
On the Computation

of Discrete Logarithms

in Finite Prime Fields

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.–Ing.)

der Technischen Fakultät

der Universität des Saarlandes

von

Damian Weber

Saarbrücken

1997

Tag des Kolloquiums: 30.10.1997

Dekan: Prof. Dr.–Ing. Alexander Koch

Gutachter:

Prof. Dr. Johannes Buchmann

Prof. Ph. D. Raimund Seidel

I

Acknowledgements

To write a thesis on discrete logarithms has been a very demanding and a highly
fascinating challenge.

First of all, I would like to thank my thesis supervisor, Prof. Dr. Johannes Buch-
mann, who approved of my proposal to consider the practicability of the asympto-
tically fastest discrete logarithm algorithm for finite prime fields, the NFS, and who
gave me the chance to join his research group at the university of Saarbrücken.

Many thanks to the members of this research group for their support and assis-
tance; especially to Thomas Denny who has been able to solve bigger and bigger
matrix equations and who shared his experience with the quadratic sieve factoring
algorithm. I am also very grateful to Thomas Papanikolaou for his generosity in
investing plenty of his time in answering questions about integer arithmetic and
C++ internals. Thank you as well to him and Susanne Wetzel for proofreading the
manuscript. Furthermore, I would like to thank Dr. Jörg Zayer for providing many
implementation tricks and details of the NFS factoring algorithm.

Special thanks are due to Dr. Oliver Schirokauer (Oberlin College/Ohio) for his
constructive feedback on algebraic number theory and for giving insight into his
invention of the additive characters. I am also grateful to Marije Elkenbracht–
Huizing (Amsterdam/Netherlands) for stimulating discussions about the NFS for
factoring.

Many thanks to the GNU software project which provides numerous public domain
software tools including the compilers gcc, g++, the awk–extension gawk, the packer
gzip, and the profiler gprof.

II

III

Kurzzusammenfassung

In dieser Arbeit berichten wir über praktische Erfahrungen mit der Lösung von
Kongruenzen der Form

ax ≡ b mod p, a, b, p, x ∈ ZZ, p Primzahl.

Dies ist das Problem der Diskreten Logarithmen in (ZZ/pZZ)∗. Zahlreiche kryp-
tographische Protokolle wie digitale Unterschriften, Verschlüsselung von Nachrich-
ten, Schlüsselaustausch und Identifikation basieren auf der Schwierigkeit dieses Pro-
blems. In dieser Arbeit befassen wir uns mit der Praktikabilität verschiedener Index–
Calculus Verfahren, die zur Zeit die asymptotisch schnellsten Algorithmen liefern,
um dieses Problem zu lösen. Wir präsentieren Berechnungen mit bis zu 85–stelligem
p und legen eine partielle Lösung zu McCurley’s Challenge vor, die ein 129–stelliges
p von spezieller Form benutzt.

Abstract

In this thesis we write about practical experience when solving congruences of the
form

ax ≡ b mod p, a, b, p, x ∈ ZZ, p prime.

This is referred to as the discrete logarithm problem in (ZZ/pZZ)∗. Many crypto-
graphic protocols such as signature schemes, message encryption, key exchange and
identification depend on the difficulty of this problem. We are concerned with the
practicability of different index calculus variants, which are the asymtotically fastest
known algorithms at present to solve this problem. We present computations for p
having up to 85 decimal digits. We include a partial solution to McCurley’s challenge
with a 129–digit p, which has a special form.

IV

Zusammenfassung

Insofern sich die Sätze der Mathe-
matik auf die Wirklichkeit beziehen,
sind sie nicht sicher, und insofern sie
sicher sind, beziehen sie sich nicht
auf die Wirklichkeit.

Albert Einstein

Diese Dissertation beschäftigt sich mit praktischen Erfahrungen bei der Benutzung
verschiedener Index–Calculus Verfahren zur Lösung des Problems Diskreter Loga-
rithmen (DLP) in der multiplikativen Gruppe endlicher Primkörper (ZZ/pZZ)∗, wobei
p Primzahl ist. Diese Gruppe besteht aus p − 1 Elementen. Das Problem Diskreter
Logarithmen kann folgendermaßen formuliert werden. Gegeben seien ganze Zahlen
a, b und eine Primzahl p. Zu finden ist eine ganze Zahl x mit der Eigenschaft

ax ≡ b mod p,

oder ein Beweis dafür, daß ein solches x nicht existiert. Seit der Veröffentlichung
des Diffie–Hellman’schen Schlüsselaustausch–Protokolls im Jahre 1978 ist das Inter-
esse am DLP ständig gestiegen; dies ist aus der Erfindung vieler kryptographischer
Protokolle, deren Sicherheit von der Schwierigkeit des DLP in bestimmten Gruppen
abhängt, ersichtlich. Die Gruppe (ZZ/pZZ)∗ gehört zu denjenigen Gruppen, in de-
nen das DLP allgemein als schwierig angenommen wird, vorausgesetzt, daß p groß
ist und in der Primfaktorzerlegung von p − 1 ein großer Primfaktor q enthalten
ist. Es ist daher nicht verwunderlich, daß zahlreiche kryptographische Verfahren
die Gruppe (ZZ/pZZ)∗ benutzen; sogar das amerikanische National Institute of Stan-
dards and Technology hat ein digitales Signaturverfahren zum Standard erhoben,
welches diese Gruppe benutzt [49]. Dieses Verfahren basiert auf Vorschlägen von
ElGamal [21] und Schnorr [67]. Selbstverständlich kann das DLP in (ZZ/pZZ)∗ auch
mit Algorithmen gelöst werden, die in beliebigen Gruppen funktionieren. Beispiels-
weise kann das Verfahren von Silver, Pohlig und Hellman [55] benutzt werden, das
entweder mit Hilfe der Methode von Shanks oder der von Pollard implementiert

VI

werden kann. Der große Nachteil dieser Methode besteht jedoch in seiner Laufzeit,
die exponentiell vom größten Primfaktor der Gruppenordnung p− 1 abhängt. Den-
noch kann für kleine Teiler q von p − 1 mit diesem Algorithmus immer die partielle
Lösung x modulo q erhalten werden.

Wegen der steigenden kryptographischen Bedeutung [51], wurde sehr intensiv
nach DL-Algorithmen mit subexponentieller Laufzeit geforscht. Daher kennen
wir nun einige deterministische und heuristische Verfahren für (ZZ/pZZ)∗; allen
liegt die Index–Calculus Idee zugrunde, die man in nahezu jeder Übersicht zum
DLP findet [51, 38, 44, 52, 65]. Da die Grundidee dieser Algorithmen bereits
bei Faktorisierungsalgorithmen in Erscheinung trat, erben die DL–Algorithmen in
natürlicher Weise die dortige Laufzeitnotation. Wir definieren

Lp[s, c] := exp((c + o(1)) (log p)s(log log p)1−s).

Im Jahre 1987 bewies Pomerance, daß Diskrete Logarithmen in einem Körper von pn

Elementen mit einer erwarteten Laufzeit von Lpn [1/2,
√

2] berechnet werden können
[60]. Der Artikel von Coppersmith, Odlyzko und Schroeppel [13] enthält drei heuri-
stische Verfahren, die sich die Index–Calculus Idee zunutze machen; sie erreichen eine
vermutete Laufzeit von Lp[1/2, 1]. Im Jahre 1993 wurde ein größerer Durchbruch
durch Gordon erzielt, der das beim Faktorisieren erfolgreiche Number Field Sieve
(NFS) auf das DLP übertrug und damit eine heuristische erwartete Laufzeit von

Lp[1/3, 3
2
3] erzielte [27].

Die neueste Effizienzsteigerung des NFS geht auf Schirokauer zurück, der die ver-
mutete erwartete Laufzeit auf

Lp[1/3, (64/9)
1
3]

verbesserte [64]. Diese Laufzeit ist identisch mit der schnellsten asymptotischen
Laufzeit, die zum Faktorisieren von zusammengestzten Zahlen gleicher Größe benö-
tigt wird.

Dennoch blieb bis zum Jahre 1995 der einzige ernsthafte Versuch einer expliziten
Berechnung der von LaMacchia und Odlyzko im Jahre 1991. Zu diesem Zeitpunkt
zeigten sie die Unzulänglichkeit des von der Firma Sun verwendeten Kryptosystems
zur Sicherung ihres verteilten UNIX Dateisystems auf. Hierbei wurde ein DLP mit
einem 58–stelligen p gelöst.

Die vorliegende Dissertation stellt umfangreiches experimentelles Datenmaterial zur
Verfügung, welches die Praktikabilität der verschiedenen Index–Calculus Versionen
durch die Erweiterung der Methode von [64] aufzeigt. Außerdem wird eine weitere
Version des NFS vom Faktorisieren auf das DLP übertragen. Ein Vergleich zwischen

VII

den Verfahren gibt Aufschluß über tatsächliche Laufzeiten, die in den Konstanten
des Ausdrucks Lp[s, c] verborgen sind. Das folgende Beispiel vermittelt einen Ein-
druck davon, wie schwer es ist, die Exponentiation modulo einer Primzahl zu in-
vertieren. Die Berechnung einer Potenz modulo einer 85–stelligen Primzahl dauert
32 Millisekunden auf einem 40–mips Rechner. Der gleiche Rechner benötigt jedoch
ungefähr ein Jahr, um den benutzten Exponent aufzufinden – und dies mit Hilfe des
besten bekannten DL–Algorithmus für endliche Primkörper dieser Größe.

Kapitel 1 führt in die Notation und die mathematischen Grundlagen ein, die benötigt
werden, um die verwendeten Algorithmen zu beschreiben; diese werden in Kapitel
2 kurz skizziert.

Kapitel 3 bildet den Hauptteil dieser Arbeit. Es beginnt mit einer detaillierten
Beschreibung der ersten NFS Implementierung für das DLP, greift deren zahlreiche
Verfeinerungen mit ihren vier Variationen auf und erklärt, wie die Parameter gewählt
werden. Zusätzlich wird eine neue Methode eingeführt, um die beim Faktorisieren
erfolgreiche Large Prime Variante auch beim DLP anwenden zu können. Bei der
Beschreibung des Gleichungssystems am Schluß des Verfahrens wird hervorgehoben,
wie die Lösung des DLP aus dessen Lösung gewonnen wird. Schliesslich werden
vier Weltrekorde, die mit unserer Implementierung erzielt wurden, präsentiert, die
ihren Höhepunkt in der Berechnung diskreter Logarithmen in einem Primkörper mit
über 1085 Elementen finden. Weiterhin wird die Vorberechnungsphase zur McCurley
Challenge beschrieben; hier besitzt der Primkörper 10129 Elemente.

Kapitel 4 stellt die erste allgemeine Siebimplementierung vor, die die aktuellen
schnellsten DL– und Faktorisierungsalgorithmen, einen Algorithmus zum Umformen
von DL–Problemen und einen neuen Algorithmus zur Berechnung von Klassengrup-
pen algebraischer Zahlkörper als Spezialfälle enthält. Es werden einige Daten zur
Verfügung gestellt, die zeigen, daß diese Verallgemeinerung nicht allzuviel an Ef-
fizienz kostet.

VIII

Introduction

As far as the laws of mathematics
refer to reality, they are not certain,
and as far as they are certain, they
do not refer to reality.

Albert Einstein

The subject of this thesis is to provide practical experience concerning the discrete
logarithm problem (DLP) in the multiplicative group (ZZ/pZZ)∗ of the finite prime
field ZZ/pZZ, p prime, by employing different index calculus algorithms. Evidently,
the group in question contains p − 1 elements. The discrete logarithm problem in
this group may be stated as follows. Given integers a, b, and a prime number p find
an integer x such that

ax ≡ b mod p,

or prove that such a solution does not exist. Since the publication of the key exchange
protocol by Diffie and Hellman in 1978 [19], the interest in the DLP has constantly
been growing as can be seen in the invention of many cryptographic protocols whose
security depends on the difficulty of the discrete logarithm in certain groups. The
group (ZZ/pZZ)∗ is such a group in which the DLP is widely assumed to be difficult,
provided that p is large and the group order p − 1 contains a large prime factor.
Consequently, numerous cryptographic protocols are designed for (ZZ/pZZ)∗; even
the National Institute of Standards and Technology adopted a digital signature
algorithm [49], which makes use of this group, based on proposals of ElGamal [21]
and Schnorr [67]. The DLP in (ZZ/pZZ)∗ can, of course, be solved with algorithms
which work in arbitrary groups, for example the one of Silver, Pohlig, and Hellman
[55], which may be implemented by using either Shanks’s method [63] or Pollard’s
method [57] as a subroutine. But the main disadvantage of this algorithm is that
its running time is O(

√
q) if q largest prime divisor of p − 1; this is exponential in

the length of the input. Nevertheless, for small divisors q of p − 1 it is possible to
obtain the partial information x mod q with this algorithm.

X

Because of the rising cryptographic significance [51], a lot of effort has been put into
inventing discrete logarithm algorithms with a sub–exponential running time. As
a result, we now know a couple of rigorous and heuristic methods for (ZZ/pZZ)∗, all
based on the index calculus idea, which the reader will find in almost every survey
article on the DLP [51, 38, 44, 52, 65]. As the basic idea of these algorithms has
already appeared in integer factorization algorithms we naturally have the notion of
running times introduced there. We define

Lp[s, c] := exp((c + o(1)) (log p)s(log log p)1−s).

In 1987, Pomerance proved in [60] that discrete logarithms in a finite field of pn

elements can be computed with an expected running time of Lpn[1/2,
√

2]. The
article of Coppersmith, Odlyzko, and Schroeppel [13] contains three heuristic ver-
sions exploiting the index calculus idea, with a conjectured expected running time
of Lp[1/2, 1]. In 1993, a major breakthrough was achieved by Gordon who came up
with an adaption of the Number Field Sieve (NFS) for factoring [27] by improving

the (conjectured) expected running time to Lp[1/3, 3
2
3]. The latest acceleration of

the NFS is due to Schirokauer [64] obtaining a conjectured, expected running time
of

Lp[1/3, (64/9)
1
3].

This is the same asymptotic running time as for factoring composite integers of the
same size as p.

Until 1995, however, the only serious attempt of a practical computation by imple-
menting the method of [13] was made in 1991, when LaMacchia and Odlyzko showed
the weakness of the Sun network–file–system cryptosystem by solving a DLP with
a prime p with 58 decimal digits involved.

Our thesis is designed to provide substantial experimental data in order to show
the practicability of the different heuristic index calculus versions by extending the
method of [64] and by adapting another NFS version from factoring, and to give
a comparison of the practical running times, which are hidden in the constants
occuring in the expression Lp[s, c]. The following example gives an idea of how hard
it is to invert the exponentiation function modulo a prime at present. Computing a
power modulo a 85–digit prime can be done within 32 milliseconds on a 40–mips–
machine. But it takes about one year computing time on the same machine to
recover the exponent in question with the aid of the most practical discrete log
algorithm for finite prime fields of that size.

Chapter one is intended to introduce the notation and the mathematical background
needed to give a description of the considered algorithms, which are then roughly
presented in chapter two.

XI

Chapter three constitutes the main part of the work. It begins with a detailed
description of the first NFS implementation for the DLP, including its numerous
refinements and its four variations, and explains how to choose the parameters.
Additionally, a new method is introduced to adapt the large prime variation from
the factoring algorithms. In the linear algebra step at the end of the algorithm it is
emphasized how the discrete logarithm solutions can be obtained with the help of the
solution vectors belonging to the linear system. Finally, four world records, achieved
with our implementation, are presented – culminating in computing logarithms in a
prime field of over 1085 elements; furthermore, the precomputation step of attacking
McCurley’s 129–digit problem, which is stated as a challenge in [44], is described.
Occasionally, we will refer to the analogous steps when the NFS is used for factoring
integers.

In chapter four we show the first general sieving implementation which covers the
fastest discrete logarithm and factoring algorithms known at present. Furthermore,
it covers a special algorithm to transform discrete logarithm problems, and a new
algorithm to compute class groups of number fields. We give some evidence that we
pay for this generalization with only a slight lack of efficiency.

XII

Contents

1 Preliminaries 1

1.1 List of Frequently Used Symbols . 1

1.2 Presentation of Algorithms . 2

1.3 The Discrete Logarithm Problem . 4

1.4 Finite Prime Fields . 8

1.5 Number Fields . 9

1.6 Miscellaneous . 18

2 Discrete Logarithm Algorithms 19

2.1 The Pohlig–Hellman–Algorithm . 19

2.2 The Number Field Sieve . 22

3 The Number Field Sieve 25

3.1 The Reduction Step . 25

3.2 Constructing Polynomials . 29

3.2.1 The COS Algorithm . 30

3.2.2 Standard NFS . 32

3.2.3 Non–monic Polynomials . 34

XIV CONTENTS

3.2.4 NFS with Two Quadratics . 35

3.3 Choosing Factor Bases . 36

3.4 Sieving . 38

3.4.1 The Classical Sieve . 38

3.4.2 The Lattice Sieve . 40

3.4.3 Individual Relations . 40

3.5 Combining Large Prime Relations . 43

3.5.1 Cycle Finding with l Large Primes 44

3.5.2 Cycle Building . 50

3.6 Computing Additive Characters . 56

3.7 Linear Algebra . 62

3.7.1 Sketch of the Lanczos Algorithm 63

3.7.2 Applying the Lanczos Algorithm 64

3.7.3 Computing Logarithms from Linear Algebra Solutions 64

3.7.4 The Two–Quadratics Version 66

3.7.5 The COS Version . 67

3.8 Computational Results . 68

3.8.1 The McCurley Challenge . 68

3.8.2 The Standard–NFS Record . 73

3.8.3 The Two–Quadratics Record 76

3.8.4 The COS Record . 77

CONTENTS XV

4 A General Sieving Device 81

4.1 Specification . 82

4.2 Factor Bases . 83

4.3 Configuration . 84

4.3.1 The Number Field Sieve . 84

4.3.2 The Gaussian Integer Method 85

4.3.3 The Quadratic Sieve . 86

4.3.4 Reduction step for DL . 87

4.4 The Object Model . 87

4.5 The Classes . 88

4.5.1 Sieving Device . 88

4.5.2 Factor Base . 92

4.5.3 Factor Base Element and Factor Base Prime 93

4.5.4 Sieve Array . 95

4.5.5 Sieve Hit . 98

4.5.6 Prime List . 100

Conclusion 103

Bibliography 107

XVI CONTENTS

Chapter 1

Preliminaries

1.1 List of Frequently Used Symbols

At this point, we introduce some symbols which are not defined in the sequel. The
reader is assumed to be familiar with most of them.

DL is an abbreviation for ’discrete logarithm’.

DLP is an abbreviation for ’discrete logarithm problem’.

NFS is an abbreviation for ’Number Field Sieve’.

|M | means the cardinality of the set M .

ZZ is the set of the rational integers.

IN is the set of natural numbers.

IN0 is the set of natural numbers including 0.

Q is the set of rational numbers.

IR is the set of real numbers.

C is the set of complex numbers.

IP is the set of rational primes.

if R is a ring, then R∗ means the ring of units of R.

2 1. Preliminaries

|a| (a ∈ IR) means the absolute value of a.

⌊a⌋ (a ∈ IR) means the greatest integer less than a.

a|b (a, b ∈ ZZ) means a divides b.

a6 |b means a does not divide b.

a ≡ b mod p means p|(a − b).

a Mod b means the least non–negative residue when a is divided by b.

π(n) means the number of primes up to n.

gcd(a, b) means the greatest common divisor of a, b ∈ ZZ.

ordp a (p ∈ IP, a ∈ ZZ) is the exponent of p in the prime factorization of a.

ordG a G a group, a ∈ G means the order of a in G.

〈·, ·〉 means the standard scalar product.

When referring to computing times, we use the following abbreviations:

• hsec means 1/100 second,

• mips means 106 instructions per second,

• 1 mips year is the computing time of one year, carried out by a computer rated
at 1 mips.

1.2 Presentation of Algorithms

We present algorithms in a pseudo–code, which is related to the programming lan-
guage C [30]. The LATEX–style algo.sty is used, developed by Papanikolaou and
Zayer [53]. They have replaced the bracketed control sequences of the language C
by keywords, as follows.

The structure

1.2 Presentation of Algorithms 3

if (condition)

{

instruction block 1

}

else

{

instruction block 1

}

reads as

(1) if (condition) then
(2) instruction block 1
(3) else
(4) instruction block 2
(5) fi

The while–loop

while (condition)

{

instruction block

}

is written as

(1) while (condition) do
(2) instruction block
(3) od

The for–loop

for (initialization; condition; increment)

{

instruction block

}

is written as

4 1. Preliminaries

(1) for (initialization; condition; increment) do
(2) instruction block
(3) od

As usual, the output of a function is indicated by the keyword return.

1.3 The Discrete Logarithm Problem

We start by introducing the term discrete logarithm for a finite group G.

1.1 Definition Let (G, ·) be a finite group and a, b ∈ G. If there exists x ∈ ZZ,
x ≥ 0, such that

ax = b, (1.1)

we call the minimal x satisfying (1.1) the discrete logarithm of b to the base a. We
write loga b.

We will use this notation throughout the thesis. Unless stated otherwise, a will be
the basis of the logarithm and b will be an element, the logarithm of which has to be
computed. The definition tells us that by asking for the existence of x, the problem
has to be solved, whether b is member of the subgroup generated by a. This problem
is not easy in general but is trivial for a cyclic group G, provided the factorization
of |G| is known.

Evidently, if y ∈ ZZ is a solution to (1.1), then the set of all solutions to (1.1) is given
by

{y + k · ordG a | k ∈ ZZ}.

As we shall see soon, the subgroups of G are of great importance for both the
decision problem and the computational problem. The basic facts are given in the
following Lemma.

1.2 Lemma Let G be a finite cyclic group of order n with neutral element e and
t ∈ ZZ be a divisor of n. Then

i) Gt := {bt | b ∈ G} is a subgroup of G

1.3 The Discrete Logarithm Problem 5

ii)

a
n
t = e ⇐⇒ a is a t–th power in G

Proof:

i) trivial.

ii) Let g be a generator of g. Choose x ∈ ZZ, x < n, such that gx = a. It follows
gxn/t = e. Therefore n divides xn/t whence x is divisible by t. Conversely,
assume a is a t–th power in G, then gkt = a for some k ∈ ZZ. We have

an/t = gktn/t = gkn = e.

1.3 Lemma Let (G, ·) be a cyclic group with neutral element e,

|G| =
n∏

i=1

pei

i

be the prime factorization of its cardinality and a, b ∈ G. Then (1.1) is solvable if
and only if for each j, 1 ≤ j ≤ n

a|G|/pk
j 6= e,

whenever
b|G|/pk

j 6= e,

with 1 ≤ k ≤ ej.

Proof: Let g be a generator of G. We show that (1.1) is insoluble if there exist j,
k with

b|G|/pk
j 6= e,

and
a|G|/pk

j = e.

Let U be the subgroup of pk
j –th powers of G. According to Lemma 1.2 a ∈ U and

b 6∈ U . But U is closed under group operation. Hence the equation (1.1) has no
solution.

6 1. Preliminaries

Conversely, assume x is a solution to (1.1). Assume

b|G|/pk
j 6= e.

Since b = ax, we have ax|G|/pk
j 6= e. Therefore

a|G|/pk
j = e

is impossible.

The criterion of the Lemma is sufficient for our purposes since the multiplicative
group of prime fields is cyclic as we shall see in the next section (Theorem 1.7).
For the use of the Number Field Sieve for computing discrete logarithms in these
groups, the factorization of the group order is necessary; therefore we can assume
that the prime factorization of |G| is given.

The following two Lemmata show that it suffices to compute the solution of a discrete
log problem modulo divisors of |G|.

1.4 Lemma Let (G, ·) be a cyclic group of order n with generator g. Let a, b ∈ G
and t > 1 be a divisor of n. Let k, l ∈ ZZ, with gcd(t, l) = 1, such that

akbl = dt (1.2)

for some d ∈ G.

Then

x ≡ −k

l
mod t

is a solution to
ax = b

in G/Gt.

Proof:

We have t′t + l′l = 1 for some t′, l′ ∈ ZZ. In particular, l′ ≡ l−1 mod t. Then

dtl′ = (akbl)l′ = akl′bll′ = akl′b1−t′t. (1.3)

Let
· : G −→ G/Gt

1.3 The Discrete Logarithm Problem 7

be the quotient map. It follows
1 = akl′b,

giving
a−kl′ = b,

which is the desired result.

1.5 Lemma In the situation of Lemma 1.3, we have the following.

If

axj = b in G/Gp
ej
j , 1 ≤ j ≤ n,

then for the unique non–negative x < |G| which simultaneously solves

x ≡ x1 mod pe1
1

...
...

...
...

...
x ≡ xn mod pen

n

, (1.4)

we have
ax = b

in G.

Proof: We have the (homomorphic and surjective) quotient maps

ϕj : G −→ G/Gp
ej
j , 1 ≤ j ≤ n

with kernel Gp
ej
j .

Define the map ϕ as follows

ϕ : G −→ G/Gp
e1
1 × · · · × G/Gp

e1
1

h 7→ (ϕ1(h), . . . , ϕn(h)).

We are going to show that ϕ is an isomorphism of groups. The kernel of ϕ is

H = Gp
e1
1 ∩ . . . ∩ Gpen

n .

Let g be a generator of G and h ∈ H . Then ϕj(g
x) = gxGp

ej
j , which is equal to

Gp
ej
j , if and only if p

ej

j |x. So gx ∈ H , if and only if p
ej

j |x for 1 ≤ j ≤ n, whence |G|
divides x and h = g|G| = e.

Having thus found a solution (1.4), applying ϕ−1 reveals x.

8 1. Preliminaries

1.6 Remark The ability of computing discrete logarithms with respect to a partic-
ular base a is equivalent to the ability of computing discrete logarithms with respect
to other bases a′. Assume, we want to solve

a′x = b.

We compute y, z, such that ay = a′ and az = b and obtain

axy = az,

whence
xy ≡ z mod |G|.

1.4 Finite Prime Fields

In this section we intend to list the basic properties of finite fields, which are well–
known and frequently used in the sequel. More details and proofs of the statements
can be found in [29] or other books about algebra and number theory.

1.7 Theorem Let K be a finite field of order q. Then q is a prime power and the
multiplicative group of K is cyclic of order q−1. If K is a prime field (i.e. contains
no proper subfields), then q is a prime number.

The following lemma gives the method of representing elements of finite prime fields.

1.8 Lemma For every q = pk for some p ∈ IP, k ∈ IN, there is a finite field K of
order q. The integer multiples of the identity in K form a subfield K ′ isomorphic to
ZZ/pZZ.

Given the situation of the preceding Lemma, we call K ′ finite prime field of order
p. The algorithmic representation of an element of K ′

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

a

∈ K ′ (1.5)

is a + pZZ ∈ ZZ/pZZ.

We always choose a to be the least non–negative integer satisfying (1.5).

The index calculus algorithms profit from the fact that on the assumption of the
extended Riemann hypothesis (ERH), the representation of the least generator is
relatively small. In this context, we know the following Theorem 1.9, which is proved
in [71].

1.5 Number Fields 9

1.9 Theorem (ERH) There exists a constant c ∈ IR such that, for all p ∈ IP, there
exists a ∈ ZZ, 0 < a ≤ c(log p)6 such that a is generator of (ZZ/pZZ)∗.

1.10 Remark In practice we usually observe a generator for (ZZ/pZZ)∗ among the
first twenty primes.

1.5 Number Fields

In this section we recall some basic properties about algebraic number fields. Our
considerations will be specialized on developing only the necessary facts needed
for the subsequent chapters. For a few special cases, which are needed for the
justification of some steps of the NFS algorithm and which are not to be found in
the standard literature, proofs are given. For a more systematic approach we refer
the reader to standard textbooks about algebra and algebraic number theory, for
example [36, 12, 28]. We now define the structure, in which the main computation
in the NFS algorithm takes place.

1.11 Definition A number field is a field K containing Q which, considered as
Q–vector space, is finite dimensional. The number n = dimQ K is called the degree
of the number field K.

For the rest of this chapter let K be a number field of degree n. The possibility of
representing elements of an algebraic number field, the so–called algebraic numbers,
is given by the following Theorem.

1.12 Theorem There exists θ ∈ K, such that

K = Q(θ) := {
n−1∑

i=0

xiθ
i|(x0, . . . , xn−1) ∈ Qn}.

1.13 Remark In the situation of Theorem 1.12, we call the set

{1, θ, θ2, . . . , θn−1}

standard basis of Q(θ).

10 1. Preliminaries

1.14 Lemma Let α ∈ K. There exists f ∈ ZZ[X], k := deg f ≤ n

f(X) = akX
k + · · ·+ a1X + a0,

with f(α) = 0. If f has minimal degree and gcd(a0, . . . , an) = 1, we call f the
minimal polynomial of α.

We introduce algebraic integers as a generalization of rational integers.

1.15 Definition Let ω ∈ K. If the minimal polynomial of ω is of the form

Xk + ak−1X
k−1 + · · ·+ a1X + a0,

we call ω an algebraic integer.

1.16 Theorem The set

OK := {ω ∈ K | ω is an algebraic integer}

forms a ring.

1.17 Definition We call OK the ring of integers of K. If the context is clear, we
simply write O instead of OK .

1.18 Remark For ω being an algebraic integer, we also write Oω for the ring of
integers of Q(ω).

The norm map, which will be defined next, is a useful tool to transform problems
in K into problems in Q.

1.19 Definition Let α ∈ K. Let ν be the following map:

να : K −→ K
β 7→ αβ.

We call N(α) := det(να) the norm of α.

1.20 Lemma The norm N(α) is a rational number. It is a rational integer, pro-
vided that α is an algebraic integer. N(α) = 1 if and only if α is a unit in O.

1.5 Number Fields 11

1.21 Definition Let ω be an algebraic integer with minimal polynomial

f(X) = Xk + ak−1X
k−1 + · · ·+ a1X + a0.

The value

∆f := N(f ′(ω)) := kωk−1 + (k − 1)ak−1ω
k−2 + · · ·+ a1

is called the discriminant of f .

We now derive the formula which will be used to compute norms in the NFS algo-
rithm.

1.22 Lemma Let K = Q(α) be a number field of degree n ≥ 2. Let

f(X) := anX
n + · · · + a1X + a0

be the minimal polynomial of α. Then the norm of c+dα, c, d ∈ Q can be computed
from

N(c + dα) = (−d)n f(− c
d
)

an

.

Proof: We compute the norm of c− dα by constructing the representation matrix
Ac−dα ∈ Qn×n of the map νc−dα. Note that

αn = −an−1

an
αn−1 − · · · − a1

an
α − a0

an
.

After having constructed the matrix of the images of the standard basis of Q(α)
under νc−dα, we compute its determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c 0 0 d a0

an

−d c 0 0 d a1

an

0 −d c 0 . . . 0 d a2

an

...
...

...
...

...
...

...
0 0 −d c + dan−1

an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (1.6)

In order to compute a triangular form of the matrix above, we perform the following
operation in step i (1 ≤ i ≤ n − 1): we multiply row i by d

c
and add the result to

row i+1. This is clearly a transformation which keeps the value of the determinant
invariant. The effect of the operation i = 1 is as follows. The first column will only

12 1. Preliminaries

consist of the entry c in the upper left corner. The second entry in the last column
will be replaced by

d2a0

can
+ d

a1

an
.

By iterating, after n − 2 transformations, the entry n − 1 will show up as

dn−1a0

cn−2an

+
dn−2a1

cn−3an

+ · · · + dan−2

an

.

Since the last entry in the last column is c + dan−1

an
, this entry is replaced by

h(c, d) :=
dna0

cn−1an
+

dn−1a1

cn−2an
+ · · · + d2an−2

can
+ d

an−1

an
+ c

in step n − 1.

After step n − 1, the matrix has the following form:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c 0 0 d a0

an

0 c 0 0 ∗
0 0 c 0 . . . 0 ∗
...

...
...

...
...

...
...

0 0 0 h(c, d)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is clear that the determinant is the product of the diagonal entries. So we have

N(c − dα) = cn−1h(c, d)

=
dna0

an

+
dn−1ca1

an

+ · · · + d2cn−2an−2

an

+ dcn−1an−1

an

+ cn

= dnf(c
d
)

an
.

The result follows by replacing d by −d.

1.23 Remark We consider two special cases. Firstly, |N(α)| = |f(0)/an|. Sec-
ondly, the norm of an element c ∈ Q is N(c) = cn (set d = 0 in (1.6)).

1.24 Definition Let R be a ring. A non–empty subset I ⊂ R is an ideal of R if
and only if the following two conditions are satisfied:

1. a, b ∈ I =⇒ a − b ∈ I; and

1.5 Number Fields 13

2. r ∈ R, a ∈ I =⇒ ra ∈ I.

In order to define the norm of an ideal we first note the following Lemma.

1.25 Lemma Let K be an algebraic number field with ring of integers O and let I
be an ideal of O. Then O/I is a finite ring.

1.26 Definition In the situation of the lemma above, we call

N(I) := |O/I|

the norm of the ideal I. In case of O/I being a finite field, we will say that I is a
prime ideal of O. Then |O/I| = pm for some natural number m. We call m the
degree of the prime ideal I.

Ideals can be decomposed (multiplicatively) into prime ideals. Thus we give the
multiplication operation.

1.27 Definition Let K be an algebraic number field with ring of integers O and let
I, J be ideals of O. Then the ideal product of I and J is defined as

IJ := {
k∑

i=1

xiyi|k ∈ IN, xi ∈ I, yi ∈ J, 1 ≤ i ≤ k}.

1.28 Definition Let K be an algebraic number field with ring of integers O. A
fractional ideal I in O is a non–zero submodule of K such that there exists a non–
zero integer d with dI ideal of O. An ideal I of O is said to be a principal ideal
if there exists x ∈ O such that xO = I. Finally, O is said to be a principal ideal
domain if every ideal of O is a principal ideal.

The following Theorem is fundamental to the functioning of the NFS algorithm.

1.29 Theorem Given the situation of definition 1.28. Every fractional ideal I in
O can be written in a unique way as

I =
∏

p

pep ,

the product being over a finite set of prime ideals and the exponents being in ZZ. In
particular I ⊂ O if and only if all the ep are non–negative.

14 1. Preliminaries

1.30 Remark As to Theorem 1.29, we write

ordpI := ep.

If ξ ∈ O, I = ξO, we write
ordpξ := ep.

1.31 Remark Let K := Q(ω) be defined by fixing a root ω of a monic polynomial
f ∈ ZZ[X]. Then (ZZ[ω], +) has finite group index in O. We will call the subset
of p ∈ IP, which divides this index, index divisors. If the index is not divisible by
p ∈ IP, we say that ZZ[ω] is p–maximal.

In order to compute a superset of the index divisors, we note

1.32 Lemma Let K = Q(ω) be a number field, f(X) ∈ ZZ[X] the monic minimal
polynomial of ω, p ∈ IP. If p is divisor of the index [Oω : ZZ[ω]] then p2|∆f .

1.33 Remark In particular, the set of index divisors is finite.

In order to actually recognize the index divisors, we apply the following theorem
due to Dedekind1 (Dedekind’s criterion).

1.34 Theorem Let K = Q(ω) be a number field, f(X) ∈ ZZ[X] the monic minimal
polynomial of ω, p ∈ IP. Let

f(X) ≡ Πk
i=1gi(X)i mod p

be the factorization of f modulo p, where gi is the product of monic irreducible
polynomials dividing f exactly with exponent i. Define

h(X) :=
1

p
(f(X) −

k∏

i=1

gi(X)i).

Then ZZ[ω] is p–maximal if and only if

gcd(h(X),
k∏

i=2

gi(X)) = 1.

1Richard Dedekind 1831–1916

1.5 Number Fields 15

The following Theorem gives the prime ideal decomposition of a rational prime p
from the factorization of the field polynomial modulo p, for all but finitely many p.

1.35 Theorem Let K := Q(ω) be a number field, where ω is an algebraic integer,
whose (monic) minimal polynomial is denoted T (X). Let f be the index of ω, i.e.
f = [Oω : ZZ[ω]]. Then for any prime not dividing f one can obtain the prime
decomposition of pOω as follows. Let

T (X) ≡
g

∏

i=1

Ti(X)ei mod p

be the decomposition of T into irreducible factors in ZZ/pZZ[X], where the Ti are
taken to be monic. Then

pOω =

g
∏

i=1

pei

i ,

where
pi = (p, Ti(ω)) = pOω + Ti(ω)Oω.

1.36 Remark As to Theorem 1.35, we say that pi lies above p.

Referring to the NFS, we start with choosing a polynomial, take a root α of this
polynomial and then perform computations in ZZ[α]. If α is an algebraic integer, it is
clear that ZZ[α] ⊂ Oα. In case of α not being an algebraic integer, some adjustments
have to be made. In particular, an algebraic integer related to α is constructed. The
following Lemma collects some facts about this case.

1.37 Lemma Let f(X) ∈ ZZ[X] irreducible,

f(X) = anXn + an−1X
n−1 + · · ·+ a0, an 6= 0

and define

g(X) := an−1
n f(X/an)

= Xn + an−1X
n−1 + anan−2X

n−2 + a2
nan−3X

n−3 + · · · + an−1
n a0. (1.7)

Let α ∈ C, such that f(α) = 0, ω := anα. Then

i) g(ω) = 0

ii) ω is an algebraic integer

16 1. Preliminaries

iii) Q(α) = Q(ω)

iv) if p 6 | an and p is not index divisor of [Oω : ZZ[ω]], there is a bijection between
the prime ideals of Oω lying above p and the irreducible factors of f(X) mod p.

v) if n ≥ 3, every prime p dividing an is an index divisor of [Oω : ZZ[ω]].

Proof:

i) g(ω) = an−1
n f(ω/an) = an−1

n f(α) = 0

ii) ω is root of the monic polynomial g

iii) clear, because an ∈ Q

iv) There is a bijection between the prime ideals of Oω lying above p and the
irreducible factors of g(X) mod p, by Theorem 1.35. Let the polynomial fac-
torization of g(X) modulo p be given as

g(X) ≡
∏

gi(X)ei mod p.

Then

f(X/an) ≡
1

an−1
n

g(X) ≡ 1

an−1
n

∏

gi(X)ei mod p.

The result now follows by substituting Y := X/an and applying Theorem 1.35.

v) We apply Dedekind’s criterion. Assume p 6 | an−1. From (1.7) we see that

g(X) ≡ Xn−1(X + an−1) mod p.

Consequently, in terms of Theorem 1.35, g1(X) = X +an−1, gn−1(X) = X and

h(X) = −1

p
(an−2anX

n−2 + · · ·+ a0a
n−1
n).

But p divides an and therefore divides a0a
n−1
n /p, if n ≥ 3, whence

gcd(gn−1, h) ≡ X mod p.

Therefore ZZ[ω] is not p–maximal, so p is index divisor. Now assume p|an−1.
Then g factors as

g(X) ≡ Xn mod p,

and gn(X) = X. We obtain

h(X) = −1

p
(an−1X

n−1 + an−2anX
n−2 + · · · + a0a

n−1
n).

As above, p divides the constant term of h, and ZZ[ω] is not p–maximal, so p
is again an index divisor.

1.5 Number Fields 17

We note that the norm map is extended to ideals in a natural way.

1.38 Lemma Given the situation of definition 1.28. For β ∈ O, the following
equality holds:

|N(β)| = N(βO).

The following lemma is needed for determining which prime ideals occur in the
decomposition of c + dα.

1.39 Lemma Let ω be an algebraic integer and let c+dω ∈ Oω, c, d ∈ ZZ be coprime
and p = (p, ω−cp) be a prime ideal of norm p ∈ IP not dividing the index [Oω : ZZ[ω]].
Then p divides the principal ideal (c + dω) if and only if

• N(c + dω) is divisible by p, and

• −c/d ≡ cp mod p.

The exponent of p in the prime ideal factorization of (c+dω) is equal to the exponent
of p in the prime factorization of N(c + dω).

The correctness of the NFS algorithm for DL depends on a condition which the class
number of the employed number field has to satisfy. We first note the following
result.

1.40 Theorem Given the situation in definition 1.28 and let I be the set of frac-
tional ideals of O. Let P ⊂ I be the set of principal fractional ideals of O. Then I
is an abelian group with respect to multiplication and ClK := I/P is a finite group.

Now we are ready to introduce the class number of a number field.

1.41 Definition The group ClK of Theorem 1.40 is called the class group of K and
its cardinality hK is called the class number of K.

18 1. Preliminaries

1.6 Miscellaneous

In order to measure the quality of a decomposition of integers into a product of
smaller integers, we need a notion of smoothness.

1.42 Definition Let n, t ∈ ZZ. The integer n is said to be t–smooth or smooth with
respect to t, if all prime divisors of n are at most t.

To estimate the likelihood of smoothness, which is essential in the index calculus
algorithms, we use the ρ–functions, which are examined in an article of Knuth and
Trabb Pardo [31].

For n, k ∈ IN let Pk(x, n) be the number of positive integers less than n, whose k–th
largest prime divisor is at most nx. Knuth and Trabb Pardo proved that

Fk(x) := lim
n→∞

Pk(x, n)

n

exists.

1.43 Definition With the notation of the preceding paragraph, we define

ρk(x) := Fk(1/x).

As a special case, we obtain an approximation of the probability of n being n1/x–
smooth by evaluating ρ1(x).

Knuth and Trabb Pardo give the following formulae for ρk(x), which are convenient
for numerical integration:

ρk(x) =

0 ⇐⇒ x ≤ 0 ∨ k = 0
1 ⇐⇒ 0 < x ≤ 1, k ≥ 1

1 −
∫ x

1
(ρk(t − 1) − ρk−1(t − 1))dt

t
⇐⇒ x > 1, k ≥ 1.

Chapter 2

Discrete Logarithm Algorithms

This chapter is a survey on the ideas of the current significant discrete logarithm
algorithms for finite prime fields, which we are going to discuss in this thesis: the
Pohlig–Hellman–Algorithm [55], the Coppersmith–Odlyzko–Schroeppel–Algorithm
[13], and the Number Field Sieve Algorithm [27, 64]. As stated in section 1.3, we
consider

ax ≡ b mod p, a, b ∈ ZZ, p ∈ IP.

2.1 The Pohlig–Hellman–Algorithm

The Pohlig–Hellman–Algorithm (PH) actually works in any cyclic group. Unfortu-
nately, it has an exponential running time in terms of the group order. Let qmax be
the greatest prime divisor of |G|, then PH needs O(

√
qmax) group operations. In its

original version, PH also needs space for storing O(
√

qmax) group elements, which
for increasing qmax rapidly exhausts main memory.

2.1 Example Assume p ≈ 2 · 1014 with (p − 1)/2 prime. Then the representation
of a number in ZZ/pZZ consumes 7 digits to the base 232, plus 32 bit length and sign
information, that is 32 bytes in total. The original PH stores

√
q numbers in ZZ/pZZ;

the amount of main memory needed is therefore

32 · 107 bytes = 320 MB.

Fortunately, PH can be combined with an idea of Pollard [57] such that its space
requirements are bounded by a small constant. Now we will sketch how the combi-
nation of PH and Pollard’s method works.

20 2. Discrete Logarithm Algorithms

Let q be any prime dividing p − 1 and h an integer with h ≥ 1. Let qh be a power
of q dividing p − 1; we are going to compute x modulo qh provided that we know
the value of x modulo qh−1. Assume

x ≡ x0 + x1q + x2q
2 + · · ·+ xh−2q

h−2 mod qh−1.

Set

a′ ≡ a(p−1)/q mod p,

b′ ≡
(

b

ax0+x1q+x2q2+···+xh−2qh−2

)(p−1)/qh

mod p.

Because of

a′q ≡ 1 mod p and

b′q ≡ 1 mod p

both a′ and b′ are members of the unique subgroup Uq of order q in (ZZ/pZZ)∗.

Solving
a′xh−1 ≡ b′ mod p for xh−1,

we obtain

a′xh−1 ≡
(

b

ax0+x1q+x2q2+···+xh−2qh−2

)(p−1)/qh

mod p.

With
a′xh−1 ≡ (axh−1)

p−1
q ≡ a

qh−1xh−1
p−1

qh mod p,

it follows that
(

ax0+x1q+x2q2+···+xh−1qh−1
)p−1

qh ≡ b
p−1

qh mod p,

which is equivalent to

x ≡ x0 + x1q + x2q
2 + · · ·+ xh−2q

h−2 + xh−1q
h−1 mod qh.

The main idea for computing xh−1 is to produce iteratively a sequence of elements
(di)i≥1, where all the di’s are of the form

a′kb′l mod p.

As Uq contains exactly q elements, (di) will become periodic after at most q itera-
tions. This, however, can be expected to happen in an expected number of O(

√
q)

steps (birthday paradoxon). The computation stops when di′ ≡ di mod p for i′ > i
is recognized. In this case,

a′k−k′

b′l−l′ ≡ 1 mod p

2.1 The Pohlig–Hellman–Algorithm 21

and therefore
(k − k′ + xh−1(l − l′)) ≡ 0 mod q,

which reveals xh−1, provided that gcd(l − l′, q) = 1.

Pollard’s method finds the pair (i, i′) by computing the sequence twice as (dj) and
(d2j), waiting for (dj) = (d2j). This will be the case when j is a positive multi-
ple of the period length. Pollard’s ̺–method for factoring works analogously. In
our implementation, we were able to improve the running time by adapting Brent’s
improvement [7] concerning Pollard’s ̺–method to the discrete logarithm case. In-
stead of computing the sequence twice, Brent’s algorithm remembers the sequence
elements d2i and compares them to d2i+j, 1 ≤ j ≤ 2i. It can be shown that compa-
rison is not needed for 1 ≤ j ≤ 3 · 2i−1.

By combining PH and the two improvements, we got the running times shown in
table 2.1 on a Sparc ELC workstation. The 22–digit example (*) has been computed
on a Sparc Ultra workstation. The number of digits refers to the decimal digits of
p, where p is a prime such that (p − 1)/2 is a prime of the same size.

Table 2.1: Running times Pohlig–Hellman–Pollard–Brent

digits CPU min:sec # examples factor
10 0:08 250
11 0:27 250 3.38
12 1:31 250 3.37
13 4:38 250 3.05
14 13:36 250 2.93
15 42:32 250 3.13
16 142:43 150 3.36
17 345:16 65 2.42
18 1006:56 5 2.92
19 4131:50 1 4.10
20 8886:09 1 2.15
21 10718:36 1 1.21
22∗ 10195:36 1

As one would expect, the running time increases by a factor of magnitude
√

10 ≈ 3.16
when p is enlarged by one decimal digit. Extrapolating this from the surprisingly
good running time for the 21–digit number, the running time for an 85–digit prime
would be 2 · 1029 years in practice.
Fortunately, we can do better due to the practicability of index calculus methods,
the idea of which is sketched within the next section.

22 2. Discrete Logarithm Algorithms

2.2 The Number Field Sieve

The Number Field Sieve (NFS) was eminently successful in attacking the problem of
factoring integers. Many people have contributed to this algorithm, see for example
[58, 14, 23, 24, 48, 78, 37]. The NFS factoring algorithm is closely related to the NFS
DL algorithm. On the one hand, some steps are similar, one the other hand, some
steps are completely new in the latter. With regard to the handling of the similar
steps, we will comment on the difference to the factoring case. In the following,
we will briefly explain the idea of the Number Field Sieve to compute discrete
logarithms, as we will give a detailed description in the next chapter. The Gaussian–
Integer–Method1, published by Coppersmith, Odlyzko and Schroeppel (COS) may
be viewed as a special case of the NFS; we will outline this in the next chapter.

The NFS consists of the following steps:

1. reduce original problem (1.1) to congruences

ax ≡ s mod p,

s ∈ S where S is a set of “sufficiently” small natural numbers

2. choose two polynomials g1(X), g2(X) ∈ ZZ[X] of degree n1, n2 respectively
with common root m mod p;
for j = 1, 2:

• let hj ∈ ZZ be the coefficient of Xnj in polynomial gj ,

• let αj ∈ C be a root of gj

• let Oj ⊃ Z[hjαj] be the ring of integers of Kj := Q(αj)

3. choose factor bases
Fj = {prime ideals of Oj with norm below some bound Bj} ∪ {hj}

4. find set of pairs C := {(c, d)} ⊂ ZZ × ZZ with

h1 · (c + dα1) smooth over F1

h2 · (c + dα2) smooth over F2 by sieving, with |C| > |F1| + |F2|

5. for each s ∈ S find special relations:

h1 · (c + dα1)/ps smooth over F1

h2 · (c + dα2) smooth over F2

for each prime ideal ps of O1 lying above s

1Carl Friedrich Gauß 1777–1855

2.2 The Number Field Sieve 23

6. for every big prime divisor q dividing p − 1:

• compute additive characters of hj · (c + dαj)

• matrix A over ZZ/qZZ

dim A ≈ |F1| + |F2|
A consists of exponent vectors in the decomposition of the hj · (c + dαj)

and the additive characters

• compute elements γ1 ∈ O1, γ2 ∈ O2, which are q–th powers

by solving Ax ≡ 0 mod q

• obtain k, l with akbl mod p being a q–th power in (ZZ/pZZ)∗

• compute x modulo q by applying Lemma 1.4

From Theorem 1.9 and Remark 1.6 we may assume that a is smooth with respect
to either B1 or B2.

The basic idea of using auxiliary number rings O1, O2 containing ZZ[h1α1], ZZ[h2α2]
respectively is that the number rings are constructed in such a way that

ϕj : ZZ[hjαj] −→ ZZ/pZZ

hjαj 7→ hjm
j = 1, 2

are ring homomorphisms.

In particular, if we construct a q–th power γj ∈ ZZ[hjαj], then ϕj(γj) is a q–th
power in (ZZ/pZZ)∗. During the execution of the algorithm, we obtain the prime ideal
factorization of many principal ideals. Merely given these factorizations, the linear
algebra step would compute an element

γ ∈ V := {ξ ∈ O | q divides ordp(ξ), for all prime ideals p ⊂ O}.

Although the group V contains the subgroup of q-th powers of K, it is not equal to
(K∗)q in general. The quotient V/(K∗)q may be viewed as an obstruction group. It
is finite in the Gaussian integer method but not in the general Number Field Sieve.
This is the reason for employing the additive characters computed in step 6. we will
have a close look at that in section 3.6.

For the sake of convenience we introduce some terms to be used when talking about
relations which are produced by the NFS algorithm. For each fj (j = 1, 2), choose
Lj ∈ ZZ, a bound called the large prime bound for fj . A relation is a pair (c, d),
where c + dα1 and c + dα2 satisfy the following property:

24 2. Discrete Logarithm Algorithms

The prime ideal decomposition of the two ideals (h1 · (c+ dα1)), (h2 · (c+ dα2)) may
be expressed as

h1 · (c + dα1) = q1q2

∏

p∈F1
pep

h2 · (c + dα2) = q′1q
′
2

∏

p′∈F2
p′ep′ ,

(2.1)

where N(q1) ≤ N(q2) ≤ L1, N(q′1) ≤ N(q′2) ≤ L2.

The exponent vector of the relation is defined as the vector consisting of all exponents
in the decomposition of (c+dα1), (c+dα2), including the exponent 1 of all occuring
large primes.

2.2 Remark Allowing non–monic polynomials, i.e. h1 6= 1 and h2 6= 1, causes
h1 · (c + dα1) and h2 · (c + dα2) to be mapped to different elements:

ϕ1(h1 · (c + dα1)) = h1(c + dm)

ϕ2(h2 · (c + dα2)) = h2(c + dm).

In order to get rid of the factors h1, h2, we enforce them to show up as q–th powers,
too. This is achieved by storing their common exponent – which is always 1 – in an
extra column of A.

We call a relation full, single, double, triple, quadruple, or quintuple relation accord-
ing to whether it contains no, one, two, three, four, or five large primes. A relation
containing at least one large prime will also be called partial relation. A relation
with the condition c ∈ IP, d = 0 is called free relation since it can be obtained from
the construction of the factor bases.

Chapter 3

The Number Field Sieve

This chapter contains a close examination of the NFS steps sketched at the end of
the previous chapter. So we stick to the notation introduced there. To illuminate
the steps of the NFS and its different variations, we now introduce an example,
which we will use throughout the chapter. The continuation of this example will be
marked with DL–Example.

3.1 DL–Example We start by picking the first prime p > 104, with (p − 1)/2
prime. Having thus found p = 10007 = 2 · 5003+ 1, we start looking for a generator
of the group (ZZ/pZZ)∗. The first element a ∈ IN with a5003 ≡ −1 mod p is a = 5. For
b, we choose the prime b = 5039.
Our example DL problem then looks as follows:

5x ≡ 5039 mod 10007.

3.1 The Reduction Step

This section is devoted to step 1 of the survey at the end of the previous chapter.
We are interested in reducing the original task of solving

ax ≡ b mod p

to several tasks
axi ≡ si mod p, si ∈ ZZ,

where the si’s are relatively small integers.

26 3. The Number Field Sieve

Let s be one of the si’s. Such a reduction is necessary because in the NFS step 4,
the simultaneous smoothness of the terms

(c + dα1)/ps and (c + dα2), (3.1)

is required. Here, ps is a prime ideal lying over s in O1.

Let the prime ideal ps be generated by (s, α1 − r) over O1, r ∈ ZZ. Then ps divides
(c + dα1) if and only if −c/d ≡ r mod s, by Lemma 1.39. So we expect either c or d
to be of size s. Therefore the difficulty in finding a relation of type 3.1 raises with
the size of s. The subject of this section is a new sieving method, which can be used
to minimize the maximal value of s for a given DL problem.

In their implementation [35], LaMacchia and Odlyzko transformed the DL problem
as follows:

• compute cl :≡ al · b mod p for many different l,

• express

cl ≡ tl/ul mod p, tl, ul ≈
√

p, (3.2)

by applying the extended Euclidean algorithm to cl and p,

• compute the factorization of tl, ul, hoping for smoothness of both terms.

This way, they broke the challenge of the Sun cryptosystem. The transformation
above worked well because the prime in the Sun challenge consisted of only 58 dec-
imal digits. As a consequence, they had to find 1010–smooth numbers among num-
bers of size 1029. Such numbers show up quite frequently (6.0%). So simultaneous
smoothness can be expected to happen after 400 trials.

For a prime of 75 or 85 digits, however, this method is not advisable because the
probability that a 43–digit number is 109–smooth is only 0.065 %. As we need simul-
taneous smoothness of two numbers, we expect to make at least 2 · 106 trialdivision
steps before we encounter an appropriate pair (tl, ul).

For this reason, we propose a sieving method like the residue list sieve to perform
this task. The residue list sieve is outlined in [13]. We present a variation of it,
which is appropriate to our situation. For a number t of size

√
p as in (3.2), we

find a B–smooth representation of t as follows. Without loss of generality, we may
assume

√
p/2 ≤ t ≤ √

p. The lower bound is not really a restriction since we can

3.1 The Reduction Step 27

multiply t by an appropriate power of 2. Set t′ := ⌊p
t
⌋ + 1 and define homogeneous

polynomials of degree 1 as

f1(X, Y) = X + t′Y

f2(X, Y) = tX + (tt′ − p)Y.

Search for (x, y) ∈ ZZ
2, such that f1, f2 are simultaneously B–smooth for some bound

B. This can be achieved by sieving. Having found such a pair, we have

x + t′y =
∏

p≤B

pep

tx + tt′y ≡ t(x + t′y)

≡
∏

p≤B

pe′p mod p

and therefore

t ≡
∏

p≤B pe′p

∏

p≤B pep
mod p (3.3)

which is a B–smooth representation of t mod p. The size of the numbers tested for
smoothness is given by the following Lemma.

3.2 Lemma Let C > 0 be a constant, x, y ≤ C, and f1, f2 as above. Then

f1(x, y) ≤ C(1 + 2
√

p),

f2(x, y) ≤ 2C
√

p.

Proof: With x, y ≤ C, we have

f1(x, y) ≤ C(1 + t′) ≤ C(1 + 2
√

p),

and

f2(x, y) = tx + (tt′ − p)y

≤ tx + (t(p/t + 1) − p)y

= tx + ty

≤ 2C
√

p.

The numbers tested for simultaneous smoothness are of magnitude O(
√

p) as before,
but the factoring subroutine is replaced by an efficient sieving method.

28 3. The Number Field Sieve

3.3 DL–Example For p = 10007 and b = 5039, we find

b ≡ 71/2 mod p, (3.4)

by using Euclid’s algorithm. Later, we will choose a factor base with maximal
element 11, and large prime bound 19, so the numerator is not smooth over this
factor base. Therefore we are going to sieve the two polynomials f1, f2, where

f1(x, y) := x + 141y

f2(x, y) := 71x + 4y,

for −100 ≤ x ≤ 100 and y = 1. We find that (−31, 1) is a good pair, because

f1(−31, 1) = 2 · 5 · 11

f2(−31, 1) = −133.

Equation (3.3) now tells us that

71 ≡ − 133

2 · 5 · 11
mod 10007. (3.5)

So our task is reduced to finding the logarithms of 2, 5, 11, 13, which are in our factor
base.

In the sequel we may therefore restrict to computing logarithms of elements of
moderate size. We consider the problem of computing a solution to

ax ≡ s mod p,

where s is “sufficiently” small. Our experiments show that for p having at most
85 decimal digits, one can expect to find at least one relation which reduces the
original DLP modulo p to problems where the right hand side consists of maximal
ten decimal digits within acceptable time (table 3.1).

Table 3.1: Reduction Step

log10 p max |x| max y B # rels time (s) time/rel (s)

65 106 200 109 127 2606 21

75 2.5 · 106 5040 1.5 · 109 203 246597 1215

85 5.0 · 106 735 2.0 · 109 6 111059 18510

3.2 Constructing Polynomials 29

Let us take a look at the row corresponding to the 85–digit number. The numbers
t, t′ consist of 40 and 45 digits respectively, the maximal value of x is below 107,
while the maximal value of y is about 103. So we split 47–digit and 48–digit numbers
into numbers below B = 2.0 · 109. Sieving the two polynomials f1, f2 was done by
using a factor base of primes below 3.5 · 107 and allowing one large prime up to
2.0 · 109. So it is required that the second largest prime factor is at most 3.5 · 107.
The ρ–function tells us that we can expect this to happen with probability

1.90 · 10−4 · 3.20 · 10−1 · 1.39 · 10−4 · 3.11 · 10−1 ≈ 2.62 · 10−7.

Therefore it can be estimated that there is one B–smooth value among 3.8 · 108

coprime pairs (x, y). There are approximately 3.42 · 109 coprime pairs within the
rectangle

{(x, y) ∈ ZZ × ZZ| − 5 · 106 ≤ x ≤ 5 · 106, 1 ≤ y ≤ 735}.

We conclude that the ρ function gives quite a good approximation, since

3.42 · 109/3.8 · 108 = 9;

we have found six relations. Similar considerations predict 876 for the 75–digit prime
and 354 for the 65–digit prime, which is not too far from what we have obtained by
sieving.

The method of [35], applied for finding smooth representations of b modulo a 85–
digit number takes approximately one second on the same machine for trial division
up to 106 and the Elliptic Curve Method for the range 106 up to 109. The search
for one successful exponent would take 3.8 · 108 seconds= 105555 hours on average
instead of 5 hours when using our new reduction method.

3.2 Constructing Polynomials

The construction of polynomials is a crucial point since all values, which are tested
for smoothness during the NFS algorithm, depend on the two polynomials chosen
at the beginning of the algorithm. First, the two polynomials must satisfy at least
the following two conditions

• they must be irreducible over Q, and

• they must have a common root modulo p.

30 3. The Number Field Sieve

Additionally, there are several obstructions to overcome, which have already led to
difficult problems in the factoring case (j = 1, 2):

1. the ring ZZ[hjαj] is not the ring of integers of the number field Q(αj)

2. the ring of integers Oj of Q(αj) is not a principal ideal ring

3. the group of units of Oj is an infinite group

4. αj is not an algebraic integer

From these obstructions, only the first one appears in the Gaussian integer variant of
the Coppersmith–Odlyzko–Schroeppel algorithm (COS) [13], which is the reason for
beginning our description with COS as a special case of the NFS algorithm. Actually,
the invention of the NFS algorithm was inspired by the Gaussian integer variant of
the COS algorithm, which in turn was inspired by an algorithm of ElGamal [22].

3.2.1 The COS Algorithm

There are three sub–exponential discrete logarithm algorithms described in the ar-
ticle of Coppersmith, Odlyzko, and Schroeppel. One of them, namely the Gaussian
integer method, is apparently the most practical one, and this is the variation, which
we denote by COS. The use of the COS algorithm is convenient in the sense that the
number rings involved behave in a friendly way. One chooses a quadratic imaginary
number field of the form Q(

√
−r), such that its maximal order is a principal ideal

ring. This is exactly the case for

r ∈ M := {1, 2, 3, 7, 11, 19, 43, 67, 163}.

The particular choice of r directly avoids obstruction 2 from above. As there are
maximal 6 units in imaginary quadratic number rings, obstruction 3 does not matter
either. Since α is an algebraic integer, obstruction 4 does not occur.

Obstruction 1 occurs when r ≡ 3 mod 4. In this case, we do not compute in ZZ[
√
−r]

but in ZZ[(1 +
√
−r)/2], which is the ring of integers of Q(

√
−r). Consequently, we

choose g1 to be

g1(X) =

{
X2 + X + r+1

4
, if r ≡ 3 mod 4

X2 + r, otherwise

and

α = α1 =

{
1+

√
−r

2
, if r ≡ 3 mod 4√

−r, otherwise
.

3.2 Constructing Polynomials 31

Here r is set to the minimal r′ in the set M with −r′ being a quadratic residue
modulo p. Let w ∈ ZZ with w2 ≡ −r mod p. Then, a representation w ≡ T/V is
found, with T, V of size

√
p. We have a ring homomorphism

ϕ : ZZ[α] −→ ZZ/pZZ

α 7→
{

1+T/V
2

, if r ≡ 3 mod 4
T/V, otherwise.

For each relation (c, d), we therefore get the following equality

ϕ(c + dα) ≡
{

c + d1+T/V
2

mod p, if r ≡ 3 mod 4
c + d T

V
mod p, otherwise

or equivalently

2V ϕ(c + dα) ≡ 2cV + d(T + V) mod p, if r ≡ 3 mod 4
V ϕ(c + dα) ≡ cV + dT mod p, otherwise.

(3.6)

An element c + d
√
−r is smooth when its norm

N(c + dα) =

{
c2 + cd + (r + 1)d2/4, if r ≡ 3 mod 4
c2 + rd2, otherwise

is smooth. From the polynomial g1 we construct the bivariate homogeneous poly-
nomial

f1(X, Y) =

{
X2 + XY + r+1

4
Y 2 if r ≡ 3 mod 4

X2 + rY 2 otherwise
, (3.7)

the values of which are tested for smoothness.

Obviously, the second homogeneous polynomial tested for smoothness is

f2(X, Y) =

{
2V ϕ(c + dα) ≡ 2V X + (T + V)Y mod p, if r ≡ 3 mod 4
V ϕ(c + dα) ≡ V X + TY mod p, otherwise

(3.8)

according to equation (3.6).

3.4 DL–Example For the prime p = 10007, we find that r = 7 ∈ M is the smallest
value, for which −r is a square mod p. We compute T = 7 and V = −100, which
results in the polynomials

f1(X, Y) = X2 + XY + 2, and

f2(X, Y) = −200X − 93Y.

32 3. The Number Field Sieve

3.2.2 Standard NFS

We call the following method for picking a number field “standard” NFS, because
the basic idea of it has widely been used in factoring large integers, culminating in
the latest record of factoring a general 130 digit number [15]. Prescribing the degree
n of the number field, the NFS starts by taking an integer

m ∈ [p
1

n+1 , p
1
n],

and computing a modified m–adic representation of p as

p = anm
n + an−1m

n−1 + · · · + a1m + a0, |ai| ≤
m

2
, 1 ≤ i ≤ n.

Taking

g1(X) = X − m,

g2(X) =
n∑

j=0

ajX
j

then yields a valid pair of NFS polynomials. Here m plays the role of α1 in the
notation of section 2.2. This is performed several thousand times for random m’s of
the interval above. Note that for m ∈ [1

2
p

1
n , p

1
n] a monic polynomial g2 shows up.

3.5 DL–Example Choose the degree of the number field to be 4. For p = 10007,
we can take m with 7 ≤ m ≤ 10. Take m = 10 and obtain

g1(X) = X − 10, and

g2(X) = X4 + X − 3.

The polynomial g2(X) ∈ Z[X] has to be chosen in such a way, that q does not
ramify in O2 for each prime factor q of p − 1 we want to apply the algorithm
to. The reason for this condition will become obvious in section 3.6; we check the
condition by applying the distinct degree factorization algorithm, which is part of the
Cantor–Zassenhaus algorithm to factor polynomials modulo a prime [12, Algorithm
3.4.3]. Distinct degree factorization modulo q can be done in polynomial time and
is quite fast in practice. In table 3.2, the running times are shown for q running
through 500 primes of 130 decimal digits. The degree of g2 varies between 3 and 6,
which is the usual range of degrees for NFS polynomials. Because the number of bit
operations depends on how g2 splits, we calculated the average running time with
respect to the number of roots of g2 modulo q. The percentage indicates how likely
it is for g2 to have the corresponding number of roots.

3.2 Constructing Polynomials 33

Table 3.2: Distinct Degree Factorization

degree g2 # of roots percentage avg. running time (s)

3 0 33.4 567

3 1 50.4 282

3 3 16.2 92

4 0 36.3 773

4 1 33.1 569

4 2 26.1 283

4 4 4.8 94

5 0 37.5 919

5 1 36.3 604

5 2 16.7 455

5 3 8.3 226

5 5 1.2 77

6 0 36.7 1367

6 1 35.5 1096

6 2 20.4 745

6 3 5.1 566

6 4 2.0 284

6 6 0.2 88

34 3. The Number Field Sieve

In order to achieve small coefficients, for each m–adic representation of p, it is
worthwhile performing an LLL–reduction on the coefficient vectors of g2 [78]. The
difference between straightforward m–adic representation in the monic case and the
application of LLL–reduction is to be seen in table 3.3 in section 3.3 on page 37.

We need simultaneous smoothness of elements c + dm and h2 · (c + dα2). The norm
of h2 · (c + dα2) is given by

N(h2 · (c + dα2)) = (−d)ng2(−
c

d
) · hn−1

2 .

The prime ideal decomposition of h2 · (c + dα2) is determined by factoring

N ′(h2 · (c + dα2)) = (−d)ng2(−
c

d
), (3.9)

according to the Lemmata 1.35 and 1.39. When using a monic polynomial g2,
N ′(c + dα2) = N(c + dα2). We postpone the situation for non–monic polynomials
until the next subsection, which is devoted to that subject.

To compare the generated polynomials, N(h2 ·(c+dα2)) is computed for many pairs
(c, d) within the sieving range.

3.2.3 Non–monic Polynomials

As in the case of factoring integers with the NFS, requiring g2 to be monic is not
really necessary if one employs the facts of Lemma 1.37 by making use of the poly-
nomial T (X) := g2(

X
h2

)hn−1
2 ∈ ZZ[X] with root ω := h2α2. With non–monic poly-

nomials, it is possible to choose a slightly smaller m and therefore to get a better
probability for decompositions over the rational factor base.

3.6 Example Take p ≈ 1085, n = 5. With monic polynomials, the smallest possible
m is p1/n/2 = 5 · 1016. With non–monic polynomials, the smallest possible m is
p1/(n+1) ≈ 1.5 · 1014.

Furthermore, and this is more important, the use of non–monic polynomials allows
to adapt the two–quadratics–version of the NFS, which we will describe in the next
subsection 3.2.4.

According to Lemma 1.37ii), ω is an algebraic integer and generates the same field
as α over Q, by iii). Let T (X) = g2(

X
h2

)hn−1
2 ∈ ZZ[X], such that α2 · h2 = ω. As

before, we obtain the true decomposition into prime ideals of O2 by Lemma 1.37iv).
In order to compare the non–monic with the monic version, we present table 3.3 in
section 3.3 on page 37 showing another effect concering the factor bases associated
to the polynomials.

3.2 Constructing Polynomials 35

3.2.4 NFS with Two Quadratics

Originally invented by Montgomery [48], the use of two quadratic polynomials in the
NFS algorithm has been exploited to achieve impressive factorizations of large inte-
gers by Elkenbracht–Huizing [23]. As we shall see, for discrete log problems within
the currently solvable range, it turned out to be the preferred method compared to
the standard NFS method from subsections 3.2.2 and 3.2.3.

Given an integer m, it is easy to find two quadratic polynomials g1, g2 with

g1(m) = g2(m) ≡ 0 mod p.

The point is that both polynomials should have small coefficients. Montgomery’s
construction of the two polynomials is based on the observation that by using the
standard inner product, the two vectors

c12

c11

c10

 and

c22

c21

c20

are orthogonal to the vector

~m :=

1
m
m2

modulo p, where the quadratic polynomials g1, g2 are of the form

gi(X) = ci2X
2 + ci1X + ci0.

His method starts by fixing a prime r <
√

p, then solving

c2 ≡ p mod r

for c and defining m :≡ c/r mod p. Let s be the inverse of c in (ZZ/rZZ)∗. Then

~a :=

rm
−r
0

 and ~b :=

(rm(m Mod r) − rm2)/r
−m Mod r

1

are orthogonal to ~m and consist of entries of magnitude
√

p. The vectors ~a and ~b

even span the sublattice of ZZ
3 orthogonal to ~m. Let ~a′, ~b′ be the result of the lattice

reduction algorithm applied to ~a, ~b. One can show that for the length of ~a′, ~b′, we
have

||~a′|| · ||~b′|| = O(
√

p).

36 3. The Number Field Sieve

In practice, however, the lengths of the two vectors are of magnitude p1/4. Different
values of r produce different polynomials.

To obtain useful polynomials g1 and g2 for DL by Montgomery’s method, we add the
condition that a and s split in either of the corresponding number rings. Assume
that (a) = pp′ in O1, and (s) splits either in O1 or O2. Without loss of generality,
assume (s) = qq′ in O2. The method works similar in case of (s) splitting in O1.

3.7 DL–Example For p = 10007 we may take r = 227 and obtain

g1(X) = 7X2 + 20X − 7

g2(X) = 4X2 − 21X + 8,

with common root m = 5599 modulo p, where both a = 5 and s1 := 2 split in O1

and s2 := 71 splits in O2.

3.3 Choosing Factor Bases

In the NFS algorithm, factor bases consist of a finite subset of the first degree prime
ideals of the ring Oj . According to Theorem 1.35, a first degree prime ideal of norm
q, which does not divide the index [O2 : ZZ[ω]] is generated by (q, αj − r) over Oj,
for every root r of gj modulo q. Avoiding index divisors has two main advantages.
Firstly, the whole factor base can be computed by finding roots of our polynomials
modulo small primes. Secondly, the prime ideal factorization of (hj · (c+dαj)) ∈ Oj

can be constructed by decomposing N(hj ·(c+dαj)) ∈ ZZ, according to Lemma 1.39.

To recognize index divisors r, we search for quadratic divisors of the discriminant of f
and apply the Dedekind test to them (see Lemma 1.32 and Theorem 1.34). Avoiding
index divisors restricts the choice of f considerably, but surprisingly enough, this
does not prevent us from finding polynomials which lead to elements with small
norms. In table 3.3 on page 37, we list experimental data concerning discrete log
problems, where p has 50, 65 and 75 decimal digits. Here we have examined 4000
polynomials for each p.

The column poly-type contains the information, whether only monic or non–monic
polynomials are considered. The third column lists the degree of the polynomials
tested. The next column reports the number of polynomials having square dis-
criminant divisors below the factor base bound. After testing by means of the
Dedekind-criterion, which of the square discriminant divisors are index divisors, we
get the number of good polynomials. The others are called bad in the sense that

3.3 Choosing Factor Bases 37

Table 3.3: Comparison of Polynomials

digits poly-type degree r2|disc good bad norm (all) norm (good)

50 non–monic 3 3844 237 3763 4.2 · 1024 4.9 · 1024

50 non–monic 4 3944 123 3877 2.2 · 1028 7.2 · 1028

50 non–monic 5 3927 157 3843 5.1 · 1032 1.0 · 1033

50 monic 3 2390 2650 1350 8.1 · 1029 8.1 · 1029

50 monic 4 2555 3024 976 3.3 · 1031 3.4 · 1031

50 monic 5 2060 2902 1098 6.6 · 1034 6.6 · 1034

65 non–monic 3 3922 120 3880 9.9 · 1028 4.3 · 1029

65 non–monic 4 3920 143 3857 1.3 · 1031 5.6 · 1031

65 non–monic 5 3941 123 3877 9.0 · 1034 4.4 · 1035

65 monic 3 2915 2391 1609 1.2 · 1035 1.3 · 1035

65 monic 4 2551 2850 1150 6.7 · 1034 6.7 · 1034

65 monic 5 2427 2747 1253 1.4 · 1038 1.4 · 1038

75 non–monic 3 3922 134 3866 2.3 · 1031 5.3 · 1031

75 non–monic 4 3912 146 3854 1.3 · 1033 6.3 · 1033

75 non–monic 5 3915 165 3835 5.7 · 1036 1.1 · 1037

75 monic 3 2540 2432 1568 1.9 · 1038 1.9 · 1038

75 monic 4 2560 2867 1133 3.1 · 1037 3.1 · 1037

75 monic 5 2396 2788 1212 1.3 · 1040 1.3 · 1040

they cannot be used without having a more time–consuming procedure to recognize
the correct exponents in the prime ideal factorization of h2c + dω corresponding to
(c, d) ∈ S. As table 3.3 shows, the norms are merely slight worse as if the irreducible
polynomials could be chosen without restriction.

Because the size of the factor base directly affects the size of the linear system to
be solved in the last step of the NFS algorithm, we choose it maximal with respect
to the current capability of solving large sparse linear systems modulo a big prime.
The multiprecision arithmetic performed in this step is the reason, why we choose
considerably smaller factor bases than in the factoring case where the linear systems
are solved modulo 2. We compare ours to Zayer’s examples [78] in table 3.4 on page
38.

The factor bases of the 85–digit example (size 70000) and the 129–digit McCurley

38 3. The Number Field Sieve

Table 3.4: Factor Bases Factoring/DL

digits factoring DL

50 17200 3491

65 24752 19954

75 34941 25058

challenge (size 40000) are not comparable to Zayer’s factoring examples because we
did the 85–digit problem with the two–quadratics–method which he did not use and
the prime of the McCurley’s challenge is of a special form. For the choice of the
large prime bound, we have adapted the successful heuristics from factoring [78].
Since the large primes do not enlarge the matrix A but only its weight, we can use
large prime bounds in magnitude comparable to factoring. But we need more large
prime relations in our case because many large prime relations reduce the weight of
resulting matrix rows as will be explained in section 3.5.

3.4 Sieving

Once the Number Field Sieve is properly initialized for computing discrete loga-
rithms according to the previous sections, sieving is identical with the factoring
case. Since this part of the whole computation can be cheaply distributed over inde-
pendent clusters of workstations in contrast to linear algebra, sieving will dominate
the running time. It is typical for this sort of algorithms that we are not interested
in minimizing the total CPU time; instead, we are inclined to minimize the elapsed
real time, which accumulates from the distributed sieving and the one–machine lin-
ear algebra step. For two reasons we will not give a detailed treatment of the sieving
procedure at this point. On the one hand, in chapter 4 we will describe a more gen-
eral sieving device covering NFS, COS, the Quadratic Sieve, and many more sieving
algorithms. On the other hand, there are excellent descriptions of the NFS sieving
step to be found in literature [78, 37, 23].

3.4.1 The Classical Sieve

In the sieving step, we need to find many pairs (c, d) ∈ ZZ×ZZ, where h1·(c+dα1) ∈ O1

as well as h2 · (c + dα2) ∈ O2 are smooth with respect to factor bases F1, F2

3.4 Sieving 39

respectively. For the following description we set α := αj , h := hj, O := Oj for
j = 1, 2.

Suppose, we want to find smooth values in the set

M := {h · (c + dα) | (c, d) ∈ ZZ × ZZ}.

Let r be a prime ideal of norm r ∈ IP. The classical sieve is based on the observation
that

r|h · (c + dα) ⇐⇒ r|h · (c + r + dα).

Given d′ ∈ ZZ, it suffices to know one location c′ ∈ ZZ, where r|h · (c′ + d′α). In this
case the subset of all elements of M , which are divisible by r, is

{h · (c + d′α) | c = c′ + k · r, k ∈ ZZ}.

Evidently, pairs (c, d′) with gcd(c, d′) > 1 can be omitted.

In table 3.5 on page 39, we show how many relations we got after having finished
the sieving step. The first letter at the beginning of a row (S,Q,C) refers to whether
we have used the standard NFS algorithm (S), the two–quadratics NFS (Q), or the
COS Gaussian–Integer–Method (C). The factor base size is given as |F1|+ |F2|, the
large prime bound is taken from the polynomial, which produces the far greater
values. For the Standard NFS, this is the polynomial of degree greater than one;
for the COS, this is the polynomial of degree one. For the two–quadratics version,
the two large prime bounds are equal, since the coefficients of the two polynomials
have approximately the same size.

Table 3.5: Collected Partials

log10 p #FB LP # relations mips
full single double triple quad years

S 65 19954 6 · 106 745 12695 84904 266067 316388 5.3
Q 65 26135 6 · 106 13708 177474 760106 1341965 679587 9.1
S 75 25058 107 714 13879 107723 385844 534231 70.0
C 75 24980 2 · 107 5970 103738 493017 733439 205812 11.4
Q 85 70339 8 · 107 5415 109082 8114437 2563554 5015662 44.5
C 85 69981 107 15115 136803 335890 280808 59078 30.6

40 3. The Number Field Sieve

3.4.2 The Lattice Sieve

As with the classical sieving, Pollard’s lattice sieve method is also to be found in
various publications [59, 23, 25]. For the sake of completeness, we present its idea.
For a given prime ideal r of norm r, the lattice sieve tries to find smooth elements
in the set

Mr :=

{
(h) · (c + dα)

r
| (c, d) ∈ ZZ × ZZ, (h) · (c + dα) ⊂ r

}

.

Denote by Lr the set of pairs (c, d), which determine the elements of Mr. The set Lr

actually is a lattice over ZZ. In order to sieve over small elements in the lattice, one
computes a basis of Lr consisting of two vectors ~v1 := (c1, d1), ~v2 = (c2, d2) having
a short Euclidean length. This is achieved by means of a straightforward lattice
reduction method. Analogously to the classical NFS, sieving is then based on the
fact that

q | h · (λ · (c1 + d1α) + µ · (c2 + d2α))
⇐⇒ q | h · ((λ + q) · (c1 + d1α) + µ · (c2 + d2α)) (λ, µ) ∈ ZZ × ZZ

when q is a prime ideal of norm q. As before, pairs (λ, µ) with gcd(λ, µ) > 1 can be
omitted.

3.4.3 Individual Relations

In order to determine the DL of s, it is necessary to find relations which involve
s in some way. In theory, the polynomials are constructed in such a way that a
relation involving s is automatically obtained [27, 64]. These methods only apply
for the standard NFS and prescribe the polynomial g1 of degree 1 and search for a
polynomial g2 defining the number field Q(α2), such that the ideal (α2) splits over
the factor base belonging to g2.

In practice, there are usually many logarithms to compute in the same prime field.
As we cannot afford to repeat the sieving step for each of them within different num-
ber fields, we take a different approach, which is convenient for the two–quadratics–
method. According to subsection 3.2.4, we may assume that a = pp′, s = qq′ in
O2.

Additionally to the collected set of relations, we find relations (c
(1)
a , d

(1)
a), (c

(2)
a , d

(2)
a),

(c
(1)
s , d

(1)
s), (c

(2)
s , d

(2)
s), with

• h1 · (c(1)
a + d

(1)
a α1)/p smooth over F1,

3.4 Sieving 41

• h2 · (c(1)
a + d

(1)
a α2) smooth over F2,

• h1 · (c(2)
a + d

(2)
a α1)/p

′ smooth over F1,

• h2 · (c(2)
a + d

(2)
a α2) smooth over F2.

• h2 · (c(1)
s + d

(1)
s α2)/q smooth over F2,

• h1 · (c(1)
s + d

(1)
s α1) smooth over F1,

• h2 · (c(2)
s + d

(2)
s α2)/q

′ smooth over F2,

• h1 · (c(2)
s + d

(2)
s α1) smooth over F1.

This is no problem in case of p, p′ ∈ F1 and q, q′ ∈ F2.

Otherwise do lattice sieving with the prime ideals p, p′, q, q′ to find at least one
partial relation involving the corresponding prime ideal.

Enlarge S by the four relations (c
(1)
a , d

(1)
a), (c

(2)
a , d

(2)
a), (c

(1)
s , d

(1)
s), (c

(2)
s , d

(2)
s).

In practice, finding such individual relations is quite fast; from section 3.1 we already
know that it is no problem to achieve s ≈ 109. The lattice sieve then produces many
relations of the type denoted above. This is confirmed by experimental data taken
from a DL computation with a 65–digit p (table 3.6). The sieving rectangle was set
to

−8000 ≤ λ ≤ 8000, 1 ≤ µ ≤ 900.

Sieving took about 2 minutes per q on a Sparc 20 workstation.

Now pick relations (ca, da), (cs, ds) from S and change them by multiplying with (a)
and (s) respectively:

pp′(h1) · (ca + daα1) = (a) · (h1) · (ca + daα1) (3.10)

qq′(h2) · (cs + dsα2) = (s) · (h2) · (ca + daα2). (3.11)

3.8 DL–Example Assume, we were faced with equation (3.4) of DL–example 3.3
on page 28 and would not have found equation (3.5). When using two quadratics,
we are left with s1 = 2, s2 = 71. (s1) is the square of a factor base prime ideal of
F1, so we can expect to get many relations involving s1. The same holds for a = 5,

42 3. The Number Field Sieve

Table 3.6: Individual Relations 65–digit p

q single double triple quadruple quintuple

(233201,82509) 1 15 40 71 43

(233201,90266) 0 4 23 49 23

(507119,3691) 0 13 35 49 33

(507119,478728) 1 10 45 62 30

(746047,190901) 0 7 23 39 27

(746047,369716) 1 11 21 55 28

(825509,22278) 1 11 32 53 46

(825509,351888) 0 4 26 46 27

(865043,549560) 0 2 3 16 16

(865043,675391) 0 7 30 58 28

(1667917,1314755) 1 6 22 41 36

(1667917,219882) 1 8 32 58 40

(1879849,317870) 0 3 17 30 34

(1879849,873774) 0 6 26 33 24

(2061361,382437) 1 4 25 47 38

(2061361,928562) 0 7 29 51 35

(2090069,100653) 1 7 22 39 29

(2090069,2030854) 1 10 26 59 37

(7299247,5408589) 1 4 14 33 27

(7299247,6299489) 0 5 13 24 16

because 5O1 = pp′. For s2, we do lattice sieving in O2 for the prime ideal identified
by (71, 28) and (71, 66) and obtain

4(17 + 7α2)/q71,28 = p2,0p3,1p19,3

4(5 + 1α2)/q71,66 = p2,0p3,1

7(17 + 7α1) = p2
2,1p5,4p7,0p7,7

7(5 + 1α1) = p2
2,1p7,0p17,12.

3.5 Combining Large Prime Relations 43

3.5 Combining Large Prime Relations

A common technique of reducing the amount of main memory which is needed in
the subsequent steps is the filtering step. Filtering means to remove those partials,
which contain a large prime that does not occur a second time in the set of partials.
Of course, this is what we do at this point, but we will not go into any detail
because it has already been discussed in reports about implementations of factoring
algorithms. Table 3.7 shows that also in the DL case, where the factor base size is
smaller, we spare a substantial amount of main memory.

Table 3.7: Filtering Step

log10 p #relations after filtering
single double triple quad single double triple quad

S 65 12695 84904 266067 316388 11907 74183 218665 248539
Q 65 177474 760106 1341965 679587 147545 536583 – –

S 75 13879 107723 385844 534231 12471 87473 286887 367262
C 75 103738 493017 733439 205812 86906 378678 541111 151145

Q 85 154235 1167955 3748694 5015662 102657 549756 1337556 –
C 85 136803 335890 280808 59078 94344 163065 98891 15459

The large prime variation of the NFS now combines relations containing at least one
large prime so that relations without any large primes will be the result. For each
successfully combined set of partials the exponent vector only consists of exponents
of factor base elements and therefore fits into the relation matrix A. When the NFS
is used for factoring it does not matter whether the partials are multiplied or divided
by each other. This is because the exponent vectors are considered modulo 2. In
the discrete log case we are in a slightly different situation, since we are interested
in combining products to q–th powers, so the exponents of large primes have to be
combined mod q.

To recognize sets of partial relations, which can be combined in such a way that all
large primes occur as squares, a well–known graph algorithm exists and has been
widely used in the Quadratic Sieve algorithm and the NFS for factoring. First
developed by Lenstra and Manasse [39] for the use of two large primes, it was
extended by Zayer up to four large primes [78]. The lattice sieve variant even
produces relations with five large primes when sieving with large primes. Therefore
we unify the description of cycle finding when faced with a set of partial relations
R, where each relation of R contains at most l ≥ 2 large primes, for fixed l. With
the generalization, we cover all the special cases mentioned before.

44 3. The Number Field Sieve

It remains to explain how we cope with our different situation in the discrete log
case: finding sets of partials, in which the large prime exponents can be combined
mod q. We postpone this subject to section 3.5.2.

3.5.1 Cycle Finding with l Large Primes

The output of a sieve algorithm contains many relations, which consist of elements
that split either completely or partially over a factor base. Full relations can be
transported to the matrix step without any changes. Partial relations will be com-
posed in an appropriate way so that a complete splitting is the result. Before this
can be done, it is essential to know, which subsets of partials will contribute to a
full relation.

3.9 Example Assume, we have collected the following set of partials.

(c1, d1) P1, Q1

(c2, d2) P2, Q2

(c3, d3) P3, Q1

(c4, d4) P1, Q3

(c5, d5) 1, Q2

(c6, d6) P4, Q1

(c7, d7) P3, 1
(c8, d8) P2, Q3

This is a compact representation of the large primes occuring in eight relations. For
example, the first row indicates that there is a relation

c1 + d1α1 = P1

∏

p∈F1
pep

c1 + d1α2 = Q1

∏

q∈F2
qeq ,

and analogously for the other rows. It is convenient to introduce a pseudo large
prime 1, which fills the place of a large prime if the relation does not consist of the
maximal number of large primes.

The cycle finding algorithm will dynamically change the directed graph G = (V, E),
where V is a set of large primes and E is a set of labeled edges.

Denote by R the set of relations found by one of the NFS algorithms. Then the
labeling is given by the map

Φ : E −→ 2R.

3.5 Combining Large Prime Relations 45

That is, edges are labeled by sets of relations. The graph belonging to the partials
of example 3.9 is depicted in figure 3.1. When maximal two large primes are used,
the labeling simplifies to one relation number.

Figure 3.1: Graph Example

��
��
P2

��
��
Q3 ��

��
P1

��
��
P3��

��
1

��
��
P4

��
��
Q1

��
��
Q2 XXX �

�

S
S

SS

�
�
�

""

5

2

8
4

1

3
7

6

It will be useful for the description of the cycle finding algorithm to extend the map
Φ to paths. Let v, v′ ∈ V and the path in figure 3.2 from v to v′ be given.

Then we define Φ for the path from v to v′ to be Φ(v, v′) := Φ(e1) ∪ . . . ∪ Φ(ek).
To keep this well–defined, we ensure during the algorithm that there can be only
one path between two vertices and that the condition outdegree(v) = 1 holds for
all v ∈ V . This is done as follows. The graph gets initialized by one vertex and
no edges. Each operation of the algorithm creates either a new edge not connected
to the graph or keeps the structure of a tree. So in each step of the algorithm, the
graph is in fact a union of trees. A basic subroutine of the algorithm is given by
computing the function

root : V −→ V
v 7→ root(v),

Figure 3.2:

&%
'$

&%
'$

&%
'$

&%
'$

- --v v1 v2 v′
e1 e2

e3, . . . , ek

46 3. The Number Field Sieve

Figure 3.3: Quadruple Yields Full

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

.......................................N

....................................... N

.......................................

.......................................

v1
v2 v3 v4

w1 w2

where root(v) is the vertex at the end of the path starting in v. In particular, this
is useful to compute a cycle in G when G is considered as an undirected graph. For
example, if we intend to insert the edge (v, v′) and we are faced with the condition
root(v) = root(v′), we have encountered a path

v′ −→ root(v′) = root(v) −→ v,

which actually is a cycle.

As a first application of the root–function, we sketch how a relation with four large
primes will be reduced to a relation without any, or one, or two large primes –
provided that appropriate partial cycles can be found.

A quadruple relation yields a full relation if two different pairs of large primes have
the same root in the graph (figure 3.3).

Figure 3.4 shows how a quadruple relation can be reduced to a single large prime
relation, whereas in figure 3.5 the case of a quadruple relation yielding a double
relation is depicted.

From figure 3.5 we see the possibility of violating the condition outdegree(v) = 1.
This obstruction is eliminated by turning all edges on the path (v1, . . . , w1) into
direction v1 so that after this operation we actually have a path

w1 → v1 → v2 → w2.

3.5 Combining Large Prime Relations 47

Figure 3.4: Quadruple Yields Single

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

.......................................N

....................................... N

.......................................

.......................................

v1
v2 v3 v4

1 w

Figure 3.5: Quadruple Yields Double

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$ N

.......................................

.......................................?

..................................... ?

.....................................

-
Φ(v3, w3), Φ(v4, w3)

v1
v2 v3 v4

w1 w2 w3

48 3. The Number Field Sieve

Operations of this type are collected in a function called adjust E, which is called
by the cycle finding procedure.

The following lines of pseudo–code show, how the general cycle finding algorithm is
implemented.

Finding Cycles

Input: partials, consisting of at most l large primes
Output: sets of partials, which can be combined to fulls

Initialization

(1) V = {1}; pseudo large prime
(2) for (each partial r = {P1, . . . , Pl} ∈ R) do consider all partials

Find Partial Cycles (Doubles)

(3) H = {r}; partials of cycle
(4) for (all pairs (P, P ′) ∈ r × r) do
(5) if (root(P) = root(P ′)) then common root found
(6) H = H ∪Φ(P, root) ∪Φ(P ′, root) collect partial cycle
(7) r = r \ {P, P ′} remove LP from rel
(8) fi
(9) od

Find Partial Cycles (Singles)

(10) for (all P ∈ r) do
(11) if (root(P) = 1) then single cycle found
(12) H = H ∪ Φ(P, 1) collect partial cycle
(13) r = r \ {P} remove LP from rel
(14) fi
(15) od

3.5 Combining Large Prime Relations 49

Test for Double

(16) if (|r| = 2 (r = {P, P ′})) then double found
(17) V = V ∪ {P, P ′} insert large primes
(18) E = E ∪ {(P, P ′)} insert edge
(19) Φ(P, P ′) = H update labeling
(20) adjust E(P, root(P), P ′, root(P ′)) outdegree(v)=1
(21) fi

Test for Single

(22) if (|r| = 1, (r = {P})) then single found
(23) V = V ∪ {P} insert large primes
(24) E = E ∪ {(P, 1)} insert edge
(25) Φ(P, 1) = H update labeling
(26) adjust E(P, root(P), 1, 1) outdegree(v)=1
(27) fi

Test for Full

(28) if (|r| = 0) then cycle found
(29) output H print new cycle
(30) fi
(31) od

50 3. The Number Field Sieve

Table 3.8: Cycle Counting

method # digits p cycles needed cycles found

S 65 19114 208985
Q 65 9125 361831
S 75 24139 224551
C 75 19018 637170
Q 85 56816 539238
C 85 54880 113858

Table 3.8 shows the number of cycles needed, which is the number of factor base
elements minus the number of free relations minus the number of full relations.
Sieving continues even when enough cycles are found, in order to improve the quality
of the cycles, which can be measured by its length. This is the reason why the
number of cycles found considerably exceeds the number of cycles needed when
constructing the relation matrix.

3.5.2 Cycle Building

From the algorithm in section 3.5.1, we know sets of relations whose large prime
exponents can be combined to 0 modulo 2. The large prime exponents of such a
relation set may or may not be combined to 0 modulo q, where q is a very big prime
number. As q is big, the partials have to be appropriately multiplied and divided
by each other such that the large primes vanish after that operation.

The following example shows that not all subsets of relations which are suitable for
the factoring case are also suitable for the DL case.

3.10 Example Assume we have three partial relations and the exponents of the
three large primes Q1, Q2, Q3 are as follows.

Element Q1 Q2 Q3

c1 + d1α 1 1 0
c2 + d2α 0 1 1
c3 + d3α 1 0 1

Computing modulo 2 as in the factoring case we could multiply the three relations
and get three large prime squares. But when computing modulo q as in the discrete

3.5 Combining Large Prime Relations 51

log case, this does not suffice; in fact the determinant is 2 which is 6≡ 0 mod q for
q > 2.

Surprisingly, in most other cases the determinant is 0 ∈ ZZ. So the strategy is to
construct cycles as in factoring and to try to combine them modulo q.

Generalizing example 3.10, we consider the corresponding matrix of large prime
exponents for each cycle:

Element Q1 Q2 Ql

c1 + d1α ordQ1 c1 + d1α ordQ2 c1 + d1α ordQl
c1 + d1α

c2 + d2α ordQ1 c2 + d2α ordQ2 c2 + d2α ordQl
c2 + d2α

...
...

...
...

...
...

ck + dkα ordQ1 ck + dkα ordQ2 ck + dkα ordQl
ck + dkα

Set mij := ordQj
ci + diα and consider the matrix M := (mij), 1 ≤ i ≤ k, 1 ≤ j ≤ l.

Sieving with large primes produces not more than a prescribed amount of entries
per row of M – for example when using the quadruple large prime variation, at
most four entries per row. Additionally, we know from the graph algorithm that
in a cycle, every large prime (represented as a vertex in the graph) is contained in
exactly two relations. This means every column of M contains exactly two entries.
We are searching for a linear combination of the rows,

v1m1 + v2m2 + · · ·+ vkmk = (0, . . . , 0),

where each vi is either 1 or −1. As a consequence of the latter property of M ,
prescribing one of the vi determines the value of all other vj , 1 ≤ j ≤ k, j 6= i. The
vj can be considered sequentially. In our algorithm, we will store those row numbers
j, where vj has been set, in a queue. In case the entry vi affects the entry vj , two
cases have to be considered

• vj is not set – in this case we set vj to −vi,

• vj has already been set – we test for vj = −vi; if this is true, we can proceed
with the next queue entry, otherwise we have encountered a contradiction –
no linear combination is possible, and we process the next cycle.

The following algorithm gives a formal description of this idea.

52 3. The Number Field Sieve

Combination of Cycles

Input: matrix m[][],rows,columns
Output: return 0: v[] linear combination of rows

return 1: no linear combination found

Initialization

(1) q in=q out=0; queue empty
(2) for (i := 2;i ≤ rows;i++) do init linear combination
(3) v[i]:= 0;
(4) v[1]=1; set factor of row 1
(5) row queue[q in++]=1; insert row 1

Collect row numbers in queue

(6) while (q in> q out) do queue not empty
(7) i= row queue[q out++]; read next row number
(8) for (j:= 1;j≤ columns;j++) do for every column j
(9) if (m[i][j]) then with entry in row i

(10) for (k:= 1;k≤ rows;k++) do find another row
(11) if (k 6= i) then
(12) if (m[k][j]) then with entry in col j
(13) if (v[k]= 0) then factor not set?
(14) row queue[q in++]=k; append row to queue
(15) v[k]=-v[i]; and set factor
(16) break; next row from queue
(17) else
(18) if (v[k]6= -v[i]) then parity violation
(19) return (1) unsuccessful
(20) fi
(21) fi
(22) fi
(23) fi
(24) od
(25) fi
(26) od
(27) od
(28) return (0) successful

3.5 Combining Large Prime Relations 53

In table 3.9, we list the running time of this algorithm on a Sparc 20 workstation.
As usual, the first column gives the NFS method, the second column the number of
digits of p, the third column the maximal cycle length, the fourth the total number
of cycles processed, the fifth the number of cycles which cause the above algorithm to
return a successful linear combination, and the sixth the percentage of the successful
returns.

Because of the high percentage, we may rely on the experimental evidence that
most cycles are suitable for DL. We conclude that if the maximal cycle length is not
too big, almost every cycle leads to a full relation. The running time of the cycle
building step is only a fraction compared to the sieving or the linear algebra step.

Table 3.9: Statistic of Combining Partials

method log10 p cycle #cycles #cycles % running
max. length suitable time (h)

S 65 50 23015 19364 84.14 2.0
Q 65 3 112035 112035 100.00 0.7
C 75 3 26197 26190 99.97 0.1
Q 85 19 158883 158841 99.97 17.0
C 85 19 104864 104850 99.99 2.6

Full relations which are the result of more than 40 partial relations are not of prac-
tical use because their weight is too high. There is a correlation of the number of
partials, which is denoted as cycle length, and the resulting weight – the weight
of the corresponding row in the relation matrix – as shown in table 3.10. The DL
problem considered here is the 85–digit problem solved by using the two–quadratics
version of the NFS. With the data collected in table 3.10 we have a justification
for the intuitive assumption that when reducing the cycle length, we automatically
obtain a reduction of the row weight. As one would expect, this is true for the
average weight, but we observe that the intervals overlap: pick for example a full
relation with a row weight of 177. This could be the result of a cycle of length 11,
12, 13, or 14.

From the use of the NFS for factoring, we already know that further sieving greatly
reduces the number of non–zero entries in the relation matrix. This is especially nec-
essary for computing discrete logarithms, since the matrix equation is to be solved
modulo a big prime. Every non–zero entry here leads to additional arithmetic oper-
ations with multiprecision integers. We therefore strongly recommend to continue
with sieving even if enough relations have been found in order to build the matrix
A.

54 3. The Number Field Sieve

Table 3.10: Correlation of Cycle Length and Row Weight

length min weight max weight avg weight # cycles

2 28 44 36.2 4322
3 43 63 52.6 3911
4 57 77 66.3 4241
5 70 93 81.3 5064
6 76 107 94.4 5935
7 96 121 108.7 6963
8 106 136 121.2 8312
9 120 150 135.0 9680

10 129 163 147.3 11046
11 144 177 160.5 12330
12 155 192 172.5 13012
13 169 205 185.5 13354
14 176 214 197.2 13595
15 186 228 209.9 12846
16 199 242 221.4 11825
17 213 258 233.9 9969
18 226 264 245.1 7774
19 232 278 257.4 4662

We illustrate this phenomenon in table 3.11, where once again the data are taken
from the 85–digit DL problem solved with the two–quadratics NFS. The table lists
the number of cycles of a given length which can be obtained after a computing
time of 20 mips years and after 44 mips years. With a cycle–reducing strategy from
Denny and Müller [18], we could further reduce the weight of the relation matrix as
can be seen from the “cycle–reducing” column.

3.5 Combining Large Prime Relations 55

Table 3.11: Reduction of Cycle Length by Further Sieving

length 20 mips (y) 44 mips (y) cycle–reducing

2 2260 4321 4322
3 1456 3911 3911
4 1224 4208 4241
5 1068 4928 5064
6 947 5740 5935
7 915 6458 6963
8 849 7433 8313
9 880 8323 9683

10 795 8975 11049
11 822 9833 12335
12 802 10331 13016
13 900 10897 13358
14 908 11385 13602
15 839 11773 12856
16 910 12349 11828
17 844 12393 9970
18 934 12872 7775
19 885 12753 4662

56 3. The Number Field Sieve

3.6 Computing Additive Characters

To compute a q-th power in Oj by multiplying elements of the form c + dαj, it is
required that the product of the ideals (c + dαj) is the q–th power of an ideal I of
Oj . Provided, we can construct a product

∏

(c,d)

(c + dαj)
e(c,d) = Iq,

we know that I is principal unless the class number of Oj is divisible by q.

So in fact we have
∏

(c,d)

(c + dαj)
e(c,d) = (γj)

q,

for some γj ∈ Oj, which is equivalent to

∏

(c,d)

(c + dαj)
e(c,d) = ηjγ

q
j ,

for some ηj ∈ O∗
j . What is needed is ηj ∈ (O∗

j)
q. Since every unit of ZZ is an odd

power, this condition is automatically satisfied on the rational side of the standard
NFS relations.

The details of the technique to achieve this for general algebraic number rings have
been described by Schirokauer [64]. In the following we give a brief overview of his
technique in order to emphasize the tasks, which our implementation must carry
out. For the rest of this section, let O := Oj for j = 1, 2.

Since q does not ramify in O, the prime ideal factorization of (q) can be written as

qO =

r∏

ρ=1

pρ,

where the pρ are mutually distinct. Consequently, we have the following decompo-
sition of the ring O/(q) into fields:

O/(q) =
r∏

ρ=1

O/pρ.

Define an integer ǫ to be

ǫ := lcmρ{N(pρ) − 1}.

3.6 Computing Additive Characters 57

For each γ ∈ O, it follows that

γǫ ≡ 1 mod pρ 1 ≤ ρ ≤ r.

In particular γǫ − 1 ∈ qO.

Define λ to be the following map:

λ : (O, ·) −→ qO/q2O(+)
γ −→ γǫ − 1.

This is actually a homomorphism of semi groups and a homomorphism on the group
of units of O.
We consider a special case of the main result of [64].

3.11 Proposition Let γ be an element of O whose norm is not divisible by q. Let
U be the group of units of O. Let

U ′ = {η ∈ U | η ≡ 1 mod qO}.

Then γ is a q–th power in O if

i) the class number of K is not divisible by the prime q,

ii) U ′ ⊂ U q,

iii) ordp(γ) ≡ 0 mod q for all prime ideals p of O,

iv) λ(γ) = 0.

We can write each cycle found by algorithm 3.5.2 in this way:

γ

γ′ :=

∏

(c,d) c + dα
∏

(c,d) c + dα
, (3.12)

and compute the images of γ, γ′ under λ modulo q2 using the α–power basis of ZZ[α]
modulo q2

ZZ[α].

58 3. The Number Field Sieve

We obtain

λ(γ) =

n−1∑

j=0

bjα
j mod q2O

λ(γ′) =
n−1∑

j=0

b′jα
j mod q2O

λ(
γ

γ′) =

n−1∑

j=0

(bj − b′j)α
j mod q2O.

But all the images under λ are multiples of q. Therefore we can divide each bj − b′j
by q and then take the sum modulo q instead of computing modulo q2.

With the help of this argument the coefficients bj − b′j of the image under λ can be
supplied to the exponent vector of the prime ideals. As a consequence, the exponent
vector gets extended by n entries.

Now let us shortly comment on the conditions i) – iv) of proposition 3.11. In [64], it is
referred to the Cohen–Lenstra heuristics, that i) is satisfied with probability 1−1/q,
and a heuristic argument is given that also ii) can be assumed with probability
1 − 1/q. Next, the purpose of the solution of the matrix equation in the linear
algebra step is to provide exactly conditions iii) and iv).

This concludes the construction of q–th powers in number fields. To achieve this, it
is merely necessary to be able to compute powers of algebraic elements, and this is
straightforward.

3.12 DL–Example From

g1(X) = 7X2 + 20X − 7 ≡ 7(X − 2977)(X − 4882) mod 5003

g2(X) = 4X2 − 21X + 8, irreducible mod 5003,

we obtain ǫ1 = 5002, ǫ2 = 50032 − 1 = 25030008.

For the relation corresponding to the pair (c, d) := (−1, 2), we compute the additive
character of −1 + 2α1, −1 + 2α2 by evaluating

(−1 + 2α1)
5002 −1 ≡ 14673799 +1580948α1 mod 50032O1

(−1 + 2α2)
25030008 −1 ≡ 8319989 +19386625α2 mod 50032O2.

3.6 Computing Additive Characters 59

In the linear algebra step, the exponent vector corresponding to (−1, 2) will then be
extended by the four entries

1

5003
(14673799, 1580948, 8319989, 19386625).

As for the running times in table 3.12, it is clear that the smaller the degree of the
field polynomial is, the faster ǫ can be computed. The size of ǫ depends on how the
polynomial splits modulo q. The running time per cycle strongly depends on the
size of ǫ. The size of ǫ, however, is not a criterion for the choice of the polynomial,
since computing the additive characters merely consumes a fraction of the time for
the whole DL computation.

Table 3.12: Average Running Time for Additive Characters

method log10 p log10 ǫ running time (s)
computing ǫ per cycle

S 65 257 8.6 9.2
Q 65 65 0.2 0.2
S 75 149 4.5 4.1
Q 85 85 0.4 0.8

The cycle length does not at all affect the running time of the computation of the
additive characters corresponding to this cycle. This is because we first compute
the algebraic element γ/γ′ of (3.12). Then we apply the map λ by computing the
ǫ–th power of them. But to evaluate the ǫ–th power of an algebraic integer is far
more expensive than to compute a product of a few algebraic integers. So we may
expect that the powering dominates the running time. A short experiment with a
626–digit ǫ taken from the McCurley challenge and cycle lengths between 2 and 30
shows that one cannot even distinguish the different cycle lengths by considering
the average running time. For each cycle length, 100 cycles have been considered
(table 3.13).

We achieved a speed–up of about 16 % of the running time for polynomials of
the special form Xn + c. This was especially useful for computing the additive
characters of the McCurley challenge. For the same cycles as considered in table
3.13, we observed the following average running times per cycle (table 3.14).

60 3. The Number Field Sieve

Table 3.13: Running Time Additive Characters for Different Cycle Lengths

cycle length running time / cycle (hsec)

2 6355
3 6330
4 6462
5 6438
6 6442
7 6445
8 6800
9 6477
10 6517
11 6403
12 6287
13 6047
14 6447
15 6767
16 6467
17 6361
18 6671
19 6428
20 6459
21 6452
22 6346
23 6472
24 6361
25 6093
26 6396
27 6103
28 6237
29 6219
30 6051

3.6 Computing Additive Characters 61

Table 3.14: Speed Up Additive Characters for Special Polynomials

cycle length running time / cycle (hsec)

2 4943
3 4891
4 4425
5 4438
6 4827
7 4774
8 4991
9 4989
10 4880
11 4935
12 4876
13 4923
14 4973
15 4877
16 4989
17 4928
18 4927
19 4856
20 4887
21 4846
22 4889
23 4881
24 4924
25 4925
26 4966
27 5051
28 4859
29 4878
30 5001

62 3. The Number Field Sieve

3.7 Linear Algebra

In contrast to factoring by means of the number field sieve, linear algebra modulo a
prime takes a considerable amount of CPU time within the whole DL algorithm. We
briefly summarize the results from [17], which lead to the final form of the implemen-
tation. Solving linear systems still cannot be distributed among the comparatively
cheap power of independent workstation clusters because of the heavy communica-
tion involved. We did our matrix computations mainly on the massively parallel
Paragon machine with 136 nodes at the Kernforschungszentrum Jülich/Germany.
At the beginning, we were provided with a structured Gauss implementation com-
bined with parallelized ordinary Gaussian elimination for dense matrices. Unfor-
tunately, pursuing this route consumes too much main memory, when building the
dense matrices. Nevertheless, we started using these algorithms for matrices up to
3754 × 3494, a sufficient size when solving 50–digit DL problems.

3.13 Example The structured Gaussian elimination is usually expected to reduce
the number of columns to one third. This means, a 24000 × 24000 sparse system
can be transformed into a 8000 × 8000 dense system. Let the entries of the dense
matrix be numbers up to 1087. Such numbers consume 40 bytes each. This would
require 8000 · 8000 · 40 bytes, that is 2.56 GB of main memory.

A substantial speed–up of the linear algebra step is gained when the Lanczos method
is used. The best performance has been achieved with a parallelized Lanczos im-
plementation from Denny [17]. In table 3.15 we list the running–times on a Sparc
20 workstation and on the parallel Paragon machine combined with the information
about how many nodes were used.

Table 3.15: Running Time of Linear Algebra Step

log10 p dimension method time machine # nodes

S 50 3754 × 3494 S–Gauss 74 m Paragon 136

S 65 20442 × 19957 Lanczos 38 h Paragon 50

Q 65 20340 × 20330 Lanczos 19 h Sparc 20 1

S 75 25085 × 25070 Lanczos 25 h Paragon 64

Q 85 175046 × 70342 Lanczos 64 h Paragon 64

C 85 119951 × 69984 Lanczos 23 d Sparc 20 1

S 129 40015 × 40000 Lanczos 30 d Sparc 20 1

3.7 Linear Algebra 63

3.7.1 Sketch of the Lanczos Algorithm

Although applying the Lanczos Algorithm is standard in modern factoring and dis-
crete log computation we give a brief sketch here, for the sake of completeness. The
reader will find a more detailed discussion about this topic in [34], [47]. The par-
allel implementation, which is used to compute the solutions to the DL problems
discussed in this thesis, is extensively described in [17].

Let K be a finite prime field. Given a symmetric matrix A ∈ Kn×n with det(A) 6= 0
and a vector w ∈ Kn, the Lanczos algorithm solves the system

Ax = w, x ∈ Kn.

The algorithm iteratively computes a sequence of vectors as follows. Let

w0 := w, v1 = Aw0

w1 := v1 −
〈v1, v1〉
〈w0, v1〉

wo

and then for i ≥ 1, inductively

vi+1 := Awi

wi+1 := vi+1 −
〈vi+1, vi+1〉
〈wi, vi+1〉

wi −
〈vi+1, vi〉
〈wi−1, vi〉

wi−1.

It can be proved that there exists j ≤ n, such that 〈wj, Awj〉 = 0. If wj = 0, then

x =

j−1
∑

i=0

〈wi, w〉
〈wi, vi+1〉

wi

is a solution of the system. In every iteration i > 1 the vector vi+1 = Awi and
three inner products are to be computed. In [17], it is shown how to avoid the
computation of one of the three inner products; the effect is that the running time
and the requirements of main memory are improved substantially. The trick makes
use of the identity 〈vi+1, vi〉 = 〈wi, vi+1〉 in the Lanczos iteration i.

Assume, we are faced with a linear system, which is not symmetric, for instance

Bx′ = w′, B ∈ Km×n, w′ ∈ Km.

Assuming B having full rank, the transformation

BtBx′ = Btw′

meets our requirements, with A = BtB and w = Btw. In this case, A is not
computed explicitely; instead, the matrix vector multiplication Awi in iteration i is
replaced by evaluating Bt(Bwi).

64 3. The Number Field Sieve

3.7.2 Applying the Lanczos Algorithm

The Lanczos algorithm has the advantage of computing a solution of an inhomoge-
neous linear system very fast. Though, at first sight, it seems to have two drawbacks.
For our purposes it is convenient to get a solution to a homogeneous system1. Fur-
thermore, the NFS computes one logarithm per solution of the linear system, there-
fore we normally need more than one solution to our system. In the sequel of this
section, we describe how to meet these two conditions.

Assume, we compute in K := ZZ/qZZ, B ∈ Km×n, m > n, needing l solutions to

xB = 0.

We start by splitting B into two matrices, such that

B =

(
B′

B′′

)

, B′ ∈ Km−l×n, B′′ ∈ K l×n.

Let b′′j ∈ K1×n, 1 ≤ j ≤ l be the rows of B′′. We proceed by solving the n inhomo-
geneous systems

xB′ = b′′j

simultaneously. According to the running times of [17], computing l simultaneous
solutions with the Lanczos algorithm is far cheaper than computing l solutions
sequentially. Although the value of l is limited by main memory constraints, this
is not very severe restriction; on a parallel machine we can compute at least 40
simultaneous solutions without difficulty. For K with a characteristic of 65 decimal
digits, it takes only twice as much time to compute 40 solutions simultaneously than
to compute one solution to the linear system. These are sufficient to compute the
logarithm of an arbitrary element in a prime field of such a size.

3.7.3 Computing Logarithms from Linear Algebra Solutions

Now we are ready to explain how to obtain the final results of the discrete log
computation from our solutions obtained in the linear algebra step.

Let m be the total number of cycles, i.e. the number of rows of the relation matrix
A, r be the number of primes we want to compute the discrete log of. Furthermore,
let s be the number of columns with heavy weight, say more than 90 % of the
entries are non-zero. Note that s ≥ n because the additive character columns are

1see the sketch of the NFS algorithm at the end of section 2.2

3.7 Linear Algebra 65

heavy (see section 3.6). Then we define the number of the rest of the columns as
t := |FBR| + |FBA| + n + 1 − s − r.

Then A is of the form

A = (A′|A′′|A′′′)

with A′ ∈ Km×r, A′′ ∈ Km×t, A′′′ ∈ Km×s.
A′ consists of the exponents of elements p1, . . . , pr we want to compute the discrete
logarithm of. We are interested in r − 1 solutions of

x(A′′|A′′′) = 0T (3.13)

in K.

As indicated in subsection 3.7.2, the Lanczos algorithm computes s+r−1 solutions
of xA′′ = 0T simultaneously; A′′ plays the role of B there. We write the solutions
as vectors si := (si1, . . . , sim), for 1 ≤ i ≤ s + r − 1. Define S ∈ Ks+r−1×m to be the
matrix consisting of the si.

We compute B = SA′′′ ∈ Ks+r−1×s and r − 1 solutions of

xB = 0T

of the form xj := (xj1, . . . , xj,s+r−1), which we write as a matrix X ∈ K(r−1)×(s+r−1).

Then the rows of XS ∈ Kr−1×m are solutions to the original equation (3.13):

X · S · A′′ = X · 0 = 0

X · S · A′′′ = X · B = 0

We now construct linear combinations XSA′ = L ∈ K(r−1)×r. For every row i of L,
(1 ≤ i ≤ r − 1), we have

pli1
1 pli2

2 · · · plir
r ≡ dq

i mod p

for some di ∈ (ZZ/pZZ)∗.

Therefore

l11 log p1 + . . . + l1r log pr ≡ 0 mod q
...

...
...

lr−1,1 log p1 + . . . + lr−1,r log pr ≡ 0 mod q

66 3. The Number Field Sieve

and we compute one non–trivial solution to

Ly ≡ 0 mod q, y =

y1

y2
...
yr

.

Now choose a generator of (ZZ/pZZ)∗ among the pj, 1 ≤ j ≤ r, say pk and define

y′ :=
1

yk
y =

y′
1

y′
2
...
y′

r

.

We end up with

logpk
pj ≡ y′

j mod q, 1 ≤ j ≤ r y′
k = 1.

3.7.4 The Two–Quadratics Version

In this subsection we present how the DL solutions will be obtained, when applying
the method of the two–quadratics adaption, which is discussed in section 3.2.4. We
stick to the notation introduced there. In the two–quadratics version of the NFS
the matrix A′ of the preceding subsection is empty. Instead, r relations are changed.
For the ease of exposition, assume r = 2; the logarithm of s to the base a shall be
computed. Assume further we have replaced two relations (ca, da), (cb, db) by the
relations (aca, ada), (bcb, bdb) respectively.

The solution to the linear system gives exponents ec,d of the elements c + dα1,
c + dα2, such that the power products give two q–th powers simultaneously (see
(3.10), (3.11)):

(a(ca + daα1))
eca,da

∏

(c,d)

(c + dα1)
ec,d = γq

a (3.14)

(s(cb + dbα2))
ecb,db

∏

(c,d)

(c + dα2)
ec,d = γq

b . (3.15)

Applying ϕ1, ϕ2, we get (3.16) from (3.14) and (3.17) from (3.15); note also Remark
2.2.

aeca,da

∏

(c,d)

(c + dm)ec,d ≡ gq
a mod p (3.16)

3.7 Linear Algebra 67

secb,db

∏

(c,d)

(c + dm)ec,d ≡ gq
b mod p, (3.17)

for some ga, gb ∈ ZZ.

For simplicity set k := eca,da
, l := ecb,db

and obtain

aks−l ≡ (ga/gb)
q mod p

by dividing (3.16) by (3.17).

As before, Lemma 1.4 now tells us that the discrete log of s to the base a modulo q
is x ≡ k/l mod q.

3.7.5 The COS Version

When computing logarithms with the COS method (subsection 3.2.1), the linear
algebra step is a little bit easier. The reason is that each ideal relation of the NFS
output already gives rise to an element relation modulo p:

∏

pep ≡ cV + dT ≡ V ϕ(c + dα) ≡ V
∏

πeπ mod p

with prime elements π ∈ O. Note that α is an algebraic integer here.

Let A ∈ Kn×m be the matrix, where the element aij is defined by the exponent of
prime element i in relation j. Then the vector

x := (log p1, . . . , log pk, log(ϕ(π1)), . . . , log(ϕ(πn−k)))

solves
xA = 0. (3.18)

When A has maximal rank n − 1, the solution space is one–dimensional, so all
solutions are given by ax, a ∈ K. Therefore, given an arbitrary solution of (3.18),
say

y := (y1, . . . , yn) ∈ K1,n,

it yields the logarithm of each factor base element with respect to factor base element
number i by the normalization

1

yi
· y.

We see, the COS algorithm has the significant advantage of computing the logarithm
of every factor base element from only one solution of the linear system. Further-
more, the partial relations allow to compute iteratively the logarithms of almost all
large prime elements, which occur in the set of partial relations.

68 3. The Number Field Sieve

3.8 Computational Results

The purpose of this section is to collect the outstandingly successful discrete loga-
rithm computations in finite prime fields of large order. We begin with the 129–digit
challenge of McCurley in 3.8.1, then describe the biggest example with the standard
NFS method in 3.8.2, which has been beaten by the two–quadratics adaption from
factoring (description in 3.8.3). Finally, we present a new record with the COS
Gaussian integer method in 3.8.4.

3.8.1 The McCurley Challenge

Our implementation, instantiated by the standard NFS method, has been used to
compute the logarithms of 3, 5, 11, 23, 31, 67, 7351, and 11287 to the base 7 in
ZZ/pZZ, where

p = (739 · 7149 − 736)/3

= 20470627038553283805974453516697427480360839434012345969579867459

1526591372685229510652847339705797622075505069831043486651682279.

The difficulty of computing discrete logarithms in this field is due to the 126–digit
prime factor q occuring in the factorization of

p − 1 = 2 · 739 · q,

with

q = 13850221271010340870077438103313550392666332499331763172922779065

7325163310341833227775945426052637092067324133850503035623601.

This is the field presented by McCurley in his challenge problem [44].

The practical experience obtained so far suggests that one should consider number
fields of degree n = 3, 4, 5, 6 and examine the probability of finding relations over
two factor bases of optimal size. In order to construct suitable polynomials of such
degrees, we may use the identities

21p = 739 · (750)3 − 5152

3p = 5173 · (737)4 − 736

21p = 739 · (730)5 − 5152

21p = 739 · (725)6 − 5152.

3.8 Computational Results 69

We therefore have the choice between the pairs of polynomials

g1(X) = X − 750 g2(X) = 739X3 − 5152

g1(X) = X − 737 g2(X) = 5173X4 − 736

g1(X) = X − 730 g2(X) = 739X5 − 5152

g1(X) = X − 725 g2(X) = 739X6 − 5152

Starting from the previous 65–digit record, we decided to end up with a 40000×40000
system in the linear algebra step. In order to compare the four different possible
choices of the degree, we look at the values N(c+dα1), N(c+dα2) to be decomposed
over the factor bases. On the rational side ZZ = O1, we get c + dm ≈ dm; on the
algebraic side, we obtain h2 · cn − a2,0d

n ≈ h2 · cn. As we expected to need a sieving
rectangle of 106 × 106, we got table 3.16 with the aid of the ρ–function.

Table 3.16: Comparing different degrees – McCurley challenge

degree m dm h2c
n |FB1| |FB2| # trials per full

3 1.8 · 1042 1.8 · 1048 1021 19800 20200 3.7 · 1011

4 1.9 · 1031 1.9 · 1037 1028 19900 20100 6.2 · 109

5 2.3 · 1025 2.3 · 1031 1033 19600 20400 3.7 · 109

6 1.3 · 1021 1.3 · 1027 1039 16400 23600 1.1 · 1010

As the expected number of trials for a full relation do not differ very much when
choosing the degrees 4 and 5, we started sieving with both degree 4 and degree 5.
After 4 mips years sieving, degree 5 turned out to have slightly better chances.

So the polynomial used in this case was g2(X) := 739X5 − 5152. Notice that it is
the special form of p that allows the construction of a suitable polynomial with such
small coefficients. Using the notation introduced in section 2.2, let α2 be a root of
g2(X), ϕ2 be the corresponding homomorphism from ZZ[739α2] to ZZ/pZZ. The small
size of the coefficients of f are clearly a great advantage. The smaller the values of
dnf(c/d) are, the more likely it is that they are divisible by only small primes.

For the computation of the logarithms listed below, two factor bases containing
20,000 elements each were used. Each element whose logarithm was computed was
in the factor base. As a result, there was no need to find smooth pre-images under
ϕ2 of these elements. The sieving interval for c and d was

−15 · 106 ≤ c ≤ 15 · 106

1 ≤ d ≤ 106.

70 3. The Number Field Sieve

After using 48.5 mips years of idle time on 110 Sparc workstations (nearly all of
type ELC rated at 21 mips), the following amount of relations has been found:

type of rel # after sieving # after filtering
fulls 2826 2826
singles 37046 32261
doubles 183383 141120
triples 410843 283197
quadruples 332133 210381
total 966231 666959
of lp 797794 476883

This led to 190077 full relations. As only 40000 full relations were needed we have
had a bound of maximal 57 partials per full relation (average 36). The resulting
matrix, however, consisted of too many non–zero entries to compute a linear algebra
solution within acceptable time.

Further sieving, reaching 110.6 mips years, led to more than 300000 cycles as an
effect of the cycle explosion phenomenon ([20], [78]).

type of rel # after sieving # after filtering
smalls 3199 3199
singles 42407 38446
doubles 211888 176307
triples 478543 369116
quadruples 388685 282832
total 1124722 869900
cycles 306717

The large amount of new cycles has also the advantage of getting far more short
cycles – here a new algorithm of combining cycles shows its worth [18]. The resulting
matrix is more sparse; a full relation consisted of maximal 22 partials (15 on average).

It took 1 min per cycle on a Sparc 20 to get the additive character columns. This was
parallelized in a trivial way by distributing the cycles among several machines. The
special form of f allowed to reduce the number of bit operations when multiplying
two algebraic numbers by exploiting the fact that (739α)5 = 1536574451494432; see
section 3.6.

3.8 Computational Results 71

The computation of the 15 solution vectors of the 40015 × 40000 linear system
modulo the 126–digit prime factor of p − 1 was done on three Sparc 20 stations
within a month by using the Lanczos algorithm [17].

Proceeding as described in subsection 3.7.3 we then derived the logs of the values of
the equation (3.19) below, which are in our factor base.

What follows is a list of these logarithms computed on March 4, 1996.

log7 3 =
68860094399350245342602688357969433483445840039152871728566347529
565785964863725784185382242928704191252419166720936656227287520

log7 5 =
11879221270981906956222381382324106470112756903551534511004275082
3500388286325942605192955114664035462813909658765297438835656126

log7 11 =
14172715990276841722156670601045288532560462777922377368290431150
1779036427498005684489448815993900553384795498539801572617795560

log7 23 =
15511605859077805410959549453221030604260697443327496808471308380
9077554326380982500867510375683508528960261218105195615534355804

log7 31 =
99355352742967588716252377905072644977502899916228947274361609866
914779159562668747791414510271447536348888475304697218073142380

log7 67 =
18524527685763603567792984693345199476969676775144205771380705966
9858757297002262476738378805178371906679858038237405561749622894

log7 7351 =
14463196894490829567073226898360380983979979583855805954303228348
5207949244587802105820524568207076947699912603427802417020634593

log7 11287 =
79051812480562894353242540763178671604799913001076931312515301149
375298305476653734488443974490137127049808298345258246689629965.

It is the McCurley challenge that remains, namely to compute the logarithm to the

72 3. The Number Field Sieve

base 7 of

b = 127402180119973946824269244334322849749382042586931621654557

735290322914679095998681860978813046595166455458144280588076

766033781.

Using the congruence

783 · b ≡ s

t
≡ 3 · 5 · 11 · 23 · 11287 · p8 · p10 · p17 · p23

31 · 67 · 7351 · 402869 · p13 · p′13 · p26

mod p (3.19)

where

p8 = 10547587

p10 = 2916781859

p13 = 2599909498829

p′13 = 3598631011739

p17 = 51337921071904669

p23 = 22761868782949840132373

p26 = 77731271923481246820848221,

the problem was reduced to computing the logarithms of the relatively small factors
of s and t. Indeed, as we have seen, the logarithms of the smallest factors have
already been computed. In order to compute the logarithm of any of the bigger
prime factors by means of the number field sieve with ZZ[α2] given as above, one
must find a smooth element in ZZ[α2] which is mapped to that prime by ϕ2. No
good method has yet been found to accomplish this. If one is willing to give up
the attractive polynomial f(X) = 739X5 −5152, then certainly there is the method
used for arbitrary integers, to find an alternative polynomial which will generate a
suitable number ring. It is not yet feasible, however, to pursue this route for the
primes listed here. The problem is that the coefficients of the polynomials under
consideration are too big. As a result, the factor base has to be increased in order to
find enough smooth pairs in the corresponding number ring. Unfortunately, then the
size of the factor base is too big for the available implementations of linear algebra
modulo a large prime. We note that current NFS factoring efforts do, in fact, use
number rings given by polynomials with coefficients of the size we are discussing. In
this case, however, the linear algebra is done mod 2.

3.8 Computational Results 73

3.8.2 The Standard–NFS Record

With the standard version of the NFS (section 3.2.2), our implementation set two
records in computing logarithms of factor base elements – one with p having 65
decimal digits on September 29, 1995 and one with p having 75 decimal digits on
March 25, 1996. The parameters, the NFS was configured with, are shown in table
3.17 together with the resulting amount of relations and cycles. In order to make
the discrete logarithm computation difficult, we chose p such that (p−1)/2 is prime.
The choice of the polynomials, the factor base sizes and the large prime bounds is
a straightforward application of the discussion in the sections 3.2 and section 3.3.

We present the discrete log problems solved modulo the 65–digit prime computed
on September 29, 1995.

p65 = 31081938120519680804196101011964261019661412191103091971180537759.

log7 2 = 12947465376923824724957499951503053332437571430268512704320339344
log7 3 = 22080187724931255875760876853515374478171170414218024970175409792
log7 5 = 9020360122054471637752764322421325610990892645529499177414056196
log7 11 = 9945551073244673320177388140562285016902916888328194474544106942
log7 13 = 15156730731943267081963372032905052327723905195485355154769047594
log7 17 = 8152659639161629852616660237224454396691805969032182443520670007
log7 19 = 8429438942722042183611304520083018385242987760831227887869827458
log7 23 = 29153020481930701437148309607402611581505734463034646141828747593
log7 29 = 22997906266006136529682973437413418001682127605800489536168728807

We append the discrete log problems solved modulo the 75–digit prime on March
25, 1996.

p75 =
310819381205196808041961141219110101196426101966030919711805194127121999327

74 3. The Number Field Sieve

log5 2 = 247304965037952295066692348548903196491045004838332188604053
856130900104778

log5 3 = 960297796467834075340248339229935989153611666307790134329861
0781966762006

log5 7 = 147001657721304571107460703308056871315960324818746059568618
613166225193632

log5 11 = 253762437654824910964035857039763668258075514706017456372999
633994434110941

log5 13 = 204890434527986803740486893000176797293960297959843422287988
074270476059103

log5 17 = 994367469189707170348518718066396458166481490556625301852160
02220962098391

log5 19 = 304826238078240870953965599601565525277161778098196660032717
603407232004336

3.8 Computational Results 75

Table 3.17: The 65– and 75–digit Standard NFS

prime p65 p75

poly g1

m 13277827521354825 4198817734636290744

poly g2

coeff. X4 -5796988 41440163

coeff. X3 -1040988700418 8899586579547

coeff. X2 -1599410033377 50013054105621

coeff. X1 2467898905167 -385158712921327

coeff. X0 2804774217242 -226856042090363

rat. FB 3000 5000

alg. FB 16954 20058

lp bound rat 2 · 106 5 · 106

lp bound alg 6 · 106 107

max c 4 · 106 107

max d 5 · 105 1.2 · 106

time sieve (mips) 5 y 116 d 70 y 16 d

collected rels

full rels 745 714

single rels 12695 13879

double rels 84904 107723

triple rels 266067 385844

quadruple rels 316388 534231

filtered rels

single rels 11907 12471

double rels 74183 87473

triple rels 218865 286887

quadruple rels 248539 367262

cycles 208985 224551

cycles needed 19114 24139

76 3. The Number Field Sieve

3.8.3 The Two–Quadratics Record

The new two–quadratics version for DL set a record on September 23, 1996, when
we solved

59x = 29 mod p

59y = 53 mod p,

where

p = 31081938080419611412191112051968261019660101196403
09197118051941271219700607191207059

is a prime of 85 decimal digits with q := (p − 1)/2 prime.

We computed the two solutions

x = 30510320398109765754475052908348052559852331892660
22096531322524429784944990676327395

mod p − 1

y = 12445261273448784489646035237768063038577529049189
59081249797500704003169233661409571

mod p − 1.

The two quadratic polynomials, which defined the auxiliary number rings were cho-
sen as

g1(X) = 12088651913597925810 · X2

+905452079113038068089 · X
+8749043915900881108603

g2(X) = 1146890895334804811 · X2

+5297984501155169639345 · X
−3247049136460419754715.

They have the common root

m = 90032406615008104576059194778390117845110494177770
7468193881618077848960434289779843

mod p.

The factor bases were of size 35346 and 34995 respectively.

3.8 Computational Results 77

The sieving procedure was done on 100 workstations using their idle time of 44.5
mips years.

Computing 10 dependencies among the rows of the resulting 175046× 70342 linear
system modulo q was done by the following steps:

• a compactification step, which constructed a 54866 × 54856 system

• the Lanczos algorithm on the parallel PARAGON machine at the KFA in
Jülich/Germany within 64 hours on 64 nodes.

Due to the compactification step, the computing time for the linear algebra step
was reduced by more than 30%. We refer the reader, who is interested in the
subject of minimizing the running time of a parallel Lanczos implementation by
compactification, to [17].

3.8.4 The COS Record

On November 24, 1996, a logarithm of an “arbitrary” element was computed.

We recomputed our NFS example from September 23, 1996, when we obtained two
logarithms of factor base elements log(29) and log(53) to the base 59. We configured
our NFS implementation by the COS method in order to obtain a comparison of
the COS and the NFS.

With

p85 = 310819380804196114121911120519682610196601011964030919711805
1941271219700607191207059

(85 decimal digits, 281 bits), q := (p − 1)/2 prime,

we solved the following problem

2x ≡ 314159265358979323846264338327950288419716939937510582097494
459230781640628620899862 mod p.

Note that the right hand side consists of the first 84 digits of π.

78 3. The Number Field Sieve

We found the solution

x ≡ 756823288306878728158503093002882408211087576743681636958030
065477607481720402869192 mod p − 1.

We used the Number Field Q(
√
−2), so the relations consisted of simultaneously

smooth values of

f1(X, Y) = 1323274340819980392303558671985532821598359∗ X
+823753247935753973397875723738676394183967∗ Y

and

f2(X, Y) = X2 + 2Y 2

with common root

(m, 1) ≡ (2162322945188147184111028427356103220656020834906357488
905312282872925396535625611903, 1) mod p.

The factor bases were of size 58000 and 11981 respectively.

The sieving procedure was done on 120 workstations using their idle time of about
30.6 mips years. This is faster than using NFS with two quadratic polynomials (44.5
mips years with equal total factor base size).

Computing one dependency among the columns of the resulting 119951 × 69984
linear system modulo q was done by the following steps:

• a compactification step, which resulted in a 51855 × 51855 system

• the Lanczos algorithm on a Sparc 20 station within 23.2 CPU days using 35
MB of main memory.

As decribed in subsection 3.7.5, the solution of the linear system almost immediately
gives the logarithm of the factor base elements. But we did not get the logarithm
of all factor base elements at once because the compactification step removes some
relations from the original system for the sake of efficiency. This was the case for
1088 factor base elements. With the aid of the full relations, the logarithms of these
elements have been computed in a negligible amount of time.

3.8 Computational Results 79

In order to be able to compute logs of arbitrary elements, we extended our table of
the 69981 factor base logs by creating a data base of 626419 logs of elements with
norm up to 107.

These were obtained within less than two hours on a Sparc 20 workstation from the
partial relations collected during the sieving step.

The log of the element above was derived from the following identities:

314159265358979323846264338327950288419716939937510582097494
459230781640628620899862

≡ −1107911020245284271895336948767925749763403
/123838534563412835872697345488248404183959

≡ −7 · 61 · 2594639391675138810059337116552519320289
/13 · 2207 · 3779 · 5053313 · 38665007 · 78959357 · 74034701813 mod p.

Here, the 40–digit factor

p40 = 2594639391675138810059337116552519320289

and the 11–digit factor

p11 = 74034701813

were replaced by 1010–smooth expressions.

By applying the reduction step of section 3.1 (8 hours on Sparc 20), we found that

p40 ≡ 33613 · 40829 · 83617 · 851761 · 2115961 · 2443219 · 4287211 · 4976687
22 · 19 · 6803 · 8387 · 59387 · 152239 · 586501 · 628997 · 18636193 · 210112139 mod p.

By sieving (33 minutes on Sparc 20), we found that

p11 ≡ −3 · 17 · 37 · 1109 · 6199 · 24989 · 46957 · 120661 · 936667 · 4133219 · p9

230 · 529 · 13 · 727 · 1303 · 2399 · 9157 · 32251 · 630299 · 3862493 · 5308663 · p9′
mod p,

where p9 = 515357041 and p9′ = 422591069.

The logarithms of a prime number s, with 107 < s < 1010 were found by lattice
sieving (1:15 min on Sparc 20 each). The lattice sieve tested the expressions

f1(c, d)

r
and f2(c, d)

for smoothness over the factor base.

80 3. The Number Field Sieve

Table 3.18: Lattice Sieve for p40

type # relations

single 0

double 9

triple 35

quadruple 51

quintuple 5

Table 3.19: Lattice Sieve for p11

type # relations

single 2

double 16

triple 35

quadruple 43

quintuple 2

In order to find the logarithm of p40, the lattice sieve was carried out for 8 different
r’s by setting the sieving rectangle to

−4000 ≤ λ ≤ 4000, 1 ≤ µ ≤ 1800.

With these parameters, we found the amount of relations shown in table 3.18.

By the use of the same sieving rectangle, for the prime p11, the lattice sieve was
carried out for 7 different r’s and produced the output as shown in table 3.19.

Chapter 4

A General Sieving Device

Within the last decade, many implementations of different sieving algorithms ap-
plicable to the discrete logarithm problem and to the factoring problem have been
developed [5, 78, 23, 16, 76]. At first sight, these algorithms require a different sort of
input; this is probably the reason for specialized implementations. Every implemen-
tation usually suffers from the well–known software problems when it is done from
scratch. For each implementation, it was required to invent a design, to debug code
tediously, to test executables for different input, and to speed up code in the most
time consuming parts of the program. Within this chapter, we present a generalized
implementation, which covers all the current sieving techniques both for DL and fac-
toring, and which is suitable for at least two new sieve applications. Of course, it is
necessary to compare the running time to the existing, specialized implementations.
For each algorithm, we will describe its configuration within our sieving device and
show that we do not invest too much running time for the generalization.

The sieving algorithms in question are the Coppersmith–Odlyzko–Schroeppel me-
thod for DL, the Quadratic Sieve for factoring and the Number Field Sieve for
both DL and factoring. Here we add the sieving method of section 3.1, used for
the reduction step in the DL problem. Furthermore, we add a Number Field Sieve
application for computing class groups of Number Fields [10].

We now proceed by reviewing the purpose of the different sieving procedures. For
a bound B, the Quadratic Sieve searches for values f(x) of a quadratic polynomial
f ∈ ZZ[X], which are smooth over a set of prime numbers with absolute value
below B. For bounds B1, B2, the Number Field Sieve aims to find principal ideals
(x + yα1), (x + yα2) of number rings which are simultaneously smooth over a set of
prime ideals with norm below B1, B2. Given bounds as above, the Gaussian integer
(COS) method aims to find algebraic integers x + y

√
−r, which are smooth over a

82 4. A General Sieving Device

set of prime elements with norm below B1, B2. The two latter methods make use
of the fact that the norm of elements x + yα of a number ring can be expressed by
a homogeneous polynomial

f(X, Y) = anX
n + an−1X

n−1Y + · · ·+ a1XY n−1 + a0Y
n ∈ ZZ[X, Y]. (4.1)

The sieving region is bounded by four values xmin, xmax, ymin, ymax ∈ ZZ, such
that we are looking for f(x, y) smooth within the rectangle

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax .

The sieving usually proceeds by keeping y fixed while obtaining suitable x’s by
sieving the univariate polynomial f(X, y).

4.1 Specification

To unify the interfaces of the sieving algorithms, we choose the input of the generic
sieving device to be:

1. the number of simultaneous polynomials k

2. homogeneous polynomials f1, . . . , fk ∈ ZZ[X, Y]

3. (a) factor base bounds B1, . . . , Bk ∈ IN, or

(b) factor bases F1, . . . , Fk ⊂ IN × IN

4. large prime bounds L1, . . . , Lk ∈ IN

5. values xmin, xmax, ymin, ymax ∈ ZZ.

4.1 Remark Within the factorization of fj(x, y), 1 ≤ j ≤ k, the data structure
is prepared to allow arbitrary many large prime factors r with Bj ≤ r ≤ Lj . But
the experimental data collected in this chapter is gained by restricting to one large
prime factor for each f(x, y), This is because one large prime for each polynomial
covers the range up to at least 60 decimal digits for factoring and discrete log.
This is enough for testing the reliability and the performance of the involved data
structures. By adding a factorization procedure designed for composites up to 20
decimal digits such as Shanks’s square–form–factorization method [63] or Pollard’s
ρ–method [56], one can use two or more large primes per polynomial.

4.2 Factor Bases 83

The output of our sieving device shall be a set S of pairs (x, y) ∈ ZZ × ZZ, with
fj(x, y) is Lj–smooth in the sense of remark 4.1, together with a prime factorization
of f1(x, y), . . . , fk(x, y). Trading rigor for speed, the set S will usually be a true
subset of the set of all smooth values within the sieving region. Omitting some of the
smooth values is not a severe restriction, as has already been shown by experiments
of the specialized implementations mentioned at the beginning of this chapter.

4.2 Factor Bases

Of course, a factor base contains primes up to a bound B, alternatively, the number
of elements in the factor base can be adjusted. It is essential to know where a prime
q divides f(x, 1). Given this information, the locations where q divides f(x, y), can
be determined. Assume f(x, 1) ≡ 0 mod q. From (4.1), we see that

f(xy + kq, y) ≡ ynf(x, 1) ≡ 0 mod q, k, y ∈ ZZ.

For different roots of f(X, 1) mod q, we therefore get different sets {(x, y) | f(x, y) ≡
0 mod q}, for which f(x, y) is divisible by q. Consequently, for each prime q with
q ≤ B, we compute the roots r1, r2, . . . , rq of f(X, 1) mod q and hold this information
in the factor base. It is worthwile to distinguish which root of f(X, 1) contributes to
the smoothness of f(x, y). This is exploited in the NFS algorithm, because there is
a bijection between the roots of f and the prime ideals of the corresponding number
ring. However, when q|an and q|y, we are in a special situation. In this case (4.1)
tells us that f(x, y) ≡ 0 mod q for all x ∈ ZZ. For all q dividing an, we therefore add
a special factor base element which is used in place of the (q, ri) if and only if q|y.

Therefore, the factor base F connected to a homogeneous polynomial f(X, Y) and
a smoothness bound B is of the form

F = {(q, r) ∈ IP × IN0 | q ∈ IP, q ≤ B, r ≤ q, f(r, 1) ≡ 0 mod q}
∪{(q, q) | an ≡ 0 mod q}.

We choose r as the least non-negative integer satisfying f(r, 1) ≡ 0 mod q.

If q is bounded by the integer B, one can expect that |F | ≈ π(B). This is a
consequence of the Tauberian theorem [36, Th. XV.5.4]. As this statement is valid
asymptotically, we want to know, how close the factor base size actually is to the
value of π(B) when computing the average size over 1000 polynomials of a certain
degree. The following table 4.1 shows that at least for polynomials of degree less
than 6, which occur in the NFS, π(B) is a good guess for the size of the factor base.

84 4. A General Sieving Device

Table 4.1: Average Factor Base Size

degree B π(B) avg. |F |
3 547 100 105
3 7927 1000 1004
3 104743 10000 10008
3 611957 50000 50001
4 547 100 103
4 7927 1000 1004
4 104743 10000 10005
4 611957 50000 50003
5 547 100 104
5 7927 1000 1003
5 104743 10000 10010
5 611957 50000 50010
6 547 100 103
6 7927 1000 1004
6 104743 10000 10004
6 611957 50000 50011

4.3 Configuration

We now give the concrete configuration of the sieving device to meet the require-
ments of the sieving methods mentioned at the beginning of this chapter. As there
is enough experimental data available in literature, we can focus our attention on
the choice of the homogeneous polynomials, instead of dealing with the factor base
bounds, the large prime bounds, and the size of the sieve array.

4.3.1 The Number Field Sieve

Let g1, g2 ∈ ZZ[X] be the polynomials defining the Number Fields Q(α1) and Q(α2)
respectively.

As usual, we take αj to be root of

gj(X) =

nj∑

l=0

ajlX
l, j = 1, 2, (4.2)

4.3 Configuration 85

and hj the highest coefficient of gj.

Proceeding with the general description in 4.1, we set the number of homogeneous
polynomials k = 2. We recall the expression, which is used in the algorithm instead
of the actual norm of elements hj · (x + yαj), x, y ∈ ZZ from formula 3.9.

|N ′(x + yαj)| = ynjgj(−
x

y
)

=

nj∑

k=0

(−1)kajkx
kynj−k

=: fj(x, y).

Smoothness of fj(x, y) then is equivalent to hj · (x + yαj) splitting into prime ideals
of small norm.

When computing the class group of a number field K with the NFS, we are interested
in getting relations among the prime ideals of only one number ring. The number
ring is given by one polynomial of the form 4.2. So we simply let g1(X) be a
polynomial defining K, compute f1(X, Y) and omit the polynomial g2(X). An
explicit discussion of computing class groups with the NFS is intended to appear in
[10].

4.3.2 The Gaussian Integer Method

Now we will explain, how to instantiate the Gaussian integer variant of the COS
algorithm described in subsection 3.2.1 in terms of our sieving device. From the
discussion at this place, we already know how to initialize the two bivariate poly-
nomials of our sieving device. By reusing the notation, let Q(

√
−r) be the chosen

number field, and

(
T

V
)2 ≡ −r mod p,

where T, V ∈ ZZ with |T |, |V | <
√

p. We recall the result from (3.7), (3.8).

f1(X, Y) =

{
X2 + XY + r+1

4
Y 2 if r ≡ 3 mod 4

X2 + rY 2 otherwise

f2(X, Y) =

{
2V ϕ(c + dα) ≡ 2V X + (T + V)Y mod p, if r ≡ 3 mod 4
V ϕ(c + dα) ≡ V X + TY mod p, otherwise

From 3.2.1, it is clear that k = 2 and the polynomials f1, f2 are suitable.

86 4. A General Sieving Device

Serving as an example, we recomputed the Sun challenge, which has been solved
in 1991 by LaMacchia and Odlyzko [35] – their sieving time was 100 hours on a
25 mips computer. By using a rational factor base of size 150000 and an algebraic
factor base size of 30000, we obtained 180000 relations within 12.6 hours on a Sparc
20 workstation, which is rated at about 80 mips. The computation was carried out
this way in order to get a comparison to the computation of 1991. Of course, it can
be substantially improved by employing the large prime variation.

4.3.3 The Quadratic Sieve

Assume we want to factor N ∈ ZZ. The Quadratic sieve algorithm starts by com-
puting many polynomials Q(X) = AX2 + BX + C ∈ ZZ[X], with B2 − 4AC = kN ,
k ∈ ZZ a (small) multiplier. We construct a homogenous quadratic polynomial

f(X, Y) = AX2 + BXY + CY 2,

which we specialize with the condition Y ≡ 1. From the theoretical point of view,
this specialization is not necessary, as for arbitrary y

Qy(X) = AX2 + (By) · X + y2 · C,

is also a valid quadratic sieve polynomial for N , since

(By)2 − 4A · y2 · C = y2(B2 − 4AC) = k′N,

with k′ := y2k.

Practical experience, however, shows that one should prefer to generate a new poly-
nomial instead of using different values of y. The quadratic sieve is a method, in
which the additional factor base information about roots of f mod q is only needed
for sieving, but not for postprocessing the output. So we may simplify the output
by merging the exponents of the two different factor base elements (q, r), (q, r′) for
each prime q. Different output for different sieving algorithms is the reason why the
output procedure is prepared to be changed at run–time (see subsection 4.5.1).

Compared to the specialized quadratic sieve implementation of LiDIA (Version 1.2)
[6] for a 40–digit composite, we observe a running time of 43.4 seconds on a Pentium
100 computer using 400 polynomials for the sieving device and a running time of
29.1 seconds for LiDIA’s quadratic sieve. In both cases the large prime variation
has not been employed.

In table 4.2, we list the running times of the sieving device when factoring a 60–,
70– and 80–digit number with large prime variation; the parameters were not quite
optimal, nevertheless this range of composites is already managable.

4.4 The Object Model 87

Table 4.2: Sieving Device (Quadratic Sieve)

digits n # factor base LP bound # relations time sieve (sec)

60 8000 107 50000 19894
70 15000 2 · 107 80000 76208
80 50000 2 · 107 200000 729069

4.3.4 Reduction step for DL

For a detailed description of this step, we refer to section 3.1. Naturally, we stick to
the notation of that paragraph.

Given the prime p, t ∈ ZZ, t ≤ √
p, assume we want to compute the logarithm of t

to some base, we may wish to express t by a product of small positive residues in
ZZ/pZZ. With t′ = ⌈p

t
⌉, we find that the two homogeneous polynomials of degree one

meet our requirements, by Lemma 3.2:

f1(X, Y) = X + t′Y

f2(X, Y) = tX + (tt′ − p)Y.

Information about the running times and the number of relations in the case of p
having 65, 75 and 85 digits, is listed in table 3.1 of section 3.1 on page 28.

4.4 The Object Model

The implementation of the sieving device is carried out in the programming language
C++, as it is specified in the reference manual of [73]. The reason for choosing C++
is the possibility to combine both the convenience of a powerful object model and
the efficiency of the C language. In particular, this is the main reason for numerous
C++ implementations in number theory. Additionally, it is possible to make it part
of the big class library for computational number theory LiDIA [54, 6].

The heart of the model is the class sieving device, which contains the polynomials,
the factor bases, the large prime bounds, the sieve array, and the list of hits. To
keep things simple, it is the only class, the user has to deal with. The polynomials
are represented in a standard way as a dynamic vector of their coefficients. A factor
base is a dynamic vector of factor base elements, whereas a factor base element

88 4. A General Sieving Device

consists of the prime q, a root r of the corresponding polynomial mod q and an
approximation of log q to some base. We call a pair (q, r) factor base prime, so that
a factor base element is actually represented as factor base prime plus approximation
of the logarithm. This is because we need factor base primes in order to represent
large prime factors, too. Large prime bounds are simply single precision integers.
The sieve array, which is repeatedly used, when sieving the different polynomials
fj(x, y), holds a vector of bytes, bounds for x and the current y. When a hit (a
probably smooth value) is found, its coordinates (x, y) are appended to a simple list
of sieve hits. A sieve hit is identified by the pair (x, y) where the hit has occured.
Further information is given by the decompositions of fj(x, y). Consequently, they
are organized as simple lists of (prime) factors and large prime factors. A factor is
of the form index/exponent, where the index refers to the number of the factor base
element in factor base j. Large prime factors are simply represented by the type
factor base prime.

This concludes the description of the object model.

4.5 The Classes

In C++ the abstract data types are called classes. We present the classes of the
sieving device, with their class members and member functions. For each class, we
present its definition and proceed with the description.

4.5.1 Sieving Device

As mentioned in section 4.4 above, this is the only class the user has to interact with
in order to find smooth values of bivariate homogeneous polynomials simultaneously.
For the sake of exposition, we use the top down approach when describing the classes.

typedef void (*sd_output_func)(ostream &, sieving_device &);

class sieving_device

{

bigint ring_char; // characteristic of ring

short int n_poly; // # biv_hom_polynomials

4.5 The Classes 89

biv_hom_polynomial <bigint> *f; // f_i(x,y)

biv_hom_polynomial <double> *fd; // f_i(x,y) type double

factor_base *fb; // factor bases

long *lp_bound; // large prime bounds

sieve_array s; // the sieve array

int *rels; // type of relations

int avail_mem; // main memory usage (bytes)

double log_base; // basis of logarithms

double log_log_base; // log(log_base)

// list for collecting sieving hits

simple_list <sieve_hit> l;

// list iterator for l

simple_list_iterator <sieve_hit> li;

sd_output_func output_func;

char verbose_mode; // verbose_mode mode yes/no

char timing_mode; // do timing yes/no

// --

enum {MAX_POLY=2, AVAIL_MEM=1000000 };

// --

int *pow3_tab;

int pow3(int k) const;

void pow3_init(int max);

void error(char *s);

public:

sieving_device(); // constructor

~sieving_device(); // destructor

// set user-defined output function

void set_output_func(const sd_output_func f);

90 4. A General Sieving Device

void set_ring_characteristic(const bigint &n);

bigint get_ring_characteristic();

void set_timing_mode(int on_or_off);

void set_verbose_mode(int on_or_off);

int set_avail_mem(int mem);

int get_n_poly();

long get_lp_bound(int np); // return lp_bound[np]

// return &l

simple_list <sieve_hit> *get_hit_pointer();

// return &f[np]

biv_hom_polynomial <bigint> *get_poly_pointer(int np);

// return &fb[np]

factor_base *get_fb_pointer(int np);

// insert polynomial f, compute fb for f, set lp_bound

void insert(const biv_hom_polynomial <bigint> &f,

int num_elements, long lp_max,

const prime_list &pl);

// insert polynomial f, factor base fb0, lp_bound

void insert(const biv_hom_polynomial <bigint> &g,

const factor_base &fb0, long lp_max);

// replace polynomial f[np] by g, semantic like insert()

void update(int np, const biv_hom_polynomial <bigint> &g,

int num_elements, long lp_max,

const prime_list &pl);

// find hits in the rectangle

// x_min<=x<x_max, y_min<=y<=y_max

void sieve(int x_min, int x_max, int y_min, int y_max);

// li points to the head of l

void reset_rel_iterator();

// get current (where li points to) relation,

4.5 The Classes 91

// increment li

int get_relation(int &, int &, int &, int *, int *);

int count_hits(); // return number of elements of l

void delete_hits(); // assign the empty list to l

// print statistic of hits in l

void output_statistic(ostream &);

// print all elements of l

void output_hits(ostream &out);

// print all components of s

friend ostream & operator<<(ostream &out, sieving_device &s);

};

void sd_default_output_func(ostream &, sieving_device &);

void sd_qs_output_func(ostream &, sieving_device &);

Recalling the purpose of the class, namely to provide a user interface for finding
smooth polynomials, the first definitions are straightforward. We dynamically al-
locate storage for a given number of polynomials f[], factor bases fb[], and large
prime bounds lp bound[]. Within the sieving process, one often needs to merely
compute approximations of the values f(x, y). Then it is faster to do this with
52–bit floating point approximations. So we make sure that we keep a copy of our
multiprecision polynomials, where an approximation of the coefficients is stored as a
polynomial of type double. Only one sieve array is needed for all polynomials. We
shall concentrate on that point when examining the class sieve array. The variable
avail mem will be set to restrict the use of main memory for the sieve array. This
is especially reasonable to limit the sieve array length to fit in the cache memory.
When a hit is found, it simply gets appended to the simple list l.

Although sieve algorithms have much in common, different sieve algorithms need
different output formats. This may be seen by comparing the NFS with QS. With
respect to the factor base of a polynomial f the NFS requires different roots of f
modulo the same (rational) prime q to be treated separately. This is because they
represent different prime ideals of norm q. In contrast, the output of the QS can be
substantially simplified, since both roots mod q represent the prime q. In order to
let the user choose, what should be the preferred output format for his (perhaps new
invented) sieving method, we decided to enable the user to invoke his own output
function at run time by the use of the member set output func(). An exam-
ple for QS is our sd qs output func(ostream &, sieving device &). Of course,

92 4. A General Sieving Device

he can also use the default output function sd default output func(ostream &,

sieving device &), write the relations into a file, and modify the output later.

4.5.2 Factor Base

Having determined the bivariate polynomials, the values of which are searched for
smoothness, each sieving algorithm starts with creating a factor base consisting of
several small primes, which are used for sieving. As mentioned above, a prime q
possibly occurs more than once in the factor base, because k roots of f mod q refer to
k factor base elements representing q. A factor base for a polynomial f of arbitrary
degree with maximal element Q consists of roughly π(Q) elements (see section 4.2).

We organize the factor base as dynamic array. The data structure is trivial though
we give the listing for sake of completeness.

class factor_base

{

int size; // # elements

fb_element *e; // vector of FB elements

void error(char *s);

public:

factor_base();

~factor_base();

int get_size() const;

int is_empty() const; // (size==0) ?

// compute roots of f modulo primes in pl

void compute(const biv_hom_polynomial <bigint> &f,

int num_elements, const prime_list &pl);

fb_element get_element(int index) const; // return e[index]

factor_base & operator=(const factor_base &fb0);

4.5 The Classes 93

// Input / Output

friend ostream & operator<<(ostream &out, factor_base &fb);

friend istream & operator>>(istream &in, factor_base &fb);

};

When looking at the member functions, we see that the only non–trivial procedure
here is the one solving the following problem.

Given a polynomial

f(X) = anXn + an−1X
n−1 + . . . + a1X + a0,

we must find all roots mod q for all primes q below some bound Q within acceptable
running time. This is done by a well known procedure, which is part of the Cantor–
Zassenhaus polynomial factorization algorithm modulo primes. One attempts to
split f by computing

gcd(f(X), (X − a)(q−1)/2)

in ZZ/qZZ for sufficiently many (random) a ∈ ZZ. The Cantor–Zassenhaus algorithm
is described in many books about computational number theory; see for example
[12].

4.5.3 Factor Base Element and Factor Base Prime

In a sieve algorithm, primes show up in two different situations. On the one hand,
large primes happen to show up after dividing a function value by factor base primes.
On the other hand, if q is a prime of the factor base, it is used to subtract the value
log q from the sieve locations. Therefore it is reasonable to have a base class repre-
senting prime elements by a pair (q, r) and to derive a class fb_element from it by
simply adding the information of the logarithm. Note that the class prime element

needs a virtual destructor since it serves as a base class for fb_element.

class prime_element

{

protected:

long p,cp; // (prime, start in sieve array)

94 4. A General Sieving Device

private:

void error(char *s)

{ cout << "error in class prime_element: " << s << endl;

exit(1); };

public:

prime_element(int prime=0, int cprime=0)

{ p=prime; cp=cprime; };

virtual ~prime_element()

{ };

inline void set_p(long p0)

{ p=p0; };

inline void set_cp(long cp0)

{ cp=cp0; };

inline long get_p() const

{ return p; };

inline long get_cp() const

{ return cp; };

friend int operator==(const prime_element &p,

const prime_element &q);

// Input / Output

friend ostream & operator<<(ostream &out,

const prime_element &p);

friend istream & operator>>(istream &in, prime_element &p);

};

class fb_element : public prime_element

{

char log_p; // approx. to log(p)

void error(char *s)

4.5 The Classes 95

{ cout << "error in class fb_element: " << s << endl;

exit(1); };

public:

inline void set_log_p(long lp)

{ log_p=lp; };

inline char get_log_p() const

{ return log_p; };

// Input / Output

friend ostream & operator<<(ostream &out, const fb_element &p);

friend istream & operator>>(istream &in, fb_element &p);

};

4.5.4 Sieve Array

Having determined polynomials and factor bases, the sieve process may start. We
encapsulate the char–based sieve array and all corresponding maintenance and sie-
ving functions in the class sieve array, which we are going to present now.

class sieve_array

{

enum { NOHIT=0x7f, HITB_TOLERANCE=3 };

int x_min, x_max; // bounds first variable

int y; // second variable

char *s; // sieve location

// s[0] <-> x_min

// s[x_max-xmin] <-> x_max

void error(char *s);

void do_gcd_sieve(int p);

public:

enum modus {INIT, INIT_SURVIVE};

96 4. A General Sieving Device

sieve_array();

~sieve_array();

// set sieving bounds

void set_bounds(int x_min, int x_max, int y);

inline int get_x_min();

inline int get_x_max();

inline int get_y();

// return next hit location in s[]

inline int next_hit(int start);

// remove pairs (x,y) with gcd(x,y)>1

void gcd_sieve();

// set s[] to init value

int init(const biv_hom_polynomial <double> &f,

const bigint &leading_coeff,

long lp_bound, modus m);

// called by init()

int init_recursive(const biv_hom_polynomial <double> &f,

const bigint &leading_coeff,

long lp_bound, int x0, int x1, modus m);

// subtract log(p) from s[] for each fb_element p

void log_sieve(const factor_base &fb);

// divide value of each hit location by p

void div_sieve(int np,

sieving_device *sdp,

hash_table <sieve_hit> &shh,

simple_list <int> &shl);

// find smooth values after division sieve

void survive_div(int np,

const biv_hom_polynomial <bigint> *f,

long lp_bound,

hash_table <sieve_hit> &shh,

simple_list <int> &shl);

4.5 The Classes 97

int count_hits(simple_list<int> &shl);

char & operator[](int index);

// Output

friend ostream &

operator<<(ostream &out, const sieve_array &sa);

};

To begin with the member variables, we store the actual x–bounds and y, whereas
the char–pointer s points to a dynamically allocated sieve array. We will describe
the sieving procedure very briefly – it is closely related to J. Zayer’s [78]. First, we
remove pairs (x, y) for which gcd(x, y) > 1. This is done by sieving the array by
the primes dividing y and setting each hit location to NOHIT, which is the maximal
positive char–value. For each polynomial f , the initializing of the sieve array and
the log sieve step are done. Let Cf be a constant to be explained in a few moments.
We initialize the array recursively with a crude approximation of log f(x, y)−Cf by
the following method:

When preparing the interval [x0; x2] for sieving, we compute

f(x0, y), f(x1, y), f(x2, y),

where x0, x1, x2 are the minimal, middle and maximal x–value respectively. In
case of log f(xi, y) and log f(xi+1, y) differing by a value of at least HITB TOLERANCE

(i = 0, 1), the interval gets bisected, and the procedure recursively affects the two
intervals [x0; x1] and [x1; x2]. Otherwise, the whole array gets initialized with value

(log f(x0, y) + log f(x2, y))/2− Cf .

The log sieve function subtracts log q for each factor base element (q, r) from the
sieve locations x ≡ yr mod q. In previous implementations [78, 16] it turned out, to
be wise not to sieve with prime powers and not to sieve with the smallest primes.
We balance the missing subtractions of log q by increasing Cf appropriately, instead.
For each large prime allowed, log lp bound is added to Cf , too.

Note that the primes q′ dividing the highest coefficient of f divide f(x, y) when
gcd(q′, y) > 1. So in this case we do not sieve with these primes; instead, log q′ is
added to Cf .

After the log sieve step has been performed for each polynomial f , we look for
locations of the sieve array which are < 0; these are candidates for smoothness.

98 4. A General Sieving Device

The candidates are found by simultaneously testing the sign bit of 16 bytes. As the
candidate locations are needed several times, they are stored in a simple list shl.
The actual factorization is found by a division sieve then, where for each candidate
x, the value f(x, y) is computed. The div sieve function behaves similar to the
log sieve function except for two changes:

• when a prime q hits a non–candidate location, nothing happens

• when a prime q hits a candidate location, f(x, y) is replaced by f(x, y)/qk,
where k is the exact power of q dividing f(x, y).

In order to efficiently find partial factorizations of candidate locations, the sieve hits
are stored in a hash table. By walking through the simple list of hit locations, the
survive div function checks whether a rest <lp bound remains after f(x, y) has
been divided by all factor base prime powers. If not, the sieve hit is removed from
the hash table. This concludes the description of the class sieve array. The two
functions that are most time critical are not part of the class but held globally,
to keep the possibility of replacing them easily by assembly code. These are the
functions

• do_log_sieve(char *s,int stop,int p,char log_p)

which subtracts the amount of log_p from every location

s[stop-k*p], 0 ≤ k ≤ stop/p

• get_next_hit(char *s, int start) which returns the location i ≥ start,
with s[i]<0.

4.5.5 Sieve Hit

A sieve hit is a pair (x, y), where f(x, y) is probably smooth over the factor base
connected to f . The sieve hits are collected in a simple list in the sieving device.
Usually, we want to know more than merely the coordinates. Therefore we decided
to store the factorization with the coordinates. Here is the definition of the class
sieve hit.

class sieve_hit

{

sieving_device *sdp; // pointer to the sieving device,

// which uses sieve_hit

4.5 The Classes 99

// smooth pair f_i(x,y)=value[i]*llp[i]*lfb[i]

int x,y;

// value[i] to be decomposed over factor base i

bigint *value;

simple_list <fb_factor> *lfb; // see (x,y)

simple_list <prime_element> *llp; // see (x,y)

void error(char *s); // error messages

public:

sieve_hit(sieving_device *s=0);

~sieve_hit();

void set_x(int x0);

void set_y(int y0);

void set_value(int np, const bigint &v); // value[np]=v

bigint get_value(int np);

// insert element lf in list llp[np]

void insert_lp(int np, const prime_element &lf);

// return length of llp[np]

int count_lp(int np);

// (value[np]<=smoothness_bound)

int is_smooth(int np,long smoothness_bound);

// divide value[np] by p, insert (p,exponent) into lfb

void trialdiv(short int np,long p, int index);

// store values of x,y,lfb into ind[], e[], return length lfb

int store_into_array(int &n, int &ret_x, int &ret_y,

int *ind, int *e);

sieve_hit & operator=(const sieve_hit &sh);

// Input / Output

100 4. A General Sieving Device

friend ostream & operator<<(ostream &out, const sieve_hit &s);

friend istream & operator>>(istream &in, sieve_hit &s);

// compare (x,y) of s1 to s2

friend int

operator==(const sieve_hit &s1, const sieve_hit &s2);

// output a sieve_hit in qs format

friend void output_qs(ostream &out, const sieve_hit *s,

const bigint &offset, // offset=-b/2a mod n

const bigint &a, // h.c. of Q

const bigint &n, // characteristic of ring

const factor_base *fbp // factor base pointer

);

};

At the beginning of the division sieve step, value[i] is equal to fi(x, y). When a
factor qk of fi(x, y) is found by trialdiv, valuei is replaced by valuei/q

k and the
pair (j, k) is appended to the simple list lfb[i], where j is the index of the pair
(q, r) in the factor base. Recognition of possible large prime factors of the form
(q, r) is achieved by the is smooth function. These factors are appended then to
the simple list llp[i] by calling insert lp.

4.5.6 Prime List

Finally, the generation of primes remains to be explained. The fast and useful
method for our purpose, namely producing the first primes below some bound, is
the 2000–year old sieve of Eratosthenes1. Due to its fame, there is no need to explain
it here. A substantial speed up is gained by sieving the linear functions 6X ± 1,
because every prime except from 2 and 3 must be of this form since 6X + k is
divisible by 2 or 3 unless k ≡ 1, 5 mod 6. This leads to saving up to 50 % of the
running time, as can be seen in the following table, where we generated all primes
up to n on a Sparc ELC workstation (21 Mips).

Furthermore, 75% of the main memory can be saved by not storing the absolute
value of the primes. Instead, the differences between the primes divided by 2 are
stored. This is sufficient since every operation involving primes from the prime
number list reads the list sequentially. As a matter of fact, the halved differences fit
into 1 byte for primes less than 109 [61].

1Eratosthenes von Kyrene 276–194 a. Chr.

4.5 The Classes 101

Table 4.3: Running Time Erathostenes Sieve

n Time Eratosthenes (hsec) Time 6k ± 1 (hsec) π(n)

1000000 102 53 78498
2000000 209 109 148933
5000000 538 313 348513
10000000 1106 980 664579
14000000 1570 1334 910077
15000000 1688 1431 970704

102 4. A General Sieving Device

Conclusion

The computational results achieved by our implementation show that we are able
to compute discrete logarithms in (ZZ/pZZ)∗, when p is a 85–digit prime (281 bits).
Although the new two–quadratics–NFS version for DL has turned out to be highly
efficient, a practical comparison has shown that up to prime fields of that size, the
Gaussian integer method is the method of choice.

The data concerning McCurley’s prime field with p having 129 digits show that under
certain circumstances, even 416 bits are insecure. Although there is still a gap of 96
bits to the Digital Signature Standard, one is tempted to assume that with further
refinements of theory and practical implementations, with further improvement of
hardware and a concerted effort, a today’s digital signature might be forgeable at
some time in the future.

Apparently, sieving techniques are still the only way to break cryptographic schemes,
the security of which is based on the difficulty of computing discrete logarithms in
(ZZ/pZZ)∗ or factoring large integers. With our general sieving device, we provide
a powerful tool, which covers all these methods and which is almost as efficient as
specialized implementations. Furthermore, it is helpful to quickly experience the
practicability of new methods for breaking such schemes.

104 4. A General Sieving Device

List of Tables

2.1 Running times Pohlig–Hellman–Pollard–Brent 21

3.1 Reduction Step . 28

3.2 Distinct Degree Factorization . 33

3.3 Comparison of Polynomials . 37

3.4 Factor Bases Factoring/DL . 38

3.5 Collected Partials . 39

3.6 Individual Relations 65–digit p . 42

3.7 Filtering Step . 43

3.8 Cycle Counting . 50

3.9 Statistic of Combining Partials . 53

3.10 Correlation of Cycle Length and Row Weight 54

3.11 Reduction of Cycle Length by Further Sieving 55

3.12 Average Running Time for Additive Characters 59

3.13 Running Time Additive Characters for Different Cycle Lengths 60

3.14 Speed Up Additive Characters for Special Polynomials 61

3.15 Running Time of Linear Algebra Step 62

3.16 Comparing different degrees – McCurley challenge 69

106 LIST OF TABLES

3.17 The 65– and 75–digit Standard NFS 75

3.18 Lattice Sieve for p40 . 80

3.19 Lattice Sieve for p11 . 80

4.1 Average Factor Base Size . 84

4.2 Sieving Device (Quadratic Sieve) . 87

4.3 Running Time Erathostenes Sieve . 101

Bibliography

[1] L. M. Adleman, A subexponential algorithm for the discrete logarithm problem
with applications to cryptography, Proc. 20th IEEE Found. Comp. Sci. Symp.,
pp. 55–60, 1979

[2] L. M. Adleman, The function field sieve, Algorithmic number theory, Lecture
Notes in Computer Science 877, pp. 108–121, Springer, 1994

[3] L. M. Adleman, J. DeMarrais, A subexponential algorithm for discrete loga-
rithms over all finite fields, Math. Comp. 61, pp. 1–155, 1993

[4] E. Bach, Explicit bounds for primality testing and related problems, Math.
Comp. 55, pp. 355–380, 1990

[5] D. Bernstein, A. K. Lenstra, A general number field sieve implementation, in
[37], pp. 103–126, 1993

[6] I. Biehl, J. Buchmann, Th. Papanikolaou LiDIA – A library for computational
number theory, Universität des Saarlandes, Tech. Report, 1995

[7] R. P. Brent, An improved Monte Carlo factorization algorithm, Nordisk Tid-
skrift för Informationsbehandling (BIT) 20, pp. 176–184, 1980

[8] J. Buchmann, Number theoretic algorithms and cryptology, Proceedings FCT
’91, Lecture Notes in Computer Science 529, pp. 16–21, Springer, 1991

[9] J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field
sieve, Advances in Cryptology – Crypto ’93, Lecture Notes in Computer Science
773, pp. 159–165, Springer, 1993

[10] J. Buchmann, St. Neis, D. Weber, Computing class groups with the NFS, in
preparation

[11] J. P. Buhler, H. W. Lenstra, Jr., C. Pomerance, Factoring integers with the
number field sieve, The development of the number field sieve, Lecture Notes
in Mathematics 1554, pp. 50–94, Springer, 1993

108 BIBLIOGRAPHY

[12] H. Cohen, A course in computational algebraic number theory, Graduate Texts
in Mathematics 138, Springer, 1993

[13] D. Coppersmith, A. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1, pp. 1–15, 1986

[14] D. Coppersmith, Modifications to the number field sieve, J. Cryptology, 1990

[15] J. Cowie, B. Dodson, M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Mont-
gomery, J. Zayer, A world wide number field sieve factoring record: on to 512
bits, ASIACRYPT 1996

[16] Th. Denny, Faktorisieren mit dem Quadratischen Sieb, Diplomarbeit, Univer-
sität des Saarlandes, Saarbrücken, 1993

[17] Th. Denny, Lösen großer dünnbesetzter Gleichungssysteme über endlichen
Primkörpern, PhD Thesis, Universität des Saarlandes, Saarbrücken, to appear

[18] Th. Denny, V. Müller, On the reduction of composed relations from the number
field sieve , Proceedings ANTS II, Lecture Notes in Computer Science 1122,
pp. 75–90, Springer, 1996

[19] W. Diffie, M. Hellman, New directions in cryptography. IEEE Trans. Informa-
tion Theory 22, pp. 472–492, 1976

[20] B. Dodson, A. K. Lenstra, NFS with four large primes: an explosive experiment,
Advances in Cryptology – Crypto ’95, Lecture Notes in Computer Science 963,
pp. 372–385, Springer, 1995

[21] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Information Theory 31, pp. 469–472, 1985

[22] T. ElGamal, A subexponential-time algorithm for computing discrete logarithms
over GF (p2), IEEE Trans. Information Theory 31, pp. 473–481, 1985

[23] M. Elkenbracht–Huizing, An implementation of the number field sieve, Techni-
cal Report, Centrum for Wiskunde en Informatica, Amsterdam, 1993

[24] M. Elkenbracht–Huizing, A multiple polynomial general number field sieve,
Proceedings ANTS II, Lecture Notes in Computer Science 1122, pp. 99–114,
Springer, 1996

[25] R. A. Golliver, A. K. Lenstra, K. S. McCurley, Lattice sieving and trial division,
Algorithmic Number Theory (ANTS), Lecture Notes in Computer Science 877,
Springer, 1994

BIBLIOGRAPHY 109

[26] G. H. Golub, C. F. Van Loan, Matrix computations, The Johns Hopkins Uni-
versity Press, 1993

[27] D. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM
J. Discrete Math. 6, pp. 124–138, 1993

[28] Th. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer, 1974

[29] K. Ireland, M. Rosen, A classical introduction to modern number theory, Grad-
uate Texts in Mathematics 84, 2nd edition, Springer, 1990

[30] B. W. Kernighan, D. M. Ritchie, The C programming language, 2nd ed., Pren-
tice Hall, 1988

[31] D. E. Knuth, L. Trabb Pardo, Analysis of a simple factorization algorithm,
Theoretical Computer Science 3, pp. 321–348, 1976

[32] M. Kraitchik, Théorie des nombres, Vol. 1, Gauthier–Villars, 1922

[33] M. Kraitchik, Recherches sur la théorie des nombres, Gauthier–Villars, 1924

[34] M. LaMacchia, A. Odlyzko, Solving large sparse linear systems over finite fields,
Advances in Cryptology – Crypto ’90, Lecture Notes in Computer Science 537,
pp. 109–133, Springer, 1991

[35] M. LaMacchia, A. Odlyzko, Computation of discrete logarithms in prime fields,
Designs, Codes and Cryptography 1, pp. 46–62, 1991

[36] Serge Lang, Algebraic number theory, Graduate Texts in Mathematics 110,
Springer, 1986

[37] A. K. Lenstra, H. W. Lenstra, Jr. (eds.), The development of the number field
sieve, Lecture Notes in Mathematics 1554, Springer, 1993

[38] A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Technical
Report 87-008, University of Chicago, 1987

[39] A. K. Lenstra, M.S. Manasse, Factoring with two large primes, Math. Comp.
63, pp. 77–82, 1994

[40] R. Lovorn, Rigorous, subexponential algorithms for discrete logarithms over fi-
nite fields, PhD Thesis, University of Georgia, 1992.

[41] R. Lovorn Bender, C. Pomerance Rigorous discrete logarithm computations in
finite fields via smooth polynomials, preprint, 1995

110 BIBLIOGRAPHY

[42] U. Maurer, Towards the equivalence of breaking the Diffie–Hellman protocol and
computing discrete logarithms, Advances in Cryptology – Crypto ’94, Lecture
Notes in Computer Science 839, pp. 271–281, Springer, 1994

[43] U. Maurer, St. Wolf, Diffie–Hellman Oracles, Advances in Cryptology – Crypto
’96, Lecture Notes in Computer Science, to appear

[44] K. McCurley, The discrete logarithm problem, Cryptology and Computational
Number Theory, Proc. Symp. in Applied Mathematics 42, American Mathe-
matical Society, pp. 49–74, 1990

[45] A. Menezes, T. Okamoto, S. A. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, Proceedings of the 23rd Annual ACM Symposium
on the Theory of Computing, pp. 80–89, 1991

[46] A. Menezes, P. C. v. Oorschot, S. A. Vanstone, Handbook of applied cryptogra-
phy, CRC Press, 1997

[47] Peter L. Montgomery, A block Lanczos algorithm for finding dependencies over
GF(2), Advances in Cryptology – Eurocrypt’95, Lecture Notes in Computer
Science 921, pp. 106–120, Springer, 1995

[48] Peter L. Montgomery, Number field sieve with two quadratic polynomials, Cen-
trum for Wiskunde en Informatica, Amsterdam, 1993

[49] National Bureau of Standards, Digital signature standard, FIPS Publication
186, 1994

[50] R. Needham, M. Schroeder, Using encryption for authentication in large net-
works of computers, Communications of the ACM 21, pp. 993–999, 1978

[51] A. Odlyzko, Discrete logarithms in finite fields and their cryptographic signif-
icance, Advances in Cryptology – Eurocrypt ’84 Lecture Notes in Computer
Science 209, pp. 224–314, Springer, 1985

[52] A. Odlyzko, Discrete logarithms and smooth polynomials, Finite Fields: Theory,
Applications, and Algorithms (Las Vegas, NV, 1993), Contemp. Math 168,
Amer. Math. Soc., pp. 269–278, 1994

[53] Th. Papanikolaou, Jörg Zayer, Algo.sty – ein TeX-Style für Algorithmen, Uni-
versität des Saarlandes, 1994

[54] Th. Papanikolaou, Software–Entwicklung in der Computer–Algebra am Beispiel
einer objektorienten Bibliothek für algorithmische Zahlentheorie, Universität
des Saarlandes, PhD thesis, to appear

BIBLIOGRAPHY 111

[55] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Trans. on Information Theory
24, pp. 106–110, 1978

[56] J. M. Pollard, A Monte Carlo method for factorization, BIT 15, pp. 331–335,
1975

[57] J. M. Pollard, Monte Carlo methods for index computation (mod p), Math.
Comp. 32, pp. 918–924, 1978

[58] J. M. Pollard, Factoring with cubic integers, Manuscript, in [37], pp. 4–10, 1988

[59] J. M. Pollard, The lattice sieve, Manuscript, in [37], pp. 43–49, 1991

[60] C. Pomerance, Fast rigorous factorization and discrete logarithms algorithms,
Discrete algorithms and complexity (D.S. Johnson, T. Nishizeki, A. Nozaki and
H. Wilf, eds.), Academic Press, pp. 119–143, 1987

[61] Riesel, Prime numbers and computer methods for factorization, Birkhäuser,
1996

[62] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, Communications of the ACM 21, pp. 120–126,
1978

[63] D. Shanks, Class Number, a Theory of Factorization and Genera, Proc. Sympo-
sium Pure Mathematics Vol. 20, American Mathematical Society, Providence,
R. I., pp. 415–440, 1970

[64] O. Schirokauer, Discrete logarithms and local units, Phil. Trans. R. Soc. Lond.
A 345, pp. 409–423, 1993

[65] O. Schirokauer, D. Weber, Th. F. Denny, Discrete logarithms: the effectiveness
of the index calculus method, Algorithmic Number Theory – ANTS II, Lecture
Notes in Computer Science 1122, pp. 337–361, Springer, 1996

[66] O. Schirokauer, Using number fields to compute logarithms in finite fields, in
preparation

[67] C. P. Schnorr, Efficient signature generation by smart cards, J. Cryptology 4,
pp. 161–174, 1991

[68] E. Scholz, Geschichte der Algebra, Bibl. Inst., 1990

[69] Th. Setz, R. Roth, LiPS: a system for distributed processing on workstations,
SFB 124 TP D5, Universität des Saarlandes, 1992

112 BIBLIOGRAPHY

[70] Th. Setz LiPS, PhD Thesis, Universität des Saarlandes, 1996

[71] V. Shoup, Searching for primitive roots in finite fields, Proc. 22nd Annual ACM
Symp. on Theory of Computing (STOC), pp. 546–554, 1990

[72] D. R. Stinson, Cryptography in theory and practice, CRC Press, 1995

[73] B. Stroustrup, The C++ programming language, Addison–Wesley, 2nd Edition,
1994

[74] B. Taylor, D. Goldberg, Secure networking in the Sun environment, Proc.
USENIX Assoc. Summer Conference, Atlanta, pp. 28–37, 1986

[75] D. Weber, An implementation of the number field sieve to compute discrete
logarithms mod p, Advances in Cryptology – Eurocrypt’95, Lecture Notes in
Computer Science 921, pp. 95–105, Springer, 1995

[76] D. Weber, Computing discrete logarithms with the number field sieve, Algorith-
mic Number Theory – ANTS II, Lecture Notes in Computer Science 1122, pp.
390–403, Springer, 1996

[77] J. Zayer, Die Theorie des Number Field Sieve, Diplomarbeit, Saarbrücken, 1991

[78] J. Zayer, Faktorisieren mit dem Number Field Sieve, PhD Thesis, Saarbrücken,
1995

