volume 1119 of Lecture Notes in
Computer Science, pages 278–298. Springer-Verlag, 1996.

[Tof94] Mads Tofte. Principal signatures for higher-order program modules. Journal of
Functional Programming, 4(3):285–335, July 1994.

[TSS00] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type
analysis. In 5th International Conference on Functional Programming, pages 82–
93, Montreal, Canada, September 2000.

292

Bibliography

[Tur76] David Turner. The SASL language manual. Technical report, University of St.
Andrews, 1976.

[Tur85] David Turner. Miranda: A non-strict functional language with polymorphic types.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Com-
puter Architecture, volume 201 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 1985.

[Tv88] Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume 2.
North-Holland, 1988.

[Ull97] Jeffrey Ullman. Elements of ML Programming. Prentice-Hall, second edition, 1997.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004.

[VWW05] Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An open and shut
typecase. In Types in Language Design and Implementation, Long Beach, USA,
January 2005.

[Wad89] Philip Wadler. Theorems for free! In Dave MacQueen, editor, 4th International
Conference on Functional Programming and Computer Architecture, pages 347–359,
London, UK, September 1989. ACM Press.

[WAM99] Ken Wakita, Takashi Asano, and Sassa Masataka. D’caml: A native distributed ML
compiler for heterogeneous environment. In European Parallel Processing Confer-
ence, volume 1685 of Lecture Notes in Computer Science, pages 914–924, Toulouse,
France, September 1999. Springer-Verlag.

[Wei00] Stephanie Weirich. Type-safe cast. In 5th International Conference on Functional
Programming, pages 58–67, Montreal, Canada, September 2000.

[Wei02] Stephanie Weirich. Higher-order intensional type analysis. In Daniel Le Métayer,
editor, 11th European Symposium on Programming, pages 98–114, Grenoble, France,
2002.

[WF94] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

[WG92] Niklaus Wirth and Jürg Gutknecht. Project Oberon – The Design of an Operating
System and Compiler. Addison-Wesley, 1992.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the
Java system. In 2nd Conference on Object-Oriented Technologies & Systems, pages
219–232. USENIX Association, 1996.

293

Bibliography

294

